Science.gov

Sample records for fast neutron radiotherapy

  1. Fast neutron radiotherapy: For equal or for better

    SciTech Connect

    Broerse, J.J.; Battermann, J.J.

    1981-11-01

    The renewed application of fast neutrons in clinical radiotherapy has been stimulated by fundamental radiobiological findings. The biological effects of high LET radiation, including fast neutrons, are different from those obtained with x rays in at least three respects: the oxygen enhancement ratio, the sensitivity of cells at different phases of the cell cycle, and the contribution of sublethal damage to cell reproductive death. Furthermore, wide variations in relative biological effectiveness (RBE) have been observed for different tumors and normal tissues. Measurements of volume changes in human pulmonary metastases indicate that the RBE for slowly growing tumors which are generally well-differentiated is higher than that for poorly differentiated lesions. Six thousand patients have now been treated with fast neutron beams. The results of the clinical applications vary according to the method of application and to the type of cancer involved: treatment of inoperable malignancies of the salivary gland is very encouraging; the therapeutic gain is rather small for bladder and rectal cancers, soft tissue sarcomas and advanced carcinomas of the cervix; the responses of brain tumors are very disappointing. Most neutron radiotherapy applications have been less than optimal because of inadequate physical and technical conditions. Despite these difficulties, some interesting clinical data have become available. Due to the technical shortcomings, the possible advantages of fast neutrons are probably underestimated for many tumor sites. Well-designed clinical trials, preferably performed with high energy cyclotrons in clinical environments, will provide a decisive answer to the question of the usefulness of the new radiation modality. Key words: fast neutrons, radiotherapy, radiobiology

  2. Calculation of nuclear data for fast neutron and proton radiotherapy: A new ICRU report

    SciTech Connect

    Chadwick, M.B.

    1997-08-01

    The author discusses the determination of nuclear interaction cross sections that are needed for fast neutron and proton radiotherapy. Both nuclear theory and experimental results are used to evaluate these data. An International Commission on Radiation Units and Measurements (ICRU) report, which is expected to be issued in 1998 and which compiles these data, is described.

  3. Measuring neutron spectra in radiotherapy using the nested neutron spectrometer

    SciTech Connect

    Maglieri, Robert Evans, Michael; Seuntjens, Jan; Kildea, John; Licea, Angel

    2015-11-15

    Purpose: Out-of-field neutron doses resulting from photonuclear interactions in the head of a linear accelerator pose an iatrogenic risk to patients and an occupational risk to personnel during radiotherapy. To quantify neutron production, in-room measurements have traditionally been carried out using Bonner sphere systems (BSS) with activation foils and TLDs. In this work, a recently developed active detector, the nested neutron spectrometer (NNS), was tested in radiotherapy bunkers. Methods: The NNS is designed for easy handling and is more practical than the traditional BSS. Operated in current-mode, the problem of pulse pileup due to high dose-rates is overcome by measuring current, similar to an ionization chamber. In a bunker housing a Varian Clinac 21EX, the performance of the NNS was evaluated in terms of reproducibility, linearity, and dose-rate effects. Using a custom maximum-likelihood expectation–maximization algorithm, measured neutron spectra at various locations inside the bunker were then compared to Monte Carlo simulations of an identical setup. In terms of dose, neutron ambient dose equivalents were calculated from the measured spectra and compared to bubble detector neutron dose equivalent measurements. Results: The NNS-measured spectra for neutrons at various locations in a treatment room were found to be consistent with expectations for both relative shape and absolute magnitude. Neutron fluence-rate decreased with distance from the source and the shape of the spectrum changed from a dominant fast neutron peak near the Linac head to a dominant thermal neutron peak in the moderating conditions of the maze. Monte Carlo data and NNS-measured spectra agreed within 30% at all locations except in the maze where the deviation was a maximum of 40%. Neutron ambient dose equivalents calculated from the authors’ measured spectra were consistent (one standard deviation) with bubble detector measurements in the treatment room. Conclusions: The NNS may

  4. Simplified fast neutron dosimeter

    DOEpatents

    Sohrabi, Mehdi

    1979-01-01

    Direct fast-neutron-induced recoil and alpha particle tracks in polycarbonate films may be enlarged for direct visual observation and automated counting procedures employing electrochemical etching techniques. Electrochemical etching is, for example, carried out in a 28% KOH solution at room temperature by applying a 2000 V peak-to-peak voltage at 1 kHz frequency. Such recoil particle amplification can be used for the detection of wide neutron dose ranges from 1 mrad. to 1000 rads. or higher, if desired.

  5. FAST NEUTRONIC REACTOR

    DOEpatents

    Snell, A.H.

    1957-12-01

    This patent relates to a reactor and process for carrying out a controlled fast neutron chain reaction. A cubical reactive mass, weighing at least 920 metric tons, of uranium metal containing predominantly U/sup 238/ and having a U/sup 235/ content of at least 7.63% is assembled and the maximum neutron reproduction ratio is limited to not substantially over 1.01 by insertion and removal of a varying amount of boron, the reactive mass being substantially freed of moderator.

  6. Fast neutron dosimetry

    SciTech Connect

    DeLuca, P.M. Jr.; Pearson, D.W.

    1992-01-01

    This progress report concentrates on two major areas of dosimetry research: measurement of fast neutron kerma factors for several elements for monochromatic and white spectrum neutron fields and determination of the response of thermoluminescent phosphors to various ultra-soft X-ray energies and beta-rays. Dr. Zhixin Zhou from the Shanghai Institute of Radiation Medicine, People's Republic of China brought with him special expertise in the fabrication and use of ultra-thin TLD materials. Such materials are not available in the USA. The rather unique properties of these materials were investigated during this grant period.

  7. FAST NEUTRON SPECTROMETER

    DOEpatents

    Davis, F.J.; Hurst, G.S.; Reinhardt, P.W.

    1959-08-18

    An improved proton recoil spectrometer for determining the energy spectrum of a fast neutron beam is described. Instead of discriminating against and thereby"throwing away" the many recoil protons other than those traveling parallel to the neutron beam axis as do conventional spectrometers, this device utilizes protons scattered over a very wide solid angle. An ovoidal gas-filled recoil chamber is coated on the inside with a scintillator. The ovoidal shape of the sensitive portion of the wall defining the chamber conforms to the envelope of the range of the proton recoils from the radiator disposed within the chamber. A photomultiplier monitors the output of the scintillator, and a counter counts the pulses caused by protons of energy just sufficient to reach the scintillator.

  8. Fast and thermal neutron radiography

    NASA Astrophysics Data System (ADS)

    Cremer, Jay T.; Piestrup, Melvin A.; Wu, Xizeng

    2005-09-01

    There is a need for high brightness neutron sources that are portable, relatively inexpensive, and capable of neutron radiography in short imaging times. Fast and thermal neutron radiography is as an excellent method to penetrate high-density, high-Z objects, thick objects and image its interior contents, especially hydrogen-based materials. In this paper we model the expected imaging performance characteristics and limitations of fast and thermal radiography systems employing a Rose Model based transfer analysis. For fast neutron detection plastic fiber array scintllators or liquid scintillator filled capillary arrays are employed for fast neutron detection, and 6Li doped ZnS(Cu) phosphors are employed for thermal neutron detection. These simulations can provide guidance in the design, construction, and testing of neutron imaging systems. In particular we determined for a range of slab thickness, the range of thicknesses of embedded cracks (air-filled or filled with material such as water) which can be detected and imaged.

  9. Direct Fast-Neutron Detection

    SciTech Connect

    DC Stromswold; AJ Peurrung; RR Hansen; PL Reeder

    2000-01-18

    Direct fast-neutron detection is the detection of fast neutrons before they are moderated to thermal energy. We have investigated two approaches for using proton-recoil in plastic scintillators to detect fast neutrons and distinguish them from gamma-ray interactions. Both approaches use the difference in travel speed between neutrons and gamma rays as the basis for separating the types of events. In the first method, we examined the pulses generated during scattering in a plastic scintillator to see if they provide a means for distinguishing fast-neutron events from gamma-ray events. The slower speed of neutrons compared to gamma rays results in the production of broader pulses when neutrons scatter several times within a plastic scintillator. In contrast, gamma-ray interactions should produce narrow pulses, even if multiple scattering takes place, because the time between successive scattering is small. Experiments using a fast scintillator confirmed the presence of broader pulses from neutrons than from gamma rays. However, the difference in pulse widths between neutrons and gamma rays using the best commercially available scintillators was not sufficiently large to provide a practical means for distinguishing fast neutrons and gamma rays on a pulse-by-pulse basis. A faster scintillator is needed, and that scintillator might become available in the literature. Results of the pulse-width studies were presented in a previous report (peurrung et al. 1998), and they are only summarized here.

  10. Commissioning of intensity modulated neutron radiotherapy (IMNRT)

    SciTech Connect

    Burmeister, Jay; Snyder, Michael; Spink, Robyn; Liang Liang; Bossenberger, Todd; Halford, Robert; Brandon, John; Delauter, Jonathan

    2013-02-15

    Purpose: Intensity modulated neutron radiotherapy (IMNRT) has been developed using inhouse treatment planning and delivery systems at the Karmanos Cancer Center/Wayne State University Fast Neutron Therapy facility. The process of commissioning IMNRT for clinical use is presented here. Results of commissioning tests are provided including validation measurements using representative patient plans as well as those from the TG-119 test suite. Methods: IMNRT plans were created using the Varian Eclipse optimization algorithm and an inhouse planning system for calculation of neutron dose distributions. Tissue equivalent ionization chambers and an ionization chamber array were used for point dose and planar dose distribution comparisons with calculated values. Validation plans were delivered to water and virtual water phantoms using TG-119 measurement points and evaluation techniques. Photon and neutron doses were evaluated both inside and outside the target volume for a typical IMNRT plan to determine effects of intensity modulation on the photon dose component. Monitor unit linearity and effects of beam current and gantry angle on output were investigated, and an independent validation of neutron dosimetry was obtained. Results: While IMNRT plan quality is superior to conventional fast neutron therapy plans for clinical sites such as prostate and head and neck, it is inferior to photon IMRT for most TG-119 planning goals, particularly for complex cases. This results significantly from current limitations on the number of segments. Measured and calculated doses for 11 representative plans (six prostate/five head and neck) agreed to within -0.8 {+-} 1.4% and 5.0 {+-} 6.0% within and outside the target, respectively. Nearly all (22/24) ion chamber point measurements in the two phantom arrangements were within the respective confidence intervals for the quantity [(measured-planned)/prescription dose] derived in TG-119. Mean differences for all measurements were 0.5% (max

  11. Fast Neutron Sensitivity with HPGe

    SciTech Connect

    Seifert, Allen; Hensley, Walter K.; Siciliano, Edward R.; Pitts, W. K.

    2008-01-22

    In addition to being excellent gamma-ray detectors, germanium detectors are also sensitive to fast neutrons. Incident neutrons undergo inelastic scattering {Ge(n,n')Ge*} off germanium nuclei and the resulting excited states emit gamma rays or conversion electrons. The response of a standard 140% high-purity germanium (HPGe) detector with a bismuth germanate (BGO) anti-coincidence shield was measured for several neutron sources to characterize the ability of the HPGe detector to detect fast neutrons. For a sensitivity calculation performed using the characteristic fast neutron response peak that occurs at 692 keV, the 140% germanium detector system exhibited a sensitivity of ~175 counts / kg of WGPumetal in 1000 seconds at a source-detector distance of 1 meter with 4 in. of lead shielding between source and detector. Theoretical work also indicates that it might be possible to use the shape of the fast-neutron inelastic scattering signatures (specifically, the end-point energy of the long high energy tail of the resulting asymmetric peak) to gain additional information about the energy distribution of the incident neutron spectrum. However, the experimentally observed end-point energies appear to be almost identical for each of the fast neutron sources counted. Detailed MCNP calculations show that the neutron energy distributions impingent on the detector for these sources are very similar in this experimental configuration, due to neutron scattering in a lead shield (placed between the neutron source and HPGe detector to reduce the gamma ray flux), the BGO anti-coincidence detector, and the concrete floor.

  12. Fast neutron imaging device and method

    DOEpatents

    Popov, Vladimir; Degtiarenko, Pavel; Musatov, Igor V.

    2014-02-11

    A fast neutron imaging apparatus and method of constructing fast neutron radiography images, the apparatus including a neutron source and a detector that provides event-by-event acquisition of position and energy deposition, and optionally timing and pulse shape for each individual neutron event detected by the detector. The method for constructing fast neutron radiography images utilizes the apparatus of the invention.

  13. HEND Maps of Fast Neutrons

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Observations by NASA's 2001 Mars Odyssey spacecraft show a global view of Mars in high-energy, or fast, neutrons. These maps are based on data acquired by the high-energy neutron detector, one of the instruments in the gamma ray spectrometer suite. Fast neutrons, like epithermal neutrons, are sensitive to the presence of hydrogen. Unlike epithermal neutrons, however, they are not affected by the presence of carbon dioxide, which at the time of these observations covered the north polar area as 'dry ice' frost. The low flux of fast neutrons (blue and purple colors) in the north polar region suggests an abundance of hydrogen in the soil comparable to that determined in the south from the flux of epithermal neutrons. These observations were acquired during the first two months of mapping operations. Contours of topography are superimposed on these maps for geographic reference.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. Investigators at Arizona State University in Tempe, the University of Arizona in Tucson, and NASA's Johnson Space Center, Houston, operate the science instruments. The gamma-ray spectrometer was provided by the University of Arizona in collaboration with the Russian Aviation and Space Agency, which provided the high-energy neutron detector, and the Los Alamos National Laboratories, New Mexico, which provided the neutron spectrometer. Lockheed Martin Astronautics, Denver, is the prime contractor for the project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  14. Fast neutron environments.

    SciTech Connect

    Buchheit, Thomas Edward; Kotula, Paul Gabriel; Lu, Ping; Brewer, Luke N.; Goods, Steven Howard; Foiles, Stephen Martin; Puskar, Joseph David; Hattar, Khalid Mikhiel; Doyle, Barney Lee; Boyce, Brad Lee; Clark, Blythe G.

    2011-10-01

    The goal of this LDRD project is to develop a rapid first-order experimental procedure for the testing of advanced cladding materials that may be considered for generation IV nuclear reactors. In order to investigate this, a technique was developed to expose the coupons of potential materials to high displacement damage at elevated temperatures to simulate the neutron environment expected in Generation IV reactors. This was completed through a high temperature high-energy heavy-ion implantation. The mechanical properties of the ion irradiated region were tested by either micropillar compression or nanoindentation to determine the local properties, as a function of the implantation dose and exposure temperature. In order to directly compare the microstructural evolution and property degradation from the accelerated testing and classical neutron testing, 316L, 409, and 420 stainless steels were tested. In addition, two sets of diffusion couples from 316L and HT9 stainless steels with various refractory metals. This study has shown that if the ion irradiation size scale is taken into consideration when developing and analyzing the mechanical property data, significant insight into the structural properties of the potential cladding materials can be gained in about a week.

  15. Neutrons and charged particles in radiotherapy. Oncology overview

    SciTech Connect

    Not Available

    1984-10-01

    Oncology Overviews are a service of the International Cancer Research Data Bank (ICRDB) Program of the National Cancer Institute, intended to facilitate and promote the exchange of information between cancer scientists by keeping them aware of literature related to their research being published by other laboratories throughout the world. Each Oncology Overview represents a survey of the literature associated with a selected area of cancer research. It contains abstracts of articles which have been selected and organized by researchers associated with the field. Contents: Neutrons and charged particles in radiotherapy of head and neck cancer; Neutrons and charged particles in radiotherapy of central nervous system cancer; Neutrons and charged particles in radiotherapy of digestive cancer; Neutrons and charged particles in radiotherapy of gynecologic cancer; Neutrons and charged particles in radiotherapy of musculoskeletal cancer; Neutrons and charged particles in radiotherapy of other organ site cancer; Neutrons and charged particles in radiotherapy of multiple site cancer; Neutrons and charged particles in radiotherapy--relative biological effectiveness; Neutrons and charged particles in radiotherapy--instrumentation and technology; Neutrons and charged particles in radiotherapy--reviews.

  16. Treatment experience: locally advanced sarcomas with 15 MeV fast neutrons

    SciTech Connect

    Ornitz, R.; Herskovic, A.; Schell, M.; Fender, F.; Rogers, C.C.

    1980-06-01

    Experience with ten evaluable osseous sarcomas and ten evaluable advanced soft tissue sarcomas treated with neutrons of a mean neutron energy of 15 MeV are described. Neutron irradiation with or without conventional megavoltage radiotherapy is an effective modality in the treatment of these patients. No correlation between response rate and grade or whether fast neutrons alone or combined with megavoltage radiotherapy was noted. Those patients receiving a neutron dose of 2195 neutron plus gamma rads or greater all had a complete response.

  17. Development of Advanced Multi-Modality Radiation Treatment Planning Software for Neutron Radiotherapy and Beyond

    SciTech Connect

    Nigg, D; Wessol, D; Wemple, C; Harkin, G; Hartmann-Siantar, C

    2002-08-20

    The Idaho National Engineering and Environmental Laboratory (INEEL) has long been active in development of advanced Monte-Carlo based computational dosimetry and treatment planning methods and software for advanced radiotherapy, with a particular focus on Neutron Capture Therapy (NCT) and, to a somewhat lesser extent, Fast-Neutron Therapy. The most recent INEEL software system of this type is known as SERA, Simulation Environment for Radiotherapy Applications. As a logical next step in the development of modern radiotherapy planning tools to support the most advanced research, INEEL and Lawrence Livermore National Laboratory (LLNL), the developers of the PEREGRTNE computational engine for radiotherapy treatment planning applications, have recently launched a new project to collaborate in the development of a ''next-generation'' multi-modality treatment planning software system that will be useful for all modern forms of radiotherapy.

  18. [Fast neutron cross section measurements

    SciTech Connect

    Knoll, G.F.

    1992-10-26

    From its inception, the Nuclear Data Project at the University of Michigan has concentrated on two major objectives: (1) to carry out carefully controlled nuclear measurements of the highest possible reliability in support of the national nuclear data program, and (2) to provide an educational opportunity for students with interests in experimental nuclear science. The project has undergone a successful transition from a primary dependence on our photoneutron laboratory to one in which our current research is entirely based on a unique pulsed 14 MeV fast neutron facility. The new experimental facility is unique in its ability to provide nanosecond bursts of 14 MeV neutrons under conditions that are clean'' and as scatter-free as possible, and is the only one of its type currently in operation in the United States. It has been designed and put into operation primarily by graduate students, and has met or exceeded all of its important initial performance goals. We have reached the point of its routine operation, and most of the data are now in hand that will serve as the basis for the first two doctoral dissertations to be written by participating graduate students. Our initial results on double differential neutron cross sections will be presented at the May 1993 Fusion Reactor Technology Workshop. We are pleased to report that, after investing several years in equipment assembly and optimization, the project has now entered its data production'' phase.

  19. Validation of computational methods for treatment planning of fast-neutron therapy using activation foil techniques

    SciTech Connect

    Nigg, D.W.; Wemple, C.A.; Hartwell, J.K.; Harker, Y.D.; Venhuizen, J.R.; Risler, R.

    1997-12-01

    A closed-form direct method for unfolding neutron spectra from foil activation data is presented. The method is applied to measurements of the free-field neutron spectrum produced by the proton-cyclotron-based fast-neutron radiotherapy facility at the University of Washington (UW) School of Medicine. The results compare favorably with theoretical expectations based on an a-priori calculational model of the target and neutron beamline configuration of the UW facility.

  20. Complications of fast neutron therapy.

    PubMed

    Cohen, L

    1998-01-01

    The purpose of the study was to identify the tissues and organs at risk following high-energy neutron-beam therapy for selected radioresistant tumors, estimating the separate probabilities of both normal tissue injury and of tumor recurrence, each in relation to the absorbed dose. Published statistical and anecdotal reports on the incidence of serious complications observed following fast neutron treatment directed to the cranium, head and neck, chest, upper abdomen, pelvis, and extremities are reviewed and dose-response parameters derived using bivariate probit or logistic analyses. We then calculate the conditional probability of uncomplicated control (PUC) at various doses, assuming that tumor cure and late injury are stochastically independent events. The median effective doses and coefficients of variation, derived for neutron irradiation of human brain and spinal cord, oropharynx, lung, stomach and bowel, rectum and bladder, and extremities, are tabulated and tentative "tolerance limits" estimated. Tolerance doses are shown to depend on several factors including beam quality, chemical composition, cell cycling rate, fraction-size, and follow-up time. In patients followed over 5 years, safe tolerance doses appear to range from < 14 GY for the central nervous system up to 22 GY in the oropharynx and mandible. Given well-determined dose-response data for specific normal tissues and the associated tumors, the separate probabilities of tumor control and of normal tissue injury at a given dose can be estimated. The particular treatment scheme yielding the highest PUC can usually be identified. The maximum PUC for neutron therapy, compared with other modalities, is a measure of both efficacy and safety for the procedure under study and thus provides a useful guide for comparing various modalities and treatment plans and for designing more effective treatment strategies. PMID:9670290

  1. Lyoluminescence dosimetry in photon and fast neutron beams.

    PubMed

    Puite, K J; Crebolder, D L

    1977-11-01

    The lyoluminescence (LL) technique using mannose, a monosaccharide, is described. Dose-response curves for 60Co-gamma-rays (5 rad to 120 krad), fission neutrons, 5.3 MeV and 15 MeV neutrons (100 rad to 20 krad) have been measured. The close tissue-equivalence of mannose makes this material well suited for dosimetric use in low energy X-ray fields for radiotherapy and radiobiology. It also provides a cheap, simple and reproducible dosemeter in industrial applications of radiation (sprouting inhibition of onions and potatoes; control of insect infestation). After correction for the gamma contamination of the neutron beam the LL signal per rad in ICRU muscle tissue from the neutron irradiations has been derived and the relative effectiveness of the LL signal for fast neutrons in mannose has been calculated as 0.34 +/- 0.03 (fission neutrons), 0.63 +/- 0.07 (5.3 MeV neutrons) and 0.74 +/- 0.05 (15 MeV neutrons). These results are compared with data from other systems. It is concluded that mannose can be used as a transfer system in neutron dosimetry, if its variation in sensitivity with neutron energy is taken into account. PMID:594143

  2. Treatment of Locally Advanced Adenoid Cystic Carcinoma of the Trachea With Neutron Radiotherapy

    SciTech Connect

    Bittner, Nathan; Koh, W.-J.; Laramore, George E.; Patel, Shilpen; Mulligan, Michael S.; Douglas, James G.

    2008-10-01

    Purpose: To examine the efficacy of fast neutron radiotherapy in the treatment of locally advanced adenoid cystic carcinoma (ACC) of the trachea and to compare outcomes with and without high-dose-rate (HDR) endobronchial brachytherapy boost. Methods and Materials: Between 1989 and 2005, a total of 20 patients with ACC of the trachea were treated with fast neutron radiotherapy at University of Washington. Of these 20 patients, 19 were treated with curative intent. Neutron doses ranged from 10.7 to 19.95 Gy (median, 19.2 Gy). Six of these patients received an endobronchial brachytherapy boost using an HDR {sup 192}Ir source (3.5 Gy x 2 fractions). Median duration of follow-up was 46 months (range, 10-121 months). Results: The 5-year actuarial overall survival rate and median overall survival for the entire cohort were 89.4%, and 97 months, respectively. Overall survival was not statistically different among those patients receiving an endobronchial boost compared with those receiving neutron radiotherapy alone (100% vs. 68%, p = 0.36). The 5-year actuarial locoregional control rate for the entire cohort was 54.1%. The locoregional control rate was not statistically different among patients who received an endobronchial boost compared with those who received neutron radiotherapy alone (40% vs. 58%, p 0.94). There were no cases of Grade {>=}3 acute toxicity. There were 2 cases of Grade 3/4 chronic toxicity. Conclusions: Fast neutron radiotherapy is an effective treatment for locally advanced adenoid cystic carcinoma of the trachea, with acceptable treatment-related toxicity.

  3. A neutron track etch detector for electron linear accelerators in radiotherapy

    PubMed Central

    Vukovic, Branko; Faj, Dario; Poje, Marina; Varga, Maja; Radolic, Vanja; Miklavcic, Igor; Ivkovic, Ana; Planinic, Josip

    2010-01-01

    Background Electron linear accelerators in medical radiotherapy have replaced cobalt and caesium sources of radiation. However, medical accelerators with photon energies over 10 MeV generate undesired fast neutron contamination in a therapeutic X-ray photon beam. Photons with energies above 10 MeV can interact with the atomic nucleus of a high-Z material, of which the target and the head of an accelerator consist, and lead to the neutron ejection. Results and conclusions. Our neutron dosimeter, composed of the LR-115 track etch detector and boron foil BN-1 converter, was calibrated on thermal neutrons generated in the nuclear reactor of the Josef Stefan Institute (Slovenia), and applied to dosimetry of undesirable neutrons in photon radiotherapy by the linear accelerator 15 MV Siemens Mevatron. Having considered a high dependence of a cross-section between neutron and boron on neutron energy, and broad neutron spectrum in a photon beam, as well as outside the entrance door to maze of the Mevatron, we developed a method for determining the effective neutron detector response. A neutron dose rate in the photon beam was measured to be 1.96 Sv/h. Outside the Mevatron room the neutron dose rate was 0.62 μSv/h. PACS: 87.52. Ga; 87.53.St; 29.40.Wk. PMID:22933893

  4. Fast neutron detection with a segmented spectrometer

    NASA Astrophysics Data System (ADS)

    Langford, T. J.; Bass, C. D.; Beise, E. J.; Breuer, H.; Erwin, D. K.; Heimbach, C. R.; Nico, J. S.

    2015-01-01

    A fast neutron spectrometer consisting of segmented plastic scintillator and 3He proportional counters was constructed for the measurement of neutrons in the energy range 1-200 MeV. We discuss its design, principles of operation, and the method of analysis. The detector is capable of observing very low neutron fluxes in the presence of ambient gamma background and does not require scintillator pulse-shape discrimination. The spectrometer was characterized for its energy response in fast neutron fields of 2.5 MeV and 14 MeV, and the results are compared with Monte Carlo simulations. Measurements of the fast neutron flux and energy response at 120 m above sea-level (39.130°N, 77.218°W) and at a depth of 560 m in a limestone mine are presented. Finally, the design of a spectrometer with improved sensitivity and energy resolution is discussed.

  5. Narcotics detection using fast-neutron interrogation

    SciTech Connect

    Micklich, B.J.; Fink, C.L.

    1995-12-31

    Fast-neutron interrogation techniques are being investigated for detection of narcotics in luggage and cargo containers. This paper discusses two different fast-neutron techniques. The first uses a pulsed accelerator or sealed-tube source to produce monoenergetic fast neutrons. Gamma rays characteristic of carbon and oxygen are detected and the elemental densities determined. Spatial localization is accomplished by either time of flight or collimators. This technique is suitable for examination of large containers because of the good penetration of the fast neutrons and the low attenuation of the high-energy gamma rays. The second technique uses an accelerator to produce nanosecond pulsed beams of deuterons that strike a target to produce a pulsed beam of neutrons with a continuum of energies. Elemental distributions are obtained by measuring the neutron spectrum after the source neutrons pass through the items being interrogated. Spatial variation of elemental densities is obtained by tomographic reconstruction of projection data obtained for three to five angles and relatively low (2 cm) resolution. This technique is best suited for examination of luggage or small containers with average neutron transmissions greater than about 0.01. Analytic and Monte-Carlo models are being used to investigate the operational characteristics and limitations of both techniques.

  6. Novel applications of fast neutron interrogation methods

    NASA Astrophysics Data System (ADS)

    Gozani, Tsahi

    1994-12-01

    The development of non-intrusive inspection methods for contraband consisting primarily of carbon, nitrogen, oxygen, and hydrogen requires the use of fast neutrons. While most elements can be sufficiently well detected by the thermal neutron capture process, some important ones, e.g., carbon and in particular oxygen, cannot be detected by this process. Fortunately, fast neutrons, with energies above the threshold for inelastic scattering, stimulate relatively strong and specific gamma ray lines from these elements. The main lines are: 6.13 for O, 4.43 for C, and 5.11, 2.31 and 1.64 MeV for N. Accelerator-generated neutrons in the energy range of 7 to 15 MeV are being considered as interrogating radiations in a variety of non-intrusive inspection systems for contraband, from explosives to drugs and from coal to smuggled, dutiable goods. In some applications, mostly for inspection of small items such as luggage, the decision process involves a rudimentary imaging, akin to emission tomography, to obtain the localized concentration of various elements. This technique is called FNA — Fast Neutron Analysis. While this approach offers improvements over the TNA (Thermal Neutron Analysis), it is not applicable to large objects such as shipping containers and trucks. For these challenging applications, a collimated beam of neutrons is rastered along the height of the moving object. In addition, the neutrons are generated in very narrow nanosecond pulses. The point of their interaction inside the object is determined by the time of flight (TOF) method, that is measuring the time elapsed from the neutron generation to the time of detection of the stimulated gamma rays. This technique, called PFNA (Pulsed Fast Neutron Analysis), thus directly provides the elemental, and by inference, the chemical composition of the material at every volume element (voxel) of the object. The various neutron-based techniques are briefly described below.

  7. Time of flight fast neutron radiography

    NASA Astrophysics Data System (ADS)

    Loveman, R.; Bendahan, J.; Gozani, T.; Stevenson, J.

    1995-05-01

    Neutron radiography with fast or thermal neutrons is a standard technique for non-destructive testing (NDT). Here we report results for fast neutron radiography both as an adjunct to pulsed fast neutron analysis (PFNA) and as a stand-alone method for NDT. PFNA is a new technique for utilizing a collimated pulsed neutron beam to interrogate items and determine their elemental composition. By determining the time of flight for gamma-rays produced by (n,n' gamma X) reactions, a three dimensional image can be produced. Neutron radiography data taken with the same beam provides an important constraint for image reconstruction, and in particular is important in inferring the amount of hydrogen within the interrogated item. As a stand-alone device, the radiography measurement can be used to image items as large as cargo containers as long as their density is not too high. The use of a pulsed beam gives the further advantage of a time of flight measurement on the transmitted neutrons. By gating the radiography signal on the time of flight appropriate to the energy of the primary neutrons, most build-up from scattered neutrons can be eliminated. The pulsed beam also greatly improves the signal to background and extends the range of the neutron radiography. Simulation results will be presented which display the advantage of this constraint in particular for statistically limited data. Experimental results will be presented which show some of the limitations likely in a PFNA system utilizing neutron radiography data. Experimental and simulation results will demonstrate possible uses for this type of radiographic data in identifying contraband substances such as drugs.

  8. Fast-neutron spectrometer developments

    NASA Technical Reports Server (NTRS)

    Moler, R. B.; Zagotta, W. E.; Baker, S. I.

    1973-01-01

    Li6 sandwich-type neutron spectrometer is equipped with proportional counter for particle identification. System uses current-sensitive preamplifiers to minimize pile-up of gamma-ray and particle pulses.

  9. A system for fast neutron radiography

    SciTech Connect

    Klann, R.T.

    1996-05-01

    A system has been designed and a neutron generator installed to perform fast neutron radiography. With this sytem, objects as small as a coin or as large as a waste drum can be radiographed. The neutron source is an MF Physics A-711 neutron generator which produces 3x10{sup 10} neutrons/second with an average energy of 14.5 MeV. The radiography system uses x-ray scintillation screens and film in commercially available cassettes. The cassettes have been modified to include a thin sheet of plastic to convert neutrons to protons through elastic scattering from hydrogen and other low Z materials in the plastic. For film densities from 1.8 to 3.0, exposures range from 1.9x10{sup 7} to 3.8x10{sup 8} n/cm{sup 2} depending on the type of screen and film.

  10. Fast Pulsing Neutron Generators for Security Application

    SciTech Connect

    Ji, Q.; Regis, M.; Kwan, J. W.

    2009-04-24

    Active neutron interrogation has been demonstrated to be an effective method of detecting shielded fissile material. A fast fall-time/fast pulsing neutron generator is needed primarily for differential die-away technique (DDA) interrogation systems. A compact neutron generator, currently being developed in Lawrence Berkeley National Laboratory, employs an array of 0.6-mm-dia apertures (instead of one 6-mm-dia aperture) such that gating the beamlets can be done with low voltage and a small gap to achieve sub-microsecond ion beam fall time and low background neutrons. Arrays of 16 apertures (4x4) and 100 apertures (10x10) have been designed and fabricated for a beam extraction experiment. The preliminary results showed that, using a gating voltage of 1200 V and a gap distance of 1 mm, the fall time of extracted ion beam pulses is approximately 0.15 mu s at beam energies of 1000 eV.

  11. Fast Neutron Radiation Effects on Bacillus Subtili

    NASA Astrophysics Data System (ADS)

    Chen, Xiaoming; Ren, Zhenglong; Zhang, Jianguo; Zheng, Chun; Tan, Bisheng; Yang, Chengde; Chu, Shijin

    2009-06-01

    To examine the sterilizing effect and mechanism of neutron radiation, Bacillus subtilis var. niger. strain (ATCC 9372) spores were irradiated with the fast neutron from the Chinese fast burst reactor II(CFBR-II). The plate-count results indicated that the D10 value was 384.6 Gy with a neutron radiation dose rate of 7.4 Gy/min. The rudimental catalase activity of the spores declined obviously with the increase in the radiation dose. Meanwhile, under the scanning electron microscope, no visible influence of the neutron radiation on the spore configuration was detected even if the dose was increased to 4 kGy. The content and distribution of DNA double-strand breaks induced by neutron radiation at different doses were measured and quantified by pulsed-field gel electrophoresis (PFGE). Further analysis of the DNA release percentage (PR), the DNA breakage level (L), and the average molecular weight, indicated that DNA fragments were obviously distributed around the 5 kb regions at different radiation doses, which suggests that some points in the DNA molecule were sensitive to neutron radiation. Both PR and L varied regularly to some extent with the increase in radiation dose. Thus neutron radiation has a high sterilization power, and can induce falling enzyme activity and DNA breakage in Bacillus subtilis spores

  12. Neoplasia in fast neutron-irradiated beagles

    SciTech Connect

    Bradley, E.W.; Zook, B.C.; Casarett, G.W.; Deye, J.A.; Adoff, L.M.; Rogers, C.C.

    1981-09-01

    One hundred fifty-one beagle dogs were irradiated with either photons or fast neutrons (15 MeV) to one of three dose-limiting normal tissues--spinal cord, lung, or brain. The radiation was given in four fractions per week for 5 weeks (spinal cord), 6 weeks (lung), or 7 weeks (brain) to total doses encompassing those given clinically for cancer management. To date, no nonirradiated dogs or photon-irradiated dogs have developed any neoplasms. Seven dogs receiving fast neutrons have developed 9 neoplasms within the irradiated field. Of the neutron-irradiated dogs at risk, the incidence of neoplasia was 15%. The latent period for radiation-induced cancers has varied from 1 to 4 1/2 years at this time in the study.

  13. High spatial resolution fast-neutron imaging detectors for Pulsed Fast-Neutron Transmission Spectroscopy

    NASA Astrophysics Data System (ADS)

    Mor, I.; Vartsky, D.; Bar, D.; Feldman, G.; Goldberg, M. B.; Katz, D.; Sayag, E.; Shmueli, I.; Cohen, Y.; Tal, A.; Vagish, Z.; Bromberger, B.; Dangendorf, V.; Mugai, D.; Tittelmeier, K.; Weierganz, M.

    2009-05-01

    Two generations of a novel detector for high-resolution transmission imaging and spectrometry of fast-neutrons are presented. These devices are based on a hydrogenous fiber scintillator screen and single- or multiple-gated intensified camera systems (ICCD). This detector is designed for energy-selective neutron radiography with nanosecond-pulsed broad-energy (1-10 MeV) neutron beams. Utilizing the Time-of-Flight (TOF) method, such a detector is capable of simultaneously capturing several images, each at a different neutron energy (TOF). In addition, a gamma-ray image can also be simultaneously registered, allowing combined neutron/gamma inspection of objects. This permits combining the sensitivity of the fast-neutron resonance method to low-Z elements with that of gamma radiography to high-Z materials.

  14. Fast neutron background measurements at shallow depths

    SciTech Connect

    Chen, M.; Hertenberger, R.; Novikov, V.; Dougherty, B.

    1993-10-01

    We report on measurements of the neutron backgrounds for neutrino experiments at shallow depth (such as the proposed San Onofre neutrino oscillation experiment). A detector capable of pulse-shape discrimination measured the flux of fast neutrons at 20 mwe depth in the Stanford Underground Facility to be (1.07 {+-} 0.30) X 10{sup -6} cm{sup -2} s{sup -1}. An experiment, situated in the Tendon Gallery of the San Onofre Unit 2 reactor. studied spallation neutrons from muons traversing Pb and Cu. An underground experiment in the SUF, employing a detector filled with Gd-loaded liquid scintillator, is measuring the neutron production rate and multiplicity for muon spallation in low-A material (hydrocarbon-based liquid scintillator).

  15. Distinguishing Pu Metal From Pu Oxide Using Fast Neutron Counting

    SciTech Connect

    Verbeke, J M; Chapline, G F; Nakae, L; Wurtz, R; Sheets, S

    2012-05-29

    We describe a method for simultaneously determining the {alpha}-ratio and k{sub eff} for fissile materials using fast neutrons. Our method is a generalization of the Hage-Cifarrelli method for determining k{sub eff} for fissile assemblies which utilizes the shape of the fast neutron spectrum. In this talk we illustrate the method using Monte Carlo simulations of the fast neutrons generated in PuO{sub 2} to calculate the fast neutron spectrum and Feynman correlations.

  16. (Fast neutron cross section measurements)

    SciTech Connect

    Not Available

    1991-01-01

    In the 14 MeV Neutron Laboratory, we have continued the development of a facility that is now the only one of its kind in operation in the United States. We have refined the klystron bunching system described in last year's report to the point that 1.2 nanosecond pulses have been directly measured. We have tested the pulse shape discrimination capability of our primary NE 213 neutron detector. We have converted the RF sweeper section of the beamline to a frequency of 1 MHz to replace the function of the high voltage pulser described in last year's report which proved to be difficult to maintain and unreliable in its operation. We have also overcome several other significant experimental difficulties, including a major problem with a vacuum leak in the main accelerator column. We have completed additional testing to prove the remainder of the generation and measurement systems, but overcoming some of these experimental difficulties has delayed the start of actual data taking. We are now in a position to begin our first series of ring geometry elastic scattering measurements, and these will be underway before the end of the current contract year. As part of our longer term planning, we are continuing the conceptual analysis of several schemes to improve the intensity of our current pulsed beam. These include the provision of a duoplasmatron ion source and/or the provision of preacceleration bunching. Additional details are given later in this report. A series of measurements were carried out at the Tandem Dynamatron Facility involving the irradiation of a series of yttrium foils and the determination of activation cross sections using absolute counting techniques. The experimental work has been completed, and final analysis of the cross section data will be completed within several months.

  17. Superconducting High Resolution Fast-Neutron Spectrometers

    SciTech Connect

    Hau, I D

    2006-05-25

    Superconducting high resolution fast-neutron calorimetric spectrometers based on {sup 6}LiF and TiB{sub 2} absorbers have been developed. These novel cryogenic spectrometers measure the temperature rise produced in exothermal (n, {alpha}) reactions with fast neutrons in {sup 6}Li and {sup 10}B-loaded materials with heat capacity C operating at temperatures T close to 0.1 K. Temperature variations on the order of 0.5 mK are measured with a Mo/Cu thin film multilayer operated in the transition region between its superconducting and its normal state. The advantage of calorimetry for high resolution spectroscopy is due to the small phonon excitation energies k{sub B}T on the order of {mu}eV that serve as signal carriers, resulting in an energy resolution {Delta}E {approx} (k{sub B}T{sup 2}C){sup 1/2}, which can be well below 10 keV. An energy resolution of 5.5 keV has been obtained with a Mo/Cu superconducting sensor and a TiB{sub 2} absorber using thermal neutrons from a {sup 252}Cf neutron source. This resolution is sufficient to observe the effect of recoil nuclei broadening in neutron spectra, which has been related to the lifetime of the first excited state in {sup 7}Li. Fast-neutron spectra obtained with a {sup 6}Li-enriched LiF absorber show an energy resolution of 16 keV FWHM, and a response in agreement with the {sup 6}Li(n, {alpha}){sup 3}H reaction cross section and Monte Carlo simulations for energies up to several MeV. The energy resolution of order of a few keV makes this novel instrument applicable to fast-neutron transmission spectroscopy based on the unique elemental signature provided by the neutron absorption and scattering resonances. The optimization of the energy resolution based on analytical and numerical models of the detector response is discussed in the context of these applications.

  18. Effects of fast neutron radiation on polypropylene

    SciTech Connect

    Cygan, S.; Laghari, J.R. . Dept. of Electrical and Computer Engineering)

    1989-08-01

    Capacitor-grade polypropylene films were irradiated in a 2-MW thermal nuclear reactor and exposed to fast neutron radiation at a flux rate of 2.6 x 10/sup 12/ neutron/cm/sup 2/s and gamma radiation at a level of 10/sup 7/ rad/h. The postirradiation effects on changes in the electrical and chemical properties of the films were studied for irradiation times up to 10 h. The electrical properties were dc and ac breakdown voltages, life under pulsed voltage stress, dielectric permittivity, dielectric losses, and volume resistivity. Chemical analysis was performed using the infrared spectroscopy technique. The results are discussed in this paper.

  19. A system for fast neutron radiography

    SciTech Connect

    Klann, R.T.

    1997-04-01

    A system has been designed and a neutron generator installed to perform fast neutron radiography. With this system, objects as small as a coin and as large as a 19 liter container have been radiographed. The neutron source is an MF Physics A-711 neutron generator which produces 3 x 10[sup 10] neutrons/second with an average energy of 14. 5 MeV. The radiography system uses x-ray scintillation screens and film in commercially available light-tight cassettes. The cassettes have been modified to include a thin sheet of plastic to produce protons from the neutron beam through elastic scattering from hydrogen and other low Z materials in the plastic. For film densities from 1.8 to 3.0, exposures range from 1.9 x 10[sup 7] n/cm[sup 2] to 3.8 x 10[sup 8] n/cm[sup 2] depending on the type of screen and film. The optimum source-to-film distance was found to be 150 cm. At this distance, the geometric unsharpness was determined to be approximately 2.2-2.3 mm and the smallest hole that could be resolved in a 1.25 cm thick sample had a diameter of 0.079 cm.

  20. Material classification by fast neutron scattering

    NASA Astrophysics Data System (ADS)

    Buffler, A.; Brooks, F. D.; Allie, M. S.; Bharuth-Ram, K.; Nchodu, M. R.

    2001-02-01

    The scattering of a beam of fast monoenergetic neutrons is used to determine elemental compositions of bulk samples (0.2-0.8 kg) of materials composed from one or more of the elements H, C, N, O, Al, S, Fe and Pb. Scattered neutrons are detected by liquid scintillators placed at forward and at backward angles. Different elements are identified by their characteristic scattering signatures derived either from a combination of time-of-flight and pulse height measurements, or from pulse height measurements alone. Scattering signatures measured for multi-element samples are analysed to determine atom fractions for H, C, N, O and other elements in the sample. Atom fractions determined from scattering signatures are insensitive to neutron interactions in material surrounding the scattering sample, provided the amount of material is not excessive. The atom fraction data are used to classify scattering material into categories including "explosives", "illicit drugs" and "other materials" for the purpose of contraband detection.

  1. Fission-neutrons source with fast neutron-emission timing

    NASA Astrophysics Data System (ADS)

    Rusev, G.; Baramsai, B.; Bond, E. M.; Jandel, M.

    2016-05-01

    A neutron source with fast timing has been built to help with detector-response measurements. The source is based on the neutron emission from the spontaneous fission of 252Cf. The time is provided by registering the fission fragments in a layer of a thin scintillation film with a signal rise time of 1 ns. The scintillation light output is measured by two silicon photomultipliers with rise time of 0.5 ns. Overall time resolution of the source is 0.3 ns. Design of the source and test measurements using it are described. An example application of the source for determining the neutron/gamma pulse-shape discrimination by a stilbene crystal is given.

  2. Fast-neutron, coded-aperture imager

    NASA Astrophysics Data System (ADS)

    Woolf, Richard S.; Phlips, Bernard F.; Hutcheson, Anthony L.; Wulf, Eric A.

    2015-06-01

    This work discusses a large-scale, coded-aperture imager for fast neutrons, building off a proof-of concept instrument developed at the U.S. Naval Research Laboratory (NRL). The Space Science Division at the NRL has a heritage of developing large-scale, mobile systems, using coded-aperture imaging, for long-range γ-ray detection and localization. The fast-neutron, coded-aperture imaging instrument, designed for a mobile unit (20 ft. ISO container), consists of a 32-element array of 15 cm×15 cm×15 cm liquid scintillation detectors (EJ-309) mounted behind a 12×12 pseudorandom coded aperture. The elements of the aperture are composed of 15 cm×15 cm×10 cm blocks of high-density polyethylene (HDPE). The arrangement of the aperture elements produces a shadow pattern on the detector array behind the mask. By measuring of the number of neutron counts per masked and unmasked detector, and with knowledge of the mask pattern, a source image can be deconvolved to obtain a 2-d location. The number of neutrons per detector was obtained by processing the fast signal from each PMT in flash digitizing electronics. Digital pulse shape discrimination (PSD) was performed to filter out the fast-neutron signal from the γ background. The prototype instrument was tested at an indoor facility at the NRL with a 1.8-μCi and 13-μCi 252Cf neutron/γ source at three standoff distances of 9, 15 and 26 m (maximum allowed in the facility) over a 15-min integration time. The imaging and detection capabilities of the instrument were tested by moving the source in half- and one-pixel increments across the image plane. We show a representative sample of the results obtained at one-pixel increments for a standoff distance of 9 m. The 1.8-μCi source was not detected at the 26-m standoff. In order to increase the sensitivity of the instrument, we reduced the fastneutron background by shielding the top, sides and back of the detector array with 10-cm-thick HDPE. This shielding configuration led

  3. MPACT Fast Neutron Multiplicity System Design Concepts

    SciTech Connect

    D. L. Chichester; S. A. Pozzi; J. L. Dolan; M. T. Kinlaw; A. C. Kaplan; M. Flaska; A. Enqvist; J. T. Johnsom; S. M. Watson

    2012-10-01

    This report documents work performed by Idaho National Laboratory and the University of Michigan in fiscal year (FY) 2012 to examine design parameters related to the use of fast-neutron multiplicity counting for assaying plutonium for materials protection, accountancy, and control purposes. This project seeks to develop a new type of neutron-measurement-based plutonium assay instrument suited for assaying advanced fuel cycle materials. Some current-concept advanced fuels contain high concentrations of plutonium; some of these concept fuels also contain other fissionable actinides besides plutonium. Because of these attributes the neutron emission rates of these new fuels may be much higher, and more difficult to interpret, than measurements made of plutonium-only materials. Fast neutron multiplicity analysis is one approach for assaying these advanced nuclear fuels. Studies have been performed to assess the conceptual performance capabilities of a fast-neutron multiplicity counter for assaying plutonium. Comparisons have been made to evaluate the potential improvements and benefits of fast-neutron multiplicity analyses versus traditional thermal-neutron counting systems. Fast-neutron instrumentation, using for example an array of liquid scintillators such as EJ-309, have the potential to either a) significantly reduce assay measurement times versus traditional approaches, for comparable measurement precision values, b) significantly improve assay precision values, for measurement durations comparable to current-generation technology, or c) moderating improve both measurement precision and measurement durations versus current-generation technology. Using the MCNPX-PoliMi Monte Carlo simulation code, studies have been performed to assess the doubles-detection efficiency for a variety of counter layouts of cylindrical liquid scintillator detector cells over one, two, and three rows. Ignoring other considerations, the best detector design is the one with the most

  4. Image reconstruction from Pulsed Fast Neutron Analysis

    NASA Astrophysics Data System (ADS)

    Bendahan, Joseph; Feinstein, Leon; Keeley, Doug; Loveman, Rob

    1999-06-01

    Pulsed Fast Neutron Analysis (PFNA) has been demonstrated to detect drugs and explosives in trucks and large cargo containers. PFNA uses a collimated beam of nanosecond-pulsed fast neutrons that interact with the cargo contents to produce gamma rays characteristic to their elemental composition. By timing the arrival of the emitted radiation to an array of gamma-ray detectors a three-dimensional elemental density map or image of the cargo is created. The process to determine the elemental densities is complex and requires a number of steps. The first step consists of extracting from the characteristic gamma-ray spectra the counts associated with the elements of interest. Other steps are needed to correct for physical quantities such as gamma-ray production cross sections and angular distributions. The image processing includes also phenomenological corrections that take into account the neutron attenuation through the cargo, and the attenuation of the gamma rays from the point they were generated to the gamma-ray detectors. Additional processing is required to map the elemental densities from the data acquisition system of coordinates to a rectilinear system. This paper describes the image processing used to compute the elemental densities from the counts observed in the gamma-ray detectors.

  5. Image reconstruction from Pulsed Fast Neutron Analysis

    SciTech Connect

    Bendahan, Joseph; Feinstein, Leon; Keeley, Doug; Loveman, Rob

    1999-06-10

    Pulsed Fast Neutron Analysis (PFNA) has been demonstrated to detect drugs and explosives in trucks and large cargo containers. PFNA uses a collimated beam of nanosecond-pulsed fast neutrons that interact with the cargo contents to produce gamma rays characteristic to their elemental composition. By timing the arrival of the emitted radiation to an array of gamma-ray detectors a three-dimensional elemental density map or image of the cargo is created. The process to determine the elemental densities is complex and requires a number of steps. The first step consists of extracting from the characteristic gamma-ray spectra the counts associated with the elements of interest. Other steps are needed to correct for physical quantities such as gamma-ray production cross sections and angular distributions. The image processing includes also phenomenological corrections that take into account the neutron attenuation through the cargo, and the attenuation of the gamma rays from the point they were generated to the gamma-ray detectors. Additional processing is required to map the elemental densities from the data acquisition system of coordinates to a rectilinear system. This paper describes the image processing used to compute the elemental densities from the counts observed in the gamma-ray detectors.

  6. Methods and Instruments for Fast Neutron Detection

    SciTech Connect

    Jordan, David V.; Reeder, Paul L.; Cooper, Matthew W.; McCormick, Kathleen R.; Peurrung, Anthony J.; Warren, Glen A.

    2005-05-01

    Pacific Northwest National Laboratory evaluated the performance of a large-area (~0.7 m2) plastic scintillator time-of-flight (TOF) sensor for direct detection of fast neutrons. This type of sensor is a readily area-scalable technology that provides broad-area geometrical coverage at a reasonably low cost. It can yield intrinsic detection efficiencies that compare favorably with moderator-based detection methods. The timing resolution achievable should permit substantially more precise time windowing of return neutron flux than would otherwise be possible with moderated detectors. The energy-deposition threshold imposed on each scintillator contributing to the event-definition trigger in a TOF system can be set to blind the sensor to direct emission from the neutron generator. The primary technical challenge addressed in the project was to understand the capabilities of a neutron TOF sensor in the limit of large scintillator area and small scintillator separation, a size regime in which the neutral particle’s flight path between the two scintillators is not tightly constrained.

  7. Fast Neutron Spectroscopy using a CLYC array

    NASA Astrophysics Data System (ADS)

    Doucet, Emery; Brown, T.; Chowdhury, P.; Lister, C. J.; Wilson, G. L.; Devlin, M.; Mosby, S.

    2015-10-01

    A new inorganic scintillator, Cs2LiYCl6, or CLYC, has recently shown great promise as a dual gamma-neutron detector, where neutron-gamma discrimination is achieved through digital pulse shape processing. The 35Cl(n,p) reaction allows fast neutrons to be measured with an energy resolution of ~10 %. Following initial tests with natural Li, 6Li-depleted crystals were chosen to reduce the strong thermal capture response of 6Li. A 16-element array of 1'' x 1'' 6Li-depleted CLYC crystals is being tested in a variety of applications. A VME-based digital DAQ is used for pulse shape discrimination and extracting energies. The array was deployed at the LANSCE WNR facility, to measure elastic and inelastic scattering cross sections of neutrons on 56Fe and 238U. The data acquisition and analysis software were originally based on Python. The sorting codes were re-written in C, which sped up the analysis by two orders of magnitude. Most of the sorting code is within the framework of the CERN-ROOT software. Details of the detector array and the analysis will be presented. Supported by NNSA-SSAA program through DOE Grant DE-NA00013008.

  8. Neoplasia in fast neutron-irradiated beagles

    SciTech Connect

    Bradley, E.W.; Zook; B.C.; Casarett, G.W.

    1981-09-01

    One hundred fifty-one beagle dogs were irradiated with either photons or fast neutrons (15 MeV) to one of three dose-limiting normal tissues - spinal cord, lung, or brain. The radiation was given in four fractions per week for 5 weeks (spinal cord), 6 weeks (lung), 7 weeks (brain) to total doses encompassing those given clinically for cancer management. To date, no nonirradiated dogs or photon-irradiated dogs have developed neoplasms within the irradiated field. Of the neutron-irradiated dogs at risk, the incidence of neoplasia was 15%. The latent period for radiation-induced cancers has varied from 1 to 4 1/2 years at this time in the study.

  9. Sci—Fri PM: Dosimetry—02: A Nested Neutron Spectrometer to Measure Neutron Spectra in Radiotherapy

    SciTech Connect

    Maglieri, R; Seuntjens, J; Kildea, J; Licea, A

    2014-08-15

    During high-energy radiotherapy treatments, neutrons are produced in the head of the linac through photonuclear interactions. This has been a concern for many years as photoneutrons contribute to the accepted, yet unwanted, out-of-field doses that pose an iatrogenic risk to patients and an occupational risk to personnel. Presently, in-room neutron measurements are difficult and time-consuming and have traditionally been carried out using Bonner spheres with activation foils and TLDs. In this work, a new detector, the Nested Neutron Spectrometer (NNS) is tested for use in radiotherapy bunkers. The NNS is designed for easy handling and is more practical than the traditional Bonner spheres. The NNS, operated in current mode, was used to measure the dose equivalent, average energy and energy spectrum at several positions in a radiotherapy bunker. The average energy and spectra were compared to Monte Carlo simulations while the dose equivalent was compared to bubble detector measurements. The average energies, as measured by the NNS and Monte Carlo simulations, differed by approximately 30% across the bunker. Measurements of the dose equivalent using the NNS and the bubble detectors agreed within 50% in the maze and less than 10% close to the linac head. Apart from some discrepancies at thermal energies, we also found reasonable agreement between NNS-measured and Monte Carlo-simulated spectra at a number of locations within our radiotherapy bunker. Our results demonstrate that the NNS is a suitable detector to be used in high dose-rate radiotherapy environments.

  10. Fast-neutron solid-state dosimeter

    DOEpatents

    Kecker, K.H.; Haywood, F.F.; Perdue, P.T.; Thorngate, J.H.

    1975-07-22

    This patent relates to an improved fast-neutron solid-state dosimeter that does not require separation of materials before it can be read out, that utilizes materials that do not melt or otherwise degrade at about 300$sup 0$C readout temperature, that provides a more efficient dosimeter, and that can be reused. The dosimeters are fabricated by intimately mixing a TL material, such as CaSO$sub 4$:Dy, with a powdered polyphenyl, such as p-sexiphenyl, and hot- pressing the mixture to form pellets, followed by out-gassing in a vacuum furnace at 150$sup 0$C prior to first use dosimeters. (auth)

  11. THERMAL NEUTRON INTENSITIES IN SOILS IRRADIATED BY FAST NEUTRONS FROM POINT SOURCES. (R825549C054)

    EPA Science Inventory

    Thermal-neutron fluences in soil are reported for selected fast-neutron sources, selected soil types, and selected irradiation geometries. Sources include 14 MeV neutrons from accelerators, neutrons from spontaneously fissioning 252Cf, and neutrons produced from alp...

  12. Illicit substance detection using fast-neutron interrogation systems

    SciTech Connect

    Yule, T.J.; Micklich, B.J.; Fink, C.L.; Smith, D.L.

    1994-06-01

    Fast-neutron interrogation techniques are of interest for detecting illicit substances such as explosives and drugs because of their ability to identify light elements such as carbon, nitrogen, and oxygen, which are the primary constituents of these materials. Two particular techniques, Fast-Neutron Transmission Spectroscopy and Pulsed Fast-Neutron Analysis, are discussed. Examples of modeling studies are provided which illustrate the applications of these two techniques.

  13. MPACT Fast Neutron Multiplicity System Prototype Development

    SciTech Connect

    D.L. Chichester; S.A. Pozzi; J.L. Dolan; M.T. Kinlaw; S.J. Thompson; A.C. Kaplan; M. Flaska; A. Enqvist; J.T. Johnson; S.M. Watson

    2013-09-01

    This document serves as both an FY2103 End-of-Year and End-of-Project report on efforts that resulted in the design of a prototype fast neutron multiplicity counter leveraged upon the findings of previous project efforts. The prototype design includes 32 liquid scintillator detectors with cubic volumes 7.62 cm in dimension configured into 4 stacked rings of 8 detectors. Detector signal collection for the system is handled with a pair of Struck Innovative Systeme 16-channel digitizers controlled by in-house developed software with built-in multiplicity analysis algorithms. Initial testing and familiarization of the currently obtained prototype components is underway, however full prototype construction is required for further optimization. Monte Carlo models of the prototype system were performed to estimate die-away and efficiency values. Analysis of these models resulted in the development of a software package capable of determining the effects of nearest-neighbor rejection methods for elimination of detector cross talk. A parameter study was performed using previously developed analytical methods for the estimation of assay mass variance for use as a figure-of-merit for system performance. A software package was developed to automate these calculations and ensure accuracy. The results of the parameter study show that the prototype fast neutron multiplicity counter design is very nearly optimized under the restraints of the parameter space.

  14. [Fast neutron cross section measurements]. Progress report

    SciTech Connect

    Knoll, G.F.

    1992-10-26

    From its inception, the Nuclear Data Project at the University of Michigan has concentrated on two major objectives: (1) to carry out carefully controlled nuclear measurements of the highest possible reliability in support of the national nuclear data program, and (2) to provide an educational opportunity for students with interests in experimental nuclear science. The project has undergone a successful transition from a primary dependence on our photoneutron laboratory to one in which our current research is entirely based on a unique pulsed 14 MeV fast neutron facility. The new experimental facility is unique in its ability to provide nanosecond bursts of 14 MeV neutrons under conditions that are ``clean`` and as scatter-free as possible, and is the only one of its type currently in operation in the United States. It has been designed and put into operation primarily by graduate students, and has met or exceeded all of its important initial performance goals. We have reached the point of its routine operation, and most of the data are now in hand that will serve as the basis for the first two doctoral dissertations to be written by participating graduate students. Our initial results on double differential neutron cross sections will be presented at the May 1993 Fusion Reactor Technology Workshop. We are pleased to report that, after investing several years in equipment assembly and optimization, the project has now entered its ``data production`` phase.

  15. Measurement of neutron ambient dose equivalent in passive carbon-ion and proton radiotherapies

    SciTech Connect

    Yonai, Shunsuke; Matsufuji, Naruhiro; Kanai, Tatsuaki; Matsui, Yuki; Matsushita, Kaoru; Yamashita, Haruo; Numano, Masumi; Sakae, Takeji; Terunuma, Toshiyuki; Nishio, Teiji; Kohno, Ryosuke; Akagi, Takashi

    2008-11-15

    Secondary neutron ambient dose equivalents per the treatment absorbed dose in passive carbon-ion and proton radiotherapies were measured using a rem meter, WENDI-II at two carbon-ion radiotherapy facilities and four proton radiotherapy facilities in Japan. Our measured results showed that (1) neutron ambient dose equivalent in carbon-ion radiotherapy is lower than that in proton radiotherapy, and (2) the difference to the measured neutron ambient dose equivalents among the facilities is within a factor of 3 depending on the operational beam setting used at the facility and the arrangement of the beam line, regardless of the method for making a laterally uniform irradiation field: the double scattering method or the single-ring wobbling method. The reoptimization of the beam line in passive particle radiotherapy is an effective way to reduce the risk of secondary cancer because installing an adjustable precollimator and designing the beam line devices with consideration of their material, thickness and location, etc., can significantly reduce the neutron exposure. It was also found that the neutron ambient dose equivalent in passive particle radiotherapy is equal to or less than that in the photon radiotherapy. This result means that not only scanning particle radiotherapy but also passive particle radiotherapy can provide reduced exposure to normal tissues around the target volume without an accompanied increase in total body dose.

  16. Calculated analysis of experiments in fast neutron reactors

    SciTech Connect

    Davydov, V. K. Kalugina, K. M.; Gomin, E. A.

    2012-12-15

    In this paper, the results of computational simulation of experiments with the MK-I core of the JOYO fast neutron sodium-cooled reactor are presented. The MCU-KS code based on the Monte Carlo method was used for calculations. The research was aimed at additional verification of the MCU-KS code for systems with a fast neutron spectrum.

  17. Calculated analysis of experiments in fast neutron reactors

    NASA Astrophysics Data System (ADS)

    Davydov, V. K.; Kalugina, K. M.; Gomin, E. A.

    2012-12-01

    In this paper, the results of computational simulation of experiments with the MK-I core of the JOYO fast neutron sodium-cooled reactor are presented. The MCU-KS code based on the Monte Carlo method was used for calculations. The research was aimed at additional verification of the MCU-KS code for systems with a fast neutron spectrum.

  18. Recent advances in fast neutron radiography for cargo inspection

    NASA Astrophysics Data System (ADS)

    Sowerby, B. D.; Tickner, J. R.

    2007-09-01

    Fast neutron radiography techniques are attractive for screening cargo for contraband such as narcotics and explosives. Neutrons have the required penetration, they interact with matter in a manner complementary to X-rays and they can be used to determine elemental composition. Compared to neutron interrogation techniques that measure secondary radiation (neutron or gamma-rays), neutron radiography systems are much more efficient and rapid and they are much more amenable to imaging. However, for neutron techniques to be successfully applied to cargo screening, they must demonstrate significant advantages over well-established X-ray techniques. This paper reviews recent developments and applications of fast neutron radiography for cargo inspection. These developments include a fast neutron and gamma-ray radiography system that utilizes a 14 MeV neutron generator as well as fast neutron resonance radiography systems that use variable energy quasi-monoenergetic neutrons and pulsed broad energy neutron beams. These systems will be discussed and compared with particular emphasis on user requirements, sources, detector systems, imaging ability and performance.

  19. Japanese experience with clinical trials of fast neutrons

    SciTech Connect

    Tsunemoto, H.; Arai, T.; Morita, S.; Ishikawa, T.; Aoki, Y.; Takada, N.; Kamata, S.

    1982-12-01

    Between November, 1975 and November, 1981, 825 patients were treated with 30 MeV (d-Be) neutrons at the National Institute of Radiological Sciences, Chiba. At the Institute of Medical Science, Tokyo, 302 patients were referred to the Radiation Therapy department and were treated with 16 MeV (d-Be) neutrons. The emphasis of these clinical trials with fast neutrons was placed on the estimation of the effect of fast neutrons for locally advanced cancers or radioresistant cancers, and on evaluation of the rate of complication of normal tissues following irradiation with fast neutrons. Results were evaluated for patients with previously untreated cancer; local control of the tumor was observed in 59.1%. Complications requiring medical care developed in only 32 patients. Late reaction of soft tissue seemed to be more severe than that observed with photon beams. The results also suggest that for carcinoma of the larynx, esophagus, uterine cervix, Pancoast's tumor of the lung and osteosarcoma, fast neutrons were considered to be effectively applied in this randomized clinical trial. For carcinoma of the larynx, a fast neutron boost was effectively delivered, although an interstitial implant was necessarily combined with fast neutrons for carcinoma of the tongue. The cumulative survival rate of the patients with carcinoma of the esophagus treated with fast neutrons of 26% compared to the survival rate of 10.5% obtained using photons. The results also indicate that local control and relief of the symptom related to Pancoast's tumor of the lung seemed to be better with neutrons than with photons. For patients suffering from osteosarcoma, the surgical procedures preserving the function of the leg and arm were studied according to the better local control rate of the tumor following fast neutron beam therapy.

  20. Intensity modulated neutron radiotherapy optimization by photon proxy

    SciTech Connect

    Snyder, Michael; Hammoud, Ahmad; Bossenberger, Todd; Spink, Robyn; Burmeister, Jay

    2012-08-15

    Purpose: Introducing intensity modulation into neutron radiotherapy (IMNRT) planning has the potential to mitigate some normal tissue complications seen in past neutron trials. While the hardware to deliver IMNRT plans has been in use for several years, until recently the IMNRT planning process has been cumbersome and of lower fidelity than conventional photon plans. Our in-house planning system used to calculate neutron therapy plans allows beam weight optimization of forward planned segments, but does not provide inverse optimization capabilities. Commercial treatment planning systems provide inverse optimization capabilities, but currently cannot model our neutron beam. Methods: We have developed a methodology and software suite to make use of the robust optimization in our commercial planning system while still using our in-house planning system to calculate final neutron dose distributions. Optimized multileaf collimator (MLC) leaf positions for segments designed in the commercial system using a 4 MV photon proxy beam are translated into static neutron ports that can be represented within our in-house treatment planning system. The true neutron dose distribution is calculated in the in-house system and then exported back through the MATLAB software into the commercial treatment planning system for evaluation. Results: The planning process produces optimized IMNRT plans that reduce dose to normal tissue structures as compared to 3D conformal plans using static MLC apertures. The process involves standard planning techniques using a commercially available treatment planning system, and is not significantly more complex than conventional IMRT planning. Using a photon proxy in a commercial optimization algorithm produces IMNRT plans that are more conformal than those previously designed at our center and take much less time to create. Conclusions: The planning process presented here allows for the optimization of IMNRT plans by a commercial treatment planning

  1. Fast Neutron Irradiation of the Highly Radioresistant Bacterium Deinococcus Radiodurans

    NASA Astrophysics Data System (ADS)

    Case, Diane Louise

    Fast neutron dose survival curves were generated for the bacterium Deinococcus radiodurans, which is renowned for its unusually high resistance to gamma, x-ray, and ultraviolet radiation, but for which fast neutron response was unknown. The fast neutrons were produced by the University of Massachusetts Lowell 5.5-MV, type CN Van de Graaff accelerator through the ^7Li(p,n)^7 Be reaction by bombarding a thick metallic lithium target with a 4-MeV proton beam. The bacteria were uniformly distributed on 150-mm agar plates and were exposed to the fast neutron beam under conditions of charged particle equilibrium. The plates were subdivided into concentric rings of increasing diameter from the center to the periphery of the plate, within which the average neutron dose was calculated as the product of the precisely known neutron fluence at the average radius of the ring and the neutron energy dependent kerma factor. The neutron fluence and dose ranged from approximately 3 times 1013 n cm^ {-2} to 1 times 1012 n cm^ {-2}, and 200 kilorad to 5 kilorad, respectively, from the center to the periphery of the plate. Percent survival for Deinococcus radiodurans as a function of fast neutron dose was derived from the ability of the irradiated cells to produce visible colonies within each ring compared to that of a nonirradiated control population. The bacterium Escherichia coli B/r (CSH) was irradiated under identical conditions for comparative purposes. The survival response of Deinococcus radiodurans as a result of cumulative fast neutron exposures was also investigated. The quantification of the ability of Deinococcus radiodurans to survive cellular insult from secondary charged particles, which are produced by fast neutron interactions in biological materials, will provide valuable information about damage and repair mechanisms under extreme cellular stress, and may provide new insight into the origin of this bacterium's unprecedented radiation resistance.

  2. Directional Detection of Fast Neutrons Using a Time Projection Chamber

    SciTech Connect

    Bowden, N; Heffner, M; Carosi, G; Carter, D; Foxe, M; Jovanovic, I

    2009-06-03

    Spontaneous fission in Special Nuclear Material (SNM) such as plutonium and highly enriched uranium (HEU) results in the emission of neutrons with energies in the MeV range (hereafter 'fast neutrons'). These fast neutrons are largely unaffected by the few centimeters of intervening high-Z material that would suffice for attenuating most emitted gamma rays, while tens of centimeters of hydrogenous materials are required to achieve substantial attenuation of neutron fluxes from SNM. Neutron detectors are therefore an important complement to gamma-ray detectors in SNM search and monitoring applications. The rate at which SNM emits fast neutrons varies from about 2 per kilogram per second for typical HEU to some 60,000 per kilogram per second for metallic weapons grade plutonium. These rates can be compared with typical sea-level (cosmogenic) neutron backgrounds of roughly 5 per second per square meter per steradian in the relevant energy range [1]. The fact that the backgrounds are largely isotropic makes directional neutron detection especially attractive for SNM detection. The ability to detect, localize, and ultimately identify fast neutron sources at standoff will ultimately be limited by this background rate. Fast neutrons are particularly well suited to standoff detection and localization of SNM or other fast neutrons sources. Fast neutrons have attenuation lengths of about 60 meters in air, and retain considerable information about their source direction even after one or two scatters. Knowledge of the incoming direction of a fast neutron, from SNM or otherwise, has the potential to significantly improve signal to background in a variety of applications, since the background arriving from any one direction is a small fraction of the total background. Imaging or directional information therefore allows for source detection at a larger standoff distance or with shorter dwell times compared to nondirectional detectors, provided high detection efficiency can be

  3. Japanese experience with clinical trails of fast neutrons

    SciTech Connect

    Tsunemoto, H.; Arai, T.; Morita, S.; Ishikawa, T.; Aoki, Y.; Takada, N.; Kamata, S.

    1982-12-01

    Between November, 1975 and November, 1981, 825 patients were treated with 30 MeV (d-Be) neutrons at the National Institute of Radiological Sciences, Chiba. At the Institute of Medical Science, Tokyo, 302 patients were referred to the Radiation Therapy department and were treated with 16 MeV (d-Be) neutrons. The emphasis of these clinical trials with fast neutrons was placed on the estimation of the effect of fast neutrons for locally advanced cancers or radioresistant cancers, and on evaluation of the rate of complication of normal tissues following irradiaton with fast neutrons. Results were evaluated for patients with previously untreated cancer; local control of the tumor was observed in 59.1%. Complications requiring medical care developed in only 32 patients. Patients who had received pre- or postoperative irradiation were excluded from this evaluation. Late reaction of soft tissue seemed to be more severe than that observed with photon beams. The results also suggest that for carcinoma of the larynx, esophagus, uterine cervix, Pancoasts's tumor of the lung and osteosarcoma, fast neutrons were considered to be effectively applied in this randomized clinical trial. For carcinoma of the larynx, a fast nuetron boost was effectively delivered, although an interstitial implant was necessarily combined with fast neutrons for carcinoma of the tongue. The cumulative survival rate of the patients with carcinoma of the esophagus treated with fast neutrons was 26% compared to the survival rate of 10.5% obtained using photons. This was supported by evidence from the pathological studies that showed that the tumor cells which had deeply invaded into the esophagus were effectively destroyed when fast neutrons were applied.

  4. GEM-based detectors for thermal and fast neutrons

    NASA Astrophysics Data System (ADS)

    Croci, G.; Claps, G.; Cazzaniga, C.; Foggetta, L.; Muraro, A.; Valente, P.

    2015-06-01

    Lately the problem of 3He replacement for neutron detection stimulated an intense activity research on alternative technologies based on alternative neutron converters. This paper presents briefly the results obtained with new GEM detectors optimized for fast and thermal neutrons. For thermal neutrons, we realized a side-on GEM detector based on a series of boron-coated alumina sheets placed perpendicularly to the incident neutron beam direction. This prototype has been tested at n@BTF photo-production neutron facilty in order to test its effectiveness under a very high flux gamma background. For fast neutrons, we developed new GEM detectors (called nGEM) for the CNESM diagnostic system of the SPIDER NBI prototype for ITER (RFX-Consortium, Italy) and as beam monitor for fast neutrons lines at spallation sources. The nGEM is a Triple GEM gaseous detector equipped with a polyethylene layer used to convert fast neutrons into recoil protons through the elastic scattering process. This paper describes the results obtained by testing a medium size (30 × 25 cm2 active area) nGEM detector at the ISIS spallation source on the VESUVIO beam line.

  5. The Use of Fast Neutron Detection for Materials Accountability

    NASA Astrophysics Data System (ADS)

    Nakae, L. F.; Chapline, G. F.; Glenn, A. M.; Kerr, P. L.; Kim, K. S.; Ouedraogo, S. A.; Prasad, M. K.; Sheets, S. A.; Snyderman, N. J.; Verbeke, J. M.; Wurtz, R. E.

    2014-02-01

    For many years at LLNL, we have been developing time-correlated neutron detection techniques and algorithms for applications such as Arms Control, Threat Detection and Nuclear Material Assay. Many of our techniques have been developed specifically for the relatively low efficiency (a few percent) inherent in man-portable systems. Historically, thermal neutron detectors (mainly 3He) were used, taking advantage of the high thermal neutron interaction cross-sections, but more recently we have been investigating the use of fast neutron detection with liquid scintillators, inorganic crystals, and in the near future, pulse-shape discriminating plastics that respond over 1000 times faster (nanoseconds versus tens of microseconds) than thermal neutron detectors. Fast neutron detection offers considerable advantages, since the inherent nanosecond production timescales of fission and neutron-induced fission are preserved and measured instead of being lost in the thermalization of thermal neutron detectors. We are now applying fast neutron technology to the safeguards regime in the form of high efficiency counters. Faster detector response times and sensitivity to neutron momentum show promise in measuring, differentiating, and assaying samples that have modest to very high count rates, as well as mixed neutron sources (e.g., Pu oxide or Mixed Cm and Pu). Here we report on measured results with our existing liquid scintillator array and promote the design of a nuclear material assay system that incorporates fast neutron detection, including the surprising result that fast liquid scintillator becomes competitive and even surpasses the precision of 3He counters measuring correlated pairs in modest (kg) samples of plutonium.

  6. Fast-neutron multiplicity analysis based on liquid scintillation.

    PubMed

    Li, Sufen; Qiu, Suizheng; Zhang, Quanhu; Huo, Yonggang; Lin, Hongtao

    2016-04-01

    In this study, according to the establishment of the classical neutron multiplicity measurement equation, a fast-neutron multiplicity analysis and measurement equation is established, considering the influence of neutron scattering cross-talk, by means of theoretical analysis and computer simulation. Moreover, the fission rate F, multiplication M, and (α, n) reaction rate α in the established equation were solved. A new measurement method of scattering cross-talk was established and the established equation was validated using Geant4 simulation. The fast-neutron multiplicity counting equation has only a smaller deviation from the fast-neutron multiplicity counting system based on liquid scintillation detector, and it has a wider application prospect. PMID:26766037

  7. Spectroscopic study of lithium oxide irradiated by fast neutrons

    NASA Astrophysics Data System (ADS)

    Masaki, N. M.; Noda, K.; Watanabe, H.; Clemmer, R. G.; Hollenberg, G. W.

    1994-09-01

    Lithium oxide (Li 2O) is a candidate material for solid breeder blankets in d-t fusion reactors. Radiation damage in Li 2O was investigated in IEA BEATRIX-II phase 1 irradiation tests using the Fast Flux Test Facility (FFTF). Li 2O single crystal specimens with various 6Li concentrations, 6Li/( 6Li + 7Li), were irradiated at about 650 K for 300 effective full power days in FFTF by fast neutrons (the fast neutron fluence) ( > 0.1 MeV): 3.9 × 10 26 n/m 2). After the neutron-irradiation, measurements of electron-spin resonance (ESR) and optical absorption were carried out for the specimens at room temperature. From the measurements, colloidal lithium metal was found to be formed in Li 2O irradiated with fast neutrons.

  8. FAST NEUTRON SPECTROMETER USING SPACED SEMICONDUCTORS FOR MEASURING TOTAL ENERGY OF NEUTRONS CAPTURED

    DOEpatents

    Love, T.A.; Murray, R.B.

    1964-04-14

    A fast neutron spectrometer was designed, which utilizes a pair of opposed detectors having a layer of /sup 6/LiF between to produce alpha and T pair for each neutron captured to provide signals, which, when combined, constitute a measure of neutron energy. (AEC)

  9. Spectrometry and dosimetry of fast neutrons using pin diode detectors

    NASA Astrophysics Data System (ADS)

    Zaki Dizaji, H.; Kakavand, T.; Abbasi Davani, F.

    2014-03-01

    Elastic scattering of light nuclei, especially hydrogen, is widely used for detection of fast neutrons. Semiconductor devices based on silicon detectors are frequently used for different radiation detections. In this work, a neutron spectrometer consisting of a pin diode coupled with a polyethylene converter and aluminum degrader layers has been developed. Aluminum layers are used as discriminators of different neutron energies for detectors. The response of the converter-degrader-pin diode configuration, the optimum thickness of the converter and the degrader layers have been extracted using MCNP and SRIM simulation codes. The possibility of using this type of detector for fast neutron spectrometry and dosimetry has been investigated. A fairly good agreement was seen between neutron energy spectrum and dose obtained from our configurations and these specifications from an 241Am-Be neutron source.

  10. Packed rod neutron shield for fast nuclear reactors

    DOEpatents

    Eck, John E.; Kasberg, Alvin H.

    1978-01-01

    A fast neutron nuclear reactor including a core and a plurality of vertically oriented neutron shield assemblies surrounding the core. Each assembly includes closely packed cylindrical rods within a polygonal metallic duct. The shield assemblies are less susceptible to thermal stresses and are less massive than solid shield assemblies, and are cooled by liquid coolant flow through interstices among the rods and duct.

  11. Procedure developed for reporting fast-neutron exposure

    NASA Technical Reports Server (NTRS)

    Rossin, A. D.

    1968-01-01

    Procedure for reporting fast-neutron exposure involves determination of the spectrum shape and absolute magnitude, selection of an energy weighting for the neutrons, and definition of a unit for reporting exposure. Using this method, comparisons of irradiation data from different reactors will be free from errors resulting from differences between the spectra.

  12. Tagging fast neutrons from an (241)Am/(9)Be source.

    PubMed

    Scherzinger, J; Annand, J R M; Davatz, G; Fissum, K G; Gendotti, U; Hall-Wilton, R; Håkansson, E; Jebali, R; Kanaki, K; Lundin, M; Nilsson, B; Rosborge, A; Svensson, H

    2015-04-01

    Shielding, coincidence, and time-of-flight measurement techniques are employed to tag fast neutrons emitted from an (241)Am/(9)Be source resulting in a continuous polychromatic energy-tagged beam of neutrons with energies up to 7MeV. The measured energy structure of the beam agrees qualitatively with both previous measurements and theoretical calculations. PMID:25644080

  13. Impact of nuclear data on fast neutron therapy

    SciTech Connect

    Hartmann Siantar, C.L.; Chandler, W.P.; Rathkopf, J.A.; Resler, D.A.; Cox, L.J.; Chadwick, M.B.; White, R.M.

    1994-05-12

    By combining a new, all-particle Monte Carlo radiation transport code, PEREGRINE, with the Lawrence Livermore National Laboratory (LLNL) nuclear data base, we have studied the importance of various neutron reactions on dose distributions in biological materials. Monte Carlo calculations have been performed for 5--20 MeV neutron pencil beams incident on biologically relevant materials arranged in several simple geometries. Results highlight the importance of nuclear data used for calculating dose distributions resulting from fast neutron therapy.

  14. Development of fast neutron radiography system based on portable neutron generator

    NASA Astrophysics Data System (ADS)

    Yi, Chia Jia; Nilsuwankosit, Sunchai

    2016-01-01

    Due to the high installation cost, the safety concern and the immobility of the research reactors, the neutron radiography system based on portable neutron generator is proposed. Since the neutrons generated from a portable neutron generator are mostly the fast neutrons, the system is emphasized on using the fast neutrons for the purpose of conducting the radiography. In order to suppress the influence of X-ray produced by the neutron generator, a combination of a shielding material sandwiched between two identical imaging plates is used. A binary XOR operation is then applied for combining the information from the imaging plates. The raw images obtained confirm that the X-ray really has a large effect and that XOR operation can help enhance the effect of the neutrons.

  15. Smaller, Lower-Power Fast-Neutron Scintillation Detectors

    NASA Technical Reports Server (NTRS)

    Patel, Jagdish; Blaes, Brent

    2008-01-01

    Scintillation-based fast-neutron detectors that are smaller and less power-hungry than mainstream scintillation-based fast-neutron detectors are undergoing development. There are numerous applications for such detectors in monitoring fast-neutron fluxes from nuclear reactors, nuclear materials, and natural sources, both on Earth and in outer space. A particularly important terrestrial application for small, low-power, portable fast-neutron detectors lies in the requirement to scan for nuclear materials in cargo and baggage arriving at international transportation facilities. The present development of miniature, low-power scintillation-based fast-neutron detectors exploits recent advances in the fabrication of avalanche photodiodes (APDs). Basically, such a detector includes a plastic scintillator, typically between 300 and 400 m thick with very thin silver mirror coating on all its faces except the one bonded to an APD. All photons generated from scintillation are thus internally reflected and eventually directed to the APD. This design affords not only compactness but also tight optical coupling for utilization of a relatively large proportion of the scintillation light. The combination of this tight coupling and the avalanche-multiplication gain (typically between 750 and 1,000) of the APD is expected to have enough sensitivity to enable monitoring of a fast-neutron flux as small as 1,000 cm(exp -2)s(exp -1). Moreover, pulse-height analysis can be expected to provide information on the kinetic energies of incident neutrons. It has been estimated that a complete, fully developed fast-neutron detector of this type, would be characterized by linear dimensions of the order of 10 cm or less, a mass of no more than about 0.5 kg, and a power demand of no more than a few watts.

  16. Prompt Fission Neutron Energy Spectra Induced by Fast Neutrons

    NASA Astrophysics Data System (ADS)

    Staples, Parrish Alan

    Prompt fission neutron energy spectra for ^{235}U and ^{239 }Pu have been measured for fission neutron energies greater than the energy of the incident neutrons inducing fission. The measurements were undertaken to investigate the shape dependence of the fission neutron spectra upon both the incident neutron energy and the mass of the nucleus undergoing fission. Measurements were made for both nuclides at the following incident neutron energies; 0.50 MeV, 1.50 MeV, 2.50 MeV and 3.50 MeV. The data are presented either as relative yields or as ratios of a measured spectrum to the ^{235}U spectrum at 0.50 MeV. Incident neutrons were produced by the ^7Li(p,n)^7Be reaction using a pulsed, bunched proton beam from the 5.5 MV Van de Graaff accelerator at the University of Massachusetts Lowell Pinanski Energy Center. The neutrons were detected by a thin liquid scintillator with good time resolution capabilities; time-of-flight techniques were used for neutron energy determination; in addition pulse-shape-discrimination was used to reduce gamma-ray background levels. The measurements are compared to calculations based on the Los Alamos Model of Madland and Nix to test its predictive capabilities. The data are fit by the Watt equation to determine the mean energy of the spectra, and to facilitate comparison of the results to previous measurements. The data are also compared directly to previous measurements.

  17. Monoenergetic fast neutron reference fields: II. Field characterization

    NASA Astrophysics Data System (ADS)

    Nolte, Ralf; Thomas, David J.

    2011-12-01

    Monoenergetic neutron reference fields are required for the calibration of neutron detectors and dosemeters for various applications ranging from nuclear physics and nuclear data measurements to radiation protection. In a series of two separate publications the metrological aspects of the production and measurement of fast neutrons are reviewed. In the first part, requirements for the nuclear reactions used to produce neutron fields as well as methods for target characterization and the general layout of reference facilities were discussed. This second part focuses on the most important techniques for field characterization and includes the determination of the neutron fluence as well as the spectral neutron distribution and the determination of the fluence of contaminating photons. The measurements are usually carried out relative to reference cross sections which are reviewed in a separate contribution, but for certain conditions 'absolute' methods for neutron measurements can be used which are directly traceable to the international system of units (SI).

  18. Measurement of the Surface and Underground Neutron Spectra with the UMD/NIST Fast Neutron Spectrometers

    NASA Astrophysics Data System (ADS)

    Langford, Thomas J.

    The typical fast neutron detector falls into one of two categories, Bonner sphere spectrometers and liquid scintillator proton recoil detectors. These two detector types have traditionally been used to measure fast neutrons at the surface and in low background environments. The cosmogenic neutron spectrum and flux is an important parameter for a number of experimental efforts, including procurement of low background materials and the prediction of electronic device faults. Fast neutrons can also cause problems for underground low-background experiments, through material activation or signals that mimic rare events. Current detector technology is not sufficient to properly characterize these backgrounds. To this end, the University of Maryland and the National Institute of Standards and Technology designed, developed, and deployed two Fast Neutron Spectrometers (FaNS) comprised of plastic scintillator and 3He proportional counters. The detectors are based upon capture-gated spectroscopy, a technique that demands a delayed coincidence between a neutron scatter and the resulting neutron capture after thermalization. This technique provides both particle identification and knowledge that the detected neutron fully thermalized. This improves background rejection capabilities and energy resolution. Presented are the design, development, and deployment of FaNS-1 and FaNS-2. Both detectors were characterized using standard fields at NIST, including calibrated 252Cf neutron sources and two monoenergetic neutron generators. Measurements of the surface fast neutron spectrum and flux have been made with both detectors, which are compared with previous measurements by traditional detectors. Additionally, FaNS-1 was deployed at the Kimballton Underground Research Facility (KURF) in Ripplemead, VA. A measurement of the fast neutron spectrum and flux at KURF is presented as well. FaNS-2 is currently installed in a shallow underground laboratory where it is measuring the muon

  19. Pulse-shape analysis of CLYC for thermal neutrons, fast neutrons, and gamma-rays

    NASA Astrophysics Data System (ADS)

    D'Olympia, N.; Chowdhury, P.; Lister, C. J.; Glodo, J.; Hawrami, R.; Shah, K.; Shirwadkar, U.

    2013-06-01

    Cs2LiYCl6:Ce (CLYC) has been demonstrated to be sensitive to thermal neutrons via the 6Li(n, α)t reaction, and recently to fast neutrons via the 35Cl(n,p) reaction. The scintillation properties of CLYC have been investigated in more detail to further understand its capabilities. Pulses from thermal neutron, fast neutron, and γ-ray induced excitations were captured, digitized over a 16 μs time range, and analyzed to identify the scintillation mechanisms responsible for the observed shapes. Additionally, the timing resolutions of CLYC crystals of different sizes were measured in coincidence with a fast CeBr3 scintillator. The effect of high count rates on fast neutron energy resolution and pulse-shape discrimination was investigated up to 45 kHz.

  20. Neutron initiation probability in fast burst reactor

    SciTech Connect

    Liu, X.; Du, J.; Xie, Q.; Fan, X.

    2012-07-01

    Based on the probability balance of neutron random events in multiply system, the four random process of neutron in prompt super-critical is described and then the equation of neutron initiation probability W(r,E,{Omega},t) is deduced. On the assumption of static, slightly prompt super-critical and the two factorial approximation, the formula of the average probability of 'one' neutron is derived which is the same with the result derived from the point model. The MC simulation using point model is applied in Godiva- II and CFBR-II, and the simulation result of one neutron initiation is well consistent with the theory that the initiation probability of Godiva- II inverted commas CFBR-II burst reactor are 0.00032, 0.00027 respectively on the ordinary burst operation. (authors)

  1. Plastic fiber scintillator response to fast neutrons

    NASA Astrophysics Data System (ADS)

    Danly, C. R.; Sjue, S.; Wilde, C. H.; Merrill, F. E.; Haight, R. C.

    2014-11-01

    The Neutron Imaging System at NIF uses an array of plastic scintillator fibers in conjunction with a time-gated imaging system to form an image of the neutron emission from the imploded capsule. By gating on neutrons that have scattered from the 14.1 MeV DT energy to lower energy ranges, an image of the dense, cold fuel around the hotspot is also obtained. An unmoderated spallation neutron beamline at the Weapons Neutron Research facility at Los Alamos was used in conjunction with a time-gated imaging system to measure the yield of a scintillating fiber array over several energy bands ranging from 1 to 15 MeV. The results and comparison to simulation are presented.

  2. Plastic fiber scintillator response to fast neutrons

    SciTech Connect

    Danly, C. R.; Sjue, S.; Wilde, C. H.; Merrill, F. E.; Haight, R. C.

    2014-11-15

    The Neutron Imaging System at NIF uses an array of plastic scintillator fibers in conjunction with a time-gated imaging system to form an image of the neutron emission from the imploded capsule. By gating on neutrons that have scattered from the 14.1 MeV DT energy to lower energy ranges, an image of the dense, cold fuel around the hotspot is also obtained. An unmoderated spallation neutron beamline at the Weapons Neutron Research facility at Los Alamos was used in conjunction with a time-gated imaging system to measure the yield of a scintillating fiber array over several energy bands ranging from 1 to 15 MeV. The results and comparison to simulation are presented.

  3. Prompt Emission in Fission Induced with Fast Neutrons

    NASA Astrophysics Data System (ADS)

    Wilson, J. N.; Lebois, M.; Halipré, P.; Oberstedt, S.; Oberstedt, A.

    Prompt gamma-ray and neutron emission data in fission integrates a large amount of information on the fission process and can shed light on the partition of energy. Measured emission spectra, average energies and multiplicities also provide important information for energy applications. While current reactors mostly use thermal neutron spectra, the future reactors of Generation IV will use fast neutron spectra for which little experimental prompt emission data exist. Initial investigations on prompt emission in fast neutron induced fission have recently been carried out at the LICORNE facility at the IPN Orsay, which exploits inverse reactions to produce naturally collimated, intense beams of neutrons. We report on first results with LICORNE to measure prompt fission gamma-ray spectra, average energies and multiplicities for 235U and 238U. Current improvements and upgrades being carried out on the LICORNE facility will also be described, including the development of a H2 gas target to reduce parasitic backgrounds and increase intensities, and the deployment of 11B beams to extend the effective LICORNE neutron energy range up to 12 MeV. Prospects for future experimental studies of prompt gamma-ray and neutron emission in fast neutron induced fission will be presented.

  4. System design considerations for fast-neutron interrogation systems

    SciTech Connect

    Micklich, B.J.; Curry, B.P.; Fink, C.L.; Smith, D.L.; Yule, T.J.

    1993-10-01

    Nonintrusive interrogation techniques that employ fast neutrons are of interest because of their sensitivity to light elements such as carbon, nitrogen, and oxygen. The primary requirement of a fast-neutron inspection system is to determine the value of atomic densities, or their ratios, over a volumetric grid superimposed on the object being interrogated. There are a wide variety of fast-neutron techniques that can provide this information. The differences between the various nuclear systems can be considered in light of the trade-offs relative to the performance requirements for each system`s components. Given a set of performance criteria, the operational requirements of the proposed nuclear systems may also differ. For instance, resolution standards will drive scanning times and tomographic requirements, both of which vary for the different approaches. We are modelling a number of the fast-neutron interrogation techniques currently under consideration, to include Fast Neutron Transmission Spectroscopy (FNTS), Pulsed Fast Neutron Analysis (PFNA), and its variant, 14-MeV Associated Particle Imaging (API). The goals of this effort are to determine the component requirements for each technique, identify trade-offs that system performance standards impose upon those component requirements, and assess the relative advantages and disadvantages of the different approaches. In determining the component requirements, we will consider how they are driven by system performance standards, such as image resolution, scanning time, and statistical uncertainty. In considering the trade-offs between system components, we concentrate primarily on those which are common to all approaches, for example: source characteristics versus detector array requirements. We will then use the analysis to propose some figures-of-merit that enable performance comparisons between the various fast-neutron systems under consideration. The status of this ongoing effort is presented.

  5. Final Report on Actinide Glass Scintillators for Fast Neutron Detection

    SciTech Connect

    Bliss, Mary; Stave, Jean A.

    2012-10-01

    This is the final report of an experimental investigation of actinide glass scintillators for fast-neutron detection. It covers work performed during FY2012. This supplements a previous report, PNNL-20854 “Initial Characterization of Thorium-loaded Glasses for Fast Neutron Detection” (October 2011). The work in FY2012 was done with funding remaining from FY2011. As noted in PNNL-20854, the glasses tested prior to July 2011 were erroneously identified as scintillators. The decision was then made to start from “scratch” with a literature survey and some test melts with a non-radioactive glass composition that could later be fabricated with select actinides, most likely thorium. The normal stand-in for thorium in radioactive waste glasses is cerium in the same oxidation state. Since cerium in the 3+ state is used as the light emitter in many scintillating glasses, the next most common substitute was used: hafnium. Three hafnium glasses were melted. Two melts were colored amber and a third was clear. It barely scintillated when exposed to alpha particles. The uses and applications for a scintillating fast neutron detector are important enough that the search for such a material should not be totally abandoned. This current effort focused on actinides that have very high neutron capture energy releases but low neutron capture cross sections. This results in very long counting times and poor signal to noise when working with sealed sources. These materials are best for high flux applications and access to neutron generators or reactors would enable better test scenarios. The total energy of the neutron capture reaction is not the only factor to focus on in isotope selection. Many neutron capture reactions result in energetic gamma rays that require large volumes or high densities to detect. If the scintillator is to separate neutrons from gamma rays, the capture reactions should produce heavy particles and few gamma rays. This would improve the detection of a

  6. A fast and flexible reactor physics model for simulating neutron spectra and depletion in fast reactors

    NASA Astrophysics Data System (ADS)

    Recktenwald, Geoff; Deinert, Mark

    2010-03-01

    Determining the time dependent concentration of isotopes within a nuclear reactor core is central to the analysis of nuclear fuel cycles. We present a fast, flexible tool for determining the time dependent neutron spectrum within fast reactors. The code (VBUDS: visualization, burnup, depletion and spectra) uses a two region, multigroup collision probability model to simulate the energy dependent neutron flux and tracks the buildup and burnout of 24 actinides, as well as fission products. While originally developed for LWR simulations, the model is shown to produce fast reactor spectra that show high degree of fidelity to available fast reactor benchmarks.

  7. Design of a transportable high efficiency fast neutron spectrometer

    NASA Astrophysics Data System (ADS)

    Roecker, C.; Bernstein, A.; Bowden, N. S.; Cabrera-Palmer, B.; Dazeley, S.; Gerling, M.; Marleau, P.; Sweany, M. D.; Vetter, K.

    2016-08-01

    A transportable fast neutron detection system has been designed and constructed for measuring neutron energy spectra and flux ranging from tens to hundreds of MeV. The transportability of the spectrometer reduces the detector-related systematic bias between different neutron spectra and flux measurements, which allows for the comparison of measurements above or below ground. The spectrometer will measure neutron fluxes that are of prohibitively low intensity compared to the site-specific background rates targeted by other transportable fast neutron detection systems. To measure low intensity high-energy neutron fluxes, a conventional capture-gating technique is used for measuring neutron energies above 20 MeV and a novel multiplicity technique is used for measuring neutron energies above 100 MeV. The spectrometer is composed of two Gd containing plastic scintillator detectors arranged around a lead spallation target. To calibrate and characterize the position dependent response of the spectrometer, a Monte Carlo model was developed and used in conjunction with experimental data from gamma ray sources. Multiplicity event identification algorithms were developed and used with a Cf-252 neutron multiplicity source to validate the Monte Carlo model Gd concentration and secondary neutron capture efficiency. The validated Monte Carlo model was used to predict an effective area for the multiplicity and capture gating analyses. For incident neutron energies between 100 MeV and 1000 MeV with an isotropic angular distribution, the multiplicity analysis predicted an effective area of 500 cm2 rising to 5000 cm2. For neutron energies above 20 MeV, the capture-gating analysis predicted an effective area between 1800 cm2 and 2500 cm2. The multiplicity mode was found to be sensitive to the incident neutron angular distribution.

  8. In vivo neutron activation analysis of sodium and chlorine in tumor tissue after fast neutron therapy.

    PubMed

    Auberger, T; Koester, L; Knopf, K; Weissfloch, L

    1996-01-01

    In 12 patients with recurrences and metastases of different primaries (head and neck cancer, breast cancer, malignant melanoma, and osteosarcoma) who were treated with reactor fission neutrons the photon emission of irradiated tissue was measured after each radiotherapy fraction. Spectral analyses of the decay rates resulted in data for the exchange of sodium (Na) and chlorine (Cl) between the irradiated tissue and the body. About 60% of Na and Cl exchanged rapidly with a turnover half-life of 13 +/- 2 min. New defined mass exchange rates for Na and Cl amount to an average of 0.8 mval/min/kg of soft tissue. At the beginning of radiotherapy the turnover of the electrolytes in tissues with large tumor volumes was about twice that in tissues with small tumor volumes. Depending on the dose, neutron therapy led in all cases to variation in the metabolism. A maximum of Cl exchange and a minimum of Na exchange occurred after 10 Gy of neutrons (group of six previously untreated patients) or after 85 Gy (photon equivalent dose) of combined photon-neutron therapy. A significant increase in non-exchangeable fraction of Na from about 40 to 80% was observed in three tumors after a neutron dose of 10 Gy administered in five fractions correlated with a rapid reduction of tissue within 4 weeks after end of therapy. These results demonstrate for the first time the local response of the electrolyte metabolism to radiotherapy. PMID:8949749

  9. Biological effectiveness of fast neutrons on a murine osteosarcoma

    SciTech Connect

    Ishii, T.; Ando, K.; Koike, S.

    1989-03-01

    The effect of fast neutrons and gamma rays on a murine osteosarcoma was studied. The NROS tumor, a radiation-induced osteosarcoma in a C3H mouse, was transplanted into the right hind legs of syngeneic female mice and locally irradiated with single or four daily doses of either fast neutrons or gamma rays. The NROS contained 13-30% hypoxic cells. It took approximately 7 days for the NROS tumor to show apparent reoxygenation following gamma ray irradiations. Two assays were used to determine the neutrons' relative biological effectiveness (RBE) to gamma rays: tumor growth delay time and tumor control dose. The largest RBE of 4.5 was obtained at the smallest dose of neutrons examined, followed by a gradual decrease down to 2.3. The tumor growth delay assay indicated that the RBE values of 2.6-3.1 after single doses of fast neutrons increased to 3.1-4.5 after four daily fractions. The 50% tumor control doses were 78.5 Gy and 33.0 Gy after single doses of gamma rays and fast neutrons, resulting in an RBE of 2.3. Fractionated doses increased the RBE to 2.6. Mitotic cells disappeared shortly after irradiation but reappeared 7 days after irradiation.

  10. Incidence of sarcoma in patients treated with fast neutrons

    SciTech Connect

    MacDougall, R. Hugh . E-mail: medical.dean@st-andrews.ac.uk; Kerr, Gillian R.; Duncan, William

    2006-11-01

    Purpose: The aim of this study is to report the incidence of soft tissue sarcoma in a large group of patients treated with fast neutrons. Methods: A systematic review was conducted of long-term follow-up after trials of fast neutron therapy for cancers at various sites. The study took place at Edinburgh Cancer Centre, Western General Hospital, Edinburgh, Scotland, United Kingdom. From 1977 to 1984, 620 patients were treated using fast neutrons in the MRC cyclotron unit in Edinburgh. Most of these were treated within randomized controlled trials. Follow-up was maintained in all except 2 patients, who left the area to return abroad. The main outcome measure was the incidence of new soft-tissue sarcomas during long-term follow-up. Results: Three cases of sarcoma, developing within the treatment volume, were observed in a small group of patients treated some years earlier using fast neutrons. This incidence was 111 times what would have been expected in the normal population and 15 times the incidence in a comparable photon-treated group of patients. Conclusion: The long-term incidence of sarcomas in patients previously treated with fast neutrons is significant.

  11. Pixelated Single-crystal Diamond Detector for fast neutron measurements

    NASA Astrophysics Data System (ADS)

    Rebai, M.; Cazzaniga, C.; Croci, G.; Tardocchi, M.; Perelli Cippo, E.; Calvani, P.; Girolami, M.; Trucchi, D. M.; Grosso, G.; Gorini, G.

    2015-03-01

    Single-crystal Diamond Detectors (SDDs), due to their high radiation hardness, fast response time and small size, are good candidates as fast neutron detectors in those environments where the high neutron flux is an issue, such as spallation neutron sources and the next generation thermonuclear fusion plasmas, i.e. the ITER experiment. Neutron detection in SDDs is based on the collection of electron-hole pairs produced by charged particles generated by neutron interactions with 12C. Recent measurements have demonstrated the SDD capability of measuring the neutron flux with a good energy resolution and at high rates. In this work a novel detector based on a 12-pixels SDD matrix will be presented. Each pixel is equipped with an independent electronic chain: the fast shaping preamplifier coupled to a digitizer is able to combine the high rate capability and the good energy resolution. Two CAEN digitizers are compared and the possibility of performing good energy resolution measurements (<2%) and at high rates (>1 MHz per channel) is described. Each pixel was characterized and calibrated using an 241Am source: the energy resolution was evaluated and gives a mean value of 1.73% at 5.5 MeV. The good energy resolution achieved and its uniformity between pixels are the demonstration of the capability of this novel detector as a spectrometer. This system will be installed during the next Deuterium-Tritium campaign on a collimated vertical line of sight at JET for 14 MeV neutron measurements.

  12. Diamond detector for high rate monitors of fast neutrons beams

    SciTech Connect

    Giacomelli, L.; Rebai, M.; Cippo, E. Perelli; Tardocchi, M.; Fazzi, A.; Andreani, C.; Pietropaolo, A.; Frost, C. D.; Rhodes, N.; Schooneveld, E.; Gorini, G.

    2012-06-19

    A fast neutron detection system suitable for high rate measurements is presented. The detector is based on a commercial high purity single crystal diamond (SDD) coupled to a fast digital data acquisition system. The detector was tested at the ISIS pulsed spallation neutron source. The SDD event signal was digitized at 1 GHz to reconstruct the deposited energy (pulse amplitude) and neutron arrival time; the event time of flight (ToF) was obtained relative to the recorded proton beam signal t{sub 0}. Fast acquisition is needed since the peak count rate is very high ({approx}800 kHz) due to the pulsed structure of the neutron beam. Measurements at ISIS indicate that three characteristics regions exist in the biparametric spectrum: i) background gamma events of low pulse amplitudes; ii) low pulse amplitude neutron events in the energy range E{sub dep}= 1.5-7 MeV ascribed to neutron elastic scattering on {sup 12}C; iii) large pulse amplitude neutron events with E{sub n} < 7 MeV ascribed to {sup 12}C(n,{alpha}){sup 9}Be and 12C(n,n')3{alpha}.

  13. Dysprosium detector for neutron dosimetry in external beam radiotherapy

    NASA Astrophysics Data System (ADS)

    Ostinelli, A.; Berlusconi, C.; Conti, V.; Duchini, M.; Gelosa, S.; Guallini, F.; Vallazza, E.; Prest, M.

    2014-09-01

    Radiotherapy treatments with high-energy (>8 MeV) photon beams are a standard procedure in clinical practice, given the skin and near-target volumes sparing effect, the accurate penetration and the uniform spatial dose distribution. On the other hand, despite these advantages, neutrons may be produced via the photo-nuclear (γ,n) reactions of the high-energy photons with the high-Z materials in the accelerator head, in the treatment room and in the patient, resulting in an unwanted dose contribution which is of concern, given its potential to induce secondary cancers, and which has to be monitored. This work presents the design and the test of a portable Dysprosium dosimeter to be used during clinical treatments to estimate the "in vivo" dose to the patient. The dosimeter has been characterized and validated with tissue-equivalent phantom studies with a Varian Clinical iX 18 MV photon beam, before using it with a group of patients treated at the S. Anna Hospital in Como. The working principle of the dosimeter together with the readout chain and the results in terms of delivered dose are presented.

  14. Measurements of fast neutrons by bubble detectors

    SciTech Connect

    Castillo, F.; Martinez, H.; Leal, B.; Rangel, J.; Reyes, P. G.

    2013-07-03

    Neutron bubble detectors have been studied using Am-Be and D-D neuron sources, which give limited energy information. The Bubble Detector Spectrometer (BDS) have six different energy thresholds ranging from 10 KeV to 10 Mev. The number of bubbles obtained in each measurement is related to the dose (standardized response R) equivalent neutrons through sensitivity (b / {mu}Sv) and also with the neutron flux (neutrons per unit area) through a relationship that provided by the manufacturer. Bubble detectors were used with six different answers (0.11 b/ {mu}Sv, 0093 b/{mu}Sv, 0.14 b/{mu}Sv, 0.17 b/{mu}Sv, 0051 b/{mu}Sv). To test the response of the detectors (BDS) radiate a set of six of them with different energy threshold, with a source of Am-Be, placing them at a distance of one meter from it for a few minutes. Also, exposed to dense plasma focus Fuego Nuevo II (FN-II FPD) of ICN-UNAM, apparatus which produces fusion plasma, generating neutrons by nuclear reactions of neutrons whose energy emitting is 2.45 MeV. In this case the detectors were placed at a distance of 50 cm from the pinch at 90 Degree-Sign this was done for a certain number of shots. In both cases, the standard response is reported (Dose in {mu}Sv) for each of the six detectors representing an energy range, this response is given by the expression R{sub i}= B{sub i} / S{sub i} where B{sub i} is the number of bubbles formed in each and the detector sensitivity (S{sub i}) is given for each detector in (b / {mu}Sv). Also, reported for both cases, the detected neutron flux (n cm{sup -2}), by a given ratio and the response involves both standardized R, as the average cross section sigma. The results obtained have been compared with the spectrum of Am-Be source. From these measurements it can be concluded that with a combination of bubble detectors, with different responses is possible to measure the equivalent dose in a range of 10 to 100 {mu}Sv fields mixed neutron and gamma, and pulsed generated fusion

  15. Measurements of fast neutrons by bubble detectors

    NASA Astrophysics Data System (ADS)

    Castillo, F.; Leal, B.; Martınez, H.; Rangel, J.; Reyes, P. G.

    2013-07-01

    Neutron bubble detectors have been studied using Am-Be and D-D neuron sources, which give limited energy information. The Bubble Detector Spectrometer (BDS) have six different energy thresholds ranging from 10 KeV to 10 Mev. The number of bubbles obtained in each measurement is related to the dose (standardized response R) equivalent neutrons through sensitivity (b / μSv) and also with the neutron flux (neutrons per unit area) through a relationship that provided by the manufacturer. Bubble detectors were used with six different answers (0.11 b/ μSv, 0093 b/μSv, 0.14 b/μSv, 0.17 b/μSv, 0051 b/μSv). To test the response of the detectors (BDS) radiate a set of six of them with different energy threshold, with a source of Am-Be, placing them at a distance of one meter from it for a few minutes. Also, exposed to dense plasma focus Fuego Nuevo II (FN-II FPD) of ICN-UNAM, apparatus which produces fusion plasma, generating neutrons by nuclear reactions of neutrons whose energy emitting is 2.45 MeV. In this case the detectors were placed at a distance of 50 cm from the pinch at 90° this was done for a certain number of shots. In both cases, the standard response is reported (Dose in μSv) for each of the six detectors representing an energy range, this response is given by the expression Ri = Bi / Si where Bi is the number of bubbles formed in each and the detector sensitivity (Si) is given for each detector in (b / μSv). Also, reported for both cases, the detected neutron flux (n cm-2), by a given ratio and the response involves both standardized R, as the average cross section sigma. The results obtained have been compared with the spectrum of Am-Be source. From these measurements it can be concluded that with a combination of bubble detectors, with different responses is possible to measure the equivalent dose in a range of 10 to 100 μSv fields mixed neutron and gamma, and pulsed generated fusion devices.

  16. Protection of radiation detectors from fast neutron damage

    SciTech Connect

    Kronenberg, S.

    1986-09-02

    A device is described for measuring radiation emitted from a nuclear explosion, the radiation having a comparatively fast moving gamma ray component and a comparatively slower neutron component. The device consists of: a solid state crystal radiation detector; a voltage source applied to bias the detector; and means responsive to the gamma ray component for removing the bias voltage for a predetermined time period whereby the crystal radiation detector is rendered less sensitive to the passage of the neutron radiation component.

  17. Lithium-containing scintillators for thermal neutron, fast neutron, and gamma detection

    DOEpatents

    Zaitseva, Natalia P.; Carman, M. Leslie; Faust, Michelle A.

    2016-03-01

    In one embodiment, a scintillator includes a scintillator material; a primary fluor, and a Li-containing compound, where the Li-containing compound is soluble in the primary fluor, and where the scintillator exhibits an optical response signature for thermal neutrons that is different than an optical response signature for fast neutrons and gamma rays.

  18. Two detector arrays for fast neutrons at LANSCE

    NASA Astrophysics Data System (ADS)

    Haight, R. C.; Lee, H. Y.; Taddeucci, T. N.; O'Donnell, J. M.; Perdue, B. A.; Fotiades, N.; Devlin, M.; Ullmann, J. L.; Laptev, A.; Bredeweg, T.; Jandel, M.; Nelson, R. O.; Wender, S. A.; White, M. C.; Wu, C. Y.; Kwan, E.; Chyzh, A.; Henderson, R.; Gostic, J.

    2012-03-01

    The neutron spectrum from neutron-induced fission needs to be known in designing new fast reactors, predicting criticality for safety analyses, and developing techniques for global security application. The experimental data base of fission neutron spectra is very incomplete and most present evaluated libraries are based on the approach of the Los Alamos Model. To validate these models and to provide improved data for applications, a program is underway to measure the fission neutron spectrum for a wide range of incident neutron energies using the spallation source of fast neutrons at the Weapons Neutron Research (WNR) facility at the Los Alamos Neutron Science Center (LANSCE). In a double time-of-flight experiment, fission neutrons are detected by arrays of neutron detectors to increase the solid angle and also to investigate possible angular dependence of the fission neutrons. The challenge is to measure the spectrum from low energies, down to 100 keV or so, to energies over 10 MeV, where the evaporation-like spectrum decreases by 3 orders of magnitude from its peak around 1 MeV. For these measurements, we are developing two arrays of neutron detectors, one based on liquid organic scintillators and the other on 6Li-glass detectors. The range of fission neutrons detected by organic liquid scintillators extends from about 600 keV to well over 10 MeV, with the lower limit being defined by the limit of pulse-shape discrimination. The 6Li-glass detectors have a range from very low energies to about 1 MeV, where their efficiency then becomes small. Various considerations and tests are in progress to understand important contributing factors in designing these two arrays and they include selection and characterization of photomultiplier tubes (PM), the performance of relatively thin (1.8 cm) 6Li-glass scintillators on 12.5 cm diameter PM tubes, use of 17.5 cm diameter liquid scintillators with 12.5 cm PM tubes, measurements of detector efficiencies with tagged neutrons

  19. Probing Nuclear Structure with Fast Neutrons

    SciTech Connect

    Yates, Steven W.

    2009-01-28

    The advantages of using inelastic neutron scattering with detection of the emitted {gamma} rays, i.e., the (n,n'{gamma}) reaction, for exploring the structure of stable nuclei are reviewed. Examples of the information available with these techniques are provided and progress in understanding multiphonon excitations is described. The unique nuclear structure of {sup 94}Zr is discussed.

  20. Improving the neutron-to-photon discrimination capability of detectors used for neutron dosimetry in high energy photon beam radiotherapy.

    PubMed

    Irazola, L; Terrón, J A; Bedogni, R; Pola, A; Lorenzoli, M; Sánchez-Nieto, B; Gómez, F; Sánchez-Doblado, F

    2016-09-01

    The increasing interest of the medical community to radioinduced second malignancies due to photoneutrons in patients undergoing high-energy radiotherapy, has stimulated in recent years the study of peripheral doses, including the development of some dedicated active detectors. Although these devices are designed to respond to neutrons only, their parasitic photon response is usually not identically zero and anisotropic. The impact of these facts on measurement accuracy can be important, especially in points close to the photon field-edge. A simple method to estimate the photon contribution to detector readings is to cover it with a thermal neutron absorber with reduced secondary photon emission, such as a borated rubber. This technique was applied to the TNRD (Thermal Neutron Rate Detector), recently validated for thermal neutron measurements in high-energy photon radiotherapy. The positive results, together with the accessibility of the method, encourage its application to other detectors and different clinical scenarios. PMID:27337649

  1. Novel detectors for fast-neutron resonance radiography

    NASA Astrophysics Data System (ADS)

    Vartsky, D.; Mor, I.; Goldberg, M. B.; Bar, D.; Feldman, G.; Dangendorf, V.; Tittelmeier, K.; Weierganz, M.; Bromberger, B.; Breskin, A.

    2010-11-01

    We describe the concept and properties of a time-resolved integrative optical neutron (TRION) detector, a novel high spatial resolution neutron imaging system in the energy range of 1-10 MeV, for fast-neutron resonance radiography (FNRR), with multiple-energy TOF-spectrometry capability. Two generations of TRION detectors have already demonstrated their suitability for detecting small quantities of thin-sheet explosives. TRION holds promise for fully automatic detection and identification of standard and improvised explosives concealed in luggage and cargo, by determining the density distribution of light elements such as C, N and O.

  2. Fast Neutron Radiography at an RFQ Accelerator System

    NASA Astrophysics Data System (ADS)

    Daniels, G. C.; Franklyn, C. B.; Dangendorf, V.; Buffler, A.; Bromberger, B.

    This work introduces the Necsa Radio Frequency Quadrupole (RFQ) accelerator facility and its work concerning fast neutron radiography (FNR). Necsa operates a 4-5 MeV, up to 50 mA deuteron RFQ. The previous deuterium gas target station has been modified to enable producing a white neutron beam employing a solid B4C target. Furthermore, the high energy beam transport (HEBT) section is under adjustment to achieve a longer flight-path and a better focus. This work presents an overview of the facility, the modifications made, and introduces past and ongoing neutron radiography investigations.

  3. Elemental Characterization Using Pulsed Fast/Thermal Neutron Analysis

    SciTech Connect

    P. C. Womble; G. Vourvopoulos; M. Belbot; S. Hui; J. Paschal

    2000-11-12

    Several Pulsed Fast/Thermal Neutron Analysis (PFTNA) systems are currently under development at Western Kentucky University. One system is a multiparameter coal analyzer, and another is an explosive detection system called PELAN (Pulsed ELemental Analysis with Neutrons). Finally, two systems for the inspection of cargo for contraband are under consideration: Portable Drug Probe (PDP), and a Neutron ELemental Inspection System (NELIS). All of these systems utilize the elemental content within the interrogated object to reach some decision or calculate some quantity that is then reported to the user.

  4. DESIGN OF A LARGE-AREA FAST NEUTRON DIRECTIONAL DETECTOR.

    SciTech Connect

    VANIER, P.E.

    2006-10-29

    A large-area fast-neutron double-scatter directional detector and spectrometer is being constructed using l-meter-long plastic scintillator paddles with photomultiplier tubes at both ends. The scintillators detect fast neutrons by proton recoil and also gamma rays by Compton scattering. The paddles are arranged in two parallel planes so that neutrons can be distinguished from muons and gamma rays by time of flight between the planes. The signal pulses are digitized with a time resolution of one gigasample per second. The location of an event along each paddle can be determined from the relative amplitudes or timing of the signals at the ends. The angle of deflection of a neutron in the first plane can be estimated from the energy deposited by the recoil proton, combined with the scattered neutron time-of-flight energy. Each scattering angle can be back-projected as a cone, and many intersecting cones define the incident neutron direction from a distant point source. Moreover, the total energy of each neutron can be obtained, allowing some regions of a fission source spectrum to be distinguished from background generated by cosmic rays. Monte Carlo calculations will be compared with measurements.

  5. Delayed Neutron Energy Spectra Following Fast Fission of Uranium

    NASA Astrophysics Data System (ADS)

    Villani, Marcel Franklin

    Delayed neutron energy spectra have been measured for six delay-time intervals following the fast fission of ^{238}U nuclei. The delay-time intervals span the range 0.17 to 10.2 seconds following initial fission while the measured spectra span neutron energies from 10 keV to 4 MeV. The experiment was performed utilizing the UMass/Lowell 5.5 MV Van de Graaff accelerator to produce fast neutrons for inducing fission in a ^{238} U lined fission chamber. The fission fragments were flushed via a helium jet stream to a well-shielded counting room where they were deposited onto a moving tape (magnetic audio tape) and transferred to a beta-neutron time-of-flight spectrometer. By adjusting the tape speed, composite delayed neutron time-of-flight spectra were measured for several different delay-time intervals. These measurements involved beta-neutron coincidences with ^6 Li-loaded glass scintillators for neutron energies from 10 keV to 450 keV and Bicron BC 501 liquid scintillators for the neutron energy range 200 keV-4 MeV. The measured composite delayed neutron energy spectra for ^{238}U are compared to the composite spectra for ^ {235}U and ^{239} Pu, and also to composite spectra derived for ^{238}U from the ENDF/B-VI database, which is based on summation calculations of individual precursor data supplemented by theoretical estimates. The composite spectra of ^{235}U and ^{239}Pu were obtained from previous measurements of delayed neutron spectra at this laboratory. The composite spectra are also decomposed into Keepin six-group spectra and compared with those for ^{239}Pu and ^{235}U. In addition, an equilibrium spectrum has been calculated from the measured composite spectra using several different analytical techniques and is also compared with the equilibrium spectrum of ^{238}U measured in an earlier study at this laboratory.

  6. A capture-gated fast neutron detection method

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Yang, Yi-Gang; Tai, Yang; Zhang, Zhi

    2016-07-01

    To address the problem of the shortage of neutron detectors used in radiation portal monitors (RPMs), caused by the 3He supply crisis, research on a cadmium-based capture-gated fast neutron detector is presented in this paper. The detector is composed of many 1 cm × 1 cm × 20 cm plastic scintillator cuboids covered by 0.1 mm thick film of cadmium. The detector uses cadmium to absorb thermal neutrons and produce capture γ-rays to indicate the detection of neutrons, and uses plastic scintillator to moderate neutrons and register γ-rays. This design removes the volume competing relationship in traditional 3He counter-based fast neutron detectors, which hinders enhancement of the neutron detection efficiency. Detection efficiency of 21.66% ± 1.22% has been achieved with a 40.4 cm × 40.4 cm × 20 cm overall detector volume. This detector can measure both neutrons and γ-rays simultaneously. A small detector (20.2 cm × 20.2 cm × 20 cm) demonstrated a 3.3 % false alarm rate for a 252Cf source with a neutron yield of 1841 n/s from 50 cm away within 15 s measurement time. It also demonstrated a very low (<0.06%) false alarm rate for a 3.21×105 Bq 137Cs source. This detector offers a potential single-detector replacement for both neutron and the γ-ray detectors in RPM systems. Supported by National Natural Science Foundation of China (11175098, 11375095)

  7. Accelerator-based neutron source for the neutron-capture and fast neutron therapy at hospital

    NASA Astrophysics Data System (ADS)

    Bayanov, B. F.; Belov, V. P.; Bender, E. D.; Bokhovko, M. V.; Dimov, G. I.; Kononov, V. N.; Kononov, O. E.; Kuksanov, N. K.; Palchikov, V. E.; Pivovarov, V. A.; Salimov, R. A.; Silvestrov, G. I.; Skrinsky, A. N.; Soloviov, N. A.; Taskaev, S. Yu.

    The proton accelerator complex for neutron production in lithium target discussed, which can operate in two modes. The first provides a neutron beam kinematically collimated with good forward direction in 25° and average energy of 30 keV, directly applicable for neutron-capture therapy with high efficiency of proton beam use. The proton energy in this mode is 1.883-1.890 MeV that is near the threshold of the 7Li( p, n) 7Be reaction. In the second mode, at proton energy of 2.5 MeV, the complex-produced neutron beam with maximum energy board of 790 keV which can be used directly for fast neutron therapy and for neutron-capture therapy after moderation. The project of such a neutron source is based on the 2.5 MeV original electrostatic accelerator tandem with vacuum insulation developed at BINP which is supplied with a high-voltage rectifier. The rectifier is produced in BINP as a part of ELV-type industrial accelerator. Design features of the tandem determining its high reliability in operation with a high-current (up to 40 mA) H - ion beam are discussed. They are: the absence of ceramic accelerator columns around the beam passage region, good conditions for pumping out of charge-exchange gaseous target region, strong focusing optics and high acceleration rate minimizing the space charge effects. The possibility of stabilization of protons energy with an accuracy level of 0.1% necessary for operation in the near threshold region is considered. The design description of H - continuous ion source with a current of 40 mA is also performed. To operate with a 100 kW proton beam it is proposed to use liquid-lithium targets. A thin lithium layer on the surface of a tungsten disk cooled intensively by a liquid metal heat carrier is proposed for use in case of the vertical beam, and a flat liquid lithium jet flowing through the narrow nozzle - for the horizontal beam.

  8. FAST FOSSIL ROTATION OF NEUTRON STAR CORES

    SciTech Connect

    Melatos, A.

    2012-12-10

    It is argued that the superfluid core of a neutron star super-rotates relative to the crust, because stratification prevents the core from responding to the electromagnetic braking torque, until the relevant dissipative (viscous or Eddington-Sweet) timescale, which can exceed {approx}10{sup 3} yr and is much longer than the Ekman timescale, has elapsed. Hence, in some young pulsars, the rotation of the core today is a fossil record of its rotation at birth, provided that magnetic crust-core coupling is inhibited, e.g., by buoyancy, field-line topology, or the presence of uncondensed neutral components in the superfluid. Persistent core super-rotation alters our picture of neutron stars in several ways, allowing for magnetic field generation by ongoing dynamo action and enhanced gravitational wave emission from hydrodynamic instabilities.

  9. Fast Fossil Rotation of Neutron Star Cores

    NASA Astrophysics Data System (ADS)

    Melatos, A.

    2012-12-01

    It is argued that the superfluid core of a neutron star super-rotates relative to the crust, because stratification prevents the core from responding to the electromagnetic braking torque, until the relevant dissipative (viscous or Eddington-Sweet) timescale, which can exceed ~103 yr and is much longer than the Ekman timescale, has elapsed. Hence, in some young pulsars, the rotation of the core today is a fossil record of its rotation at birth, provided that magnetic crust-core coupling is inhibited, e.g., by buoyancy, field-line topology, or the presence of uncondensed neutral components in the superfluid. Persistent core super-rotation alters our picture of neutron stars in several ways, allowing for magnetic field generation by ongoing dynamo action and enhanced gravitational wave emission from hydrodynamic instabilities.

  10. What can be learned with fast neutrons

    SciTech Connect

    Dietrich, F.S.

    1983-06-01

    The DOE/NSF Nuclear Science Advisory Committee (NSAC) is preparing a new Long Range Plan for the development of nuclear science. This document, written as input to the Long Range Plan subcommittees; describes a number of ways that experiments with incident neutrons impact on outstanding problems in nuclear reactions and spectroscopy. It is argued that major extensions of present capabilities are required to carry out these experiments.

  11. Geochemistry at 4 Vesta: Observations Using Fast Neutrons

    NASA Technical Reports Server (NTRS)

    Lawrence, David J.; Prettyman, Thomas H.; Feldman, William C.; Bazell, David; Mittlefehldt, David W.; Peplowski, Patrick N.; Reedy, Robert C.

    2012-01-01

    Dawn is currently in orbit around the asteroid 4 Vesta, and one of the major objectives of the mission is to probe the relationship of Vesta to the Howardite, Eucrite, and Diogenite (HED) meteorites. As Vesta is an example of a differentiated planetary embryo, Dawn will also provide fundamental information about planetary evolution in the early solar system [1]. To help accomplish this overall goal, the Dawn spacecraft carries the Gamma-Ray and Neutron Detector (GRaND). GRaND uses planetary gamma-ray and neutron spectroscopy to measure the surface elemental composition of Vesta and will provide information that is unique and complementary to that provided by the other Dawn instruments and investigations. Gamma-ray and neutron spectroscopy is a standard technique for measuring planetary compositions [2], having successfully made measurements at near-Earth asteroids, the Moon, Mars, Mercury and now Vesta. GRaND has made the first measurements of the neutron spectrum from any asteroid (previous asteroid measurements were only made with gamma-rays). Dawn has been collecting data at Vesta since July 2011. The prime data collection period for GRaND is the Low-Altitude Mapping Orbit (LAMO), which started on 12 December 2011 and will last through spring 2012. During LAMO, the Dawn spacecraft orbits at an average altitude of 210 km above the surface of Vesta, which allows good neutron and gamma-ray signals to be detected from Vesta. A description of the overall goals of GRaND and a summary of the initial findings are given elsewhere [3,4]. The subject of this study is to present the information that will be returned from GRaND using fast neutron measurements. Here, we discuss what fast neutrons can reveal about Vesta s surface composition, how such data can address Dawn science goals, and describe fast neutron measurements made in the early portion of the Vesta LAMO phase.

  12. Direct Fast-Neutron Detection: A Progress Report

    SciTech Connect

    AJ Peurrung; DC Stromswold; PL Reeder; RR Hansen

    1998-10-18

    It is widely acknowledged that Mure neutron-detection technologies will need to offer increased performance at lower cost. One clear route toward these goals is rapid and direct detection of fast neutrons prior to moderation. This report describes progress to date in an effort to achieve such neutron detection via proton recoil within plastic scintillator. Since recording proton-recoil events is of little practical use without a means to discriminate effectively against gamma-ray interactions, the present effort is concentrated on demonstrating a method that distinguishes between pulse types. The proposed method exploits the substantial difference in the speed of fission neutrons and gamma-ray photons. Should this effort ultimately prove successful, the resulting. technology would make a valuable contribution toward meeting the neutron-detection needs of the next century. This report describes the detailed investigations that have been part of Pacific Northwest National Laborato@s efforts to demonstrate direct fast-neutron detection in the laboratory. Our initial approach used a single, solid piece of scintillator along with the electronics needed for pulse-type differentiation. Work to date has led to the conclusion that faster scintillator and/or faster electronics will be necessary before satisfactory gamma-ray discrimination is achieved with this approach. Acquisition and testing of both faster scintillator and faster electronics are currently in progress. The "advanced" approach to direct fast-neutron detection uses a scintillating assembly with an overall density that is lower than that of ordinary plastic scintillator. The lower average density leads to longer interaction times for both neutrons and gamma rays, allowing easier discrimination. The modeling, optimization, and design of detection systems using this approach are described in detail.

  13. Constraints on Vesta's elemental composition: Fast neutron measurements by Dawn's gamma ray and neutron detector

    PubMed Central

    Lawrence, David J; Peplowski, Patrick N; Prettyman, Thomas H; Feldman, William C; Bazell, David; Mittlefehldt, David W; Reedy, Robert C; Yamashita, Naoyuki

    2013-01-01

    Surface composition information from Vesta is reported using fast neutron data collected by the gamma ray and neutron detector on the Dawn spacecraft. After correcting for variations due to hydrogen, fast neutrons show a compositional dynamic range and spatial variability that is consistent with variations in average atomic mass from howardite, eucrite, and diogenite (HED) meteorites. These data provide additional compositional evidence that Vesta is the parent body to HED meteorites. A subset of fast neutron data having lower statistical precision show spatial variations that are consistent with a 400 ppm variability in hydrogen concentrations across Vesta and supports the idea that Vesta's hydrogen is due to long-term delivery of carbonaceous chondrite material. PMID:26074718

  14. Fast Neutron Mutagenesis of Soybean: A Resource for the Community

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mutagenized populations have become indispensable resources for introducing variation and studying gene function in plant genomics research. To create a soybean population for forward and reverse genetic screens, we chose to use fast neutron irradiation to induce deletion mutations in the soybean ge...

  15. Using Fast Neutrons to Study Collective Nuclear Excitations

    NASA Astrophysics Data System (ADS)

    Yates, S. W.

    2013-03-01

    For many years, the inelastic scattering of accelerator-produced fast neutrons has been used at the University of Kentucky to study nuclei which have been described as vibrational Recent data which have emerged from studies with this reaction and from other probes is reviewed, and conclusions about the applicability of the vibrational phonon description for multiphonon quadrupole and octupole excitations are given.

  16. Fast ion beam chopping system for neutron generators

    NASA Astrophysics Data System (ADS)

    Hahto, S. K.; Hahto, S. T.; Leung, K. N.; Reijonen, J.; Miller, T. G.; Van Staagen, P. K.

    2005-02-01

    Fast deuterium (D+) and tritium (T+) ion beam pulses are needed in some neutron-based imaging systems. A compact, integrated fast ion beam extraction and chopping system has been developed and tested at the Lawrence Berkeley National Laboratory for these applications, and beam pulses with 15ns full width at half maximum have been achieved. Computer simulations together with experimental tests indicate that even faster pulses are achievable by shortening the chopper voltage rise time. This chopper arrangement will be implemented in a coaxial neutron generator, in which a small point-like neutron source is created by multiple 120keV D+ ion beams hitting a titanium target at the center of the source.

  17. Fast ion beam chopping system for neutron generators

    SciTech Connect

    Hahto, S.K.; Hahto, S.T.; Leung, K.N.; Reijonen, J.; Miller, T.G.; Van Staagen, P.K.

    2005-02-01

    Fast deuterium (D{sup +}) and tritium (T{sup +}) ion beam pulses are needed in some neutron-based imaging systems. A compact, integrated fast ion beam extraction and chopping system has been developed and tested at the Lawrence Berkeley National Laboratory for these applications, and beam pulses with 15 ns full width at half maximum have been achieved. Computer simulations together with experimental tests indicate that even faster pulses are achievable by shortening the chopper voltage rise time. This chopper arrangement will be implemented in a coaxial neutron generator, in which a small point-like neutron source is created by multiple 120 keV D{sup +} ion beams hitting a titanium target at the center of the source.

  18. Amsterdam fast neutron therapy project: a final report

    SciTech Connect

    Battermann, J.J.; Mijnheer, B.J.

    1986-12-01

    In the period from February 1975 through September 1981 a total of 435 patients received radiotherapy with the 14 MeV d + T neutron generator, hospital based in the Netherlands Cancer Institute. Preliminary data on clinical results were published during the past few years. In this paper a final report is given of the program. The results can be summarized as follows: The neutron generator fulfilled the criteria for clinical use, that is it was reliable and had the required minimal output of 10(12) neutrons s-1. However, the dose distribution was more comparable with a 250 kV X-ray machine than with a modern accelerator. A number of physical parameters of importance for clinical neutron dosimetry have been determined for our therapy unit. These data, as well as the results of dosimetry intercomparisons in which our institute participated, contributed in the drafting of a European protocol for clinical neutron dosimetry. Pilot studies were carried out on different tumor sites, including head and neck, brain, pelvis, soft tissue and pulmonary metastases. In many patients local tumor control was seen, however, often concomitant with severe complications, especially in deep seated tumors. Randomized clinical trials were carried out for head and neck tumors (in collaboration with some other European centers) and for inoperable bladder and rectal tumors. No significant difference was observed in local tumor control or late morbidity between photon and neutron irradiation for the head and neck tumors. Also the results for pelvic tumors failed to demonstrate an advantage for neutron therapy.

  19. Fast neutron transmission spectroscopy for illicit substance detection

    SciTech Connect

    Yule, T.J.; Micklich, B.J.; Fink, C.L.; Sagalovsky, L.

    1996-05-01

    Fast Neutron Transmission Spectroscopy (FNTS) is being investigated for detecting explosives in luggage and other small containers. It uses an accelerator to generate nanosecond-pulsed neutron beams that strike a target, producing a white source of neutrons. Elemental distributions along projections through the interrogated object are obtained by analyzing neutron transmission data. Tomographic reconstruction is used to determine the spatial variations of individual elemental densities. Elemental densities are combined in a detection algorithm that indicates presence or absence of explosives. The elemental unfolding and tomographic reconstruction algorithms have been validated by application to experimental data. System studies have been performed to study the operational characteristics and limitations of a FNTS system, and to determine the system`s sensitivity to several important parameters such as flight path length and position of the interrogated object.

  20. Tagged fast neutron beams En > 6 MeV

    SciTech Connect

    Favela, F.; Huerta, A.; Santa Rita, P.; Ramos, A. T.; Lucio, O. de; Andrade, E.; Ortiz, M. E.; Araujo, V.; Chávez, E.; Acosta, L.; Murillo, G.; Policroniades, R.

    2015-07-23

    Controlled flux of neutrons are produced through the {sup 14}N(d,n){sup 15}O nuclear reaction. Deuteron beams (2-4 MeV) are delivered by the CN-Van de Graaff accelerator and directed with full intensity to our Nitrogen target at SUGAR (SUpersonic GAs jet taRget). Each neutron is electronically tagged by the detection of the associated{sup 15}O. Its energy and direction are known and “beams” of fast monochromatic tagged neutrons (E{sub n}> 6 MeV) are available for basic research and applied work. MONDE is a large area (158 × 63 cm{sup 2}) plastic scintillating slab (5 cm thick), viewed by 16 PMTs from the sides. Fast neutrons (MeV) entering the detector will produce a recoiling proton that induces a light spark at the spot. Signals from the 16 detectors are processed to deduce the position of the spark. Time logic signals from both the {sup 15}O detector and MONDE are combined to deduce a time of flight (TOF) signal. Finally, the position information together with the TOF yields the full momentum vector of each detected neutron.

  1. Digital fast neutron radiography of steel reinforcing bar in concrete

    NASA Astrophysics Data System (ADS)

    Mitton, K.; Jones, A.; Joyce, M. J.

    2014-12-01

    Neutron imaging has previously been used in order to test for cracks, degradation and water content in concrete. However, these techniques often fall short of alternative non-destructive testing methods, such as γ-ray and X-ray imaging, particularly in terms of resolution. Further, thermal neutron techniques can be compromised by the significant expense associated with thermal neutron sources of sufficient intensity to yield satisfactory results that can often precipitate the need for a reactor. Such embodiments are clearly not portable in the context of the needs of field applications. This paper summarises the results of a study to investigate the potential for transmission radiography based on fast neutrons. The objective of this study was to determine whether the presence of heterogeneities in concrete, such as reinforcement structures, could be identified on the basis of variation in transmitted fast-neutron flux. Monte-Carlo simulations have been performed and the results from these are compared to those arising from practical tests using a 252Cf source. The experimental data have been acquired using a digital pulse-shape discrimination system that enables fast neutron transmission to be studied across an array of liquid scintillators placed in close proximity to samples under test, and read out in real time. Whilst this study does not yield sufficient spatial resolution, a comparison of overall flux ratios does provide a basis for the discrimination between samples with contrasting rebar content. This approach offers the potential for non-destructive testing that gives less dose, better transportability and better accessibility than competing approaches. It is also suitable for thick samples where γ-ray and X-ray methods can be limited.

  2. A Program to Calculate Fast Neutron Data for Structural Materials.

    Energy Science and Technology Software Center (ESTSC)

    1990-11-09

    Version 00 Based on the unified model the UNIFY code is used for the calculation of the fast neutron data for structural materials, which involves: (1) cross section- total cross section, all kinds of reactions channels, the cross section of the discrete levels and continuum emission, (2) angular distribution- elastic scattering angular distribution and its Legendre coefficients and transition matrix elements,the Legendre coefficients of the discrete levels in the inelastic scattering channels, (3) energy spectra,more » (4) double differential cross section of the inelastic channel and of the neutron outgoing channels.« less

  3. A time-of-flight detector for thermal neutrons from radiotherapy Linacs

    NASA Astrophysics Data System (ADS)

    Conti, V.; Bartesaghi, G.; Bolognini, D.; Mascagna, V.; Perboni, C.; Prest, M.; Scazzi, S.; Mozzanica, A.; Cappelletti, P.; Frigerio, M.; Gelosa, S.; Monti, A.; Ostinelli, A.; Giannini, G.; Vallazza, E.

    2007-10-01

    Boron Neutron Capture Therapy (BNCT) is a therapeutic technique exploiting the release of dose inside the tumour cell after a fission of a 10B nucleus following the capture of a thermal neutron. BNCT could be the treatment for extended tumors (liver, stomach, lung), radio-resistant ones (melanoma) or tumours surrounded by vital organs (brain). The application of BNCT requires a high thermal neutron flux (>5×108 n cm-2 s-1) with the correct energy spectrum (neutron energy <10 keV), two requirements that for the moment are fulfilled only by nuclear reactors. The INFN PhoNeS (Photo Neutron Source) project is trying to produce such a neutron beam with standard radiotherapy Linacs, maximizing with a dedicated photo-neutron converter the neutrons produced by Giant Dipole Resonance by a high energy ( >8 MeV) photon beam. In this framework, we have developed a real-time detector to measure the thermal neutron time-of -flight to compute the flux and the energy spectrum. Given the pulsed nature of Linac beams, the detector is a single neutron counting system made of a scintillator detecting the photon emitted after the neutron capture by the hydrogen nuclei. The scintillator signal is sampled by a dedicated FPGA clock thus obtaining the exact arrival time of the neutron itself. The paper will present the detector and its electronics, the feasibility measurements with a Varian Clinac 1800/2100CD and comparison with a Monte Carlo simulation.

  4. Heavy particle radiotherapy: prospects and pitfalls

    SciTech Connect

    Faju, M.R.

    1980-01-01

    The use of heavy particles in radiotherapy of tumor volumes is examined. Particles considered are protons, helium ions, heavy ions, negative pions, and fast neutrons. Advantages and disadvantages are discussed. (ACR)

  5. Fiber optic thermal/fast neutron and gamma ray scintillation detector

    DOEpatents

    Neal, John S.; Mihalczo, John T.

    2006-11-28

    A detector system that combines a .sup.6Li loaded glass fiber scintillation thermal neutron detector with a fast scintillation detector in a single layered structure. Detection of thermal and fast neutrons and ionizing electromagnetic radiation is achieved in the unified detector structure. The fast scintillator replaces the polyethelene moderator layer adjacent the .sup.6Li loaded glass fiber panel of the neutron detector and acts as the moderator for the glass fibers. Fast neutrons, x-rays and gamma rays are detected in the fast scintillator. Thermal neutrons, x-rays and gamma rays are detected in the glass fiber scintillator.

  6. Determination of the neutron and photon spectra of a clinical fast neutron beam.

    PubMed

    Moyers, M F; Horton, J L

    1990-01-01

    A simple technique to determine the neutron and photon spectra of a clinical fast neutron beam is described. This technique involves making narrow beam attenuation measurements with a pair of ionization chambers and an iterative fitting program to analyze the data. A method is also described for determining the first-guess neutron spectrum for input into the iterative program. The results of the analysis yield spectra suitable for use in dose calculation algorithms and dosimetry protocols. Presented here is the first-known published photon spectrum from a clinical machine. PMID:2120558

  7. Gamma-ray and neutron radiography as part of a pulsed fast neutron analysis inspection system

    NASA Astrophysics Data System (ADS)

    Rynes, J.; Bendahan, J.; Gozani, T.; Loveman, R.; Stevenson, J.; Bell, C.

    1999-02-01

    A gamma-ray and neutron radiography system has been developed to provide useful supplemental information for a Pulsed Fast Neutron Analysis (PFNA) cargo inspection system. PFNA uses a collimated beam of pulsed neutrons to interrogate cargoes using (n, γx) reactions. The PFNA source produces both gamma rays as well as neutrons. The transmission of both species through the cargo is measured with an array of plastic scintillators. Since the neutron and gamma-ray signals are easily separated by arrival time a separate image can be made for both species. The radiography measurement is taken simultaneously with the PFNA measurement turning PFNA into an emission and transmission imaging system, thus enhancing the PFNA radiography system.

  8. Experimental setup for the determination of the correction factors of the neutron doseratemeters in fast neutron fields

    SciTech Connect

    Iliescu, Elena; Bercea, Sorin; Dudu, Dorin; Celarel, Aurelia

    2013-12-16

    The use of the U-120 Cyclotron of the IFIN-HH allowed to perform a testing bench with fast neutrons in order to determine the correction factors of the doseratemeters dedicated to neutron measurement. This paper deals with researchers performed in order to develop the irradiation facility testing the fast neutrons flux generated at the Cyclotron. This facility is presented, together with the results obtain in determining the correction factor for a doseratemeter dedicated to the neutron dose equivalent rate measurement.

  9. Design of a boron neutron capture enhanced fast neutron therapy assembly

    NASA Astrophysics Data System (ADS)

    Wang, Zhonglu

    The use of boron neutron capture to boost tumor dose in fast neutron therapy has been investigated at several fast neutron therapy centers worldwide. This treatment is termed boron neutron capture enhanced fast neutron therapy (BNCEFNT). It is a combination of boron neutron capture therapy (BNCT) and fast neutron therapy (FNT). It is believed that BNCEFNT may be useful in the treatment of some radioresistant brain tumors, such as glioblastoma multiforme (GBM). A boron neutron capture enhanced fast neutron therapy assembly has been designed for the Fermilab Neutron Therapy Facility (NTF). This assembly uses a tungsten filter and collimator near the patient's head, with a graphite reflector surrounding the head to significantly increase the dose due to boron neutron capture reactions. The assembly was designed using Monte Carlo radiation transport code MCNP version 5 for a standard 20x20 cm2 treatment beam. The calculated boron dose enhancement at 5.7-cm depth in a water-filled head phantom in the assembly with a 5x5 cm2 collimation was 21.9% per 100-ppm 10B for a 5.0-cm tungsten filter and 29.8% for a 8.5-cm tungsten filter. The corresponding dose rate for the 5.0-cm and 8.5-cm thick filters were 0.221 and 0.127 Gy/min, respectively; about 48.5% and 27.9% of the dose rate of the standard 10x10 cm2 fast neutron treatment beam. To validate the design calculations, a simplified BNCEFNT assembly was built using four lead bricks to form a 5x5 cm2 collimator. Five 1.0-cm thick 20x20 cm2 tungsten plates were used to obtain different filter thicknesses and graphite bricks/blocks were used to form a reflector. Measurements of the dose enhancement of the simplified assembly in a water-filled head phantom were performed using a pair of tissue-equivalent ion chambers. One of the ion chambers is loaded with 1000-ppm natural boron (184-ppm 10B) to measure dose due to boron neutron capture. The measured dose enhancement at 5.0-cm depth in the head phantom for the 5.0-cm thick

  10. Design of a boron neutron capture enhanced fast neutron therapy assembly

    SciTech Connect

    Wang, Zhonglu

    2006-08-01

    The use of boron neutron capture to boost tumor dose in fast neutron therapy has been investigated at several fast neutron therapy centers worldwide. This treatment is termed boron neutron capture enhanced fast neutron therapy (BNCEFNT). It is a combination of boron neutron capture therapy (BNCT) and fast neutron therapy (FNT). It is believed that BNCEFNT may be useful in the treatment of some radioresistant brain tumors, such as glioblastoma multiform (GBM). A boron neutron capture enhanced fast neutron therapy assembly has been designed for the Fermilab Neutron Therapy Facility (NTF). This assembly uses a tungsten filter and collimator near the patient's head, with a graphite reflector surrounding the head to significantly increase the dose due to boron neutron capture reactions. The assembly was designed using Monte Carlo radiation transport code MCNP version 5 for a standard 20x20 cm{sup 2} treatment beam. The calculated boron dose enhancement at 5.7-cm depth in a water-filled head phantom in the assembly with a 5x5 cm{sup 2} collimation was 21.9% per 100-ppm {sup 10}B for a 5.0-cm tungsten filter and 29.8% for a 8.5-cm tungsten filter. The corresponding dose rate for the 5.0-cm and 8.5-cm thick filters were 0.221 and 0.127 Gy/min, respectively; about 48.5% and 27.9% of the dose rate of the standard 10x10 cm{sup 2} fast neutron treatment beam. To validate the design calculations, a simplified BNCEFNT assembly was built using four lead bricks to form a 5x5 cm{sup 2} collimator. Five 1.0-cm thick 20x20 cm{sup 2} tungsten plates were used to obtain different filter thicknesses and graphite bricks/blocks were used to form a reflector. Measurements of the dose enhancement of the simplified assembly in a water-filled head phantom were performed using a pair of tissue-equivalent ion chambers. One of the ion chambers is loaded with 1000-ppm natural boron (184-ppm {sup 10}B) to measure dose due to boron neutron capture. The measured dose enhancement at 5.0-cm depth in

  11. Simulation study of Fast Neutron Radiography using GEANT4

    NASA Astrophysics Data System (ADS)

    Bishnoi, S.; Thomas, R. G.; Sarkar, P. S.; Datar, V. M.; Sinha, A.

    2015-02-01

    Fast neutron radiography (FNR) is an important non-destructive technique for the imaging of thick bulk material. We are designing a FNR system using a laboratory based 14 MeV D-T neutron generator [1]. Simulation studies have been carried using Monte Carlo based GEANT4 code to understand the response of the FNR system for various objects. Different samples ranging from low Z, metallic and high Z materials were simulated for their radiographic images. The quality of constructed neutron radiography images in terms of relative contrast ratio and the contrast to noise ratio were investigated for their dependence on various parameters such as thickness, voids inside high/low Z material and also for low Z material hidden behind high Z material. We report here the potential and limitations of FNR for imaging different materials and a few configurations and also the possible areas where FNR can be implemented.

  12. Fast neutron radiography research at ANL-W

    SciTech Connect

    Klann, R.T.; Natale, M.D.

    1996-06-01

    Thirty-seven different elements were tested for their suitability as converter screens for direct and indirect fast neutron radiography. The use of commercial X-ray scintillator screens containing YTaO{sub 4}, LaOBr:Tm, YTaO{sub 4}:Nb, YTaO{sub 4}:Tm, CaWO{sub 4}, BaSO{sub 4}:Sr, and GdO{sub 2}S:Tb was also explored for direct fast neutron radiography. For the indirect radiographic process, only one element, holmium, was found to be better than copper. Iron was also found to work as well as copper. All other elements that were tested were inferior to copper for indirect fast neutron radiography. For direct fast neutron radiography, the results were markedly different. Copper was found to be a poor material to sue, as thirty-two of the elements performed better than the copper. Tantalum was found to be the best material to use. Several other materials that also performed remarkably well include, in order of decreasing utility, gold, lutetium, germanium, dysprosium, and thulium. Several interesting results were obtained for the commercial X-ray scintillator screens. Most notably, useful radiographs were produced with all of the various scintillation screens. However, the screens containing YTaO{sub 4}:Nb offered the greatest film densities for the shortest exposure times. Screens using GdSO{sub 4}:Tb provided the best resolution and clearest images at the sacrifice of exposure time. Also, as previous researchers found, scintillator screens offered significantly shorter exposure times than activation foils.

  13. Note: Fast neutron efficiency in CR-39 nuclear track detectors

    SciTech Connect

    Cavallaro, S.

    2015-03-15

    CR-39 samples are commonly employed for fast neutron detection in fusion reactors and in inertial confinement fusion experiments. The literature reported efficiencies are strongly depending on experimental conditions and, in some cases, highly dispersed. The present note analyses the dependence of efficiency as a function of various parameters and experimental conditions in both the radiator-assisted and the stand-alone CR-39 configurations. Comparisons of literature experimental data with Monte Carlo calculations and optimized efficiency values are shown and discussed.

  14. Fast slit-beam extraction and chopping for neutron generator

    NASA Astrophysics Data System (ADS)

    Kalvas, T.; Hahto, S. K.; Gicquel, F.; King, M.; Vainionpää, J. H.; Reijonen, J.; Leung, K. N.; Miller, T. G.

    2006-03-01

    High-intensity fast white neutron pulses are needed for pulsed fast neutron transmission spectroscopy (PFNTS). A compact tritium-tritium fusion reaction neutron generator with an integrated ion beam chopping system has been designed, simulated, and tested for PFNTS. The design consists of a toroidal plasma chamber with 20 extraction slits, concentric cylindrical electrodes, chopper plates, and a central titanium-coated beam target. The total ion beam current is 1A. The beam chopping is done at 30keV energy with a parallel-plate deflector integrated with an Einzel lens. Beam pulses with 5ns width can be achieved with a 15ns rise/fall time ±1500V sweep on the chopper plates. The neutrons are produced at 120keV energy. A three-dimensional simulation code based on Vlasov iteration was developed for simulating the ion optics of this system. The results with this code were found to be consistent with other simulation codes. So far we have measured 50ns ion beam pulses from the system.

  15. Fast slit-beam extraction and chopping for neutron generator

    SciTech Connect

    Kalvas, T.; Hahto, S.K.; Gicquel, F.; King, M.; Vainionpaeae, J.H.; Reijonen, J.; Leung, K.N.; Miller, T.G.

    2006-03-15

    High-intensity fast white neutron pulses are needed for pulsed fast neutron transmission spectroscopy (PFNTS). A compact tritium-tritium fusion reaction neutron generator with an integrated ion beam chopping system has been designed, simulated, and tested for PFNTS. The design consists of a toroidal plasma chamber with 20 extraction slits, concentric cylindrical electrodes, chopper plates, and a central titanium-coated beam target. The total ion beam current is 1 A. The beam chopping is done at 30 keV energy with a parallel-plate deflector integrated with an Einzel lens. Beam pulses with 5 ns width can be achieved with a 15 ns rise/fall time {+-}1500 V sweep on the chopper plates. The neutrons are produced at 120 keV energy. A three-dimensional simulation code based on Vlasov iteration was developed for simulating the ion optics of this system. The results with this code were found to be consistent with other simulation codes. So far we have measured 50 ns ion beam pulses from the system.

  16. Fast neutron dosimeter using Cooled Optically Stimulated Luminescence (COSL)

    SciTech Connect

    Eschbach, P.A.; Miller, S.D.

    1991-10-01

    Data is presented that demonstrates the concept of a fast neutron dosimeter using Cooled Optically Stimulated Luminescence. CaF{sub 2}:Mn powder, compounded with polyethylene, was injection molded and pressed into 0.1-cm-thick sheets. The sheets were then cut to form dosimeters with dimensions, 1.25 cm by 1.25 cm. After a laser anneal, the dosimeters were exposed to various amounts (from 10 mSv to 100 mSv) of fast {sup 252}Cf neutrons. The exposed dosimeters were cooled to liquid nitrogen temperature, stimulated with laser light, and then allowed to warm up to room temperature whereupon the dose dependent luminescence was recorded with a photon counting system. When the control and gamma components were subtracted from the {sup 252}Cf response, a dose-dependent neutron response was observed. The design, construction, and preliminary performance of an automated system for the dose interrogation of individual CaF{sub 2}:Mn grains within the polyethylene matrix will also be discussed. The system uses a small CO{sub 2} laser to heat areas of the cooled dosimeter to room temperature. If the readout of very small grain within the plastic matrix is successful, it will enhance the neutron to gamma response of the dosimeter.

  17. Cargo inspection system based on pulsed fast neutron analysis

    NASA Astrophysics Data System (ADS)

    Brown, Douglas R.

    1994-03-01

    This paper describes an automated cargo inspection system (CIS) based on pulsed fast neutron analysis (PFNA). The system uses a pulsed beam of fast neutrons to interrogate the contents of small volume elements--voxels--of a cargo container or truck. The neutrons interact with the elemental contents of each voxel and gamma rays characteristic of the elements are collected in an array of detectors. The elemental signals and their ratios give unique signatures for drugs, explosives, and contraband. From the time of arrival of the gamma rays, the position of the voxel within the truck is determined. Full-scale physics simulation of time-dependent neutron and gamma ray interactions in various cargo materials have aided in the design of the system. These simulations have been benchmarked against laboratory measurements. A scaled model of the PFNA CIS is in operation in SAIC's PFNA facility and has been used to demonstrate the detection of drugs and other contraband concealed in a full-size cargo container with a variety of contents. A full-scale system is presently being designed and fabricated for the U.S. Government's Cargo Container Inspection Technology Testbed at Tacoma, Washington. This system is designed to scan five or more trucks per hour and is scheduled to come into operation in July 1995.

  18. Performance study of polycrystalline CVD diamond detectors for fast neutron monitoring

    SciTech Connect

    Singh, Arvind Kumar, Amit Topkar, Anita

    2014-04-24

    Diamond detectors using polycrystalline CVD diamond substrates of thickness 300μm and 100μm were fabricated for fast neutron monitoring application.. The characterization of detectors was carried out using various tests such as leakage current, capacitance and alpha particle response. The performance of detectors was evaluated for fast neutrons at different neutron yields. The results presented in this work demonstrate that the diamond detectors will be suitable for monitoring fast neutrons.

  19. Implementation of an Analytical Model for Leakage Neutron Equivalent Dose in a Proton Radiotherapy Planning System

    PubMed Central

    Eley, John; Newhauser, Wayne; Homann, Kenneth; Howell, Rebecca; Schneider, Christopher; Durante, Marco; Bert, Christoph

    2015-01-01

    Equivalent dose from neutrons produced during proton radiotherapy increases the predicted risk of radiogenic late effects. However, out-of-field neutron dose is not taken into account by commercial proton radiotherapy treatment planning systems. The purpose of this study was to demonstrate the feasibility of implementing an analytical model to calculate leakage neutron equivalent dose in a treatment planning system. Passive scattering proton treatment plans were created for a water phantom and for a patient. For both the phantom and patient, the neutron equivalent doses were small but non-negligible and extended far beyond the therapeutic field. The time required for neutron equivalent dose calculation was 1.6 times longer than that required for proton dose calculation, with a total calculation time of less than 1 h on one processor for both treatment plans. Our results demonstrate that it is feasible to predict neutron equivalent dose distributions using an analytical dose algorithm for individual patients with irregular surfaces and internal tissue heterogeneities. Eventually, personalized estimates of neutron equivalent dose to organs far from the treatment field may guide clinicians to create treatment plans that reduce the risk of late effects. PMID:25768061

  20. Implementation of an analytical model for leakage neutron equivalent dose in a proton radiotherapy planning system.

    PubMed

    Eley, John; Newhauser, Wayne; Homann, Kenneth; Howell, Rebecca; Schneider, Christopher; Durante, Marco; Bert, Christoph

    2015-01-01

    Equivalent dose from neutrons produced during proton radiotherapy increases the predicted risk of radiogenic late effects. However, out-of-field neutron dose is not taken into account by commercial proton radiotherapy treatment planning systems. The purpose of this study was to demonstrate the feasibility of implementing an analytical model to calculate leakage neutron equivalent dose in a treatment planning system. Passive scattering proton treatment plans were created for a water phantom and for a patient. For both the phantom and patient, the neutron equivalent doses were small but non-negligible and extended far beyond the therapeutic field. The time required for neutron equivalent dose calculation was 1.6 times longer than that required for proton dose calculation, with a total calculation time of less than 1 h on one processor for both treatment plans. Our results demonstrate that it is feasible to predict neutron equivalent dose distributions using an analytical dose algorithm for individual patients with irregular surfaces and internal tissue heterogeneities. Eventually, personalized estimates of neutron equivalent dose to organs far from the treatment field may guide clinicians to create treatment plans that reduce the risk of late effects. PMID:25768061

  1. Characterization of a GEM-based fast neutron detector

    NASA Astrophysics Data System (ADS)

    Esposito, B.; Marocco, D.; Villari, R.; Murtas, F.; Rodionov, R.

    2014-03-01

    The neutron efficiency of a Gas Electron Multiplier (GEM)-based detector designed for fast neutron measurements in fusion devices was determined through the combined use of Monte Carlo (MCNPX) calculations and analysis of deuterium-deuterium and deuterium-tritium neutron irradiation experiments. The detector, characterized by a triple GEM structure flushed with a Ar/CO2/CF4 - 45/15/40 gas mixture, features a digital read-out system and has two sub-units for the detection of 2.5+14 MeV neutrons and 14 MeV neutrons (UDD and UDT, respectively). The pulse height spectra (PHS) determined from the curves of experimental efficiency as a function of the detector's high voltage (HV) and the MCNPX-simulated PHS were compared using a fitting routine that finds the best match between the experimental and simulated PHS by assuming a parametric model for the relation between HV (that determines the detector's gain) and the energy deposited in the gas. This led to express the experimental neutron efficiency as a function of the discrimination level set on the deposited energy (energy threshold). The detector sensitivity to γ-rays was also analyzed and the operational range in which the γ-ray contribution to the signal is not negligible was determined. It is found that this detector can reach a maximum neutron efficiency of ~1×10-3 counts/n at 2.5 MeV (UDD sub-unit) and of ~4×10-3 counts/n at 14 MeV (UDT and UDD sub-units).

  2. Neurobehavioral changes in mice exposed to fast neutrons in utero.

    PubMed

    Ishida, Yuka; Ohmachi, Yasushi; Takai, Nobuhiko; Hiraoka, Takeshi; Ogiu, Toshiaki; Nishikawa, Tetsu; Nishimura, Yoshikazu; Shimada, Yoshiya

    2011-01-01

    Epidemiological studies have revealed that radiation causes brain development abnormalities in atomic bomb survivors exposed in utero. Rat and mouse studies have also shown that prenatal exposure to low-linear energy transfer radiation induces developmental brain anomalies. Because the effects of prenatal irradiation on adult behavior patterns remain largely unknown, the present study investigated the effects of neutron exposure in utero on postnatal behavior patterns in mice. [C57BL/6J × C3H/He] hybrid (B6C3F1) mice were exposed to cyclotron-derived fast neutrons with peak energy of 10 MeV (0.02-0.2 Gy) or Cs-137 gamma-rays (0.2-1.5 Gy) on embryonic day 13.5. At 5.5-8 months of age, the neurobehavior of male offspring was examined by Rota-rod treadmill and locomotor activity. The accumulation of radio-labeled drug at muscarinic acetylcholine and serotonin receptors in mice from control and neutron-irradiated groups was determined by the tracer method. Locomotor activity during the dark period increased in the 0.02 Gy neutron-irradiated group. Furthermore, at 5.5 months of age, tracer binding in vivo to the muscarinic acetylcholine increased and to the serotonin receptors decreased in the 0.02 Gy neutron-irradiated group. In conclusion, the present study reveals that a certain "low-dose window" may exist for radiation-induced changes in neurobehavior and binding to neurotransmitter receptors, because there was correlation in neurobehavior and binding to neurotransmitter receptors in the 0.02 Gy neutron-irradiated group though there was not correlation in the neutron-irradiated groups more than 0.05 Gy. PMID:21422737

  3. A study on the optimum fast neutron flux for boron neutron capture therapy of deep-seated tumors.

    PubMed

    Rasouli, Fatemeh S; Masoudi, S Farhad

    2015-02-01

    High-energy neutrons, named fast neutrons which have a number of undesirable biological effects on tissue, are a challenging problem in beam designing for Boron Neutron Capture Therapy, BNCT. In spite of this fact, there is not a widely accepted criterion to guide the beam designer to determine the appropriate contribution of fast neutrons in the spectrum. Although a number of researchers have proposed a target value for the ratio of fast neutron flux to epithermal neutron flux, it can be shown that this criterion may not provide the optimum treatment condition. This simulation study deals with the determination of the optimum contribution of fast neutron flux in the beam for BNCT of deep-seated tumors. Since the dose due to these high-energy neutrons damages shallow tissues, delivered dose to skin is considered as a measure for determining the acceptability of the designed beam. To serve this purpose, various beam shaping assemblies that result in different contribution of fast neutron flux are designed. The performances of the neutron beams corresponding to such configurations are assessed in a simulated head phantom. It is shown that the previously used criterion, which suggests a limit value for the contribution of fast neutrons in beam, does not necessarily provide the optimum condition. Accordingly, it is important to specify other complementary limits considering the energy of fast neutrons. By analyzing various neutron spectra, two limits on fast neutron flux are proposed and their validity is investigated. The results show that considering these limits together with the widely accepted IAEA criteria makes it possible to have a more realistic assessment of sufficiency of the designed beam. Satisfying these criteria not only leads to reduction of delivered dose to skin, but also increases the advantage depth in tissue and delivered dose to tumor during the treatment time. The Monte Carlo Code, MCNP-X, is used to perform these simulations. PMID:25479433

  4. Commentary: exciting new developments in fast neutron cross sections and dosimetry

    NASA Astrophysics Data System (ADS)

    Bielajew, A. F.; Chadwick, M. B.

    1998-12-01

    The field of fast neutron therapy, and to some extent the practice of radiation protection in the vicinity of medical linear accelerators, requires accurate physical data. The paucity of physical data for neutron cross sections above about 15 MeV in low- Z materials is best exemplified (and somewhat exaggerated!) in the late Herb Attix's standard textbook Introduction to Radiological Physics and Radiation Dosimetry (Attix 1986). On page 464, the contributions to kerma in tissue from neutrons stops abruptly shortly above about 15 MeV. Photon and electron dosimetry has benefited from a well established and highly cohesive relationship between measurement and theory due to the enormous success of quantum electrodynamics. In contrast, measurements in the field of neutron radiotherapy have benefited less from theory because of the complexity of the quantum mechanics of nuclear structure, especially for light elements. This is because the nuclear levels are widely spaced at low excitation energies unlike for heavy elements where the energy level spacing is more dense and statistical assumptions can be applied with success. This means that accurate measurements are crucial for guiding and testing theoretical development. Measurements contributing to the field of fast neutron dosimetry are few and far between. Amazingly, in this issue of Physics in Medicine and Biology there are two such contributions! The paper by Benck, Slypen, Meulders and Corcalciuc (1998) entitled `Experimental double differential cross sections and derived kerma factors for oxygen at incident neutron energies from reaction thresholds to 65 MeV' reports on a set of measurements of the doubly-differential cross sections (energy and angle) for fast neutrons on for 9 energies between 25 and 65 MeV. The reaction channels measured were (n, px), (n, dx), (n, tx) and (n, x). These cross sections were then integrated to produce partial and total kerma factors. There are several features of this paper that are

  5. Influence of secondary neutrons induced by proton radiotherapy for cancer patients with implantable cardioverter defibrillators

    PubMed Central

    2012-01-01

    Background Although proton radiotherapy is a promising new approach for cancer patients, functional interference is a concern for patients with implantable cardioverter defibrillators (ICDs). The purpose of this study was to clarify the influence of secondary neutrons induced by proton radiotherapy on ICDs. Methods The experimental set-up simulated proton radiotherapy for a patient with an ICD. Four new ICDs were placed 0.3 cm laterally and 3 cm distally outside the radiation field in order to evaluate the influence of secondary neutrons. The cumulative in-field radiation dose was 107 Gy over 10 sessions of irradiation with a dose rate of 2 Gy/min and a field size of 10 × 10 cm2. After each radiation fraction, interference with the ICD by the therapy was analyzed by an ICD programmer. The dose distributions of secondary neutrons were estimated by Monte-Carlo simulation. Results The frequency of the power-on reset, the most serious soft error where the programmed pacing mode changes temporarily to a safety back-up mode, was 1 per approximately 50 Gy. The total number of soft errors logged in all devices was 29, which was a rate of 1 soft error per approximately 15 Gy. No permanent device malfunctions were detected. The calculated dose of secondary neutrons per 1 Gy proton dose in the phantom was approximately 1.3-8.9 mSv/Gy. Conclusions With the present experimental settings, the probability was approximately 1 power-on reset per 50 Gy, which was below the dose level (60-80 Gy) generally used in proton radiotherapy. Further quantitative analysis in various settings is needed to establish guidelines regarding proton radiotherapy for cancer patients with ICDs. PMID:22284700

  6. Fast neutron dosimetry. Progress report, July 1, 1979-June 30, 1980

    SciTech Connect

    Attix, F.H.

    1980-01-01

    Progress is reported in: the development and testing of new gas mixtures more suitable for fast neutron dosimetry using the common A150-type Tissue-equivalent plastic ion chambers; comparison of photon doses determined with a graphite-walled proportional counter and with paired dosimeters irradiated by 14.8-MeV neutrons; a detector for the direct measurement of LET distributions from irradiation with fast neutrons; LET distributions from fast neutron irradiation of TE-plastic and graphite measured in a cylindrically symmetric geometry; progress in development of a tandem fast neutron and /sup 60/Co gamma ray source irradiation facility; an approach to the correlation of cellular response with lineal energy; calculated and measured HTO atmospheric dispersion rates within meters of a release site; application of cavity theory to fast neutrons; and fast neutron dosimetry by thermally stimulated currents in Al/sub 2/O/sub 3/. (GHT)

  7. Accelerator requirements for fast-neutron interrogation of luggage and cargo

    SciTech Connect

    Micklich, B.J.; Fink, C.L.; Yule, T.J.

    1995-05-01

    Several different fast-neutron based techniques are being studied for the detection of contraband substances in luggage and cargo containers. The present work discusses the accelerator requirements for fast-neutron transmission spectroscopy (FNTS), pulsed fast-neutron analysis (PFNA), and 14-MeV neutron interrogation. These requirements are based on the results of Monte-Carlo simulations of neutron or gamma detection rates. Accelerator requirements are driven by count-rate considerations, spatial resolution and acceptable uncertainties in elemental compositions. The authors have limited their analyses to luggage inspection with FNTS and to cargo inspection with PFNA or 14-MeV neutron interrogation.

  8. Monte Carlo simulation of a fast neutron counter for use in neutron radiography

    NASA Astrophysics Data System (ADS)

    Meshkian, Mohsen

    2015-07-01

    In this paper, a Geant4 Monte Carlo simulation is employed to evaluate the response of a neutron detection sheet composed of a layer of plexiglas as neutron-to-proton converter and a layer of silver-activated zinc sulphide (ZnS(Ag)) as phosphor. ZnS(Ag) scintillators have the largest light output among the scintillators for fast-neutron spectroscopy. The simulations are performed for 252Cf neutrons which after impinging the converter layer of the detector produce recoil protons. Recoil protons that interact with the scintillator deposit energy which is converted to scintillation light. In this report, different aspects of the ZnS(Ag)-detector, such as the effective converter and scintillator thickness, as well as the detector response are investigated.

  9. Simulation of response functions of fast neutron sensors and development of thin neutron silicon sensor.

    PubMed

    Takada, Masashi; Nakamura, Takashi; Matsuda, Mikihiko; Nunomiya, Tomoya

    2014-10-01

    On radiation detection using silicon sensor, signals are produced from collected charges in a depletion layer; however, for high-energy particles, this depletion layer is extended due to funnelling phenomenon. The lengths of charge collection were experimentally obtained from proton peak energies in measured pulse-heights. The length is extended with increasing proton energy of up to 6 MeV, and then, is constant over 6 MeV. The response functions of fast neutron sensors were simulated for 5- and 15-MeV monoenergetic and (252)Cf neutron sources using the Monte Carlo N-Particle eXtended code. The simulation results agree well with the experimental ones, including the effect of funnelling phenomenon. In addition, a thin silicon sensor was developed for a new real-time personal neutron dosemeter. Photon sensitivity is vanishingly smaller than neutron one by a factor of 5×10(-4). PMID:24516186

  10. Fiber optic thermal/fast neutron and gamma ray scintillation detector

    DOEpatents

    Neal, John S.; Mihalczo, John T

    2007-10-30

    A system for detecting fissile and fissionable material originating external to the system includes: a .sup.6Li loaded glass fiber scintillator for detecting thermal neutrons, x-rays and gamma rays; a fast scintillator for detecting fast neutrons, x-rays and gamma rays, the fast scintillator conjoined with the glass fiber scintillator such that the fast scintillator moderates fast neutrons prior to their detection as thermal neutrons by the glass fiber scintillator; and a coincidence detection system for processing the time distributions of arriving signals from the scintillators.

  11. Cargo inspection system based on pulsed fast neutron analysis

    NASA Astrophysics Data System (ADS)

    Brown, Douglas R.; Coates, Allison; Kuo, Stelly N.; Loveman, Robert; Pentaleri, Ed; Rynes, Joel C.

    1997-02-01

    The pulsed fast neutron analysis (PFNA) cargo inspection system (CIS) uses a nanosecond pulsed beam of fast neutrons to interrogate the contents of small volume elements -- voxels -- of a cargo container or truck. A color display shows the three-dimensional location of suspected contraband, such as drugs or explosives. The neutrons interact with the elemental contents of each vowel, and gamma rays characteristic of the elements are collected in an array of detectors. The elemental signals and their ratios give unique signatures for drugs and other contraband. From the time of arrival of the gamma rays, the position of the vowel within the truck is determined. The PFNA CIS is designed to scan five or more trucks per hour. The operator interface has been designed to assist in the rapid identification of drugs, explosives or other contraband. This paper describes the system and the tests for drugs and explosives that have been carried out during the past year. These tests were aimed at exploring the envelope of performance of the system.

  12. Cargo inspection system based on pulsed fast neutron analysis

    NASA Astrophysics Data System (ADS)

    Brown, D. R.; Gozani, T.

    1995-05-01

    Pulsed Fast Neutron Analysis (PFNA) is a technique which uses a collimated pulsed beam of fast neutrons to excite the nuclei of common elements in bulk materials. Direct imaging of the elemental contents of the material is accomplished by using time-of-flight analysis to identify the position of the interactions and gamma-ray spectroscopy to identify the elemental gamma-rays. From the ratios and absolute measurements of elemental abundances the identification of the material can be deduced. The PFNA cargo inspection system uses a volume type negative ion source and a double drift bunching system to create an intense beam of nano-second bunched negative deuterium ions which, after acceleration to around 6 MeV, impinge on a deuterium gas target producing pulsed neutrons. A unique high speed data acquisition system digitizes and analyzes the time-energy data in real time. Experimental studies and computer simulations were extensively employed to characterize and optimize the design parameters of the system.

  13. Application of pulsed fast neutrons analysis to cargo inspection

    NASA Astrophysics Data System (ADS)

    Brown, D. R.; Gozani, T.; Loveman, R.; Bendahan, J.; Ryge, P.; Stevenson, J.; Liu, F.; Sivakumar, M.

    1994-12-01

    Pulsed Fast Neutron Analysis (PFNA) is a technique which uses a collimated pulsed beam of fast neutrons to excite the nuclei of common elements in bulk materials. Direct imaging of the elemental contents of the material is accomplished by using time-of-flight analysis to identify the position of the interactions and gamma-ray spectroscopy to identify the elemental gamma rays. From the ratios and absolute measurements of elemental abundances the identification of the material can be deduced. The PFNA Cargo Inspection System uses a volume type negative ion source and a double drift bunching system to create an intense beam of nano-second bunched negative deuterium ions which, after acceleration to around 6 MeV, impinge on a deuterium gas target producing pulsed neutrons. A unique high speed data acquisition system digitizes and analyzes the time-energy data in real time. Experimental studies and computer simulations were extensively employed to characterize and optimize the design parameters of the system. The system described is scheduled for full scale laboratory testing in the fall of 1994 and for field testing at a Government Testbed in Tacoma, WA in 1995.

  14. New detector for use in fast neutron radiography

    NASA Astrophysics Data System (ADS)

    Popov, V.; Degtiarenko, P.; Musatov, I.

    2011-01-01

    We have developed and tested a new detector for use in the fast neutron (FN) imaging radiography applications, which is distinct from other presently known FN imagers. Our device implements a neutron-sensitive scintillator attached to a position-sensitive photomultiplier tube, and operates in the event-by-event readout mode, acquiring energy, timing, and pulse shape information for all detected radiation events. This information is used to help separate events of FN interactions in the scintillator from the background events, caused by the electronics noise and by other types of background radiation. The detector performance for FN imaging application was tested using the D-D neutron generator, designed and manufactured by Adelphi Technology, Inc. This essentially point-like neutron source operates in continuous mode, producing up to 109 of 2.5 MeV neutrons per second. Samples made of metals, plastic, and other materials were used to measure the detector resolution, efficiency and uniformity. Results of these tests are presented and discussed. Both X and Y position resolutions of the FN imaging detector are estimated to be less than 0.5 mm (sigma). Because this detector shows the fraction-of-a-millimeter resolution desirable for most of FN applications, is capable of good neutron-background separation, and is built using radiation hard materials, we believe that it could be a good alternative to other FN imaging systems based on CCD or solid state detectors. In addition, because of its sub-nanosecond timing resolution, it is suitable for the time-of-flight energy-resolved FN imaging.

  15. Research on Fast-Doppler-Broadening of neutron cross sections

    SciTech Connect

    Li, S.; Wang, K.; Yu, G.

    2012-07-01

    A Fast-Doppler-Broadening method is developed in this work to broaden Continuous Energy neutron cross-sections for Monte Carlo calculations. Gauss integration algorithm and parallel computing are implemented in this method, which is unprecedented in the history of cross section processing. Compared to the traditional code (NJOY, SIGMA1, etc.), the new Fast-Doppler-Broadening method shows a remarkable speedup with keeping accuracy. The purpose of using Gauss integration is to avoid complex derivation of traditional broadening formula and heavy load of computing complementary error function that slows down the Doppler broadening process. The OpenMP environment is utilized in parallel computing which can take full advantage of modern multi-processor computers. Combination of the two can reduce processing time of main actinides (such as {sup 238}U, {sup 235}U) to an order of magnitude of 1{approx}2 seconds. This new method is fast enough to be applied to Online Doppler broadening. It can be combined or coupled with Monte Carlo transport code to solve temperature dependent problems and neutronics-thermal hydraulics coupled scheme which is a big challenge for the conventional NJOY-MCNP system. Examples are shown to determine the efficiency and relative errors compared with the NJOY results. A Godiva Benchmark is also used in order to test the ACE libraries produced by the new method. (authors)

  16. Experience with fast neutron therapy for locally advanced sarcomas

    SciTech Connect

    Salinas, R.; Hussey, D.H.; Fletcher, G.H.; Lindberg, R.D.; Martin, R.G.; Peters, L.J.; Sinkovics, J.G.

    1980-03-01

    Between October 1972 and April 1978, 34 patients with locally advanced sarcomas were treated with fast neutrons using the Texas A and M variable energy cyclotron. The clinical material included 29 patients with soft tissue sarcomas, 4 with chondrosarcomas, and one with an osteosarcoma. The best results were achieved for patients with soft tissue sarcomas; 69% (20/29) had local control of their tumor. Only one of 4 patients with chondrosarcomas was classified as having local tumor control, and one patient with osteosarcoma had persistent disease. With most fractionation schedules, local tumor control was superior for patients who received doses greater than 6500 rad/sub eq/ (2100 rad/sub n..gamma../ with 50 MeV/sub d ..-->.. Be/ neutrons). The incidence of major complications was notably increased when maximum radiation doses of 7500 rad/sub eq/ or greater were administered (2400 rad/sub n..gamma../ with 50 MeV/sub d ..-->.. Be/ neutrons). In patients who underwent subsequent surgery, healing was satisfactory if the maximum radiation dose was limited to 4500 to 5500 rad/sub eq/(1450 to 1775 rad/sub n..gamma../ with 50 MeV/sub d ..-->.. Be/ neutrons).

  17. Preliminary investigations of Monte Carlo Simulations of neutron energy and LET spectra for fast neutron therapy facilities

    SciTech Connect

    Kroc, T.K.; /Fermilab

    2009-10-01

    No fast neutron therapy facility has been built with optimized beam quality based on a thorough understanding of the neutron spectrum and its resulting biological effectiveness. A study has been initiated to provide the information necessary for such an optimization. Monte Carlo studies will be used to simulate neutron energy spectra and LET spectra. These studies will be bench-marked with data taken at existing fast neutron therapy facilities. Results will also be compared with radiobiological studies to further support beam quality ptimization. These simulations, anchored by this data, will then be used to determine what parameters might be optimized to take full advantage of the unique LET properties of fast neutron beams. This paper will present preliminary work in generating energy and LET spectra for the Fermilab fast neutron therapy facility.

  18. Prototype fast neutron counter for the assay of impure plutonium

    SciTech Connect

    Wachter, J.R.; Adams, E.L.; Ensslin, N.

    1987-01-01

    A fast coincident neutron counter using liquid scintillators and gamma-ray/neutron pulse-shape discrimination has been constructed for the analysis of plutonium samples with unknown self-multiplication and (..cap alpha..,n) production. The counter was used to measure plutonium-bearing materials that cover a range of masses and (..cap alpha..,n) reaction rates of importance to the safeguards community. Measured values of the /sup 240/Pu effective mass differed, on average, from their declared values by 0.4% for plutonium oxides and by -2.2% for metal and MgO-loaded samples. Poorer results were obtained for materials with large (..cap alpha..,n) reaction rates and low self-multiplication such as plutonium ash and plutonium fluoride.

  19. Fast neutron irradiation for advanced tumors in the pelvis

    SciTech Connect

    Battermann, J.J.; Breur, K.

    1981-08-01

    Since the end of 1975, fast neutron irradiation has been used in the Antoni van Leeuwenhoek Hospital for the treatment of advanced tumors, which had no prospect of cure by other treatment modalities. Fifty-nine patients were irradiated in the pelvic area, 22 for inoperable bladder cancer, 25 for rectal and 12 for gynecological cancer. Treatments were given 5 times per week with a 14 MeV d + T neutron generator. Persisting complete tumor regression was achieved in 11 of 22 bladded patients, 14 of 25 rectum patients and 6 of 12 gynecological patients. Because of unfavorable beam characteristics, 15 of 59 (25%) treated patients had severe radiation-induced intestinal and skin complications.

  20. Calculation and experimental determination of the fast neutron sensitivity of OSL detectors with hydrogen containing radiators

    NASA Astrophysics Data System (ADS)

    Fellinger, Jürgen; Henniger, Jürgen; Hübner, Klaus

    1984-11-01

    Detectors based on optically stimulated luminescence are useful for fast neutron dosimetry. For this one needs the neutron sensitivity of these detectors. We describe a procedure for the calculation of the neutron sensitivity. For CaF 2:Mn embedded in polyethylene the calculated values are compared with experimentally determined neutron sensitivities. There is good agreement.

  1. Protection of radiation detectors from fast neutron damage

    SciTech Connect

    Kronenberg, S.

    1984-01-30

    A circuit for biasing a solid state crystal used as a radiation detector in which the passage of the initial gamma ray pulse from the explosion of a nearby tactical nuclear weapon is utilized to temporarily remove the bias from said crystal for a time sufficient to permit the fast neutron pulse from the same explosion to pass by without permanently damaging the counter crystal. The circuit comprises an RC circuit between the bias supply and the crystal with a reverse biased diode across the capacitor.

  2. Overview of US fast-neutron facilities and testing capabilities

    SciTech Connect

    Evans, E.A.; Cox, C.M.; Jackson, R.J.

    1982-01-01

    Rather than attempt a cataloging of the various fast neutron facilities developed and used in this country over the last 30 years, this paper will focus on those facilities which have been used to develop, proof test, and explore safety issues of fuels, materials and components for the breeder and fusion program. This survey paper will attempt to relate the evolution of facility capabilities with the evolution of development program which use the facilities. The work horse facilities for the breeder program are EBR-II, FFTF and TREAT. For the fusion program, RTNS-II and FMIT were selected.

  3. Nanosecond pulsed fast neutron analysis - a progress report

    SciTech Connect

    Gozani, T.

    1994-12-31

    The status of the nanosecond Pulsed Fast Neutron Analysis (PFNA) at the time of the conference will be given. PFNA is a new technique researched and developed over the last several years to detect non-intrusively, a large variety of materials in containers as small as luggage or as large as trucks. The first full sized truck/container inspection system is being assembled at the Science Applications International Corporation (SAIC) Santa Clara facility for test and evaluation. Following this, the system will be operationally field tested at a designated government test bed in the Port of Tacoma, Washington.

  4. Note: fast neutron efficiency in CR-39 nuclear track detectors.

    PubMed

    Cavallaro, S

    2015-03-01

    CR-39 samples are commonly employed for fast neutron detection in fusion reactors and in inertial confinement fusion experiments. The literature reported efficiencies are strongly depending on experimental conditions and, in some cases, highly dispersed. The present note analyses the dependence of efficiency as a function of various parameters and experimental conditions in both the radiator-assisted and the stand-alone CR-39 configurations. Comparisons of literature experimental data with Monte Carlo calculations and optimized efficiency values are shown and discussed. PMID:25832287

  5. Non destructive characterization using pulsed fast-thermal neutrons

    NASA Astrophysics Data System (ADS)

    Womble, P. C.; Schultz, F. J.; Vourvopoulos, G.

    It has been shown that explosives, illicit drugs, and other contraband materials contain various chemical elements in quantities and ratios that differentiate them from each other and from other innocuous substances. In coal, the major chemical elements in it can provide information about various parameters of importance to the coal industry. In both examples, the nondestructive identification of chemical elements can be performed by utilizing incident pulsed fast-thermal neutrons that, through nuclear reactions, excite the nuclei of the various elements. This technique is being currently developed for dismantling of nuclear weapons classified as trainer's, and for on-line coal bulk analysis.

  6. Non-destructive characterization using pulsed fast-thermal neutrons

    NASA Astrophysics Data System (ADS)

    Womble, P. C.; Schultz, F. J.; Vourvopoulos, G.

    1995-05-01

    Explosives, illicit drugs, and other contraband materials contain various chemical elements in quantities and ratios that differentiate them from each other and from innocuous substances. Furthermore, the major chemical elements in coal can provide information about various parameters of importance to the coal industry. In both examples, the non-destructive identification of chemical elements can be performed using pulsed fast-thermal neutrons that, through nuclear reactions, excite the nuclei of the various elements. This technique is being currently developed for the dismantling of nuclear weapons classified as trainers, and for the on-line coal bulk analysis.

  7. Conceptual design of a high-frame-rate fast neutron radiography detector

    NASA Astrophysics Data System (ADS)

    Zhang, Fa-qiang; Li, Zheng-hong; Yang, Jian-lun; Guo, Cun; Yang, Hong-qiong; Ye, Fan; Wang, Zhen; Ying, Chun-tong; Liu, Guang-jun

    2007-01-01

    Fast neutron radiography offers means to inspect thick hydrogenous materials because of high penetration depth of fast neutrons. Further more, quasi monoenergetic neutrons is relatively easy to obtain by neutron generators and it is helpful for density inversion of targets, which has many difficulties in flash radiography. In order to investigate dynamic processes, an intense repetitive pulsed neutron source will be used. Efficient detection of fast neutrons is one of the hardest problems for fast neutron imaging detectors. In the system, a scintillating fiber array is employed to obtain a detection efficiency of about 20% for DT neutrons. High-performance ICCDs and large aperture lens are taken into account to increase the conversion efficiency and the collective efficiency. The properties of the detector are charaterized in this paper.

  8. Measurement of neutron ambient dose equivalent in carbon-ion radiotherapy with an active scanned delivery system.

    PubMed

    Yonai, S; Furukawa, T; Inaniwa, T

    2014-10-01

    In ion beam radiotherapy, secondary neutrons contribute to an undesired dose outside the target volume, and consequently the increase of secondary cancer risk is a growing concern. In this study, neutron ambient dose equivalents in carbon-ion radiotherapy (CIRT) with an active beam delivery system were measured with a rem meter, WENDI-II, at National Institute of Radiological Sciences. When the same irradiation target was assumed, the measured neutron dose with an active beam was at most ∼15 % of that with a passive beam. This percentage became smaller as larger distances from the iso-centre. Also, when using an active beam delivery system, the neutron dose per treatment dose in CIRT was comparable with that in proton radiotherapy. Finally, it was experimentally demonstrated that the use of an active scanned beam in CIRT can greatly reduce the secondary neutron dose. PMID:24126486

  9. New detector for use in fast neutron radiography

    SciTech Connect

    Popov, V.; Degtiarenko, P.; Musatov, I.

    2011-01-01

    We have developed and tested a new type detector for use in the fast neutron (FN) imaging radiography applications. FN radiography is generally used for nondestructive material testing, medical and biology applications, border patrol, transportation and cargo screening tasks. It is complementary to other types of radiography, providing additional information on light element content of the material samples. Distinct from other FN imagers presently known, our device implements a neutron-sensitive scintillator attached to a position-sensitive photomultiplier tube (PSPMT), and operates in an event-by-event readout mode, acquiring energy, timing, and pulse shape information for all detected radiation events. The information is used to help separate events of FN interactions in the scintillator from the background events caused by the electronics noise and by the other types of background radiation. Selection of pure fast neutron events in the final image allows us to achieve ultimate image contrast and resolution, as compared with other types of FN imaging devices operating most commonly in an integration mode, in which the detector's dark noise and radiation background dilute the images. The detector performance for FN imaging application was tested using D-D neutron generator, designed and manufactured by Adelphi Technology, Inc. This essentially point-like neutron source operates in continuous mode producing up to 109 of 2.5 MeV neutrons per second. Samples made of metals plastic and other material were used to measure the detector resolution, efficiency and uniformity. Results of these tests are presented and discussed. Fig. 1 shows one of the test FN radiographic images obtained using the sample made of 11 styrene plastic strips. All strips are squares 4.8 x 4.8 mm2 with six different lengths 10 to 60 mm with 10 mm increment. [A] [B] [C] Fig. 1. [A]-layout of the test sample; [B]-raw FN shadow image of the sample; [C]-map of the plastic strips as they appear on

  10. Microstructural evolution in fast-neutron-irradiated austenitic stainless steels

    SciTech Connect

    Stoller, R.E.

    1987-12-01

    The present work has focused on the specific problem of fast-neutron-induced radiation damage to austenitic stainless steels. These steels are used as structural materials in current fast fission reactors and are proposed for use in future fusion reactors. Two primary components of the radiation damage are atomic displacements (in units of displacements per atom, or dpa) and the generation of helium by nuclear transmutation reactions. The radiation environment can be characterized by the ratio of helium to displacement production, the so-called He/dpa ratio. Radiation damage is evidenced microscopically by a complex microstructural evolution and macroscopically by density changes and altered mechanical properties. The purpose of this work was to provide additional understanding about mechanisms that determine microstructural evolution in current fast reactor environments and to identify the sensitivity of this evolution to changes in the He/dpa ratio. This latter sensitivity is of interest because the He/dpa ratio in a fusion reactor first wall will be about 30 times that in fast reactor fuel cladding. The approach followed in the present work was to use a combination of theoretical and experimental analysis. The experimental component of the work primarily involved the examination by transmission electron microscopy of specimens of a model austenitic alloy that had been irradiated in the Oak Ridge Research Reactor. A major aspect of the theoretical work was the development of a comprehensive model of microstructural evolution. This included explicit models for the evolution of the major extended defects observed in neutron irradiated steels: cavities, Frank faulted loops and the dislocation network. 340 refs., 95 figs., 18 tabs.

  11. A time-gating scintillation detector for the measurement of laser-induced fast neutrons

    SciTech Connect

    Lee, Sungman; Park, Sangsoon; Yea, Kwon-hae; Cha, Hyungki

    2009-06-15

    A time-gating scintillation detector, in which a fast high voltage switch is used for gating a channel photomultiplier, was developed for a measurement of laser-induced fast neutrons. The x rays generated from the intense femtosecond laser and the solid target interactions were suppressed selectively and a time-of-flight signal of a laser-generated fast neutron was measured effectively. The detector was used successfully to measure the neutron yield of a femtosecond, deuterated, polystyrene plasma.

  12. A time-gating scintillation detector for the measurement of laser-induced fast neutrons.

    PubMed

    Lee, Sungman; Park, Sangsoon; Yea, Kwon-hae; Cha, Hyungki

    2009-06-01

    A time-gating scintillation detector, in which a fast high voltage switch is used for gating a channel photomultiplier, was developed for a measurement of laser-induced fast neutrons. The x rays generated from the intense femtosecond laser and the solid target interactions were suppressed selectively and a time-of-flight signal of a laser-generated fast neutron was measured effectively. The detector was used successfully to measure the neutron yield of a femtosecond, deuterated, polystyrene plasma. PMID:19566199

  13. Quantum transport in neutron-irradiated modulation-doped heterojunctions. I. Fast neutrons

    SciTech Connect

    Jin, W.; Zhou, J.; Huang, Y.; Cai, L.

    1988-12-15

    We have investigated the characteristics of low-temperature quantum transport in Al/sub x/Ga/sub 1-//sub x/As/GaAs modulation-doped heterojunctions irradiated by fast neutrons of about 14 MeV energy. The concentration and the mobility of the two-dimensional electron gas (2D EG) under low magnetic fields decrease with increase in the concentrations of scatterers, such as ionized impurities, lattice defects, and interface roughness. On the other hand, under strong magnetic fields, the Hall plateau broadening associated with the Landau localized states, and the Shubnikov--de Hass (SdH) oscillation enhancement associated with the Landau extended states, increase markedly after fast-neutron irradiation.

  14. A novel detector assembly for detecting thermal neutrons, fast neutrons and gamma rays

    NASA Astrophysics Data System (ADS)

    Cester, D.; Lunardon, M.; Moretto, S.; Nebbia, G.; Pino, F.; Sajo-Bohus, L.; Stevanato, L.; Bonesso, I.; Turato, F.

    2016-09-01

    A new composite detector has been developed by combining two different commercial scintillators. The device has the capability to detect gamma rays as well as thermal and fast neutrons; the signal discrimination between the three types is performed on-line by means of waveform digitizers and PSD algorithms. This work describes the assembled detector and its discrimination performance to be employed in the applied field.

  15. Fast fall-time ion beam in neutron generators

    SciTech Connect

    Ji, Q.; Kwan, J.; Regis, M.; Wu, Y.; Wilde, S.B.; Wallig, J.

    2008-08-10

    Ion beam with a fast fall time is useful in building neutron generators for the application of detecting hidden, gamma-shielded SNM using differential die-away (DDA) technique. Typically a fall time of less than 1 {micro}s can't be achieved by just turning off the power to the ion source due to the slow decay of plasma density (partly determined by the fall time of the RF power in the circuit). In this paper, we discuss the method of using an array of mini-apertures (instead of one large aperture beam) such that gating the beamlets can be done with low voltage and a small gap. This geometry minimizes the problem of voltage breakdown as well as reducing the time of flight to produce fast gating. We have designed and fabricated an array of 16 apertures (4 x 4) for a beam extraction experiment. Using a gating voltage of 1400 V and a gap distance of 1 mm, the fall time of extracted ion beam pulses is less than 1 {micro}s at various beam energies ranging between 400 eV to 800 eV. Usually merging an array of beamlets suffers the loss of beam brightness, i.e., emittance growth, but that is not an important issue for neutron source applications.

  16. Fast Monte Carlo Electron-Photon Transport Method and Application in Accurate Radiotherapy

    NASA Astrophysics Data System (ADS)

    Hao, Lijuan; Sun, Guangyao; Zheng, Huaqing; Song, Jing; Chen, Zhenping; Li, Gui

    2014-06-01

    Monte Carlo (MC) method is the most accurate computational method for dose calculation, but its wide application on clinical accurate radiotherapy is hindered due to its poor speed of converging and long computation time. In the MC dose calculation research, the main task is to speed up computation while high precision is maintained. The purpose of this paper is to enhance the calculation speed of MC method for electron-photon transport with high precision and ultimately to reduce the accurate radiotherapy dose calculation time based on normal computer to the level of several hours, which meets the requirement of clinical dose verification. Based on the existing Super Monte Carlo Simulation Program (SuperMC), developed by FDS Team, a fast MC method for electron-photon coupled transport was presented with focus on two aspects: firstly, through simplifying and optimizing the physical model of the electron-photon transport, the calculation speed was increased with slightly reduction of calculation accuracy; secondly, using a variety of MC calculation acceleration methods, for example, taking use of obtained information in previous calculations to avoid repeat simulation of particles with identical history; applying proper variance reduction techniques to accelerate MC method convergence rate, etc. The fast MC method was tested by a lot of simple physical models and clinical cases included nasopharyngeal carcinoma, peripheral lung tumor, cervical carcinoma, etc. The result shows that the fast MC method for electron-photon transport was fast enough to meet the requirement of clinical accurate radiotherapy dose verification. Later, the method will be applied to the Accurate/Advanced Radiation Therapy System ARTS as a MC dose verification module.

  17. Dose Calibration of the ISS-RAD Fast Neutron Detector

    NASA Technical Reports Server (NTRS)

    Zeitlin, C.

    2015-01-01

    The ISS-RAD instrument has been fabricated by Southwest Research Institute and delivered to NASA for flight to the ISS in late 2015 or early 2016. ISS-RAD is essentially two instruments that share a common interface to ISS. The two instruments are the Charged Particle Detector (CPD), which is very similar to the MSL-RAD detector on Mars, and the Fast Neutron Detector (FND), which is a boron-loaded plastic scintillator with readout optimized for the 0.5 to 10 MeV energy range. As the FND is completely new, it has been necessary to develop methodology to allow it to be used to measure the neutron dose and dose equivalent. This talk will focus on the methods developed and their implementation using calibration data obtained in quasi-monoenergetic (QMN) neutron fields at the PTB facility in Braunschweig, Germany. The QMN data allow us to determine an approximate response function, from which we estimate dose and dose equivalent contributions per detected neutron as a function of the pulse height. We refer to these as the "pSv per count" curves for dose equivalent and the "pGy per count" curves for dose. The FND is required to provide a dose equivalent measurement with an accuracy of ?10% of the known value in a calibrated AmBe field. Four variants of the analysis method were developed, corresponding to two different approximations of the pSv per count curve, and two different implementations, one for real-time analysis onboard ISS and one for ground analysis. We will show that the preferred method, when applied in either real-time or ground analysis, yields good accuracy for the AmBe field. We find that the real-time algorithm is more susceptible to chance-coincidence background than is the algorithm used in ground analysis, so that the best estimates will come from the latter.

  18. ACTIV87: Fast Neutron Activation Cross Section File

    Energy Science and Technology Software Center (ESTSC)

    1993-08-01

    4. HISTORICAL BACKGROUND AND INFORMATION ACTIV87 is a compilation of fast neutron induced activation reaction cross-sections. The compilation covers energies from threshold to 20 MeV and is based on evaluated data taken from other evaluated data libraries and individual evaluations. The majority of these evaluations were performed by using available experimental data. The aforementioned available experimental data were used in the selection of needed parameters for theoretical computations and for normalizing the results of suchmore » computations. Theoretical calculations were also used for interpolation and extrapolation of experimental cross-section data. All of the evaluated data curves were compared with experimental data that had been reported over the four year period preceding 1987. Only those cross-sections not in contradiction with experimental data that was current in 1987 were retained in the activation file, ACTIV87. In cases of several conflicting evaluations, that evaluation was chosen which best corresponded to the experimental data. A few evaluated curves were renormalized in accordance with the results of the latest precision measurements. 5. APPLICATION OF THE DATA 6. SOURCE AND SCOPE OF DATA The following libraries and individual files of evaluated neutron cross-section data were used for the selection of the activation cross-sections: the BOSPOR Library, the Activation File of the Evaluated Nuclear Data Library, the Evaluated Neutron Data File (ENDF/B-V) Activation File, the International Reactor Dosimetry File (IRDF-82), and individual evaluations carried out under various IAEA research contracts. The file of selected reactions contains 206 evaluated cross-section curves of the (n,2n), (n,p) and (n,a) reactions which lead to radioactive products and may be used in many practical applications of neutron activation analysis. Some competing activation reactions, usually with low cross-section values, are given for completeness.« less

  19. First steps towards a fast-neutron therapy planning program

    PubMed Central

    2011-01-01

    Background The Monte Carlo code GEANT4 was used to implement first steps towards a treatment planning program for fast-neutron therapy at the FRM II research reactor in Garching, Germany. Depth dose curves were calculated inside a water phantom using measured primary neutron and simulated primary photon spectra and compared with depth dose curves measured earlier. The calculations were performed with GEANT4 in two different ways, simulating a simple box geometry and splitting this box into millions of small voxels (this was done to validate the voxelisation procedure that was also used to voxelise the human body). Results In both cases, the dose distributions were very similar to those measured in the water phantom, up to a depth of 30 cm. In order to model the situation of patients treated at the FRM II MEDAPP therapy beamline for salivary gland tumors, a human voxel phantom was implemented in GEANT4 and irradiated with the implemented MEDAPP neutron and photon spectra. The 3D dose distribution calculated inside the head of the phantom was similar to the depth dose curves in the water phantom, with some differences that are explained by differences in elementary composition. The lateral dose distribution was studied at various depths. The calculated cumulative dose volume histograms for the voxel phantom show the exposure of organs at risk surrounding the tumor. Conclusions In order to minimize the dose to healthy tissue, a conformal treatment is necessary. This can only be accomplished with the help of an advanced treatment planning system like the one developed here. Although all calculations were done for absorbed dose only, any biological dose weighting can be implemented easily, to take into account the increased radiobiological effectiveness of neutrons compared to photons. PMID:22118299

  20. Bubble masks for time-encoded imaging of fast neutrons.

    SciTech Connect

    Brubaker, Erik; Brennan, James S.; Marleau, Peter; Nowack, Aaron B.; Steele, John; Sweany, Melinda; Throckmorton, Daniel J.

    2013-09-01

    Time-encoded imaging is an approach to directional radiation detection that is being developed at SNL with a focus on fast neutron directional detection. In this technique, a time modulation of a detected neutron signal is induced-typically, a moving mask that attenuates neutrons with a time structure that depends on the source position. An important challenge in time-encoded imaging is to develop high-resolution two-dimensional imaging capabilities; building a mechanically moving high-resolution mask presents challenges both theoretical and technical. We have investigated an alternative to mechanical masks that replaces the solid mask with a liquid such as mineral oil. Instead of fixed blocks of solid material that move in pre-defined patterns, the oil is contained in tubing structures, and carefully introduced air gaps-bubbles-propagate through the tubing, generating moving patterns of oil mask elements and air apertures. Compared to current moving-mask techniques, the bubble mask is simple, since mechanical motion is replaced by gravity-driven bubble propagation; it is flexible, since arbitrary bubble patterns can be generated by a software-controlled valve actuator; and it is potentially high performance, since the tubing and bubble size can be tuned for high-resolution imaging requirements. We have built and tested various single-tube mask elements, and will present results on bubble introduction and propagation as a function of tubing size and cross-sectional shape; real-time bubble position tracking; neutron source imaging tests; and reconstruction techniques demonstrated on simple test data as well as a simulated full detector system.

  1. Explosives detection studies using Fast-Neutron Transmission Spectroscopy

    SciTech Connect

    Fink, C.L.; Micklich, B.J.; Sagalovsky, L.; Smith, D.L.; Yule, T.J.

    1996-12-31

    Fast-Neutron Transmission Spectroscopy (FNTS) is being investigated for detection of explosives in luggage or air cargo. We present here the principle results of a two-year study of a few-view tomographic FNTS system using the Monte Carlo radiation transport code MCNP to simulate neutron transmission through simple luggage phantoms and Receiver Operator Characteristic (ROC) curves to determine system performance. Elemental distributions along projections through the interrogated object are obtained by analyzing MCNP generated neutron transmission data. Transmission data for few (3-5) angles and relatively coarse resolution ({approximately}2 cm) are used to create a tomographic reconstruction of elemental distributions within the object. The elemental unfolding and tomographic reconstruction algorithms and the concept of transmission-derived cross sections for use in elemental analysis have been validated by application to experimental data. Elemental distributions are combined in an explosives detection algorithm to provide an indication of the presence or absence of explosives. The algorithm in current use, termed the ``equivalent explosive`` algorithm, determines the quantity of explosive that can be formed using the measured amount of the constituent elements in each pixel. Reconstruction and explosives detection algorithms have been applied to a series of randomly packed suitcases to generated ROC that describe system performance in terms of the probability of detection and of false alarms. System studies have been performed to study the operational characteristics and limitations of a FNTS system, and to determine the system`s sensitivity to several important parameters such as neutron source reaction and incident particle energy, flight path length, and the position of the interrogated object.

  2. Monte Carlo study on secondary neutrons in passive carbon-ion radiotherapy: Identification of the main source and reduction in the secondary neutron dose

    SciTech Connect

    Yonai, Shunsuke; Matsufuji, Naruhiro; Kanai, Tatsuaki

    2009-10-15

    Purpose: Recent successful results in passive carbon-ion radiotherapy allow the patient to live for a longer time and allow younger patients to receive the radiotherapy. Undesired radiation exposure in normal tissues far from the target volume is considerably lower than that close to the treatment target, but it is considered to be non-negligible in the estimation of the secondary cancer risk. Therefore, it is very important to reduce the undesired secondary neutron exposure in passive carbon-ion radiotherapy without influencing the clinical beam. In this study, the source components in which the secondary neutrons are produced during passive carbon-ion radiotherapy were identified and the method to reduce the secondary neutron dose effectively based on the identification of the main sources without influencing the clinical beam was investigated. Methods: A Monte Carlo study with the PHITS code was performed by assuming the beamline at the Heavy-Ion Medical Accelerator in Chiba (HIMAC). At first, the authors investigated the main sources of secondary neutrons in passive carbon-ion radiotherapy. Next, they investigated the reduction in the neutron dose with various modifications of the beamline device that is the most dominant in the neutron production. Finally, they investigated the use of an additional shield for the patient. Results: It was shown that the main source is the secondary neutrons produced in the four-leaf collimator (FLC) used as a precollimator at HIAMC, of which contribution in the total neutron ambient dose equivalent is more than 70%. The investigations showed that the modification of the FLC can reduce the neutron dose at positions close to the beam axis by 70% and the FLC is very useful not only for the collimation of the primary beam but also the reduction in the secondary neutrons. Also, an additional shield for the patient is very effective to reduce the neutron dose at positions farther than 50 cm from the beam axis. Finally, they showed

  3. Modular Code and Data System for Fast Reactor Neutronics Analyses

    SciTech Connect

    RIMPAULT, G.

    2008-06-30

    Version 00. The European Reactor ANalysis Optimized calculation System, ERANOS, has been developed and validated with the aim of providing a suitable basis for reliable neutronic calculations of current as well as advanced fast reactor cores. It consists of data libraries, deterministic codes and calculation procedures which have been developed within the European Collaboration on Fast Reactors over the past 20 years or so, in order to answer the needs of both industrial and R&D organisations. The whole system counts roughly 250 functions and 3000 subroutines totalling 450000 lines of FORTRAN-77 and ESOPE instructions. ERANOS is written using the ALOS software which requires only standard FORTRAN compilers and includes advanced programming features. A modular structure was adopted for easier evolution and incorporation of new functionalities. Blocks of data (SETs) can be created or used by the modules themselves or by the user via the LU control language. Programming, and dynamic memory allocation, are performed by means of the ESOPE language. External temporary storage and permanent storage capabilities are provided by the GEMAT and ARCHIVE functions, respectively. ESOPE, LU, GEMAT and ARCHIVE are all part of the ALOS software. This modular structure allows different modules to be linked together in procedures corresponding to recommended calculation routes ranging from fast-running and moderately-accurate 'routine' procedures to slow-running but highly-accurate 'reference' procedures. The main contents of the ERANOS-2.0 package are: nuclear data libraries (multigroup cross-sections from the JEF-2.2 evaluated nuclear data file, and other specific data files), a cell and lattice code (ECCO), reactor flux solvers (diffusion, Sn transport, nodal variational transport), a burn-up module, various processing modules (material and neutron balance, breeding gains,...), tools related to perturbation theory and sensitivity analysis, core follow-up modules (connected in the

  4. Modular Code and Data System for Fast Reactor Neutronics Analyses

    Energy Science and Technology Software Center (ESTSC)

    2008-06-30

    Version 00. The European Reactor ANalysis Optimized calculation System, ERANOS, has been developed and validated with the aim of providing a suitable basis for reliable neutronic calculations of current as well as advanced fast reactor cores. It consists of data libraries, deterministic codes and calculation procedures which have been developed within the European Collaboration on Fast Reactors over the past 20 years or so, in order to answer the needs of both industrial and R&Dmore » organisations. The whole system counts roughly 250 functions and 3000 subroutines totalling 450000 lines of FORTRAN-77 and ESOPE instructions. ERANOS is written using the ALOS software which requires only standard FORTRAN compilers and includes advanced programming features. A modular structure was adopted for easier evolution and incorporation of new functionalities. Blocks of data (SETs) can be created or used by the modules themselves or by the user via the LU control language. Programming, and dynamic memory allocation, are performed by means of the ESOPE language. External temporary storage and permanent storage capabilities are provided by the GEMAT and ARCHIVE functions, respectively. ESOPE, LU, GEMAT and ARCHIVE are all part of the ALOS software. This modular structure allows different modules to be linked together in procedures corresponding to recommended calculation routes ranging from fast-running and moderately-accurate 'routine' procedures to slow-running but highly-accurate 'reference' procedures. The main contents of the ERANOS-2.0 package are: nuclear data libraries (multigroup cross-sections from the JEF-2.2 evaluated nuclear data file, and other specific data files), a cell and lattice code (ECCO), reactor flux solvers (diffusion, Sn transport, nodal variational transport), a burn-up module, various processing modules (material and neutron balance, breeding gains,...), tools related to perturbation theory and sensitivity analysis, core follow-up modules (connected

  5. Fast neutron measurements with 7Li and 6Li enriched CLYC scintillators

    NASA Astrophysics Data System (ADS)

    Giaz, A.; Blasi, N.; Boiano, C.; Brambilla, S.; Camera, F.; Cattadori, C.; Ceruti, S.; Gramegna, F.; Marchi, T.; Mattei, I.; Mentana, A.; Million, B.; Pellegri, L.; Rebai, M.; Riboldi, S.; Salamida, F.; Tardocchi, M.

    2016-07-01

    The recently developed Cs2LiYCl6:Ce (CLYC) crystals are interesting scintillation detectors not only for their gamma energy resolution (<5% at 662 keV) but also for their capability to identify and measure the energy of both gamma rays and fast/thermal neutrons. The thermal neutrons were detected by the 6Li(n,α)t reaction while for the fast neutrons the 35Cl(n,p)35S and 35Cl(n,α)32P neutron-capture reactions were exploited. The energy of the outgoing proton or α particle scales linearly with the incident neutron energy. The kinetic energy of the fast neutrons can be measured using both the Time Of Flight (TOF) technique and using the CLYC energy signal. In this work, the response to monochromatic fast neutrons (1.9-3.8 MeV) of two CLYC 1″×1″ crystals was measured using both the TOF and the energy signal. The observables were combined to identify fast neutrons, to subtract the thermal neutron background and to identify different fast neutron-capture reactions on 35Cl, in other words to understand if the detected particle is an α or a proton. We performed a dedicated measurement at the CN accelerator facility of the INFN Legnaro National Laboratories (Italy), where the fast neutrons were produced by impinging a proton beam (4.5, 5.0 and 5.5 MeV) on a 7LiF target. We tested a CLYC detector 6Li-enriched at about 95%, which is ideal for thermal neutron measurements, in parallel with another CLYC detector 7Li-enriched at more than 99%, which is suitable for fast neutron measurements.

  6. Computational Neutronics Methods and Transmutation Performance Analyses for Fast Reactors

    SciTech Connect

    R. Ferrer; M. Asgari; S. Bays; B. Forget

    2007-03-01

    The once-through fuel cycle strategy in the United States for the past six decades has resulted in an accumulation of Light Water Reactor (LWR) Spent Nuclear Fuel (SNF). This SNF contains considerable amounts of transuranic (TRU) elements that limit the volumetric capacity of the current planned repository strategy. A possible way of maximizing the volumetric utilization of the repository is to separate the TRU from the LWR SNF through a process such as UREX+1a, and convert it into fuel for a fast-spectrum Advanced Burner Reactor (ABR). The key advantage in this scenario is the assumption that recycling of TRU in the ABR (through pyroprocessing or some other approach), along with a low capture-to-fission probability in the fast reactor’s high-energy neutron spectrum, can effectively decrease the decay heat and toxicity of the waste being sent to the repository. The decay heat and toxicity reduction can thus minimize the need for multiple repositories. This report summarizes the work performed by the fuel cycle analysis group at the Idaho National Laboratory (INL) to establish the specific technical capability for performing fast reactor fuel cycle analysis and its application to a high-priority ABR concept. The high-priority ABR conceptual design selected is a metallic-fueled, 1000 MWth SuperPRISM (S-PRISM)-based ABR with a conversion ratio of 0.5. Results from the analysis showed excellent agreement with reference values. The independent model was subsequently used to study the effects of excluding curium from the transuranic (TRU) external feed coming from the LWR SNF and recycling the curium produced by the fast reactor itself through pyroprocessing. Current studies to be published this year focus on analyzing the effects of different separation strategies as well as heterogeneous TRU target systems.

  7. Genome resilience and prevalence of segmental duplications following fast neutron irradiation of soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fast neutron radiation has been used as a mutagen to develop extensive mutant collections. However, the genome-wide structural consequences of fast neutron radiation are not well understood. Here, we examine the genome-wide structural variants observed among 264 soybean (Glycine max (L.) Merrill) pl...

  8. How resilient is the soybean genome? Insights from fast neutron mutagenesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previously, we described the development of a fast neutron mutant population resource in soybean and identified mutations of interest through phenotypic screening. Here, we consider the resiliency of the soybean genome by examining genomic rearrangements and mutations that arise from fast neutron ra...

  9. Preliminary On-Orbit Neutron Dose Equivalent and Energy Spectrum Results from the ISS-RAD Fast Neutron Detector (FND)

    NASA Technical Reports Server (NTRS)

    Semones, Edward; Leitgab, Martin

    2016-01-01

    The ISS-RAD instrument was activated on ISS on February 1st, 2016. Integrated in ISS-RAD, the Fast Neutron Detector (FND) performs, for the first time on ISS, routine and precise direct neutron measurements between 0.5 and 8 MeV. Preliminary results for neutron dose equivalent and neutron flux energy distributions from online/on-board algorithms and offline ground analyses will be shown, along with comparisons to simulated data and previously measured neutron spectral data. On-orbit data quality and pre-launch analysis validation results will be discussed as well.

  10. Gravitational wave asteroseismology with fast rotating neutron stars

    SciTech Connect

    Gaertig, Erich; Kokkotas, Kostas D.

    2011-03-15

    We investigate damping and growth times of the quadrupolar f mode for rapidly rotating stars and a variety of different polytropic equations of state in the Cowling approximation. This is the first study of the damping/growth time of these types of oscillations for fast-rotating neutron stars in a relativistic treatment where the spacetime degrees of freedom of the perturbations are neglected. We use these frequencies and damping/growth times to create robust empirical formulae which can be used for gravitational-wave asteroseismology. The estimation of the damping/growth time is based on the quadrupole formula and our results agree very well with Newtonian ones in the appropriate limit.

  11. Fast Radio Bursts from the Inspiral of Double Neutron Stars

    NASA Astrophysics Data System (ADS)

    Wang, Jie-Shuang; Yang, Yuan-Pei; Wu, Xue-Feng; Dai, Zi-Gao; Wang, Fa-Yin

    2016-05-01

    In this Letter, we propose that a fast radio burst (FRB) could originate from the magnetic interaction between double neutron stars (NSs) during their final inspiral within the framework of a unipolar inductor model. In this model, an electromotive force is induced on one NS to accelerate electrons to an ultra-relativistic speed instantaneously. We show that coherent curvature radiation from these electrons moving along magnetic field lines in the magnetosphere of the other NS is responsible for the observed FRB signal, that is, the characteristic emission frequency, luminosity, duration, and event rate of FRBs can be well understood. In addition, we discuss several implications of this model, including double-peaked FRBs and possible associations of FRBs with short-duration gamma-ray bursts and gravitational-wave events.

  12. Reference Dosimetry for Fast Neutron and Proton Therapy

    SciTech Connect

    Jones, D.T.L.

    2005-05-24

    Fast neutrons and protons undergo fundamentally different interactions in tissue. The former interact with nuclei, while the latter, as in the case of photons, interact mainly with atomic electrons. Protons do, however, also undergo some nuclear interactions, the probability of which increases with energy. For both modalities the practical instruments for determining the reference absorbed dose in a patient are ionization chambers. These provide indirect determination of absorbed dose because calibration factors measured in standard radiation fields, as well as conversion factors that require knowledge of various physical data, have to be applied. All dosimetry protocols recommend that reference absorbed dose measurements in the clinical situation be made with ionization chambers having 60Co calibration factors traceable to standards laboratories. Neutron doses determined with the current internationally accepted protocol (ICRU Report 45 [1989]) have a relative uncertainty of {+-}4.3% (1{sigma}), while proton doses determined with the two protocols (ICRU Report 59 [1998] and IAEA Report TRS 398 [2000]) presently in use have relative uncertainties (1{sigma}) of {+-}2.6 % and {+-}2.0%, respectively.

  13. Reconstruction of Material Elemental Composition Using Fast Neutron Resonance Radiography

    NASA Astrophysics Data System (ADS)

    Mor, Ilan; Dangendorf, Volker; Reginatto, Marcel; Kaufmann, Frank; Vartsky, David; Brandis, Michal; Bar, Doron; Goldberg, Mark B.

    Fast neutron resonance radiography (FNRR) is an imaging method that exploits characteristic cross-section structures (peaks and troughs) of certainelements in the energy-range of 1-10 MeV to identify materials in a large volume object. In FNRR, the neutron energy spectrum transmitted through an object carries information about the elemental composition of thatobject. The principal elements present in most explosives are: carbon, oxygen, nitrogen andhydrogen. Explosives are characterized by high fractions of nitrogen and oxygen as well as low fractions of carbon and hydrogencompared to benign materials. Detection of explosives in cargo employing FNRRis based on determination of the local areal densities of these four elements and their ratios. In our measurements, the transmission spectrum is usually divided in 100 - 500 energy bins, representing 100 - 500 linear equations containing four unknown areal densities of HCNO. This is an overdetermined problem, which allows us to derive not only the fourexpectation values of their areal densitiesbut theirprobability distribution as well. For this purpose, a model was formulated and implemented within a software package which performs Bayesian analysis of complex statistical models using Markov chain Monte-Carlo (MCMC). This model was tested successfully both on simulated and experimental data. This work will describe the model and the outcome of elemental ratios reconstruction for several materials from experimental data.

  14. Fast neutron (14.5 MeV) radiography: a comparative study

    SciTech Connect

    Klann, R.T.

    1996-07-01

    Fast neutron (14.5 MeV) radiography is a type of non-destructive analysis tool that offers its own benefits and drawbacks. Because cross-sections vary with energy, a different range of materials can be examined with fast neutrons than can be studied with thermal neutrons, epithermal neutrons, or x-rays. This paper details these differences through a comparative study of fast neutron radiography to the other types of radiography available. The most obvious difference among the different types of radiography is in the penetrability of the sources. Fast neutrons can probe much deeper and can therefore obtain details of the internals of thick objects. Good images have been obtained through as much as 15 cm of steel, 10 cm of water, and 15 cm of borated polyethylene. In addition, some objects were identifiable through as much as 25 cm of water or 30 cm of borated polyethylene. The most notable benefit of fast neutron radiography is in the types of materials that can be tested. Fast neutron radiography can view through materials that simply cannot be viewed by X rays, thermal neutrons, or epithermal neutrons due to the high cross-sections or linear attenuation coefficients involved. Cadmium was totally transparent to the fast neutron source. Fast neutron radiography is not without drawbacks. The most pronounced drawback has been in the quality of radiograph produced. The image resolution is only about 0.8 mm for a 1.25 cm thick object, whereas, other forms of radiography have much better resolution.

  15. Neutron dosimetry in linear electron accelerator during radiotherapy treatment: simulation and experiment

    NASA Astrophysics Data System (ADS)

    Manfredotti, Claudio; Nastasi, U.; Ongaro, C.; Stasi, E.; Zanini, Alessandro

    1995-03-01

    In the electron linear accelerators used for radiotherapy by high energy electrons or gamma rays, there is a non negligible production of neutrons by photodisintegration or electrodisintegration reactions on the high Z components of the head machine (target, flattening filter, collimators). At the Experimental Physics Department of Torino University, Torino, Italy an experimental and theoretical evaluation has been performed on the undesired neutron production in the MD Class Mevatron Siemens accelerator used at the Radiotherapy Department of S. Giovanni Battista A.S. Hospital for cancer therapy by a 15 MV gamma ray beam. A simulation of the total process has been carried out, using EGS4 MonteCarlo computer code for the evaluation of photoneutron spectra and MCNP code for the neutron transport in the patient's body. The geometrical description both of the accelerator head in EGS4 and of the anthropomorphous phantom in MCNP have been highly optimized. Experimental measurements have been carried out by bubble detectors BD 100R appropriately allocated inside a new phantom in polyetylene and plexiglass, especially designed for this purpose.

  16. The relationship between contrast, resolution and detectability in accelerator-based fast neutron radiography

    SciTech Connect

    Ambrosi, R. M.; Watterson, J. I. W.

    1999-06-10

    Fast neutron radiography as a method for non destructive testing is a fast growing field of research. At the Schonland Research Center for Nuclear Sciences we have been engaged in the formulation of a model for the physics of image formation in fast neutron radiography (FNR). This involves examining all the various factors that affect image formation in FNR by experimental and Monte Carlo methods. One of the major problems in the development of a model for fast neutron radiography is the determination of the factors that affect image contrast and resolution. Monte Carlo methods offer an ideal tool for the determination of the origin of many of these factors. In previous work the focus of these methods has been the determination of the scattered neutron field in both a scintillator and a fast neutron radiography facility. As an extension of this work MCNP has been used to evaluate the role neutron scattering in a specimen plays in image detectability. Image processing of fast neutron radiographs is a necessary method of enhancing the detectability of features in an image. MCNP has been used to determine the part it can play in indirectly improving image resolution and aiding in image processing. The role noise plays in fast neutron radiography and its impact on image reconstruction has been evaluated. All these factors aid in the development of a model describing the relationship between contrast, resolution and detectability.

  17. Plutonium Measurements with a Fast-Neutron Multiplicity Counter for Nuclear Safeguards Applications

    SciTech Connect

    Jennifer L. Dolan; Marek Flaska; Alexis Poitrasson-Riviere; Andreas Enqvist; Paolo Peerani; David L. Chichester; Sara A. Pozzi

    2014-11-01

    Measurements were performed at the Joint Research Centre in Ispra, Italy to field test a fast-neutron multiplicity counter developed at the University of Michigan. The measurements allowed the illustration of the system’s photon discrimination abilities, efficiency when measuring neutron multiplicity, ability to characterize 240Pueff mass, and performance relative to a currently deployed neutron coincidence counter. This work is motivated by the need to replace and improve upon 3He neutron detection systems for nuclear safeguards applications.

  18. Plutonium measurements with a fast-neutron multiplicity counter for nuclear safeguards applications

    NASA Astrophysics Data System (ADS)

    Dolan, Jennifer L.; Flaska, Marek; Poitrasson-Riviere, Alexis; Enqvist, Andreas; Peerani, Paolo; Chichester, David L.; Pozzi, Sara A.

    2014-11-01

    Measurements were performed at the Joint Research Centre in Ispra, Italy to field test a fast-neutron multiplicity counter developed at the University of Michigan. The measurements allowed the assessment of the system's photon discrimination abilities, efficiency when measuring neutron multiplicity, ability to characterize 240Pueff mass, and performance relative to a currently deployed neutron coincidence counter. This work is motivated by the need to replace and improve upon 3He neutron detection systems for nuclear safeguards applications.

  19. The CLYC-6 and CLYC-7 response to γ-rays, fast and thermal neutrons

    NASA Astrophysics Data System (ADS)

    Giaz, A.; Pellegri, L.; Camera, F.; Blasi, N.; Brambilla, S.; Ceruti, S.; Million, B.; Riboldi, S.; Cazzaniga, C.; Gorini, G.; Nocente, M.; Pietropaolo, A.; Pillon, M.; Rebai, M.; Tardocchi, M.

    2016-02-01

    The crystal Cs2LiYCl6:Ce (CLYC) is a very interesting scintillator material because of its good energy resolution and its capability to identify γ-rays and fast/thermal neutrons. The crystal Cs2LiYCl6:Ce contains 6Li and 35Cl isotopes, therefore, it is possible to detect thermal neutrons through the reaction 6Li(n, α)t while 35Cl ions allow to measure fast neutrons through the reactions 35Cl(n, p)35S and 35Cl(n, α)32P. In this work two CLYC 1″×1″ crystals were used: the first crystal, enriched with 6Li at 95% (CLYC-6) is ideal for thermal neutron measurements while the second one, enriched with 7Li at >99% (CLYC-7) is suitable for fast neutron measurements. The response of CLYC scintillators was measured with different PMT models: timing or spectroscopic, with borosilicate glass or quartz window. The energy resolution, the neutron-γ discrimination and the internal activity are discussed. The capability of CLYC scintillators to discriminate γ rays from neutrons was tested with both thermal and fast neutrons. The thermal neutrons were measured with both detectors, using an AmBe source. The measurements of fast neutrons were performed at the Frascati Neutron Generator facility (Italy) where a deuterium beam was accelerated on a deuterium or on a tritium target, providing neutrons of 2.5 MeV or 14.1 MeV, respectively. The different sensitivity to thermal and fast neutrons of a CLYC-6 and of a CLYC-7 was additionally studied.

  20. Neutron scattered dose equivalent to a fetus from proton radiotherapy of the mother.

    PubMed

    Mesoloras, Geraldine; Sandison, George A; Stewart, Robert D; Farr, Jonathan B; Hsi, Wen C

    2006-07-01

    Scattered neutron dose equivalent to a representative point for a fetus is evaluated in an anthropomorphic phantom of the mother undergoing proton radiotherapy. The effect on scattered neutron dose equivalent to the fetus of changing the incident proton beam energy, aperture size, beam location, and air gap between the beam delivery snout and skin was studied for both a small field snout and a large field snout. Measurements of the fetus scattered neutron dose equivalent were made by placing a neutron bubble detector 10 cm below the umbilicus of an anthropomorphic Rando phantom enhanced by a wax bolus to simulate a second trimester pregnancy. The neutron dose equivalent in milliSieverts (mSv) per proton treatment Gray increased with incident proton energy and decreased with aperture size, distance of the fetus representative point from the field edge, and increasing air gap. Neutron dose equivalent to the fetus varied from 0.025 to 0.450 mSv per proton Gray for the small field snout and from 0.097 to 0.871 mSv per proton Gray for the large field snout. There is likely to be no excess risk to the fetus of severe mental retardation for a typical proton treatment of 80 Gray to the mother since the scattered neutron dose to the fetus of 69.7 mSv is well below the lower confidence limit for the threshold of 300 mGy observed for the occurrence of severe mental retardation in prenatally exposed Japanese atomic bomb survivors. However, based on the linear no threshold hypothesis, and this same typical treatment for the mother, the excess risk to the fetus of radiation induced cancer death in the first 10 years of life is 17.4 per 10,000 children. PMID:16898451

  1. Neutron scattered dose equivalent to a fetus from proton radiotherapy of the mother

    SciTech Connect

    Mesoloras, Geraldine; Sandison, George A.; Stewart, Robert D.; Farr, Jonathan B.; Hsi, Wen C.

    2006-07-15

    Scattered neutron dose equivalent to a representative point for a fetus is evaluated in an anthropomorphic phantom of the mother undergoing proton radiotherapy. The effect on scattered neutron dose equivalent to the fetus of changing the incident proton beam energy, aperture size, beam location, and air gap between the beam delivery snout and skin was studied for both a small field snout and a large field snout. Measurements of the fetus scattered neutron dose equivalent were made by placing a neutron bubble detector 10 cm below the umbilicus of an anthropomorphic Rando[reg] phantom enhanced by a wax bolus to simulate a second trimester pregnancy. The neutron dose equivalent in milliSieverts (mSv) per proton treatment Gray increased with incident proton energy and decreased with aperture size, distance of the fetus representative point from the field edge, and increasing air gap. Neutron dose equivalent to the fetus varied from 0.025 to 0.450 mSv per proton Gray for the small field snout and from 0.097 to 0.871 mSv per proton Gray for the large field snout. There is likely to be no excess risk to the fetus of severe mental retardation for a typical proton treatment of 80 Gray to the mother since the scattered neutron dose to the fetus of 69.7 mSv is well below the lower confidence limit for the threshold of 300 mGy observed for the occurrence of severe mental retardation in prenatally exposed Japanese atomic bomb survivors. However, based on the linear no threshold hypothesis, and this same typical treatment for the mother, the excess risk to the fetus of radiation induced cancer death in the first 10 years of life is 17.4 per 10 000 children.

  2. Analysis of a measured neutron background below 6 MeV for fast-neutron imaging systems

    NASA Astrophysics Data System (ADS)

    Ide, K.; Becchetti, M. F.; Flaska, M.; Poitrasson-Riviere, A.; Hamel, M. C.; Polack, J. K.; Lawrence, C. C.; Clarke, S. D.; Pozzi, S. A.

    2012-12-01

    Detailed and accurate information on the neutron background is relevant for many applications that involve radiation detection, both for non-coincidence and coincidence countings. In particular, for the purpose of developing advanced neutron-detection techniques for nuclear non-proliferation and nuclear safeguards, the energy-dependent, ground-level, neutron-background information is needed. There are only a few previous studies available about the neutron background below 10 MeV, which is a typical neutron energy range of interest for nuclear non-proliferation and nuclear-safeguards applications. Thus, there is a potential for further investigation in this energy range. In this paper, neutron-background measurement results using organic-liquid scintillation detectors are described and discussed, with a direct application in optimization simulations of a fast-neutron imager based on liquid scintillators. The measurement was performed in summer 2011 in Ann Arbor, Michigan, USA, and the measurement setup consisted of several EJ-309 liquid scintillators and a fast waveform digitizer. The average neutron flux below 6 MeV was measured to be approximately 4e-4 counts/cm2/s. In addition, the relationship between the neutron-background count rate and various environmental quantities, such as humidity, at Earth's ground level was investigated and the results did not reveal any straightforward dependences. The measured pulse height distribution (PHD) was unfolded to determine the energy spectrum of the background neutrons. The unfolded neutron-background spectrum was implemented to a previously-created MCNPX-PoliMi model of the neutron-scatter camera and simple-backprojection images of the background neutrons were acquired. Furthermore, a simulated PHD was obtained with the MCNPX-PoliMi code using the "Cosmic-Ray Shower Library" (CRY) source sub-routine which returns various types of radiation, including neutrons and photons at a surface, and accounts for solar cycle

  3. Monte Carlo calculations of epithermal and fast neutron dose in a human head model for Boron Neutron Capture Therapy

    NASA Astrophysics Data System (ADS)

    Tyminska, Katarzyna

    2008-01-01

    Boron Neutron Capture Therapy is a very promising form of cancer therapy, consisting in irradiating a stable isotope of boron (10B) concentrated in tumor cells with a low energy neutron beam. This technique makes it possible to destroy tumor cells, leaving healthy tissues practically unaffected. In order to carry out the therapy in the proper way, the proper range of the neutron beam energy has to be chosen. In this paper we continue the earlier started calculations of the optimum energy range for BNCT, taking into account the absorbed dose from fast neutrons.

  4. Neutron source investigations in support of the cross section program at the Argonne Fast-Neutron Generator

    SciTech Connect

    Meadows, J.W.; Smith, D.L.

    1980-05-01

    Experimental methods related to the production of neutrons for cross section studies at the Argonne Fast-Neutron Generator are reviewed. Target assemblies commonly employed in these measurements are described, and some of the relevant physical properties of the neutron source reactions are discussed. Various measurements have been performed to ascertain knowledge about these source reaction that is required for cross section data analysis purposes. Some results from these studies are presented, and a few specific examples of neutron-source-related corrections to cross section data are provided. 16 figures, 3 tables.

  5. Peregrine monte carlo dose calculations for radiotherapy using clinically realistic neutron and proton beams

    SciTech Connect

    Cox, L. J., LLNL

    1997-06-16

    Lawrence Livermore National Laboratory (LLNL) has developed an all-particle Monte Carlo radiotherapy dose calculation code--PEREGRINE--for use in clinical radiation oncology. For PEREGRINE, we have assembled high-energy evaluated nuclear databases; created radiation source characterization and sampling algorithms; and simulated and characterized clinical beams for treatment with photons, neutrons and protons. Spectra are available for the Harper Hospital (Detroit, U.S.A.) Be(d,n) neutron therapy beam, the National Accelerator Centre (NAC, Faure, S.A.) Be(p,n) neutron therapy beam and many of the operating modes of the Loma Linda University Medical Center (LLUMC, Loma Linda, USA) proton treatment center. These beam descriptions are being used in PEREGRINE for Monte Carlo dose calculations on clinical configurations for comparisons to measurements. The methods of defining and sampling the beam phase space characterizations are discussed. We show calculations using these clinical beams compared to measurements in homogeneous water phantoms. The state of PEREGRINE's high energy neutron and proton transport database, PCSL, is reviewed and the remaining issues involving nuclear data needs for PEREGRINE are addressed.

  6. Gamma-ray and neutron radiography for a pulsed fast- neutron analysis cargo inspection system

    NASA Astrophysics Data System (ADS)

    Rynes, Joel Christian

    1999-11-01

    This dissertation presents the design, optimization, and characterization of a gamma-ray and neutron radiographic subsystem that was developed for the Pulsed Fast Neutron Analysis (PFNA) cargo inspection system. The PFNA inspection system uses nanosecond pulsed neutrons to produce three-dimensional elemental density images of cargo. Contraband in the cargo can be detected by its elemental content. The PFNA neutron source produces gamma rays as well as neutrons. The radiographic subsystem measures these radiations in an array of plastic scintillators to produce gamma-ray and neutron transmission images of the cargo simultaneously with the PFNA measurement. Although the radiographic subsystem improves PFNA performance in many forms of contraband detection, it was specifically designed to detect Special Nuclear Material (SNM) in cargo containers and trucks. A feasibility study, including experiments and modeling, was performed to determine the usefulness of gamma-ray radiography in this application. The study assumed a baseline configuration of the PFNA source, a relatively small rectangular radiation beam, and a plastic detector with a 5.1 cm diameter and a 7.6 cm length. The study showed that the baseline configuration was useful in cargoes up to 144 g/cm2 thick. At this thickness, a signal-to-noise ratio of three was obtainable per pixel. The maximum cargo thickness was later increased to 180 g/cm2 by increasing the detector length to 17.0 cm and by changing the source beam stop from gold to copper. An experiment was then performed that determined a 3.5 cm radiographic resolution was adequate for SNM detection. The detector configuration and the source motion were optimized to obtain a resolution of approximately 3.5 cm using the minimal number of detectors and the maximum detector diameter. The source is moved up and down as the cargo is pulled through the system to irradiate the entire surface of the cargo with the radiation beam. The final design consisted of

  7. Low-Dose-Rate Californium-252 Neutron Intracavitary Afterloading Radiotherapy Combined With Conformal Radiotherapy for Treatment of Cervical Cancer

    SciTech Connect

    Zhang Min; Xu Hongde; Pan Songdan; Lin Shan; Yue Jianhua; Liu Jianren

    2012-07-01

    Purpose: To study the efficacy of low-dose-rate californium-252 ({sup 252}Cf) neutron intracavitary afterloading radiotherapy (RT) combined with external pelvic RT for treatment of cervical cancer. Methods and Materials: The records of 96 patients treated for cervical cancer from 2006 to 2010 were retrospectively reviewed. For patients with tumors {<=}4 cm in diameter, external beam radiation was performed (1.8 Gy/day, five times/week) until the dose reached 20 Gy, and then {sup 252}Cf neutron intracavitary afterloading RT (once/week) was begun, and the frequency of external beam radiation was changed to four times/week. For patients with tumors >4 cm, {sup 252}Cf RT was performed one to two times before whole-pelvis external beam radiation. The tumor-eliminating dose was determined by using the depth limit of 5 mm below the mucosa as the reference point. In all patients, the total dose of the external beam radiation ranged from 46.8 to 50 Gy. For {sup 252}Cf RT, the dose delivered to point A was 6 Gy/fraction, once per week, for a total of seven times, and the total dose was 42 Gy. Results: The mean {+-} SD patient age was 54.7 {+-} 13.7 years. Six patients had disease assessed at stage IB, 13 patients had stage IIA, 49 patients had stage IIB, 3 patients had stage IIIA, 24 patients had stage IIIB, and 1 patient had stage IVA. All patients obtained complete tumor regression (CR). The mean {+-} SD time to CR was 23.5 {+-} 3.4 days. Vaginal bleeding was fully controlled in 80 patients within 1 to 8 days. The mean {+-} SD follow-up period was 27.6 {+-} 12.7 months (range, 6-48 months). Five patients died due to recurrence or metastasis. The 3-year survival and disease-free recurrence rates were 89.6% and 87.5 %, respectively. Nine patients experienced mild radiation proctitis, and 4 patients developed radiocystitis. Conclusions: Low-dose-rate {sup 252}Cf neutron RT combined with external pelvic RT is effective for treating cervical cancer, with a low incidence of

  8. High-Resolution Fast-Neutron Spectrometry for Arms Control and Treaty Verification

    SciTech Connect

    David L. Chichester; James T. Johnson; Edward H. Seabury

    2012-07-01

    Many nondestructive nuclear analysis techniques have been developed to support the measurement needs of arms control and treaty verification, including gross photon and neutron counting, low- and high-resolution gamma spectrometry, time-correlated neutron measurements, and photon and neutron imaging. One notable measurement technique that has not been extensively studied to date for these applications is high-resolution fast-neutron spectrometry (HRFNS). Applied for arms control and treaty verification, HRFNS has the potential to serve as a complimentary measurement approach to these other techniques by providing a means to either qualitatively or quantitatively determine the composition and thickness of non-nuclear materials surrounding neutron-emitting materials. The technique uses the normally-occurring neutrons present in arms control and treaty verification objects of interest as an internal source of neutrons for performing active-interrogation transmission measurements. Most low-Z nuclei of interest for arms control and treaty verification, including 9Be, 12C, 14N, and 16O, possess fast-neutron resonance features in their absorption cross sections in the 0.5- to 5-MeV energy range. Measuring the selective removal of source neutrons over this energy range, assuming for example a fission-spectrum starting distribution, may be used to estimate the stoichiometric composition of intervening materials between the neutron source and detector. At a simpler level, determination of the emitted fast-neutron spectrum may be used for fingerprinting 'known' assemblies for later use in template-matching tests. As with photon spectrometry, automated analysis of fast-neutron spectra may be performed to support decision making and reporting systems protected behind information barriers. This paper will report recent work at Idaho National Laboratory to explore the feasibility of using HRFNS for arms control and treaty verification applications, including simulations and

  9. Boron neutron capture enhancement (BNCE) of fast neutron irradiation for glioblastoma: increase of thermal neutron flux with heavy material collimation, a theoretical evaluation.

    PubMed

    Paquis, P; Pignol, J P; Lonjon, M; Brassart, N; Courdi, A; Chauvel, P; Grellier, P; Chatel, M

    1999-01-01

    Despite the fact that fast neutron irradiation of glioblastoma has shown on autopsies an ability to sterilize tumors, no therapeutic windows have been found for these particles due to their toxicity toward normal brain. Therefore, the Boron Neutron Capture Enhancement (BNCE) of fast neutron beam has been suggested. This paper addresses the problem of fast neutron beam collimation, which induces a dramatic decrease of the thermal neutron flux in the depth of the tissues when smaller irradiation fields are used. Thermoluminescent dosimeter TLD-600 and TLD-700 were used to determine the thermal neutron flux within a Plexiglas phantom irradiated under the Nice Biomedical Cyclotron p(60)+Be(32) fast neutron beam. A BNCE of 4.6% in physical dose was determined for a 10 x 10 cm2 field, and of 10.4% for a 20 x 20 cm2 one. A Dose Modification Factor of 1.19 was calculated for CAL 58 glioblastoma cells irradiated thanks to the larger field. In order to increase the thermal flux in depth while shaping the beam, heavy material collimation was studied with Monte Carlo simulations using coupled FLUKA and MCNP-4A codes. The use of 20 cm width lead blocks allowed a 2 fold thermal neutron flux increase in the depth of the phantom, while shielding the fast neutron beam with a fast neutron dose transmission of 23%. Using the DMF of 1.19, a BNCE of 40% was calculated in the beam axis. This enhancement might be sufficient to open, at least theoretically, a therapeutic window. PMID:10222419

  10. Coded aperture Fast Neutron Analysis: Latest design advances

    NASA Astrophysics Data System (ADS)

    Accorsi, Roberto; Lanza, Richard C.

    2001-07-01

    Past studies have showed that materials of concern like explosives or narcotics can be identified in bulk from their atomic composition. Fast Neutron Analysis (FNA) is a nuclear method capable of providing this information even when considerable penetration is needed. Unfortunately, the cross sections of the nuclear phenomena and the solid angles involved are typically small, so that it is difficult to obtain high signal-to-noise ratios in short inspection times. CAFNAaims at combining the compound specificity of FNA with the potentially high SNR of Coded Apertures, an imaging method successfully used in far-field 2D applications. The transition to a near-field, 3D and high-energy problem prevents a straightforward application of Coded Apertures and demands a thorough optimization of the system. In this paper, the considerations involved in the design of a practical CAFNA system for contraband inspection, its conclusions, and an estimate of the performance of such a system are presented as the evolution of the ideas presented in previous expositions of the CAFNA concept.

  11. Delayed neutron signal characterization in a fast reactor

    SciTech Connect

    Gross, K.C.; Strain, R.V.

    1980-01-01

    Experimental and analytical techniques have been developed for delayed neutron (DN) signal analysis and characterization that can provide diagnostic information to augment data from cover-gas analyses in the detection and identification of breached elements in an LMFBR. Eleven flow reduction tests have been run in EBR-II to provide base data support for predicting DN signal characteristics during exposed fuel operation. Results from the tests demonstrate the feasibility and practicability of response-analysis techniques for determining the transit time, T/sub tr/, for DN emitters traveling from the core to the detector, and the isotopic holdup time, T/sub h/, of DN precursors in the fuel element. T/sub tr/ has been found to vary with the relative grid location of the DN source, and T/sub h/ is affected by the form of fuel exposed to the coolant as well as the condition of the breach site. These parameters are incorporated into a mathematical formulism that enables one to compute for any exposed-fuel test an equivalent recoil area. This concept provides a basis for comparison of different run-beyond-cladding-breach tests in fast reactors.

  12. Fast Neutron Radioactivity and Damage Studies on Materials

    SciTech Connect

    Anderson, S.; Spencer, J.; Wolf, Z.; Gallagher, G.; Pellett, D.; Boussoufi, M.; Volk, J.; /Fermilab

    2007-07-23

    Many materials and electronics need to be tested for the radiation environment expected at linear colliders (LC) to improve reliability and longevity since both accelerator and detectors will be subjected to large fluences of hadrons, leptons and gammas. Examples include NdFeB magnets, considered for the damping rings, injection and extraction lines and final focus, electronic and electro-optic devices to be utilized in detector readout, accelerator controls and the CCDs required for the vertex detector, as well as high and low temperature superconducting materials (LTSMs) because some magnets will be superconducting. Our first measurements of fast neutron, stepped doses at the UC Davis McClellan Nuclear Reactor Center (UCD MNRC) were presented for NdFeB materials at EPAC04 where the damage appeared proportional to the distances between the effective operating point and Hc. We have extended those doses, included other manufacturer's samples and measured induced radioactivities. We have also added L and HTSMs as well as a variety of relevant semiconductor and electro-optic materials including PBG fiber that we studied previously only with gamma rays.

  13. CAFNA{reg{underscore}sign}, coded aperture fast neutron analysis for contraband detection: Preliminary results

    SciTech Connect

    Zhang, L.; Lanza, R.C.

    1999-12-01

    The authors have developed a near field coded aperture imaging system for use with fast neutron techniques as a tool for the detection of contraband and hidden explosives through nuclear elemental analysis. The technique relies on the prompt gamma rays produced by fast neutron interactions with the object being examined. The position of the nuclear elements is determined by the location of the gamma emitters. For existing fast neutron techniques, in Pulsed Fast Neutron Analysis (PFNA), neutrons are used with very low efficiency; in Fast Neutron Analysis (FNS), the sensitivity for detection of the signature gamma rays is very low. For the Coded Aperture Fast Neutron Analysis (CAFNA{reg{underscore}sign}) the authors have developed, the efficiency for both using the probing fast neutrons and detecting the prompt gamma rays is high. For a probed volume of n{sup 3} volume elements (voxels) in a cube of n resolution elements on a side, they can compare the sensitivity with other neutron probing techniques. As compared to PFNA, the improvement for neutron utilization is n{sup 2}, where the total number of voxels in the object being examined is n{sup 3}. Compared to FNA, the improvement for gamma-ray imaging is proportional to the total open area of the coded aperture plane; a typical value is n{sup 2}/2, where n{sup 2} is the number of total detector resolution elements or the number of pixels in an object layer. It should be noted that the actual signal to noise ratio of a system depends also on the nature and distribution of background events and this comparison may reduce somewhat the effective sensitivity of CAFNA. They have performed analysis, Monte Carlo simulations, and preliminary experiments using low and high energy gamma-ray sources. The results show that a high sensitivity 3-D contraband imaging and detection system can be realized by using CAFNA.

  14. Recent Developments In Fast Neutron Detection And Multiplicity Counting With Verification With Liquid Scintillator

    SciTech Connect

    Nakae, L; Chapline, G; Glenn, A; Kerr, P; Kim, K; Ouedraogo, S; Prasad, M; Sheets, S; Snyderman, N; Verbeke, J; Wurtz, R

    2011-09-30

    For many years at LLNL, we have been developing time-correlated neutron detection techniques and algorithms for applications such as Arms Control, Threat Detection and Nuclear Material Assay. Many of our techniques have been developed specifically for the relatively low efficiency (a few percent) attainable by detector systems limited to man-portability. Historically, we used thermal neutron detectors (mainly {sup 3}He), taking advantage of the high thermal neutron interaction cross-sections. More recently, we have been investigating the use of fast neutron detection with liquid scintillators, inorganic crystals, and in the near future, pulse-shape discriminating plastics which respond over 1000 times faster (nanoseconds versus tens of microseconds) than thermal neutron detectors. Fast neutron detection offers considerable advantages, since the inherent nanosecond production time-scales of spontaneous fission and neutron-induced fission are preserved and measured instead of being lost by thermalization required for thermal neutron detectors. We are now applying fast neutron technology to the safeguards regime in the form of fast portable digital electronics as well as faster and less hazardous scintillator formulations. Faster detector response times and sensitivity to neutron momentum show promise for measuring, differentiating, and assaying samples that have modest to very high count rates, as well as mixed fission sources like Cm and Pu. We report on measured results with our existing liquid scintillator array, and progress on the design of a nuclear material assay system that incorporates fast neutron detection, including the surprising result that fast liquid scintillator detectors become competitive and even surpass the precision of {sup 3}He-based counters measuring correlated pairs in modest (kg) samples of plutonium.

  15. Recent Developments in Fast Neutron Detection and Multiplicity Counting with Liquid Scintillator

    NASA Astrophysics Data System (ADS)

    Nakae, L. F.; Chapline, G. F.; Glenn, A. M.; Kerr, P. L.; Kim, K. S.; Ouedraogo, S. A.; Prasad, M. K.; Sheets, S. A.; Snyderman, N. J.; Verbeke, J. M.; Wurtz, R. E.

    2011-12-01

    For many years, LLNL researchers have been developing time-correlated neutron detection techniques and algorithms for applications such as Arms Control, Threat Detection and Nuclear Material Assay. Many of the techniques have been developed specifically for the relatively low efficiency (a few percent) attainable by detector systems limited to man-portability. Historically, thermal neutron detectors (mainly 3He) were used, taking advantage of the high thermal neutron interaction cross sections. More recently, we have been investigating the use of fast neutron detection with liquid scintillators, inorganic crystals, and in the near future, pulse-shape discriminating plastics that respond over 1000 times faster (ns versus tens of μs) than thermal neutron detectors. Fast neutron detection offers considerable advantages since the inherent ns production timescales of spontaneous fission and neutron-induced fission are preserved and measured instead of being lost by thermalization required for thermal neutron detectors. We are now applying fast neutron technology to the safeguards regime in the form of fast portable digital electronics as well as faster and less hazardous scintillator formulations. Faster detector response times and sensitivity to neutron momentum show promise for measuring, differentiating, and assaying samples that have modest to very high count rates, as well as mixed fission sources like Cm and Pu. We report on measured results with our existing liquid scintillator array and progress on the design of a nuclear material assay system that incorporates fast neutron detection, including the surprising result that fast liquid scintillator detectors become competitive and even surpass the precision of 3He-based counters measuring correlated pairs in modest (kg) samples of plutonium.

  16. Development and characterization of a high sensitivity segmented Fast Neutron Spectrometer (FaNS-2)

    NASA Astrophysics Data System (ADS)

    Langford, T. J.; Beise, E. J.; Breuer, H.; Heimbach, C. R.; Ji, G.; Nico, J. S.

    2016-01-01

    We present the development of a segmented fast neutron spectrometer (FaNS-2) based upon plastic scintillator and 3He proportional counters. It was designed to measure both the flux and spectrum of fast neutrons in the energy range of few MeV to 1 GeV. FaNS-2 utilizes capture-gated spectroscopy to identify neutron events and reject backgrounds. Neutrons deposit energy in the plastic scintillator before capturing on a 3He nucleus in the proportional counters. Segmentation improves neutron energy reconstruction while the large volume of scintillator increases sensitivity to low neutron fluxes. A main goal of its design is to study comparatively low neutron fluxes, such as cosmogenic neutrons at the Earth's surface, in an underground environment, or from low-activity neutron sources. In this paper, we present details of its design and construction as well as its characterization with a calibrated 252Cf source and monoenergetic neutron fields of 2.5 MeV and 14 MeV. Detected monoenergetic neutron spectra are unfolded using a Singular Value Decomposition method, demonstrating a 5% energy resolution at 14 MeV. Finally, we discuss plans for measuring the surface and underground cosmogenic neutron spectra with FaNS-2.

  17. Fast Neutron Induced Autophagy Leads To Necrosis In Glioblastoma Multiforme Cells

    NASA Astrophysics Data System (ADS)

    Yasui, Linda; Gladden, Samantha; Andorf, Christine; Kroc, Thomas

    2011-06-01

    Fast neutrons are highly effective at killing glioblastoma multiforme (GBM), U87 and U251 cells. The mode of cell death was investigated using transmission electron microscopy (TEM) to identify the fraction of irradiated U87 or U251 cells having morphological features of autophagy and/or necrosis. U87 or U251 cells were irradiated with 2 Gy fast neturons or 10 Gy γ rays. A majority of U87 and U251 cells exhibit features of cell death with autophagy after irradiation with either 10 Gy γ rays or 2 Gy fast neutrons. Very few γ irradiated cells had features of necrosis (U87 or U251 cell samples processed for TEM 1 day after 10 Gy γ irradiation). In contrast, a significant increase was observed in necrotic U87 and U251 cells irradiated with fast neutrons. These results show a greater percentage of cells exhibit morphological evidence of necrosis induced by a lower dose of fast neutron irradiation compared to γ irradiation. Also, the evidence of necrosis in fast neutron irradiated U87 and U251 cells occurs in a background of autophagy. Since autophagy is observed before necrosis, autophagy may play a role in signaling programmed necrosis in fast neutron irradiated U87 and U251 cells.

  18. Fast Neutron Induced Autophagy Leads To Necrosis In Glioblastoma Multiforme Cells

    SciTech Connect

    Yasui, Linda; Gladden, Samantha; Andorf, Christine; Kroc, Thomas

    2011-06-01

    Fast neutrons are highly effective at killing glioblastoma multiforme (GBM), U87 and U251 cells. The mode of cell death was investigated using transmission electron microscopy (TEM) to identify the fraction of irradiated U87 or U251 cells having morphological features of autophagy and/or necrosis. U87 or U251 cells were irradiated with 2 Gy fast neturons or 10 Gy {gamma} rays. A majority of U87 and U251 cells exhibit features of cell death with autophagy after irradiation with either 10 Gy {gamma} rays or 2 Gy fast neutrons. Very few {gamma} irradiated cells had features of necrosis (U87 or U251 cell samples processed for TEM 1 day after 10 Gy {gamma} irradiation). In contrast, a significant increase was observed in necrotic U87 and U251 cells irradiated with fast neutrons. These results show a greater percentage of cells exhibit morphological evidence of necrosis induced by a lower dose of fast neutron irradiation compared to {gamma} irradiation. Also, the evidence of necrosis in fast neutron irradiated U87 and U251 cells occurs in a background of autophagy. Since autophagy is observed before necrosis, autophagy may play a role in signaling programmed necrosis in fast neutron irradiated U87 and U251 cells.

  19. Development of a dual phantom technique for measuring the fast neutron component of dose in boron neutron capture therapy

    SciTech Connect

    Sakurai, Yoshinori Tanaka, Hiroki; Kondo, Natsuko; Kinashi, Yuko; Suzuki, Minoru; Masunaga, Shinichiro; Ono, Koji; Maruhashi, Akira

    2015-11-15

    Purpose: Research and development of various accelerator-based irradiation systems for boron neutron capture therapy (BNCT) is underway throughout the world. Many of these systems are nearing or have started clinical trials. Before the start of treatment with BNCT, the relative biological effectiveness (RBE) for the fast neutrons (over 10 keV) incident to the irradiation field must be estimated. Measurements of RBE are typically performed by biological experiments with a phantom. Although the dose deposition due to secondary gamma rays is dominant, the relative contributions of thermal neutrons (below 0.5 eV) and fast neutrons are virtually equivalent under typical irradiation conditions in a water and/or acrylic phantom. Uniform contributions to the dose deposited from thermal and fast neutrons are based in part on relatively inaccurate dose information for fast neutrons. This study sought to improve the accuracy in the dose estimation for fast neutrons by using two phantoms made of different materials in which the dose components can be separated according to differences in the interaction cross sections. The development of a “dual phantom technique” for measuring the fast neutron component of dose is reported. Methods: One phantom was filled with pure water. The other phantom was filled with a water solution of lithium hydroxide (LiOH) capitalizing on the absorbing characteristics of lithium-6 (Li-6) for thermal neutrons. Monte Carlo simulations were used to determine the ideal mixing ratio of Li-6 in LiOH solution. Changes in the depth dose distributions for each respective dose component along the central beam axis were used to assess the LiOH concentration at the 0, 0.001, 0.01, 0.1, 1, and 10 wt. % levels. Simulations were also performed with the phantom filled with 10 wt. % {sup 6}LiOH solution for 95%-enriched Li-6. A phantom was constructed containing 10 wt. % {sup 6}LiOH solution based on the simulation results. Experimental characterization of the

  20. Phenotypic and genomic analysis of a fast neutron mutant population resource in soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mutagenized populations have become indispensable resources for introducing variation and studying gene function in plant genomics research. We utilized fast neutron radiation to induce deletion mutations in the soybean genome and phenotypically screened the resulting population. We exposed approxim...

  1. Radiation transport codes for potential applications related to radiobiology and radiotherapy using protons, neutrons, and negatively charged pions

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.

    1972-01-01

    Several Monte Carlo radiation transport computer codes are used to predict quantities of interest in the fields of radiotherapy and radiobiology. The calculational methods are described and comparisions of calculated and experimental results are presented for dose distributions produced by protons, neutrons, and negatively charged pions. Comparisons of calculated and experimental cell survival probabilities are also presented.

  2. Incremental Learning With Selective Memory (ILSM): Towards Fast Prostate Localization for Image Guided Radiotherapy

    PubMed Central

    Gao, Yaozong; Zhan, Yiqiang

    2015-01-01

    Image-guided radiotherapy (IGRT) requires fast and accurate localization of the prostate in 3-D treatment-guided radiotherapy, which is challenging due to low tissue contrast and large anatomical variation across patients. On the other hand, the IGRT workflow involves collecting a series of computed tomography (CT) images from the same patient under treatment. These images contain valuable patient-specific information yet are often neglected by previous works. In this paper, we propose a novel learning framework, namely incremental learning with selective memory (ILSM), to effectively learn the patient-specific appearance characteristics from these patient-specific images. Specifically, starting with a population-based discriminative appearance model, ILSM aims to “personalize” the model to fit patient-specific appearance characteristics. The model is personalized with two steps: backward pruning that discards obsolete population-based knowledge and forward learning that incorporates patient-specific characteristics. By effectively combining the patient-specific characteristics with the general population statistics, the incrementally learned appearance model can localize the prostate of a specific patient much more accurately. This work has three contributions: 1) the proposed incremental learning framework can capture patient-specific characteristics more effectively, compared to traditional learning schemes, such as pure patient-specific learning, population-based learning, and mixture learning with patient-specific and population data; 2) this learning framework does not have any parametric model assumption, hence, allowing the adoption of any discriminative classifier; and 3) using ILSM, we can localize the prostate in treatment CTs accurately (DSC ∼0.89) and fast (∼4 s), which satisfies the real-world clinical requirements of IGRT. PMID:24495983

  3. Distinguishing Pu Metal from Pu Oxide and Determining alpha-ratio using Fast Neutron Counting

    SciTech Connect

    Verbeke, J. M.; Chapline, G. F.; Nakae, L. F.; Prasad, M. K.; Sheets, S. A.; Snyderman, N. J.

    2015-01-07

    We describe a new method for determining the ratio of the rate of (α, n) source neutrons to the rate of spontaneous fission neutrons, the so called α-ratio. This method is made possible by fast neutron counting with liquid scintillator detectors, which can determine the shape of the fast neutron spectrum. The method utilizes the spectral difference between fission spectrum neutrons from Pu metal and the spectrum of (α, n) neutrons from PuO2. Our method is a generalization of the Cifarelli-Hage method for determining keff for fissile assemblies, and also simultaneously determines keff along with the α-ratio.

  4. Detection of fast neutrons from shielded nuclear materials using a semiconductor alpha detector.

    PubMed

    Pöllänen, R; Siiskonen, T

    2014-08-01

    The response of a semiconductor alpha detector to fast (>1 MeV) neutrons was investigated by using measurements and simulations. A polyethylene converter was placed in front of the detector to register recoil protons generated by elastic collisions between neutrons and hydrogen nuclei of the converter. The developed prototype equipment was tested with shielded radiation sources. The low background of the detector and insensitivity to high-energy gamma rays above 1 MeV are advantages when the detection of neutron-emitting nuclear materials is of importance. In the case of a (252)Cf neutron spectrum, the intrinsic efficiency of fast neutron detection was determined to be 2.5×10(-4), whereas three-fold greater efficiency was obtained for a (241)AmBe neutron spectrum. PMID:24792122

  5. Fast-neutron spectrometry using a ³He ionization chamber and digital pulse shape analysis.

    PubMed

    Chichester, D L; Johnson, J T; Seabury, E H

    2012-08-01

    Digital pulse shape analysis (dPSA) has been used with a Cuttler-Shalev type (3)He ionization chamber to measure the fast-neutron spectra of a deuterium-deuterium electronic neutron generator, a bare (252)Cf spontaneous fission neutron source, and of the transmitted fast neutron spectra of a (252)Cf source attenuated by water, graphite, liquid nitrogen, and magnesium. Rise-time dPSA has been employed using the common approach for analyzing n +(3)He→(1)H+(3)H ionization events and improved to account for wall-effect and pile-up events, increasing the fidelity of these measurements. Simulations have been performed of the different experimental arrangements and compared with the measurements, demonstrating general agreement between the dPSA-processed fast-neutron spectra and predictions. The fast-neutron resonance features of the attenuation cross sections of the attenuating materials are clearly visible within the resolution limits of the electronics used for the measurements, and the potential applications of high-resolution fast-neutron spectrometry for nuclear nonproliferation and safeguards measurements are discussed. PMID:22728128

  6. Characterization of the fast neutron irradiation facility of the Portuguese Research Reactor after core conversion.

    PubMed

    Marques, J G; Sousa, M; Santos, J P; Fernandes, A C

    2011-08-01

    The fast neutron irradiation facility of the Portuguese Research Reactor was characterized after the reduction in uranium enrichment and rearrangement of the core configuration. In this work we report on the determination of the hardness parameter and the 1MeV equivalent neutron flux along the facility, in the new irradiation conditions, following ASTM E722 standard. PMID:21071234

  7. Demonstration of two-dimensional time-encoded imaging of fast neutrons

    DOE PAGESBeta

    Brennan, J.; Brubaker, E.; Gerling, M.; Marleau, P.; McMillan, K.; Nowack, A.; Galloudec, N. Renard-Le; Sweany, M.

    2015-09-09

    Here, we present a neutron detector system based on time-encoded imaging, and demonstrate its applicability toward the spatial mapping of special nuclear material. We also demonstrate that two-dimensional fast-neutron imaging with 2° resolution at 2 m stand-off is feasible with only two instrumented detectors.

  8. A Numerical Model for Coupling of Neutron Diffusion and Thermomechanics in Fast Burst Reactors

    SciTech Connect

    Samet Y. Kadioglu; Dana A. Knoll; Cassiano De Oliveira

    2008-11-01

    We develop a numerical model for coupling of neutron diffusion adn termomechanics in order to stimulate transient behavior of a fast burst reactor. The problem involves solving a set of non-linear different equations which approximate neutron diffusion, temperature change, and material behavior. With this equation set we will model the transition from a supercritical to subcritical state and possible mechanical vibration.

  9. α and 2 p 2 n emission in fast neutron-induced reactions on 60Ni

    NASA Astrophysics Data System (ADS)

    Fotiades, N.; Devlin, M.; Haight, R. C.; Nelson, R. O.; Kunieda, S.; Kawano, T.

    2015-06-01

    Background: The cross sections for populating the residual nucleus in the reaction ZAX(n,x) Z -2 A -4Y exhibit peaks as a function of incident neutron energy corresponding to the (n ,n'α ) reaction and, at higher energy, to the (n ,2 p 3 n ) reaction. The relative magnitudes of these peaks vary with the Z of the target nucleus. Purpose: Study fast neutron-induced reactions on 60Ni. Locate experimentally the nuclear charge region along the line of stability where the cross sections for α emission and for 2 p 2 n emission in fast neutron-induced reactions are comparable as a further test of reaction models. Methods: Data were taken by using the Germanium Array for Neutron-Induced Excitations. The broad-spectrum pulsed neutron beam of the Los Alamos Neutron Science Center's Weapons Neutron Research facility provided neutrons in the energy range from 1 to 250 MeV. The time-of-flight technique was used to determine the incident-neutron energies. Results: Absolute partial cross sections for production of seven discrete Fe γ rays populated in 60Ni (n ,α /2 p x n γ ) reactions with 2 ≤x ≤5 were measured for neutron energies 1 MeVneutron energies while discrepancies appear at higher neutron energies. The cross section for producing an isotope in fast neutron-induced reactions on stable targets via α emission at the peak of the (n ,α ) and (n ,n'α ) reactions is comparable to that for 2 p 2 n and 2 p 3 n emission at higher incident energies in the nuclear charge region around Fe.

  10. Microdosimetry of fast neutrons in selected biological materials

    SciTech Connect

    Wallace, R.E.

    1987-01-01

    Microdosimetric quantities for selected neutron beams have been determined in muscle, brain, bone, and fat tissue equivalent materials. The quantities of interest were the dose distribution in lineal energy, frequency average lineal energy, dose average lineal energy, and dose average quality factor. A dose response factor was defined to combine the lineal energy dose spectrum with a response function per unit KERMA for an acute biological endpoint in prototype cells in vitro. The dependence of each quantity on material composition and neutron energy was investigated by theoretical calculation and separated into primary and scatter neutron fluence components. Neutron fluences in phantoms were calculated using a standard Monte Carlo code (MCNP). The charged particle fluences and lineal energy dose spectra were obtained using the continuous slowing-down approximation. Calculated microdosimetric spectra agreed with those measured in muscle-equivalent materials. The microdosimetry of primary and scattered neutrons in a large tissue phantom was calculated for three representative uncollimated neutron sources.

  11. Order-of-Magnitude Estimate of Fast Neutron Recoil Rates in Proposed Neutrino Detector at SNS

    SciTech Connect

    Iverson, Erik B.

    2006-02-01

    Yuri Efremenko (UT-K) and Kate Scholberg (Duke) indicated, during discussions on 12 January 2006 with the SNS Neutronics Team, interest in a new type of neutrino detector to be placed within the proposed neutrino bunker at SNS, near beam-line 18, against the RTBT. The successful operation of this detector and its associated experiments would require fast-neutron recoil rates of approximately one event per day of operation or less. To this end, the author has attempted the following order-of-magnitude estimate of this recoil rate in order to judge whether or not a full calculation effort is needed or justified. For the purposes of this estimate, the author considers a one-dimensional slab geometry, in which fast and high-energy neutrons making up the general background in the target building are incident upon one side of an irbon slab. This iron slab represents the neutrino bunker walls. If we assume that a significant fraction of the dose rate throughout the target building is due to fast or high-energy neutrons, we can estimate the flux of such neutrons based upon existing shielding calculations performed for radiation protection purposes. In general, the dose rates within the target building are controlled to be less than 0.25 mrem per hour. A variety of calculations have indicated that these dose rates have significant fast and high-energy neutron components. Thus they can estimate the fast neutron flux incident on the neutrino bunker, and thereby the fast neutron flux inside that bunker. Finally, they can estimate the neutron recoil rate within a nominal detector volume. Such an estimate is outlined in Table 1.

  12. Nodal weighting factor method for ex-core fast neutron fluence evaluation

    SciTech Connect

    Chiang, R. T.

    2012-07-01

    The nodal weighting factor method is developed for evaluating ex-core fast neutron flux in a nuclear reactor by utilizing adjoint neutron flux, a fictitious unit detector cross section for neutron energy above 1 or 0.1 MeV, the unit fission source, and relative assembly nodal powers. The method determines each nodal weighting factor for ex-core neutron fast flux evaluation by solving the steady-state adjoint neutron transport equation with a fictitious unit detector cross section for neutron energy above 1 or 0.1 MeV as the adjoint source, by integrating the unit fission source with a typical fission spectrum to the solved adjoint flux over all energies, all angles and given nodal volume, and by dividing it with the sum of all nodal weighting factors, which is a normalization factor. Then, the fast neutron flux can be obtained by summing the various relative nodal powers times the corresponding nodal weighting factors of the adjacent significantly contributed peripheral assembly nodes and times a proper fast neutron attenuation coefficient over an operating period. A generic set of nodal weighting factors can be used to evaluate neutron fluence at the same location for similar core design and fuel cycles, but the set of nodal weighting factors needs to be re-calibrated for a transition-fuel-cycle. This newly developed nodal weighting factor method should be a useful and simplified tool for evaluating fast neutron fluence at selected locations of interest in ex-core components of contemporary nuclear power reactors. (authors)

  13. The photonuclear neutron and gamma-ray backgrounds in the fast ignition experiment

    SciTech Connect

    Arikawa, Y.; Nagai, T.; Hosoda, H.; Abe, Y.; Kojima, S.; Fujioka, S.; Sarukura, N.; Nakai, M.; Shiraga, H.; Azechi, H.; Ozaki, T.

    2012-10-15

    In the fast-ignition scheme, very hard x-rays (hereinafter referred to as {gamma}-rays) are generated by Bremsstrahlung radiation from fast electrons. Significant backgrounds were observed around the deuterium-deuterium fusion neutron signals in the experiment in 2010. In this paper the backgrounds were studied in detail, based on Monte Carlo simulations, and they were confirmed to be {gamma}-rays from the target, scattered {gamma}-rays from the experimental bay walls ({gamma}{sup Prime }-rays), and neutrons generated by ({gamma}, n) reactions in either the target vacuum chamber or the diagnostic instruments ({gamma}-n neutrons).

  14. Dosimetry of fast neutron beams using CaSO 4:Dy (TLD-900) pellets

    NASA Astrophysics Data System (ADS)

    Pradhan, A. S.; Rassow, J.; Meissner, P.

    1985-05-01

    This paper describes the use of commercially avialable CaSO 4:Dy (TLD-900) pellets for the measurement of absorbed doses of fast neutrons and gamma rays in mixed fields with one single detector. The gamma ray absorbed doses could be estimated by recording the thermoluminiscence (TL) induced during the neutron beam irradiations, whereas the fast neutron absorbed doses were measured by employing a post-irradiation TL accumulation due to activation of sulphur by the threshold nuclear reaction 32S(n, p) 32P in CaSO 4:Dy.

  15. Identification of the fast and thermal neutron characteristics of transuranic waste drums

    SciTech Connect

    Storm, B.H. Jr.; Bramblett, R.L.; Hensley, C.

    1997-11-01

    Fissile and spontaneously fissioning material in transuranic waste drums can be most sensitively assayed using an active and passive neutron assay system such as the Active Passive Neutron Examination and Assay. Both the active and the passive assays are distorted by the presence of the waste matrix and containerization. For accurate assaying, this distortion must be characterized and accounted for. An External Matrix Probe technique has been developed that accomplishes this task. Correlations between in-drum neutron flux measurements and monitors in the Active Passive Neutron Examination and Assay chamber with various matrix materials provide a non-invasive means of predicting the thermal neutron flux in waste drums. Similarly, measures of the transmission of fast neutrons emitted from sources in the drum. Results obtained using the Lockheed Martin Specialty Components Active Passive Neutron Examination and Assay system are discussed. 12 figs., 1 tab.

  16. Modeling of Time-correlated Detection of Fast Neutrons Emitted in Induced SNM Fission

    NASA Astrophysics Data System (ADS)

    Guckes, Amber; Barzilov, Alexander; Richardson, Norman

    Neutron multiplicity methods are widely used in the assay of fissile materials. Fission reactions release multiple neutrons simultaneously. Time-correlated detection of neutrons provides a coincidence signature that is unique to fission,which enables distinguishing it from other events. In general, fission neutrons are fast. Thermal neutron sensors require the moderation of neutrons prior to a detection event; therefore, the neutron's energy and the event's timing information may be distorted, resulting in the wide time windows in the correlation analysis. Fastneutron sensing using scintillators allows shortening the time correlation window. In this study, four EJ-299-33A plastic scintillator detectors with neutron/photon pulse shape discrimination properties were modeled usingthe MCNP6 code. This sensor array was studied for time-correlated detection of fast neutrons emitted inthe induced fission of 239Pu and (α,n) neutron sources. This paper presents the results of computational modeling of arrays of these plastic scintillator sensors as well as3He detectors equipped with a moderator.

  17. Pathologic effects of fractionated fast neutrons or photons on the pancreas, pylorus and duodenum of dogs

    SciTech Connect

    Zook, B.C.; Bradley, E.W.; Casarett, G.W.; Rogers, C.C.

    1983-10-01

    Thirty-nine adult male Beagles received either fast neutron or photon irradiation to the right thorax to determine the relative biological effectiveness (RBE) of fast neutrons on normal pulmonary tissue. The right anterior abdomen was included in the field of radiation. Twenty-four dogs (six/group) received fast neutrons with an average energy of 15 MeV to total doses of 1000, 1500, 2250 or 3375 rad in four fractions per week for six weeks. Fifteen dogs received 3000, 4500, or 6750 rad of photons (five/group) in an identical fractionation pattern. All neutron irradiated dogs receiving 3375 and 2250 rad and one receiving 1500 rad developed clinical signs of pancreatic, hepatic and gastrointestinal disturbances. The liver enzymes of these dogs became elevated and they died or were euthanized in extremis 47-367 days after irradiation. Only one 6750 rad photon dog developed similar signs and died 708 days post-irradiation. Five neutron and 10 photon exposed dogs died of other causes. Neutron-induced lesions in the stomach and duodenum included hemorrhages, erosions, ulcerations and fibrosis. Ulcers perforated the GI tract of five dogs. Pancreatic lesions included degranulation and necrosis of acinar cells, fibrosis and atrophy. Islet cells were not obviously damaged. All lesions were associated with degenerative and occlusive vascular changes. The RBE of fast neutrons, assessed by clinical signs, gross and microscopic pathology, is approximately 3-4.5 for pancreas and about 4.5 for pylorus and duodenum.

  18. Measurements of fast neutrons in Hiroshima by use of (39)Ar.

    PubMed

    Nolte, Eckehart; Rühm, Werner; Loosli, H Hugo; Tolstikhin, Igor; Kato, Kazuo; Huber, Thomas C; Egbert, Stephen D

    2006-03-01

    The survivors of the A-bomb explosions over Hiroshima and Nagasaki were exposed to a mixed neutron and gamma radiation field. To validate the high-energy portion of the neutron field and thus the neutron dose to the survivors, a method is described that allows retrospective assessment of the fast neutrons from the A-bombs. This is accomplished by the extraction of the noble gas argon from biotites separated from Hiroshima granite samples, and then the detection of the (39)Ar activity that was produced by the capture of the fast neutrons on potassium. Adjusted to the year 1945, activities measured in the first samples taken at distances of 94, 818, 992, and 1,173 m from the hypocenter were 6.9+/-0.2, 0.32+/-0.01, 0.14+/-0.02, and 0.09+/-0.01 mBq/g K, respectively. All signals were significantly above detector background and show low uncertainties. Considering their uncertainties they agree with the calculated (39)Ar activation in the samples, based on the most recent dosimetry system DS02. It is concluded that this method can be used to investigate samples obtained from large distances in Hiroshima, where previous data on fast neutrons are characterized by considerable uncertainties. Additionally, the method can be used to reconstruct the fast neutron fluence in Nagasaki, where no experimental data exist. PMID:16429279

  19. Fission signal detection using helium-4 gas fast neutron scintillation detectors

    SciTech Connect

    Lewis, J. M. Kelley, R. P.; Jordan, K. A.; Murer, D.

    2014-07-07

    We demonstrate the unambiguous detection of the fission neutron signal produced in natural uranium during active neutron interrogation using a deuterium-deuterium fusion neutron generator and a high pressure {sup 4}He gas fast neutron scintillation detector. The energy deposition by individual neutrons is quantified, and energy discrimination is used to differentiate the induced fission neutrons from the mono-energetic interrogation neutrons. The detector can discriminate between different incident neutron energies using pulse height discrimination of the slow scintillation component of the elastic scattering interaction between a neutron and the {sup 4}He atom. Energy histograms resulting from this data show the buildup of a detected fission neutron signal at higher energies. The detector is shown here to detect a unique fission neutron signal from a natural uranium sample during active interrogation with a (d, d) neutron generator. This signal path has a direct application to the detection of shielded nuclear material in cargo and air containers. It allows for continuous interrogation and detection while greatly minimizing the potential for false alarms.

  20. Transport simulation and image reconstruction for fast-neutron detection of explosives and narcotics

    SciTech Connect

    Micklich, B.J.; Fink, C.L.; Sagalovsky, L.

    1995-07-01

    Fast-neutron inspection techniques show considerable promise for explosive and narcotics detection. A key advantage of using fast neutrons is their sensitivity to low-Z elements (carbon, nitrogen, and oxygen), which are the primary constituents of these materials. We are currently investigating two interrogation methods in detail: Fast-Neutron Transmission Spectroscopy (FNTS) and Pulsed Fast-Neutron Analysis (PFNA). FNTS is being studied for explosives and narcotics detection in luggage and small containers for which the transmission ratio is greater than about 0.01. The Monte-Carlo radiation transport code MCNP is being used to simulate neutron transmission through a series of phantoms for a few (3-5) projection angles and modest (2 cm) resolution. Areal densities along projection rays are unfolded from the transmission data. Elemental abundances are obtained for individual voxels by tomographic reconstruction, and these reconstructed elemental images are combined to provide indications of the presence or absence of explosives or narcotics. PFNA techniques are being investigated for detection of narcotics in cargo containers because of the good penetration of the fast neutrons and the low attenuation of the resulting high-energy gamma-ray signatures. Analytic models and Monte-Carlo simulations are being used to explore the range of capabilities of PFNA techniques and to provide insight into systems engineering issues. Results of studies from both FNTS and PFNA techniques are presented.

  1. Transport simulation and image reconstruction for fast-neutron detection of explosives and narcotics

    NASA Astrophysics Data System (ADS)

    Micklich, Bradley J.; Fink, Charles L.; Sagalovsky, Leonid

    1995-09-01

    Fast-neutron inspection techniques show considerable promise for explosive and narcotics detection. A key advantage of using fast neutron is their sensitivity to low-Z elements (carbon, nitrogen, and oxygen), which are the primary constituents of these materials. We are currently investigating two interrogation methods in detail: fast-neutron transmission spectroscopy (FNTS) and pulsed fast-neutron analysis (PFNA). FNTS is being studied for explosives and narcotics detection in luggage and small containers for which the transmission ration is greater than about 0.01. The Monte Carlo radiation transport code MCNP is being used to simulate neutron transmission through a series of phantoms for a few (3-5) projections angles and modest (2 cm) reolution. Areal densities along projection rays are unfolded from the transmission data. Elemental abundances are obtained for individual voxels by tomographic reconstruction, and the reconstructed elemental images are combined to provide indications of the presence or absence of explosives or narcotics. PFNA techniques are being investigated for detection of narcotics in cargo containers because of the good penetration of the fast neutrons and the low attenuation of the resulting high-energy gamma-ray signatures. Analytic models and Monte Carlo simulations are being used to explore the range of capabilities of PFNA techniques and to provide insight into systems engineering issues. Results of studies from both FNTS and PFNA technqiues are presented.

  2. Development of a small scintillation detector with an optical fiber for fast neutrons.

    PubMed

    Yagi, T; Unesaki, H; Misawa, T; Pyeon, C H; Shiroya, S; Matsumoto, T; Harano, H

    2011-02-01

    To investigate the characteristics of a reactor and a neutron generator, a small scintillation detector with an optical fiber with ThO(2) has been developed to measure fast neutrons. However, experimental facilities where (232)Th can be used are limited by regulations, and S/N ratio is low because the background counts of this detector are increase by alpha decay of (232)Th. The purpose of this study is to develop a new optical fiber detector for measuring fast neutrons that does not use nuclear material such as (232)Th. From the measured and calculated results, the new optical fiber detector which uses ZnS(Ag) as a converter material together with a scintillator have the highest detection efficiency among several developed detectors. It is applied for the measurement of reaction rates generated from fast neutrons; furthermore, the absolute detection efficiency of this detector was obtained experimentally. PMID:21129989

  3. Two dimensional and linear scintillation detectors for fast neutron imaging — comparative analysis

    NASA Astrophysics Data System (ADS)

    Mikerov, V. I.; Koshelev, A. P.; Ozerov, O. V.; Sviridov, A. S.; Yurkov, D. I.

    2014-05-01

    The paper was aimed to compare performance capabilities of two types of scintillation detectors commonly used for fast neutron imaging: two dimensional and linear ones. Best-case values of quantum efficiency, spatial resolution and capacity were estimated for detectors with plastic converter-screen in case of 14 MeV neutrons. For that there were examined nuclear reactions produced in converter-screen by fast neutrons, spatial distributions of energy release of emerged charged particles and amplitude distributions of scintillations generated by these particles. The paper shows that the efficiency of the linear detector is essentially higher and this detector provides potentially better spatial resolution in comparison with the two dimensional detector. But, the two dimensional detector surpasses the linear one in capacity. The presented results can be used for designing radiographic fast neutron detectors with organic scintillators.

  4. Detection of fast neutrons using detectors based on semi-insulating GaAs

    NASA Astrophysics Data System (ADS)

    Zat'ko, B.; Sedlačková, K.; Dubecký, F.; Boháček, P.; Sekáčová, M.; Nečas, V.

    2011-12-01

    Detectors with AuZn square Schottky contact of the area of 2.5 × 2.5 mm2 were fabricated. On the back side, the whole area AuGeNi eutectic ohmic contact was evaporated. The thickness of the base material (semi-insulating GaAs) was 220 μm. The connection of 4 detectors in parallel was tested to get the detection area of 25 mm2. The 239Pu-Be fast neutron source with energies between 0.5 and 12 MeV was used in experimental measurements. We have investigated the optimal thickness of HDPE (high-density polyethylene) conversion layer for fast neutron detection. The spectra of the neutrons were measured by detectors covered by HDPE converter of different thicknesses. The fast neutron detection efficiency proved experimentally was compared with results from simulations performed by MCNPX (Monte Carlo N-Particle eXtended) code.

  5. Fast-Neutron Spectrometry Using a 3He Ionization Chamber and Digital Pulse Shape Analysis

    SciTech Connect

    D. L. Chichester; J. T. Johnson; E. H. Seabury

    2010-05-01

    Digital pulse shape analysis (dPSA) has been used with a Cuttler-Shalev type 3He proportional counter to measure the fast neutron spectra of bare 252Cf and 241AmBe neutron sources. Measurements have also been made to determine the attenuated fast neutron spectra of 252Cf shielded by several materials including water, graphite, liquid nitrogen, magnesium, and tungsten. Rise-time dPSA has been employed using the common rise-time approach for analyzing n +3He ? 1H + 3H ionization events and a new approach has been developed to improve the fidelity of these measurements. Simulations have been performed for the different experimental arrangements and are compared, demonstrating general agreement between the dPSA processed fast neutron spectra and predictions.

  6. Study of absolute fast neutron dosimetry using CR-39 track detectors

    NASA Astrophysics Data System (ADS)

    El-Sersy, A. R.

    2010-06-01

    In this work, CR-39 track detectors have extensively been used in the determination of fast neutron fluence-to-dose factor. The registration efficiency, ɛ, of CR-39 detectors for fast neutrons was calculated using different theoretical approaches according to each mode of neutron interaction with the constituent atoms (H, C and O) of the detector material. The induced proton-recoiled showed the most common interaction among the others. The dependence of ɛ on both neutron energy and etching time was also studied. In addition, the neutron dose was calculated as a function of neutron energy in the range from 0.5 to 14 MeV using the values of (d E/d X) for each recoil particle in CR-39 detector. Results showed that the values of ɛ were obviously affected by both neutron energy and etching time where the contribution in ɛ from proton recoil was the most. The contribution from carbon and oxygen recoils in dose calculation was pronounced due to their higher corresponding values of d E/d X in comparison to those from proton recoils. The present calculated fluence-to-dose factor was in agreement with that either from ICRP no. 74 or from TRS no. 285 of IAEA, which reflected the importance of using CR-39 in absolute fast neutron dosimetry.

  7. Fast-neutron imaging spectrometer based on liquid scintillator loaded capillaries

    NASA Astrophysics Data System (ADS)

    Mor, I.; Vartsky, D.; Brandis, M.; Goldberg, M. B.; Bar, D.; Mardor, I.; Dangendorf, V.; Bromberger, B.

    2012-04-01

    A fast-neutron imaging detector based on micrometric glass capillaries loaded with high refractive index liquid scintillator has been developed Neutron energy spectrometry is based on event-by-event detection and reconstruction of neutron energy from the measurement of the knock-on proton track length and the amount of light produced in the track. In addition, the detector can provide fast-neutron imaging with position resolution of tens of microns. The detector principle of operation, simulations and experimental results obtained with a small detector prototype are described. We have demonstrated by simulation energy spectrum reconstruction for incident neutrons in the range of 4-20 MeV. The energy resolution in this energy range was 10-15%. Preliminary experimental results of detector spectroscopic capabilities are presented

  8. Fast neutron flux analyzer with real-time digital pulse shape discrimination

    NASA Astrophysics Data System (ADS)

    Ivanova, A. A.; Zubarev, P. V.; Ivanenko, S. V.; Khilchenko, A. D.; Kotelnikov, A. I.; Polosatkin, S. V.; Puryga, E. A.; Shvyrev, V. G.; Sulyaev, Yu. S.

    2016-08-01

    Investigation of subthermonuclear plasma confinement and heating in magnetic fusion devices such as GOL-3 and GDT at the Budker Institute (Novosibirsk, Russia) requires sophisticated equipment for neutron-, gamma- diagnostics and upgrading data acquisition systems with online data processing. Measurement of fast neutron flux with stilbene scintillation detectors raised the problem of discrimination of the neutrons (n) from background cosmic particles (muons) and neutron-induced gamma rays (γ). This paper describes a fast neutron flux analyzer with real-time digital pulse-shape discrimination (DPSD) algorithm FPGA-implemented for the GOL-3 and GDT devices. This analyzer was tested and calibrated with the help of 137Cs and 252Cf radiation sources. The Figures of Merit (FOM) calculated for different energy cuts are presented.

  9. A cargo inspection system based on pulsed fast neutron analysis (PFNA).

    PubMed

    Ipe, N E; Olsher, R; Ryge, P; Mrozack, J; Thieu, J

    2005-01-01

    A cargo inspection system based on pulsed fast neutron analysis (PFNA) is to be used at a border crossing to detect explosives and contraband hidden in trucks and cargo containers. Neutrons are produced by the interaction of deuterons in a deuterium target mounted on a moveable scan arm. The collimated pulsed fast neutron beam is used to determine the location and composition of objects in a cargo container. The neutrons produce secondary gamma rays that are characteristic of the object's elemental composition. The cargo inspection system building consists of an accelerator room and an inspection tunnel. The accelerator room is shielded and houses the injector, accelerator and the neutron production gas target. The inspection tunnel is partially shielded. The truck or container to be inspected will be moved through the inspection tunnel by a conveyor system. The facility and radiation source terms considered in the shielding design are described. PMID:16604657

  10. A laser-induced repetitive fast neutron source applied for gold activation analysis

    NASA Astrophysics Data System (ADS)

    Lee, Sungman; Park, Sangsoon; Lee, Kitae; Cha, Hyungki

    2012-12-01

    A laser-induced repetitively operated fast neutron source was developed for applications in laser-driven nuclear physics research. The developed neutron source, which has a neutron yield of approximately 4 × 105 n/pulse and can be operated up to a pulse repetition rate of 10 Hz, was applied for a gold activation analysis. Relatively strong delayed gamma spectra of the activated gold were measured at 333 keV and 355 keV, and proved the possibility of the neutron source for activation analyses. In addition, the nuclear reactions responsible for the measured gamma spectra of gold were elucidated by the 14 MeV fast neutrons resulting from the D(t,n)He4 nuclear reaction, for which the required tritium originated from the primary fusion reaction, D(d,p)T3.