Science.gov

Sample records for fast microtubule dynamics

  1. Microtubule dynamics and organization

    NASA Astrophysics Data System (ADS)

    Dogterom, Marileen

    2000-03-01

    Microtubules are rigid biopolymers found in all higher order cells. They are a mayor part of the cytoskeleton, the network of protein polymers that gives the cell its shape and rigidity and allows for various forms of (intra)cellular motility. The intracellular spatial organization of the microtubule network is constantly changing as the microtubules adapt to their different functions. In part, this spatial organization depends on the assembly dynamics (including microtubule nucleation) and forces generated by the microtubules themselves. To understand these mechanisms, we study the physical aspects connected with the assembly, force generation and spatial organization of microtubules in simplified model systems, in the absence of other cellular components. We measure the forces generated by individual microtubules by making them grow against a microfabricated barrier. These experiments show that a single microtubule can generate at least several picoNewton of force, comparable to what is known for motor proteins. Theoretical modeling of force-generation by multi-protofilament polymers is used to predict force-velocity relations that can be compared to experimental data. We study the self-organization of microtubules by confining them to microfabricated chambers that mimic the geometry of living cells. The distribution of microtubule nucleation sites in these chambers is controlled to study its effect on the organization of the microtubule network. We find that so-called microtubule asters position themselves in response to forces generated by dynamic microtubules. Experiments aimed at measuring the forces acting on these asters using optical trapping techniques will be described.

  2. How to measure microtubule dynamics?

    PubMed

    Straube, Anne

    2011-01-01

    Microtubules are one of the most spectacular features in the cell: long, fairly rigid tubules that provide physical strength while at the same time serving as tracks of the intracellular transport network. In addition, they are the main constituents of the cell division machinery, and guide axonal growth and the direction of cell migration. To be able to fulfil such diverse functions, microtubules have to be arranged into suitable patterns and remodelled according to extra- and intracellular cues. Moreover, the delicate regulation of microtubule dynamics and the dynamic interactions with subcellular structures, such as kinetochores or cell adhesion sites, appear to be of crucial importance to microtubule functions. It is, therefore, important to understand microtubule dynamics and its spatiotemporal regulation at the molecular level. In this chapter, I introduce the concept of microtubule dynamics and discuss the techniques that can be employed to study microtubule dynamics in vitro and in cells, for many of which detailed protocols can be found in this volume. Microtubule dynamics is traditionally assessed by the four parameters of dynamic instability: growth and shrinkage rates, rescue and catastrophe frequencies, sometimes supplemented by pause duration. I discuss emerging issues with and alternatives to this parameter description of microtubule dynamics. PMID:21773917

  3. Microtubule dynamics in neuronal morphogenesis.

    PubMed

    Sakakibara, Akira; Ando, Ryota; Sapir, Tamar; Tanaka, Teruyuki

    2013-07-01

    Microtubules (MTs) are essential for neuronal morphogenesis in the developing brain. The MT cytoskeleton provides physical support to shape the fine structure of neuronal processes. MT-based motors play important roles in nucleokinesis, process formation and retraction. Regulation of MT stability downstream of extracellular cues is proposed to be critical for axonogenesis. Axons and dendrites exhibit different patterns of MT organization, underlying the divergent functions of these processes. Centrosomal positioning has drawn the attention of researchers because it is a major clue to understanding neuronal MT organization. In this review, we focus on how recent advances in live imaging have revealed the dynamics of MT organization and centrosome positioning during neural development. PMID:23864552

  4. Microtubule dynamics in neuronal morphogenesis

    PubMed Central

    Sakakibara, Akira; Ando, Ryota; Sapir, Tamar; Tanaka, Teruyuki

    2013-01-01

    Microtubules (MTs) are essential for neuronal morphogenesis in the developing brain. The MT cytoskeleton provides physical support to shape the fine structure of neuronal processes. MT-based motors play important roles in nucleokinesis, process formation and retraction. Regulation of MT stability downstream of extracellular cues is proposed to be critical for axonogenesis. Axons and dendrites exhibit different patterns of MT organization, underlying the divergent functions of these processes. Centrosomal positioning has drawn the attention of researchers because it is a major clue to understanding neuronal MT organization. In this review, we focus on how recent advances in live imaging have revealed the dynamics of MT organization and centrosome positioning during neural development. PMID:23864552

  5. Expression of Nucleolin Affects Microtubule Dynamics.

    PubMed

    Gaume, Xavier; Place, Christophe; Delage, Helene; Mongelard, Fabien; Monier, Karine; Bouvet, Philippe

    2016-01-01

    Nucleolin is present in diverse cellular compartments and is involved in a variety of cellular processes from nucleolar structure and function to intracellular trafficking, cell adhesion and migration. Recently, nucleolin has been localized at the mature centriole where it is involved in microtubule nucleation and anchoring. Although this new function of nucleolin linked to microtubule regulation has been identified, the global effects of nucleolin on microtubule dynamics have not been addressed yet. In the present study, we analyzed the roles of nucleolin protein levels on global microtubule dynamics by tracking the EB3 microtubule plus end binding protein in live cells. We have found that during microtubule growth phases, nucleolin affects both the speed and life time of polymerization and by analyzing catastrophe events, we showed that nucleolin reduces catastrophe frequency. This new property of nucleolin was then confirmed in a cold induced microtubule depolymerization experiment in which we have found that cold resistant microtubules were totally destabilized in nucleolin depleted cells. Altogether, our data demonstrate a new function of nucleolin on microtubule stabilization, thus bringing novel insights into understanding the multifunctional properties of nucleolin in healthy and cancer cells. PMID:27309529

  6. Expression of Nucleolin Affects Microtubule Dynamics

    PubMed Central

    Gaume, Xavier; Place, Christophe; Delage, Helene; Mongelard, Fabien; Monier, Karine; Bouvet, Philippe

    2016-01-01

    Nucleolin is present in diverse cellular compartments and is involved in a variety of cellular processes from nucleolar structure and function to intracellular trafficking, cell adhesion and migration. Recently, nucleolin has been localized at the mature centriole where it is involved in microtubule nucleation and anchoring. Although this new function of nucleolin linked to microtubule regulation has been identified, the global effects of nucleolin on microtubule dynamics have not been addressed yet. In the present study, we analyzed the roles of nucleolin protein levels on global microtubule dynamics by tracking the EB3 microtubule plus end binding protein in live cells. We have found that during microtubule growth phases, nucleolin affects both the speed and life time of polymerization and by analyzing catastrophe events, we showed that nucleolin reduces catastrophe frequency. This new property of nucleolin was then confirmed in a cold induced microtubule depolymerization experiment in which we have found that cold resistant microtubules were totally destabilized in nucleolin depleted cells. Altogether, our data demonstrate a new function of nucleolin on microtubule stabilization, thus bringing novel insights into understanding the multifunctional properties of nucleolin in healthy and cancer cells. PMID:27309529

  7. Profilin connects actin assembly with microtubule dynamics.

    PubMed

    Nejedla, Michaela; Sadi, Sara; Sulimenko, Vadym; de Almeida, Francisca Nunes; Blom, Hans; Draber, Pavel; Aspenström, Pontus; Karlsson, Roger

    2016-08-01

    Profilin controls actin nucleation and assembly processes in eukaryotic cells. Actin nucleation and elongation promoting factors (NEPFs) such as Ena/VASP, formins, and WASP-family proteins recruit profilin:actin for filament formation. Some of these are found to be microtubule associated, making actin polymerization from microtubule-associated platforms possible. Microtubules are implicated in focal adhesion turnover, cell polarity establishment, and migration, illustrating the coupling between actin and microtubule systems. Here we demonstrate that profilin is functionally linked to microtubules with formins and point to formins as major mediators of this association. To reach this conclusion, we combined different fluorescence microscopy techniques, including superresolution microscopy, with siRNA modulation of profilin expression and drug treatments to interfere with actin dynamics. Our studies show that profilin dynamically associates with microtubules and this fraction of profilin contributes to balance actin assembly during homeostatic cell growth and affects micro-tubule dynamics. Hence profilin functions as a regulator of microtubule (+)-end turnover in addition to being an actin control element. PMID:27307590

  8. Association of Microtubule Dynamics with Chronic Epilepsy.

    PubMed

    Xu, Xin; Hu, Yida; Xiong, Yan; Li, Zhonggui; Wang, Wei; Du, Chao; Yang, Yong; Zhang, Yanke; Xiao, Fei; Wang, Xuefeng

    2016-09-01

    Approximately 30 % of epilepsy cases are refractory to current pharmacological treatments through unknown mechanisms. Much work has been done on the role of synaptic components in the pathogenesis of epilepsy, but relatively little attention has been given to the potential role of the microtubules. We investigated the level of microtubule dynamic in 30 human epileptic tissues and two different chronic epilepsy rat models. The administration of microtubule-modulating agent attenuated the progression of chronic epilepsy. By contrast, microtubule-depolymerizing agent aggravated the progression of chronic epilepsy. The electrophysiological index by whole-cell clamp was used to investigate the neuronal excitation and inhibitory synaptic transmission in brain slices after administration of microtubule-modulating agent and microtubule-depolymerizing agent. Interestingly, we found that microtubule-modulating agent significantly increased the frequency of action potential firing in interneurons, and significantly promoted the amplitudes and frequencies of miniature inhibitory postsynaptic currents. Microtubule-depolymerizing agent had an opposite effect. These findings suggest that modulating hyperdynamic microtubules may take an anti-epileptic effect via postsynaptic mechanisms in interneurons. It could represent a potential pharmacologic target in epilepsy treatment. PMID:26377107

  9. Dynamics of Actively Driven Crosslinked Microtubule Networks

    NASA Astrophysics Data System (ADS)

    Yadav, Vikrant; Stanhope, Kasimira; Evans, Arthur A.; Ross, Jennifer L.

    We have designed a model experiment to explore dynamics of crosslinked active microtubule clusters crosslinked with MAP65. Microtubule clusters are allowed to settle on a slide coated with kinesin-1 molecular motors, which move microtubules. We systematically tune either concentration of cross linkers bound to microtubule (ρc) or the global concentration of microtubules (ρMT) . We quantified the shape of the cluster by measuring the standard deviation (σ) of the cluster outline. At low ρMTor ρc the network is in an expanding state. At higher ρMTor ρc expansion slows down, reaches zero at a critical density, and become negative indicating contraction. Further increase of ρMTor ρc halts any kind of dynamics. The ρMT-ρc phase space shows distinct regions of extensile, contractile and static regimes. We model these results using active hydrodynamic theory. Microtubules are modeled as active rods whereas effect of crosslinkers is modeled using a collision term that prefers anti-parallel alignment of microtubules. A linearized analysis of hydrodynamic equation predicts existence of density driven expanding, contracting, and static phases for microtubule clusters.

  10. Harnessing microtubule dynamic instability for nanostructure assembly.

    SciTech Connect

    Bouchard, Ann Marie; Osbourn, Gordon Cecil

    2004-06-01

    Intracellular molecular machines synthesize molecules, tear apart others, transport materials, transform energy into different forms, and carry out a host of other coordinated processes. Many molecular processes have been shown to work outside of cells, and the idea of harnessing these molecular machines to build nanostructures is attractive. Two examples are microtubules and motor proteins, which aid cell movement, help determine cell shape and internal structure, and transport vesicles and organelles within the cell. These molecular machines work in a stochastic, noisy fashion: microtubules switch randomly between growing and shrinking in a process known as dynamic instability; motor protein movement along microtubules is randomly interrupted by the motor proteins falling off. A common strategy in attempting to gain control over these highly dynamic, stochastic processes is to eliminate some processes (e.g., work with stabilized microtubules) in order to focus on others (interaction of microtubules with motor proteins). In this paper, we illustrate a different strategy for building nanostructures, which, rather than attempting to control or eliminate some dynamic processes, uses them to advantage in building nanostructures. Specifically, using stochastic agent-based simulations, we show how the natural dynamic instability of microtubules can be harnessed in building nanostructures, and discuss strategies for ensuring that 'unreliable' stochastic processes yield a robust outcome.

  11. Single-molecule tracking of tau reveals fast kiss-and-hop interaction with microtubules in living neurons

    PubMed Central

    Janning, Dennis; Igaev, Maxim; Sündermann, Frederik; Brühmann, Jörg; Beutel, Oliver; Heinisch, Jürgen J.; Bakota, Lidia; Piehler, Jacob; Junge, Wolfgang; Brandt, Roland

    2014-01-01

    The microtubule-associated phosphoprotein tau regulates microtubule dynamics and is involved in neurodegenerative diseases collectively called tauopathies. It is generally believed that the vast majority of tau molecules decorate axonal microtubules, thereby stabilizing them. However, it is an open question how tau can regulate microtubule dynamics without impeding microtubule-dependent transport and how tau is also available for interactions other than those with microtubules. Here we address this apparent paradox by fast single-molecule tracking of tau in living neurons and Monte Carlo simulations of tau dynamics. We find that tau dwells on a single microtubule for an unexpectedly short time of ∼40 ms before it hops to the next. This dwell time is 100-fold shorter than previously reported by ensemble measurements. Furthermore, we observed by quantitative imaging using fluorescence decay after photoactivation recordings of photoactivatable GFP–tagged tubulin that, despite this rapid dynamics, tau is capable of regulating the tubulin–microtubule balance. This indicates that tau's dwell time on microtubules is sufficiently long to influence the lifetime of a tubulin subunit in a GTP cap. Our data imply a novel kiss-and-hop mechanism by which tau promotes neuronal microtubule assembly. The rapid kiss-and-hop interaction explains why tau, although binding to microtubules, does not interfere with axonal transport. PMID:25165145

  12. Microtubule segment stabilization by RASSF1A is required for proper microtubule dynamics and Golgi integrity

    PubMed Central

    Arnette, Christopher; Efimova, Nadia; Zhu, Xiaodong; Clark, Geoffrey J.; Kaverina, Irina

    2014-01-01

    The tumor suppressor and microtubule-associated protein Ras association domain family 1A (RASSF1A) has a major effect on many cellular processes, such as cell cycle progression and apoptosis. RASSF1A expression is frequently silenced in cancer and is associated with increased metastasis. Therefore we tested the hypothesis that RASSF1A regulates microtubule organization and dynamics in interphase cells, as well as its effect on Golgi integrity and cell polarity. Our results show that RASSF1A uses a unique microtubule-binding pattern to promote site-specific microtubule rescues, and loss of RASSF1A leads to decreased microtubule stability. Furthermore, RASSF1A-associated stable microtubule segments are necessary to prevent Golgi fragmentation and dispersal in cancer cells and maintain a polarized cell front. These results indicate that RASSF1A is a key regulator in the fine tuning of microtubule dynamics in interphase cells and proper Golgi organization and cell polarity. PMID:24478455

  13. TCTP regulates spindle microtubule dynamics by stabilizing polar microtubules during mouse oocyte meiosis.

    PubMed

    Jeon, Hyuk-Joon; You, Seung Yeop; Park, Yong Seok; Chang, Jong Wook; Kim, Jae-Sung; Oh, Jeong Su

    2016-04-01

    Dynamic changes in spindle structure and function are essential for maintaining genomic integrity during the cell cycle. Spindle dynamics are highly dependent on several microtubule-associated proteins that coordinate the dynamic behavior of microtubules, including microtubule assembly, stability and organization. Here, we show that translationally controlled tumor protein (TCTP) is a novel microtubule-associated protein that regulates spindle dynamics during meiotic maturation. TCTP was expressed and widely distributed in the cytoplasm with strong enrichment at the spindle microtubules during meiosis. TCTP was found to be phosphorylated during meiotic maturation, and was exclusively localized to the spindle poles. Knockdown of TCTP impaired spindle organization without affecting chromosome alignment. These spindle defects were mostly due to the destabilization of the polar microtubules. However, the stability of kinetochore microtubules attached to chromosomes was not affected by TCTP knockdown. Overexpression of a nonphosphorylable mutant of TCTP disturbed meiotic maturation, stabilizing the spindle microtubules. In addition, Plk1 was decreased by TCTP knockdown. Taken together, our results demonstrate that TCTP is a microtubule-associating protein required to regulate spindle microtubule dynamics during meiotic maturation in mouse oocytes. PMID:26802898

  14. Measuring the Dynamic Parameters of MCF7 Cell Microtubules

    NASA Astrophysics Data System (ADS)

    Winton, Carly; Shojania Feizabadi, Mitra

    2013-03-01

    Microtubules are the key component of the cytoskeleton. They are intrinsically dynamic displaying dynamic instability in which they randomly switch between a phase of growing and shrinking, both in vitro and in vivo. This dynamic is specified by the following parameters: growing rate, shrinking rate, frequency of catastrophe, and frequency of rescue. In this work, we will present our primary results in which we measured the dynamic parameters of a single microtubule polymerized from MCF7 tubulin in vitro. The results are significant since the MCF7 microtubules are non-neural mammalian consisting of different beta tubulin isotypes in their structures as compared to neural mammalian microtubules, such as bovine brain. The unique dynamic parameters of individual MCF7 microtubules in vitro, which are reported for the first time, indicate that non-neural microtubules can be fundamentally different from neural microtubules.

  15. Dynamic Concentration of Motors in Microtubule Arrays

    NASA Astrophysics Data System (ADS)

    Nédélec, François; Surrey, Thomas; Maggs, A. C.

    2001-04-01

    We present experimental and theoretical studies of the dynamics of molecular motors in microtubule arrays and asters. By solving a convection-diffusion equation we find that the density profile of motors in a two-dimensional aster is characterized by continuously varying exponents. Simulations are used to verify the assumptions of the continuum model. We observe the concentration profiles of kinesin moving in quasi-two-dimensional artificial asters by fluorescent microscopy and compare with our theoretical results.

  16. Dynamic microtubules: Experimental observation and computer simulation of polar microtubule behaviour with lateral cap model mechanisms

    NASA Astrophysics Data System (ADS)

    Bayley, P. M.; Martin, S. R.; Sharma, K. K.

    1991-05-01

    Microtubule dynamic instability involves the existence, within a population of microtubules, of sub-populations of growing and shrinking microtubules which interconvert apparently at random. We consider the scope and limitation of experimental observations of individual microtubules by video enhanced dark-field microscopy. This unique experimental phenomenon has been rationalized by the presence of a ``cap'' of tubulin-GTP which can stabilize the growing state. We have modelled this process quantitatively by numerical simulation and illustrate the basic principles by computer graphics. The inherent α-β asymmetry of the microtubule lattice determines that the relationship between the addition reaction of tubulin-GTP and the related hydrolysis of a polymer tubulin-GTP is different at the two ends of the microtubule. In the single layer, Lateral Cap model for microtubule dynamic instability, a plausible mechanism has been proposed for the dynamic properties at the ``active'' (presumed β-out) end in which the tubulin-GTP which is hydrolyzed is related longitudinally to the binding site by the 13-start protofilament helix. [1,2]. We now show a similar but distinct mechanism could hold for the ``inactive'' (presumed α-out) end of the microtubule. Lateral hydrolysis rules (related to 5- or 8- start helical contacts) predict that the α-end could in fact be less dynamic and cooperative in terms of reduced amplitudes of growth and shrinking. This would make a distinctive contribution to the J(c) plot of microtubule growth versus [tubulin-GTP]. These predictions are thus amenable to experimental verification. This approach illustrates how the helical lattice symmetry of the microtubule polymer can confer unique dynamic characteristics, which derive from the heterodimeric structure and guanine nucleotide binding properties of the component protein tubulin. It also provides a basis for the interpretation of the interactions of microtubules with anti-mitotic drugs used in

  17. Micropattern-Guided Assembly of Overlapping Pairs of Dynamic Microtubules

    PubMed Central

    Fourniol, Franck J.; Li, Tai-De; Bieling, Peter; Mullins, R. Dyche; Fletcher, Daniel A.; Surrey, Thomas

    2014-01-01

    Interactions between antiparallel microtubules are essential for the organization of spindles in dividing cells. The ability to form immobilized antiparallel microtubule pairs in vitro, combined with the ability to image them via TIRF microscopy, permits detailed biochemical characterization of microtubule cross-linking proteins and their effects on microtubule dynamics. Here, we describe methods for chemical micropatterning of microtubule seeds on glass surfaces in configurations that specifically promote the formation of antiparallel microtubule overlaps in vitro. We demonstrate that this assay is especially well suited for reconstitution of minimal midzone overlaps stabilized by the antiparallel microtubule cross-linking protein PRC1 and its binding partners. The micropatterning method is suitable for use with a broad range of proteins, and the assay is generally applicable to any microtubule cross-linking protein. PMID:24630116

  18. Neurodegeneration and microtubule dynamics: death by a thousand cuts

    PubMed Central

    Dubey, Jyoti; Ratnakaran, Neena; Koushika, Sandhya P.

    2015-01-01

    Microtubules form important cytoskeletal structures that play a role in establishing and maintaining neuronal polarity, regulating neuronal morphology, transporting cargo, and scaffolding signaling molecules to form signaling hubs. Within a neuronal cell, microtubules are found to have variable lengths and can be both stable and dynamic. Microtubule associated proteins, post-translational modifications of tubulin subunits, microtubule severing enzymes, and signaling molecules are all known to influence both stable and dynamic pools of microtubules. Microtubule dynamics, the process of interconversion between stable and dynamic pools, and the proportions of these two pools have the potential to influence a wide variety of cellular processes. Reduced microtubule stability has been observed in several neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic Lateral Sclerosis (ALS), and tauopathies like Progressive Supranuclear Palsy. Hyperstable microtubules, as seen in Hereditary Spastic Paraplegia (HSP), also lead to neurodegeneration. Therefore, the ratio of stable and dynamic microtubules is likely to be important for neuronal function and perturbation in microtubule dynamics might contribute to disease progression. PMID:26441521

  19. An assay to image neuronal microtubule dynamics in mice

    PubMed Central

    Kleele, Tatjana; Marinković, Petar; Williams, Philip R.; Stern, Sina; Weigand, Emily E.; Engerer, Peter; Naumann, Ronald; Hartmann, Jana; Karl, Rosa M.; Bradke, Frank; Bishop, Derron; Herms, Jochen; Konnerth, Arthur; Kerschensteiner, Martin; Godinho, Leanne; Misgeld, Thomas

    2014-01-01

    Microtubule dynamics in neurons play critical roles in physiology, injury and disease and determine microtubule orientation, the cell biological correlate of neurite polarization. Several microtubule binding proteins, including end-binding protein 3 (EB3), specifically bind to the growing plus tip of microtubules. In the past, fluorescently tagged end-binding proteins have revealed microtubule dynamics in vitro and in non-mammalian model organisms. Here, we devise an imaging assay based on transgenic mice expressing yellow fluorescent protein-tagged EB3 to study microtubules in intact mammalian neurites. Our approach allows measurement of microtubule dynamics in vivo and ex vivo in peripheral nervous system and central nervous system neurites under physiological conditions and after exposure to microtubule-modifying drugs. We find an increase in dynamic microtubules after injury and in neurodegenerative disease states, before axons show morphological indications of degeneration or regrowth. Thus increased microtubule dynamics might serve as a general indicator of neurite remodelling in health and disease. PMID:25219969

  20. Vinblastine suppresses dynamics of individual microtubules in living interphase cells.

    PubMed Central

    Dhamodharan, R; Jordan, M A; Thrower, D; Wilson, L; Wadsworth, P

    1995-01-01

    We have characterized the effects of vinblastine on the dynamic instability behavior of individual microtubules in living BS-C-1 cells microinjected with rhodamine-labeled tubulin and have found that at low concentrations (3-64 nM), vinblastine potently suppresses dynamic instability without causing net microtubule depolymerization. Vinblastine suppressed the rates of microtubule growth and shortening, and decreased the frequency of transitions from growth or pause to shortening, also called catastrophe. In vinblastine-treated cells, both the average duration of a pause (a state of attenuated dynamics where neither growth nor shortening could be detected) and the percentage of total time spent in pause were significantly increased. Vinblastine potently decreased dynamicity, a measure of the overall dynamic activity of microtubules, reducing this parameter by 75% at 32 nM. The present work, consistent with earlier in vitro studies, demonstrates that vinblastine kinetically caps the ends of microtubules in living cells and supports the hypothesis that the potent chemotherapeutic action of vinblastine as an antitumor drug is suppression of mitotic spindle microtubule dynamics. Further, the results indicate that molecules that bind to microtubule ends can regulate microtubule dynamic behavior in living cells and suggest that endogenous regulators of microtubule dynamics that work by similar mechanisms may exist in living cells. Images PMID:8534917

  1. Ahead of the Curve: New Insights into Microtubule Dynamics

    PubMed Central

    Ohi, Ryoma; Zanic, Marija

    2016-01-01

    Microtubule dynamics are fundamental for many aspects of cell physiology, but their mechanistic underpinnings remain unclear despite 40 years of intense research. In recent years, the continued union of reconstitution biochemistry, structural biology, and modeling has yielded important discoveries that deepen our understanding of microtubule dynamics. These studies, which we review here, underscore the importance of GTP hydrolysis-induced changes in tubulin structure as microtubules assemble, and highlight the fact that each aspect of microtubule behavior is the output of complex, multi-step processes. Although this body of work moves us closer to appreciating the key features of microtubule biochemistry that drive dynamic instability, the divide between our understanding of microtubules in isolation versus within the cellular milieu remains vast. Bridging this gap will serve as fertile grounds of cytoskeleton-focused research for many years to come. PMID:26998244

  2. Drugs That Target Dynamic Microtubules: A New Molecular Perspective

    PubMed Central

    Stanton, Richard A.; Gernert, Kim M.; Nettles, James H.; Aneja, Ritu

    2011-01-01

    Microtubules have long been considered an ideal target for anticancer drugs because of the essential role they play in mitosis, forming the dynamic spindle apparatus. As such, there is a wide variety of compounds currently in clinical use and in development that act as antimitotic agents by altering microtubule dynamics. Although these diverse molecules are known to affect microtubule dynamics upon binding to one of the three established drug domains (taxane, vinca alkaloid, or colchicine site), the exact mechanism by which each drug works is still an area of intense speculation and research. In this study, we review the effects of microtubule-binding chemotherapeutic agents from a new perspective, considering how their mode of binding induces conformational changes and alters biological function relative to the molecular vectors of microtubule assembly or disassembly. These “biological vectors” can thus be used as a spatiotemporal context to describe molecular mechanisms by which microtubule-targeting drugs work. PMID:21381049

  3. Force-generation and dynamic instability of microtubule bundles

    PubMed Central

    Laan, Liedewij; Husson, Julien; Munteanu, E. Laura; Kerssemakers, Jacob W. J.; Dogterom, Marileen

    2008-01-01

    Individual dynamic microtubules can generate pushing or pulling forces when their growing or shrinking ends are in contact with cellular objects such as the cortex or chromosomes. These microtubules can operate in parallel bundles, for example when interacting with mitotic chromosomes. Here, we investigate the force-generating capabilities of a bundle of growing microtubules and study the effect that force has on the cooperative dynamics of such a bundle. We used an optical tweezers setup to study microtubule bundles growing against a microfabricated rigid barrier in vitro. We show that multiple microtubules can generate a pushing force that increases linearly with the number of microtubules present. In addition, the bundle can cooperatively switch to a shrinking state, due to a force-induced coupling of the dynamic instability of single microtubules. In the presence of GMPCPP, bundle catastrophes no longer occur, and high bundle forces are reached more effectively. We reproduce the observed behavior with a simple simulation of microtubule bundle dynamics that takes into account previously measured force effects on single microtubules. Using this simulation, we also show that a constant compressive force on a growing bundle leads to oscillations in bundle length that are of potential relevance for chromosome oscillations observed in living cells. PMID:18577596

  4. Microtubule-binding agents: a dynamic field of cancer therapeutics

    PubMed Central

    Dumontet, Charles; Jordan, Mary Ann

    2010-01-01

    Preface Microtubules are dynamic filamentous cytoskeletal proteins that are an important therapeutic target in tumor cells. Microtubule binding agents have been part of the pharmacopoeia of cancer for decades, and until the advent of targeted therapy microtubules were the only alternative to DNA as a therapeutic target in cancer. The screening of a variety of botanical species and marine organisms has yielded promising new antitubulin agents with novel properties. Enhanced tumor specificity, reduced neurotoxicity, and insensitivity to chemoresistance mechanisms are the three main objectives in the current search for novel microtubule binding agents. PMID:20885410

  5. Dynamics of Antarctic fish microtubules at low temperatures

    SciTech Connect

    Himes, R.H.; Detrich, H.W. III )

    1989-06-13

    The tubulins of Antarctic fishes, purified from brain tissue and depleted of microtubule-associated proteins (MAPs), polymerized efficiently in vitro to yield microtubules at near-physiological and supraphysiological temperatures (5, 10, and 20{degree}C). The dynamics of the microtubules at these temperatures were examined through the use of labeled guanosine 5{prime}-triphosphate (GTP) as a marker for the incorporation, retention, and loss of tubulin dimers. Following attainment of a steady state in microtubule mass at 20{degree}C, the rate of incorporation of ({sup 3}H)GTP (i.e., tubulin dimers) during pulses of constant duration decreased asymptotically toward a constant, nonzero value as the interval prior to label addition to the microtubule solution increased. Concomitant with the decreasing rate of label incorporation, the average length of the microtubules increased, and the number concentration of microtubules decreased. Thus, redistribution of microtubule lengths appears to be responsible for the time-dependent decrease in the rate of tubulin uptake. At each temperature, most of the incorporated label was retained by the microtubules during a subsequent chase with excess unlabeled GTP. In contrast, when microtubules were assembled do novo in the presence of ({alpha}-{sup 32}P)GTP at 5{degree}C and then exposed to a pulse of ({sup 3}H)GTP, the {sup 32}P label was lost over time during a subsequent chase with unlabeled GTP, whereas the {sup 3}H label was retained. Together, these results indicate that the microtubules of Antarctic fishes exhibit, at low temperatures, behaviors consistent both with subunit treadmilling and with dynamic instability and/or microtubule annealing.

  6. Leading at the Front: How EB Proteins Regulate Microtubule Dynamics

    NASA Astrophysics Data System (ADS)

    Hawkins, Taviare

    2012-02-01

    Microtubules are the most rigid of the cytoskeletal filaments, they provide the cell's scaffolding, form the byways on which motor proteins transport intracellular cargo and reorganize to form the mitotic spindle when the cell needs to divide. These biopolymers are composed of alpha and beta tubulin monomers that create hollow cylindrical nanotubes with an outer diameter of 25 nm and an inner diameter of 17 nm. At steady state concentrations, microtubules undergo a process known as dynamic instability. During dynamic instability the length of individual microtubules is changing as the filament alternates between periods of growth to shrinkage (catastrophe) and shrinkage to growth (rescue). This process can be enhanced or diminished with the addition of microtubule associated proteins (MAPs). MAPs are microtubule binding proteins that stabilize, destabilize, or nucleate microtubules. We will discuss the effects of the stabilizing end-binding proteins (EB1, EB2 and EB3), on microtubule dynamics observed in vitro. The EBs are a unique family of MAPs known to tip track and enhance microtubule growth by stabilizing the ends. This is a different mechanism than those employed by structural MAPs such as tau or MAP4.

  7. The Role of Molecular Microtubule Motors and the Microtubule Cytoskeleton in Stress Granule Dynamics

    PubMed Central

    Bartoli, Kristen M.; Bishop, Darryl L.; Saunders, William S.

    2011-01-01

    Stress granules (SGs) are cytoplasmic foci that appear in cells exposed to stress-induced translational inhibition. SGs function as a triage center, where mRNAs are sorted for storage, degradation, and translation reinitiation. The underlying mechanisms of SGs dynamics are still being characterized, although many key players have been identified. The main components of SGs are stalled 48S preinitiation complexes. To date, many other proteins have also been found to localize in SGs and are hypothesized to function in SG dynamics. Most recently, the microtubule cytoskeleton and associated motor proteins have been demonstrated to function in SG dynamics. In this paper, we will discuss current literature examining the function of microtubules and the molecular microtubule motors in SG assembly, coalescence, movement, composition, organization, and disassembly. PMID:21760798

  8. Theoretical analysis of microtubule dynamics at all times.

    PubMed

    Li, Xin; Kolomeisky, Anatoly B

    2014-12-01

    Microtubules are biopolymers consisting of tubulin dimer subunits. As a major component of cytoskeleton they are essential for supporting most important cellular processes such as cell division, signaling, intracellular transport and cell locomotion. The hydrolysis of guanosine triphosphate (GTP) molecules attached to each tubulin subunit supports the nonequilibrium nature of microtubule dynamics. One of the most spectacular properties of microtubules is their dynamic instability when their growth from continuous attachment of tubulin dimers stochastically alternates with periods of shrinking. Despite the critical importance of this process to all cellular activities, its mechanism remains not fully understood. We investigated theoretically microtubule dynamics at all times by analyzing explicitly temporal evolution of various length clusters of unhydrolyzed subunits. It is found that the dynamic behavior of microtubules depends strongly on initial conditions. Our theoretical findings provide a microscopic explanation for recent experiments which found that the frequency of catastrophes increases with the lifetime of microtubules. It is argued that most growing microtubule configurations cannot transit in one step into a shrinking state, leading to a complex overall temporal behavior. Theoretical calculations combined with Monte Carlo computer simulations are also directly compared with experimental observations, and good agreement is found. PMID:25390471

  9. Dynamical Length-Regulation of Microtubules

    NASA Astrophysics Data System (ADS)

    Melbinger, Anna; Reese, Louis; Frey, Erwin

    2012-02-01

    Microtubules (MTs) are vital constituents of the cytoskeleton. These stiff filaments are not only needed for mechanical support. They also fulfill highly dynamic tasks. For instance MTs build the mitotic spindle, which pulls the doubled set of chromosomes apart during mitosis. Hence, a well-regulated and adjustable MT length is essential for cell division. Extending a recently introduced model [1], we here study length-regulation of MTs. Thereby we account for both spontaneous polymerization and depolymerization triggered by motor proteins. In contrast to the polymerization rate, the effective depolymerization rate depends on the presence of molecular motors at the tip and thereby on crowding effects which in turn depend on the MT length. We show that these antagonistic effects result in a well-defined MT length. Stochastic simulations and analytic calculations reveal the exact regimes where regulation is feasible. Furthermore, the adjusted MT length and the ensuing strength of fluctuations are analyzed. Taken together, we make quantitative predictions which can be tested experimentally. These results should help to obtain deeper insights in the microscopic mechanisms underlying length-regulation. [4pt] [1] L.Reese, A.Melbinger, E.Frey, Biophys. J., 101, 9, 2190 (2011)

  10. Nonlinear dynamics of C-terminal tails in cellular microtubules.

    PubMed

    Sekulic, Dalibor L; Sataric, Bogdan M; Zdravkovic, Slobodan; Bugay, Aleksandr N; Sataric, Miljko V

    2016-07-01

    The mechanical and electrical properties, and information processing capabilities of microtubules are the permanent subject of interest for carrying out experiments in vitro and in silico, as well as for theoretical attempts to elucidate the underlying processes. In this paper, we developed a new model of the mechano-electrical waves elicited in the rows of very flexible C-terminal tails which decorate the outer surface of each microtubule. The fact that C-terminal tails play very diverse roles in many cellular functions, such as recruitment of motor proteins and microtubule-associated proteins, motivated us to consider their collective dynamics as the source of localized waves aimed for communication between microtubule and associated proteins. Our approach is based on the ferroelectric liquid crystal model and it leads to the effective asymmetric double-well potential which brings about the conditions for the appearance of kink-waves conducted by intrinsic electric fields embedded in microtubules. These kinks can serve as the signals for control and regulation of intracellular traffic along microtubules performed by processive motions of motor proteins, primarly from kinesin and dynein families. On the other hand, they can be precursors for initiation of dynamical instability of microtubules by recruiting the proper proteins responsible for the depolymerization process. PMID:27475079

  11. Nonlinear dynamics of C-terminal tails in cellular microtubules

    NASA Astrophysics Data System (ADS)

    Sekulic, Dalibor L.; Sataric, Bogdan M.; Zdravkovic, Slobodan; Bugay, Aleksandr N.; Sataric, Miljko V.

    2016-07-01

    The mechanical and electrical properties, and information processing capabilities of microtubules are the permanent subject of interest for carrying out experiments in vitro and in silico, as well as for theoretical attempts to elucidate the underlying processes. In this paper, we developed a new model of the mechano-electrical waves elicited in the rows of very flexible C-terminal tails which decorate the outer surface of each microtubule. The fact that C-terminal tails play very diverse roles in many cellular functions, such as recruitment of motor proteins and microtubule-associated proteins, motivated us to consider their collective dynamics as the source of localized waves aimed for communication between microtubule and associated proteins. Our approach is based on the ferroelectric liquid crystal model and it leads to the effective asymmetric double-well potential which brings about the conditions for the appearance of kink-waves conducted by intrinsic electric fields embedded in microtubules. These kinks can serve as the signals for control and regulation of intracellular traffic along microtubules performed by processive motions of motor proteins, primarly from kinesin and dynein families. On the other hand, they can be precursors for initiation of dynamical instability of microtubules by recruiting the proper proteins responsible for the depolymerization process.

  12. Modulation of host microtubule dynamics by pathogenic bacteria

    PubMed Central

    Radhakrishnan, Girish K.; Splitter, Gary A.

    2013-01-01

    The eukaryotic cytoskeleton is a vulnerable target of many microbial pathogens during the course of infection. Rearrangements of host cytoskeleton benefit microbes in various stages of their infection cycle such as invasion, motility, and persistence. Bacterial pathogens deliver a number of effector proteins into host cells for modulating the dynamics of actin and microtubule cytoskeleton. Alteration of the actin cytoskeleton is generally achieved by bacterial effectors that target the small GTPases of the host. Modulation of microtubule dynamics involves direct interaction of effector proteins with the subunits of microtubules or recruiting cellular proteins that affect microtubule dynamics. This review will discuss effector proteins from animal and human bacterial pathogens that either destabilize or stabilize host micro-tubules to advance the infectious process. A compilation of these research findings will provide an overview of known and unknown strategies used by various bacterial effectors to modulate the host microtubule dynamics. The present review will undoubtedly help direct future research to determine the mechanisms of action of many bacterial effector proteins and contribute to understanding the survival strategies of diverse adherent and invasive bacterial pathogens. PMID:23585820

  13. Mechanical breaking of microtubules in axons during dynamic stretch injury underlies delayed elasticity, microtubule disassembly, and axon degeneration

    PubMed Central

    Tang-Schomer, Min D.; Patel, Ankur R.; Baas, Peter W.; Smith, Douglas H.

    2010-01-01

    Little is known about which components of the axonal cytoskeleton might break during rapid mechanical deformation, such as occurs in traumatic brain injury. Here, we micropatterned neuronal cell cultures on silicone membranes to induce dynamic stretch exclusively of axon fascicles. After stretch, undulating distortions formed along the axons that gradually relaxed back to a straight orientation, demonstrating a delayed elastic response. Subsequently, swellings developed, leading to degeneration of almost all axons by 24 h. Stabilizing the microtubules with taxol maintained the undulating geometry after injury but greatly reduced axon degeneration. Conversely, destabilizing microtubules with nocodazole prevented undulations but greatly increased the rate of axon loss. Ultrastructural analyses of axons postinjury revealed immediate breakage and buckling of microtubules in axon undulations and progressive loss of microtubules. Collectively, these data suggest that dynamic stretch of axons induces direct mechanical failure at specific points along microtubules. This microtubule disorganization impedes normal relaxation of the axons, resulting in undulations. However, this physical damage also triggers progressive disassembly of the microtubules around the breakage points. While the disintegration of microtubules allows delayed recovery of the “normal” straight axon morphology, it comes at a great cost by interrupting axonal transport, leading to axonal swelling and degeneration.—Tang-Schomer, M. D., Patel, A. R,, Baas, P. W., Smith, D. H. Mechanical breaking of microtubules in axons during dynamic stretch injury underlies delayed elasticity, microtubule disassembly, and axon degeneration. PMID:20019243

  14. Dynamics and Organization of Cortical Microtubules as Revealed by Superresolution Structured Illumination Microscopy1[W

    PubMed Central

    Komis, George; Mistrik, Martin; Šamajová, Olga; Doskočilová, Anna; Ovečka, Miroslav; Illés, Peter; Bartek, Jiri; Šamaj, Jozef

    2014-01-01

    Plants employ acentrosomal mechanisms to organize cortical microtubule arrays essential for cell growth and differentiation. Using structured illumination microscopy (SIM) adopted for the optimal documentation of Arabidopsis (Arabidopsis thaliana) hypocotyl epidermal cells, dynamic cortical microtubules labeled with green fluorescent protein fused to the microtubule-binding domain of the mammalian microtubule-associated protein MAP4 and with green fluorescent protein-fused to the alpha tubulin6 were comparatively recorded in wild-type Arabidopsis plants and in the mitogen-activated protein kinase mutant mpk4 possessing the former microtubule marker. The mpk4 mutant exhibits extensive microtubule bundling, due to increased abundance and reduced phosphorylation of the microtubule-associated protein MAP65-1, thus providing a very useful genetic tool to record intrabundle microtubule dynamics at the subdiffraction level. SIM imaging revealed nano-sized defects in microtubule bundling, spatially resolved microtubule branching and release, and finally allowed the quantification of individual microtubules within cortical bundles. Time-lapse SIM imaging allowed the visualization of subdiffraction, short-lived excursions of the microtubule plus end, and dynamic instability behavior of both ends during free, intrabundle, or microtubule-templated microtubule growth and shrinkage. Finally, short, rigid, and nondynamic microtubule bundles in the mpk4 mutant were observed to glide along the parent microtubule in a tip-wise manner. In conclusion, this study demonstrates the potential of SIM for superresolution time-lapse imaging of plant cells, showing unprecedented details accompanying microtubule dynamic organization. PMID:24686112

  15. A Mechanism for Cytoplasmic Streaming: Kinesin-Driven Alignment of Microtubules and Fast Fluid Flows.

    PubMed

    Monteith, Corey E; Brunner, Matthew E; Djagaeva, Inna; Bielecki, Anthony M; Deutsch, Joshua M; Saxton, William M

    2016-05-10

    The transport of cytoplasmic components can be profoundly affected by hydrodynamics. Cytoplasmic streaming in Drosophila oocytes offers a striking example. Forces on fluid from kinesin-1 are initially directed by a disordered meshwork of microtubules, generating minor slow cytoplasmic flows. Subsequently, to mix incoming nurse cell cytoplasm with ooplasm, a subcortical layer of microtubules forms parallel arrays that support long-range, fast flows. To analyze the streaming mechanism, we combined observations of microtubule and organelle motions with detailed mathematical modeling. In the fast state, microtubules tethered to the cortex form a thin subcortical layer and undergo correlated sinusoidal bending. Organelles moving in flows along the arrays show velocities that are slow near the cortex and fast on the inward side of the subcortical microtubule layer. Starting with fundamental physical principles suggested by qualitative hypotheses, and with published values for microtubule stiffness, kinesin velocity, and cytoplasmic viscosity, we developed a quantitative coupled hydrodynamic model for streaming. The fully detailed mathematical model and its simulations identify key variables that can shift the system between disordered (slow) and ordered (fast) states. Measurements of array curvature, wave period, and the effects of diminished kinesin velocity on flow rates, as well as prior observations on f-actin perturbation, support the model. This establishes a concrete mechanistic framework for the ooplasmic streaming process. The self-organizing fast phase is a result of viscous drag on kinesin-driven cargoes that mediates equal and opposite forces on cytoplasmic fluid and on microtubules whose minus ends are tethered to the cortex. Fluid moves toward plus ends and microtubules are forced backward toward their minus ends, resulting in buckling. Under certain conditions, the buckling microtubules self-organize into parallel bending arrays, guiding varying directions

  16. Interaction of CDK5RAP2 with EB1 to track growing microtubule tips and to regulate microtubule dynamics.

    PubMed

    Fong, Ka-Wing; Hau, Shiu-Yeung; Kho, Yik-Shing; Jia, Yue; He, Lisheng; Qi, Robert Z

    2009-08-01

    Mutations in cdk5rap2 are linked to autosomal recessive primary microcephaly, and attention has been paid to its function at centrosomes. In this report, we demonstrate that CDK5RAP2 localizes to microtubules and concentrates at the distal tips in addition to centrosomal localization. CDK5RAP2 interacts directly with EB1, a prototypic member of microtubule plus-end tracking proteins, and contains the basic and Ser-rich motif responsible for EB1 binding. The EB1-binding motif is conserved in the CDK5RAP2 sequences of chimpanzee, bovine, and dog but not in those of rat and mouse, suggesting a function gained during the evolution of mammals. The mutation of the Ile/Leu-Pro dipeptide within the motif abolishes EB1 interaction and plus-end attachment. In agreement with the mutational analysis, suppression of EB1 expression inhibits microtubule tip-tracking of CDK5RAP2. We have also found that the CDK5RAP2-EB1 complex regulates microtubule dynamics and stability. CDK5RAP2 depletion by RNA interference impacts the dynamic behaviors of microtubules. The CDK5RAP2-EB1 complex induces microtubule bundling and acetylation when expressed in cell cultures and stimulates microtubule assembly and bundle formation in vitro. Collectively, these results show that CDK5RAP2 targets growing microtubule tips in association with EB1 to regulate microtubule dynamics. PMID:19553473

  17. Ibuprofen regulation of microtubule dynamics in cystic fibrosis epithelial cells.

    PubMed

    Rymut, Sharon M; Kampman, Claire M; Corey, Deborah A; Endres, Tori; Cotton, Calvin U; Kelley, Thomas J

    2016-08-01

    High-dose ibuprofen, an effective anti-inflammatory therapy for the treatment of cystic fibrosis (CF), has been shown to preserve lung function in a pediatric population. Despite its efficacy, few patients receive ibuprofen treatment due to potential renal and gastrointestinal toxicity. The mechanism of ibuprofen efficacy is also unclear. We have previously demonstrated that CF microtubules are slower to reform after depolymerization compared with respective wild-type controls. Slower microtubule dynamics in CF cells are responsible for impaired intracellular transport and are related to inflammatory signaling. Here, it is identified that high-dose ibuprofen treatment in both CF cell models and primary CF nasal epithelial cells restores microtubule reformation rates to wild-type levels, as well as induce extension of microtubules to the cell periphery. Ibuprofen treatment also restores microtubule-dependent intracellular transport monitored by measuring intracellular cholesterol transport. These effects are specific to ibuprofen as other cyclooxygenase inhibitors have no effect on these measures. Effects of ibuprofen are mimicked by stimulation of AMPK and blocked by the AMPK inhibitor compound C. We conclude that high-dose ibuprofen treatment enhances microtubule formation in CF cells likely through an AMPK-related pathway. These findings define a potential mechanism to explain the efficacy of ibuprofen therapy in CF. PMID:27317686

  18. The engine of microtubule dynamics comes into focus.

    PubMed

    Mitchison, T J

    2014-05-22

    In this issue, Alushin et al. report high-resolution structures of three states of the microtubule lattice: GTP-bound, which is stable to depolymerization; unstable GDP-bound; and stable Taxol and GDP-bound. By comparing these structures at near-atomic resolution, they are able to propose a detailed model for how GTP hydrolysis destabilizes the microtubule and thus powers dynamic instability and chromosome movement. Destabilization of cytoskeleton filaments by nucleotide hydrolysis is an important general principle in cell dynamics, and this work represents a major step forward on a problem with a long history. PMID:24855939

  19. Contributions of microtubule rotation and dynamic instability to kinetochore capture

    NASA Astrophysics Data System (ADS)

    Sweezy-Schindler, Oliver; Edelmaier, Christopher; Blackwell, Robert; Glaser, Matt; Betterton, Meredith

    2014-03-01

    The capture of lost kinetochores (KCs) by microtubules (MTs) is a crucial part of prometaphase during mitosis. Microtubule dynamic instability has been considered the primary mechanism of KC capture, but recent work discovered that lateral KC attachment to pivoting MTs enabled rapid capture even with significantly reduced MT dynamics. We aim to understand the relative contributions of MT rotational diffusion and dynamic instability to KC capture, as well as KC capture through end-on and/or lateral attachment. Our model consists of rigid MTs and a spherical KC, which are allowed to diffuse inside a spherical nuclear envelope consistent with the geometry of fission yeast. For simplicity, we include a single spindle pole body, which is anchored to the nuclear membrane, and its associated polar MTs. Brownian dynamics treats the diffusion of the MTs and KC and kinetic Monte Carlo models stochastic processes such as dynamic instability. NSF 1546021.

  20. Nonlinear dynamics of dipoles in microtubules: Pseudospin model

    NASA Astrophysics Data System (ADS)

    Nesterov, Alexander I.; Ramírez, Mónica F.; Berman, Gennady P.; Mavromatos, Nick E.

    2016-06-01

    We perform a theoretical study of the dynamics of the electric field excitations in a microtubule by taking into consideration the realistic cylindrical geometry, dipole-dipole interactions of the tubulin-based protein heterodimers, the radial electric field produced by the solvent, and a possible degeneracy of energy states of individual heterodimers. The consideration is done in the frame of the classical pseudospin model. We derive the system of nonlinear dynamical partial differential equations of motion for interacting dipoles and the continuum version of these equations. We obtain the solutions of these equations in the form of snoidal waves, solitons, kinks, and localized spikes. Our results will help to achieve a better understanding of the functional properties of microtubules including the motor protein dynamics and the information transfer processes. Our considerations are based on classical dynamics. Some speculations on the role of possible quantum effects are also made.

  1. Carbendazim Inhibits Cancer Cell Proliferation by Suppressing Microtubule Dynamics

    PubMed Central

    Yenjerla, Mythili; Cox, Corey; Wilson, Leslie; Jordan, Mary Ann

    2009-01-01

    Carbendazim (methyl 2-benzimidazolecarbamate) is widely used as a systemic fungicide in human food production and appears to act on fungal tubulin. However, it also inhibits proliferation of human cancer cells, including drug- and multidrug-resistant and p53-deficient cell lines. Because of its promising preclinical anti-tumor activity, it has undergone phase I clinical trials and is under further clinical development. Although it weakly inhibits polymerization of brain microtubules and induces G2/M arrest in tumor cells, its mechanism of action in human cells has not been fully elucidated. We examined its mechanism of action in MCF7 human breast cancer cells and found that it inhibits proliferation (IC50, 10 μM) and half-maximally arrests mitosis at a similar concentration (8 μM), in concert with suppression of microtubule dynamic instability without appreciable microtubule depolymerization. It induces mitotic spindle abnormalities and reduces the metaphase intercentromere distance of sister chromatids, indicating reduction of tension on kinetochores, thus leading to metaphase arrest. With microtubules assembled in vitro from pure tubulin, carbendazim also suppresses dynamic instability, reducing the dynamicity by 50% at 10 μM, with only minimal (21%) reduction of polymer mass. Carbendazim binds to mammalian tubulin (Kd, 42.8 ± 4.0 μM). Unlike some benzimidazoles that bind to the colchicine site in tubulin, carbendazim neither competes with colchicine nor competes with vinblastine for binding to brain tubulin. Thus, carbendazim binds to an as yet unidentified site in tubulin and inhibits tumor cell proliferation by suppressing the growing and shortening phases of microtubule dynamic instability, thus inducing mitotic arrest. PMID:19001156

  2. Dictyoceratidan poisons: Defined mark on microtubule-tubulin dynamics.

    PubMed

    Gnanambal K, Mary Elizabeth; Lakshmipathy, Shailaja Vommi

    2016-03-01

    Tubulin/microtubule assembly and disassembly is characterized as one of the chief processes during cell growth and division. Hence drugs those perturb these process are considered to be effective in killing fast multiplying cancer cells. There is a collection of natural compounds which disturb microtubule/tubulin dis/assemblage and there have been a lot of efforts concerted in the marine realm too, to surveying such killer molecules. Close to half the natural compounds shooting out from marine invertebrates are generally with no traceable definite mechanisms of action though may be tough anti-cancerous hits at nanogram levels, hence fatefully those discoveries conclude therein without a capacity of translation from laboratory to pharmacy. Astoundingly at least 50% of natural compounds which have definite mechanisms of action causing disorders in tubulin/microtubule kinetics have an isolation history from sponges belonging to the Phylum: Porifera. Poriferans have always been a wonder worker to treat cancers with a choice of, yet precise targets on cancerous tissues. There is a specific order: Dictyoceratida within this Phylum which has contributed to yielding at least 50% of effective compounds possessing this unique mechanism of action mentioned above. However, not much notice is driven to Dictyoceratidans alongside the order: Demospongiae thus dictating the need to know its select microtubule/tubulin irritants since the unearthing of avarol in the year 1974 till date. Hence this review selectively pinpoints all the compounds, noteworthy derivatives and analogs stemming from order: Dictyoceratida focusing on the past, present and future. PMID:26874035

  3. Xenopus TACC1 is a microtubule plus-end tracking protein that can regulate microtubule dynamics during embryonic development.

    PubMed

    Lucaj, Christopher M; Evans, Matthew F; Nwagbara, Belinda U; Ebbert, Patrick T; Baker, Charlie C; Volk, Joseph G; Francl, Andrew F; Ruvolo, Sean P; Lowery, Laura Anne

    2015-05-01

    Microtubule plus-end dynamics are regulated by a family of proteins called plus-end tracking proteins (+TIPs). We recently demonstrated that the transforming acidic coiled-coil (TACC) domain family member, TACC3, can function as a +TIP to regulate microtubule dynamics in Xenopus laevis embryonic cells. Although it has been previously reported that TACC3 is the only TACC family member that exists in Xenopus, our examination of its genome determined that Xenopus, like all other vertebrates, contains three TACC family members. Here, we investigate the localization and function of Xenopus TACC1, the founding member of the TACC family. We demonstrate that it can act as a +TIP to regulate microtubule dynamics, and that the conserved C-terminal TACC domain is required for its localization to plus-ends. We also show that, in Xenopus embryonic mesenchymal cells, TACC1 and TACC3 are each required for maintaining normal microtubule growth speed but exhibit some functional redundancy in the regulation of microtubule growth lifetime. Given the conservation of TACC1 in Xenopus and other vertebrates, we propose that Xenopus laevis is a useful system to investigate unexplored cell biological functions of TACC1 and other TACC family members in the regulation of microtubule dynamics. PMID:26012630

  4. 3-D structure and dynamics of microtubule self-organization

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Ou-Yang, H. Daniel

    2008-03-01

    Laser scanning confocal microscopy was used to study the dynamics of 3D assemblies spontaneously formed in microtubule (MT) solutions. Microtubule solutions prepared by mixing and incubating tubulin in the presence of GTP and Oregon Green conjugated taxol in PM buffer were placed in long, sub-millimeter thin glass cells by the capillary action. Within 24 hours, starting with a uniform distribution, microtubules were found to be gradually separated into a few large ``buckled'' bundles along the long direction, and in the middle plane, of the sample cell. A well-defined wavelength of the buckling sinusoids was around 510 μm. The cross section of these round bundles was approximately 40 μm in diameter and the lengths were several centimeters. Detailed analysis of the 3-D image within the bundles revealed that each bundle seemed to consist of loosely packed MTs. It appeared that MTs were phase separated resulting from attractive interactions between charged MT fibers. The ``buckling'' behavior could be the result of geometrical constraints of the repulsive cell walls and the repulsive interaction between bundles. Detailed 3-D observations of the dynamic evolution of MT assembly could provide insight to the mechanisms of cellular MT organization and phase separation of charged colloidal rods.

  5. Tau co-organizes dynamic microtubule and actin networks

    PubMed Central

    Elie, Auréliane; Prezel, Elea; Guérin, Christophe; Denarier, Eric; Ramirez-Rios, Sacnicte; Serre, Laurence; Andrieux, Annie; Fourest-Lieuvin, Anne; Blanchoin, Laurent; Arnal, Isabelle

    2015-01-01

    The crosstalk between microtubules and actin is essential for cellular functions. However, mechanisms underlying the microtubule-actin organization by cross-linkers remain largely unexplored. Here, we report that tau, a neuronal microtubule-associated protein, binds to microtubules and actin simultaneously, promoting in vitro co-organization and coupled growth of both networks. By developing an original assay to visualize concomitant microtubule and actin assembly, we show that tau can induce guided polymerization of actin filaments along microtubule tracks and growth of single microtubules along actin filament bundles. Importantly, tau mediates microtubule-actin co-alignment without changing polymer growth properties. Mutagenesis studies further reveal that at least two of the four tau repeated motifs, primarily identified as tubulin-binding sites, are required to connect microtubules and actin. Tau thus represents a molecular linker between microtubule and actin networks, enabling a coordination of the two cytoskeletons that might be essential in various neuronal contexts. PMID:25944224

  6. Kinesin-13 regulates flagellar, interphase, and mitotic microtubule dynamics in Giardia intestinalis.

    PubMed

    Dawson, Scott C; Sagolla, Meredith S; Mancuso, Joel J; Woessner, David J; House, Susan A; Fritz-Laylin, Lillian; Cande, W Zacheus

    2007-12-01

    Microtubule depolymerization dynamics in the spindle are regulated by kinesin-13, a nonprocessive kinesin motor protein that depolymerizes microtubules at the plus and minus ends. Here we show that a single kinesin-13 homolog regulates flagellar length dynamics, as well as other interphase and mitotic dynamics in Giardia intestinalis, a widespread parasitic diplomonad protist. Both green fluorescent protein-tagged kinesin-13 and EB1 (a plus-end tracking protein) localize to the plus ends of mitotic and interphase microtubules, including a novel localization to the eight flagellar tips, cytoplasmic anterior axonemes, and the median body. The ectopic expression of a kinesin-13 (S280N) rigor mutant construct caused significant elongation of the eight flagella with significant decreases in the median body volume and resulted in mitotic defects. Notably, drugs that disrupt normal interphase and mitotic microtubule dynamics also affected flagellar length in Giardia. Our study extends recent work on interphase and mitotic kinesin-13 functioning in metazoans to include a role in regulating flagellar length dynamics. We suggest that kinesin-13 universally regulates both mitotic and interphase microtubule dynamics in diverse microbial eukaryotes and propose that axonemal microtubules are subject to the same regulation of microtubule dynamics as other dynamic microtubule arrays. Finally, the present study represents the first use of a dominant-negative strategy to disrupt normal protein function in Giardia and provides important insights into giardial microtubule dynamics with relevance to the development of antigiardial compounds that target critical functions of kinesins in the giardial life cycle. PMID:17766466

  7. Modeling the Effects of Drug Binding on the Dynamic Instability of Microtubules

    PubMed Central

    Hinow, Peter; Rezania, Vahid; Lopus, Manu; Jordan, Mary Ann; Tuszyński, Jack A.

    2011-01-01

    We propose a stochastic model that accounts for the growth, catastrophe and rescue processes of steady state microtubules assembled from MAP-free tubulin in the possible presence of a microtubule associated drug. As an example for the latter, we both experimentally and theoretically study the perturbation of microtubule dynamic instability by S-methyl-D-DM1, a synthetic derivative of the microtubule-targeted agent maytansine and a potential anticancer agent. Our model predicts that among drugs that act locally at the microtubule tip, primary inhibition of the loss of GDP tubulin results in stronger damping of microtubule dynamics than inhibition of GTP tubulin addition. On the other hand, drugs whose action occurs in the interior of the microtubule need to be present in much higher concentrations to have visible effects. PMID:21836336

  8. DDA3 associates with microtubule plus ends and orchestrates microtubule dynamics and directional cell migration

    PubMed Central

    Zhang, Liangyu; Shao, Hengyi; Zhu, Tongge; Xia, Peng; Wang, Zhikai; Liu, Lifang; Yan, Maomao; Hill, Donald L.; Fang, Guowei; Chen, Zhengjun; Wang, Dongmei; Yao, Xuebiao

    2013-01-01

    Cell motility and adhesion involve orchestrated interaction of microtubules (MTs) with their plus-end tracking proteins (+TIPs). However, the mechanisms underlying regulations of MT dynamics and directional cell migration are still elusive. Here, we show that DDA3-EB1 interaction orchestrates MT plus-end dynamics and facilitates directional cell migration. Biochemical characterizations reveal that DDA3 interacts with EB1 via its SxIP motif within the C-terminal Pro/Ser-rich region. Time-lapse and total internal reflection fluorescence (TIRF) microscopic assays demonstrate that DDA3 exhibits EB1-dependent, MT plus-end loading and tracking. The EB1-based loading of DDA3 is responsible for MT plus-ends stabilization at the cell cortex, which in turn orchestrates directional cell migration. Interestingly, the DDA3-EB1 interaction is potentially regulated by EB1 acetylation, which may account for physiological regulation underlying EGF-elicited cell migration. Thus, the EB1-based function of DDA3 links MT dynamics to directional cell migration. PMID:23652583

  9. Microtubule dynamic instability: the role of cracks between protofilaments.

    PubMed

    Li, Chunlei; Li, Jun; Goodson, Holly V; Alber, Mark S

    2014-03-28

    Microtubules (MTs) are cytoplasmic protein polymers that are essential for fundamental cellular processes including the maintenance of cell shape, organelle transport and formation of the mitotic spindle. Microtubule dynamic instability is critical for these processes, but it remains poorly understood, in part because the relationship between the structure of the MT tip and the growth/depolymerization transitions is enigmatic. In previous work, we used computational models of dynamic instability to provide evidence that cracks (laterally unbonded regions) between protofilaments play a key role in the regulation of dynamic instability. Here we use computational models to investigate the connection between cracks and dynamic instability in more detail. Our work indicates that while cracks contribute to dynamic instability in a fundamental way, it is not the depth of the cracks per se that governs MT dynamic instability. Instead, what matters more is whether the cracks terminate in GTP-rich or GDP-rich regions of the MT. Based on these observations, we suggest that a functional "GTP cap" (i.e., one capable of promoting MT growth) is one where the cracks terminate in pairs of GTP-bound subunits, and that the likelihood of catastrophe rises significantly with the fraction of crack-terminating subunits that contain GDP. In addition to helping clarify the mechanism of dynamic instability, this idea could also explain how MT stabilizers work: proteins that introduce lateral cross-links between protofilaments would produce islands of GDP-bound tubulin that mimic GTP-rich regions in having strong lateral bonds, thus reducing crack propagation, suppressing catastrophe and promoting rescue. PMID:24652487

  10. TOG Proteins Are Spatially Regulated by Rac-GSK3β to Control Interphase Microtubule Dynamics.

    PubMed

    Trogden, Kathryn P; Rogers, Stephen L

    2015-01-01

    Microtubules are regulated by a diverse set of proteins that localize to microtubule plus ends (+TIPs) where they regulate dynamic instability and mediate interactions with the cell cortex, actin filaments, and organelles. Although individual +TIPs have been studied in depth and we understand their basic contributions to microtubule dynamics, there is a growing body of evidence that these proteins exhibit cross-talk and likely function to collectively integrate microtubule behavior and upstream signaling pathways. In this study, we have identified a novel protein-protein interaction between the XMAP215 homologue in Drosophila, Mini spindles (Msps), and the CLASP homologue, Orbit. These proteins have been shown to promote and suppress microtubule dynamics, respectively. We show that microtubule dynamics are regionally controlled in cells by Rac acting to suppress GSK3β in the peripheral lamellae/lamellipodium. Phosphorylation of Orbit by GSK3β triggers a relocalization of Msps from the microtubule plus end to the lattice. Mutation of the Msps-Orbit binding site revealed that this interaction is required for regulating microtubule dynamic instability in the cell periphery. Based on our findings, we propose that Msps is a novel Rac effector that acts, in partnership with Orbit, to regionally regulate microtubule dynamics. PMID:26406596

  11. TOG Proteins Are Spatially Regulated by Rac-GSK3β to Control Interphase Microtubule Dynamics

    PubMed Central

    Trogden, Kathryn P.; Rogers, Stephen L.

    2015-01-01

    Microtubules are regulated by a diverse set of proteins that localize to microtubule plus ends (+TIPs) where they regulate dynamic instability and mediate interactions with the cell cortex, actin filaments, and organelles. Although individual +TIPs have been studied in depth and we understand their basic contributions to microtubule dynamics, there is a growing body of evidence that these proteins exhibit cross-talk and likely function to collectively integrate microtubule behavior and upstream signaling pathways. In this study, we have identified a novel protein-protein interaction between the XMAP215 homologue in Drosophila, Mini spindles (Msps), and the CLASP homologue, Orbit. These proteins have been shown to promote and suppress microtubule dynamics, respectively. We show that microtubule dynamics are regionally controlled in cells by Rac acting to suppress GSK3β in the peripheral lamellae/lamellipodium. Phosphorylation of Orbit by GSK3β triggers a relocalization of Msps from the microtubule plus end to the lattice. Mutation of the Msps-Orbit binding site revealed that this interaction is required for regulating microtubule dynamic instability in the cell periphery. Based on our findings, we propose that Msps is a novel Rac effector that acts, in partnership with Orbit, to regionally regulate microtubule dynamics. PMID:26406596

  12. Tunable dynamics of microtubule-based active isotropic gels

    PubMed Central

    Henkin, Gil; DeCamp, Stephen J.; Chen, Daniel T. N.; Sanchez, Tim; Dogic, Zvonimir

    2014-01-01

    We investigate the dynamics of an active gel of bundled microtubules (MTs) that is driven by clusters of kinesin molecular motors. Upon the addition of ATP, the coordinated action of thousands of molecular motors drives the gel to a highly dynamical turbulent-like state that persists for hours and is only limited by the stability of constituent proteins and the availability of the chemical fuel. We characterize how enhanced transport and emergent macroscopic flows of active gels depend on relevant molecular parameters, including ATP, kinesin motor and depletant concentrations, MT volume fraction, as well as the stoichiometry of the constituent motor clusters. Our results show that the dynamical and structural properties of MT-based active gels are highly tunable. They also indicate existence of an optimal concentration of molecular motors that maximize far-from-equilibrium activity of active isotropic MT gels. PMID:25332391

  13. Inhibition of microtubule dynamics impedes repair of kidney ischemia/reperfusion injury and increases fibrosis.

    PubMed

    Han, Sang Jun; Kim, Ji-Hyeon; Kim, Jee In; Park, Kwon Moo

    2016-01-01

    The microtubule cytoskeleton is composed of α-tubulin and β-tubulin heterodimers, and it serves to regulate the shape, motility, and division of a cell. Post-translational modifications including acetylation are closely associated with the functional aspects of the microtubule, involving in a number of pathological diseases. However, the role of microtubule acetylation in acute kidney injury (AKI) and progression of AKI to chronic kidney disease have yet to be understood. In this study, ischemia/reperfusion (I/R), a major cause of AKI, resulted in deacetylation of the microtubules with a decrease in α-tubulin acetyltransferase 1 (α-TAT1). Paclitaxel (taxol), an agent that stabilizes microtubules by tubulin acetylation, treatment during the recovery phase following I/R injury inhibited tubular cell proliferation, impaired renal functional recovery, and worsened fibrosis. Taxol induced α-tubulin acetylation and post-I/R cell cycle arrest. Taxol aggregated the microtubule in the cytoplasm, resulting in suppression of microtubule dynamics. Our studies have demonstrated for the first time that I/R induced deacetylation of the microtubules, and that inhibition of microtubule dynamics retarded repair of injured tubular epithelial cells leading to an acceleration of fibrosis. This suggests that microtubule dynamics plays an important role in the processes of repair and fibrosis after AKI. PMID:27270990

  14. Inhibition of microtubule dynamics impedes repair of kidney ischemia/reperfusion injury and increases fibrosis

    PubMed Central

    Han, Sang Jun; Kim, Ji-Hyeon; Kim, Jee In; Park, Kwon Moo

    2016-01-01

    The microtubule cytoskeleton is composed of α-tubulin and β-tubulin heterodimers, and it serves to regulate the shape, motility, and division of a cell. Post-translational modifications including acetylation are closely associated with the functional aspects of the microtubule, involving in a number of pathological diseases. However, the role of microtubule acetylation in acute kidney injury (AKI) and progression of AKI to chronic kidney disease have yet to be understood. In this study, ischemia/reperfusion (I/R), a major cause of AKI, resulted in deacetylation of the microtubules with a decrease in α-tubulin acetyltransferase 1 (α-TAT1). Paclitaxel (taxol), an agent that stabilizes microtubules by tubulin acetylation, treatment during the recovery phase following I/R injury inhibited tubular cell proliferation, impaired renal functional recovery, and worsened fibrosis. Taxol induced α-tubulin acetylation and post-I/R cell cycle arrest. Taxol aggregated the microtubule in the cytoplasm, resulting in suppression of microtubule dynamics. Our studies have demonstrated for the first time that I/R induced deacetylation of the microtubules, and that inhibition of microtubule dynamics retarded repair of injured tubular epithelial cells leading to an acceleration of fibrosis. This suggests that microtubule dynamics plays an important role in the processes of repair and fibrosis after AKI. PMID:27270990

  15. The contribution of αβ-tubulin curvature to microtubule dynamics

    PubMed Central

    2014-01-01

    Microtubules are dynamic polymers of αβ-tubulin that form diverse cellular structures, such as the mitotic spindle for cell division, the backbone of neurons, and axonemes. To control the architecture of microtubule networks, microtubule-associated proteins (MAPs) and motor proteins regulate microtubule growth, shrinkage, and the transitions between these states. Recent evidence shows that many MAPs exert their effects by selectively binding to distinct conformations of polymerized or unpolymerized αβ-tubulin. The ability of αβ-tubulin to adopt distinct conformations contributes to the intrinsic polymerization dynamics of microtubules. αβ-Tubulin conformation is a fundamental property that MAPs monitor and control to build proper microtubule networks. PMID:25385183

  16. Microtubule-dependent transport and dynamics of vimentin intermediate filaments

    PubMed Central

    Hookway, Caroline; Ding, Liya; Davidson, Michael W.; Rappoport, Joshua Z.; Danuser, Gaudenz; Gelfand, Vladimir I.

    2015-01-01

    We studied two aspects of vimentin intermediate filament dynamics—transport of filaments and subunit exchange. We observed transport of long filaments in the periphery of cells using live-cell structured illumination microscopy. We studied filament transport elsewhere in cells using a photoconvertible-vimentin probe and total internal reflection microscopy. We found that filaments were rapidly transported along linear tracks in both anterograde and retrograde directions. Filament transport was microtubule dependent but independent of microtubule polymerization and/or an interaction with the plus end–binding protein APC. We also studied subunit exchange in filaments by long-term imaging after photoconversion. We found that converted vimentin remained in small clusters along the length of filaments rather than redistributing uniformly throughout the network, even in cells that divided after photoconversion. These data show that vimentin filaments do not depolymerize into individual subunits; they recompose by severing and reannealing. Together these results show that vimentin filaments are very dynamic and that their transport is required for network maintenance. PMID:25717187

  17. Suppression of microtubule dynamic instability and turnover in MCF7 breast cancer cells by sulforaphane

    PubMed Central

    Azarenko, Olga; Okouneva, Tatiana; Singletary, Keith W.; Jordan, Mary Ann; Wilson, Leslie

    2008-01-01

    Sulforaphane (SFN), a prominent isothiocyanate present in cruciferous vegetables, is believed to be responsible along with other isothiocyanates for the cancer preventive activity of such vegetables. SFN arrests mitosis, possibly by affecting spindle microtubule function. A critical property of microtubules is their rapid and time-sensitive growth and shortening dynamics (dynamic instability), and suppression of dynamics by antimitotic anticancer drugs (e.g. taxanes and the vinca alkaloids) is central to the anticancer mechanisms of such drugs. We found that at concentrations that inhibited proliferation and mitosis of MCF7-green fluorescent protein-α-tubulin breast tumor cells by ∼50% (∼15 μM), SFN significantly modified microtubule organization in arrested spindles without modulating the spindle microtubule mass, in a manner similar to that of much more powerful antimitotic drugs. By using quantitative fluorescence video microscopy, we determined that at its mitotic concentration required to inhibit mitosis by 50%, SFN suppressed the dynamic instability of the interphase microtubules in these cells, strongly reducing the rate and extent of growth and shortening and decreasing microtubule turnover, without affecting the polymer mass. SFN suppressed the dynamics of purified microtubules in a similar fashion at concentrations well below those required to depolymerize microtubules, indicating that the suppression of dynamic instability by SFN in cells is due to a direct effect on the microtubules. The results indicate that SFN arrests proliferation and mitosis by stabilizing microtubules in a manner weaker than but similar to more powerful clinically used antimitotic anticancer drugs and strongly support the hypothesis that inhibition of mitosis by microtubule stabilization is important for SFN's chemopreventive activity. PMID:18952594

  18. Phase transition analysis of the dynamic instability of microtubules

    NASA Astrophysics Data System (ADS)

    Yarahmadian, Shantia; Yari, Masoud

    2014-09-01

    This paper provides the phase transition analysis of a reaction diffusion equations system modelling the dynamic instability of microtubules (MTs). For this purpose, we have generalized the macroscopic model studied by Mourão et al (2011 Comput. Biol. Chem. 35 269-81). This model investigates the interaction between the MT nucleation, the essential dynamics parameters and extinction, and their impact on the stability of the system. The considered framework encompasses a system of partial differential equations for the elongation and shortening of MTs, where the rates of elongation as well as the lifetimes of the elongating shortening phases are linear functions of GTP-tubulin concentration. In a novel way, this paper investigates the stability analysis and provides a bifurcation analysis for the dynamic instability of MTs in the presence of diffusion and all of the fundamental dynamics parameters. Our stability analysis introduces the phase transition method as a new mathematical tool in the study of MT dynamics. The mathematical tools introduced to handle the problem should be of general use.

  19. Live imaging of microtubule dynamics in organotypic hippocampal slice cultures.

    PubMed

    Schätzle, Philipp; Kapitein, Lukas C; Hoogenraad, Casper C

    2016-01-01

    The microtubule (MT) cytoskeleton plays an active role during different phases of neuronal development and is an essential structure for stable neuronal morphology. MTs determine axon formation, control polarized cargo trafficking, and regulate the dynamics of dendritic spines, the major sites of excitatory synaptic input. Defects in MT function have been linked to various neurological and neurodegenerative diseases and recent studies highlight neuronal MTs as a potential target for therapeutic intervention. Thus, understanding MT dynamics and its regulation is of central importance to study many aspects of neuronal function. The dynamics of MT in neurons can be studied by visualizing fluorescently tagged MT plus-end tracking proteins (+TIPs). Tracking of +TIP trajectories allows analyzing the speeds and directionality of MT growth in axons and dendrites. Numerous labs now use +TIP to track growing MTs in dissociated neuron cultures. This chapter provides detailed methods for live imaging of MT dynamics in organotypic hippocampal slice cultures. We describe protocols for culturing and transducing organotypic slices and imaging MT dynamics by spinning disk confocal microscopy. PMID:26794510

  20. Minimal model for collective kinetochore-microtubule dynamics.

    PubMed

    Banigan, Edward J; Chiou, Kevin K; Ballister, Edward R; Mayo, Alyssa M; Lampson, Michael A; Liu, Andrea J

    2015-10-13

    Chromosome segregation during cell division depends on interactions of kinetochores with dynamic microtubules (MTs). In many eukaryotes, each kinetochore binds multiple MTs, but the collective behavior of these coupled MTs is not well understood. We present a minimal model for collective kinetochore-MT dynamics, based on in vitro measurements of individual MTs and their dependence on force and kinetochore phosphorylation by Aurora B kinase. For a system of multiple MTs connected to the same kinetochore, the force-velocity relation has a bistable regime with two possible steady-state velocities: rapid shortening or slow growth. Bistability, combined with the difference between the growing and shrinking speeds, leads to center-of-mass and breathing oscillations in bioriented sister kinetochore pairs. Kinetochore phosphorylation shifts the bistable region to higher tensions, so that only the rapidly shortening state is stable at low tension. Thus, phosphorylation leads to error correction for kinetochores that are not under tension. We challenged the model with new experiments, using chemically induced dimerization to enhance Aurora B activity at metaphase kinetochores. The model suggests that the experimentally observed disordering of the metaphase plate occurs because phosphorylation increases kinetochore speeds by biasing MTs to shrink. Our minimal model qualitatively captures certain characteristic features of kinetochore dynamics, illustrates how biochemical signals such as phosphorylation may regulate the dynamics, and provides a theoretical framework for understanding other factors that control the dynamics in vivo. PMID:26417109

  1. Steering microtubule shuttle transport with dynamically controlled magnetic fields.

    PubMed

    Mahajan, K D; Ruan, G; Dorcéna, C J; Vieira, G; Nabar, G; Bouxsein, N F; Chalmers, J J; Bachand, G D; Sooryakumar, R; Winter, J O

    2016-04-28

    Nanoscale control of matter is critical to the design of integrated nanosystems. Here, we describe a method to dynamically control directionality of microtubule (MT) motion using programmable magnetic fields. MTs are combined with magnetic quantum dots (i.e., MagDots) that are manipulated by external magnetic fields provided by magnetic nanowires. MT shuttles thus undergo both ATP-driven and externally-directed motion with a fluorescence component that permits simultaneous visualization of shuttle motion. This technology is used to alter the trajectory of MTs in motion and to pin MT motion. Such an approach could be used to evaluate the MT-kinesin transport system and could serve as the basis for improved lab-on-a-chip technologies based on MT transport. PMID:27049749

  2. Steering microtubule shuttle transport with dynamically controlled magnetic fields

    DOE PAGESBeta

    Mahajan, K. D.; Ruan, G.; Dorcéna, C. J.; Vieira, G.; Nabar, G.; Bouxsein, N. F.; Chalmers, J. J.; Bachand, G. D.; Sooryakumar, R.; Winter, J. O.

    2016-03-23

    Nanoscale control of matter is critical to the design of integrated nanosystems. Here, we describe a method to dynamically control directionality of microtubule (MT) motion using programmable magnetic fields. MTs are combined with magnetic quantum dots (i.e., MagDots) that are manipulated by external magnetic fields provided by magnetic nanowires. MT shuttles thus undergo both ATP-driven and externally-directed motion with a fluorescence component that permits simultaneous visualization of shuttle motion. This technology is used to alter the trajectory of MTs in motion and to pin MT motion. Ultimately, such an approach could be used to evaluate the MT-kinesin transport system andmore » could serve as the basis for improved lab-on-a-chip technologies based on MT transport.« less

  3. Steering microtubule shuttle transport with dynamically controlled magnetic fields

    NASA Astrophysics Data System (ADS)

    Mahajan, K. D.; Ruan, G.; Dorcéna, C. J.; Vieira, G.; Nabar, G.; Bouxsein, N. F.; Chalmers, J. J.; Bachand, G. D.; Sooryakumar, R.; Winter, J. O.

    2016-04-01

    Nanoscale control of matter is critical to the design of integrated nanosystems. Here, we describe a method to dynamically control directionality of microtubule (MT) motion using programmable magnetic fields. MTs are combined with magnetic quantum dots (i.e., MagDots) that are manipulated by external magnetic fields provided by magnetic nanowires. MT shuttles thus undergo both ATP-driven and externally-directed motion with a fluorescence component that permits simultaneous visualization of shuttle motion. This technology is used to alter the trajectory of MTs in motion and to pin MT motion. Such an approach could be used to evaluate the MT-kinesin transport system and could serve as the basis for improved lab-on-a-chip technologies based on MT transport.Nanoscale control of matter is critical to the design of integrated nanosystems. Here, we describe a method to dynamically control directionality of microtubule (MT) motion using programmable magnetic fields. MTs are combined with magnetic quantum dots (i.e., MagDots) that are manipulated by external magnetic fields provided by magnetic nanowires. MT shuttles thus undergo both ATP-driven and externally-directed motion with a fluorescence component that permits simultaneous visualization of shuttle motion. This technology is used to alter the trajectory of MTs in motion and to pin MT motion. Such an approach could be used to evaluate the MT-kinesin transport system and could serve as the basis for improved lab-on-a-chip technologies based on MT transport. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08529b

  4. An ELMO2-RhoG-ILK network modulates microtubule dynamics

    PubMed Central

    Jackson, Bradley C.; Ivanova, Iordanka A.; Dagnino, Lina

    2015-01-01

    ELMO2 belongs to a family of scaffold proteins involved in phagocytosis and cell motility. ELMO2 can simultaneously bind integrin-linked kinase (ILK) and RhoG, forming tripartite ERI complexes. These complexes are involved in promoting β1 integrin–dependent directional migration in undifferentiated epidermal keratinocytes. ELMO2 and ILK have also separately been implicated in microtubule regulation at integrin-containing focal adhesions. During differentiation, epidermal keratinocytes cease to express integrins, but ERI complexes persist. Here we show an integrin-independent role of ERI complexes in modulation of microtubule dynamics in differentiated keratinocytes. Depletion of ERI complexes by inactivating the Ilk gene in these cells reduces microtubule growth and increases the frequency of catastrophe. Reciprocally, exogenous expression of ELMO2 or RhoG stabilizes microtubules, but only if ILK is also present. Mechanistically, activation of Rac1 downstream from ERI complexes mediates their effects on microtubule stability. In this pathway, Rac1 serves as a hub to modulate microtubule dynamics through two different routes: 1) phosphorylation and inactivation of the microtubule-destabilizing protein stathmin and 2) phosphorylation and inactivation of GSK-3β, which leads to the activation of CRMP2, promoting microtubule growth. At the cellular level, the absence of ERI species impairs Ca2+-mediated formation of adherens junctions, critical to maintaining mechanical integrity in the epidermis. Our findings support a key role for ERI species in integrin-independent stabilization of the microtubule network in differentiated keratinocytes. PMID:25995380

  5. Paired arrangement of kinetochores together with microtubule pivoting and dynamics drive kinetochore capture in meiosis I

    PubMed Central

    Cojoc, Gheorghe; Florescu, Ana-Maria; Krull, Alexander; Klemm, Anna H.; Pavin, Nenad; Jülicher, Frank; Tolić, Iva M.

    2016-01-01

    Kinetochores are protein complexes on the chromosomes, whose function as linkers between spindle microtubules and chromosomes is crucial for proper cell division. The mechanisms that facilitate kinetochore capture by microtubules are still unclear. In the present study, we combine experiments and theory to explore the mechanisms of kinetochore capture at the onset of meiosis I in fission yeast. We show that kinetochores on homologous chromosomes move together, microtubules are dynamic and pivot around the spindle pole, and the average capture time is 3–4 minutes. Our theory describes paired kinetochores on homologous chromosomes as a single object, as well as angular movement of microtubules and their dynamics. For the experimentally measured parameters, the model reproduces the measured capture kinetics and shows that the paired configuration of kinetochores accelerates capture, whereas microtubule pivoting and dynamics have a smaller contribution. Kinetochore pairing may be a general feature that increases capture efficiency in meiotic cells. PMID:27166749

  6. Paired arrangement of kinetochores together with microtubule pivoting and dynamics drive kinetochore capture in meiosis I.

    PubMed

    Cojoc, Gheorghe; Florescu, Ana-Maria; Krull, Alexander; Klemm, Anna H; Pavin, Nenad; Jülicher, Frank; Tolić, Iva M

    2016-01-01

    Kinetochores are protein complexes on the chromosomes, whose function as linkers between spindle microtubules and chromosomes is crucial for proper cell division. The mechanisms that facilitate kinetochore capture by microtubules are still unclear. In the present study, we combine experiments and theory to explore the mechanisms of kinetochore capture at the onset of meiosis I in fission yeast. We show that kinetochores on homologous chromosomes move together, microtubules are dynamic and pivot around the spindle pole, and the average capture time is 3-4 minutes. Our theory describes paired kinetochores on homologous chromosomes as a single object, as well as angular movement of microtubules and their dynamics. For the experimentally measured parameters, the model reproduces the measured capture kinetics and shows that the paired configuration of kinetochores accelerates capture, whereas microtubule pivoting and dynamics have a smaller contribution. Kinetochore pairing may be a general feature that increases capture efficiency in meiotic cells. PMID:27166749

  7. Important factors determining the nanoscale tracking precision of dynamic microtubule ends.

    PubMed

    Bohner, G; Gustafsson, N; Cade, N I; Maurer, S P; Griffin, L D; Surrey, T

    2016-01-01

    Tracking dynamic microtubule ends in fluorescence microscopy movies provides insight into the statistical properties of microtubule dynamics and is vital for further analysis that requires knowledge of the trajectories of the microtubule ends. Here we analyse the performance of a previously developed automated microtubule end tracking routine; this has been optimized for comparatively low signal-to-noise image sequences that are characteristic of microscopy movies of dynamic microtubules growing in vitro. Sequences of simulated microtubule images were generated assuming a variety of different experimental conditions. The simulated movies were then tracked and the tracking errors were characterized. We found that the growth characteristics of the microtubules within realistic ranges had a negligible effect on the tracking precision. The fluorophore labelling density, the pixel size of the images, and the exposure times were found to be important parameters limiting the tracking precision which could be explained using concepts of single molecule localization microscopy. The signal-to-noise ratio was found to be a good single predictor of the tracking precision: typical experimental signal-to-noise ratios lead to tracking precisions in the range of tens of nanometres, making the tracking program described here a useful tool for dynamic microtubule end tracking with close to molecular precision. PMID:26444439

  8. Important factors determining the nanoscale tracking precision of dynamic microtubule ends

    PubMed Central

    BOHNER, G.; GUSTAFSSON, N.; CADE, N.I.; MAURER, S.P.; GRIFFIN, L.D.

    2016-01-01

    Summary Tracking dynamic microtubule ends in fluorescence microscopy movies provides insight into the statistical properties of microtubule dynamics and is vital for further analysis that requires knowledge of the trajectories of the microtubule ends. Here we analyse the performance of a previously developed automated microtubule end tracking routine; this has been optimized for comparatively low signal‐to‐noise image sequences that are characteristic of microscopy movies of dynamic microtubules growing in vitro. Sequences of simulated microtubule images were generated assuming a variety of different experimental conditions. The simulated movies were then tracked and the tracking errors were characterized. We found that the growth characteristics of the microtubules within realistic ranges had a negligible effect on the tracking precision. The fluorophore labelling density, the pixel size of the images, and the exposure times were found to be important parameters limiting the tracking precision which could be explained using concepts of single molecule localization microscopy. The signal‐to‐noise ratio was found to be a good single predictor of the tracking precision: typical experimental signal‐to‐noise ratios lead to tracking precisions in the range of tens of nanometres, making the tracking program described here a useful tool for dynamic microtubule end tracking with close to molecular precision. PMID:26444439

  9. Dynamic interplay between nitration and phosphorylation of tubulin cofactor B in the control of microtubule dynamics

    PubMed Central

    Rayala, Suresh K.; Martin, Emil; Sharina, Iraida G.; Molli, Poonam R.; Wang, Xiaoping; Jacobson, Raymond; Murad, Ferid; Kumar, Rakesh

    2007-01-01

    Tubulin cofactor B (TCoB) plays an important role in microtubule dynamics by facilitating the dimerization of α- and β-tubulin. Recent evidence suggests that p21-activated kinase 1 (Pak1), a major signaling nodule in eukaryotic cells, phosphorylates TCoB on Ser-65 and Ser-128 and plays an essential role in microtubule regrowth. However, to date, no upstream signaling molecules have been identified to antagonize the functions of TCoB, which might help in maintaining the equilibrium of microtubules. Here, we discovered that TCoB is efficiently nitrated, mainly on Tyr-64 and Tyr-98, and nitrated-TCoB attenuates the synthesis of new microtubules. In addition, we found that nitration of TCoB antagonizes signaling-dependent phosphorylation of TCoB, whereas optimal nitration of TCoB requires the presence of functional Pak1 phosphorylation sites, thus providing a feedback mechanism to regulate phosphorylation-dependent MT regrowth. Together these findings identified TCoB as the third cytoskeleton protein to be nitrated and suggest a previously undescribed mechanism, whereby growth factor signaling may coordinately integrate nitric oxide signaling in the regulation of microtubule dynamics. PMID:18048340

  10. A divergent canonical WNT-signaling pathway regulates microtubule dynamics

    PubMed Central

    Ciani, Lorenza; Krylova, Olga; Smalley, Matthew J.; Dale, Trevor C.; Salinas, Patricia C.

    2004-01-01

    Dishevelled (DVL) is associated with axonal microtubules and regulates microtubule stability through the inhibition of the serine/threonine kinase, glycogen synthase kinase 3β (GSK-3β). In the canonical WNT pathway, the negative regulator Axin forms a complex with β-catenin and GSK-3β, resulting in β-catenin degradation. Inhibition of GSK-3β by DVL increases β-catenin stability and TCF transcriptional activation. Here, we show that Axin associates with microtubules and unexpectedly stabilizes microtubules through DVL. In turn, DVL stabilizes microtubules by inhibiting GSK-3β through a transcription- and β-catenin–independent pathway. More importantly, axonal microtubules are stabilized after DVL localizes to axons. Increased microtubule stability is correlated with a decrease in GSK-3β–mediated phosphorylation of MAP-1B. We propose a model in which Axin, through DVL, stabilizes microtubules by inhibiting a pool of GSK-3β, resulting in local changes in the phosphorylation of cellular targets. Our data indicate a bifurcation in the so-called canonical WNT-signaling pathway to regulate microtubule stability. PMID:14734535

  11. Microtubule-based nanomaterials: Exploiting nature's dynamic biopolymers

    DOE PAGESBeta

    Bachand, George D.; Stevens, Mark J.; Spoerke, Erik David

    2015-04-09

    For more than a decade now, biomolecular systems have served as an inspiration for the development of synthetic nanomaterials and systems that are capable of reproducing many of unique and emergent behaviors of living systems. In addition, one intriguing element of such systems may be found in a specialized class of proteins known as biomolecular motors that are capable of performing useful work across multiple length scales through the efficient conversion of chemical energy. Microtubule (MT) filaments may be considered within this context as their dynamic assembly and disassembly dissipate energy, and perform work within the cell. MTs are onemore » of three cytoskeletal filaments in eukaryotic cells, and play critical roles in a range of cellular processes including mitosis and vesicular trafficking. Based on their function, physical attributes, and unique dynamics, MTs also serve as a powerful archetype of a supramolecular filament that underlies and drives multiscale emergent behaviors. In this review, we briefly summarize recent efforts to generate hybrid and composite nanomaterials using MTs as biomolecular scaffolds, as well as computational and synthetic approaches to develop synthetic one-dimensional nanostructures that display the enviable attributes of the natural filaments.« less

  12. Microtubule-based nanomaterials: Exploiting nature's dynamic biopolymers

    SciTech Connect

    Bachand, George D.; Stevens, Mark J.; Spoerke, Erik David

    2015-04-09

    For more than a decade now, biomolecular systems have served as an inspiration for the development of synthetic nanomaterials and systems that are capable of reproducing many of unique and emergent behaviors of living systems. In addition, one intriguing element of such systems may be found in a specialized class of proteins known as biomolecular motors that are capable of performing useful work across multiple length scales through the efficient conversion of chemical energy. Microtubule (MT) filaments may be considered within this context as their dynamic assembly and disassembly dissipate energy, and perform work within the cell. MTs are one of three cytoskeletal filaments in eukaryotic cells, and play critical roles in a range of cellular processes including mitosis and vesicular trafficking. Based on their function, physical attributes, and unique dynamics, MTs also serve as a powerful archetype of a supramolecular filament that underlies and drives multiscale emergent behaviors. In this review, we briefly summarize recent efforts to generate hybrid and composite nanomaterials using MTs as biomolecular scaffolds, as well as computational and synthetic approaches to develop synthetic one-dimensional nanostructures that display the enviable attributes of the natural filaments.

  13. MACF1 regulates the migration of pyramidal neurons via microtubule dynamics and GSK-3 signaling.

    PubMed

    Ka, Minhan; Jung, Eui-Man; Mueller, Ulrich; Kim, Woo-Yang

    2014-11-01

    Neuronal migration and subsequent differentiation play critical roles for establishing functional neural circuitry in the developing brain. However, the molecular mechanisms that regulate these processes are poorly understood. Here, we show that microtubule actin crosslinking factor 1 (MACF1) determines neuronal positioning by regulating microtubule dynamics and mediating GSK-3 signaling during brain development. First, using MACF1 floxed allele mice and in utero gene manipulation, we find that MACF1 deletion suppresses migration of cortical pyramidal neurons and results in aberrant neuronal positioning in the developing brain. The cell autonomous deficit in migration is associated with abnormal dynamics of leading processes and centrosomes. Furthermore, microtubule stability is severely damaged in neurons lacking MACF1, resulting in abnormal microtubule dynamics. Finally, MACF1 interacts with and mediates GSK-3 signaling in developing neurons. Our findings establish a cellular mechanism underlying neuronal migration and provide insights into the regulation of cytoskeleton dynamics in developing neurons. PMID:25224226

  14. Kinesin superfamily proteins and the regulation of microtubule dynamics in morphogenesis.

    PubMed

    Niwa, Shinsuke

    2015-01-01

    Kinesin superfamily proteins (KIFs) are microtubule-dependent molecular motors that serve as sources of force for intracellular transport and cell division. Recent studies have revealed new roles of KIFs as microtubule stabilizers and depolymerizers, and these activities are fundamental to cellular morphogenesis and mammalian development. KIF2A and KIF19A have microtubule-depolymerizing activities and regulate the neuronal morphology and cilia length, respectively. KIF21A and KIF26A work as microtubule stabilizers that regulate axonal morphology. Morphological defects that are similar to human diseases are observed in mice in which these KIF genes have been deleted. Actually, KIF2A and KIF21A have been identified as causes of human neuronal diseases. In this review, the functions of these atypical KIFs that regulate microtubule dynamics are discussed. Moreover, some interesting unanswered questions and hypothetical answers to them are discussed. PMID:25347970

  15. Dietary flavonoid fisetin binds to β-tubulin and disrupts microtubule dynamics in prostate cancer cells.

    PubMed

    Mukhtar, Eiman; Adhami, Vaqar Mustafa; Sechi, Mario; Mukhtar, Hasan

    2015-10-28

    Microtubule targeting based therapies have revolutionized cancer treatment; however, resistance and side effects remain a major limitation. Therefore, novel strategies that can overcome these limitations are urgently needed. We made a novel discovery that fisetin, a hydroxyflavone, is a microtubule stabilizing agent. Fisetin binds to tubulin and stabilizes microtubules with binding characteristics far superior than paclitaxel. Surface plasmon resonance and computational docking studies suggested that fisetin binds to β-tubulin with superior affinity compared to paclitaxel. Fisetin treatment of human prostate cancer cells resulted in robust up-regulation of microtubule associated proteins (MAP)-2 and -4. In addition, fisetin treated cells were enriched in α-tubulin acetylation, an indication of stabilization of microtubules. Fisetin significantly inhibited PCa cell proliferation, migration, and invasion. Nudc, a protein associated with microtubule motor dynein/dynactin complex that regulates microtubule dynamics, was inhibited with fisetin treatment. Further, fisetin treatment of a P-glycoprotein overexpressing multidrug-resistant cancer cell line NCI/ADR-RES inhibited the viability and colony formation. Our results offer in vitro proof-of-concept for fisetin as a microtubule targeting agent. We suggest that fisetin could be developed as an adjuvant for treatment of prostate and other cancer types. PMID:26235140

  16. A minimal model for kinetochore-microtubule dynamics

    NASA Astrophysics Data System (ADS)

    Liu, Andrea

    2014-03-01

    During mitosis, chromosome pairs align at the center of a bipolar microtubule (MT) spindle and oscillate as MTs attaching them to the cell poles polymerize and depolymerize. The cell fixes misaligned pairs by a tension-sensing mechanism. Pairs later separate as shrinking MTs pull each chromosome toward its respective cell pole. We present a minimal model for these processes based on properties of MT kinetics. We apply the measured tension-dependence of single MT kinetics to a stochastic many MT model, which we solve numerically and with master equations. We find that the force-velocity curve for the single chromosome system is bistable and hysteretic. Above some threshold load, tension fluctuations induce MTs to spontaneously switch from a pulling state into a growing, pushing state. To recover pulling from the pushing state, the load must be reduced far below the threshold. This leads to oscillations in the two-chromosome system. Our minimal model quantitatively captures several aspects of kinetochore dynamics observed experimentally. This work was supported by NSF-DMR-1104637.

  17. Mechanism and Dynamics of Breakage of Fluorescent Microtubules

    PubMed Central

    Guo, Honglian; Xu, Chunhua; Liu, Chunxiang; Qu, E.; Yuan, Ming; Li, Zhaolin; Cheng, Bingying; Zhang, Daozhong

    2006-01-01

    The breakage of fluorescence-labeled microtubules under irradiation of excitation light is found in our experiments. Its mechanism is studied. The results indicate that free radicals are the main reason for the photosensitive breakage. Furthermore, the mechanical properties of the microtubules are probed with a dual-optical tweezers system. It is found that the fluorescence-labeled microtubules are much easier to extend compared with those without fluorescence. Such microtubules can be extended by 30%, and the force for breaking them up is only several piconewtons. In addition, we find that the breakup of the protofilaments is not simultaneous but step-by-step, which further confirms that the interaction between protofilaments is fairly weak. PMID:16387782

  18. Analysis of centrosome function and microtubule dynamics by time-lapse microscopy in Xenopus egg extracts.

    PubMed

    Wiese, Christiane; Mayers, Jonathan R; Albee, Alison J

    2009-01-01

    Centrosomes are essential organelles that organize the microtubule cytoskeleton during interphase and mitosis. Centrosomes are assembled from tens to hundreds of proteins, but how these proteins are organized into functional microtubule nucleating and organizing centers is not yet clear. An important step in understanding the role of individual proteins in centrosome function is to understand whether they are involved in forming, stabilizing, or anchoring microtubules. It is becoming increasingly clear that the analysis of fixed samples is inadequate for a true understanding of the dynamics that drive cell biological processes. In this chapter we focus on methods to analyze microtubule nucleation, organization, and dynamics using assays based on mitotic Xenopus egg extracts and in vitro reactions. These methods can easily be adapted to the study of interphase processes, or to the study of other cytoskeletal proteins and their dynamics. PMID:19768426

  19. The molecular dynamics of crawling migration in microtubule-disrupted keratocytes

    PubMed Central

    Nakashima, Hitomi; Okimura, Chika; Iwadate, Yoshiaki

    2015-01-01

    Cell-crawling migration plays an essential role in complex biological phenomena. It is now generally believed that many processes essential to such migration are regulated by microtubules in many cells, including fibroblasts and neurons. However, keratocytes treated with nocodazole, which is an inhibitor of microtubule polymerization – and even keratocyte fragments that contain no microtubules – migrate at the same velocity and with the same directionality as normal keratocytes. In this study, we discovered that not only these migration properties, but also the molecular dynamics that regulate such properties, such as the retrograde flow rate of actin filaments, distributions of vinculin and myosin II, and traction forces, are also the same in nocodazole-treated keratocytes as those in untreated keratocytes. These results suggest that microtubules are not in fact required for crawling migration of keratocytes, either in terms of migrating properties or of intracellular molecular dynamics. PMID:27493851

  20. Nucleation and Dynamics of Golgi-derived Microtubules

    PubMed Central

    Sanders, Anna A. W. M.; Kaverina, Irina

    2015-01-01

    Integrity of the Golgi apparatus requires the microtubule (MT) network. A subset of MTs originates at the Golgi itself, which in this case functions as a MT-organizing center (MTOC). Golgi-derived MTs serve important roles in post-Golgi trafficking, maintenance of Golgi integrity, cell polarity and motility, as well as cell type-specific functions, including neurite outgrowth/branching. Here, we discuss possible models describing the formation and dynamics of Golgi-derived MTs. How Golgi-derived MTs are formed is not fully understood. A widely discussed model implicates that the critical step of the process is recruitment of molecular factors, which drive MT nucleation (γ-tubulin ring complex, or γ-TuRC), to the Golgi membrane via specific scaffolding interactions. Based on recent findings, we propose to introduce an additional level of regulation, whereby MT-binding proteins and/or local tubulin dimer concentration at the Golgi helps to overcome kinetic barriers at the initial nucleation step. According to our model, emerging MTs are subsequently stabilized by Golgi-associated MT-stabilizing proteins. We discuss molecular factors potentially involved in all three steps of MT formation. To preserve proper cell functioning, a balance must be maintained between MT subsets at the centrosome and the Golgi. Recent work has shown that certain centrosomal factors are important in maintaining this balance, suggesting a close connection between regulation of centrosomal and Golgi-derived MTs. Finally, we will discuss potential functions of Golgi-derived MTs based on their nucleation site location within a Golgi stack. PMID:26617483

  1. Domains of tau protein, differential phosphorylation, and dynamic instability of microtubules.

    PubMed

    Trinczek, B; Biernat, J; Baumann, K; Mandelkow, E M; Mandelkow, E

    1995-12-01

    The dynamic instability of microtubules is thought to be regulated by MAPs and phosphorylation. Here we describe the effect of the neuronal microtubule-associated protein tau by observing the dynamics of single microtubules by video microscopy. We used recombinant tau isoforms and tau mutants, and we phosphorylated tau by the neuronal kinases MARK (affecting the KXGS motifs within tau's repeat domain) and cdk5 (phosphorylating Ser-Pro motifs in the regions flanking the repeats). The variants of tau can be broadly classified into three categories, depending on their potency to affect microtubule dynamics. "Strong" tau variants have four repeats and both flanking regions. "Medium" variants have one to three repeats and both flanking regions. "Weak" variants lack one or both of the flanking regions, or have no repeats; with such constructs, microtubule dynamics is not significantly different from that of pure tubulin. N- or C-terminal tails of tau have no influence on dynamic instability. The two ends of microtubules (plus and minus) showed different activities but analogous behavior. These results are consistent with the "jaws" model of tau where the flanking regions are considered as targeting domains whereas the addition of repeats makes them catalytically active in terms of microtubule stabilization. The dominant changes in the parameters of dynamic instability induced by tau are those in the dissociation rate and in the catastrophe rate (up to 30-fold). Other rates change only moderately or not at all (association rate increased up to twofold, rates of rescue or rapid shrinkage decreased up to approximately twofold). The order of repeats has little influence on microtubule dynamics (i.e., repeats can be re-arranged or interchanged), arguing in favor of the "distributed weak binding" model proposed by Butner and Kirschner (1991); however, we confirmed the presence of a "hotspot" of binding potential involving Lys274 and Lys281 observed by Goode and Feinstein, 1994

  2. A Web Interface for the Quantification of Microtubule Dynamics

    PubMed Central

    Kong, Koon Yin; Marcus, Adam I.; Giaanakakou, Paraskevi; Wang, May D.

    2016-01-01

    We propose a web interface that allows researchers to quantify and analyze microtubule confocal images online. Most analyses of microtubule confocal images are performed manually using very simple software or tools. Analysis results are stored locally within each collaborator with different styles and formats. This has limited the sharing of data and results when collaborating among different research parties. A web interface provides a simple way for users to process data online. It also allows easy sharing of both data and results among different participating groups. Analysis workflow of the interface is made similar to existing manual protocols. We demonstrate the integration of image processing algorithm in the current workflow to aid the analysis. Our design also allows integration of novel automated analysis algorithms and modules to re-evaluate existing data. This interface can provide a validation platform for new automated algorithm and allow collaboration on microtubule image analysis from different locations.

  3. Aurora B suppresses microtubule dynamics and limits central spindle size by locally activating KIF4A

    PubMed Central

    Nunes Bastos, Ricardo; Gandhi, Sapan R.; Baron, Ryan D.; Gruneberg, Ulrike; Nigg, Erich A.

    2013-01-01

    Anaphase central spindle formation is controlled by the microtubule-stabilizing factor PRC1 and the kinesin KIF4A. We show that an MKlp2-dependent pool of Aurora B at the central spindle, rather than global Aurora B activity, regulates KIF4A accumulation at the central spindle. KIF4A phosphorylation by Aurora B stimulates the maximal microtubule-dependent ATPase activity of KIF4A and promotes its interaction with PRC1. In the presence of phosphorylated KIF4A, microtubules grew more slowly and showed long pauses in growth, resulting in the generation of shorter PRC1-stabilized microtubule overlaps in vitro. Cells expressing only mutant forms of KIF4A lacking the Aurora B phosphorylation site overextended the anaphase central spindle, demonstrating that this regulation is crucial for microtubule length control in vivo. Aurora B therefore ensures that suppression of microtubule dynamic instability by KIF4A is restricted to a specific subset of microtubules and thereby contributes to central spindle size control in anaphase. PMID:23940115

  4. Microtubule plus tips: A dynamic route to chromosomal instability

    PubMed Central

    Stolz, Ailine; Ertych, Norman; Bastians, Holger

    2015-01-01

    Although chromosomal instability (CIN) is a recognized hallmark of cancer the underlying mechanisms and consequences are largely unknown. However, it is accepted that lagging chromosomes represent a major prerequisite for chromosome missegregation in cancer cells. Here, we discuss how lagging chromosomes are generated and our recent findings establishing increased microtubule assembly rates as a source of CIN.

  5. Nanomolar concentrations of nocodazole alter microtubule dynamic instability in vivo and in vitro.

    PubMed Central

    Vasquez, R J; Howell, B; Yvon, A M; Wadsworth, P; Cassimeris, L

    1997-01-01

    Previous studies demonstrated that nanomolar concentrations of nocodazole can block cells in mitosis without net microtubule disassembly and resulted in the hypothesis that this block was due to a nocodazole-induced stabilization of microtubules. We tested this hypothesis by examining the effects of nanomolar concentrations of nocodazole on microtubule dynamic instability in interphase cells and in vitro with purified brain tubulin. Newt lung epithelial cell microtubules were visualized by video-enhanced differential interference contrast microscopy and cells were perfused with solutions of nocodazole ranging in concentration from 4 to 400 nM. Microtubules showed a loss of the two-state behavior typical of dynamic instability as evidenced by the addition of a third state where they exhibited little net change in length (a paused state). Nocodazole perfusion also resulted in slower elongation and shortening velocities, increased catastrophe, and an overall decrease in microtubule turnover. Experiments performed on BSC-1 cells that were microinjected with rhodamine-labeled tubulin, incubated in nocodazole for 1 h, and visualized by using low-light-level fluorescence microscopy showed similar results except that nocodazole-treated BSC-1 cells showed a decrease in catastrophe. To gain insight into possible mechanisms responsible for changes in dynamic instability, we examined the effects of 4 nM to 12 microM nocodazole on the assembly of purified tubulin from axoneme seeds. At both microtubule plus and minus ends, perfusion with nocodazole resulted in a dose-dependent decrease in elongation and shortening velocities, increase in pause duration and catastrophe frequency, and decrease in rescue frequency. These effects, which result in an overall decrease in microtubule turnover after nocodazole treatment, suggest that the mitotic block observed is due to a reduction in microtubule dynamic turnover. In addition, the in vitro results are similar to the effects of

  6. Push or Pull? -- Cryo-Electron Microscopy of Microtubule's Dynamic Instability and Its Roles in the Kinetochore

    NASA Astrophysics Data System (ADS)

    Wang, Hong-Wei

    2009-03-01

    Microtubule is a biopolymer made up of alpha-beta-tubulin heterodimers. The tubulin dimers assemble head-to-tail as protofilaments and about 13 protofilaments interact laterally to form a hollow cylindrical structure which is the microtubule. As the major cytoskeleton in all eukaryotic cells, microtubules have the intrinsic property to switch stochastically between growth and shrinkage phases, a phenomenon termed as their dynamic instability. Microtubule's dynamic instability is closely related to the types of nucleotide (GTP or GDP) that binds to the beta-tubulin. We have biochemically trapped two types of assembly states of tubulin with GTP or GDP bound representing the polymerizing and depolymerizing ends of microtubules respectively. Using cryo-electron microscopy, we have elucidated the structures of these intermediate assemblies, showing that tubulin protofilaments demonstrate various curvatures and form different types of lateral interactions depending on the nucleotide states of tubulin and the temperature. Our work indicates that during the microtubule's dynamic cycle, tubulin undergoes various assembly states. These states, different from the straight microtubule, lend the highly dynamic and complicated behavior of microtubules. Our study of microtubule's interaction with certain kinetochore complexes suggests that the intermediate assemblies are responsible for specific mechanical forces that are required during the mitosis or meiosis. Our discoveries strongly suggest that a microtubule is a molecular machine rather than a simple cellular scaffold.

  7. Molecular mechanisms of Tau binding to microtubules and its role in microtubule dynamics in live cells.

    PubMed

    Breuzard, Gilles; Hubert, Pierre; Nouar, Roqiya; De Bessa, Tiphany; Devred, François; Barbier, Pascale; Sturgis, James N; Peyrot, Vincent

    2013-07-01

    Despite extensive studies, the molecular mechanisms of Tau binding to microtubules (MTs) and its consequences on MT stability still remain unclear. It is especially true in cells where the spatiotemporal distribution of Tau-MT interactions is unknown. Using Förster resonance energy transfer (FRET), we showed that the Tau-MT interaction was distributed along MTs in periodic hotspots of high and low FRET intensities. Fluorescence recovery after photobleaching (FRAP) revealed a two-phase exchange of Tau with MTs as a rapid diffusion followed by a slower binding phase. A real-time FRET assay showed that high FRET occurred simultaneously with rescue and pause transitions at MT ends. To further explore the functional interaction of Tau with MTs, the binding of paclitaxel (PTX), tubulin acetylation induced by trichostatin A (TSA), and the expression of non-acetylatable tubulin were used. With PTX and TSA, FRAP curves best fitted a single phase with a long time constant, whereas with non-acetylatable α-tubulin, curves best fitted a two phase recovery. Upon incubation with PTX and TSA, the number of high and low FRET hotspots decreased by up to 50% and no hotspot was observed during rescue and pause transitions. In the presence of non-acetylatable α-tubulin, a 34% increase in low FRET hotspots occurred, and our real-time FRET assay revealed that low FRET hotspots appeared with MTs recovering growth. In conclusion, we have identified, by FRET and FRAP, a discrete Tau-MT interaction, in which Tau could induce conformational changes of MTs, favoring recovery of MT self-assembly. PMID:23659998

  8. Photoswitchable Inhibitors of Microtubule Dynamics Optically Control Mitosis and Cell Death.

    PubMed

    Borowiak, Malgorzata; Nahaboo, Wallis; Reynders, Martin; Nekolla, Katharina; Jalinot, Pierre; Hasserodt, Jens; Rehberg, Markus; Delattre, Marie; Zahler, Stefan; Vollmar, Angelika; Trauner, Dirk; Thorn-Seshold, Oliver

    2015-07-16

    Small molecules that interfere with microtubule dynamics, such as Taxol and the Vinca alkaloids, are widely used in cell biology research and as clinical anticancer drugs. However, their activity cannot be restricted to specific target cells, which also causes severe side effects in chemotherapy. Here, we introduce the photostatins, inhibitors that can be switched on and off in vivo by visible light, to optically control microtubule dynamics. Photostatins modulate microtubule dynamics with a subsecond response time and control mitosis in living organisms with single-cell spatial precision. In longer-term applications in cell culture, photostatins are up to 250 times more cytotoxic when switched on with blue light than when kept in the dark. Therefore, photostatins are both valuable tools for cell biology, and are promising as a new class of precision chemotherapeutics whose toxicity may be spatiotemporally constrained using light. PMID:26165941

  9. Myosin-Va and dynamic actin oppose microtubules to drive long-range organelle transport.

    PubMed

    Evans, Richard D; Robinson, Christopher; Briggs, Deborah A; Tooth, David J; Ramalho, Jose S; Cantero, Marta; Montoliu, Lluis; Patel, Shyamal; Sviderskaya, Elena V; Hume, Alistair N

    2014-08-01

    In animal cells, microtubule and actin tracks and their associated motors (dynein, kinesin, and myosin) are thought to regulate long- and short-range transport, respectively. Consistent with this, microtubules extend from the perinuclear centrosome to the plasma membrane and allow bidirectional cargo transport over long distances (>1 μm). In contrast, actin often comprises a complex network of short randomly oriented filaments, suggesting that myosin motors move cargo short distances. These observations underpin the "highways and local roads" model for transport along microtubule and actin tracks. The "cooperative capture" model exemplifies this view and suggests that melanosome distribution in melanocyte dendrites is maintained by long-range transport on microtubules followed by actin/myosin-Va-dependent tethering. In this study, we used cell normalization technology to quantitatively examine the contribution of microtubules and actin/myosin-Va to organelle distribution in melanocytes. Surprisingly, our results indicate that microtubules are essential for centripetal, but not centrifugal, transport. Instead, we find that microtubules retard a centrifugal transport process that is dependent on myosin-Va and a population of dynamic F-actin. Functional analysis of mutant proteins indicates that myosin-Va works as a transporter dispersing melanosomes along actin tracks whose +/barbed ends are oriented toward the plasma membrane. Overall, our data highlight the role of myosin-Va and actin in transport, and not tethering, and suggest a new model in which organelle distribution is determined by the balance between microtubule-dependent centripetal and myosin-Va/actin-dependent centrifugal transport. These observations appear to be consistent with evidence coming from other systems showing that actin/myosin networks can drive long-distance organelle transport and positioning. PMID:25065759

  10. How the transition frequencies of microtubule dynamic instability (nucleation, catastrophe, and rescue) regulate microtubule dynamics in interphase and mitosis: analysis using a Monte Carlo computer simulation.

    PubMed Central

    Gliksman, N R; Skibbens, R V; Salmon, E D

    1993-01-01

    Microtubules (MTs) in newt mitotic spindles grow faster than MTs in the interphase cytoplasmic microtubule complex (CMTC), yet spindle MTs do not have the long lengths or lifetimes of the CMTC microtubules. Because MTs undergo dynamic instability, it is likely that changes in the durations of growth or shortening are responsible for this anomaly. We have used a Monte Carlo computer simulation to examine how changes in the number of MTs and changes in the catastrophe and rescue frequencies of dynamic instability may be responsible for the cell cycle dependent changes in MT characteristics. We used the computer simulations to model interphase-like or mitotic-like MT populations on the basis of the dynamic instability parameters available from newt lung epithelial cells in vivo. We started with parameters that produced MT populations similar to the interphase newt lung cell CMTC. In the simulation, increasing the number of MTs and either increasing the frequency of catastrophe or decreasing the frequency of rescue reproduced the changes in MT dynamics measured in vivo between interphase and mitosis. Images PMID:8298190

  11. Cooperative dynamics of microtubule ensembles: Polymerization forces and rescue-induced oscillations

    NASA Astrophysics Data System (ADS)

    Zelinski, Björn; Kierfeld, Jan

    2013-01-01

    We investigate the cooperative dynamics of an ensemble of N microtubules growing against an elastic barrier. Microtubules undergo so-called catastrophes, which are abrupt stochastic transitions from a growing to a shrinking state, and rescues, which are transitions back to the growing state. Microtubules can exert pushing or polymerization forces on an obstacle, such as an elastic barrier, if the growing end is in contact with the obstacle. We use dynamical mean-field theory and stochastic simulations to analyze a model where each microtubule undergoes catastrophes and rescues and where microtubules interact by force sharing. For zero rescue rate, cooperative growth terminates in a collective catastrophe. The maximal polymerization force before catastrophes grows linearly with N for small N or a stiff elastic barrier, in agreement with available experimental results, whereas it crosses over to a logarithmic dependence for larger N or a soft elastic barrier. For a nonzero rescue rate and a soft elastic barrier, the dynamics becomes oscillatory with both collective catastrophe and rescue events, which are part of a robust limit cycle. Both the average and maximal polymerization forces then grow linearly with N, and we investigate their dependence on tubulin on-rates and rescue rates, which can be involved in cellular regulation mechanisms. We further investigate the robustness of the collective catastrophe and rescue oscillations with respect to different catastrophe models.

  12. Effects of aging in catastrophe on the steady state and dynamics of a microtubule population

    NASA Astrophysics Data System (ADS)

    Jemseena, V.; Gopalakrishnan, Manoj

    2015-05-01

    Several independent observations have suggested that the catastrophe transition in microtubules is not a first-order process, as is usually assumed. Recent in vitro observations by Gardner et al. [M. K. Gardner et al., Cell 147, 1092 (2011), 10.1016/j.cell.2011.10.037] showed that microtubule catastrophe takes place via multiple steps and the frequency increases with the age of the filament. Here we investigate, via numerical simulations and mathematical calculations, some of the consequences of the age dependence of catastrophe on the dynamics of microtubules as a function of the aging rate, for two different models of aging: exponential growth, but saturating asymptotically, and purely linear growth. The boundary demarcating the steady-state and non-steady-state regimes in the dynamics is derived analytically in both cases. Numerical simulations, supported by analytical calculations in the linear model, show that aging leads to nonexponential length distributions in steady state. More importantly, oscillations ensue in microtubule length and velocity. The regularity of oscillations, as characterized by the negative dip in the autocorrelation function, is reduced by increasing the frequency of rescue events. Our study shows that the age dependence of catastrophe could function as an intrinsic mechanism to generate oscillatory dynamics in a microtubule population, distinct from hitherto identified ones.

  13. A direct interaction between fascin and microtubules contributes to adhesion dynamics and cell migration

    PubMed Central

    Villari, Giulia; Jayo, Asier; Zanet, Jennifer; Fitch, Briana; Serrels, Bryan; Frame, Margaret; Stramer, Brian M.; Goult, Benjamin T.; Parsons, Maddy

    2015-01-01

    ABSTRACT Fascin is an actin-binding and bundling protein that is highly upregulated in most epithelial cancers. Fascin promotes cell migration and adhesion dynamics in vitro and tumour cell metastasis in vivo. However, potential non-actin bundling roles for fascin remain unknown. Here, we show for the first time that fascin can directly interact with the microtubule cytoskeleton and that this does not depend upon fascin-actin bundling. Microtubule binding contributes to fascin-dependent control of focal adhesion dynamics and cell migration speed. We also show that fascin forms a complex with focal adhesion kinase (FAK, also known as PTK2) and Src, and that this signalling pathway lies downstream of fascin–microtubule association in the control of adhesion stability. These findings shed light on new non actin-dependent roles for fascin and might have implications for the design of therapies to target fascin in metastatic disease. PMID:26542021

  14. Dynamic instability 30 years later: complexities in microtubule growth and catastrophe

    PubMed Central

    Brouhard, Gary J.

    2015-01-01

    Microtubules are not like other polymers. Whereas polymers such as F-actin will grow continuously as long as the subunit concentration is high enough, a steadily growing microtubule can suddenly shrink even when there is ample αβ-tubulin around. This remarkable behavior was discovered in 1984 when Tim Mitchison and Marc Kirschner deduced that microtubules switch from growth to shrinkage when they lose their GTP caps. Here, I review the canonical explanation of dynamic instability that was fleshed out in the years after its discovery. Many aspects of this explanation have been recently subverted, particularly those related to how GTP-tubulin forms polymers and why GTP hydrolysis disrupts them. I describe these developments and speculate on how our explanation of dynamic instability can be changed to accommodate them. PMID:25823928

  15. Curcumin suppresses the dynamic instability of microtubules, activates the mitotic checkpoint and induces apoptosis in MCF-7 cells.

    PubMed

    Banerjee, Mithu; Singh, Parminder; Panda, Dulal

    2010-08-01

    In this study, curcumin, a potential anticancer agent, was found to dampen the dynamic instability of individual microtubules in living MCF-7 cells. It strongly reduced the rate and extent of shortening states, and modestly reduced the rate and extent of growing states. In addition, curcumin decreased the fraction of time microtubules spent in the growing state and strongly increased the time microtubules spent in the pause state. Brief treatment with curcumin depolymerized mitotic microtubules, perturbed microtubule-kinetochore attachment and disturbed the mitotic spindle structure. Curcumin also perturbed the localization of the kinesin protein Eg5 and induced monopolar spindle formation. Further, curcumin increased the accumulation of Mad2 and BubR1 at the kinetochores, indicating that it activated the mitotic checkpoint. In addition, curcumin treatment increased the metaphase/anaphase ratio, indicating that it can delay mitotic progression from the metaphase to anaphase. We provide evidence suggesting that the affected cells underwent apoptosis via the p53-dependent apoptotic pathway. The results support the idea that kinetic stabilization of microtubule dynamics assists in the nuclear translocation of p53. Curcumin exerted additive effects when combined with vinblastine, a microtubule depolymerizing drug, whereas the combination of curcumin with paclitaxel, a microtubule-stabilizing drug, produced an antagonistic effect on the inhibition of MCF-7 cell proliferation. The results together suggested that curcumin inhibited MCF-7 cell proliferation by inhibiting the assembly dynamics of microtubules. PMID:20646066

  16. Microtubule-dependent membrane dynamics in Ustilago maydis

    PubMed Central

    Göhre, Vera; Vollmeister, Evelyn; Bölker, Michael; Feldbrügge, Michael

    2012-01-01

    Long-distance trafficking of membranous structures along the cytoskeleton is crucial for secretion and endocytosis in eukaryotes. Molecular motors are transporting both secretory and endocytic vesicles along polarized microtubules. Here, we review the transport mechanism and biological function of a distinct subset of large vesicles marked by the G-protein Rab5a in the model microorganism Ustilago maydis. These Rab5a-positive endosomes shuttle bi-directionally along microtubules mediated by the Unc104/KIF1A-related motor Kin3 and dynein Dyn1/2. Rab5a-positive endosomes exhibit diverse functions during the life cycle of U. maydis. In haploid budding cells they are involved in cytokinesis and pheromone signaling. During filamentous growth endosomes are used for long-distance transport of mRNA, a prerequisite to maintain polarity most likely via local translation of specific proteins at both the apical and distal ends of filaments. Endosomal co-transport of mRNA constitutes a novel function of these membrane compartments supporting the view that endosomes function as multipurpose platforms. PMID:23181166

  17. Titanium dioxide nanoparticles alter cellular morphology via disturbing the microtubule dynamics

    NASA Astrophysics Data System (ADS)

    Mao, Zhilei; Xu, Bo; Ji, Xiaoli; Zhou, Kun; Zhang, Xuemei; Chen, Minjian; Han, Xiumei; Tang, Qiusha; Wang, Xinru; Xia, Yankai

    2015-04-01

    Titanium dioxide (TiO2) nanoparticles (NPs) have been widely used in our daily lives, for example, in the areas of sunscreens, cosmetics, toothpastes, food products, and nanomedical reagents. Recently, increasing concern has been raised about their neurotoxicity, but the mechanisms underlying such toxic effects are still unknown. In this work, we employed a human neuroblastoma cell line (SH-SY5Y) to study the effects of TiO2 NPs on neurological systems. Our results showed that TiO2 NPs did not affect cell viability but induced noticeable morphological changes until 100 μg ml-1. Immunofluorescence detection showed disorder, disruption, retraction, and decreased intensity of the microtubules after TiO2 NPs treatment. Both α and β tubule expressions did not change in the TiO2 NP-treated group, but the percentage of soluble tubules was increased. A microtubule dynamic study in living cells indicated that TiO2 NPs caused a lower growth rate and a higher shortening rate of microtubules as well as shortened lifetimes of de novo microtubules. TiO2 NPs did not cause changes in the expression and phosphorylation state of tau proteins, but a tau-TiO2 NP interaction was observed. TiO2 NPs could interact with tubule heterodimers, microtubules and tau proteins, which led to the instability of microtubules, thus contributing to the neurotoxicity of TiO2 NPs.Titanium dioxide (TiO2) nanoparticles (NPs) have been widely used in our daily lives, for example, in the areas of sunscreens, cosmetics, toothpastes, food products, and nanomedical reagents. Recently, increasing concern has been raised about their neurotoxicity, but the mechanisms underlying such toxic effects are still unknown. In this work, we employed a human neuroblastoma cell line (SH-SY5Y) to study the effects of TiO2 NPs on neurological systems. Our results showed that TiO2 NPs did not affect cell viability but induced noticeable morphological changes until 100 μg ml-1. Immunofluorescence detection showed disorder

  18. The dynamics of plus end polarization and microtubule assembly during Xenopus cortical rotation.

    PubMed

    Olson, David J; Oh, Denise; Houston, Douglas W

    2015-05-15

    The self-organization of dorsally-directed microtubules during cortical rotation in the Xenopus egg is essential for dorsal axis formation. The mechanisms controlling this process have been problematic to analyze, owing to difficulties in visualizing microtubules in living egg. Also, the order of events occurring at the onset of cortical rotation have not been satisfactorily visualized in vivo and have been inferred from staged fixed samples. To address these issues, we have characterized the dynamics of total microtubule and plus end behavior continuously throughout cortical rotation, as well as in oocytes and unfertilized eggs. Here, we show that the nascent microtubule network forms in the cortex but associates with the deep cytoplasm at the start of rotation. Importantly, plus ends remain cortical and become increasingly more numerous and active prior to rotation, with dorsal polarization occurring rapidly after the onset of rotation. Additionally, we show that vegetally localized Trim36 is required to attenuate dynamic plus end growth, suggesting that vegetal factors are needed to locally coordinate growth in the cortex. PMID:25753733

  19. NuSAP modulates the dynamics of kinetochore microtubules by attenuating MCAK depolymerisation activity

    PubMed Central

    Li, Chenyu; Zhang, Yajun; Yang, Qiaoyun; Ye, Fan; Sun, Stella Ying; Chen, Ee Sin; Liou, Yih-Cherng

    2016-01-01

    Nucleolar and spindle-associated protein (NuSAP) is a microtubule-associated protein that functions as a microtubule stabiliser. Depletion of NuSAP leads to severe mitotic defects, however the mechanism by which NuSAP regulates mitosis remains elusive. In this study, we identify the microtubule depolymeriser, mitotic centromere-associated kinesin (MCAK), as a novel binding partner of NuSAP. We show that NuSAP regulates the dynamics and depolymerisation activity of MCAK. Phosphorylation of MCAK by Aurora B kinase, a component of the chromosomal passenger complex, significantly enhances the interaction of NuSAP with MCAK and modulates the effects of NuSAP on the depolymerisation activity of MCAK. Our results reveal an underlying mechanism by which NuSAP controls kinetochore microtubule dynamics spatially and temporally by modulating the depolymerisation function of MCAK in an Aurora B kinase-dependent manner. Hence, this study provides new insights into the function of NuSAP in spindle formation during mitosis. PMID:26733216

  20. Microtubules regulate focal adhesion dynamics through MAP4K4.

    PubMed

    Yue, Jiping; Xie, Min; Gou, Xuewen; Lee, Philbert; Schneider, Michael D; Wu, Xiaoyang

    2014-12-01

    Disassembly of focal adhesions (FAs) allows cell retraction and integrin detachment from the extracellular matrix, processes critical for cell movement. Growth of microtubules (MTs) can promote FA turnover by serving as tracks to deliver proteins essential for FA disassembly. The molecular nature of this FA "disassembly factor," however, remains elusive. By quantitative proteomics, we identified mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4) as an FA regulator that associates with MTs. Knockout of MAP4K4 stabilizes FAs and impairs cell migration. By exploring underlying mechanisms, we further show that MAP4K4 associates with ending binding 2 (EB2) and IQ motif and SEC7 domain-containing protein 1 (IQSEC1), a guanine nucleotide exchange factor specific for Arf6, whose activation promotes integrin internalization. Together, our findings provide critical insight into FA disassembly, suggesting that MTs can deliver MAP4K4 toward FAs through EB2, where MAP4K4 can, in turn, activate Arf6 via IQSEC1 and enhance FA dissolution. PMID:25490267

  1. Microtubules Regulate Focal Adhesion Dynamics through MAP4K4

    PubMed Central

    Yue, Jiping; Xie, Min; Gou, Xuewen; Lee, Philbert; Schneider, Michael D; Wu, Xiaoyang

    2014-01-01

    Disassembly of focal adhesions (FAs) allows cell retraction and integrin detachment from the ECM, processes critical for cell movement. Growth of MT (microtubule) can promote FA turnover by serving as tracks to deliver proteins essential for FA disassembly. The molecular nature of this FA “disassembly factor”, however, remains elusive. By quantitative proteomics, we identified MAP4K4 (mitogen-activated protein kinase kinase kinase kinase 4) as a FA regulator that associates with MTs. Conditional knockout (cKO) of MAP4K4 in skin stabilizes FAs and impairs epidermal migration. By exploring underlying mechanisms, we further show that MAP4K4 associates with EB2, a MT binding protein, and IQSEC1, a guanine nucleotide exchange factor (GEF) specific for Arf6, whose activation promotes integrin internalization. Together, our findings provide critical insights into FA disassembly, suggesting that MTs can deliver MAP4K4 toward FAs through EB2, where MAP4K4 can in turn activate Arf6 via IQSEC1 and enhance FA dissolution. PMID:25490267

  2. Fast quasiadiabatic dynamics

    NASA Astrophysics Data System (ADS)

    Martínez-Garaot, S.; Ruschhaupt, A.; Gillet, J.; Busch, Th.; Muga, J. G.

    2015-10-01

    We work out the theory and applications of a fast quasiadiabatic approach to speed up slow adiabatic manipulations of quantum systems by driving a control parameter as near to the adiabatic limit as possible over the entire protocol duration. We find characteristic time scales, such as the minimal time to achieve fidelity 1, and the optimality of the approach within the iterative superadiabatic sequence. Specifically, we show that the population inversion in a two-level system, the splitting and cotunneling of two-interacting bosons, and the stirring of a Tonks-Girardeau gas on a ring to achieve mesoscopic superpositions of many-body rotating and nonrotating states can be significantly speeded up.

  3. Human chromokinesins promote chromosome congression and spindle microtubule dynamics during mitosis

    PubMed Central

    Wandke, Cornelia; Barisic, Marin; Sigl, Reinhard; Rauch, Veronika; Wolf, Frank; Amaro, Ana C.; Tan, Chia H.; Pereira, Antonio J.; Kutay, Ulrike; Maiato, Helder; Meraldi, Patrick

    2012-01-01

    Chromokinesins are microtubule plus end–directed motor proteins that bind to chromosome arms. In Xenopus egg cell-free extracts, Xkid and Xklp1 are essential for bipolar spindle formation but the functions of the human homologues, hKID (KIF22) and KIF4A, are poorly understood. By using RNAi-mediated protein knockdown in human cells, we find that only co-depletion delayed progression through mitosis in a Mad2-dependent manner. Depletion of hKID caused abnormal chromosome arm orientation, delayed chromosome congression, and sensitized cells to nocodazole. Knockdown of KIF4A increased the number and length of microtubules, altered kinetochore oscillations, and decreased kinetochore microtubule flux. These changes were associated with failures in establishing a tight metaphase plate and an increase in anaphase lagging chromosomes. Co-depletion of both chromokinesins aggravated chromosome attachment failures, which led to mitotic arrest. Thus, hKID and KIF4A contribute independently to the rapid and correct attachment of chromosomes by controlling the positioning of chromosome arms and the dynamics of microtubules, respectively. PMID:22945934

  4. AKAP9, a Regulator of Microtubule Dynamics, Contributes to Blood-Testis Barrier Function.

    PubMed

    Venkatesh, Deepak; Mruk, Dolores; Herter, Jan M; Cullere, Xavier; Chojnacka, Katarzyna; Cheng, C Yan; Mayadas, Tanya N

    2016-02-01

    The blood-testis barrier (BTB), formed between adjacent Sertoli cells, undergoes extensive remodeling to facilitate the transport of preleptotene spermatocytes across the barrier from the basal to apical compartments of the seminiferous tubules for further development and maturation into spermatozoa. The actin cytoskeleton serves unique structural and supporting roles in this process, but little is known about the role of microtubules and their regulators during BTB restructuring. The large isoform of the cAMP-responsive scaffold protein AKAP9 regulates microtubule dynamics and nucleation at the Golgi. We found that conditional deletion of Akap9 in mice after the initial formation of the BTB at puberty leads to infertility. Akap9 deletion results in marked alterations in the organization of microtubules in Sertoli cells and a loss of barrier integrity despite a relatively intact, albeit more apically localized F-actin and BTB tight junctional proteins. These changes are accompanied by a loss of haploid spermatids due to impeded meiosis. The barrier, however, progressively reseals in older Akap9 null mice, which correlates with a reduction in germ cell apoptosis and a greater incidence of meiosis. However, spermiogenesis remains defective, suggesting additional roles for AKAP9 in this process. Together, our data suggest that AKAP9 and, by inference, the regulation of the microtubule network are critical for BTB function and subsequent germ cell development during spermatogenesis. PMID:26687990

  5. Human chromokinesins promote chromosome congression and spindle microtubule dynamics during mitosis.

    PubMed

    Wandke, Cornelia; Barisic, Marin; Sigl, Reinhard; Rauch, Veronika; Wolf, Frank; Amaro, Ana C; Tan, Chia H; Pereira, Antonio J; Kutay, Ulrike; Maiato, Helder; Meraldi, Patrick; Geley, Stephan

    2012-09-01

    Chromokinesins are microtubule plus end-directed motor proteins that bind to chromosome arms. In Xenopus egg cell-free extracts, Xkid and Xklp1 are essential for bipolar spindle formation but the functions of the human homologues, hKID (KIF22) and KIF4A, are poorly understood. By using RNAi-mediated protein knockdown in human cells, we find that only co-depletion delayed progression through mitosis in a Mad2-dependent manner. Depletion of hKID caused abnormal chromosome arm orientation, delayed chromosome congression, and sensitized cells to nocodazole. Knockdown of KIF4A increased the number and length of microtubules, altered kinetochore oscillations, and decreased kinetochore microtubule flux. These changes were associated with failures in establishing a tight metaphase plate and an increase in anaphase lagging chromosomes. Co-depletion of both chromokinesins aggravated chromosome attachment failures, which led to mitotic arrest. Thus, hKID and KIF4A contribute independently to the rapid and correct attachment of chromosomes by controlling the positioning of chromosome arms and the dynamics of microtubules, respectively. PMID:22945934

  6. ADP ribosylation factor like 2 (Arl2) protein influences microtubule dynamics in breast cancer cells

    SciTech Connect

    Beghin, Anne . E-mail: anne.beghin@recherche.univ-lyon1.fr; Honore, Stephane; Messana, Celine; Matera, Eva-Laure; Aim, Jennifer; Burlinchon, Sandrine; Braguer, Diane; Dumontet, Charles

    2007-02-01

    ADP ribosylation factor like 2 (Arl2) protein is involved in the folding of tubulin peptides. Variants of the human adenocarcinoma line MCF7 cells with increased or reduced content of Arl2 protein were produced and characterized. Western blot analysis performed after separation of the different fractions of tubulins showed that the content in polymerizable soluble heterodimers was significantly increased in cells with the highest Arl2 expression level (MA+) and reduced in cells with the lowest Arl2 expression level (MA-) in comparison to control cells (MP). Microtubule dynamic instability, measured after microinjection of rhodamine-labelled tubulin in living cells, was significantly enhanced in MA+ cells and reduced in MA- cells. These alterations involved modifications of the microtubule growth and shortening rates, duration of attenuation phases, percentage of time spent in each phase (growth, shortening and attenuation) and catastrophe frequency. We also observed modifications in the expression level of the tumor suppressor protein phosphatase 2Ac, which has been shown to form a complex with Arl2. Finally, cell cycle progression was modified in these cells, particularly in regard to duration of telophase. In summary, alterations in Arl2 protein content were found to be associated with modifications in tubulin pools, microtubule dynamics as well as cell cycle progression.

  7. Mechanistic Origin of Microtubule Dynamic Instability and Its Modulation by EB Proteins.

    PubMed

    Zhang, Rui; Alushin, Gregory M; Brown, Alan; Nogales, Eva

    2015-08-13

    Microtubule (MT) dynamic instability is driven by GTP hydrolysis and regulated by microtubule-associated proteins, including the plus-end tracking end-binding protein (EB) family. We report six cryo-electron microscopy (cryo-EM) structures of MTs, at 3.5 Å or better resolution, bound to GMPCPP, GTPγS, or GDP, either decorated with kinesin motor domain after polymerization or copolymerized with EB3. Subtle changes around the E-site nucleotide during hydrolysis trigger conformational changes in α-tubulin around an "anchor point," leading to global lattice rearrangements and strain generation. Unlike the extended lattice of the GMPCPP-MT, the EB3-bound GTPγS-MT has a compacted lattice that differs in lattice twist from that of the also compacted GDP-MT. These results and the observation that EB3 promotes rapid hydrolysis of GMPCPP suggest that EB proteins modulate structural transitions at growing MT ends by recognizing and promoting an intermediate state generated during GTP hydrolysis. Our findings explain both EBs end-tracking behavior and their effect on microtubule dynamics. PMID:26234155

  8. The Kinesin KIF1C and Microtubule Plus Ends Regulate Podosome Dynamics in Macrophages

    PubMed Central

    Kopp, Petra; Lammers, Reiner; Aepfelbacher, Martin; Woehlke, Günther; Rudel, Thomas; Machuy, Nikolaus; Steffen, Walter

    2006-01-01

    Microtubules are important for the turnover of podosomes, dynamic, actin-rich adhesions implicated in migration and invasion of monocytic cells. The molecular basis for this functional dependency, however, remained unclear. Here, we show that contact by microtubule plus ends critically influences the cellular fate of podosomes in primary human macrophages. In particular, we identify the kinesin KIF1C, a member of the Kinesin-3 family, as a plus-end–enriched motor that targets regions of podosome turnover. Expression of mutation constructs or small interfering RNA-/short hairpin RNA-based depletion of KIF1C resulted in decreased podosome dynamics and ultimately in podosome deficiency. Importantly, protein interaction studies showed that KIF1C binds to nonmuscle myosin IIA via its PTPD-binding domain, thus providing an interface between the actin and tubulin cytoskeletons, which may facilitate the subcellular targeting of podosomes by microtubules. This is the first report to implicate a kinesin in podosome regulation and also the first to describe a function for KIF1C in human cells. PMID:16554367

  9. Enhanced dynamic instability of microtubules in a ROS free inert environment.

    PubMed

    Islam, Md Sirajul; Kabir, Arif Md Rashedul; Inoue, Daisuke; Sada, Kazuki; Kakugo, Akira

    2016-04-01

    Reactive oxygen species (ROS), one of the regulators in various biological processes, have recently been suspected to modulate microtubule (MT) dynamics in cells. However due to complicated cellular environment and unavailability of any in vitro investigation, no detail is understood yet. Here, by performing simple in vitro investigations, we have unveiled the effect of ROS on MT dynamics. By studying dynamic instability of MTs in a ROS free environment and comparing with that in the presence of ROS, we disclosed that MTs showed enhanced dynamics in the ROS free environment. All the parameters that define dynamic instability of MTs e.g., growth and shrinkage rates, rescue and catastrophe frequencies were significantly affected by the presence of ROS. This work clearly reveals the role of ROS in modulating MT dynamics in vitro, and would be a great help in understanding the role of ROS in regulation of MT dynamics in cells. PMID:26774598

  10. The Dynamics of Microtubule/Motor-Protein Assemblies in Biology and Physics

    NASA Astrophysics Data System (ADS)

    Shelley, Michael J.

    2016-01-01

    Many important processes in the cell are mediated by stiff microtubule polymers and the active motor proteins moving on them. This includes the transport of subcellular structures (nuclei, chromosomes, organelles) and the self-assembly and positioning of the mitotic spindle. Little is understood of these processes, but they present fascinating problems in fluid-structure interactions. Microtubules and motor proteins are also the building blocks of new biosynthetic active suspensions driven by motor-protein activity. These reduced systems can be probed—and modeled—more easily than can the fully biological ones and demonstrate their own aspects of self-assembly and complex dynamics. I review recent work modeling such systems as fluid-structure interaction problems and as multiscale complex fluids.

  11. Mechanism of dynamic reorientation of cortical microtubules due to mechanical stress.

    PubMed

    Muratov, Alexander; Baulin, Vladimir A

    2015-12-01

    Directional growth caused by gravitropism and corresponding bending of plant cells has been explored since 19th century, however, many aspects of mechanisms underlying the perception of gravity at the molecular level are still not well known. Perception of gravity in root and shoot gravitropisms is usually attributed to gravisensitive cells, called statocytes, which exploit sedimentation of macroscopic and heavy organelles, amyloplasts, to sense the direction of gravity. Gravity stimulus is then transduced into distal elongation zone, which is several mm far from statocytes, where it causes stretching. It is suggested that gravity stimulus is conveyed by gradients in auxin flux. We propose a theoretical model that may explain how concentration gradients and/or stretching may indirectly affect the global orientation of cortical microtubules, attached to the cell membrane and induce their dynamic reorientation perpendicular to the gradients. In turn, oriented microtubule arrays direct the growth and orientation of cellulose microfibrils, forming part of the cell external skeleton and determine the shape of the cell. Reorientation of microtubules is also observed in reaction to light in phototropism and mechanical bending, thus suggesting universality of the proposed mechanism. PMID:26422460

  12. Tank binding kinase 1 is a centrosome-associated kinase necessary for microtubule dynamics and mitosis

    PubMed Central

    Pillai, Smitha; Nguyen, Jonathan; Johnson, Joseph; Haura, Eric; Coppola, Domenico; Chellappan, Srikumar

    2015-01-01

    TANK Binding Kinase 1 (TBK1) is a non-canonical IκB kinase that contributes to KRAS-driven lung cancer. Here we report that TBK1 plays essential roles in mammalian cell division. Specifically, levels of active phospho-TBK1 increase during mitosis and localize to centrosomes, mitotic spindles and midbody, and selective inhibition or silencing of TBK1 triggers defects in spindle assembly and prevents mitotic progression. TBK1 binds to the centrosomal protein CEP170 and to the mitotic apparatus protein NuMA, and both CEP170 and NuMA are TBK1 substrates. Further, TBK1 is necessary for CEP170 centrosomal localization and binding to the microtubule depolymerase Kif2b, and for NuMA binding to dynein. Finally, selective disruption of the TBK1–CEP170 complex augments microtubule stability and triggers defects in mitosis, suggesting that TBK1 functions as a mitotic kinase necessary for microtubule dynamics and mitosis. PMID:26656453

  13. A model for the regulatory network controlling the dynamics of kinetochore microtubule plus-ends and poleward flux in metaphase

    PubMed Central

    Fernandez, Nicolas; Chang, Qiang; Buster, Daniel W.; Sharp, David J.; Ma, Ao

    2009-01-01

    Tight regulation of kinetochore microtubule dynamics is required to generate the appropriate position and movement of chromosomes on the mitotic spindle. A widely studied but mysterious aspect of this regulation occurs during metaphase when polymerization of kinetochore microtubule plus-ends is balanced by depolymerization at their minus-ends. Thus, kinetochore microtubules maintain a constant net length, allowing chromosomes to persist at the spindle equator, but consist of tubulin subunits that continually flux toward spindle poles. Here, we construct a feasible network of regulatory proteins for controlling kinetochore microtubule plus-end dynamics, which was combined with a Monte Carlo algorithm to simulate metaphase tubulin flux. We also test the network model by combining it with a force-balancing model explicitly taking force generators into account. Our data reveal how relatively simple interrelationships among proteins that stimulate microtubule plus-end polymerization, depolymerization, and dynamicity can induce robust flux while accurately predicting apparently contradictory results of knockdown experiments. The model also provides a simple and robust physical mechanism through which the regulatory networks at kinetochore microtubule plus- and minus-ends could communicate. PMID:19416899

  14. Regulation of Microtubule Dynamics in Axon Regeneration: Insights from C. elegans

    PubMed Central

    Tang, Ngang Heok; Chisholm, Andrew D.

    2016-01-01

    The capacity of an axon to regenerate is regulated by its external environment and by cell-intrinsic factors. Studies in a variety of organisms suggest that alterations in axonal microtubule (MT) dynamics have potent effects on axon regeneration. We review recent findings on the regulation of MT dynamics during axon regeneration, focusing on the nematode Caenorhabditis elegans. In C. elegans the dual leucine zipper kinase (DLK) promotes axon regeneration, whereas the exchange factor for Arf6 (EFA-6) inhibits axon regeneration. Both DLK and EFA-6 respond to injury and control axon regeneration in part via MT dynamics. How the DLK and EFA-6 pathways are related is a topic of active investigation, as is the mechanism by which EFA-6 responds to axonal injury. We evaluate potential candidates, such as the MT affinity-regulating kinase PAR-1/MARK, in regulation of EFA-6 and axonal MT dynamics in regeneration. PMID:27350865

  15. The linear and rotational motions of the fission yeast nucleus are governed by the stochastic dynamics of spatially distributed microtubules.

    PubMed

    Hui, Tsz Hin; Zheng, Fan; Lin, Yuan; Fu, Chuanhai

    2016-05-01

    Dynamic nuclei are involved in a wide variety of fundamental biological processes including cell migration, cell division and fertilization. Here, we develop a mathematical model, in combination with live-cell imaging at high temporal resolution, to quantitatively elucidate how the linear and rotational motions of the nucleus are governed by the stochastic dynamics of the microtubule cytoskeleton. Our simulation and experimental results demonstrate that microtubule rescue and catastrophe frequencies are the decisive factors in regulating the nuclear movement. Lower rescue and catastrophe frequencies can lead to significantly larger angular and translational oscillations of the nucleus. In addition, our model also suggests that the stochastic dynamics of individual spatially distributed microtubules works collectively as a restoring force to maintain nuclear centering and hence ensures symmetric cell division, in excellent agreement with direct experimental observations. PMID:26921917

  16. Dynamic model of the force driving kinesin to move along microtubule-Simulation with a model system

    NASA Astrophysics Data System (ADS)

    Chou, Y. C.; Hsiao, Yi-Feng; To, Kiwing

    2015-09-01

    A dynamic model for the motility of kinesin, including stochastic-force generation and step formation is proposed. The force driving the motion of kinesin motor is generated by the impulse from the collision between the randomly moving long-chain stalk and the ratchet-shaped outer surface of microtubule. Most of the dynamical and statistical features of the motility of kinesin are reproduced in a simulation system, with (a) ratchet structures similar to the outer surface of microtubule, (b) a bead chain connected to two heads, similarly to the stalk of the real kinesin motor, and (c) the interaction between the heads of the simulated kinesin and microtubule. We also propose an experiment to discriminate between the conventional hand-over-hand model and the dynamic model.

  17. Models for microtubule cargo transport coupling the Langevin equation to stochastic stepping motor dynamics: Caring about fluctuations.

    PubMed

    Bouzat, Sebastián

    2016-01-01

    One-dimensional models coupling a Langevin equation for the cargo position to stochastic stepping dynamics for the motors constitute a relevant framework for analyzing multiple-motor microtubule transport. In this work we explore the consistence of these models focusing on the effects of the thermal noise. We study how to define consistent stepping and detachment rates for the motors as functions of the local forces acting on them in such a way that the cargo velocity and run-time match previously specified functions of the external load, which are set on the base of experimental results. We show that due to the influence of the thermal fluctuations this is not a trivial problem, even for the single-motor case. As a solution, we propose a motor stepping dynamics which considers memory on the motor force. This model leads to better results for single-motor transport than the approaches previously considered in the literature. Moreover, it gives a much better prediction for the stall force of the two-motor case, highly compatible with the experimental findings. We also analyze the fast fluctuations of the cargo position and the influence of the viscosity, comparing the proposed model to the standard one, and we show how the differences on the single-motor dynamics propagate to the multiple motor situations. Finally, we find that the one-dimensional character of the models impede an appropriate description of the fast fluctuations of the cargo position at small loads. We show how this problem can be solved by considering two-dimensional models. PMID:26871095

  18. Models for microtubule cargo transport coupling the Langevin equation to stochastic stepping motor dynamics: Caring about fluctuations

    NASA Astrophysics Data System (ADS)

    Bouzat, Sebastián

    2016-01-01

    One-dimensional models coupling a Langevin equation for the cargo position to stochastic stepping dynamics for the motors constitute a relevant framework for analyzing multiple-motor microtubule transport. In this work we explore the consistence of these models focusing on the effects of the thermal noise. We study how to define consistent stepping and detachment rates for the motors as functions of the local forces acting on them in such a way that the cargo velocity and run-time match previously specified functions of the external load, which are set on the base of experimental results. We show that due to the influence of the thermal fluctuations this is not a trivial problem, even for the single-motor case. As a solution, we propose a motor stepping dynamics which considers memory on the motor force. This model leads to better results for single-motor transport than the approaches previously considered in the literature. Moreover, it gives a much better prediction for the stall force of the two-motor case, highly compatible with the experimental findings. We also analyze the fast fluctuations of the cargo position and the influence of the viscosity, comparing the proposed model to the standard one, and we show how the differences on the single-motor dynamics propagate to the multiple motor situations. Finally, we find that the one-dimensional character of the models impede an appropriate description of the fast fluctuations of the cargo position at small loads. We show how this problem can be solved by considering two-dimensional models.

  19. Site-specific phosphorylation and microtubule dynamics control Pyrin inflammasome activation.

    PubMed

    Gao, Wenqing; Yang, Jieling; Liu, Wang; Wang, Yupeng; Shao, Feng

    2016-08-16

    Pyrin, encoded by the MEFV gene, is best known for its gain-of-function mutations causing familial Mediterranean fever (FMF), an autoinflammatory disease. Pyrin forms a caspase-1-activating inflammasome in response to inactivating modifications of Rho GTPases by various bacterial toxins or effectors. Pyrin-mediated innate immunity is unique in that it senses bacterial virulence rather than microbial molecules, but its mechanism of activation is unknown. Here we show that Pyrin was phosphorylated in bone marrow-derived macrophages and dendritic cells. We identified Ser-205 and Ser-241 in mouse Pyrin whose phosphorylation resulted in inhibitory binding by cellular 14-3-3 proteins. The two serines underwent dephosphorylation upon toxin stimulation or bacterial infection, triggering 14-3-3 dissociation, which correlated with Pyrin inflammasome activation. We developed antibodies specific for phosphorylated Ser-205 and Ser-241, which confirmed the stimuli-induced dephosphorylation of endogenous Pyrin. Mutational analyses indicated that both phosphorylation and signal-induced dephosphorylation of Ser-205/241 are important for Pyrin activation. Moreover, microtubule drugs, including colchicine, commonly used to treat FMF, effectively blocked activation of the Pyrin inflammasome. These drugs did not affect Pyrin dephosphorylation and 14-3-3 dissociation but inhibited Pyrin-mediated apoptosis-associated Speck-like protein containing CARD (ASC) aggregation. Our study reveals that site-specific (de)phosphorylation and microtubule dynamics critically control Pyrin inflammasome activation, illustrating a fine and complex mechanism in cytosolic immunity. PMID:27482109

  20. Human TUBB3 mutations perturb microtubule dynamics, kinesin interactions, and axon guidance

    PubMed Central

    Tischfield, Max A.; Baris, Hagit N.; Wu, Chen; Rudolph, Guenther; Van Maldergem, Lionel; He, Wei; Chan, Wai-Man; Andrews, Caroline; Demer, Joseph L.; Robertson, Richard L.; Mackey, David A.; Ruddle, Jonathan B.; Bird, Thomas D.; Gottlob, Irene; Pieh, Christina; Traboulsi, Elias I.; Pomeroy, Scott L.; Hunter, David G.; Soul, Janet S.; Newlin, Anna; Sabol, Louise J.; Doherty, Edward J.; de Uzcátegui, Clara E.; de Uzcátegui, Nicolas; Collins, Mary Louise Z.; Sener, Emin C.; Wabbels, Bettina; Hellebrand, Heide; Meitinger, Thomas; de Berardinis, Teresa; Magli, Adriano; Schiavi, Costantino; Pastore-Trossello, Marco; Koc, Feray; Wong, Agnes M.; Levin, Alex V.; Geraghty, Michael T.; Descartes, Maria; Flaherty, Maree; Jamieson, Robyn V.; Møller, H. U.; Meuthen, Ingo; Callen, David F.; Kerwin, Janet; Lindsay, Susan; Meindl, Alfons; Gupta, Mohan L.; Pellman, David; Engle, Elizabeth C.

    2011-01-01

    We report that eight heterozygous missense mutations in TUBB3, encoding the neuron-specific β-tubulin isotype III, result in a spectrum of human nervous system disorders we now call the TUBB3 syndromes. Each mutation causes the ocular motility disorder CFEOM3, whereas some also result in intellectual and behavioral impairments, facial paralysis, and/or later-onset axonal sensorimotor polyneuropathy. Neuroimaging reveals a spectrum of abnormalities including hypoplasia of oculomotor nerves, and dysgenesis of the corpus callosum, anterior commissure, and corticospinal tracts. A knock-in disease mouse model reveals axon guidance defects without evidence of cortical cell migration abnormalities. We show the disease-associated mutations can impair tubulin heterodimer formation in vitro, although folded mutant heterodimers can still polymerize into microtubules. Modeling each mutation in yeast tubulin demonstrates that all alter dynamic instability whereas a subset disrupts the interaction of microtubules with kinesin motors. These findings demonstrate normal TUBB3 is required for axon guidance and maintenance in mammals. PMID:20074521

  1. The complex dynamic network of microtubule and microfilament cytasters of the leech zygote.

    PubMed

    Cantillana, V; Urrutia, M; Ubilla, A; Fernández, J

    2000-12-01

    The organization of the cytoskeleton in the early first interphase zygote and its involvement in organelle redistribution were studied in the glossiphoniid leech Theromyzon trizonare by confocal and electron microscopy, immunofluorescence, and time-lapse video imaging after microinjection of labeled tubulin and/or actin and loading with a mitotracker. The cytoskeleton consists of an inner or endoplasmic and an outer or ectoplasmic domain. The inner domain consists of a monaster whose fibers retract from the zygote periphery by the end of the early first interphase. The outer domain is built upon a network of microtubules and microfilaments cytasters. Short pulses of microinjected labeled actin or tubulin and Taxol treatment demonstrate that cytasters are centers of microtubule and microfilament nucleation. Immunostaining with anti-centrophilin, anti-BX-63, and anti-AH-6 indicates that the network of cytasters includes centrosomal antigens. Cytasters move in an orderly fashion at speeds of 0.5-2 micrometer/min, in an energy-dependent process retarded and finally blocked by the ATP analogue AMP-PNP and high concentrations of Taxol. Colliding cytasters fuse and form larger cytoskeletal nucleation centers. The leech zygote is a highly compartmentalized cell whose cytasters function as articulated components of a very dynamic cytoskeletal system engaged in bulk transportation of organelles during ooplasmic segregation. PMID:11087633

  2. Dissecting EB1-microtubule interactions from every direction: using single-molecule visualization and static and dynamic binding measurements

    NASA Astrophysics Data System (ADS)

    Lopez, Benjamin

    2015-03-01

    EB1 is an important microtubule associating protein (MAP) that acts as a master coordinator of protein activity at the growing plus-end of the microtubule. We can recapitulate the plus-end binding behavior of EB1 along the entire length of a static microtubule using microtubules polymerized in the presence of the nonhydrolyzable GTP analogs GMPCPP and GTP γS instead of GTP. Through the use of single-molecule TIRF imaging we find that EB1 is highly dynamic (with a sub-second characteristic binding lifetime) and continuously diffusive while bound to the microtubule. We measure the diffusion coefficient, D, through linear fitting to mean-squared displacement of individually labeled proteins, and the binding lifetime, τ, by fitting a single exponential decay to the probability distribution of trajectory lifetimes. In agreement with measurements of other diffusive MAPs, we find that D increases and τ decreases with increasing ionic strength. We also find that D is sensitive to the choice of GTP analog: EB1 proteins bound to GTP γS polymerized microtubules have a D half of that found with GMPCPP polymerized microtubules. To compare these single-molecule measurements to the bulk binding behavior of EB1, we use TIRF imaging to measure the intensity of microtubules coated with EB1-GFP as a function of EB1 concentration. We find that EB1 binding is cooperative and both the quantity of EB1 bound and the dissociation constant are sensitive to GTP analog and ionic concentration. The correlation between binding affinity and D and the cooperative nature of EB1-microtubule binding leads to a decrease in D with increasing EB1 concentration. Interestingly, we also find an increase in τ at high EB1 concentrations, consistent with attractive EB1-microtubule interactions driving the cooperativity. To further understand the nature of the cooperativity we estimate the interaction energy by measuring the association and dissociation rates (kon and koff respectively) at different

  3. An agent-based model contrasts opposite effects of dynamic and stable microtubules on cleavage furrow positioning

    PubMed Central

    Odell, Garrett M.; Foe, Victoria E.

    2008-01-01

    From experiments by Foe and von Dassow (Foe, V.E., and G. von Dassow. 2008. J. Cell Biol. 183:457–470) and others, we infer a molecular mechanism for positioning the cleavage furrow during cytokinesis. Computer simulations reveal how this mechanism depends on quantitative motor-behavior details and explore how robustly this mechanism succeeds across a range of cell sizes. The mechanism involves the MKLP1 (kinesin-6) component of centralspindlin binding to and walking along microtubules to stimulate cortical contractility where the centralspindlin complex concentrates. The majority of astral microtubules are dynamically unstable. They bind most MKLP1 and suppress cortical Rho/myosin II activation because the tips of unstable microtubules usually depolymerize before MKLP1s reach the cortex. A subset of astral microtubules stabilizes during anaphase, becoming effective rails along which MKLP1 can actually reach the cortex. Because stabilized microtubules aim statistically at the equatorial spindle midplane, that is where centralspindlin accumulates to stimulate furrow formation. PMID:18955556

  4. Dynamic assembly of polymer nanotube networks via kinesin powered microtubule filaments

    NASA Astrophysics Data System (ADS)

    Paxton, Walter F.; Bouxsein, Nathan F.; Henderson, Ian M.; Gomez, Andrew; Bachand, George D.

    2015-06-01

    We describe for the first time how biological nanomotors may be used to actively self-assemble mesoscale networks composed of diblock copolymer nanotubes. The collective force generated by multiple kinesin nanomotors acting on a microtubule filament is large enough to overcome the energy barrier required to extract nanotubes from polymer vesicles comprised of poly(ethylene oxide-b-butadiene) in spite of the higher force requirements relative to extracting nanotubes from lipid vesicles. Nevertheless, large-scale polymer networks were dynamically assembled by the motors. These networks displayed enhanced robustness, persisting more than 24 h post-assembly (compared to 4-5 h for corresponding lipid networks). The transport of materials in and on the polymer membranes differs substantially from the transport on analogous lipid networks. Specifically, our data suggest that polymer mobility in nanotubular structures is considerably different from planar or 3D structures, and is stunted by 1D confinement of the polymer subunits. Moreover, quantum dots adsorbed onto polymer nanotubes are completely immobile, which is related to this 1D confinement effect and is in stark contrast to the highly fluid transport observed on lipid tubules.We describe for the first time how biological nanomotors may be used to actively self-assemble mesoscale networks composed of diblock copolymer nanotubes. The collective force generated by multiple kinesin nanomotors acting on a microtubule filament is large enough to overcome the energy barrier required to extract nanotubes from polymer vesicles comprised of poly(ethylene oxide-b-butadiene) in spite of the higher force requirements relative to extracting nanotubes from lipid vesicles. Nevertheless, large-scale polymer networks were dynamically assembled by the motors. These networks displayed enhanced robustness, persisting more than 24 h post-assembly (compared to 4-5 h for corresponding lipid networks). The transport of materials in and on

  5. Using plusTipTracker software to measure microtubule dynamics in Xenopus laevis growth cones.

    PubMed

    Stout, Alina; D'Amico, Salvatore; Enzenbacher, Tiffany; Ebbert, Patrick; Lowery, Laura Anne

    2014-01-01

    Microtubule (MT) plus-end-tracking proteins (+TIPs) localize to the growing plus-ends of MTs and regulate MT dynamics(1,2). One of the most well-known and widely-utilized +TIPs for analyzing MT dynamics is the End-Binding protein, EB1, which binds all growing MT plus-ends, and thus, is a marker for MT polymerization(1). Many studies of EB1 behavior within growth cones have used time-consuming and biased computer-assisted, hand-tracking methods to analyze individual MTs(1-3). Our approach is to quantify global parameters of MT dynamics using the software package, plusTipTracker(4), following the acquisition of high-resolution, live images of tagged EB1 in cultured embryonic growth cones(5). This software is a MATLAB-based, open-source, user-friendly package that combines automated detection, tracking, visualization, and analysis for movies of fluorescently-labeled +TIPs. Here, we present the protocol for using plusTipTracker for the analysis of fluorescently-labeled +TIP comets in cultured Xenopus laevis growth cones. However, this software can also be used to characterize MT dynamics in various cell types(6-8). PMID:25225829

  6. Using plusTipTracker software to measure microtubule dynamics in Xenopus laevis growth cones

    PubMed Central

    Stout, Alina; D’Amico, Salvatore; Enzenbacher, Tiffany; Ebbert, Patrick; Lowery, Laura Anne

    2014-01-01

    Microtubule (MT) plus-end-tracking proteins (+TIPs) localize to the growing plus-ends of MTs and regulate MT dynamics1,2. One of the most well-known and widely-utilized +TIPs for analyzing MT dynamics is the End-Binding protein, EB1, which binds all growing MT plus-ends, and thus, is a marker for MT polymerization1. Many studies of EB1 behavior within growth cones have used time-consuming and biased computer-assisted, hand-tracking methods to analyze individual MTs1-3. Our approach is to quantify global parameters of MT dynamics using the software package, plusTipTracker4, following the acquisition of high-resolution, live images of tagged EB1 in cultured embryonic growth cones5. This software is a Matlab-based, open-source, user-friendly package that combines automated detection, tracking, visualization, and analysis for movies of fluorescently-labeled +TIPs. Here, we present the protocol for using plusTipTracker for the analysis of fluorescently-labeled +TIP comets in cultured Xenopus laevis growth cones. However, this software can also be used to characterize MT dynamics in various cell types6-8. PMID:25225829

  7. Micropatterning microtubules.

    PubMed

    Portran, Didier

    2014-01-01

    The following protocol describes a method to control the orientation and polarity of polymerizing microtubules (MTs). Reconstitution of specific geometries of dynamic MT networks is achieved using a ultraviolet (UV) micropatterning technique in combination with stabilized MT microseeds. The process is described in three main parts. First, the surface is passivated to avoid the non-specific absorption of proteins, using different polyethylene glycol (PEG)-based surface treatment. Second, specific adhesive surfaces (the micropatterns) are imprinted through a photomask using deep UVs. Lastly, MT microseeds are adhered to the micropatterns followed by MT polymerization. PMID:24484656

  8. Formin-Dependent Synaptic Growth; Evidence that Dlar Signals via Diaphanous to Modulate Synaptic Actin and Dynamic Pioneer Microtubules

    PubMed Central

    Pawson, Catherine; Eaton, Benjamin A.; Davis, Graeme W.

    2008-01-01

    The diaphanous gene is the founding member of a family of Diaphanous Related Formin proteins (DRF). We identified diaphanous in a screen for genes that are necessary for the normal growth and stabilization of the Drosophila neuromuscular junction (NMJ). Here we demonstrate that diaphanous mutations perturb synaptic growth at the NMJ. Diaphanous protein is present both pre- and postsynaptically. However, genetic rescue experiments in combination with additional genetic interaction experiments support the conclusion that dia is necessary presynaptically for normal NMJ growth. We then document defects in both the actin and microtubule cytoskeletons in dia mutant nerve terminals. In so doing, we define and characterize a population of dynamic pioneer microtubules within the NMJ that are distinct from the bundled core of microtubules identified by the MAP1b-like protein Futsch. Defects in both synaptic actin and dynamic pioneer MTs are correlated with impaired synaptic growth in dia mutants. Finally, we present genetic evidence that Dia functions downstream of the presynaptic receptor tyrosine phosphatase Dlar and the Rho-type GEF trio to control NMJ growth. Based upon the established function of DRFs as Rho-GTPase dependent regulators of the cell cytoskeleton, we propose a model in which Diaphanous links receptor tyrosine phosphatase signaling at the plasma membrane to growth-dependent modulation of the synaptic actin and microtubule cytoskeletons. PMID:18971454

  9. Dynamic formation of a microchannel array enabling kinesin-driven microtubule transport between separate compartments on a chip.

    PubMed

    Fujimoto, Kazuya; Nagai, Moeto; Shintaku, Hirofumi; Kotera, Hidetoshi; Yokokawa, Ryuji

    2015-05-01

    Microtubules driven by kinesin motors have been utilised as "molecular shuttles" in microfluidic environments with potential applications in autonomous nanoscale manipulations such as capturing, separating, and/or concentrating biomolecules. However, the conventional flow cell-based assay has difficulty in separating bound target molecules from free ones even with buffer flushing because molecular manipulations by molecular shuttles take place on a glass surface and molecular binding occurs stochastically; this makes it difficult to determine whether molecules are carried by molecular shuttles or by diffusion. To address this issue, we developed a microtubule-based transport system between two compartments connected by a single-micrometre-scale channel array that forms dynamically via pneumatic actuation of a polydimethylsiloxane membrane. The device comprises three layers-a control channel layer (top), a microfluidic channel layer (middle), and a channel array layer (bottom)-that enable selective injection of assay solutions into a target compartment and dynamic formation of the microchannel array. The pneumatic channel also serves as a nitrogen supply path to the assay area, which reduces photobleaching of fluorescently labelled microtubules and deactivation of kinesin by oxygen radicals. The channel array suppresses cross-contamination of molecules caused by diffusion or pressure-driven flow between compartments, facilitating unidirectional transport of molecular shuttles from one compartment to another. The method demonstrates, for the first time, efficient and unidirectional microtubule transport by eliminating diffusion of target molecules on a chip and thus may constitute one of the key aspects of motor-driven nanosystems. PMID:25805147

  10. Using Photobleaching to Measure Spindle Microtubule Dynamics in Primary Cultures of Dividing Drosophila Meiotic Spermatocytes.

    PubMed

    Savoian, Matthew S

    2015-07-01

    In dividing animal cells, a microtubule (MT)-based bipolar spindle governs chromosome movement. Current models propose that the spindle facilitates and/or generates translocating forces by regionally depolymerizing the kinetochore fibers (k-fibers) that bind each chromosome. It is unclear how conserved these sites and the resultant chromosome-moving mechanisms are between different dividing cell types because of the technical challenges of quantitatively studying MTs in many specimens. In particular, our knowledge of MT kinetics during the sperm-producing male meiotic divisions remains in its infancy. In this study, I use an easy-to-implement photobleaching-based assay for measuring spindle MT dynamics in primary cultures of meiotic spermatocytes isolated from the fruit fly Drosophila melanogaster. By use of standard scanning confocal microscopy features, fiducial marks were photobleached on fluorescent protein (FP)-tagged MTs. These were followed by time-lapse imaging during different division stages, and their displacement rates were calculated using public domain software. I find that k-fibers continually shorten at their poles during metaphase and anaphase A through the process of MT flux. Anaphase chromosome movement is complemented by Pac-Man, the shortening of the k-fiber at its chromosomal interface. Thus, Drosophila spermatocytes share the sites of spindle dynamism and mechanisms of chromosome movement with mitotic cells. The data reveal the applicability of the photobleaching assay for measuring MT dynamics in primary cultures. This approach can be readily applied to other systems. PMID:25802491

  11. Using Photobleaching to Measure Spindle Microtubule Dynamics in Primary Cultures of Dividing Drosophila Meiotic Spermatocytes

    PubMed Central

    2015-01-01

    In dividing animal cells, a microtubule (MT)-based bipolar spindle governs chromosome movement. Current models propose that the spindle facilitates and/or generates translocating forces by regionally depolymerizing the kinetochore fibers (k-fibers) that bind each chromosome. It is unclear how conserved these sites and the resultant chromosome-moving mechanisms are between different dividing cell types because of the technical challenges of quantitatively studying MTs in many specimens. In particular, our knowledge of MT kinetics during the sperm-producing male meiotic divisions remains in its infancy. In this study, I use an easy-to-implement photobleaching-based assay for measuring spindle MT dynamics in primary cultures of meiotic spermatocytes isolated from the fruit fly Drosophila melanogaster. By use of standard scanning confocal microscopy features, fiducial marks were photobleached on fluorescent protein (FP)-tagged MTs. These were followed by time-lapse imaging during different division stages, and their displacement rates were calculated using public domain software. I find that k-fibers continually shorten at their poles during metaphase and anaphase A through the process of MT flux. Anaphase chromosome movement is complemented by Pac-Man, the shortening of the k-fiber at its chromosomal interface. Thus, Drosophila spermatocytes share the sites of spindle dynamism and mechanisms of chromosome movement with mitotic cells. The data reveal the applicability of the photobleaching assay for measuring MT dynamics in primary cultures. This approach can be readily applied to other systems. PMID:25802491

  12. Mean-field study of the role of lateral cracks in microtubule dynamics

    NASA Astrophysics Data System (ADS)

    Margolin, Gennady; Goodson, Holly V.; Alber, Mark S.

    2011-04-01

    A link between dimer-scale processes and microtubule (MT) dynamics at macroscale is studied by comparing simulations obtained using computational dimer-scale model with its mean-field approximation. The novelty of the mean-field model (MFM) is in its explicit representation of inter-protofilament cracks, as well as in the direct incorporation of the dimer-level kinetics. Due to inclusion of both longitudinal and lateral dimer interactions, the MFM is two dimensional, in contrast to previous theoretical models of MTs. It is the first analytical model that predicts and quantifies crucial features of MT dynamics such as (i) existence of a minimal soluble tubulin concentration needed for the polymerization (with concentration represented as a function of model parameters), (ii) existence of steady-state growth and shortening phases (given with their respective velocities), and (iii) existence of an unstable pause state near zero velocity. In addition, the size of the GTP cap of a growing MT is estimated. Theoretical predictions are shown to be in good agreement with the numerical simulations.

  13. p120-catenin regulates microtubule dynamics and cell migration in a cadherin-independent manner.

    PubMed

    Ichii, Tetsuo; Takeichi, Masatoshi

    2007-07-01

    p120-catenin (p120) has been shown to be essential for cadherin stability. Here, we show that p120 is capable of regulating microtubule (MT) dynamics in a cadherin-independent manner. When p120 was depleted in cadherin-deficient Neuro-2a (N2a) cells, MT stability was reduced, as assessed by the nocodazole sensitivity of MTs. On the contrary, over-expression of p120 caused MTs to become resistant to nocodazole. Time-lapse recording of GFP-tagged EB1, a protein which binds the growing plus-ends of MTs, introduced into these cells demonstrated that the plus ends underwent more frequent catastrophe in p120-depleted cells. In addition, p120 knockdown up-regulated the motility of isolated cells, whereas it down-regulated the directional migration of cells from wound edges; and these migratory behaviors of cells were mimicked by nocodazole-induced MT depolymerization. These results suggest that p120 has the ability to regulate MT dynamics and that this activity, in turn, affects cell motility independently of the cadherin adhesion system. PMID:17584295

  14. CLASP2 interacts with p120-catenin and governs microtubule dynamics at adherens junctions

    PubMed Central

    Shahbazi, Marta N.; Megias, Diego; Epifano, Carolina; Akhmanova, Anna; Gundersen, Gregg G.; Fuchs, Elaine

    2013-01-01

    Classical cadherins and their connections with microtubules (MTs) are emerging as important determinants of cell adhesion. However, the functional relevance of such interactions and the molecular players that contribute to tissue architecture are still emerging. In this paper, we report that the MT plus end–binding protein CLASP2 localizes to adherens junctions (AJs) via direct interaction with p120-catenin (p120) in primary basal mouse keratinocytes. Reductions in the levels of p120 or CLASP2 decreased the localization of the other protein to cell–cell contacts and altered AJ dynamics and stability. These features were accompanied by decreased MT density and altered MT dynamics at intercellular junction sites. Interestingly, CLASP2 was enriched at the cortex of basal progenitor keratinocytes, in close localization to p120. Our findings suggest the existence of a new mechanism of MT targeting to AJs with potential functional implications in the maintenance of proper cell–cell adhesion in epidermal stem cells. PMID:24368809

  15. CLASP2 interacts with p120-catenin and governs microtubule dynamics at adherens junctions.

    PubMed

    Shahbazi, Marta N; Megias, Diego; Epifano, Carolina; Akhmanova, Anna; Gundersen, Gregg G; Fuchs, Elaine; Perez-Moreno, Mirna

    2013-12-23

    Classical cadherins and their connections with microtubules (MTs) are emerging as important determinants of cell adhesion. However, the functional relevance of such interactions and the molecular players that contribute to tissue architecture are still emerging. In this paper, we report that the MT plus end-binding protein CLASP2 localizes to adherens junctions (AJs) via direct interaction with p120-catenin (p120) in primary basal mouse keratinocytes. Reductions in the levels of p120 or CLASP2 decreased the localization of the other protein to cell-cell contacts and altered AJ dynamics and stability. These features were accompanied by decreased MT density and altered MT dynamics at intercellular junction sites. Interestingly, CLASP2 was enriched at the cortex of basal progenitor keratinocytes, in close localization to p120. Our findings suggest the existence of a new mechanism of MT targeting to AJs with potential functional implications in the maintenance of proper cell-cell adhesion in epidermal stem cells. PMID:24368809

  16. Quantitative image analysis identifies pVHL as a key regulator of microtubule dynamic instability.

    PubMed

    Thoma, Claudio R; Matov, Alexandre; Gutbrodt, Katrin L; Hoerner, Christian R; Smole, Zlatko; Krek, Wilhelm; Danuser, Gaudenz

    2010-09-20

    Von Hippel-Lindau (VHL) tumor suppressor gene mutations predispose carriers to kidney cancer. The protein pVHL has been shown to interact with microtubules (MTs), which is critical to cilia maintenance and mitotic spindle orientation. However, the function for pVHL in the regulation of MT dynamics is unknown. We tracked MT growth via the plus end marker EB3 (end-binding protein 3)-GFP and inferred additional parameters of MT dynamics indirectly by spatiotemporal grouping of growth tracks from live cell imaging. Our data establish pVHL as a near-optimal MT-stabilizing protein: it attenuates tubulin turnover, both during MT growth and shrinkage, inhibits catastrophe, and enhances rescue frequencies. These functions are mediated, in part, by inhibition of tubulin guanosine triphosphatase activity in vitro and at MT plus ends and along the MT lattice in vivo. Mutants connected to the VHL cancer syndrome are differentially compromised in these activities. Thus, single cell-level analysis of pVHL MT regulatory function allows new predictions for genotype to phenotype associations that deviate from the coarser clinically defined mutant classifications. PMID:20855504

  17. Mutations in a β-Tubulin Disrupt Spindle Orientation and Microtubule Dynamics in the Early Caenorhabditis elegans EmbryoV⃞

    PubMed Central

    Wright, Amanda J.; Hunter, Craig P.

    2003-01-01

    The early Caenorhabditis elegans embryo contains abundant transcripts for two α- and two β-tubulins, raising the question of whether each isoform performs specialized functions or simply contributes to total tubulin levels. Our identification of two recessive, complementing alleles of a β-tubulin that disrupt nuclear-centrosome centration and rotation in the early embryo originally suggested that this tubulin, tbb-2, has specialized functions. However, embryos from tbb-2 deletion worms do not have defects in nuclear-centrosome centration and rotation suggesting that the complementing alleles are not null mutations. Both complementing alleles have distinct effects on microtubule dynamics and show allele-specific interactions with the two embryonically expressed α-tubulins: One of the alleles causes microtubules to be cold stable and resistant to the microtubule-depolymerizing drug benomyl, whereas the other causes cell cycle-specific defects in microtubule polymerization. Gene-specific RNA interference targeting all four embryonically expressed tubulin genes singly and in all double combinations showed that the tubulin isoforms in the early embryo are largely functionally redundant with the exception of tbb-2. tbb-2 is required for centrosome stabilization during anaphase of the first cell division, suggesting that tbb-2 may be specialized for interactions with the cell cortex. PMID:12937270

  18. Morlin, an inhibitor of cortical microtubule dynamics and cellulose synthase movement

    PubMed Central

    DeBolt, Seth; Gutierrez, Ryan; Ehrhardt, David W.; Melo, Carlos V.; Ross, Loretta; Cutler, Sean R.; Somerville, Christopher; Bonetta, Dario

    2007-01-01

    Morlin (7-ethoxy-4-methyl chromen-2-one) was discovered in a screen of 20,000 compounds for small molecules that cause altered cell morphology resulting in swollen root phenotype in Arabidopsis. Live-cell imaging of fluorescently labeled cellulose synthase (CESA) and microtubules showed that morlin acts on the cortical microtubules and alters the movement of CESA. Morlin caused a novel syndrome of cytoskeletal defects, characterized by cortical array reorientation and compromised rates of both microtubule elongation and shrinking. Formation of shorter and more bundled microtubules and detachment from the cell membrane resulted when GFP::MAP4-MBP was used to visualize microtubules during morlin treatment. Cytoskeletal effects were accompanied by a reduction in the velocity and redistribution of CESA complexes labeled with YFP::CESA6 at the cell cortex. Morlin caused no inhibition of mouse myoblast, bacterial or fungal cell proliferation at concentrations that inhibit plant cell growth. By contrast, morlin stimulated microtubule disassembly in cultured hippocampal neurons but had no significant effect on cell viability. Thus, morlin appears to be a useful new probe of the mechanisms that regulate microtubule cortical array organization and its functional interaction with CESA. PMID:17389408

  19. EB1-recruited microtubule +TIP complexes coordinate protrusion dynamics during 3D epithelial remodeling

    PubMed Central

    Gierke, Sarah; Wittmann, Torsten

    2012-01-01

    SUMMARY Background Epithelial remodeling, in which apical-basal polarized cells switch to a migratory phenotype, plays a central role in development and disease of multicellular organisms. Although dynamic microtubules (MTs) are required for directed migration on flat surfaces, how MT dynamics are controlled or contribute to epithelial remodeling in a more physiological three-dimensional (3D) environment is not understood. We use confocal live cell imaging to analyze MT function and dynamics during 3D epithelial morphogenesis and remodeling of polarized Madin-Darby canine kidney (MDCK) epithelial cells that undergo partial epithelial-to-mesenchymal transition (EMT) in response to hepatocyte growth factor (HGF). Results We find that HGF treatment increases MT growth rate before morphological changes are evident, and that large numbers of MTs grow into HGF-induced cell extensions independent of centrosome reorientation. Using lentivirus-mediated shRNA, we demonstrate that EB1, an adaptor protein that mediates recruitment of numerous other +TIP proteins to growing MT plus ends, is required for this HGF-induced MT reorganization. We further show that protrusion and adhesion dynamics are disorganized, and that vesicular trafficking to the tip of HGF-induced cell extensions is disrupted in EB1-depleted cells. Conclusions We conclude that EB1-mediated interactions with growing MTs are important to coordinate cell shape changes and directed migration into the surrounding extracellular matrix during epithelial remodeling in a physiological 3D environment. In contrast, EB1 is not required for the establishment or maintenance of apical-basal cell polarity, suggesting different functions of +TIPs and MTs in different types of cell polarity. PMID:22483942

  20. CLASP2 Has Two Distinct TOG Domains That Contribute Differently to Microtubule Dynamics.

    PubMed

    Maki, Takahisa; Grimaldi, Ashley D; Fuchigami, Sotaro; Kaverina, Irina; Hayashi, Ikuko

    2015-07-17

    CLIP-associated proteins CLASPs are mammalian microtubule (MT) plus-end tracking proteins (+TIPs) that promote MT rescue in vivo. Their plus-end localization is dependent on other +TIPs, EB1 and CLIP-170, but in the leading edge of the cell, CLASPs display lattice-binding activity. MT association of CLASPs is suggested to be regulated by multiple TOG (tumor overexpressed gene) domains and by the serine-arginine (SR)-rich region, which contains binding sites for EB1. Here, we report the crystal structures of the two TOG domains of CLASP2. Both domains consist of six HEAT repeats, which are similar to the canonical paddle-like tubulin-binding TOG domains, but have arched conformations. The degrees and directions of curvature are different between the two TOG domains, implying that they have distinct roles in MT binding. Using biochemical, molecular modeling and cell biological analyses, we have investigated the interactions between the TOG domains and αβ-tubulin and found that each domain associates differently with αβ-tubulin. Our findings suggest that, by varying the degrees of domain curvature, the TOG domains may distinguish the structural conformation of the tubulin dimer, discriminate between different states of MT dynamic instability and thereby function differentially as stabilizers of MTs. PMID:26003921

  1. Kinesin-Binding Protein Controls Microtubule Dynamics and Cargo Trafficking by Regulating Kinesin Motor Activity.

    PubMed

    Kevenaar, Josta T; Bianchi, Sarah; van Spronsen, Myrrhe; Olieric, Natacha; Lipka, Joanna; Frias, Cátia P; Mikhaylova, Marina; Harterink, Martin; Keijzer, Nanda; Wulf, Phebe S; Hilbert, Manuel; Kapitein, Lukas C; de Graaff, Esther; Ahkmanova, Anna; Steinmetz, Michel O; Hoogenraad, Casper C

    2016-04-01

    Kinesin motor proteins play a fundamental role for normal neuronal development by controlling intracellular cargo transport and microtubule (MT) cytoskeleton organization. Regulating kinesin activity is important to ensure their proper functioning, and their misregulation often leads to severe human neurological disorders. Homozygous nonsense mutations in kinesin-binding protein (KBP)/KIAA1279 cause the neurological disorder Goldberg-Shprintzen syndrome (GOSHS), which is characterized by intellectual disability, microcephaly, and axonal neuropathy. Here, we show that KBP regulates kinesin activity by interacting with the motor domains of a specific subset of kinesins to prevent their association with the MT cytoskeleton. The KBP-interacting kinesins include cargo-transporting motors such as kinesin-3/KIF1A and MT-depolymerizing motor kinesin-8/KIF18A. We found that KBP blocks KIF1A/UNC-104-mediated synaptic vesicle transport in cultured hippocampal neurons and in C. elegans PVD sensory neurons. In contrast, depletion of KBP results in the accumulation of KIF1A motors and synaptic vesicles in the axonal growth cone. We also show that KBP regulates neuronal MT dynamics by controlling KIF18A activity. Our data suggest that KBP functions as a kinesin inhibitor that modulates MT-based cargo motility and depolymerizing activity of a subset of kinesin motors. We propose that misregulation of KBP-controlled kinesin motors may represent the underlying molecular mechanism that contributes to the neuropathological defects observed in GOSHS patients. PMID:26948876

  2. Altered microtubule dynamics and vesicular transport in mouse and human MeCP2-deficient astrocytes.

    PubMed

    Delépine, Chloé; Meziane, Hamid; Nectoux, Juliette; Opitz, Matthieu; Smith, Amos B; Ballatore, Carlo; Saillour, Yoann; Bennaceur-Griscelli, Annelise; Chang, Qiang; Williams, Emily Cunningham; Dahan, Maxime; Duboin, Aurélien; Billuart, Pierre; Herault, Yann; Bienvenu, Thierry

    2016-01-01

    Rett syndrome (RTT) is a rare X-linked neurodevelopmental disorder, characterized by normal post-natal development followed by a sudden deceleration in brain growth with progressive loss of acquired motor and language skills, stereotypic hand movements and severe cognitive impairment. Mutations in the methyl-CpG-binding protein 2 (MECP2) cause more than 95% of classic cases. Recently, it has been shown that the loss of Mecp2 from glia negatively influences neurons in a non-cell-autonomous fashion, and that in Mecp2-null mice, re-expression of Mecp2 preferentially in astrocytes significantly improved locomotion and anxiety levels, restored respiratory abnormalities to a normal pattern and greatly prolonged lifespan compared with globally null mice. We now report that microtubule (MT)-dependent vesicle transport is altered in Mecp2-deficient astrocytes from newborn Mecp2-deficient mice compared with control wild-type littermates. Similar observation has been made in human MECP2 p.Arg294* iPSC-derived astrocytes. Importantly, administration of Epothilone D, a brain-penetrant MT-stabilizing natural product, was found to restore MT dynamics in Mecp2-deficient astrocytes and in MECP2 p.Arg294* iPSC-derived astrocytes in vitro. Finally, we report that relatively low weekly doses of Epothilone D also partially reversed the impaired exploratory behavior in Mecp2(308/y) male mice. These findings represent a first step toward the validation of an innovative treatment for RTT. PMID:26604147

  3. Regulation of microtubule dynamics by DIAPH3 influences amoeboid tumor cell mechanics and sensitivity to taxanes

    PubMed Central

    Morley, Samantha; You, Sungyong; Pollan, Sara; Choi, Jiyoung; Zhou, Bo; Hager, Martin H.; Steadman, Kenneth; Spinelli, Cristiana; Rajendran, Kavitha; Gertych, Arkadiusz; Kim, Jayoung; Adam, Rosalyn M.; Yang, Wei; Krishnan, Ramaswamy; Knudsen, Beatrice S.; Di Vizio, Dolores; Freeman, Michael R.

    2015-01-01

    Taxanes are widely employed chemotherapies for patients with metastatic prostate and breast cancer. Here, we show that loss of Diaphanous-related formin-3 (DIAPH3), frequently associated with metastatic breast and prostate cancers, correlates with increased sensitivity to taxanes. DIAPH3 interacted with microtubules (MT), and its loss altered several parameters of MT dynamics as well as decreased polarized force generation, contractility, and response to substrate stiffness. Silencing of DIAPH3 increased the cytotoxic response to taxanes in prostate and breast cancer cell lines. Analysis of drug activity for tubulin-targeted agents in the NCI-60 cell line panel revealed a uniform positive correlation between reduced DIAPH3 expression and drug sensitivity. Low DIAPH3 expression correlated with improved relapse-free survival in breast cancer patients treated with chemotherapeutic regimens containing taxanes. Our results suggest that inhibition of MT stability arising from DIAPH3 downregulation enhances susceptibility to MT poisons, and that the DIAPH3 network potentially reports taxane sensitivity in human tumors. PMID:26179371

  4. Xorbit/CLASP links dynamic microtubules to chromosomes in the Xenopus meiotic spindle

    PubMed Central

    Hannak, Eva; Heald, Rebecca

    2006-01-01

    A family of microtubule (MT)-binding proteins, Orbit/multiple asters/cytoplasmic linker protein–associated protein, has emerged as an important player during mitosis, but their functional mechanisms are poorly understood. In this study, we used meiotic egg extracts to gain insight into the role of the Xenopus laevis homologue Xorbit in spindle assembly and function. Xorbit immunodepletion or its inhibition by a dominant-negative fragment resulted in chromosome alignment defects and aberrant MT structures, including monopolar and small spindles. Xorbit-depleted extracts failed to nucleate MTs around chromatin-coated beads, indicating its essential requirement for spindle assembly in the absence of centrosomes and kinetochores. Xorbit's MT stabilizing effect was most apparent during anaphase, when spindle MTs depolymerized rapidly upon Xorbit inhibition. Biochemical interaction between a COOH-terminal Xorbit fragment and the kinetochore-associated kinesin centromeric protein E may contribute to Xorbit's role in chromosome congression. We propose that Xorbit tethers dynamic MT plus ends to kinetochores and chromatin, providing a stabilizing activity that is crucial for spindle assembly and chromosome segregation. PMID:16390996

  5. Dynamic assembly of polymer nanotube networks via kinesin powered microtubule filaments

    SciTech Connect

    Paxton, Walter F.; Bachand, George D.; Gomez, Andrew; Henderson, Ian M.; Bouxsein, Nathan F.

    2015-04-24

    In this study, we describe for the first time how biological nanomotors may be used to actively self-assemble mesoscale networks composed of diblock copolymer nanotubes. The collective force generated by multiple kinesin nanomotors acting on a microtubule filament is large enough to overcome the energy barrier required to extract nanotubes from polymer vesicles comprised of poly(ethylene oxide-b-butadiene) in spite of the higher force requirements relative to extracting nanotubes from lipid vesicles. Nevertheless, large-scale polymer networks were dynamically assembled by the motors. These networks displayed enhanced robustness, persisting more than 24 h post-assembly (compared to 4–5 h for corresponding lipid networks). The transport of materials in and on the polymer membranes differs substantially from the transport on analogous lipid networks. Specifically, our data suggest that polymer mobility in nanotubular structures is considerably different from planar or 3D structures, and is stunted by 1D confinement of the polymer subunits. Moreover, quantum dots adsorbed onto polymer nanotubes are completely immobile, which is related to this 1D confinement effect and is in stark contrast to the highly fluid transport observed on lipid tubules.

  6. Dynamic assembly of polymer nanotube networks via kinesin powered microtubule filaments

    DOE PAGESBeta

    Paxton, Walter F.; Bachand, George D.; Gomez, Andrew; Henderson, Ian M.; Bouxsein, Nathan F.

    2015-04-24

    In this study, we describe for the first time how biological nanomotors may be used to actively self-assemble mesoscale networks composed of diblock copolymer nanotubes. The collective force generated by multiple kinesin nanomotors acting on a microtubule filament is large enough to overcome the energy barrier required to extract nanotubes from polymer vesicles comprised of poly(ethylene oxide-b-butadiene) in spite of the higher force requirements relative to extracting nanotubes from lipid vesicles. Nevertheless, large-scale polymer networks were dynamically assembled by the motors. These networks displayed enhanced robustness, persisting more than 24 h post-assembly (compared to 4–5 h for corresponding lipid networks).more » The transport of materials in and on the polymer membranes differs substantially from the transport on analogous lipid networks. Specifically, our data suggest that polymer mobility in nanotubular structures is considerably different from planar or 3D structures, and is stunted by 1D confinement of the polymer subunits. Moreover, quantum dots adsorbed onto polymer nanotubes are completely immobile, which is related to this 1D confinement effect and is in stark contrast to the highly fluid transport observed on lipid tubules.« less

  7. Physical Modeling of Microtubules Network

    NASA Astrophysics Data System (ADS)

    Allain, Pierre; Kervrann, Charles

    2014-10-01

    Microtubules (MT) are highly dynamic tubulin polymers that are involved in many cellular processes such as mitosis, intracellular cell organization and vesicular transport. Nevertheless, the modeling of cytoskeleton and MT dynamics based on physical properties is difficult to achieve. Using the Euler-Bernoulli beam theory, we propose to model the rigidity of microtubules on a physical basis using forces, mass and acceleration. In addition, we link microtubules growth and shrinkage to the presence of molecules (e.g. GTP-tubulin) in the cytosol. The overall model enables linking cytosol to microtubules dynamics in a constant state space thus allowing usage of data assimilation techniques.

  8. Self-Organization of Anastral Spindles by Synergy of Dynamic Instability, Autocatalytic Microtubule Production, and a Spatial Signaling Gradient

    PubMed Central

    Clausen, Thomas; Ribbeck, Katharina

    2007-01-01

    Assembly of the mitotic spindle is a classic example of macromolecular self-organization. During spindle assembly, microtubules (MTs) accumulate around chromatin. In centrosomal spindles, centrosomes at the spindle poles are the dominating source of MT production. However, many systems assemble anastral spindles, i.e., spindles without centrosomes at the poles. How anastral spindles produce and maintain a high concentration of MTs in the absence of centrosome-catalyzed MT production is unknown. With a combined biochemistry-computer simulation approach, we show that the concerted activity of three components can efficiently concentrate microtubules (MTs) at chromatin: (1) an external stimulus in form of a RanGTP gradient centered on chromatin, (2) a feed-back loop where MTs induce production of new MTs, and (3) continuous re-organization of MT structures by dynamic instability. The mechanism proposed here can generate and maintain a dissipative MT super-structure within a RanGTP gradient. PMID:17330139

  9. Fast internal dynamics in alcohol dehydrogenase

    SciTech Connect

    Monkenbusch, M.; Stadler, A. Biehl, R.; Richter, D.; Ollivier, J.; Zamponi, M.

    2015-08-21

    Large-scale domain motions in alcohol dehydrogenase (ADH) have been observed previously by neutron spin-echo spectroscopy (NSE). We have extended the investigation on the dynamics of ADH in solution by using high-resolution neutron time-of-flight (TOF) and neutron backscattering (BS) spectroscopy in the incoherent scattering range. The observed hydrogen dynamics were interpreted in terms of three mobility classes, which allowed a simultaneous description of the measured TOF and BS spectra. In addition to the slow global protein diffusion and domain motions observed by NSE, a fast internal process could be identified. Around one third of the protons in ADH participate in the fast localized diffusive motion. The diffusion coefficient of the fast internal motions is around two third of the value of the surrounding D{sub 2}O solvent. It is tempting to associate the fast internal process with solvent exposed amino acid residues with dangling side chains.

  10. Fast internal dynamics in alcohol dehydrogenase.

    PubMed

    Monkenbusch, M; Stadler, A; Biehl, R; Ollivier, J; Zamponi, M; Richter, D

    2015-08-21

    Large-scale domain motions in alcohol dehydrogenase (ADH) have been observed previously by neutron spin-echo spectroscopy (NSE). We have extended the investigation on the dynamics of ADH in solution by using high-resolution neutron time-of-flight (TOF) and neutron backscattering (BS) spectroscopy in the incoherent scattering range. The observed hydrogen dynamics were interpreted in terms of three mobility classes, which allowed a simultaneous description of the measured TOF and BS spectra. In addition to the slow global protein diffusion and domain motions observed by NSE, a fast internal process could be identified. Around one third of the protons in ADH participate in the fast localized diffusive motion. The diffusion coefficient of the fast internal motions is around two third of the value of the surrounding D2O solvent. It is tempting to associate the fast internal process with solvent exposed amino acid residues with dangling side chains. PMID:26298156

  11. Microtubule dynamics of the centrosome-like polar organizers from the basal land plant Marchantia polymorpha.

    PubMed

    Buschmann, Henrik; Holtmannspötter, Michael; Borchers, Agnes; O'Donoghue, Martin-Timothy; Zachgo, Sabine

    2016-02-01

    The liverwort Marchantia employs both modern and ancestral devices during cell division: it forms preprophase bands and in addition it shows centrosome-like polar organizers. We investigated whether polar organizers and preprophase bands cooperate to set up the division plane. To this end, two novel green fluorescent protein-based microtubule markers for dividing cells of Marchantia were developed. Cells of the apical notch formed polar organizers first and subsequently assembled preprophase bands. Polar organizers were formed de novo from multiple mobile microtubule foci localizing to the nuclear envelope. The foci then became concentrated by bipolar aggregation. We determined the comet production rate of polar organizers and show that microtubule plus ends of astral microtubules polymerize faster than those found on cortical microtubules. Importantly, it was observed that conditions increasing polar organizer numbers interfere with preprophase band formation. The data show that polar organizers have much in common with centrosomes, but that they also have specialized features. The results suggest that polar organizers contribute to preprophase band formation and in this way are involved in controlling the division plane. Our analyses of the basal land plant Marchantia shed new light on the evolution of plant cell division. PMID:26467050

  12. Fission yeast mitochondria are distributed by dynamic microtubules in a motor-independent manner

    PubMed Central

    Li, Tianpeng; Zheng, Fan; Cheung, Martin; Wang, Fengsong; Fu, Chuanhai

    2015-01-01

    The cytoskeleton plays a critical role in regulating mitochondria distribution. Similar to axonal mitochondria, the fission yeast mitochondria are distributed by the microtubule cytoskeleton, but this is regulated by a motor-independent mechanism depending on the microtubule associated protein mmb1p as the absence of mmb1p causes mitochondria aggregation. In this study, using a series of chimeric proteins to control the subcellular localization and motility of mitochondria, we show that a chimeric molecule containing a microtubule binding domain and the mitochondria outer membrane protein tom22p can restore the normal interconnected mitochondria network in mmb1-deletion (mmb1∆) cells. In contrast, increasing the motility of mitochondria by using a chimeric molecule containing a kinesin motor domain and tom22p cannot rescue mitochondria aggregation defects in mmb1∆ cells. Intriguingly a chimeric molecule carrying an actin binding domain and tom22p results in mitochondria associated with actin filaments at the actomyosin ring during mitosis, leading to cytokinesis defects. These findings suggest that the passive motor-independent microtubule-based mechanism is the major contributor to mitochondria distribution in wild type fission yeast cells. Hence, we establish that attachment to microtubules, but not kinesin-dependent movement and the actin cytoskeleton, is required and crucial for proper mitochondria distribution in fission yeast. PMID:26046468

  13. Regulation of Microtubule Dynamics through Phosphorylation on Stathmin by Epstein-Barr Virus Kinase BGLF4*

    PubMed Central

    Chen, Po-Wen; Lin, Sue-Jane; Tsai, Shu-Chun; Lin, Jiun-Han; Chen, Mei-Ru; Wang, Jiin-Tarng; Lee, Chung-Pei; Tsai, Ching-Hwa

    2010-01-01

    Stathmin is an important microtubule (MT)-destabilizing protein, and its activity is differently attenuated by phosphorylation at one or more of its four phosphorylatable serine residues (Ser-16, Ser-25, Ser-38, and Ser-63). This phosphorylation of stathmin plays important roles in mitotic spindle formation. We observed increasing levels of phosphorylated stathmin in Epstein-Barr virus (EBV)-harboring lymphoblastoid cell lines (LCLs) and nasopharyngeal carcinoma (NPC) cell lines during the EBV lytic cycle. These suggest that EBV lytic products may be involved in the regulation of stathmin phosphorylation. BGLF4 is an EBV-encoded kinase and has similar kinase activity to cdc2, an important kinase that phosphorylates serine residues 25 and 38 of stathmin during mitosis. Using an siRNA approach, we demonstrated that BGLF4 contributes to the phosphorylation of stathmin in EBV-harboring NPC. Moreover, we confirmed that BGLF4 interacts with and phosphorylates stathmin using an in vitro kinase assay and an in vivo two-dimensional electrophoresis assay. Interestingly, unlike cdc2, BGLF4 was shown to phosphorylate non-proline directed serine residues of stathmin (Ser-16) and it mediated phosphorylation of stathmin predominantly at serines 16, 25, and 38, indicating that BGLF4 can down-regulate the activity of stathmin. Finally, we demonstrated that the pattern of MT organization was changed in BGLF4-expressing cells, possibly through phosphorylation of stathmin. In conclusion, we have shown that a viral Ser/Thr kinase can directly modulate the activity of stathmin and this contributes to alteration of cellular MT dynamics and then may modulate the associated cellular processes. PMID:20110360

  14. N-terminus-modified Hec1 suppresses tumour growth by interfering with kinetochore-microtubule dynamics.

    PubMed

    Orticello, M; Fiore, M; Totta, P; Desideri, M; Barisic, M; Passeri, D; Lenzi, J; Rosa, A; Orlandi, A; Maiato, H; Del Bufalo, D; Degrassi, F

    2015-06-01

    Mitotic proteins are attractive targets to develop molecular cancer therapeutics due to the intimate interdependence between cell proliferation and mitosis. In this work, we have explored the therapeutic potential of the kinetochore (KT) protein Hec1 (Highly Expressed in Cancer protein 1) as a molecular target to produce massive chromosome missegregation and cell death in cancer cells. Hec1 is a constituent of the Ndc80 complex, which mediates KT-microtubule (MT) attachments at mitosis and is upregulated in various cancer types. We expressed Hec1 fused with enhanced green fluorescent protein (EGFP) at its N-terminus MT-interaction domain in HeLa cells and showed that expression of this modified Hec1, which localized at KTs, blocked cell proliferation and promoted apoptosis in tumour cells. EGFP-Hec1 was extremely potent in tumour cell killing and more efficient than siRNA-induced Hec1 depletion. In striking contrast, normal cells showed no apparent cell proliferation defects or cell death following EGFP-Hec1 expression. Live-cell imaging demonstrated that cancer cell death was associated with massive chromosome missegregation within multipolar spindles after a prolonged mitotic arrest. Moreover, EGFP-Hec1 expression was found to increase KT-MT attachment stability, providing a molecular explanation for the abnormal spindle architecture and the cytotoxic activity of this modified protein. Consistent with cell culture data, EGFP-Hec1 expression was found to strongly inhibit tumour growth in a mouse xenograft model by disrupting mitosis and inducing multipolar spindles. Taken together, these findings demonstrate that stimulation of massive chromosome segregation defects can be used as an anti-cancer strategy through the activation of mitotic catastrophe after a multipolar mitosis. Importantly, this study represents a clear proof of concept that targeting KT proteins required for proper KT-MT attachment dynamics constitutes a powerful approach in cancer therapy. PMID

  15. Fission yeast kinesin-8 Klp5 and Klp6 are interdependent for mitotic nuclear retention and required for proper microtubule dynamics.

    PubMed

    Unsworth, Amy; Masuda, Hirohisa; Dhut, Susheela; Toda, Takashi

    2008-12-01

    Fission yeast has two kinesin-8s, Klp5 and Klp6, which associate to form a heterocomplex. Here, we show that Klp5 and Klp6 are mutually dependent on each other for nuclear mitotic localization. During interphase, they are exported to the cytoplasm. In sharp contrast, during mitosis, Klp5 and Klp6 remain in the nucleus, which requires the existence of each counterpart. Canonical nuclear localization signal (NLS) is identified in the nonkinesin C-terminal regions. Intriguingly individual NLS mutants (NLSmut) exhibit loss-of-function phenotypes, suggesting that Klp5 and Klp6 enter the nucleus separately. Indeed, although neither Klp5-NLSmut nor Klp6-NLSmut enters the nucleus, wild-type Klp6 or Klp5, respectively, does so with different kinetics. In the absence of Klp5/6, microtubule catastrophe/rescue frequency and dynamicity are suppressed, whereas growth and shrinkage rates are least affected. Remarkably, chimera strains containing only the N-terminal Klp5 kinesin domains cannot disassemble interphase microtubules during mitosis, leading to the coexistence of cytoplasmic microtubules and nuclear spindles with massive chromosome missegregation. In this strain, a marked reduction of microtubule dynamism, even higher than in klp5/6 deletions, is evident. We propose that Klp5 and Klp6 play a vital role in promoting microtubule dynamics, which is essential for the spatiotemporal control of microtubule morphogenesis. PMID:18799626

  16. Escape from Mitotic Arrest: An Unexpected Connection Between Microtubule Dynamics and Epigenetic Regulation of Centromeric Chromatin in Schizosaccharomyces pombe.

    PubMed

    George, Anuja A; Walworth, Nancy C

    2015-12-01

    Accurate chromosome segregation is necessary to ensure genomic integrity. Segregation depends on the proper functioning of the centromere, kinetochore, and mitotic spindle microtubules and is monitored by the spindle assembly checkpoint (SAC). In the fission yeast Schizosaccharomyces pombe, defects in Dis1, a microtubule-associated protein that influences microtubule dynamics, lead to mitotic arrest as a result of an active SAC and consequent failure to grow at low temperature. In a mutant dis1 background (dis1-288), loss of function of Msc1, a fission yeast homolog of the KDM5 family of proteins, suppresses the growth defect and promotes normal mitosis. Genetic analysis implicates a histone deacetylase (HDAC)-linked pathway in suppression because HDAC mutants clr6-1, clr3∆, and sir2∆, though not hos2∆, also promote normal mitosis in the dis1-288 mutant. Suppression of the dis phenotype through loss of msc1 function requires the spindle checkpoint protein Mad2 and is limited by the presence of the heterochromatin-associated HP1 protein homolog Swi6. We speculate that alterations in histone acetylation promote a centromeric chromatin environment that compensates for compromised dis1 function by allowing for successful kinetochore-microtubule interactions that can satisfy the SAC. In cells arrested in mitosis by mutation of dis1, loss of function of epigenetic determinants such as Msc1 or specific HDACs can promote cell survival. Because the KDM5 family of proteins has been implicated in human cancers, an appreciation of the potential role of this family of proteins in chromosome segregation is warranted. PMID:26510788

  17. Fast Parallel Computation Of Multibody Dynamics

    NASA Technical Reports Server (NTRS)

    Fijany, Amir; Kwan, Gregory L.; Bagherzadeh, Nader

    1996-01-01

    Constraint-force algorithm fast, efficient, parallel-computation algorithm for solving forward dynamics problem of multibody system like robot arm or vehicle. Solves problem in minimum time proportional to log(N) by use of optimal number of processors proportional to N, where N is number of dynamical degrees of freedom: in this sense, constraint-force algorithm both time-optimal and processor-optimal parallel-processing algorithm.

  18. Functional coupling of microtubules to membranes - implications for membrane structure and dynamics.

    PubMed

    Stephens, David J

    2012-06-15

    The microtubule network dictates much of the spatial patterning of the cytoplasm, and the coupling of microtubules to membranes controls the structure and positioning of organelles and directs membrane trafficking between them. The connection between membranes and the microtubule cytoskeleton, and the way in which organelles are shaped and moved by interactions with the cytoskeleton, have been studied intensively in recent years. In particular, recent work has expanded our thinking of this topic to include the mechanisms by which membranes are shaped and how cargo is selected for trafficking as a result of coupling to the cytoskeleton. In this Commentary, I will discuss the molecular basis for membrane-motor coupling and the physiological outcomes of this coupling, including the way in which microtubule-based motors affect membrane structure, cargo sorting and vectorial trafficking between organelles. Whereas many core concepts of these processes are now well understood, key questions remain about how the coupling of motors to membranes is established and controlled, about the regulation of cargo and/or motor loading and about the control of directionality. PMID:22736043

  19. Mal3 masks catastrophe events in Schizosaccharomyces pombe microtubules by inhibiting shrinkage and promoting rescue.

    PubMed

    Katsuki, Miho; Drummond, Douglas R; Osei, Michael; Cross, Robert A

    2009-10-23

    Schizosaccharomyces pombe Mal3 is a member of the EB family of proteins, which are proposed to be core elements in a tip-tracking network that regulates microtubule dynamics in cells. How Mal3 itself influences microtubule dynamics is unclear. We tested the effects of full-length recombinant Mal3 on dynamic microtubules assembled in vitro from purified S. pombe tubulin, using dark field video microscopy to avoid fluorescent tagging and data-averaging techniques to improve spatiotemporal resolution. We find that catastrophe occurs stochastically as a fast (<2.2 s) transition from constant speed growth to constant speed shrinkage with a constant probability that is independent of the Mal3 concentration. This implies that Mal3 neither stabilizes nor destabilizes microtubule tips. Mal3 does, however, stabilize the main part of the microtubule lattice, inhibiting shrinkage and increasing the frequency of rescues, consistent with recent models in which Mal3 on the lattice forms stabilizing lateral links between neighboring protofilaments. At high concentrations, Mal3 can entirely block shrinkage and induce very rapid rescue, making catastrophes impossible to detect, which may account for the apparent suppression of catastrophe by Mal3 and other EBs in vivo. Overall, we find that Mal3 stabilizes microtubules not by preventing catastrophe at the microtubule tip but by inhibiting lattice depolymerization and enhancing rescue. We argue that this implies that Mal3 binds microtubules in different modes at the tip and on the lattice. PMID:19740752

  20. Adenomatous polyposis coli mutants dominantly activate Hsf1-dependent cell stress pathways through inhibition of microtubule dynamics

    PubMed Central

    Davies, Alexander E.; Kortright, Kaitlyn; Kaplan, Kenneth B.

    2015-01-01

    Cancer cells up-regulate cell stress pathways, including the protein chaperone Hsp90. Increases in Hsp90 are believed “buffer” mutant protein activities necessary for cancer phenotypes. Activation of the cell stress pathway also alters the transcriptional landscape of cells in ways that are critical for cancer progression. However, it is unclear when and how the cell stress pathway is de-regulated during cancer progression. Here we report that mutations in adenomatous polyposis coli (APC) found in colorectal cancer activate cell stress pathways in mouse intestinal crypt cells, prior to loss of heterozygosity at APC or to the appearance of canonical intestinal cancer markers. Hsp90 levels are elevated in normal APC heterozygote crypt cells and further elevated in non-cancer cells adjacent to dysplasias, suggesting that the Hsp90 stress pathway marks the “cancer-field” effect. Expression of mutant APC in normal human epithelial cells is sufficient to activate a cell stress pathway via perturbations in microtubule dynamics. Inhibition of microtubule dynamics is sufficient to activate an Hsf1-dependent increase in gene transcription and protein levels. We suggest that the early activation of this Hsf1 dependent cell stress pathway by mono-allelic mutations in APC can affect cell programming in a way that contributes to cancer onset. PMID:26320184

  1. Fast dynamic processes of solar radiation

    SciTech Connect

    Tomson, Teolan

    2010-02-15

    This paper studies dynamic processes of fast-alternating solar radiation which are assessed by alternation of clouds. Most attention is devoted to clouds of type Cumulus Humilis, identified through visual recognition and/or a specially constructed automatic sensor. One second sampling period was used. Recorded data series were analyzed with regard to duration of illuminated 'windows' between shadows, their stochastic intervals, fronts and the magnitude of increments of solar irradiance. (author)

  2. Fast Parallel Computation Of Manipulator Inverse Dynamics

    NASA Technical Reports Server (NTRS)

    Fijany, Amir; Bejczy, Antal K.

    1991-01-01

    Method for fast parallel computation of inverse dynamics problem, essential for real-time dynamic control and simulation of robot manipulators, undergoing development. Enables exploitation of high degree of parallelism and, achievement of significant computational efficiency, while minimizing various communication and synchronization overheads as well as complexity of required computer architecture. Universal real-time robotic controller and simulator (URRCS) consists of internal host processor and several SIMD processors with ring topology. Architecture modular and expandable: more SIMD processors added to match size of problem. Operate asynchronously and in MIMD fashion.

  3. Actin–microtubule coordination at growing microtubule ends

    PubMed Central

    López, Magdalena Preciado; Huber, Florian; Grigoriev, Ilya; Steinmetz, Michel O.; Akhmanova, Anna; Koenderink, Gijsje H.; Dogterom, Marileen

    2014-01-01

    To power dynamic processes in cells, the actin and microtubule cytoskeletons organize into complex structures. Although it is known that cytoskeletal coordination is vital for cell function, the mechanisms by which cross-linking proteins coordinate actin and microtubule activities remain poorly understood. In particular, it is unknown how the distinct mechanical properties of different actin architectures modulate the outcome of actin–microtubule interactions. To address this question, we engineered the protein TipAct, which links growing microtubule ends via end-binding proteins to actin filaments. We show that growing microtubules can be captured and guided by stiff actin bundles, leading to global actin–microtubule alignment. Conversely, growing microtubule ends can transport, stretch and bundle individual actin filaments, thereby globally defining actin filament organization. Our results provide a physical basis to understand actin–microtubule cross-talk, and reveal that a simple cross-linker can enable a mechanical feedback between actin and microtubule organization that is relevant to diverse biological contexts. PMID:25159196

  4. Microtubule Severing Stymied by Free Tubulin

    NASA Astrophysics Data System (ADS)

    Ross, Jennifer; Bailey, Megan

    2015-03-01

    Proper organization of the microtubule cytoskeletal network is required to perform many necessary cellular functions including mitosis, cell development, and cell motility. Network organization is achieved through filament remodeling by microtubule-associated proteins (MAPs) that control microtubule dynamics. MAPs that stabilize are relatively well understood, while less is known about destabilizing MAPs, such as severing enzymes. Katanin, the first-discovered microtubule-severing enzyme, is a AAA + enzyme that oligomerizes into hexamers and uses ATP hydrolysis to sever microtubules. Using quantitative fluorescence imaging on reconstituted microtubule severing assays in vitro we investigate how katanin can regulate microtubule dynamics. Interestingly, we find microtubule dynamics inhibits katanin severing activity; dynamic microtubules are not severed. Using systematic experiments introducing free tubulin into the assays we find that free tubulin can compete for microtubule filaments for the katanin proteins. Our work indicates that katanin could function best on stabile microtubules or stabile regions of microtubules in cells in regions where free tubulin is sequesters, low, or depleted.

  5. The Kinesin KIF21B Regulates Microtubule Dynamics and Is Essential for Neuronal Morphology, Synapse Function, and Learning and Memory.

    PubMed

    Muhia, Mary; Thies, Edda; Labonté, Dorthe; Ghiretti, Amy E; Gromova, Kira V; Xompero, Francesca; Lappe-Siefke, Corinna; Hermans-Borgmeyer, Irm; Kuhl, Dietmar; Schweizer, Michaela; Ohana, Ora; Schwarz, Jürgen R; Holzbaur, Erika L F; Kneussel, Matthias

    2016-05-01

    The kinesin KIF21B is implicated in several human neurological disorders, including delayed cognitive development, yet it remains unclear how KIF21B dysfunction may contribute to pathology. One limitation is that relatively little is known about KIF21B-mediated physiological functions. Here, we generated Kif21b knockout mice and used cellular assays to investigate the relevance of KIF21B in neuronal and in vivo function. We show that KIF21B is a processive motor protein and identify an additional role for KIF21B in regulating microtubule dynamics. In neurons lacking KIF21B, microtubules grow more slowly and persistently, leading to tighter packing in dendrites. KIF21B-deficient neurons exhibit decreased dendritic arbor complexity and reduced spine density, which correlate with deficits in synaptic transmission. Consistent with these observations, Kif21b-null mice exhibit behavioral changes involving learning and memory deficits. Our study provides insight into the cellular function of KIF21B and the basis for cognitive decline resulting from KIF21B dysregulation. PMID:27117409

  6. The acetylenic tricyclic bis(cyano enone), TBE-31, targets microtubule dynamics and cell polarity in migrating cells.

    PubMed

    Chan, Eddie; Saito, Akira; Honda, Tadashi; Di Guglielmo, Gianni M

    2016-04-01

    Cell migration is dependent on the microtubule network for structural support as well as for the proper delivery and positioning of polarity proteins at the leading edge of migrating cells. Identification of drugs that target cytoskeletal-dependent cell migration and protein transport in polarized migrating cells is important in understanding the cell biology of normal and tumor cells and can lead to new therapeutic targets in disease processes. Here, we show that the tricyclic compound TBE-31 directly binds to tubulin and interferes with microtubule dynamics, as assessed by end binding 1 (EB1) live cell imaging. Interestingly, this interference is independent of in vitro tubulin polymerization. Using immunofluorescence microscopy, we also observed that TBE-31 interferes with the polarity of migratory cells. The polarity proteins Rac1, IQGAP and Tiam1 were localized at the leading edge of DMSO-treated migrating cell, but were observed to be in multiple protrusions around the cell periphery of TBE-31-treated cells. Finally, we observed that TBE-31 inhibits the migration of Rat2 fibroblasts with an IC50 of 0.75 μM. Taken together, our results suggest that the inhibition of cell migration by TBE-31 may result from the improper maintenance of cell polarity of migrating cells. PMID:26775215

  7. High-resolution Time-lapse Imaging and Automated Analysis of Microtubule Dynamics in Living Human Umbilical Vein Endothelial Cells.

    PubMed

    Braun, Alexander; Caesar, Nicole M; Dang, Kyvan; Myers, Kenneth A

    2016-01-01

    The physiological process by which new vasculature forms from existing vasculature requires specific signaling events that trigger morphological changes within individual endothelial cells (ECs). These processes are critical for homeostatic maintenance such as wound healing, and are also crucial in promoting tumor growth and metastasis. EC morphology is defined by the organization of the cytoskeleton, a tightly regulated system of actin and microtubule (MT) dynamics that is known to control EC branching, polarity and directional migration, essential components of angiogenesis. To study MT dynamics, we used high-resolution fluorescence microscopy coupled with computational image analysis of fluorescently-labeled MT plus-ends to investigate MT growth dynamics and the regulation of EC branching morphology and directional migration. Time-lapse imaging of living Human Umbilical Vein Endothelial Cells (HUVECs) was performed following transfection with fluorescently-labeled MT End Binding protein 3 (EB3) and Mitotic Centromere Associated Kinesin (MCAK)-specific cDNA constructs to evaluate effects on MT dynamics. PlusTipTracker software was used to track EB3-labeled MT plus ends in order to measure MT growth speeds and MT growth lifetimes in time-lapse images. This methodology allows for the study of MT dynamics and the identification of how localized regulation of MT dynamics within sub-cellular regions contributes to the angiogenic processes of EC branching and migration. PMID:27584860

  8. Mutations in Human Tubulin Proximal to the Kinesin-Binding Site Alter Dynamic Instability at Microtubule Plus- and Minus-Ends.

    PubMed

    Ti, Shih-Chieh; Pamula, Melissa C; Howes, Stuart C; Duellberg, Christian; Cade, Nicholas I; Kleiner, Ralph E; Forth, Scott; Surrey, Thomas; Nogales, Eva; Kapoor, Tarun M

    2016-04-01

    The assembly of microtubule-based cellular structures depends on regulated tubulin polymerization and directional transport. Here, we purify and characterize tubulin heterodimers that have human β-tubulin isotype III (TUBB3), as well as heterodimers with one of two β-tubulin mutations (D417H or R262H). Both point mutations are proximal to the kinesin-binding site and have been linked to an ocular motility disorder in humans. Compared to wild-type, microtubules with these mutations have decreased catastrophe frequencies and increased average lifetimes of plus- and minus-end-stabilizing caps. Importantly, the D417H mutation does not alter microtubule lattice structure or Mal3 binding to growing filaments. Instead, this mutation reduces the affinity of tubulin for TOG domains and colchicine, suggesting that the distribution of tubulin heterodimer conformations is changed. Together, our findings reveal how residues on the surface of microtubules, distal from the GTP-hydrolysis site and inter-subunit contacts, can alter polymerization dynamics at the plus- and minus-ends of microtubules. PMID:27046833

  9. Nonlinear ionic pulses along microtubules.

    PubMed

    Sekulić, D L; Satarić, B M; Tuszynski, J A; Satarić, M V

    2011-05-01

    Microtubules are cylindrically shaped cytoskeletal biopolymers that are essential for cell motility, cell division and intracellular trafficking. Here, we investigate their polyelectrolyte character that plays a very important role in ionic transport throughout the intra-cellular environment. The model we propose demonstrates an essentially nonlinear behavior of ionic currents which are guided by microtubules. These features are primarily due to the dynamics of tubulin C-terminal tails which are extended out of the surface of the microtubule cylinder. We also demonstrate that the origin of nonlinearity stems from the nonlinear capacitance of each tubulin dimer. This brings about conditions required for the creation and propagation of solitonic ionic waves along the microtubule axis. We conclude that a microtubule plays the role of a biological nonlinear transmission line for ionic currents. These currents might be of particular significance in cell division and possibly also in cognitive processes taking place in nerve cells. PMID:21604102

  10. Structure and Dynamics of the Kinesin–Microtubule Interaction Revealed by Fluorescence Polarization Microscopy

    PubMed Central

    Sosa, Hernando; Asenjo, Ana B.; Peterman, Erwin J.G.

    2010-01-01

    Fluorescence polarization microscopy (FPM) is the analysis of the polarization of light in a fluorescent microscope in order to determine the angular orientation and rotational mobility of fluorescent molecules. Key advantages of FPM, relative to other structural analysis techniques, are that it allows the detection of conformational changes of fluorescently labeled macromolecules in real time in physiological conditions and at the single-molecule level. In this chapter we describe in detail the FPM experimental set-up and analysis methods we have used to investigate structural intermediates of the motor protein kinesin-1 associated with its walking mechanism along microtubules. We also briefly describe additional FPM methods that have been used to investigate other macromolecular complexes. PMID:20466150

  11. Rac1 Modulates Stimulus-evoked Ca2+ Release in Neuronal Growth Cones via Parallel Effects on Microtubule/Endoplasmic Reticulum Dynamics and Reactive Oxygen Species Production

    PubMed Central

    Zhang, Xiao-Feng

    2009-01-01

    The small G protein Rac regulates cytoskeletal protein dynamics in neuronal growth cones and has been implicated in axon growth, guidance, and branching. Intracellular Ca2+ is another well known regulator of growth cone function; however, effects of Rac activity on intracellular Ca2+ metabolism have not been well characterized. Here, we investigate how Rac1 activity affects release of Ca2+ from intracellular endoplasmic reticulum (ER) stores stimulated by application of serotonin (5-hydroxytriptamine). We also address how Rac1 effects on microtubule assembly dynamics affect distribution of Ca2+ release sites. Multimode fluorescent microscopy was used to correlate microtubule and ER behavior, and ratiometric imaging was used to assess intracellular Ca2+ dynamics. We report that Rac1 activity both promotes Ca2+ release and affects its spatial distribution in neuronal growth cones. The underlying mechanism involves synergistic Rac1 effects on microtubule assembly and reactive oxygen species (ROS) production. Rac1 activity modulates Ca2+ by 1) enhancing microtubule assembly which in turn promotes spread of the ER-based Ca2+ release machinery into the growth cone periphery, and 2) by increasing ROS production which facilitated inositol 1,4,5-trisphosphate-dependent Ca2+ release. These results cast Rac1 as a key modulator of intracellular Ca2+ function in the neuronal growth cone. PMID:19570918

  12. Wnt5a Evokes Cortical Axon Outgrowth and Repulsive Guidance by Tau Mediated Reorganization of Dynamic Microtubules

    PubMed Central

    Li, Li; Fothergill, Thomas; Hutchins, B Ian; Dent, Erik W; Kali, Katherine

    2014-01-01

    Wnt5a guides cortical axons in vivo by repulsion and in vitro evokes cortical axon outgrowth and repulsion by calcium signaling pathways. Here we examined the role of microtubule (MT) reorganization and dynamics in mediating effects of Wnt5a. Inhibiting MT dynamics with nocodazole and taxol abolished Wnt5a evoked axon outgrowth and repulsion of cultured hamster cortical neurons. EGFP-EB3 labeled dynamic MTs visualized in live cell imaging revealed that growth cone MTs align with the nascent axon. Wnt5a increased axon outgrowth by reorganization of dynamic MTs from a splayed to a bundled array oriented in the direction of axon extension, and Wnt5a gradients induced asymmetric redistribution of dynamic MTs toward the far side of the growth cone. Wnt5a gradients also evoked calcium transients that were highest on the far side of the growth cone. Calcium signaling and the reorganization of dynamic MTs could be linked by tau, a MT associated protein that stabilizes MTs. Tau is phosphorylated at the Ser 262 MT binding site by CaMKII, and is required for Wnt5a induced axon outgrowth and repulsive turning. Phosphorylation of tau at Ser262 is known to detach tau from MTs to increase their dynamics. Using transfection with tau constructs mutated at Ser262, we found that this site is required for the growth and guidance effects of Wnt5a by mediating reorganization of dynamic MTs in cortical growth cones. Moreover, CaMKII inhibition also prevents MT reorganization required for Wnt5a induced axon outgrowth, thus linking Wnt/calcium signaling to tau mediated MT reorganization during growth cone behaviors. © 2013 The Authors. Developmental Neurobiology Published by Wiley Periodicals, Inc.Develop Neurobiol 74: 797–817, 2014 PMID:23818454

  13. The Spontaneous Alignment of Microtubules in Vitro.

    NASA Astrophysics Data System (ADS)

    Hitt, Anne Louise

    Microtubules assembled at 37^circ C in vitro from tubulin, with or without microtubule associated proteins (MAPs), spontaneously form macroscopic domains of intense birefringence. Because the intrinsic birefringence of microtubules is small, the observed effect must be due to form birefringence, caused by a mutually parallel disposition of microtubules. The observed birefringence cannot be accounted for by multiple light scattering. Birefringence and microtubule polymerization are observed to be temporally coupled. The development of multiple macroscopic birefringent domains is mirrored by the formation of large domains which scatter light strongly. Because these solutions are not homogeneous, Beer's law may not apply. These turbid domains may account for the turbidity overshoot observed by several laboratories. Electron micrographs of sections of gluteraldehyde -fixed microtubule solutions which exhibited birefringence before and after fixation displayed a directionality. This confirms that microtubules in solution are aligned with respect to each other. Centrifugation of birefringent microtubule solutions yields an isotropic supernatant and an intensely birefringent pellet, suggesting that the birefringent domains are dense and sediment intact. If MAPs are present, the birefringent domains can be observed in dilute solution after more than 20 hours at 37^circ C. Polymerization conditions which result in oscillations in microtubule assembly due to dynamic instability also result in oscillations in microtubule alignment. These observations, taken together, indicate that microtubule solutions become nematic liquid crystals exhibiting a polydomain schlieren texture upon polymerization in vitro. These domains appear to be stable, dense constructs of microtubules, which are liquid-crystalline in character. Assembly of microtubules initially results in the formation of many small microtubules; with time, however, fewer but longer microtubules are observed. Recently, two

  14. Experimental virus evolution reveals a role of plant microtubule dynamics and TORTIFOLIA1/SPIRAL2 in RNA trafficking.

    PubMed

    Peña, Eduardo José; Ferriol, Inmaculada; Sambade, Adrián; Buschmann, Henrik; Niehl, Annette; Elena, Santiago F; Rubio, Luis; Heinlein, Manfred

    2014-01-01

    The cytoskeleton is a dynamic network composed of filamentous polymers and regulatory proteins that provide a flexible structural scaffold to the cell and plays a fundamental role in developmental processes. Mutations that alter the spatial orientation of the cortical microtubule (MT) array of plants are known to cause important changes in the pattern of cell wall synthesis and developmental phenotypes; however, the consequences of such alterations on other MT-network-associated functions in the cytoplasm are not known. In vivo observations suggested a role of cortical MTs in the formation and movement of Tobacco mosaic virus (TMV) RNA complexes along the endoplasmic reticulum (ER). Thus, to probe the significance of dynamic MT behavior in the coordination of MT-network-associated functions related to TMV infection and, thus, in the formation and transport of RNA complexes in the cytoplasm, we performed an evolution experiment with TMV in Arabidopsis thaliana tor1/spr2 and tor2 mutants with specific defects in MT dynamics and asked whether TMV is sensitive to these changes. We show that the altered cytoskeleton induced genetic changes in TMV that were correlated with efficient spread of infection in the mutant hosts. These observations demonstrate a role of dynamic MT rearrangements and of the MT-associated protein TORTIFOLIA1/SPIRAL2 in cellular functions related to virus spread and indicate that MT dynamics and MT-associated proteins represent constraints for virus evolution and adaptation. The results highlight the importance of the dynamic plasticity of the MT network in directing cytoplasmic functions in macromolecular assembly and trafficking and illustrate the value of experimental virus evolution for addressing the cellular functions of dynamic, long-range order systems in multicellular organisms. PMID:25133612

  15. A Toll receptor-FoxO pathway represses Pavarotti/MKLP1 to promote microtubule dynamics in motoneurons.

    PubMed

    McLaughlin, Colleen N; Nechipurenko, Inna V; Liu, Nan; Broihier, Heather T

    2016-08-15

    FoxO proteins are evolutionarily conserved regulators of neuronal structure and function, yet the neuron-specific pathways within which they act are poorly understood. To elucidate neuronal FoxO function in Drosophila melanogaster, we first screened for FoxO's upstream regulators and downstream effectors. On the upstream side, we present genetic and molecular pathway analyses indicating that the Toll-6 receptor, the Toll/interleukin-1 receptor domain adaptor dSARM, and FoxO function in a linear pathway. On the downstream side, we find that Toll-6-FoxO signaling represses the mitotic kinesin Pavarotti/MKLP1 (Pav-KLP), which itself attenuates microtubule (MT) dynamics. We next probed in vivo functions for this novel pathway and found that it is essential for axon transport and structural plasticity in motoneurons. We demonstrate that elevated expression of Pav-KLP underlies transport and plasticity phenotypes in pathway mutants, indicating that Toll-6-FoxO signaling promotes MT dynamics by limiting Pav-KLP expression. In addition to uncovering a novel molecular pathway, our work reveals an unexpected function for dynamic MTs in enabling rapid activity-dependent structural plasticity. PMID:27502486

  16. The metaphase and anaphase dynamics is dominated by the physical and mechanical properties of both microtubules and chromatin

    NASA Astrophysics Data System (ADS)

    Grisa, Luca; Kilfoil, Maria

    2012-02-01

    One of the most interesting problems in biophysics involves the physical separation of chromosomes and the mechanical properties of both microtubules (MT's) and chromatin. This process involves the polymers MT's and chromatin, each of which has unique physical properties that have been determined extensively in vitro. Of further interest for physicists is the out-of-equilibrium nature of this process involving several force generators from motor proteins and MT depolymerization. We follow the dynamics of spindle pole bodies and centromeres of yeast cells during mitosis in three-dimensions at high spatial resolution. Using this novel approach, we are able to observe spindle oscillations during metaphase, and the three-dimensional dynamics of spindle elongation and chromosome separation during anaphase. With these data, we can separate the dynamics caused by MT depolymerization from those caused by the motors. This allows us to determine the depolymerization rate of the kinetochore MT's in vivo. Furthermore, we determine the temporal profile of the chromatin extension during anaphase we combine with the known force-extension curve of chromatin in vitro, to infer the expected force-velocity curve of the collective motors in vivo, which has never been measured in vivo or in vitro.

  17. Control of microtubule dynamics by oncoprotein 18: dissection of the regulatory role of multisite phosphorylation during mitosis.

    PubMed Central

    Larsson, N; Marklund, U; Gradin, H M; Brattsand, G; Gullberg, M

    1997-01-01

    Oncoprotein 18 (Op18; also termed p19, 19K, metablastin, stathmin, and prosolin) is a conserved protein that regulates microtubule (MT) dynamics. Op18 is multisite phosphorylated on four Ser residues during mitosis; two of these Ser residues, Ser-25 and Ser-38, are targets for cyclin-dependent protein kinases (CDKs), and the other two Ser residues, Ser-16 and Ser-63, are targets for an unidentified protein kinase. Mutations of the two CDK sites have recently been shown to result in a mitotic block caused by destabilization of MTs. To understand the role of Op18 in regulation of MT dynamics during mitosis, in this study we dissected the functions of all four phosphorylation sites of Op18 by combining genetic, morphological, and biochemical analyses. The data show that all four phosphorylation sites are involved in switching off Op18 activity during mitosis, an event that appears to be essential for formation of the spindle during metaphase. However, the mechanisms by which specific sites down-regulate Op18 activity differ. Hence, dual phosphorylation on the CDK sites Ser-25 and Ser-38 appears to be required for phosphorylation of Ser-16 and Ser-63; however, by themselves, the CDK sites are of only minor importance in direct regulation of Op18 activity. Subsequent phosphorylation of either Ser-16, Ser-63, or both efficiently switches off Op18 activity. PMID:9271428

  18. TTBK2 with EB1/3 regulates microtubule dynamics in migrating cells through KIF2A phosphorylation

    PubMed Central

    Watanabe, Takashi; Kakeno, Mai; Matsui, Toshinori; Sugiyama, Ikuko; Arimura, Nariko; Matsuzawa, Kenji; Shirahige, Aya; Ishidate, Fumiyoshi; Nishioka, Tomoki; Taya, Shinichiro; Hoshino, Mikio

    2015-01-01

    Microtubules (MTs) play critical roles in various cellular events, including cell migration. End-binding proteins (EBs) accumulate at the ends of growing MTs and regulate MT end dynamics by recruiting other plus end–tracking proteins (+TIPs). However, how EBs contribute to MT dynamics through +TIPs remains elusive. We focused on tau-tubulin kinase 2 (TTBK2) as an EB1/3-binding kinase and confirmed that TTBK2 acted as a +TIP. We identified MT-depolymerizing kinesin KIF2A as a novel substrate of TTBK2. TTBK2 phosphorylated KIF2A at S135 in intact cells in an EB1/3-dependent fashion and inactivated its MT-depolymerizing activity in vitro. TTBK2 depletion reduced MT lifetime (facilitated shrinkage and suppressed rescue) and impaired HeLa cell migration, and these phenotypes were partially restored by KIF2A co-depletion. Expression of nonphosphorylatable KIF2A, but not wild-type KIF2A, reduced MT lifetime and slowed down the cell migration. These findings indicate that TTBK2 with EB1/3 phosphorylates KIF2A and antagonizes KIF2A-induced depolymerization at MT plus ends for cell migration. PMID:26323690

  19. TTBK2 with EB1/3 regulates microtubule dynamics in migrating cells through KIF2A phosphorylation.

    PubMed

    Watanabe, Takashi; Kakeno, Mai; Matsui, Toshinori; Sugiyama, Ikuko; Arimura, Nariko; Matsuzawa, Kenji; Shirahige, Aya; Ishidate, Fumiyoshi; Nishioka, Tomoki; Taya, Shinichiro; Hoshino, Mikio; Kaibuchi, Kozo

    2015-08-31

    Microtubules (MTs) play critical roles in various cellular events, including cell migration. End-binding proteins (EBs) accumulate at the ends of growing MTs and regulate MT end dynamics by recruiting other plus end-tracking proteins (+TIPs). However, how EBs contribute to MT dynamics through +TIPs remains elusive. We focused on tau-tubulin kinase 2 (TTBK2) as an EB1/3-binding kinase and confirmed that TTBK2 acted as a +TIP. We identified MT-depolymerizing kinesin KIF2A as a novel substrate of TTBK2. TTBK2 phosphorylated KIF2A at S135 in intact cells in an EB1/3-dependent fashion and inactivated its MT-depolymerizing activity in vitro. TTBK2 depletion reduced MT lifetime (facilitated shrinkage and suppressed rescue) and impaired HeLa cell migration, and these phenotypes were partially restored by KIF2A co-depletion. Expression of nonphosphorylatable KIF2A, but not wild-type KIF2A, reduced MT lifetime and slowed down the cell migration. These findings indicate that TTBK2 with EB1/3 phosphorylates KIF2A and antagonizes KIF2A-induced depolymerization at MT plus ends for cell migration. PMID:26323690

  20. γ-Tubulin Ring Complexes and EB1 play antagonistic roles in microtubule dynamics and spindle positioning

    PubMed Central

    Bouissou, Anaїs; Vérollet, Christel; de Forges, Hélène; Haren, Laurence; Bellaїche, Yohanns; Perez, Franck; Merdes, Andreas; Raynaud-Messina, Brigitte

    2014-01-01

    γ-Tubulin is critical for microtubule (MT) assembly and organization. In metazoa, this protein acts in multiprotein complexes called γ-Tubulin Ring Complexes (γ-TuRCs). While the subunits that constitute γ-Tubulin Small Complexes (γ-TuSCs), the core of the MT nucleation machinery, are essential, mutation of γ-TuRC-specific proteins in Drosophila causes sterility and morphological abnormalities via hitherto unidentified mechanisms. Here, we demonstrate a role of γ-TuRCs in controlling spindle orientation independent of MT nucleation activity, both in cultured cells and in vivo, and examine a potential function for γ-TuRCs on astral MTs. γ-TuRCs locate along the length of astral MTs, and depletion of γ-TuRC-specific proteins increases MT dynamics and causes the plus-end tracking protein EB1 to redistribute along MTs. Moreover, suppression of MT dynamics through drug treatment or EB1 down-regulation rescues spindle orientation defects induced by γ-TuRC depletion. Therefore, we propose a role for γ-TuRCs in regulating spindle positioning by controlling the stability of astral MTs. PMID:24421324

  1. Phosphorylation of β-Tubulin by the Down Syndrome Kinase, Minibrain/DYRK1a, Regulates Microtubule Dynamics and Dendrite Morphogenesis.

    PubMed

    Ori-McKenney, Kassandra M; McKenney, Richard J; Huang, Hector H; Li, Tun; Meltzer, Shan; Jan, Lily Yeh; Vale, Ronald D; Wiita, Arun P; Jan, Yuh Nung

    2016-05-01

    Dendritic arborization patterns are consistent anatomical correlates of genetic disorders such as Down syndrome (DS) and autism spectrum disorders (ASDs). In a screen for abnormal dendrite development, we identified Minibrain (MNB)/DYRK1a, a kinase implicated in DS and ASDs, as a regulator of the microtubule cytoskeleton. We show that MNB is necessary to establish the length and cytoskeletal composition of terminal dendrites by controlling microtubule growth. Altering MNB levels disrupts dendrite morphology and perturbs neuronal electrophysiological activity, resulting in larval mechanosensation defects. Using in vivo and in vitro approaches, we uncover a molecular pathway whereby direct phosphorylation of β-tubulin by MNB inhibits tubulin polymerization, a function that is conserved for mammalian DYRK1a. Our results demonstrate that phosphoregulation of microtubule dynamics by MNB/DYRK1a is critical for dendritic patterning and neuronal function, revealing a previously unidentified mode of posttranslational microtubule regulation in neurons and uncovering a conserved pathway for a DS- and ASD-associated kinase. PMID:27112495

  2. Determination of the size and chemical nature of the stabilizing "cap" at microtubule ends using modulators of polymerization dynamics.

    PubMed

    Panda, Dulal; Miller, Herbert P; Wilson, Leslie

    2002-02-01

    The size and chemical nature of the stabilizing cap at microtubule (MT) ends has remained enigmatic, in large part because it has been difficult to detect and measure it directly. By pulsing steady-state suspensions of bovine brain microtubules (MTs) with trace quantities of [gamma(32)P]GTP and sedimenting the MTs through 50% sucrose cushions to reduce background contaminating (32)P to negligible levels, we were able to detect a small number of (32)P molecules that remain stably bound to the MTs (a mean of 25.5 molecules of (32)P per MT). Analysis of the chemical form of the stably bound (32)P by thin-layer chromatography revealed that it was all (32)P-orthophosphate ((32)P(i)). The (32)P(i) was determined to be located at the MT ends because colchicine and vinblastine, drugs that suppress tubulin incorporation into the MT by binding specifically at MT ends, reduced the quantity of the stably bound (32)P(i). Taxol, a drug that stabilizes MT dynamics by binding along the MT surface rather than at the ends, did not affect the stoichiometry of the bound (32)P(i). If the bound (32)P is equally distributed between the two ends, each end would contain 12-13 molecules of (32)P(i). Beryllium fluoride (BeF(3-)) and aluminum fluoride (AlF(4-)), inorganic phosphate analogues, suppressed the dynamic instability behavior of individual MTs and, thus, stabilized them. For example, BeF(3-) (70 microM) reduced the MT shortening rate by 2.5-fold and decreased the transition frequency from the growing or the attenuated state to rapid shortening by 2-fold. The data support the hypothesis that the stabilizing cap at MT ends consists of a single layer of tubulin GDP-P(i) subunits. The data also support the hypothesis that the mechanism giving rise to the destabilized GDP-tubulin core involves release of P(i) rather than hydrolysis of the GTP. PMID:11814355

  3. Role of Epac1, an Exchange Factor for Rap GTPases, in Endothelial Microtubule Dynamics and Barrier Function

    PubMed Central

    Sehrawat, Seema; Cullere, Xavier; Patel, Sunita; Italiano, Joseph

    2008-01-01

    Rap1 GTPase activation by its cAMP responsive nucleotide exchange factor Epac present in endothelial cells increases endothelial cell barrier function with an associated increase in cortical actin. Here, Epac1 was shown to be responsible for these actin changes and to colocalize with microtubules in human umbilical vein endothelial cells. Importantly, Epac activation with a cAMP analogue, 8-pCPT-2′O-Me-cAMP resulted in a net increase in the length of microtubules. This did not require cell–cell interactions or Rap GTPase activation, and it was attributed to microtubule growth as assessed by time-lapse microscopy of human umbilical vein endothelial cell expressing fluorophore-linked microtubule plus-end marker end-binding protein 3. An intact microtubule network was required for Epac-mediated changes in cortical actin and barrier enhancement, but it was not required for Rap activation. Finally, Epac activation reversed microtubule-dependent increases in vascular permeability induced by tumor necrosis factor-α and transforming growth factor-β. Thus, Epac can directly promote microtubule growth in endothelial cells. This, together with Rap activation leads to an increase in cortical actin, which has functional significance for vascular permeability. PMID:18172027

  4. A fast dynamic mode in rare earth based glasses

    NASA Astrophysics Data System (ADS)

    Zhao, L. Z.; Xue, R. J.; Zhu, Z. G.; Ngai, K. L.; Wang, W. H.; Bai, H. Y.

    2016-05-01

    Metallic glasses (MGs) usually exhibit only slow β-relaxation peak, and the signature of the fast dynamic is challenging to be observed experimentally in MGs. We report a general and unusual fast dynamic mode in a series of rare earth based MGs manifested as a distinct fast β'-relaxation peak in addition to slow β-relaxation and α-relaxation peaks. We show that the activation energy of the fast β'-relaxation is about 12RTg and is equivalent to the activation of localized flow event. The coupling of these dynamic processes as well as their relationship with glass transition and structural heterogeneity is discussed.

  5. A fast dynamic mode in rare earth based glasses.

    PubMed

    Zhao, L Z; Xue, R J; Zhu, Z G; Ngai, K L; Wang, W H; Bai, H Y

    2016-05-28

    Metallic glasses (MGs) usually exhibit only slow β-relaxation peak, and the signature of the fast dynamic is challenging to be observed experimentally in MGs. We report a general and unusual fast dynamic mode in a series of rare earth based MGs manifested as a distinct fast β'-relaxation peak in addition to slow β-relaxation and α-relaxation peaks. We show that the activation energy of the fast β'-relaxation is about 12RTg and is equivalent to the activation of localized flow event. The coupling of these dynamic processes as well as their relationship with glass transition and structural heterogeneity is discussed. PMID:27250316

  6. Shape-Conserved Dynamic Condensation in the Process of Aster Formation from a System of Microtubules and Cross-Linked Kinesin Motors

    NASA Astrophysics Data System (ADS)

    Kim, K.; Sikora, A.; Nakazawa, H.; Umetsu, M.; Hwang, W.; Teizer, W.

    2015-03-01

    We report fluorescence microscopy studies of a cellular element-based active system that is composed of rhodamine-labeled microtubules and functionalized kinesin motor proteins, cross-linked via streptavidin-coated quantum dots. The motor proteins organize microtubules into aster-like structures containing core aggregations of the quantum dot-motor protein complexes. The cores result from the dynamic condensation of sub-clusters that are connected to each other randomly. The inter-cluster distance decays exponentially with time during the condensation. Intriguingly, the shape defined by lines connecting the clusters is well conserved while the dynamic process reduces the size. This shape conservation is governed by a scaling behavior during the condensation, following a power law with respect to the distance between sub-clusters. We explain this isomorphic contraction during the aster formation process using a simple mechanistic model.

  7. Ectopic A-lattice seams destabilize microtubules

    PubMed Central

    Katsuki, Miho; Drummond, Douglas R.; Cross, Robert A.

    2014-01-01

    Natural microtubules typically include one A-lattice seam within an otherwise helically symmetric B-lattice tube. It is currently unclear how A-lattice seams influence microtubule dynamic instability. Here we find that including extra A-lattice seams in GMPCPP microtubules, structural analogues of the GTP caps of dynamic microtubules, destabilizes them, enhancing their median shrinkage rate by >20-fold. Dynamic microtubules nucleated by seeds containing extra A-lattice seams have growth rates similar to microtubules nucleated by B-lattice seeds, yet have increased catastrophe frequencies at both ends. Furthermore, binding B-lattice GDP microtubules to a rigor kinesin surface stabilizes them against shrinkage, whereas microtubules with extra A-lattice seams are stabilized only slightly. Our data suggest that introducing extra A-lattice seams into dynamic microtubules destabilizes them by destabilizing their GTP caps. On this basis, we propose that the single A-lattice seam of natural B-lattice MTs may act as a trigger point, and potentially a regulation point, for catastrophe. PMID:24463734

  8. On complex, curved trajectories in microtubule gliding

    NASA Astrophysics Data System (ADS)

    Gosselin, Pierre; Mohrbach, Hervé; Kulić, Igor M.; Ziebert, Falko

    2016-04-01

    We study the dynamics of microtubules in gliding assays. These biofilaments are typically considered as purely semiflexible, hence their trajectories under the action of motors covering the substrate have been regarded so far as straight, modulo fluctuations. However, this is not always the case experimentally, where microtubules are known to move on large scale circles or spirals, or even display quite regular wavy trajectories and more complex dynamics. Incorporating recent experimental evidence for a (small) preferred curvature as well as the microtubules' well established lattice twist into a dynamic model for microtubule gliding, we could reproduce both types of trajectories. Interestingly, as a function of the microtubules' length we found length intervals of stable rings alternating with regions where wavy and more complex dynamics prevails. Finally, both types of dynamics (rings and waves) can be rationalized by considering simple limits of the full model.

  9. Tubulin cofactors and Arl2 are cage-like chaperones that regulate the soluble αβ-tubulin pool for microtubule dynamics

    PubMed Central

    Nithianantham, Stanley; Le, Sinh; Seto, Elbert; Jia, Weitao; Leary, Julie; Corbett, Kevin D; Moore, Jeffrey K; Al-Bassam, Jawdat

    2015-01-01

    Microtubule dynamics and polarity stem from the polymerization of αβ-tubulin heterodimers. Five conserved tubulin cofactors/chaperones and the Arl2 GTPase regulate α- and β-tubulin assembly into heterodimers and maintain the soluble tubulin pool in the cytoplasm, but their physical mechanisms are unknown. Here, we reconstitute a core tubulin chaperone consisting of tubulin cofactors TBCD, TBCE, and Arl2, and reveal a cage-like structure for regulating αβ-tubulin. Biochemical assays and electron microscopy structures of multiple intermediates show the sequential binding of αβ-tubulin dimer followed by tubulin cofactor TBCC onto this chaperone, forming a ternary complex in which Arl2 GTP hydrolysis is activated to alter αβ-tubulin conformation. A GTP-state locked Arl2 mutant inhibits ternary complex dissociation in vitro and causes severe defects in microtubule dynamics in vivo. Our studies suggest a revised paradigm for tubulin cofactors and Arl2 functions as a catalytic chaperone that regulates soluble αβ-tubulin assembly and maintenance to support microtubule dynamics. DOI: http://dx.doi.org/10.7554/eLife.08811.001 PMID:26208336

  10. Tubulin cofactors and Arl2 are cage-like chaperones that regulate the soluble αβ-tubulin pool for microtubule dynamics.

    PubMed

    Nithianantham, Stanley; Le, Sinh; Seto, Elbert; Jia, Weitao; Leary, Julie; Corbett, Kevin D; Moore, Jeffrey K; Al-Bassam, Jawdat

    2015-01-01

    Microtubule dynamics and polarity stem from the polymerization of αβ-tubulin heterodimers. Five conserved tubulin cofactors/chaperones and the Arl2 GTPase regulate α- and β-tubulin assembly into heterodimers and maintain the soluble tubulin pool in the cytoplasm, but their physical mechanisms are unknown. Here, we reconstitute a core tubulin chaperone consisting of tubulin cofactors TBCD, TBCE, and Arl2, and reveal a cage-like structure for regulating αβ-tubulin. Biochemical assays and electron microscopy structures of multiple intermediates show the sequential binding of αβ-tubulin dimer followed by tubulin cofactor TBCC onto this chaperone, forming a ternary complex in which Arl2 GTP hydrolysis is activated to alter αβ-tubulin conformation. A GTP-state locked Arl2 mutant inhibits ternary complex dissociation in vitro and causes severe defects in microtubule dynamics in vivo. Our studies suggest a revised paradigm for tubulin cofactors and Arl2 functions as a catalytic chaperone that regulates soluble αβ-tubulin assembly and maintenance to support microtubule dynamics. PMID:26208336

  11. Optical imaging of fast, dynamic neurophysiological function.

    SciTech Connect

    Rector, D. M.; Carter, K. M.; Yao, X.; George, J. S.

    2002-01-01

    Fast evoked responses were imaged from rat dorsal medulla and whisker barrel cortex. To investigate the biophysical mechanisms involved, fast optical responses associated with isolated crustacean nerve stimulation were recorded using birefringence and scattered light. Such studies allow optimization of non-invasive imaging techniques being developed for use in humans.

  12. Structural investigations into the binding mode of novel neolignans Cmp10 and Cmp19 microtubule stabilizers by in silico molecular docking, molecular dynamics, and binding free energy calculations.

    PubMed

    Tripathi, Shubhandra; Kumar, Akhil; Kumar, B Sathish; Negi, Arvind S; Sharma, Ashok

    2016-06-01

    Microtubule stabilizers provide an important mode of treatment via mitotic cell arrest of cancer cells. Recently, we reported two novel neolignans derivatives Cmp10 and Cmp19 showing anticancer activity and working as microtubule stabilizers at micromolar concentrations. In this study, we have explored the binding site, mode of binding, and stabilization by two novel microtubule stabilizers Cmp10 and Cmp19 using in silico molecular docking, molecular dynamics (MD) simulation, and binding free energy calculations. Molecular docking studies were performed to explore the β-tubulin binding site of Cmp10 and Cmp19. Further, MD simulations were used to probe the β-tubulin stabilization mechanism by Cmp10 and Cmp19. Binding affinity was also compared for Cmp10 and Cmp19 using binding free energy calculations. Our docking results revealed that both the compounds bind at Ptxl binding site in β-tubulin. MD simulation studies showed that Cmp10 and Cmp19 binding stabilizes M-loop (Phe272-Val288) residues of β-tubulin and prevent its dynamics, leading to a better packing between α and β subunits from adjacent tubulin dimers. In addition, His229, Ser280 and Gln281, and Arg278, Thr276, and Ser232 were found to be the key amino acid residues forming H-bonds with Cmp10 and Cmp19, respectively. Consequently, binding free energy calculations indicated that Cmp10 (-113.655 kJ/mol) had better binding compared to Cmp19 (-95.216 kJ/mol). This study provides useful insight for better understanding of the binding mechanism of Cmp10 and Cmp19 and will be helpful in designing novel microtubule stabilizers. PMID:26212016

  13. Persistence Length of Stable Microtubules

    NASA Astrophysics Data System (ADS)

    Hawkins, Taviare; Mirigian, Matthew; Yasar, M. Selcuk; Ross, Jennifer

    2011-03-01

    Microtubules are a vital component of the cytoskeleton. As the most rigid of the cytoskeleton filaments, they give shape and support to the cell. They are also essential for intracellular traffic by providing the roadways onto which organelles are transported, and they are required to reorganize during cellular division. To perform its function in the cell, the microtubule must be rigid yet dynamic. We are interested in how the mechanical properties of stable microtubules change over time. Some ``stable'' microtubules of the cell are recycled after days, such as in the axons of neurons or the cilia and flagella. We measured the persistence length of freely fluctuating taxol-stabilized microtubules over the span of a week and analyzed them via Fourier decomposition. As measured on a daily basis, the persistence length is independent of the contour length. Although measured over the span of the week, the accuracy of the measurement and the persistence length varies. We also studied how fluorescently-labeling the microtubule affects the persistence length and observed that a higher labeling ratio corresponded to greater flexibility. National Science Foundation Grant No: 0928540 to JLR.

  14. Microtubules self-repair in response to mechanical stress.

    PubMed

    Schaedel, Laura; John, Karin; Gaillard, Jérémie; Nachury, Maxence V; Blanchoin, Laurent; Théry, Manuel

    2015-11-01

    Microtubules--which define the shape of axons, cilia and flagella, and provide tracks for intracellular transport--can be highly bent by intracellular forces, and microtubule structure and stiffness are thought to be affected by physical constraints. Yet how microtubules tolerate the vast forces exerted on them remains unknown. Here, by using a microfluidic device, we show that microtubule stiffness decreases incrementally with each cycle of bending and release. Similar to other cases of material fatigue, the concentration of mechanical stresses on pre-existing defects in the microtubule lattice is responsible for the generation of more extensive damage, which further decreases microtubule stiffness. Strikingly, damaged microtubules were able to incorporate new tubulin dimers into their lattice and recover their initial stiffness. Our findings demonstrate that microtubules are ductile materials with self-healing properties, that their dynamics does not exclusively occur at their ends, and that their lattice plasticity enables the microtubules' adaptation to mechanical stresses. PMID:26343914

  15. Microtubules self-repair in response to mechanical stress

    PubMed Central

    Schaedel, Laura; John, Karin; Gaillard, Jérémie; Nachury, Maxence V.; Blanchoin, Laurent; Théry, Manuel

    2015-01-01

    Microtubules - which define the shape of axons, cilia and flagella, and provide tracks for intracellular transport - can be highly bent by intracellular forces, and microtubule structure and stiffness are thought to be affected by physical constraints. Yet how microtubules tolerate the vast forces exerted on them remains unknown. Here, by using a microfluidic device, we show that microtubule stiffness decreases incrementally with each cycle of bending and release. Similar to other cases of material fatigue, the concentration of mechanical stresses on pre-existing defects in the microtubule lattice is responsible for the generation of larger damages, which further decrease microtubule stiffness. Strikingly, damaged microtubules were able to incorporate new tubulin dimers into their lattice and recover their initial stiffness. Our findings demonstrate that microtubules are ductile materials with self-healing properties, that their dynamics does not exclusively occur at their ends, and that their lattice plasticity enables the microtubules' adaptation to mechanical stresses. PMID:26343914

  16. Microtubules self-repair in response to mechanical stress

    NASA Astrophysics Data System (ADS)

    Schaedel, Laura; John, Karin; Gaillard, Jérémie; Nachury, Maxence V.; Blanchoin, Laurent; Théry, Manuel

    2015-11-01

    Microtubules--which define the shape of axons, cilia and flagella, and provide tracks for intracellular transport--can be highly bent by intracellular forces, and microtubule structure and stiffness are thought to be affected by physical constraints. Yet how microtubules tolerate the vast forces exerted on them remains unknown. Here, by using a microfluidic device, we show that microtubule stiffness decreases incrementally with each cycle of bending and release. Similar to other cases of material fatigue, the concentration of mechanical stresses on pre-existing defects in the microtubule lattice is responsible for the generation of more extensive damage, which further decreases microtubule stiffness. Strikingly, damaged microtubules were able to incorporate new tubulin dimers into their lattice and recover their initial stiffness. Our findings demonstrate that microtubules are ductile materials with self-healing properties, that their dynamics does not exclusively occur at their ends, and that their lattice plasticity enables the microtubules' adaptation to mechanical stresses.

  17. Generation of differentially modified microtubules using in vitro enzymatic approaches.

    PubMed

    Vemu, Annapurna; Garnham, Christopher P; Lee, Duck-Yeon; Roll-Mecak, Antonina

    2014-01-01

    Tubulin, the building block of microtubules, is subject to chemically diverse and evolutionarily conserved post-translational modifications that mark microtubules for specific functions in the cell. Here we describe in vitro methods for generating homogenous acetylated, glutamylated, or tyrosinated tubulin and microtubules using recombinantly expressed and purified modification enzymes. The generation of differentially modified microtubules now enables a mechanistic dissection of the effects of tubulin post-translational modifications on the dynamics and mechanical properties of microtubules as well as the behavior of motors and microtubule-associated proteins. PMID:24630106

  18. Evidence for two distinct binding sites for tau on microtubules

    PubMed Central

    Makrides, Victoria; Massie, Michelle R.; Feinstein, Stuart C.; Lew, John

    2004-01-01

    The microtubule-associated protein tau regulates diverse and essential microtubule functions, from the nucleation and promotion of microtubule polymerization to the regulation of microtubule polarity and dynamics, as well as the spacing and bundling of axonal microtubules. Thermodynamic studies show that tau interacts with microtubules in the low- to mid-nanomolar range, implying moderate binding affinity. At the same time, it is well established that microtubule-bound tau does not undergo exchange with the bulk medium readily, suggesting that the tau-microtubule interaction is essentially irreversible. Given this dilemma, we investigated the mechanism of interaction between tau and microtubules in kinetic detail. Stopped-flow kinetic analysis reveals moderate binding affinity between tau and preassembled microtubules and rapid dissociation/association kinetics. In contrast, when microtubules are generated by copolymerization of tubulin and tau, a distinct population of microtubule-bound tau is observed, the binding of which seems irreversible. We propose that reversible binding occurs between tau and the surface of preassembled microtubules, whereas irreversible binding results when tau is coassembled with tubulin into a tau-microtubule copolymer. Because the latter is expected to be physiologically relevant, its characterization is of central importance. PMID:15096589

  19. Leiodermatolide, a novel marine natural product, has potent cytotoxic and antimitotic activity against cancer cells, appears to affect microtubule dynamics, and exhibits antitumor activity.

    PubMed

    Guzmán, Esther A; Xu, Qunli; Pitts, Tara P; Mitsuhashi, Kaoru Ogawa; Baker, Cheryl; Linley, Patricia A; Oestreicher, Judy; Tendyke, Karen; Winder, Priscilla L; Suh, Edward M; Wright, Amy E

    2016-11-01

    Pancreatic cancer, the fourth leading cause of cancer death in the United States, has a negative prognosis because metastasis occurs before symptoms manifest. Leiodermatolide, a polyketide macrolide with antimitotic activity isolated from a deep water sponge of the genus Leiodermatium, exhibits potent and selective cytotoxicity toward the pancreatic cancer cell lines AsPC-1, PANC-1, BxPC-3, and MIA PaCa-2, and potent cytotoxicity against skin, breast and colon cancer cell lines. Induction of apoptosis by leiodermatolide was confirmed in the AsPC-1, BxPC-3 and MIA PaCa-2 cells. Leiodermatolide induces cell cycle arrest but has no effects on in vitro polymerization or depolymerization of tubulin alone, while it enhances polymerization of tubulin containing microtubule associated proteins (MAPs). Observations through confocal microscopy show that leiodermatolide, at low concentrations, causes minimal effects on polymerization or depolymerization of the microtubule network in interphase cells, but disruption of spindle formation in mitotic cells. At higher concentrations, depolymerization of the microtubule network is observed. Visualization of the growing microtubule in HeLa cells expressing GFP-tagged plus end binding protein EB-1 showed that leiodermatolide stopped the polymerization of tubulin. These results suggest that leiodermatolide may affect tubulin dynamics without directly interacting with tubulin and hint at a unique mechanism of action. In a mouse model of metastatic pancreatic cancer, leiodermatolide exhibited significant tumor reduction when compared to gemcitabine and controls. The antitumor activities of leiodermatolide, as well as the proven utility of antimitotic compounds against cancer, make leiodermatolide an interesting compound with potential chemotherapeutic effects that may merit further research. PMID:27376928

  20. Kinesin-12 motors cooperate to suppress microtubule catastrophes and drive the formation of parallel microtubule bundles.

    PubMed

    Drechsler, Hauke; McAinsh, Andrew D

    2016-03-22

    Human Kinesin-12 (hKif15) plays a crucial role in assembly and maintenance of the mitotic spindle. These functions of hKif15 are partially redundant with Kinesin-5 (Eg5), which can cross-link and drive the extensile sliding of antiparallel microtubules. Although both motors are known to be tetramers, the functional properties of hKif15 are less well understood. Here we reveal how single or multiple Kif15 motors can cross-link, transport, and focus the plus-ends of intersecting microtubules. During transport, Kif15 motors step simultaneously along both microtubules with relative microtubule transport driven by a velocity differential between motor domain pairs. Remarkably, this differential is affected by the underlying intersection geometry: the differential is low on parallel and extreme on antiparallel microtubules where one motor domain pair becomes immobile. As a result, when intersecting microtubules are antiparallel, canonical transport of one microtubule along the other is allowed because one motor is firmly attached to one microtubule while it is stepping on the other. When intersecting microtubules are parallel, however, Kif15 motors can drive (biased) parallel sliding because the motor simultaneously steps on both microtubules that it cross-links. These microtubule rearrangements will focus microtubule plus-ends and finally lead to the formation of parallel bundles. At the same time, Kif15 motors cooperate to suppress catastrophe events at polymerizing microtubule plus-ends, raising the possibility that Kif15 motors may synchronize the dynamics of bundles that they have assembled. Thus, Kif15 is adapted to operate on parallel microtubule substrates, a property that clearly distinguishes it from the other tetrameric spindle motor, Eg5. PMID:26969727

  1. Kinesin-12 motors cooperate to suppress microtubule catastrophes and drive the formation of parallel microtubule bundles

    PubMed Central

    Drechsler, Hauke; McAinsh, Andrew D.

    2016-01-01

    Human Kinesin-12 (hKif15) plays a crucial role in assembly and maintenance of the mitotic spindle. These functions of hKif15 are partially redundant with Kinesin-5 (Eg5), which can cross-link and drive the extensile sliding of antiparallel microtubules. Although both motors are known to be tetramers, the functional properties of hKif15 are less well understood. Here we reveal how single or multiple Kif15 motors can cross-link, transport, and focus the plus-ends of intersecting microtubules. During transport, Kif15 motors step simultaneously along both microtubules with relative microtubule transport driven by a velocity differential between motor domain pairs. Remarkably, this differential is affected by the underlying intersection geometry: the differential is low on parallel and extreme on antiparallel microtubules where one motor domain pair becomes immobile. As a result, when intersecting microtubules are antiparallel, canonical transport of one microtubule along the other is allowed because one motor is firmly attached to one microtubule while it is stepping on the other. When intersecting microtubules are parallel, however, Kif15 motors can drive (biased) parallel sliding because the motor simultaneously steps on both microtubules that it cross-links. These microtubule rearrangements will focus microtubule plus-ends and finally lead to the formation of parallel bundles. At the same time, Kif15 motors cooperate to suppress catastrophe events at polymerizing microtubule plus-ends, raising the possibility that Kif15 motors may synchronize the dynamics of bundles that they have assembled. Thus, Kif15 is adapted to operate on parallel microtubule substrates, a property that clearly distinguishes it from the other tetrameric spindle motor, Eg5. PMID:26969727

  2. Fast multipole methods for particle dynamics

    PubMed Central

    Kurzak, J.; Pettitt, B. M.

    2008-01-01

    The growth of simulations of particle systems has been aided by advances in computer speed and algorithms. The adoption of O(N) algorithms to solve N-body simulation problems has been less rapid due to the fact that such scaling was only competitive for relatively large N. Our work seeks to find algorithmic modifications and practical implementations for intermediate values of N in typical use for molecular simulations. This article reviews fast multipole techniques for calculation of electrostatic interactions in molecular systems. The basic mathematics behind fast summations applied to long ranged forces is presented along with advanced techniques for accelerating the solution, including our most recent developments. The computational efficiency of the new methods facilitates both simulations of large systems as well as longer and therefore more realistic simulations of smaller systems. PMID:19194526

  3. Mechanism of microtubule array expansion in the cytokinetic phragmoplast

    PubMed Central

    Murata, Takashi; Sano, Toshio; Sasabe, Michiko; Nonaka, Shigenori; Higashiyama, Tetsuya; Hasezawa, Seiichiro; Machida, Yasunori; Hasebe, Mitsuyasu

    2013-01-01

    In land plants, the cell plate partitions the daughter cells at cytokinesis. The cell plate initially forms between daughter nuclei and expands centrifugally until reaching the plasma membrane. The centrifugal development of the cell plate is driven by the centrifugal expansion of the phragmoplast microtubule array, but the molecular mechanism underlying this expansion is unknown. Here, we show that the phragmoplast array comprises stable microtubule bundles and dynamic microtubules. We find that the dynamic microtubules are nucleated by γ-tubulin on stable bundles. The dynamic microtubules elongate at the plus ends and form new bundles preferentially at the leading edge of the phragmoplast. At the same time, they are moved away from the cell plate, maintaining a restricted distribution of minus ends. We propose that cycles of attachment of γ-tubulin complexes onto the microtubule bundles, microtubule nucleation and bundling, accompanied by minus-end-directed motility, drive the centrifugal development of the phragmoplast. PMID:23770826

  4. Arabidopsis AUGMIN Subunit8 Is a Microtubule Plus-End Binding Protein That Promotes Microtubule Reorientation in Hypocotyls[C][W

    PubMed Central

    Cao, Lingyan; Wang, Linhai; Zheng, Min; Cao, Hong; Ding, Lian; Zhang, Xiaolan; Fu, Ying

    2013-01-01

    In plant cells, cortical microtubules provide tracks for cellulose-synthesizing enzymes and regulate cell division, growth, and morphogenesis. The role of microtubules in these essential cellular processes depends on the spatial arrangement of the microtubules. Cortical microtubules are reoriented in response to changes in cell growth status and cell shape. Therefore, an understanding of the mechanism that underlies the change in microtubule orientation will provide insight into plant cell growth and morphogenesis. This study demonstrated that AUGMIN subunit8 (AUG8) in Arabidopsis thaliana is a novel microtubule plus-end binding protein that participates in the reorientation of microtubules in hypocotyls when cell elongation slows down. AUG8 bound to the plus ends of microtubules and promoted tubulin polymerization in vitro. In vivo, AUG8 was recruited to the microtubule branch site immediately before nascent microtubules branched out. It specifically associated with the plus ends of growing cortical microtubules and regulated microtubule dynamics, which facilitated microtubule reorientation when microtubules changed their growth trajectory or encountered obstacle microtubules during microtubule reorientation. This study thus reveals a novel mechanism underlying microtubule reorientation that is critical for modulating cell elongation in Arabidopsis. PMID:23735294

  5. Models, Regulations, and Functions of Microtubule Severing by Katanin

    PubMed Central

    Ghosh, Debasish Kumar; Dasgupta, Debdeep; Guha, Abhishek

    2012-01-01

    Regulation of microtubule dynamics depends on stochastic balance between polymerization and severing process which lead to differential spatiotemporal abundance and distribution of microtubules during cell development, differentiation, and morphogenesis. Microtubule severing by a conserved AAA family protein Katanin has emerged as an important microtubule architecture modulating process in cellular functions like division, migration, shaping and so on. Regulated by several factors, Katanin manifests connective crosstalks in network motifs in regulation of anisotropic severing pattern of microtubule protofilaments in cell type and stage dependent way. Mechanisms of structural disintegration of microtubules by Katanin involve heterogeneous mechanochemical processes and sensitivity of microtubules to Katanin plays significant roles in mitosis/meiosis, neurogenesis, cilia/flagella formation, cell wall development and so on. Deregulated and uncoordinated expression of Katanin has been shown to have implications in pathophysiological conditions. In this paper, we highlight mechanistic models and regulations of microtubule severing by Katanin in context of structure and various functions of Katanin in different organisms.

  6. A general modeling and visualization tool for comparing different members of a group: application to studying tau-mediated regulation of microtubule dynamics

    PubMed Central

    Bhattacharya, Arnab; Levy, Sasha; LeBoeuf, Adria; Gaylord, Michelle; Wilson, Leslie; Singh, Ambuj K; Feinstein, Stuart C

    2008-01-01

    Background Innumerable biological investigations require comparing collections of molecules, cells or organisms to one another with respect to one or more of their properties. Almost all of these comparisons are performed manually, which can be susceptible to inadvertent bias as well as miss subtle effects. The development and application of computer-assisted analytical and interpretive tools could help address these issues and thereby dramatically improve these investigations. Results We have developed novel computer-assisted analytical and interpretive tools and applied them to recent studies examining the ability of 3-repeat and 4-repeat tau to regulate the dynamic behavior of microtubules in vitro. More specifically, we have developed an automated and objective method to define growth, shortening and attenuation events from real time videos of dynamic microtubules, and demonstrated its validity by comparing it to manually assessed data. Additionally, we have used the same data to develop a general strategy of building different models of interest, computing appropriate dissimilarity functions to compare them, and embedding them on a two-dimensional plot for visualization and easy comparison. Application of these methods to assess microtubule growth rates and growth rate distributions established the validity of the embedding procedure and revealed non-linearity in the relationship between the tau:tubulin molar ratio and growth rate distribution. Conclusion This work addresses the need of the biological community for rigorously quantitative and generally applicable computational tools for comparative studies. The two-dimensional embedding method retains the inherent structure of the data, and yet markedly simplifies comparison between models and parameters of different samples. Most notably, even in cases where numerous parameters exist by which to compare the different samples, our embedding procedure provides a generally applicable computational strategy to

  7. A novel microtubule inhibitor, MT3-037, causes cancer cell apoptosis by inducing mitotic arrest and interfering with microtubule dynamics.

    PubMed

    Chang, Ling-Chu; Yu, Yung-Luen; Hsieh, Min-Tsang; Wang, Sheng-Hung; Chou, Ruey-Hwang; Huang, Wei-Chien; Lin, Hui-Yi; Hung, Hsin-Yi; Huang, Li-Jiau; Kuo, Sheng-Chu

    2016-01-01

    We investigated the anticancer potential of a new synthetic compound, 7-(3-fluorophenyl)-4-methylpyrido-[2,3-d]pyrimidin-5(8H)-one (MT3-037). We found that MT3-037 effectively decreased the cancer cell viability by inducing apoptosis. MT3-037 treatments led to cell cycle arrest at M phase, with a marked increase in both expression of cyclin B1 and cyclin-dependent kinase 1 (CDK1) as well as in CDK1 kinase activity. Key proteins that regulate mitotic spindle dynamics, including survivin, Aurora A/B kinases, and polo-like kinase 1 (PLK1), were activated in MT3-037-treated cells. MT3-037-induced apoptosis was accompanied by activation of a pro-apoptotic factor, FADD, and the inactivation of apoptosis inhibitors, Bcl-2 and Bcl-xL, resulting in the cleavage/activation of caspases. The activation of c-Jun N-terminal kinase (JNK) was associated with MT3-037-induced CDK1 and Aurora A/B activation and apoptosis. Immunofluorescence staining of tubulin indicated that MT3-037 altered tubulin networks in cancer cells. Moreover, an in vitro tubulin polymerization assay revealed that MT3-037 inhibited the tubulin polymerization by direct binding to tubulin. Molecular docking studies and binding site completion assays revealed that MT3-037 binds to the colchicine-binding site. Furthermore, MT3-037 significantly inhibited the tumor growth in both MDAMB-468 and Erlotinib-resistant MDA-MB-468 xenograft mouse models. In addition, MT3-037 inhibited the angiogenesis and disrupted the tube formation by human endothelial cells. Our study demonstrates that MT3-037 is a potential tubulin-disrupting agent for antitumor therapy. PMID:27186428

  8. A novel microtubule inhibitor, MT3-037, causes cancer cell apoptosis by inducing mitotic arrest and interfering with microtubule dynamics

    PubMed Central

    Chang, Ling-Chu; Yu, Yung-Luen; Hsieh, Min-Tsang; Wang, Sheng-Hung; Chou, Ruey-Hwang; Huang, Wei-Chien; Lin, Hui-Yi; Hung, Hsin-Yi; Huang, Li-Jiau; Kuo, Sheng-Chu

    2016-01-01

    We investigated the anticancer potential of a new synthetic compound, 7-(3-fluorophenyl)-4-methylpyrido-[2,3-d]pyrimidin-5(8H)-one (MT3-037). We found that MT3-037 effectively decreased the cancer cell viability by inducing apoptosis. MT3-037 treatments led to cell cycle arrest at M phase, with a marked increase in both expression of cyclin B1 and cyclin-dependent kinase 1 (CDK1) as well as in CDK1 kinase activity. Key proteins that regulate mitotic spindle dynamics, including survivin, Aurora A/B kinases, and polo-like kinase 1 (PLK1), were activated in MT3-037-treated cells. MT3-037-induced apoptosis was accompanied by activation of a pro-apoptotic factor, FADD, and the inactivation of apoptosis inhibitors, Bcl-2 and Bcl-xL, resulting in the cleavage/activation of caspases. The activation of c-Jun N-terminal kinase (JNK) was associated with MT3-037-induced CDK1 and Aurora A/B activation and apoptosis. Immunofluorescence staining of tubulin indicated that MT3-037 altered tubulin networks in cancer cells. Moreover, an in vitro tubulin polymerization assay revealed that MT3-037 inhibited the tubulin polymerization by direct binding to tubulin. Molecular docking studies and binding site completion assays revealed that MT3-037 binds to the colchicine-binding site. Furthermore, MT3-037 significantly inhibited the tumor growth in both MDAMB-468 and Erlotinib-resistant MDA-MB-468 xenograft mouse models. In addition, MT3-037 inhibited the angiogenesis and disrupted the tube formation by human endothelial cells. Our study demonstrates that MT3-037 is a potential tubulin-disrupting agent for antitumor therapy. PMID:27186428

  9. Fast Multipole Methods for Particle Dynamics.

    SciTech Connect

    Kurzak, Jakub; Pettitt, Bernard M.

    2006-08-30

    The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. The growth of simulations of particle systems has been aided by advances in computer speed and algorithms. The adoption of O(N) algorithms to solve N-body simulation problems has been less rapid due to the fact that such scaling was only competitive for relatively large N. Our work seeks to find algorithmic modifications and practical implementations for intermediate values of N in typical use for molecular simulations. This article reviews fast multipole techniques for calculation of electrostatic interactions in molecular systems. The basic mathematics behind fast summations applied to long ranged forces is presented along with advanced techniques for accelerating the solution, including our most recent developments. The computational efficiency of the new methods facilitates both simulations of large systems as well as longer and therefore more realistic simulations of smaller systems.

  10. Fast Dynamics for Atoms in Optical Lattices

    NASA Astrophysics Data System (ADS)

    Łącki, Mateusz; Zakrzewski, Jakub

    2013-02-01

    Cold atoms in optical lattices allow for accurate studies of many body dynamics. Rapid time-dependent modifications of optical lattice potentials may result in significant excitations in atomic systems. The dynamics in such a case is frequently quite incompletely described by standard applications of tight-binding models (such as, e.g., Bose-Hubbard model or its extensions) that typically neglect the effect of the dynamics on the transformation between the real space and the tight-binding basis. We illustrate the importance of a proper quantum mechanical description using a multiband extended Bose-Hubbard model with time-dependent Wannier functions. We apply it to situations directly related to experiments.

  11. Insights into Antiparallel Microtubule Crosslinking by PRC1, a Conserved Nonmotor Microtubule Binding Protein

    SciTech Connect

    Subramanian, Radhika; Wilson-Kubalek, Elizabeth M.; Arthur, Christopher P.; Bick, Matthew J.; Campbell, Elizabeth A.; Darst, Seth A.; Milligan, Ronald A.; Kapoor, Tarun M.

    2010-09-03

    Formation of microtubule architectures, required for cell shape maintenance in yeast, directional cell expansion in plants and cytokinesis in eukaryotes, depends on antiparallel microtubule crosslinking by the conserved MAP65 protein family. Here, we combine structural and single molecule fluorescence methods to examine how PRC1, the human MAP65, crosslinks antiparallel microtubules. We find that PRC1's microtubule binding is mediated by a structured domain with a spectrin-fold and an unstructured Lys/Arg-rich domain. These two domains, at each end of a homodimer, are connected by a linkage that is flexible on single microtubules, but forms well-defined crossbridges between antiparallel filaments. Further, we show that PRC1 crosslinks are compliant and do not substantially resist filament sliding by motor proteins in vitro. Together, our data show how MAP65s, by combining structural flexibility and rigidity, tune microtubule associations to establish crosslinks that selectively mark antiparallel overlap in dynamic cytoskeletal networks.

  12. FAST TRACK COMMUNICATION: Complexified dynamical systems

    NASA Astrophysics Data System (ADS)

    Bender, Carl M.; Holm, Darryl D.; Hook, Daniel W.

    2007-08-01

    Many dynamical systems, such as the Lotka-Volterra predator-prey model and the Euler equations for the free rotation of a rigid body, are {{\\cal P}}{{\\cal T}} symmetric. The standard and well-known real solutions to such dynamical systems constitute an infinitessimal subclass of the full set of complex solutions. This paper examines a subset of the complex solutions that contains the real solutions, namely those having {{\\cal P}}{{\\cal T}} symmetry. The condition of {{\\cal P}}{{\\cal T}} symmetry selects out complex solutions that are periodic.

  13. FAST - A multiprocessed environment for visualization of computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Bancroft, Gordon V.; Merritt, Fergus J.; Plessel, Todd C.; Kelaita, Paul G.; Mccabe, R. Kevin

    1991-01-01

    The paper presents the Flow Analysis Software Toolset (FAST) to be used for fluid-mechanics analysis. The design criteria for FAST including the minimization of the data path in the computational fluid-dynamics (CFD) process, consistent user interface, extensible software architecture, modularization, and the isolation of three-dimensional tasks from the application programmer are outlined. Each separate process communicates through the FAST Hub, while other modules such as FAST Central, NAS file input, CFD calculator, surface extractor and renderer, titler, tracer, and isolev might work together to generate the scene. An interprocess communication package making it possible for FAST to operate as a modular environment where resources could be shared among different machines as well as a single host is discussed.

  14. Kinesin-5 is a microtubule polymerase

    PubMed Central

    Chen, Yalei; Hancock, William O

    2015-01-01

    Kinesin-5 slides antiparallel microtubules during spindle assembly, and regulates the branching of growing axons. Besides the mechanical activities enabled by its tetrameric configuration, the specific motor properties of kinesin-5 that underlie its cellular function remain unclear. Here by engineering a stable kinesin-5 dimer and reconstituting microtubule dynamics in vitro, we demonstrate that kinesin-5 promotes microtubule polymerization by increasing the growth rate and decreasing the catastrophe frequency. Strikingly, microtubules growing in the presence of kinesin-5 have curved plus ends, suggesting that the motor stabilizes growing protofilaments. Single-molecule fluorescence experiments reveal that kinesin-5 remains bound to the plus ends of static microtubules for 7 s, and tracks growing microtubule plus ends in a manner dependent on its processivity. We propose that kinesin-5 pauses at microtubule plus ends and enhances polymerization by stabilizing longitudinal tubulin–tubulin interactions, and that these activities underlie the ability kinesin-5 to slide and stabilize microtubule bundles in cells. PMID:26437877

  15. Environmental and Endogenous Control of Cortical Microtubule Orientation.

    PubMed

    Chen, Xu; Wu, Shuang; Liu, Zengyu; Friml, Jiří

    2016-06-01

    Plant growth requires a tight coordination of cell shape and anisotropic expansion. Owing to their immobility, plant cells determine body architecture through the orientation of cell division and cell expansion. Microtubule cytoskeleton represents a versatile cellular structure essential for coordinating flexible cell morphogenesis. Previous studies have identified a large number of microtubule-associated regulators that control microtubule dynamics; however, the mechanisms by which microtubule reorientation responds to exogenous and environmental stimuli are largely unknown. In this review, we describe the molecular details of microtubule dynamics that are required for cortical microtubule array pattern formation, and recapitulate current knowledge on the mechanisms by which various environmental and endogenous stimuli control cortical microtubule reorientation. PMID:26951762

  16. Fast Responding Voltage Regulator and Dynamic VAR Compensator

    SciTech Connect

    Divan, Deepak; Moghe, Rohit; Tholomier, Damien

    2014-12-31

    The objectives of this project were to develop a dynamic VAR compensator (DVC) for voltage regulation through VAR support to demonstrate the ability to achieve greater levels of voltage control on electricity distribution networks, and faster response compared to existing grid technology. The goal of the project was to develop a prototype Fast Dynamic VAR Compensator (Fast DVC) hardware device, and this was achieved. In addition to developing the dynamic VAR compensator device, Varentec in partnership with researchers at North Carolina State University (NCSU) successfully met the objectives to model the potential positive impact of such DVCs on representative power networks. This modeling activity validated the ability of distributed dynamic VAR compensators to provide fast voltage regulation and reactive power control required to respond to grid disturbances under high penetration of fluctuating and intermittent distributed energy resources (DERs) through extensive simulation studies. Specifically the following tasks were set to be accomplished: 1) Development of dynamic VAR compensator to support dynamic voltage variations on the grid through VAR control 2) Extensive testing of the DVC in the lab environment 3) Present the operational DVC device to the DOE at Varentec’s lab 4) Formulation of a detailed specification sheet, unit assembly document, test setup document, unit bring-up plan, and test plan 5) Extensive simulations of the DVC in a system with high PV penetration. Understanding the operation with many DVC on a single distribution system 6) Creation and submittal of quarterly and final reports conveying the design documents, unit performance data, modeling simulation charts and diagrams, and summary explanations of the satisfaction of program goals. This report details the various efforts that led to the development of the Fast DVC as well as the modeling & simulation results. The report begins with the introduction in Section II which outlines the

  17. Reconstituting the kinetochore-microtubule interface: what, why, and how

    PubMed Central

    Akiyoshi, Bungo; Biggins, Sue

    2012-01-01

    The kinetochore is the proteinaceous complex that governs the movement of duplicated chromosomes by interacting with spindle microtubules during mitosis and meiosis. Faithful chromosome segregation requires that kinetochores form robust load-bearing attachments to the tips of dynamic spindle microtubules, correct microtubule attachment errors, and delay the onset of anaphase until all chromosomes have made proper attachments. To understand how this macromolecular machine operates to segregate duplicated chromosomes with exquisite accuracy, it is critical to reconstitute and study kinetochore-microtubule interactions in vitro using defined components. Here, we review the current status of reconstitution as well as recent progress in understanding the microtubule binding functions of kinetochores in vivo. PMID:22289864

  18. Lessons from in vitro reconstitution analyses of plant microtubule-associated proteins

    PubMed Central

    Hamada, Takahiro

    2014-01-01

    Plant microtubules, composed of tubulin GTPase, are irreplaceable cellular components that regulate the directions of cell expansion and cell division, chromosome segregation and cell plate formation. To accomplish these functions, plant cells organize microtubule structures by regulating microtubule dynamics. Each microtubule localizes to the proper position with repeated growth and shortening. Although it is possible to reconstitute microtubule dynamics with pure tubulin solution in vitro, many microtubule-associated proteins (MAPs) govern microtubule dynamics in cells. In plants, major MAPs are identified as microtubule stabilizers (CLASP and MAP65 etc.), microtubule destabilizers (kinesin-13, katanin, MAP18 and MDP25), and microtubule dynamics promoters (EB1, MAP215, MOR1, MAP200, SPR2). Mutant analyses with forward and reverse genetics have shown the importance of microtubules and individual MAPs in plants. However, it is difficult to understand how each MAP regulates microtubule dynamics, such as growth and shortening, through mutant analyses. In vitro reconstitution analyses with individual purified MAPs and tubulin are powerful tools to reveal how each MAP regulates microtubule dynamics at the molecular level. In this review, I summarize the results of in vitro reconstitution analyses and introduce current models of how each MAP regulates microtubule dynamic instability. PMID:25202315

  19. Complementary roles of microtubules and microfilaments in the lung fibroblast-mediated contraction of collagen gels: Dynamics and the influence of cell density.

    PubMed

    Redden, Robert A; Doolin, Edward J

    2006-01-01

    Fibroblasts are important cellular components in wound healing, scar formation, and fibrotic disorders; and the fibroblast-populated collagen-gel (FPCG) model allows examination of fibroblast behavior in an in vitro three-dimensional environment similar to that in vivo. Contraction of free-floating FPCGs depends on an active and dynamic cytoskeleton, and the contraction dynamics are highly influenced by cell density. We investigated mechanistic differences between high- and low-cell density FPCG contraction by evaluating contraction dynamics in detail, using specific cytoskeletal disruptors. Collagen gels were seeded with human lung fibroblasts at either high (HD) or low (LD) density, and incubated with or without cytoskeletal disruptors colchicine (microtubules) or cytochalasin D (microfilaments). Gel area was measured daily. FPCG contraction curves were essentially sigmoidal, featuring an initial period of no contraction (lag phase), followed by a period of rapid contraction (log phase). Contraction curves of HD-FPCGs were distinct from those of LD-FPCGs. For example, HD-FPCGs had a negligible lag phase (compared with 3 d for LD-FPCGs) and exhibited a higher rate of log-phase contraction. Both colchicine and cytochalasin dose-dependently inhibited contraction but specifically affected different phases of contraction in HD- and LD-FPCGs; and colchicine inhibited LD-FPCGs much more than HD-FPCGs. The data indicate that LD- and HD-FPCGs contract through different primary mechanisms. Microtubules and microfilaments are both complementarily and dynamically involved in the contraction of FPCGs, and cell density influences primary cytoskeletal mechanisms. These results provide valuable information about fibroblast behavior in healing and fibrosis, and may suggest novel treatment options. PMID:16759151

  20. Dynamic pricing? Not so fast. a residential consumer perspective

    SciTech Connect

    Alexander, Barbara R.

    2010-07-15

    With the installation of smart metering, will residential customers be moved to ''dynamic'' pricing? Some supporters of changing residential rate design from a fixed and stable rate structure believe customers should be required to take electric service with time-variant price signals. Not so fast, though. There are real implications associated with this strategy. (author)

  1. Bat Dynamics of Female Fast Pitch Softball Batters.

    ERIC Educational Resources Information Center

    Messier, Stephen P.; Owen, Marjorie G.

    1984-01-01

    Female fast pitch softball batters served in an examination of the dynamic characteristics of the bat during the swing through the use of three-dimensional cinematographic analysis techniques. These results were compared with those from previous studies of baseball batting. Findings are listed. (Author/DF)

  2. Novel Piperazine-based Compounds Inhibit Microtubule Dynamics and Sensitize Colon Cancer Cells to Tumor Necrosis Factor-induced Apoptosis*

    PubMed Central

    Chopra, Avijeet; Anderson, Amy; Giardina, Charles

    2014-01-01

    We recently identified a series of mitotically acting piperazine-based compounds that potently increase the sensitivity of colon cancer cells to apoptotic ligands. Here we describe a structure-activity relationship study on this compound class and identify a highly active derivative ((4-(3-chlorophenyl)piperazin-1-yl)(2-ethoxyphenyl)methanone), referred to as AK301, the activity of which is governed by the positioning of functional groups on the phenyl and benzoyl rings. AK301 induced mitotic arrest in HT29 human colon cancer cells with an ED50 of ≈115 nm. Although AK301 inhibited growth of normal lung fibroblast cells, mitotic arrest was more pronounced in the colon cancer cells (50% versus 10%). Cells arrested by AK301 showed the formation of multiple microtubule organizing centers with Aurora kinase A and γ-tubulin. Employing in vitro and in vivo assays, tubulin polymerization was found to be slowed (but not abolished) by AK301. In silico molecular docking suggests that AK301 binds to the colchicine-binding domain on β-tubulin, but in a novel orientation. Cells arrested by AK301 expressed elevated levels of TNFR1 on their surface and more readily activated caspases-8, -9, and -3 in the presence of TNF. Relative to other microtubule destabilizers, AK301 was the most active TNF-sensitizing agent and also stimulated Fas- and TRAIL-induced apoptosis. In summary, we report a new class of mitosis-targeting agents that effectively sensitizes cancer cells to apoptotic ligands. These compounds should help illuminate the role of microtubules in regulating apoptotic ligand sensitivity and may ultimately be useful for developing agents that augment the anti-cancer activities of the immune response. PMID:24338023

  3. Quantum dynamics of fast chemical reactions

    SciTech Connect

    Light, J.C.

    1993-12-01

    The aims of this research are to explore, develop, and apply theoretical methods for the evaluation of the dynamics of gas phase collision processes, primarily chemical reactions. The primary theoretical tools developed for this work have been quantum scattering theory, both in time dependent and time independent forms. Over the past several years, the authors have developed and applied methods for the direct quantum evaluation of thermal rate constants, applying these to the evaluation of the hydrogen isotopic exchange reactions, applied wave packet propagation techniques to the dissociation of Rydberg H{sub 3}, incorporated optical potentials into the evaluation of thermal rate constants, evaluated the use of optical potentials for state-to-state reaction probability evaluations, and, most recently, have developed quantum approaches for electronically non-adiabatic reactions which may be applied to simplify calculations of reactive, but electronically adiabatic systems. Evaluation of the thermal rate constants and the dissociation of H{sub 3} were reported last year, and have now been published.

  4. Effect of the microtubule-associated protein tau on dynamics of single-headed motor proteins KIF1A

    NASA Astrophysics Data System (ADS)

    Sparacino, J.; Farías, M. G.; Lamberti, P. W.

    2014-02-01

    Intracellular transport based on molecular motors and its regulation are crucial to the functioning of cells. Filamentary tracks of the cells are abundantly decorated with nonmotile microtubule-associated proteins, such as tau. Motivated by experiments on kinesin-tau interactions [Dixit et al., Science 319, 1086 (2008), 10.1126/science.1152993] we developed a stochastic model of interacting single-headed motor proteins KIF1A that also takes into account the interactions between motor proteins and tau molecules. Our model reproduces experimental observations and predicts significant effects of tau on bound time and run length which suggest an important role of tau in regulation of kinesin-based transport.

  5. Collisionally induced stochastic dynamics of fast ions in solids

    SciTech Connect

    Burgdoerfer, J.

    1989-01-01

    Recent developments in the theory of excited state formation in collisions of fast highly charged ions with solids are reviewed. We discuss a classical transport theory employing Monte-Carlo sampling of solutions of a microscopic Langevin equation. Dynamical screening by the dielectric medium as well as multiple collisions are incorporated through the drift and stochastic forces in the Langevin equation. The close relationship between the extrinsically stochastic dynamics described by the Langevin and the intrinsic stochasticity in chaotic nonlinear dynamical systems is stressed. Comparison with experimental data and possible modification by quantum corrections are discussed. 49 refs., 11 figs.

  6. Negative regulation of EB1 turnover at microtubule plus ends by interaction with microtubule-associated protein ATIP3

    PubMed Central

    Rodrigues-Ferreira, Sylvie; Nehlig, Anne; Bouchet, Benjamin Pierre; Morel, Marina; Leconte, Ludovic; Serre, Laurence; Arnal, Isabelle; Braguer, Diane; Savina, Ariel; Honore, Stéphane; Nahmias, Clara

    2015-01-01

    The regulation of microtubule dynamics is critical to ensure essential cell functions. End binding protein 1 (EB1) is a master regulator of microtubule dynamics that autonomously binds an extended GTP/GDP-Pi structure at growing microtubule ends and recruits regulatory proteins at this location. However, negative regulation of EB1 association with growing microtubule ends remains poorly understood. We show here that microtubule-associated tumor suppressor ATIP3 interacts with EB1 through direct binding of a non-canonical proline-rich motif. Results indicate that ATIP3 does not localize at growing microtubule ends and that in situ ATIP3-EB1 molecular complexes are mostly detected in the cytosol. We present evidence that a minimal EB1-interacting sequence of ATIP3 is both necessary and sufficient to prevent EB1 accumulation at growing microtubule ends in living cells and that EB1-interaction is involved in reducing cell polarity. By fluorescence recovery of EB1-GFP after photobleaching, we show that ATIP3 silencing accelerates EB1 turnover at microtubule ends with no modification of EB1 diffusion in the cytosol. We propose a novel mechanism by which ATIP3-EB1 interaction indirectly reduces the kinetics of EB1 exchange on its recognition site, thereby accounting for negative regulation of microtubule dynamic instability. Our findings provide a unique example of decreased EB1 turnover at growing microtubule ends by cytosolic interaction with a tumor suppressor. PMID:26498358

  7. Negative regulation of EB1 turnover at microtubule plus ends by interaction with microtubule-associated protein ATIP3.

    PubMed

    Velot, Lauriane; Molina, Angie; Rodrigues-Ferreira, Sylvie; Nehlig, Anne; Bouchet, Benjamin Pierre; Morel, Marina; Leconte, Ludovic; Serre, Laurence; Arnal, Isabelle; Braguer, Diane; Savina, Ariel; Honore, Stéphane; Nahmias, Clara

    2015-12-22

    The regulation of microtubule dynamics is critical to ensure essential cell functions. End binding protein 1 (EB1) is a master regulator of microtubule dynamics that autonomously binds an extended GTP/GDP-Pi structure at growing microtubule ends and recruits regulatory proteins at this location. However, negative regulation of EB1 association with growing microtubule ends remains poorly understood. We show here that microtubule-associated tumor suppressor ATIP3 interacts with EB1 through direct binding of a non-canonical proline-rich motif. Results indicate that ATIP3 does not localize at growing microtubule ends and that in situ ATIP3-EB1 molecular complexes are mostly detected in the cytosol. We present evidence that a minimal EB1-interacting sequence of ATIP3 is both necessary and sufficient to prevent EB1 accumulation at growing microtubule ends in living cells and that EB1-interaction is involved in reducing cell polarity. By fluorescence recovery of EB1-GFP after photobleaching, we show that ATIP3 silencing accelerates EB1 turnover at microtubule ends with no modification of EB1 diffusion in the cytosol. We propose a novel mechanism by which ATIP3-EB1 interaction indirectly reduces the kinetics of EB1 exchange on its recognition site, thereby accounting for negative regulation of microtubule dynamic instability. Our findings provide a unique example of decreased EB1 turnover at growing microtubule ends by cytosolic interaction with a tumor suppressor. PMID:26498358

  8. A new technique for fast dynamic focusing law computing

    NASA Astrophysics Data System (ADS)

    Fritsch, C.; Cruza, J. F.; Brizuela, J.; Camacho, J.; Moreno, J. M.

    2012-05-01

    Dynamic focusing requires computing the individual delays for every element and every focus in the image. This is an easy and relatively fast task if the inspected medium is homogeneous. Nevertheless, some difficulties arise in presence of interfaces (i.e, wedges, immersion, etc.): refraction effects require computing the Snell's law for every focus and element to find the fastest ray entry point in the interface. The process is easy but takes a long time. This work presents a new technique to compute the focusing delays for an equivalent virtual array that operates in the second medium only, thus avoiding any interface. It is nearly as fast as computing the focal laws in the homogeneous case and an order of magnitude faster than Snell's or Fermat's principle based methods. Furthermore, the technique is completely general and can be applied to any equipment having dynamic focusing capabilities. In fact, the technique is especially well suited for real-time focal law computing hardware.

  9. Microtubules, Tubulins and Associated Proteins.

    ERIC Educational Resources Information Center

    Raxworthy, Michael J.

    1988-01-01

    Reviews much of what is known about microtubules, which are biopolymers consisting predominantly of subunits of the globular protein, tubulin. Describes the functions of microtubules, their structure and assembly, microtube associated proteins, and microtubule-disrupting agents. (TW)

  10. FAST Simulation Tool Containing Methods for Predicting the Dynamic Response of Wind Turbines

    SciTech Connect

    Jonkman, Jason

    2015-08-12

    FAST is a simulation tool (computer software) for modeling tlie dynamic response of horizontal-axis wind turbines. FAST employs a combined modal and multibody structural-dynamics formulation in the time domain.

  11. Cryo-EM Studies of Microtubule Structural Intermediates and Kinetochore–Microtubule Interactions

    PubMed Central

    Nogales, Eva; Ramey, Vincent H.; Wang, Hong-Wei

    2014-01-01

    The existence of structural intermediates in the processes of microtubule assembly and disassembly, and their relationship with the nucleotide state of tubulin, have been the subject of significant study and recent controversy. The first part of this chapter describes experiments and methods designed to characterize, using cryo-electron microscopy (cryo-EM) and image analysis, the structure of stabilized tubulin assemblies that we propose mimic the growth and shortening states at microtubule ends. We further put forward the idea that these intermediates have important biological functions, especially during cellular processes where the dynamic character of microtubules is essential. One such process is the attachment of spindle microtubules to kinetochores in eukaryotic cell division. The second part of this chapter is consequently dedicated to studies of the yeast Dam1 kinetochore complex and its interaction with microtubules. This complex is essential for accurate chromosome segregation and is an important target of the Aurora B spindle check-point kinase. The Dam1 complex self-assembles in a microtubule-dependent manner into rings and spirals. The rings are able to track microtubule-depolymerizing ends against a load and in a highly processive manner, an essential property for their function in vivo. We describe the experimental in vitro protocols to produce biologically relevant self-assembled structures of Dam1 around microtubules and their structural characterization by cryo-EM. PMID:20466133

  12. A note on the theory of fast money flow dynamics

    NASA Astrophysics Data System (ADS)

    Sokolov, A.; Kieu, T.; Melatos, A.

    2010-08-01

    The gauge theory of arbitrage was introduced by Ilinski in [K. Ilinski, preprint arXiv:hep-th/9710148 (1997)] and applied to fast money flows in [A. Ilinskaia, K. Ilinski, preprint arXiv:cond-mat/9902044 (1999); K. Ilinski, Physics of finance: gauge modelling in non-equilibrium pricing (Wiley, 2001)]. The theory of fast money flow dynamics attempts to model the evolution of currency exchange rates and stock prices on short, e.g. intra-day, time scales. It has been used to explain some of the heuristic trading rules, known as technical analysis, that are used by professional traders in the equity and foreign exchange markets. A critique of some of the underlying assumptions of the gauge theory of arbitrage was presented by Sornette in [D. Sornette, Int. J. Mod. Phys. C 9, 505 (1998)]. In this paper, we present a critique of the theory of fast money flow dynamics, which was not examined by Sornette. We demonstrate that the choice of the input parameters used in [K. Ilinski, Physics of finance: gauge modelling in non-equilibrium pricing (Wiley, 2001)] results in sinusoidal oscillations of the exchange rate, in conflict with the results presented in [K. Ilinski, Physics of finance: gauge modelling in non-equilibrium pricing (Wiley, 2001)]. We also find that the dynamics predicted by the theory are generally unstable in most realistic situations, with the exchange rate tending to zero or infinity exponentially.

  13. Fast dynamics in glass forming systems: Vibrations vs relaxation

    SciTech Connect

    Sokolov, A.P.

    1997-12-31

    Two contributions specific for the spectra of the fast dynamics in glass forming systems, a broad quasielastic scattering and the boson peak, are analyzed. It is shown that the vibrational contribution (the boson peak) decreases strongly in fragile systems. Some speculations about dependence of the degree of fragility (a la Angell) on peculiarity of the spectrum of fast dynamics are presented. The existence of some intrinsic relation between the broad quasielastic contribution and the boson peak is demonstrated from analysis of the recent neutron and Raman scattering data. It is shown that this relation can be explained in framework of the model of damped oscillator. The model ascribes the quasielastic contribution to the scattering of light or neutrons on the vibrations around the boson peak, which are damped by some relaxation channel and have a quasielastic part in their response function. It is demonstrated that the model can explain many peculiar properties of the fast dynamics in the Raman, neutron and far-infrared absorption spectra.

  14. Dimer model for Tau proteins bound in microtubule bundles

    NASA Astrophysics Data System (ADS)

    Hall, Natalie; Kluber, Alexander; Hayre, N. Robert; Singh, Rajiv; Cox, Daniel

    2013-03-01

    The microtubule associated protein tau is important in nucleating and maintaining microtubule spacing and structure in neuronal axons. Modification of tau is implicated as a later stage process in Alzheimer's disease, but little is known about the structure of tau in microtubule bundles. We present preliminary work on a proposed model for tau dimers in microtubule bundles (dimers are the minimal units since there is one microtubule binding domain per tau). First, a model of tau monomer was created and its characteristics explored using implicit solvent molecular dynamics simulation. Multiple simulations yield a partially collapsed form with separate positively/negatively charged clumps, but which are a factor of two smaller than required by observed microtubule spacing. We argue that this will elongate in dimer form to lower electrostatic energy at a cost of entropic ``spring'' energy. We will present preliminary results on steered molecular dynamics runs on tau dimers to estimate the actual force constant. Supported by US NSF Grant DMR 1207624.

  15. EB1 regulates attachment of Ska1 with microtubules by forming extended structures on the microtubule lattice.

    PubMed

    Thomas, Geethu E; Bandopadhyay, K; Sutradhar, Sabyasachi; Renjith, M R; Singh, Puja; Gireesh, K K; Simon, Steny; Badarudeen, Binshad; Gupta, Hindol; Banerjee, Manidipa; Paul, Raja; Mitra, J; Manna, Tapas K

    2016-01-01

    Kinetochore couples chromosome movement to dynamic microtubules, a process that is fundamental to mitosis in all eukaryotes but poorly understood. In vertebrates, spindle-kinetochore-associated (Ska1-3) protein complex plays an important role in this process. However, the proteins that stabilize Ska-mediated kinetochore-microtubule attachment remain unknown. Here we show that microtubule plus-end tracking protein EB1 facilitates Ska localization on microtubules in vertebrate cells. EB1 depletion results in a significant reduction of Ska1 recruitment onto microtubules and defects in mitotic chromosome alignment, which is also reflected in computational modelling. Biochemical experiments reveal that EB1 interacts with Ska1, facilitates Ska1-microtubule attachment and together stabilizes microtubules. Structural studies reveal that EB1 either with Ska1 or Ska complex forms extended structures on microtubule lattice. Results indicate that EB1 promotes Ska association with K-fibres and facilitates kinetochore-microtubule attachment. They also implicate that in vertebrates, chromosome coupling to dynamic microtubules could be mediated through EB1-Ska extended structures. PMID:27225956

  16. EB1 regulates attachment of Ska1 with microtubules by forming extended structures on the microtubule lattice

    PubMed Central

    Thomas, Geethu E.; Bandopadhyay, K.; Sutradhar, Sabyasachi; Renjith, M. R.; Singh, Puja; Gireesh, K. K.; Simon, Steny; Badarudeen, Binshad; Gupta, Hindol; Banerjee, Manidipa; Paul, Raja; Mitra, J.; Manna, Tapas K.

    2016-01-01

    Kinetochore couples chromosome movement to dynamic microtubules, a process that is fundamental to mitosis in all eukaryotes but poorly understood. In vertebrates, spindle-kinetochore-associated (Ska1–3) protein complex plays an important role in this process. However, the proteins that stabilize Ska-mediated kinetochore-microtubule attachment remain unknown. Here we show that microtubule plus-end tracking protein EB1 facilitates Ska localization on microtubules in vertebrate cells. EB1 depletion results in a significant reduction of Ska1 recruitment onto microtubules and defects in mitotic chromosome alignment, which is also reflected in computational modelling. Biochemical experiments reveal that EB1 interacts with Ska1, facilitates Ska1-microtubule attachment and together stabilizes microtubules. Structural studies reveal that EB1 either with Ska1 or Ska complex forms extended structures on microtubule lattice. Results indicate that EB1 promotes Ska association with K-fibres and facilitates kinetochore-microtubule attachment. They also implicate that in vertebrates, chromosome coupling to dynamic microtubules could be mediated through EB1-Ska extended structures. PMID:27225956

  17. Fast ion dynamics measured by collective Thomson scattering

    NASA Astrophysics Data System (ADS)

    Bindslev, Henrik

    2001-10-01

    In magnetically confined fusion plasmas, fast ions, from fusion reactions and auxiliary heating, typically carry a third of the total plasma kinetic energy, and even more of the free energy. This free energy must be channelled into heating the bulk plasma, but is also available for driving waves in the plasma, affecting confinement of bulk and fast ions. We know that fast ions can drive Alfvén waves, affect sawteeth and fishbones. In turn all three can redistribute or ejects the fast ions. Wave particle interaction, also the basis of Ion Cyclotron Resonance Heating (ICRH), depends crucially on the phase space distribution of the fast ions. Conversely the effect waves and instabilities have of fast ions will manifest itself in the detail of the fast ion phase space distribution. To explore the dynamics of fast ions and their interaction with the plasma thus begs for measurements of the fast ion distribution resolved in space, time and velocity. This has long been the promise of Collective Thomson Scattering (CTS) [1]. First demonstrated at JET [2]and subsequently at TEXTOR [3], CTS is living up to its promise and is now contributing to the understanding of fast ion dynamics. With the TEXTOR CTS, temporal behaviours of fast ion velocity distributions have been uncovered. The fast ion populations are produced by ICRH and Neutral Beam Injection (NBI). At sawteeth, we see clear variations in the fast ion population, which depend on ion energy, pitch angle and spatial location. Investigating the region just inside the inversion radius, we find that ions with small parallel energy, and with perpendicular energies up to a soft threshold well above thermal, are lost from the high field side near the inversion radius, while more energetic ions in the same pitch angle range remain insensitive to the sawteeth. The sensitive population could include the potato and stagnation orbit particles identified theoretically as being sensitive the sawteeth [4]. Under the same conditions

  18. Preparation of Segmented Microtubules to Study Motions Driven by the Disassembling Microtubule Ends

    PubMed Central

    Volkov, Vladimir A.; Zaytsev, Anatoly V.; Grishchuk, Ekaterina L.

    2014-01-01

    Microtubule depolymerization can provide force to transport different protein complexes and protein-coated beads in vitro. The underlying mechanisms are thought to play a vital role in the microtubule-dependent chromosome motions during cell division, but the relevant proteins and their exact roles are ill-defined. Thus, there is a growing need to develop assays with which to study such motility in vitro using purified components and defined biochemical milieu. Microtubules, however, are inherently unstable polymers; their switching between growth and shortening is stochastic and difficult to control. The protocols we describe here take advantage of the segmented microtubules that are made with the photoablatable stabilizing caps. Depolymerization of such segmented microtubules can be triggered with high temporal and spatial resolution, thereby assisting studies of motility at the disassembling microtubule ends. This technique can be used to carry out a quantitative analysis of the number of molecules in the fluorescently-labeled protein complexes, which move processively with dynamic microtubule ends. To optimize a signal-to-noise ratio in this and other quantitative fluorescent assays, coverslips should be treated to reduce nonspecific absorption of soluble fluorescently-labeled proteins. Detailed protocols are provided to take into account the unevenness of fluorescent illumination, and determine the intensity of a single fluorophore using equidistant Gaussian fit. Finally, we describe the use of segmented microtubules to study microtubule-dependent motions of the protein-coated microbeads, providing insights into the ability of different motor and nonmotor proteins to couple microtubule depolymerization to processive cargo motion. PMID:24686554

  19. Effects of silver ions (Ag+) on contractile ring function and microtubule dynamics during first cleavage in Ilyanassa obsoleta

    NASA Technical Reports Server (NTRS)

    Conrad, A. H.; Stephens, A. P.; Paulsen, A. Q.; Schwarting, S. S.; Conrad, G. W.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    The terminal phase of cell division involves tight constriction of the cleavage furrow contractile ring, stabilization/elongation of the intercellular bridge, and final separation of the daughter cells. At first cleavage, the fertilized eggs of the mollusk, Ilyanassa obsoleta, form two contractile rings at right angles to each other in the same cytoplasm that constrict to tight necks and partition the egg into a trefoil shape. The cleavage furrow contractile ring (CF) normally constricts around many midbody microtubules (MTs) and results in cleavage; the polar lobe constriction contractile ring (PLC) normally constricts around very few MTs and subsequently relaxes without cleavage. In the presence of Ag+ ions, the PLC 1) begins MT-dependent rapid constriction sooner than controls, 2) encircles more MTs than control egg PLCs, 3) elongates much more than control PLCs, and 4) remains tightly constricted and effectively cleaves the polar lobe from the egg. If Ag(+)-incubated eggs are returned to normal seawater at trefoil, tubulin fluorescence disappears from the PLC neck and the neck relaxes. If nocodazole, a drug that depolymerizes MTs, is added to Ag(+)-incubated eggs during early PLC constriction, the PLC is not stabilized and eventually relaxes. However, if nocodazole is added to Ag(+)-incubated eggs at trefoil, tubulin fluorescence disappears from the PLC neck but the neck remains constricted. These results suggest that Ag+ accelerates and gradually stabilizes the PLC constriction by a mechanism that is initially MT-dependent, but that progressively becomes MT-independent.

  20. Fission yeast mtr1p regulates interphase microtubule cortical dwell-time

    PubMed Central

    Carlier-Grynkorn, Frédérique; Ji, Liang; Fraisier, Vincent; Lombard, Berangère; Dingli, Florent; Loew, Damarys; Paoletti, Anne; Ronot, Xavier; Tran, Phong T.

    2014-01-01

    ABSTRACT The microtubule cytoskeleton plays important roles in cell polarity, motility and division. Microtubules inherently undergo dynamic instability, stochastically switching between phases of growth and shrinkage. In cells, some microtubule-associated proteins (MAPs) and molecular motors can further modulate microtubule dynamics. We present here the fission yeast mtr1+, a new regulator of microtubule dynamics that appears to be not a MAP or a motor. mtr1-deletion (mtr1Δ) primarily results in longer microtubule dwell-time at the cell tip cortex, suggesting that mtr1p acts directly or indirectly as a destabilizer of microtubules. mtr1p is antagonistic to mal3p, the ortholog of mammalian EB1, which stabilizes microtubules. mal3Δ results in short microtubules, but can be partially rescued by mtr1Δ, as the double mutant mal3Δ mtr1Δ exhibits longer microtubules than mal3Δ single mutant. By sequence homology, mtr1p is predicted to be a component of the ribosomal quality control complex. Intriguingly, deletion of a predicted ribosomal gene, rps1801, also resulted in longer microtubule dwell-time similar to mtr1Δ. The double-mutant mal3Δ rps1801Δ also exhibits longer microtubules than mal3Δ single mutant alone. Our study suggests a possible involvement of mtr1p and the ribosome complex in modulating microtubule dynamics. PMID:24928430

  1. Fission yeast mtr1p regulates interphase microtubule cortical dwell-time.

    PubMed

    Carlier-Grynkorn, Frédérique; Ji, Liang; Fraisier, Vincent; Lombard, Berangère; Dingli, Florent; Loew, Damarys; Paoletti, Anne; Ronot, Xavier; Tran, Phong T

    2014-01-01

    The microtubule cytoskeleton plays important roles in cell polarity, motility and division. Microtubules inherently undergo dynamic instability, stochastically switching between phases of growth and shrinkage. In cells, some microtubule-associated proteins (MAPs) and molecular motors can further modulate microtubule dynamics. We present here the fission yeast mtr1(+), a new regulator of microtubule dynamics that appears to be not a MAP or a motor. mtr1-deletion (mtr1Δ) primarily results in longer microtubule dwell-time at the cell tip cortex, suggesting that mtr1p acts directly or indirectly as a destabilizer of microtubules. mtr1p is antagonistic to mal3p, the ortholog of mammalian EB1, which stabilizes microtubules. mal3Δ results in short microtubules, but can be partially rescued by mtr1Δ, as the double mutant mal3Δ mtr1Δ exhibits longer microtubules than mal3Δ single mutant. By sequence homology, mtr1p is predicted to be a component of the ribosomal quality control complex. Intriguingly, deletion of a predicted ribosomal gene, rps1801, also resulted in longer microtubule dwell-time similar to mtr1Δ. The double-mutant mal3Δ rps1801Δ also exhibits longer microtubules than mal3Δ single mutant alone. Our study suggests a possible involvement of mtr1p and the ribosome complex in modulating microtubule dynamics. PMID:24928430

  2. Microtubules in Plants

    PubMed Central

    Hashimoto, Takashi

    2015-01-01

    Microtubules (MTs) are highly conserved polar polymers that are key elements of the eukaryotic cytoskeleton and are essential for various cell functions. αβ-tubulin, a heterodimer containing one structural GTP and one hydrolysable and exchangeable GTP, is the building block of MTs and is formed by the sequential action of several molecular chaperones. GTP hydrolysis in the MT lattice is mechanistically coupled with MT growth, thus giving MTs a metastable and dynamic nature. MTs adopt several distinct higher-order organizations that function in cell division and cell morphogenesis. Small molecular weight compounds that bind tubulin are used as herbicides and as research tools to investigate MT functions in plant cells. The de novo formation of MTs in cells requires conserved γ-tubulin-containing complexes and targeting/activating regulatory proteins that contribute to the geometry of MT arrays. Various MT regulators and tubulin modifications control the dynamics and organization of MTs throughout the cell cycle and in response to developmental and environmental cues. Signaling pathways that converge on the regulation of versatile MT functions are being characterized. PMID:26019693

  3. Distinct roles of doublecortin modulating the microtubule cytoskeleton

    PubMed Central

    Moores, Carolyn A; Perderiset, Mylène; Kappeler, Caroline; Kain, Susan; Drummond, Douglas; Perkins, Stephen J; Chelly, Jamel; Cross, Rob; Houdusse, Anne; Francis, Fiona

    2006-01-01

    Doublecortin is a neuronal microtubule-stabilising protein, mutations of which cause mental retardation and epilepsy in humans. How doublecortin influences microtubule dynamics, and thereby brain development, is unclear. We show here by video microscopy that purified doublecortin has no effect on the growth rate of microtubules. However, it is a potent anti-catastrophe factor that stabilises microtubules by linking adjacent protofilaments and counteracting their outward bending in depolymerising microtubules. We show that doublecortin-stabilised microtubules are substrates for kinesin translocase motors and for depolymerase kinesins. In addition, doublecortin does not itself oligomerise and does not bind to tubulin heterodimers but does nucleate microtubules. In cells, doublecortin is enriched at the distal ends of neuronal processes and our data raise the possibility that the function of doublecortin in neurons is to drive assembly and stabilisation of non-centrosomal microtubules in these doublecortin-enriched distal zones. These distinct properties combine to give doublecortin a unique function in microtubule regulation, a role that cannot be compensated for by other microtubule-stabilising proteins and nucleating factors. PMID:16957770

  4. Molecular mechanisms of kinetochore capture by spindle microtubules.

    PubMed

    Tanaka, Kozo; Mukae, Naomi; Dewar, Hilary; van Breugel, Mark; James, Euan K; Prescott, Alan R; Antony, Claude; Tanaka, Tomoyuki U

    2005-04-21

    For high-fidelity chromosome segregation, kinetochores must be properly captured by spindle microtubules, but the mechanisms underlying initial kinetochore capture have remained elusive. Here we visualized individual kinetochore-microtubule interactions in Saccharomyces cerevisiae by regulating the activity of a centromere. Kinetochores are captured by the side of microtubules extending from spindle poles, and are subsequently transported poleward along them. The microtubule extension from spindle poles requires microtubule plus-end-tracking proteins and the Ran GDP/GTP exchange factor. Distinct kinetochore components are used for kinetochore capture by microtubules and for ensuring subsequent sister kinetochore bi-orientation on the spindle. Kar3, a kinesin-14 family member, is one of the regulators that promote transport of captured kinetochores along microtubules. During such transport, kinetochores ensure that they do not slide off their associated microtubules by facilitating the conversion of microtubule dynamics from shrinkage to growth at the plus ends. This conversion is promoted by the transport of Stu2 from the captured kinetochores to the plus ends of microtubules. PMID:15846338

  5. Colchicine activates actin polymerization by microtubule depolymerization.

    PubMed

    Jung, H I; Shin, I; Park, Y M; Kang, K W; Ha, K S

    1997-06-30

    Swiss 3T3 fibroblasts were treated with the microtubule-disrupting agent colchicine to study any interaction between microtubule dynamics and actin polymerization. Colchicine increased the amount of filamentous actin (F-actin), in a dose- and time-dependent manner with a significant increase at 1 h by about 130% over control level. Confocal microscopic observation showed that colchicine increased F-actin contents by stress fiber formation without inducing membrane ruffling. Colchicine did not activate phospholipase C and phospholipase D, whereas lysophosphatidic acid did, indicating that colchicine may have a different mechanism of actin polymerization regulation from LPA. A variety of microtubule-disrupting agents stimulated actin polymerization in Swiss 3T3 and Rat-2 fibroblasts as did colchicine, but the microtubule-stabilizing agent taxol inhibited actin polymerization induced by the above microtubule-disrupting agents. In addition, colchicine-induced actin polymerization was blocked by two protein phosphatase inhibitors, okadaic acid and calyculin A. These results suggest that microtubule depolymerization activates stress fiber formation by serine/threonine dephosphorylation in fibroblasts. PMID:9264034

  6. General theory for the mechanics of confined microtubule asters

    NASA Astrophysics Data System (ADS)

    Ma, Rui; Laan, Liedewij; Dogterom, Marileen; Pavin, Nenad; Jülicher, Frank

    2014-01-01

    In cells, dynamic microtubules organize into asters or spindles to assist positioning of organelles. Two types of forces are suggested to contribute to the positioning process: (i) microtubule-growth based pushing forces; and (ii) motor protein mediated pulling forces. In this paper, we present a general theory to account for aster positioning in a confinement of arbitrary shape. The theory takes account of microtubule nucleation, growth, catastrophe, slipping, as well as interaction with cortical force generators. We calculate microtubule distributions and forces acting on microtubule organizing centers in a sphere and in an ellipsoid. Positioning mechanisms based on both pushing forces and pulling forces can be distinguished in our theory for different parameter regimes or in different geometries. In addition, we investigate positioning of microtubule asters in the case of asymmetric distribution of motors. This analysis enables us to characterize situations relevant for Caenorrhabditis elegans embryos.

  7. The dual specificity phosphatase Cdc14B bundles and stabilizes microtubules

    SciTech Connect

    Plumley, Hyekyung; Liu, Yie; Gomez, Marla V; Wang, Yisong

    2005-01-01

    The Cdc14 dual-specificity phosphatases regulate key events in the eukaryotic cell cycle. However, little is known about the function of mammalian CDC14B family members. Here, we demonstrate that subcellular localization of CDC14B protein is cell cycle regulated. CDC14B can bind, bundle, and stabilize microtubules in vitro independently of its catalytic activity. Basic amino acid residues within the nucleolar targeting domain are important for both retaining CDC14B in the nucleolus and preventing microtubule bundling. Overexpression of CDC14B resulted in the formation of cytoplasmic CDC14B and microtubule bundles in interphase cells. These microtubule bundles were resistant to microtubule depolymerization reagents and enriched in acetylated -tubulin. Expression of cytoplasmic forms of CDC14B impaired microtubule nucleation from the microtubule organization center. CDC14B is thus a novel microtubule-bundling and -stabilizing protein, whose regulated subcellular localization may help modulate spindle and microtubule dynamics in mitosis.

  8. XMAP215 activity sets spindle length by controlling the total mass of spindle microtubules.

    PubMed

    Reber, Simone B; Baumgart, Johannes; Widlund, Per O; Pozniakovsky, Andrei; Howard, Jonathon; Hyman, Anthony A; Jülicher, Frank

    2013-09-01

    Metaphase spindles are microtubule-based structures that use a multitude of proteins to modulate their morphology and function. Today, we understand many details of microtubule assembly, the role of microtubule-associated proteins, and the action of molecular motors. Ultimately, the challenge remains to understand how the collective behaviour of these nanometre-scale processes gives rise to a properly sized spindle on the micrometre scale. By systematically engineering the enzymatic activity of XMAP215, a processive microtubule polymerase, we show that Xenopus laevis spindle length increases linearly with microtubule growth velocity, whereas other parameters of spindle organization, such as microtubule density, lifetime and spindle shape, remain constant. We further show that mass balance can be used to link the global property of spindle size to individual microtubule dynamic parameters. We propose that spindle length is set by a balance of non-uniform nucleation and global microtubule disassembly in a liquid-crystal-like arrangement of microtubules. PMID:23974040

  9. Fast-growing species and sustainability (productivity and site dynamics of three fast-growing species)

    SciTech Connect

    Reddy, A.N.; Sugur, G.V.

    1992-12-31

    Growth of three fast-growing species, raised in a high rainfall zone (2000-2500 mm per annum) has been compared, and the associated site dynamics studies in the Western Ghat area of Karnataka State. Two fast-growing exotics, Acacia auriculiformis and Castuarina equisitifolia, were planted on degraded, open sites at high planting densities (5000 plants ha{sup {minus}1}), and one native fast-growing species. Dendrocalamus strictus, was planted on a good site under seasonal irrigation and wider spacing (500 plants ha{sup {minus}1}). These were studies at the age of 5 years for their comparative productivity, quantity of litter fall and changes in nutrient and microbial status. Among these species, A. auriculiformis recorded the highest total productivity closely followed by D. strictus. However, the MAI after 5 years indicated a higher productivity for D. strictus, when culm production attained harvestable size. C. equisitifolia was a close third. It was also found that D. strictus produced higher biomass at lower planting densities, under better sites and management. The litter fall and changes in nutrient status indicated the highest efficiency in A. auriculiformis, followed by C. equisitifolia. It was concluded that the higher planting density was the major contributing factor; the values were comparatively low for D. strictus mainly owing to a lower stocking density of plants.

  10. Microtubule teardrop patterns

    NASA Astrophysics Data System (ADS)

    Okeyoshi, Kosuke; Kawamura, Ryuzo; Yoshida, Ryo; Osada, Yoshihito

    2015-03-01

    Several strategies for controlling microtubule patterns are developed because of the rigidity determined from the molecular structure and the geometrical structure. In contrast to the patterns in co-operation with motor proteins or associated proteins, microtubules have a huge potential for patterns via their intrinsic flexural rigidity. We discover that a microtubule teardrop pattern emerges via self-assembly under hydrodynamic flow from the parallel bundles without motor proteins. In the growth process, the bundles ultimately bend according to the critical bending curvature. Such protein pattern formation utilizing the intrinsic flexural rigidity will provide broad understandings of self-assembly of rigid rods, not only in biomolecules, but also in supramolecules.