Science.gov

Sample records for fast light slow

  1. Slow and fast light switching in ruby

    NASA Astrophysics Data System (ADS)

    Rajan, Rajitha P.; Riesen, Hans

    2015-05-01

    Studies about light propagation have been undertaken for more than a century. It is now well established that any material that has normal or anomalous dispersion generates slow or fast light. In this paper, we demonstrate an experimental technique to rapidly switch between slow and fast light in ruby. The experiment utilizes transient holeburning to create drastic variation in refractive index of ruby to produce slow as well as fast light. Transient hole-burning involves the depletion of the ground state leading to a highly populated excited state by single frequency laser excitation. This leads to a hole in the absorption spectrum when readout by a laser. We observed a delay of 29 ns and advancement of -11 ns in an external magnetic field of B║c = 12 mT corresponding to a group velocity of c/961 and negative group velocity of -c/365 respectively.

  2. Slow and fast light in semiconductors

    NASA Astrophysics Data System (ADS)

    Sedgwick, Forrest Grant

    Slow and fast light are the propagation of optical signals at group velocities below and above the speed of light in a given medium. There has been great interest in the use of nonlinear optics to engineer slow and fast light dispersion for applications in optical communications and radio-frequency or microwave photonics. Early results in this field were primarily confined to dilute atomic systems. While these results were impressive, they had two major barriers to practical application. First, the wavelengths were not compatible with fiber optic telecommunications. More importantly, the bandwidth obtainable in these experiments was inherently low; 100 kHz or less. Within the last five years slow and fast light effects have been observed and engineered in a much wider variety of systems. In this work, we detail our efforts to realize slow and fast light in semiconductor systems. There are three primary advantages of semiconductor systems: fiber-compatible wavelengths, larger bandwidth, and simplification of integration with other optical components. In this work we will explore three different types of physical mechanisms for implementing slow and fast light. The first is electromagnetically induced transparency (EIT). In transporting this process to semiconductors, we initially turn our attention to quantum dots or "artificial atoms". We present simulations of a quantum dot EIT-based device within the context of an optical communications link and we derive results which are generally applicable to a broad class of slow light devices. We then present experimental results realizing EIT in quantum wells by using long-lived electron spin coherence. The second mechanism we will explore is coherent population oscillations (CPO), also known as carrier density pulsations (CDP). We examine for the first time how both slow and fast light may be achieved in a quantum well semiconductor optical amplifier (SOA) while operating in the gain regime. Again, we simulate the device

  3. Fast and slow light in zigzag microring resonator chains.

    PubMed

    Chamorro-Posada, P; Fraile-Pelaez, F J

    2009-03-01

    We analyze fast- and slow-light transmission in a zigzag microring resonator chain. In the superluminal case, a new light-transmission effect is found whereby the input optical pulse is reproduced in an almost-simultaneous manner at the various system outputs. When the input carrier is tuned to a different frequency, the system permits to slow down the propagating optical signal. Between these two extreme cases, the relative delay can be tuned within a broad range. We propose, and analyze numerically, a laser-array configuration for the stable operation of active devices. PMID:19252573

  4. Slow and fast light propagation in nonlinear Kerr media.

    NASA Astrophysics Data System (ADS)

    Yang, Qiguang; Ma, Seongmin; Wang, Huitian; Jung, S. S.

    2005-04-01

    Sub- and superluminal propagation of light pulse in Kerr materials has been investigated. Group velocities as slow as much less than 1 millimeter per second to as fast as negative several hundreds meters per second can be easily obtained in Kerr medium, which possesses large nonlinear refractive index and long relaxation time, such as Cr doped Alexandrite, Ruby, and GdAlO3. The physical mechanism is the strong highly dispersive coupling between different frequency components of the pulse. The new mechanism of slowing down pulses as well as producing superluminal pulses enlarges the very specific materials to all kinds of nonlinear optical materials.

  5. EDITORIAL: Slow light Slow light

    NASA Astrophysics Data System (ADS)

    Boyd, Robert; Hess, Ortwin; Denz, Cornelia; Paspalakis, Emmanuel

    2010-10-01

    Research into slow light began theoretically in 1880 with the paper [1] of H A Lorentz, who is best known for his work on relativity and the speed of light. Experimental work started some 60 years later with the work of S L McCall and E L Hahn [2] who explored non-linear self-induced transparency in ruby. This field of research has burgeoned in the last 10 years, starting with the work of L Vestergaard Hau and coworkers on slow light via electromagnetically induced transparency in a Bose-Einstein condensate [3]. Many groups are now able to slow light down to a few metres per second or even stop the motion of light entirely [4]. Today, slow light - or more often `slow and fast light' - has become its own vibrant field with a strongly increasing number of publications. In broad scope, slow light research can be categorized in terms of the sort of physical mechanism used to slow down the light. One sort of slow light makes use of material dispersion. This dispersion can be the natural dispersion of the ordinary refractive index or can be the frequency dependence of some nonlinear optical process, such as electromagnetically induced transparency, coherent population oscillations, stimulated light scattering, or four-wave mixing processes. The second sort of slow light makes use of the wavelength dependence of artificially structured materials, such as photonic crystals, optical waveguides, and collections of microresonators. Material systems in which slow light has been observed include metal vapours, rare-earth-doped materials, Raman and Brillioun gain media, photonic crystals, microresonators and, more recently, metamaterials. A common feature of all of these schemes is the presence of a sharp single resonance or multiple resonances produced by an atomic transition, a resonance in a photonic structure, or in a nonlinear optical process. Current applications of slow light include a series of attractive topics in optical information processing, such as optical data

  6. Storage and retrieval of light pulses in atomic media with 'slow' and 'fast' light

    SciTech Connect

    Lezama, A.; Akulshin, A. M.; Sidorov, A. I.; Hannaford, P.

    2006-03-15

    We report experimental evidence that light storage, understood as the controlled release of a light pulse by an atomic sample dependent on the past presence of a writing pulse, is not restricted to small-group-velocity media but can also occur in a negative-group-velocity medium. We present a numerical modeling in close agreement with our observations and a simple physical picture applicable to light storage experiments in both 'slow' and 'fast' light media.

  7. Measurement of the information velocity in fast- and slow-light optical pulse propagation

    NASA Astrophysics Data System (ADS)

    Stenner, Michael David

    This thesis describes a study of the velocity of information on optical pulses propagating through fast- and slow-light media. In fast- and slow-light media, the group velocity vg is faster than the speed of light in vacuum c (vg > c or vg < 0) or slower than c (0 < vg < c) respectively. While it is largely accepted that optical pulses can travel at these extreme group velocities, the velocity of information encoded on them is still the subject of considerable debate. There are many contradictory theories describing the velocity of information on optical pulses, but no accepted techniques for its experimental measurement. The velocity of information has broad implications for the principle of relativistic causality (which requires that information travels no faster than c) and for modern communications and computation. In this thesis, a new technique for measuring the information velocity vi is described and implemented for fast- and slow-light media. The fast- and slow-light media are generated using modern dispersion-tailoring techniques that use large atomic coherences to generate strong normal and anomalous dispersion. The information velocity in these media can then be measured using information-theoretic concepts by creating an alphabet of two distinct pulse symbols and transmitting the symbols through the media. By performing a detailed statistical analysis of the received information as a function of time, it is possible to calculate vi. This new technique makes it possible for the first time to measure the velocity of information on optical pulses. Applying this technique to fast-light pulses, where vg/c = -0.051 +/- 0.002, it is found that vi /c = 0.4(+0.7--0.2). In the slow-light case, where vg/c = 0.0097 +/- 0.0003, information is found to propagate at vi/c = 0.6. In the slow-light case, the error bars are slightly more complicated. The fast bound is -0.5c (which is faster than positive values) and the slow bound is 0.2c . These results represent the

  8. QUANTUM CONTROL OF LIGHT: From Slow Light and FAST CARS to Nuclear γ-ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Scully, Marlan

    2007-06-01

    In recent work we have demonstrated strong coherent backward wave oscillation using forward propagating fields only. This surprising result is achieved by applying laser fields to an ultra-dispersive medium with proper chosen detunings to excite a molecular vibrational coherence that corresponds to a backward propagating wave [PRL, 97, 113001 (2006)]. The physics then has much in common with propagation of ultra-slow light. Applications of coherent scattering and remote sensing to the detection of bio and chemical pathogens (e.g., anthrax) via Coherent Anti-Raman Scattering together with Femtosecond Adaptive Spectroscopic Techniques (FAST CARS [Opt. Comm., 244, 423 (2005)]) will be discussed. Furthermore, the interplay between quantum optics (Dicke super and sub-radiant states) and nuclear physics (forward scattering of γ radiation) provides interesting problems and insights into the quantum control of scattered light [PRL, 96, 010501 (2005)].

  9. Influence of finite bandwidth on the propagation of information in fast- and slow-light media

    NASA Astrophysics Data System (ADS)

    Amano, Heisuke; Tomita, Makoto

    2016-06-01

    We examined the propagation of information encoded as nonanalytical points on temporally Gaussian-shaped optical pulses in fast- and slow-light systems. The bandwidth of the input pulses determined the sharpness of the nonanalytical points. A sharp bending nonanalytical point propagated with luminal velocity in both fast- and slow-light systems, in good agreement with relativistic causality. As the bandwidth was reduced, the bending point became broad and propagated with the relevant group velocities. This transition was, however, qualitatively different in the fast- and slow-light systems. We also examined the predictability of the future pulse shape beyond the practical nonanalytical point on the basis of the expansion. When the bandwidth was reduced below a critical value, the expansion well predicted the future pulse shape.

  10. Slow/fast light using a very short Er3+/Yb3+ co-doped fiber.

    PubMed

    Gan, Jiulin; Chen, Jiali; Xu, Shanhui; Yang, Zhongmin; Jiang, Zhonghong

    2013-03-01

    A slow/fast light device with a sealed size of 130 mm×30 mm×3 mm has been demonstrated. Ultraslow propagation and superluminal propagation with group velocity values from 8.4 to -14.7 m/s are observed in a 3.86 cm long Er3+/Yb3+ co-doped single-mode phosphate glass fiber. The dependence of pump power, modulation frequency, and wavelength on the slow/fast light effect in this fiber is investigated in detail. These results suggest that this compact slow/fast device is more suitable for all-fiber applications than those made by traditional methods. PMID:23455260

  11. REVIEW ARTICLE: Slow and fast light based on coherent population oscillations in erbium-doped fibres

    NASA Astrophysics Data System (ADS)

    Arrieta-Yáñez, Francisco; Calderón, Oscar G.; Melle, Sonia

    2010-10-01

    In this paper we review the main results on slow and fast light induced by coherent population oscillations in optical fibres doped with erbium ions. We explain the physics behind this technique and we describe the experimental realization. Finally, we summarize some recent advances in this field and future goals.

  12. From fast to slow light in a resonantly driven absorbing medium

    SciTech Connect

    Macke, Bruno; Segard, Bernard

    2010-08-15

    We theoretically study the propagation through a resonant absorbing medium of a time-dependent perturbation modulating the amplitude of a continuous wave (cw). Modeling the medium as a two-level system and linearizing the Maxwell-Bloch equations for the perturbation, we establish an exact analytical expression of the transfer function relating the Fourier transforms of the incident and transmitted perturbations. It directly gives the gain and the phase shift undergone in the medium by a harmonic modulation. For the case of a pulse modulation, it enables us to determine the transmission time of the pulse center of mass (group delay), evidencing the relative contributions of the coherent and incoherent (population) relaxations. We show that the group delay has a negative value (fast light) fixed by the coherent effects when the cw intensity is small compared to the saturation intensity and becomes positive (slow light) when this intensity increases, before attaining a maximum that cannot exceed the population relaxation time. The analytical results are completed by numerical determinations of the shape of the transmitted pulses in the different regimes.

  13. Experimental demonstration of enhanced slow and fast light by forced coherent population oscillations in a semiconductor optical amplifier.

    PubMed

    Berger, Perrine; Bourderionnet, Jérôme; de Valicourt, Guilhem; Brenot, Romain; Bretenaker, Fabien; Dolfi, Daniel; Alouini, Mehdi

    2010-07-15

    We experimentally demonstrate enhanced slow and fast light by forced coherent population oscillations in a semiconductor optical amplifier at gigahertz frequencies. This approach is shown to rely on the interference between two different contributions. This opens up the possibility of conceiving a controllable rf phase shifter based on this setup. PMID:20634862

  14. Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light

    SciTech Connect

    Shahriar, M. S.; Pati, G. S.; Tripathi, R.; Gopal, V.; Messall, M.; Salit, K.

    2007-05-15

    We describe a resonator-based optical gyroscope whose sensitivity for measuring absolute rotation is enhanced via use of the anomalous dispersion characteristic of superluminal light propagation. The enhancement is given by the inverse of the group index, saturating to a bound determined by the group velocity dispersion. We also show how the offsetting effect of the concomitant broadening of the resonator linewidth may be circumvented by using an active cavity. For realistic conditions, the enhancement factor is as high as 10{sup 6}. We also show how normal dispersion used for slow light can enhance relative rotation sensing in a specially designed Sagnac interferometer, with the enhancement given by the slowing factor.

  15. Microwave field controlled slow and fast light with a coupled system consisting of a nanomechanical resonator and a Cooper-pair box.

    PubMed

    Ma, Peng-Cheng; Xiao, Yin; Yu, Ya-Fei; Zhang, Zhi-Ming

    2014-02-10

    We theoretically demonstrate an efficient method to control slow and fast light in microwave regime with a coupled system consisting of a nanomechanical resonator (NR) and a superconducting Cooper-pair box (CPB). Using the pump-probe technique, we find that both slow and fast light effects of the probe field can appear in this coupled system. Furthermore, we show that a tunable switch from slow light to fast light can be achieved by only adjusting the pump-CPB detuning from the NR frequency to zero. Our coupled system may have potential applications, for example, in optical communication, microwave photonics, and nonlinear optics. PMID:24663653

  16. Slow and Fast Light in Room Temperature Solids: Fundamentals and Applications

    NASA Astrophysics Data System (ADS)

    Boyd, Robert W.

    2004-03-01

    In recent years there has been great interest in techniques that can lead to a modification of the propagation velocity of light pulses through optical materials. Interest stems both from the intrinsic interest in the ability to control the velocity of light over large ranges and from the potential for applications such as controllable delay lines, optical data storage devices, optical memories, and devices for quantum information. Matthew Bigelow, Nick Lepeshkin, and I have recently developed a new method for achieving ultra-slow light propagation in room temperature solids. Our method makes use of an effect known as coherent population oscillations. In particular, we apply pump and probe fields to a ruby crystal, and the population of ground-state chromium ions is induced to oscillate coherently at the resulting beat frequency. These oscillations lead to a decreased absorption of the probe beam, and consequently (by the Kramers-Kronig relations) to a steep variation of the refractive index. In our laboratory studies of this effect, we observed reduced light velocities with light speeds as low as 57 m/s. We have also studied light propagation in the reverse saturable absorber alexandrite. In this case, the sign of the effect is inverted, leading to superluminal (but causal) light propagation.

  17. The role of input chirp on phase shifters based on slow and fast light effects in semiconductor optical amplifiers.

    PubMed

    Xue, Weiqi; Chen, Yaohui; Ohman, Filip; Mørk, Jesper

    2009-02-01

    We experimentally investigate the initial chirp dependence of slow and fast light effects in a semiconductor optical amplifier followed by an optical filter. It is shown that the enhancement of the phase shift due to optical filtering strongly depends on the chirp of the input optical signal. We demonstrate approximately 120 degrees phase delay as well as approximately 170 degrees phase advance at a microwave frequency of 19 GHz for different optimum values of the input chirp. The experimental results are shown to be in good agreement with numerical results based on a four-wave mixing model. Finally, a simple physical explanation based on an analytical perturbative approach is presented. PMID:19188968

  18. Tunable phase control of slow and fast light propagation in a slab doped by four-level quantum dot nanostructure

    NASA Astrophysics Data System (ADS)

    Jafarzadeh, Hossein; Sangachin, Elnaz Ahmadi; Asadpour, Seyyed Hossein

    2015-12-01

    Tunable phase control of the slow and fast light propagation through a defect slab medium doped by four-level InGaN/GaN quantum dot structure is demonstrated. By solving the Schrödinger and Poisson’s equations self-consistently, a spherical InGaN quantum dot with GaN barrier shell which can interact by terahertz (THz) signal field is designed numerically. It is found that the phase variation of THz signal field imparts the tunability in the group velocity of the transmitted and reflected pulses through a dielectric slab.

  19. Controlling slow and fast light and dynamic pulse-splitting with tunable optical gain in a whispering-gallery-mode microcavity

    NASA Astrophysics Data System (ADS)

    Asano, M.; Özdemir, Ş. K.; Chen, W.; Ikuta, R.; Yang, L.; Imoto, N.; Yamamoto, T.

    2016-05-01

    We report controllable manipulation of slow and fast light in a whispering-gallery-mode microtoroid resonator fabricated from Erbium (Er3+) doped silica. We observe continuous transition of the coupling between the fiber-taper waveguide and the microresonator from undercoupling to critical coupling and then to overcoupling regimes by increasing the pump power even though the spatial distance between the resonator and the waveguide was kept fixed. This, in turn, enables switching from fast to slow light and vice versa just by increasing the optical gain. An enhancement of delay of two-fold over the passive silica resonator (no optical gain) was observed in the slow light regime. Moreover, we show dynamic pulse splitting and its control in slow/fast light systems using optical gain.

  20. Microwave phase shifter with controllable power response based on slow- and fast-light effects in semiconductor optical amplifiers.

    PubMed

    Xue, Weiqi; Sales, Salvador; Capmany, José; Mørk, Jesper

    2009-04-01

    We suggest and experimentally demonstrate a method for increasing the tunable rf phase shift of semiconductor waveguides while at the same time enabling control of the rf power. This method is based on the use of slow- and fast-light effects in a cascade of semiconductor optical amplifiers combined with the use of spectral filtering to enhance the role of refractive index dynamics. A continuously tunable phase shift of approximately 240 degrees at a microwave frequency of 19 GHz is demonstrated in a cascade of two semiconductor optical amplifiers, while maintaining an rf power change of less than 1.6 dB. The technique is scalable to more amplifiers and should allow realization of an rf phase shift of 360 degrees. PMID:19340174

  1. Large dynamic light-matter entanglement from driving neither too fast nor too slow

    NASA Astrophysics Data System (ADS)

    Acevedo, O. L.; Quiroga, L.; Rodríguez, F. J.; Johnson, N. F.

    2015-09-01

    A significant problem facing next-generation quantum technologies is how to generate and manipulate macroscopic entanglement in light and matter systems. Here we report a regime of dynamical light-matter behavior in which a giant, system-wide entanglement is generated by varying the light-matter coupling at intermediate velocities. This enhancement is far larger, broader ranged, and more experimentally accessible than that occurring near the quantum phase transition of the same model under adiabatic conditions. By appropriate choices of the coupling within this intermediate regime, the enhanced entanglement can be made to spread system-wide or to reside in each subsystem separately.

  2. Slow light and saturable absorption

    NASA Astrophysics Data System (ADS)

    Selden, A. C.

    2009-06-01

    Quantitative analysis of slow light experiments utilising coherent population oscillation (CPO) in a range of saturably absorbing media, including ruby and alexandrite, Er3+:Y2SiO5, bacteriorhodopsin, semiconductor quantum devices and erbium-doped optical fibres, shows that the observations may be more simply interpreted as saturable absorption phenomena. A basic two-level model of a saturable absorber displays all the effects normally associated with slow light, namely phase shift and modulation gain of the transmitted signal, hole burning in the modulation frequency spectrum and power broadening of the spectral hole, each arising from the finite response time of the non-linear absorption. Only where hole-burning in the optical spectrum is observed (using independent pump and probe beams), or pulse delays exceeding the limits set by saturable absorption are obtained, can reasonable confidence be placed in the observation of slow light in such experiments. Superluminal (“fast light”) phenomena in media with reverse saturable absorption (RSA) may be similarly explained.

  3. Heterogeneity of myofibrillar proteins in lobster fast and slow muscles: variants of troponin, paramyosin, and myosin light chains comprise four distinct protein assemblages

    SciTech Connect

    Mykles, D.L.

    1985-01-01

    Fast and slow muscles from the claws and abdomen of the American lobster Homarus americanus were examined for adenosine triphosphatase (ATPase) activity and for differences in myofibrillar proteins. Both myosin and actomyosin ATPase were correlated with fiber composition and contractile speed. Four distinct patterns of myofibrilla proteins observed in sodium dodecyl sulfate-polyacrylamide gels were distinguished by different assemblages of regulatory and contractile protein variants. A total of three species of troponin-T, five species of troponin-I, and three species of troponin-C were observed. Lobster myosins contained two groups of light chains (LC), termed alpha and beta. There were three ..cap alpha..-LC variants and two ..beta..-LC variants. There were no apparent differences in myosin heavy chain, actin, and tropomyosin. Only paramyosin showed a pattern completely consistent with muscle fiber type: slow fibers contained a species (105 kD) slightly smaller than the principle variant (110 kD) in fast fibers. It is proposed that the type of paramyosin present could provide a biochemical marker to identify the fiber composition of muscles that have not been fully characterized. The diversity of troponin and myosin LC variants suggests that subtle differences in physiological performance exist within the broader categories of fast- and slow-twitch muscles. 31 references, 6 figures, 2 tables.

  4. Can Fast and Slow Intelligence Be Differentiated?

    ERIC Educational Resources Information Center

    Partchev, Ivailo; De Boeck, Paul

    2012-01-01

    Responses to items from an intelligence test may be fast or slow. The research issue dealt with in this paper is whether the intelligence involved in fast correct responses differs in nature from the intelligence involved in slow correct responses. There are two questions related to this issue: 1. Are the processes involved different? 2. Are the…

  5. Fast wandering of slow birds

    NASA Astrophysics Data System (ADS)

    Toner, John

    2011-12-01

    I study a single slow bird moving with a flock of birds of a different and faster (or slower) species. I find that every species of flocker has a characteristic speed γ≠v0, where v0 is the mean speed of the flock such that if the speed vs of the slow bird equals γ, it will randomly wander transverse to the mean direction of flock motion far faster than the other birds will: Its mean-squared transverse displacement will grow in d=2 with time t like t5/3, in contrast to t4/3 for the other birds. In d=3, the slow bird's mean-squared transverse displacement grows like t5/4, in contrast to t for the other birds. If vs≠γ, the mean-squared displacement of the slow bird crosses over from t5/3 to t4/3 scaling in d=2 and from t5/4 to t scaling in d=3 at a time tc that scales according to tc∝|vs-γ|-2.

  6. Large Deviations in Fast-Slow Systems

    NASA Astrophysics Data System (ADS)

    Bouchet, Freddy; Grafke, Tobias; Tangarife, Tomás; Vanden-Eijnden, Eric

    2016-02-01

    The incidence of rare events in fast-slow systems is investigated via analysis of the large deviation principle (LDP) that characterizes the likelihood and pathway of large fluctuations of the slow variables away from their mean behavior—such fluctuations are rare on short time-scales but become ubiquitous eventually. Classical results prove that this LDP involves an Hamilton-Jacobi equation whose Hamiltonian is related to the leading eigenvalue of the generator of the fast process, and is typically non-quadratic in the momenta—in other words, the LDP for the slow variables in fast-slow systems is different in general from that of any stochastic differential equation (SDE) one would write for the slow variables alone. It is shown here that the eigenvalue problem for the Hamiltonian can be reduced to a simpler algebraic equation for this Hamiltonian for a specific class of systems in which the fast variables satisfy a linear equation whose coefficients depend nonlinearly on the slow variables, and the fast variables enter quadratically the equation for the slow variables. These results are illustrated via examples, inspired by kinetic theories of turbulent flows and plasma, in which the quasipotential characterizing the long time behavior of the system is calculated and shown again to be different from that of an SDE.

  7. From slow to fast--the user controls the rate of the release of molecules from masked forms using a photoswitch and different types of light.

    PubMed

    Warford, C Chad; Carling, Carl-Johan; Branda, Neil R

    2015-04-25

    Exposure to UV light generates a ring-closed isomer of a diarylethene, which undergoes very slow bond breaking and release even after the light is turned off. The rate of release is increased by exposing the isomer to UV and/or visible light. PMID:25806619

  8. Slow light SOI slot photonic crystal waveguides with low loss

    NASA Astrophysics Data System (ADS)

    Caer, Charles; Combrie, Sylvain; Le Roux, Xavier; De Rossi, Alfredo; Cassan, Eric

    2013-05-01

    Slow light in SOI Slotted Photonic Crystal Waveguides (SPCW) infiltrated by a refractive liquid are investigated. By employing an interferometric technique similar to Optical Coherent Tomography (OCT), we report a group velocity lower than c/20 over a 1 mm-long SPCW. From the OCT measurements, we also infer moderate propagation losses. In the fast light regime (nG <10) propagation loss is about 15 dB.cm-1. Moreover, the coupling to slow modes is efficient. These results show that infiltrated slow light SPCW are a promising route to silicon organic hybrid photonics.

  9. Experimental demonstration of spinor slow light

    NASA Astrophysics Data System (ADS)

    Lee, Meng-Jung; Ruseckas, Julius; Lee, Chin-Yuan; Kudriašov, Viačeslav; Chang, Kao-Fang; Cho, Hung-Wen; JuzeliÅ«nas, Gediminas; Yu, Ite A.

    2016-03-01

    Over the last decade there has been a continuing interest in slow and stored light based on the electromagnetically induced transparency (EIT) effect, because of their potential applications in quantum information manipulation. However, previous experimental works all dealt with the single-component slow light which cannot be employed as a qubit. In this work, we report the first experimental demonstration of two-component or spinor slow light (SSL) using a double tripod (DT) atom-light coupling scheme. The oscillations between the two components, similar to the Rabi oscillation of a two-level system or a qubit, were observed. Single-photon SSL can be considered as two-color qubits. We experimentally demonstrated a possible application of the DT scheme as quantum memory and quantum rotator for the two-color qubits. This work opens up a new direction in the slow light research.

  10. Experimental demonstration of spinor slow light

    PubMed Central

    Lee, Meng-Jung; Ruseckas, Julius; Lee, Chin-Yuan; Kudriašov, Viačeslav; Chang, Kao-Fang; Cho, Hung-Wen; Juzeliānas, Gediminas; Yu, Ite A.

    2014-01-01

    Slow light based on the effect of electromagnetically induced transparency is of great interest due to its applications in low-light-level nonlinear optics and quantum information manipulation. The previous experiments all dealt with the single-component slow light. Here, we report the experimental demonstration of two-component or spinor slow light using a double-tripod atom–light coupling scheme. The scheme involves three atomic ground states coupled to two excited states by six light fields. The oscillation due to the interaction between the two components was observed. On the basis of the stored light, our data showed that the double-tripod scheme behaves like the two outcomes of an interferometer enabling precision measurements of frequency detuning. We experimentally demonstrated a possible application of the double-tripod scheme as quantum memory/rotator for the two-colour qubit. Our study also suggests that the spinor slow light is a better method than a widely used scheme in the nonlinear frequency conversion. PMID:25417851

  11. Experimental demonstration of spinor slow light

    NASA Astrophysics Data System (ADS)

    Lee, Meng-Jung; Ruseckas, Julius; Lee, Chin-Yuan; Kudriašov, Viačeslav; Chang, Kao-Fang; Cho, Hung-Wen; Juzeliānas, Gediminas; Yu, Ite A.

    2014-11-01

    Slow light based on the effect of electromagnetically induced transparency is of great interest due to its applications in low-light-level nonlinear optics and quantum information manipulation. The previous experiments all dealt with the single-component slow light. Here, we report the experimental demonstration of two-component or spinor slow light using a double-tripod atom-light coupling scheme. The scheme involves three atomic ground states coupled to two excited states by six light fields. The oscillation due to the interaction between the two components was observed. On the basis of the stored light, our data showed that the double-tripod scheme behaves like the two outcomes of an interferometer enabling precision measurements of frequency detuning. We experimentally demonstrated a possible application of the double-tripod scheme as quantum memory/rotator for the two-colour qubit. Our study also suggests that the spinor slow light is a better method than a widely used scheme in the nonlinear frequency conversion.

  12. Optimized slow light and beam profiles

    NASA Astrophysics Data System (ADS)

    Kalra, Rita; Klein, Mason; Xiao, Yanhong; Hohensee, Michael; Phillips, David F.; Walsworth, Ronald L.

    2008-05-01

    We will present an overview of Electromagnetically Induced Transparency (EIT) and slow light dependence on transverse laser field profile. Idealized treatments typically assume a uniform optical field profile while experiments are typically performed with gaussian beam profiles. Here we present a comparison of EIT lineshapes measured with flat top and gaussian transverse profiles and compare slow light delays observed under such circumstances with those derived from measured EIT line shapes in simple models. Additionally we study the effects of differential AC Stark shifts due to transverse beam profiles and their effect on light storage.

  13. Deciding about fast and slow decisions.

    PubMed

    Croskerry, Pat; Petrie, David A; Reilly, James B; Tait, Gordon

    2014-02-01

    Two reports in this issue address the important topic of clinical decision making. Dual process theory has emerged as the dominant model for understanding the complex processes that underlie human decision making. This theory distinguishes between the reflexive, autonomous processes that characterize intuitive decision making and the deliberate reasoning of an analytical approach. In this commentary, the authors address the polarization of viewpoints that has developed around the relative merits of the two systems. Although intuitive processes are typically fast and analytical processes slow, speed alone does not distinguish them. In any event, the majority of decisions in clinical medicine are not dependent on very short response times. What does appear relevant to diagnostic ease and accuracy is the degree to which the symptoms of the disease being diagnosed are characteristic ones. There are also concerns around some methodological issues related to research design in this area of enquiry. Reductionist approaches that attempt to isolate dependent variables may create such artificial experimental conditions that both external and ecological validity are sacrificed. Clinical decision making is a complex process with many independent (and interdependent) variables that need to be separated out in a discrete fashion and then reflected on in real time to preserve the fidelity of clinical practice. With these caveats in mind, the authors believe that research in this area should promote a better understanding of clinical practice and teaching by focusing less on the deficiencies of intuitive and analytical systems and more on their adaptive strengths. PMID:24362398

  14. Fast and slow metabolizers of Hoasca.

    PubMed

    Callaway, J C

    2005-06-01

    Harmine, a major alkaloid in ayahuasca (hoasca), is a selective and reversible inhibitor of the enzyme monoamine oxidase-A (MAO-A). It is also a selective inhibitor of the human cytochrome P450 isozyme 2D6 (CYP 2D6), which metabolizes harmine to a more hydrophilic derivative for eventual excretion. CYP 2D6 exhibits a wide range of polymorphisms in human populations, and variations in this enzymatic activity could account for differences in effects between individuals who use hoasca. This report broadly describes two subgroups of CYP 2D6 phenotypes--i.e., fast and slow metabolizers of harmine-in 14 experienced male members of the União do Vegetal (UDV) who received a standardized dosage of hoasca. To compensate for metabolic variations in their normal religious practice, the administered dose of hoasca is always determined by the presiding mestre, who is responsible for deciding the actual amount for each individual. This age-old method compensates for metabolic variations between individuals and variations in both the alkaloid profile and strength of the hoasca. PMID:16149329

  15. REVIEW ARTICLE: Fast light in atomic media

    NASA Astrophysics Data System (ADS)

    Akulshin, Alexander M.; McLean, Russell J.

    2010-10-01

    Atomic media have played a major role in studies of fast light. One of their attractive features is the ability to manipulate experimental parameters to control the dispersive properties that determine the group velocity of a propagating light pulse. We give an overview of the experimental methods, based on both linear and nonlinear atom-light interaction, that have produced superluminal propagation in atomic media, and discuss some of the significant theoretical contributions to the issues of pulse preservation and reconciling faster-than-light propagation and the principle of causality. The comparison of storage of light, enhanced Kerr nonlinearity and efficient wave mixing processes in slow and fast light atomic media illustrates their common and distinct features.

  16. Synchronized Ion Acceleration by Ultraintense Slow Light.

    PubMed

    Brantov, A V; Govras, E A; Kovalev, V F; Bychenkov, V Yu

    2016-02-26

    An effective scheme of synchronized laser-triggered ion acceleration and the corresponding theoretical model are proposed for a slow light pulse of relativistic intensity, which penetrates into a near-critical-density plasma, strongly slows, and then increases its group velocity during propagation within a target. The 3D particle-in-cell simulations confirm this concept for proton acceleration by a femtosecond petawatt-class laser pulse experiencing relativistic self-focusing, quantify the characteristics of the generated protons, and demonstrate a significant increase of their energy compared with the proton energy generated from optimized ultrathin solid dense foils. PMID:26967421

  17. Synchronized Ion Acceleration by Ultraintense Slow Light

    NASA Astrophysics Data System (ADS)

    Brantov, A. V.; Govras, E. A.; Kovalev, V. F.; Bychenkov, V. Yu.

    2016-02-01

    An effective scheme of synchronized laser-triggered ion acceleration and the corresponding theoretical model are proposed for a slow light pulse of relativistic intensity, which penetrates into a near-critical-density plasma, strongly slows, and then increases its group velocity during propagation within a target. The 3D particle-in-cell simulations confirm this concept for proton acceleration by a femtosecond petawatt-class laser pulse experiencing relativistic self-focusing, quantify the characteristics of the generated protons, and demonstrate a significant increase of their energy compared with the proton energy generated from optimized ultrathin solid dense foils.

  18. Kinematics of slow and fast CMEs in soar cycle 23 and 24

    NASA Astrophysics Data System (ADS)

    Banerjee, Dipankar; Gopalswamy, Nat; Pant, Vaibhav

    2016-07-01

    CMEs are episodic expulsion of plasma and magnetic fields from Sun into heliosphere. CMEs can be classified, based on their speeds, as slow CMEs and fast CMEs. We find that slow CMEs and fast CMEs behave differently in two cycles. While fast CMEs seem to follow the sunspot variations, slow CMEs have much flatter distribution. Thus the distribution of total CMEs is affected by slow CME populations. We find double peak behaviour in fast CMEs, since they follow the sunspot distribution, in both the cycles without any significant delay from sunspot variation. It suggests that most of the fast CMEs originates from active regions associated with sunspots. We also find double peak behaviour in slow CMEs in cycle 24 but not in cycle 23. In addition to this the number of slow CMEs are far more than in cycle 23. These findings point towards the fact that in cycle 24 slow CMEs to some extent are associated with sunspots and due to weak heliospheric field they could somehow escape easily thus giving double peak behaviour and larger distribution in cycle 24. Apart from this we also find that slow and fast CMEs follow different power laws. This may shed light on their origin as well.

  19. Slow slip and the transition from fast to slow fronts in the rupture of frictional interfaces

    PubMed Central

    Trømborg, Jørgen Kjoshagen; Sveinsson, Henrik Andersen; Scheibert, Julien; Thøgersen, Kjetil; Amundsen, David Skålid; Malthe-Sørenssen, Anders

    2014-01-01

    The failure of the population of microjunctions forming the frictional interface between two solids is central to fields ranging from biomechanics to seismology. This failure is mediated by the propagation along the interface of various types of rupture fronts, covering a wide range of velocities. Among them are the so-called slow fronts, which are recently discovered fronts much slower than the materials’ sound speeds. Despite intense modeling activity, the mechanisms underlying slow fronts remain elusive. Here, we introduce a multiscale model capable of reproducing both the transition from fast to slow fronts in a single rupture event and the short-time slip dynamics observed in recent experiments. We identify slow slip immediately following the arrest of a fast front as a phenomenon sufficient for the front to propagate further at a much slower pace. Whether slow fronts are actually observed is controlled both by the interfacial stresses and by the width of the local distribution of forces among microjunctions. Our results show that slow fronts are qualitatively different from faster fronts. Because the transition from fast to slow fronts is potentially as generic as slow slip, we anticipate that it might occur in the wide range of systems in which slow slip has been reported, including seismic faults. PMID:24889640

  20. Slow slip and the transition from fast to slow fronts in the rupture of frictional interfaces.

    PubMed

    Trømborg, Jørgen Kjoshagen; Sveinsson, Henrik Andersen; Scheibert, Julien; Thøgersen, Kjetil; Amundsen, David Skålid; Malthe-Sørenssen, Anders

    2014-06-17

    The failure of the population of microjunctions forming the frictional interface between two solids is central to fields ranging from biomechanics to seismology. This failure is mediated by the propagation along the interface of various types of rupture fronts, covering a wide range of velocities. Among them are the so-called slow fronts, which are recently discovered fronts much slower than the materials' sound speeds. Despite intense modeling activity, the mechanisms underlying slow fronts remain elusive. Here, we introduce a multiscale model capable of reproducing both the transition from fast to slow fronts in a single rupture event and the short-time slip dynamics observed in recent experiments. We identify slow slip immediately following the arrest of a fast front as a phenomenon sufficient for the front to propagate further at a much slower pace. Whether slow fronts are actually observed is controlled both by the interfacial stresses and by the width of the local distribution of forces among microjunctions. Our results show that slow fronts are qualitatively different from faster fronts. Because the transition from fast to slow fronts is potentially as generic as slow slip, we anticipate that it might occur in the wide range of systems in which slow slip has been reported, including seismic faults. PMID:24889640

  1. Slow-light-based optical frequency shifter

    NASA Astrophysics Data System (ADS)

    Li, Qian; Bao, Yupan; Thuresson, Axel; Nilsson, Adam N.; Rippe, Lars; Kröll, Stefan

    2016-04-01

    We demonstrate experimentally and theoretically a controllable way of shifting the frequency of an optical pulse by using a combination of spectral hole burning, slow light effect, and linear Stark effect in a rare-earth-ion-doped crystal. We claim that the solid angle of acceptance of a frequency shift structure can be close to 2 π , which means that the frequency shifter could work not only for optical pulses propagating in a specific spatial mode but also for randomly scattered light. As the frequency shift is controlled solely by an external electric field, it works also for weak coherent light fields and can be used, for example, as a frequency shifter for quantum memory devices in quantum communication.

  2. Improved Slow Light Capacity In Graphene-based Waveguide

    PubMed Central

    Hao, Ran; Peng, Xi-Liang; Li, Er-Ping; Xu, Yang; Jin, Jia-Min; Zhang, Xian-Min; Chen, Hong-Sheng

    2015-01-01

    We have systematically investigated the wideband slow light in two-dimensional material graphene, revealing that graphene exhibits much larger slow light capability than other materials. The slow light performances including material dispersion, bandwidth, dynamic control ability, delay-bandwidth product, propagation loss, and group-velocity dispersion are studied, proving graphene exhibits significant advantages in these performances. A large delay-bandwidth product has been obtained in a simple yet functional grating waveguide with slow down factor c/vg at 163 and slow light bandwidth Δω at 94.4 nm centered at 10.38 μm, which is several orders of magnitude larger than previous results. Physical explanation of the enhanced slow light in graphene is given. Our results indicate graphene is an excellent platform for slow light applications, promoting various future slow light devices based on graphene. PMID:26478563

  3. Differentiation of fast and slow muscle fibers by bioimpedance

    NASA Astrophysics Data System (ADS)

    Moreno, M.-V.; Khider, N.; Ribbe, E.; Damez, J.-L.

    2010-04-01

    The differentiation of fast and slow muscle fibers in vivo still requires constraining equipment (ergometer, biopsy ...) and invasive techniques. These fibers conduct the electrical current differently. Therefore the aim of this study is to see if it is possible to differentiate quickly, by bioimpedance, fast and slow fibers, and firstly muscles which are typical composed by slow or fast fibers. To do this, we used a multifrequency impedancemeter Z-Metrix® (BioparHom© Company, France). We collected the electrical characteristics (Longitudinal and Transversal, from 1 to 1000 kHz) for a population of 20 rats aged 70 days, on Soleus muscles (composed principally of slow fibers) and Extensor Digitroum Longus (EDL) muscles (composed principally of fast fibers). We compared the means of alpha (L/T), R (L/T) and X (L/T) with Wilcoxon tests. We obtained non significant differences between electrical data obtained on EDL and Soleus muscles, but we could see differences on graphics representation and with the example of one rat. Therefore, we can assume that differentiation, by bioimpedance, of muscles typed slow and fast fibers, could be possible.

  4. Slow Light and Superluminality in Kerr Media without a Pump

    NASA Astrophysics Data System (ADS)

    Yang, Qiguang; Seo, Jae Tae; Tabibi, Bagher; Wang, Huitian

    2005-08-01

    Subluminal and superluminal propagation of a light pulse in Kerr materials has been investigated. Group velocities as slow as much less than 1 mm per second to as fast as negative several thousands meters per second can easily be obtained in the Kerr medium, which possesses a large nonlinear refractive index and long relaxation time, such as Cr3+-doped alexandrite, ruby, and GdAlO3. The physical mechanism is the strong highly dispersive coupling between different frequency components of the pulse.

  5. Threshold Characteristics of Slow-Light Photonic Crystal Lasers

    NASA Astrophysics Data System (ADS)

    Xue, Weiqi; Yu, Yi; Ottaviano, Luisa; Chen, Yaohui; Semenova, Elizaveta; Yvind, Kresten; Mork, Jesper

    2016-02-01

    The threshold properties of photonic crystal quantum dot lasers operating in the slow-light regime are investigated experimentally and theoretically. Measurements show that, in contrast to conventional lasers, the threshold gain attains a minimum value for a specific cavity length. The experimental results are explained by an analytical theory for the laser threshold that takes into account the effects of slow light and random disorder due to unavoidable fabrication imperfections. Longer lasers are found to operate deeper into the slow-light region, leading to a trade-off between slow-light induced reduction of the mirror loss and slow-light enhancement of disorder-induced losses.

  6. Threshold Characteristics of Slow-Light Photonic Crystal Lasers.

    PubMed

    Xue, Weiqi; Yu, Yi; Ottaviano, Luisa; Chen, Yaohui; Semenova, Elizaveta; Yvind, Kresten; Mork, Jesper

    2016-02-12

    The threshold properties of photonic crystal quantum dot lasers operating in the slow-light regime are investigated experimentally and theoretically. Measurements show that, in contrast to conventional lasers, the threshold gain attains a minimum value for a specific cavity length. The experimental results are explained by an analytical theory for the laser threshold that takes into account the effects of slow light and random disorder due to unavoidable fabrication imperfections. Longer lasers are found to operate deeper into the slow-light region, leading to a trade-off between slow-light induced reduction of the mirror loss and slow-light enhancement of disorder-induced losses. PMID:26918991

  7. The slow and fast pyrolysis of cherry seed.

    PubMed

    Duman, Gozde; Okutucu, Cagdas; Ucar, Suat; Stahl, Ralph; Yanik, Jale

    2011-01-01

    The slow and fast pyrolysis of cherry seeds (CWS) and cherry seeds shells (CSS) was studied in fixed-bed and fluidized bed reactors at different pyrolysis temperatures. The effects of reactor type and temperature on the yields and composition of products were investigated. In the case of fast pyrolysis, the maximum bio-oil yield was found to be about 44 wt% at pyrolysis temperature of 500 °C for both CWS and CSS, whereas the bio yields were of 21 and 15 wt% obtained at 500 °C from slow pyrolysis of CWS and CSS, respectively. Both temperature and reactor type affected the composition of bio-oils. The results showed that bio-oils obtained from slow pyrolysis of CWS and CSS can be used as a fuel for combustion systems in industry and the bio-oil produced from fast pyrolysis can be evaluated as a chemical feedstock. PMID:20801019

  8. Characterization of slow and fast phase nystagmus

    NASA Technical Reports Server (NTRS)

    Lessard, Charles S.; Rodriguez-Garcia, Carlos A.; Wong, Wing Chan; Im, Jae J.; Schmidt, Glenn F.

    1991-01-01

    A current literature review of the analog and digital process of vestibular and optical kinetic nystagmus reveals little agreement in the methods used by various labs. The strategies for detection of saccade (fast phase velocity component of nystagmus) vary between labs, and most of the process have not been evaluated and validated with a standard database. A survey was made of major vestibular labs in the U.S. that perform computer analyses of vestibular and optokinetic reflexes to stimuli, and a baseline was established from which to standardize data acquisition and analysis programs. The concept of an Error Index was employed as the criterium for evaluating the performance of the vestibular analysis software programs. The performance criterium is based on the detection of saccades and is the average of the percentages of missed detections and false detections. Evaluation of the programs produced results for lateral gaze with saccadic amplitude of one, two, three, five, and ten degrees with various signal-to-noise ratios. In addition, results were obtained for sinusoidal pursuit of 0.05, 0.10, and 0.50 Hz with saccades from one to ten degrees at various signal-to-noise ratios. Selection of the best program was made from the performance in the lateral gaze with three degrees of saccadic amplitude and in the 0.10 Hz sinusoid with three degrees of saccadic amplitude.

  9. Modeling fast and slow earthquakes at various scales

    PubMed Central

    IDE, Satoshi

    2014-01-01

    Earthquake sources represent dynamic rupture within rocky materials at depth and often can be modeled as propagating shear slip controlled by friction laws. These laws provide boundary conditions on fault planes embedded in elastic media. Recent developments in observation networks, laboratory experiments, and methods of data analysis have expanded our knowledge of the physics of earthquakes. Newly discovered slow earthquakes are qualitatively different phenomena from ordinary fast earthquakes and provide independent information on slow deformation at depth. Many numerical simulations have been carried out to model both fast and slow earthquakes, but problems remain, especially with scaling laws. Some mechanisms are required to explain the power-law nature of earthquake rupture and the lack of characteristic length. Conceptual models that include a hierarchical structure over a wide range of scales would be helpful for characterizing diverse behavior in different seismic regions and for improving probabilistic forecasts of earthquakes. PMID:25311138

  10. Slow Magnetosonic Waves and Fast Flows in Active Region Loops

    NASA Technical Reports Server (NTRS)

    Ofman, L.; Wang, T. J.; Davila, J. M.

    2012-01-01

    Recent extreme ultraviolet spectroscopic observations indicate that slow magnetosonic waves are present in active region (AR) loops. Some of the spectral data were also interpreted as evidence of fast (approx 100-300 km/s) quasiperiodic flows. We have performed three-dimensional magnetohydrodynamic (3D MHD) modeling of a bipolar AR that contains impulsively generated waves and flows in coronal loops. The model AR is initiated with a dipole magnetic field and gravitationally stratified density, with an upflow-driven steadily or periodically in localized regions at the footpoints of magnetic loops. The resulting flows along the magnetic field lines of the AR produce higher density loops compared to the surrounding plasma by injection of material into the flux tubes and the establishment of siphon flow.We find that the impulsive onset of flows with subsonic speeds result in the excitation of damped slow magnetosonic waves that propagate along the loops and coupled nonlinearly driven fast-mode waves. The phase speed of the slow magnetosonic waves is close to the coronal sound speed. When the amplitude of the driving pulses is increased we find that slow shock-like wave trains are produced. When the upflows are driven periodically, undamped oscillations are produced with periods determined by the periodicity of the upflows. Based on the results of the 3D MHD model we suggest that the observed slow magnetosonic waves and persistent upflows may be produced by the same impulsive events at the bases of ARs.

  11. SLOW MAGNETOSONIC WAVES AND FAST FLOWS IN ACTIVE REGION LOOPS

    SciTech Connect

    Ofman, L.; Wang, T. J.; Davila, J. M.

    2012-08-01

    Recent extreme ultraviolet spectroscopic observations indicate that slow magnetosonic waves are present in active region (AR) loops. Some of the spectral data were also interpreted as evidence of fast ({approx}100-300 km s{sup -1}) quasi-periodic flows. We have performed three-dimensional magnetohydrodynamic (3D MHD) modeling of a bipolar AR that contains impulsively generated waves and flows in coronal loops. The model AR is initiated with a dipole magnetic field and gravitationally stratified density, with an upflow-driven steadily or periodically in localized regions at the footpoints of magnetic loops. The resulting flows along the magnetic field lines of the AR produce higher density loops compared to the surrounding plasma by injection of material into the flux tubes and the establishment of siphon flow. We find that the impulsive onset of flows with subsonic speeds result in the excitation of damped slow magnetosonic waves that propagate along the loops and coupled nonlinearly driven fast-mode waves. The phase speed of the slow magnetosonic waves is close to the coronal sound speed. When the amplitude of the driving pulses is increased we find that slow shock-like wave trains are produced. When the upflows are driven periodically, undamped oscillations are produced with periods determined by the periodicity of the upflows. Based on the results of the 3D MHD model we suggest that the observed slow magnetosonic waves and persistent upflows may be produced by the same impulsive events at the bases of ARs.

  12. Slow Light in Coupled Resonator Optical Waveguides

    NASA Technical Reports Server (NTRS)

    Chang, Hongrok; Gates, Amanda L.; Fuller, Kirk A.; Gregory, Don A.; Witherow, William K.; Paley, Mark S.; Frazier, Donald O.; Smith, David D.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Recently, we discovered that a splitting of the whispering gallery modes (WGMs) occurs in coupled resonator optical waveguides (CROWs), and that these split modes are of a higher Q than the single-resonator modes, leading to enormous circulating intensity magnification factors that dramatically reduce thresholds for nonlinear optical (NLO) processes. As a result of the enhancements in Q, pulses propagating at a split resonance can propagate much slower (faster) for over (under)-coupled structures, due to the modified dispersion near the split resonance. Moreover, when loss is considered, the mode-splitting may be thought of as analogous to the Autler-Townes splitting that occurs in atomic three-level lambda systems, i.e., it gives rise to induced transparency as a result of destructive interference. In under- or over-coupled CROWs, this coupled resonator induced transparency (CRIT) allows slow light to be achieved at the single-ring resonance with no absorption, while maintaining intensities such that NLO effects are maximized. The intensity magnification of the circulating fields and phase transfer characteristics are examined in detail.

  13. Effect of Fast and Slow Pranayama Practice on Cognitive Functions In Healthy Volunteers

    PubMed Central

    Sharma, Vivek Kumar; M., Rajajeyakumar; S., Velkumary; Subramanian, Senthil Kumar; Bhavanani, Ananda B.; Madanmohan; Sahai, Ajit; Thangavel, Dinesh

    2014-01-01

    Objectives: To compare the cumulative effect of commonly practised slow and fast pranayama on cognitive functions in healthy volunteers. Settings and Design: 84 participants who were in self-reported good health, who were in the age group of 18-25 years, who were randomized to fast pranayama, slow pranayama and control group with 28 participants in each group. Material and Methods: Fast pranayama included kapalabhati, bhastrika and kukkuriya. Slow pranayama included nadishodhana, Pranav and Savitri. Respective pranayama training was given for 35 minutes, three times per week, for a duration of 12 weeks under the supervision of a certified yoga trainer. Parameters were recorded before and after 12 weeks of intervention: Perceived stress scale (PSS), BMI, waist to hip ratio and cognitive parameters-letter cancellation test, trail making tests A and B, forward and reverse digit spans and auditory and visual reaction times for red light and green light. Statistical Analysis: Inter–group comparison was done by one way ANOVA and intra-group comparison was done by paired t-test. Results and Conclusion: Executive functions, PSS and reaction time improved significantly in both fast and slow pranayama groups, except reverse digit span, which showed an improvement only in fast pranayama group. In addition, percentage reduction in reaction time was significantly more in the fast pranayama group as compared to that in slow pranayama group. Both types of pranayamas are beneficial for cognitive functions, but fast pranayama has additional effects on executive function of manipulation in auditory working memory, central neural processing and sensory-motor performance. PMID:24596711

  14. A comparison of rat myosin from fast and slow skeletal muscle and the effect of disuse

    NASA Technical Reports Server (NTRS)

    Unsworth, B. R.; Witzmann, F. A.; Fitts, R. H.

    1981-01-01

    Certain enzymatic and structural features of myosin, purified from rat skeletal muscles representative of the fast twitch glycolytic (type IIb), the fast twitch oxidative (type IIa), and the slow twitch oxidative (type I) fiber, were determined and the results were compared with the measured contractile properties. Good correlation was found between the shortening velocities and Ca(2+)-activated ATPase activity for each fiber type. Short term hind limb immobilization caused prolongation of contraction time and one-half relaxation time in the fast twitch muscles and a reduction of these contractile properties in slow twitch soleus. Furthermore, the increased maximum shortening velocity in the immobilized soleus could be correlated with increased Ca(2+)-ATPase, but no change was observed in the enzymatic activity of the fast twitch muscles. No alteration in light chain distribution with disuse was observed in any of the fiber types. The myosin from slow twitch soleus could be distinguished from fast twitch myosins on the basis of the pattern of peptides generated by proteolysis of the heavy chains. Six weeks of hind limb immobilization resulted in both an increased ATPase activity and an altered heavy chain primary structure in the slow twitch soleus muscle.

  15. Physiological changes in fast and slow muscle with simulated weightlessness

    NASA Technical Reports Server (NTRS)

    Dettbarn, W. D.; Misulis, K. E.

    1984-01-01

    A rat hindlimb suspension model of simulated weightlessness was used to examine the physiological characteristics of skeletal muscle. The physiological sequelae of hindlimb suspension were compared to those of spinal cord section, denervation by sciatic nerve crush, and control. Muscle examined were the predominantly slow (Type 1) soleus (SOL) and the predominantly fast (Type 2) extensor digitorum longus (EDL). Two procedures which alter motor unit activity, hindlimb suspension and spinal cord section, produce changes in characteristics of skeletal muscles that are dependent upon fiber type. The SOL develops characteristics more representative of a fast muscle, including smaller Type 1 fiber proportion and higher AChE activity. The EDL, which is already predominantly fast, loses most of its few Type 1 fibers, thus also becoming faster. These data are in agreement with the studies in which rats experienced actual weightlessness.

  16. Slow-light polaritons in Rydberg gases

    NASA Astrophysics Data System (ADS)

    Fleischhauer, Michael

    2012-02-01

    Slow-light polaritons are quasi-particles generated in the interaction of photons with laser-driven atoms with a λ- or ladder-type coupling scheme under conditions of electromagnetically induced transparency (EIT). They are a superposition of electromagnetic and collective spin excitations. If one of the states making up the atomic spin is a high lying Rydberg level, the polaritons are subject to a strong and non-local interaction mediated by a dipole-dipole or van-der Waals coupling between excited Rydberg atoms. I will present and discuss an effective many-body model for these Rydberg polaritons. Depending on the detuning of the control laser the interaction potential between the polaritons can be repulsive or attractive and can have a large imaginary component for distances less than the so-called blockade radius. The non-local effective interaction gives rize to interesting many-body phenomena such as the generation of photons with an avoided volume, visible in stronlgy suppressed two-particle correlations inside the blockade volume. Moreover the long-range, power-law scaling of the interaction can in the repulsive case give rize to the formation of quasi-crystalline structures of photons. In a one dimensional system the low-energy dynamics of the polaritons can be described in terms of a Luttinger liquid. Using DMRG simulations the Luttinger K parameter is calculated and conditions for the formation of a quasi-crystal are derived. When confined to a two-dimensional geometry, e.g. using a resonator with quasi-degenerate transversal mode spectrum, Rydberg polaritons are an interesting candidate to study the bosonic fractional quantum Hall effect. I will argue that the formation of photons with an avoided volume is essential for explaining recent experiments on stationary EIT in Rydberg gases [1,2].[4pt] [1] J.D. Pritchard et al., Phys. Rev. Lett. 105, 193603 (2010). [0pt] [2] D. Petrosyan, J. Otterbach, and M. Fleischhauer, arXiv:1106.1360

  17. Fast-slow climate dynamics and peak global warming

    NASA Astrophysics Data System (ADS)

    Seshadri, Ashwin K.

    2016-06-01

    The dynamics of a linear two-box energy balance climate model is analyzed as a fast-slow system, where the atmosphere, land, and near-surface ocean taken together respond within few years to external forcing whereas the deep-ocean responds much more slowly. Solutions to this system are approximated by estimating the system's time-constants using a first-order expansion of the system's eigenvalue problem in a perturbation parameter, which is the ratio of heat capacities of upper and lower boxes. The solution naturally admits an interpretation in terms of a fast response that depends approximately on radiative forcing and a slow response depending on integrals of radiative forcing with respect to time. The slow response is inversely proportional to the "damping-timescale", the timescale with which deep-ocean warming influences global warming. Applications of approximate solutions are discussed: conditions for a warming peak, effects of an individual pulse emission of carbon dioxide (CO2 ), and metrics for estimating and comparing contributions of different climate forcers to maximum global warming.

  18. Commercializing MEMS--too fast or too slow?

    NASA Astrophysics Data System (ADS)

    Walsh, Steven T.; Carr, William N.; Mados, Hillary; Narang, Divjot S.

    1996-09-01

    MEMS as a technology base is coming of age, but as in any vital process growing pains occur. Commercializing MEMS is simultaneously viewed as agonizingly slow by many of its promoters and lightingly quick by many companies whose products are being replaced with MEMS based substitutes. This effort ties current efforts in market analysis, technology evaluations, competency based strategy in an effort to understand the pace of MEMS commercialization.

  19. Superluminal and slow light propagation in a room-temperature solid.

    PubMed

    Bigelow, Matthew S; Lepeshkin, Nick N; Boyd, Robert W

    2003-07-11

    We have observed both superluminal and ultraslow light propagation in an alexandrite crystal at room temperature. Group velocities as slow as 91 meters per second to as fast as -800 meters per second were measured and attributed to the influence of coherent population oscillations involving chromium ions in either mirror or inversion sites within the crystal lattice. Namely, ions in mirror sites are inversely saturable and cause superluminal light propagation, whereas ions in inversion sites experience conventional saturable absorption and produce slow light. This technique for producing large group indices is considerably easier than the existing methods to implement and is therefore suitable for diverse applications. PMID:12855803

  20. Fast optical switch having reduced light loss

    NASA Technical Reports Server (NTRS)

    Nelson, Bruce N. (Inventor); Cooper, Ronald F. (Inventor)

    1992-01-01

    An electrically controlled optical switch uses an electro-optic crystal of the type having at least one set of fast and slow optical axes. The crystal exhibits electric field induced birefringence such that a plane of polarization oriented along a first direction of a light beam passing through the crystal may be switched to a plane of polarization oriented along a second direction. A beam splitting polarizer means is disposed at one end of the crystal and directs a light beam passing through the crystal whose plane of polarization is oriented along the first direction differently from a light beam having a plane of polarization oriented along the second direction. The electro-optic crystal may be chosen from the crystal classes 43m, 42m, and 23. In a preferred embodiment, the electro-optic crystal is a bismuth germanium oxide crystal or a bismuth silicon oxide crystal. In another embodiment of the invention, polarization control optics are provided which transmit substantially all of the incident light to the electro-optic crystal, substantially reducing the insertion loss of the switch.

  1. Measuring Fast and Slow Enzyme Kinetics in Stationary Droplets.

    PubMed

    Fradet, Etienne; Bayer, Christopher; Hollfelder, Florian; Baroud, Charles N

    2015-12-01

    We present a new microfluidic platform for the study of enzymtatic reactions using static droplets on demand. This allows us to monitor both fast and slow reactions with the same device and minute amounts of reagents. The droplets are produced and displaced using confinement gradients, which allows the experiments to be performed without having any mean flow of the external phase. Our device is used to produce six different pairs of drops, which are placed side by side in the same microfluidic chamber. A laser pulse is then used to trigger the fusion of each pair, thus initiating a chemcial reaction. Imaging is used to monitor the time evolution of enzymatic reactions. In the case of slow reactions, the reagents are completely mixed before any reaction is detected. This allows us to use standard Michaelis-Menten theory to analyze the time evolution. In the case of fast reactions, the time evolution takes place through a reaction-diffusion process, for which we develop a model that incorporates enzymatic reactions in the reaction terms. The theoretical predictions from this model are then compared to experiments in order to provide measurements of the chemical kinetics. The approach of producing droplets through confinement gradients and analyzing reactions within stationary drops provides an ultralow consumption platform. The physical principles are simple and robust, which suggests that the platform can be automated to reach large throughput analyses of enzymes. PMID:26524082

  2. Slow and fast solar wind - data selection and statistical analysis

    NASA Astrophysics Data System (ADS)

    Wawrzaszek, Anna; Macek, Wiesław M.; Bruno, Roberto; Echim, Marius

    2014-05-01

    In this work we consider the important problem of selection of slow and fast solar wind data measured in-situ by the Ulysses spacecraft during two solar minima (1995-1997, 2007-2008) and solar maximum (1999-2001). To recognise different types of solar wind we use a set of following parameters: radial velocity, proton density, proton temperature, the distribution of charge states of oxygen ions, and compressibility of magnetic field. We present how this idea of the data selection works on Ulysses data. In the next step we consider the chosen intervals for fast and slow solar wind and perform statistical analysis of the fluctuating magnetic field components. In particular, we check the possibility of identification of inertial range by considering the scale dependence of the third and fourth orders scaling exponents of structure function. We try to verify the size of inertial range depending on the heliographic latitudes, heliocentric distance and phase of the solar cycle. Research supported by the European Community's Seventh Framework Programme (FP7/2007 - 2013) under grant agreement no 313038/STORM.

  3. Energy and energy flux in axisymmetric slow and fast waves

    NASA Astrophysics Data System (ADS)

    Moreels, M. G.; Van Doorsselaere, T.; Grant, S. D. T.; Jess, D. B.; Goossens, M.

    2015-06-01

    Aims: We aim to calculate the kinetic, magnetic, thermal, and total energy densities and the flux of energy in axisymmetric sausage modes. The resulting equations should contain as few parameters as possible to facilitate applicability for different observations. Methods: The background equilibrium is a one-dimensional cylindrical flux tube model with a piecewise constant radial density profile. This enables us to use linearised magnetohydrodynamic equations to calculate the energy densities and the flux of energy for axisymmetric sausage modes. Results: The equations used to calculate the energy densities and the flux of energy in axisymmetric sausage modes depend on the radius of the flux tube, the equilibrium sound and Alfvén speeds, the density of the plasma, the period and phase speed of the wave, and the radial or longitudinal components of the Lagrangian displacement at the flux tube boundary. Approximate relations for limiting cases of propagating slow and fast sausage modes are also obtained. We also obtained the dispersive first-order correction term to the phase speed for both the fundamental slow body mode under coronal conditions and the slow surface mode under photospheric conditions. Appendix A is available in electronic form at http://www.aanda.org

  4. Demonstration of slow light in semiconductor optical amplifier

    NASA Astrophysics Data System (ADS)

    Patil, Anoop C.; Venkitesh, Deepa; Dexter, Karl; Anandarajah, Prince; Barry, Liam P.

    2011-08-01

    Slow light generation through four wave mixing is experimentally investigated in a non-linear semiconductor optical amplifier (SOA). The mechanism of slow-light generation is analyzed through gain saturation behavior of the SOA. The delay of the probe beam is controlled optically by pump-probe detuning. A delay of 260 ps is achieved for sinusoidal modulation at 0.5 GHz corresponding to a RF phase change of 0.26π.

  5. Demonstration of slow light in semiconductor optical amplifier

    NASA Astrophysics Data System (ADS)

    Patil, Anoop C.; Venkitesh, Deepa; Dexter, Karl; Anandarajah, Prince; Barry, Liam P.

    2010-12-01

    Slow light generation through four wave mixing is experimentally investigated in a non-linear semiconductor optical amplifier (SOA). The mechanism of slow-light generation is analyzed through gain saturation behavior of the SOA. The delay of the probe beam is controlled optically by pump-probe detuning. A delay of 260 ps is achieved for sinusoidal modulation at 0.5 GHz corresponding to a RF phase change of 0.26π.

  6. Fast Computation of Bispectrum Features with Generalized Slow Roll

    NASA Astrophysics Data System (ADS)

    Adshead, Peter; Hu, Wayne; Dvorkin, Cora; Peiris, Hiranya V.

    2011-08-01

    We develop a fast technique based on the generalized slow-roll (GSR) approach for computing the curvature bispectrum of inflationary models with features. We show that all triangle configurations can be expressed in terms of three simple integrals over the inflationary background with typical accuracy of better than ˜20%. With a first-order GSR approach the typical accuracy can be improved to better than the ˜5% level. We illustrate this technique with the step potential model that has been invoked to explain the WMAP temperature power spectrum glitches at ℓ˜20-40 and show that the maximum likelihood model falls short of observability by more than a factor of 100 in amplitude. We also explicitly demonstrate that the bispectrum consistency relation with the local slope of the power spectrum is satisfied for these models. In the GSR approach, the bispectrum arises from integrals of nearly the same function of the background slow-roll parameters as the power spectrum but with a stronger weight to the epoch before horizon crossing. Hence this technique enables reverse engineering of models with large bispectrum but small power spectrum features.

  7. Fast and Slow Wetting Dynamics on nanostructured surfaces

    NASA Astrophysics Data System (ADS)

    Nandyala, Dhiraj; Rahmani, Amir; Cubaud, Thomas; Colosqui, Carlos

    2015-11-01

    This talk will present force-displacement and spontaneous drop spreading measurements on diverse nanostructured surfaces (e.g., mesoporous titania thin films, nanoscale pillared structures, on silica or glass substrates). Experimental measurements are performed for water-air and water-oil systems. The dynamics of wetting observed in these experiments can present remarkable crossovers from fast to slow or arrested dynamics. The emergence of a slow wetting regime is attributed to a multiplicity of metastable equilibrium states induced by nanoscale surface features. The crossover point can be dramatically advanced or delayed by adjusting specific physical parameters (e.g., viscosity of the wetting phases) and geometric properties of the surface nanostructure (e.g., nanopore/pillar radius and separation). Controlling the crossover point to arrested dynamics can effectively modify the degree of contact angle hysteresis and magnitude of liquid adhesion forces observed on surfaces of different materials. This work is supported by a SEED Award from The Office of Brookhaven National Laboratory Affairs at Stony Brook University.

  8. The energy storage in the formation of slow light

    NASA Astrophysics Data System (ADS)

    Shakhmuratov, R. N.

    2010-08-01

    Slow light formation in media with (i) an electromagnetically induced transparency, (ii) a doublet structure, and (iii) a single absorption line, detuned from resonance, is considered with the help of a simple model. The model is based on the description of particles in these media by a pseudospin 1/2, which is subject to two 'orthogonal fields'. We mainly focus on the analysis of the reversible process of the particle excitation-de-excitation resulting in the temporal storage of the light-pulse energy without the pulse corruption. The influence of irreversible relaxation processes on the slow light formation is studied.

  9. REVIEW ARTICLE: Slow light enhanced nonlinear optics in periodic structures

    NASA Astrophysics Data System (ADS)

    Monat, C.; de Sterke, M.; Eggleton, B. J.

    2010-10-01

    We review recent advances related to slow light in periodic structures, where the refractive index varies along one or two directions, i.e. gratings and planar photonic crystals. We focus on how these geometries are conducive to enhancing the nonlinear interaction between light and matter. We describe the underlying theory developed for shallow gratings, but whose conclusions can be extended to planar photonic crystal waveguides, in particular the enhancement of third-order nonlinear processes with slow light. We review some experiments showing how gratings have been used for pulse compression and the generation of slow gap solitons. We then present recent nonlinear experiments performed in photonic crystal waveguides that demonstrate the strong reinforcement of nonlinear third-order optical phenomena with slow light. We discuss the challenges associated with slow light in these 2D structures and their unique advantage—dispersion engineering—for creating broadband nonlinear devices for all-optical signal processing. By breaking down the relation between dispersion and group velocity imposed in gratings, these structures also offer new opportunities for generating soliton-like effects over short length scales, at low powers and with short pulses.

  10. Limit cycles in slow-fast codimension 3 saddle and elliptic bifurcations

    NASA Astrophysics Data System (ADS)

    Huzak, R.; De Maesschalck, P.; Dumortier, F.

    This paper deals with local bifurcations occurring near singular points of planar slow-fast systems. In particular, it is concerned with the study of the slow-fast variant of the unfolding of a codimension 3 nilpotent singularity. The slow-fast variant of a codimension 1 Hopf bifurcation has been studied extensively before and its study has lead to the notion of canard cycles in the Van der Pol system. Similarly, codimension 2 slow-fast Bogdanov-Takens bifurcations have been characterized. Here, the singularity is of codimension 3 and we distinguish slow-fast elliptic and slow-fast saddle bifurcations. We focus our study on the appearance on small-amplitude limit cycles, and rely on techniques from geometric singular perturbation theory and blow-up.

  11. Slow light with electromagnetically induced transparency in optical fibre

    NASA Astrophysics Data System (ADS)

    Muhamad Hatta, Agus; Kamli, Ali A.; Al-Hagan, Ola A.; Moiseev, Sergey A.

    2015-08-01

    Slow light with electromagnetically induced transparency (EIT) in the core of optical fibre containing three-level atoms is investigated. The guided modes are treated in the weakly guiding approximation which renders the analysis into a manageable form. The transparency window and permittivity profile of the core due to the strong pump field in the EIT scheme is calculated. For a specific permittivity profile of the core due to EIT, the propagation constant of the weak signal field and spatial shape of fundamental guided mode are calculated by solving the vector wave equation using the finite difference method. It is found that the transparency window and slow light field can be controlled via the optical fibre parameters. The reduced group velocity of slow light in this configuration is useful for many technological applications such as optical memories, effective control of single photon fields, optical buffers and delay lines.

  12. Speed of fast and slow rupture fronts along frictional interfaces

    NASA Astrophysics Data System (ADS)

    Trømborg, Jørgen Kjoshagen; Sveinsson, Henrik Andersen; Thøgersen, Kjetil; Scheibert, Julien; Malthe-Sørenssen, Anders

    2015-07-01

    The transition from stick to slip at a dry frictional interface occurs through the breaking of microjunctions between the two contacting surfaces. Typically, interactions between junctions through the bulk lead to rupture fronts propagating from weak and/or highly stressed regions, whose junctions break first. Experiments find rupture fronts ranging from quasistatic fronts, via fronts much slower than elastic wave speeds, to fronts faster than the shear wave speed. The mechanisms behind and selection between these fronts are still imperfectly understood. Here we perform simulations in an elastic two-dimensional spring-block model where the frictional interaction between each interfacial block and the substrate arises from a set of junctions modeled explicitly. We find that material slip speed and rupture front speed are proportional across the full range of front speeds we observe. We revisit a mechanism for slow slip in the model and demonstrate that fast slip and fast fronts have a different, inertial origin. We highlight the long transients in front speed even along homogeneous interfaces, and we study how both the local shear to normal stress ratio and the local strength are involved in the selection of front type and front speed. Last, we introduce an experimentally accessible integrated measure of block slip history, the Gini coefficient, and demonstrate that in the model it is a good predictor of the history-dependent local static friction coefficient of the interface. These results will contribute both to building a physically based classification of the various types of fronts and to identifying the important mechanisms involved in the selection of their propagation speed.

  13. Distinguishing Fast and Slow Processes in Accuracy - Response Time Data.

    PubMed

    Coomans, Frederik; Hofman, Abe; Brinkhuis, Matthieu; van der Maas, Han L J; Maris, Gunter

    2016-01-01

    We investigate the relation between speed and accuracy within problem solving in its simplest non-trivial form. We consider tests with only two items and code the item responses in two binary variables: one indicating the response accuracy, and one indicating the response speed. Despite being a very basic setup, it enables us to study item pairs stemming from a broad range of domains such as basic arithmetic, first language learning, intelligence-related problems, and chess, with large numbers of observations for every pair of problems under consideration. We carry out a survey over a large number of such item pairs and compare three types of psychometric accuracy-response time models present in the literature: two 'one-process' models, the first of which models accuracy and response time as conditionally independent and the second of which models accuracy and response time as conditionally dependent, and a 'two-process' model which models accuracy contingent on response time. We find that the data clearly violates the restrictions imposed by both one-process models and requires additional complexity which is parsimoniously provided by the two-process model. We supplement our survey with an analysis of the erroneous responses for an example item pair and demonstrate that there are very significant differences between the types of errors in fast and slow responses. PMID:27167518

  14. Distinguishing Fast and Slow Processes in Accuracy - Response Time Data

    PubMed Central

    Coomans, Frederik; Hofman, Abe; Brinkhuis, Matthieu; van der Maas, Han L. J.; Maris, Gunter

    2016-01-01

    We investigate the relation between speed and accuracy within problem solving in its simplest non-trivial form. We consider tests with only two items and code the item responses in two binary variables: one indicating the response accuracy, and one indicating the response speed. Despite being a very basic setup, it enables us to study item pairs stemming from a broad range of domains such as basic arithmetic, first language learning, intelligence-related problems, and chess, with large numbers of observations for every pair of problems under consideration. We carry out a survey over a large number of such item pairs and compare three types of psychometric accuracy-response time models present in the literature: two ‘one-process’ models, the first of which models accuracy and response time as conditionally independent and the second of which models accuracy and response time as conditionally dependent, and a ‘two-process’ model which models accuracy contingent on response time. We find that the data clearly violates the restrictions imposed by both one-process models and requires additional complexity which is parsimoniously provided by the two-process model. We supplement our survey with an analysis of the erroneous responses for an example item pair and demonstrate that there are very significant differences between the types of errors in fast and slow responses. PMID:27167518

  15. Fast Light-Sheet Scanner

    NASA Technical Reports Server (NTRS)

    Hunter, William W., Jr.; Humphreys, William M., Jr.; Bartram, Scott M.

    1995-01-01

    Optomechanical apparatus maintains sheet of pulsed laser light perpendicular to reference axis while causing sheet of light to translate in oscillatory fashion along reference axis. Produces illumination for laser velocimeter in which submicrometer particles entrained in flow illuminated and imaged in parallel planes displaced from each other in rapid succession. Selected frequency of oscillation range upward from tens of hertz. Rotating window continuously shifts sheet of light laterally while maintaining sheet parallel to same plane.

  16. Mitochondrial divergence between slow- and fast-aging garter snakes.

    PubMed

    Schwartz, Tonia S; Arendsee, Zebulun W; Bronikowski, Anne M

    2015-11-01

    Mitochondrial function has long been hypothesized to be intimately involved in aging processes--either directly through declining efficiency of mitochondrial respiration and ATP production with advancing age, or indirectly, e.g., through increased mitochondrial production of damaging free radicals with age. Yet we lack a comprehensive understanding of the evolution of mitochondrial genotypes and phenotypes across diverse animal models, particularly in species that have extremely labile physiology. Here, we measure mitochondrial genome-types and transcription in ecotypes of garter snakes (Thamnophis elegans) that are adapted to disparate habitats and have diverged in aging rates and lifespans despite residing in close proximity. Using two RNA-seq datasets, we (1) reconstruct the garter snake mitochondrial genome sequence and bioinformatically identify regulatory elements, (2) test for divergence of mitochondrial gene expression between the ecotypes and in response to heat stress, and (3) test for sequence divergence in mitochondrial protein-coding regions in these slow-aging (SA) and fast-aging (FA) naturally occurring ecotypes. At the nucleotide sequence level, we confirmed two (duplicated) mitochondrial control regions one of which contains a glucocorticoid response element (GRE). Gene expression of protein-coding genes was higher in FA snakes relative to SA snakes for most genes, but was neither affected by heat stress nor an interaction between heat stress and ecotype. SA and FA ecotypes had unique mitochondrial haplotypes with amino acid substitutions in both CYTB and ND5. The CYTB amino acid change (Isoleucine → Threonine) was highly segregated between ecotypes. This divergence of mitochondrial haplotypes between SA and FA snakes contrasts with nuclear gene-flow estimates, but correlates with previously reported divergence in mitochondrial function (mitochondrial oxygen consumption, ATP production, and reactive oxygen species consequences). PMID:26403677

  17. Gap-Acoustic Solitons: Slowing and Stopping of Light

    NASA Astrophysics Data System (ADS)

    Tasgal, Richard S.; Shnaiderman, Roman; Band, Yehuda B.

    Solitons are paradigm localized states in physics. We consider here gapacoustic solitons (GASs), which are stable pulses that exist in Bragg waveguides, and which offer promising new avenues for slowing light. A Bragg grating can be produced by doping the waveguide with ions, and imprinting a periodic variation in the index of refraction with ultraviolet light. The Bragg grating in an optical waveguide reflects rightward-moving light to the left, and vice versa, and creates a gap in the allowed frequency spectrum of light. Nonlinearities, though, add complications to this simple picture. While low intensity light cannot propagate at frequencies inside the band gap, more intense fields can exist where low-intensity fields cannot. An optical gap soliton is an intense optical pulse which can exist in a Bragg waveguide because the intensity and nonlinearity let it dig a hole for itself inside the band gap, in which it can then reside. Far from the center of the pulse, the intensity is weak, and drops off exponentially with distance from the center. The optical gap soliton structure can be stable, and can have velocities from zero (i.e., stopped light) up to the group-velocity of light in the medium. When one also considers the system's electrostrictive effects, i.e., the dependence of the index of refraction on the density of the material, which is a universal light-sound interaction in condensed matter, one obtains GASs. These solitons share many of the properties of standard gap solitons, but they show many fascinating new characteristics. GASs have especially interesting dynamics when their velocities are close to the speed of sound, in which range they interact strongly with the acoustic field. GASs which are moving at supersonic velocities may experience instabilities which leave the GAS whole, but bring the velocity abruptly to almost zero. Furthermore, GASs may be made to change velocity by collision with acoustic pulses. Moving GASs may be retarded by the

  18. Millisecond Photon Lifetime in a Slow-Light Microcavity

    NASA Astrophysics Data System (ADS)

    Huet, V.; Rasoloniaina, A.; Guillemé, P.; Rochard, P.; Féron, P.; Mortier, M.; Levenson, A.; Bencheikh, K.; Yacomotti, A.; Dumeige, Y.

    2016-04-01

    Optical microcavities with ultralong photon storage times are of central importance for integrated nanophotonics. To date, record quality (Q ) factors up to 1011 have been measured in millimetric-size single-crystal whispering-gallery-mode (WGM) resonators, and 1010 in silica or glass microresonators. We show that, by introducing slow-light effects in an active WGM microresonator, it is possible to enhance the photon lifetime by several orders of magnitude, thus circumventing both fabrication imperfections and residual absorption. The slow-light effect is obtained from coherent population oscillations in an erbium-doped fluoride glass microsphere, producing strong dispersion of the WGM (group index ng˜106). As a result, a photon lifetime up to 2.5 ms at room temperature has been measured, corresponding to a Q factor of 3 ×1012 at 1530 nm. This system could yield a new type of optical memory microarray with ultralong storage times.

  19. Dynamic wavelength conversion in copropagating slow-light pulses.

    PubMed

    Kondo, K; Baba, T

    2014-06-01

    Dynamic wavelength conversion (DWC) is obtained by controlling copropagating slow-light signal and control pulse trajectories. Our method is based on the understanding that conventional resonator-based DWC can be generalized, and is linked to cross-phase modulation. Dispersion-engineered Si photonic crystal waveguides produce such slow-light pulses. Free carriers generated by two-photon absorption of the control pulse dynamically shift the signal wavelength. Matching the group velocities of the two pulses enhances the shift, elongating the interaction length. We demonstrate an extremely large wavelength shift in DWC (4.9 nm blueshift) for the signal wavelength. Although DWC is similar to the Doppler effect, we highlight their essential differences. PMID:24949770

  20. Slow light in nonlinear photonic crystal coupled-cavity waveguides

    NASA Astrophysics Data System (ADS)

    Zhu, Na; Wang, Yige; Ren, Qingqing; Zhu, Li; Yuan, Minmin; An, Guimin

    2014-04-01

    Nonlinear photonic crystals can be formed by inserting Kerr-type nonlinear dielectric rods into perfect photonic crystals. Based on nonlinear photonic crystal, nonlinear photonic crystal coupled-cavity waveguide is constructed and its slow light properties are studied by using the Plane Wave expansion Method (PWM). Both single-defect coupled cavity and two-defect coupled cavity are proposed to optimize slow light properties. The result shows that using single-defect coupled cavity in waveguide is beneficial to obtain larger Normalized Delay-Bandwidth Product (NDBP) but it contributes little to decrease the group velocity of light and enlarging Q factor and delay time; While using two-defect cavity in waveguide can efficiently reduce the group velocity of light and enlarge Q factor and delay time. Compared to normal structures, our new designed nonlinear photonic crystal coupled cavity waveguide owns group velocity that is three magnitudes smaller than the vacuum speed of light. Delay time is of magnitude order of 10 ns and Q factor is of magnitude order of 1000, it means less loss and higher ability of storing energy.

  1. Spinor Slow Light and Two-Color Qubits

    NASA Astrophysics Data System (ADS)

    Yu, Ite; Lee, Meng-Jung; Ruseckas, Julius; Lee, Chin-Yuan; Kudriasov, Viaceslav; Chang, Kao-Fang; Cho, Hung-Wen; Juzeliunas, Gediminas; Yu, Ite A.

    2015-05-01

    We report the first experimental demonstration of two-component or spinor slow light (SSL) using a double tripod (DT) atom-light coupling scheme. The scheme involves three atomic ground states coupled to two excited states by six light fields. The oscillation due to the interaction between the two components was observed. SSL can be used to achieve high conversion efficiencies in the sum frequency generation and is a better method than the widely-used double- Λ scheme. On the basis of the stored light, our data showed that the DT scheme behaves like the two outcomes of an interferometer enabling precision measurements of frequency detuning. Furthermore, the single-photon SSL can be considered as the qubit with the superposition state of two frequency modes or, simply, as the two-color qubit. We experimentally demonstrated a possible application of the DT scheme as quantum memory/rotator for the two-color qubit. This work opens up a new direction in the EIT/slow light research. yu@phys.nthu.edu.tw

  2. Intrusion detection robust to slow and abrupt lighting changes

    NASA Astrophysics Data System (ADS)

    Makarov, Aleksej; Vesin, Jean-Marc; Reymond, Florian

    1996-03-01

    In this communication we present an image based object detection algorithm which is applied to intrusion detection. The algorithm is based on the comparison of input edges and temporally filtered edges of the background. It is characterized by very low computational and memory loads, high sensitivity to the presence of physical intruders and high robustness to slow and abrupt lighting changes. The algorithm is implementable on a cheap digital signal processor. It was tested on a data base of about one thousand gray-level CIF-format frames representing static scenes with various contents (light sources, intruders, lighting changes), and neither false alarm nor detection failure occurred. The number of parameters involved by the algorithm is very low, and their values do not require a fine tuning. The same set of parameters performs equally well in different conditions: different scenes, various lighting changes, various object sizes.

  3. Flood Regime Dynamics with Slow-Fast Landscape-Climate Feedbacks

    NASA Astrophysics Data System (ADS)

    Perdigão, Rui A. P.; Blöschl, Günter

    2015-04-01

    flood distribution at a given spatiotemporal position given the knowledge of the distribution or its drivers at another, along with their dynamic relation. An example application is thus the estimation of hydroclimatic distributions in ungauged basins and their relation to areas where more information is available. This study ultimately brings to light dynamical signatures of change in flood regimes arising from nonlinear slow-fast feedbacks in the landscape-climate dynamics, and provides dynamical links between flood regimes with nonlinearly interacting factors at different scales. The present work builds on Perdigão and Blöschl (2014). Perdigão, R. A. P., and G. Blöschl (2014), Spatiotemporal flood sensitivity to annual precipitation: Evidence for landscape-climate coevolution, Water Resour. Res., 50, doi:10.1002/2014WR015365.

  4. The Wind of Rotating B Supergiants. I. Domains of Slow and Fast Solution Regimes

    NASA Astrophysics Data System (ADS)

    Venero, R. O. J.; Curé, M.; Cidale, L. S.; Araya, I.

    2016-05-01

    In the scenario of rotating radiation-driven wind theory for massive stars, three types of stationary hydrodynamic solutions are currently known: the classical (fast) m-CAK solution, the Ω-slow solution that arises for fast rotators, and the so-called δ-slow solution if high values of the δ line-force parameter are allowed independently of the rotation speed. Compared to the fast solution, both “slow solutions” have lower terminal velocities. As the study of the parameter domain for the slow solution is still incomplete, we perform a comprehensive analysis of the distinctive flow regimes for B supergiants that emerge from a fine grid of rotation values, Ω, and various ionization conditions in the wind (δ) parameter. The wind ionization defines two domains: one for fast outflowing winds and the other for slow expanding flows. Both domains are clear-cut by a gap, where a kink/plateau structure of the velocity law could exist for a finite interval of δ. The location and width of the gap depend on T eff and Ω. There is a smooth and continuous transition between the Ω-slow and δ-slow regimes, a single Ω δ-slow regime. We discuss different situations where the slow solutions can be found and the possibility of a switch between fast and slow solutions in B supergiant winds. We compare the theoretical terminal velocity with observations of B and A supergiants and find that the fast regime prevails mostly for early B supergiants while the slow wind regime matches better for A and B mid- and late-type supergiants.

  5. The magnetic monopole and the separation between fast and slow magnetic degrees of freedom.

    PubMed

    Wegrowe, J-E; Olive, E

    2016-03-16

    The Landau-Lifshitz-Gilbert (LLG) equation that describes the dynamics of a macroscopic magnetic moment finds its limit of validity at very short times. The reason for this limit is well understood in terms of separation of the characteristic time scales between slow degrees of freedom (the magnetization) and fast degrees of freedom. The fast degrees of freedom are introduced as the variation of the angular momentum responsible for the inertia. In order to study the effect of the fast degrees of freedom on the precession, we calculate the geometric phase of the magnetization (i.e. the Hannay angle) and the corresponding magnetic monopole. In the case of the pure precession (the slow manifold), a simple expression of the magnetic monopole is given as a function of the slowness parameter, i.e. as a function of the ratio of the slow over the fast characteristic times. PMID:26871542

  6. Fast and Slow Mode Solitary Waves in a Five Component Plasma

    NASA Astrophysics Data System (ADS)

    Sebastian, Sijo; Michael, Manesh; Varghese, Anu; Sreekala, G.; Venugopal, Chandu

    2016-07-01

    We have investigated fast and slow mode solitary profiles in a five component plasma consisting of positively and negatively charged pair ions, hydrogen ions and hotter and colder electrons. Of these, the heavier ions and colder photo-electrons are of cometary origin while the other components are of solar origin; the electrons being described by kappa distributions. The Zakharov-Kuznetzov (ZK) equation is derived and solutions for fast and slow mode solitary structures are plotted for parameters relevant to that of comet Halley. From the figures, it is seen that the presence of hydrogen ion determines the polarity of fast and slow mode solitary structures. Also different pair ions like He, C and O have significant effect on the width of the fast and slow mode solitary structures.

  7. The magnetic monopole and the separation between fast and slow magnetic degrees of freedom

    NASA Astrophysics Data System (ADS)

    Wegrowe, J.-E.; Olive, E.

    2016-03-01

    The Landau-Lifshitz-Gilbert (LLG) equation that describes the dynamics of a macroscopic magnetic moment finds its limit of validity at very short times. The reason for this limit is well understood in terms of separation of the characteristic time scales between slow degrees of freedom (the magnetization) and fast degrees of freedom. The fast degrees of freedom are introduced as the variation of the angular momentum responsible for the inertia. In order to study the effect of the fast degrees of freedom on the precession, we calculate the geometric phase of the magnetization (i.e. the Hannay angle) and the corresponding magnetic monopole. In the case of the pure precession (the slow manifold), a simple expression of the magnetic monopole is given as a function of the slowness parameter, i.e. as a function of the ratio of the slow over the fast characteristic times.

  8. Interaction of minor ions with fast and slow shocks

    NASA Technical Reports Server (NTRS)

    Whang, Y. C.

    1990-01-01

    The coronal slow shock was predicted to exist embedded in large coronal holes at 4 to 10 solar radii. A three-fluid model was used to study the jumps in minor ions propertes across the coronal slow shock. The jump conditions were formulated in the de Hoffmann-Teller frame of reference. The Rankine-Hugoniot solution determines the MHD flow and the magnetic field across the shocks. For each minor ion species, the fluid equations for the conservation of mass, momentum, and energy can be solved to determine the velocity and the temperature of the ions across the shock. A simularity solution was also obtained for heavy ions. The results show that on the downstream side of the coronal slow shock the ion temperatures are nearly proportional to the ion masses for He, O, Si, and Fe in agreement with observed ion temperatures in the inner solar wind. This indicates that the possibly existing coronal slow shock can be responsible for the observed heating of minor ions in the solar wind.

  9. Near-infrared Structure of Fast and Slow-rotating Disk Galaxies

    NASA Astrophysics Data System (ADS)

    Schechtman-Rook, Andrew; Bershady, Matthew A.

    2014-11-01

    We investigate the stellar disk structure of six nearby edge-on spiral galaxies using high-resolution JHK s-band images and three-dimensional radiative transfer models. To explore how mass and environment shape spiral disks, we selected galaxies with rotational velocities between 69 km s-1 fast-rotating (V rot > 150 km s-1) galaxies, only NGC 4013 has the super-thin+thin+thick nested disk structure seen in NGC 891 and the Milky Way, albeit with decreased oblateness, while NGC 1055, a disturbed massive spiral galaxy, contains disks with hz <~ 200 pc. NGC 4565, another fast-rotator, contains a prominent ring at a radius ~5 kpc but no super-thin disk. Despite these differences, all fast-rotating galaxies in our sample have inner truncations in at least one of their disks. These truncations lead to Freeman Type II profiles when projected face-on. Slow-rotating galaxies are less complex, lacking inner disk truncations and requiring fewer disk components to reproduce their light distributions. Super-thin disk components in undisturbed disks contribute ~25% of the total K s-band light, up to that of the thin-disk contribution. The presence of super-thin disks correlates with infrared flux ratios; galaxies with super-thin disks have f{K_s}/f60 μ m ≤ 0.12 for integrated light, consistent with super-thin disks being regions of ongoing star-formation. Attenuation-corrected vertical color gradients in (J - K s) correlate with the observed disk structure and are consistent with population gradients with young-to-intermediate ages closer to the mid-plane, indicating that disk heating—or cooling—is a ubiquitous phenomenon.

  10. Three-Body Interaction of Rydberg Slow-Light Polaritons

    NASA Astrophysics Data System (ADS)

    Jachymski, Krzysztof; Bienias, Przemysław; Büchler, Hans Peter

    2016-07-01

    We study a system of three photons in an atomic medium coupled to Rydberg states near the conditions of electromagnetically induced transparency. Based on the analytical analysis of the microscopic set of equations in the far-detuned regime, the effective three-body interaction for these Rydberg polaritons is derived. For slow light polaritons, we find a strong three-body repulsion with the remarkable property that three polaritons can become essentially noninteracting at short distances. This analysis allows us to derive the influence of the three-body repulsion on bound states and correlation functions of photons propagating through a one-dimensional atomic cloud.

  11. Three-Body Interaction of Rydberg Slow-Light Polaritons.

    PubMed

    Jachymski, Krzysztof; Bienias, Przemysław; Büchler, Hans Peter

    2016-07-29

    We study a system of three photons in an atomic medium coupled to Rydberg states near the conditions of electromagnetically induced transparency. Based on the analytical analysis of the microscopic set of equations in the far-detuned regime, the effective three-body interaction for these Rydberg polaritons is derived. For slow light polaritons, we find a strong three-body repulsion with the remarkable property that three polaritons can become essentially noninteracting at short distances. This analysis allows us to derive the influence of the three-body repulsion on bound states and correlation functions of photons propagating through a one-dimensional atomic cloud. PMID:27517770

  12. Conventional, Bayesian, and Modified Prony's methods for characterizing fast and slow waves in equine cancellous bone

    PubMed Central

    Groopman, Amber M.; Katz, Jonathan I.; Holland, Mark R.; Fujita, Fuminori; Matsukawa, Mami; Mizuno, Katsunori; Wear, Keith A.; Miller, James G.

    2015-01-01

    Conventional, Bayesian, and the modified least-squares Prony's plus curve-fitting (MLSP + CF) methods were applied to data acquired using 1 MHz center frequency, broadband transducers on a single equine cancellous bone specimen that was systematically shortened from 11.8 mm down to 0.5 mm for a total of 24 sample thicknesses. Due to overlapping fast and slow waves, conventional analysis methods were restricted to data from sample thicknesses ranging from 11.8 mm to 6.0 mm. In contrast, Bayesian and MLSP + CF methods successfully separated fast and slow waves and provided reliable estimates of the ultrasonic properties of fast and slow waves for sample thicknesses ranging from 11.8 mm down to 3.5 mm. Comparisons of the three methods were carried out for phase velocity at the center frequency and the slope of the attenuation coefficient for the fast and slow waves. Good agreement among the three methods was also observed for average signal loss at the center frequency. The Bayesian and MLSP + CF approaches were able to separate the fast and slow waves and provide good estimates of the fast and slow wave properties even when the two wave modes overlapped in both time and frequency domains making conventional analysis methods unreliable. PMID:26328678

  13. Slow-fast effect and generation mechanism of brusselator based on coordinate transformation

    NASA Astrophysics Data System (ADS)

    Li, Xianghong; Hou, Jingyu; Shen, Yongjun

    2016-08-01

    The Brusselator with different time scales, which behaves in the classical slow-fast effect, is investigated, and is characterized by the coupling of the quiescent and spiking states. In order to reveal the generation mechanism by using the slow-fast analysis method, the coordinate transformation is introduced into the classical Brusselator, so that the transformed system can be divided into the fast and slow subsystems. Furthermore, the stability condition and bifurcation phenomenon of the fast subsystem are analyzed, and the attraction domains of different equilibria are presented by theoretical analysis and numerical simulation respectively. Based on the transformed system, it could be found that the generation mechanism between the quiescent and spiking states is Fold bifurcation and change of the attraction domain of the fast subsystem. The results may also be helpful to the similar system with multiple time scales.

  14. Neurosteroids differentially modulate fast and slow interictal discharges in the hippocampal CA3 area

    PubMed Central

    Herrington, Rochelle; Levesque, Maxime; Avoli, Massimo

    2016-01-01

    Two types of spontaneous interictal discharge, identified as fast and slow events, can be recorded from the hippocampal CA3 area in rat brain slices during application of 4-aminopyridine (4AP) (50 μM). Here, we addressed how neurosteroids modulate the occurrence of these interictal events and of the associated high-frequency oscillations (HFOs) (ripples, 80–200 Hz; fast ripples, 250–500 Hz). Under control conditions (i.e. during 4AP application), ripples and fast ripples were detected in 12.3 and 17.5% of fast events, respectively; in contrast, the majority of slow events (> 98%) did not co-occur with HFOs. Application of 0.1, 1 or 5 μM allotetrahydrodeoxycorticosterone (THDOC) to 4AP-treated slices caused a dose-dependent decrease in the duration of the fast events and an increase in the occurrence of ripples, but not fast ripples; in contrast, the duration of slow events increased. THDOC potentiated the slow events that were recorded during pharmacological blockade of glutamatergic transmission, but had no effect on interictal discharges occurring during GABAA receptor antagonism. These results demonstrate that potentiation of GABAA receptor-mediated signaling by THDOC differentially affects slow and fast interictal discharges; these differences may provide insights into how hyperexcitable activity is influenced by neurosteroids. PMID:25471484

  15. Tailoring the slow light behavior in terahertz metasurfaces

    SciTech Connect

    Manjappa, Manukumara; Cong, Longqing; Singh, Ranjan; Chiam, Sher-Yi; Bettiol, Andrew A.; Zhang, Weili

    2015-05-04

    We experimentally study the effect of near field coupling on the transmission of light in terahertz metasurfaces. Our results show that tailoring the coupling between the resonators modulates the amplitude of resulting electromagnetically induced transmission, probed under different types of asymmetries in the coupled system. Observed change in the transmission amplitude is attributed to the change in the amount of destructive interference between the resonators in the vicinity of strong near field coupling. We employ a two-particle model to theoretically study the influence of the coupling between bright and quasi-dark modes on the transmission properties of the system and we find an excellent agreement with our observed results. Adding to the enhanced transmission characteristics, our results provide a deeper insight into the metamaterial analogues of atomic electromagnetically induced transparency and offer an approach to engineer slow light devices, broadband filters, and attenuators at terahertz frequencies.

  16. Rotary photon drag enhanced by a slow-light medium.

    PubMed

    Franke-Arnold, Sonja; Gibson, Graham; Boyd, Robert W; Padgett, Miles J

    2011-07-01

    Transmission through a spinning window slightly rotates the polarization of the light, typically by a microradian. It has been predicted that the same mechanism should also rotate an image. Because this rotary photon drag has a contribution that is inversely proportional to the group velocity, the image rotation is expected to increase in a slow-light medium. Using a ruby window under conditions for coherent population oscillations, we induced an effective group index of about 1 million. The resulting rotation angle was large enough to be observed by the eye. This result shows that rotary photon drag applies to images as well as polarization. The possibility of switching between different rotation states may offer new opportunities for controlled image coding. PMID:21719672

  17. Ultrafast adiabatic manipulation of slow light in a photonic crystal

    SciTech Connect

    Kampfrath, T.; Kuipers, L.; Beggs, D. M.; White, T. P.; Krauss, T. F.; Melloni, A.

    2010-04-15

    We demonstrate by experiment and theory that a light pulse propagating through a Si-based photonic-crystal waveguide is adiabatically blueshifted when the refractive index of the Si is reduced on a femtosecond time scale. Thanks to the use of slow-light modes, we are able to shift a 1.3-ps pulse at telecom frequencies by 0.3 THz with an efficiency as high as 80% in a waveguide as short as 19{mu}m. An analytic theory reproduces the experimental data excellently, which shows that adiabatic dynamics are possible even on the femtosecond time scale as long as the external stimulus conserves the spatial symmetry of the system.

  18. Slow light in ruby: delaying energy beyond the input pulse

    NASA Astrophysics Data System (ADS)

    Wisniewski-Barker, Emma; Gibson, Graham; Franke-Arnold, Sonja; Shi, Zhimin; Narum, Paul; Boyd, Robert W.; Padgett, Miles J.

    2015-03-01

    The mechanism by which light is slowed through ruby has been the subject of great debate. To distinguish between the two main proposed mechanisms, we investigate the problem in the time domain by modulating a laser beam with a chopper to create a clean square wave. By exploring the trailing edge of the pulsed laser beam propagating through ruby, we can determine whether energy is delayed beyond the input pulse. The effects of a time-varying absorber alone cannot delay energy into the trailing edge of the pulse, as a time-varying absorber can only attenuate a coherent pulse. Therefore, our observation of an increase in intensity at the trailing edge of the pulse provides evidence for a complicated model of slow light in ruby that requires more than just pulse reshaping. In addition, investigating the Fourier components of the modulated square wave shows that harmonic components with different frequencies are delayed by different amounts, regardless of the intensity of the component itself. Understanding the difference in delays of the individual Fourier components of the modulated beam reveals the cause of the distortion the pulse undergoes as it propagates through the ruby.

  19. Millisecond Photon Lifetime in a Slow-Light Microcavity.

    PubMed

    Huet, V; Rasoloniaina, A; Guillemé, P; Rochard, P; Féron, P; Mortier, M; Levenson, A; Bencheikh, K; Yacomotti, A; Dumeige, Y

    2016-04-01

    Optical microcavities with ultralong photon storage times are of central importance for integrated nanophotonics. To date, record quality (Q) factors up to 10^{11} have been measured in millimetric-size single-crystal whispering-gallery-mode (WGM) resonators, and 10^{10} in silica or glass microresonators. We show that, by introducing slow-light effects in an active WGM microresonator, it is possible to enhance the photon lifetime by several orders of magnitude, thus circumventing both fabrication imperfections and residual absorption. The slow-light effect is obtained from coherent population oscillations in an erbium-doped fluoride glass microsphere, producing strong dispersion of the WGM (group index n_{g}∼10^{6}). As a result, a photon lifetime up to 2.5 ms at room temperature has been measured, corresponding to a Q factor of 3×10^{12} at 1530 nm. This system could yield a new type of optical memory microarray with ultralong storage times. PMID:27081979

  20. Bifurcation of Velocity Distributions in Cooperative Transport of Filaments by Fast and Slow Motors

    PubMed Central

    Li, Xin; Lipowsky, Reinhard; Kierfeld, Jan

    2013-01-01

    Several intracellular processes are governed by two different species of molecular motors, fast and slow ones, that both move in the same direction along the filaments but with different velocities. The transport of filaments arising from the cooperative action of these motors has been recently studied by three in vitro experiments, in which the filament velocity was measured for varying fraction of the fast motors adsorbed onto substrate surfaces in a gliding assay. As the fast motor fraction was increased, two experiments found a smooth change whereas the third one observed an abrupt increase of the filament velocity. Here, we show that all of these experimental results reflect the competition between fast and slow motors and can be understood in terms of an underlying saddle-node bifurcation. The comparison between theory and experiment leads to predictions for the detachment forces of the two motor species. Our theoretical study shows the existence of three different motility regimes: 1), fast transport with a single velocity; 2), slow transport with a single velocity; and 3), bistable transport, where the filament velocity stochastically switches between fast and slow transport. We determine the parameter regions for these regimes in terms of motility diagrams as a function of the surface fraction of fast motors and microscopic single-motor parameters. An abrupt increase of the filament velocity for an increasing fraction of fast motors is associated with the occurrence of bistable transport. PMID:23442917

  1. Slow and fast development in two aphidophagous ladybirds on scarce and abundant prey supply.

    PubMed

    Singh, N; Mishra, G; Omkar

    2016-06-01

    Developmental rates are highly variable, both within and between genotypes and populations. But the rationale for two differential (slow and fast) developmental rates within same cohort under varying prey supply has yet not been explored. For this purpose, we investigated the effect of scarce and abundant prey supply on slow and fast development at 27°C in two aphidophagous ladybirds, Menochilus sexmaculatus (Fabricius) and Propylea dissecta (Mulsant) and its effect on their body mass and reproductive attributes. The ladybirds were provided with scarce and abundant supply of Aphis craccivora Koch under standardized abiotic conditions in the laboratory. A clear bimodal (two peaks, where the first peak represented the fast developing individuals and the second peak slow developing individuals) pattern of distribution for both prey supplies was obtained, which got skewed with change in prey supply. On abundant prey supply, more fast developing individuals (139 M. sexmaculatus and 123 P. dissecta) were found and less (46 M. sexmaculatus and 36 P. dissecta) on scarce prey supply. Slow developing individuals had female biased sex ratio, higher longevity and lower body mass. Fast developing females laid higher number of eggs with higher egg viability. Results of the study are indicative of occurrence and constancy of the slow and fast developing individuals in the egg batch. PMID:26898500

  2. Mechanism of Cooperative Behavior in Systems of Slow and Fast Molecular Motors

    PubMed Central

    Larson, Adam G.; Landahl, Eric C.; Rice, Sarah E.

    2009-01-01

    Summary Two recent theoretical advances have described cargo transport by multiple identical motors and by multiple oppositely directed, but otherwise identical motors [1, 2]. Here we combine a similar theoretical approach with a simple experiment to describe the behavior of a system comprised of slow and fast molecular motors having the same directionality. We observed the movement of microtubules by mixtures of slow and fast kinesin motors attached to a glass coverslip in a classic sliding filament assay. The motors are identical, except that the slow ones contain five point mutations that collectively reduce their velocity ∼15-fold without compromising maximal ATPase activity. Our results indicate that a small fraction of fast motors are able to accelerate the dissociation of slow motors from microtubules. Because of this, a sharp, highly cooperative transition occurs from slow to fast microtubule movement as the relative number of fast motors in the assay is increased. Microtubules move at half-maximal velocity when only 15% of the motors in the assay are fast. Our model indicates that this behavior depends primarily on the relative motor velocities and the asymmetry between their forward and backward dissociation forces. It weakly depends on the number of motors and their processivity. We predict that movement of cargoes bound to two types of motors having very different velocities will be dominated by one or the other motor. Therefore, cargoes can potentially undergo abrupt changes in movement in response to regulatory mechanisms acting on only a small fraction of motors. PMID:19506764

  3. Cooperative dynamics in coupled systems of fast and slow phase oscillators

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Hidetsugu; Okita, Takayuki

    2016-02-01

    We propose a coupled system of fast and slow phase oscillators. We observe two-step transitions to quasiperiodic motions by direct numerical simulations of this coupled oscillator system. A low-dimensional equation for order parameters is derived using the Ott-Antonsen ansatz. The applicability of the ansatz is checked by the comparison of numerical results of the coupled oscillator system and the reduced low-dimensional equation. We investigate further several interesting phenomena in which mutual interactions between the fast and slow oscillators play an essential role. Fast oscillations appear intermittently as a result of excitatory interactions with slow oscillators in a certain parameter range. Slow oscillators experience an oscillator-death phenomenon owing to their interaction with fast oscillators. This oscillator death is explained as a result of saddle-node bifurcation in a simple phase equation obtained using the temporal average of the fast oscillations. Finally, we show macroscopic synchronization of the order 1 :m between the slow and fast oscillators.

  4. Dynamics of fast and slow inhibition from cerebellar Golgi cells allow flexible control of synaptic integration

    PubMed Central

    Crowley, John J.; Fioravante, Diasynou; Regehr, Wade G.

    2011-01-01

    Throughout the brain, multiple interneuron types influence distinct aspects of synaptic processing. Interneuron diversity can thereby promote differential firing from neurons receiving common excitation. In contrast, Golgi cells are the sole interneurons regulating granule cell spiking evoked by mossy fibers, thereby gating inputs to the cerebellar cortex. Here, we examine how this single interneuron type modifies activity in its targets. We find that GABAA-mediated transmission at unitary Golgi cell → granule cell synapses consists of varying contributions of fast synaptic currents and sustained inhibition. Fast IPSCs depress and slow IPSCs gradually build during high frequency Golgi cell activity. Consequently, fast and slow inhibition differentially influence granule cell spike timing during persistent mossy fiber input. Furthermore, slow inhibition reduces the gain of the mossy fiber → granule cell input-output curve, while fast inhibition increases the threshold. Thus, a lack of interneuron diversity need not prevent flexible inhibitory control of synaptic processing. PMID:19778512

  5. Effect of inaction on function of fast and slow muscle spindles

    NASA Technical Reports Server (NTRS)

    Arutyunyan, R. S.

    1980-01-01

    There is no data on the comparative effect of tenotomy on the function of the muscle spindles of fast and slow muscles. This study covers this question. The experiments were conducted on cats. The musuculus extensor digitorum longus (m. EDL) was selected as the fast muscle, and the musculus soleus (m. Sol.) as the slow. In a comparison of the spontaneous activity of primary and secondary endings of the fast and slow muscle spindles (i.e., the activity with complete relaxation of the muscles) normally no difference between them was successfully found. The authors recorded the integrative, and not the individual activity, and secondly, under conditions of such recording technique, those slight changes that are observed in the fast muscle receptors could remain unnoticed.

  6. Slow to fast alterations in skeletal muscle fibers caused by clenbuterol, a beta(2)-receptor agonist

    NASA Technical Reports Server (NTRS)

    Zeman, Richard J.; Ludemann, Robert; Easton, Thomas G.; Etlinger, Joseph D.

    1988-01-01

    The effects of a beta(2)-receptor agonist, clenbuterol, and a beta(2) antagonist, butoxamine, on the skeletal muscle fibers of rats were investigated. It was found that chronic treatment of rats with clenbuterol caused hypertrophy of histochemically identified fast-twitch, but not slow-twitch, fibers within the soleus, while in the extensor digitorum longus the mean areas of both fiber types were increased; in both muscles, the ratio of the number of fast-twitch to slow-twitch fibers was increased. In contrast, a treatment with butoxamine caused a reduction of the fast-twitch fiber size in both muscles, and the ratio of the fast-twitch to slow-twitch fibers was decreased.

  7. Exploring the contrasts between fast and slow rifting

    NASA Astrophysics Data System (ADS)

    Morgan, Jason P.; de Monserrat, Albert; White, Lloyd; Hall, Robert

    2016-04-01

    Researchers are now finding that extension sometimes occurs at rates much faster than the mean rates observed in the development of passive margins. Examples of rapid and ultra-rapid extension are found in several locations in Eastern Indonesia. This includes in northern and central Sulawesi as well as in eastern- and westernmost New Guinea. The periods of extension are associated with sedimentary basin growth as well as phases of crustal melting and rapid uplift. This is recorded through seismic imagery of basins offshore Sulawesi and New Guinea as well as through new field studies of the onshore geology in these regions. A growing body of new geochronological and biostratigraphic data provide some control on the rates of processes, indicating that rates of extension are typically at least twice as fast and potentially an order of magnitude faster than the fastest rates applied for more commonly studied rift settings (e.g. Atlantic opening, East African Rift, Australia-Antarctica opening). Here we explore a suite of experiments more appropriate for rifting episodes in Eastern Indonesia, and compare the evolution of these 'fast' (20-100 mm/year full rate) rifting models to experiments with the same crustal geometries rifting at ~5-20 mm/year. In particular, we explore to what depths hot lower crust and mantle can be exhumed by fast rifting, and whether we can produce the p-T-t paths implied by recent onshore geological studies.

  8. Variations of Strahl Properties with Fast and Slow Solar Wind

    NASA Technical Reports Server (NTRS)

    Figueroa-Vinas, Adolfo; Goldstein, Melvyn L.; Gurgiolo, Chris

    2008-01-01

    The interplanetary solar wind electron velocity distribution function generally shows three different populations. Two of the components, the core and halo, have been the most intensively analyzed and modeled populations using different theoretical models. The third component, the strahl, is usually seen at higher energies, is confined in pitch-angle, is highly field-aligned and skew. This population has been more difficult to identify and to model in the solar wind. In this work we make use of the high angular, energy and time resolution and three-dimensional data of the Cluster/PEACE electron spectrometer to identify and analyze this component in the ambient solar wind during high and slow speed solar wind. The moment density and fluid velocity have been computed by a semi-numerical integration method. The variations of solar wind density and drift velocity with the general build solar wind speed could provide some insight into the source, origin, and evolution of the strahl.

  9. Isoflurane enhances both fast and slow synaptic inhibition in the hippocampus at amnestic concentrations

    PubMed Central

    Dai, Shuiping; Perouansky, Misha; Pearce, Robert A.

    2012-01-01

    Background Inhibition mediated by γ-aminobutyric acid type A (GABAA) receptors has long been considered an important target for a variety of general anesthetics. In the hippocampus, two types of phasic GABAA receptor-mediated inhibition coexist: GABAA,fast, which is expressed primarily at peri-somatic sites, and GABAA,slow, which is expressed primarily in the dendrites. Their spatial segregation suggests distinct functions: GABAA,slow may control plasticity of dendritic synapses, while GABAA,fast controls action potential initiation at the soma. We examined modulation of GABAA,fast and GABAA,slow inhibition by isoflurane at amnesic concentrations, and compared it to modulation by behaviorally equivalent doses of the GABAA receptor-selective drug etomidate. Methods Whole-cell recordings were conducted at near-physiological temperature from pyramidal cells in organotypic hippocampal cultures obtained from C57BL/6 x 129/SvJ F1 hybrid mice. GABAA receptor-mediated currents were isolated using glutamate receptor antagonists. GABAA,slow currents were evoked by electrical stimulation in the stratum lacunosum-moleculare. Miniature GABAA,fast currents were recorded in the presence of tetrodotoxin. Results 100 µM isoflurane (approximately EC50,amnesia) slowed fast and slow inhibitory postsynaptic current decay by approximately 25%. Higher concentrations, up to 400 µM, produced proportionally greater effects without altering current amplitudes. The effects on GABAA,slow were approximately one-half those produced by equi-amnesic concentrations of etomidate. Conclusions Isoflurane enhances both types of phasic GABAA receptor-mediated inhibition to similar degrees at amnesic concentrations. This pattern differs from etomidate, which at low concentrations selectively enhances slow inhibition. These effects of isoflurane are sufficiently large that they may contribute substantially to its suppression of hippocampal learning and memory. PMID:22343472

  10. Demonstration of bicolor slow-light channelization in rubidium vapor

    SciTech Connect

    Bashkansky, Mark; Fatemi, Fredrik K.; Reintjes, John; Dutton, Zachary; Steiner, Michael

    2007-02-15

    We experimentally demonstrate a proof-of-principle of a previously proposed 'channelization' architecture for wideband slow-light propagation in atomic vapors using electromagnetically induced transparency (EIT). We use two optical frequencies to generate a sine wave signal which is delayed in rubidium vapor. The optical frequencies were tuned near the EIT resonances of two Zeeman sublevels, which are shifted from each other well beyond the EIT linewidth by a uniform magnetic field. We varied the Zeeman shift between these two levels (relative to the optical frequency splitting) and measured the delay versus Zeeman shift. Significant delays were observed and were in agreement with a theoretical model treating each Zeeman sublevel as part of an independent three-level system. We achieved delay of a signal with a bandwidth 16 times the EIT linewidth and confirmed our earlier theoretical models that delay occurs only when the optical spectral separation slightly exceeds the Zeeman splitting.

  11. Comparison for the compositions of fast and slow pyrolysis oils by NMR characterization.

    PubMed

    Ben, Haoxi; Ragauskas, Arthur J

    2013-11-01

    The pyrolysis of softwood (SW) kraft lignin and pine wood in different pyrolysis systems were examined at 400, 500 and 600 °C. NMR including quantitative (13)C and Heteronuclear Single-Quantum Correlation (HSQC)-NMR, and Gel Permeation Chromatography (GPC) were used to characterize various pyrolysis oils. The content of methoxyl groups decreased by 76% for pine wood and 70% for lignin when using fast pyrolysis system. The carbonyl groups also decreased by 76% and nearly completely eliminated in 600 °C pine wood fast pyrolysis oil. Compared to the slow pyrolysis process, fast pyrolysis process was found to improve the cleavage of methoxyl groups, aliphatic CC bonds and carbonyl groups and produce more polyaromatic hydrocarbons (PAH) from lignin and aliphatic CO bonds from carbohydrates. Another remarkable difference between fast and slow pyrolysis oils was the molecular weight of fast pyrolysis oils increased by 85-112% for pine wood and 104-112% for lignin. PMID:24013295

  12. Semiempirical Models of the Slow and Fast Solar Wind

    NASA Astrophysics Data System (ADS)

    Wang, Y.-M.

    2012-11-01

    Coronal holes can produce several types of solar wind with a variety of compositional properties, depending on the location and strength of the heating along their open magnetic field lines. High-speed wind is associated with (relatively) slowly diverging flux tubes rooted in the interiors of large holes with weak, uniform footpoint fields; heating is spread over a large radial distance, so that most of the energy is conducted outward and goes into accelerating the wind rather than increasing the mass flux. In the rapidly diverging open fields present at coronal hole boundaries and around active regions, the heating is concentrated at low heights and the temperature maximum is located near the coronal base, resulting in high oxygen freezing-in temperatures and low asymptotic wind speeds. Polar plumes have a strong additional source of heating at their bases, which generates a large downward conductive flux, raising the densities and enhancing the radiative losses. The relative constancy of the solar wind mass flux at Earth reflects the tendency for the heating rate in coronal holes to increase monotonically with the footpoint field strength, with very high mass fluxes at the Sun offsetting the enormous flux-tube expansion in active region holes. Although coronal holes are its main source, slow wind is also released continually from helmet streamer loops by reconnection processes, giving rise to plasma blobs (small flux ropes) and the heliospheric plasma sheet.

  13. Differential effect of denervation on free radical scavenging enzymes in slow and fast muscle of rat

    NASA Technical Reports Server (NTRS)

    Asayama, K.; Dettbarn, W. D.; Burr, I. M.

    1985-01-01

    To determine the effect of denervation on the free radical scavenging systems in relation to the mitochondrial oxidative metabolism in the slow twitch soleus and fast twitch extensor digitorum longus (EDL) muscles, the sciatic nerve of the rat was crushed in the mid-thigh region and the muscle tissue levels of 5 enzymes were studied 2 and 5 weeks following crush. Radioimmunoassays were utilized for the selective measurement of cuprozinc (cytosolic) and mangano (mitochondrial) superoxide dismutases. These data represent the first systematic report of free radical scavening systems in slow and fast muscles in response to denervation. Selective modification of cuprozinc and manganosuperoxide dismutases and differential regulation of GSH-peroxidase was demonstrated in slow and fast muscle.

  14. Existence domains of slow and fast ion-acoustic solitons in two-ion space plasmas

    SciTech Connect

    Maharaj, S. K.; Bharuthram, R.; Singh, S. V. Lakhina, G. S.

    2015-03-15

    A study of large amplitude ion-acoustic solitons is conducted for a model composed of cool and hot ions and cool and hot electrons. Using the Sagdeev pseudo-potential formalism, the scope of earlier studies is extended to consider why upper Mach number limitations arise for slow and fast ion-acoustic solitons. Treating all plasma constituents as adiabatic fluids, slow ion-acoustic solitons are limited in the order of increasing cool ion concentrations by the number densities of the cool, and then the hot ions becoming complex valued, followed by positive and then negative potential double layer regions. Only positive potentials are found for fast ion-acoustic solitons which are limited only by the hot ion number density having to remain real valued. The effect of neglecting as opposed to including inertial effects of the hot electrons is found to induce only minor quantitative changes in the existence regions of slow and fast ion-acoustic solitons.

  15. Effect of protozoan predation on relative abundance of fast- and slow-growing bacteria

    SciTech Connect

    Sinclair, J.L.; Alexander, M.

    1989-01-01

    Survival of six bacterial species with different growth rates was tested in raw sewage and sewage rendered free of protozoa. When the six species were inoculated at the same densities into sewage containing protozoa, the three slow-growing species were rapidly eliminated, and two of the three fast-growing species survived in detectable numbers. It is suggested that in environments with intense protozoan predation, protozoa may alter composition of bacterial communities by eliminating slow-growing bacteria.

  16. Experimental GVD engineering in slow light slot photonic crystal waveguides

    NASA Astrophysics Data System (ADS)

    Serna, Samuel; Colman, Pierre; Zhang, Weiwei; Le Roux, Xavier; Caer, Charles; Vivien, Laurent; Cassan, Eric

    2016-05-01

    The use in silicon photonics of the new optical materials developed in soft matter science (e.g. polymers, liquids) is delicate because their low refractive index weakens the confinement of light and prevents an efficient control of the dispersion properties through the geometry. We experimentally demonstrate that such materials can be incorporated in 700 μm long slot photonic crystal waveguides, and hence can benefit from both slow-light field enhancement effect and slot-induced ultra-small effective areas. Additionally, we show that their dispersion can be engineered from anomalous to normal regions, along with the presence of multiple zero group velocity dispersion (ZGVD) points exhibiting Normalized Delay Bandwidth Product as high as 0.156. The reported results provide experimental evidence for an accurate control of the dispersion properties of fillable periodical slotted structures in silicon photonics, which is of direct interest for on-chip all-optical data treatment using nonlinear optical effects in hybrid-on-silicon technologies.

  17. Experimental GVD engineering in slow light slot photonic crystal waveguides.

    PubMed

    Serna, Samuel; Colman, Pierre; Zhang, Weiwei; Le Roux, Xavier; Caer, Charles; Vivien, Laurent; Cassan, Eric

    2016-01-01

    The use in silicon photonics of the new optical materials developed in soft matter science (e.g. polymers, liquids) is delicate because their low refractive index weakens the confinement of light and prevents an efficient control of the dispersion properties through the geometry. We experimentally demonstrate that such materials can be incorporated in 700 μm long slot photonic crystal waveguides, and hence can benefit from both slow-light field enhancement effect and slot-induced ultra-small effective areas. Additionally, we show that their dispersion can be engineered from anomalous to normal regions, along with the presence of multiple zero group velocity dispersion (ZGVD) points exhibiting Normalized Delay Bandwidth Product as high as 0.156. The reported results provide experimental evidence for an accurate control of the dispersion properties of fillable periodical slotted structures in silicon photonics, which is of direct interest for on-chip all-optical data treatment using nonlinear optical effects in hybrid-on-silicon technologies. PMID:27243377

  18. Experimental GVD engineering in slow light slot photonic crystal waveguides

    PubMed Central

    Serna, Samuel; Colman, Pierre; Zhang, Weiwei; Le Roux, Xavier; Caer, Charles; Vivien, Laurent; Cassan, Eric

    2016-01-01

    The use in silicon photonics of the new optical materials developed in soft matter science (e.g. polymers, liquids) is delicate because their low refractive index weakens the confinement of light and prevents an efficient control of the dispersion properties through the geometry. We experimentally demonstrate that such materials can be incorporated in 700 μm long slot photonic crystal waveguides, and hence can benefit from both slow-light field enhancement effect and slot-induced ultra-small effective areas. Additionally, we show that their dispersion can be engineered from anomalous to normal regions, along with the presence of multiple zero group velocity dispersion (ZGVD) points exhibiting Normalized Delay Bandwidth Product as high as 0.156. The reported results provide experimental evidence for an accurate control of the dispersion properties of fillable periodical slotted structures in silicon photonics, which is of direct interest for on-chip all-optical data treatment using nonlinear optical effects in hybrid-on-silicon technologies. PMID:27243377

  19. Recovery time course in contractile function of fast and slow skeletal muscle after hindlimb immobilization

    NASA Technical Reports Server (NTRS)

    Witzmann, F. A.; Kim, D. H.; Fitts, R. H.

    1982-01-01

    The present study was undertaken to characterize the time course and extent of recovery in the isometric and isotonic contractile properties of fast and slow skeletal muscle following 6 wk of hindlimb immobilization. Female Sprague-Dawley rats were randomly assigned to an immobilized group or a control group. The results of the study show that fast and slow skeletal muscles possess the ability to completely recover normal contractile function following 6 wk of hindlimb immobilization. The rate of recovery is dependent on the fiber type composition of the affected muscle.

  20. Near-infrared structure of fast and slow-rotating disk galaxies

    SciTech Connect

    Schechtman-Rook, Andrew; Bershady, Matthew A.

    2014-11-10

    We investigate the stellar disk structure of six nearby edge-on spiral galaxies using high-resolution JHK {sub s}-band images and three-dimensional radiative transfer models. To explore how mass and environment shape spiral disks, we selected galaxies with rotational velocities between 69 km s{sup –1} fast-rotating (V {sub rot} > 150 km s{sup –1}) galaxies, only NGC 4013 has the super-thin+thin+thick nested disk structure seen in NGC 891 and the Milky Way, albeit with decreased oblateness, while NGC 1055, a disturbed massive spiral galaxy, contains disks with h{sub z} ≲ 200 pc. NGC 4565, another fast-rotator, contains a prominent ring at a radius ∼5 kpc but no super-thin disk. Despite these differences, all fast-rotating galaxies in our sample have inner truncations in at least one of their disks. These truncations lead to Freeman Type II profiles when projected face-on. Slow-rotating galaxies are less complex, lacking inner disk truncations and requiring fewer disk components to reproduce their light distributions. Super-thin disk components in undisturbed disks contribute ∼25% of the total K {sub s}-band light, up to that of the thin-disk contribution. The presence of super-thin disks correlates with infrared flux ratios; galaxies with super-thin disks have f{sub K{sub s}}/f{sub 60} {sub μm}≤0.12 for integrated light, consistent with super-thin disks being regions of ongoing star-formation. Attenuation-corrected vertical color gradients in (J – K {sub s}) correlate with the observed disk structure and are consistent with population gradients with young-to-intermediate ages closer to the mid-plane, indicating that disk heating—or cooling—is a ubiquitous phenomenon.

  1. Electromagnetically induced transparency and slow light with optomechanics.

    PubMed

    Safavi-Naeini, A H; Mayer Alegre, T P; Chan, J; Eichenfield, M; Winger, M; Lin, Q; Hill, J T; Chang, D E; Painter, O

    2011-04-01

    Controlling the interaction between localized optical and mechanical excitations has recently become possible following advances in micro- and nanofabrication techniques. So far, most experimental studies of optomechanics have focused on measurement and control of the mechanical subsystem through its interaction with optics, and have led to the experimental demonstration of dynamical back-action cooling and optical rigidity of the mechanical system. Conversely, the optical response of these systems is also modified in the presence of mechanical interactions, leading to effects such as electromagnetically induced transparency (EIT) and parametric normal-mode splitting. In atomic systems, studies of slow and stopped light (applicable to modern optical networks and future quantum networks) have thrust EIT to the forefront of experimental study during the past two decades. Here we demonstrate EIT and tunable optical delays in a nanoscale optomechanical crystal, using the optomechanical nonlinearity to control the velocity of light by way of engineered photon-phonon interactions. Our device is fabricated by simply etching holes into a thin film of silicon. At low temperature (8.7 kelvin), we report an optically tunable delay of 50 nanoseconds with near-unity optical transparency, and superluminal light with a 1.4 microsecond signal advance. These results, while indicating significant progress towards an integrated quantum optomechanical memory, are also relevant to classical signal processing applications. Measurements at room temperature in the analogous regime of electromagnetically induced absorption show the utility of these chip-scale optomechanical systems for optical buffering, amplification, and filtering of microwave-over-optical signals. PMID:21412237

  2. Model reduction for slow-fast stochastic systems with metastable behaviour

    NASA Astrophysics Data System (ADS)

    Bruna, Maria; Chapman, S. Jonathan; Smith, Matthew J.

    2014-05-01

    The quasi-steady-state approximation (or stochastic averaging principle) is a useful tool in the study of multiscale stochastic systems, giving a practical method by which to reduce the number of degrees of freedom in a model. The method is extended here to slow-fast systems in which the fast variables exhibit metastable behaviour. The key parameter that determines the form of the reduced model is the ratio of the timescale for the switching of the fast variables between metastable states to the timescale for the evolution of the slow variables. The method is illustrated with two examples: one from biochemistry (a fast-species-mediated chemical switch coupled to a slower varying species), and one from ecology (a predator-prey system). Numerical simulations of each model reduction are compared with those of the full system.

  3. Numerical continuation of canard orbits in slow-fast dynamical systems

    NASA Astrophysics Data System (ADS)

    Desroches, M.; Krauskopf, B.; Osinga, H. M.

    2010-03-01

    A trajectory of a system with two clearly separated time scales generally consists of fast segments (or jumps) followed by slow segments where the trajectory follows an attracting part of a slow manifold. The switch back to fast dynamics typically occurs when the trajectory passes a fold with respect to a fast direction. A special role is played by trajectories known as canard orbits, which do not jump at a fold but, instead, follow a repelling slow manifold for some time. We concentrate here on the case of a slow-fast system with two slow and one fast variable, where canard orbits arise geometrically as intersection curves of two-dimensional attracting and repelling slow manifolds. Canard orbits are intimately related to the dynamics near special points known as folded singularities, which in turn have been shown to explain small-amplitude oscillations that can be found as part of so-called mixed-mode oscillations. In this paper we present a numerical method to detect and then follow branches of canard orbits in a system parameter. More specifically, we define well-posed two-point boundary value problems (BVPs) that represent orbit segments on the slow manifolds, and we continue their solution families with the package AUTO. In this way, we are able to deal effectively with the numerical challenge of strong attraction to and strong repulsion from the slow manifolds. Canard orbits are detected as the transverse intersection points of the curves along which attracting and repelling slow manifolds intersect a suitable section (near a folded node). These intersection points correspond to a unique pair of orbits segments, one on the attracting and one on the repelling slow manifold. After concatenation of the respective pairs of orbit segments, all detected canard orbits are represented as solutions of a single BVP, which allows us to continue them in system parameters. We demonstrate with two examples—the self-coupled FitzHugh-Nagumo system and a three

  4. Mechanism of cooperative behaviour in systems of slow and fast molecular motors.

    PubMed

    Larson, Adam G; Landahl, Eric C; Rice, Sarah E

    2009-06-28

    Two recent theoretical advances have described cargo transport by multiple identical motors and by multiple oppositely directed, but otherwise identical motors [M. J. Muller, S. Klumpp and R. Lipowsky, Proc. Natl. Acad. Sci. U. S. A., 2008, 105(12), 4609-4614; S. Klumpp and R. Lipowsky, Proc. Natl. Acad. Sci. U. S. A., 2005, 102(48), 17284-17289]. Here, we combine a similar theoretical approach with a simple experiment to describe the behaviour of a system comprised of slow and fast molecular motors having the same directionality. We observed the movement of microtubules by mixtures of slow and fast kinesin motors attached to a glass coverslip in a classic sliding filament assay. The motors are identical, except that the slow ones contain five point mutations that collectively reduce their velocity approximately 15-fold without compromising maximal ATPase activity. Our results indicate that a small fraction of fast motors are able to accelerate the dissociation of slow motors from microtubules. Because of this, a sharp, highly cooperative transition occurs from slow to fast microtubule movement as the relative number of fast motors in the assay is increased. Microtubules move at half-maximal velocity when only 15% of the motors in the assay are fast. Our model indicates that this behaviour depends primarily on the relative motor velocities and the asymmetry between their forward and backward dissociation forces. It weakly depends on the number of motors and their processivity. We predict that movement of cargoes bound to two types of motors having very different velocities will be dominated by one or the other motor. Therefore, cargoes can potentially undergo abrupt changes in movement in response to regulatory mechanisms acting on only a small fraction of motors. PMID:19506764

  5. How to slow down light and where relativity theory fails

    NASA Astrophysics Data System (ADS)

    Zhang, Meggie

    2013-03-01

    Research found logical errors in mathematics and in physics. After discovered wave-particle duality made an assumption I reinterpreted quantum mechanic and I was able to find new information from existing publications and concluded that photon is not a fundamental particle which has a structure. These work has been presented at several APS meetings and EuNPC2012. During my research I also arrived at the exact same conclusion using Newton's theory of space-time, then found the assumptions that relativity theory made failed logical test and violated basic mathematical logic. And Minkowski space violated Newton's law of motion, Lorenz 4-dimensional transformation was mathematically incomplete. After modifying existing physics theories I designed an experiment to demonstrate where light can be slow down or stop for structural study. Such method were also turn into a continuous room temperature fusion method. However the discoveries involves large amount of complex logical analysis. Physicists are generally not philosophers, therefore to make the discovery fully understood by most physicists is very challenging. This work is supported by Dr. Kursh at Northeastern University.

  6. Boundary-equilibrium bifurcations in piecewise-smooth slow-fast systems.

    PubMed

    Kowalczyk, P; Glendinning, P

    2011-06-01

    In this paper we study the qualitative dynamics of piecewise-smooth slow-fast systems (singularly perturbed systems) which are everywhere continuous. We consider phase space topology of systems with one-dimensional slow dynamics and one-dimensional fast dynamics. The slow manifold of the reduced system is formed by a piecewise-continuous curve, and the differentiability is lost across the switching surface. In the full system the slow manifold is no longer continuous, and there is an O(ɛ) discontinuity across the switching manifold, but the discontinuity cannot qualitatively alter system dynamics. Revealed phase space topology is used to unfold qualitative dynamics of planar slow-fast systems with an equilibrium point on the switching surface. In this case the local dynamics corresponds to so-called boundary-equilibrium bifurcations, and four qualitative phase portraits are uncovered. Our results are then used to investigate the dynamics of a box model of a thermohaline circulation, and the presence of a boundary-equilibrium bifurcation of a fold type is shown. PMID:21721768

  7. Signatures of fast and slow magnetohydrodynamic shocks in turbulent molecular clouds

    NASA Astrophysics Data System (ADS)

    Lehmann, Andrew; Wardle, Mark

    2016-01-01

    The character of star formation is intimately related to the supersonic magnetohydrodynamic (MHD) turbulent dynamics of the molecular clouds in which stars form. A significant amount of the turbulent energy dissipates in low-velocity shocks. Fast and slow MHD shocks differ in how they compress and heat the molecular gas, and so their radiative signatures reveal distinct physical conditions. We use a two-fluid model to compare one-dimensional fast and slow MHD shocks propagating at low speeds (a few km s- 1). Fast shocks are magnetically driven, forcing ion species to stream through the neutral gas ahead of the shock front. This magnetic precursor heats the gas sufficiently to create a large, warm transition zone where all the fluid variables smoothly change in the shock front. In contrast, slow shocks are driven by gas pressure, and neutral species collide with ion species in a thin hot slab that closely resembles an ordinary gas dynamic shock. We consider shocks at velocities vs = 2-4 km s- 1 and pre-shock hydrogen nuclei densities nH = 102-104 cm-3. We include a simple oxygen chemistry and cooling by CO, H2 and H2O. CO rotational lines above J = 6-5 are more strongly excited in slow shocks. These slow-shock signatures may have already been observed in infrared dark clouds in the Milky Way.

  8. Regenerating tail muscles in lizard contain Fast but not Slow Myosin indicating that most myofibers belong to the fast twitch type for rapid contraction.

    PubMed

    Alibardi, L

    2015-10-01

    During tail regeneration in lizards a large mass of muscle tissue is formed in form of segmental myomeres of similar size located under the dermis of the new tail. These muscles accumulate glycogen and a fast form of myosin typical for twitch myofibers as it is shown by light and ultrastructural immunocytochemistry using an antibody directed against a Fast Myosin Heavy Chain. High resolution immunogold labeling shows that an intense labeling for fast myosin is localized over the thick filaments of the numerous myofibrils in about 70% of the regenerated myofibers while the labeling becomes less intense in the remaining muscle fibers. The present observations indicate that at least two subtypes of Fast Myosin containing muscle fibers are regenerated, the prevalent type was of the fast twitch containing few mitochondria, sparse glycogen, numerous smooth endoplasmic reticulum vesicles. The second, and less frequent type was a Fast-Oxidative-Glycolitic twitch fiber containing more mitochondria, a denser cytoplasm and myofibrils. Since their initial differentiation, myoblasts, myotubes and especially the regenerated myofibers do not accumulate any immuno-detectable Slow Myosin Heavy Chain. The study indicates that most of the segmental muscles of the regenerated tail serve for the limited bending of the tail during locomotion and trashing after amputation of the regenerated tail, a phenomenon that facilitates predator escape. PMID:26164738

  9. The effect of temperature on the coupled slow and fast dynamics of an electrochemical oscillator.

    PubMed

    Zülke, Alana A; Varela, Hamilton

    2016-01-01

    The coupling among disparate time-scales is ubiquitous in many chemical and biological systems. We have recently investigated the effect of fast and, long-term, slow dynamics in surface processes underlying some electrocatalytic reactions. Herein we report on the effect of temperature on the coupled slow and fast dynamics of a model system, namely the electro-oxidation of formic acid on platinum studied at five temperatures between 5 and 45 °C. The main result was a turning point found at 25 °C, which clearly defines two regions for the temperature dependency on the overall kinetics. In addition, the long-term evolution allowed us to compare reaction steps related to fast and slow evolutions. Results were discussed in terms of the key role of PtO species, which chemically couple slow and fast dynamics. In summary we were able to: (a) identify the competition between two reaction steps as responsible for the occurrence of two temperature domains; (b) compare the relative activation energies of these two steps; and (c) suggest the role of a given reaction step on the period-increasing set of reactions involved in the oscillatory dynamics. The introduced methodology could be applied to other systems to uncover the temperature dependence of complex chemical networks. PMID:27079514

  10. The effect of temperature on the coupled slow and fast dynamics of an electrochemical oscillator

    NASA Astrophysics Data System (ADS)

    Zülke, Alana A.; Varela, Hamilton

    2016-04-01

    The coupling among disparate time-scales is ubiquitous in many chemical and biological systems. We have recently investigated the effect of fast and, long-term, slow dynamics in surface processes underlying some electrocatalytic reactions. Herein we report on the effect of temperature on the coupled slow and fast dynamics of a model system, namely the electro-oxidation of formic acid on platinum studied at five temperatures between 5 and 45 °C. The main result was a turning point found at 25 °C, which clearly defines two regions for the temperature dependency on the overall kinetics. In addition, the long-term evolution allowed us to compare reaction steps related to fast and slow evolutions. Results were discussed in terms of the key role of PtO species, which chemically couple slow and fast dynamics. In summary we were able to: (a) identify the competition between two reaction steps as responsible for the occurrence of two temperature domains; (b) compare the relative activation energies of these two steps; and (c) suggest the role of a given reaction step on the period-increasing set of reactions involved in the oscillatory dynamics. The introduced methodology could be applied to other systems to uncover the temperature dependence of complex chemical networks.

  11. The effect of temperature on the coupled slow and fast dynamics of an electrochemical oscillator

    PubMed Central

    Zülke, Alana A.; Varela, Hamilton

    2016-01-01

    The coupling among disparate time-scales is ubiquitous in many chemical and biological systems. We have recently investigated the effect of fast and, long-term, slow dynamics in surface processes underlying some electrocatalytic reactions. Herein we report on the effect of temperature on the coupled slow and fast dynamics of a model system, namely the electro-oxidation of formic acid on platinum studied at five temperatures between 5 and 45 °C. The main result was a turning point found at 25 °C, which clearly defines two regions for the temperature dependency on the overall kinetics. In addition, the long-term evolution allowed us to compare reaction steps related to fast and slow evolutions. Results were discussed in terms of the key role of PtO species, which chemically couple slow and fast dynamics. In summary we were able to: (a) identify the competition between two reaction steps as responsible for the occurrence of two temperature domains; (b) compare the relative activation energies of these two steps; and (c) suggest the role of a given reaction step on the period-increasing set of reactions involved in the oscillatory dynamics. The introduced methodology could be applied to other systems to uncover the temperature dependence of complex chemical networks. PMID:27079514

  12. General purpose algorithms for characterization of slow and fast phase nystagmus

    NASA Technical Reports Server (NTRS)

    Lessard, Charles S.

    1987-01-01

    In the overall aim for a better understanding of the vestibular and optokinetic systems and their roles in space motion sickness, the eye movement responses to various dynamic stimuli are measured. The vestibulo-ocular reflex (VOR) and the optokinetic response, as the eye movement responses are known, consist of slow phase and fast phase nystagmus. The specific objective is to develop software programs necessary to characterize the vestibulo-ocular and optokinetic responses by distinguishing between the two phases of nystagmus. The overall program is to handle large volumes of highly variable data with minimum operator interaction. The programs include digital filters, differentiation, identification of fast phases, and reconstruction of the slow phase with a least squares fit such that sinusoidal or psuedorandom data may be processed with accurate results. The resultant waveform, slow phase velocity eye movements, serves as input data to the spectral analysis programs previously developed for NASA to analyze nystagmus responses to pseudorandom angular velocity inputs.

  13. Fast men slow more than fast women in a 10 kilometer road race

    PubMed Central

    Addona, Vittorio; Carter, Rickey E.; Joyner, Michael J.; Hunter, Sandra K.

    2016-01-01

    Background. Previous studies have demonstrated that men are more likely than women to slow in the marathon (footrace). This study investigated whether the sex difference in pacing occurs for a shorter race distance. Materials & Methods. Data were acquired from the Bolder Boulder 10 km road race for the years 2008–2013, which encompassed 191,693 performances. There were two pacing measures, percentage change in pace of the first 3 miles relative to the final 3.2 miles and percentage change in pace of the first mile relative to the final 5.2 miles. Pacing was analyzed as a continuous variable and as two categorical variables, as follows: “maintain the pace,” defined as slowing <5% and “marked slowing,” defined as slowing ≥10%. Results. Among the fastest (men < 48:40; women < 55:27) and second fastest (men < 53:54; women < 60:28) sex-specific finishing time sextiles, men slowed significantly more than women with both pacing measures, but there were no consistently significant sex differences in pacing among the slower four sextiles. For the fastest sextile, the odds for women were 1.96 (first pacing measure) and 1.36 (second measure) times greater than men to maintain the pace. For the fastest sextile, the odds for women were 0.46 (first measure) and 0.65 (second measure) times that of men to exhibit marked slowing. Multiple regression indicated that being older was associated with lesser slowing, but the sex difference among faster runners persisted when age was controlled. Conclusions. There was a sex difference in pacing during a 10 km race where glycogen depletion is not typically relevant. These results support the hypothesis that the sex difference in pacing partly reflects a sex difference in decision making. PMID:27547544

  14. Fast men slow more than fast women in a 10 kilometer road race.

    PubMed

    Deaner, Robert O; Addona, Vittorio; Carter, Rickey E; Joyner, Michael J; Hunter, Sandra K

    2016-01-01

    Background. Previous studies have demonstrated that men are more likely than women to slow in the marathon (footrace). This study investigated whether the sex difference in pacing occurs for a shorter race distance. Materials & Methods. Data were acquired from the Bolder Boulder 10 km road race for the years 2008-2013, which encompassed 191,693 performances. There were two pacing measures, percentage change in pace of the first 3 miles relative to the final 3.2 miles and percentage change in pace of the first mile relative to the final 5.2 miles. Pacing was analyzed as a continuous variable and as two categorical variables, as follows: "maintain the pace," defined as slowing <5% and "marked slowing," defined as slowing ≥10%. Results. Among the fastest (men < 48:40; women < 55:27) and second fastest (men < 53:54; women < 60:28) sex-specific finishing time sextiles, men slowed significantly more than women with both pacing measures, but there were no consistently significant sex differences in pacing among the slower four sextiles. For the fastest sextile, the odds for women were 1.96 (first pacing measure) and 1.36 (second measure) times greater than men to maintain the pace. For the fastest sextile, the odds for women were 0.46 (first measure) and 0.65 (second measure) times that of men to exhibit marked slowing. Multiple regression indicated that being older was associated with lesser slowing, but the sex difference among faster runners persisted when age was controlled. Conclusions. There was a sex difference in pacing during a 10 km race where glycogen depletion is not typically relevant. These results support the hypothesis that the sex difference in pacing partly reflects a sex difference in decision making. PMID:27547544

  15. Reduction of calcium release site models via fast/slow analysis and iterative aggregation/disaggregation.

    PubMed

    Hao, Yan; Kemper, Peter; Smith, Gregory D

    2009-09-01

    Mathematical models of calcium release sites derived from Markov chain models of intracellular calcium channels exhibit collective gating reminiscent of the experimentally observed phenomenon of calcium puffs and sparks. Such models often take the form of stochastic automata networks in which the transition probabilities of each channel depend on the local calcium concentration and thus the state of the other channels. In order to overcome the state-space explosion that occurs in such compositionally defined calcium release site models, we have implemented several automated procedures for model reduction using fast/slow analysis. After categorizing rate constants in the single channel model as either fast or slow, groups of states in the expanded release site model that are connected by fast transitions are lumped, and transition rates between reduced states are chosen consistent with the conditional probability distribution among states within each group. For small problems these conditional probability distributions can be numerically calculated from the full model without approximation. For large problems the conditional probability distributions can be approximated without the construction of the full model by assuming rapid mixing of states connected by fast transitions. Alternatively, iterative aggregation/disaggregation may be employed to obtain reduced calcium release site models in a memory-efficient fashion. Benchmarking of several different iterative aggregation/disaggregation-based fast/slow reduction schemes establishes the effectiveness of automated calcium release site reduction utilizing the Koury-McAllister-Stewart method. PMID:19792032

  16. On forward inferences of fast and slow readers. An eye movement study

    PubMed Central

    Hawelka, Stefan; Schuster, Sarah; Gagl, Benjamin; Hutzler, Florian

    2015-01-01

    Unimpaired readers process words incredibly fast and hence it was assumed that top-down processing, such as predicting upcoming words, would be too slow to play an appreciable role in reading. This runs counter the major postulate of the predictive coding framework that our brain continually predicts probable upcoming sensory events. This means, it may generate predictions about the probable upcoming word during reading (dubbed forward inferences). Trying to asses these contradictory assumptions, we evaluated the effect of the predictability of words in sentences on eye movement control during silent reading. Participants were a group of fluent (i.e., fast) and a group of speed-impaired (i.e., slow) readers. The findings indicate that fast readers generate forward inferences, whereas speed-impaired readers do so to a reduced extent - indicating a significant role of predictive coding for fluent reading. PMID:25678030

  17. Required coefficient of friction during turning at self-selected slow, normal, and fast walking speeds

    PubMed Central

    Fino, Peter; Lockhart, Thurmon

    2014-01-01

    This study investigated the relationship of required coefficient of friction to gait speed, obstacle height, and turning strategy as participants walked around obstacles of various heights. Ten healthy, young adults performed 90° turns around corner pylons of four different heights at their self selected normal, slow, and fast walking speeds using both step and spin turning strategies. Kinetic data was captured using force plates. Results showed peak required coefficient of friction (RCOF) at push off increased with increased speed (slow µ= 0.38, normal µ=0.45, fast µ=0.54). Obstacle height had no effect on RCOF values. The average peak RCOF for fast turning exceeded the OSHA safety guideline for static COF of µ>0.50, suggesting further research is needed into the minimum static COF to prevent slips and falls, especially around corners. PMID:24581815

  18. Solar Energetic Particle Production by Shocks in Fast and Slow Solar Wind Structures

    NASA Astrophysics Data System (ADS)

    Kahler, S. W.; Reames, D. V.; Sheeley, N. R., Jr.

    2002-05-01

    Gradual solar energetic particle (SEP) events at 1 AU are produced by coronal and interplanetary shocks driven by coronal mass ejections (CMEs). Shocks from fast (V > 900 km/s) CMEs should be produced more easily in slow solar wind regions where the flow and fast-mode MHD wave speeds are low and less easily in fast solar wind regions where those speeds are high. We might therefore expect to observe more intense SEP events at 1 AU when the Earth lies in a slow wind region than when it lies in a fast wind region. While stream-stream interactions wash out the slow-fast stream boundaries in the solar wind speed profiles at 1 AU, the O+7/O+6 signatures of the streams are unchanged at 1 AU. We use the 20 MeV proton intensities from the EPACT instrument on Wind, the associated CMEs observed with the Lasco coronagraph on SOHO, and the ACE SWICS/SWIMS solar wind values of O+7/O+6 to look for variations of peak SEP intensities as a function of O+7/O+6. We find no significant dependence of the SEP intensities on O+7/O+6 for either poorly connected or well connected CME source regions or for different CME speed ranges. While a broad range of angular widths are associated with fast (V > 900 km/s) CMEs, we find that no fast CMEs with widths < 60 degrees are associated with SEP events. On the other hand, nearly all fast halo CMEs are associated with SEP events. Thus the CME widths are more important in SEP production than previously thought, but the solar wind source regions in which SEPs are produced are not a significant factor.

  19. Calculation of coupling to slow and fast waves in the LHRF from phased waveguide arrays

    SciTech Connect

    Pinsker, R.I.; Duvall, R.E.; Fortgang, C.M.; Colestock, P.L.

    1986-04-01

    A previously reported algorithm for solving the problem of coupling electromagnetic energy in the LHRF from a phased array of identical rectangular waveguides to a plane-stratified, magnetized cold plasma is numerically implemented. The resulting computer codes are sufficiently general to allow for an arbitrary number of waveguides with finite dimensions in both poloidal and toroidal directions, and are thus capable of computing coupling to both slow and fast waves in the plasma. Some of the details of the implementation and the extension of the algorithm to allow study of the Fourier spectrum of slow and fast waves launched by the array are discussed. Good agreement is found with previously reported, less general work for the slow wave launching case. The effect of phasing multirow arrays in the poloidal direction is studied, and an asymmetry between phasing 'up' and 'down' is found that persists in the case where the plasma adjacent to the array is uniform. A 4 x 3 array designed to launch fast waves of high phase velocity is studied. By using the optimal poloidal phasing, low reflection coefficients (absolute value of R/sup 2/ less than or equal to 20%) are found under some not unrealistic edge plasma conditions, but most of the input power is trapped in the outermost layer of the plasma. Implications of our results for fast wave current drive experiments are discussed.

  20. On the existence of 'fast' and 'slow' directionally sensitive motion detector neurons in insects.

    PubMed

    Horridge, G A; Marcelja, L

    1992-04-22

    In a fly, butterfly, locust and dragonfly we examined the responses of a variety of directional motion-sensitive neurons which run from the brain down the ventral cord. The stimulus was a sinusoidally modulated moving pattern of regular stripes presented at a range of velocities in random order for either 0.1 s or 2.0 s. The response was measured as the total number of spikes to each stimulus. The neurons fall into two groups, 'fast' and 'slow'. The responses of the fast type rise progressively to a peak contrast frequency at 15-20 Hz for all four insects, and decline at higher contrast frequencies. The responses of slow neurons rise rapidly to a peak at 1-10 Hz and then decline more slowly across the range where the fast neurons are at their peak. The existence of two groups of neurons with overlapping response ranges to different velocities of the same pattern, presented in exactly the same way, provides the insect with a means of measuring angular velocity irrespective of contrast, spatial frequency or intensity. As an input mechanism it is proposed that there are two types of unit motion detector, fast and slow, the latter being the main input to the optomotor system. It is also argued that even these inputs are not sufficient to provide a mechanism for the whole repertoire of normal insect vision. PMID:1355911

  1. Not so fast: hippocampal amnesia slows word learning despite successful fast mapping.

    PubMed

    Warren, David E; Duff, Melissa C

    2014-08-01

    The human hippocampus is widely believed to be necessary for the rapid acquisition of new declarative relational memories. However, processes supporting on-line inferential word use ("fast mapping") may also exercise a dissociable learning mechanism and permit rapid word learning without the hippocampus (Sharon et al. (2011) Proc Natl Acad Sci USA 108:1146-1151). We investigated fast mapping in severely amnesic patients with hippocampal damage (N = 4), mildly amnesic patients (N = 6), and healthy comparison participants (N = 10) using on-line measures (eye movements) that reflected ongoing processing. All participants studied unique word-picture associations in two encoding conditions. In the explicit-encoding condition, uncommon items were paired with their names (e.g., "This is a numbat."). In the fast mapping study condition, participants heard an instruction using a novel word (e.g., "Click on the numbat.") while two items were presented (an uncommon target such as a numbat, and a common distracter such as a dog). All groups performed fast mapping well at study, and on-line eye movement measures did not reveal group differences. However, while comparison participants showed robust word learning irrespective of encoding condition, severely amnesic patients showed no evidence of learning after fast mapping or explicit encoding on any behavioral or eye-movement measure. Mildly amnesic patients showed some learning, but performance was unaffected by encoding condition. The findings are consistent with the following propositions: the hippocampus is not essential for on-line fast mapping of novel words; but is necessary for the rapid learning of arbitrary relational information irrespective of encoding conditions. PMID:24719218

  2. Effect of disuse on sarcoplasmic reticulum in fast and slow skeletal muscle

    NASA Technical Reports Server (NTRS)

    Kim, D. H.; Witzmann, F. A.; Fitts, R. H.

    1982-01-01

    The effect of 6 weeks of hindlimb immobilization on rat skeletal muscle sarcoplasmic reticulum (SR) was determined in the slow-twitch, type 1 soleus (SOL), the fast-twitch, type 2A deep region of the vastus lateralis (DVL), and the fast-twitch, type 2B superficial region of the vastus lateralis (SVL). Immobilization produced a significant decline in the Ca(2+) uptake rate (V sub max) of SR vesicles from the slow SOL, while the SR V sub max increased in the fast SVL and was unaltered in the DVL. Vesicles from the fast SVL and DVL also exhibited a higher total Ca(2+) uptake capacity following immobilization. An evaluation of the time course of the immobilization-mediated effect revealed an increased Ca(2+) uptake capacity in all three samples after 1 wk. In the SOL total Ca(2+) uptake returned to control level after 2 wk, while in the fast-twitch muscles the higher capacities were maintained. The Ca(2+)-stimulated SR ATPase activity was not altered in any of the muscle studies.

  3. Crossover between fast and slow excitation of magnetization by spin torque

    NASA Astrophysics Data System (ADS)

    Taniguchi, Tomohiro

    2016-07-01

    A crossover between two mechanisms destabilizing the magnetization in equilibrium by the spin transfer effect is found in a ferromagnetic multilayer consisting of an in-plane magnetized free layer and a perpendicularly magnetized pinned layer, where an in-plane magnetic field is applied, and electric current flows from the pinned to the free layer. A fast transition from the in-plane to the out-of-plane state occurs in the low-field region, whereas a slow transition with small-amplitude oscillation becomes dominant in the high-field region. On the other hand, only the fast transition mechanism appears for the opposite current direction.

  4. On the global structure of normal forms for slow-fast Hamiltonian systems

    NASA Astrophysics Data System (ADS)

    Avendaño Camacho, M.; Vorobiev, Yu.

    2013-04-01

    In the framework of Lie transforms and the global method of averaging, the normal forms of a multidimensional slow-fast Hamiltonian system are studied in the case when the flow of the unperturbed (fast) system is periodic and the induced {S}^1 1-action is not necessarily free and trivial. An intrinsic splitting of the second term in a {S}^1 1-invariant normal form of first order is derived in terms of the Hannay-Berry connection assigned to the periodic flow.

  5. Fast and slow magnetosonic waves in two-dimensional spin-1/2 quantum plasma

    SciTech Connect

    Mushtaq, A.; Vladimirov, S. V.

    2010-10-15

    Using the spin-1/2 resistive quantum magnetohydrodynamics model, linear and nonlinear relations for slow and fast magnetosonic modes are derived. Spin effects are incorporated via spin force and macroscopic spin magnetization current. The plasma resistivity is shown to play a role of dissipation in the system. With the aid of tanh method the traveling wave solution of Kadomstev-Petviashvili-Burgers is obtained. The solution shows a general shock wave profile superposed by a perturbative solitary-wave contribution. The dynamics of fast and slow magnetosonic shock and soliton, respectively, in the presence and absence of dissipation is investigated with respect to electron spin magnetization, quantum diffraction, and plasma statistic. It is found that results obtained from the spin quantum plasmas differ significantly from the nonspin quantum plasmas. The relevance of the present work to dense astrophysical plasmas such as pulsar magnetosphere is pointed out.

  6. Quantitative analysis of RNA produced by slow and fast alleles of Adh in Drosophila melanogaster.

    PubMed Central

    Laurie, C C; Stam, L F

    1988-01-01

    The alcohol dehydrogenase (ADH) locus (Adh) of Drosophila melanogaster in polymorphic on a world-wide basis for two allozymes, Fast and Slow. This study was undertaken to determine whether the well-established difference in ADH protein concentration between the allozymes is due to a difference in mRNA levels. RNA gel blot hybridization and an RNase protection assay were used to quantify ADH mRNA levels. Each method used an Adh null mutant as an internal standard. Several Slow and Fast allele pairs of different geographic origins were analyzed. The results provide strong evidence that the ADH protein concentration difference is not accounted for by RNA level. Images PMID:2455893

  7. Coordinated Action of Fast and Slow Reserves for Optimal Sequential and Dynamic Emergency Reserve Activation

    NASA Astrophysics Data System (ADS)

    Salkuti, Surender Reddy; Bijwe, P. R.; Abhyankar, A. R.

    2016-04-01

    This paper proposes an optimal dynamic reserve activation plan after the occurrence of an emergency situation (generator/transmission line outage, load increase or both). An optimal plan is developed to handle the emergency situation, using coordinated action of fast and slow reserves, for secure operation with minimum overall cost. This paper considers the reserves supplied by generators (spinning reserves) and loads (demand-side reserves). The optimal backing down of costly/fast reserves and bringing up of slow reserves in each sub-interval in an integrated manner is proposed. The simulation studies are performed on IEEE 30, 57 and 300 bus test systems to demonstrate the advantage of proposed integrated/dynamic reserve activation plan over the conventional/sequential approach.

  8. Fast and slow precipitation responses to individual climate forcers: A PDRMIP multimodel study

    NASA Astrophysics Data System (ADS)

    Samset, B. H.; Myhre, G.; Forster, P. M.; Hodnebrog, Ø.; Andrews, T.; Faluvegi, G.; Fläschner, D.; Kasoar, M.; Kharin, V.; Kirkevâg, A.; Lamarque, J.-F.; Olivié, D.; Richardson, T.; Shindell, D.; Shine, K. P.; Takemura, T.; Voulgarakis, A.

    2016-03-01

    Precipitation is expected to respond differently to various drivers of anthropogenic climate change. We present the first results from the Precipitation Driver and Response Model Intercomparison Project (PDRMIP), where nine global climate models have perturbed CO2, CH4, black carbon, sulfate, and solar insolation. We divide the resulting changes to global mean and regional precipitation into fast responses that scale with changes in atmospheric absorption and slow responses scaling with surface temperature change. While the overall features are broadly similar between models, we find significant regional intermodel variability, especially over land. Black carbon stands out as a component that may cause significant model diversity in predicted precipitation change. Processes linked to atmospheric absorption are less consistently modeled than those linked to top-of-atmosphere radiative forcing. We identify a number of land regions where the model ensemble consistently predicts that fast precipitation responses to climate perturbations dominate over the slow, temperature-driven responses.

  9. Coupling of Fast and Slow Modes in the Reaction Pathway of the Minimal Hammerhead Ribozyme Cleavage

    PubMed Central

    Radhakrishnan, Ravi

    2007-01-01

    By employing classical molecular dynamics, correlation analysis of coupling between slow and fast dynamical modes, and free energy (umbrella) sampling using classical as well as mixed quantum mechanics molecular mechanics force fields, we uncover a possible pathway for phosphoryl transfer in the self-cleaving reaction of the minimal hammerhead ribozyme. The significance of this pathway is that it initiates from the minimal hammerhead crystal structure and describes the reaction landscape as a conformational rearrangement followed by a covalent transformation. The delineated mechanism is catalyzed by two metal (Mg2+) ions, proceeds via an in-line-attack by CYT 17 O2′ on the scissile phosphorous (ADE 1.1 P), and is therefore consistent with the experimentally observed inversion configuration. According to the delineated mechanism, the coupling between slow modes involving the hammerhead backbone with fast modes in the cleavage site appears to be crucial for setting up the in-line nucleophilic attack. PMID:17545240

  10. Fast and Slow Precipitation Responses to Individual Climate Forcers: A PDRMIP Multimodel Study

    NASA Technical Reports Server (NTRS)

    Samset, B. H.; Myhre, G.; Forster, P.M.; Hodnebrog, O.; Andrews, T.; Faluvegi, G.; Flaschner, D.; Kasoar, M.; Kharin, V.; Kirkevag, A.; Shindell, D.; Voulgarakis, A.

    2016-01-01

    Precipitation is expected to respond differently to various drivers of anthropogenic climate change. We present the first results from the Precipitation Driver and Response Model Intercomparison Project (PDRMIP), where nine global climate models have perturbed CO2, CH4, black carbon, sulfate, and solar insolation. We divide the resulting changes to global mean and regional precipitation into fast responses that scale with changes in atmospheric absorption and slow responses scaling with surface temperature change. While the overall features are broadly similar between models, we find significant regional intermodel variability, especially over land. Black carbon stands out as a component that may cause significant model diversity in predicted precipitation change. Processes linked to atmospheric absorption are less consistently modeled than those linked to top-of-atmosphere radiative forcing. We identify a number of land regions where the model ensemble consistently predicts that fast precipitation responses to climate perturbations dominate over the slow, temperature-driven responses.

  11. Fast and slow flexural waves in a deviated borehole in homogeneous and layered anisotropic formations

    NASA Astrophysics Data System (ADS)

    He, Xiao; Hu, Hengshan; Guan, Wei

    2010-04-01

    Dipole acoustic fields in an arbitrarily deviated well penetrating a homogeneous as well as a stratified transversely isotropic formation are simulated using a 3-D finite-difference time-domain algorithm in cylindrical coordinates. The modelling results show that a dipole source can excite a fast- and a slow-flexural mode due to the shear wave anisotropy when the borehole is inclined with respect to the symmetry axis of transverse isotropy. Both flexural slownesses change with the wellbore deviation angle. The splitting of flexural modes is prominent in full wave arrays when the shear anisotropy is strong enough. It is revealed that the dipole orientation influences the relative amplitudes of the fast- and slow-flexural waves but it has no effect on their slownesses or phases. In a vertical well parallel to the symmetry axis, the two flexural waves degenerate and propagate at the same speed. The degenerated flexural wave travels approximately at the shear speed along the borehole wall except in a few formations. Our study shows, for example, that it is about 10 per cent slower than the shear wave in Mesaverde clayshale 5501. Even in that kind of formations, however, extraction of the fast- and slow-shear velocities from the flexural modes is still possible if the borehole deviation is large enough. To examine the effect of layering, we modelled the full waves in a formation with a sandwich. When the well is perpendicular to the layer interfaces, reflection is obvious and can be recognized. It becomes weaker or even invisible as the deviation angle increases, so it is difficult to detect a thin layer embedded in a formation directly from reflected waves. The sandwich can, instead, be recognized from the irregularity in the spectra of the full waveforms displayed versus depth. [Correction added after online publication 25th February 2009; the original spelling of `homogenous' in the title has been corrected to `homogeneous'.[

  12. Endothermic force generation in fast and slow mammalian (rabbit) muscle fibers.

    PubMed

    Ranatunga, K W

    1996-10-01

    Isometric tension responses to rapid temperature jumps (T-jumps) of 3-7 degrees C were examined in single skinned fibers isolated from rabbit psoas (fast) and soleus (slow) muscles. T-jumps were induced by an infrared laser pulse (wavelength 1.32 microns, pulse duration 0.2 ms) obtained from a Nd-YAG laser, which heated the fiber and bathing buffer solution in a 50-microliter trough. After a T-jump, the temperature near the fiber remained constant for approximately 0.5 s, and the temperature could be clamped for longer periods by means of Peltier units assembled on the back trough wall. A T-jump produced a step decrease in tension in both fast and slow muscle fibers in rigor, indicating thermal expansion. In maximally Ca-activated (pCa approximately 4) fibers, the increase of steady tension with heating (3-35 degrees C) was approximately sigmoidal, and a T-jump at any temperature induced a more complex tension transient than in rigor fibers. An initial (small amplitude) step decrease in tension followed by a rapid recovery (tau(1); see Davis and Harrington, 1993) was seen in some records from both fiber types, which presumably was an indirect consequence of thermal expansion. The net rise in tension after a T-jump was biexponential, and its time course was characteristically different in the two fibers. At approximately 12 degrees C the reciprocal time constants for the two exponential components (tau(2) and tau(3), respectively, were approximately 70.s(-1) and approximately 15.s(-1) in fast fibers and approximately 20.s(-1) and approximately 3.s(-1) in slow fibers. In both fibers, tau(2) ("endothermic force regeneration") became faster with an increase in temperature. Furthermore, tau(3) was temperature sensitive in slow fibers but not in fast fibers. The results are compared and contrasted with previous findings from T-jump experiments on fast fibers. It is observed that the fast/slow fiber difference in the rate of endothermic force generation (three- to

  13. Functional properties of slow and fast gastrocnemius muscle fibers after a 17-day spaceflight

    NASA Technical Reports Server (NTRS)

    Widrick, J. J.; Romatowski, J. G.; Norenberg, K. M.; Knuth, S. T.; Bain, J. L.; Riley, D. A.; Trappe, S. W.; Trappe, T. A.; Costill, D. L.; Fitts, R. H.

    2001-01-01

    The purpose of this investigation was to study the effects of a 17-day spaceflight on the contractile properties of individual fast- and slow-twitch fibers isolated from biopsies of the fast-twitch gastrocnemius muscle of four male astronauts. Single chemically skinned fibers were studied during maximal Ca2+-activated contractions with fiber myosin heavy chain (MHC) isoform expression subsequently determined by SDS gel electrophoresis. Spaceflight had no significant effect on the mean diameter or specific force of single fibers expressing type I, IIa, or IIa/IIx MHC, although a small reduction in average absolute force (P(o)) was observed for the type I fibers (0.68 +/- 0.02 vs. 0.64 +/- 0.02 mN, P < 0.05). Subject-by-flight interactions indicated significant intersubject variation in response to the flight, as postflight fiber diameter and P(o) where significantly reduced for the type I and IIa fibers obtained from one astronaut and for the type IIa fibers from another astronaut. Average unloaded shortening velocity [V(o), in fiber lengths (FL)/s] was greater after the flight for both type I (0.60 +/- 0.03 vs. 0.76 +/- 0.02 FL/s) and IIa fibers (2.33 +/- 0.25 vs. 3.10 +/- 0.16 FL/s). Postflight peak power of the type I and IIa fibers was significantly reduced only for the astronaut experiencing the greatest fiber atrophy and loss of P(o). These results demonstrate that 1) slow and fast gastrocnemius fibers show little atrophy and loss of P(o) but increased V(o) after a typical 17-day spaceflight, 2) there is, however, considerable intersubject variation in these responses, possibly due to intersubject differences in in-flight physical activity, and 3) in these four astronauts, fiber atrophy and reductions in P(o) were less for slow and fast fibers obtained from the phasic fast-twitch gastrocnemius muscle compared with slow and fast fibers obtained from the slow antigravity soleus [J. J. Widrick, S. K. Knuth, K. M. Norenberg, J. G. Romatowski, J. L. W. Bain, D. A

  14. LSP simulations of fast ions slowing down in cool magnetized plasma

    NASA Astrophysics Data System (ADS)

    Evans, Eugene S.; Cohen, Samuel A.

    2015-11-01

    In MFE devices, rapid transport of fusion products, e.g., tritons and alpha particles, from the plasma core into the scrape-off layer (SOL) could perform the dual roles of energy and ash removal. Through these two processes in the SOL, the fast particle slowing-down time will have a major effect on the energy balance of a fusion reactor and its neutron emissions, topics of great importance. In small field-reversed configuration (FRC) devices, the first-orbit trajectories of most fusion products will traverse the SOL, potentially allowing those particles to deposit their energy in the SOL and eventually be exhausted along the open field lines. However, the dynamics of the fast-ion energy loss processes under conditions expected in the FRC SOL, where the Debye length is greater than the electron gyroradius, are not fully understood. What modifications to the classical slowing down rate are necessary? Will instabilities accelerate the energy loss? We use LSP, a 3D PIC code, to examine the effects of SOL plasma parameters (density, temperature and background magnetic field strength) on the slowing down time of fast ions in a cool plasma with parameters similar to those expected in the SOL of small FRC reactors. This work supported by DOE contract DE-AC02-09CH11466.

  15. Fast and Slow Responses of the South Asian Monsoon System to Anthropogenic Aerosols

    SciTech Connect

    Ganguly, Dilip; Rasch, Philip J.; Wang, Hailong; Yoon, Jin-Ho

    2012-09-25

    Using a global climate model with fully predictive aerosol life cycle, we investigate the fast and slow responses of the South Asian monsoon system to anthropogenic aerosol forcing. Our results show that the feedbacks associated with sea surface temperature (SST) change caused by aerosols play a more important role than the aerosol's direct impact on radiation, clouds and land surface (rapid adjustments) in shaping the total equilibrium climate response of the monsoon system to aerosol forcing. Inhomogeneous SST cooling caused by anthropogenic aerosols eventually reduces the meridional tropospheric temperature gradient and the easterly shear of zonal winds over the region, slowing down the local Hadley cell circulation, decreasing the northward moisture transport, and causing a reduction in precipitation over South Asia. Although total responses in precipitation are closer to the slow responses in general, the fast component dominates over land areas north of 25°N. Our results also show an east-west asymmetry in the fast responses to anthropogenic aerosols causing increases in precipitation west of 80°E but decreases east of it.

  16. Intermittency and Multifractal behavior in the Slow and Fast Solar Wind Beyond the Ecliptic Plane

    NASA Astrophysics Data System (ADS)

    Wawrzaszek, Anna; Echim, Marius; Macek, Wiesław M.; Bruno, Roberto

    2016-04-01

    In this work we study the evolution of intermittency in the solar wind magnetic turbulence at heliocentric distances between 1.5 and 5.4 AU and at heliolatitudes between -80 and 70o. We use the a multifractal analysis based on the partition function formalism. More precisely, we consider magnetic field intensity for the solar wind data from Ulysses spacecraft measured during two solar minima (1997-1998, 2007-2008) and one solar maximum (1999-2001). By modeling multifractal spectrum we reveal intermittent character of turbulence in the small-scale fluctuations of the magnetic field embedded in the slow and fast solar wind. Generally, at small distances from the Sun both in the slow and fast solar wind we observe the high degree of multifractality (intermittency) which decreases somewhat slowly with distance and slowly with latitude. The results seem to suggest that generally intermittency in the solar wind has solar origin. However, the fast and slow streams, shocks and other nonlinear interaction can only be considered as the drivers of the intermittent turbulence. It seems that analysis shows that turbulence beyond the ecliptic plane evolves too slowly to maintain the intermittency with the distance and latitude. Moreover, we confirm the lower level of multifractality and intermittency than in the ecliptic, as well as the existence of symmetry with respect to the ecliptic plane, suggesting similar turbulent properties observed in the two hemispheres. Research supported by the European Community's Seventh Framework Programme

  17. Evolution of Intermittency in the Slow and Fast Solar Wind beyond the Ecliptic Plane

    NASA Astrophysics Data System (ADS)

    Wawrzaszek, A.; Echim, M.; Macek, W. M.; Bruno, R.

    2015-12-01

    We study intermittency as a departure from self-similarity of the solar wind magnetic turbulence and investigate the evolution with the heliocentric distance and latitude. We use data from the Ulysses spacecraft measured during two solar minima (1997–1998 and 2007–2008) and one solar maximum (1999–2001). In particular, by modeling a multifractal spectrum, we revealed the intermittent character of turbulence in the small-scale fluctuations of the magnetic field embedded in the slow and fast solar wind. Generally, at small distances from the Sun, in both the slow and fast solar wind, we observe the high degree of multifractality (intermittency) that decreases somewhat slowly with distance and slowly with latitude. The obtained results seem to suggest that generally intermittency in the solar wind has a solar origin. However, the fast and slow streams, shocks, and other nonlinear interactions can only be considered as the drivers of the intermittent turbulence. It seems that analysis shows that turbulence beyond the ecliptic plane evolves too slowly to maintain the intermittency with the distance and latitude. Moreover, we confirm that the multifractality and intermittency are at a lower level than in the ecliptic, as well as the existence of symmetry with respect to the ecliptic plane, suggesting that there are similar turbulent properties observed in the two hemispheres.

  18. Fast and slow activation kinetics of voltage-gated sodium channels in molluscan neurons.

    PubMed

    Gilly, W F; Gillette, R; McFarlane, M

    1997-05-01

    Whole cell patch-clamp recordings of Na current (I(Na)) were made under identical experimental conditions from isolated neurons from cephalopod (Loligo, Octopus) and gastropod (Aplysia, Pleurobranchaea, Doriopsilla) species to compare properties of activation gating. Voltage dependence of peak Na conductance (gNa) is very similar in all cases, but activation kinetics in the gastropod neurons studied are markedly slower. Kinetic differences are very pronounced only over the voltage range spanned by the gNa-voltage relation. At positive and negative extremes of voltage, activation and deactivation kinetics of I(Na) are practically indistinguishable in all species studied. Voltage-dependent rate constants underlying activation of the slow type of Na channel found in gastropods thus appear to be much more voltage dependent than are the equivalent rates in the universally fast type of channel that predominates in cephalopods. Voltage dependence of inactivation kinetics shows a similar pattern and is representative of activation kinetics for the two types of Na channels. Neurons with fast Na channels can thus make much more rapid adjustments in the number of open Na channels at physiologically relevant voltages than would be possible with only slow Na channels. This capability appears to be an adaptation that is highly evolved in cephalopods, which are well known for their high-speed swimming behaviors. Similarities in slow and fast Na channel subtypes in molluscan and mammalian neurons are discussed. PMID:9163364

  19. REM sleep behaviour disorder is associated with lower fast and higher slow sleep spindle densities.

    PubMed

    O'Reilly, Christian; Godin, Isabelle; Montplaisir, Jacques; Nielsen, Tore

    2015-12-01

    To investigate differences in sleep spindle properties and scalp topography between patients with rapid eye movement sleep behaviour disorder (RBD) and healthy controls, whole-night polysomnograms of 35 patients diagnosed with RBD and 35 healthy control subjects matched for age and sex were compared. Recordings included a 19-lead 10-20 electroencephalogram montage and standard electromyogram, electrooculogram, electrocardiogram and respiratory leads. Sleep spindles were automatically detected using a standard algorithm, and their characteristics (amplitude, duration, density, frequency and frequency slope) compared between groups. Topological analyses of group-discriminative features were conducted. Sleep spindles occurred at a significantly (e.g. t34 = -4.49; P = 0.00008 for C3) lower density (spindles ∙ min(-1) ) for RBD (mean ± SD: 1.61 ± 0.56 for C3) than for control (2.19 ± 0.61 for C3) participants. However, when distinguishing slow and fast spindles using thresholds individually adapted to the electroencephalogram spectrum of each participant, densities smaller (31-96%) for fast but larger (20-120%) for slow spindles were observed in RBD in all derivations. Maximal differences were in more posterior regions for slow spindles, but over the entire scalp for fast spindles. Results suggest that the density of sleep spindles is altered in patients with RBD and should therefore be investigated as a potential marker of future neurodegeneration in these patients. PMID:26041532

  20. Separate activation of fast and slow inhibitory postsynaptic potentials in rat neocortex in vitro.

    PubMed Central

    Benardo, L S

    1994-01-01

    Synaptic inhibition was investigated by stimulating inhibitory neurones with focal microapplications of glutamate, while recording from layer V pyramidal neurones of rat somatosensory cortical slices. One class of inhibitory postsynaptic potentials (IPSPs) thus elicited was characterized as a fast, chloride-mediated, GABAA IPSP in part by its fast time-to-peak (mean 2.5 ms) and brief duration, but primarily on the basis of its reversal potential at -68 mV, and its blockade by picrotoxin. The average peak amplitude for these fast IPSPs was -1.5 mV, measured at -60 mV. The peak conductance calculated for these events was about 10 nS. The conductance change associated with the maximal fast inhibitory postsynaptic potential resulting from electrical stimulation of afferent pathways ranged up to 116 nS. A second class of IPSP was encountered much less frequently. These glutamate-triggered events were characterized as slow, potassium-mediated GABAB IPSPs partly because of their longer times-to-peak (mean, 45 ms) and duration, but especially because of their extrapolated equilibrium potential at about -89 mV and blockade by 2-hydroxysaclofen. The average peak amplitude for these slow IPSPs was -2.3 mV, measured at -60 mV. The peak conductance for these events was about 8 nS. IPSPs resulting from the excitation of individual inhibitory interneurones were elicited by glutamate microapplication at particular locations relative to recording sites. Both fast and slow IPSPs were generated, but these occurred as separate events, and mixed responses were never seen. Thus, the two mechanistically distinct types of IPSPs which result from GABA interaction at GABAA and GABAB receptors on neocortical neurones may be mediated by separate classes of inhibitory neurones. PMID:7913968

  1. SBS slow light using a novel optical fiber doped with nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Lang, Peilin; Zhang, Ru

    2008-11-01

    As the key of these all optical techniques which would be widely used in the future optical fiber communication, the stimulated Brillouin scattering (SBS) slow light draws a great of attention and shows several advantages over other slow light methods. With recent growth of nano-technology, researchers are hoping to improve the nonlinearity of the optical fiber by using the nano-technology. According to this current situation, a numerical model of the SBS slow light and three typical experiments are discussed. A novel optical fiber doped with nano material as InP is manufactured and introduced into the SBS slow light, serving as the nonlinear medium of SBS process. And the numerical simulations are performed to validate our method. The results show a considerable time delay of the optical light can be achieved through this novel optical fiber.

  2. REVIEW ARTICLE: Dispersion engineered slow light in photonic crystals: a comparison

    NASA Astrophysics Data System (ADS)

    Schulz, S. A.; O'Faolain, L.; Beggs, D. M.; White, T. P.; Melloni, A.; Krauss, T. F.

    2010-10-01

    We review the different types of dispersion engineered photonic crystal waveguides that have been developed for slow light applications. We introduce the group index bandwidth product (GBP) and the loss per delay in terms of dB ns - 1 as two key figures of merit to describe such structures and compare the different experimental realizations based on these figures. A key outcome of the comparison is that slow light based on photonic crystals performs as well or better than slow light based on coupled ring resonators.

  3. Cytoplasm-to-myonucleus ratios and succinate dehydrogenase activities in adult rat slow and fast muscle fibers

    NASA Technical Reports Server (NTRS)

    Tseng, B. S.; Kasper, C. E.; Edgerton, V. R.

    1994-01-01

    The relationship between myonuclear number, cellular size, succinate dehydrogenase activity, and myosin type was examined in single fiber segments (n = 54; 9 +/- 3 mm long) mechanically dissected from soleus and plantaris muscles of adult rats. One end of each fiber segment was stained for DNA before quantitative photometric analysis of succinate dehydrogenase activity; the other end was double immunolabeled with fast and slow myosin heavy chain monoclonal antibodies. Mean +/- S.D. cytoplasmic volume/myonucleus ratio was higher in fast and slow plantaris fibers (112 +/- 69 vs. 34 +/- 21 x 10(3) microns3) than fast and slow soleus fibers (40 +/- 20 vs. 30 +/- 14 x 10(3) microns3), respectively. Slow fibers always had small volumes/myonucleus, regardless of fiber diameter, succinate dehydrogenase activity, or muscle of origin. In contrast, smaller diameter (< 70 microns) fast soleus and plantaris fibers with high succinate dehydrogenase activity appeared to have low volumes/myonucleus while larger diameter (> 70 microns) fast fibers with low succinate dehydrogenase activity always had large volume/myonucleus. Slow soleus fibers had significantly greater numbers of myonuclei/mm than did either fast soleus or fast plantaris fibers (116 +/- 51 vs. 55 +/- 22 and 44 +/- 23), respectively. These data suggest that the myonuclear domain is more limited in slow than fast fibers and in the fibers with a high, compared to a low, oxidative metabolic capability.

  4. Fast or Slow? Compressions (or Not) in Number-to-Line Mappings

    PubMed Central

    Candia, Victor; Deprez, Paola; Wernery, Jannis; Núñez, Rafael

    2015-01-01

    We investigated, in a university student population, spontaneous (non-speeded) fast and slow number-to-line mapping responses using non-symbolic (dots) and symbolic (words) stimuli. Seeking for less conventionalized responses, we used anchors 0–130, rather than the standard 0–100. Slow responses to both types of stimuli only produced linear mappings with no evidence of non-linear compression. In contrast, fast responses revealed distinct patterns of non-linear compression for dots and words. A predicted logarithmic compression was observed in fast responses to dots in the 0–130 range, but not in the reduced 0–100 range, indicating compression in proximity of the upper anchor 130, not the standard 100. Moreover, fast responses to words revealed an unexpected significant negative compression in the reduced 0–100 range, but not in the 0–130 range, indicating compression in proximity to the lower anchor 0. Results show that fast responses help revealing the fundamentally distinct nature of symbolic and non-symbolic quantity representation. Whole number words, being intrinsically mediated by cultural phenomena such as language and education, emphasize the invariance of magnitude between them—essential for linear mappings, and therefore, unlike non-symbolic (psychophysical) stimuli, yield spatial mappings that don’t seem to be influenced by the Weber-Fechner law of psychophysics. However, high levels of education (when combined with an absence of standard upper anchors) may lead fast responses to overestimate magnitude invariance on the lower end of word numerals. PMID:25816010

  5. Fast or slow? Compressions (or not) in number-to-line mappings.

    PubMed

    Candia, Victor; Deprez, Paola; Wernery, Jannis; Núñez, Rafael

    2015-01-01

    We investigated, in a university student population, spontaneous (non-speeded) fast and slow number-to-line mapping responses using non-symbolic (dots) and symbolic (words) stimuli. Seeking for less conventionalized responses, we used anchors 0-130, rather than the standard 0-100. Slow responses to both types of stimuli only produced linear mappings with no evidence of non-linear compression. In contrast, fast responses revealed distinct patterns of non-linear compression for dots and words. A predicted logarithmic compression was observed in fast responses to dots in the 0-130 range, but not in the reduced 0-100 range, indicating compression in proximity of the upper anchor 130, not the standard 100. Moreover, fast responses to words revealed an unexpected significant negative compression in the reduced 0-100 range, but not in the 0-130 range, indicating compression in proximity to the lower anchor 0. Results show that fast responses help revealing the fundamentally distinct nature of symbolic and non-symbolic quantity representation. Whole number words, being intrinsically mediated by cultural phenomena such as language and education, emphasize the invariance of magnitude between them—essential for linear mappings, and therefore, unlike non-symbolic (psychophysical) stimuli, yield spatial mappings that don't seem to be influenced by the Weber-Fechner law of psychophysics. However, high levels of education (when combined with an absence of standard upper anchors) may lead fast responses to overestimate magnitude invariance on the lower end of word numerals. PMID:25816010

  6. Superluminal and Ultra-Slow Light Propagation in Room-Temperature Solids

    NASA Astrophysics Data System (ADS)

    Boyd, Robert W.; Bigelow, Matthew S.; Lepeshkin, Nick N.

    2004-12-01

    We have observed ultra-slow light propagation (57 m s-1) in ruby and superluminal (-800 m s-1) light propagation in alexandrite at room temperature. The modified light speed results from the rapid variation in refractive index associated with spectral holes and antiholes produced by the process of coherent population oscillations.

  7. The Parkfield Tremors: Slow and Fast Ruptures on the Same Asperity

    NASA Astrophysics Data System (ADS)

    Mele Veedu, Deepa; Barbot, Sylvain

    2016-04-01

    A number of tremor sources have been burst into low-frequency earthquakes (LFEs) in the deep extension of the San Andreas Fault in the last decade. Among the tremor sources, a particular LFE family near Parkfield exhibited doubling recurrence intervals alternating between about three and six days. A simple physical model producing successive slow and fast ruptures on the same asperity can explain the doubling recurrence intervals (manuscript accepted by Nature, 2016), but the source characteristics of the LFEs may not be fully explained by this simple model. The source characteristics show that tremor bursts containing more LFEs and lasting longer are associated with lower-amplitude ground motion. We find that the number of LFEs per burst is controlled by peak velocity of the modeled slip event. However, the duration of the tremor burst is not directly controlled by the duration of the underlying slip. The findings imply that the LFEs occur contemporaneous with the underlying slow and fast ruptures successively. Our results bring a better understanding of the mechanics of tectonic tremors associated with underlying slow-slip events.

  8. Explicit and Implicit Processes Constitute the Fast and Slow Processes of Sensorimotor Learning

    PubMed Central

    Bond, Krista M.; Taylor, Jordan A.

    2015-01-01

    A popular model of human sensorimotor learning suggests that a fast process and a slow process work in parallel to produce the canonical learning curve (Smith et al., 2006). Recent evidence supports the subdivision of sensorimotor learning into explicit and implicit processes that simultaneously subserve task performance (Taylor et al., 2014). We set out to test whether these two accounts of learning processes are homologous. Using a recently developed method to assay explicit and implicit learning directly in a sensorimotor task, along with a computational modeling analysis, we show that the fast process closely resembles explicit learning and the slow process approximates implicit learning. In addition, we provide evidence for a subdivision of the slow/implicit process into distinct manifestations of motor memory. We conclude that the two-state model of motor learning is a close approximation of sensorimotor learning, but it is unable to describe adequately the various implicit learning operations that forge the learning curve. Our results suggest that a wider net be cast in the search for the putative psychological mechanisms and neural substrates underlying the multiplicity of processes involved in motor learning. PMID:26134640

  9. A thermodynamically based definition of fast verses slow heating in secondary explosives

    NASA Astrophysics Data System (ADS)

    Henson, Bryan; Smilowitz, Laura

    2013-06-01

    The thermal response of energetic materials is often categorized according to the rate of heating as either fast or slow, e.g. slow cook-off. Such categorizations have most often followed some operational rationale, without a material based definition. We have spent several years demonstrating that for the energetic material octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) a single mechanism of thermal response reproduces times to ignition independent of rate or means of heating over the entire range of thermal response. HMX is unique in that bulk melting is rarely observed in either thermal ignition or combustion. We have recently discovered a means of expressing this mechanism for HMX in a reduced form applicable to many secondary explosives. We will show that with this mechanism a natural definition of fast versus slow rates of heating emerges, related to the rate of melting, and we use this to illustrate why HMX does not exhibit melting, and why a number of other secondary explosives do, and require the two separate categories.

  10. Does the Speed of Light Slow Down Over Time?

    ERIC Educational Resources Information Center

    Ebert, Ronald

    1997-01-01

    The speed of light is a fundamental characteristic of the universe. So many processes are related to and dependent upon it that, if creationist claims were true, the universe would be far different from the way it is now. The speed of light has never been shown to vary based on the direction from which it was measured. (PVD)

  11. Phase measurement of fast light pulse in electromagnetically induced absorption.

    PubMed

    Lee, Yoon-Seok; Lee, Hee Jung; Moon, Han Seb

    2013-09-23

    We report the phase measurement of a fast light pulse in electromagnetically induced absorption (EIA) of the 5S₁/₂ (F = 2)-5P₃/₂ (F' = 3) transition of ⁸⁷Rb atoms. Using a beat-note interferometer method, a stable measurement without phase dithering of the phase of the probe pulse before and after it has passed through the EIA medium was achieved. Comparing the phases of the light pulse in air and that of the fast light pulse though the EIA medium, the phase of the fast light pulse at EIA resonance was not shifted and maintained to be the same as that of the free-space light pulse. The classical fidelity of the fast light pulse according to the advancement of the group velocity by adjusting the atomic density was estimated to be more than 97%. PMID:24104135

  12. Commercializing MEMS--too fast or too slow? (Same as Vols. 2881 and 2882, p. 12)

    NASA Astrophysics Data System (ADS)

    Walsh, S.; Carr, W. N.; Mados, H.; Narang, D. S.

    1996-09-01

    MEMS as a technology base is coming of age, but as in any vital process growing pains occur. Commercializing MEMS is simultaneously viewed as agonizingly slow by many of its promoters and lightingly quick by many companies whose products are being replaced with MEMS based substitutes. This effort ties current efforts in market analysis, technology evaluations, competency based strategy in an effort to understand the pace of MEMS commercialization.

  13. Commercializing MEMS--too fast or too slow? (Same as Vols. 2880 and 2881, p. 12)

    NASA Astrophysics Data System (ADS)

    Walsh, S.; Carr, W. N.; Mados, H.; Narang, D. S.

    1996-09-01

    MEMS as a technology base is coming of age, butas in any vital process growing pains occur. Commercializing MEMS is simultaneously viewed asagonizingly slow by many ofits promoters and lightingly quick by many companies whose products are being replaced with MEMS based substitutes. This effort ties current efforts in market analysis, technology evaluations, competency based strategy in an effort to understand the pace ofMEMS commercialization.

  14. Commercializing MEMS--too fast or too slow? ((Same as Vols. 2880 and 2882, p. 12)

    NASA Astrophysics Data System (ADS)

    Walsh, S.; Carr, W. N.; Mados, H.; Narang, D. S.

    1996-09-01

    MEMS as a technology base is coming ofage, butas in any vital process growing pains occur. Commercializing MEMS is simultaneously viewed asagonizingly slow by many ofits promoters and lightingly quick by many companies whose products are beingreplaced with MEMS based substitutes. This effort ties current efforts in market analysis, technology evaluations, competency based strategy in an effort to understand the pace ofMEMS commercialization.

  15. Reduced dynamics in spin-boson models: A method for both slow and fast bath

    NASA Astrophysics Data System (ADS)

    Golosov, Andrei A.; Friesner, Richard A.; Pechukas, Philip

    2000-02-01

    We study a model for treating dissipative systems, a one dimensional quantum system coupled to a harmonic bath. The dynamics of such a system can be described by Feynman's path integral expression for the reduced density matrix. In this formulation the interaction of the system with the environment is stored in the influence functional. Recently we showed that fast environmental modes that give rise to correlations in the influence functional which are short range in time can be treated efficiently by a memory equation algorithm, which is a discretized version of a master equation. In this work we extend this approach to treat slow environmental modes as well, thereby efficiently linking adiabatic and nonadiabatic regimes. In this extended method the long range correlations in the influence functional arising from slow bath modes are taken into account through Stock's semiclassical self-consistent-field approach.

  16. Slow-light effect via Rayleigh anomaly and the effect of finite gratings

    PubMed Central

    Kim, Kyoung-Youm; Chong, Xinyuan; Ren, Fanghui; Wang, Alan X.

    2016-01-01

    In this Letter, we investigate the slow-light effect of sub-wavelength diffraction gratings via the Rayleigh anomaly using a fully analytical approach without needing to consider specific grating structures. Our results show that the local group velocity of the transmitted light can be significantly reduced due to the optical vortex, which can inspire a new mechanism to enhance light–matter interactions for optical sensing and photodetection. However, the slow-light effect will diminish as the transmitted light propagates farther from the grating surface, and the slowdown factor decreases as the grating size shrinks. PMID:26565869

  17. Fast-slow continuum and reproductive strategies structure plant life-history variation worldwide.

    PubMed

    Salguero-Gómez, Roberto; Jones, Owen R; Jongejans, Eelke; Blomberg, Simon P; Hodgson, David J; Mbeau-Ache, Cyril; Zuidema, Pieter A; de Kroon, Hans; Buckley, Yvonne M

    2016-01-01

    The identification of patterns in life-history strategies across the tree of life is essential to our prediction of population persistence, extinction, and diversification. Plants exhibit a wide range of patterns of longevity, growth, and reproduction, but the general determinants of this enormous variation in life history are poorly understood. We use demographic data from 418 plant species in the wild, from annual herbs to supercentennial trees, to examine how growth form, habitat, and phylogenetic relationships structure plant life histories and to develop a framework to predict population performance. We show that 55% of the variation in plant life-history strategies is adequately characterized using two independent axes: the fast-slow continuum, including fast-growing, short-lived plant species at one end and slow-growing, long-lived species at the other, and a reproductive strategy axis, with highly reproductive, iteroparous species at one extreme and poorly reproductive, semelparous plants with frequent shrinkage at the other. Our findings remain consistent across major habitats and are minimally affected by plant growth form and phylogenetic ancestry, suggesting that the relative independence of the fast-slow and reproduction strategy axes is general in the plant kingdom. Our findings have similarities with how life-history strategies are structured in mammals, birds, and reptiles. The position of plant species populations in the 2D space produced by both axes predicts their rate of recovery from disturbances and population growth rate. This life-history framework may complement trait-based frameworks on leaf and wood economics; together these frameworks may allow prediction of responses of plants to anthropogenic disturbances and changing environments. PMID:26699477

  18. Contrasting Responses to Harvesting and Environmental Drivers of Fast and Slow Life History Species.

    PubMed

    Quetglas, Antoni; Rueda, Lucía; Alvarez-Berastegui, Diego; Guijarro, Beatriz; Massutí, Enric

    2016-01-01

    According to their main life history traits, organisms can be arranged in a continuum from fast (species with small body size, short lifespan and high fecundity) to slow (species with opposite characteristics). Life history determines the responses of organisms to natural and anthropogenic factors, as slow species are expected to be more sensitive than fast species to perturbations. Owing to their contrasting traits, cephalopods and elasmobranchs are typical examples of fast and slow strategies, respectively. We investigated the responses of these two contrasting strategies to fishing exploitation and environmental conditions (temperature, productivity and depth) using generalized additive models. Our results confirmed the foreseen contrasting responses of cephalopods and elasmobranchs to natural (environment) and anthropogenic (harvesting) influences. Even though a priori foreseen, we did expect neither the clear-cut differential responses between groups nor the homogeneous sensitivity to the same factors within the two taxonomic groups. Apart from depth, which affected both groups equally, cephalopods and elasmobranchs were exclusively affected by environmental conditions and fishing exploitation, respectively. Owing to its short, annual cycle, cephalopods do not have overlapping generations and consequently lack the buffering effects conferred by different age classes observed in multi-aged species such as elasmobranchs. We suggest that cephalopods are sensitive to short-term perturbations, such as seasonal environmental changes, because they lack this buffering effect but they are in turn not influenced by continuous, long-term moderate disturbances such as fishing because of its high population growth and turnover. The contrary would apply to elasmobranchs, whose multi-aged population structure would buffer the seasonal environmental effects, but they would display strong responses to uninterrupted harvesting due to its low population resilience. Besides

  19. Reconstruction of shifting elbow joint compliant characteristics during fast and slow movements.

    PubMed

    Latash, M L; Gottlieb, G L

    1991-01-01

    The purpose of this study was to experimentally investigate the applicability of the equilibrium-point hypothesis to the dynamics of single-joint movements. Subjects were trained to perform relatively slow (movement time 600-1000 ms) or fast (movement time 200-300 ms) single-joint elbow flexion movements against a constant extending torque bias. They were instructed to reproduce the same time pattern of central motor command for a series of movements when the external torque could slowly and unpredictably increase, decrease, or remain constant. For fast movements, the total muscle torque was calculated as a sum of external and inertial components. Analysis of the data allowed reconstruction of the elbow joint compliant characteristics at different times during execution of the learned motor command. "Virtual" trajectories of the movements, representing time-varying changes in a central control parameter, were reconstructed and compared with the "actual" trajectories. For slow movements, the actual trajectories lagged behind the virtual ones. There were no consistent changes in the joint stiffness during slow movements. Similar analysis of experiments without voluntary movements demonstrated a lack of changes in the central parameters, supporting the assumption that the subjects were able to keep the same central motor command in spite of externally imposed unexpected torque perturbations. For the fast movements, the virtual trajectories were N-shaped, and the joint stiffness demonstrated a considerable increase near the middle of the movement. These findings contradict an hypothesis of monotonic joint compliant characteristic translation at a nearly constant rate during such movements. PMID:1922790

  20. Contrasting Responses to Harvesting and Environmental Drivers of Fast and Slow Life History Species

    PubMed Central

    Quetglas, Antoni; Rueda, Lucía; Alvarez-Berastegui, Diego; Guijarro, Beatriz; Massutí, Enric

    2016-01-01

    According to their main life history traits, organisms can be arranged in a continuum from fast (species with small body size, short lifespan and high fecundity) to slow (species with opposite characteristics). Life history determines the responses of organisms to natural and anthropogenic factors, as slow species are expected to be more sensitive than fast species to perturbations. Owing to their contrasting traits, cephalopods and elasmobranchs are typical examples of fast and slow strategies, respectively. We investigated the responses of these two contrasting strategies to fishing exploitation and environmental conditions (temperature, productivity and depth) using generalized additive models. Our results confirmed the foreseen contrasting responses of cephalopods and elasmobranchs to natural (environment) and anthropogenic (harvesting) influences. Even though a priori foreseen, we did expect neither the clear-cut differential responses between groups nor the homogeneous sensitivity to the same factors within the two taxonomic groups. Apart from depth, which affected both groups equally, cephalopods and elasmobranchs were exclusively affected by environmental conditions and fishing exploitation, respectively. Owing to its short, annual cycle, cephalopods do not have overlapping generations and consequently lack the buffering effects conferred by different age classes observed in multi-aged species such as elasmobranchs. We suggest that cephalopods are sensitive to short-term perturbations, such as seasonal environmental changes, because they lack this buffering effect but they are in turn not influenced by continuous, long-term moderate disturbances such as fishing because of its high population growth and turnover. The contrary would apply to elasmobranchs, whose multi-aged population structure would buffer the seasonal environmental effects, but they would display strong responses to uninterrupted harvesting due to its low population resilience. Besides

  1. A geometric analysis of fast-slow models for stochastic gene expression.

    PubMed

    Popović, Nikola; Marr, Carsten; Swain, Peter S

    2016-01-01

    Stochastic models for gene expression frequently exhibit dynamics on several different scales. One potential time-scale separation is caused by significant differences in the lifetimes of mRNA and protein; the ratio of the two degradation rates gives a natural small parameter in the resulting chemical master equation, allowing for the application of perturbation techniques. Here, we develop a framework for the analysis of a family of 'fast-slow' models for gene expression that is based on geometric singular perturbation theory. We illustrate our approach by giving a complete characterisation of a standard two-stage model which assumes transcription, translation, and degradation to be first-order reactions. In particular, we present a systematic expansion procedure for the probability-generating function that can in principle be taken to any order in the perturbation parameter, allowing for an approximation of the corresponding propagator probabilities to that same order. For illustrative purposes, we perform this expansion explicitly to first order, both on the fast and the slow time-scales; then, we combine the resulting asymptotics into a composite fast-slow expansion that is uniformly valid in time. In the process, we extend, and prove rigorously, results previously obtained by Shahrezaei and Swain (Proc Natl Acad Sci USA 105(45):17256-17261, 2008) and Bokes et al. (J Math Biol 64(5):829-854, 2012; J Math Biol 65(3):493-520, 2012). We verify our asymptotics by numerical simulation, and we explore its practical applicability and the effects of a variation in the system parameters and the time-scale separation. Focussing on biologically relevant parameter regimes that induce translational bursting, as well as those in which mRNA is frequently transcribed, we find that the first-order correction can significantly improve the steady-state probability distribution. Similarly, in the time-dependent scenario, inclusion of the first-order fast asymptotics results in a

  2. Simultaneous realization of negative group velocity, fast and slow acoustic waves in a metamaterial

    NASA Astrophysics Data System (ADS)

    Li, Xiao-juan; Xue, Cheng; Fan, Li; Zhang, Shu-yi; Chen, Zhe; Ding, Jin; Zhang, Hui

    2016-06-01

    An acoustic metamaterial is designed based on a simple and compact structure of one string of side pipes arranged along a waveguide, in which diverse group velocities are achieved. Owing to Fabry-Perot resonance of the side pipes, a negative phase time is achieved, and thus, acoustic waves transmitting with negative group velocities are produced near the resonant frequency. In addition, both fast and slow acoustic waves are also observed in the vicinity of the resonance frequency. The extraordinary group velocities can be explained based on spectral rephasing induced by anomalous dispersion on the analogy of Lorentz dispersion in electromagnetic waves.

  3. Coexisting attractors and chaotic canard explosions in a slow-fast optomechanical system

    NASA Astrophysics Data System (ADS)

    Marino, Francesco; Marin, Francesco

    2013-05-01

    The multiple time scale dynamics induced by radiation pressure and photothermal effects in a high-finesse optomechanical resonator is experimentally studied. At difference with two-dimensional slow-fast systems, the transition from the quasiharmonic to the relaxational regime occurs via chaotic canard explosions, where large-amplitude relaxation spikes are separated by an irregular number of subthreshold oscillations. We also show that this regime coexists with other periodic attractors, on which the trajectories evolve on a substantially faster time scale. The experimental results are reproduced and analyzed by means of a detailed physical model of our system.

  4. Coexisting attractors and chaotic canard explosions in a slow-fast optomechanical system.

    PubMed

    Marino, Francesco; Marin, Francesco

    2013-05-01

    The multiple time scale dynamics induced by radiation pressure and photothermal effects in a high-finesse optomechanical resonator is experimentally studied. At difference with two-dimensional slow-fast systems, the transition from the quasiharmonic to the relaxational regime occurs via chaotic canard explosions, where large-amplitude relaxation spikes are separated by an irregular number of subthreshold oscillations. We also show that this regime coexists with other periodic attractors, on which the trajectories evolve on a substantially faster time scale. The experimental results are reproduced and analyzed by means of a detailed physical model of our system. PMID:23767597

  5. Reversing the Emotional Stroop Effect Reveals That It Is Not What It Seems: The Role of Fast and Slow Components

    ERIC Educational Resources Information Center

    McKenna, Frank P.; Sharma, Dinkar

    2004-01-01

    The relative contributions of slow and fast (online) components in a modified emotional Stroop task were evaluated. The slow component, neglected in previous research, was shown to lead to the prediction of a reversed emotional intrusion effect using pseudorandomly mixed negative and neutral stimuli. This prediction was supported in Experiments 1…

  6. Fast light generation through velocity manipulation in two vertically-stacked ring resonators.

    PubMed

    Ciminelli, C; Campanella, C E; Dell'Olio, F; Armenise, M N

    2010-02-01

    Speed manipulation of optical pulses is a very attractive research challenge enabling next-generation high-capacity all-optical communication networks. Pulses can be effectively slowed by using different integrated optical structures such as coupled-resonator waveguiding structures or photonic crystal cavities. Fast light generation by means of integrated photonic devices is currently a quite unexplored research field in spite of its crucial importance for all-optical pulse processing. In this paper, we report on the first theoretical demonstration of fast light generation in an ultra-compact double vertical stacked ring resonator coupled to a bus waveguide. Periodic coupling between the two rings leads to splitting and recombining of symmetric and anti-symmetric resonant modes. Re-established degenerate modes can form when a symmetric and an anti-symmetric mode having different resonance order exhibit the same resonance wavelength. Under degenerate mode conditions, wide wavelength ranges where the group velocity is negative or larger than the speed of light in vacuum are generated. The paper proves how this physical effect can be exploited to design fast light resonant devices. Moreover, conditions are also derived to obtain slow light operation regime. PMID:20174126

  7. Slowing and stopping light with an optomechanical crystal array

    SciTech Connect

    Chang, D. E.; Safavi-Naeini, A. H.; Painter, O.; Hafezi, M.

    2010-10-07

    The ability to coherently store and retrieve optical information in a rapidly tunable manner is an important ingredient for all-optical information processing. In the classical domain, this optical buffering is necessary to manage information flow in complex networks. In quantum information processing, such a system can also serve as a long-term memory capable of storing the full quantum information contained in an optical pulse. Here we suggest a novel approach to light storage involving an optical waveguide coupled to an optomechanical crystal array, where light in the waveguide can be dynamically and reversibly mapped into long-lived mechanical vibrations in the array. This technique enables large bandwidths and long storage and delay times in a compact, on-chip platform.

  8. The Parkfield tremors reveal slow and fast ruptures on the same asperity.

    PubMed

    Veedu, Deepa Mele; Barbot, Sylvain

    2016-04-21

    The deep extension of the San Andreas Fault is believed to be creeping, but the recent observations of tectonic tremors from these depths indicate a complex deformation style. In particular, an isolated tremor source near Parkfield has been producing a sequence of low-frequency earthquakes that indicates an uncommon mechanism of stress accumulation and release. The tremor pattern regularly oscillated between three and six days from mid-2003 until it was disrupted by the 2004 magnitude 6.0 Parkfield earthquake. After that event, the tremor source ruptured only about every three days, but over the next two years it gradually returned to its initial alternating recurrence pattern. The mechanism that drives this recurrence pattern is unknown. Here we use physics-based models to show that the same tremor asperity--the region from which the low-frequency earthquakes radiate--can regularly slip in slow and fast ruptures, naturally resulting in recurrence intervals alternating between three and six days. This unusual slip behaviour occurs when the tremor asperity size is close to the critical nucleation size of earthquakes. We also show that changes in pore pressure following the Parkfield earthquake can explain the sudden change and gradual recovery of the recurrence intervals. Our findings suggest a framework for fault deformation in which the same asperity can release tectonic stress through both slow and fast ruptures. PMID:27042936

  9. The Parkfield tremors reveal slow and fast ruptures on the same asperity

    NASA Astrophysics Data System (ADS)

    Veedu, Deepa Mele; Barbot, Sylvain

    2016-04-01

    The deep extension of the San Andreas Fault is believed to be creeping, but the recent observations of tectonic tremors from these depths indicate a complex deformation style. In particular, an isolated tremor source near Parkfield has been producing a sequence of low-frequency earthquakes that indicates an uncommon mechanism of stress accumulation and release. The tremor pattern regularly oscillated between three and six days from mid-2003 until it was disrupted by the 2004 magnitude 6.0 Parkfield earthquake. After that event, the tremor source ruptured only about every three days, but over the next two years it gradually returned to its initial alternating recurrence pattern. The mechanism that drives this recurrence pattern is unknown. Here we use physics-based models to show that the same tremor asperity—the region from which the low-frequency earthquakes radiate—can regularly slip in slow and fast ruptures, naturally resulting in recurrence intervals alternating between three and six days. This unusual slip behaviour occurs when the tremor asperity size is close to the critical nucleation size of earthquakes. We also show that changes in pore pressure following the Parkfield earthquake can explain the sudden change and gradual recovery of the recurrence intervals. Our findings suggest a framework for fault deformation in which the same asperity can release tectonic stress through both slow and fast ruptures.

  10. Preliminary study of slow and fast ultrasonic waves using MR images of trabecular bone phantom

    NASA Astrophysics Data System (ADS)

    Solis-Najera, S. E.; Neria-Pérez, J. A.; Medina, L.; Garipov, R.; Rodríguez, A. O.

    2014-11-01

    Cancellous bone is a complex tissue that performs physiological and biomechanical functions in all vertebrates. It is made up of trabeculae that, from a simplified structural viewpoint, can be considered as plates and beams in a hyperstatic structure that change with time leading to osteoporosis. Several methods has been developed to study the trabecular bone microstructure among them is the Biot's model which predicts the existence of two longitudinal waves in porous media; the slow and the fast waves, that can be related to porosity of the media. This paper is focused on the experimental detection of the two Biot's waves of a trabecular bone phantom, consisting of a trabecular network of inorganic hydroxyapatite. Experimental measurements of both waves were performed using through transmission ultrasound. Results had shown clearly that the propagation of two waves propagation is transversal to the trabecular alignment. Otherwise the waves are overlapped and a single wave seems to be propagated. To validate these results, magnetic resonance images were acquired to assess the trabecular direction, and to assure that the pulses correspond to the slow and fast waves. This approach offers a methodology for non-invasive studies of trabecular bones.

  11. Preliminary study of slow and fast ultrasonic waves using MR images of trabecular bone phantom

    SciTech Connect

    Solis-Najera, S. E. E-mail: angel.perez@ciencias.unam.mx Neria-Pérez, J. A. E-mail: angel.perez@ciencias.unam.mx Medina, L. E-mail: angel.perez@ciencias.unam.mx; Garipov, R.; Rodríguez, A. O.

    2014-11-07

    Cancellous bone is a complex tissue that performs physiological and biomechanical functions in all vertebrates. It is made up of trabeculae that, from a simplified structural viewpoint, can be considered as plates and beams in a hyperstatic structure that change with time leading to osteoporosis. Several methods has been developed to study the trabecular bone microstructure among them is the Biot’s model which predicts the existence of two longitudinal waves in porous media; the slow and the fast waves, that can be related to porosity of the media. This paper is focused on the experimental detection of the two Biot’s waves of a trabecular bone phantom, consisting of a trabecular network of inorganic hydroxyapatite. Experimental measurements of both waves were performed using through transmission ultrasound. Results had shown clearly that the propagation of two waves propagation is transversal to the trabecular alignment. Otherwise the waves are overlapped and a single wave seems to be propagated. To validate these results, magnetic resonance images were acquired to assess the trabecular direction, and to assure that the pulses correspond to the slow and fast waves. This approach offers a methodology for non-invasive studies of trabecular bones.

  12. Identification of separate slow and fast muscle precursor cells in vivo, prior to somite formation.

    PubMed

    Devoto, S H; Melançon, E; Eisen, J S; Westerfield, M

    1996-11-01

    We have examined the development of specific muscle fiber types in zebrafish axial muscle by labeling myogenic precursor cells with vital fluorescent dyes and following their subsequent differentiation and fate. Two populations of muscle precursors, medial and lateral, can be distinguished in the segmental plate by position, morphology and gene expression. The medial cells, known as adaxial cells, are large, cuboidal cells adjacent to the notochord that express myoD. Surprisingly, after somite formation, they migrate radially away from the notochord, becoming a superficial layer of muscle cells. A subset of adaxial cells develop into engrailed-expressing muscle pioneers. Adaxial cells differentiate into slow muscle fibers of the adult fish. We have named the lateral population of cells in the segmental plate, lateral presomitic cells. They are smaller, more irregularly shaped and separated from the notochord by adaxial cells; they do not express myoD until after somite formation. Lateral presomitic cells remain deep in the myotome and they differentiate into fast muscle fibers. Thus, slow and fast muscle fiber types in zebrafish axial muscle arise from distinct populations of cells in the segmental plate that develop in different cellular environments and display distinct behaviors. PMID:8951054

  13. Thin filament diversity and physiological properties of fast and slow fiber types in astronaut leg muscles

    NASA Technical Reports Server (NTRS)

    Riley, Danny A.; Bain, James L W.; Thompson, Joyce L.; Fitts, Robert H.; Widrick, Jeffrey J.; Trappe, Scott W.; Trappe, Todd A.; Costill, David L.

    2002-01-01

    Slow type I fibers in soleus and fast white (IIa/IIx, IIx), fast red (IIa), and slow red (I) fibers in gastrocnemius were examined electron microscopically and physiologically from pre- and postflight biopsies of four astronauts from the 17-day, Life and Microgravity Sciences Spacelab Shuttle Transport System-78 mission. At 2.5-microm sarcomere length, thick filament density is approximately 1,012 filaments/microm(2) in all fiber types and unchanged by spaceflight. In preflight aldehyde-fixed biopsies, gastrocnemius fibers possess higher percentages (approximately 23%) of short thin filaments than soleus (9%). In type I fibers, spaceflight increases short, thin filament content from 9 to 24% in soleus and from 26 to 31% in gastrocnemius. Thick and thin filament spacing is wider at short sarcomere lengths. The Z-band lattice is also expanded, except for soleus type I fibers with presumably stiffer Z bands. Thin filament packing density correlates directly with specific tension for gastrocnemius fibers but not soleus. Thin filament density is inversely related to shortening velocity in all fibers. Thin filament structural variation contributes to the functional diversity of normal and spaceflight-unloaded muscles.

  14. Estimation of material parameters from slow and fast shear waves in an incompressible, transversely isotropic material.

    PubMed

    Tweten, Dennis J; Okamoto, Ruth J; Schmidt, John L; Garbow, Joel R; Bayly, Philip V

    2015-11-26

    This paper describes a method to estimate mechanical properties of soft, anisotropic materials from measurements of shear waves with specific polarization and propagation directions. This method is applicable to data from magnetic resonance elastography (MRE), which is a method for measuring shear waves in live subjects or in vitro samples. Here, we simulate MRE data using finite element analysis. A nearly incompressible, transversely isotropic (ITI) material model with three parameters (shear modulus, shear anisotropy, and tensile anisotropy) is used, which is appropriate for many fibrous, biological tissues. Both slow and fast shear waves travel concurrently through such a material with speeds that depend on the propagation direction relative to fiber orientation. A three-parameter estimation approach based on directional filtering and isolation of slow and fast shear wave components (directional filter inversion, or DFI) is introduced. Wave speeds of each isolated shear wave component are estimated using local frequency estimation (LFE), and material properties are calculated using weighted least squares. Data from multiple finite element simulations are used to assess the accuracy and reliability of DFI for estimation of anisotropic material parameters. PMID:26476762

  15. Slow light and chromatic temporal dispersion in photonic crystal waveguides using femtosecond time of flight.

    PubMed

    Finlayson, C E; Cattaneo, F; Perney, N M B; Baumberg, J J; Netti, M C; Zoorob, M E; Charlton, M D B; Parker, G J

    2006-01-01

    We report time-of-flight experiments on photonic-crystal waveguide structures using optical Kerr gating of a femtosecond white-light supercontinuum. These photonic-crystal structures, based on engineered silicon-nitride slab waveguides, possess broadband low-loss guiding properties, allowing the group velocity dispersion of optical pulses to be directly tracked as a function of wavelength. This dispersion is shown to be radically disrupted by the spectral band gaps associated with the photonic-crystal periodicity. Increased time-of-flight effects, or "slowed light," are clearly observed at the edges of band gaps in agreement with two-dimensional plane-wave theoretical models of group velocity dispersion. A universal model for slow light in such photonic crystals is proposed, which shows that slow light is controlled predominantly by the detuning from, and the size of, the photonic band gaps. Slowed light observed up to time delays of approximately 1 ps, corresponds to anomalous dispersion of approximately 3.5 ps/nm per mm of the photonic crystal structure. From the decreasing intensity of time-gated slow light as a function of time delay, we estimate the characteristic losses of modes which are guided in the spectral proximity of the photonic band gaps. PMID:16486307

  16. Ultraslow, slow, or fast spreading ridges: an interplay between plate tectonics and mantle convection

    NASA Astrophysics Data System (ADS)

    Husson, Laurent; Yamato, Philippe; Bézos, Antoine

    2015-04-01

    Oceanic spreading rates are highly variable. These variations are known to correlate to a variety of surface observables, like magmatic production, heat flow or bathymetry, which lead to classify ridges into fast and slow spreading ridges, but also as the more peculiar ultraslow spreading regime. Here we explore the dynamic relationships between spreading ridges, plate tectonics and mantle flow. For this, we first focus on the thermal signature at deeper levels that we infer from the global S-wave seismic tomography model of Debayle and Ricard (2012). We show that the thermal structure of ridges gradually departs from the half-space cooling model for slow, and above all ultraslow spreading ridges. We also infer that the sub- lithospheric mantle temperature decreases by more than 180K from fast spreading to ultraslow spreading regimes. Both observations indicate that the mantle convection pattern is increasingly altered underneath slow and ultraslow spreading ridges. We suggest that this is due to far-field tectonics on the other ends of lithospheric plates. Not only it modulates the spreading rates but it also alters the convection regime: collisions at active plate boundaries obstruct plate motion and decrease their velocities. We then test this hypothesis using a thermo-mechanical model that represents a convection cell carrying a positively buoyant continental lithosphere on top. The continent gradually drifts away from the spreading ridge, from which the oceanic lithosphere grows and cools while the continent eventually collides at the opposite side. In turn, this event drastically modifies the upper kinematic condition for the convecting mantle that evolves from a mobile lid regime to an almost stagnant lid regime. Implications on spreading ridges are prominent: heat advection is slower than thermal diffusion, which causes the oceanic lithosphere to thicken faster; the oceanic plates get compressed and destabilized by a growing number of small scale transient

  17. Spatial Heat Maps from Fast Information Matching of Fast and Slow Degrees of Freedom: Application to Molecular Dynamics Simulations.

    PubMed

    Kovacs, Julio A; Wriggers, Willy

    2016-08-25

    We introduce a fast information matching (FIM) method for transforming time domain data into spatial images through handshaking between fast and slow degrees of freedom. The analytics takes advantage of the detailed time series available from biomolecular computer simulations, and it yields spatial heat maps that can be visualized on 3D molecular structures or in the form of interaction networks. The speed of our efficient mutual information solver is on the order of a basic Pearson cross-correlation calculation. We demonstrate that the FIM method is superior to linear cross-correlation for the detection of nonlinear dependence in challenging situations where measures for the global dynamics (the "activity") diverge. The analytics is applied to the detection of hinge-bending hot spots and to the prediction of pairwise contacts between residues that are relevant for the global activity exhibited by the molecular dynamics (MD) trajectories. Application examples from various MD laboratories include the millisecond bovine pancreatic trypsin inhibitor (BPTI) trajectory using canonical MD, a Gaussian accelerated MD folding trajectory of chignolin, and the heat-induced unfolding of engrailed homeodomain (EnHD). The FIM implementation will be freely disseminated with our open-source package, TimeScapes. PMID:27169521

  18. A data-driven prediction method for fast-slow systems

    NASA Astrophysics Data System (ADS)

    Groth, Andreas; Chekroun, Mickael; Kondrashov, Dmitri; Ghil, Michael

    2016-04-01

    In this work, we present a prediction method for processes that exhibit a mixture of variability on low and fast scales. The method relies on combining empirical model reduction (EMR) with singular spectrum analysis (SSA). EMR is a data-driven methodology for constructing stochastic low-dimensional models that account for nonlinearity and serial correlation in the estimated noise, while SSA provides a decomposition of the complex dynamics into low-order components that capture spatio-temporal behavior on different time scales. Our study focuses on the data-driven modeling of partial observations from dynamical systems that exhibit power spectra with broad peaks. The main result in this talk is that the combination of SSA pre-filtering with EMR modeling improves, under certain circumstances, the modeling and prediction skill of such a system, as compared to a standard EMR prediction based on raw data. Specifically, it is the separation into "fast" and "slow" temporal scales by the SSA pre-filtering that achieves the improvement. We show, in particular that the resulting EMR-SSA emulators help predict intermittent behavior such as rapid transitions between specific regions of the system's phase space. This capability of the EMR-SSA prediction will be demonstrated on two low-dimensional models: the Rössler system and a Lotka-Volterra model for interspecies competition. In either case, the chaotic dynamics is produced through a Shilnikov-type mechanism and we argue that the latter seems to be an important ingredient for the good prediction skills of EMR-SSA emulators. Shilnikov-type behavior has been shown to arise in various complex geophysical fluid models, such as baroclinic quasi-geostrophic flows in the mid-latitude atmosphere and wind-driven double-gyre ocean circulation models. This pervasiveness of the Shilnikow mechanism of fast-slow transition opens interesting perspectives for the extension of the proposed EMR-SSA approach to more realistic situations.

  19. RNA Sequencing Reveals a Slow to Fast Muscle Fiber Type Transition after Olanzapine Infusion in Rats

    PubMed Central

    Lynch, Christopher J.; Xu, Yuping; Hajnal, Andras; Salzberg, Anna C.; Kawasawa, Yuka Imamura

    2015-01-01

    Second generation antipsychotics (SGAs), like olanzapine, exhibit acute metabolic side effects leading to metabolic inflexibility, hyperglycemia, adiposity and diabetes. Understanding how SGAs affect the skeletal muscle transcriptome could elucidate approaches for mitigating these side effects. Male Sprague-Dawley rats were infused intravenously with vehicle or olanzapine for 24h using a dose leading to a mild hyperglycemia. RNA-Seq was performed on gastrocnemius muscle, followed by alignment of the data with the Rat Genome Assembly 5.0. Olanzapine altered expression of 1347 out of 26407 genes. Genes encoding skeletal muscle fiber-type specific sarcomeric, ion channel, glycolytic, O2- and Ca2+-handling, TCA cycle, vascularization and lipid oxidation proteins and pathways, along with NADH shuttles and LDH isoforms were affected. Bioinformatics analyses indicate that olanzapine decreased the expression of slower and more oxidative fiber type genes (e.g., type 1), while up regulating those for the most glycolytic and least metabolically flexible, fast twitch fiber type, IIb. Protein turnover genes, necessary to bring about transition, were also up regulated. Potential upstream regulators were also identified. Olanzapine appears to be rapidly affecting the muscle transcriptome to bring about a change to a fast-glycolytic fiber type. Such fiber types are more susceptible than slow muscle to atrophy, and such transitions are observed in chronic metabolic diseases. Thus these effects could contribute to the altered body composition and metabolic disease olanzapine causes. A potential interventional strategy is implicated because aerobic exercise, in contrast to resistance exercise, can oppose such slow to fast fiber transitions. PMID:25893406

  20. Fast and slow wave detection in bovine cancellous bone in vitro using bandlimited deconvolution and Prony's method.

    PubMed

    Wear, Keith; Nagatani, Yoshiki; Mizuno, Katsunori; Matsukawa, Mami

    2014-10-01

    Fast and slow waves were detected in a bovine cancellous bone sample for thicknesses ranging from 7 to 12 mm using bandlimited deconvolution and the modified least-squares Prony's method with curve fitting (MLSP + CF). Bandlimited deconvolution consistently isolated two waves with linear-with-frequency attenuation coefficients as evidenced by high correlation coefficients between attenuation coefficient and frequency: 0.997 ± 0.002 (fast wave) and 0.986 ± 0.013 (slow wave) (mean ± standard deviation). Average root-mean-squared (RMS) differences between the two algorithms for phase velocities were 5 m/s (fast wave, 350 kHz) and 13 m/s (slow wave, 750 kHz). Average RMS differences for signal loss were 1.6 dB (fast wave, 350 kHz) and 0.4 dB (slow wave, 750 kHz). Phase velocities for thickness = 10 mm were 1726 m/s (fast wave, 350 kHz) and 1455 m/s (slow wave, 750 kHz). Results show support for the model of two waves with linear-with frequency attenuation, successful isolation of fast and slow waves, good agreement between bandlimited deconvolution and MLSP + CF as well as with a Bayesian algorithm, and potential variations of fast and/or slow wave properties with bone sample thickness. PMID:25324100

  1. Slow and stored light by photo-isomerization induced transparency in dye doped chiral nematics.

    PubMed

    Wei, D; Bortolozzo, U; Huignard, J P; Residori, S

    2013-08-26

    Decelerating and stopping light is fundamental for optical processing, high performance sensor technologies and digital signal treatment, many of these applications relying on the ability of controlling the amplitude and phase of coherent light pulses. In this context, slow-light has been achieved by various methods, as coupling light into resonant media, Brillouin scattering in optical fibers, beam coupling in photorefractive and liquid crystal media or engineered dispersion in photonic crystals. Here, we present a different mechanism for slowing and storing light, which is based on photo-isomerization induced transparency of azo-dye molecules hosted in a chiral liquid crystal structure. Sharp spectral features of the medium absorption/dispersion, and the long population lifetime of the dye metastable state, enable the storage of light pulses with a significant retrieval after times much longer than the medium response time. PMID:24105502

  2. Effect of Slow and Fast Pranayama Training on Handgrip Strength and Endurance in Healthy Volunteers

    PubMed Central

    Thangavel, Dinesh; Gaur, Girwar Singh; Bhavanani, Ananda Balayogi; Rajajeyakumar, M.; Syam, Sunder A.

    2014-01-01

    Background: Pranayama has been assigned very important role in yogic system of exercises and is said to be much more important than yogasanas for keeping sound health. Also different pranayamas produce divergent physiological effects. Aim: To study the effect of 12 weeks training of slow and fast pranayama on handgrip strength and endurance in young, healthy volunteers of JIPMER population. Settings and Design: Present study was conducted in the Department of Physiology, JIPMER in 2011-12 (1.06.11 to 1.04.12). Materials and Methods: Total of 91 volunteer subjects were randomised into slow pranayama (SPG) (n=29), fast pranayama (FPG) (n=32) and control groups (CG) (n=30). Supervised pranayama training (SPG - Nadisodhana, Pranav pranayama and Savitri pranayama; FPG - Kapalabhati, Bhastrika and Kukkuriya pranayama) was given for 30 minutes thrice a week for 12 weeks to both slow and fast pranayama groups by certified yoga trainer. Hand grip strength (HGS) and endurance (HGE) parameters were recorded using handgrip dynamometer (Rolex, India) at baseline and after 12 weeks of pranayama training. Statistical Analysis Used: Longitudinal changes in each group were compared by using Student’s paired t-test. Delta changes in each group were analysed by ANOVA with Tukey post-hoc analysis. Results: In SPG significant improvement occurred only in HGE parameter from 83.95±45.06 to 101.62±53.87 (seconds) (p<0.001) whereas in FPG, significant improvement was observed in HGS from 33.31±9.83 to 37.9±9.41 (Kilograms) (p=0.01) as well as in HGE from 92.78±41.37 to 116.56±58.54 (seconds) (p=0.004). Using Students unpaired t-test difference between the groups in HGS is found to be 1.17±5.485 in SPG and in FPG is 4.59±7.26 (p=0.39); HGE difference in SPG is 1.77±21.17 and in FPG is 2.38±43.27 (p>0.05). Conclusion: Pranayama training decreases sympathetic activity, resulting in mental relaxation and decreased autonomic arousal thereby, decreasing force fluctuations during

  3. Evaluation of Slow Light Periodic Signals Considering the Distortion in EDF

    NASA Astrophysics Data System (ADS)

    Wang, Fu; Wu, Chong-Qing; Wang, Zhi; Liu, Guo-Dong; Liu, Lan-Lan; Sun, Zhen-Chao

    2014-03-01

    Based on the fundamental harmonic phase delay, a new definition of fundamental harmonic fractional delay (FHFD) is proposed to evaluate slow light with the consideration of signal distortion, to eliminate the dependence on the choice of the reference point. By solving the rate equation of erbium-doped fiber (EDF), it is shown that the slow light always accompanies the signal distortion when the periodic signal propagates in EDF, and FHFD depends on the signal distortion, as well as the average input power, the modulation depth and the length of EDF. The results of simulations and experiments indicate that the definition of FHFD is reasonable and effective to evaluate the slow light of periodic signals.

  4. LETTER TO THE EDITOR: Driving slow-light solitons by a controlling laser field

    NASA Astrophysics Data System (ADS)

    Rybin, Andrei V.; Vadeiko, Ilya P.; Bishop, Alan R.

    2005-05-01

    In the framework of the nonlinear Λ-model we investigate propagation of a slow-light soliton in atomic vapours and Bose-Einstein condensates. The velocity of the slow-light soliton is controlled by a time-dependent background field created by a controlling laser. For a fairly arbitrary time dependence of the field we find the dynamics of the slow-light soliton inside the medium. We provide an analytical description for the nonlinear dependence of the velocity of the signal on the controlling field. If the background field is turned off at some moment of time, the signal stops. We find the location and shape of the spatially localized memory bit imprinted into the medium. We show that the process of writing optical information can be described in terms of scattering data for the underlying scattering problem.

  5. Wideband slow light based on plasmon-induced transparency at telecom frequency

    NASA Astrophysics Data System (ADS)

    Li, Chunlei; Qi, Dawei; Wang, Yuxiao; Zhang, Xueru

    2015-09-01

    We propose and demonstrate a metal-insulator-metal (MIM) waveguide side coupled with a series of stubs to realize broadband slow surface plasmon polaritons (SPPs) around the telecom wavelength 193.5 THz. The obviously slow light effect results from the strong normal dispersion around the frequency of the plasmon-induced transparency. Theoretical calculations indicate that the plasmonic waveguide system of the length 11 μm works on a broad bandwidth of 20 THz. The group velocity of SPPs predicted by the improved transmission line theory is about 0.2c (c is light speed in vacuum), which is confirmed by the finite-difference time-domain (FDTD) numerical simulation. The waveguide system for slow light effect has important potential application in optical delay lines.

  6. Slow light Mach-Zehnder interferometer as label-free biosensor with scalable sensitivity

    DOE PAGESBeta

    Qin, Kun; Hu, Shuren; Retterer, Scott T.; Kravchenko, Ivan I.; Weiss, Sharon M.

    2016-02-05

    Our design, fabrication, and characterization of a label-free Mach–Zehnder interferometer (MZI) optical biosensor that incorporates a highly dispersive one-dimensional (1D) photonic crystal in one arm are presented. The sensitivity of this slow light MZI-based sensor scales with the length of the slow light photonic crystal region. The numerically simulated sensitivity of a MZI sensor with a 16 μm long slow light region is 115,000 rad/RIU-cm, which is sevenfold higher than traditional MZI biosensors with millimeter-length sensing regions. Moreover, the experimental bulk refractive index detection sensitivity of 84,000 rad/RIU-cm is realized and nucleic acid detection is also demonstrated.

  7. Pathological scattering by a defect in a slow-light periodic layered medium

    NASA Astrophysics Data System (ADS)

    Shipman, Stephen P.; Welters, Aaron T.

    2016-02-01

    Scattering of electromagnetic fields by a defect layer embedded in a slow-light periodically layered ambient medium exhibits phenomena markedly different from typical scattering problems. In a slow-light periodic medium, constructed by Figotin and Vitebskiy, the energy velocity of a propagating mode in one direction slows to zero, creating a "frozen mode" at a single frequency within a pass band, where the dispersion relation possesses a flat inflection point. The slow-light regime is characterized by a 3 × 3 Jordan block of the log of the 4 × 4 monodromy matrix for EM fields in a periodic medium at special frequency and parallel wavevector. The scattering problem breaks down as the 2D rightward and leftward mode spaces intersect in the frozen mode and therefore span only a 3D subspace V ˚ of the 4D space of EM fields. Analysis of pathological scattering near the slow-light frequency and wavevector is based on the interaction between the flux-unitary transfer matrix T across the defect layer and the projections to the rightward and leftward spaces, which blow up as Laurent-Puiseux series. Two distinct cases emerge: the generic, non-resonant case when T does not map V ˚ to itself and the quadratically growing mode is excited and the resonant case, when V ˚ is invariant under T and a guided frozen mode is resonantly excited.

  8. Experimental observation of ultrasound fast and slow waves through three-dimensional printed trabecular bone phantoms.

    PubMed

    Mézière, F; Juskova, P; Woittequand, J; Muller, M; Bossy, E; Boistel, Renaud; Malaquin, L; Derode, A

    2016-02-01

    In this paper, ultrasound measurements of 1:1 scale three-dimensional (3D) printed trabecular bone phantoms are reported. The micro-structure of a trabecular horse bone sample was obtained via synchrotron x-ray microtomography, converted to a 3D binary data set, and successfully 3D-printed at scale 1:1. Ultrasound through-transmission experiments were also performed through a highly anisotropic version of this structure, obtained by elongating the digitized structure prior to 3D printing. As in real anisotropic trabecular bone, both the fast and slow waves were observed. This illustrates the potential of stereolithography and the relevance of such bone phantoms for the study of ultrasound propagation in bone. PMID:26936578

  9. Modeling of low- and high-frequency noise by slow and fast fluctuators

    NASA Astrophysics Data System (ADS)

    Nesterov, Alexander I.; Berman, Gennady P.

    2012-05-01

    We study the dynamics of dephasing in a quantum two-level system by modeling both 1/f and high-frequency noise by random telegraph processes. Our approach is based on a so-called spin-fluctuator model in which a noisy environment is modeled by a large number of fluctuators. In the continuous limit we obtain an effective random process (ERP) that is described by a distribution function of the fluctuators. In a simplified model, we reduce the ERP to the two (slow and fast) ensembles of fluctuators. Using this model, we study decoherence in a superconducting flux qubit and we compare our theoretical results with the available experimental data. We demonstrate good agreement of our theoretical predictions with the experiments. Our approach can be applied to many quantum systems, such as biological complexes, semiconductors, superconducting, and spin qubits, where the effects of interaction with the environment are essential.

  10. Pattern of arborization of the motor nerve terminals in the fast and slow mammalian muscles.

    PubMed

    Tomas, J; Santafé, M; Fenoll, R; Mayayo, E; Batlle, J; Lanuza, A; Piera, V

    1992-01-01

    A silver impregnation method and a morphometric approach were used to define differences existing in the motor nerve terminal branching pattern between a fast-twitch muscle (extensor digitorum longus) and a slow-twitch one (soleus) of the normal adult rat. Because no single measure can describe precisely all geometrical properties (ie both topology and metrics) of the nerve terminals, we evaluated morphologic parameters defining length and angular characteristics in the different terminal segments classified according to their centrifugal order. The main results indicate that the distal free-end segments in the extensor digitorum longus muscle are shorter and less divergent than in the soleus nerve terminals. The endings in the two muscles have different fractal dimensions. Findings are discussed in the context of the hypothetical mechanisms governing motor nerve terminal size and complexity. PMID:1628112

  11. Hybrid stochastic simulation of reaction-diffusion systems with slow and fast dynamics

    SciTech Connect

    Strehl, Robert; Ilie, Silvana

    2015-12-21

    In this paper, we present a novel hybrid method to simulate discrete stochastic reaction-diffusion models arising in biochemical signaling pathways. We study moderately stiff systems, for which we can partition each reaction or diffusion channel into either a slow or fast subset, based on its propensity. Numerical approaches missing this distinction are often limited with respect to computational run time or approximation quality. We design an approximate scheme that remedies these pitfalls by using a new blending strategy of the well-established inhomogeneous stochastic simulation algorithm and the tau-leaping simulation method. The advantages of our hybrid simulation algorithm are demonstrated on three benchmarking systems, with special focus on approximation accuracy and efficiency.

  12. Modeling of nonlinear physiological systems with fast and slow dynamics. II. Application to cerebral autoregulation.

    PubMed

    Mitsis, G D; Zhang, R; Levine, B D; Marmarelis, V Z

    2002-04-01

    Dynamic autoregulation of cerebral hemodynamics in healthy humans is studied using the novel methodology of the Laguerre-Volterra network for systems with fast and slow dynamics (Mitsis, G. D., and V. Z. Marmarelis, Ann. Biomed. Eng. 30:272-281, 2002). Since cerebral autoregulation is mediated by various physiological mechanisms with significantly different time constants, it is used to demonstrate the efficacy of the new method. Results are presented in the time and frequency domains and reveal that cerebral autoregulation is a nonlinear and dynamic (frequency-dependent) system with considerable nonstationarities. Quantification of the latter reveals greater variability in specific frequency bands for each subject in the low and middle frequency range (below 0.1 Hz). The nonlinear dynamics are prominent also in the low and middle frequency ranges, where the frequency response of the system exhibits reduced gain. PMID:12086006

  13. Spatiotemporal properties of fast and slow neurons in the pretectal nucleus lentiformis mesencephali in pigeons.

    PubMed

    Wylie, D R; Crowder, N A

    2000-11-01

    Neurons in the pretectal nucleus lentiformis mesencephali (LM) are involved in the analysis of optic flow that results from self-motion. Previous studies have shown that LM neurons have large receptive fields in the contralateral eye, are excited in response to largefield stimuli moving in a particular (preferred) direction, and are inhibited in response to motion in the opposite (anti-preferred) direction. We investigated the responses of LM neurons to sine wave gratings of varying spatial and temporal frequency drifting in the preferred and anti-preferred directions. The LM neurons fell into two categories. "Fast" neurons were maximally excited by gratings of low spatial [0.03-0.25 cycles/ degrees (cpd)] and mid-high temporal frequencies (0.5-16 Hz). "Slow" neurons were maximally excited by gratings of high spatial (0.35-2 cpd) and low-mid temporal frequencies (0.125-2 Hz). Of the slow neurons, all but one preferred forward (temporal to nasal) motion. The fast group included neurons that preferred forward, backward, upward, and downward motion. For most cells (81%), the spatial and temporal frequency that elicited maximal excitation to motion in the preferred direction did not coincide with the spatial and temporal frequency that elicited maximal inhibition to gratings moving in the anti-preferred direction. With respect to motion in the anti-preferred direction, a substantial proportion of the LM neurons (32%) showed bi-directional responses. That is, the spatiotemporal plots contained domains of excitation in addition to the region of inhibition. Neurons tuned to stimulus velocity across different spatial frequency were rare (5%), but some neurons (39%) were tuned to temporal frequency. These results are discussed in relation to previous studies of the responses of neurons in the accessory optic system and pretectum to drifting gratings and other largefield stimuli. PMID:11067995

  14. Relationship of fast- and slow-timescale neuronal dynamics in human MEG and SEEG.

    PubMed

    Zhigalov, Alexander; Arnulfo, Gabriele; Nobili, Lino; Palva, Satu; Palva, J Matias

    2015-04-01

    A growing body of evidence suggests that the neuronal dynamics are poised at criticality. Neuronal avalanches and long-range temporal correlations (LRTCs) are hallmarks of such critical dynamics in neuronal activity and occur at fast (subsecond) and slow (seconds to hours) timescales, respectively. The critical dynamics at different timescales can be characterized by their power-law scaling exponents. However, insight into the avalanche dynamics and LRTCs in the human brain has been largely obtained with sensor-level MEG and EEG recordings, which yield only limited anatomical insight and results confounded by signal mixing. We investigated here the relationship between the human neuronal dynamics at fast and slow timescales using both source-reconstructed MEG and intracranial stereotactical electroencephalography (SEEG). Both MEG and SEEG revealed avalanche dynamics that were characterized parameter-dependently by power-law or truncated-power-law size distributions. Both methods also revealed robust LRTCs throughout the neocortex with distinct scaling exponents in different functional brain systems and frequency bands. The exponents of power-law regimen neuronal avalanches and LRTCs were strongly correlated across subjects. Qualitatively similar power-law correlations were also observed in surrogate data without spatial correlations but with scaling exponents distinct from those of original data. Furthermore, we found that LRTCs in the autonomous nervous system, as indexed by heart-rate variability, were correlated in a complex manner with cortical neuronal avalanches and LRTCs in MEG but not SEEG. These scalp and intracranial data hence show that power-law scaling behavior is a pervasive but neuroanatomically inhomogeneous property of neuronal dynamics in central and autonomous nervous systems. PMID:25834062

  15. Slow-fast stochastic diffusion dynamics and quasi-stationarity for diploid populations with varying size.

    PubMed

    Coron, Camille

    2016-01-01

    We are interested in the long-time behavior of a diploid population with sexual reproduction and randomly varying population size, characterized by its genotype composition at one bi-allelic locus. The population is modeled by a 3-dimensional birth-and-death process with competition, weak cooperation and Mendelian reproduction. This stochastic process is indexed by a scaling parameter K that goes to infinity, following a large population assumption. When the individual birth and natural death rates are of order K, the sequence of stochastic processes indexed by K converges toward a new slow-fast dynamics with variable population size. We indeed prove the convergence toward 0 of a fast variable giving the deviation of the population from quasi Hardy-Weinberg equilibrium, while the sequence of slow variables giving the respective numbers of occurrences of each allele converges toward a 2-dimensional diffusion process that reaches (0,0) almost surely in finite time. The population size and the proportion of a given allele converge toward a Wright-Fisher diffusion with stochastically varying population size and diploid selection. We insist on differences between haploid and diploid populations due to population size stochastic variability. Using a non trivial change of variables, we study the absorption of this diffusion and its long time behavior conditioned on non-extinction. In particular we prove that this diffusion starting from any non-trivial state and conditioned on not hitting (0,0) admits a unique quasi-stationary distribution. We give numerical approximations of this quasi-stationary behavior in three biologically relevant cases: neutrality, overdominance, and separate niches. PMID:25840519

  16. Distinct fast and slow processes contribute to the selection of preferred step frequency during human walking.

    PubMed

    Snaterse, Mark; Ton, Robert; Kuo, Arthur D; Donelan, J Maxwell

    2011-06-01

    Humans spontaneously select a step frequency that minimizes the energy expenditure of walking. This selection might be embedded within the neural circuits that generate gait so that the optimum is pre-programmed for a given walking speed. Or perhaps step frequency is directly optimized, based on sensed feedback of energy expenditure. Direct optimization is expected to be slow due to the compounded effect of delays and iteration, whereas a pre-programmed mechanism presumably allows for faster step frequency selection, albeit dependent on prior experience. To test for both pre-programmed selection and direct optimization, we applied perturbations to treadmill walking to elicit transient changes in step frequency. We found that human step frequency adjustments (n = 7) occurred with two components, the first dominating the response (66 ± 10% of total amplitude change; mean ± SD) and occurring quite quickly (1.44 ± 1.14 s to complete 95% of total change). The other component was of smaller amplitude (35 ± 10% of total change) and took tens of seconds (27.56 ± 16.18 s for 95% completion). The fast process appeared to be too fast for direct optimization and more indicative of a pre-programmed response. It also persisted even with unusual closed-loop perturbations that conflicted with prior experience and rendered the response energetically suboptimal. The slow process was more consistent with the timing expected for direct optimization. Our interpretation of these results is that humans may rely heavily on pre-programmed gaits to rapidly select their preferred step frequency and then gradually fine-tune that selection with direct optimization. PMID:21393467

  17. Motor units in cross-reinnervated fast and slow twitch muscle of the cat.

    PubMed Central

    Bagust, J; Lewis, D M; Westerman, R A

    1981-01-01

    1. Isometric contractile properties of motor units were measured in cross-reinnervated fast (flexor digitorum longus) and slow (soleus) twitch muscles of the cat. All but one cross was at least 95% pure. 2. There was a reduction in the number of motor units in all muscles, but totals remained about equal in cross-reinnervated soleus and flexor digitorum longus. 3. Motor unit tensions (mean and maximum values) were higher in cross-reinnervated soleus than in cross-reinnervated flexor digitorum longus, reversing the differences between normal muscles. This was due to increases in muscle mass and in the tension developed per unit cross-sectional area. There were motor unit tensions larger and smaller than those seen in normal muscle, but the range was comparable with that seen in self-reinnervated muscle. 4. The changes in twitch time to peak of whole muscle following cross-reinnervations resulted from a change over the whole range of motor units. The conversion of soleus was less complete than that of flexor digitorum longus, and the time to peak of its fastest motor unit was twice as long as any seen in normal flexor digitorum longus. 5. In neither of the cross-reinnervated muscles were the fast contracting motor units larger than the slow contracting ones, and in cross-reinnervated soleus they were smaller. 6. Axonal conduction velocity was correlated with motor unit tension in both muscles and with twitch time to peak in cross-reinnervated flexor digitorum longus, but in all cases less clearly than in normal muscles. 7. The ratio of twitch to tetanic tension increased with increasing twitch time to peak, as in normal muscles. PMID:7277217

  18. MAGNETIC FLUX DENSITY MEASURED IN FAST AND SLOW SOLAR WIND STREAMS

    SciTech Connect

    Erdos, G.; Balogh, A.

    2012-07-10

    The radial component of the heliospheric magnetic field vector is used to estimate the open magnetic flux density of the Sun. This parameter has been calculated using observations from the Ulysses mission that covered heliolatitudes from 80 Degree-Sign S to 80 Degree-Sign N, from 1990 to 2009 and distances from 1 to 5.4 AU, the Advanced Composition Explorer mission at 1 AU from 1997 to 2010, the OMNI interplanetary database from 1971, and the Helios 1 and 2 missions that covered the distance range from 0.3 to 1 AU. The flux density was found to be much affected by fluctuations in the magnetic field which make its calculated value dependent on heliospheric location, type of solar wind (fast or slow), and the level of solar activity. However, fluctuations are distributed symmetrically perpendicular to the average Parker direction. Therefore, distributions of the field vector in the two-dimensional plane defined by the radial and azimuthal directions in heliospheric coordinates provide a way to reduce the effects of the fluctuations on the measurement of the flux density. This leads to a better defined flux density parameter; the distributions modified by removing the effects of fluctuations then allow a clearer assessment of the dependence of the flux density on heliospheric location, solar wind type, and solar activity. This assessment indicates that the flux density normalized to 1 AU is independent of location and solar wind type (fast or slow). However, there is a residual dependence on solar activity which can be studied using the modified flux density measurements.

  19. Enhanced four-wave mixing in graphene-silicon slow-light photonic crystal waveguides

    SciTech Connect

    Zhou, Hao E-mail: tg2342@columbia.edu; Gu, Tingyi E-mail: tg2342@columbia.edu McMillan, James F.; Wong, Chee Wei E-mail: tg2342@columbia.edu; Petrone, Nicholas; Zande, Arend van der; Hone, James C.; Yu, Mingbin; Lo, Guoqiang; Kwong, Dim-Lee; Feng, Guoying; Zhou, Shouhuan

    2014-09-01

    We demonstrate the enhanced four-wave mixing of monolayer graphene on slow-light silicon photonic crystal waveguides. 200-μm interaction length, a four-wave mixing conversion efficiency of −23 dB is achieved in the graphene-silicon slow-light hybrid, with an enhanced 3-dB conversion bandwidth of about 17 nm. Our measurements match well with nonlinear coupled-mode theory simulations based on the measured waveguide dispersion, and provide an effective way for all-optical signal processing in chip-scale integrated optics.

  20. Effect of loss on slow-light-enhanced second-harmonic generation in periodic nanostructures.

    PubMed

    Saravi, Sina; Quintero-Bermudez, Rafael; Setzpfandt, Frank; Asger Mortensen, N; Pertsch, Thomas

    2016-07-01

    We theoretically analyze the dependence of second-harmonic generation efficiency on the group index in periodic optical waveguides with loss. We investigate different possible scenarios of using slow light to enhance the efficiency of this process and show that in some cases there exists a maximally achievable efficiency reached for finite values of the group index at the point of phase-matching. Furthermore, we identify situations for which slow light, surprisingly, does not enhance the second-harmonic generation efficiency. Our results are corroborated by rigorous nonlinear simulations of second-harmonic generation in periodic nanobeam waveguides with loss. PMID:27367114

  1. Slow light in a simple metamaterial structure constructed by cut and continuous metal strips

    NASA Astrophysics Data System (ADS)

    Kang, M.; Li, Y. N.; Chen, J.; Chen, J.; Bai, Q.; Wang, H. T.; Wu, P. H.

    2010-09-01

    Recently, slow light in metamaterials has been investigated based on the coupling between two quasi-bound states, in classic analogue of electromagnetically induced transparency in atomic systems. Here we demonstrate the feasibility in achieving slow light in metamaterials, based on the mechanism of coupling between a quasi-bound state and a continuum state. The theoretical prediction by a two-particle model is in good agreement with the experimental result in the metamaterial composed of the cut and continuous metal strips. The present work illustrates the versatility of metamaterials, implying the great potential in many applications.

  2. Response of slow and fast muscle to hypothyroidism: maximal shortening velocity and myosin isoforms

    NASA Technical Reports Server (NTRS)

    Caiozzo, V. J.; Herrick, R. E.; Baldwin, K. M.

    1992-01-01

    This study examined both the shortening velocity and myosin isoform distribution of slow- (soleus) and fast-twitch (plantaris) skeletal muscles under hypothyroid conditions. Adult female Sprague-Dawley rats were randomly assigned to one of two groups: control (n = 7) or hypothyroid (n = 7). In both muscles, the relative contents of native slow myosin (SM) and type I myosin heavy chain (MHC) increased in response to the hypothyroid treatment. The effects were such that the hypothyroid soleus muscle expressed only the native SM and type I MHC isoforms while repressing native intermediate myosin and type IIA MHC. In the plantaris, the relative content of native SM and type I MHC isoforms increased from 5 to 13% and from 4 to 10% of the total myosin pool, respectively. Maximal shortening velocity of the soleus and plantaris as measured by the slack test decreased by 32 and 19%, respectively, in response to hypothyroidism. In contrast, maximal shortening velocity as estimated by force-velocity data decreased only in the soleus (-19%). No significant change was observed for the plantaris.

  3. Coupled slow and fast surface dynamics in an electrocatalytic oscillator: Model and simulations

    SciTech Connect

    Nascimento, Melke A.; Nagao, Raphael; Eiswirth, Markus; Varela, Hamilton

    2014-12-21

    The co-existence of disparate time scales is pervasive in many systems. In particular for surface reactions, it has been shown that the long-term evolution of the core oscillator is decisively influenced by slow surface changes, such as progressing deactivation. Here we present an in-depth numerical investigation of the coupled slow and fast surface dynamics in an electrocatalytic oscillator. The model consists of four nonlinear coupled ordinary differential equations, investigated over a wide parameter range. Besides the conventional bifurcation analysis, the system was studied by means of high-resolution period and Lyapunov diagrams. It was observed that the bifurcation diagram changes considerably as the irreversible surface poisoning evolves, and the oscillatory region shrinks. The qualitative dynamics changes accordingly and the chaotic oscillations are dramatically suppressed. Nevertheless, periodic cascades are preserved in a confined region of the resistance vs. voltage diagram. Numerical results are compared to experiments published earlier and the latter reinterpreted. Finally, the comprehensive description of the time-evolution in the period and Lyapunov diagrams suggests further experimental studies correlating the evolution of the system's dynamics with changes of the catalyst structure.

  4. Fast associative memory + slow neural circuitry = the computational model of the brain.

    NASA Astrophysics Data System (ADS)

    Berkovich, Simon; Berkovich, Efraim; Lapir, Gennady

    1997-08-01

    We propose a computational model of the brain based on a fast associative memory and relatively slow neural processors. In this model, processing time is expensive but memory access is not, and therefore most algorithmic tasks would be accomplished by using large look-up tables as opposed to calculating. The essential feature of an associative memory in this context (characteristic for a holographic type memory) is that it works without an explicit mechanism for resolution of multiple responses. As a result, the slow neuronal processing elements, overwhelmed by the flow of information, operate as a set of templates for ranking of the retrieved information. This structure addresses the primary controversy in the brain architecture: distributed organization of memory vs. localization of processing centers. This computational model offers an intriguing explanation of many of the paradoxical features in the brain architecture, such as integration of sensors (through DMA mechanism), subliminal perception, universality of software, interrupts, fault-tolerance, certain bizarre possibilities for rapid arithmetics etc. In conventional computer science the presented type of a computational model did not attract attention as it goes against the technological grain by using a working memory faster than processing elements.

  5. One dimensional full wave analysis of slow-to-fast mode conversion in lower hybrid frequencies

    SciTech Connect

    Jia, Guo-Zhang; Gao, Zhe

    2014-12-15

    The linear conversion from the slow wave to the fast wave in the lower hybrid range of frequencies is analyzed numerically by using the set of field equations describing waves in a cold plane-stratified plasma. The equations are solved as a two-point boundary value problem, where the polarizations of each mode are set consistently in the boundary conditions. The scattering coefficients and the field patterns are obtained for various density profiles. It is shown that, for large density scale length, the results agree well with the traditional cognitions. In contrast, the reflected component and the probable transmitted-converted component from the conversion region, which are neglected in the usual calculations, become significant when the scale length is smaller than the wavelength of the mode. The inclusion of these new components will improve the accuracy of the simulated propagation and deposition for the injected rf power when the conversion process is involved within a sharp-varying density profile. Meanwhile, the accessibility of the incident slow wave for the low frequency case is also affected by the scale length of the density profile.

  6. Coupled slow and fast surface dynamics in an electrocatalytic oscillator: Model and simulations

    NASA Astrophysics Data System (ADS)

    Nascimento, Melke A.; Nagao, Raphael; Eiswirth, Markus; Varela, Hamilton

    2014-12-01

    The co-existence of disparate time scales is pervasive in many systems. In particular for surface reactions, it has been shown that the long-term evolution of the core oscillator is decisively influenced by slow surface changes, such as progressing deactivation. Here we present an in-depth numerical investigation of the coupled slow and fast surface dynamics in an electrocatalytic oscillator. The model consists of four nonlinear coupled ordinary differential equations, investigated over a wide parameter range. Besides the conventional bifurcation analysis, the system was studied by means of high-resolution period and Lyapunov diagrams. It was observed that the bifurcation diagram changes considerably as the irreversible surface poisoning evolves, and the oscillatory region shrinks. The qualitative dynamics changes accordingly and the chaotic oscillations are dramatically suppressed. Nevertheless, periodic cascades are preserved in a confined region of the resistance vs. voltage diagram. Numerical results are compared to experiments published earlier and the latter reinterpreted. Finally, the comprehensive description of the time-evolution in the period and Lyapunov diagrams suggests further experimental studies correlating the evolution of the system's dynamics with changes of the catalyst structure.

  7. Multiscale analysis of slow-fast neuronal learning models with noise

    PubMed Central

    2012-01-01

    This paper deals with the application of temporal averaging methods to recurrent networks of noisy neurons undergoing a slow and unsupervised modification of their connectivity matrix called learning. Three time-scales arise for these models: (i) the fast neuronal dynamics, (ii) the intermediate external input to the system, and (iii) the slow learning mechanisms. Based on this time-scale separation, we apply an extension of the mathematical theory of stochastic averaging with periodic forcing in order to derive a reduced deterministic model for the connectivity dynamics. We focus on a class of models where the activity is linear to understand the specificity of several learning rules (Hebbian, trace or anti-symmetric learning). In a weakly connected regime, we study the equilibrium connectivity which gathers the entire ‘knowledge’ of the network about the inputs. We develop an asymptotic method to approximate this equilibrium. We show that the symmetric part of the connectivity post-learning encodes the correlation structure of the inputs, whereas the anti-symmetric part corresponds to the cross correlation between the inputs and their time derivative. Moreover, the time-scales ratio appears as an important parameter revealing temporal correlations. PMID:23174307

  8. Fast and accurate propagation of coherent light

    PubMed Central

    Lewis, R. D.; Beylkin, G.; Monzón, L.

    2013-01-01

    We describe a fast algorithm to propagate, for any user-specified accuracy, a time-harmonic electromagnetic field between two parallel planes separated by a linear, isotropic and homogeneous medium. The analytical formulation of this problem (ca 1897) requires the evaluation of the so-called Rayleigh–Sommerfeld integral. If the distance between the planes is small, this integral can be accurately evaluated in the Fourier domain; if the distance is very large, it can be accurately approximated by asymptotic methods. In the large intermediate region of practical interest, where the oscillatory Rayleigh–Sommerfeld kernel must be applied directly, current numerical methods can be highly inaccurate without indicating this fact to the user. In our approach, for any user-specified accuracy ϵ>0, we approximate the kernel by a short sum of Gaussians with complex-valued exponents, and then efficiently apply the result to the input data using the unequally spaced fast Fourier transform. The resulting algorithm has computational complexity , where we evaluate the solution on an N×N grid of output points given an M×M grid of input samples. Our algorithm maintains its accuracy throughout the computational domain. PMID:24204184

  9. NOTCH Signaling Regulates Asymmetric Cell Fate of Fast- and Slow-Cycling Colon Cancer-Initiating Cells.

    PubMed

    Srinivasan, Tara; Walters, Jewell; Bu, Pengcheng; Than, Elaine Bich; Tung, Kuei-Ling; Chen, Kai-Yuan; Panarelli, Nicole; Milsom, Jeff; Augenlicht, Leonard; Lipkin, Steven M; Shen, Xiling

    2016-06-01

    Colorectal cancer cells with stem-like properties, referred to as colon cancer-initiating cells (CCIC), have high tumorigenic potential. While CCIC can differentiate to promote cellular heterogeneity, it remains unclear whether CCIC within a tumor contain distinct subpopulations. Here, we describe the co-existence of fast- and slow-cycling CCIC, which can undergo asymmetric division to generate each other, highlighting CCIC plasticity and interconvertibility. Fast-cycling CCIC express markers, such as LGR5 and CD133, rely on MYC for their proliferation, whereas slow-cycling CCIC express markers, such as BMI1 and hTERT, are independent of MYC. NOTCH signaling promotes asymmetric cell fate, regulating the balance between these two populations. Overall, our results illuminate the basis for CCIC heterogeneity and plasticity by defining a direct interconversion mechanism between slow- and fast-cycling CCIC. Cancer Res; 76(11); 3411-21. ©2016 AACR. PMID:27197180

  10. Fast and slow crystal growth kinetics in glass-forming melts

    NASA Astrophysics Data System (ADS)

    Orava, J.; Greer, A. L.

    2014-06-01

    Published values of crystal growth rates are compared for supercooled glass-forming liquids undergoing congruent freezing at a planar crystal-liquid interface. For the purposes of comparison pure metals are considered to be glass-forming systems, using data from molecular-dynamics simulations. For each system, the growth rate has a maximum value Umax at a temperature Tmax that lies between the glass-transition temperature Tg and the melting temperature Tm. A classification is suggested, based on the lability (specifically, the propensity for fast crystallization), of the liquid. High-lability systems show "fast" growth characterized by a high Umax, a low Tmax / Tm, and a very broad peak in U vs. T / Tm. In contrast, systems showing "slow" growth have a low Umax, a high Tmax / Tm, and a sharp peak in U vs. T / Tm. Despite the difference of more than 11 orders of magnitude in Umax seen in pure metals and in silica, the range of glass-forming systems surveyed fit into a common pattern in which the lability increases with lower reduced glass-transition temperature (Tg / Tm) and higher fragility of the liquid. A single parameter, a linear combination of Tg / Tm and fragility, can show a good correlation with Umax. For all the systems, growth at Umax is coupled to the atomic/molecular mobility in the liquid. It is found that, across the diversity of glass-forming systems, Tmax / Tg = 1.48 ± 0.15.

  11. Strength of density feedback in census data increases from slow to fast life histories

    PubMed Central

    Herrando-Pérez, Salvador; Delean, Steven; Brook, Barry W; Bradshaw, Corey J A

    2012-01-01

    Life-history theory predicts an increasing rate of population growth among species arranged along a continuum from slow to fast life histories. We examine the effects of this continuum on density-feedback strength estimated using long-term census data from >700 vertebrates, invertebrates, and plants. Four life-history traits (Age at first reproduction, Body size, Fertility, Longevity) were related statistically to Gompertz strength of density feedback using generalized linear mixed-effects models and multi-model inference. Life-history traits alone explained 10 to 30% of the variation in strength across species (after controlling for time-series length and phylogenetic nonindependence). Effect sizes were largest for body size in mammals and longevity in birds, and density feedback was consistently stronger for smaller-bodied and shorter-lived species. Overcompensatory density feedback (strength <−1) occurred in 20% of species, predominantly at the fast end of the life-history continuum, implying relatively high population variability. These results support the idea that life history leaves an evolutionary signal in long-term population trends as inferred from census data. Where there is a lack of detailed demographic data, broad life-history information can inform management and conservation decisions about rebound capacity from low numbers, and propensity to fluctuate, of arrays of species in areas planned for development, harvesting, protection, and population recovery. PMID:22957193

  12. Velocity, force, power, and Ca2+ sensitivity of fast and slow monkey skeletal muscle fibers

    NASA Technical Reports Server (NTRS)

    Fitts, R. H.; Bodine, S. C.; Romatowski, J. G.; Widrick, J. J.

    1998-01-01

    In this study, we determined the contractile properties of single chemically skinned fibers prepared from the medial gastrocnemius (MG) and soleus (Sol) muscles of adult male rhesus monkeys and assessed the effects of the spaceflight living facility known as the experiment support primate facility (ESOP). Muscle biopsies were obtained 4 wk before and immediately after an 18-day ESOP sit, and fiber type was determined by immunohistochemical techniques. The MG slow type I fiber was significantly smaller than the MG type II, Sol type I, and Sol type II fibers. The ESOP sit caused a significant reduction in the diameter of type I and type I/II (hybrid) fibers of Sol and MG type II and hybrid fibers but no shift in fiber type distribution. Single-fiber peak force (mN and kN/m2) was similar between fiber types and was not significantly different from values previously reported for other species. The ESOP sit significantly reduced the force (mN) of Sol type I and MG type II fibers. This decline was entirely explained by the atrophy of these fiber types because the force per cross-sectional area (kN/m2) was not altered. Peak power of Sol and MG fast type II fiber was 5 and 8.5 times that of slow type I fiber, respectively. The ESOP sit reduced peak power by 25 and 18% in Sol type I and MG type II fibers, respectively, and, for the former fiber type, shifted the force-pCa relationship to the right, increasing the Ca2+ activation threshold and the free Ca2+ concentration, eliciting half-maximal activation. The ESOP sit had no effect on the maximal shortening velocity (Vo) of any fiber type. Vo of the hybrid fibers was only slightly higher than that of slow type I fibers. This result supports the hypothesis that in hybrid fibers the slow myosin heavy chain would be expected to have a disproportionately greater influence on Vo.

  13. Dynamics of slow light and light storage in a Doppler-broadened electromagnetically-induced-transparency medium: A numerical approach

    NASA Astrophysics Data System (ADS)

    Su, Shih-Wei; Chen, Yi-Hsin; Gou, Shih-Chuan; Horng, Tzyy-Leng; Yu, Ite A.

    2011-01-01

    We present a numerical scheme to study the dynamics of slow light and light storage in an electromagnetically-induced-transparency (EIT) medium at finite temperatures. Allowing for the motional coupling, we derive a set of coupled Schrödinger equations describing a boosted closed three-level EIT system according to the principle of Galilean relativity. The dynamics of a uniformly moving EIT medium can thus be determined by numerically integrating the coupled Schrödinger equations for atoms plus one ancillary Maxwell-Schrödinger equation for the probe pulse. The central idea of this work rests on the assumption that the loss of ground-state coherence at finite temperatures can be ascribed to the incoherent superposition of density matrices representing the EIT systems with various velocities. Close agreements are demonstrated in comparing the numerical results with the experimental data for both slow light and light storage. In particular, the distinct characters featuring the decay of ground-state coherence can be well verified for slow light and light storage. This warrants that the current scheme can be applied to determine the decaying profile of the ground-state coherence as well as the temperature of the EIT medium.

  14. Optical imaging of fast light-evoked fast neural activation in amphibian retina

    NASA Astrophysics Data System (ADS)

    Yao, Xin-Cheng; George, John S.

    2006-02-01

    High performance functional imaging is needed for dynamic measurements of neural processing in retina. Emerging techniques of visual prosthesis also require advanced methodology for reliable validation of electromagnetic stimulation of the retina. Imaging of fast intrinsic optical responses associated with neural activation promises a variety of technical advantages over traditional single and multi-channel electrophysiological techniques for these purposes, but the application of fast optical signals for neural imaging has been limited by low signal to noise ratio and high background light intensity. However, using optimized near infrared probe light and improved optical systems, we have improved the optical signals substantially, allowing single pass measurements. Fast photodiode measurements typically disclose dynamic transmitted light changes of whole retina at the level of 10 -4 dI/I, where dI is the dynamic optical change and I is the baseline light intensity. Using a fast high performance CCD, we imaged fast intrinsic optical responses from isolated retina activated by a visible light flash. Fast, high resolution imaging disclosed larger local optical responses, and showed evidence of multiple response components with both negative- and positive-going signals, on different timescales. Darkfield imaging techniques further enhanced the sensitivity of optical measurements. At single cell resolution, brightfield imaging disclosed maxima of optical responses ~5% dI/I, while darkfield imaging showed maxima of optical responses exceeding 10% dI/I. In comparison with simultaneous electrophysiological recording, optical imaging provided much better localized patterns of response over the activated area of the retina.

  15. Fast Solar Polarimeter: First Light Results

    NASA Astrophysics Data System (ADS)

    Krishnappa, N.; Feller, A.; Iglesia, F. A.; Solanki, S.

    2013-12-01

    Accurate measurements of magnetic fields on the Sun are crucial to understand various physical processes that take place in the solar atmosphere such as solar eruptions, coronal heating, solar wind acceleration, etc. The Fast Solar Polarimeter (FSP) is a new instrument that is being developed to probe magnetic fields on the Sun. One of the main goals of this polarimeter is to carry out high precision spectropolarimetric observations with spatial resolution close to the telescope diffraction limit. The polarimeter is based on pnCCD technology with split frame transfer and simultaneous multi-channel readout, resulting in frame rate upto 1 kHz. The FSP prototype instrument uses a small format pnCCD of 264x264 pixels which has been developed by PNSensor and by the semiconductor lab of the Max Planck Society. The polarization modulator is based on two ferro-electric liquid crystals (FLCs) interlaced between two static retarders. The first solar observations have been carried out with this prototype during May-June, 2013 at German Vacuum Tower Telescope (VTT) on Tenerife, Canary Islands, Spain. Here we present the instrument performance assessments and the first results on the magnetic field measurements. Further, we briefly discuss about the next phase of FSP which will be a dual beam system with 1k x 1k CCDs.

  16. Time-reversal constraint limits unidirectional photon emission in slow-light photonic crystals.

    PubMed

    Lang, Ben; Beggs, Daryl M; Oulton, Ruth

    2016-08-28

    Photonic crystal waveguides are known to support C-points-point-like polarization singularities with local chirality. Such points can couple with dipole-like emitters to produce highly directional emission, from which spin-photon entanglers can be built. Much is made of the promise of using slow-light modes to enhance this light-matter coupling. Here we explore the transition from travelling to standing waves for two different photonic crystal waveguide designs. We find that time-reversal symmetry and the reciprocal nature of light places constraints on using C-points in the slow-light regime. We observe two distinctly different mechanisms through which this condition is satisfied in the two waveguides. In the waveguide designs, we consider a modest group velocity of vg≈c/10 is found to be the optimum for slow-light coupling to the C-points.This article is part of the themed issue 'Unifying physics and technology in light of Maxwell's equations'. PMID:27458258

  17. Quantifying Fast and Slow Responses of Terrestrial Carbon Exchange across a Water Availability Gradient in North American Flux Sites

    NASA Astrophysics Data System (ADS)

    Biederman, J. A.; Scott, R. L.; Goulden, M.

    2014-12-01

    Climate change is predicted to increase the frequency and severity of water limitation, altering terrestrial ecosystems and their carbon exchange with the atmosphere. Here we compare site-level temporal sensitivity of annual carbon fluxes to interannual variations in water availability against cross-site spatial patterns over a network of 19 eddy covariance flux sites. This network represents one order of magnitude in mean annual productivity and includes western North American desert shrublands and grasslands, savannahs, woodlands, and forests with continuous records of 4 to 12 years. Our analysis reveals site-specific patterns not identifiable in prior syntheses that pooled sites. We interpret temporal variability as an indicator of ecosystem response to annual water availability due to fast-changing factors such as leaf stomatal response and microbial activity, while cross-site spatial patterns are used to infer ecosystem adjustment to climatic water availability through slow-changing factors such as plant community and organic carbon pools. Using variance decomposition, we directly quantify how terrestrial carbon balance depends on slow- and fast-changing components of gross ecosystem production (GEP) and total ecosystem respiration (TER). Slow factors explain the majority of variance in annual net ecosystem production (NEP) across the dataset, and their relative importance is greater at wetter, forest sites than desert ecosystems. Site-specific offsets from spatial patterns of GEP and TER explain one third of NEP variance, likely due to slow-changing factors not directly linked to water, such as disturbance. TER and GEP are correlated across sites as previously shown, but our site-level analysis reveals surprisingly consistent linear relationships between these fluxes in deserts and savannahs, indicating fast coupling of TER and GEP in more arid ecosystems. Based on the uncertainty associated with slow and fast factors, we suggest a framework for improved

  18. Ultraslow, slow, or fast spreading ridges: Arm wrestling between mantle convection and far-field tectonics

    NASA Astrophysics Data System (ADS)

    Husson, Laurent; Yamato, Philippe; Bézos, Antoine

    2015-11-01

    Oceanic spreading rates are highly variable, and these variations are known to correlate to a variety of surface observables, like magmatic production, heat flow or bathymetry. This correlation lead to classify ridges into fast and slow spreading ridges, but also into the more peculiar ultraslow spreading regime. Here we explore the dynamic relationships between spreading ridges, plate tectonics and mantle flow. We first focus on the thermal signature of the mantle, that we infer from the global S-wave seismic tomography model of Debayle and Ricard (2012). We show that the thermal structure of ridges gradually departs from the half-space cooling model for slow, and above all ultraslow spreading ridges. We also infer that the sublithospheric mantle temperature decreases by more than 150 °C from fast to ultraslow spreading regimes. Both observations overall indicate that the mantle convection pattern is increasingly chaotic underneath slow and ultraslow spreading ridges. We suggest that this is due to far-field tectonics at the other ends of lithospheric plates: not only it modulates the spreading rates but it also alters the convection regime by obstructing the circulation of plates, which in turn modifies the surface kinematic conditions for the convecting mantle. We test this hypothesis using a thermo-mechanical model that represents a convection cell carrying a continental lithosphere atop. The continent gradually drifts away from the spreading ridge, from which the oceanic lithosphere grows and cools while the continent eventually collides at the opposite side. In turn, this event drastically modifies the upper kinematic condition for the convecting mantle that evolves from a mobile lid regime to an almost stagnant lid regime. Implications on spreading ridges are prominent: heat advection decreases with respect to thermal conduction, which causes the oceanic lithosphere to thicken faster; the oceanic plates get compressed and destabilized by a growing number of

  19. Ultraslow, slow, or fast spreading ridges: Arm wrestling between mantle convection and far-field tectonics

    NASA Astrophysics Data System (ADS)

    Husson, Laurent; Yamato, Philippe; Bezos, Antoine

    2016-04-01

    Oceanic spreading rates are highly variable, and these variations are known to correlate to a variety of surface observables, like magmatic production, heat flow or bathymetry. This correlation lead to classify ridges into fast and slow spreading ridges, but also into the more peculiar ultraslow spreading regime. Here we explore the dynamic relationships between spreading ridges, plate tectonics and mantle flow. We first focus on the thermal signature of the mantle, that we infer from the global S-wave seismic tomography model of Debayle and Ricard (2012). We show that the thermal structure of ridges gradually departs from the half-space cooling model for slow, and above all ultraslow spreading ridges. We also infer that the sublithospheric mantle temperature decreases by more than 150 degrees C from fast to ultraslow spreading regimes. Both observations overall indicate that the mantle convection pattern is increasingly chaotic underneath slow and ultraslow spreading ridges. We suggest that this is due to far-field tectonics at the other ends of lithospheric plates: not only it modulates the spreading rates but it also alters the convection regime by obstructing the circulation of plates, which in turn modifies the surface kinematic conditions for the convecting mantle. We test this hypothesis using a thermo-mechanical model that represents a convection cell carrying a continental lithosphere atop. The continent gradually drifts away from the spreading ridge, from which the oceanic lithosphere grows and cools while the continent eventually collides at the opposite side. In turn, this event drastically modifies the upper kinematic condition for the convecting mantle that evolves from a mobile lid regime to an almost stagnant lid regime. Implications on spreading ridges are prominent: heat advection decreases with respect to thermal conduction, which causes the oceanic lithosphere to thicken faster; the oceanic plates get compressed and destabilized by a growing

  20. The pCa-tension and force-velocity characteristics of skinned fibres isolated from fish fast and slow muscles

    PubMed Central

    Altringham, J. D.; Johnston, I. A.

    1982-01-01

    1. Single fast fibres and small bundles of two to six slow fibres were dissected from the myotomal muscles of the cod, Gadus morhua, and the dogfish, Scyliorhinus canicula. Fibres were chemically skinned with the non-ionic detergent Brij 58. 2. The isometric tension properties were investigated. Maximal isometric tensions (mean ± S.E. of mean) were 18·65±1·18 (n = 11) and 8·34±0·98 (n = 13) N cm-2 for cod fast and slow fibres, and 18·34±0·88 (n = 28) and 8·24±0·39 (n = 12) N cm-2 for dogfish fast and slow fibres respectively. The values are comparable to those observed in mammalian and amphibian skinned fibres. The lower tensions generated by the slow fibres cannot be fully explained on the basis of their lower myofibrillar fractional volume. 3. In common with previous studies, a steep sigmoid relationship between pCa and tension was observed. The threshold for tension generation was around pCa 7·2. Half-maximal pCas were 6·08 and 6·42 for cod fast and slow muscle, and 6·41 and 6·50 for dogfish fast and slow fibres respectively. Cod fibres were maximally activated at around pCa 5·18, and dogfish fibres at pCa 5·62. 4. Contraction-induced residual tensions were observed in cod fast fibres after return to relaxing solution. This phenomenon is a feature common to many skinned fibre studies, but the mechanism behind it has yet to be resolved. 5. The force-velocity characteristics of fast and slow fibres have been investigated (at 8 °C). 6. Points below 0·6 P0 on the P-V curves could be fitted to a linear form of the Hill equation. Extrapolated Vmaxs were calculated as follows: cod fast fibre Vmax = 1·01 muscle length sec-1 (Lsec-1) (a = 0·21 P0; b = 0·21 Lsec-1). Slow fibre = 0·53 Lsec-1 (a = 0·28P0; b = 0·21 Lsec-1). Dogfish fast fibre Vmax = 2·34 Lsec-1 (a = 0·06 P0; b = 0·14 Lsec-1). Slow fibre = 0·67 Lsec-1 (a = 0·19 P0; b = 0·13 Lsec-1). 7. Contraction velocity in cod slow fibres decreased continuously to produce markedly non

  1. Light harvesting in photonic crystals revisited: why do slow photons at the blue edge enhance absorption?

    PubMed

    Deparis, O; Mouchet, S R; Su, B-L

    2015-11-11

    Light harvesting enhancement by slow photons in photonic crystal catalysts or dye-sensitized solar cells is a promising approach for increasing the efficiency of photoreactions. This structural effect is exploited in inverse opal TiO2 photocatalysts by tuning the red edge of the photonic band gap to the TiO2 electronic excitation band edge. In spite of many experimental demonstrations, the slow photon effect is not fully understood yet. In particular, observed enhancement by tuning the blue edge has remained unexplained. Based on rigorous couple wave analysis simulations, we quantify light harvesting enhancement in terms of absorption increase at a specific wavelength (monochromatic UV illumination) or photocurrent increase (solar light illumination), with respect to homogeneous flat slab of equivalent material thickness. We show that the commonly accepted explanation relying on light intensity confinement in high (low) dielectric constant regions at the red (blue) edge is challenged in the case of TiO2 inverse opals because of the sub-wavelength size of the material skeleton. The reason why slow photons at the blue edge are also able to enhance light harvesting is the loose confinement of the field, which leads to significant resonantly enhanced field intensity overlap with the skeleton in both red and blue edge tuning cases, yet with different intensity patterns. PMID:26517229

  2. Slow light in dual-periodic photonic crystals based slotted-waveguide coupled cavity

    NASA Astrophysics Data System (ADS)

    Zhu, Na; Li, Yuanyuan; Chen, Cheng; Yan, Shu

    2016-09-01

    Considering the capacity of the nanoscale width area with the low-refractive index can confine light waves, the dual-periodic slotted photonic crystals, which is constructed by coupling low-refractive index's slotted-waveguide with high-refractive index's cavity is proposed in this paper. The best slow light properties and the optimal slotted-waveguide coupled cavity are achieved by adjusting the slotted-width and the period of cavity respectively. In this structure, the slow-light properties are simulated by Plane Wave Expansion (PWE), the result reveals that the group velocities are all three orders of magnitude smaller than the speed of light in vacuum, the slowest value is 7.96 ×10-4 c when the slotted-width is 0.54a and the period of cavity is 0.95a. Moreover, the corresponding Normalized Delay-Bandwidth Product (NDBP) values are larger than 0.24. Besides, the slotted-waveguide coupled cavity can be reconfigured, which accordingly changes the corresponding slow-light property. At last, the numerical results provide a new thought and method for decreasing group velocity and potential application for optical buffer in photonic crystals field.

  3. Coded output photonic A/D converter based on photonic crystal slow-light structures.

    PubMed

    Yu, Sunkyu; Koo, Sukmo; Park, Namkyoo

    2008-09-01

    A photonic analog-to-digital converter (PADC) utilizing a slow-light photonic crystal Mach-Zehnder interferometer (MZI) is proposed, to enable the optically coded output of a PADC with reduced device size and power consumption. Assuming an index modulation for the MZI on the Taylor's PADC structure, limiting factors in device size, speed, and effective number of bits are derived considering the signal transition time of the light and the slow light dispersion effects. Details of the device design and results of a time domain assessment of the device performance is described with discussions on the feasibility of sub-mm size, 20GS/s operation of the device having the ENOB (effective number of bits) > 5. PMID:18772986

  4. Deflection of slow light by magneto-optically controlled atomic media

    SciTech Connect

    Zhou, D. L.; Wang, R. Q.; Zhou, Lan; Yi, S.; Sun, C. P.

    2007-11-15

    We present a semiclassical theory for light deflection by a coherent {lambda}-type three-level atomic medium in an inhomogeneous magnetic field or an inhomogeneous control laser. When the atomic energy levels (or the Rabi coupling by the control laser) are position-dependent due to the Zeeman effect caused by the inhomogeneous magnetic field (or due to inhomogeneity of the control field profile), the spatial dependence of the refraction index of the atomic medium will result in an observable deflection of slow signal light when the electromagnetically induced transparency cancels medium absorption. Our theoretical approach based on Fermat's principle in geometrical optics not only provides a consistent explanation for the most recent experiment in a straightforward way, but also predicts the two-photon detuning dependent behaviors and larger deflection angles by three orders of magnitude for the slow signal light deflection by the atomic media in an inhomogeneous off-resonant control laser field.

  5. Slow light in semiconductor quantum dots: Effects of non-Markovianity and correlation of dephasing reservoirs

    NASA Astrophysics Data System (ADS)

    Mogilevtsev, D.; Reyes-Gómez, E.; Cavalcanti, S. B.; Oliveira, L. E.

    2015-12-01

    A theoretical investigation on slow light propagation based on electromagnetically induced transparency in a three-level quantum-dot system is performed including non-Markovian effects and correlated dephasing reservoirs. It is demonstrated that the non-Markovian nature of the process is quite essential even for conventional dephasing typical of quantum dots leading to significant enhancement or inhibition of the group velocity slow-down factor as well as to the shifting and distortion of the transmission window. Furthermore, the correlation between dephasing reservoirs may also either enhance or inhibit non-Markovian effects.

  6. An Active Learning Mammalian Skeletal Muscle Lab Demonstrating Contractile and Kinetic Properties of Fast- and Slow-Twitch Muscle

    ERIC Educational Resources Information Center

    Head, S. I.; Arber, M. B.

    2013-01-01

    The fact that humans possess fast and slow-twitch muscle in the ratio of approximately 50% has profound implications for designing exercise training strategies for power and endurance activities. With the growth of exercise and sport science courses, we have seen the need to develop an undergraduate student laboratory that demonstrates the basic…

  7. A NEW METHOD FOR CLASSIFYING FLARES OF UV Ceti TYPE STARS: DIFFERENCES BETWEEN SLOW AND FAST FLARES

    SciTech Connect

    Dal, H. A.; Evren, S.

    2010-08-15

    In this study, a new method is presented to classify flares derived from the photoelectric photometry of UV Ceti type stars. This method is based on statistical analyses using an independent samples t-test. The data used in analyses were obtained from four flare stars observed between 2004 and 2007. The total number of flares obtained in the observations of AD Leo, EV Lac, EQ Peg, and V1054 Oph is 321 in the standard Johnson U band. As a result flares can be separated into two types, slow and fast, depending on the ratio of flare decay time to flare rise time. The ratio is below 3.5 for all slow flares, while it is above 3.5 for all fast flares. Also, according to the independent samples t-test, there is a difference of about 157 s between equivalent durations of slow and fast flares. In addition, there are significant differences between amplitudes and rise times of slow and fast flares.

  8. A New Method for Classifying Flares of UV Ceti Type Stars: Differences Between Slow and Fast Flares

    NASA Astrophysics Data System (ADS)

    Dal, H. A.; Evren, S.

    2010-08-01

    In this study, a new method is presented to classify flares derived from the photoelectric photometry of UV Ceti type stars. This method is based on statistical analyses using an independent samples t-test. The data used in analyses were obtained from four flare stars observed between 2004 and 2007. The total number of flares obtained in the observations of AD Leo, EV Lac, EQ Peg, and V1054 Oph is 321 in the standard Johnson U band. As a result flares can be separated into two types, slow and fast, depending on the ratio of flare decay time to flare rise time. The ratio is below 3.5 for all slow flares, while it is above 3.5 for all fast flares. Also, according to the independent samples t-test, there is a difference of about 157 s between equivalent durations of slow and fast flares. In addition, there are significant differences between amplitudes and rise times of slow and fast flares.

  9. Stochastic 16-state model of voltage gating of gap-junction channels enclosing fast and slow gates.

    PubMed

    Paulauskas, Nerijus; Pranevicius, Henrikas; Mockus, Jonas; Bukauskas, Feliksas F

    2012-06-01

    Gap-junction (GJ) channels formed of connexin (Cx) proteins provide a direct pathway for electrical and metabolic cell-cell interaction. Each hemichannel in the GJ channel contains fast and slow gates that are sensitive to transjunctional voltage (Vj). We developed a stochastic 16-state model (S16SM) that details the operation of two fast and two slow gates in series to describe the gating properties of homotypic and heterotypic GJ channels. The operation of each gate depends on the fraction of Vj that falls across the gate (VG), which varies depending on the states of three other gates in series, as well as on parameters of the fast and slow gates characterizing 1), the steepness of each gate's open probability on VG; 2), the voltage at which the open probability of each gate equals 0.5; 3), the gating polarity; and 4), the unitary conductances of the gates and their rectification depending on VG. S16SM allows for the simulation of junctional current dynamics and the dependence of steady-state junctional conductance (gj,ss) on Vj. We combined global coordinate optimization algorithms with S16SM to evaluate the gating parameters of fast and slow gates from experimentally measured gj,ss-Vj dependencies in cells expressing different Cx isoforms and forming homotypic and/or heterotypic GJ channels. PMID:22713562

  10. Measurements of the fast ion slowing-down times in the HL-2A tokamak and comparison to classical theory

    SciTech Connect

    Zhang, Y. P.; Liu, Yi; Yuan, G. L.; Yang, J. W.; Song, X. Y.; Song, X. M.; Cao, J. Y.; Lei, G. J.; Wei, H. L.; Li, Y. G.; Shi, Z. B.; Li, X.; Yan, L. W.; Yang, Q. W.; Duan, X. R.; Isobe, M.; Collaboration: HL-2A Team

    2012-11-15

    Physics related to fast ions in magnetically confined fusion plasmas is a very important issue, since these particles will play an important role in future burning plasmas. Indeed, they will act as primary heating source and will sustain the self-ignited condition. To measure the fast ion slowing-down times in a magnetohydrodynamic-quiescent plasmas in different scenarios, very short pulses of a deuterium neutral beam, so-called 'blip,' with duration of about 5 ms were tangentially co-injected into a deuterium plasmas at the HuanLiuqi-2A (commonly referred to as HL-2A) tokamak [L. W. Yan, Nucl. Fusion 51, 094016 (2011)]. The decay rate of 2.45 MeV D-D fusion neutrons produced by beam-plasma reactions following neutral beam termination was measured by means of a {sup 235}U fission chamber. Experimental results were compared with those predicted by a classical slowing-down model. These results show that the fast ions are well confined with a peaked profile and the ions are slowed down classically without significant loss in the HL-2A tokamak. Moreover, it has been observed that during electron cyclotron resonance heating the fast ions have a longer slowing-down time and the neutron emission rate decay time becomes longer.

  11. A Descriptive Study of High School and University Students' Focus of Attention in Fast and Slow Orchestral Excerpts

    ERIC Educational Resources Information Center

    MacLeod, Rebecca B.; Geringer, John M.; Scott, Laurie

    2009-01-01

    The purpose of this study was to investigate listener discrimination of orchestral performances and to ascertain focus of listener attention to technical and expressive music elements of those performances. High School (n = 84) and University (n = 84) music students listened to four orchestral excerpts: two slow/soft excerpts and two fast/loud…

  12. Stochastic 16-State Model of Voltage Gating of Gap-Junction Channels Enclosing Fast and Slow Gates

    PubMed Central

    Paulauskas, Nerijus; Pranevicius, Henrikas; Mockus, Jonas; Bukauskas, Feliksas F.

    2012-01-01

    Gap-junction (GJ) channels formed of connexin (Cx) proteins provide a direct pathway for electrical and metabolic cell-cell interaction. Each hemichannel in the GJ channel contains fast and slow gates that are sensitive to transjunctional voltage (Vj). We developed a stochastic 16-state model (S16SM) that details the operation of two fast and two slow gates in series to describe the gating properties of homotypic and heterotypic GJ channels. The operation of each gate depends on the fraction of Vj that falls across the gate (VG), which varies depending on the states of three other gates in series, as well as on parameters of the fast and slow gates characterizing 1), the steepness of each gate's open probability on VG; 2), the voltage at which the open probability of each gate equals 0.5; 3), the gating polarity; and 4), the unitary conductances of the gates and their rectification depending on VG. S16SM allows for the simulation of junctional current dynamics and the dependence of steady-state junctional conductance (gj,ss) on Vj. We combined global coordinate optimization algorithms with S16SM to evaluate the gating parameters of fast and slow gates from experimentally measured gj,ss-Vj dependencies in cells expressing different Cx isoforms and forming homotypic and/or heterotypic GJ channels. PMID:22713562

  13. Fast and slow crystal growth kinetics in glass-forming melts.

    PubMed

    Orava, J; Greer, A L

    2014-06-01

    Published values of crystal growth rates are compared for supercooled glass-forming liquids undergoing congruent freezing at a planar crystal-liquid interface. For the purposes of comparison pure metals are considered to be glass-forming systems, using data from molecular-dynamics simulations. For each system, the growth rate has a maximum value U(max) at a temperature T(max) that lies between the glass-transition temperature T(g) and the melting temperature T(m). A classification is suggested, based on the lability (specifically, the propensity for fast crystallization), of the liquid. High-lability systems show "fast" growth characterized by a high U(max), a low T(max)/T(m), and a very broad peak in U vs. T/T(m). In contrast, systems showing "slow" growth have a low U(max), a high T(max)/T(m), and a sharp peak in U vs. T/T(m). Despite the difference of more than 11 orders of magnitude in U(max) seen in pure metals and in silica, the range of glass-forming systems surveyed fit into a common pattern in which the lability increases with lower reduced glass-transition temperature (T(g)/T(m)) and higher fragility of the liquid. A single parameter, a linear combination of T(g)/T(m) and fragility, can show a good correlation with U(max). For all the systems, growth at U(max) is coupled to the atomic/molecular mobility in the liquid. It is found that, across the diversity of glass-forming systems, T(max)/T(g) = 1.48 ± 0.15. PMID:24908023

  14. Estimates for Pu-239 loadings in burial ground culverts based on fast/slow neutron measurements

    SciTech Connect

    Winn, W.G.; Hochel, R.C.; Hofstetter, K.J.; Sigg, R.A.

    1989-08-15

    This report provides guideline estimates for Pu-239 mass loadings in selected burial ground culverts. The relatively high recorded Pu-239 contents of these culverts have been appraised as suspect relative to criticality concerns, because they were assayed only with the solid waste monitor (SWM) per gamma-ray counting. After 1985, subsequent waste was also assayed with the neutron coincidence counter (NCC), and a comparison of the assay methods showed that the NCC generally yielded higher assays than the SWM. These higher NCC readings signaled a need to conduct non-destructive/non-intrusive nuclear interrogations of these culverts, and a technical team conducted scoping measurements to illustrate potential assay methods based on neutron and/or gamma counting. A fast/slow neutron method has been developed to estimate the Pu-239 in the culverts. In addition, loading records include the SWM assays of all Pu-239 cuts of some of the culvert drums and these data are useful in estimating the corresponding NCC drum assays from NCC vs SWM data. Together, these methods yield predictions based on direct measurements and statistical inference.

  15. Fast and slow voltage modulation of apical Cl- permeability in toad skin at high [K+].

    PubMed

    Procopio, J

    1997-08-01

    The influence of voltage on the conductance of toad skin was studied to identify the time course of the activation/deactivation dynamics of voltage-dependent Cl- channels located in the apical membrane of mitochondrion-rich cells in this tissue. Positive apical voltage induced an important conductance inhibition which took a few seconds to fully develop and was instantaneously released by pulse inversion to negative voltage, indicating a short-duration memory of the inhibiting factors. Sinusoidal stimulation at 23.4 mM [Cl-] showed hysteresis in the current versus voltage curves, even at very low frequency, suggesting that the rate of voltage application was also relevant for the inhibition/releasing effect to develop. We conclude that the voltage modulation of apical Cl- permeability is essentially a fast process and the apparent slow components of activation/deactivation obtained in the whole skin are a consequence of a gradual voltage build-up across the apical membrane due to voltage sharing between apical and basolateral membranes. PMID:9361735

  16. Receptivity of hypersonic boundary layer due to fast-slow acoustics interaction

    NASA Astrophysics Data System (ADS)

    Gao, Jun; Luo, Ji-Sheng; Wu, Xue-Song

    2015-12-01

    The objective of receptivity is to investigate the mechanisms by which external disturbances generate unstable waves. In hypersonic boundary layers, a new receptivity process is revealed, which is that fast and slow acoustics through nonlinear interaction can excite the second mode near the lower-branch of the second mode. They can generate a sum-frequency disturbance though nonlinear interaction, which can excite the second mode. This receptivity process is generated by the nonlinear interaction and the nonparallel nature of the boundary layer. The receptivity coefficient is sensitive to the wavenumber difference between the sum-frequency disturbance and the lower-branch second mode. When the wavenumber difference is zero, the receptivity coefficient is maximum. The receptivity coefficient decreases with the increase of the wavenumber difference. It is also found that the evolution of the sum-frequency disturbance grows linearly in the beginning. It indicates that the forced term generated by the sum-frequency disturbance resonates with the second mode.

  17. Investigation of Interacting Fast and Slow Winds in Multi-ring Nebulae

    NASA Astrophysics Data System (ADS)

    Manuel, Mario; Drake, R. Paul

    2014-06-01

    Ring nebulae are often observed in the final stages of blue supergiant stars. The generally accepted formation paradigm for these systems typically consists of a sparse, fast wind interacting with a previously ejected denser, slow wind. Various numerical codes have demonstrated that such an interaction may explain observed ring nebulae. We propose a novel set of laboratory-astrophysics experiments to investigate the interaction of these two fluids and provide a controllable system to benchmark numerical simulations. The experimental platform and nominal parameters will be discussed. Support for this work was provided by NASA through Einstein Postdoctoral Fellowship grant number PF3-140111 awarded by the Chandra X-ray Center, which is operated by the Astrophysical Observatory for NASA under contract NAS8-03060. This work is funded by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, grant number DE-NA0001840 and by the Predictive Sciences Academic Alliances Program in NNSA-ASC via grant DEFC52- 08NA28616. Work by LLNL was performed under the auspices of U.S. DOE under contract DE-AC52-07NA27344.

  18. RecBCD enzyme is a DNA helicase with fast and slow motors of opposite polarity

    NASA Astrophysics Data System (ADS)

    Taylor, Andrew F.; Smith, Gerald R.

    2003-06-01

    Helicases are molecular motors that move along and unwind double-stranded nucleic acids. RecBCD enzyme is a complex helicase and nuclease, essential for the major pathway of homologous recombination and DNA repair in Escherichia coli. It has sets of helicase motifs in both RecB and RecD, two of its three subunits. This rapid, highly processive enzyme unwinds DNA in an unusual manner: the 5'-ended strand forms a long single-stranded tail, whereas the 3'-ended strand forms an ever-growing single-stranded loop and short single-stranded tail. Here we show by electron microscopy of individual molecules that RecD is a fast helicase acting on the 5'-ended strand and RecB is a slow helicase acting on the 3'-ended strand on which the single-stranded loop accumulates. Mutational inactivation of the helicase domain in RecB or in RecD, or removal of the RecD subunit, altered the rates of unwinding or the types of structure produced, or both. This dual-helicase mechanism explains how the looped recombination intermediates are generated and may serve as a general model for highly processive travelling machines with two active motors, such as other helicases and kinesins.

  19. Dispersion relations for slow and fast resistive wall modes within the Haney-Freidberg model

    SciTech Connect

    Lepikhin, N. D.; Pustovitov, V. D.

    2014-04-15

    The dispersion relation for the resistive wall modes (RWMs) is derived by using the trial function for the magnetic perturbation proposed in S. W. Haney and J. P. Freidberg, Phys. Fluids B 1, 1637 (1989). The Haney-Freidberg (HF) approach is additionally based on the expansion in d{sub w}/s≪1, where d{sub w} is the wall thickness and s is the skin depth. Here, the task is solved without this constraint. The derivation procedure is different too, but the final result is expressed in a similar form with the use of the quantities entering the HF relation. The latter is recovered from our more general relation as an asymptote at d{sub w}≪s, which proves the equivalence of the both approaches in this case. In the opposite limit (d{sub w}≫s), we obtain the growth rate γ of the RWMs as a function of γ{sub HF} calculated by the HF prescription. It is shown that γ∝γ{sub HF}{sup 2} and γ≫γ{sub HF} in this range. The proposed relations give γ for slow and fast RWMs in terms of the integrals calculated by the standard stability codes for toroidal systems with and without a perfectly conducting wall. Also, the links between the considered and existing toroidal and cylindrical models are established with estimates explicitly showing the relevant dependencies.

  20. SPECTRAL SLOPE VARIATION AT PROTON SCALES FROM FAST TO SLOW SOLAR WIND

    SciTech Connect

    Bruno, R.; Trenchi, L.; Telloni, D.

    2014-09-20

    We investigated the behavior of the spectral slope of interplanetary magnetic field fluctuations at proton scales for selected high-resolution time intervals from the WIND and MESSENGER spacecraft at 1 AU and 0.56 AU, respectively. The analysis was performed within the profile of high-speed streams, moving from fast to slow wind regions. The spectral slope showed a large variability between –3.75 and –1.75 and a robust tendency for this parameter to be steeper within the trailing edge, where the speed is higher, and to be flatter within the subsequent slower wind, following a gradual transition between these two states. The value of the spectral index seems to depend firmly on the power associated with the fluctuations within the inertial range; the higher the power, the steeper the slope. Our results support previous analyses suggesting that there must be some response of the dissipation mechanism to the level of the energy transfer rate along the inertial range.

  1. Using Instrumental and Proxy Data to Determine the Causes of Fast and Slow Warming rates

    NASA Astrophysics Data System (ADS)

    Hegerl, G. C.; Schurer, A. P.; Obrochta, S.

    2015-12-01

    The recent warming 'hiatus' is subject to intense interest, with proposed causes including natural forcing and internal variability. We derive samples of all natural and interval variability from observations and a recent proxy reconstruction to investigate the likelihood that these two sources of variability could produce a hiatus or rapid warming in surface temperature. The likelihood is found to be consistent with that calculated previously for models and exhibits a similar spatial pattern, with an Interdecadal Pacific Oscillation-like structure, although with more signal in the Atlantic than in model patterns. The number and length of events increases if natural forcing is also considered, with volcanic forcing acting as a pacemaker for both fast and slow warming rates in model simulations of the last millennium, and, to a smaller extent, from observations. Big eruptions, such as Mount Tambora in 1815, or clusters of eruptions, may result in a hiatus of over 20 years. A striking finding is the smaller influence of volcanism on surface temperature warming rates in instrumental and proxy data than in climate models. This talk will discuss the possible reasons of this discrepancy.

  2. Fatigue and contraction of slow and fast muscles in hypokinetic/hypodynamic rats

    NASA Technical Reports Server (NTRS)

    Fell, R. D.; Gladden, L. B.; Steffen, J. M.; Musacchia, X. J.

    1985-01-01

    The effects of hypokinesia/hypodynamia (H/H) on the fatigability and contractile properties of the rat soleus (S) and gastrocnemius (G) muscles have been investigated experimentally. Whole body suspension for one week was used to induce H/H, and fatigue was brought on by train stimulation for periods of 45 and 16 minutes. Following stimulation, rapid rates of fatigue were observed in the G-muscles of the suspended rats, while minimal fatigue was observed in the S-muscles. The twitch and tetanic contractile properties of the muscles were measured before and after train stimulation. It is found that H/H suspension increased twitch tension in the G-muscles, but did not change any contractile properties in the S-muscles. The peak twitch, train, tetanic tensions and time to peak were unchanged in the S-muscles of the suspended rats. On the basis of the experimental results, it is concluded that 1 wk of muscle atropy induced by H/H significantly increases fatigability in G-muscles, but does not affect the contractile properties of fast-twitch and slow-twitch muscles.

  3. Seafloor Spreading in the Lau-Havre Backarc Basins: From Fast to Ultra Slow

    NASA Astrophysics Data System (ADS)

    Martinez, F.; Dunn, R. A.; Sleeper, J. D.

    2013-12-01

    2D narrow ridge axis. Effects of the cross trending compositional 'fingers' are minimized and only expressed as second-order geological and geochemical features at the ridge. As opening rates decrease to ultra-slow in the Havre Trough, 2D plate-driven components of mantle advection and melting are minimized. The inherent buoyancy of melts dominate advection and volcanic emplacement allowing a clearer expression of intrinsic 3D compositional and melt generation patterns in the mantle wedge. These observations suggest that mantle wedge structure fundamentally consists of arc-like mantle source compositional fingers trailing basinward from arc front volcanoes within a hydrous but more MORB source-like mantle. Spreading rate controls the degree of expression of these compositional fingers in back-arc volcanic crustal accretion. Fast to intermediate rate spreading imposes a 2D ridge-parallel distribution to crustal domains whereas slow to ultra slow spreading rates allow 3D mantle wedge compositional and melt generation patterns to be expressed.

  4. Recovery of slow and fast muscles following nerve injury during early post-natal development in the rat.

    PubMed Central

    Lowrie, M B; Krishnan, S; Vrbová, G

    1982-01-01

    1. The sciatic nerve was crushed in 5-6-day-old rats and the recovery of function of slow and fast muscles was studied. The first signs of recovery of function were seen 10-12 days after the operation. 2. Maximal tetanic tension developed by the reinnervated muscles was recorded and taken as an indication of their recovery. Two months after nerve crush, slow soleus muscles developed only slightly less tension than the control unoperated soleus muscles. The reinnervated fast muscles tibialis anterior (t.a.) and extensor digitorum longus (e.d.l.) developed only about 50% of the tension of the unoperated controls. 3. The fast muscles never recovered, remaining weaker and smaller throughout the animals' life. 4. The number of muscle fibres in the reinnervated fast muscles was substantially reduced and their fibre composition altered in that they contained mainly muscle fibres with high levels of oxidative enzymes. 5. The reinnervated fast muscles became much more fatigue resistant than the unoperated controls. 6. The possibility that these changes are due to motoneurone death was examined. The motoneurones innervating the fast muscles were labelled by retrograde transport of HRP. No significant reduction in the number of motoneurones innervating the operated muscles was found. 7. These results show that nerve injury during early post-natal life causes permanent changes in fast muscles that are not caused by motoneurone death. Images PLATE 1 (cont.) PLATE 1 PLATE 2 PMID:7153915

  5. Effect of malnutrition on aerobic and anaerobic performance of fast- and slow-twitch muscles of rats.

    PubMed

    Nishio, M L; Jeejeebhoy, K N

    1992-01-01

    The effect of malnutrition on the functional properties of fast- and slow-twitch muscles from rats was studied using aerobic and anaerobic preparations. A 2-day fast and hypocaloric feeding to a weight loss of 25% were used as models of malnutrition. Soleus (slow-twitch) and extensor digitorum longus (EDL) (fast-twitch) muscles were studied using an in situ preparation with the blood supply intact and an in vitro preparation to which cyanide had been added to render the muscles anaerobic. We found that a 2-day fast had little effect on the function of muscles stimulated in situ, whereas anaerobic stimulation produced a decrease in force per gram of muscle weight in the soleus, but not in the EDL, compared with control values. Hypocaloric feeding resulted in a slowed relaxation rate, an increased Fs/Fmax ratio, and an upward shift of the force-frequency curve relative to controls when studied in situ. Under anaerobic conditions, soleus muscles from hypocaloric rats continued to show a slow relaxation rate and demonstrated a loss of force per gram of muscle weight compared with controls, particularly at low stimulation frequencies. EDL muscles from hypocaloric rats had an increased relaxation rate and were able to maintain force with anaerobic stimulation. Soleus and EDL muscles from the fasted and hypocaloric groups had lower activities of phosphofructokinase. We conclude that slow-twitch muscles from malnourished rats are at a disadvantage when required to function under anaerobic conditions. These findings suggest that muscle performance may be impaired in malnourished patients subjected to hypoxia. PMID:1386893

  6. Effects of thyroid hormone on fast- and slow-twitch skeletal muscles in young and old rats.

    PubMed Central

    Larsson, L; Li, X; Teresi, A; Salviati, G

    1994-01-01

    1. The effects of 4 weeks of thyroid hormone treatment on contractile, enzyme-histochemical and morphometric properties and on the myosin isoform composition were compared in the slow-twitch soleus and the fast-twitch extensor digitorum longus (EDL) muscle in young (3-6 months) and old (20-24 months) male rats. 2. In the soleus of untreated controls, contraction and half-relaxation times of the isometric twitch increased by 19-32% with age. The change in contractile properties was paralleled by an age-related increase in the proportions of type I fibres and type I myosin heavy chain (MHC) and slow myosin light chain (MLC) isoforms. 3. In the EDL of controls, contraction and half-relaxation times were significantly prolonged (21-38%) in the post-tetanus twitch in the old animals. No significant age-related changes were observed in enzyme-histochemical fibre-type proportions, although the number of fibres expressing both type IIA and IIB MHCs and of fibres expressing slow MLC isoforms was increased in the old animals. 4. Serum 3,5,3',5'-tetraiodothyronine (T4) levels were lower (34%) in the old animals, but the primary byproduct of T4, 3,5,3'-triiodothyronine (T3), did not differ between young and old animals. 5. The effects of 4 weeks of thyroid hormone treatment were highly muscle specific, and were more pronounced in soleus than in EDL, irrespective of animal age. In the soleus, this treatment shortened the contraction and half-relaxation times by 35-57% and decreased the number of type I fibres by 66-77% in both young and old animals. In EDL, thyroid hormone treatment significantly shortened the contraction time by 24%, but the change was restricted to the old animals. 6. In conclusion, the ability of skeletal muscle to respond to thyroid hormone treatment was not impaired in old age and the age-related changes in speed of contraction and enzyme-histochemical properties and myosin isoform compositions were diminished after thyroid hormone treatment in both the

  7. Experimental investigation of the transient dynamics of slow light in ruby

    NASA Astrophysics Data System (ADS)

    Wisniewski-Barker, Emma; Gibson, Graham M.; Franke-Arnold, Sonja; Shi, Zhimin; Narum, Paul; Boyd, Robert W.; Padgett, Miles J.

    2014-12-01

    When a pulsed light beam propagates through ruby, it is delayed by a slow-light mechanism. This mechanism has been the subject of debate (Wisniewski-Barker et al 2013 New J. Phys. 15 083020; Kozlov et al 2014 New J. Phys. 16 038001; Wisniewski-Barker et al 2014 New J. Phys. 16 038002). To distinguish between the two main proposed mechanisms, we investigate the trailing edge of a square-wave pulsed laser beam propagating through ruby. Our observation of a pronounced tail on the trailing edge of the transmitted pulse cannot be explained solely by the effects of a time-varying absorber acting upon the incident pulse. Therefore, our observation of the creation of a tail at the trailing edge of the pulse provides evidence for a complicated model of slow light in ruby that requires more than pulse reshaping. The different delays of individual Fourier components of the pulse signal explain the pulse distortion that occurs upon transmission through the ruby and must be accounted for by any model that attempts to describe the effects of slow light in ruby.

  8. Delay-Induced Bogdanov-Takens Bifurcation and Dynamical Classifications in a Slow-Fast Flexible Joint System

    NASA Astrophysics Data System (ADS)

    Xu, Jian; Jiang, Shanying

    A slow-fast delay-coupled flexible joint system is investigated in this paper. To understand the effects of time delay on the stability and oscillation of the manipulator, the geometric singular perturbation method is extended in dealing with delay differential equations. Bogdanov-Takens (BT) bifurcation of the fast subsystem is obtained, which leads to the existence of homoclinic orbits and is proved to be related to the formation of spiking. After the break of homoclinic orbits, Melnikov theory is introduced to predict the threshold curve indicating the occurrence of chaos. Numerical results show that with the increase of time delay, the stability of the system gets worse, and complicated oscillations including bursting, chaotic-bursting and complete chaos turn up. Besides, it is briefly summarized that the effect of the small parameter in the slow-fast system is to influence the convergence rate of solution trajectories, which is widely neglected in previous works.

  9. Controlling pulse delay by light and low magnetic fields: slow light in emerald induced by transient spectral hole-burning.

    PubMed

    Rajan, Rajitha Papukutty; Riesen, Hans; Rebane, Aleksander

    2013-11-15

    Slow light based on transient spectral hole-burning is reported for emerald, Be(3)Al(2)Si(6)O(18):Cr(3+). Experiments were conducted in π polarization on the R(1)(± 3/2) line (E2 ← A(2)4) at 2.2 K in zero field and low magnetic fields B||c. The hole width was strongly dependent on B||c, and this allowed us to smoothly tune the pulse delay from 40 to 154 ns between zero field and B||c = 15.2 mT. The latter corresponds to a group velocity of 16 km/s. Slow light in conjunction with a linear filter theory can be used as a powerful and accurate technique in time-resolved spectroscopy, e.g., to determine spectral hole-widths as a function of time. PMID:24322070

  10. Effects of age on calcium transport activity of sarcoplasmic reticulum in fast- and slow-twitch rat muscle fibres.

    PubMed Central

    Larsson, L; Salviati, G

    1989-01-01

    1. The calcium transport activity of the sarcoplasmic reticulum (SR) was measured in chemically skinned single fast- and slow-twitch muscle fibres from young (3 months) and old (23-24 months) rats. Contractile properties, the myosin heavy chain (MHC) composition and enzyme histochemical features were studied in relation to the SR characteristics. 2. In fast-twitch single motor units, the contraction time of the isometric twitch increased (P less than 0.001) from 13 +/- 1 ms in young animals to 18 +/- 2 ms in old ones. In the slow-twitch soleus, the contraction (P less than 0.001) and half-relaxation (P less than 0.05) times increased from 30 +/- 5 and 45 +/- 10 ms, respectively, in the young animals to 43 +/- 3 and 55 +/- 4 ms in the old ones. The proportion of slow-twitch (type I) fibres increased (P less than 0.05) with age in the soleus from 92 +/- 6 to 98 +/- 2% and the proportion of fast-twitch fibres (type IIA) decreased (P less than 0.01) from 6 +/- 5 to 0 +/- 0%. 3. The Ca2+ accumulation capacity (an index of SR volume), the rate of Ca2+ uptake and the fractional rate of SR filling (an estimate of the specific activity of the Ca2+ pump) were decreased by 18 (P less than 0.05), 32 (P less than 0.01) and 32% (P less than 0.001), respectively, in the old fast-twitch muscle fibres. In the slow-twitch muscle fibres, on the other hand, no significant age-related changes were observed in the Ca2+ transport activity of the SR. Thus, ageing exerts a differential influence on SR volume and function in fast- and slow-twitch fibres. 4. It is concluded that an age-related impairment of intrinsic SR function and a decrease in SR volume are probable factors underlying the decreased speed of contraction of fast-twitch muscle fibres in old age. In the slow-twitch soleus, on the other hand, one or more other mechanisms are responsible for the age-related decrease in the speed of contraction. The loss of fast-twitch muscle fibres in old soleus is one mechanism, but not the

  11. Increasing applicability of slow light in molecular aggregate nanofilms with two-exciton dynamics.

    PubMed

    Díaz, E; Martínez-Calzada, G C; Cabrera-Granado, E; Calderón, O G

    2016-06-01

    We study the slow-light performance in the presence of exciton-exciton interaction in films of linear molecular aggregates at the nanometer scale. In particular, we consider a four-level model to describe the creation/annihilation of two-exciton states that are relevant for high-intensity fields. Numerical simulations show delays comparable to those obtained for longer propagation distances in other media. Two-exciton dynamics could lead to larger fractional delays, even in presence of disorder, in comparison to the two-level approximation. We conclude that slow-light performance is a robust phenomenon in these systems under the increasing complexity of the two-exciton dynamics. PMID:27244416

  12. Phonon Lifetime Measurement by Stimulated Brillouin Scattering Slow Light Technique in Optical Fiber

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Meng, Zhou; Zhou, Hui-Juan

    2013-07-01

    Phonon lifetime is a significant parameter in the process of stimulated Brillouin scattering (SBS). In the present study, SBS slow light technique is used to measure phonon lifetime. Brillouin bandwidth is divided into natural, spontaneous and stimulated bandwidth. Compared with the traditional heterodyne-detection and pump-probe techniques, the natural Brillouin bandwidth can be obtained by SBS slow light technique, which equals the reciprocal of phonon lifetime and has no relations with the pump power. Another advantage of this technique is that the effect of polarization can be excluded. The natural Brillouin bandwidth is measured to be ~50 MHz and the phonon lifetime ~3.2 ns in the conventional single-mode fiber (SMF) at room temperature and zero strain. The obtained results are guidable in applications where the phonon lifetime information is a requisite such as phase conjugation and pulse compression.

  13. Identification on commercialized products of AFLP markers able to discriminate slow- from fast-growing chicken strains.

    PubMed

    Fumière, Olivier; Dubois, Marc; Grégoire, Dimitrie; Théwis, André; Berben, Gilbert

    2003-02-26

    The European chicken meat market is characterized by numerous quality marks: "Label de Qualité Wallon" in Belgium, "Label Rouge" in France, denominations of geographical origin, organic agriculture, etc. Most of those certified productions have specifications requiring the use of slow-growing chicken strains. The amplified fragment length polymorphism (AFLP) technique has been used to search molecular markers able to discriminate slow-growing chicken strains from fast-growing ones and to authenticate certified products. Two pairs of restriction enzymes (EcoRI/MseI and EcoRI/TaqI) and 121 selective primer combinations were tested on individual DNA samples from chicken products essentially in carcass form that were ascribed as belonging to either slow- or fast-growing strains. Within the resulting fingerprints, two fragments were identified as type-strains specific markers. One primer combination gives a band (333 bp) that is specific for slow-growing chickens, and another primer pair generates a band (372 bp) that was found to be characteristic of fast-growing chickens. The two markers were isolated, cloned, and sequenced. The effectiveness and the specificity of the two interesting determinants were assessed on individuals of two well-known strains (ISA 657 and Cobb 500) and on commercialized products coming from various origins. PMID:12590443

  14. Dynamic saturation in Semiconductor Optical Amplifiers: accurate model, role of carrier density, and slow light.

    PubMed

    Berger, Perrine; Alouini, Mehdi; Bourderionnet, Jérôme; Bretenaker, Fabien; Dolfi, Daniel

    2010-01-18

    We developed an improved model in order to predict the RF behavior and the slow light properties of the SOA valid for any experimental conditions. It takes into account the dynamic saturation of the SOA, which can be fully characterized by a simple measurement, and only relies on material fitting parameters, independent of the optical intensity and the injected current. The present model is validated by showing a good agreement with experiments for small and large modulation indices. PMID:20173888

  15. Dynamically tunable slow light based on plasmon induced transparency in disk resonators coupled MDM waveguide system

    NASA Astrophysics Data System (ADS)

    Han, Xu; Wang, Tao; Li, Xiaoming; Liu, Bo; He, Yu; Tang, Jian

    2015-06-01

    Ultrafast and low-power dynamically tunable single channel and multichannel slow light based on plasmon induced transparencies (PITs) in disk resonators coupled to a metal-dielectric-metal (MDM) waveguide system with a nonlinear optical Kerr medium is investigated both numerically and analytically. A coupled-mode theory (CMT) is introduced to analyze this dynamically tunable single channel slow light structure. Multichannel slow light is realized in this plasmonic waveguide structure based on a bright-dark mode coupling mechanism. In order to reduce the pump intensity and obtain ultrafast response time, the traditional nonlinear Kerr material is replaced by monolayer graphene. It is found that the magnitude of the single PIT window can be controlled between 0.08 and 0.48, while the corresponding group index is controlled between 14.5 and 2.0 by dynamically decreasing pump intensity from 11.7 to 4.4 MW cm-2. Moreover, the phase shift multiplication effect is found in this structure. This work paves a new way towards the realization of highly integrated optical circuits and networks, especially for wavelength-selective, all-optical storage and nonlinear devices.

  16. Slow-light effect in a silicon photonic crystal waveguide as a sub-bandgap photodiode.

    PubMed

    Terada, Yosuke; Miyasaka, Kenji; Ito, Hiroyuki; Baba, Toshihiko

    2016-01-15

    We demonstrate a Si sub-bandgap photodiode in a photonic crystal slow-light waveguide that operates at telecom wavelengths and can be fabricated using a Ge-free, standard Si-photonics CMOS process. In photodiodes based on absorption via mid-bandgap states, the slow-light enhancement enables performance that is well balanced among high responsivity, low dark current, high speed, wide working spectrum, and CMOS-process compatibility, all of which are otherwise difficult to achieve simultaneously. Owing to the slow-light effect and supplemental gain at a high reverse bias, the photodiode shows a responsivity of 0.15  A/W with a low dark current of 40 nA, which is attributed to no particular processes such as ion implantation and excess exposure of the Si surface. The maximum responsivity was 0.36  A/W. The modest gain allows for sufficient frequency bandwidth to observe an eye opening at up to 30  Gb/s. PMID:26766696

  17. Study of SBS slow light based on nano-material doped fiber

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Lang, Pei-Lin; Zhang, Ru

    2009-03-01

    A novel optical fiber doped with nano material InP is manufactured by the modified chemical vapor deposition (MCVD). The slow light based on stimulated Brillouin scattering (SBS) in the optical fiber is studied. The results show that a time delay of ˜738 ps is obtained when the input Stokes pulse is 900 ps(FWHM) and the SBS gain is ˜15. It shows that a considerable time delay and an amplification of the input light can be achieved by this novel optical fiber.

  18. Giant and high-resolution beam steering using slow-light waveguide amplifier.

    PubMed

    Gu, Xiaodong; Shimada, Toshikazu; Koyama, Fumio

    2011-11-01

    We propose a novel beam-steering device based on a slow-light waveguide amplifier. In this paper, we present the idea of this steering technique and show its modeling characteristics. Giant steering of the radiation beam is obtained by tuning the wavelength of input light, which is coupled into the Bragg reflector waveguide. A tunable deflection-angle range can be over 40 degrees. High beam coherency and flat intensity distribution enable us to obtain an ultra-large number of resolution-points over 1,000 for few-millimeter long devices. PMID:22109148

  19. Qubit transfer between photons at telecom and visible wavelengths in a slow-light atomic medium

    SciTech Connect

    Gogyan, A.

    2010-02-15

    We propose a method that enables efficient conversion of the quantum information frequency between different regions of a spectrum of light based on recently demonstrated strong parametric coupling between two narrow-band single-photon pulses propagating in a slow-light atomic medium [N. Sisakyan and Yu. Malakyan, Phys. Rev. A, 75, 063831 (2007)]. We show that an input qubit at telecom wavelength is transformed into another at a visible domain in a lossless and shape-conserving manner while keeping the initial quantum coherence and entanglement. These transformations can be realized with a quantum efficiency close to its maximum value.

  20. Photonic-band-gap properties for two-component slow light

    SciTech Connect

    Ruseckas, J.; Kudriasov, V.; Juzeliunas, G.; Unanyan, R. G.; Otterbach, J.; Fleischhauer, M.

    2011-06-15

    We consider two-component ''spinor'' slow light in an ensemble of atoms coherently driven by two pairs of counterpropagating control laser fields in a double tripod-type linkage scheme. We derive an equation of motion for the spinor slow light (SSL) representing an effective Dirac equation for a massive particle with the mass determined by the two-photon detuning. By changing the detuning the atomic medium acts as a photonic crystal with a controllable band gap. If the frequency of the incident probe light lies within the band gap, the light experiences reflection from the sample and can tunnel through it. For frequencies outside the band gap, the transmission and reflection probabilities oscillate with the increasing length of the sample. In both cases the reflection takes place into the complementary mode of the probe field. We investigate the influence of the finite excited state lifetime on the transmission and reflection coefficients of the probe light. We discuss possible experimental implementations of the SSL using alkali-metal atoms such as rubidium or sodium.

  1. Slow and fast annual cycles of the Asian summer monsoon in the NCEP CFSv2

    NASA Astrophysics Data System (ADS)

    Shin, Chul-Su; Huang, Bohua

    2016-07-01

    The climatological Asian summer monsoon (ASM) is decomposed into the slow and fast annual cycles (SAC and FAC). The FAC represents the abrupt onset and breaks phase-locked to the ASM seasonal progression. This study evaluates how well the NCEP Climate Forecast System version 2 (CFSv2) simulates the SAC and FAC over the Indian and East Asia monsoon regions (IMR and EAMR). The simulated SACs are in good agreement with observations in both regions. The FAC also represents the northward propagation in both observations and CFSv2. It is further demonstrated that the FAC is associated with a thermodynamic air-sea interaction. In particular, the different roles played by the wind-evaporation-SST (WES) feedback may account for the faster propagation in the IMR than the EAMR. However, compared with observations, the simulated FAC shows earlier monsoon onset and long-lasting stronger dry and wet phases in the IMR but delayed monsoon onset with weaker and less organized FAC in the EAMR. These reversed behaviors may originate from a warm (cold) SST bias in the IMR (EAMR) in boreal spring and enhanced by an overly sensitive surface evaporation to wind changes in the CFSv2. As a result, the warm spring SST bias in the IMR initiates a strong WES feedback and changes of solar insolation during boreal summer, which leads to a cold SST bias in early fall. On the other hand, the cold spring SST bias in the EAMR accounts for a weaker air-sea coupling, which in turn results in a warm SST bias after the withdrawal of the monsoon.

  2. Slow and fast annual cycles of the Asian summer monsoon in the NCEP CFSv2

    NASA Astrophysics Data System (ADS)

    Shin, Chul-Su; Huang, Bohua

    2015-10-01

    The climatological Asian summer monsoon (ASM) is decomposed into the slow and fast annual cycles (SAC and FAC). The FAC represents the abrupt onset and breaks phase-locked to the ASM seasonal progression. This study evaluates how well the NCEP Climate Forecast System version 2 (CFSv2) simulates the SAC and FAC over the Indian and East Asia monsoon regions (IMR and EAMR). The simulated SACs are in good agreement with observations in both regions. The FAC also represents the northward propagation in both observations and CFSv2. It is further demonstrated that the FAC is associated with a thermodynamic air-sea interaction. In particular, the different roles played by the wind-evaporation-SST (WES) feedback may account for the faster propagation in the IMR than the EAMR. However, compared with observations, the simulated FAC shows earlier monsoon onset and long-lasting stronger dry and wet phases in the IMR but delayed monsoon onset with weaker and less organized FAC in the EAMR. These reversed behaviors may originate from a warm (cold) SST bias in the IMR (EAMR) in boreal spring and enhanced by an overly sensitive surface evaporation to wind changes in the CFSv2. As a result, the warm spring SST bias in the IMR initiates a strong WES feedback and changes of solar insolation during boreal summer, which leads to a cold SST bias in early fall. On the other hand, the cold spring SST bias in the EAMR accounts for a weaker air-sea coupling, which in turn results in a warm SST bias after the withdrawal of the monsoon.

  3. Slow light with low group-velocity dispersion at the edge of photonic graphene

    SciTech Connect

    Ouyang Chunfang; Dong Biqin; Liu Xiaohan; Zi Jian; Xiong Zhiqiang; Zhao Fangyuan; Hu Xinhua

    2011-07-15

    We theoretically study the light propagation at the zigzag edges of a honeycomb photonic crystal (PC), or photonic graphene. It is found that the corresponding edge states have a sinusoidal dispersion similar to those found in PC coupled resonator optical waveguides [CROWs; M. Notomi et al., Nature Photon. 2, 741 (2008)]. The sinusoidal dispersion curve can be made very flat by carefully tuning edge parameters. As a result, low group velocity and small group velocity dispersion can be simultaneously obtained for light propagating at the zigzag edge of photonic graphene. Compared with PC CROWs, our slow-light system exhibits no intrinsic radiation loss and has a larger group velocity bandwidth product. Our results could find applications in on-chip optical buffers and enhanced light-matter interaction.

  4. Fast imaging of live organisms with sculpted light sheets.

    PubMed

    Chmielewski, Aleksander K; Kyrsting, Anders; Mahou, Pierre; Wayland, Matthew T; Muresan, Leila; Evers, Jan Felix; Kaminski, Clemens F

    2015-01-01

    Light-sheet microscopy is an increasingly popular technique in the life sciences due to its fast 3D imaging capability of fluorescent samples with low photo toxicity compared to confocal methods. In this work we present a new, fast, flexible and simple to implement method to optimize the illumination light-sheet to the requirement at hand. A telescope composed of two electrically tuneable lenses enables us to define thickness and position of the light-sheet independently but accurately within milliseconds, and therefore optimize image quality of the features of interest interactively. We demonstrated the practical benefit of this technique by 1) assembling large field of views from tiled single exposure each with individually optimized illumination settings; 2) sculpting the light-sheet to trace complex sample shapes within single exposures. This technique proved compatible with confocal line scanning detection, further improving image contrast and resolution. Finally, we determined the effect of light-sheet optimization in the context of scattering tissue, devising procedures for balancing image quality, field of view and acquisition speed. PMID:25893952

  5. Fast imaging of live organisms with sculpted light sheets

    NASA Astrophysics Data System (ADS)

    Chmielewski, Aleksander K.; Kyrsting, Anders; Mahou, Pierre; Wayland, Matthew T.; Muresan, Leila; Evers, Jan Felix; Kaminski, Clemens F.

    2015-04-01

    Light-sheet microscopy is an increasingly popular technique in the life sciences due to its fast 3D imaging capability of fluorescent samples with low photo toxicity compared to confocal methods. In this work we present a new, fast, flexible and simple to implement method to optimize the illumination light-sheet to the requirement at hand. A telescope composed of two electrically tuneable lenses enables us to define thickness and position of the light-sheet independently but accurately within milliseconds, and therefore optimize image quality of the features of interest interactively. We demonstrated the practical benefit of this technique by 1) assembling large field of views from tiled single exposure each with individually optimized illumination settings; 2) sculpting the light-sheet to trace complex sample shapes within single exposures. This technique proved compatible with confocal line scanning detection, further improving image contrast and resolution. Finally, we determined the effect of light-sheet optimization in the context of scattering tissue, devising procedures for balancing image quality, field of view and acquisition speed.

  6. Fast imaging of live organisms with sculpted light sheets

    PubMed Central

    Chmielewski, Aleksander K.; Kyrsting, Anders; Mahou, Pierre; Wayland, Matthew T.; Muresan, Leila; Evers, Jan Felix; Kaminski, Clemens F.

    2015-01-01

    Light-sheet microscopy is an increasingly popular technique in the life sciences due to its fast 3D imaging capability of fluorescent samples with low photo toxicity compared to confocal methods. In this work we present a new, fast, flexible and simple to implement method to optimize the illumination light-sheet to the requirement at hand. A telescope composed of two electrically tuneable lenses enables us to define thickness and position of the light-sheet independently but accurately within milliseconds, and therefore optimize image quality of the features of interest interactively. We demonstrated the practical benefit of this technique by 1) assembling large field of views from tiled single exposure each with individually optimized illumination settings; 2) sculpting the light-sheet to trace complex sample shapes within single exposures. This technique proved compatible with confocal line scanning detection, further improving image contrast and resolution. Finally, we determined the effect of light-sheet optimization in the context of scattering tissue, devising procedures for balancing image quality, field of view and acquisition speed. PMID:25893952

  7. Field efficacy and transmission of fast- and slow-killing nucleopolyhedroviruses that are infectious to Adoxophyes honmai (Lepidoptera: Tortricidae).

    PubMed

    Takahashi, Maho; Nakai, Madoka; Saito, Yasumasa; Sato, Yasushi; Ishijima, Chikara; Kunimi, Yasuhisa

    2015-03-01

    The smaller tea tortrix, Adoxophyes honmai (Lepidoptera: Tortricidae), is an economically important pest of tea in Japan. Previous work showed that a fast-killing nucleopolyhedrovirus (NPV) isolated from A. orana (AdorNPV) and a slow-killing NPV isolated from A. honmai (AdhoNPV) are both infectious to A. honmai larvae. Field application of these different NPVs was conducted against an A. honmai larval population in tea plants, and the control efficacy and transmission rate of the two NPVs were compared. The slow-killing AdhoNPV showed lower field efficacy, in terms of preventing damage caused by A. honmai larvae against the tea plants, than the fast-killing AdorNPV. However, AdhoNPV had a significantly higher horizontal transmission rate than AdorNPV. These results show that AdorNPV is suitable as an inundative agent, while AdhoNPV is an appropriate inoculative agent. PMID:25793940

  8. Field Efficacy and Transmission of Fast- and Slow-Killing Nucleopolyhedroviruses that Are Infectious to Adoxophyes honmai (Lepidoptera: Tortricidae)

    PubMed Central

    Takahashi, Maho; Nakai, Madoka; Saito, Yasumasa; Sato, Yasushi; Ishijima, Chikara; Kunimi, Yasuhisa

    2015-01-01

    The smaller tea tortrix, Adoxophyes honmai (Lepidoptera: Tortricidae), is an economically important pest of tea in Japan. Previous work showed that a fast-killing nucleopolyhedrovirus (NPV) isolated from A. orana (AdorNPV) and a slow-killing NPV isolated from A. honmai (AdhoNPV) are both infectious to A. honmai larvae. Field application of these different NPVs was conducted against an A. honmai larval population in tea plants, and the control efficacy and transmission rate of the two NPVs were compared. The slow-killing AdhoNPV showed lower field efficacy, in terms of preventing damage caused by A. honmai larvae against the tea plants, than the fast-killing AdorNPV. However, AdhoNPV had a significantly higher horizontal transmission rate than AdorNPV. These results show that AdorNPV is suitable as an inundative agent, while AdhoNPV is an appropriate inoculative agent. PMID:25793940

  9. Slow and fast traps in metal-oxide-semiconductor capacitors fabricated on recessed AlGaN/GaN heterostructures

    NASA Astrophysics Data System (ADS)

    Fiorenza, Patrick; Greco, Giuseppe; Iucolano, Ferdinando; Patti, Alfonso; Roccaforte, Fabrizio

    2015-04-01

    In this letter, slow and fast trap states in metal-oxide-semiconductor (MOS) capacitors fabricated on recessed AlGaN/GaN heterostructures were studied by frequency dependent conductance measurements. In particular, the comparison of devices before and after annealing in forming gas allowed to ascribe the fast states (with characteristic response time in the range of 5-50 μs) to SiO2/GaN "interface traps," and the slow states (50-100 μs) to "border traps" located few nanometers inside the SiO2 layer. These results can be important to predict and optimize the threshold voltage stability of hybrid MOS-based transistors on GaN.

  10. Slow dynamics in dense oil-water emulsions studied using dynamic light scattering

    NASA Astrophysics Data System (ADS)

    Medebach, Martin; Dulle, Martin; Glatter, Otto

    2009-12-01

    The 3D-echo-DLS (dynamic light scattering) flat cell light scattering instrument (3D-echo-DLS-FCLSI) presents the possibility of measuring slow dynamics of turbid and concentrated colloidal systems. It combines a modified 3D-DLS component and an echo-DLS component with the flat cell light scattering instrument. While the 3D-DLS suppresses multiple scattering, the echo-DLS allows measurements of slow dynamics or even on non-ergodic systems. The advantage of the thin flat cell is that it increases the transmission and reduces multiple scattering; i.e., singly scattered light that is required by the 3D-DLS is still available from dense turbid systems. In the first part of this contribution the 3D-echo-DLS-FCLSI is introduced and the instrumental performance is presented. The second part of the paper is concerned with the ageing behavior of dense fluids in a flat cell, and with confinement effects. Here, we show that ageing is strongly influenced by the process of filling of the flat cell. In some cases complementary methods can be utilized to measure special properties of the system; e.g., the multispeckle method is most appropriate for measuring heterogeneity effects. In the last part of the paper we compare glass transition measurements of an index-matched emulsion carried out using the 3D-echo-DLS-FCLSI and using the multispeckle instrument. We still find an α-relaxation in the glassy state.

  11. Slow-rise and Fast-rise Phases of an Erupting Solar Filament and Flare Emission Onset

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.; Moore, Ronald L.

    2005-01-01

    We observe the eruption of an active-region solar filament of 1998 July 11 using high time cadence and high spatial resolution EUV observations from the TRACE satellite, along with soft X-ray images from the soft X-ray telescope (SXT) on the Yohkoh satellite, hard X-ray fluxes from the BATSE instrument on the Compton Gamma Ray Observatory (CGRO) satellite and from the hard X-ray telescope (HXT) on Yohkoh, and ground-based magnetograms. We concentrate on the initiation of the eruption in an effort to understand the eruption mechanism. Prior to eruption the filament undergoes slow upward movement in a "slow rise" phase with an approximately constant velocity of about 15 km/s that lasts about 10 min. It then erupts in a "fast-rise" phase, accelerating to a velocity of about 200 km/s in about 5 min, and then decelerating to approximately 150 km/s over the next 5 min. EUV brightenings begin about concurrent with the start of the filament's slow rise, and remain immediately beneath the rising filament during the slow rise; initial soft X-ray brightenings occur at about the same time and location. Strong hard X-ray emission begins after the onset of the fast rise, and does not peak until the filament has traveled to a substantial altitude (to a height about equal to the initial length of the erupting filament) beyond its initial location. Additional information is available in the original extended abstract.

  12. Analytical studies on an extended car following model for mixed traffic flow with slow and fast vehicles

    NASA Astrophysics Data System (ADS)

    Li, Zhipeng; Xu, Xun; Xu, Shangzhi; Qian, Yeqing; Xu, Juan

    2016-07-01

    The car-following model is extended to take into account the characteristics of mixed traffic flow containing fast and slow vehicles. We conduct the linear stability analysis to the extended model with finding that the traffic flow can be stabilized with the increase of the percentage of the slow vehicle. It also can be concluded that the stabilization of the traffic flow closely depends on not only the average value of two maximum velocities characterizing two vehicle types, but also the standard deviation of the maximum velocities among all vehicles, when the percentage of the slow vehicles is the same as that of the fast ones. With increase of the average maximum velocity, the traffic flow becomes more and more unstable, while the increase of the standard deviation takes negative effect in stabilizing the traffic system. The direct numerical results are in good agreement with those of theoretical analysis. Moreover, the relation between the flux and the traffic density is investigated to simulate the effects of the percentage of slow vehicles on traffic flux in the whole density regions.

  13. Disentangling fast and slow attentional influences of negative and taboo spoken words in the emotional Stroop paradigm.

    PubMed

    Bertels, Julie; Kolinsky, Régine

    2016-09-01

    Although the influence of the emotional content of stimuli on attention has been considered as occurring within trial, recent studies revealed that the presentation of such stimuli would also involve a slow component. The aim of the present study was to investigate fast and slow effects of negative (Exp. 1) and taboo (Exp. 2) spoken words. For this purpose, we used an auditory variant of the emotional Stroop paradigm in which each emotional word was followed by a sequence of neutral words. Replicating results from our previous study, we observed slow but no fast effects of negative and taboo words, which we interpreted as reflecting difficulties to disengage attention from their emotional dimension. Interestingly, while the presentation of a negative word only delayed the processing of the immediately subsequent neutral word, slow effects of taboo words were long-lasting. Nevertheless, such attentional effects were only observed when the emotional words were presented in the first block of trials, suggesting that once participants develop strategies to perform the task, attention-grabbing effects of emotional words disappear. Hence, far from being automatic, the occurrence of these effects would depend on participants' attentional set. PMID:26197360

  14. Emergent Behavior in Slow-Fast Landscape-Climate Dynamics: Evidence from Spatiotemporal Flood Statistics and a Nonlinear Dynamical Model of Coevolution.

    NASA Astrophysics Data System (ADS)

    Perdigão, R. A. P.; Bloeschl, G.

    2014-12-01

    Emergent features of landscape-climate coevolution are evaluated on the basis of the sensitivity of floods to annual precipitation in space and time. For that purpose, a spatiotemporal sensitivity analysis is performed at regional scale using data from 804 catchments in Austria from 1976 to 2008. Results show that flood peaks are more responsive to spatial (regional) than to temporal (decadal) variability. Space-wise a 10% increase in precipitation leads to a 23% increase in flood peaks in Austria, whereas timewise a 10% increase in precipitation leads to an increase of just 6% in flood peaks. Catchments from dry lowlands and high wetlands exhibit similarity between the spatial and temporal sensitivities (spatiotemporal symmetry) and low landscape-climate codependence. This suggests that such regions are not coevolving significantly. However, intermediate regions show differences between those sensitivities (symmetry breaks) and higher landscape-climate codependence, suggesting undergoing coevolution. The break of symmetry is considered an emergent behavior of the coupled system. A new coevolution index is then proposed relating spatiotemporal symmetry with relative characteristic celerities. The descriptive assessment of coevolution is complemented by a simple nonlinear dynamical model of landscape-climate coevolution, in which landform evolution processes take place at the millennial scale (slow dynamics), and climate adjusts in years to decades (fast dynamics). Coevolution is expressed by the interplay between slow and fast dynamics, represented, respectively, by spatial and temporal characteristics. The model captures key features of the joint landscape-climate distribution, supporting the descriptive assessment. This paper ultimately brings to light signatures of coevolution that arise from the nonlinear coupling of the landscape-climate system at slow and fast time scales. The presented work builds on Perdigão and Blöschl (2014). Perdigão, R. A. P., and G

  15. Comparison of the morphometric dynamics of fast-growing and slow-growing strains of turbot Scophthalmus maximus

    NASA Astrophysics Data System (ADS)

    Wang, Xin'an; Ma, Aijun

    2015-07-01

    The dynamics of changes in body shape of fast-growing and slow-growing strains of turbot Scophthalmus maximus, and of the differences in body shape between the two strains, were evaluated from 3 to 27 months of age. The ratios of total length/body length, body width/body length and total length/body width were used as morphometric indices. The two strains exhibited different temporal trends in total length/body length but similar trends in body width/body length and total length/body width. Generally, body width/body length of the two strains increased with time and total length/body width decreased. Thus, the bodies of both fast-growing and slow-growing strains of turbot changed from a narrow to a more rounded shape. However, the ratio total length/body length was generally lower, body width/body length was mostly higher and total length/body width was consistently lower in the fast-growing strain than in the slow-growing strain. Correlation analysis of the three shape ratios with body weight showed that total length/body length and total length/body width were unsuitable, and that width/body length was suitable, for use as a phenotypic marker for selective breeding of turbot for growth in weight.

  16. Slow- and fast-twitch hindlimb skeletal muscle phenotypes 12 wk after ⅚ nephrectomy in Wistar rats of both sexes.

    PubMed

    Acevedo, Luz M; Peralta-Ramírez, Alan; López, Ignacio; Chamizo, Verónica E; Pineda, Carmen; Rodríguez-Ortiz, Maria E; Rodríguez, Mariano; Aguilera-Tejero, Escolástico; Rivero, José-Luis L

    2015-10-01

    This study describes fiber-type adaptations in hindlimb muscles, the interaction of sex, and the role of hypoxia on this response in 12-wk ⅚ nephrectomized rats (Nx). Contractile, metabolic, and morphological features of muscle fiber types were assessed in the slow-twitch soleus and the fast-twitch tibialis cranialis muscles of Nx rats, and compared with sham-operated controls. Rats of both sexes were considered in both groups. A slow-to-fast fiber-type transformation occurred in the tibialis cranialis of Nx rats, particularly in males. This adaptation was accomplished by impaired oxidative capacity and capillarity, increased glycolytic capacity, and no changes in size and nuclear density of muscle fiber types. An oxidative-to-glycolytic metabolic transformation was also found in the soleus muscle of Nx rats. However, a modest fast-to-slow fiber-type transformation, fiber hypertrophy, and nuclear proliferation were observed in soleus muscle fibers of male, but not of female, Nx rats. Serum testosterone levels decreased by 50% in male but not in female Nx rats. Hypoxia-inducible factor-1α protein level decreased by 42% in the tibialis cranialis muscle of male Nx rats. These data demonstrate that 12 wk of Nx induces a muscle-specific adaptive response in which myofibers do not change (or enlarge minimally) in size and nuclear density, but acquire markedly different contractile and metabolic characteristics, which are accompanied by capillary rarefaction. Muscle function and sex play relevant roles in these adaptations. PMID:26246512

  17. Effects of fast and slow patterns of tonic long-term stimulation on contractile properties of fast muscle in the cat.

    PubMed

    Eerbeek, O; Kernell, D; Verhey, B A

    1984-07-01

    Different physiological rates of 'tonic' long-term electrical stimulation (rates 5-40 Hz; activity greater than or equal to 50% total time) were delivered to the left-side common peroneal nerve of the cat hind limb. The duration of treatment was 8 weeks, and the animals had previously been subjected to a left-side hemispinalization and dorsal rhizotomy. In the absence of stimulation, these operations had no slowing or weakening effects on peroneal muscle contraction. The minimum two-pulse interval that gave a summation of tension (neuromuscular refractory period) was longer for stimulated than for non-stimulated muscles. Twitches of chronically stimulated muscles had become prolonged by more than 100%. Corresponding changes were found in the tension-frequency relation and in the 'sag'-behaviour of the stimulated muscles. There were no differences between the 'fast' (20 or 40 Hz pulse rates) and the 'slow' (5 or 10 Hz pulse rates) patterns of tonic stimulation with respect to their effects on speed-related muscle properties. Furthermore, during the period of chronic stimulation, the prolongation of twitch contraction time occurred along the same time course for the fast and slow patterns of tonic treatment. All chronically stimulated muscles had become weaker than normal. In comparison to the slow patterns, the present fast patterns of long-term activation caused (1) a smaller amount of decline in maximum muscle force, (2) a smaller twitch: tetanus ratio, and (3) the retention of a normal amount of post-tetanic potentiation of twitch size (decreased by the slow patterns). When tested by a series of 40 Hz bursts, force was better maintained in chronically stimulated muscles than in normal ones. These effects on fatigue resistance were the same for the fast and slow patterns of long-term activation. In peroneus longus muscles contralateral to the side of chronic activation, an evident impairment had commonly occurred in the capability to maintain force during tetani

  18. Cytochrome c' folding triggered by electron transfer: fast and slow formation of four-helix bundles.

    PubMed

    Lee, J C; Gray, H B; Winkler, J R

    2001-07-01

    Reduced (Fe(II)) Rhodopseudomonas palustris cytochrome c' (Cyt c') is more stable toward unfolding ([GuHCl](1/2) = 2.9(1) M) than the oxidized (Fe(III)) protein ([GuHCl](1/2) = 1.9(1) M). The difference in folding free energies (Delta Delta G(f) degrees = 70 meV) is less than half of the difference in reduction potentials of the folded protein (100 mV vs. NHE) and a free heme in aqueous solution ( approximately -150 mV). The spectroscopic features of unfolded Fe(II)-Cyt c' indicate a low-spin heme that is axially coordinated to methionine sulfur (Met-15 or Met-25). Time-resolved absorption measurements after CO photodissociation from unfolded Fe(II)(CO)-Cyt c' confirm that methionine can bind to the ferroheme on the microsecond time scale [k(obs) = 5(2) x 10(4) s(-1)]. Protein folding was initiated by photoreduction (two-photon laser excitation of NADH) of unfolded Fe(III)-Cyt c' ([GuHCl] = 2.02--2.54 M). Folding kinetics monitored by heme absorption span a wide time range and are highly heterogeneous; there are fast-folding ( approximately 10(3) s(-1)), intermediate-folding (10(2)-10(1) s(-1)), and slow-folding (10(-1) s(-1)) populations, with the last two likely containing methionine-ligated (Met-15 or Met-25) ferrohemes. Kinetics after photoreduction of unfolded Fe(III)-Cyt c' in the presence of CO are attributable to CO binding [1.4(6) x 10(3) s(-1)] and Fe(II)(CO)-Cyt c' folding [2.8(9) s(-1)] processes; stopped-flow triggered folding of Fe(III)-Cyt c' (which does not contain a protein-derived sixth ligand) is adequately described by a single kinetics phase with an estimated folding time constant of approximately 4 ms [Delta G(f) degrees = -33(3) kJ mol(-1)] at zero denaturant. PMID:11438728

  19. Cytochrome c′ folding triggered by electron transfer: Fast and slow formation of four-helix bundles

    PubMed Central

    Lee, Jennifer C.; Gray, Harry B.; Winkler, Jay R.

    2001-01-01

    Reduced (FeII) Rhodopseudomonas palustris cytochrome c′ (Cyt c′) is more stable toward unfolding ([GuHCl]1/2 = 2.9(1) M) than the oxidized (FeIII) protein ([GuHCl]1/2 = 1.9(1) M). The difference in folding free energies (ΔΔGf° = 70 meV) is less than half of the difference in reduction potentials of the folded protein (100 mV vs. NHE) and a free heme in aqueous solution (≈−150 mV). The spectroscopic features of unfolded FeII–Cyt c′ indicate a low-spin heme that is axially coordinated to methionine sulfur (Met-15 or Met-25). Time-resolved absorption measurements after CO photodissociation from unfolded FeII(CO)–Cyt c′ confirm that methionine can bind to the ferroheme on the microsecond time scale [kobs = 5(2) × 104 s−1]. Protein folding was initiated by photoreduction (two-photon laser excitation of NADH) of unfolded FeIII–Cyt c′ ([GuHCl] = 2.02–2.54 M). Folding kinetics monitored by heme absorption span a wide time range and are highly heterogeneous; there are fast-folding (≈103 s−1), intermediate-folding (102–101 s−1), and slow-folding (10−1 s−1) populations, with the last two likely containing methionine-ligated (Met-15 or Met-25) ferrohemes. Kinetics after photoreduction of unfolded FeIII–Cyt c′ in the presence of CO are attributable to CO binding [1.4(6) × 103 s−1] and FeII(CO)–Cyt c′ folding [2.8(9) s−1] processes; stopped-flow triggered folding of FeIII–Cyt c′ (which does not contain a protein-derived sixth ligand) is adequately described by a single kinetics phase with an estimated folding time constant of ≈4 ms [ΔGf° = −33(3) kJ mol−1] at zero denaturant. PMID:11438728

  20. Neural influence on the expression of acetylcholinesterase molecular forms in fast and slow rabbit skeletal muscles.

    PubMed

    Bacou, F; Vigneron, P

    1991-06-01

    With the aim of investigating the roles of motor innervation and activity on muscle characteristics, we studied the molecular forms of acetylcholinesterase (AChE) in fast-twitch (semimembranosus accessorius; SMa) and slow-twitch (semimembranosus proprius; SMp) muscles of the rabbit. We have shown that SMa and SMp express different patterns and tissue distribution of AChE forms and that the effect of long denervation varies with age. Three principal findings concerning expression of AChE molecular forms emerge from these studies. (1) The activity of AChE and the pattern of its molecular forms are particularly altered in adult denervated SMa and SMp muscles. AChE activity increases by 10-fold in both muscles, but asymmetric forms disappear in SMa and increase by 20-fold in SMp muscles. A similar alteration of AChE is found after tenotomy of these muscles, showing that the effect of denervation may be partly due to suppression of muscle activity. (2) The different changes occurring in the composition of AChE molecular forms in adult denervated SMa and SMp muscles are consistent with fluorescent staining with anti-AChE monoclonal antibodies and with DBA or VVA lectins, which bind to AChE asymmetric, collagen-tailed forms. These lectins poorly stain denervated SMa muscle surfaces but intensely stain neuromuscular junctions and extrasynaptic areas in denervated SMp muscle. (3) In contrast with the adult, denervation of 1-day-old muscles does not markedly modify the total amount of AChE or the proportions of its molecular forms, despite dramatic effects on muscle structure. These results are supported by studies of labeling with fluorescent DBA: the lectin only slightly stains the muscle fiber surface of denervated 15-day-old SMp muscle. Taken together, these data show that denervated muscles escape physiological regulation, producing increased levels of AChE with highly variable cellular distribution and patterns of molecular forms, depending on the age of operation and

  1. The ATLAS3D project - XIX. The hot gas content of early-type galaxies: fast versus slow rotators

    NASA Astrophysics Data System (ADS)

    Sarzi, Marc; Alatalo, Katherine; Blitz, Leo; Bois, Maxime; Bournaud, Frédéric; Bureau, Martin; Cappellari, Michele; Crocker, Alison; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; Lablanche, Pierre-Yves; McDermid, Richard M.; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Scott, Nicholas; Serra, Paolo; Young, Lisa M.; Weijmans, Anne-Marie

    2013-07-01

    For early-type galaxies, the ability to sustain a corona of hot, X-ray-emitting gas could have played a key role in quenching their star formation history. A halo of hot gas may act as an effective shield against the acquisition of cold gas and can quickly absorb stellar mass loss material. Yet, since the discovery by the Einstein Observatory of such X-ray haloes around early-type galaxies, the precise amount of hot gas around these galaxies still remains a matter of debate. By combining homogeneously derived photometric and spectroscopic measurements for the early-type galaxies observed as part of the ATLAS3D integral field survey with measurements of their X-ray luminosity based on X-ray data of both low and high spatial resolution (for 47 and 19 objects, respectively) we conclude that the hot gas content of early-type galaxies can depend on their dynamical structure. Specifically, whereas slow rotators generally have X-ray haloes with luminosity LX, gas and temperature T values that are well in line with what is expected if the hot gas emission is sustained by the thermalization of the kinetic energy carried by the stellar mass loss material, fast rotators tend to display LX, gas values that fall consistently below the prediction of this model, with similar T values that do not scale with the stellar kinetic energy (traced by the stellar velocity dispersion) as observed in the case of slow rotators. Such a discrepancy between the hot gas content of slow and fast rotators would appear to reduce, or even disappear, for large values of the dynamical mass (above ˜3 × 1011 M⊙), with younger fast rotators displaying also somewhat larger LX, gas values possibly owing to the additional energy input from recent supernovae explosions. Considering that fast rotators are likely to be intrinsically flatter than slow rotators, and that the few LX, gas-deficient slow rotators also happen to be relatively flat, the observed LX, gas deficiency in these objects would support

  2. Slow light in tunable low dispersion wide bandwidth photonic crystal waveguides infiltrated with magnetic fluids

    NASA Astrophysics Data System (ADS)

    Guillan-Lorenzo, Omar; Diaz-Otero, Francisco J.

    2016-01-01

    We analyze the properties of a photonic crystal waveguide as a device capable of producing slow light along a wide bandwidth. The proposed structure consists of a square lattice of hollow silicon cylinders rotated 45° immersed on a colloidal suspension of magnetic nanoparticles; this arrangement produces "U-type" group index-frequency curves. The cylinder inner radius is carefully chosen to maximize the normalized delay bandwidth product (NDBP) and the concentration of the magnetic fluid is changed in order to make the device tunable in frequency.

  3. Slow-light propagation using mode locking of spin precession in quantum dots

    SciTech Connect

    Shabaev, A.; Dutton, Z.; Kennedy, T. A.; Efros, Al. L.

    2010-11-15

    We propose using mode locking to enable coherent nonlinear optical effects in inhomogenously broadened spin ensembles. We carry out detailed calculations for quantum dot systems in which increased spin coherence via mode locking has been recently observed [A. Greilich et al., Science 313, 341 (2006); 317, 1896 (2007)]. We show how, in the presence of spin locking, a strong pulse-matching effect occurs, providing a powerful tool for high-bandwidth linear optical processing. We then go on to study 'slow light' in this system and show that high-bandwidth pulses can be controllably delayed by a time comparable to the pulse width.

  4. Emission of polarized light by slow ions after excitation near a magnetic surface

    NASA Astrophysics Data System (ADS)

    Närmann, A.; Schleberger, M.; Heiland, W.; Huber, C.; Kirschner, J.

    1991-07-01

    We investigation the emission of polarized light from slow (3-12 KeV) particles scattered off a magnetized Fe(110) surface for different transitions, energies and incident angles. Recently, a similar experiment has been performed for the grazing incident case at much higher energies [H. Winter, H. Hagedorn, R. Zimny, H. Nienhaus and J. Kirschner, Phys. Rev. Lett. 62 (1989) 296]. By changing the incident angle we can separate effects due to anisotropically distributed angular momenta from effects due to the polarization of surface electrons.

  5. Role of histidyl dipeptides in contractile function of fast and slow motor units in rat skeletal muscle.

    PubMed

    Kaczmarek, Dominik; Łochyński, Dawid; Everaert, Inge; Pawlak, Maciej; Derave, Wim; Celichowski, Jan

    2016-07-01

    The physiological role of the muscle histidyl dipeptides carnosine and anserine in contractile function of various types of muscle fibers in vivo is poorly understood. Ten adult male Wistar rats were randomly assigned to two groups: control and supplemented for 10 wk with beta-alanine, the precursor of carnosine (∼640 mg·kg body wt(-1)·day(-1)). Thereafter, contractile properties and fatigability of isolated fast fatigable (FF), fast resistant to fatigue (FR), and slow motor units (MUs) from the medial gastrocnemius were determined in deeply anaesthetized animals. The fatigue resistance was tested with a 40-Hz fatigue protocol followed by a second protocol at 40 Hz in fast and 20 Hz in slow units. In the supplemented rats, histidyl dipeptide concentrations significantly increased (P < 0.05) by 25% in the red portion of the gastrocnemius, and carnosine increased by 94% in the white portion. The twitch force of FF units and maximum tetanic force of FR units were significantly increased (P < 0.05), and the half-relaxation time was prolonged in slow units (P < 0.05). FF units showed less fatigue during the first 10 s, and FR units showed higher forces between 10 and 60 s during the 40-Hz fatigue test. In slow units, forces declined less during the first 60 s of the 20-Hz test. In conclusion, this in vivo experiment demonstrates that an elevation in muscle histidyl dipeptide content elicits beneficial changes in MU contractile characteristics and fatigue resistance. Carnosine and anserine seem to play an important yet divergent role in various MUs. PMID:27197862

  6. Broad self-trapped and slow light bands based on negative refraction and interference of magnetic coupled modes.

    PubMed

    Fang, Yun-Tuan; Ni, Zhi-Yao; Zhu, Na; Zhou, Jun

    2016-01-13

    We propose a new mechanism to achieve light localization and slow light. Through the study on the coupling of two magnetic surface modes, we find a special convex band that takes on a negative refraction effect. The negative refraction results in an energy flow concellation effect from two degenerated modes on the convex band. The energy flow concellation effect leads to forming of the self-trapped and slow light bands. In the self-trapped band light is localized around the source without reflection wall in the waveguide direction, whereas in the slow light band, light becomes the standing-waves and moving standing-waves at the center and the two sides of the waveguide, respectively. PMID:26647772

  7. Experimental demonstration of slow and superluminal light in semiconductor optical amplifiers.

    PubMed

    Pesala, Bala; Chen, Zhangyuan; Uskov, Alexander V; Chang-Hasnain, Connie

    2006-12-25

    Tunable delays in semiconductor optical amplifiers are achieved via four wave mixing between a strong pump beam and a modulated probe beam. The delay of the probe beam can be controlled both electrically, by changing the SOA bias, and optically, by varying the pump power or the pump-probe detuning. For sinusoidal modulated signal at 0.5 GHz, a tunable delay of 1.6 ns is achieved. This corresponds to a RF phase change of 1.6 pi. For 1.3 ns optical pulses propagating through the SOA a delay of 0.59 ns is achieved corresponding to a delay-bandwidth product exceeding 0.45. For both the cases, slow light and superluminal light are observed as the pump-probe detuning is varied. PMID:19532190

  8. Slow-light probe of Fermi pairing through an atom-molecule dark state

    SciTech Connect

    Jing, H.; Deng, Y.; Meystre, P.

    2011-06-15

    We consider the two-color photoassociation of a quantum degenerate atomic gas into ground-state diatomic molecules via a molecular dark state. This process can be described in terms of a {Lambda} level scheme that is formally analogous to the situation in electromagnetically induced transparency in atomic systems and therefore can result in slow-light propagation. We show that the group velocity of the light field depends explicitly on whether the atoms are bosons or fermions, as well as on the existence or absence of a pairing gap in the case of fermions, so that the measurement of the group velocity realizes a nondestructive diagnosis of the atomic state and the pairing gap.

  9. Tailoring and cancelling dispersion of slow or stopped and subwavelength surface-plasmonodielectric-polaritonic light

    NASA Astrophysics Data System (ADS)

    Karalis, Aristeidis; Joannopoulos, J. D.; Soljačić, Marin

    2009-02-01

    One fundamental aspect of photonic technology has always been the quest for the perfect light-guiding system, which would exhibit, over a large frequency bandwidth, subwavelength modes of controllable (with special interest lately on small [1]) group velocity and small attenuation, both devoid of frequency dispersion [2]. If this were possible, a temporally and spatially tiny wavepacket would basically propagate without changing shape but only with slowly uniformly decreasing size. Such a system is yet not known to exist in nature, as none of the existing material platforms can achieve simultaneously all of the above attributes, but at most only a subset. All-dielectric structures [3] cannot support highly-subwavelength light propagation, which can be attained by exploiting (bulk or surface) polaritons in plasmonic [4-14] or other resonant-material (e.g. atomic, excitonic, phononic [15, 16]) waveguiding structures, which typically suffer though from high absorption losses. The one problem, however, that is commonly shared among all existing photonic systems is modal dispersion. In particular, for slow- [17-25] and stopped- [26-28] light systems, dispersion is the major reason there is a limitation on their achievable so-called 'bandwidth-delay product' [29-34]. This fact has thus motivated the recent invention of a few advanced dispersion-cancellation schemes, which make use of coupled geometric [35] or gain-material [36] resonances or a fine balance of dispersion with nonlinearities [37]. It was also pointed out recently [38] that layered axially-uniform plasmonic-dielectric-hybrid waveguiding systems can guide broadband slow and subwavelength light, but the proposed systems were still dispersion-limited. In this Article, we show that such multilayered Surface-PlasmonoDielectric-Polaritonic (SPDP) systems allow for a new physical mechanism, which enables their inherently-single-polarization surface-polaritonic modes to additionally have - for small positive

  10. The effects of time pressure on chess skill: an investigation into fast and slow processes underlying expert performance.

    PubMed

    van Harreveld, Frenk; Wagenmakers, Eric-Jan; van der Maas, Han L J

    2007-09-01

    The ability to play chess is generally assumed to depend on two types of processes: slow processes such as search, and fast processes such as pattern recognition. It has been argued that an increase in time pressure during a game selectively hinders the ability to engage in slow processes. Here we study the effect of time pressure on expert chess performance in order to test the hypothesis that compared to weak players, strong players depend relatively heavily on fast processes. In the first study we examine the performance of players of various strengths at an online chess server, for games played under different time controls. In a second study we examine the effect of time controls on performance in world championship matches. Both studies consistently show that skill differences between players become less predictive of the game outcome as the time controls are tightened. This result indicates that slow processes are at least as important for strong players as they are for weak players. Our findings pose a challenge for current theorizing in the field of expertise and chess. PMID:17186308

  11. Symbiotic effectiveness of antibiotic-resistant mutants of fast- and slow-growing strains of Rhizobium nodulating Lotus species.

    PubMed

    Pankhurst, C E

    1977-08-01

    Mutants resistant ot 16 individual antibiotics were isolated from two fast-growing and two slow-growing strains of Lotus rhizobia and their symbiotic effectiveness on Lotus pedunculatus evaluated. Resistance to streptomycin, spectinomycin, chloramphenicol, and tetracycline (inhibitors of protein synthesis) was associated with little or no loss of effectiveness with all four strains but resistance to nalidixic acid and rifampicin (inhibitors of nucleic acid synthesis), and to D-cycloserine, novobiocin, and penicillin (inhibitors of cell wall-cell membrane synthesis) was associated with significant loss of effectiveness in 20-100% of the mutants. Resistance to viomycin, neomycin, kanamycin, and vibramycin was associated with loss of effectiveness with mutants of the two fast-growing strains but not with mutants of the two slow-growing strains. When tested on four alternate host legumes individual mutants of a slow-growing strain showed significantly different levels of effectiveness. The results suggest that both the inherent characteristics of the bacterium and of the host plant will influence the symbiotic effectiveness of antibiotic-resistant mutants of Rhizobium. PMID:890601

  12. A fast and light stream cipher for smartphones

    NASA Astrophysics Data System (ADS)

    Vidal, G.; Baptista, M. S.; Mancini, H.

    2014-06-01

    We present a stream cipher based on a chaotic dynamical system. Using a chaotic trajectory sampled under certain rules in order to avoid any attempt to reconstruct the original one, we create a binary pseudo-random keystream that can only be exactly reproduced by someone that has fully knowledge of the communication system parameters formed by a transmitter and a receiver, sharing the same initial conditions. The plaintext is XOR'ed with the keystream creating the ciphertext, the encrypted message. This keystream passes the NIST's randomness test and has been implemented in a videoconference App for smartphones, in order to show the fast and light nature of the proposed encryption system.

  13. Comment on ‘Evidence of slow-light effects from rotary drag of structured beams’

    NASA Astrophysics Data System (ADS)

    Kozlov, G. G.; Poltavtsev, S. V.; Ryzhov, I. I.; Zapasskii, V. S.

    2014-03-01

    The paper Wisniewski-Barker E et al (2013 New J. Phys. 15 083020) is intended to distinguish experimentally between two mechanisms of pulse delay in ruby and to provide evidence in favor of the slow-light model. The proposed test is based on the idea of monitoring time delay of a ‘dark pulse’ or ‘intensity null’, rather than that of some Gaussian-like pulse. We show that, because of certain experimental inconsistencies, the results of the measurements do not allow one to prefer one of the models and, thus, are interpreted inadequately. In this comment, we propose and realize a simple modification of the experiment Wisniewski-Barker E et al (2013 New J. Phys. 15 083020), which allows us to unambiguously resolve this dilemma. We show that the effect of pulse delay in ruby is perfectly described by the simple model of pulse reshaping and does not require invoking the coherent population oscillation-based slow-light effects.

  14. Strongly coupled slow-light polaritons in one-dimensional disordered localized states

    PubMed Central

    Gao, Jie; Combrie, Sylvain; Liang, Baolai; Schmitteckert, Peter; Lehoucq, Gaelle; Xavier, Stephane; Xu, XinAn; Busch, Kurt; Huffaker, Diana L.; De Rossi, Alfredo; Wong, Chee Wei

    2013-01-01

    Cavity quantum electrodynamics advances the coherent control of a single quantum emitter with a quantized radiation field mode, typically piecewise engineered for the highest finesse and confinement in the cavity field. This enables the possibility of strong coupling for chip-scale quantum processing, but till now is limited to few research groups that can achieve the precision and deterministic requirements for these polariton states. Here we observe for the first time coherent polariton states of strong coupled single quantum dot excitons in inherently disordered one-dimensional localized modes in slow-light photonic crystals. Large vacuum Rabi splittings up to 311 μeV are observed, one of the largest avoided crossings in the solid-state. Our tight-binding models with quantum impurities detail these strong localized polaritons, spanning different disorder strengths, complementary to model-extracted pure dephasing and incoherent pumping rates. Such disorder-induced slow-light polaritons provide a platform towards coherent control, collective interactions, and quantum information processing. PMID:23771242

  15. Fast frame scanning camera system for light-sheet microscopy.

    PubMed

    Wu, Di; Zhou, Xing; Yao, Baoli; Li, Runze; Yang, Yanlong; Peng, Tong; Lei, Ming; Dan, Dan; Ye, Tong

    2015-10-10

    In the interest of improving the temporal resolution for light-sheet microscopy, we designed a fast frame scanning camera system that incorporated a galvanometer scanning mirror into the imaging path of a home-built light-sheet microscope. This system transformed a temporal image sequence to a spatial one so that multiple images could be acquired during one exposure period. The improvement factor of the frame rate was dependent on the number of sub-images that could be tiled on the sensor without overlapping each other and was therefore a trade-off with the image size. As a demonstration, we achieved 960 frames/s (fps) on a CCD camera that was originally capable of recording images at only 30 fps (full frame). This allowed us to observe millisecond or sub-millisecond events with ordinary CCD cameras. PMID:26479797

  16. Comparative Dynamics of Retrograde Actin Flow and Focal Adhesions: Formation of Nascent Adhesions Triggers Transition from Fast to Slow Flow

    PubMed Central

    Alexandrova, Antonina Y.; Arnold, Katya; Schaub, Sébastien; Vasiliev, Jury M.; Meister, Jean-Jacques; Bershadsky, Alexander D.; Verkhovsky, Alexander B.

    2008-01-01

    Dynamic actin network at the leading edge of the cell is linked to the extracellular matrix through focal adhesions (FAs), and at the same time it undergoes retrograde flow with different dynamics in two distinct zones: the lamellipodium (peripheral zone of fast flow), and the lamellum (zone of slow flow located between the lamellipodium and the cell body). Cell migration involves expansion of both the lamellipodium and the lamellum, as well as formation of new FAs, but it is largely unknown how the position of the boundary between the two flow zones is defined, and how FAs and actin flow mutually influence each other. We investigated dynamic relationship between focal adhesions and the boundary between the two flow zones in spreading cells. Nascent FAs first appeared in the lamellipodium. Within seconds after the formation of new FAs, the rate of actin flow decreased locally, and the lamellipodium/lamellum boundary advanced towards the new FAs. Blocking fast actin flow with cytochalasin D resulted in rapid dissolution of nascent FAs. In the absence of FAs (spreading on poly-L-lysine-coated surfaces) retrograde flow was uniform and the velocity transition was not observed. We conclude that formation of FAs depends on actin dynamics, and in its turn, affects the dynamics of actin flow by triggering transition from fast to slow flow. Extension of the cell edge thus proceeds through a cycle of lamellipodium protrusion, formation of new FAs, advance of the lamellum, and protrusion of the lamellipodium from the new base. PMID:18800171

  17. Comparative dynamics of retrograde actin flow and focal adhesions: formation of nascent adhesions triggers transition from fast to slow flow.

    PubMed

    Alexandrova, Antonina Y; Arnold, Katya; Schaub, Sébastien; Vasiliev, Jury M; Meister, Jean-Jacques; Bershadsky, Alexander D; Verkhovsky, Alexander B

    2008-01-01

    Dynamic actin network at the leading edge of the cell is linked to the extracellular matrix through focal adhesions (FAs), and at the same time it undergoes retrograde flow with different dynamics in two distinct zones: the lamellipodium (peripheral zone of fast flow), and the lamellum (zone of slow flow located between the lamellipodium and the cell body). Cell migration involves expansion of both the lamellipodium and the lamellum, as well as formation of new FAs, but it is largely unknown how the position of the boundary between the two flow zones is defined, and how FAs and actin flow mutually influence each other. We investigated dynamic relationship between focal adhesions and the boundary between the two flow zones in spreading cells. Nascent FAs first appeared in the lamellipodium. Within seconds after the formation of new FAs, the rate of actin flow decreased locally, and the lamellipodium/lamellum boundary advanced towards the new FAs. Blocking fast actin flow with cytochalasin D resulted in rapid dissolution of nascent FAs. In the absence of FAs (spreading on poly-L-lysine-coated surfaces) retrograde flow was uniform and the velocity transition was not observed. We conclude that formation of FAs depends on actin dynamics, and in its turn, affects the dynamics of actin flow by triggering transition from fast to slow flow. Extension of the cell edge thus proceeds through a cycle of lamellipodium protrusion, formation of new FAs, advance of the lamellum, and protrusion of the lamellipodium from the new base. PMID:18800171

  18. Fast 3D reconstruction of tool wear based on monocular vision and multi-color structured light illuminator

    NASA Astrophysics Data System (ADS)

    Wang, Zhongren; Li, Bo; Zhou, Yuebin

    2014-11-01

    Fast 3D reconstruction of tool wear from 2D images has great importance to 3D measuring and objective evaluating tool wear condition, determining accurate tool change and insuring machined part's quality. Extracting 3D information of tool wear zone based on monocular multi-color structured light can realize fast recovery of surface topography of tool wear, which overcomes the problems of traditional methods such as solution diversity and slow convergence when using SFS method and stereo match when using 3D reconstruction from multiple images. In this paper, a kind of new multi-color structured light illuminator was put forward. An information mapping model was established among illuminator's structure parameters, surface morphology and color images. The mathematical model to reconstruct 3D morphology based on monocular multi-color structured light was presented. Experimental results show that this method is effective and efficient to reconstruct the surface morphology of tool wear zone.

  19. "Slow Down, You Move Too Fast:" Literature Circles as Reflective Practice

    ERIC Educational Resources Information Center

    Sanacore, Joseph

    2013-01-01

    Becoming an effective literacy learner requires a bit of slowing down and appreciating the reflective nature of reading and writing. Literature circles support this instructional direction because they provide opportunities for immersing students in discussions that encourage their personal responses. When students feel their personal responses…

  20. The Speed of Feature-Based Attention: Attentional Advantage Is Slow, but Selection Is Fast

    ERIC Educational Resources Information Center

    Huang, Liqiang

    2010-01-01

    When paying attention to a feature (e.g., red), no attentional advantage is gained in perceiving items with this feature in very brief displays. Therefore, feature-based attention seems to be slow. In previous feature-based attention studies, attention has often been measured as the difference in performance in a secondary task. In our recent work…

  1. Recognition Errors Suggest Fast Familiarity and Slow Recollection in Rhesus Monkeys

    ERIC Educational Resources Information Center

    Basile, Benjamin M.; Hampton, Robert R.

    2013-01-01

    One influential model of recognition posits two underlying memory processes: recollection, which is detailed but relatively slow, and familiarity, which is quick but lacks detail. Most of the evidence for this dual-process model in nonhumans has come from analyses of receiver operating characteristic (ROC) curves in rats, but whether ROC analyses…

  2. EFFECT OF PROTOZOAN PREDATION ON RELATIVE ABUNDANCE OF FAST- AND SLOW-GROWING BACTERIA

    EPA Science Inventory

    Survival of six bacterial species with different growth rates was tested in raw sewage and sewage rendered free of protozoa. hen the six species were inoculated at the same densities into sewage containing protozoa, the three slow-growing species were rapidly eliminated, and two ...

  3. Effect of fast-, medium- and slow-growing strains on meat quality of chickens reared under the organic farming method.

    PubMed

    Sirri, F; Castellini, C; Bianchi, M; Petracci, M; Meluzzi, A; Franchini, A

    2011-02-01

    The characteristics of meat quality, chemical and fatty acid composition, from fast-growing (FG) and medium-growing (MG) meat-type and slow-growing (SG) egg-type chickens reared under organic conditions were compared. Three-hundred and sixty 1-day-old male chicks, equally divided into three experimental groups represented by strains (FG: Cobb 700, MG: Naked neck Kabir and SG: Brown Classic Lohman) were housed into three poultry houses with outdoor pasture availability of 10 m(2)/bird located in the same Research Centre of the University of Perugia. All the birds were fed ad libitum the same diets formulated according to the European Union (EU) Regulations by using organic raw materials. Birds from the FG and MG groups were raised until 81 days, whereas birds from the SG group were raised until 96 days in order to achieve an acceptable market live weight. SG birds showed significantly (P < 0.01) higher breast meat drip and cook losses, Allo-Kramer shear values and collagen content. In comparison with FG and SG, MG exhibited a higher breast meat pH (5.86% v. 5.79% and 5.78%, respectively; P < 0.01) and a lower lightness (54.88% v. 57.81% and 56.98%, respectively; P < 0.05). Genotype dramatically affected the lipid content as well as the fatty acid composition of both breast and thigh meat. SG exhibited the lowest content of lipid, both in breast and in thigh meat, the lowest proportions of monounsaturated fatty acids (MUFA) and the highest proportions of polyunsaturated fatty acids (PUFA). The total n-3 PUFA of SG breast meat was double that of FG meat and intermediate with respect to MG birds (8.07% v. 4.07% v. 5.14% total fatty acids; P < 0.01). The fatty acid composition of thigh meat is similar to that of breast meat, but the differences among genotypes are less pronounced. Total saturated fatty acids were not affected by the genotype. In conclusion, meat functional properties of FG and MG strains appeared much more attractive both for industry and consumer

  4. Calcium-activated force responses in fast- and slow-twitch skinned muscle fibres of the rat at different temperatures.

    PubMed Central

    Stephenson, D G; Williams, D A

    1981-01-01

    1. Force responses from mechanically skinned fibres of rat skeletal muscles (extensor digitorum longus and soleus) were measured at different temperatures in the range 3-35 degrees C following sudden changes in Ca2+ concentration in the preparations. 2. At all temperatures there were characteristic differences between the slow- and fast-twitch muscle fibres with respect to the relative steady-state force-[Ca2+] relation: such as a lower [Ca2+] threshold for activation and a less steep force-pCa curve in slow-twitch muscle fibres. 3. At 3-5 degrees C the force changes in both types of muscle fibres lagged considerably behind the estimated changes in [Ca2+] within the preparations and this enabled us to perform a comparative analysis of the Ca2+ kinetics in the process of force development in both muscle fibre types. This analysis suggest that two and six Ca2+ ions are involved in the regulatory unit for contraction of slow- and fast-twitch muscle fibres respectively. 4. The rate of relaxation following a sudden decrease in [Ca2+] was much lower in the slow-twitch than in the fast-twitch muscle at 5 degrees C, suggesting that properties of the contractile apparatus could play an essential role in determining the rate of relaxation in vivo. 5. There was substantial variation in Ca2+ sensitivity between muscle fibres of the same type from different animals at each temperature. However the steepness of the force-[Ca2+] relation was essentially the same for all fibres of the same type. 6. A change in temperature from 5 to 25 degrees C had a statistically significant effect on the sensitivity of the fast-twitch muscle fibres, rendering them less sensitive to Ca2+ by a factor of 2. However a further increase in temperature from 25 to 35 degrees C did not have any statistically significant effect on the force-[Ca2+] relation in fast-twitch muscle fibres. 7. The effect of temperature on the Ca2+ sensitivity of slow-twitch muscle fibres was not statistically significant

  5. Unloading-induced slow-to-fast myosin shift in soleus muscle: nuclear MuRFs and calsarcin expression

    NASA Astrophysics Data System (ADS)

    Shenkman, Boris; Lomonosova, Yulia

    Exposure to actual and simulated microgravity is known to induce decrease in slow MyHC mRNA expression and increase in fast MyHC mRNAs expression. We supposed that altered expression of the calsarcin (CS) I and II (specific for type I and type II fibers respectively) may provide the control over myosin phenotype during unloading. We found that after 3 days of hindlimb unloading (HU) the content of CSII mRNA increased two-fold in rat soleus as compared to the cage controls. This level was maintained till the 7th day of the exposure and increased by more than 5-fold (as compared to controls) after two weeks of HU. In contrast to CSII, CSI mRNA expression didn’t change after 3 days of HU, but decreased more than 2-fold by the 7th and 14th day of HU. The increase of CSII RNA (in type II fibers) may be explained as the mechanism of stabilization of fast phenotype in all, but more important, in newly transformed type II fibers. At the same time, the decrease of CSI mRNA (in type I fibers) may be understood as counteracting the slow-to-fast transformation. Morriscot et al, (2010) demonstrated that calsarcin II expression decreased only in the double knockouts MuRF1-/MuRF2-. So, we hypothesized that CSII expression in unloaded soleus muscle might be associated with the cytoplasm-nucleus translocation of MuRF1 and MuRF2. We observed significant accumulation of MuRF1 and MuRF2 in the nuclear fraction after 3 days of HU. Thus the accumulation of MuRFs in myonuclei may promote the expression of CSII, necessary for stabilization of fast phenotype in the course of slow-to-fast shift in unloaded soleus muscle. We express our gratitude to Prof. S. Labeit (Mannheim) for kind presenting us the best antibodies against MuRF1 and MuRF2.

  6. Slow, large scales from fast, small ones in dispersive wave turbulence

    NASA Astrophysics Data System (ADS)

    Smith, Leslie; Waleffe, Fabian

    2000-11-01

    Dispersive wave turbulence in systems of geophysical interest (beta-plane, rotating, stratified and rotating-stratified flows) has been simulated with random, isotropic small scale forcing and hyper-viscosity. This can be thought of as a Langevin model of the small space-time scales only with potential implications for climate modeling. In all cases, slow, coherent large scales are generated after long times of 2nd order in the nonlinear time scale. These slow, large scales ultimately dominate the flows. Beta-plane and rotating flow results were reported earlier [PoF 11, 1608]. In stratified flows, the energy accumulates in a 1D vertically sheared flow at selected large scales. As the rotation rate is increased, a progressive transition toward generation of all large scale vortical zero modes (quasi-geostrophic 3D flow) is observed. For yet higher rotation rate, energy accumulates primarily in a 2D quasi-geostrophic flow (cyclonic vortices) at all large scales.

  7. Fabrication and characterization of photonic crystal slow light waveguides and cavities.

    PubMed

    Reardon, Christopher Paul; Rey, Isabella H; Welna, Karl; O'Faolain, Liam; Krauss, Thomas F

    2012-01-01

    Slow light has been one of the hot topics in the photonics community in the past decade, generating great interest both from a fundamental point of view and for its considerable potential for practical applications. Slow light photonic crystal waveguides, in particular, have played a major part and have been successfully employed for delaying optical signals(1-4) and the enhancement of both linear(5-7) and nonlinear devices.(8-11) Photonic crystal cavities achieve similar effects to that of slow light waveguides, but over a reduced band-width. These cavities offer high Q-factor/volume ratio, for the realization of optically(12) and electrically(13) pumped ultra-low threshold lasers and the enhancement of nonlinear effects.(14-16) Furthermore, passive filters(17) and modulators(18-19) have been demonstrated, exhibiting ultra-narrow line-width, high free-spectral range and record values of low energy consumption. To attain these exciting results, a robust repeatable fabrication protocol must be developed. In this paper we take an in-depth look at our fabrication protocol which employs electron-beam lithography for the definition of photonic crystal patterns and uses wet and dry etching techniques. Our optimised fabrication recipe results in photonic crystals that do not suffer from vertical asymmetry and exhibit very good edge-wall roughness. We discuss the results of varying the etching parameters and the detrimental effects that they can have on a device, leading to a diagnostic route that can be taken to identify and eliminate similar issues. The key to evaluating slow light waveguides is the passive characterization of transmission and group index spectra. Various methods have been reported, most notably resolving the Fabry-Perot fringes of the transmission spectrum(20-21) and interferometric techniques.(22-25) Here, we describe a direct, broadband measurement technique combining spectral interferometry with Fourier transform analysis.(26) Our method stands out

  8. Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide.

    PubMed

    Baba, Toshihiko; Kawaaski, Takashi; Sasaki, Hirokazu; Adachi, Jun; Mori, Daisuke

    2008-06-01

    This paper reports two advances in a slow light device consisting of chirped photonic crystal slab coupled waveguide on SOI substrate. One is concerning the delay-bandwidth product, indicating the buffering capacity of the device. We experimentally evaluated a record high value of 57 (a 40 ps delay and a 1.4 THz bandwidth). We also observed ~1 ps wide optical pulse transmission in the cross-correlation measurement. Regarding the pulse as a signal and considering the broadening of the pulse width due to the imperfect dispersion compensation in the device, storage of more than 12 signal bits was confirmed. The other is a wide-range tuning of the pulse delay. We propose a technique for externally controlling the chirping to permit variable delay. We demonstrate tuning of the pulse delay up to 23 ps, corresponding to a ~7 mm extension of the free space length. PMID:18545637

  9. High Purcell factor in fiber Bragg gratings utilizing the fundamental slow-light mode.

    PubMed

    Skolianos, George; Arora, Arushi; Bernier, Martin; Digonnet, Michel J F

    2015-08-01

    We demonstrate through numerical simulations that the slow-light resonances that exist in strong, apodized fiber Bragg gratings (FBGs) fabricated with femtosecond pulses in deuterium-loaded fibers can exhibit very large intensity enhancements and Purcell factors with the proper optimization of their length. This potential is illustrated with two saturated FBGs that are less than 5 mm long and have been annealed to reduce their internal loss. The first one exhibits the largest measured Purcell factor in an all-fiber device (38.7), and the second one exhibits the largest intensity enhancement (1525). These devices are anticipated to have significant applications in quantum-dot lasers, nonlinear fiber devices, and cavity quantum-electrodynamics experiments. PMID:26258327

  10. Slow light generation in single-mode rectangular core photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Yadav, Sandeep; Saini, Than Singh; Kumar, Ajeet

    2016-05-01

    In this paper, we have designed and analyzed a rectangular core photonic crystal fiber (PCF) in Tellurite material. For the designed photonics crystal fiber, we have calculated the values of confinement loss and effective mode area for different values of air filling fraction (d/Λ). For single mode operation of the designed photonic crystal fiber, we have taken d/Λ= 0.4 for the further calculation of stimulated Brillouin scattering based time delay. A maximum time delay of 158 ns has been achieved for input pump power of 39 mW. We feel the detailed theoretical investigations and simulations carried out in the study have the potential impact on the design and development of slow light-based photonic devices.

  11. Causal impact of magnetic fluctuations in slow and fast L-H transitions at TJ-II

    NASA Astrophysics Data System (ADS)

    van Milligen, B. Ph.; Estrada, T.; Carreras, B. A.; Ascasíbar, E.; Hidalgo, C.; Pastor, I.; Fontdecaba, J. M.; Balbín, R.

    2016-07-01

    This work focuses on the relationship between L-H (or L-I) transitions and MHD activity in the low magnetic shear TJ-II stellarator. It is shown that the presence of a low order rational surface in the plasma edge (gradient) region lowers the threshold density for H-mode access. MHD activity is systematically suppressed near the confinement transition. We apply a causality detection technique (based on the Transfer Entropy) to study the relation between magnetic oscillations and locally measured plasma rotation velocity (related to Zonal Flows). For this purpose, we study a large number of discharges in two magnetic configurations, corresponding to "fast" and "slow" transitions. With the "slow" transitions, the developing Zonal Flow prior to the transition is associated with the gradual reduction of magnetic oscillations. The transition itself is marked by a strong spike of "information transfer" from magnetic to velocity oscillations, suggesting that the magnetic drive may play a role in setting up the final sheared flow responsible for the H-mode transport barrier. Similar observations were made for the "fast" transitions. Thus, it is shown that magnetic oscillations associated with rational surfaces play an important and active role in confinement transitions, so that electromagnetic effects should be included in any complete transition model.

  12. Different effects of raised [K+]o on membrane potential and contraction in mouse fast- and slow-twitch muscle.

    PubMed

    Cairns, S P; Hing, W A; Slack, J R; Mills, R G; Loiselle, D S

    1997-08-01

    Increasing extracellular K+ concentration ([K+]o) from 4 to 7-14 mM reduced both tetanic force and resting membrane potential (Em) in isolated slow-twitch soleus and fast-twitch extensor digitorum longus (EDL) muscles of the mouse. The tetanic force-[K+]o relationships showed a greater force loss over 8-11 mM [K+]o in soleus than EDL, mainly because the Em was 2-3 mV less negative at each [K+]o in soleus. The tetanic force-resting Em relationships show that force was reduced in two phases: phase 1 (Em < -60 mV), a 20% force decline in which the relationships superimposed in soleus and EDL, and phase 2 (Em -60 to -55 mV), a marked force decline that was steeper in EDL than soleus. Additionally in phase 2, longer stimulation pulses restored tetanic force; the twitch force-stimulation strength relationship was shifted toward higher voltages; caffeine, a myoplasmic Ca2+ concentration elevator, increased maximum force; and twitch force fell abruptly. We suggest that 1) the K(+)-depressed force is due to reduced Ca2+ release resulting from an altered action potential profile (phase 1) and inexcitable fibers due to an increased action potential threshold (phase 2), and 2) K+ contributes to fatigue in both fast- and slow-twitch muscle when it causes depolarization to about -60 mV. PMID:9277357

  13. Magnetic resonance elastography of slow and fast shear waves illuminates differences in shear and tensile moduli in anisotropic tissue.

    PubMed

    Schmidt, J L; Tweten, D J; Benegal, A N; Walker, C H; Portnoi, T E; Okamoto, R J; Garbow, J R; Bayly, P V

    2016-05-01

    Mechanical anisotropy is an important property of fibrous tissues; for example, the anisotropic mechanical properties of brain white matter may play a key role in the mechanics of traumatic brain injury (TBI). The simplest anisotropic material model for small deformations of soft tissue is a nearly incompressible, transversely isotropic (ITI) material characterized by three parameters: minimum shear modulus (µ), shear anisotropy (ϕ=µ1µ-1) and tensile anisotropy (ζ=E1E2-1). These parameters can be determined using magnetic resonance elastography (MRE) to visualize shear waves, if the angle between the shear-wave propagation direction and fiber direction is known. Most MRE studies assume isotropic material models with a single shear (µ) or tensile (E) modulus. In this study, two types of shear waves, "fast" and "slow", were analyzed for a given propagation direction to estimate anisotropic parameters µ, ϕ, and ζ in two fibrous soft materials: turkey breast ex vivo and aligned fibrin gels. As expected, the speed of slow shear waves depended on the angle between fiber direction and propagation direction. Fast shear waves were observed when the deformations due to wave motion induced stretch in the fiber direction. Finally, MRE estimates of anisotropic mechanical properties in turkey breast were compared to estimates from direct mechanical tests. PMID:26920505

  14. Resonant interaction between a localized fast wave and a slow wave with constant asymptotic amplitude

    SciTech Connect

    Zabolotskii, A. A.

    2009-11-15

    An integrable Yajima-Oikawa system is solved in the case of a finite density, which corresponds to a slowly varying (long-wavelength) wave with finite amplitude at infinity and a localized fast-oscillating (short-wavelength) wave. Application of the results to spinor Bose-Einstein condensates and other physical systems is discussed.

  15. REVIEW ARTICLE: Slow light modes for optical delay lines: 2D photonic crystal-based design structures, performances and challenges

    NASA Astrophysics Data System (ADS)

    Talneau, A.

    2010-10-01

    This paper presents an overview of 2D photonic crystal-based structures designed to display low group velocity as well as reduced group velocity dispersions. Their main envisioned applications are optical delay lines for telecom transmissions at 1.55 µm. Optical mechanisms responsible for slowing down the optical modes and encountered in the slow light regime serve as a guideline for this paper.

  16. Kinematic Properties of Slow ICMEs and an Interpretation of a Modified Drag Equation for Fast and Moderate ICMEs

    NASA Astrophysics Data System (ADS)

    Iju, T.; Tokumaru, M.; Fujiki, K.

    2014-06-01

    We report kinematic properties of slow interplanetary coronal mass ejections (ICMEs) identified by SOHO/LASCO, interplanetary scintillation, and in situ observations and propose a modified equation for the ICME motion. We identified seven ICMEs between 2010 and 2011 and compared them with 39 events reported in our previous work. We examined 15 fast ( V SOHO- V bg>500 km s-1), 25 moderate (0 km s-1≤ V SOHO- V bg≤500 km s-1), and 6 slow ( V SOHO- V bg<0 km s-1) ICMEs, where V SOHO and V bg are the initial speed of ICMEs and the speed of the background solar wind. For slow ICMEs, we found the following results: i) They accelerate toward the speed of the background solar wind during their propagation and reach their final speed by 0.34±0.03 AU. ii) The acceleration ends when they reach 479±126 km s-1; this is close to the typical speed of the solar wind during the period of this study. iii) When γ 1 and γ 2 are assumed to be constants, a quadratic equation for the acceleration a=- γ 2( V- V bg)| V- V bg| is more appropriate than a linear one a=- γ 1( V- V bg), where V is the propagation speed of ICMEs, while the latter gives a smaller χ 2 value than the former. For the motion of the fast and moderate ICMEs, we found a modified drag equation a=-2.07×10-12( V- V bg)| V- V bg|-4.84×10-6( V- V bg). From the viewpoint of fluid dynamics, we interpret this equation as indicating that ICMEs with 0 km s-1≤ V- V bg≤2300 km s-1 are controlled mainly by the hydrodynamic Stokes drag force, while the aerodynamic drag force is a predominant factor for the propagation of ICME with V- V bg>2300 km s-1.

  17. Fast Acting Optical Forces From Far Detuned, High Intensity Light

    NASA Astrophysics Data System (ADS)

    Corder, Christopher; Arnold, Brian; Hua, Xiang; Metcalf, Harold

    2015-05-01

    We are exploring fast acting, strong optical forces from standing wave light fields with high intensity and large detuning δ >> γ , where γ is the transition linewidth. We observe these fast acting forces on a time scale of a few times the excited state lifetime τ ≡ 1 / γ thus an atom may experience at most one or two spontaneous emission events. The dipole force is typically considered when the Rabi frequency Ω << δ , but we use Ω ~ δ so the usual approximations break down because a significant excited state population can occur, even for our short interaction times that limit spontaneous emission. Our experiment measures the transverse velocity distribution of a beam of 23S He after a chosen interaction time with a perpendicular standing wave detuned from the 23S -->33P transition near 389 nm. The distribution shows velocity resonance effects that persist over a large range of Ω. We also simulate the experiment numerically using the Optical Bloch Equations and the results are consistent with our measurements. Supported by ONR and Dept. of Education GAANN

  18. Spectral Analysis of Magnetic Fluctuations at Proton Scales from Fast to Slow Solar Wind

    NASA Astrophysics Data System (ADS)

    Bruno, R.; Telloni, D.

    2015-10-01

    This Letter investigates the spectral characteristics of interplanetary magnetic field fluctuations at proton scales during several time intervals chosen along the speed profile of a fast stream. The character of the fluctuations within the first frequency decade, beyond the high-frequency break located between the fluid and kinetic regimes, strongly depends on the type of wind. While the fast wind shows a clear signature of both right-handed and left-handed polarized fluctuations, possibly associated with Kinetic {Alfv}\\acute{{{e}}}{{n}} Wave (KAW) and ion-cyclotron waves, respectively, the rarefaction region, where the wind speed and the Alfvénicity of low-frequency fluctuations decrease, shows a rapid disappearance of the ion-cyclotron signature followed by a more gradual disappearance of KAWs. Moreover, the power associated with perpendicular and parallel fluctuations also experiences rapid depletion, however, retaining the power anisotropy in favor of the perpendicular spectrum.

  19. Lateral integration of vertical-cavity surface-emitting laser and slow light Bragg reflector waveguide devices.

    PubMed

    Shimada, Toshikazu; Matsutani, Akihiro; Koyama, Fumio

    2014-03-20

    We present the modeling and the experiment on the lateral integration of a vertical-cavity surface-emitting laser (VCSEL) and slow light Bragg reflector waveguide devices. The modeling shows an efficient direct-lateral coupling from a VCSEL to an integrated slow light waveguide. The calculated result shows a possibility of 13 dB chip gain and an extinction ratio over 5 dB for a compact slow light semiconductor optical amplifier (SOA) and electroabsorption modulator integrated with a VCSEL, respectively. We demonstrate an SOA-integrated VCSEL, exhibiting the maximum output power over 6 mW. Also, we fabricate a sub-50-μm long electroabsorption modulator laterally integrated with a VCSEL. An extinction ratio of over 15 dB for a voltage swing of 2.0 V is obtained without noticeable change of threshold. In addition, we demonstrate an on-chip electrothermal beam deflector integrated with a VCSEL. PMID:24663452

  20. Comparative Ser/Thr/Tyr phosphoproteomics between two mycobacterial species: the fast growing Mycobacterium smegmatis and the slow growing Mycobacterium bovis BCG

    PubMed Central

    Nakedi, Kehilwe C.; Nel, Andrew J. M.; Garnett, Shaun; Blackburn, Jonathan M.; Soares, Nelson C.

    2015-01-01

    Ser/Thr/Tyr protein phosphorylation plays a critical role in regulating mycobacterial growth and development. Understanding the mechanistic link between protein phosphorylation signaling network and mycobacterial growth rate requires a global view of the phosphorylation events taking place at a given time under defined conditions. In the present study we employed a phosphopeptide enrichment and high throughput mass spectrometry-based strategy to investigate and qualitatively compare the phosphoproteome of two mycobacterial model organisms: the fast growing Mycobacterium smegmatis and the slow growing Mycobacterium bovis BCG. Cells were harvested during exponential phase and our analysis detected a total of 185 phospho-sites in M. smegmatis, of which 106 were confidently localized [localization probability (LP) = 0.75; PEP = 0.01]. By contrast, in M. bovis BCG the phosphoproteome comprised 442 phospho-sites, of which 289 were confidently localized. The percentage distribution of Ser/Thr/Tyr phosphorylation was 39.47, 57.02, and 3.51% for M. smegmatis and 35, 61.6, and 3.1% for M. bovis BCG. Moreover, our study identified a number of conserved Ser/Thr phosphorylated sites and conserved Tyr phosphorylated sites across different mycobacterial species. Overall a qualitative comparison of the fast and slow growing mycobacteria suggests that the phosphoproteome of M. smegmatis is a simpler version of that of M. bovis BCG. In particular, M. bovis BCG exponential cells exhibited a much more complex and sophisticated protein phosphorylation network regulating important cellular cycle events such as cell wall biosynthesis, elongation, cell division including immediately response to stress. The differences in the two phosphoproteomes are discussed in light of different mycobacterial growth rates. PMID:25904896

  1. Comparative Ser/Thr/Tyr phosphoproteomics between two mycobacterial species: the fast growing Mycobacterium smegmatis and the slow growing Mycobacterium bovis BCG.

    PubMed

    Nakedi, Kehilwe C; Nel, Andrew J M; Garnett, Shaun; Blackburn, Jonathan M; Soares, Nelson C

    2015-01-01

    Ser/Thr/Tyr protein phosphorylation plays a critical role in regulating mycobacterial growth and development. Understanding the mechanistic link between protein phosphorylation signaling network and mycobacterial growth rate requires a global view of the phosphorylation events taking place at a given time under defined conditions. In the present study we employed a phosphopeptide enrichment and high throughput mass spectrometry-based strategy to investigate and qualitatively compare the phosphoproteome of two mycobacterial model organisms: the fast growing Mycobacterium smegmatis and the slow growing Mycobacterium bovis BCG. Cells were harvested during exponential phase and our analysis detected a total of 185 phospho-sites in M. smegmatis, of which 106 were confidently localized [localization probability (LP) = 0.75; PEP = 0.01]. By contrast, in M. bovis BCG the phosphoproteome comprised 442 phospho-sites, of which 289 were confidently localized. The percentage distribution of Ser/Thr/Tyr phosphorylation was 39.47, 57.02, and 3.51% for M. smegmatis and 35, 61.6, and 3.1% for M. bovis BCG. Moreover, our study identified a number of conserved Ser/Thr phosphorylated sites and conserved Tyr phosphorylated sites across different mycobacterial species. Overall a qualitative comparison of the fast and slow growing mycobacteria suggests that the phosphoproteome of M. smegmatis is a simpler version of that of M. bovis BCG. In particular, M. bovis BCG exponential cells exhibited a much more complex and sophisticated protein phosphorylation network regulating important cellular cycle events such as cell wall biosynthesis, elongation, cell division including immediately response to stress. The differences in the two phosphoproteomes are discussed in light of different mycobacterial growth rates. PMID:25904896

  2. Melody recognition at fast and slow tempos: effects of age, experience, and familiarity.

    PubMed

    Dowling, W Jay; Bartlett, James C; Halpern, Andrea R; Andrews, W Melinda

    2008-04-01

    Eighty-one listeners defined by three age ranges (18-30, 31-59, and over 60 years) and three levels of musical experience performed an immediate recognition task requiring the detection of alterations in melodies. On each trial, a brief melody was presented, followed 5 sec later by a test stimulus that either was identical to the target or had two pitches changed, for a same-different judgment. Each melody pair was presented at 0.6 note/sec, 3.0 notes/sec, or 6.0 notes/sec. Performance was better with familiar melodies than with unfamiliar melodies. Overall performance declined slightly with age and improved substantially with increasing experience, in agreement with earlier results in an identification task. Tempo affected performance on familiar tunes (moderate was best), but not on unfamiliar tunes. We discuss these results in terms of theories of dynamic attending, cognitive slowing, and working memory in aging. PMID:18459260

  3. Orthostatic Tremor: A Spectrum of Fast and Slow Frequencies or Distinct Entities?

    PubMed Central

    Rigby, Heather B.; Rigby, Matthew H.; Caviness, John N.

    2015-01-01

    Background Orthostatic tremor (OT) is defined by the presence of a high-frequency (13–18 Hz) tremor of the legs upon standing associated with a feeling of unsteadiness. However, some patients have discharge frequencies of <13 Hz, so-called “slow OT”. The aim of this study was to characterize patients with unsteadiness upon standing found to have <13 Hz tremor discharges on neurophysiologic testing. Methods A retrospective review was performed on all subjects with a diagnosis of OT who were referred to the Mayo Clinic, Scottsdale, AZ, between 1999 and 2013 for confirmation using neurophysiology. Results Fourteen of 28 subjects (50%) had OT discharges of <13 Hz, of whom eight had frequencies of <10 Hz and six had frequencies of 10–13 Hz. Lower frequency discharges tended to have a broader spectral peak, greater variability in discharge duration, and lower inter-muscular coherence. Subjects with <13 Hz OT had shorter mean disease duration at time of neurophysiology testing (2.00 years in <10 Hz group, 7.96 years 10–13 Hz group, and 11.43 years >13 Hz; p = 0.002). The proportion of subjects who experienced gait unsteadiness (85.7% vs. 66.6% vs. 21.4%; p = 0.016), falls (37.5% vs. 50% vs. 0%; p = 0.010), and had abnormal gait on examination (71.4% vs. 66.0% vs. 14.3%; p = 0.017) was greater in those with low and intermediate frequencies. Discussion Slow tremor electromyography frequencies (<13 Hz) may characterize a substantial proportion of patients labeled as OT. These subjects may have greater gait involvement and higher likelihood of falls leading to earlier presentation to subspecialty care. PMID:26317042

  4. Fast and accurate line scanner based on white light interferometry

    NASA Astrophysics Data System (ADS)

    Lambelet, Patrick; Moosburger, Rudolf

    2013-04-01

    White-light interferometry is a highly accurate technology for 3D measurements. The principle is widely utilized in surface metrology instruments but rarely adopted for in-line inspection systems. The main challenges for rolling out inspection systems based on white-light interferometry to the production floor are its sensitivity to environmental vibrations and relatively long measurement times: a large quantity of data needs to be acquired and processed in order to obtain a single topographic measurement. Heliotis developed a smart-pixel CMOS camera (lock-in camera) which is specially suited for white-light interferometry. The demodulation of the interference signal is treated at the level of the pixel which typically reduces the acquisition data by one orders of magnitude. Along with the high bandwidth of the dedicated lock-in camera, vertical scan-speeds of more than 40mm/s are reachable. The high scan speed allows for the realization of inspection systems that are rugged against external vibrations as present on the production floor. For many industrial applications such as the inspection of wafer-bumps, surface of mechanical parts and solar-panel, large areas need to be measured. In this case either the instrument or the sample are displaced laterally and several measurements are stitched together. The cycle time of such a system is mostly limited by the stepping time for multiple lateral displacements. A line-scanner based on white light interferometry would eliminate most of the stepping time while maintaining robustness and accuracy. A. Olszak proposed a simple geometry to realize such a lateral scanning interferometer. We demonstrate that such inclined interferometers can benefit significantly from the fast in-pixel demodulation capabilities of the lock-in camera. One drawback of an inclined observation perspective is that its application is limited to objects with scattering surfaces. We therefore propose an alternate geometry where the incident light is

  5. Scanning fast and slow: current limitations of 3 Tesla functional MRI and future potential

    NASA Astrophysics Data System (ADS)

    Boubela, Roland N.; Kalcher, Klaudius; Nasel, Christian; Moser, Ewald

    2014-02-01

    Functional MRI at 3T has become a workhorse for the neurosciences, e.g., neurology, psychology, and psychiatry, enabling non-invasive investigation of brain function and connectivity. However, BOLD-based fMRI is a rather indirect measure of brain function, confounded by fluctuation related signals, e.g. head or brain motion, brain pulsation, blood flow, intermixed with susceptibility differences close or distant to the region of neuronal activity. Even though a plethora of preprocessing strategies have been published to address these confounds, their efficiency is still under discussion. In particular, physiological signal fluctuations closely related to brain supply may mask BOLD signal changes related to "true" neuronal activation. Here we explore recent technical and methodological advancements aimed at disentangling the various components, employing fast multiband vs. standard EPI, in combination with fast temporal ICA.Our preliminary results indicate that fast (TR< 0.5s) scanning may help to identify and eliminate physiologic components, increasing tSNR and functional contrast. In addition, biological variability can be studied and task performance better correlated to other measures. This should increase specificity and reliability in fMRI studies. Furthermore, physiological signal changes during scanning may then be recognized as a source of information rather than a nuisance. As we are currently still undersampling the complexity of the brain, even at a rather coarse macroscopic level, we should be very cautious in the interpretation of neuroscientific findings, in particular when comparing different groups (e.g., age, sex, medication, pathology, etc.). From a technical point of view our goal should be to sample brain activity at layer specific resolution with low TR, covering as much of the brain as possible without violating SAR limits. We hope to stimulate discussion towards a better understanding and a more quantitative use of fMRI.

  6. Effects of troponin C isoforms on pH sensitivity of contraction in mammalian fast and slow skeletal muscle fibres.

    PubMed Central

    Metzger, J M

    1996-01-01

    1. The effects of troponin C (TnC) isoforms on the acidic pH-induced rightward shift in the tension-pCa (-log[Ca2+]) relationship were examined in slow soleus and fast psoas skeletal muscle fibers. Endogenous TnC was partially extracted from skinned single fibres and the extracted fibres were subsequently reconstituted with purified TnC. The pCa producing one-half maximal tension (pCa50) was determined at pH 7.00 and 6.20 in each fibre and then the pH-induced shift in pCa50 (delta pCa50) was calculated. 2. In control fast fibres which express fast skeletal TnC (sTnC), the delta pCa50 was 0.64 +/- 0.02 pCa units (n = 10), and this increased significantly to 0.78 +/- 0.04 pCa units (n = 8) following extraction and reconstitution with cardiac TnC (cTnC). In each fibre, the reconstituted delta pCa50 was subtracted from the control delta pCa50 which yielded a significant shift of -0.13 +/- 0.05 pCa units (n = 8; P < 0.05). Thus, the pH sensitivity of contraction was increased in the cTnC-reconstituted psoas fibres. 3. In extracted psoas fibres that were reconstituted with fast sTnC the pH sensitivity of contraction was unchanged, indicating that the above effects were related to the TnC isoform and not a non-specific effect of the extraction procedure. 4. In a second series of experiments cTnC was specifically extracted from slow soleus fibres which were subsequently reconstituted with purified fast sTnC. Skeletal TnC reconstituted soleus fibres demonstrated a significant decrease in pH sensitivity. In each fibre, the reconstituted delta pCa50 (mean, 0.58 +/- 0.02 pCa units) was subtracted from the control delta pCa50 (mean, 0.63 +/- 0.02 pCa units) which yielded a significant shift of 0.05 +/- 0.01 pCa units (n = 4; P < 0.05). The pH sensitivity was not altered in cTnC-reconstituted soleus fibres (-0.01 +/- 0.01 pCa units, n = 4). 5. These findings indicate that TnC isoforms alter the pH sensitivities of contraction in slow and fast skeletal muscle fibres. However, the

  7. Slowing down of fast electrons as probe for charging and decharging dynamics of ion-irradiated insulators

    NASA Astrophysics Data System (ADS)

    de Filippo, E.; Lanzanó, G.; Amorini, F.; Geraci, E.; Grassi, L.; La Guidara, E.; Lombardo, I.; Politi, G.; Rizzo, F.; Russotto, P.; Volant, C.; Hagmann, S.; Rothard, H.

    2011-06-01

    The slowing down of fast electrons emitted from insulators [Mylar, polypropylene (PP)] irradiated with swift ion beams (C, O, Kr, Ag, Xe; 20-64 MeV/u) was measured by the time-of-flight method at LNS, Catania and GANIL, Caen. The charge buildup, deduced from both convoy- and binary-encounter electron peak shifts, leads to target material-dependent potentials (6.0 kV for Mylar, 2.8 kV for PP). The number of projectiles needed for charging up (charging-up time constant) is inversely proportional to the electronic energy loss. After a certain time, a sudden decharging occurs. For low beam currents, charging-up time, energy shift corresponding to maximum charge buildup, and time of decharging are regular. For high beam currents, the time intervals become irregular (chaotic).

  8. Use and disuse and the control of acetylcholinesterase activity in fast and slow twitch muscle of rat

    NASA Technical Reports Server (NTRS)

    Dettbarn, W. D.; Groswald, D.; Gupta, R. C.; Misulis, K. E.

    1985-01-01

    The role of acetylcholinesterase (AChE) in neuromuscular transmission is relatively well established, little is known, however, of the mechanisms that regulate its synthesis and control its specific distribution in fast and slow muscle. Innervation plays an important role in the regulation of AChE and elimination of the influence of the nerve by surgical denervation results in a loss of AChE. The influences of the nerve and how they are mediated was investigated. It is suggested that muscle usage and other factors such as materials carried by axonal transport may participate in the regulation of this enzyme. The mechanisms that regulate AChE and its molecular forms in two functionally different forms are studied.

  9. Fast and slow magnetic deflagration fronts in type I X-ray bursts

    NASA Astrophysics Data System (ADS)

    Cavecchi, Yuri; Levin, Yuri; Watts, Anna L.; Braithwaite, Jonathan

    2016-06-01

    Type I X-ray bursts are produced by thermonuclear runaways that develop on accreting neutron stars. Once one location ignites, the flame propagates across the surface of the star. Flame propagation is fundamental in order to understand burst properties like rise time and burst oscillations. Previous work quantified the effects of rotation on the front, showing that the flame propagates as a deflagration and that the front strongly resembles a hurricane. However, the effect of magnetic fields was not investigated, despite the fact that magnetic fields strong enough to have an effect on the propagating flame are expected to be present on many bursters. In this paper, we show how the coupling between fluid layers introduced by an initially vertical magnetic field plays a decisive role in determining the character of the fronts that are responsible for the type I bursts. In particular, on a star spinning at 450 Hz (typical among the bursters), we test seed magnetic fields of 107-1010 G and find that for the medium fields the magnetic stresses that develop during the burst can speed up the velocity of the burning front, bringing the simulated burst rise time close to the observed values. By contrast, in a magnetic slow rotator like IGR J17480-2446, spinning at 11 Hz, a seed field ≳109 G is required to allow localized ignition and the magnetic field plays an integral role in generating the burst oscillations observed during the bursts.

  10. Differential regulation of apoptosis in slow and fast twitch muscles of aged female F344BN rats

    SciTech Connect

    Rice, Kevin M.; Manne, Nandini D. P. K.; Gadde, Murali K.; Paturi, Satyanarayana; Arvapalli, Ravikumar; Blough, Eric

    2015-03-28

    Age-related muscle atrophy is characterized by decreases in muscle mass and is thought be mediated, at least in part, by increases in myocyte apoptosis. Recent data has demonstrated that the degree of muscle loss with aging may differ between males and females while other work has suggested that apoptosis as indicated by DNA fragmentation may be regulated differently in fast- and slow-twitch muscles. Herein, we investigate how aging affects the regulation of muscle apoptosis in the fast-twitch extensor digitorum longus (EDL) and slow-twitch soleus muscles of young (6-month), aged (26-month), and very aged (30-month) female Fischer 344/NNiaHSD × Brown Norway/BiNia (F344BN) rats. Tissue sections were stained with hydroethidium for ROS and protein extract was subjected to immunoblotting for assessing apoptotic markers. Our data suggest that decreases in muscle mass were associated with increased DNA fragmentation (TUNEL positive) and increases in reactive oxygen species (ROS) as determined by hydroethidium staining in both the EDL and soleus. Similar to our previous work using aged male animals, we observed that the time course and magnitude of changes in Bax, Bcl-2, caspase-3, caspase-9, and cleavage of α-fodrin protein were regulated differently between muscles. As a result, These data suggest that aging in the female F344BN rat is associated with decreases in muscle mass, elevations in ROS level, increased muscle cell DNA fragmentation, and alterations in cell membrane integrity and that apoptotic mechanisms may differ between fiber types.

  11. Differential regulation of apoptosis in slow and fast twitch muscles of aged female F344BN rats

    DOE PAGESBeta

    Rice, Kevin M.; Manne, Nandini D. P. K.; Gadde, Murali K.; Paturi, Satyanarayana; Arvapalli, Ravikumar; Blough, Eric

    2015-03-28

    Age-related muscle atrophy is characterized by decreases in muscle mass and is thought be mediated, at least in part, by increases in myocyte apoptosis. Recent data has demonstrated that the degree of muscle loss with aging may differ between males and females while other work has suggested that apoptosis as indicated by DNA fragmentation may be regulated differently in fast- and slow-twitch muscles. Herein, we investigate how aging affects the regulation of muscle apoptosis in the fast-twitch extensor digitorum longus (EDL) and slow-twitch soleus muscles of young (6-month), aged (26-month), and very aged (30-month) female Fischer 344/NNiaHSD × Brown Norway/BiNiamore » (F344BN) rats. Tissue sections were stained with hydroethidium for ROS and protein extract was subjected to immunoblotting for assessing apoptotic markers. Our data suggest that decreases in muscle mass were associated with increased DNA fragmentation (TUNEL positive) and increases in reactive oxygen species (ROS) as determined by hydroethidium staining in both the EDL and soleus. Similar to our previous work using aged male animals, we observed that the time course and magnitude of changes in Bax, Bcl-2, caspase-3, caspase-9, and cleavage of α-fodrin protein were regulated differently between muscles. As a result, These data suggest that aging in the female F344BN rat is associated with decreases in muscle mass, elevations in ROS level, increased muscle cell DNA fragmentation, and alterations in cell membrane integrity and that apoptotic mechanisms may differ between fiber types.« less

  12. Effects of pH on myofibrillar ATPase activity in fast and slow skeletal muscle fibers of the rabbit.

    PubMed Central

    Potma, E J; van Graas, I A; Stienen, G J

    1994-01-01

    In permeabilized single fibers of fast (psoas) and slow (soleus) muscle from the rabbit, the effect of pH on isometric myofibrillar ATPase activity and force was studied at 15 degrees C, in the pH range 6.4-7.9. ATPase activity was measured photometrically by enzymatic coupling of the regeneration of ATP to the oxidation of NADH, present in the bathing solution. NADH absorbance at 340 nm was determined inside a measuring chamber. To measure ATP turnover in single soleus fibers accurately, a new measuring chamber (volume 4 microliters) was developed that produced a sensitivity approximately 8 times higher than the system previously used. Under control conditions (pH 7.3), the isometric force was 136 and 115 kN/m2 and the ATP turnover was 0.43 and 0.056 mmol per liter fiber volume per second in psoas and soleus fibers, respectively. Over the pH range studied, isometric force increased monotonically by a factor 1.7 for psoas and 1.2 for soleus fibers. In psoas the isometric ATPase activity remained constant, whereas in soleus it slightly decreased with increasing pH. The pH dependency of relative tension cost (isometric ATPase activity divided by force) was practically identical for psoas and soleus fibers. In both cases it decreased by about a factor 0.57 as pH increased from 6.4 to 7.9. The implications of these findings are discussed in terms of cross-bridge kinetics. For both fiber types, estimates of the reaction rates and the distribution of cross-bridges and of their pH dependencies were obtained. A remarkable similarity was found between fast- and slow-twitch fibers in the effects of pH on the reaction rate constants. PMID:7696480

  13. Carnivora Population Dynamics Are as Slow and as Fast as Those of Other Mammals: Implications for Their Conservation

    PubMed Central

    van de Kerk, Madelon; de Kroon, Hans; Conde, Dalia A.; Jongejans, Eelke

    2013-01-01

    Of the 285 species of Carnivora 71 are threatened, while many of these species fulfill important ecological roles in their ecosystems as top or meso-predators. Population transition matrices make it possible to study how age-specific survival and fecundity affect population growth, extinction risks, and responses to management strategies. Here we review 38 matrix models from 35 studies on 27 Carnivora taxa, covering 11% of the threatened Carnivora species. We show that the elasticity patterns (i.e. distribution over fecundity, juvenile survival and adult survival) in Carnivora cover the same range in triangular elasticity plots as those of other mammal species, despite the specific place of Carnivora in the food chain. Furthermore, reproductive loop elasticity analysis shows that the studied species spread out evenly over a slow-fast continuum, but also quantifies the large variation in the duration of important life cycles and their contributions to population growth rate. These general elasticity patterns among species, and their correlation with simple life history characteristics like body mass, age of first reproduction and life span, enables the extrapolation of population dynamical properties to unstudied species. With several examples we discuss how this slow-fast continuum, and related patterns of variation in reproductive loop elasticity, can be used in the formulation of tentative management plans for threatened species that cannot wait for the results of thorough demographic studies. We argue, however, that such management programs should explicitly include a plan for learning about the key demographic rates and how these are affected by environmental drivers and threats. PMID:23950922

  14. Generation of Intensity Selectivity by Differential Synaptic Tuning: Fast-Saturating Excitation But Slow-Saturating Inhibition

    PubMed Central

    Zhou, Mu; Tao, Huizhong W.

    2012-01-01

    Intensity defines one fundamental aspect of sensory information and is specifically represented in each sensory modality. Interestingly, only in the central auditory system are intensity-selective neurons evolved. These neurons are characterized by nonmonotonic response-level functions. The synaptic circuitry mechanisms underlying the generation of intensity selectivity from nonselective auditory nerve inputs remain largely unclear. Here, we performed in vivo whole-cell recordings from pyramidal neurons in the rat dorsal cochlear nucleus (DCN), where intensity selectivity first emerges along the auditory neuraxis. Our results revealed that intensity-selective cells received fast-saturating excitation but slow-saturating inhibition with intensity increments, whereas in intensity-nonselective cells excitation and inhibition were similarly slow-saturating. The differential intensity tuning profiles of the monotonic excitation and inhibition qualitatively determined the intensity selectivity of output responses. In addition, the selectivity was further strengthened by significantly lower excitation/inhibition ratios at high-intensity levels compared with intensity-nonselective neurons. Our results demonstrate that intensity selectivity in the DCN is generated by extracting the difference between tuning profiles of nonselective excitatory and inhibitory inputs, which we propose can be achieved through a differential circuit mediated by feedforward inhibition. PMID:23238722

  15. Disuse Induced Changes in the Cholinergic System of Sciatic Nerve and Slow and Fast Twitch Muscle of Rats

    NASA Technical Reports Server (NTRS)

    Dettbarn, W. D.; Gupta, R. C.; Misulis, K. E.

    1985-01-01

    Hindlimb suspension was used as a model of disuse in experiments studing the effects of reduced muscle activity on AChE and its molecular forms, choline acetyltransferase and nicotinic receptor binding in innervated slow and fast muscle. The weight of SOL was reduced to 64% within one week and continued to decrease progressively up to the third week when the weight was reduced to 40% as compared to controls. EDL showed a significant decrease in its weight only at the end of three weeks hypokinesia when it was reduced to 71% of control. Biochemical and histochemical findings are summarized. From these data and from morphological findings it is evident that some properties of skeletal muscles are strongly dependent on patterns and level of loadbearing and on motor unit activiy. With suspension-induced disuse, the usually slow SOL appeared to change its characteristics such as fiber type distribution and AChE activity to one that more resembled a faster muscle. It is important to note that hypokinesia induced changes either physiological, biochemical or morphological, are totally reversible as the induced changes returned to control levels within a week after cessation of disuse.

  16. The future of photo-induced phase transition (PIPT) - How fast and slow it can be changed?

    NASA Astrophysics Data System (ADS)

    Tomita, A.; Koshihara, S.; Adachi, S.; Itatani, J.; Onda, K.; Ogihara, S.; Nakano, Y.; Yamochi, H.

    2009-02-01

    The study of photo-controled nature of materials, including their optical, magnetic, and conducting properties, is a fascinating research field. The finding of photo-induced phase transition (PIPT) has triggered the search for inorganic and organic systems with highly efficient and ultrafast photo-responses. As a result of the recent progress in quantum-beam technologies, the time-resolved study of PIPT dynamics on the femto-second time scale, which is comparable with the single-cycle of phonon vibration, has become feasible. In contrast, ultra-slow dynamics on the time scales of a few seconds to several minutes play an important role in the cooperative phenomena in complex systems. Here, we review both the ultra-fast and ultra-slow dynamics of the photo-induced cooperative effects in a typical organic CT crystal (EDO-TTF)2PF6 and a protein molecule, myoglobin (Mb). In the case of Mb, we discuss the results from the viewpoint of a unique photo-functionality, i.e., the photo-induced transportation of a small molecule in the "super-structure" of a protein molecule.

  17. Compared propagation characteristics of superluminal and slow light in SOA and EDFA based on rectangle signals

    NASA Astrophysics Data System (ADS)

    Wang, Fu; Wang, Zhi; Wu, Chongqing; Sun, Zhenchao; Mao, Yaya; Liu, Lanlan; Li, Qiang

    2015-10-01

    Based on the general mechanism of the coherent population oscillations (CPO) in the Semiconductor optical amplifiers (SOA) and Erbium doped fiber amplifiers (EDFA), the group time delay of rectangle signal propagating in the active media is deduced. Compared with the sinusoidal signal, the time delay difference between the fundamental harmonics (FHFD: fundamental harmonic fractional delay) is first investigated in detail for the rectangle signal which is more popularly used in the digital signal systems. The plenty of simulations based on the propagation equations and some experiments for the sinusoidal and rectangle signals are used to analyze the differences and evaluate the slow and superluminal light effects. Furthermore, the time delay/advance always takes place accompanying with the signal distortion, which is evaluated by the total harmonic distortion (THD). The distortion caused by the SOA is smaller than that by the EDFA. A factor Q which is defined to evaluate the trade-off between the FHFD and the THD, shows that higher input power or higher optical gain is better for optical signal processing and optical telecommunications, and the SOA is more suitable for the higher modulation frequency (>10 GHz).

  18. Optically Induced Indirect Photonic Transitions in a Slow Light Photonic Crystal Waveguide

    NASA Astrophysics Data System (ADS)

    Castellanos Muñoz, Michel; Petrov, Alexander Yu.; O'Faolain, Liam; Li, Juntao; Krauss, Thomas F.; Eich, Manfred

    2014-02-01

    We demonstrate indirect photonic transitions in a silicon slow light photonic crystal waveguide. The transitions are driven by an optically generated refractive index front that moves along the waveguide and interacts with a signal pulse copropagating in the structure. We experimentally confirm a theoretical model which indicates that the ratio of the frequency and wave vector shifts associated with the indirect photonic transition is identical to the propagation velocity of the refractive index front. The physical origin of the transitions achieved here is fundamentally different than in previously proposed refractive index modulation concepts with fixed temporal and spatial modulation frequencies; as here, the interaction with the refractive index front results in a Doppler-like signal frequency and wave vector shift. Consequently, the bandwidth over which perfect mode frequency and wave vector matching is achieved is not intrinsically limited by the shape of the photonic bands, and tuning of the indirect photonic transitions is possible without any need for geometrical modifications of the structure. Our device is genuinely nonreciprocal, as it provides different frequency shifts for co- and counterpropagating signal and index fronts.

  19. Control of sleep-to-wake transitions via fast aminoacid and slow neuropeptide transmission

    PubMed Central

    Mosqueiro, Thiago; de Lecea, Luis; Huerta, Ramon

    2014-01-01

    The Locus Coeruleus (LC) modulates cortical, subcortical, cerebellar, brainstem and spinal cord circuits and it expresses receptors for neuromodulators that operate in a time scale of several seconds. Evidences from anatomical, electrophysiological and optogenetic experiments have shown that LC neurons receive input from a group of neurons called Hypocretins (HCRTs) that release a neuropeptide called hypocretin. It is less known how these two groups of neurons can be coregulated using GABAergic neurons. Since the time scales of GABAA inhibition is several orders of magnitude faster than the hypocretin neuropeptide effect, we investigate the limits of circuit activity regulation using a realistic model of neurons. Our investigation shows that GABAA inhibition is insufficient to control the activity levels of the LCs. Despite slower forms of GABAA can in principle work, there is not much plausibility due to the low probability of the presence of slow GABAA and lack of robust stability at the maximum firing frequencies. The best possible control mechanism predicted by our modeling analysis is the presence of inhibitory neuropeptides that exert effects in a similar time scale as the hypocretin/orexin. Although the nature of these inhibitory neuropeptides has not been identified yet, it provides the most efficient mechanism in the modeling analysis. Finally, we present a reduced mean-field model that perfectly captures the dynamics and the phenomena generated by this circuit. This investigation shows that brain communication involving multiple time scales can be better controlled by employing orthogonal mechanisms of neural transmission to decrease interference between cognitive processes and hypothalamic functions. PMID:25598695

  20. Slow-to-fast transition of hydrogen bond dynamics in acetamide hydration shell formation.

    PubMed

    D'Amico, Francesco; Rossi, Barbara; Camisasca, Gaia; Bencivenga, Filippo; Gessini, Alessandro; Principi, Emiliano; Cucini, Riccardo; Masciovecchio, Claudio

    2015-04-28

    The formation of a hydration shell in acetamide aqueous solution has been investigated by means of UV Raman spectroscopy. The experimental results reveal the existence of two distinct regimes of water dynamics. At high acetamide concentration water molecules show a structural and dynamical behavior consistent with the so-called iceberg model. Upon increasing the amount of water we observe the formation of a hydration shell marked by fastening of hydrogen-bond dynamics. Such a behavior may help to shed light on the scientific debate on how water rearranges around the hydrophobic portions of solute molecules (iceberg vs. non-iceberg models). PMID:25824617

  1. Differential microRNA Expression in Fast- and Slow-Twitch Skeletal Muscle of Piaractus mesopotamicus during Growth

    PubMed Central

    Duran, Bruno Oliveira da Silva; Fernandez, Geysson Javier; Mareco, Edson Assunção; Moraes, Leonardo Nazario; Salomão, Rondinelle Artur Simões; Gutierrez de Paula, Tassiana; Santos, Vander Bruno; Carvalho, Robson Francisco; Dal-Pai-Silvca, Maeli

    2015-01-01

    Pacu (Piaractus mesopotamicus) is a Brazilian fish with a high economic value in pisciculture due to its rusticity and fast growth. Postnatal growth of skeletal muscle in fish occurs by hyperplasia and/or hypertrophy, processes that are dependent on the proliferation and differentiation of myoblasts. A class of small noncoding RNAs, known as microRNAs (miRNAs), represses the expression of target mRNAs, and many studies have demonstrated that miR-1, miR-133, miR-206 and miR-499 regulate different processes in skeletal muscle through the mRNA silencing of hdac4 (histone deacetylase 4), srf (serum response factor), pax7 (paired box 7) and sox6 ((sex determining region Y)-box 6), respectively. The aim of our work was to evaluate the expression of these miRNAs and their putative target mRNAs in fast- and slow-twitch skeletal muscle of pacu during growth. We used pacus in three different development stages: larval (aged 30 days), juvenile (aged 90 days and 150 days) and adult (aged 2 years). To complement our study, we also performed a pacu myoblast cell culture, which allowed us to investigate miRNA expression in the progression from myoblast proliferation to differentiation. Our results revealed an inverse correlation between the expression of the miRNAs and their target mRNAs, and there was evidence that miR-1 and miR-206 may regulate the differentiation of myoblasts, whereas miR-133 may regulate the proliferation of these cells. miR-499 was highly expressed in slow-twitch muscle, which suggests its involvement in the specification of the slow phenotype in muscle fibers. The expression of these miRNAs exhibited variations between different development stages and between distinct muscle twitch phenotypes. This work provides the first identification of miRNA expression profiles in pacu skeletal muscle and suggests an important role of these molecules in muscle growth and in the maintenance of the muscle phenotype. PMID:26529415

  2. Differential microRNA Expression in Fast- and Slow-Twitch Skeletal Muscle of Piaractus mesopotamicus during Growth.

    PubMed

    Duran, Bruno Oliveira da Silva; Fernandez, Geysson Javier; Mareco, Edson Assunção; Moraes, Leonardo Nazario; Salomão, Rondinelle Artur Simões; Gutierrez de Paula, Tassiana; Santos, Vander Bruno; Carvalho, Robson Francisco; Dal-Pai-Silva, Maeli; Dal-Pai-Silvca, Maeli

    2015-01-01

    Pacu (Piaractus mesopotamicus) is a Brazilian fish with a high economic value in pisciculture due to its rusticity and fast growth. Postnatal growth of skeletal muscle in fish occurs by hyperplasia and/or hypertrophy, processes that are dependent on the proliferation and differentiation of myoblasts. A class of small noncoding RNAs, known as microRNAs (miRNAs), represses the expression of target mRNAs, and many studies have demonstrated that miR-1, miR-133, miR-206 and miR-499 regulate different processes in skeletal muscle through the mRNA silencing of hdac4 (histone deacetylase 4), srf (serum response factor), pax7 (paired box 7) and sox6 ((sex determining region Y)-box 6), respectively. The aim of our work was to evaluate the expression of these miRNAs and their putative target mRNAs in fast- and slow-twitch skeletal muscle of pacu during growth. We used pacus in three different development stages: larval (aged 30 days), juvenile (aged 90 days and 150 days) and adult (aged 2 years). To complement our study, we also performed a pacu myoblast cell culture, which allowed us to investigate miRNA expression in the progression from myoblast proliferation to differentiation. Our results revealed an inverse correlation between the expression of the miRNAs and their target mRNAs, and there was evidence that miR-1 and miR-206 may regulate the differentiation of myoblasts, whereas miR-133 may regulate the proliferation of these cells. miR-499 was highly expressed in slow-twitch muscle, which suggests its involvement in the specification of the slow phenotype in muscle fibers. The expression of these miRNAs exhibited variations between different development stages and between distinct muscle twitch phenotypes. This work provides the first identification of miRNA expression profiles in pacu skeletal muscle and suggests an important role of these molecules in muscle growth and in the maintenance of the muscle phenotype. PMID:26529415

  3. A state observer for using a slow camera as a sensor for fast control applications

    NASA Astrophysics Data System (ADS)

    Gahleitner, Reinhard; Schagerl, Martin

    2013-03-01

    This contribution concerns about a problem that often arises in vision based control, when a camera is used as a sensor for fast control applications, or more precisely, when the sample rate of the control loop is higher than the frame rate of the camera. In control applications for mechanical axes, e.g. in robotics or automated production, a camera and some image processing can be used as a sensor to detect positions or angles. The sample time in these applications is typically in the range of a few milliseconds or less and this demands the use of a camera with a high frame rate up to 1000 fps. The presented solution is a special state observer that can work with a slower and therefore cheaper camera to estimate the state variables at the higher sample rate of the control loop. To simplify the image processing for the determination of positions or angles and make it more robust, some LED markers are applied to the plant. Simulation and experimental results show that the concept can be used even if the plant is unstable like the inverted pendulum.

  4. Functional anatomy and interaction of fast and slow visual pathways in macaque monkeys.

    PubMed

    Chen, Chi-Ming; Lakatos, Peter; Shah, Ankoor S; Mehta, Ashesh D; Givre, Syndee J; Javitt, Daniel C; Schroeder, Charles E

    2007-07-01

    We measured the timing, areal distribution, and laminar profile of fast, wavelength-insensitive and slower, wavelength-sensitive responses in V1 and extrastriate areas, using laminar current-source density analysis in awake macaque monkeys. There were 3 main findings. 1) We confirmed previously reported significant ventral-dorsal stream latency lags at the level of V4 (V4 mean = 38.7 ms vs. middle temporal mean = 26.9 ms) and inferotemporal cortex (IT mean = 43.4 ms vs. dorsal bank of the superior temporal sulcus mean = 33.9 ms). 2) We found that wavelength-sensitive inputs in areas V1, V4, and IT lagged the wavelength-insensitive responses by significant margins; this lag increased over successive levels of the system. 3) We found that laminar activation profiles in V4 and IT were inconsistent with "feedforward" input through the ascending ventral cortical pathway; the likely alternative input routes include both lateral inputs from the dorsal stream and direct inputs from nonspecific thalamic neurons. These findings support a "Framing" Model of ventral stream visual processing in which rapidly conducted inputs, mediated by one or more accessory pathways, modulate the processing of more slowly conducted feedforward inputs. PMID:16950866

  5. Breaking cover: neural responses to slow and fast camouflage-breaking motion.

    PubMed

    Yin, Jiapeng; Gong, Hongliang; An, Xu; Chen, Zheyuan; Lu, Yiliang; Andolina, Ian M; McLoughlin, Niall; Wang, Wei

    2015-08-22

    Primates need to detect and recognize camouflaged animals in natural environments. Camouflage-breaking movements are often the only visual cue available to accomplish this. Specifically, sudden movements are often detected before full recognition of the camouflaged animal is made, suggesting that initial processing of motion precedes the recognition of motion-defined contours or shapes. What are the neuronal mechanisms underlying this initial processing of camouflaged motion in the primate visual brain? We investigated this question using intrinsic-signal optical imaging of macaque V1, V2 and V4, along with computer simulations of the neural population responses. We found that camouflaged motion at low speed was processed as a direction signal by both direction- and orientation-selective neurons, whereas at high-speed camouflaged motion was encoded as a motion-streak signal primarily by orientation-selective neurons. No population responses were found to be invariant to the camouflage contours. These results suggest that the initial processing of camouflaged motion at low and high speeds is encoded as direction and motion-streak signals in primate early visual cortices. These processes are consistent with a spatio-temporal filter mechanism that provides for fast processing of motion signals, prior to full recognition of camouflage-breaking animals. PMID:26269500

  6. Suppression of dynamics and frequency synchronization in coupled slow and fast dynamical systems

    NASA Astrophysics Data System (ADS)

    Gupta, Kajari; Ambika, G.

    2016-06-01

    We present our study on the emergent states of two interacting nonlinear systems with differing dynamical time scales. We find that the inability of the interacting systems to fall in step leads to difference in phase as well as change in amplitude. If the mismatch is small, the systems settle to a frequency synchronized state with constant phase difference. But as mismatch in time scale increases, the systems have to compromise to a state of no oscillations. We illustrate this for standard nonlinear systems and identify the regions of quenched dynamics in the parameter plane. The transition curves to this state are studied analytically and confirmed by direct numerical simulations. As an important special case, we revisit the well-known model of coupled ocean-atmosphere system used in climate studies for the interactive dynamics of a fast oscillating atmosphere and slowly changing ocean. Our study in this context indicates occurrence of multi stable periodic states and steady states of convection coexisting in the system, with a complex basin structure.

  7. Are fast explorers slow reactors? Linking personality type and anti-predator behaviour

    PubMed Central

    Jones, Katherine A.; Godin, Jean-Guy J.

    2010-01-01

    Response delays to predator attack may be adaptive, suggesting that latency to respond does not always reflect predator detection time, but can be a decision based on starvation–predation risk trade-offs. In birds, some anti-predator behaviours have been shown to be correlated with personality traits such as activity level and exploration. Here, we tested for a correlation between exploration behaviour and response latency time to a simulated fish predator attack in a fish species, juvenile convict cichlids (Amatitlania nigrofasciata). Individual focal fish were subjected to a standardized attack by a robotic fish predator while foraging, and separately given two repeated trials of exploration of a novel environment. We found a strong positive correlation between exploration and time taken to respond to the predator model. Fish that were fast to explore the novel environment were slower to respond to the predator. Our study therefore provides some of the first experimental evidence for a link between exploration behaviour and predator-escape behaviour. We suggest that different behavioural types may differ in how they partition their attention between foraging and anti-predator vigilance. PMID:19864291

  8. Different Transcriptional Responses from Slow and Fast Growth Rate Strains of Listeria monocytogenes Adapted to Low Temperature.

    PubMed

    Cordero, Ninoska; Maza, Felipe; Navea-Perez, Helen; Aravena, Andrés; Marquez-Fontt, Bárbara; Navarrete, Paola; Figueroa, Guillermo; González, Mauricio; Latorre, Mauricio; Reyes-Jara, Angélica

    2016-01-01

    Listeria monocytogenes has become one of the principal foodborne pathogens worldwide. The capacity of this bacterium to grow at low temperatures has opened an interesting field of study in terms of the identification and classification of new strains of L. monocytogenes with different growth capacities at low temperatures. We determined the growth rate at 8°C of 110 strains of L. monocytogenes isolated from different food matrices. We identified a group of slow and fast strains according to their growth rate at 8°C and performed a global transcriptomic assay in strains previously adapted to low temperature. We then identified shared and specific transcriptional mechanisms, metabolic and cellular processes of both groups; bacterial motility was the principal process capable of differentiating the adaptation capacity of L. monocytogenes strains with different ranges of tolerance to low temperatures. Strains belonging to the fast group were less motile, which may allow these strains to achieve a greater rate of proliferation at low temperature. PMID:26973610

  9. Measuring mechanical properties, including isotonic fatigue, of fast and slow MLC/mIgf-1 transgenic skeletal muscle.

    PubMed

    Del Prete, Zaccaria; Musarò, Antonio; Rizzuto, Emanuele

    2008-07-01

    Contractile properties of fast-twitch (EDL) and slow-twitch (soleus) skeletal muscles were measured in MLC/mIgf-1 transgenic and wild-type mice. MLC/mIgf-1 mice express the local factor mIgf-1 under the transcriptional control of MLC promoter, selectively activated in fast-twitch muscle fibers. Isolated muscles were studied in vitro in both isometric and isotonic conditions. We used a rapid "ad hoc" testing protocol that measured, in a single procedure, contraction time, tetanic force, Hill's (F-v) curve, power curve and isotonic muscle fatigue. Transgenic soleus muscles did not differ from wild-type with regard to any measured variable. In contrast, transgenic EDL muscles displayed a hypertrophic phenotype, with a mass increase of 29.2% compared to wild-type. Absolute tetanic force increased by 21.5% and absolute maximum power by 34.1%. However, when normalized to muscle cross-sectional area and mass, specific force and normalized power were the same in transgenic and wild-type EDL muscles, revealing that mIgf-1 expression induces a functional hypertrophy without altering fibrotic tissue accumulation. Isotonic fatigue behavior did not differ between transgenic and wild-type muscles, suggesting that the ability of mIgf-1 transgenic muscle to generate a considerable higher absolute power did not affect its resistance to fatigue. PMID:18415017

  10. Different Transcriptional Responses from Slow and Fast Growth Rate Strains of Listeria monocytogenes Adapted to Low Temperature

    PubMed Central

    Cordero, Ninoska; Maza, Felipe; Navea-Perez, Helen; Aravena, Andrés; Marquez-Fontt, Bárbara; Navarrete, Paola; Figueroa, Guillermo; González, Mauricio; Latorre, Mauricio; Reyes-Jara, Angélica

    2016-01-01

    Listeria monocytogenes has become one of the principal foodborne pathogens worldwide. The capacity of this bacterium to grow at low temperatures has opened an interesting field of study in terms of the identification and classification of new strains of L. monocytogenes with different growth capacities at low temperatures. We determined the growth rate at 8°C of 110 strains of L. monocytogenes isolated from different food matrices. We identified a group of slow and fast strains according to their growth rate at 8°C and performed a global transcriptomic assay in strains previously adapted to low temperature. We then identified shared and specific transcriptional mechanisms, metabolic and cellular processes of both groups; bacterial motility was the principal process capable of differentiating the adaptation capacity of L. monocytogenes strains with different ranges of tolerance to low temperatures. Strains belonging to the fast group were less motile, which may allow these strains to achieve a greater rate of proliferation at low temperature. PMID:26973610

  11. Mass Mortality Events in the NW Adriatic Sea: Phase Shift from Slow- to Fast-Growing Organisms

    PubMed Central

    Di Camillo, Cristina Gioia; Cerrano, Carlo

    2015-01-01

    Massive outbreaks are increasing all over the world, which are likely related to climate change. The North Adriatic Sea, a sub-basin of the Mediterranean Sea, is a shallow semi-closed sea receiving high nutrients inputs from important rivers. These inputs sustain the highest productive basin of the Mediterranean Sea. Moreover, this area shows a high number of endemisms probably due to the high diversity of environmental conditions and the conspicuous food availability. Here, we documented two massive mortalities (2009 and 2011) and the pattern of recovery of the affected biocoenoses in the next two years. Results show an impressive and fast shift of the benthic assemblage from a biocoenosis mainly composed of slow-growing and long-lived species to a biocoenosis dominated by fast-growing and short-lived species. The sponge Chondrosia reniformis, one of the key species of this assemblage, which had never been involved in previous massive mortality events in the Mediterranean Sea, reduced its coverage by 70%, and only few small specimens survived. All the damaged sponges, together with many associated organisms, were detached by rough-sea conditions, leaving large bare areas on the rocky wall. Almost three years after the disease, the survived specimens of C. reniformis did not increase significantly in size, while the bare areas were colonized by fast-growing species such as stoloniferans, hydrozoans, mussels, algae, serpulids and bryozoans. Cnidarians were more resilient than massive sponges since they quickly recovered in less than one month. In the study area, the last two outbreaks caused a reduction in the filtration efficiency of the local benthic assemblage by over 60%. The analysis of the times series of wave heights and temperature revealed that the conditions in summer 2011 were not so extreme as to justify severe mass mortality, suggesting the occurrence of other factors which triggered the disease. The long-term observations of a benthic assemblage in the

  12. Mass Mortality Events in the NW Adriatic Sea: Phase Shift from Slow- to Fast-Growing Organisms.

    PubMed

    Di Camillo, Cristina Gioia; Cerrano, Carlo

    2015-01-01

    Massive outbreaks are increasing all over the world, which are likely related to climate change. The North Adriatic Sea, a sub-basin of the Mediterranean Sea, is a shallow semi-closed sea receiving high nutrients inputs from important rivers. These inputs sustain the highest productive basin of the Mediterranean Sea. Moreover, this area shows a high number of endemisms probably due to the high diversity of environmental conditions and the conspicuous food availability. Here, we documented two massive mortalities (2009 and 2011) and the pattern of recovery of the affected biocoenoses in the next two years. Results show an impressive and fast shift of the benthic assemblage from a biocoenosis mainly composed of slow-growing and long-lived species to a biocoenosis dominated by fast-growing and short-lived species. The sponge Chondrosia reniformis, one of the key species of this assemblage, which had never been involved in previous massive mortality events in the Mediterranean Sea, reduced its coverage by 70%, and only few small specimens survived. All the damaged sponges, together with many associated organisms, were detached by rough-sea conditions, leaving large bare areas on the rocky wall. Almost three years after the disease, the survived specimens of C. reniformis did not increase significantly in size, while the bare areas were colonized by fast-growing species such as stoloniferans, hydrozoans, mussels, algae, serpulids and bryozoans. Cnidarians were more resilient than massive sponges since they quickly recovered in less than one month. In the study area, the last two outbreaks caused a reduction in the filtration efficiency of the local benthic assemblage by over 60%. The analysis of the times series of wave heights and temperature revealed that the conditions in summer 2011 were not so extreme as to justify severe mass mortality, suggesting the occurrence of other factors which triggered the disease. The long-term observations of a benthic assemblage in the

  13. Fast and slow crystal growth kinetics in glass-forming melts

    SciTech Connect

    Orava, J.; Greer, A. L.

    2014-06-07

    Published values of crystal growth rates are compared for supercooled glass-forming liquids undergoing congruent freezing at a planar crystal-liquid interface. For the purposes of comparison pure metals are considered to be glass-forming systems, using data from molecular-dynamics simulations. For each system, the growth rate has a maximum value U{sub max} at a temperature T{sub max} that lies between the glass-transition temperature T{sub g} and the melting temperature T{sub m}. A classification is suggested, based on the lability (specifically, the propensity for fast crystallization), of the liquid. High-lability systems show “fast” growth characterized by a high U{sub max}, a low T{sub max} / T{sub m}, and a very broad peak in U vs. T / T{sub m}. In contrast, systems showing “slow” growth have a low U{sub max}, a high T{sub max} / T{sub m}, and a sharp peak in U vs. T / T{sub m}. Despite the difference of more than 11 orders of magnitude in U{sub max} seen in pure metals and in silica, the range of glass-forming systems surveyed fit into a common pattern in which the lability increases with lower reduced glass-transition temperature (T{sub g} / T{sub m}) and higher fragility of the liquid. A single parameter, a linear combination of T{sub g} / T{sub m} and fragility, can show a good correlation with U{sub max}. For all the systems, growth at U{sub max} is coupled to the atomic/molecular mobility in the liquid. It is found that, across the diversity of glass-forming systems, T{sub max} / T{sub g} = 1.48 ± 0.15.

  14. Fast or Slow, Either Head Can Start the Processive Run of Kinesin-2 KIF3AC.

    PubMed

    Zhang, Pengwei; Rayment, Ivan; Gilbert, Susan P

    2016-02-26

    Mammalian KIF3AC contains two distinct motor polypeptides and is best known for its role in organelle transport in neurons. Our recent studies showed that KIF3AC is as processive as conventional kinesin-1, suggesting that their ATPase mechanochemistry may be similar. However, the presence of two different motor polypeptides in KIF3AC implies that there must be a cellular advantage for the KIF3AC heterodimer. The hypothesis tested was whether there is an intrinsic bias within KIF3AC such that either KIF3A or KIF3C initiates the processive run. To pursue these experiments, a mechanistic approach was used to compare the pre-steady-state kinetics of KIF3AC to the kinetics of homodimeric KIF3AA and KIF3CC. The results indicate that microtubule collision at 11.4 μm(-1) s(-1) coupled with ADP release at 78 s(-1) are fast steps for homodimeric KIF3AA. In contrast, KIF3CC exhibits much slower microtubule association at 2.1 μm(-1) s(-1) and ADP release at 8 s(-1). For KIF3AC, microtubule association at 6.6 μm(-1) s(-1) and ADP release at 51 s(-1) are intermediate between the constants for KIF3AA and KIF3CC. These results indicate that either KIF3A or KIF3C can initiate the processive run. Surprisingly, the kinetics of the initial event of microtubule collision followed by ADP release for KIF3AC is not equivalent to 1:1 mixtures of KIF3AA plus KIF3CC homodimers at the same motor concentration. These results reveal that the intermolecular communication within the KIF3AC heterodimer modulates entry into the processive run regardless of whether the run is initiated by the KIF3A or KIF3C motor domain. PMID:26710851

  15. Eyes on emergence: Fast detection yet slow recognition of emerging images.

    PubMed

    Nordhjem, Barbara; Kurman Petrozzelli, Constanza I; Gravel, Nicolás; Renken, Remco J; Cornelissen, Frans W

    2015-01-01

    Visual object recognition occurs at the intersection of visual perception and visual cognition. It typically occurs very fast and it has therefore been difficult to disentangle its constituent processes. Recognition time can be extended when using images with emergent properties, suggesting they may help examining how visual recognition unfolds over time. Until now, their use has been constrained by limited availability. We used a set of stimuli with emergent properties-akin to the famous Gestalt image of a Dalmatian-in combination with eye tracking to examine the processes underlying object recognition. To test whether cognitive processes influenced eye movement behavior during recognition, an unprimed and three primed groups were included. Recognition times were relatively long (median ∼ 5s for the unprimed group), confirming the object's emergent properties. Surprisingly, within the first 500 ms, the majority of fixations were already aimed at the object. Computational models of saliency could not explain these initial fixations. This suggests that observers relied on image statistics not captured by saliency models. For the primed groups, recognition times were reduced. However, threshold-free cluster enhancement-based analysis of the time courses indicated that viewing behavior did not differ between the groups, neither during the initial viewing nor around the moment of recognition. This implies that eye movements are mainly driven by perceptual processes and not affected by cognition. It further suggests that priming mainly boosts the observer's confidence in the decision reached. We conclude that emerging images can be a useful tool to dissociate the perceptual and cognitive contributions to visual object recognition. PMID:26200889

  16. External potassium and action potential propagation in rat fast and slow twitch muscles.

    PubMed

    Kössler, F; Lange, F; Caffier, G; Küchler, G

    1991-10-01

    The role of extracellular K+ concentration in the propagation velocity of action potential was tested in isolated rat skeletal muscles. Different K+ concentrations were produced by KCl additions to extracellular solution. Action potentials were measured extracellularly by means of two annular platinum electrodes. Fibre bundles of m. soleus (SOL), m. extensor digitorum longus (EDL), red (SMR) and white (SMW) part of m. sternomastoideus were maximum stimulated. The conduction velocity (c.v.) was calculated from the distance between the electrodes and the time delay of the potentials measured at 22 degrees C. In Tyrode solution containing 5 mmol/l K+, the c.v. was close to 1 m.s-1. Bundles of the fast muscle type seemed to have a somewhat higher c.v. The differences observed in these studies were not significant. At higher temperatures, the c.v. increased (Q10 of approx. 2) and a dissociation between SMR and SMW muscles appeared. An elevation of K+ concentration to 10 mmol/l induced a drop of the c.v. by approx. 25% and 15% in EDL and SOL muscles, respectively. After return to normal solution, the recovery was not complete within 30 min. In K+ free solution the c.v. of EDL and SM muscles rose by a factor of 1.5, but less in SOL muscles. The weaker response of SOL to K+ modification was related to the higher resistance of this muscle to fatigue. This suggestion was supported by experiments on fatigued fibre bundles. Immediately after a tetanic stimulation producing fatigue, the c.v. of EDL and SOL muscles dropped similarly as in 10 mmol/l K+; again, the drop was less for SOL muscles. Adrenaline (0.5-10.0 mumol/l) enhanced both the c.v. and the twitch amplitude. The results support the suggestion that extracellular K+ accumulation during activity is an essential factor of muscle fatigue. PMID:1816028

  17. The electrophoretically 'slow' and 'fast' forms of the alpha 2-macroglobulin molecule.

    PubMed Central

    Barrett, A J; Brown, M A; Sayers, C A

    1979-01-01

    alpha 2-Macroglobulin (alpha 2M) was isolated from human plasma by a four-step procedure: poly(ethylene glyco) fractionation, gel chromatography, euglobulin precipitation and immunoadsorption. No contaminants were detected in the final preparations by electrophoresis or immunoprecipitation. The protein ran as a single slow band in gel electrophoresis, and was designated 'S-alpha 2M'. S-alpha 2M bound about 2 mol of trypsin/mol. Treatment of S-alpha 2M with a proteinase or ammonium salts produced a form of the molecule more mobile in electrophoresis, and lacking proteinase-binding activity (F-alpha 2M). The electrophoretic mobility of the F-alpha 2M resulting from reaction with NH4+ salts was identical with that of proteinase complexes. We attribute the change in electrophoretic mobility of the alpha 2M to a conformation change, but there was no evidence of a change in pI or Strokes radius. Electrophoresis of S-alpha 2M in the presence of sodium dodecylsulphate gave results consistent with the view that the alpha 2M molecule is a tetramer of identical subunits, assembled as a non-covalent pair of disulphide-linked dimers. Some of the subunits seemed to be 'nicked' into two-thires-length and one-third-length chains, however. This was not apparent with F-alpha 2M produced by ammonium salts. F-alpha 2M produced by trypsin showed two new bands attributable to cleavage of the subunit polypeptide chain near the middle. Immunoassays of F-alpha 2M gave 'rockets' 12-29% lower than those with S-alpha 2M. The nature of the interactions between subunits in S-alpha 2M and F-alpha 2M was investigated by treating each form with glutaraldehyde before electrophoresis in the presence of sodium dodecyl sulphate. A much greater degree of cross-linking was observed with the F-alpha 2M, indicating that the subunits interact most closely in this form of the molecule. Exposure of S-alpha 2M to 3 M-urea or pH3 resulted in dissociation to the disulphide-bonded half-molecules; these did not

  18. Rethinking fast and slow based on a critique of reaction-time reverse inference

    PubMed Central

    Krajbich, Ian; Bartling, Björn; Hare, Todd; Fehr, Ernst

    2015-01-01

    Do people intuitively favour certain actions over others? In some dual-process research, reaction-time (RT) data have been used to infer that certain choices are intuitive. However, the use of behavioural or biological measures to infer mental function, popularly known as ‘reverse inference', is problematic because it does not take into account other sources of variability in the data, such as discriminability of the choice options. Here we use two example data sets obtained from value-based choice experiments to demonstrate that, after controlling for discriminability (that is, strength-of-preference), there is no evidence that one type of choice is systematically faster than the other. Moreover, using specific variations of a prominent value-based choice experiment, we are able to predictably replicate, eliminate or reverse previously reported correlations between RT and selfishness. Thus, our findings shed crucial light on the use of RT in inferring mental processes and strongly caution against using RT differences as evidence favouring dual-process accounts. PMID:26135809

  19. Slow light performance enhancement of Bragg slot photonic crystal waveguide with particle swarm optimization algorithm

    NASA Astrophysics Data System (ADS)

    Abedi, Kambiz; Mirjalili, Seyed Mohammad

    2015-03-01

    Recently, majority of current research in the field of designing Phonic Crystal Waveguides (PCW) focus in extracting the relations between output slow light properties of PCW and structural parameters through a huge number of tedious non-systematic simulations in order to introduce better designs. This paper proposes a novel systematic approach which can be considered as a shortcut to alleviate the difficulties and human involvements in designing PCWs. In the proposed method, the problem of PCW design is first formulated as an optimization problem. Then, an optimizer is employed in order to automatically find the optimum design for the formulated PCWs. Meanwhile, different constraints are also considered during optimization with the purpose of applying physical limitations to the final optimum structure. As a case study, the structure of a Bragg-like Corrugation Slotted PCWs (BCSPCW) is optimized by using the proposed method. One of the most computationally powerful techniques in Computational Intelligence (CI) called Particle Swarm Optimization (PSO) is employed as an optimizer to automatically find the optimum structure for BCSPCW. The optimization process is done by considering five constraints to guarantee the feasibility of the final optimized structures and avoid band mixing. Numerical results demonstrate that the proposed method is able to find an optimum structure for BCSPCW with 172% and 100% substantial improvements in the bandwidth and Normalized Delay-Bandwidth Product (NDBP) respectively compared to the best current structure in the literature. Moreover, there is a time domain analysis at the end of the paper which verifies the performance of the optimized structure and proves that this structure has low distortion and attenuation simultaneously.

  20. The ATLAS3D project - VIII. Modelling the formation and evolution of fast and slow rotator early-type galaxies within ΛCDM

    NASA Astrophysics Data System (ADS)

    Khochfar, Sadegh; Emsellem, Eric; Serra, Paolo; Bois, Maxime; Alatalo, Katherine; Bacon, R.; Blitz, Leo; Bournaud, Frédéric; Bureau, M.; Cappellari, Michele; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Krajnović, Davor; Kuntschner, Harald; Lablanche, Pierre-Yves; McDermid, Richard M.; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Weijmans, Anne-Marie; Young, Lisa M.

    2011-10-01

    We propose a simple model for the origin of fast and slow rotator early-type galaxies (ETG) within the hierarchical Λcold dark matter (ΛCDM) scenario, that is based on the assumption that the mass fraction of stellar discs in ETGs is a proxy for the specific angular momentum expressed via λR. Within our model we reproduce the fraction of fast and slow rotators as a function of magnitude in the ATLAS3D survey, assuming that fast-rotating ETGs have at least 10 per cent of their total stellar mass in a disc component. In agreement with ATLAS3D observations we find that slow rotators are predominantly galaxies with M* > 1010.5 M⊙ contributing ˜20 per cent to the overall ETG population. We show in detail that the growth histories of fast and slow rotators are different, supporting the classification of ETGs into these two categories. Slow rotators accrete between ˜50 and 90 per cent of their stellar mass from satellites and their most massive progenitors have on average up to three major mergers during their evolution. Fast rotators in contrast accrete less than 50 per cent and have on average less than one major merger in their past. We find that the underlying physical reason for the different growth histories is the slowing down and ultimately complete shut-down of gas cooling in massive galaxies. Once cooling and associated star formation in disc stop, galaxies grow via infall from satellites. Frequent minor mergers thereby destroy existing stellar discs via violent relaxation and also tend to lower the specific angular momentum of the main stellar body, lowering λR into the slow rotator regime. On average, the last gas-rich major merger interaction in slow rotators happens at z > 1.5, followed by a series of minor mergers. These results support the idea that kinematically decoupled cores (KDC) form during gas-rich major mergers at high z followed by minor mergers, which build-up the outer layers of the remnant, and make remnants that are initially too flat

  1. The Slow:Fast substitution ratio reveals changing patterns of natural selection in gamma-proteobacterial genomes

    SciTech Connect

    Alm, Eric; Shapiro, B. Jesse

    2009-04-15

    Different microbial species are thought to occupy distinct ecological niches, subjecting each species to unique selective constraints, which may leave a recognizable signal in their genomes. Thus, it may be possible to extract insight into the genetic basis of ecological differences among lineages by identifying unusual patterns of substitutions in orthologous gene or protein sequences. We use the ratio of substitutions in slow versus fast-evolving sites (nucleotides in DNA, or amino acids in protein sequence) to quantify deviations from the typical pattern of selective constraint observed across bacterial lineages. We propose that elevated S:F in one branch (an excess of slow-site substitutions) can indicate a functionally-relevant change, due to either positive selection or relaxed evolutionary constraint. In a genome-wide comparative study of gamma-proteobacterial proteins, we find that cell-surface proteins involved with motility and secretion functions often have high S:F ratios, while information-processing genes do not. Change in evolutionary constraints in some species is evidenced by increased S:F ratios within functionally-related sets of genes (e.g., energy production in Pseudomonas fluorescens), while other species apparently evolve mostly by drift (e.g., uniformly elevated S:F across most genes in Buchnera spp.). Overall, S:F reveals several species-specific, protein-level changes with potential functional/ecological importance. As microbial genome projects yield more species-rich gene-trees, the S:F ratio will become an increasingly powerful tool for uncovering functional genetic differences among species.

  2. Ultra light-sensitive and fast neuronal activation with the Ca²+-permeable channelrhodopsin CatCh.

    PubMed

    Kleinlogel, Sonja; Feldbauer, Katrin; Dempski, Robert E; Fotis, Heike; Wood, Phillip G; Bamann, Christian; Bamberg, Ernst

    2011-04-01

    The light-gated cation channel channelrhodopsin-2 (ChR2) has rapidly become an important tool in neuroscience, and its use is being considered in therapeutic interventions. Although wild-type and known variant ChR2s are able to drive light-activated spike trains, their use in potential clinical applications is limited by either low light sensitivity or slow channel kinetics. We present a new variant, calcium translocating channelrhodopsin (CatCh), which mediates an accelerated response time and a voltage response that is ~70-fold more light sensitive than that of wild-type ChR2. CatCh's superior properties stem from its enhanced Ca²(+) permeability. An increase in [Ca²(+)](i) elevates the internal surface potential, facilitating activation of voltage-gated Na(+) channels and indirectly increasing light sensitivity. Repolarization following light-stimulation is markedly accelerated by Ca²(+)-dependent BK channel activation. Our results demonstrate a previously unknown principle: shifting permeability from monovalent to divalent cations to increase sensitivity without compromising fast kinetics of neuronal activation. This paves the way for clinical use of light-gated channels. PMID:21399632

  3. Nociceptive neurons differentially express fast and slow T-type Ca²⁺ currents in different types of diabetic neuropathy.

    PubMed

    Khomula, Eugen V; Borisyuk, Anya L; Viatchenko-Karpinski, Viacheslav Y; Briede, Andrea; Belan, Pavel V; Voitenko, Nana V

    2014-01-01

    T-type Ca²⁺ channels are known as important participants of nociception and their remodeling contributes to diabetes-induced alterations of pain sensation. In this work we have established that about 30% of rat nonpeptidergic thermal C-type nociceptive (NTCN) neurons of segments L4-L6 express a slow T-type Ca²⁺ current (T-current) while a fast T-current is expressed in the other 70% of these neurons. Streptozotocin-induced diabetes in young rats resulted in thermal hyperalgesia, hypoalgesia, or normalgesia 5-6 weeks after the induction. Our results show that NTCN neurons obtained from hyperalgesic animals do not express the slow T-current. Meanwhile, the fraction of neurons expressing the slow T-current did not significantly change in the hypo- and normalgesic diabetic groups. Moreover, the peak current density of fast T-current was significantly increased only in the neurons of hyperalgesic group. In contrast, the peak current density of slow T-current was significantly decreased in the hypo- and normalgesic groups. Experimental diabetes also resulted in a depolarizing shift of steady-state inactivation of fast T-current in the hyperalgesic group and slow T-current in the hypo- and normalgesic groups. We suggest that the observed changes may contribute to expression of different types of peripheral diabetic neuropathy occurring during the development of diabetes mellitus. PMID:24693454

  4. Fast space-varying convolution using matrix source coding with applications to camera stray light reduction.

    PubMed

    Wei, Jianing; Bouman, Charles A; Allebach, Jan P

    2014-05-01

    Many imaging applications require the implementation of space-varying convolution for accurate restoration and reconstruction of images. Here, we use the term space-varying convolution to refer to linear operators whose impulse response has slow spatial variation. In addition, these space-varying convolution operators are often dense, so direct implementation of the convolution operator is typically computationally impractical. One such example is the problem of stray light reduction in digital cameras, which requires the implementation of a dense space-varying deconvolution operator. However, other inverse problems, such as iterative tomographic reconstruction, can also depend on the implementation of dense space-varying convolution. While space-invariant convolution can be efficiently implemented with the fast Fourier transform, this approach does not work for space-varying operators. So direct convolution is often the only option for implementing space-varying convolution. In this paper, we develop a general approach to the efficient implementation of space-varying convolution, and demonstrate its use in the application of stray light reduction. Our approach, which we call matrix source coding, is based on lossy source coding of the dense space-varying convolution matrix. Importantly, by coding the transformation matrix, we not only reduce the memory required to store it; we also dramatically reduce the computation required to implement matrix-vector products. Our algorithm is able to reduce computation by approximately factoring the dense space-varying convolution operator into a product of sparse transforms. Experimental results show that our method can dramatically reduce the computation required for stray light reduction while maintaining high accuracy. PMID:24710398

  5. Profiling functions of ectomycorrhizal diversity and root structuring in seedlings of Norway spruce (Picea abies) with fast- and slow-growing phenotypes.

    PubMed

    Velmala, Sannakajsa M; Rajala, Tiina; Heinonsalo, Jussi; Taylor, Andy F S; Pennanen, Taina

    2014-01-01

    We studied the role of taxonomical and functional ectomycorrhizal (ECM) fungal diversity in root formation and nutrient uptake by Norway spruce (Picea abies) seedlings with fast- and slow-growing phenotypes. Seedlings were grown with an increasing ECM fungal diversity gradient from one to four species and sampled before aboveground growth differences between the two phenotypes were apparent. ECM fungal colonization patterns were determined and functional diversity was assayed via measurements of potential enzyme activities of eight exoenzymes probably involved in nutrient mobilization. Phenotypes did not vary in their receptiveness to different ECM fungal species. However, seedlings of slow-growing phenotypes had higher fine-root density and thus more condensed root systems than fast-growing seedlings, but the potential enzyme activities of ectomycorrhizas did not differ qualitatively or quantitatively. ECM species richness increased host nutrient acquisition potential by diversifying the exoenzyme palette. Needle nitrogen content correlated positively with high chitinase activity of ectomycorrhizas. Rather than fast- and slow-growing phenotypes exhibiting differing receptiveness to ECM fungi, our results suggest that distinctions in fine-root structuring and in the belowground growth strategy already apparent at early stages of seedling development may explain later growth differences between fast- and slow-growing families. PMID:24117652

  6. Transcriptomics, SNP discovery, and relative gene expression of fast- and slow-growing hybrid striped bass families and their application in a selective breeding program

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objectives of this study were to determine the genetic basis of production traits for selective improvement, and RNA-sequence (RNA-seq) fast-growing and slow-growing representatives to identify global expression differences and develop predictive single nucleotide polymorphisms (SNP) markers as ...

  7. Diurnal changes in gas exchange and carbon partitioning in needles of fast- and slow-growing families of loblolly pine (Pinus taeda).

    PubMed

    Yang, W Q; Murthy, R; King, P; Topa, M A

    2002-05-01

    We investigated diurnal and seasonal changes in carbon acquisition and partitioning of recently assimilated carbon in fast- and slow-growing families of loblolly pine (Pinus taeda L.) to determine whether fast-growing families exhibited greater carbon gain at the leaf level. Since planting on a xeric infertile site in Scotland County, NC, USA in 1993, five Atlantic Coastal Plain (ACP) and five "Lost Pines" Texas (TX) families have been grown with either optimal nutrition or without fertilization (control). In 1998 and 1999, gas exchange parameters were monitored bimonthly in four families and needles were analyzed bimonthly for starch and soluble sugar concentrations. Although diurnal and seasonal effects on net photosynthesis (A(net)) and maximum rate of light-saturated photosynthesis (A(max)) were significant, few family or treatment differences in gas exchange characteristics were observed. The A(net) peaked at different times during the day over the season, and A(max) was generally highest in May. Instantaneous water-use efficiency (WUE(i)), derived from gas exchange parameters, did not differ among families, whereas foliage stable isotope composition (delta(13)C) values suggested that TX families exhibited lower WUE than more mesic ACP families. Although there were no diurnal effects on foliar starch concentrations, needles exhibited pronounced seasonal changes in absolute concentrations of total nonstructural carbohydrates (TNC), starch and soluble sugars, and in partitioning of TNC to starch and sugars, mirroring seasonal changes in photosynthesis and shoot and root growth. In all families, foliar starch concentrations peaked in May and decreased to a minimum in winter, whereas reducing sugar concentrations were highest in winter. Some family and treatment differences in partitioning of recently assimilated carbon in needles were observed, with the two TX families exhibiting higher concentrations of TNC and starch and enhanced starch partitioning compared

  8. LIGHT SCATTERING: Fast path-integration technique in simulation of light propagation through highly scattering objects

    NASA Astrophysics Data System (ADS)

    Voronov, Aleksandr V.; Tret'yakov, Evgeniy V.; Shuvalov, Vladimir V.

    2004-06-01

    Based on the path-integration technique and the Metropolis method, the original calculation scheme is developed for solving the problem of light propagation through highly scattering objects. The elimination of calculations of 'unnecessary' realisations and the phenomenological description of processes of multiple small-angle scattering provided a drastic increase (by nine and more orders of magnitude) in the calculation rate, retaining the specific features of the problem (consideration of spatial inhomogeneities, boundary conditions, etc.). The scheme allows one to verify other fast calculation algorithms and to obtain information required to reconstruct the internal structure of highly scattering objects (of size ~1000 scattered lengths and more) by the method of diffusion optical tomography.

  9. Manipulation of dark photonic angular momentum states via magneto-optical effect for tunable slow-light performance.

    PubMed

    Yang, Mu; Li, Teng-Fei; Sheng, Qi-Wen; Guo, Tian-Jing; Guo, Qing-Hua; Cui, Hai-Xu; Chen, Jing

    2013-10-21

    We propose a novel scheme in realizing tunable slow-light performance by manipulating dark photonic angular momentum states (PAMSs) in metamaterials via the magneto-optical effect. We show that by applying a static magnetic field B, some pairs of sharp transmission dips can be observed in the background transparency window of a complex metamaterial design. Each pair of transmission dips are related to the excitation of dark PAMSs with opposite topological charges -m and +m, with a lifted degeneracy due to the classic analogue of Zeeman effect. Nonreciprocal characteristics can be observed in the distributions of field amplitude and transverse energy flux. The performance of slow light, including the group index ng, its abnormal feature, the associated strong absorption and the dependence with B are also discussed. PMID:24150346

  10. Slow light based on stimulated Raman scattering in an integrated liquid-core optical fiber filled with CS2.

    PubMed

    Herrera, Oscar D; Schneebeli, L; Kieu, K; Norwood, R A; Peyghambarian, N

    2013-04-01

    We demonstrate a fiber-based slow light system using a carbon disulfide (CS2)) filled integrated liquid-core optical fiber (i-LCOF). Using 1 meter of i-LCOF we were able to delay 18ps pulses up to 34ps; a delay of 188% of the pulse width. This experimental setup serves as a foundation for slow-light experiments in other nonlinear liquids. Numerical simulations of pulse-propagation equations confirmed the observed delay and a simplified method is presented that can be applied to calculate induced delay for non-cw Stokes pulses. The system is all-fiber and compact with delays greater than a pulse width, indicating potential application as an ultrafast controllable delay line for time division multiplexing in multiGb/s telecommunication systems. PMID:23571972

  11. Fast and slow ion diffusion processes in lithium ion pouch cells during cycling observed with fiber optic strain sensors

    NASA Astrophysics Data System (ADS)

    Sommer, Lars Wilko; Kiesel, Peter; Ganguli, Anurag; Lochbaum, Alexander; Saha, Bhaskar; Schwartz, Julian; Bae, Chang-Jun; Alamgir, Mohamed; Raghavan, Ajay

    2015-11-01

    Cell monitoring for safe capacity utilization while maximizing pack life and performance is a key requirement for effective battery management and encouraging their adoption for clean-energy technologies. A key cell failure mode is the build-up of residual electrode strain over time, which affects both cell performance and life. Our team has been exploring the use of fiber optic (FO) sensors as a new alternative for cell state monitoring. In this present study, various charge-cycling experiments were performed on Lithium-ion pouch cells with a particular class of FO sensors, fiber Bragg gratings (FBGs), that were externally attached to the cells. An overshooting of the volume change at high SOC that recovers during rest can be observed. This phenomenon originates from the interplay between a fast and a slow Li ion diffusion process, which leads to non-homogeneous intercalation of Li ions. This paper focuses on the strain relaxation processes that occur after switching from charge to no-load phases. The correlation of the excess volume and subsequent relaxation to SOC as well as temperature is discussed. The implications of being able to monitor this phenomenon to control battery utilization for long life are also discussed.

  12. Inactivation of E. coli O157:H7 in cultivable soil by fast and slow pyrolysis-generated biochar.

    PubMed

    Gurtler, Joshua B; Boateng, Akwasi A; Han, Yanxue Helen; Douds, David D

    2014-03-01

    An exploratory study was performed to determine the influence of fast pyrolysis (FP) and slow pyrolysis (SP) biochars on enterohemorrhagic Escherichia coli O157:H7 (EHEC) in soil. Soil + EHEC (inoculated at 7 log colony-forming units [CFU]/g of soil) + 1 of 12 types of biochar (10% total weight:weight in soil) was stored at 22°C and sampled for 8 weeks. FP switchgrass and FP horse litter biochars inactivated 2.8 and 2.1 log CFU/g more EHEC than no-biochar soils by day 14. EHEC was undetectable by surface plating at weeks 4 and 5 in standard FP switchgrass, FP oak, and FP switchgrass pellet biochars. Conversely, EHEC populations in no-biochar control samples remained as high as 5.8 and 4.0 log CFU/g at weeks 4 and 5, respectively. Additionally, three more SP hardwood pellet biochars (generated at 500°C for 1 h, or 2 h, or generated at 700°C for 30 min) inactivated greater numbers of EHEC than did the no-biochar control samples during weeks 4 and 5. These results suggest that biochar can inactivate E. coli O157:H7 in cultivable soil, which might mitigate risks associated with EHEC contamination on fresh produce. PMID:24328454

  13. cAMP levels in fast- and slow-twitch skeletal muscle after an acute bout of aerobic exercise

    NASA Technical Reports Server (NTRS)

    Sheldon, A.; Booth, F. W.; Kirby, C. R.

    1993-01-01

    The present study examined whether exercise duration was associated with elevated and/or sustained elevations of postexercise adenosine 3',5'-cyclic monophosphate (cAMP) by measuring cAMP levels in skeletal muscle for up to 4 h after acute exercise bouts of durations that are known to either produce (60 min) or not produce (10 min) mitochondrial proliferation after chronic training. Treadmill-acclimatized, but untrained, rats were run at 22 m/min for 0 (control), 10, or 60 min and were killed at various postexercise (0, 0.5, 1, 2, and 4 h) time points. Fast-twitch white and red (quadriceps) and slow-twitch (soleus) muscles were quickly excised, frozen in liquid nitrogen, and assayed for cAMP with a commercial kit. Unexpectedly, cAMP contents in all three muscles were similar to control (nonexercise) at most (21 of 30) time points after a single 10- or 60-min run. Values at 9 of 30 time points were significantly different from control (P < 0.05); i.e., 3 time points were significantly higher than control and 6 were significantly less than control. These data suggest that the cAMP concentration of untrained skeletal muscle after a single bout of endurance-type exercise is not, by itself, associated with exercise duration.

  14. Particle simulations of mode conversion between slow mode and fast mode in lower hybrid range of frequencies

    NASA Astrophysics Data System (ADS)

    Jia, Guozhang; Xiang, Nong; Wang, Xueyi; Huang, Yueheng; Lin, Yu

    2016-01-01

    The propagation and mode conversion of lower hybrid waves in an inhomogeneous plasma are investigated by using the nonlinear δf algorithm in a two-dimensional particle-in-cell simulation code based on the gyrokinetic electron and fully kinetic ion (GeFi) scheme [Lin et al., Plasma Phys. Controlled Fusion 47, 657 (2005)]. The characteristics of the simulated waves, such as wavelength, frequency, phase, and group velocities, agree well with the linear theoretical analysis. It is shown that a significant reflection component emerges in the conversion process between the slow mode and the fast mode when the scale length of the density variation is comparable to the local wavelength. The dependences of the reflection coefficient on the scale length of the density variation are compared with the results based on the linear full wave model for cold plasmas. It is indicated that the mode conversion for the waves with a frequency of 2.45 GHz (ω ˜ 3ωLH, where ωLH represents the lower hybrid resonance) and within Tokamak relevant amplitudes can be well described in the linear scheme. As the frequency decreases, the modification due to the nonlinear term becomes important. For the low-frequency waves (ω ˜ 1.3ωLH), the generations of the high harmonic modes and sidebands through nonlinear mode-mode coupling provide new power channels and thus could reduce the reflection significantly.

  15. Numerical Modeling of Coupled Variably-Saturated Fluid Flow and Reactive Transport with Fast and Slow Chemical Reactions

    SciTech Connect

    LI, MING-HSU; SIEGEL, MALCOLM D.; YEH, GOUR-TSYH

    1999-09-20

    The couplings among chemical reaction rates, advective and diffusive transport in fractured media or soils, and changes in hydraulic properties due to precipitation and dissolution within fractures and in rock matrix are important for both nuclear waste disposal and remediation of contaminated sites. This paper describes the development and application of LEHGC2.0, a mechanistically-based numerical model for simulation of coupled fluid flow and reactive chemical transport including both fast and slow reactions invariably saturated media. Theoretical bases and numerical implementations are summarized, and two example problems are demonstrated. The first example deals with the effect of precipitation-dissolution on fluid flow and matrix diffusion in a two-dimensional fractured media. Because of the precipitation and decreased diffusion of solute from the fracture into the matrix, retardation in the fractured medium is not as large as the case wherein interactions between chemical reactions and transport are not considered. The second example focuses on a complicated but realistic advective-dispersive-reactive transport problem. This example exemplifies the need for innovative numerical algorithms to solve problems involving stiff geochemical reactions.

  16. Fast collapse but slow formation of secondary structure elements in the refolding transition of E. coli adenylate kinase.

    PubMed

    Ratner, V; Amir, D; Kahana, E; Haas, E

    2005-09-23

    The various models proposed for protein folding transition differ in their order of appearance of the basic steps during this process. In this study, steady state and time-resolved dynamic non-radiative excitation energy transfer (FRET and trFRET) combined with site specific labeling experiments were applied in order to characterize the initial transient ensemble of Escherichia coli adenylate kinase (AK) molecules upon shifting conditions from those favoring denaturation to refolding and from folding to denaturing. Three sets of labeled AK mutants were prepared, which were designed to probe the equilibrium and transient distributions of intramolecular segmental end-to-end distances. A 176 residue section (residues 28-203), which spans most of the 214 residue molecule, and two short secondary structure chain segments including an alpha-helix (residues 169-188) and a predominantly beta-strand region (residues 188-203), were labeled. Upon fast change of conditions from denaturing to folding, the end-to-end distance of the 176 residue chain section showed an immediate collapse to a mean value of 26 A. Under the same conditions, the two short secondary structure elements did not respond to this shift within the first ten milliseconds, and retained the characteristics of a fully unfolded state. Within the first 10 ms after changes of the solvent from folding to denaturing, only minor changes were observed at the local environments of residues 203 and 169. The response of these same local environments to the shift of conditions from denaturing to folding occurred within the dead time of the mixing device. Thus, the response of the CORE domain of AK to fast transfer from folding to unfolding conditions is slow at all three conformational levels that were probed, and for at least a few milliseconds the ensemble of folded molecules is maintained under unfolding conditions. A different order of the changes was observed upon initiation of refolding. The AK molecules undergo

  17. Task-dependent inhibition of slow-twitch soleus and excitation of fast-twitch gastrocnemius do not require high movement speed and velocity-dependent sensory feedback

    PubMed Central

    Mehta, Ricky; Prilutsky, Boris I.

    2014-01-01

    Although individual heads of triceps surae, soleus (SO) and medial gastrocnemius (MG) muscles, are often considered close functional synergists, previous studies have shown distinct activity patterns between them in some motor behaviors. The goal of this study was to test two hypotheses explaining inhibition of slow SO with respect to fast MG: (1) inhibition occurs at high movement velocities and mediated by velocity-dependent sensory feedback and (2) inhibition depends on the ankle-knee joint moment combination and does not require high movement velocities. The hypotheses were tested by comparing the SO EMG/MG EMG ratio during fast and slow motor behaviors (cat paw shake responses vs. back, straight leg load lifting in humans), which had the same ankle extension-knee flexion moment combination; and during fast and slow behaviors with the ankle extension-knee extension moment combination (human vertical jumping and stance phase of walking in cats and leg load lifting in humans). In addition, SO EMG/MG EMG ratio was determined during cat paw shake responses and walking before and after removal of stretch velocity-dependent sensory feedback by self-reinnervating SO and/or gastrocnemius. We found the ratio SO EMG/MG EMG below 1 (p < 0.05) during fast paw shake responses and slow back load lifting, requiring the ankle extension-knee flexion moment combination; whereas the ratio SO EMG/MG EMG was above 1 (p < 0.05) during fast vertical jumping and slow tasks of walking and leg load lifting, requiring ankle extension-knee extension moments. Removal of velocity-dependent sensory feedback did not affect the SO EMG/MG EMG ratio in cats. We concluded that the relative inhibition of SO does not require high muscle velocities, depends on ankle-knee moment combinations, and is mechanically advantageous for allowing a greater MG contribution to ankle extension and knee flexion moments. PMID:25389407

  18. Task-dependent inhibition of slow-twitch soleus and excitation of fast-twitch gastrocnemius do not require high movement speed and velocity-dependent sensory feedback.

    PubMed

    Mehta, Ricky; Prilutsky, Boris I

    2014-01-01

    Although individual heads of triceps surae, soleus (SO) and medial gastrocnemius (MG) muscles, are often considered close functional synergists, previous studies have shown distinct activity patterns between them in some motor behaviors. The goal of this study was to test two hypotheses explaining inhibition of slow SO with respect to fast MG: (1) inhibition occurs at high movement velocities and mediated by velocity-dependent sensory feedback and (2) inhibition depends on the ankle-knee joint moment combination and does not require high movement velocities. The hypotheses were tested by comparing the SO EMG/MG EMG ratio during fast and slow motor behaviors (cat paw shake responses vs. back, straight leg load lifting in humans), which had the same ankle extension-knee flexion moment combination; and during fast and slow behaviors with the ankle extension-knee extension moment combination (human vertical jumping and stance phase of walking in cats and leg load lifting in humans). In addition, SO EMG/MG EMG ratio was determined during cat paw shake responses and walking before and after removal of stretch velocity-dependent sensory feedback by self-reinnervating SO and/or gastrocnemius. We found the ratio SO EMG/MG EMG below 1 (p < 0.05) during fast paw shake responses and slow back load lifting, requiring the ankle extension-knee flexion moment combination; whereas the ratio SO EMG/MG EMG was above 1 (p < 0.05) during fast vertical jumping and slow tasks of walking and leg load lifting, requiring ankle extension-knee extension moments. Removal of velocity-dependent sensory feedback did not affect the SO EMG/MG EMG ratio in cats. We concluded that the relative inhibition of SO does not require high muscle velocities, depends on ankle-knee moment combinations, and is mechanically advantageous for allowing a greater MG contribution to ankle extension and knee flexion moments. PMID:25389407

  19. Six1 and Eya1 expression can reprogram adult muscle from the slow-twitch phenotype into the fast-twitch phenotype.

    PubMed

    Grifone, Raphaelle; Laclef, Christine; Spitz, François; Lopez, Soledad; Demignon, Josiane; Guidotti, Jacques-Emmanuel; Kawakami, Kiyoshi; Xu, Pin-Xian; Kelly, Robert; Petrof, Basil J; Daegelen, Dominique; Concordet, Jean-Paul; Maire, Pascal

    2004-07-01

    Muscle fibers show great differences in their contractile and metabolic properties. This diversity enables skeletal muscles to fulfill and adapt to different tasks. In this report, we show that the Six/Eya pathway is implicated in the establishment and maintenance of the fast-twitch skeletal muscle phenotype. We demonstrate that the MEF3/Six DNA binding element present in the aldolase A pM promoter mediates the high level of activation of this promoter in fast-twitch glycolytic (but not in slow-twitch) muscle fibers. We also show that among the Six and Eya gene products expressed in mouse skeletal muscle, Six1 and Eya1 proteins accumulate preferentially in the nuclei of fast-twitch muscles. The forced expression of Six1 and Eya1 together in the slow-twitch soleus muscle induced a fiber-type transition characterized by the replacement of myosin heavy chain I and IIA isoforms by the faster IIB and/or IIX isoforms, the activation of fast-twitch fiber-specific genes, and a switch toward glycolytic metabolism. Collectively, these data identify Six1 and Eya1 as the first transcriptional complex that is able to reprogram adult slow-twitch oxidative fibers toward a fast-twitch glycolytic phenotype. PMID:15226428

  20. Improved slow-light performance of 10 Gb/s NRZ, PSBT and DPSK signals in fiber broadband SBS.

    PubMed

    Yi, Lilin; Jaouen, Yves; Hu, Weisheng; Su, Yikai; Bigo, Sébastien

    2007-12-10

    We have demonstrated error-free operations of slow-light via stimulated Brillouin scattering (SBS) in optical fiber for 10-Gb/s signals with different modulation formats, including non-return-to-zero (NRZ), phase-shaped binary transmission (PSBT) and differential phase-shiftkeying (DPSK). The SBS gain bandwidth is broadened by using current noise modulation of the pump laser diode. The gain shape is simply controlled by the noise density function. Super-Gaussian noise modulation of the Brillouin pump allows a flat-top and sharp-edge SBS gain spectrum, which can reduce slow-light induced distortion in case of 10-Gb/s NRZ signal. The corresponding maximal delay-time with error-free operation is 35 ps. Then we propose the PSBT format to minimize distortions resulting from SBS filtering effect and dispersion accompanied with slow light because of its high spectral efficiency and strong dispersion tolerance. The sensitivity of the 10-Gb/s PSBT signal is 5.2 dB better than the NRZ case with a same 35-ps delay. The maximal delay of 51 ps with error-free operation has been achieved. Futhermore, the DPSK format is directly demodulated through a Gaussian-shaped SBS gain, which is achieved using Gaussian-noise modulation of the Brillouin pump. The maximal error-free time delay after demodulation of a 10-Gb/s DPSK signal is as high as 81.5 ps, which is the best demonstrated result for 10-Gb/s slow-light. PMID:19550988

  1. Complete compensation of pulse broadening in an amplifier-based slow light system using a nonlinear regeneration element.

    PubMed

    Chin, Sanghooon; Gonzalez-Herraez, Miguel; Thévenaz, Luc

    2009-11-23

    We experimentally demonstrate complete compensation of pulse broadening in an amplifier-based slow light system. The configuration of the delay line basically consists of two stages: a conventional Brillouin slow light system and a nonlinear regeneration element. Signal pulses experienced both time delay and temporal broadening through the Brillouin delay line and then the delayed pulses were delivered into a nonlinear optical loop mirror. Due to the nonlinear response of the transmission of the fiber loop, the inevitably broadened pulses were moderately compressed in the output of the loop, without loss in the capacity to delay the pulses. The overall result is that, for the maximum delay, the width of the pulse could be kept below the input width while the time delays introduced by the slow light element were preserved. Using this delay line, a signal pulse with duration of 27 ns at full width at half maximum was delayed up to 1.3-bits without suffering from signal distortion. PMID:19997435

  2. Observation of the slow, Debye-like relaxation in hydrogen-bonded liquids by dynamic light scattering

    NASA Astrophysics Data System (ADS)

    Wang, Yangyang; Griffin, Philip J.; Holt, Adam; Fan, Fei; Sokolov, Alexei P.

    2014-03-01

    The slow, Debye-like relaxation in hydrogen-bonded liquids has largely remained a dielectric phenomenon and has thus far eluded observation by other experimental techniques. Here we report the first observation of a slow, Debye-like relaxation by both depolarized dynamic light scattering (DLS) and dielectric spectroscopy in a model hydrogen-bonded liquid, 2-ethyl-4-methylimidazole (2E4MIm). The relaxation times obtained by these two techniques are in good agreement and can be well explained by the Debye model of rotational diffusion. On the one hand, 2E4MIm is analogous to the widely studied monohydroxy alcohols in which transient chain-like supramolecular structure can be formed by hydrogen bonding. On the other hand, the hydrogen-bonded backbone of 2E4MIm is much more optically polarizable, making it possible to apply light scattering to study the dynamics of the supramolecular structure. These findings provide the missing evidence of the slow, Debye-like relaxation in DLS and open the venue for the application of dynamic light scattering to the study of supramolecular structures in hydrogen-bonded liquids.

  3. Fast Movements, Slow Processes

    ERIC Educational Resources Information Center

    Jordan, Jay

    2016-01-01

    This semester, for the second time in the last couple of years, the author is leading a graduate seminar on histories of rhetoric. Little scholarship traces the development of multilingual composition in antiquity (with Brian Ray's article as a clear and excellent exception), so the author typically feels like students hit a rich but untapped…

  4. Tuning the Sensitivity of an Optical Cavity with Slow and Fast Light

    NASA Technical Reports Server (NTRS)

    Smith, David D.; Myneni, Krishna; Chang, H.; Toftul, A.; Schambeau, C.; Odutola, J. A.; Diels, J. C.

    2012-01-01

    We have measured mode pushing by the dispersion of a rubidium vapor in a Fabry-Perot cavity and have shown that the scale factor and sensitivity of a passive cavity can be strongly enhanced by the presence of such an anomalous dispersion medium. The enhancement is the result of the atom-cavity coupling, which provides a positive feedback to the cavity response. The cavity sensitivity can also be controlled and tuned through a pole by a second, optical pumping, beam applied transverse to the cavity. Alternatively, the sensitivity can be controlled by the introduction of a second counter-propagating input beam that interferes with the first beam, coherently increasing the cavity absorptance. We show that the pole in the sensitivity occurs when the sum of the effective group index and an additional cavity delay factor that accounts for mode reshaping goes to zero, and is an example of an exceptional point, commonly associated with coupled non-Hermitian Hamiltonian systems. Additionally we show that a normal dispersion feature can decrease the cavity scale factor and can be generated through velocity selective optical pumping

  5. A preliminary investigation comparing one and eight channels at fast and slow rates on music appraisal in adults with cochlear implants.

    PubMed

    Tyler, R S; Gfeller, K; Mehr, M A

    2000-09-01

    Music perception is important to cochlear implant patients, but little effort has been devoted to improving signal processing for music. In this preliminary investigation, we probed the importance of number of channels and stimulus rate. We asked eight users of the Clarion cochlear implant to rate music quality on a scale from 0 to 100 on three different types of music (country and western, pop and classical). Patients rated eight- and one-channel processors running at a fast and slow rate. The stimulus rate was 200 pps for the slow rate. For the eight-channel condition, the fast rate varied from 394 to 765 pps. For the one-channel condition, the fast rate varied from 2601 to 4335 pps. Results indicated that the eight-channel condition was uniformly rated higher than the one-channel condition. However, the results for stimulus rate were less clear. No patients assigned higher ratings with the slow rate, but only three subjects assigned higher ratings with the fast rate. We conclude that music perception can be influenced and probably improved by signal processing. The number of channels, or perhaps spectral representation, is critical for music appreciation by cochlear implant recipients. PMID:18791996

  6. Magnesium Sensitizes Slow Vacuolar Channels to Physiological Cytosolic Calcium and Inhibits Fast Vacuolar Channels in Fava Bean Guard Cell Vacuoles.

    PubMed

    Pei; Ward; Schroeder

    1999-11-01

    Vacuolar ion channels in guard cells play important roles during stomatal movement and are regulated by many factors including Ca(2+), calmodulin, protein kinases, and phosphatases. We report that physiological cytosolic and luminal Mg(2+) levels strongly regulate vacuolar ion channels in fava bean (Vicia faba) guard cells. Luminal Mg(2+) inhibited fast vacuolar (FV) currents with a K(i) of approximately 0.23 mM in a voltage-dependent manner at positive potentials on the cytoplasmic side. Cytosolic Mg(2+) at 1 mM also inhibited FV currents. Furthermore, in the absence of cytosolic Mg(2+), cytosolic Ca(2+) at less than 10 µM did not activate slow vacuolar (SV) currents. However, when cytosolic Mg(2+) was present, submicromolar concentrations of cytosolic Ca(2+) activated SV currents with a K(d) of approximately 227 nM, suggesting a synergistic Mg(2+)-Ca(2+) effect. The activation potential of SV currents was shifted toward physiological potentials in the presence of cytosolic Mg(2+) concentrations. The direction of SV currents could also be changed from outward to both outward and inward currents. Our data predict a model for SV channel regulation, including a cytosolic binding site for Ca(2+) with an affinity in the submicromolar range and a cytosolic low-affinity Mg(2+)-Ca(2+) binding site. SV channels are predicted to contain a third binding site on the vacuolar luminal side, which binds Ca(2+) and is inhibitory. In conclusion, cytosolic Mg(2+) sensitizes SV channels to physiological cytosolic Ca(2+) elevations. Furthermore, we propose that cytosolic and vacuolar Mg(2+) concentrations ensure that FV channels do not function as a continuous vacuolar K(+) leak, which would prohibit stomatal opening. PMID:10557247

  7. The ATLAS3D project - XXVI. H I discs in real and simulated fast and slow rotators

    NASA Astrophysics Data System (ADS)

    Serra, Paolo; Oser, Ludwig; Krajnović, Davor; Naab, Thorsten; Oosterloo, Tom; Morganti, Raffaella; Cappellari, Michele; Emsellem, Eric; Young, Lisa M.; Blitz, Leo; Davis, Timothy A.; Duc, Pierre-Alain; Hirschmann, Michaela; Weijmans, Anne-Marie; Alatalo, Katherine; Bayet, Estelle; Bois, Maxime; Bournaud, Frédéric; Bureau, Martin; Crocker, Alison F.; Davies, Roger L.; de Zeeuw, P. T.; Khochfar, Sadegh; Kuntschner, Harald; Lablanche, Pierre-Yves; McDermid, Richard M.; Sarzi, Marc; Scott, Nicholas

    2014-11-01

    One quarter of all nearby early-type galaxies (ETGs) outside Virgo host a disc/ring of H I with size from a few to tens of kpc and mass up to ˜109 M⊙. Here we investigate whether this H I is related to the presence of a stellar disc within the host making use of the classification of ETGs in fast and slow rotators (FR/SR). We find a large diversity of H I masses and morphologies within both families. Surprisingly, SRs are detected as often, host as much H I and have a similar rate of H I discs/rings as FRs. Accretion of H I is therefore not always linked to the growth of an inner stellar disc. The weak relation between H I and stellar disc is confirmed by their frequent kinematical misalignment in FRs, including cases of polar and counterrotating gas. In SRs the H I is usually polar. This complex picture highlights a diversity of ETG formation histories which may be lost in the relative simplicity of their inner structure and emerges when studying their outer regions. We find that Λ CDM hydrodynamical simulations have difficulties reproducing the H I properties of ETGs. The gas discs formed in simulations are either too massive or too small depending on the star formation feedback implementation. Kinematical misalignments match the observations only qualitatively. The main point of conflict is that nearly all simulated FRs and a large fraction of all simulated SRs host corotating H I. This establishes the H I properties of ETGs as a novel challenge to simulations.

  8. Shaping the role of 'fast' and 'slow' drivers of change in forest-shrubland socio-ecological systems.

    PubMed

    Ferrara, Agostino; Kelly, Claire; Wilson, Geoff A; Nolè, Angelo; Mancino, Giuseppe; Bajocco, Sofia; Salvati, Luca

    2016-03-15

    The temporal speeds and spatial scales at which ecosystem processes operate are often at odds with the scale and speed at which natural resources such as soil, water and vegetation are managed those. Scale mismatches often occur as a result of the time-lag between policy development, implementation and observable changes in natural capital in particular. In this study, we analyse some of the transformations that can occur in complex forest-shrubland socio-ecological systems undergoing biophysical and socioeconomic change. We use a Multiway Factor Analysis (MFA) applied to a representative set of variables to assess changes in components of natural, economic and social capitals over time. Our results indicate similarities among variables and spatial units (i.e. municipalities) which allows us to rank the variables used to describe the SES according to their rapidity of change. The novelty of the proposed framework lies in the fact that the assessment of rapidity-to-change, based on the MFA, takes into account the multivariate relationships among the system's variables, identifying the net rate of change for the whole system, and the relative impact that individual variables exert on the system itself. The aim of this study was to assess the influence of fast and slow variables on the evolution of socio-economic systems based on simplified multivariate procedures applicable to vastly different socio-economic contexts and conditions. This study also contributes to quantitative analysis methods for long-established socio-ecological systems, which may help in designing more effective, and sustainable land management strategies in environmentally sensitive areas. PMID:26741563

  9. Effects of blockade of fast and slow inward current channels on ventricular fibrillation in the pig heart.

    PubMed Central

    Stewart, A. J.; Allen, J. D.; Devine, A. B.; Adgey, A. A.

    1996-01-01

    OBJECTIVE: To determine the contribution of fast and slow inward channels to the electrocardiogram (ECG) of ventricular fibrillation. METHODS: Ventricular fibrillation was induced by endocardial electrical stimulation in pigs anaesthetised with pentobarbitone sodium (30 mg/kg intravenously). ECGs simultaneously recorded from the body surface (lead II) and from the endocardium were studied by power spectrum analysis (0-40 Hz). RESULTS: The mean (SEM) dominant frequency of fibrillation (9.0 (1.1) Hz in lead II at 0-40 s) did not change significantly with time in pigs given intravenous saline. However, the dominant frequency was significantly reduced by intravenous pretreatment with the class I antiarrhythmic drugs, lignocaine (3 mg/kg, 6.5 (0.5) Hz; 10 mg/kg, 4.2 (0.6) Hz), mexiletine (3 mg/kg, 6.2 (0.4) Hz; 10 mg/kg, 5.5 (0.4) Hz), and disopyramide (2.5 mg/kg, 5.4 (0.6) Hz). After flecainide (3 mg/kg, 6.9 (0.5) Hz) the reduction in frequency was not significant. Similar data were obtained with endocardial recordings. In contrast pre-treatment with verapamil (0.2 mg/kg, 11.7 (0.8) Hz; and 1.0 mg/kg, 12.9 (1.6) Hz) produced a significantly higher dominant frequency of fibrillation than saline and widened the bandwidth of frequencies around the dominant frequency. CONCLUSIONS: These results indicate that voltage-dependent sodium channel currents contribute to the rapid frequencies of ventricular fibrillation. Blockade of L-type inward calcium channel activity increases the fibrillation frequency and fractionates the frequencies of the fibrillation wavefronts. PMID:9014801

  10. Differential effects of peroxynitrite on contractile protein properties in fast- and slow-twitch skeletal muscle fibers of rat.

    PubMed

    Dutka, T L; Mollica, J P; Lamb, G D

    2011-03-01

    Oxidative modification of contractile proteins is thought to be a key factor in muscle weakness observed in many pathophysiological conditions. In particular, peroxynitrite (ONOO(-)), a potent short-lived oxidant, is a likely candidate responsible for this contractile dysfunction. In this study ONOO(-) or 3-morpholinosydnonimine (Sin-1, a ONOO(-) donor) was applied to rat skinned muscle fibers to characterize the effects on contractile properties. Both ONOO(-) and Sin-1 exposure markedly reduced maximum force in slow-twitch fibers but had much less effect in fast-twitch fibers. The rate of isometric force development was also reduced without change in the number of active cross bridges. Sin-1 exposure caused a disproportionately large decrease in Ca(2+) sensitivity, evidently due to coproduction of superoxide, as it was prevented by Tempol, a superoxide dismutase mimetic. The decline in maximum force with Sin-1 and ONOO(-) treatments could be partially reversed by DTT, provided it was applied before the fiber was activated. Reversal by DTT indicates that the decrease in maximum force was due at least in part to oxidation of cysteine residues. Ascorbate caused similar reversal, further suggesting that the cysteine residues had undergone S-nitrosylation. The reduction in Ca(2+) sensitivity, however, was not reversed by either DTT or ascorbate. Western blot analysis showed cross-linking of myosin heavy chain (MHC) I, appearing as larger protein complexes after ONOO(-) exposure. The findings suggest that ONOO(-) initially decreases maximum force primarily by oxidation of cysteine residues on the myosin heads, and that the accompanying decrease in Ca(2+) sensitivity is likely due to other, less reversible actions of hydroxyl or related radicals. PMID:21030671

  11. Fast light-regulated genes of Neurospora crassa.

    PubMed Central

    Sommer, T; Chambers, J A; Eberle, J; Lauter, F R; Russo, V E

    1989-01-01

    Several physiological reactions including the sexual differentiation of the ascomycete Neurospora crassa are triggered by blue light. Mutants in the white-collar genes wc-1 and wc-2 are blind for all the blue light effects tested so far. We have previously shown that blue light induces some translatable mRNAs at different times after beginning the illumination. Here we report the cDNA cloning of four genes that are induced by blue light. Induction of these transcripts is temporally ordered (lag times from 2 to 45 min). Analysis of run-on transcripts show that the increases in mRNA levels are due to de novo transcription. None of these transcripts is inducible in white-collar mutants. Images PMID:2527354

  12. Effects of fast and slow squat exercises on the muscle activity of the paretic lower extremity in patients with chronic stroke

    PubMed Central

    Choi, Young-Ah; Kim, Jin-Seop; Lee, Dong-Yeop

    2015-01-01

    [Purpose] The purpose of this study was to investigate the effects of the speed of squat exercises on paretic lower extremity muscle activity in patients with hemiplegia following a stroke. [Subjects and Methods] Ten stroke patients performed fast and slow squat exercises for 2 seconds and 8 seconds, respectively. The muscle activities of the paretic and non-paretic sides of the rectus femoris muscle, the biceps femoris muscle, and the tibialis anterior muscle were assessed and compared using surface electromyography. [Results] The paretic side of the rectus femoris muscle showed statistically significant differences in the fast squat exercise group, which demonstrated the highest muscle activity during the rapid return to the upright position. [Conclusion] The rectus femoris muscle showed the highest muscle activity during the return to the upright position during the fast squat exercise, which indicates that the rectus femoris muscle is highly active during the fast squat exercise. PMID:26356385

  13. Effect of spaceflight on the maximal shortening velocity, morphology, and enzyme profile of fast- and slow-twitch skeletal muscle fibers in rhesus monkeys

    NASA Technical Reports Server (NTRS)

    Fitts, R. H.; Romatowski, J. G.; De La Cruz, L.; Widrick, J. J.; Desplanches, D.

    2000-01-01

    Weightlessness has been shown to cause limb muscle wasting and a reduced peak force and power in the antigravity soleus muscle. Despite a reduced peak power, Caiozzo et al. observed an increased maximal shortening velocity in the rat soleus muscle following a 14-day space flight. The major purpose of the present investigation was to determine if weightlessness induced an elevated velocity in the antigravity slow type I fibers of the rhesus monkey (Macaca mulatta), as well as to establish a cellular mechanism for the effect. Spaceflight or models of weightlessness have been shown to increase glucose uptake, elevate muscle glycogen content, and increase fatigability of the soleus muscle. The latter appears to be in part caused by a reduced ability of the slow oxidative fibers to oxidize fats. A second goal of this study was to establish the extent to which weightlessness altered the substrate profile and glycolytic and oxidative enzyme capacity of individual slow- and fast-twitch fibers.

  14. Initiation of the Slow-Rise and Fast-Rise Phases of an Erupting Solar Filament by Localized Emerging Magnetic Field via Microflaring

    NASA Technical Reports Server (NTRS)

    Sterling, A. C.; Moore, R. L.; Harra, L. K.

    2006-01-01

    EUV data from EIT show that a filament of 2001 February 28 underwent a slow-rise phase lasting about 6 hrs, before rapidly erupting in a fast-rise phase. Concurrent images in soft X-rays (SXRs) from Yohkoh/SXT show that a series of three microflares, prominent in SXT images but weak in EIT approx.195 Ang EUV images, occurred near one end of the filament. The first and last microflares occurred respectively in conjunction with the start of the slow-rise phase and the start of the fast-rise phase, and the second microflare corresponded to a kink in the filament trajectory. Beginning within 10 hours of the start of the slow rise, new magnetic flux emerged at the location of the microflaring. This localized new flux emergence and the resulting microflares, consistent with reconnection between the emerging field and the sheared sigmoid core magnetic field holding the filament, apparently caused the slow rise of this field and the transition to explosive eruption. For the first time in such detail, the observations show this direct action of localized emerging flux in the progressive destabilization of a sheared core field in the onset of a coronal mass ejection (CME). Similar processes may have occurred in other recently-studied events, NASA supported this work through NASA SR&T and SEC GI grants.

  15. Comparisons of the Effects of Elevated Vapor Pressure Deficit on Gene Expression in Leaves among Two Fast-Wilting and a Slow-Wilting Soybean

    PubMed Central

    Devi, Mura Jyostna; Sinclair, Thomas R; Taliercio, Earl

    2015-01-01

    Limiting the transpiration rate (TR) of a plant under high vapor pressure deficit (VPD) has the potential to improve crop yield under drought conditions. The effects of elevated VPD on the expression of genes in the leaves of three soybean accessions, Plant Introduction (PI) 416937, PI 471938 and Hutcheson (PI 518664) were investigated because these accessions have contrasting responses to VPD changes. Hutcheson, a fast-wilting soybean, and PI 471938, a slow-wilting soybean, respond to increased VPD with a linear increase in TR. TR of the slow-wilting PI 416937 is limited when VPD increases to greater than about 2 kPa. The objective of this study was to identify the response of the transcriptome of these accessions to elevated VPD under well-watered conditions and identify responses that are unique to the slow-wilting accessions. Gene expression analysis in leaves of genotypes PI 471938 and Hutcheson showed that 22 and 1 genes, respectively, were differentially expressed under high VPD. In contrast, there were 944 genes differentially expressed in PI 416937 with the same increase in VPD. The increased alteration of the transcriptome of PI 416937 in response to elevated VPD clearly distinguished it from the other slow-wilting PI 471938 and the fast-wilting Hutcheson. The inventory and analysis of differentially expressed genes in PI 416937 in response to VPD is a foundation for further investigation to extend the current understanding of plant hydraulic conductivity in drought environments. PMID:26427064

  16. Slow-light enhanced absorption for bio-chemical sensing applications: potential of low-contrast lossy materials

    NASA Astrophysics Data System (ADS)

    Pedersen, J.; Xiao, S.; Mortensen, N. A.

    2008-02-01

    Slow-light enhanced absorption in liquid-infiltrated photonic crystals has recently been proposed as a route to compensate for the reduced optical path in typical lab-on-a-chip systems for bio-chemical sensing applications. A simple perturbative expression has been applied to ideal structures composed of lossless dielectrics. In this work we study the enhancement in structures composed of lossy dielectrics such as a polymer. For this particular sensing application we find that the material loss has an unexpected limited drawback and surprisingly, it may even add to increase the bandwidth for low-index contrast systems such as polymer devices.

  17. Slow-light enhanced electro-optic modulation with an on-chip silicon-hybrid Fano system.

    PubMed

    Bera, Arijit; Roussey, Matthieu; Kuittinen, Markku; Honkanen, Seppo

    2016-05-15

    We present the theoretical study of a coupled cavity system yielding a Fano response on a fully on-chip silicon platform hybridized with an electro-optic polymer. This novel Fano system is based on a slot waveguide Bragg grating geometry, enabling a huge enhancement of the electro-optic properties due to slow light effects at the resonance. The modulator shows a high resonance tunability of 1.75 nm/V and a low switching power of 0.63 V. Such a versatile system shows the promise for various nonlinear and active devices only by using suitable cover material. PMID:27176970

  18. Fast calculation of digitally reconstructed radiographs using light fields

    NASA Astrophysics Data System (ADS)

    Russakoff, Daniel B.; Rohlfing, Torsten; Rueckert, Daniel; Shahidi, Ramin; Kim, Daniel; Maurer, Calvin R., Jr.

    2003-05-01

    Calculating digitally reconstructed radiographs (DRRs)is an important step in intensity-based fluoroscopy-to-CT image registration methods. Unfortunately, the standard techniques to generate DRRs involve ray casting and run in time O(n3),where we assume that n is approximately the size (in voxels) of one side of the DRR as well as one side of the CT volume. Because of this, generation of DRRs is typically the rate-limiting step in the execution time of intensity-based fluoroscopy-to-CT registration algorithms. We address this issue by extending light field rendering techniques from the computer graphics community to generate DRRs instead of conventional rendered images. Using light fields allows most of the computation to be performed in a preprocessing step;after this precomputation step, very accurate DRRs can be generated in time O(n2). Using a light field generated from 1,024 DRRs of resolution 256×256, we can create new DRRs that appear visually identical to ones generated by conventional ray casting. Importantly, the DRRs generated using the light field are computed over 300 times faster than DRRs generated using conventional ray casting(50 vs.17,000 ms on a PC with a 2 GHz Intel Pentium 4 processor).

  19. Fast Pb-glass neutron-to-light converter for ICF (inertial confinement fusion) target burn history measurements

    SciTech Connect

    Lerche, R.A.; Cable, M.D.; Phillion, D.W.

    1990-09-01

    We are developing a streak camera based instrument to diagnose the fusion reaction rate (burn history) within laser-driven ICF targets filled with D-T fuel. Recently, we attempted measurements using the 16.7-MeV gamma ray emitted in the T(d,{gamma}){sup 5}He fusion reaction. Pb glass which has a large cross section for pair production acts as a gamma-ray-to-light converter. Gamma rays interact within the glass to form electron-positron pairs that produce large amounts (1000 photons/gamma ray) of prompt (<10 ps) Cerenkov light as they slow down. In our experimental instrument, an f/10 Cassegrain telescope optically couples light produced within the converter to a streak camera having 20-ps resolution. Experiments using high-yield (10{sup 13} D-T neutrons), direct-drive targets at Nova produced good signals with widths of 200 ps. Time-of-flight measurements show the signals to be induced by neutrons rather than gamma rays. The Pb glass appears to act as a fast neutron-to-light converter. We continue to study the interactions process and the possibility of using the 16.7-MeV gamma rays for burn time measurements.

  20. Effects of tension and stiffness due to reduced pH in mammalian fast- and slow-twitch skinned skeletal muscle fibres.

    PubMed Central

    Metzger, J M; Moss, R L

    1990-01-01

    1. The pH dependence of the Ca2+ sensitivities of isometric tension and stiffness was investigated at 10 and 15 degrees C in skinned single fibres from rat and rabbit fast- and slow-twitch skeletal muscles. Stiffness was determined by recording the tension responses to sinusoidal length changes (3.3 kHz); peak-to-peak amplitude of the length change was monitored by laser diffraction and averaged approximately 1.3 nm (half-sarcomere)-1. We have assumed that stiffness provides a measure of the number of cross-bridge attachments to actin. 2. At maximal Ca2+ activation, stiffness was depressed by 22 +/- 2% (mean +/- S.E.M.) in fast-twitch fibres but was unchanged in slow-twitch fibres when pH was lowered from 7.00 to 6.20. As reported previously, maximum tension was depressed by 20-45% at low pH, with the effect being greater in fast-twitch compared to slow-twitch fibres. 3. In fast-twitch fibres at 10 and 15 degrees C the Ca2+ concentrations for half-maximal activation of tension and stiffness were increased at low pH. In slow-twitch fibres, similar effects were observed at 15 degrees C, but at 10 degrees C there were no changes in the Ca2+ sensitivities of tension and stiffness when pH was lowered. 4. Linear relationships between relative tension and relative stiffness were obtained at all temperatures, with slopes of 1.04 +/- 0.01 at pH 7.00 and 0.76 +/- 0.01 at pH 6.20 in fast- and slow-twitch fibres, indicating that force per cross-bridge attachment is similarly reduced at low pH in both types of fibres. 5. In both fast- and slow-twitch fibres, rigor tension (no added ATP or creatine phosphate; pCa 9.0) was depressed by 35 +/- 7% and stiffness by 12 +/- 4% when pH was reduced from 7.00 to 6.20. Since cross-bridge cycling is inhibited in rigor the effect of low pH to depress rigor tension suggests that pH directly modulates the strength of the bond formed between actin and myosin. 6. The effect of low pH to reduce the apparent number of cross-bridge attachments

  1. Fast atrazine photodegradation in water by pulsed light technology.

    PubMed

    Baranda, Ana Beatriz; Barranco, Alejandro; de Marañón, Iñigo Martínez

    2012-03-01

    Pulsed light technology consists of a successive repetition of short duration (325μs) and high power flashes emitted by xenon lamps. These flashlamps radiate a broadband emission light (approx. 200-1000 nm) with a considerable amount of light in the short-wave UV spectrum. In the present work, this technology was tested as a new tool for the degradation of the herbicide atrazine in water. To evaluate the presence and evolution with time of this herbicide, as well as the formation of derivatives, liquid chromatography-mass spectrometry (electrospray ionization) ion trap operating in positive mode was used. The degradation process followed first-order kinetics. Fluences about 1.8-2.3 J/cm(2) induced 50% reduction of atrazine concentration independently of its initial concentration in the range 1-1000 μg/L. Remaining concentrations of atrazine, below the current legal limit for pesticides, were achieved in a short period of time. While atrazine was degraded, no chlorinated photoproducts were formed and ten dehalogenated derivatives were detected. The molecular structures for some of these derivatives could be suggested, being hydroxyatrazine the main photoproduct identified. The different formation profiles of photoproducts suggested that the degradation pathway may include several successive and competitive steps, with subsequent degradation processes taking part from the already formed degradation products. According to the degradation efficiency, the short treatment time and the lack of chloroderivatives, this new technology could be considered as an alternative for water treatment. PMID:22153354

  2. Design and analysis of single-mode tellurite photonic crystal fibers for stimulated Brillouin scattering based slow-light generation.

    PubMed

    Jain, Varsha; Sharma, Shubham; Saini, Than Singh; Kumar, Ajeet; Sinha, Ravindra Kumar

    2016-09-01

    We theoretically examine two designs of single-mode (i) Er-doped tellurite and (ii) undoped tellurite photonic crystal fiber (PCF) for generation of slow light with tunable features based on stimulated Brillouin scattering. We obtained (i) Brillouin gain up to 91 dB and time delay of ∼145  ns at maximum allowable pump power of ∼775  mW in a 2 m Er-doped tellurite PCF and (ii) Brillouin gain up to ∼88  dB and time delay of ∼154  ns at maximum allowable pump power ∼21  mW in a 100 m undoped tellurite photonic crystal fiber. Simulated results clearly indicate that the doped tellurite PCF with Er enhances the maximum allowable pump power and comparable time delay can be obtained even with reduced photonic crystal fiber length. We believe that the carried out examination and simulation have potential impact on design and development of slow-light-based photonic devices applicable in telecommunication systems, enhancement of optical forces, and quantum computing. PMID:27607250

  3. Flare Emission Onset in the Slow-Rise and Fast-Rise Phases of an Erupting Solar Filament Observed with TRACE

    NASA Technical Reports Server (NTRS)

    Sterling, A. C.; Moore, R. L.

    2005-01-01

    We observe the eruption of an active-region solar filament of 1998 July 11 using high time cadence and high spatial resolution EUV observations from the TRACE sareiii'ce, along with soft X-ray images from the soft X-ray telescope (SXT) on the Yohkoh satellite, hard X-ray fluxes from the BATSE instrument on the (CGRO) satellite and from the hard X-ray telescope (HXT) on Yohkoh, and ground-based magnetograms. We concentrate on the initiation of the eruption in an effort to understand the eruption mechanism. First the filament undergoes slow upward movement in a "slow rise" phase with an approximately constant velocity of approximately 15 km/s that lasts about 10-min, and then it erupts in a "fast-rise" phase, reaching a velocity of about 200 km/s in about 5-min, followed by a period of deceleration. EUV brightenings begin just before the start of the filament's slow rise, and remain immediately beneath the rising filament during the slow rise; initial soft X-ray brightenings occur at about the same time and location. Strong hard X-ray emission begins after the onset of the fast rise, and does not peak until the filament has traveled a substantial altitude (to a height about equal to the initial length of the erupting filament) beyond its initial location. Our observations are consistent with the slow-rise phase of the eruption resulting from the onset of "tether cutting" reconnection between magnetic fields beneath the filament, and the fast rise resulting from an explosive increase in the reconnection rate or by catastrophic destabilization of the overlying filament-carrying fields. About two days prior to the event new flux emerged near the location of the initial brightenings, and this recently- emerged flux could have been a catalyst for initiating the tether-cutting reconnection. With the exception of the initial slow rise, our findings qualitatively agree with the prediction for erupting-flux-rope height as a function of time in a model discussed by Chen

  4. Growth of fast- and slow-growing rhizobia on ethanol. [Bradyrhizobium sp. ; Rhizobium meliloti; Rhizobium loti; Rhizobium leguminosarum; Rhizobium fredii; Bradyrhizobium japonicum

    SciTech Connect

    Sadowsky, M.J.; Bohlool, B.B.

    1986-10-01

    Free-living soybean rhizobia and Bradyrhizobium spp. (lupine) have the ability to catabolize ethanol. Of the 30 strains of rhizobia examined, only the fast- and slow-growing soybean rhizobia and the slow-growing Bradyrhizobium sp (lupine) were capable of using ethanol as a sole source of carbon and energy for growth. Two strains from each of the other Rhizobium species examined (R. meliloti, R. loti, and R. leguminosarum biovars phaseoli, trifolii, and viceae) failed to grow on ethanol. One Rhizobium fredii (fast-growing) strain, USDA 191, and one (slow-growing) Bradyrhizobium japonicum strain, USDA 110, grew in ethanol up to concentrations of 3.0 and 1.0%, respectively. While three of the R. fredii strains examined (USDA 192, USDA 194, and USDA 205) utilized 0.2% acetate, only USDA 192 utilized 0.1% n-propanol. None of the three strains utilized 0.1% methanol, formate, or n-butanol as the sole carbon source.

  5. Field-programmable gate array based arbitrary signal generator and oscilloscope for use in slow light and storage of light experiments

    NASA Astrophysics Data System (ADS)

    Nikolić, Stanko N.; Batić, Viktor; Panić, Bratimir; Jelenković, Branislav M.

    2013-06-01

    We present a field-programmable gate array (FPGA) based device that simultaneously generates two arbitrary analog voltage signals with the maximum sample rate of 1.25 MHz and acquires two analog voltage signals with the maximum sample rate of 2.5 MHz. All signals are synchronized with internal FPGA clock. The personal computer application developed for controlling and communicating with FPGA chip provides the shaping of the output signals by mathematical expressions and real-time monitoring of the input signals. The main advantages of FPGA based digital-to-analog and analog-to-digital cards are high speed, rapid reconfigurability, friendly user interface, and low cost. We use this module in slow light and storage of light experiments performed in Rb buffer gas cell.

  6. Master equation approach for interacting slow- and stationary-light polaritons

    SciTech Connect

    Kiffner, M.; Hartmann, M. J.

    2010-09-15

    A master equation approach for the description of dark-state polaritons in coherently driven atomic media is presented. This technique provides a description of light-matter interactions under conditions of electromagnetically induced transparency (EIT) that is well suited for the treatment of polariton losses. The master equation approach allows us to describe general polariton-polariton interactions that may be conservative, dissipative, or a mixture of both. In particular, it enables us to study dissipation-induced correlations as a means for the creation of strongly correlated polariton systems. Our technique reveals a loss mechanism for stationary-light polaritons that has not been discussed so far. We find that polariton losses in level configurations with nondegenerate ground states can be a multiple of those in level schemes with degenerate ground states.

  7. High-quality-factor planar optical cavities with laterally stopped, slowed, or reversed light.

    PubMed

    Byrnes, Steven J; Khorasaninejad, Mohammadreza; Capasso, Federico

    2016-08-01

    In a planar optical cavity, the resonance frequencies increase as a function of in-plane wavevector according to a standard textbook formula. This has well-known consequences in many different areas of optics, from the shifts of etalon peaks at non-normal angles, to the properties of transverse modes in laser diodes, to the effective mass of microcavity photons, and so on. However, this standard formula is valid only when the reflection phase of each cavity mirror is approximately independent of angle. There is a certain type of mirror-a subwavelength dielectric grating near a guided mode resonance-with not only a strongly angle-dependent reflection phase, but also very high reflectance and low losses. Simulations show that by using such mirrors, high-quality-factor planar cavities can be designed that break all these textbook rules, leading to resonant modes that are slow, stopped or even backward-propagating in the in-plane direction. In particular, we demonstrate experimentally high-Q planar cavities whose resonance frequency is independent of in-plane wavevector-i.e., the resonant modes have zero in-plane group velocity, for one polarization but both in-plane directions. We discuss potential applications in various fields including lasers, quantum optics, and exciton-polariton condensation. PMID:27505803

  8. Fast pulsed electroluminescence from polymer light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Wang, J.; Sun, R. G.; Yu, G.; Heeger, A. J.

    2002-02-01

    Transient electroluminescence (EL) from polymer light emitting diodes is investigated by measurements of the response to short voltage pulses. The carrier mobility is derived from the delay time between the electrical pulse and the onset of EL, μ≈3×10-4 cm2/V s. Bilayer devices with a polyethylene-dioxythiophene (PEDOT), hole injection layer are also studied. The delay time between the electrical pulse and the onset of EL is independent of the thickness of the injection layer, implying that the conducting PEDOT functions as a part of the electrode. When a dc forward bias is applied to the device, the delay time decreases, probably as a result of the shift of the emission zone towards the anode. The EL turn-on depends on the amplitude of the voltage pulse. The data are modeled by an equivalent circuit with a fixed capacitance connected in parallel with a nonlinear resistance. The solution of the differential equation depends on the exact form of the device's I-V curve. Two analytical solutions are provided, and an analysis based on space-charge-limited current is presented. By applying a dc forward bias in advance to precharge the space-charge capacitance, the turn-on response time is reduced to 12 ns. The EL decay consists of two components with time constants of 15 ns and 1 μs. The decay does not depend on either the amplitude of the voltage pulse or the prebias.

  9. Vanishing electronic energy loss of very slow light ions in insulators with large band gaps.

    PubMed

    Markin, S N; Primetzhofer, D; Bauer, P

    2009-09-11

    Electronic energy loss of light ions in nanometer films of materials with large band gaps has been studied for very low velocities. For LiF, a threshold velocity is observed at 0.1 a.u. (250 eV/u), below which the ions move without transferring energy to the electronic system. For KCl, a lower (extrapolated) threshold velocity is found, identical for H and He ions. For SiO2, no clear velocity threshold is observed for He particles. For protons and deuterons, electronic stopping is found to perfectly fulfill velocity scaling, as expected for binary ion-electron interaction. PMID:19792368

  10. Infrared light irradiation diminishes effective charge transfer in slow sodium channel gating system

    NASA Astrophysics Data System (ADS)

    Plakhova, Vera B.; Bagraev, Nikolai T.; Klyachkin, Leonid E.; Malyarenko, Anna M.; Romanov, Vladimir V.; Krylov, Boris V.

    2001-02-01

    Effects of infrared light irradiation (IR) on cultured dorsal root ganglia cells were studied by the whole-cell patch-clamp technique. The IR field is demonstrated to diminish the effective charge transfer in the activation system from 6.2 +-0.6 to 4.5 +-0.4 in units of electron charge per e-fold change in membrane potential. The effects was blocked with ouabain. Our data is the first indication that sodium pump might be the molecular sensor of infrared irradiation in animal kingdom.

  11. Infrared light irradiation diminishes effective charge transfer in slow sodium channel gating system

    NASA Astrophysics Data System (ADS)

    Plakhova, Vera B.; Bagraev, Nikolai T.; Klyachkin, Leonid E.; Malyarenko, Anna M.; Romanov, Vladimir V.; Krylov, Boris V.

    2000-02-01

    Effects of infrared light irradiation (IR) on cultured dorsal root ganglia cells were studied by the whole-cell patch-clamp technique. The IR field is demonstrated to diminish the effective charge transfer in the activation system from 6.2 +-0.6 to 4.5 +-0.4 in units of electron charge per e-fold change in membrane potential. The effects was blocked with ouabain. Our data is the first indication that sodium pump might be the molecular sensor of infrared irradiation in animal kingdom.

  12. Slow light enhanced singlet exciton fission solar cells with a 126% yield of electrons per photon

    NASA Astrophysics Data System (ADS)

    Thompson, Nicholas J.; Congreve, Daniel N.; Goldberg, David; Menon, Vinod M.; Baldo, Marc A.

    2013-12-01

    Singlet exciton fission generates two triplet excitons per absorbed photon. It promises to increase the power extracted from sunlight without increasing the number of photovoltaic junctions in a solar cell. We demonstrate solar cells with an external quantum efficiency of 126% by enhancing absorption in thin films of the singlet exciton fission material pentacene. The device structure exploits the long photon dwell time at the band edge of a distributed Bragg reflector to achieve enhancement over a broad range of angles. Measuring the reflected light from the solar cell establishes a lower bound of 137% for the internal quantum efficiency.

  13. Vanishing Electronic Energy Loss of Very Slow Light Ions in Insulators with Large Band Gaps

    SciTech Connect

    Markin, S. N.; Primetzhofer, D.; Bauer, P.

    2009-09-11

    Electronic energy loss of light ions in nanometer films of materials with large band gaps has been studied for very low velocities. For LiF, a threshold velocity is observed at 0.1 a.u. (250 eV/u), below which the ions move without transferring energy to the electronic system. For KCl, a lower (extrapolated) threshold velocity is found, identical for H and He ions. For SiO{sub 2}, no clear velocity threshold is observed for He particles. For protons and deuterons, electronic stopping is found to perfectly fulfill velocity scaling, as expected for binary ion-electron interaction.

  14. Slow light enhanced singlet exciton fission solar cells with a 126% yield of electrons per photon

    SciTech Connect

    Thompson, Nicholas J.; Congreve, Daniel N.; Baldo, Marc A. E-mail: baldo@mit.edu; Goldberg, David; Menon, Vinod M. E-mail: baldo@mit.edu

    2013-12-23

    Singlet exciton fission generates two triplet excitons per absorbed photon. It promises to increase the power extracted from sunlight without increasing the number of photovoltaic junctions in a solar cell. We demonstrate solar cells with an external quantum efficiency of 126% by enhancing absorption in thin films of the singlet exciton fission material pentacene. The device structure exploits the long photon dwell time at the band edge of a distributed Bragg reflector to achieve enhancement over a broad range of angles. Measuring the reflected light from the solar cell establishes a lower bound of 137% for the internal quantum efficiency.

  15. Leading edge vortices in lesser long-nosed bats occurring at slow but not fast flight speeds.

    PubMed

    Muijres, Florian T; Christoffer Johansson, L; Winter, York; Hedenström, Anders

    2014-06-01

    Slow and hovering animal flight creates high demands on the lift production of animal wings. Steady state aerodynamics is unable to explain the forces required and the most commonly used mechanism to enhance the lift production is a leading edge vortex (LEV). Although LEVs increase the lift, they come at the cost of high drag. Here we determine the flow above the wing of lesser long-nosed bats at slow and cruising speed using particle image velocimetry (PIV). We find that a prominent LEV is present during the downstroke at slow speed, but not at cruising speed. Comparison with previously published LEV data from a robotic flapper inspired by lesser long-nosed bats suggests that bats should be able to generate LEVs at cruising speeds, but that they avoid doing so, probably to increase flight efficiency. In addition, at slow flight speeds we find LEVs of opposite spin at the inner and outer wing during the upstroke, potentially providing a control challenge to the animal. We also note that the LEV stays attached to the wing throughout the downstoke and does not show the complex structures found in insects. This suggests that bats are able to control the development of the LEV and potential control mechanisms are discussed. PMID:24855067

  16. A neuro-mechanical model of a single leg joint highlighting the basic physiological role of fast and slow muscle fibres of an insect muscle system.

    PubMed

    Toth, Tibor Istvan; Schmidt, Joachim; Büschges, Ansgar; Daun-Gruhn, Silvia

    2013-01-01

    In legged animals, the muscle system has a dual function: to produce forces and torques necessary to move the limbs in a systematic way, and to maintain the body in a static position. These two functions are performed by the contribution of specialized motor units, i.e. motoneurons driving sets of specialized muscle fibres. With reference to their overall contraction and metabolic properties they are called fast and slow muscle fibres and can be found ubiquitously in skeletal muscles. Both fibre types are active during stepping, but only the slow ones maintain the posture of the body. From these findings, the general hypothesis on a functional segregation between both fibre types and their neuronal control has arisen. Earlier muscle models did not fully take this aspect into account. They either focused on certain aspects of muscular function or were developed to describe specific behaviours only. By contrast, our neuro-mechanical model is more general as it allows functionally to differentiate between static and dynamic aspects of movement control. It does so by including both muscle fibre types and separate motoneuron drives. Our model helps to gain a deeper insight into how the nervous system might combine neuronal control of locomotion and posture. It predicts that (1) positioning the leg at a specific retraction angle in steady state is most likely due to the extent of recruitment of slow muscle fibres and not to the force developed in the individual fibres of the antagonistic muscles; (2) the fast muscle fibres of antagonistic muscles contract alternately during stepping, while co-contraction of the slow muscle fibres takes place during steady state; (3) there are several possible ways of transition between movement and steady state of the leg achieved by varying the time course of recruitment of the fibres in the participating muscles. PMID:24244298

  17. A Neuro-Mechanical Model of a Single Leg Joint Highlighting the Basic Physiological Role of Fast and Slow Muscle Fibres of an Insect Muscle System

    PubMed Central

    Toth, Tibor Istvan; Schmidt, Joachim; Büschges, Ansgar; Daun-Gruhn, Silvia

    2013-01-01

    In legged animals, the muscle system has a dual function: to produce forces and torques necessary to move the limbs in a systematic way, and to maintain the body in a static position. These two functions are performed by the contribution of specialized motor units, i.e. motoneurons driving sets of specialized muscle fibres. With reference to their overall contraction and metabolic properties they are called fast and slow muscle fibres and can be found ubiquitously in skeletal muscles. Both fibre types are active during stepping, but only the slow ones maintain the posture of the body. From these findings, the general hypothesis on a functional segregation between both fibre types and their neuronal control has arisen. Earlier muscle models did not fully take this aspect into account. They either focused on certain aspects of muscular function or were developed to describe specific behaviours only. By contrast, our neuro-mechanical model is more general as it allows functionally to differentiate between static and dynamic aspects of movement control. It does so by including both muscle fibre types and separate motoneuron drives. Our model helps to gain a deeper insight into how the nervous system might combine neuronal control of locomotion and posture. It predicts that (1) positioning the leg at a specific retraction angle in steady state is most likely due to the extent of recruitment of slow muscle fibres and not to the force developed in the individual fibres of the antagonistic muscles; (2) the fast muscle fibres of antagonistic muscles contract alternately during stepping, while co-contraction of the slow muscle fibres takes place during steady state; (3) there are several possible ways of transition between movement and steady state of the leg achieved by varying the time course of recruitment of the fibres in the participating muscles. PMID:24244298

  18. Immunohistochemical Characterization of Slow and Fast Myosin Heavy Chain Composition of Muscle Fibres in the Styloglossus Muscle of the Human and Macaque (M. rhesus)

    PubMed Central

    Sokoloff, Alan J.; Yang, Betty; Li, Haiyan; Burkholder, Thomas J.

    2007-01-01

    Objective Muscle fibre contractile diversity is thought to be increased by the hybridization of multiple myosin heavy chain (MHC) isoforms in single muscle fibres. Reports of hybrid fibres composed of MHCI and MHCII isoforms in human, but not macaque, tongue muscles, suggest a human adaptation for increased tongue muscle contractile diversity. Here we test whether hybrid fibres composed of MHCI and MHCII are unique to human tongue muscles or are present as well in the macaque. Methods MHC composition of the macaque and human styloglossus was characterized with antibodies that allowed identification of three muscle fibre phenotypes, a slow phenotype composed of MHCI, a fast phenotype composed of MHCII and a hybrid phenotype composed of MHCI and MHCII. Results The fast phenotype constitutes 68.5% of fibres in the macaque and 43.4% of fibres in the human (P<0001). The slow phenotype constitutes 20.2% of fibres in the macaque and 39.3% of fibres in the human (P<0001). The hybrid phenotype constitutes 11.2% of fibres in the macaque and 17.3% of fibres in the human (P=0002). Macaques and humans do not differ in fiber size (cross-sectional area, diameter). However, measures of fibre size differ by phenotype such that fast > hybrid > slow (P<0.05). Conclusion These data demonstrate differences in the relative percent of muscle fibre phenotypes in the macaque and human styloglossus but also demonstrate that all three phenotypes are present in both species. These data suggest a similar range of mechanical properties in styloglossus muscle fibres of the macaque and human. PMID:17210117

  19. Finely engineered slow light photonic crystal waveguides for efficient wideband wavelength-independent higher-order temporal solitons.

    PubMed

    Fu, Meicheng; Liao, Jiali; Shao, Zhengzheng; Marko, Matthew; Zhang, Yuanda; Wang, Xiaochun; Li, Xiujian

    2016-05-10

    By orthogonally dual-shifting the air-hole rows in the triangular photonic crystal waveguide, a novel finely engineered slow light silicon photonic crystal waveguide is designed for higher-order temporal solitons and ultrashort temporal pulse compression with a large fabrication tolerance. The engineering of dispersion provides the waveguide with a wide wavelength range with only low anomalous dispersion covering, which makes the compression ratio wavelength-independent and stable even under ultralow input pulse energy. The simulation results are based on nonlinear Schrödinger equation modeling, which demonstrates that the input picosecond pulses in the broad wavelength range with ultralow pJ pulse energy can be stably compressed by a factor of 6 to higher-order temporal solitons in a 250 μm short waveguide. PMID:27168285

  20. Quasi-phase-matching and second-harmonic generation enhancement in a semiconductor microresonator array using slow-light effects

    SciTech Connect

    Dumeige, Yannick

    2011-04-15

    We theoretically analyze the second-harmonic generation process in a sequence of unidirectionnaly coupled doubly resonant whispering gallery mode semiconductor resonators. By using a convenient design, it is possible to coherently sum the second-harmonic fields generated inside each resonator. We show that resonator coupling allows the bandwidth of the phase-matching curve to be increased with respect to single-resonator configurations simultaneously taking advantage of the resonant feature of the resonators. This quasi-phase-matching technique could be applied to obtain small-footprint nonlinear devices with large bandwidth and limited nonlinear losses. The results are discussed in the framework of the slow-light-effect enhancement of second-order optical nonlinearities.

  1. Distinct behavioral phenotypes in novel "fast" kindling-susceptible and "slow" kindling-resistant rat strains selected by stimulation of the hippocampal perforant path.

    PubMed

    Langberg, Tomer; Dashek, Ryan; Mulvey, Bernard; Miller, Kimberly A; Osting, Susan; Stafstrom, Carl E; Sutula, Thomas P

    2016-01-01

    Kindling is a phenomenon of activity-dependent neural circuit plasticity induced by repeated seizures that results in progressive permanent increases in susceptibility to epilepsy. As the permanent structural and functional modifications induced by kindling include a diverse range of molecular, cellular, and functional alterations in neural circuits, it is of interest to determine if genetic background associated with seizure-induced plasticity might also influence plasticity in neural circuitry underlying other behaviors. Outbred Sprague-Dawley (SD) rats were selected and bred for ~15 generations for "fast' or "slow" rates of kindling development in response to stimulation of the perforant path input to the hippocampus. After 7-8 generations of selection and breeding, consistent phenotypes of "fast" and "slow" kindling rates were observed. By the 15th generation "fast" kindling rats referred to as Perforant Path Kindling Susceptible (PPKS) rats demonstrated a kindling rate of 10.7 ± 1.1 afterdischarges (ADs) to the milestone of the first secondary generalized (Class V) seizure, which differed significantly from "slow" kindling Perforant Path Kindling Resistant (PPKR) rats requiring 25.5 ± 2.0 ADs, and outbred SD rats requiring 16.8 ± 2.5 ADs (p<0.001, ANOVA). Seizure-naïve adult PPKS and PPKR rats from offspring of this generation and age-matched adult outbred SD rats were compared in validated behavioral measures including the open field test as a measure of exploratory activity, the Morris water maze as a measure of hippocampal spatial memory, and fear conditioning as a behavioral paradigm of associative fear learning. The PPKS ("fast" kindling) strain with increased susceptibility to seizure-induced plasticity demonstrated statistically significant increases in motor exploratory activity in the open field test and reduced spatial learning the Morris water maze, but demonstrated normal fear conditioned learning comparable to outbred SD rats and the "slow

  2. Phonon-mediated interactions and polaron formation of slow-light polaritons in a BEC

    NASA Astrophysics Data System (ADS)

    Haug, Hanna-Lena; Fleischhauer, Michael

    2014-05-01

    We study the motion of dark-state polaritons (DSP) in a Bose-Einstein condensate. DSPs are formed in an atomic ensemble interacting in a Λ-type configuration with two light fields under conditions of electromagnetically induced transparency. In particular, we consider the ground-state atoms to form a BEC which can be well described by a macroscopic Gross-Pitaevskii wavefunction. Taking into account the interaction of pairs of ground-state atoms and between ground and spin-state atoms leads to the formation of polaronic quasi-particles consisting of DSPs and Bogoliubov phonons. In additon, the coupling to phonons results into a coupling between dark and bright-state polaritons as well as into phonon-mediated interactions between DSPs.

  3. Interaction between Atoms and Slow Light: A Study in Waveguide Design

    NASA Astrophysics Data System (ADS)

    Zang, Xiaorun; Yang, Jianji; Faggiani, Rémi; Gill, Christopher; Petrov, Plamen G.; Hugonin, Jean-Paul; Vynck, Kevin; Bernon, Simon; Bouyer, Philippe; Boyer, Vincent; Lalanne, Philippe

    2016-02-01

    The emerging field of on-chip integration of nanophotonic devices and cold atoms offers extremely strong and pure light-matter interaction schemes, which may have a profound impact on quantum information science. In this context, a long-standing obstacle is to achieve a strong interaction between single atoms and single photons and at the same time trap atoms in a vacuum at large separation distances from dielectric surfaces. In this work, we study waveguide geometries that challenge these conflicting objectives. The designed photonic-crystal waveguide is expected to offer a good compromise, which additionally allows for easy manipulation of atomic clouds around the structure, while being tolerant to fabrication imperfections.

  4. Observation and interpretation of fast sub-visual light pulses from the night sky

    NASA Technical Reports Server (NTRS)

    Nemzek, R. J.; Winckler, J. R.

    1989-01-01

    Fast large-aperture photometers directed at the zenith on clear nights near Minneapolis have recorded many light pulses in the msec time range, but aside from man-made events these were almost entirely due to Rayleigh-scattered distant lightning, with a residual very low rate (less than 0.1/hr) of unidentified pulses. It is argued that 1-msec light pulses seen in several previous experiments may also be mostly Rayleigh-scattered lightning, rather than fluorescent light due to electron precipitation from lightning-induced whistlers as previously proposed.

  5. Tunable Polarons of Slow-Light Polaritons in a Two-Dimensional Bose-Einstein Condensate.

    PubMed

    Grusdt, Fabian; Fleischhauer, Michael

    2016-02-01

    When an impurity interacts with a bath of phonons it forms a polaron. For increasing interaction strengths the mass of the polaron increases and it can become self-trapped. For impurity atoms inside an atomic Bose-Einstein condensate (BEC) the nature of this transition is not understood. While Feynman's variational approach to the Fröhlich model predicts a sharp transition for light impurities, renormalization group studies always predict an extended intermediate-coupling region characterized by large phonon correlations. To investigate this intricate regime and to test polaron physics beyond the validity of the Fröhlich model we suggest a versatile experimental setup that allows us to tune both the mass of the impurity and its interactions with the BEC. The impurity is realized as a dark-state polariton (DSP) inside a quasi-two-dimensional BEC. We show that its interactions with the Bogoliubov phonons lead to photonic polarons, described by the Bogoliubov-Fröhlich Hamiltonian, and make theoretical predictions using an extension of a recently introduced renormalization group approach to Fröhlich polarons. PMID:26894712

  6. Tunable Polarons of Slow-Light Polaritons in a Two-Dimensional Bose-Einstein Condensate

    NASA Astrophysics Data System (ADS)

    Grusdt, Fabian; Fleischhauer, Michael

    2016-02-01

    When an impurity interacts with a bath of phonons it forms a polaron. For increasing interaction strengths the mass of the polaron increases and it can become self-trapped. For impurity atoms inside an atomic Bose-Einstein condensate (BEC) the nature of this transition is not understood. While Feynman's variational approach to the Fröhlich model predicts a sharp transition for light impurities, renormalization group studies always predict an extended intermediate-coupling region characterized by large phonon correlations. To investigate this intricate regime and to test polaron physics beyond the validity of the Fröhlich model we suggest a versatile experimental setup that allows us to tune both the mass of the impurity and its interactions with the BEC. The impurity is realized as a dark-state polariton (DSP) inside a quasi-two-dimensional BEC. We show that its interactions with the Bogoliubov phonons lead to photonic polarons, described by the Bogoliubov-Fröhlich Hamiltonian, and make theoretical predictions using an extension of a recently introduced renormalization group approach to Fröhlich polarons.

  7. Parametric excitation of coupled fast and slow upper hybrid waves by counter-propagating circularly polarized lasers in a magnetized plasma

    NASA Astrophysics Data System (ADS)

    Verma, Kanika; Baliyan, Sweta; Sajal, Vivek; Kumar, Ravindra; Sharma, Navneet K.

    2016-07-01

    The parametric decay of large amplitude non-resonant beating mode of counter-propagating lasers (having a frequency difference ≥ 2 ω p ) into a pair of upper hybrid waves is studied in magnetized plasma. One of the excited upper hybrid waves (known as fast wave) having phase velocity close to c , can be utilized for electron acceleration. The coupled mode equations of fast and slow upper hybrid waves are modelled by solving equation of motion and continuity equation simultaneously (using the density perturbation technique) to derive the dispersion relation for two plasmon decay process. The growth rate of the present excitation process using right circularly polarized beating lasers is higher as compared with the growth rates of the excitation processes using ordinary and extraordinary beating lasers. However, the growth rate is not significant in the case of left circularly polarized beating lasers. The growth rate ˜ 0.15 ω p s - 1 is achieved for right circularly polarized beating lasers having v 1 , 2 / c = 0.1 for scattering angle θ s ˜ 160 ° and applied magnetic field ˜ 90 T. The growth rate of fast upper hybrid wave was reduced with the applied axial magnetic field in the present case. The present work is not only significant for the electron acceleration by fast upper hybrid wave but also for diagnostic purpose.

  8. A fast multispectral light synthesiser based on LEDs and a diffraction grating

    PubMed Central

    Belušič, Gregor; Ilić, Marko; Meglič, Andrej; Pirih, Primož

    2016-01-01

    Optical experiments often require fast-switching light sources with adjustable bandwidths and intensities. We constructed a wavelength combiner based on a reflective planar diffraction grating and light emitting diodes with emission peaks from 350 to 630 nm that were positioned at the angles corresponding to the first diffraction order of the reversed beam. The combined output beam was launched into a fibre. The spacing between 22 equally wide spectral bands was about 15 nm. The time resolution of the pulse-width modulation drivers was 1 ms. The source was validated with a fast intracellular measurement of the spectral sensitivity of blowfly photoreceptors. In hyperspectral imaging of Xenopus skin circulation, the wavelength resolution was adequate to resolve haemoglobin absorption spectra. The device contains no moving parts, has low stray light and is intrinsically capable of multi-band output. Possible applications include visual physiology, biomedical optics, microscopy and spectroscopy. PMID:27558155

  9. A fast multispectral light synthesiser based on LEDs and a diffraction grating.

    PubMed

    Belušič, Gregor; Ilić, Marko; Meglič, Andrej; Pirih, Primož

    2016-01-01

    Optical experiments often require fast-switching light sources with adjustable bandwidths and intensities. We constructed a wavelength combiner based on a reflective planar diffraction grating and light emitting diodes with emission peaks from 350 to 630 nm that were positioned at the angles corresponding to the first diffraction order of the reversed beam. The combined output beam was launched into a fibre. The spacing between 22 equally wide spectral bands was about 15 nm. The time resolution of the pulse-width modulation drivers was 1 ms. The source was validated with a fast intracellular measurement of the spectral sensitivity of blowfly photoreceptors. In hyperspectral imaging of Xenopus skin circulation, the wavelength resolution was adequate to resolve haemoglobin absorption spectra. The device contains no moving parts, has low stray light and is intrinsically capable of multi-band output. Possible applications include visual physiology, biomedical optics, microscopy and spectroscopy. PMID:27558155

  10. Absolute calibration method for fast-streaked, fiber optic light collection, spectroscopy systems.

    SciTech Connect

    Johnston, Mark D.; Frogget, Brent; Oliver, Bryan Velten; Maron, Yitzhak; Droemer, Darryl W.; Crain, Marlon D.

    2010-04-01

    This report outlines a convenient method to calibrate fast (<1ns resolution) streaked, fiber optic light collection, spectroscopy systems. Such a system is used to collect spectral data on plasmas generated in the A-K gap of electron beam diodes fielded on the RITS-6 accelerator (8-12MV, 140-200kA). On RITS, light is collected through a small diameter (200 micron) optical fiber and recorded on a fast streak camera at the output of 1 meter Czerny-Turner monochromator (F/7 optics). To calibrate such a system, it is necessary to efficiently couple light from a spectral lamp into a 200 micron diameter fiber, split it into its spectral components, with 10 Angstroms or less resolution, and record it on a streak camera with 1ns or less temporal resolution.

  11. Survey of the BY Draconis syndrome among dMe stars. [BVr photometry search for slow quasisinusoidal light variations

    NASA Technical Reports Server (NTRS)

    Bopp, B. W.; Espenak, F.

    1977-01-01

    Results are reported for a BVr photometric survey of 22 dK, dKe, dM, and dMe stars conducted to search for slow quasi-sinusoidal fluctuations in V (the BY Draconis syndrome). The (B-V) and (V-r) color indices are determined in an attempt to detect wavelength-dependent color changes produced by starspots and to infer starspot temperatures. It is found that nine of the stars exhibit variations in V of the order of 0.05 to 0.10 magnitude on a time scale of days or weeks, that at least three more display changes in mean light level over a period of years, that the stars generally tend to become redder at minimum light, and that some of the stars show no detectable color changes over their photometric cycle. The color data are taken to suggest a probable temperature difference of about 200 to 500 K between the stellar photospheres and starspots if the V variations are attributed to dark spots. It is concluded that the BY Draconis syndrome is clearly a very common occurrence among dMe stars.

  12. Kerr Non-linerity in Slow Light Propagation for Quantum Teleportation

    NASA Astrophysics Data System (ADS)

    Tombesi, Paolo

    2001-05-01

    -linearity can be obtained using the recently demonstrated ultraslow light propagation,(hau)L.V. Hau et al., Nature (London) 397, 594 (1999). achieved via electromagnetically induced transparency (E. Arimondo, in Progress in Optics) XXXV, ed. by E. Wolf, (Elsevier, Amsterdam, 1996);S.E. Harris, Phys. Today 50, 36 (1997); M.O. Scully and M.S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, UK, 1997). in ensembles of cold atoms.

  13. PCNA appears in two populations of slow and fast diffusion with a constant ratio throughout S-phase in replicating mammalian cells

    PubMed Central

    Zessin, Patrick J. M.; Sporbert, Anje; Heilemann, Mike

    2016-01-01

    DNA replication is a fundamental cellular process that precedes cell division. Proliferating cell nuclear antigen (PCNA) is a central scaffold protein that orchestrates DNA replication by recruiting many factors essential for the replication machinery. We studied the mobility of PCNA in live mammalian cells using single-particle tracking in combination with photoactivated-localization microscopy (sptPALM) and found two populations. The first population which is only present in cells with active DNA replication, showed slow diffusion and was found to be located in replication foci. The second population showed fast diffusion, and represents the nucleoplasmic pool of unbound PCNA not involved in DNA replication. The ratio of these two populations remained constant throughout different stages of S-phase. A fraction of molecules in both populations showed spatially constrained mobility. We determined an exploration radius of ~100 nm for 13% of the slow-diffusing PCNA molecules, and of ~600 nm for 46% of the fast-diffusing PCNA molecules. PMID:26758689

  14. In vitro estimation of fast and slow wave parameters of thin trabecular bone using space-alternating generalized expectation-maximization algorithm.

    PubMed

    Grimes, Morad; Bouhadjera, Abdelmalek; Haddad, Sofiane; Benkedidah, Toufik

    2012-07-01

    In testing cancellous bone using ultrasound, two types of longitudinal Biot's waves are observed in the received signal. These are known as fast and slow waves and their appearance depend on the alignment of bone trabeculae in the propagation path and the thickness of the specimen under test (SUT). They can be used as an effective tool for the diagnosis of osteoporosis because wave propagation behavior depends on the bone structure. However, the identification of these waves in the received signal can be difficult to achieve. In this study, ultrasonic wave propagation in a 4mm thick bovine cancellous bone in the direction parallel to the trabecular alignment is considered. The observed Biot's fast and slow longitudinal waves are superimposed; which makes it difficult to extract any information from the received signal. These two waves can be separated using the space alternating generalized expectation maximization (SAGE) algorithm. The latter has been used mainly in speech processing. In this new approach, parameters such as, arrival time, center frequency, bandwidth, amplitude, phase and velocity of each wave are estimated. The B-Scan images and its associated A-scans obtained through simulations using Biot's finite-difference time-domain (FDTD) method are validated experimentally using a thin bone sample obtained from the femoral-head of a 30 months old bovine. PMID:22284937

  15. Advance warning of high-speed ejecta based on real-time shock analyses: When fast-moving ejecta appear to be overtaking slow-moving shocks

    NASA Astrophysics Data System (ADS)

    Paulson, Kristoff W.; Taylor, David K.; Smith, Charles W.; Vasquez, Bernard J.; Hu, Q.

    2012-12-01

    Interplanetary shocks propagating into the magnetosphere can have significant space weather consequences. However, for many purposes it is the ejecta behind the shock that is the greater threat. The ejecta can be fast moving, impart significant momentum upon the magnetopause, and may contain a flux rope with strong southward magnetic fields. When transient solar wind activity strikes the magnetosphere, it can lead to enhanced magnetospheric currents and elevated radiation levels in the near-Earth environment. It is therefore desirable to use the observed shocks ahead of ejecta to predict any aspects of the approaching ejecta that can be predicted. We have examined 39 shocks observed by the Advanced Composition Explorer spacecraft in the years 1998 to 2003. Within the selection are shocks that were chosen because they appear to propagate significantly more slowly than the speed of the ejecta behind it. While appearing at first to be a contradiction, we show that the shocks are propagating across the radial direction and at significant angles to the velocity of the ejecta. These slow-moving shocks are actually precursors of fast-moving and potentially significant ejecta. Reversing the analysis, we are able to predict the peak speed of the ejecta well in advance of their observation, up to or in excess of 10 h following the shock crossing, when slow-moving shocks are seen, and we have incorporated this feature into our real-time shock analysis.

  16. A comparative trial of a new, fast-release iron capsule ("Eryfer") and a slow-release tablet ('Ferro-Gradumet') in iron-deficiency anaemia.

    PubMed

    Luntz, G R; Bogie, W

    1975-01-01

    Sixty hospitalised patients receiving treatment for tuberculosis, diabetes or chronic bronchitis and who had iron-deficiency anaemia (Hb levels less than 12.5g./100 ml.) were entered in a between-patient comparative study of a new, fast-release iron capsule ('Eryfer') and a standard slow-release iron tablet ('Ferro-Gradumet'). Patients were allocated to either drug at random and recived either 2 capsules (100 mg. elemental iron) or 1 tablet (105 mg. elemental iron) daily for 30 days. Haemoglobin levels and packed cell volume were measured before and at the end of the trial period. The results, analysed in 57 patients (28 on 'Eryfer' and 29 on the slow-release iron) indicate that treatment with 'Eryfer' produced a significantly more predictable response in haemoglobin regeneration, the response being dependent on the initial haemoglobin level. Both treatments, however, produced a highly significant increase in haemoglobin levels in the patients (mean increas: 'Eryfer' 1.09 g. and slow-release iron 0.76 g.). No side-effects were recorded with either treatment. PMID:1149482

  17. The First Slow Step: Differential Effects of Object and Word-Form Familiarization on Retention of Fast-Mapped Words

    ERIC Educational Resources Information Center

    Kucker, Sarah C.; Samuelson, Larissa K.

    2012-01-01

    Recent research demonstrated that although 24-month-old infants do well on the initial pairing of a novel word and novel object in fast-mapping tasks, they are unable to retain the mapping after a 5 min delay. The current study examines the role of familiarity with the objects and words on infants' ability to bridge between the initial fast…

  18. Unlocking genetic secrets of the fast/slow growth in rainbow trout with next-generation sequencing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Fast-growth is the most desired trait affecting the profitability of food animal production including aquaculture species. Traditional phenotype-based selection is typically used to select for growth traits, however, it does not allow for optimal control over all phenotypic characterist...

  19. DUAL TRIGGER OF TRANSVERSE OSCILLATIONS IN A PROMINENCE BY EUV FAST AND SLOW CORONAL WAVES: SDO/AIA AND STEREO/EUVI OBSERVATIONS

    SciTech Connect

    Gosain, S.; Foullon, C.

    2012-12-20

    We analyze flare-associated transverse oscillations in a quiescent solar prominence on 2010 September 8-9. Both the flaring active region and the prominence were located near the west limb, with a favorable configuration and viewing angle. The full-disk extreme ultraviolet (EUV) images of the Sun obtained with high spatial and temporal resolution by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory show flare-associated lateral oscillations of the prominence sheet. The STEREO-A spacecraft, 81.{sup 0}5 ahead of the Sun-Earth line, provides an on-disk view of the flare-associated coronal disturbances. We derive the temporal profile of the lateral displacement of the prominence sheet by using the image cross-correlation technique. The displacement curve was de-trended and the residual oscillatory pattern was derived. We fit these oscillations with a damped cosine function with a variable period and find that the period is increasing. The initial oscillation period (P{sub 0}) is {approx}28.2 minutes and the damping time ({tau}{sub D}) {approx} 44 minutes. We confirm the presence of fast and slow EUV wave components. Using STEREO-A observations, we derive a propagation speed of {approx}250 km s{sup -1} for the slow EUV wave by applying the time-slice technique to the running difference images. We propose that the prominence oscillations are excited by the fast EUV wave while the increase in oscillation period of the prominence is an apparent effect, related to a phase change due to the slow EUV wave acting as a secondary trigger. We discuss implications of the dual trigger effect for coronal prominence seismology and scaling law studies of damping mechanisms.

  20. The ATLAS3D project - XXV. Two-dimensional kinematic analysis of simulated galaxies and the cosmological origin of fast and slow rotators

    NASA Astrophysics Data System (ADS)

    Naab, Thorsten; Oser, L.; Emsellem, E.; Cappellari, Michele; Krajnović, D.; McDermid, R. M.; Alatalo, K.; Bayet, E.; Blitz, L.; Bois, M.; Bournaud, F.; Bureau, M.; Crocker, A.; Davies, R. L.; Davis, T. A.; de Zeeuw, P. T.; Duc, P.-A.; Hirschmann, M.; Johansson, P. H.; Khochfar, S.; Kuntschner, H.; Morganti, R.; Oosterloo, T.; Sarzi, M.; Scott, N.; Serra, P.; Ven, G. van de; Weijmans, A.; Young, L. M.

    2014-11-01

    We present a detailed two-dimensional stellar dynamical analysis of a sample of 44 cosmological hydrodynamical simulations of individual central galaxies with stellar masses of 2 × 1010 M⊙ ≲ M* ≲ 6 × 1011 M⊙. Kinematic maps of the stellar line-of-sight velocity, velocity dispersion and higher order Gauss-Hermite moments h3 and h4 are constructed for each central galaxy and for the most massive satellites. The amount of rotation is quantified using the λR-parameter. The velocity, velocity dispersion, h3 and h4 fields of the simulated galaxies show a diversity similar to observed kinematic maps of early-type galaxies in the ATLAS3D survey. This includes fast (regular), slow and misaligned rotation, hot spheroids with embedded cold disc components as well as galaxies with counter-rotating cores or central depressions in the velocity dispersion. We link the present-day kinematic properties to the individual cosmological formation histories of the galaxies. In general, major galaxy mergers have a significant influence on the rotation properties resulting in both a spin-down as well as a spin-up of the merger remnant. Lower mass galaxies with significant (≳18 per cent) in situ formation of stars since z ≈ 2, or with additional gas-rich major mergers - resulting in a spin-up - in their formation history, form elongated (ɛ ˜ 0.45) fast rotators (λR ˜ 0.46) with a clear anticorrelation of h3 and v/σ. An additional formation path for fast rotators includes gas-poor major mergers leading to a spin-up of the remnants (λR ˜ 0.43). This formation path does not result in anticorrelated h3 and v/σ. The formation histories of slow rotators can include late major mergers. If the merger is gas rich, the remnant typically is a less flattened slow rotator with a central dip in the velocity dispersion. If the merger is gas poor, the remnant is very elongated (ɛ ˜ 0.43) and slowly rotating (λR ˜ 0.11). The galaxies most consistent with the rare class of non

  1. The mechanisms of fast and slow transport in neurons: identification and characterization of the new kinesin superfamily motors.

    PubMed

    Hirokawa, N

    1997-10-01

    Progress in the identification and characterization of new carboxy-terminal motor domain type kinesin superfamily proteins (KIFs)-KIFC2, 16 new KIFs and KIF-associated protein 3 (KAP3)-has provided further insight into the molecular mechanisms of organelle transport in neurons. Developments in molecular and cellular biophysics and recombinant adenovirus infection techniques combined with transgenic mice technology have enhanced the visualization of moving forms of cytoskeletal proteins during slow transport. The results of these studies strongly support the subunit transport theory. PMID:9384541

  2. New Evidence for the Role of Emerging Flux in a Solar Filament's Slow Rise Preceding its CME-Producing Fast Eruption

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.; Harra, Louis K.; Moore, Ronald L.

    2007-01-01

    We observe the eruption of a large-scale (approx.300,000 km) quiet-region solar filament, leading to an Earth-directed "halo" coronal mass ejection (CME). We use coronal imaging data in EUV from the EUV Imaging Telescope (EIT) on the Solar and Heliospheric Observatory (SOHO) satellite, and in soft X-rays (SXRs) from the Soft X-ray Telescope (SXT) on the Yohkoh satellite. We also use spectroscopic data from the Coronal Diagnostic Spectrometer (CDS), magnetic data from the Michelson Doppler Imager (MDI), and white-light coronal data from the Large Angle and Spectrometric Coronagraph Experiment (LASCO), all on SOHO. Initially the filament shows a slow (approx.1 km/s projected against the solar disk) and approximately constant-velocity rise for about 6 hours, before erupting rapidly, reaching a velocity of approx. 8 km/s over the next approx. 25 min. CDS Doppler data show Earth-directed filament velocities ranging from < 20 km/s (the noise limit) during the slow-rise phase, to approx. 100 km/s-1 early in the eruption. Beginning within 10 hours prior to the start of the slow rise, localized new magnetic flux emerged near one end of the filament. Near the start of and during the slow-rise phase, SXR microflaring occurred repeatedly at the flux-emergence site, in conjunction with the development of a fan of SXR illumination of the magnetic arcade over the filament. The SXR microflares, development of the SXR fan, and motion of the slow-rising filament are all consistent with "tether-weakening" reconnection occurring between the newly-emerging flux and the overlying arcade field containing the filament field. The microflares and fan structure are not prominent in EUV, and would not have been detected without the SXR data. Standard "twin dimmings" occur near the location of the filament, and "remote dimmings" and "brightenings" occur further removed from the filament.

  3. N-fertilization has different effects on the growth, carbon and nitrogen physiology, and wood properties of slow- and fast-growing Populus species

    PubMed Central

    Luo, Zhi-Bin

    2012-01-01

    To investigate how N-fertilization affects the growth, carbon and nitrogen (N) physiology, and wood properties of poplars with contrasting growth characteristics, slow-growing (Populus popularis, Pp) and fast-growing (P. alba×P. glandulosa, Pg) poplar saplings were exposed to different N levels. Above-ground biomass, leaf area, photosynthetic rates (A), instantaneous photosynthetic nitrogen use efficiency (PNUE i), chlorophyll and foliar sugar concentrations were higher in Pg than in Pp. Foliar nitrate reductase (NR) activities and root glutamate synthase (GOGAT) activities were higher in Pg than in Pp as were the N amount and NUE of new shoots. Lignin contents and calorific values of Pg wood were less than that of Pp wood. N-fertilization reduced root biomass of Pg more than of Pp, but increased leaf biomass, leaf area, A, and PNUEi of Pg more than of Pp. Among 13 genes involved in the transport of ammonium or nitrate or in N assimilation, transcripts showed more pronounced changes to N-fertilization in Pg than in Pp. Increases in NR activities and N contents due to N-fertilization were larger in Pg than in Pp. In both species, N-fertilization resulted in lower calorific values as well as shorter and wider vessel elements/fibres. These results suggest that growth, carbon and N physiology, and wood properties are more sensitive to increasing N availability in fast-growing poplars than in slow-growing ones, which is probably due to prioritized resource allocation to the leaves and accelerated N physiological processes in fast-growing poplars under higher N levels. PMID:23028021

  4. Effects of nutrient density and age at photostimulation on carcass traits and reproductive efficiency in fast- and slow-feathering turkey hens.

    PubMed

    Renema, R A; Sikur, V R; Robinson, F E; Korver, D R; Zuidhof, M J

    2008-09-01

    This study was conducted to compare BW gain, carcass composition, and reproductive fitness in fast- and slow-feathering turkey females between 29 and 56 wk of age. A total of 452 Hybrid standard fast-feathering (FF) and experimental slow-feathering (SF) hens (226/group) were fed either a control or a high-energy, high-protein diet. Birds were photostimulated at 29 or 31 wk. Data on BW and carcass characteristics (keel and shank, keel, breast muscle, fatpad, liver, ovary, and oviduct weight) and egg production were assessed. At photostimulation, FF birds had an increased shank length (2.6%) compared with SF birds. After photostimulation, FF birds were heavier than SF birds by 7.8%. Fast-feathering hens had greater ovary weight (49%), oviduct weight (52%), keel length (2.8%), and had one more large yellow follicle at the end of lay. The number of large yellow follicles was greater in birds photostimulated at 31 wk (8.3) compared with birds photostimulated 2 wk earlier (7.8). Absolute ovary weight and oviduct weight were increased by 21 and 18%, respectively, in birds photostimulated at 31 wk compared with 29 wk. These effects of delayed photo-stimulation were greater in SF birds. Ultimately, FF hens had a greater total hen-housed egg production (55 vs. 33%), peak egg production (76 vs. 68%), and laying sequence length (5.7 vs. 3.3 d). Although delaying photostimulation did not affect total egg production, it did reduce the number of double-yolked eggs. Nutrient density had minimal effects on production in this trial. These data indicate that despite having similar BW, fleshing, and conformation traits to FF birds, the SF strain had inferior reproductive efficiency traits. This problem will need to be remedied before an SF turkey strain can become commercially viable. PMID:18753460

  5. Chimeric β-Lactamases: Global Conservation of Parental Function and Fast Time-Scale Dynamics with Increased Slow Motions

    PubMed Central

    Clouthier, Christopher M.; Morin, Sébastien; Gobeil, Sophie M. C.; Doucet, Nicolas; Blanchet, Jonathan; Nguyen, Elisabeth; Gagné, Stéphane M.; Pelletier, Joelle N.

    2012-01-01

    Enzyme engineering has been facilitated by recombination of close homologues, followed by functional screening. In one such effort, chimeras of two class-A β-lactamases – TEM-1 and PSE-4 – were created according to structure-guided protein recombination and selected for their capacity to promote bacterial proliferation in the presence of ampicillin (Voigt et al., Nat. Struct. Biol. 2002 9:553). To provide a more detailed assessment of the effects of protein recombination on the structure and function of the resulting chimeric enzymes, we characterized a series of functional TEM-1/PSE-4 chimeras possessing between 17 and 92 substitutions relative to TEM-1 β-lactamase. Circular dichroism and thermal scanning fluorimetry revealed that the chimeras were generally well folded. Despite harbouring important sequence variation relative to either of the two ‘parental’ β-lactamases, the chimeric β-lactamases displayed substrate recognition spectra and reactivity similar to their most closely-related parent. To gain further insight into the changes induced by chimerization, the chimera with 17 substitutions was investigated by NMR spin relaxation. While high order was conserved on the ps-ns timescale, a hallmark of class A β-lactamases, evidence of additional slow motions on the µs-ms timescale was extracted from model-free calculations. This is consistent with the greater number of resonances that could not be assigned in this chimera relative to the parental β-lactamases, and is consistent with this well-folded and functional chimeric β-lactamase displaying increased slow time-scale motions. PMID:23284969

  6. Three-channel Lissajous' trajectories of auditory brainstem evoked potentials: contribution of fast and slow components to planar segment formation.

    PubMed

    Pratt, H; Bleich, N; Feingold, K

    1990-01-01

    Three-Channel Lissajous' Trajectories (3CLT) of Auditory Brainstem Evoked Potentials (ABEP) to clicks were obtained after finite impulse response filtering in three frequency bands. These bands were chosen to replicate the widely used passband (100-3000 Hz) and to selectively enhance the definition of the 'pedestal' (10-240 Hz) or the first, third and fifth components (240-483 Hz). Quantitative measures of 3CLT were calculated to describe apex latencies, planar segment orientations, durations, trajectory amplitude peaks and their latencies. In addition, dipole moments at the latencies of apical points along 3-CLT were calculated. The planarity of ABEP 3-CLT segments persisted after selective enhancement of the 'pedestal' or the first, third and fifth components. These results rule out the suggestion that planarity of ABEP segments results from the interaction of the 'pedestal' with the superimposed faster components. These results demonstrate summation of 3-CLT planar segments ('a' 'c' and 'e' with the 'pedestal') to form new segments (wide-band 'a', 'c' and 'e'). With the exception of 'c', planar segments and the equivalent dipole moments associated with apexes did not change orientations across passbands. The effects of passband on the orientation of planar segment 'c' and the dipole moment of its apex are explained by its superimposition on the 'pedestal' in the wide-band records. A similar analysis of ABEP to clicks as compared to low-frequency stimuli (high-pass masked clicks) revealed no change in planarity nor in plane parameters. These results are compatible with the suggestion that the generators of the first, third and fifth ABEP components are curved fiber tracts. The planarity of the slow 'pedestal' may be due to the summation of slow synaptic potentials in auditory brainstem nuclei. These findings indicate that the generators of ABEP are composites that may be separated by selective lesion studies. PMID:2312411

  7. Effect of Self-Selected and Induced Slow and Fast Paddling on Atroke Kinematics During 1000 m Outrigger Canoeing Ergometry

    PubMed Central

    Sealey, Rebecca M.; Ness, Kevin F.; Leicht, Anthony S.

    2011-01-01

    This study aimed to identify the effect of different stroke rates on various kinematic parameters during 1000 m outrigger canoeing. Sixteen, experienced female outrigger canoeists completed three 1000 m outrigger ergometer time trials, one trial each using a self-selected, a Hawaiian (≤ 55 strokes·min-1) and a Tahitian (≥ 65 strokes·min-1) stroke rate. Stroke rate, stroke length, stroke time, proportion of time spent in propulsion and recovery, torso flexion angle and ‘twist’ were measured and compared with repeated measures ANOVAs. Stroke rate, stroke length and stroke time were significantly different across all interventions (p < 0.05) despite no difference in the percentage of time spent in the propulsive and recovery phases of the stroke. Stroke length and stroke time were negatively correlated to stroke rate for all interventions (r = -0.79 and -0.99, respectively). Female outrigger canoeists maintain consistent stroke kinematics throughout a 1000 m time trial, most likely as a learned skill to maximize crew paddling synchrony when paddling on-water. While the Hawaiian stroke rate resulted in the greatest trunk flexion movement and ‘twist’ action, this potential increased back injury risk may be offset by the slow stroke rate and long stroke length and hence slow rate of force development. Key points As outrigger canoeing stroke rate increased, stroke length decreased but the proportion of the stroke time spent in the propulsive phase was kept consistent. The outrigger canoeing technique involved a similar amount of torso flexion-extension movement to rowing, with an additional twisting motion of the torso evidenced, that may increase the risk of back injury. A slower stroke rate, to lessen the rate of force production, may minimize potential back injury in outrigger canoeists and dragon boat paddlers. PMID:24149295

  8. Fast food restaurant lighting and music can reduce calorie intake and increase satisfaction.

    PubMed

    Wansink, Brian; van Ittersum, Koert

    2012-08-01

    Recent research shows that environmental cues such as lighting and music strongly bias the eating behavior of diners in laboratory situations. This study examines whether changing the atmosphere of a fast food restaurant would change how much patrons ate. The results indicated that softening the lighting and music led people to eat less, to rate the food as more enjoyable, and to spend just as much. In contrast to hypothesized U-shaped curves (people who spend longer eat more), this suggests a more relaxed environment increases satisfaction and decreases consumption. PMID:23045865

  9. Practical Combinations of Light-Water Reactors and Fast-Reactors for Future Actinide Transmutation

    SciTech Connect

    Collins, Emory D; Renier, John-Paul

    2007-01-01

    Multicycle partitioning-transmutation (P-T) studies continue to show that use of existing light-water reactors (LWRs) and new advanced light-water reactors (ALWRs) can effectively transmute transuranic (TRU) actinides, enabling initiation of full actinide recycle much earlier than waiting for the development and deployment of sufficient fast reactor (FR) capacity. The combination of initial P-T cycles using LWRs/ALWRs in parallel with economic improvements to FR usage for electricity production, and a follow-on transition period in which FRs are deployed, is a practical approach to near-term closure of the nuclear fuel cycle with full actinide recycle.

  10. The speed of information in a 'fast-light' optical medium.

    PubMed

    Stenner, Michael D; Gauthier, Daniel J; Neifeld, Mark A

    2003-10-16

    One consequence of the special theory of relativity is that no signal can cause an effect outside the source light cone, the space-time surface on which light rays emanate from the source. Violation of this principle of relativistic causality leads to paradoxes, such as that of an effect preceding its cause. Recent experiments on optical pulse propagation in so-called 'fast-light' media--which are characterized by a wave group velocity upsilon(g) exceeding the vacuum speed of light c or taking on negative values--have led to renewed debate about the definition of the information velocity upsilon(i). One view is that upsilon(i) = upsilon(g) (ref. 4), which would violate causality, while another is that upsilon(i) = c in all situations, which would preserve causality. Here we find that the time to detect information propagating through a fast-light medium is slightly longer than the time required to detect the same information travelling through a vacuum, even though upsilon(g) in the medium vastly exceeds c. Our observations are therefore consistent with relativistic causality and help to resolve the controversies surrounding superluminal pulse propagation. PMID:14562097

  11. Theoretical analysis of multiple quantum-well, slow-light devices under applied external fields using a fully analytical model in fractional dimension

    SciTech Connect

    Kohandani, R; Kaatuzian, H

    2015-01-31

    We report a theoretical study of optical properties of AlGaAs/GaAs multiple quantum-well (MQW), slow-light devices based on excitonic population oscillations under applied external magnetic and electric fields using an analytical model for complex dielectric constant of Wannier excitons in fractional dimension. The results are shown for quantum wells (QWs) of different width. The significant characteristics of the exciton in QWs such as exciton energy and exciton oscillator strength (EOS) can be varied by application of external magnetic and electric fields. It is found that a higher bandwidth and an appropriate slow-down factor (SDF) can be achieved by changing the QW width during the fabrication process and by applying magnetic and electric fields during device functioning, respectively. It is shown that a SDF of 10{sup 5} is obtained at best. (slowing of light)

  12. Design of small core tellurite photonic crystal fiber for slow-light-based application using stimulated Brillouin scattering

    NASA Astrophysics Data System (ADS)

    Cherif, Rim; Salem, Amine Ben; Saini, Than Singh; Kumar, Ajeet; Sinha, Ravindra K.; Zghal, Mourad

    2015-07-01

    Stimulated Brillouin scattering (SBS) performances of small core tellurite photonic crystal fibers (PCF) are rigorously studied. We propose a design of tellurite PCF that is used for slow-light-based applications. We developed a two-dimensional finite element mode solver to numerically study the acoustic and optical properties of complex refractive index profiles including tellurite PCF. Our results include the calculation of Brillouin gain spectrum, Brillouin gain coefficient (gB) and Brillouin frequency shift by taking into account the contribution of the higher-order acoustic modes. Several simulations were run by varying the air-filling ratio of various PCF structures to enhance the SBS. The real scanning electron microscope image of a small core of highly nonlinear tellurite fiber is considered. Optimized results show a frequency shift of 8.43 GHz and a Brillouin gain of 9.48×10-11 m/W with a time delay between 21 and 140 ns. Such fibers have drawn much interest because of their capacity for increasing and tailoring the SBS gain.

  13. Intermodulation and harmonic distortion in slow light Microwave Photonic phase shifters based on Coherent Population Oscillations in SOAs.

    PubMed

    Gasulla, Ivana; Sancho, Juan; Capmany, José; Lloret, Juan; Sales, Salvador

    2010-12-01

    We theoretically and experimentally evaluate the propagation, generation and amplification of signal, harmonic and intermodulation distortion terms inside a Semiconductor Optical Amplifier (SOA) under Coherent Population Oscillation (CPO) regime. For that purpose, we present a general optical field model, valid for any arbitrarily-spaced radiofrequency tones, which is necessary to correctly describe the operation of CPO based slow light Microwave Photonic phase shifters which comprise an electrooptic modulator and a SOA followed by an optical filter and supplements another recently published for true time delay operation based on the propagation of optical intensities. The phase shifter performance has been evaluated in terms of the nonlinear distortion up to 3rd order, for a modulating signal constituted of two tones, in function of the electrooptic modulator input RF power and the SOA input optical power, obtaining a very good agreement between theoretical and experimental results. A complete theoretical spectral analysis is also presented which shows that under small signal operation conditions, the 3rd order intermodulation products at 2Ω1 + Ω2 and 2Ω2 + Ω1 experience a power dip/phase transition characteristic of the fundamental tones phase shifting operation. PMID:21164914

  14. Slow light, open-cavity formation, and large longitudinal electric field on a slab waveguide made of indefinite permittivity metamaterials

    NASA Astrophysics Data System (ADS)

    Lu, W. T.; Sridhar, S.

    2010-07-01

    The optical properties of slab waveguides made of indefinite permittivity (ɛ) materials (IEMs) are considered. In this medium, the real part of the transverse permittivity is negative while that of the longitudinal permittivity is positive. At any given frequency, the IEM waveguide supports an infinite number of transverse magnetic (TM) eigenmodes. For a slab waveguide with a fixed thickness, at most only one TM mode is forward wave. The remainder are backward waves which can have a very large phase index. At a critical thickness, the waveguide supports degenerate forward- and backward-wave modes with zero group velocity if loss is absent. Above the critical thickness, the waveguide supports complex-conjugate decay modes instead of propagating modes. The presence of loss in IEMs will lift the TM mode degeneracy, resulting in modes with finite group velocity. A feasible realization is proposed. The performance of the IEM waveguide is analyzed and possible applications are discussed, which are supported by numerical calculations. These slab waveguides can be used to make optical delay lines in optical buffers to slow down and trap light, to form open cavities, to generate strong longitudinal electric fields, and as phase shifters in optical integrated circuits. Although the presence of loss will hinder these applications, gain can be introduced to compensate the loss and enhance the performance.

  15. Output beam profile control of slow-light Bragg reflector waveguide deflector with high-contrast sub-wavelength grating

    NASA Astrophysics Data System (ADS)

    Gu, Xiaodong; Koyama, Fumio

    2014-02-01

    We demonstrated a super-high resolution beam scanner based on a Bragg reflector waveguide. In this device, radiation profile is wavelength-dependent. However, for specific applications, it is important to optimize the radiation direction. We propose a solution for this by introducing a high-contrast sub-wavelength grating (HCG). Numerical simulations using finite-difference time-domain method (FDTD) and rigorous coupled wave analysis (RCWA) were carried out. We found that, by designing the thickness, period and duty cycle of HCG, the output phase and intensity can be changed. As a result, it is possible to shift the output direction of the beam profile. We discussed their dependences on HCG parameters. On the other hand, the thicknesses (numbers of pairs) of the top- and bottom- distributed Bragg reflectors (DBRs) mirrors are influential to the results. A discussion on the thickness dependence was carried out. We found that, HCG has stronger influence to thinner mirrors. Because HCG can provide high reflectivity, thin mirrors are not a problem in such slow-light waveguides. We believe this proposal can offer us a method to obtain desirable output beam direction of Bragg reflector waveguides deflectors.

  16. Compact, highly sensitive optical gyros and sensors with fast-light

    NASA Astrophysics Data System (ADS)

    Christensen, Caleb A.; Zavriyev, Anton; Cummings, Malcolm; Beal, A. C.; Lucas, Mark; Lagasse, Michael

    2015-09-01

    Fast-light phenomena can enhance the sensitivity of an optical gyroscope of a given size by several orders of magnitude, and could be applied to other optical sensors as well. MagiQ Technologies has been developing a compact fiber-based fast light Inertial Measurement Unit (IMU) using Stimulated Brillouin Scattering in optical fibers with commercially mature technologies. We will report on our findings, including repeatable fast-light effects in the lab, numerical analysis of noise and stability given realistic optical specs, and methods for optimizing efficiency, size, and reliability with current technologies. The technology could benefit inertial navigation units, gyrocompasses, and stabilization techniques, and could allow high grade IMUs in spacecraft, unmanned aerial vehicles or sensors, where the current size and weight of precision gyros are prohibitive. By using photonic integrated circuits and telecom-grade components along with specialty fibers, we also believe that our design is appropriate for development without further advances in the state of the art of components.

  17. Comment on "Existence domains of slow and fast ion-acoustic solitons in two-ion space plasmas" [Phys. Plasmas 22, 032313 (2015)

    NASA Astrophysics Data System (ADS)

    Olivier, C. P.; Maharaj, S. K.; Bharuthram, R.

    2016-06-01

    In a series of papers by Maharaj et al., including "Existence domains of slow and fast ion-acoustic solitons in two-ion space plasmas" [Phys. Plasmas 22, 032313 (2015)], incorrect expressions for the Sagdeev potential are presented. In this paper, we provide the correct expression of the Sagdeev potential. The correct expression was used to generate the numerical results for the above-mentioned series of papers, so that all results and conclusions are correct, despite the wrong Sagdeev potential expressions printed in the papers. The correct expression of the Sagdeev potential presented here is a very useful generic expression in the sense that a single expression can be used to study nonlinear structures associated with any acoustic mode, despite the fact that the supersonic and subsonic species would vary if solitons associated with different linear modes are studied.

  18. The effect of fast and regeneration in light versus dark on regulation in the hydra-algal symbiosis

    NASA Technical Reports Server (NTRS)

    Bossert, P.; Slobodkin, L. B.

    1983-01-01

    Green hydra are able to regenerate tentacles after fast durations which cause brown, i.e., asymbiotic, hydra to fail completely, but the presence of endosymbiotic algae does not always enhance regeneration in fasted hydra. Green hydra whose nutritional state falls below some threshold, exhibit a light induced inhibition of regeneration. That is, hydra, fasted in the light, then randomly assigned to light or dark after decapitation, regenerate better in the dark. This effect of light does not appear to be present either in brown hydra or in normally green hydra from which the algae were removed. In a large strain of Chlorohydra viridissima, after fasts of intermediate duration (10 and 15 days), this light induced inhibition of regeneration is associated with an increase in the number of algae per gastric cell in regenerating hydra relative to non-regenerating controls.

  19. Comparative effect of 12 weeks of slow and fast pranayama training on pulmonary function in young, healthy volunteers: A randomized controlled trial

    PubMed Central

    Dinesh, T; Gaur, GS; Sharma, VK; Madanmohan, T; Harichandra Kumar, KT; Bhavanani, AB

    2015-01-01

    Context: Pranayamas are breathing techniques that exert profound physiological effects on pulmonary, cardiovascular, and mental functions. Previous studies demonstrate that different types of pranayamas produce divergent effects. Aim: The aim was to compare the effect of 12 weeks of slow and fast pranayama training on pulmonary function in young, healthy volunteers. Settings and Design: This study was carried out in Departments of Physiology and ACYTER, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry in 2011. Subjects and Methods: Ninety one healthy volunteers were randomized into slow pranayama group (SPG), n =29, fast pranayama group (FPG), n = 32 and control groups (CG) (n = 30). Supervised pranayama training (SPG: Nadisodhana, Pranav pranayama and Savitri pranayama; FPG: Kapalabhati, Bhastrika and Kukkriya pranayama) was given for 30 min/day, thrice/week for 12 weeks by certified yoga instructors. Pulmonary function parameters (PFT) such as forced vital capacity (FVC), forced expiratory volume in first second (FEV1), ratio between FEV1 and FVC (FEV1 /FVC), peak expiratory flow rate (PEFR), maximum voluntary ventilation (MVV), and forced expiratory flow25-75 (FEF25-75), were recorded at baseline and after 12 weeks of pranayama training using the computerized spirometer (Micro laboratory V1.32, England). Results: In SPG, PEFR, and FEF25-75 improved significantly (P < 0.05) while other parameters (FVC, FEV1, FEV1 /FVC, and MVV) showed only marginal improvements. In FPG, FEV1 /FVC, PEFR, and FEF25-75 parameters improved significantly (P < 0.05), while FVC, FEV1, and MVV did not show significant (P > 0.05) change. No significant change was observed in CG. Conclusion: Twelve weeks of pranayama training in young subjects showed improvement in the commonly measured PFT. This indicates that pranayama training improved pulmonary function and that this was more pronounced in the FPG. PMID:25558130

  20. Fast-growing Acer rubrum differs from slow-growing Quercus alba in leaf, xylem and hydraulic trait coordination responses to simulated acid rain.

    PubMed

    Medeiros, Juliana S; Tomeo, Nicholas J; Hewins, Charlotte R; Rosenthal, David M

    2016-08-01

    We investigated the effects of historic soil chemistry changes associated with acid rain, i.e., reduced soil pH and a shift from nitrogen (N)- to phosphorus (P)-limitation, on the coordination of leaf water demand and xylem hydraulic supply traits in two co-occurring temperate tree species differing in growth rate. Using a full-factorial design (N × P × pH), we measured leaf nutrient content, water relations, leaf-level and canopy-level gas exchange, total biomass and allocation, as well as stem xylem anatomy and hydraulic function for greenhouse-grown saplings of fast-growing Acer rubrum (L.) and slow-growing Quercus alba (L.). We used principle component analysis to characterize trait coordination. We found that N-limitation, but not P-limitation, had a significant impact on plant water relations and hydraulic coordination of both species. Fast-growing A. rubrum made hydraulic adjustments in response to N-limitation, but trait coordination was variable within treatments and did not fully compensate for changing allocation across N-availability. For slow-growing Q. alba, N-limitation engendered more strict coordination of leaf and xylem traits, resulting in similar leaf water content and hydraulic function across all treatments. Finally, low pH reduced the propensity of both species to adjust leaf water relations and xylem anatomical traits in response to nutrient manipulations. Our data suggest that a shift from N- to P-limitation has had a negative impact on the water relations and hydraulic function of A. rubrum to a greater extent than for Q. alba We suggest that current expansion of A. rubrum populations could be tempered by acidic N-deposition, which may restrict it to more mesic microsites. The disruption of hydraulic acclimation and coordination at low pH is emphasized as an interesting area of future study. PMID:27231270

  1. Physiological Trade-Offs Along a Fast-Slow Lifestyle Continuum in Fishes: What Do They Tell Us about Resistance and Resilience to Hypoxia?

    PubMed Central

    Stoffels, Rick J.

    2015-01-01

    It has recently been suggested that general rules of change in ecological communities might be found through the development of functional relationships between species traits and performance. The physiological, behavioural and life-history traits of fishes are often organised along a fast-slow lifestyle continuum (FSLC). With respect to resistance (capacity for population to resist change) and resilience (capacity for population to recover from change) to environmental hypoxia, the literature suggests that traits enhancing resilience may come at the expense of traits promoting resistance to hypoxia; a trade-off may exist. Here I test whether three fishes occupying different positions along the FSLC trade-off resistance and resilience to environmental hypoxia. Static respirometry experiments were used to determine resistance, as measured by critical oxygen tension (Pcrit), and capacity for (RC) and magnitude of metabolic reduction (RM). Swimming respirometry experiments were used to determine aspects of resilience: critical (Ucrit) and optimal swimming speed (Uopt), and optimal cost of transport (COTopt). Results pertaining to metabolic reduction suggest a resistance gradient across species described by the inequality Melanotaenia fluviatilis (fast lifestyle) < Hypseleotris sp. (intermediate lifestyle) < Mogurnda adspersa (slow lifestyle). The Ucrit and COTopt data suggest a resilience gradient described by the reverse inequality, and so the experiments generally indicate that three fishes occupying different positions on the FSLC trade-off resistance and resilience to hypoxia. However, the scope of inferences that can be drawn from an individual study is narrow, and so steps towards general, trait-based rules of fish community change along environmental gradients are discussed. PMID:26070078

  2. A Neuro-Mechanical Model Explaining the Physiological Role of Fast and Slow Muscle Fibres at Stop and Start of Stepping of an Insect Leg

    PubMed Central

    Toth, Tibor Istvan; Grabowska, Martyna; Schmidt, Joachim; Büschges, Ansgar; Daun-Gruhn, Silvia

    2013-01-01

    Stop and start of stepping are two basic actions of the musculo-skeletal system of a leg. Although they are basic phenomena, they require the coordinated activities of the leg muscles. However, little is known of the details of how these activities are generated by the interactions between the local neuronal networks controlling the fast and slow muscle fibres at the individual leg joints. In the present work, we aim at uncovering some of those details using a suitable neuro-mechanical model. It is an extension of the model in the accompanying paper and now includes all three antagonistic muscle pairs of the main joints of an insect leg, together with their dedicated neuronal control, as well as common inhibitory motoneurons and the residual stiffness of the slow muscles. This model enabled us to study putative processes of intra-leg coordination during stop and start of stepping. We also made use of the effects of sensory signals encoding the position and velocity of the leg joints. Where experimental observations are available, the corresponding simulation results are in good agreement with them. Our model makes detailed predictions as to the coordination processes of the individual muscle systems both at stop and start of stepping. In particular, it reveals a possible role of the slow muscle fibres at stop in accelerating the convergence of the leg to its steady-state position. These findings lend our model physiological relevance and can therefore be used to elucidate details of the stop and start of stepping in insects, and perhaps in other animals, too. PMID:24278108

  3. A neuro-mechanical model explaining the physiological role of fast and slow muscle fibres at stop and start of stepping of an insect leg.

    PubMed

    Toth, Tibor Istvan; Grabowska, Martyna; Schmidt, Joachim; Büschges, Ansgar; Daun-Gruhn, Silvia

    2013-01-01

    Stop and start of stepping are two basic actions of the musculo-skeletal system of a leg. Although they are basic phenomena, they require the coordinated activities of the leg muscles. However, little is known of the details of how these activities are generated by the interactions between the local neuronal networks controlling the fast and slow muscle fibres at the individual leg joints. In the present work, we aim at uncovering some of those details using a suitable neuro-mechanical model. It is an extension of the model in the accompanying paper and now includes all three antagonistic muscle pairs of the main joints of an insect leg, together with their dedicated neuronal control, as well as common inhibitory motoneurons and the residual stiffness of the slow muscles. This model enabled us to study putative processes of intra-leg coordination during stop and start of stepping. We also made use of the effects of sensory signals encoding the position and velocity of the leg joints. Where experimental observations are available, the corresponding simulation results are in good agreement with them. Our model makes detailed predictions as to the coordination processes of the individual muscle systems both at stop and start of stepping. In particular, it reveals a possible role of the slow muscle fibres at stop in accelerating the convergence of the leg to its steady-state position. These findings lend our model physiological relevance and can therefore be used to elucidate details of the stop and start of stepping in insects, and perhaps in other animals, too. PMID:24278108

  4. Physical evaluation of CT scan methods for radiation therapy planning: comparison of fast, slow and gating scan using the 256-detector row CT scanner

    NASA Astrophysics Data System (ADS)

    Mori, Shinichiro; Kanematsu, Nobuyuki; Mizuno, Hideyuki; Sunaoka, Masayoshi; Endo, Masahiro

    2006-02-01

    Although slow-rotation CT scanning (slow-scan CT: SSCT) has been used for radiation therapy planning, based on the rationale that the average duration of the human respiratory cycle is 4 s, a number of physical and quantitative questions require answering before it can be adopted for clinical use. This study was performed to evaluate SSCT physically in comparison with other scan methods, including respiratory-gated CT (RGCT), and to develop procedures to improve treatment accuracy. Evaluation items were geometrical accuracy, volume accuracy, water equivalent length and dose distribution using the 256-detector row CT with three scan methods. Fast-scan CT (FSCT) was defined as obtaining all respiratory phases in cine scan mode at 1.0 s per rotation. FSCT-ave was the averaged FSCT images in all respiratory phases, obtained by reconstructing short time intervals. SSCT has been defined as scanning with slow gantry rotation to capture the whole respiratory cycle in one rotation. RGCT was scanned at the most stable point in the respiratory cycle, which provides the same image as that by FSCT at the most stable point. Results showed that all evaluation items were dependent on motion characteristics. The findings of this study indicate that 3D planning based solely on SSCT under free breathing may result in underdosing of the target volume and increase toxicity to surrounding normal tissues. Of the three methods, RGCT showed the best ability to significantly increase the accuracy of dose distribution, and provided more information to minimize the margins. FSCT-ave is a satisfactory radiotherapy planning alternative if RGCT is not available.

  5. The effect of fast and slow motor unit activation on whole-muscle mechanical performance: the size principle may not pose a mechanical paradox

    PubMed Central

    Holt, N. C.; Wakeling, J. M.; Biewener, A. A.

    2014-01-01

    The output of skeletal muscle can be varied by selectively recruiting different motor units. However, our knowledge of muscle function is largely derived from muscle in which all motor units are activated. This discrepancy may limit our understanding of in vivo muscle function. Hence, this study aimed to characterize the mechanical properties of muscle with different motor unit activation. We determined the isometric properties and isotonic force–velocity relationship of rat plantaris muscles in situ with all of the muscle active, 30% of the muscle containing predominately slower motor units active or 20% of the muscle containing predominately faster motor units active. There was a significant effect of active motor unit type on isometric force rise time (p < 0.001) and the force–velocity relationship (p < 0.001). Surprisingly, force rise time was longer and maximum shortening velocity higher when all motor units were active than when either fast or slow motor units were selectively activated. We propose this is due to the greater relative effects of factors such as series compliance and muscle resistance to shortening during sub-maximal contractions. The findings presented here suggest that recruitment according to the size principle, where slow motor units are activated first and faster ones recruited as demand increases, may not pose a mechanical paradox, as has been previously suggested. PMID:24695429

  6. A fast method for optical simulation of flood maps of light-sharing detector modules

    NASA Astrophysics Data System (ADS)

    Shi, Han; Du, Dong; Xu, JianFeng; Moses, William W.; Peng, Qiyu

    2015-12-01

    Optical simulation of the detector module level is highly desired for Position Emission Tomography (PET) system design. Commonly used simulation toolkits such as GATE are not efficient in the optical simulation of detector modules with complicated light-sharing configurations, where a vast amount of photons need to be tracked. We present a fast approach based on a simplified specular reflectance model and a structured light-tracking algorithm to speed up the photon tracking in detector modules constructed with polished finish and specular reflector materials. We simulated conventional block detector designs with different slotted light guide patterns using the new approach and compared the outcomes with those from GATE simulations. While the two approaches generated comparable flood maps, the new approach was more than 200-600 times faster. The new approach has also been validated by constructing a prototype detector and comparing the simulated flood map with the experimental flood map. The experimental flood map has nearly uniformly distributed spots similar to those in the simulated flood map. In conclusion, the new approach provides a fast and reliable simulation tool for assisting in the development of light-sharing-based detector modules with a polished surface finish and using specular reflector materials.

  7. Smart light random memory sprays Retinex: a fast Retinex implementation for high-quality brightness adjustment and color correction.

    PubMed

    Banić, Nikola; Lončarić, Sven

    2015-11-01

    Removing the influence of illumination on image colors and adjusting the brightness across the scene are important image enhancement problems. This is achieved by applying adequate color constancy and brightness adjustment methods. One of the earliest models to deal with both of these problems was the Retinex theory. Some of the Retinex implementations tend to give high-quality results by performing local operations, but they are computationally relatively slow. One of the recent Retinex implementations is light random sprays Retinex (LRSR). In this paper, a new method is proposed for brightness adjustment and color correction that overcomes the main disadvantages of LRSR. There are three main contributions of this paper. First, a concept of memory sprays is proposed to reduce the number of LRSR's per-pixel operations to a constant regardless of the parameter values, thereby enabling a fast Retinex-based local image enhancement. Second, an effective remapping of image intensities is proposed that results in significantly higher quality. Third, the problem of LRSR's halo effect is significantly reduced by using an alternative illumination processing method. The proposed method enables a fast Retinex-based image enhancement by processing Retinex paths in a constant number of steps regardless of the path size. Due to the halo effect removal and remapping of the resulting intensities, the method outperforms many of the well-known image enhancement methods in terms of resulting image quality. The results are presented and discussed. It is shown that the proposed method outperforms most of the tested methods in terms of image brightness adjustment, color correction, and computational speed. PMID:26560928

  8. Cluster Observations During a Slow Crossing of the Duskside LLBL and Conjugate Observations in the Topside Ionosphere with FAST

    NASA Astrophysics Data System (ADS)

    Lund, E. J.; Farrugia, C. J.; Sandholt, P.; Cowley, S. W.; Mouikis, C. G.; Kistler, L. M.; Moebius, E.; Dunlop, M. W.; Reme, H.; Carlson, C. W.

    2003-12-01

    On 7 December 2000, the Cluster spacecraft were trailing a slowly expanding moagnetopause near dusk, remaining within 1 RE of a model boundary for more than three hours. This orbit allows a detailed probing of the structure of the low latitude boundary layer (LLBL). During this time the IMF trended from south to north, a rotation punctuated by several sharp southward excursions. The aim of the paper is threefold: (1) using twin-satellite observations to find the effect of this IMF behavior on the LLBL; (2) to compare the observations with theoretical predictions of the layered structure of the LLBL and its field-aligned currents (Sonnerup and Siebert, 2003); and (3) to find the ionospheric imprints this boundary layer leaves at FAST altitudes. This work is supported in part by NASA's Living with a Star program. Sonnerup, B.~U.~Ö., and K.~D. Siebert, Theory of the low latitude boundary layer and its coupling to the ionosphere: A tutorial review, in Earth's Low-Latitude Boundary Layer, Geophys. Monogr. Ser., vol.~133, edited by P.~T. Newell and T.~Onsager, p.~13, American Geophysical Union, Washington, DC, 2003.

  9. Preservation of blood glucose homeostasis in slow-senescing somatotrophism-deficient mice subjected to intermittent fasting begun at middle or old age.

    PubMed

    Arum, Oge; Saleh, Jamal K; Boparai, Ravneet K; Kopchick, John J; Khardori, Romesh K; Bartke, Andrzej

    2014-06-01

    Poor blood glucose homeostatic regulation is common, consequential, and costly for older and elderly populations, resulting in pleiotrophically adverse clinical outcomes. Somatotrophic signaling deficiency and dietary restriction have each been shown to delay the rate of senescence, resulting in salubrious phenotypes such as increased survivorship. Using two growth hormone (GH) signaling-related, slow-aging mouse mutants we tested, via longitudinal analyses, whether genetic perturbations that increase survivorship also improve blood glucose homeostatic regulation in senescing mammals. Furthermore, we institute a dietary restriction paradigm that also decelerates aging, an intermittent fasting (IF) feeding schedule, as either a short-term or a sustained intervention beginning at either middle or old age, and assess its effects on blood glucose control. We find that either of the two genetic alterations in GH signaling ameliorates fasting hyperglycemia; additionally, both longevity-inducing somatotrophic mutations improve insulin sensitivity into old age. Strikingly, we observe major and broad improvements in blood glucose homeostatic control by IF: IF improves ad libitum-fed hyperglycemia, glucose tolerance, and insulin sensitivity, and reduces hepatic gluconeogenesis, in aging mutant and normal mice. These results on correction of aging-resultant blood glucose dysregulation have potentially important clinical and public health implications for our ever-graying global population, and are consistent with the Longevity Dividend concept. PMID:24789008

  10. Slow and fast narrow spectra aurora E region echoes during the March 17, 2015 storm at mid latitudes. Multi-static, multi-frequency radar observations

    NASA Astrophysics Data System (ADS)

    Chau, Jorge; St-Maurice, Jean-Pierre

    2016-07-01

    Coherent E region echoes were observed at midlatitudes during the March 17, 2015 storm. The observations came from multi-static, multi-frequency, wide-field of view radars operating at 32.55 and 36.2 MHz in northern Germany. Each of the three receiver stations used, two in monostatic and one in bistatic modes, allow interferometry. These radars systems are devoted primarily to the measurement of mesospheric winds from specular meteor echoes. However during this storm, the strongest of the current solar cycle, strong Radar Aurora echoes were observed during the day for more than four hours. Here we present the main features observed, with a specific emphasis on echoes presenting narrow spectra with slower (around 180 m/s) and faster (as fast as 1600 m/s) Doppler velocities, than nominal typical ion-acoustic velocity expected to be between 400 and 800 m/s. We find that in both types of echoes the range vs. time slopes are between 800 and 1400 m/s. They agree rather well with the Doppler velocity for the narrow fast types but do not agree at all in the narrow slow spectral case. In both instances, the echoes are organized in localized horizontal structures with a range extent typically between 50 and 80 km. The fast-narrow structures tend to occur at higher altitudes than the well-known Farley-Buneman echoes, while the slow-narrow structures occur at lower altitudes (lower than 95 km). Both echo types come from regions with relatively small flow angles. Moreover the altitude of all echoes went down after 16:15 UT with the small-narrow echoes acquiring even smaller Doppler velocities. In large part thanks to the echo localization made feasible by interferometry, these new features are shedding some new important perspective on our understanding of auroral E-region radar echoes, particularly when it comes to spectra classified in the past as "Type III" and "Type IV" echoes.

  11. The radio afterglow of Swift J1644+57 reveals a powerful jet with fast core and slow sheath

    NASA Astrophysics Data System (ADS)

    Mimica, P.; Giannios, D.; Metzger, B. D.; Aloy, M. A.

    2015-07-01

    We model the non-thermal transient Swift J1644+57 as resulting from a relativistic jet powered by the accretion of a tidally disrupted star on to a supermassive black hole. Accompanying synchrotron radio emission is produced by the shock interaction between the jet and the dense circumnuclear medium, similar to a gamma-ray burst afterglow. An open mystery, however, is the origin of the late-time radio re-brightening, which occurred well after the peak of the jetted X-ray emission. Here, we systematically explore several proposed explanations for this behaviour by means of multidimensional hydrodynamic simulations coupled to a self-consistent radiative transfer calculation of the synchrotron emission. Our main conclusion is that the radio afterglow of Swift J1644+57 is not naturally explained by a jet with a one-dimensional top-hat angular structure. However, a more complex angular structure comprised of an ultrarelativistic core (Lorentz factor Γ ˜ 10) surrounded by a slower (Γ ˜ 2) sheath provides a reasonable fit to the data. Such a geometry could result from the radial structure of the super-Eddington accretion flow or as the result of jet precession. The total kinetic energy of the ejecta that we infer of ˜ few 1053 erg requires a highly efficient jet launching mechanism. Our jet model providing the best fit to the light curve of the on-axis event Swift J1644+57 is used to predict the radio light curves for off-axis viewing angles. Implications for the presence of relativistic jets from tidal disruption events (TDEs) detected via their thermal disc emission, as well as the prospects for detecting orphan TDE afterglows with upcoming wide-field radio surveys and resolving the jet structure with long baseline interferometry, are discussed.

  12. A fibre-optic mode-filtered light sensor for general and fast chemical assay

    NASA Astrophysics Data System (ADS)

    Zhou, Leiji; Wang, Kemin; Choi, Martin M. F.; Xiao, Dan; Yang, Xiaohai; Chen, Rui; Tan, Weihong

    2004-01-01

    A simple and fast-response fibre-optic chemical sensor based on mode-filtered light detection (MFLD) has been successfully developed. The sensor was constructed by inserting an unmodified fibre core into a silica capillary tubing; a charge-coupled device which acted as a multi-channel detector was positioned alongside the capillary to detect the emanated mode-filtered light. An interesting finding was observed: there was an increase in the signal upon the decrease in the sample refractive index when an unclad optical fibre was employed, which was different from the results of a polymer-clad fibre reported previously. This phenomenon of opposite signal trend can clearly be interpreted by applying a mathematical derivation based on light propagation in the optical fibre. The derived mathematical model correlates well with the experimental results. It also provides a good theoretical foundation for the future development of MFLD-based analyser in conjunction with liquid chromatographic separation and assay. The proposed MFLD sensor was successfully applied to determine acetic acid with a linear response in the range 0-90 v/v % and a correlation coefficient of 0.9959. The sensor has the advantages of high S/N ratio and very fast response time. It offers the potential for use as a general sensor in food and chemical industries.

  13. Fast Orbit Feedback and Beam Stability at the Swiss Light Source

    SciTech Connect

    Schlott, V.; Boege, M.; Keil, B.; Pollet, P.; Schilcher, T.

    2004-11-10

    A global, fast orbit feedback (FOFB) based on the digital beam position monitor (DBPM) system has been in user operation at the Swiss Light Source (SLS) since November 2003. The SVD-based correction scheme acts at a sampling rate of 4 kHz using position information from all 72 DBPM stations and applying corrections with all 72 horizontal and 72 vertical corrector magnets. As a result, the FOFB successfully damps orbit distortions, which are mainly caused by ground and girder vibrations as well as the 3-Hz booster crosstalk. It also allows fast and independent ID gap changes, which are completely transparent to all SLS users. With top-up as a regular operation mode at SLS, global beam stability on a {mu}m-level has been achieved from days to milliseconds.

  14. Sensitivity Analysis of Reprocessing Cooling Times on Light Water Reactor and Sodium Fast Reactor Fuel Cycles

    SciTech Connect

    R. M. Ferrer; S. Bays; M. Pope

    2008-04-01

    The purpose of this study is to quantify the effects of variations of the Light Water Reactor (LWR) Spent Nuclear Fuel (SNF) and fast reactor reprocessing cooling time on a Sodium Fast Reactor (SFR) assuming a single-tier fuel cycle scenario. The results from this study show the effects of different cooling times on the SFR’s transuranic (TRU) conversion ratio (CR) and transuranic fuel enrichment. Also, the decay heat, gamma heat and neutron emission of the SFR’s fresh fuel charge were evaluated. A 1000 MWth commercial-scale SFR design was selected as the baseline in this study. Both metal and oxide CR=0.50 SFR designs are investigated.

  15. Fast, Large-Area, Wide-Bandgap UV Photodetector for Cherenkov Light Detection

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.

    2013-01-01

    Due to limited resources available for power and space for payloads, miniaturizing and integrating instrumentation is a high priority for addressing the challenges of manned and unmanned deep space missions to high Earth orbit (HEO), near Earth objects (NEOs), Lunar and Martian orbits and surfaces, and outer planetary systems, as well as improvements to high-altitude aircraft safety. New, robust, and compact detectors allow future instrumentation packages more options in satisfying specific mission goals. A solid-state ultraviolet (UV) detector was developed with a theoretical fast response time and large detection area intended for application to Cherenkov detectors. The detector is based on the wide-bandgap semiconductor zinc oxide (ZnO), which in a bridge circuit can detect small, fast pulses of UV light like those required for Cherenkov detectors. The goal is to replace the role of photomultiplier tubes in Cherenkov detectors with these solid-state devices, saving on size, weight, and required power. For improving detection geometry, a spherical detector to measure high atomic number and energy (HZE) ions from any direction has been patented as part of a larger space radiation detector system. The detector will require the development of solid-state UV photodetectors fast enough (2 ns response time or better) to detect the shockwave of Cherenkov light emitted as the ions pass through a quartz, sapphire, or acrylic ball. The detector must be small enough to fit in the detector system structure, but have an active area large enough to capture enough Cherenkov light from the sphere. The detector is fabricated on bulk single-crystal undoped ZnO. Inter - digitated finger electrodes and contact pads are patterned via photolithography, and formed by sputtered metal of silver, platinum, or other high-conductivity metal.

  16. True-time delay line with separate carrier tuning using dual-parallel MZM and stimulated Brillouin scattering-induced slow light.

    PubMed

    Li, Wei; Zhu, Ning Hua; Wang, Li Xian; Wang, Jia Sheng; Liu, Jian Guo; Liu, Yu; Qi, Xiao Qiong; Xie, Liang; Chen, Wei; Wang, Xin; Han, Wei

    2011-06-20

    We experimentally demonstrate a novel tunable true-time delay line with separate carrier tuning using dual-parallel Mach-Zehnder modulator and stimulated Brillouin scattering-induced slow light. The phase of the optical carrier can be continuously and precisely controlled by simply adjusting the dc bias of the dual-parallel Mach-Zehnder modulator. In addition, both the slow light and single-sideband modulation can be simultaneously achieved in the stimulated Brillouin scattering process with three types of configuration. Finally, the true-time delay technique is clearly verified by a two-tap incoherent microwave photonic filter as the free spectral range of the filter is changed. PMID:21716468

  17. Wavelet transform fast inverse light scattering analysis for size determination of spherical scatterers

    PubMed Central

    Ho, Derek; Kim, Sanghoon; Drake, Tyler K.; Eldridge, Will J.; Wax, Adam

    2014-01-01

    We present a fast approach for size determination of spherical scatterers using the continuous wavelet transform of the angular light scattering profile to address the computational limitations of previously developed sizing techniques. The potential accuracy, speed, and robustness of the algorithm were determined in simulated models of scattering by polystyrene beads and cells. The algorithm was tested experimentally on angular light scattering data from polystyrene bead phantoms and MCF-7 breast cancer cells using a 2D a/LCI system. Theoretical sizing of simulated profiles of beads and cells produced strong fits between calculated and actual size (r2 = 0.9969 and r2 = 0.9979 respectively), and experimental size determinations were accurate to within one micron. PMID:25360350

  18. ellc: A fast, flexible light curve model for detached eclipsing binary stars and transiting exoplanets

    NASA Astrophysics Data System (ADS)

    Maxted, P. F. L.

    2016-06-01

    Context. Very high quality light curves are now available for thousands of detached eclipsing binary stars and transiting exoplanet systems as a result of surveys for transiting exoplanets and other large-scale photometric surveys. Aims: I have developed a binary star model (ellc) that can be used to analyse the light curves of detached eclipsing binary stars and transiting exoplanet systems that is fast and accurate, and that can include the effects of star spots, Doppler boosting and light-travel time within binaries with eccentric orbits. Methods: The model represents the stars as triaxial ellipsoids. The apparent flux from the binary is calculated using Gauss-Legendre integration over the ellipses that are the projection of these ellipsoids on the sky. The model can also be used to calculate the flux-weighted radial velocity of the stars during an eclipse (Rossiter-McLaghlin effect). The main features of the model have been tested by comparison to observed data and other light curve models. Results: The model is found to be accurate enough to analyse the very high quality photometry that is now available from space-spaced instruments, flexible enough to model a wide range of eclipsing binary stars and extrasolar planetary systems, and fast enough to enable the use of modern Monte Carlo methods for data analysis and model testing. The software package is available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/591/A111

  19. Comparison of Carcass Characteristics, Meat Quality, and Blood Parameters of Slow and Fast Grown Female Broiler Chickens Raised in Organic or Conventional Production System

    PubMed Central

    Cömert, Muazzez; Şayan, Yılmaz; Kırkpınar, Figen; Bayraktar, Ö. Hakan; Mert, Selim

    2016-01-01

    The objective of the study was to compare the carcass characteristics, meat quality, and blood parameters of slow and fast grown female broiler chickens fed in organic or conventional production system. The two genotypes tested were medium slow-growing chickens (SG, Hubbard Red JA) and commercial fast-growing chickens (FG, Ross 308). Both genotypes (each represented by 400 chickens) were divided into two sub-groups fed either organic (O) or conventional (C) systems. Chickens of each genotype and system were raised in a semi environmentally controlled poultry house until 21 d of age and were assigned to 5 pens of 40 chickens each. Then, O system chickens were transferred into an open-side poultry house with an outdoor run. At 81 d of age, 10 female chickens from each genotype and from each production system (n = 40) were randomly chosen to provide material for analysis, and were weighed and brought to the slaughterhouse to assess carcass characteristics and meat quality. The blood parameters were determined by using 5 female chickens from each genotype and from each production system (n = 20). FG had the higher live weight, along with carcass, breast, and thigh-drumstick weights compared to SG (p<0.05). FG had the higher breast yield, whereas SG had the higher thigh-drumstick yield (p<0.05). The O system resulted in a higher amount of abdominal fat (p<0.05). In addition, the O system values were higher for dry matter, crude ash, crude protein, and pH15 values in breast meat, and for crude ash, crude protein, and pH15 values in drumstick meat (p<0.05). In addition, total saturated fatty acids, total mono-unsaturated fatty acids, and total omega 3 were significantly higher in the O system than in the C system. Thus, the O system showed a positive advantage compared to the C system regarding female chicken meat quality, primarily within the ash, protein, and total omega 3 fatty acid profiles. In conclusion, the present study indicated that the main factor affecting the

  20. Expression profile of six stress-related genes and productive performances of fast and slow growing broiler strains reared under heat stress conditions.

    PubMed

    Rimoldi, Simona; Lasagna, Emiliano; Sarti, Francesca Maria; Marelli, Stefano Paolo; Cozzi, Maria Cristina; Bernardini, Giovanni; Terova, Genciana

    2015-12-01

    High temperature is one of the prominent environmental factors causing economic losses to the poultry industry as it negatively affects growth and production performance in broiler chickens. We used One Step TaqMan real time RT-PCR (reverse transcription polymerase chain reaction) technology to study the effects of chronic heat stress on the expression of genes codifying for the antioxidative enzymes superoxide dismutase (SOD), and catalase (CAT), as well as for heat shock protein (HSP) 70, HSP90, glucocorticoid receptor (NR3C1), and caspase 6 (CASP6) in the liver of two different broiler genetic strains: Red JA Cou Nu Hubbard (CN) and Ross 508 Aviagen (RO). CN is a naked neck slow growing broiler intended for the free range and/or organic markets, whereas RO is selected for fast growing. We also analysed the effect of chronic heat stress on productive performances, and plasma corticosterone levels as well as the association between transcriptomic response and specific SNPs (single nucleotide polymorphisms) in each genetic strain of broiler chickens. RO and CN broilers, 4 weeks of age, were maintained for 4 weeks at either 34 °C or 22 °C. The results demonstrated that there was a genotype and a temperature main effect on the broilers' growth from the 4th to the 8th week of age, but the interaction effect between genotype and temperature resulted not statistically significant. By considering the genotype effect, fast growing broilers (RO) grew more than the slow growing ones (CN), whereas by considering the temperature effect, broilers in unheated conditions grew more than the heat stressed ones. Corticosterone levels increased significantly in the blood of heat stressed broilers, due to the activation of the HPA (hypothalamic-pituitary-adrenocortical axis). Carcass yield at slaughter was of similar values in the 4 cohorts (genotype/temperature combinations or treatment groups), ranging from 86.5 to 88.6%, whereas carcass weight was negatively influenced by