Science.gov

Sample records for fast optical flaring

  1. Very fast optical flaring from a possible new Galactic magnetar

    SciTech Connect

    Stefanescu, A.; Kanbach, G.; Greiner, J.; Slowikowska, A.; McBreen, S.; Sala, G.

    2009-05-25

    Rapid optical flaring of an unprecedented type was detected from a transient Galactic high-energy source, SWIFT J195509.6+261406[1]. On June 10, 2007, Swift-BAT triggered on GRB 070610, which turned out to be a previously unknown X-ray transient in the Galaxy. Optical emission following this transient was observed after only 421 s with the high-time-resolution single-photon counting photometer OPTIMA. Measurements continued for the following 5 nights.We detected very strong optical flares (>6 mag) with extremely short timescales: duration of individual flares 2-100 s, shortest variability timescales 0.4 s. The scale and magnitude of the observed variability combined with a distance estimate of 4-8 kpc indicate a non-thermal origin of the observed radiation. The morphology of the optical flares is reminiscent of X-ray outbursts of SGRs. The time resolution and high signal-to-noise ratio during the brightest optical outbursts allow to compute their Fourier power spectral density. Features similar to QPOs appear at periods of 6-8 seconds, typical rotational periods for magnetars. X-ray observations independent from our optical analysis show hints of periodicity at a coinciding frequency. We conclude that the timing properties of the fast, bright outbursts of SWIFT J1955 suggest a connection between this transient and magnetars flaring in the optical.

  2. Very fast optical flaring from a possible new Galactic magnetar.

    PubMed

    Stefanescu, A; Kanbach, G; Słowikowska, A; Greiner, J; McBreen, S; Sala, G

    2008-09-25

    Highly luminous rapid flares are characteristic of processes around compact objects like white dwarfs, neutron stars and black holes. In the high-energy regime of X-rays and gamma-rays, outbursts with variabilities on timescales of seconds or less are routinely observed, for example in gamma-ray bursts or soft gamma-ray repeaters. At optical wavelengths, flaring activity on such timescales has not been observed, other than from the prompt phase of one exceptional gamma-ray burst. This is mostly due to the fact that outbursts with strong, fast flaring are usually discovered in the high-energy regime; most optical follow-up observations of such transients use instruments with integration times exceeding tens of seconds, which are therefore unable to resolve fast variability. Here we show the observation of extremely bright and rapid optical flaring in the Galactic transient SWIFT J195509.6+261406. Our optical light curves are phenomenologically similar to high-energy light curves of soft gamma-ray repeaters and anomalous X-ray pulsars, which are thought to be neutron stars with extremely high magnetic fields (magnetars). This suggests that similar processes are in operation, but with strong emission in the optical, unlike in the case of other known magnetars. PMID:18818651

  3. Furiously fast and red: sub-second optical flaring in V404 Cyg during the 2015 outburst peak

    NASA Astrophysics Data System (ADS)

    Gandhi, P.; Littlefair, S. P.; Hardy, L. K.; Dhillon, V. S.; Marsh, T. R.; Shaw, A. W.; Altamirano, D.; Caballero-Garcia, M. D.; Casares, J.; Casella, P.; Castro-Tirado, A. J.; Charles, P. A.; Dallilar, Y.; Eikenberry, S.; Fender, R. P.; Hynes, R. I.; Knigge, C.; Kuulkers, E.; Mooley, K.; Muñoz-Darias, T.; Pahari, M.; Rahoui, F.; Russell, D. M.; Hernández Santisteban, J. V.; Shahbaz, T.; Terndrup, D. M.; Tomsick, J.; Walton, D. J.

    2016-06-01

    We present observations of rapid (sub-second) optical flux variability in V404 Cyg during its 2015 June outburst. Simultaneous three-band observations with the ULTRACAM fast imager on four nights show steep power spectra dominated by slow variations on ˜100-1000 s time-scales. Near the peak of the outburst on June 26, a dramatic change occurs and additional, persistent sub-second optical flaring appears close in time to giant radio and X-ray flaring. The flares reach peak optical luminosities of ˜ few × 1036 erg s-1. Some are unresolved down to a time resolution of 24 ms. Whereas the fast flares are stronger in the red, the slow variations are bluer when brighter. The redder slopes, emitted power and characteristic time-scales of the fast flares can be explained as optically thin synchrotron emission from a compact jet arising on size scales ˜140-500 Gravitational radii (with a possible additional contribution by a thermal particle distribution). The origin of the slower variations is unclear. The optical continuum spectral slopes are strongly affected by dereddening uncertainties and contamination by strong Hα emission, but the variations of these slopes follow relatively stable loci as a function of flux. Cross-correlating the slow variations between the different bands shows asymmetries on all nights consistent with a small red skew (i.e. red lag). X-ray reprocessing and non-thermal emission could both contribute to these. These data reveal a complex mix of components over five decades in time-scale during the outburst.

  4. On the 'fast electron hypothesis' for stellar flares

    NASA Technical Reports Server (NTRS)

    Mullan, D. J.

    1990-01-01

    It is pointed out that Gurzadyan's (1988) fast-electron hypothesis for stellar flares encounters certain difficulties. The origin of the fast electrons is obscure. Negative flares and predicted ratios of X-ray to optical fluxes are not necessarily a proof of the fast-electron hypothesis. When the electrons thermalize, they will yield X-ray fluxes which are orders of magnitude too large to be consistent with observations.

  5. Mechanisms for fast flare reconnection

    NASA Technical Reports Server (NTRS)

    Vanhoven, G.; Deeds, D.; Tachi, T.

    1988-01-01

    Normal collisional-resistivity mechanisms of magnetic reconnection have the drawback that they are too slow to explain the fast rise of solar flares. Two methods are examined which are proposed for the speed-up of the magnetic tearing instability: the anomalous enhancement of resistivity by the injection of MHD turbulence and the increase of Coulomb resistivity by radiative cooling. The results are described for nonlinear numerical simulations of these processes which show that the first does not provide the claimed effects, while the second yields impressive rates of reconnection, but low saturated energy outputs.

  6. Fast electrons in small solar flares

    NASA Technical Reports Server (NTRS)

    Lin, R. P.

    1975-01-01

    This review summarizes both the direct spacecraft observations of nonrelativistic solar electrons, and observations of the X-ray and radio emission generated by these particles at the sun and in the interplanetary medium. These observations bear on the basic astrophysical process of particle acceleration in tenuous plasmas. We find that in many small solar flares, the nearly 5-100 keV electrons accelerated during flash phase constitute the bulk of the total flare energy. Thus the basic flare mechanism in these flares essentially converts the available flare energy into fast electrons. These electrons may produce the other flare electromagnetic emissions through their interactions with the solar atmosphere. In large proton flares these electrons may provide the energy to eject material from the sun and to create a shock wave which could accelerate nuclei and electrons to much higher energies.

  7. GAMMA-RAY BURST FLARES: ULTRAVIOLET/OPTICAL FLARING. I

    SciTech Connect

    Swenson, C. A.; Roming, P. W. A.; De Pasquale, M.; Oates, S. R.

    2013-09-01

    We present a previously unused method for the detection of flares in gamma-ray burst (GRB) light curves and use this method to detect flares in the ultraviolet/optical. The algorithm makes use of the Bayesian Information Criterion to analyze the residuals of the fitted light curve, removing all major features, and to determine the statistically best fit to the data by iteratively adding additional ''breaks'' to the light curve. These additional breaks represent the individual components of the detected flares: T{sub start}, T{sub stop}, and T{sub peak}. We present the detection of 119 unique flaring periods detected by applying this algorithm to light curves taken from the Second Swift Ultraviolet/Optical Telescope (UVOT) GRB Afterglow Catalog. We analyzed 201 UVOT GRB light curves and found episodes of flaring in 68 of the light curves. For those light curves with flares, we find an average number of {approx}2 flares per GRB. Flaring is generally restricted to the first 1000 s of the afterglow, but can be observed and detected beyond 10{sup 5} s. More than 80% of the flares detected are short in duration with {Delta}t/t of <0.5. Flares were observed with flux ratios relative to the underlying light curve of between 0.04 and 55.42. Many of the strongest flares were also seen at greater than 1000 s after the burst.

  8. Gamma-Ray Burst Flares: Ultraviolet/Optical Flaring. I.

    NASA Astrophysics Data System (ADS)

    Swenson, C. A.; Roming, P. W. A.; De Pasquale, M.; Oates, S. R.

    2013-09-01

    We present a previously unused method for the detection of flares in gamma-ray burst (GRB) light curves and use this method to detect flares in the ultraviolet/optical. The algorithm makes use of the Bayesian Information Criterion to analyze the residuals of the fitted light curve, removing all major features, and to determine the statistically best fit to the data by iteratively adding additional "breaks" to the light curve. These additional breaks represent the individual components of the detected flares: T start, T stop, and T peak. We present the detection of 119 unique flaring periods detected by applying this algorithm to light curves taken from the Second Swift Ultraviolet/Optical Telescope (UVOT) GRB Afterglow Catalog. We analyzed 201 UVOT GRB light curves and found episodes of flaring in 68 of the light curves. For those light curves with flares, we find an average number of ~2 flares per GRB. Flaring is generally restricted to the first 1000 s of the afterglow, but can be observed and detected beyond 105 s. More than 80% of the flares detected are short in duration with Δt/t of <0.5. Flares were observed with flux ratios relative to the underlying light curve of between 0.04 and 55.42. Many of the strongest flares were also seen at greater than 1000 s after the burst.

  9. Optically thick line widths in pyrotechnic flares

    NASA Technical Reports Server (NTRS)

    Douda, B. E.; Exton, R. J.

    1975-01-01

    Experimentally determined sodium line widths for pyrotechnic flares are compared with simple analytical, optically-thick-line-shape calculations. Three ambient pressure levels are considered (760, 150 and 30 torr) for three different flare compositions. The measured line widths range from 1.3 to 481 A. The analytic procedure emphasizes the Lorentz line shape as observed under optically-thick conditions. Calculated widths are in good agreement with the measured values over the entire range.

  10. EVIDENCE FOR HOT FAST FLOW ABOVE A SOLAR FLARE ARCADE

    SciTech Connect

    Imada, S.; Aoki, K.; Hara, H.; Watanabe, T.; Harra, L. K.; Shimizu, T.

    2013-10-10

    Solar flares are one of the main forces behind space weather events. However, the mechanism that drives such energetic phenomena is not fully understood. The standard eruptive flare model predicts that magnetic reconnection occurs high in the corona where hot fast flows are created. Some imaging or spectroscopic observations have indicated the presence of these hot fast flows, but there have been no spectroscopic scanning observations to date to measure the two-dimensional structure quantitatively. We analyzed a flare that occurred on the west solar limb on 2012 January 27 observed by the Hinode EUV Imaging Spectrometer (EIS) and found that the hot (∼30MK) fast (>500 km s{sup –1}) component was located above the flare loop. This is consistent with magnetic reconnection taking place above the flare loop.

  11. A NEW METHOD FOR CLASSIFYING FLARES OF UV Ceti TYPE STARS: DIFFERENCES BETWEEN SLOW AND FAST FLARES

    SciTech Connect

    Dal, H. A.; Evren, S.

    2010-08-15

    In this study, a new method is presented to classify flares derived from the photoelectric photometry of UV Ceti type stars. This method is based on statistical analyses using an independent samples t-test. The data used in analyses were obtained from four flare stars observed between 2004 and 2007. The total number of flares obtained in the observations of AD Leo, EV Lac, EQ Peg, and V1054 Oph is 321 in the standard Johnson U band. As a result flares can be separated into two types, slow and fast, depending on the ratio of flare decay time to flare rise time. The ratio is below 3.5 for all slow flares, while it is above 3.5 for all fast flares. Also, according to the independent samples t-test, there is a difference of about 157 s between equivalent durations of slow and fast flares. In addition, there are significant differences between amplitudes and rise times of slow and fast flares.

  12. A New Method for Classifying Flares of UV Ceti Type Stars: Differences Between Slow and Fast Flares

    NASA Astrophysics Data System (ADS)

    Dal, H. A.; Evren, S.

    2010-08-01

    In this study, a new method is presented to classify flares derived from the photoelectric photometry of UV Ceti type stars. This method is based on statistical analyses using an independent samples t-test. The data used in analyses were obtained from four flare stars observed between 2004 and 2007. The total number of flares obtained in the observations of AD Leo, EV Lac, EQ Peg, and V1054 Oph is 321 in the standard Johnson U band. As a result flares can be separated into two types, slow and fast, depending on the ratio of flare decay time to flare rise time. The ratio is below 3.5 for all slow flares, while it is above 3.5 for all fast flares. Also, according to the independent samples t-test, there is a difference of about 157 s between equivalent durations of slow and fast flares. In addition, there are significant differences between amplitudes and rise times of slow and fast flares.

  13. FAST CONTRACTION OF CORONAL LOOPS AT THE FLARE PEAK

    SciTech Connect

    Liu Rui; Wang Haimin

    2010-05-01

    On 2005 September 8, a coronal loop overlying the active region NOAA 10808 was observed in TRACE 171 A to contract at {approx}100 km s{sup -1} at the peak of an X5.4-2B flare at 21:05 UT. Prior to the fast contraction, the loop underwent a much slower contraction at {approx}6 km s{sup -1} for about 8 minutes, initiating during the flare preheating phase. The sudden switch to fast contraction is presumably corresponding to the onset of the impulsive phase. The contraction resulted in the oscillation of a group of loops located below, with the period of about 10 minutes. Meanwhile, the contracting loop exhibited a similar oscillatory pattern superimposed on the dominant downward motion. We suggest that the fast contraction reflects a suddenly reduced magnetic pressure underneath due either to (1) the eruption of magnetic structures located at lower altitudes or to (2) the rapid conversion of magnetic free energy in the flare core region. Electrons accelerated in the shrinking trap formed by the contracting loop can theoretically contribute to a late-phase hard X-ray burst, which is associated with Type IV radio emission. To complement the X5.4 flare which was probably confined, a similar event observed in SOHO/EIT 195 A on 2004 July 20 in an eruptive, M8.6 flare is briefly described, in which the contraction was followed by the expansion of the same loop leading up to a halo coronal mass ejection. These observations further substantiate the conjecture of coronal implosion and suggest coronal implosion as a new exciter mechanism for coronal loop oscillations.

  14. Bright flares in supergiant fast X-ray transients

    NASA Astrophysics Data System (ADS)

    Shakura, N.; Postnov, K.; Sidoli, L.; Paizis, A.

    2014-08-01

    At steady low-luminosity states, supergiant fast X-ray transients (SFXTs) can be at the stage of quasi-spherical settling accretion on to slowly rotating magnetized neutron stars from the OB-companion winds. At this stage, a hot quasi-static shell is formed above the magnetosphere, the plasma entry rate into magnetosphere is controlled by (inefficient) radiative plasma cooling, and the accretion rate on to the neutron star is suppressed by a factor of ˜30 relative to the Bondi-Hoyle-Littleton value. Changes in the local wind velocity and density due to, e.g. clumps, can only slightly increase the mass accretion rate (a factor of ˜10) bringing the system into the Compton-cooling-dominated regime and led to the production of moderately bright flares (Lx ≲ 1036 erg s-1). To interpret the brightest flares (Lx > 1036 erg s-1) displayed by the SFXTs within the quasi-spherical settling accretion regimes, we propose that a larger increase in the mass accretion rate can be produced by sporadic capture of magnetized stellar wind plasma. At sufficiently low accretion rates, magnetic reconnection can enhance the magnetospheric plasma entry rate, resulting in copious production of X-ray photons, strong Compton cooling and ultimately in unstable accretion of the entire shell. A bright flare develops on the free-fall time-scale in the shell, and the typical energy released in an SFXT bright flare corresponds to the mass of the shell. This view is consistent with the energy released in SFXT bright flares (˜1038-1040 erg), their typical dynamic range (˜100) and with the observed dependence of these characteristics on the average unflaring X-ray luminosity of SFXTs. Thus, the flaring behaviour of SFXTs, as opposed to steady HMXBs, may be primarily related to their low X-ray luminosity allowing sporadic magnetic reconnection to occur during magnetized plasma entry into the magnetosphere.

  15. Optical microflaring on the nearby flare star binary UV Ceti

    NASA Astrophysics Data System (ADS)

    Schmitt, J. H. M. M.; Kanbach, G.; Rau, A.; Steinle, H.

    2016-05-01

    We present extremely high time resolution observations of the visual flare star binary UV Cet obtained with the Optical Pulsar Timing Analyzer (OPTIMA) at the 1.3 m telescope at Skinakas Observatory (SKO) in Crete, Greece. OPTIMA is a fiber-fed optical instrument that uses Single Photon Avalanche Diodes to measure the arrival times of individual optical photons. The time resolution of the observations presented here was 4 μs, allowing to resolve the typical millisecond variability time scales associated with stellar flares. We report the detection of very short impulsive bursts in the blue band with well resolved rise and decay time scales of about 2 s. The overall energetics put these flares at the lower end of the known flare distribution of UV Cet.

  16. Multi-wavelength Observations of Fast Infrared Flares from V404 Cygni in 2015

    NASA Astrophysics Data System (ADS)

    Eikenberry, Stephen S.; Dallilar, Yigit; Garner, Alan; Deno Stelter, R.; Gandhi, Poshak; Dhillon, Vik; Littlefair, Stuart; Marsh, Thomas; Fender, Rob P.; Mooley, Kunal

    2016-04-01

    We used the fast photometry mode of our new Canarias InfraRed Camera Experiment (CIRCE) on the 10.4-meter Gran Telescopio Canarias to observe V404 Cyg, a stellar mass black hole binary, on June 25, 2015 during its 2015 outburst. CIRCE provided 10Hz sampling in the Ks-band (2.2 microns) In addition, we obtained simultaneous multi wavelength data from our collaborators: three GHz radio bands from the AMI telescope and three optical/UV bands (u', g', r') from ULTRACAM on the William Herschel 4.2-meter telescope. We identify fast (1-second) IR flares with optical counterparts of varying strength/color, which we argue arise from a relativistic jet outflow. These observations provide important constraints on the emission processes and physical conditions in the jet forming region in V404 Cygni. We will discuss these results as well as their implications for relativistic jet formation around stellar-mass black holes.

  17. Multi-wavelength Observations of Fast Infrared Flares from V404 Cygni in 2015

    NASA Astrophysics Data System (ADS)

    Dallilar, Yigit; Casella, Piergiorgio; Marsh, Tom; Gandhi, Poshak; Fender, Rob; Littlefair, Stuart; Eikenberry, Steve; Garner, Alan; Stelter, Deno; Dhillon, Vik; Mooley, Kunal

    2016-07-01

    We used the fast photometry mode of our new Canarias InfraRed Camera Experiment (CIRCE) on the 10.4-meter Gran Telescopio Canarias to observe V404 Cyg, a stellar mass black hole binary, on June 25, 2015 during its 2015 outburst. CIRCE provided 10Hz sampling in the Ks-band (2.2 microns) In addition, we obtained simultaneous multi wavelength data from our collaborators: three GHz radio bands from the AMI telescope and three optical/UV bands (u', g', r') from ULTRACAM on the William Herschel 4.2-meter telescope. We identify fast (1-second) IR flares with optical counterparts of varying strength/color, which we argue arise from a relativistic jet outflow. These observations provide important constraints on the emission processes and physical conditions in the jet forming region in V404 Cygni. We will discuss these results as well as their implications for relativistic jet formation around stellar-mass black holes.

  18. Interferometric at-wavelength flare characterization of EUV optical systems

    DOEpatents

    Naulleau, Patrick P.; Goldberg, Kenneth Alan

    2001-01-01

    The extreme ultraviolet (EUV) phase-shifting point diffraction interferometer (PS/PDI) provides the high-accuracy wavefront characterization critical to the development of EUV lithography systems. Enhancing the implementation of the PS/PDI can significantly extend its spatial-frequency measurement bandwidth. The enhanced PS/PDI is capable of simultaneously characterizing both wavefront and flare. The enhanced technique employs a hybrid spatial/temporal-domain point diffraction interferometer (referred to as the dual-domain PS/PDI) that is capable of suppressing the scattered-reference-light noise that hinders the conventional PS/PDI. Using the dual-domain technique in combination with a flare-measurement-optimized mask and an iterative calculation process for removing flare contribution caused by higher order grating diffraction terms, the enhanced PS/PDI can be used to simultaneously measure both figure and flare in optical systems.

  19. UV-B and B-band Optical Flare Search in AR Lacertae, II Pegasi, and UX Arietis Star Systems

    NASA Astrophysics Data System (ADS)

    Vander Haagen, G. A.

    2013-11-01

    A high-cadence search was conducted on the known RS CVn-type flare stars AR Lac, II Peg, and UX Ari. Two optical flares were observed in the B-band on AR Lac at 5 milliseconds (ms) resolution for a rate of 0.04 fl/hr. Flare energy of the two B-band fast-flares ranged from 0.55 to 16.7 × 1033 ergs. The UV-B and B-band search of II Peg for 44.5 hours at 5 and 10 ms resolution and UV-B band search of UX Ari for 25.6 hours at 10 ms resolution detected no flare activity.

  20. OPTICAL DISCOVERY OF PROBABLE STELLAR TIDAL DISRUPTION FLARES

    SciTech Connect

    Van Velzen, Sjoert; Farrar, Glennys R.; Gezari, Suvi; Morrell, Nidia; Zaritsky, Dennis; Oestman, Linda; Smith, Mathew; Gelfand, Joseph; Drake, Andrew J.

    2011-11-10

    Using archival Sloan Digital Sky Survey (SDSS) multi-epoch imaging data (Stripe 82), we have searched for the tidal disruption of stars by supermassive black holes in non-active galaxies. Two candidate tidal disruption events (TDEs) are identified. The TDE flares have optical blackbody temperatures of 2 Multiplication-Sign 10{sup 4} K and observed peak luminosities of M{sub g} = -18.3 and -20.4 ({nu}L{sub {nu}} = 5 Multiplication-Sign 10{sup 42}, 4 Multiplication-Sign 10{sup 43} erg s{sup -1}, in the rest frame); their cooling rates are very low, qualitatively consistent with expectations for tidal disruption flares. The properties of the TDE candidates are examined using (1) SDSS imaging to compare them to other flares observed in the search, (2) UV emission measured by GALEX, and (3) spectra of the hosts and of one of the flares. Our pipeline excludes optically identifiable AGN hosts, and our variability monitoring over nine years provides strong evidence that these are not flares in hidden AGNs. The spectra and color evolution of the flares are unlike any SN observed to date, their strong late-time UV emission is particularly distinctive, and they are nuclear at high resolution arguing against these being first cases of a previously unobserved class of SNe or more extreme examples of known SN types. Taken together, the observed properties are difficult to reconcile with an SN or an AGN-flare explanation, although an entirely new process specific to the inner few hundred parsecs of non-active galaxies cannot be excluded. Based on our observed rate, we infer that hundreds or thousands of TDEs will be present in current and next-generation optical synoptic surveys. Using the approach outlined here, a TDE candidate sample with O(1) purity can be selected using geometric resolution and host and flare color alone, demonstrating that a campaign to create a large sample of TDEs, with immediate and detailed multi-wavelength follow-up, is feasible. A by-product of this

  1. Evidence for Optical Flares in Quiescent Soft X-Ray Transients

    NASA Astrophysics Data System (ADS)

    Zurita, C.; Casares, J.; Shahbaz, T.

    2003-01-01

    We present the results of high time resolution optical photometry of five quiescent soft X-ray transients (SXTs): V404 Cyg, A0620-00, J0422+32, GS 2000+25, and Cen X-4. We detect fast optical variations superposed on the secondary star's double-humped ellipsoidal modulation. The variability resembles typical flare activity and has amplitudes ranging from 0.06 to 0.6 mag. Flares occur on timescales of minutes to a few hours, with no dependency on orbital phase, and contribute ~19%-46% to the total veiling observed in the R band. We find that the observed level of flaring activity is veiled by the light of the companion star, and therefore, systems with cool companions (e.g., J0422+32) exhibit stronger variability. After correcting for this dilution, we do not find any correlation between the flaring activity and fundamental system parameters. We find no underlying coherent periods in the data, only quasi-periodic variations ranging between 30 and 90 minutes for the short-period SXTs and longer than 1 hr for V404 Cyg. The power-law index of the power spectra is consistent with what is observed at X-rays wavelengths, i.e., a 1/f distribution, which is compatible with the cellular automaton model. Our observed R'-band luminosities, which are in the range 1031-1033 ergs s-1, are too large to be due to chromospheric activity in the rapidly rotating companions. Since the typical timescale of the flares increases with orbital period, they are most likely produced in the accretion disk. The associated dynamical (Keplerian) timescales suggest that flares are produced at ~0.3Rd-0.7Rd. Possible formation mechanisms are magnetic loop reconnection events in the disk or, less likely, optical reprocessing of X-ray flares. In the former scenario, the maximum duration of the flares suggests that the outer disk is responsible for the flare events and so allows us to constrain the sharing timescale to τ~(5-6)Ω-1K.

  2. An unprecedented UV/optical flare in TV Columbae

    NASA Technical Reports Server (NTRS)

    Szkody, P.; Mateo, M.

    1984-01-01

    A surprising, 2 mag, short time scale (hr) outburst of TV Col (2A 0526-328) was observed simultaneously at IUE and optical wavelengths in 1982 November. During this 'flare', the IUE emission lines of N v 1240, C IV 1550, and He II 1640, intensified by more than an order of magnitude and developed P Cygni profiles, indicating mass loss. Continuum fits with a power-law plus a blackbody from the UV through the optical showed a steepening of the UV power-law component and an increase in the temperature and size of the blackbody component during the flare activity. This unusual behavior is discussed in terms of an accretion disk instability.

  3. A coordinated X-ray, optical, and microwave study of the flare star Proxima Centauri

    NASA Technical Reports Server (NTRS)

    Haisch, B. M.; Linsky, J. L.; Slee, O. B.; Hearn, D. R.; Walker, A. R.; Rydgren, A. E.; Nicolson, G. D.

    1978-01-01

    Results are reported for a three-day coordinated observing program to monitor the flare star Proxima Centauri in the X-ray, optical, and radio spectrum. During this interval 30 optical flares and 12 possible radio bursts were observed. The SAS 3 X-ray satellite made no X-ray detections. An upper limit of 0.08 on the X-ray/optical luminosity ratio is derived for the brightest optical flare. The most sensitive of the radio telescopes failed to detect 6-cm emission during one major and three minor optical flares, and on this basis an upper limit on the flare radio emission (1 hundred-thousandth of the optimal luminosity) is derived.

  4. The Effects of Wave Escape on Fast Magnetosonic Wave Turbulence in Solar Flares

    NASA Technical Reports Server (NTRS)

    Pongkitiwanichakul, Peera; Chandran, Benjamin D. G.; Karpen, Judith T.; DeVore, C. Richard

    2012-01-01

    One of the leading models for electron acceleration in solar flares is stochastic acceleration by weakly turbulent fast magnetosonic waves ("fast waves"). In this model, large-scale flows triggered by magnetic reconnection excite large-wavelength fast waves, and fast-wave energy then cascades from large wavelengths to small wavelengths. Electron acceleration by large-wavelength fast-waves is weak, and so the model relies on the small-wavelength waves produced by the turbulent cascade. In order for the model to work, the energy cascade time for large-wavelength fast waves must be shorter than the time required for the waves to propagate out of the solar-flare acceleration region. To investigate the effects of wave escape, we solve the wave kinetic equation for fast waves in weak turbulence theory, supplemented with a homogeneous wave-loss term.We find that the amplitude of large-wavelength fast waves must exceed a minimum threshold in order for a significant fraction of the wave energy to cascade to small wavelengths before the waves leave the acceleration region.We evaluate this threshold as a function of the dominant wavelength of the fast waves that are initially excited by reconnection outflows.

  5. THE EFFECTS OF WAVE ESCAPE ON FAST MAGNETOSONIC WAVE TURBULENCE IN SOLAR FLARES

    SciTech Connect

    Pongkitiwanichakul, Peera; Chandran, Benjamin D. G.; Karpen, Judith T.; DeVore, C. Richard E-mail: benjamin.chandran@unh.edu E-mail: devore@nrl.navy.mil

    2012-09-20

    One of the leading models for electron acceleration in solar flares is stochastic acceleration by weakly turbulent fast magnetosonic waves ({sup f}ast waves{sup )}. In this model, large-scale flows triggered by magnetic reconnection excite large-wavelength fast waves, and fast-wave energy then cascades from large wavelengths to small wavelengths. Electron acceleration by large-wavelength fast waves is weak, and so the model relies on the small-wavelength waves produced by the turbulent cascade. In order for the model to work, the energy cascade time for large-wavelength fast waves must be shorter than the time required for the waves to propagate out of the solar-flare acceleration region. To investigate the effects of wave escape, we solve the wave kinetic equation for fast waves in weak turbulence theory, supplemented with a homogeneous wave-loss term. We find that the amplitude of large-wavelength fast waves must exceed a minimum threshold in order for a significant fraction of the wave energy to cascade to small wavelengths before the waves leave the acceleration region. We evaluate this threshold as a function of the dominant wavelength of the fast waves that are initially excited by reconnection outflows.

  6. On reflecting boundary behind the Earth's orbit at propagation of fast particles from solar flares

    NASA Technical Reports Server (NTRS)

    Nishkovskikh, A. S.; Filippov, A. T.

    1985-01-01

    The flares of solar cosmic rays (SCR) associated with the presence of shocks in interplanetary magnetic field and with their propagation at significant heliocentric distances were always of great interest. Some events and problems concerning the peculiarities of propagation of flare CR in the interplanetary medium are considered. The distinguishing feature of such events is the presence of shock front behind the Earth's orbit having formed either directly in the process of shock generation on the Sun or at large heliocentric distances as a result of the interaction of fast and slow quasistationary recurrent solar wind (SW) streams. Based on the experimental material it is shown that the significant nonlinear disturbances in IMF behind the Earth's orbit can yield the occurrence of the additional SCR flux from shock front region as a result of the interaction of flare flux with shock and a partial reflection from it.

  7. INTEGRAL study of temporal properties of bright flares in Supergiant Fast X-ray Transients

    NASA Astrophysics Data System (ADS)

    Sidoli, L.; Paizis, A.; Postnov, K.

    2016-04-01

    We have characterized the typical temporal behaviour of the bright X-ray flares detected from the three Supergiant Fast X-ray Transients (SFXTs) showing the most extreme transient behaviour (XTE J1739-302, IGR J17544-2619, SAX J1818.6-1703). We focus here on the cumulative distributions of the waiting-time (time interval between two consecutive X-ray flares), and the duration of the hard X-ray activity (duration of the brightest phase of an SFXT outburst), as observed by INTEGRAL/IBIS in the energy band 17-50 keV. Adopting the cumulative distribution of waiting-times, it is possible to identify the typical time-scale that clearly separates different outbursts, each composed by several single flares at ˜ks time-scale. This allowed us to measure the duration of the brightest phase of the outbursts from these three targets, finding that they show heavy-tailed cumulative distributions. We observe a correlation between the total energy emitted during SFXT outbursts and the time interval covered by the outbursts (defined as the elapsed time between the first and the last flare belonging to the same outburst as observed by INTEGRAL). We show that temporal properties of flares and outbursts of the sources, which share common properties regardless different orbital parameters, can be interpreted in the model of magnetized stellar winds with fractal structure from the OB-supergiant stars.

  8. A search for fast optical transients in the Pan-STARRS1 medium-deep survey: M-dwarf flares, asteroids, limits on extragalactic rates, and implications for LSST

    SciTech Connect

    Berger, E.; Leibler, C. N.; Chornock, R.; Foley, R. J.; Soderberg, A. M.; Rest, A.; Price, P. A.; Burgett, W. S.; Chambers, K. C.; Flewelling, H.; Huber, M. E.; Magnier, E. A.; Tonry, J. L.; Metcalfe, N.; Stubbs, C. W.

    2013-12-10

    We present a search for fast optical transients (τ ∼ 0.5 hr-1 day) using repeated observations of the Pan-STARRS1 Medium-Deep Survey (PS1/MDS) fields. Our search takes advantage of the consecutive g {sub P1} r {sub P1} observations (16.5 minutes in each filter), by requiring detections in both bands, with non-detections on preceding and subsequent nights. We identify 19 transients brighter than 22.5 AB mag (S/N ≳ 10). Of these, 11 events exhibit quiescent counterparts in the deep PS1/MDS templates that we identify as M4-M9 dwarfs at d ≈ 0.2-1.2 kpc. The remaining eight transients lack quiescent counterparts, exhibit mild but significant astrometric shifts between the g {sub P1} and r {sub P1} images, colors of (g – r){sub P1} ≈ 0.5-0.8 mag, non-varying light curves, and locations near the ecliptic plane with solar elongations of about 130°, which are all indicative of main-belt asteroids near the stationary point of their orbits. With identifications for all 19 transients, we place an upper limit of R {sub FOT}(τ ∼ 0.5 hr) ≲ 0.12 deg{sup –2} day{sup –1} (95% confidence level) on the sky-projected rate of extragalactic fast transients at ≲ 22.5 mag, a factor of 30-50 times lower than previous limits; the limit for a timescale of ∼1 day is R {sub FOT} ≲ 2.4 × 10{sup –3} deg{sup –2} day{sup –1}. To convert these sky-projected rates to volumetric rates, we explore the expected peak luminosities of fast optical transients powered by various mechanisms, and find that non-relativistic events are limited to M ≈ –10 to ≈ – 14 mag for a timescale of ∼0.5 hr to ∼1 day, while relativistic sources (e.g., gamma-ray bursts, magnetar-powered transients) can reach much larger luminosities. The resulting volumetric rates are ≲ 13 Mpc{sup –3} yr{sup –1} (M ≈ –10 mag), ≲ 0.05 Mpc{sup –3} yr{sup –1} (M ≈ –14 mag), and ≲ 10{sup –6} Mpc{sup –3} yr{sup –1} (M ≈ –24 mag), significantly above the nova, supernova

  9. Simultaneous X-ray, ultraviolet, optical, and radio observations of the flare star Proxima Centauri

    SciTech Connect

    Haisch, B.M.; Linsky, J.L.; Slee, O.B.; Siegman, B.C.; Nikoloff, I.; Candy, M.; Harwood, D.; Verveer, A.; Quinn, P.J.; Wilson, I.; Page, A.A.; Higson, P.; Seward, F.D.

    1981-05-01

    We report on a coordinated program involving X-ray, ultraviolet, optical, and radio observations of the dM5e flare star Proxima Centauri. We detected one major X-ray flare event with L/sub x/(0.2--4.0 keV)roughly-equal6.0 x 10/sup 27/ ergs s/sup -1/, T = 1.7 x 10/sup 7/ K, and EM = 7.5 x 10/sup 50/ cm/sup -3/ during the rise phase and L/sub x/roughly-equal7.4 x 10/sup 27/ ergs s/sup -1/, T = 1.2 x 10/sup 7/ K, and EM = 12.0 x 10/sup 50/ cm/sup -3/ during the decay phase. This is the first detection of a time-resolved stellar X-ray flare that shows changes in its spectral flux distribution. We detected no ultraviolet, optical or radio emission corresponding to this flare, but we did detect a total of five optical and 12 possible radio flares, including one event with simultaneous radio and optical emission. We interpret the absence of optical and ultraviolet emission at the time of the X-ray flare in terms of an arch model in which the flare cools predominently by X-ray radiation. The observed 20 min expotential cooling time is consistent with an electron density of 1.0 x 10/sup 11/ cm/sup -3/ during the decay phase and a flare of total arch length of ..pi.. x 10/sup 10/ cm, comparable to the size of the star itself. We conclude that we have observed an X-ray flare more like a typical strong solar flare than heretofore seen on a flare star.

  10. The runaway of fast electrons into turbulent plasma of solar flares

    NASA Astrophysics Data System (ADS)

    Charikov, Yu. E.; Kudryavtsev, I. V.

    1992-08-01

    Attention is given to the problem in which a beam of fast particles falls into a layer of plasma with induced ion-sound waves and propagates inside the layer scattering by plasmons. A solution is obtained for a turbulent plasma, and, as an application, two model cases are considered: the nonthermal distribution of fast particles and the quasi-thermal one, which are discussed in interpretations of the emissions from solar flares. The scattering on the front with ion-sound waves considerably changes the distribution both quantitatively and qualitatively.

  11. Simultaneous X-ray, ultraviolet, optical, and radio observations of the flare star Proxima Centauri

    NASA Technical Reports Server (NTRS)

    Haisch, B. M.; Slee, O. B.; Siegman, B. C.; Nikoloff, I.; Candy, M.; Harwood, D.; Verveer, A.; Quinn, P. J.; Wilson, I.; Linsky, J. L.

    1981-01-01

    Results of coordinated program of observations in the X-ray, UV, optical and radio regions of the dM5e flare star Proxima Centauri are presented. Simultaneous observations of the star were obtained on March 6 and March 7, 1979, by the Einstein Observatory IPC, the IUE SWP and LWR cameras at low dispersion, three ground-based optical telescopes in Australia and the Parkes 64-m radio telescope. A total of 10 radio bursts and six optical flares was detected during three nights of simultaneous radio and optical observations, which appear to be broadly correlated. A major X-ray flare event was detected with temperatures of 1.7 x 10 to the 7th and 1.2 x 10 to the 7th K during the rise and decay phases, respectively, respective X-ray fluxes of 3.0 x 10 to the -11th and 3.7 x 10 to the -11th ergs/sq cm per sec, and changes in spectral flux distribution. No radio, optical or UV flare emission corresponding to the X-ray flare was detected. The X-ray flare is interpreted in terms of an arch model with cooling predominantly by X-ray radiation, with an electron density of 1.0 x 10 to the 11th/cu cm during the decay phase and a total arch length comparable to the size of the star itself. The X-ray flare observed is thus more similar to a typical strong solar flare than heretofore seen on a flare star.

  12. Quasi-periodic fast-mode magnetosonic wave trains within coronal waveguides associated with flares and CMEs

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Ofman, Leon; Broder, Brittany; Karlický, Marian; Downs, Cooper

    2016-03-01

    Quasi-periodic, fast-mode, propagating wave trains (QFPs) are a new observational phenomenon recently discovered in the solar corona by the Solar Dynamics Observatory with extreme ultraviolet (EUV) imaging observations. They originate from flares and propagate at speeds up to ˜2000 km s-1 within funnel-shaped waveguides in the wakes of coronal mass ejections (CMEs). QFPs can carry suffcient energy fluxes required for coronal heating during their occurr ences. They can provide new diagnostics for the solar corona and their associated flares. We present recent observations of QFPs focusing on their spatio-temporal properties, temperature dependence, and statistical correlation with flares and CMEs. Of particular interest is the 2010-Aug-01 C3.2 flare with correlated QFPs and drifting zebra and fiber radio bursts, which might be different manifestations of the same fast-mode wave trains. We also discuss the potential roles of QFPs in accelerating and/or modulating the solar wind.

  13. The starting conditions for an optically small solar gamma ray flare

    NASA Technical Reports Server (NTRS)

    Simnett, G. M.; Ryan, J. M.

    1985-01-01

    It is suggested that optically small gamma-ray flares result from gradual pre-flare acceleration of protons over approximately 1,000 s by a series of magnetohydrodynamic shocks in the low corona. A fraction of the accelerated protons are trapped in the corona where they form a seed population for future acceleration. If the shock acceleration is sufficiently rapid proton energies may exceed the gamma-ray production threshold and trigger gamma-ray emission. This occurs without the total flare energy being necessarily large. Magnetic field geometry is an important parameter.

  14. Fast-shock formation in line-tied magnetic reconnection models of solar flares

    NASA Technical Reports Server (NTRS)

    Forbes, T. G.

    1986-01-01

    In a previous study by the author, an approximately stationary fast shock was tentatively identified in a numerical experiment designed to study line-tied magnetic reconnection. Here the evidence for the occurrence of a stationary fast shock is reexamined, and the previous identification is confirmed. In the numerical experiment, line-tied reconnection is modeled by a configuration which produces two supermagnetosonic outflow jets - one directed upward, away from the photosphere, and one directed downward, toward an arcade of closed magnetic loops tied to the photosphere. The fast shock occurs when the downward-directed jet encounters the obstacle formed by the closed loops. Although the existence of a stationary, or nearly stationary, fast shock is confirmed, the transition from the supermagnetosonic flow region upstream of the shock to the nearly static region downstream of the shock is more complicated than was previously thought. Immediately downstream of the shock, there exists a deflection sheath in which the submagnetosonic flow coming out of the shock is diverted around the region of static closed loops. The MHD jump conditions are used to investigate the characteristics of the fast shock and to show that a stationary shock cannot exist unless accompanied by a deflection sheath. Analysis of the shock's location and dimensions suggests that such fast shocks may contribute to particle acceleration and to thermal condensation in flares.

  15. VLBI observations of flared optical quasar CGRaBS J0809+5341

    NASA Astrophysics Data System (ADS)

    An, Tao; Cui, Yu-Zhu; Paragi, Zsolt; Frey, Sándor; Gurvits, Leonid I.; Gabányi, Krisztina É.

    2016-08-01

    A bright optical flare was detected in the high-redshift (z = 2.133) quasar CGRaBS J0809+5341 on 2014 April 13. The absolute magnitude of the object reached -30.0 during the flare, making it the brightest one (in flaring stage) among all known quasars so far. The 15-GHz flux density of CGRaBS J0809+5341 monitored in the period from 2008 to 2016 also reached its peak at the same time. To reveal any structural change possibly associated with the flare in the innermost radio structure of the quasar, we conducted a pilot very long baseline interferometry (VLBI) observation of CGRaBS J0809+5341 using the European VLBI Network (EVN) at 5 GHz on 2014 November 18, about seven months after the prominent optical flare. Three epochs of follow-up KaVA (Korean VLBI Network and VLBI Exploration of Radio Astrometry Array) observations were carried out at 22- and 43-GHz frequencies from 2015 February 25 to June 4, with the intention of exploring a possibly emerging new radio jet component associated with the optical flare. However, these high-resolution VLBI observations revealed only the milliarcsecond-scale compact "core" that was known in the quasar from earlier VLBI images, and showed no sign of any extended jet structure. Neither the size nor the flux density of the "core" changed considerably after the flare, according to our VLBI monitoring. The results suggest that any putative radio ejecta associated with the major optical and radio flare could not yet be separated from the "core" component, or the newly-born jet was short-lived.

  16. Optical Photometry of the flaring gamma-ray blazar AO 0235+164

    NASA Astrophysics Data System (ADS)

    Pursimo, Tapio; Losada, Illa R.; Messa, Matteo; Gafton, Emanuel; Ojha, Roopesh

    2016-03-01

    We report optical photometry of the blazar AO 0235+164 obtained with the 2.56m Nordic Optical Telescope in La Palma to look for any enhanced optical activity associated with a recent flare in the daily averaged gamma-ray flux seen in the public lightcurve of the Fermi/LAT instrument: http://fermi.gsfc.nasa.gov/FTP/glast/data/lat/catalogs/asp/current/lightcurves/0235+164_86400.png Fermi/LAT first reported a detection of gamma-ray activity from this source in Sep, 2008 (ATel#1744) and a short timescale flare in Oct 14, 2008 (ATel#1784).

  17. Optical Spectral Observations of a Flickering White-light Kernel in a C1 Solar Flare

    NASA Astrophysics Data System (ADS)

    Kowalski, Adam F.; Cauzzi, Gianna; Fletcher, Lyndsay

    2015-01-01

    We analyze optical spectra of a two-ribbon, long-duration C1.1 flare that occurred on 2011 August 18 within AR 11271 (SOL2011-08-18T15:15). The impulsive phase of the flare was observed with a comprehensive set of space-borne and ground-based instruments, which provide a range of unique diagnostics of the lower flaring atmosphere. Here we report the detection of enhanced continuum emission, observed in low-resolution spectra from 3600 Å to 4550 Å acquired with the Horizontal Spectrograph at the Dunn Solar Telescope. A small, <=0.''5 (1015 cm2) penumbral/umbral kernel brightens repeatedly in the optical continuum and chromospheric emission lines, similar to the temporal characteristics of the hard X-ray variation as detected by the Gamma-ray Burst Monitor on the Fermi spacecraft. Radiative-hydrodynamic flare models that employ a nonthermal electron beam energy flux high enough to produce the optical contrast in our flare spectra would predict a large Balmer jump in emission, indicative of hydrogen recombination radiation from the upper flare chromosphere. However, we find no evidence of such a Balmer jump in the bluemost spectral region of the continuum excess. Just redward of the expected Balmer jump, we find evidence of a "blue continuum bump" in the excess emission which may be indicative of the merging of the higher order Balmer lines. The large number of observational constraints provides a springboard for modeling the blue/optical emission for this particular flare with radiative-hydrodynamic codes, which are necessary to understand the opacity effects for the continuum and emission line radiation at these wavelengths.

  18. OPTICAL SPECTRAL OBSERVATIONS OF A FLICKERING WHITE-LIGHT KERNEL IN A C1 SOLAR FLARE

    SciTech Connect

    Kowalski, Adam F.; Cauzzi, Gianna; Fletcher, Lyndsay

    2015-01-10

    We analyze optical spectra of a two-ribbon, long-duration C1.1 flare that occurred on 2011 August 18 within AR 11271 (SOL2011-08-18T15:15). The impulsive phase of the flare was observed with a comprehensive set of space-borne and ground-based instruments, which provide a range of unique diagnostics of the lower flaring atmosphere. Here we report the detection of enhanced continuum emission, observed in low-resolution spectra from 3600 Å to 4550 Å acquired with the Horizontal Spectrograph at the Dunn Solar Telescope. A small, ≤0.''5 (10{sup 15} cm{sup 2}) penumbral/umbral kernel brightens repeatedly in the optical continuum and chromospheric emission lines, similar to the temporal characteristics of the hard X-ray variation as detected by the Gamma-ray Burst Monitor on the Fermi spacecraft. Radiative-hydrodynamic flare models that employ a nonthermal electron beam energy flux high enough to produce the optical contrast in our flare spectra would predict a large Balmer jump in emission, indicative of hydrogen recombination radiation from the upper flare chromosphere. However, we find no evidence of such a Balmer jump in the bluemost spectral region of the continuum excess. Just redward of the expected Balmer jump, we find evidence of a ''blue continuum bump'' in the excess emission which may be indicative of the merging of the higher order Balmer lines. The large number of observational constraints provides a springboard for modeling the blue/optical emission for this particular flare with radiative-hydrodynamic codes, which are necessary to understand the opacity effects for the continuum and emission line radiation at these wavelengths.

  19. Solar flares

    NASA Technical Reports Server (NTRS)

    Zirin, H.

    1974-01-01

    A review of the knowledge about solar flares which has been obtained through observations from the earth and from space by various methods. High-resolution cinematography is best carried out at H-alpha wavelengths to reveal the structure, time history, and location of flares. The classification flares in H alpha according to either physical or morphological criteria is discussed. The study of flare morphology, which shows where, when, and how flares occur, is important for evaluating theories of flares. Consideration is given to studies of flares by optical spectroscopy, radio emissions, and at X-ray and XUV wavelengths. Research has shown where and possibly why flares occur, but the physics of the instability involved, of the particle acceleration, and of the heating are still not understood.

  20. Optical imaging of fast, dynamic neurophysiological function.

    SciTech Connect

    Rector, D. M.; Carter, K. M.; Yao, X.; George, J. S.

    2002-01-01

    Fast evoked responses were imaged from rat dorsal medulla and whisker barrel cortex. To investigate the biophysical mechanisms involved, fast optical responses associated with isolated crustacean nerve stimulation were recorded using birefringence and scattered light. Such studies allow optimization of non-invasive imaging techniques being developed for use in humans.

  1. Radio Nondetection of the SGR 1806–20 Giant Flare and Implications for Fast Radio Bursts

    NASA Astrophysics Data System (ADS)

    Tendulkar, Shriharsh P.; Kaspi, Victoria M.; Patel, Chitrang

    2016-08-01

    We analyze archival data from the Parkes radio telescope, which was observing a location 35.°6 away from SGR 1806‑20 during its giant γ-ray flare of 2004 December 27. We show that no fast radio burst (FRB)-like burst counterpart was detected, and set a radio limit of 110 MJy at 1.4 GHz, including the estimated 70 dB suppression of the signal due to its location in the far sidelobe of Parkes and the predicted scattering from the interstellar medium. The upper limit for the ratio of magnetar giant flare radio to γ-ray fluence is η SGR ≲ 107 Jy ms erg‑1 cm2. Based on the nondetection of a short and prompt γ-ray counterpart of 15 FRBs in γ-ray transient monitors, we set a lower limit on the fluence ratios of FRBs to be η FRB ≳ 107–9 Jy ms erg‑1 cm2. The fluence ratio limit for SGR 1806‑20 is inconsistent with all but one of the 15 FRBs. We discuss possible variations in the magnetar-FRB emission mechanism and observational caveats that may reconcile the theory with observations.

  2. Flare-associated Fast-mode Coronal Wave Trains Discovered by SDO/AIA: Physical Properties and Implications

    NASA Astrophysics Data System (ADS)

    Liu, W.; Ofman, L.; Downs, C.; Cheung, C. M. M.; Broder, B.; De Pontieu, B.

    2015-12-01

    Quasi-periodic Fast Propagating wave trains (QFPs) are a new observational phenomenon discovered in extreme ultraviolet (EUV) by the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO). They are fast-mode magnetosonic waves, closely related to quasi-periodic pulsations in solar flare emission ranging from radio to X-ray wavelengths. The significance of QFPs lies in their diagnostic potential, because they can provide critical clues to flare energy release and serve as new tools for coronal seismology. In this presentation, we report recent advances in observing and modeling QFPs. For example, using differential emission measure (DEM) inversion, we found clear evidence of heating and cooling cycles that are consistent with alternating compression and rarefaction expected for magnetosonic wave pulses. Moreover, recent IRIS observations of QFP source regions revealed sawtooth-like flare ribbon motions, indicative of pulsed magnetic reconnection, that are correlated with QFP excitation. More interestingly, from a survey of over 100 QFP events, we found a preferential association with eruptive flares rather than confined flares. We will discuss the implications of these results and the potential roles of QFPs in coronal heating, energy transport, and solar eruptions.

  3. The optical flares of active star II Pegasi in 2005

    NASA Astrophysics Data System (ADS)

    Gu, Shenghong; Kim, Kang Min; Lee, Byeong-Cheol

    2015-08-01

    We observed the active star II Peg using high-resolution spectrographs of 2.16m telescope at Xinglong station of NAOC and 1.8m telescope at BOAO of KASI from November to December, 2005. By means of spectral subtraction technique, the chromospheric activities of II Peg are analyzed at several activity indicators, including CaII IRT, Hα, NaI D1D2 and HeI D3 lines. The results demonstrate that the magnetic activity of II Peg is very strong, and its chromospheric activities show rotational modulations which imply there are active regions in its chromosphere. Two flare events were hunted during the observations, which were identified by HeI D3 line emission above the continuum. The first flare was happened in November 2005, the second one in December 2005, and they were located in different hemisphere of the star. This may indicate the evolution of active regions. Considering the photospheric spot activities, the possible origin of the detected flares is discussed.

  4. The smallest hard X-ray flare?

    NASA Astrophysics Data System (ADS)

    Glesener, Lindsay; Krucker, Sam; Hannah, Iain; Smith, David M.; Grefenstette, Brian; Marsh, Andrew; Hudson, Hugh S.; White, Stephen M.; Chen, Bin

    2016-05-01

    We report a NuSTAR observation of a small solar flare on 2015 September 1, estimated to be on the order of a GOES class A.05 flare in brightness. This flare is fainter than any hard X-ray (HXR) flares in the existing literature, and with a peak rate of only ∼5 counts s‑1 detector‑1 observed by RHESSI, is effectively the smallest that can just barely be detected by the current standard (indirectly imaging) solar HXR instrumentation, though we expect that smaller flares will continue to be discovered as instrumental and observational techniques progress. The flare occurred during a solar observation by the highly sensitive NuSTAR astrophysical HXR spacecraft, which used its direct focusing optics to produce detailed flare spectra and images. The flare exhibits properties commonly observed in larger flares, including a fast rise and more gradual decay, and similar spatial dimensions to the RHESSI microflares. We will discuss the presence of non-thermal (flare-accelerated) electrons during the impulsive phase. The flare is small in emission measure, temperature, and energy, though not in physical dimensions. Its presence is an indication that flares do indeed scale down to smaller energies and retain what we customarily think of as “flarelike” properties.

  5. Optical flare at RA 15:16:21.2 DEC -20:08:16

    NASA Astrophysics Data System (ADS)

    Nesci, Roberto; Falasca, Vincenzo; Fantaulli, Stefano

    2015-06-01

    On June 4 2015, while monitoring the occultation of the star HD 132885 by the asteroid 322 (Phaeo) in a session open to the public at the Foligno Observatory (IAU K56), we detected an optical flare with our Mintron intensified camera, mounted in parallel to the main telescope as electronic finder, with a 135mm F/2.5 objective.

  6. Fast all-optical switch

    NASA Technical Reports Server (NTRS)

    Shay, Thomas M. (Inventor); Poliakov, Evgeni Y. (Inventor); Hazzard, David A. (Inventor)

    2001-01-01

    An apparatus and method wherein polarization rotation in alkali vapors or other mediums is used for all-optical switching and digital logic and where the rate of operation is proportional to the amplitude of the pump field. High rates of speed are accomplished by Rabi flopping of the atomic states using a continuously operating monochromatic atomic beam as the pump.

  7. At-wavelength, system-level flare characterization of extreme-ultraviolet optical systems.

    PubMed

    Naulleau, P; Goldberg, K A; Gullikson, E M; Bokor, J

    2000-06-10

    The extreme-ultraviolet (EUV) phase-shifting point-diffraction interferometer (PS/PDI) has recently been developed to provide high-accuracy wave-front characterization critical to the development of EUV lithography systems. Here we describe an enhanced implementation of the PS/PDI that significantly extends its measurement bandwidth. The enhanced PS/PDI is capable of simultaneously characterizing both wave front and flare. PS/PDI-based flare characterization of two recently fabricated EUV 10x-reduction lithographic optical systems is presented. PMID:18345220

  8. Impulsively Fast Magnetic Reconnection in Solar Flares and Coronal Mass Ejections and in Laboratory Plasma Merging Experiments

    NASA Astrophysics Data System (ADS)

    Cheng, Chio Z.; Ono, Yasushi; Yang, Ya-Hui; Choe, Gwangson

    2012-10-01

    Impulsively fast magnetic reconnection has been shown to be the major mechanism responsible for explosive flare non-thermal energy release and acceleration of coronal mass ejection (CME) motion. It has been observed that for most large solar flares non-thermal emissions in hard X-rays (HXR) and millimeter/submillimeter waves impulsively rise and decade during the soft X-ray (SXR) emission rise phase. Moreover, the filament/CME upward motion is accelerated temporally in correlation with the impulsive enhancement of flare non-thermal emission and reconnection electric field in the current sheet in both simulations and observations. The peak reconnection electric field during flare impulsive phase is on the order of a few kV/m for X-class flares. Here, we demonstrated for the first time in laboratory plasma merging experiments the correlation of the magnetic reconnection rate with the acceleration of plasmoid ejected from the current sheet using the TS-4 device of the Tokyo University. Moreover, we have also found that the electron heating occurs in the current sheet and the ion heating occurs in the down-stream outflow region. Thus, we conclude that the plasmoid/CME acceleration is a key mechanism for the impulsive enhancement of magnetic reconnection rate (electric field).

  9. Final Technical Report CMS fast optical calorimetry

    SciTech Connect

    Winn, David R.

    2012-07-12

    This is the final report of CMS FAST OPTICAL CALORIMETRY, a grant to Fairfield University for development, construction, installation and operation of the forward calorimeter on CMS, and for upgrades of the forward and endcap calorimeters for higher luminosity and radiation damage amelioration.

  10. THE CRAB NEBULA SUPER-FLARE IN 2011 APRIL: EXTREMELY FAST PARTICLE ACCELERATION AND GAMMA-RAY EMISSION

    SciTech Connect

    Striani, E.; Tavani, M.; Cardillo, M; Piano, G.; Donnarumma, I.; Vittorini, V.; Trois, A.; Costa, E.; Argan, A.; De Paris, G.; Bulgarelli, A.; Pittori, C.; Verrecchia, F.; Weisskopf, M.; Tennant, A.; Barbiellini, G.; Caraveo, P.; Chen, A. W.

    2011-11-01

    We report on the extremely intense and fast gamma-ray flare above 100 MeV detected by AGILE from the Crab Nebula in mid-April 2011. This event is the fourth of a sequence of reported major gamma-ray flares produced by the Crab Nebula in the period 2007/mid-2011. These events are attributed to strong radiative and plasma instabilities in the inner Crab Nebula, and their properties are crucial for theoretical studies of fast and efficient particle acceleration up to 10{sup 15} eV. Here we study the very rapid flux and spectral evolution of the event that on 2011 April 16 reached the record-high peak flux of F = (26 {+-} 5) x 10{sup -6} photons cm{sup -2} s{sup -1} with a rise-time timescale that we determine to be in the range 6-10 hr. The peak flaring gamma-ray spectrum reaches a distinct maximum near 500 MeV with no substantial emission above 1 GeV. The very rapid rise time and overall evolution of the Crab Nebula flare strongly constrain the acceleration mechanisms and challenge MHD models. We briefly discuss the theoretical implications of our observations.

  11. CORRELATED OPTICAL AND X-RAY FLARES IN THE AFTERGLOW OF XRF 071031

    SciTech Connect

    Kruehler, T.; Greiner, J.; McBreen, S.; Afonso, P.; Clemens, C.; Filgas, R.; Yoldas, A.; Klose, S.; Rossi, A.; Yoldas, A. Kuepcue; Szokoly, G. P.

    2009-05-20

    We present a densely sampled early light curve of the optical/near-infrared (NIR) afterglow of the X-Ray Flash (XRF) 071031 at z = 2.692. Simultaneous and continuous observations in seven photometric bands from g' to K{sub S} with GROND (Gamma-Ray Burst Optical/Near-InfraRed Detector) at the 2.2-m MPI/ESO telescope on LaSilla were performed between 4 minutes and 7 hr after the burst. The light curve consists of 547 individual points which allows us to study the early evolution of the optical transient associated with XRF 071031 in great detail. The optical/NIR light curve is dominated by an early increase in brightness which can be attributed to the apparent onset of the forward shock emission. There are several bumps which are superimposed onto the overall rise and decay. Significant flaring is also visible in the Swift X-Ray Telescope (XRT) light curve from early to late times. The availability of high-quality, broadband data enables detailed studies of the connection between the X-ray and optical/NIR afterglow and its color evolution during the first night postburst. We find evidence of spectral hardening in the optical bands contemporaneous with the emergence of the bumps from an underlying afterglow component. The bumps in the optical/NIR light curve can be associated with flares in the X-ray regime suggesting late central engine activity as the common origin.

  12. Fast blur removal via optical computing

    NASA Astrophysics Data System (ADS)

    Suo, Jinli; Yue, Tao; Dai, Qionghai

    2014-11-01

    Non-uniform image blur caused by camera shake or lens aberration is a common degradation in practical capture. Different from the uniform blur, non-uniform one is hard to deal with for its extremely high computation complexity as the blur model computation cannot be accelerated by Fast Fourier Transform (FFT). We propose to compute the most computational consuming operation, i.e. blur model calculation, by an optical computing system to realize fast and accurate non-uniform image deblur. A prototype system composed by a projector-camera system as well as a high dimensional motion platform (for motion blur) or original camera lens (for optics aberrations) is implemented. Our method is applied on a series of experiments, either on synthetic or real captured images, to verify its effectiveness and efficient.

  13. High-frequency optical oscillation during the flare phase of the red dwarf EV Lac

    NASA Astrophysics Data System (ADS)

    Contadakis, M. E.; Avgoloupis, S.; Seiradakis, J.

    2006-01-01

    The observational support of the presence of high frequency low amplitude oscillations reported by Zhillyaev et al. 2000 and Contadakis et al. 2004, is highly demanding and will be done by the future observations and by carefully reanalysing the data from our files. In this paper we present the results of the analysis of the B-light curve for a flare of magnitude 1.01,which was observed on September,1993. Despite the low time resolution (sampling interval 12s) we were able to detect transient low amplitude oscillations with period ranging between 30s and 125s with a confidence level higher than 70%. This result is in favour of (or does not contradict) the suggested explanation i.e the evolution of a fast mode magneto-acoustic wave generated at the impulsive phase of the flare and travelling through the magnetic loop

  14. High-frequency optical oscillation during the flare phase of the red dwarf EV Lac

    NASA Astrophysics Data System (ADS)

    Contadakis, M.; Avgoloupis, S.; Seiradakis, J.

    2006-01-01

    The observational support of the presence of high frequency low amplitude oscillations reported by Zhillyaev et al. 2000 and Contadakis et al. 2004, is highly demanding and will be done by the future observations and by carefully reanalysing the data from our files. In this paper we present the results of the analysis of the B-light curve for a flare of magnitude 1.01,which was observed on September,1993. Despite the low time resolution (sampling interval 12s) we were able to detect transient low amplitude oscillations with period ranging between 30s and 125s with a confidence level higher than 70%. This result is in favour of (or does not contradict) the suggested explanation i.e the evolution of a fast mode magneto-acoustic wave generated at the impulsive phase of the flare and travelling through the magnetic loop From: Michael E.Contadakis Address: kodadaki@vergina.eng.auth.gr Database: phy

  15. Fast optical switch having reduced light loss

    NASA Technical Reports Server (NTRS)

    Nelson, Bruce N. (Inventor); Cooper, Ronald F. (Inventor)

    1992-01-01

    An electrically controlled optical switch uses an electro-optic crystal of the type having at least one set of fast and slow optical axes. The crystal exhibits electric field induced birefringence such that a plane of polarization oriented along a first direction of a light beam passing through the crystal may be switched to a plane of polarization oriented along a second direction. A beam splitting polarizer means is disposed at one end of the crystal and directs a light beam passing through the crystal whose plane of polarization is oriented along the first direction differently from a light beam having a plane of polarization oriented along the second direction. The electro-optic crystal may be chosen from the crystal classes 43m, 42m, and 23. In a preferred embodiment, the electro-optic crystal is a bismuth germanium oxide crystal or a bismuth silicon oxide crystal. In another embodiment of the invention, polarization control optics are provided which transmit substantially all of the incident light to the electro-optic crystal, substantially reducing the insertion loss of the switch.

  16. Fast launch speeds in radio flares, from a new determination of the intrinsic motions of SS 433's jet bolides

    NASA Astrophysics Data System (ADS)

    Jeffrey, Robert M.; Blundell, Katherine M.; Trushkin, Sergei A.; Mioduszewski, Amy J.

    2016-06-01

    We present new high-resolution, multi-epoch, VLBA radio images of the Galactic microquasar SS 433. We are able to observe plasma knots in the milliarcsecond-scale jets more than 50 days after their launch. This unprecedented baseline in time allows us to determine the bulk launch speed of the radio-emitting plasma during a radio flare, using a new method which we present here, and which is completely independent of optical spectroscopy. We also apply this method to an earlier sequence of 39 short daily VLBA observations, which cover a period in which SS 433 moved from quiescence into a flare. In both datasets we find, for the first time at radio wavebands, clear evidence that the launch speeds of the milliarcsecond-scale jets rise as high as 0.32c during flaring episodes. By comparing these images of SS 433 with photometric radio monitoring from the RATAN telescope, we explore further properties of these radio flares.

  17. Fast launch speeds in radio flares, from a new determination of the intrinsic motions of SS 433's jet bolides

    NASA Astrophysics Data System (ADS)

    Jeffrey, Robert M.; Blundell, Katherine M.; Trushkin, Sergei A.; Mioduszewski, Amy J.

    2016-09-01

    We present new high-resolution, multi-epoch, Very Long Baseline Array (VLBA) radio images of the Galactic microquasar SS 433. We are able to observe plasma knots in the milliarcsecond-scale jets more than 50 d after their launch. This unprecedented baseline in time allows us to determine the bulk launch speed of the radio-emitting plasma during a radio flare, using a new method which we present here, and which is completely independent of optical spectroscopy. We also apply this method to an earlier sequence of 39 short daily VLBA observations, which cover a period in which SS 433 moved from quiescence into a flare. In both data sets we find, for the first time at radio wavebands, clear evidence that the launch speeds of the milliarcsecond-scale jets rise as high as 0.32c during flaring episodes. By comparing these images of SS 433 with photometric radio monitoring from the RATAN-600 telescope, we explore further properties of these radio flares.

  18. Stochastic acceleration of electrons by fast magnetosonic waves in solar flares: the effects of anisotropy in velocity and wavenumber space

    SciTech Connect

    Pongkitiwanichakul, Peera; Chandran, Benjamin D. G.

    2014-11-20

    We develop a model for stochastic acceleration of electrons in solar flares. As in several previous models, the electrons are accelerated by turbulent fast magnetosonic waves ({sup f}ast waves{sup )} via transit-time-damping (TTD) interactions. (In TTD interactions, fast waves act like moving magnetic mirrors that push the electrons parallel or anti-parallel to the magnetic field). We also include the effects of Coulomb collisions and the waves' parallel electric fields. Unlike previous models, our model is two-dimensional in both momentum space and wavenumber space and takes into account the anisotropy of the wave power spectrum F{sub k} and electron distribution function f {sub e}. We use weak turbulence theory and quasilinear theory to obtain a set of equations that describes the coupled evolution of F{sub k} and f {sub e}. We solve these equations numerically and find that the electron distribution function develops a power-law-like non-thermal tail within a restricted range of energies E in (E {sub nt}, E {sub max}). We obtain approximate analytic expressions for E {sub nt} and E {sub max}, which describe how these minimum and maximum energies depend upon parameters such as the electron number density and the rate at which fast-wave energy is injected into the acceleration region at large scales. We contrast our results with previous studies that assume that F{sub k} and f {sub e} are isotropic, and we compare one of our numerical calculations with the time-dependent hard-X-ray spectrum observed during the 1980 June 27 flare. In our numerical calculations, the electron energy spectra are softer (steeper) than in models with isotropic F{sub k} and f {sub e} and closer to the values inferred from observations of solar flares.

  19. Fast optical measurement of intraocular straylight

    NASA Astrophysics Data System (ADS)

    Ginis, Harilaos; Sahin, Onurcan; Artal, Pablo

    2015-03-01

    Light scattering in the human eye can deteriorate image quality and limit visual performance especially at the presence of a glare source. Optical measurement of straylight in the human eye is a challenging task where issues related to various inherent artifacts must be addressed. We report on a novel instrument based on the principle of double-pass optical integration that has been adapted for fast measurements suitable for a clinical setting. The instrument utilizes a light source formed by an array of green light emitting diodes that is projected onto the ocular fundus. The source has two concentric parts, a disk (field angle 0-3 degrees) and an annulus (3 - 8 degrees) that are modulated at different frequencies. A silicon photomultiplier receives the light reflected from the central part of the fundus and the Fourier transform of the signal reveals the contribution of each part of the source. Their relative amplitude is used to quantify light scattering by means of the straylight parameter. The instrument was initially validated using known diffusers. Straylight in a cohort of cataract patients (N=39) was measured. The optically measured straylight parameter was correlated to the clinical cataract grade as well to the psychophysically estimated value. The measurement method, utilizing rotational symmetry and coding filed angles with different frequencies eliminates the need for a highperformance camera and allows fast measurements. This approach can be further advanced with multiple wavelengths and field angles to perform other measurements such as that of the macular pigment density.

  20. An ultraviolet-optical flare from the tidal disruption of a helium-rich stellar core.

    PubMed

    Gezari, S; Chornock, R; Rest, A; Huber, M E; Forster, K; Berger, E; Challis, P J; Neill, J D; Martin, D C; Heckman, T; Lawrence, A; Norman, C; Narayan, G; Foley, R J; Marion, G H; Scolnic, D; Chomiuk, L; Soderberg, A; Smith, K; Kirshner, R P; Riess, A G; Smartt, S J; Stubbs, C W; Tonry, J L; Wood-Vasey, W M; Burgett, W S; Chambers, K C; Grav, T; Heasley, J N; Kaiser, N; Kudritzki, R-P; Magnier, E A; Morgan, J S; Price, P A

    2012-05-10

    The flare of radiation from the tidal disruption and accretion of a star can be used as a marker for supermassive black holes that otherwise lie dormant and undetected in the centres of distant galaxies. Previous candidate flares have had declining light curves in good agreement with expectations, but with poor constraints on the time of disruption and the type of star disrupted, because the rising emission was not observed. Recently, two 'relativistic' candidate tidal disruption events were discovered, each of whose extreme X-ray luminosity and synchrotron radio emission were interpreted as the onset of emission from a relativistic jet. Here we report a luminous ultraviolet-optical flare from the nuclear region of an inactive galaxy at a redshift of 0.1696. The observed continuum is cooler than expected for a simple accreting debris disk, but the well-sampled rise and decay of the light curve follow the predicted mass accretion rate and can be modelled to determine the time of disruption to an accuracy of two days. The black hole has a mass of about two million solar masses, modulo a factor dependent on the mass and radius of the star disrupted. On the basis of the spectroscopic signature of ionized helium from the unbound debris, we determine that the disrupted star was a helium-rich stellar core. PMID:22575962

  1. Simultaneous Extreme-Ultraviolet Explorer and Optical Observations of Ad Leonis: Evidence for Large Coronal Loops and the Neupert Effect in Stellar Flares

    NASA Technical Reports Server (NTRS)

    Hawley, Suzanne L.; Fisher, George H.; Simon, Theodore; Cully, Scott L.; Deustua, Susana E.; Jablonski, Marek; Johns-Krull, Christopher; Pettersen, Bjorn R.; Smith, Verne; Spiesman, William J.; Valenti, Jeffrey

    1995-01-01

    We report on the first simultaneous Extreme-Ultraviolet Explorer (EUVE) and optical observations of flares on the dMe flare star AD Leonis. The data show the following features: (1) Two flares (one large and one of moderate size) of several hours duration were observed in the EUV wavelength range; (2) Flare emission observed in the optical precedes the emission seen with EUVE; and (3) Several diminutions (DIMs) in the optical continuum were observed during the period of optical flare activity. To interpret these data, we develop a technique for deriving the coronal loop length from the observed rise and decay behavior of the EUV flare. The technique is generally applicable to existing and future coronal observations of stellar flares. We also determine the pressure, column depth, emission measure, loop cross-sectional area, and peak thermal energy during the two EUV flares, and the temperature, area coverage, and energy of the optical continuum emission. When the optical and coronal data are combined, we find convincing evidence of a stellar 'Neupert effect' which is a strong signature of chromospheric evaporation models. We then argue that the known spatial correlation of white-light emission with hard X-ray emission in solar flares, and the identification of the hard X-ray emission with nonthermal bremsstrahlung produced by accelerated electrons, provides evidence that flare heating on dMe stars is produced by the same electron precipitation mechanism that is inferred to occur on the Sun. We provide a thorough picture of the physical processes that are operative during the largest EUV flare, compare and contrast this picture with the canonical solar flare model, and conclude that the coronal loop length may be the most important factor in determining the flare rise time and energetics.

  2. SoFAST: Automated Flare Detection with the PROBA2/SWAP EUV Imager

    NASA Astrophysics Data System (ADS)

    Bonte, K.; Berghmans, D.; De Groof, A.; Steed, K.; Poedts, S.

    2013-08-01

    The Sun Watcher with Active Pixels and Image Processing (SWAP) EUV imager onboard PROBA2 provides a non-stop stream of coronal extreme-ultraviolet (EUV) images at a cadence of typically 130 seconds. These images show the solar drivers of space-weather, such as flares and erupting filaments. We have developed a software tool that automatically processes the images and localises and identifies flares. On one hand, the output of this software tool is intended as a service to the Space Weather Segment of ESA's Space Situational Awareness (SSA) program. On the other hand, we consider the PROBA2/SWAP images as a model for the data from the Extreme Ultraviolet Imager (EUI) instrument prepared for the future Solar Orbiter mission, where onboard intelligence is required for prioritising data within the challenging telemetry quota. In this article we present the concept of the software, the first statistics on its effectiveness and the online display in real time of its results. Our results indicate that it is not only possible to detect EUV flares automatically in an acquired dataset, but that quantifying a range of EUV dynamics is also possible. The method is based on thresholding of macropixelled image sequences. The robustness and simplicity of the algorithm is a clear advantage for future onboard use.

  3. Optical imaging of fast light-evoked fast neural activation in amphibian retina

    NASA Astrophysics Data System (ADS)

    Yao, Xin-Cheng; George, John S.

    2006-02-01

    High performance functional imaging is needed for dynamic measurements of neural processing in retina. Emerging techniques of visual prosthesis also require advanced methodology for reliable validation of electromagnetic stimulation of the retina. Imaging of fast intrinsic optical responses associated with neural activation promises a variety of technical advantages over traditional single and multi-channel electrophysiological techniques for these purposes, but the application of fast optical signals for neural imaging has been limited by low signal to noise ratio and high background light intensity. However, using optimized near infrared probe light and improved optical systems, we have improved the optical signals substantially, allowing single pass measurements. Fast photodiode measurements typically disclose dynamic transmitted light changes of whole retina at the level of 10 -4 dI/I, where dI is the dynamic optical change and I is the baseline light intensity. Using a fast high performance CCD, we imaged fast intrinsic optical responses from isolated retina activated by a visible light flash. Fast, high resolution imaging disclosed larger local optical responses, and showed evidence of multiple response components with both negative- and positive-going signals, on different timescales. Darkfield imaging techniques further enhanced the sensitivity of optical measurements. At single cell resolution, brightfield imaging disclosed maxima of optical responses ~5% dI/I, while darkfield imaging showed maxima of optical responses exceeding 10% dI/I. In comparison with simultaneous electrophysiological recording, optical imaging provided much better localized patterns of response over the activated area of the retina.

  4. Discovery of the optical polarization flare following the X-ray giant outburst of V0332+53.

    NASA Astrophysics Data System (ADS)

    Slowikowska, Agnieszka; Reig, Pablo; Krzeszowski, Krzysztof; Zejmo, M. Michal

    2016-07-01

    V0332+53 is a transient Be X-ray binary that went through a giant outburst between June 2015 and October 2015 registered by the Gamma-ray Burst Monitor (GMB) on board of the Fermi satellite. We present the discovery of a flare of linearly polarized optical light in V0332+53 that followed the X-ray outburst. We monitored the source with the multi-wavelength optical polarimeter RINGO3 on the 2-m fully robotic Liverpool Telescope located at the Observatorio del Roque de Los Muchachos on La Palma. RINGO3 measures polarization simultaneously in three spectral wavelength bands: blue (350-640 nm), green (650-760 nm) and red (770-1000 nm). The polarized optical flare went off around 90 days after the X-ray burst and lasted another 90 days in all three wavelength bands of RINGO3. Polarization degree reached up to 6% in blue and up to 4% in red, while the PA changed by more than 100 degrees during the flare. This is the first detection of optical polarization flare of high mass X-ray binary correlated with a preceding X-ray outburst. Our observations shed new light on the activities of X-ray binaries.

  5. Optical flare activity in the low-mass eclipsing binary GJ 3236

    NASA Astrophysics Data System (ADS)

    Parimucha, Š.; Dubovský, P.; Vaňko, M.; Čokina, M.

    2016-09-01

    We present our observations of the low-mass eclipsing binary GJ 3236. We have analyzed a phased RC light-curve and confirmed previously determined fundamental parameters of the components. We detected evolution of the spot(s) and found that there exists a large spot near a polar region of the primary component and another spot either on the primary or the secondary component. We also observed 7 flare events and determined a flare rate of about 0.1 flares per hour. We observed two high energy, long-term flares with a complex light curve and possibly four weak short-term flaring events. A majority of the flares was detected in the RC filter, which indicate their high energy.

  6. RoboPol: optical polarization-plane rotations and flaring activity in blazars

    NASA Astrophysics Data System (ADS)

    Blinov, D.; Pavlidou, V.; Papadakis, I. E.; Hovatta, T.; Pearson, T. J.; Liodakis, I.; Panopoulou, G. V.; Angelakis, E.; Baloković, M.; Das, H.; Khodade, P.; Kiehlmann, S.; King, O. G.; Kus, A.; Kylafis, N.; Mahabal, A.; Marecki, A.; Modi, D.; Myserlis, I.; Paleologou, E.; Papamastorakis, I.; Pazderska, B.; Pazderski, E.; Rajarshi, C.; Ramaprakash, A.; Readhead, A. C. S.; Reig, P.; Tassis, K.; Zensus, J. A.

    2016-04-01

    We present measurements of rotations of the optical polarization of blazars during the second year of operation of RoboPol, a monitoring programme of an unbiased sample of gamma-ray bright blazars specially designed for effective detection of such events, and we analyse the large set of rotation events discovered in two years of observation. We investigate patterns of variability in the polarization parameters and total flux density during the rotation events and compare them to the behaviour in a non-rotating state. We have searched for possible correlations between average parameters of the polarization-plane rotations and average parameters of polarization, with the following results: (1) there is no statistical association of the rotations with contemporaneous optical flares; (2) the average fractional polarization during the rotations tends to be lower than that in a non-rotating state; (3) the average fractional polarization during rotations is correlated with the rotation rate of the polarization plane in the jet rest frame; (4) it is likely that distributions of amplitudes and durations of the rotations have physical upper bounds, so arbitrarily long rotations are not realized in nature.

  7. Coronal propagation of solar flare particles observed by satellite

    NASA Technical Reports Server (NTRS)

    Kohno, T.; Nitta, N.; Wada, M.; Suda, T.

    1985-01-01

    Propagation of solar flare particles in corona was studied using the satellite data at the geostationary orbit. by selecting very fast rise time events only, the interplanetary propagation were assumed to be scatter free arrival. The results show that the propagation in corona does not depend on particle energy in 4 to 500 MeV protons, and the time delays from optical flare do not depend on the distance between the flare site and the base of the interplanetary magnetic field which connects to the Earth.

  8. Mirroring of fast solar flare electrons on a downstream corotating interaction region

    NASA Technical Reports Server (NTRS)

    Anderson, K. A.; Sommers, J.; Lin, R. P.; Pick, M.; Chaizy, P.; Murphy, N.; Smith, E. J.; Phillips, J. L.

    1995-01-01

    We discuss an example of confinement of fast solar electrons by a discrete solar wind-interplanetary magnetic field structure on February 22, 1991. The structure is about 190,000 km in width and is clearly defined by changes in the direction of the magnetic field at the Ulysses spacecraft. This structure carries electrons moving toward the Sun as well as away from the Sun. A loss cone in the angular distribution of the fast electrons shows that mirroring, presumably magnetic, takes place downstream from the spacecraft. Following passage of this narrow structure, the return flux vanishes for 21 min after which time the mirroring resumes and persists for several hours. We identify the enhanced magnetic field region lying downstream from the Ulysses spacecraft that is responsible for the mirroring to be a corotating stream interaction region. Backstreaming suprathermal electron measurements by the Los Alamos National Laboratory plasma experiment on the Ulysses spacecraft support this interpretation.

  9. Mirroring of fast solar flare electrons on a downstream corotating interaction region

    SciTech Connect

    Anderson, K.A.; Sommers, J.; Lin, R.P.; Pick, M.; Chaizy, P.; Murphy, N.; Smith, E.J.; Phillips, J.L.

    1995-01-01

    The authors discuss an example of confinement of fast solar electrons by a discrete solar wind-interplanetary magnetic field structure on February 22, 1991. The structure is about 190,000 km in width and is clearly defined by changes in the direction of the magnetic field at the Ulysses spacecraft. This structure carries electrons moving toward the Sun as well as away from the Sun. A loss cone in the angular distribution of the fast electrons shows that mirroring, presumably magnetic, takes place downstream from the spacecraft. Following passage of this narrow structure, the return flux vanishes for 21 min after which time the mirroring resumes and persists for several hours. The authors identify the enhanced magnetic field region lying downstream from the Ulysses spacecraft that is responsible for the mirroring to be a corotating stream interaction region. Backstreaming suprathermal electron measurements by the Los Alamos National Laboratory plasma experiment on the Ulysses spacecraft support this interpretation. 12 refs., 9 figs.

  10. Optical polarization map of the Polaris Flare with RoboPol

    NASA Astrophysics Data System (ADS)

    Panopoulou, G.; Tassis, K.; Blinov, D.; Pavlidou, V.; King, O. G.; Paleologou, E.; Ramaprakash, A.; Angelakis, E.; Baloković, M.; Das, H. K.; Feiler, R.; Hovatta, T.; Khodade, P.; Kiehlmann, S.; Kus, A.; Kylafis, N.; Liodakis, I.; Mahabal, A.; Modi, D.; Myserlis, I.; Papadakis, I.; Papamastorakis, I.; Pazderska, B.; Pazderski, E.; Pearson, T. J.; Rajarshi, C.; Readhead, A. C. S.; Reig, P.; Zensus, J. A.

    2015-09-01

    The stages before the formation of stars in molecular clouds are poorly understood. Insights can be gained by studying the properties of quiescent clouds, such as their magnetic field structure. The plane-of-the-sky orientation of the field can be traced by polarized starlight. We present the first extended, wide-field (˜10 deg2) map of the Polaris Flare cloud in dust-absorption induced optical polarization of background stars, using the Robotic Polarimeter (RoboPol) polarimeter at the Skinakas Observatory. This is the first application of the wide-field imaging capabilities of RoboPol. The data were taken in the R band and analysed with the automated reduction pipeline of the instrument. We present in detail optimizations in the reduction pipeline specific to wide-field observations. Our analysis resulted in reliable measurements of 641 stars with median fractional linear polarization 1.3 per cent. The projected magnetic field shows a large-scale ordered pattern. At high longitudes it appears to align with faint striations seen in the Herschel-Spectral and Photometric Imaging Receiver (SPIRE) map of dust emission (250 μm), while in the central 4-5 deg2 it shows an eddy-like feature. The overall polarization pattern we obtain is in good agreement with large-scale measurements by Planck of the dust emission polarization in the same area of the sky.

  11. A Lyman-alpha tunable acousto-optic filter for detecting superthermal flare protons

    NASA Technical Reports Server (NTRS)

    Mickey, Donald L.

    1994-01-01

    The goal of this project was to develop and characterize a narrow-band, tunable filter for use near the Lyman-alpha line of hydrogen at 121.6 nm. Such a filter could form the critical component of an instrument to observe asymmetries in the solar Lyman-alpha line, caused by energetic protons accelerated during the impulsive phase of solar flares. Characteristic charge-exchange nonthermal emission at Lyman alpha should be produced when sub-MeV protons are injected into the chromosphere, but no instrument suitable for their detection has been developed. Such an instrument would require a narrow-band (less than 0.01 nm) tunable filter with aperture and throughput consistent with imaging a solar active region at 0.1 second intervals. The development of acousto-optic tunable filters (AOTF) suitable for use as compact, simple tunable filters for astronomical work suggested an investigation into the use of an AOTF at Lyman-alpha.

  12. Lithographic measurement of EUV flare in the 0.3-NA Micro ExposureTool optic at the Advanced Light Source

    SciTech Connect

    Cain, Jason P.; Naulleau, Patrick; Spanos, Costas J.

    2005-01-01

    The level of flare present in a 0.3-NA EUV optic (the MET optic) at the Advanced Light Source at Lawrence Berkeley National Laboratory is measured using a lithographic method. Photoresist behavior at high exposure doses makes analysis difficult. Flare measurement analysis under scanning electron microscopy (SEM) and optical microscopy is compared, and optical microscopy is found to be a more reliable technique. In addition, the measured results are compared with predictions based on surface roughness measurement of the MET optical elements. When the fields in the exposure matrix are spaced far enough apart to avoid influence from surrounding fields and the data is corrected for imperfect mask contrast and aerial image proximity effects, the results match predicted values quite well. The amount of flare present in this optic ranges from 4.7% for 2 {micro}m features to 6.8% for 500 nm features.

  13. Fast integrated optical switching by the protein bacteriorhodopsin

    NASA Astrophysics Data System (ADS)

    Fábián, László; Wolff, Elmar K.; Oroszi, László; Ormos, Pál; Dér, András

    2010-07-01

    State-of-the-art photonic integration technology is ready to provide the passive elements of optical integrated circuits, based either on silicon, glass or plastic materials. The bottleneck is to find the proper nonlinear optical (NLO) materials in waveguide-based integrated optical circuits for light-controlled active functions. Recently, we proposed an approach where the active role is performed by the chromoprotein bacteriorhodopsin as an NLO material, that can be combined with appropriate integrated optical devices. Here we present data supporting the possibility of switching based on a fast photoreaction of bacteriorhodopsin. The results are expected to have important implications for photonic switching technology.

  14. Fast Dynamics for Atoms in Optical Lattices

    NASA Astrophysics Data System (ADS)

    Łącki, Mateusz; Zakrzewski, Jakub

    2013-02-01

    Cold atoms in optical lattices allow for accurate studies of many body dynamics. Rapid time-dependent modifications of optical lattice potentials may result in significant excitations in atomic systems. The dynamics in such a case is frequently quite incompletely described by standard applications of tight-binding models (such as, e.g., Bose-Hubbard model or its extensions) that typically neglect the effect of the dynamics on the transformation between the real space and the tight-binding basis. We illustrate the importance of a proper quantum mechanical description using a multiband extended Bose-Hubbard model with time-dependent Wannier functions. We apply it to situations directly related to experiments.

  15. Investigation on Radio-Quiet and Radio-Loud Fast CMEs and Their Associated Flares During Solar Cycles 23 and 24

    NASA Astrophysics Data System (ADS)

    Suresh, K.; Shanmugaraju, A.

    2015-03-01

    We present the results of a detailed analysis on the differences between radio-loud (RL) and radio-quiet (RQ) fast coronal mass ejections (CMEs) ( V≥900 km s-1) observed during the period 1996 - 2012. The analysis consists of three different steps in which we examined the properties of (i) RL and RQ CMEs, (ii) accelerating (class-A) and decelerating (class-D) CMEs among RL and RQ CMEs, and (iii) associated flares. The last two steps and events from a longer period are the extensions of the earlier work on RL and RQ CMEs that mainly aimed to determine the reason for the radio-quietness of some fast CMEs. During this period, we found that 38 % of fast CMEs are RL and 62 % of fast CMEs are RQ. Moreover, fewer RQ CMEs occur around the disc centre. The average speeds of RL and RQ CMEs are 1358 km s-1 and 1092 km s-1. Around 10 % of the RQ events are halo CMEs, but ≈ 66 % of RL events are halo CMEs. The mean acceleration or deceleration value of RL-CMEs is slightly greater than that of RQ-CMEs. When we divide these events based on their acceleration behaviour into class A and class D, there are no considerable differences between classes A and D of RL-CMEs or between classes A and D of RQ CMEs, except for their initial acceleration values. But there are significant differences among their associated flare properties. According to our study here, the RQ CMEs are less energetic than RL CMEs, and they are not associated with flares as strong as those associated with RL CMEs. This confirms the previous results that RQ CMEs do not often exceed the critical Alfvén speed of 1000 km s-1 in the outer corona that is needed to produce type II radio bursts.

  16. The 100-month Swift catalogue of supergiant fast X-ray transients. I. BAT on-board and transient monitor flares

    NASA Astrophysics Data System (ADS)

    Romano, P.; Krimm, H. A.; Palmer, D. M.; Ducci, L.; Esposito, P.; Vercellone, S.; Evans, P. A.; Guidorzi, C.; Mangano, V.; Kennea, J. A.; Barthelmy, S. D.; Burrows, D. N.; Gehrels, N.

    2014-02-01

    Context. Supergiant fast X-ray transients (SFXTs) are high mass X-ray binaries (HMXBs) that are defined by their hard X-ray flaring behaviour. During these flares they reach peak luminosities of 1036-1037 erg s-1 for a few hours (in the hard X-ray), which are much shorter timescales than those characterizing Be/X-ray binaries. Aims: We investigate the characteristics of bright flares (detections in excess of 5σ) for a sample of SFXTs and their relation to the orbital phase. Methods: We have retrieved all Swift/BAT Transient Monitor light curves and collected all detections in excess of 5σ from both daily- and orbital-averaged light curves in the time range of 2005 February 12 to 2013 May 31 (MJD 53 413-56 443). We also considered all on-board detections as recorded in the same time span and selected those in excess of 5σ and within 4 arcmin of each source in our sample. Results: We present a catalogue of over a thousand BAT flares from 11 SFXTs, down to 15-150 keV fluxes of ~6 × 10-10 erg cm-2 s-1 (daily timescale) and ~1.5 × 10-9 erg cm-2 s-1 (orbital timescale, averaging ~800 s); the great majority of these flares are unpublished. The catalogue spans 100 months. This population is characterized by short (a few hundred seconds) and relatively bright (in excess of 100 mCrab, 15-50 keV) events. In the hard X-ray, these flares last generally much less than a day. Clustering of hard X-ray flares can be used to indirectly measure the length of an outburst, even when the low-level emission is not detected. We construct the distributions of flares, of their significance (in terms of σ), and of their flux as a function of orbital phase to infer the properties of these binary systems. In particular, we observe a trend of clustering of flares at some phases as Porb increases, which is consistent with a progression from tight circular or mildly eccentric orbits at short periods to wider and more eccentric orbits at longer orbital periods. Finally, we estimate the

  17. Fast frequency hopping codes applied to SAC optical CDMA network

    NASA Astrophysics Data System (ADS)

    Tseng, Shin-Pin

    2015-06-01

    This study designed a fast frequency hopping (FFH) code family suitable for application in spectral-amplitude-coding (SAC) optical code-division multiple-access (CDMA) networks. The FFH code family can effectively suppress the effects of multiuser interference and had its origin in the frequency hopping code family. Additional codes were developed as secure codewords for enhancing the security of the network. In considering the system cost and flexibility, simple optical encoders/decoders using fiber Bragg gratings (FBGs) and a set of optical securers using two arrayed-waveguide grating (AWG) demultiplexers (DeMUXs) were also constructed. Based on a Gaussian approximation, expressions for evaluating the bit error rate (BER) and spectral efficiency (SE) of SAC optical CDMA networks are presented. The results indicated that the proposed SAC optical CDMA network exhibited favorable performance.

  18. Fast dispersion estimation in coherent optical 16QAM fast OFDM systems.

    PubMed

    Zhao, J; Shams, H

    2013-01-28

    Fast channel estimation is crucial to increase the payload efficiency which is of particular importance for optical packet networks. In this paper, we propose a novel least-square based dispersion estimation method in coherent optical fast OFDM (F-OFDM) systems. Additionally, we experimentally demonstrate for the first time a 37.5 Gb/s 16QAM coherent F-OFDM system with 480 km transmission using the proposed scheme. The results show that this method outperforms the conventional channel estimation methods in minimizing the overhead load. A single training symbol can achieve near-optimum channel estimation without any prior information of the transmission distance. This makes optical F-OFDM a very promising scheme for the future burst-mode applications. PMID:23389231

  19. Rotation of the optical polarization angle associated with the 2008 γ-ray flare of blazar W Comae

    SciTech Connect

    Sorcia, Marco; Benítez, Erika; Cabrera, José I.; Hiriart, David; López, José M.; Mújica, Raúl

    2014-10-10

    An R-band photopolarimetric variability analysis of the TeV bright blazar W Comae between 2008 February 28 and 2013 May 17 is presented. The source showed a gradual tendency to decrease its mean flux level with a total change of 3 mJy. A maximum and minimum brightness states in the R band of 14.25 ± 0.04 and 16.52 ± 0.1 mag, respectively, were observed, corresponding to a maximum variation of ΔF = 5.40 mJy. We estimated a minimum variability timescale of Δt = 3.3 days. A maximum polarization degree P = 33.8% ± 1.6%, with a maximum variation of ΔP = 33.2%, was found. One of our main results is the detection of a large rotation of the polarization angle from 78° to 315° (Δθ ∼ 237°) that coincides in time with the γ-ray flare observed in 2008 June. This result indicates that both optical and γ-ray emission regions could be co-spatial. During this flare, a correlation between the R-band flux and polarization degree was found with a correlation coefficient of r {sub F} {sub –} {sub p} = 0.93 ± 0.11. From the Stokes parameters, we infer the existence of two optically thin synchrotron components that contribute to the polarized flux. One of them is stable with a constant polarization degree of 11%. Assuming a shock-in jet model during the 2008 flare, we estimated a maximum Doppler factor δ {sub D} ∼ 27 and a minimum of δ {sub D} ∼ 16; a minimum viewing angle of the jet ∼2.°0; and a magnetic field B ∼ 0.12 G.

  20. FAST-Net optical interconnection prototype demonstration program

    NASA Astrophysics Data System (ADS)

    Haney, Michael W.; Christensen, Marc P.; Milojkovik, P.; Ekman, Jeremy T.; Chandramani, Premanand; Rozier, Richard G.; Kiamilev, Fouad E.; Liu, Yue; Hibbs-Brenner, Mary K.; Nohava, Jim; Kalweit, Edith; Bounnak, Sommy; Marta, Terry; Walterson, B.

    1998-05-01

    This paper reports progress toward the experimental demonstration of a smart pixel based optical interconnection prototype currently being developed under the Free-space Accelerator for Switching Terabit Networks (FAST-Net) project. The prototype system incorporates 2D arrays of monolithically integrated high- bandwidth vertical cavity surface emitting lasers (VCSELs) and photodetectors (PDs). A key aspect of the FAST-Net concept is that all smart pixels are distributed across a single multi-chip plane. This plane is connected to itself via an optical system that consists of an array of matched lenses (one for each smart pixel chip position) and a mirror. The optical interconnect system implements a global point-to-point shuffle pattern. The interleaved 2D arrays of VCSELs and PDs in the prototype are arranged on a clustered self-similar grid pattern with a closest element pitch of 100 micrometers . The circular VCSEL elements have a diameter of 10 micrometers and the square PDs have an active region that is 50 micrometers wide. These arrays are packaged and mounted on circuit boards along with the CMOS driver, receiver, and FPGA controller chips. Micro-positioning mounts are used to effect alignment that is consistent with current MCM chip placement accuracy. Shuffled optical data links between the multiple ICs have been demonstrated in preliminary evaluation of this system. These results suggest that a multi-Terabit optically interconnected MCM module is feasible.

  1. A Change in the Optical Polarization Associated with a Gamma-Ray Flare in the Blazar 3C 279

    SciTech Connect

    Abdo, A.A.

    2011-08-19

    It is widely accepted that strong and variable radiation detected over all accessible energy bands in a number of active galaxies arises from a relativistic, Doppler-boosted jet pointing close to our line of sight. The size of the emitting zone and the location of this region relative to the central supermassive black hole are, however, poorly known, with estimates ranging from light-hours to a light-year or more. Here we report the coincidence of a gamma ({gamma})-ray flare with a dramatic change of optical polarization angle. This provides evidence for co-spatiality of optical and {gamma}-ray emission regions and indicates a highly ordered jet magnetic field. The results also require a non-axisymmetric structure of the emission zone, implying a curved trajectory for the emitting material within the jet, with the dissipation region located at a considerable distance from the black hole, at about 10{sup 5} gravitational radii.

  2. A change in the optical polarization associated with a gamma-ray flare in the blazar 3C 279.

    PubMed

    2010-02-18

    It is widely accepted that strong and variable radiation detected over all accessible energy bands in a number of active galaxies arises from a relativistic, Doppler-boosted jet pointing close to our line of sight. The size of the emitting zone and the location of this region relative to the central supermassive black hole are, however, poorly known, with estimates ranging from light-hours to a light-year or more. Here we report the coincidence of a gamma (gamma)-ray flare with a dramatic change of optical polarization angle. This provides evidence for co-spatiality of optical and gamma-ray emission regions and indicates a highly ordered jet magnetic field. The results also require a non-axisymmetric structure of the emission zone, implying a curved trajectory for the emitting material within the jet, with the dissipation region located at a considerable distance from the black hole, at about 10(5) gravitational radii. PMID:20164923

  3. Flare Hybrids

    NASA Astrophysics Data System (ADS)

    Tomczak, M.; Dubieniecki, P.

    2015-12-01

    On the basis of the Solar Maximum Mission observations, Švestka ( Solar Phys. 121, 399, 1989) introduced a new class of flares, the so-called flare hybrids. When they start, they look like typical compact flares (phase 1), but later on, they look like flares with arcades of magnetic loops (phase 2). We summarize the characteristic features of flare hybrids in soft and hard X-rays as well as in the extreme ultraviolet; these features allow us to distinguish flare hybrids from other flares. In this article, additional energy release or long plasma cooling timescales are suggested as possible causes of phase 2. We estimate the frequency of flare hybrids, and study the magnetic configurations favorable for flare hybrid occurrence. Flare hybrids appear to be quite frequent, and the difference between the lengths of magnetic loops in the two interacting loop systems seem to be a crucial parameter for determining their characteristics.

  4. The great flare of 1982 June 6

    NASA Technical Reports Server (NTRS)

    Tanaka, K.; Zirin, H.

    1985-01-01

    The great soft X-ray (SXR) flare (X12) of the past solar maximum was observed by Hinotori and by Big Bear Solar Observatory (BBSO) on June 6, 1982. Hinotori data consist of hard X-ray (HXR) and SXR images in the rise and decay of the flare, high-resolution soft X-ray spectra throughout the flare, and HXR and gamma-ray data. The BBSO data include films of H-alpha, H-alpha blue wing, D3 and longitudinal magnetic field, as well as video tapes of continuum. Images in HXR, SXR, H-alpha, D3 and the continuum are compared and SXR spectra analyzed. The flare resulted from extended motion of a large spot shearing the magnetic field. D3 and white-light images exhibit a progression from fast flashes to two ribbons, while both HXR and SXR are centered on the optical kernels. The continuum emission shows the same temporal behavior as the HXR at 160 keV. In its early phases, the Fe XXV line was double-peaked, and a decreasing blueshifted (up to 400 km/sec) component was observed, from which the evaporation rate of chromospheric material was estimated. It is suggested that this upflow is adequate to supply the coronal cloud. Flare energetics are discussed in detail, and it is concluded that a significant amount of energy was deposited in the corona, and that nonthermal electrons are the major energy input.

  5. Correlated optical, X-ray, and γ-ray flaring activity seen with INTEGRAL during the 2015 outburst of V404 Cygni

    NASA Astrophysics Data System (ADS)

    Rodriguez, J.; Cadolle Bel, M.; Alfonso-Garzón, J.; Siegert, T.; Zhang, X.-L.; Grinberg, V.; Savchenko, V.; Tomsick, J. A.; Chenevez, J.; Clavel, M.; Corbel, S.; Diehl, R.; Domingo, A.; Gouiffès, C.; Greiner, J.; Krause, M. G. H.; Laurent, P.; Loh, A.; Markoff, S.; Mas-Hesse, J. M.; Miller-Jones, J. C. A.; Russell, D. M.; Wilms, J.

    2015-09-01

    After 25 years of quiescence, the microquasar V404 Cyg entered a new period of activity in June 2015. This X-ray source is known to undergo extremely bright and variable outbursts seen at all wavelengths. It is therefore an object of prime interest to understand the accretion-ejection connections. These can, however, only be probed through simultaneous observations at several wavelengths. We made use of the INTEGRAL instruments to obtain long, almost uninterrupted observations from 2015 June 20, 15:50 UTC to June 25, 4:05 UTC, from the optical V band up to the soft γ-rays. V404 Cyg was extremely variable in all bands, with the detection of 18 flares with fluxes exceeding 6 Crab (20-40 keV) within three days. The flare recurrence can be as short as ~20 min from peak to peak. A model-independent analysis shows that the >6 Crab flares have a hard spectrum. A simple 10-400 keV spectral analysis of the off-flare and flare periods shows that the variation in intensity is likely to be only due to variations of a cut-off power-law component. The optical flares seem to be at least of two different types: one occurring in simultaneity with the X-ray flares, the other showing a delay greater than 10 min. The former could be associated with X-ray reprocessing by either an accretion disk or the companion star. We suggest that the latter are associated with plasma ejections that have also been seen in radio. Table 1 and Fig. 4 are available in electronic form at http://www.aanda.org

  6. Fast Variability and Millimeter/IR Flares in GRMHD Models of Sgr A* from Strong-field Gravitational Lensing

    NASA Astrophysics Data System (ADS)

    Chan, Chi-kwan; Psaltis, Dimitrios; Özel, Feryal; Medeiros, Lia; Marrone, Daniel; Saḑowski, Aleksander; Narayan, Ramesh

    2015-10-01

    We explore the variability properties of long, high-cadence general relativistic magnetohydrodynamic (GRMHD) simulations across the electromagnetic spectrum using an efficient, GPU-based radiative transfer algorithm. We focus on both standard and normal evolution (SANE) and magnetically arrested disk (MAD) simulations with parameters that successfully reproduce the time-averaged spectral properties of Sgr A* and the size of its image at 1.3 mm. We find that the SANE models produce short-timescale variability with amplitudes and power spectra that closely resemble those inferred observationally. In contrast, MAD models generate only slow variability at lower flux levels. Neither set of models shows any X-ray flares, which most likely indicates that additional physics, such as particle acceleration mechanisms, need to be incorporated into the GRMHD simulations to account for them. The SANE models show strong, short-lived millimeter/infrared (IR) flares, with short (≲1 hr) time lags between the millimeter and IR wavelengths, that arise from the combination of short-lived magnetic flux tubes and strong-field gravitational lensing near the horizon. Such events provide a natural explanation for the observed IR flares with no X-ray counterparts.

  7. Fast optical signals in the peripheral nervous system

    NASA Astrophysics Data System (ADS)

    Tong, Yunjie; Martin, Jeffrey M.; Sassaroli, Angelo; Clervil, Patricia R.; Bergethon, Peter R.; Fantini, Sergio

    2006-07-01

    We present a study of the near-infrared optical response to electrical stimulation of peripheral nerves. The sural nerve of six healthy subjects between the ages of 22 and 41 was stimulated with transcutaneous electrical pulses in a region located approximately 10 cm above the ankle. A two-wavelength (690 and 830 nm) tissue spectrometer was used to probe the same sural nerve below the ankle. We measured optical changes that peaked 60 to 160 ms after the electrical stimulus. On the basis of the strong wavelength dependence of these fast optical signals, we argue that their origin is mostly from absorption rather than scattering. From these absorption changes, we obtain oxy- and deoxy-hemoglobin concentration changes that describe a rapid hemodynamic response to electrical nerve activation. In five out of six subjects, this hemodynamic response is an increase in total (oxy+deoxy) hemoglobin concentration, consistent with a fast vasodilation. Our findings support the hypothesis that the peripheral nervous system undergoes neurovascular coupling, even though more data is needed to prove such hypothesis.

  8. Statistical aspects of solar flares

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    1987-01-01

    A survey of the statistical properties of 850 H alpha solar flares during 1975 is presented. Comparison of the results found here with those reported elsewhere for different epochs is accomplished. Distributions of rise time, decay time, and duration are given, as are the mean, mode, median, and 90th percentile values. Proportions by selected groupings are also determined. For flares in general, mean values for rise time, decay time, and duration are 5.2 + or - 0.4 min, and 18.1 + or 1.1 min, respectively. Subflares, accounting for nearly 90 percent of the flares, had mean values lower than those found for flares of H alpha importance greater than 1, and the differences are statistically significant. Likewise, flares of bright and normal relative brightness have mean values of decay time and duration that are significantly longer than those computed for faint flares, and mass-motion related flares are significantly longer than non-mass-motion related flares. Seventy-three percent of the mass-motion related flares are categorized as being a two-ribbon flare and/or being accompanied by a high-speed dark filament. Slow rise time flares (rise time greater than 5 min) have a mean value for duration that is significantly longer than that computed for fast rise time flares, and long-lived duration flares (duration greater than 18 min) have a mean value for rise time that is significantly longer than that computed for short-lived duration flares, suggesting a positive linear relationship between rise time and duration for flares. Monthly occurrence rates for flares in general and by group are found to be linearly related in a positive sense to monthly sunspot number. Statistical testing reveals the association between sunspot number and numbers of flares to be significant at the 95 percent level of confidence, and the t statistic for slope is significant at greater than 99 percent level of confidence. Dependent upon the specific fit, between 58 percent and 94 percent of

  9. Fiber-optic system for monitoring fast photoactivation dynamics of optical highlighter fluorescent proteins

    PubMed Central

    Pei, Zhiguo; Qin, Lingsong; Zhang, Zhihong; Zeng, Shaoqun; Huang, Zhen-Li

    2011-01-01

    Characterizing the photoactivation performance of optical highlighter fluorescent proteins is crucial to the realization of photoactivation localization microscopy. In contrast to those fluorescence-based approaches that require complex data processing and calibration procedures, here we report a simple and quantitative alternative, which relies on the measurement of small absorption spectra changes over time with a fiber-optic system. Using Dronpa as a representative highlighter protein, we have investigated the capacity of this system in monitoring the fast photoactivation process. PMID:21833352

  10. Electro-optic polymer waveguide grating with fast tuning capability.

    PubMed

    Wang, Yi-Ping; Chen, Jian-Ping; Li, Xin-Wan; Zhou, Jun-He; Shen, Hao; Zhang, Xiao-Hong; Ye, Ai-Lun

    2005-06-10

    A novel fast tunable electro-optic (EO) polymer waveguide grating is proposed and designed. Its resonant wavelength can be linearly tuned via the first-order EO effect with a high sensitivity of 6.1 pm/V. We find that the spectrum characteristics of EO polymer waveguide gratings depend strongly on many grating parameters, such as refractive-index modulation, modulation function, grating period, and period number. Material selection, fabrication technology, EO tuning ability, and polarization dependence of EO polymer waveguide gratings are also discussed. Such a waveguide grating not only overcomes the disadvantages of fiber-optic gratings, such as slow wavelength tuning ability and large-scale integration inconvenience, but also has many advantages, such as high resonant-wavelength tuning sensitivity, the same fabrication technology used for semiconductors, and polarization independence. PMID:16007840

  11. Gamma-ray burst flares: X-ray flaring. II

    SciTech Connect

    Swenson, C. A.; Roming, P. W. A.

    2014-06-10

    We present a catalog of 498 flaring periods found in gamma-ray burst (GRB) light curves taken from the online Swift X-Ray Telescope GRB Catalogue. We analyzed 680 individual light curves using a flare detection method developed and used on our UV/optical GRB Flare Catalog. This method makes use of the Bayesian Information Criterion to analyze the residuals of fitted GRB light curves and statistically determines the optimal fit to the light curve residuals in an attempt to identify any additional features. These features, which we classify as flares, are identified by iteratively adding additional 'breaks' to the light curve. We find evidence of flaring in 326 of the analyzed light curves. For those light curves with flares, we find an average number of ∼1.5 flares per GRB. As with the UV/optical, flaring in our sample is generally confined to the first 1000 s of the afterglow, but can be detected to beyond 10{sup 5} s. Only ∼50% of the detected flares follow the 'classical' definition of Δt/t ≤ 0.5, with many of the largest flares exceeding this value.

  12. Fast axis servo for the fast and precise machining of non-rotational symmetric optics

    NASA Astrophysics Data System (ADS)

    Tian, Fujing; Yin, Ziqiang; Li, Shengyi

    2014-08-01

    A new long range tool servo-fast axis servo is developed, which is used for fabricating the non-rotational symmetric optics surface with millimeters' sag. The mechanism design, motion modeling and development of FAS device were studied. The FAS consists of a linear motor, aerostatic bearings, high-resolution encoder and a motion controller. A control strategy consists of a proportional, integral and derivative (PID) feedback controller and velocity/acceleration feedforward controller is implemented to accommodate the system control performance. Experimental tests have been carried out to verify the performance of the FAS system.

  13. Fast fiber-optic multi-wavelength pyrometer

    NASA Astrophysics Data System (ADS)

    Fu, Tairan; Tan, Peng; Pang, Chuanhe; Zhao, Huan; Shen, Yi

    2011-06-01

    A fast fiber-optic multi-wavelength pyrometer was developed for the ultraviolet-visible-near infrared spectra from 200 nm to 1700 nm using a CCD detector and an InGaAs detector. The pyrometer system conveniently and quickly provides the sufficient choices of multiple measurement wavelengths using optical diffraction, which avoids the use of narrow-band filters. Flexible optical fibers are used to transmit the radiation so the pyrometer can be used for temperature measurements in harsh environments. The setup and calibrations (wavelength calibration, nonlinearity calibration, and radiation response calibration) of this pyrometer system were described. Development of the multi-wavelength pyrometer involved optimization of the bandwidth and temperature discrimination of the multiple spectra data. The analysis results showed that the wavelength intervals, ΔλCCD = 30 nm and ΔλInGaAs = 50 nm, are the suitable choices as a tradeoff between the simple emissivity model assumption and the multiple signal discrimination. The temperature discrimination was also quantificationally evaluated for various wavelengths and temperatures. The measurement performance of the fiber-optic multi-wavelength pyrometer was partially verified through measurements with a high-temperature blackbody and actual hot metals. This multi-wavelength pyrometer can be used for remote high-temperature measurements.

  14. Fast optically sectioned fluorescence HiLo endomicroscopy

    PubMed Central

    Lim, Daryl; Mertz, Jerome

    2012-01-01

    Abstract. We describe a nonscanning, fiber bundle endomicroscope that performs optically sectioned fluorescence imaging with fast frame rates and real-time processing. Our sectioning technique is based on HiLo imaging, wherein two widefield images are acquired under uniform and structured illumination and numerically processed to reject out-of-focus background. This work is an improvement upon an earlier demonstration of widefield optical sectioning through a flexible fiber bundle. The improved device features lateral and axial resolutions of 2.6 and 17 μm, respectively, a net frame rate of 9.5 Hz obtained by real-time image processing with a graphics processing unit (GPU) and significantly reduced motion artifacts obtained by the use of a double-shutter camera. We demonstrate the performance of our system with optically sectioned images and videos of a fluorescently labeled chorioallantoic membrane (CAM) in the developing G. gallus embryo. HiLo endomicroscopy is a candidate technique for low-cost, high-speed clinical optical biopsies. PMID:22463023

  15. Holographic Adaptive Laser Optics System (HALOS): Fast, Autonomous Aberration Correction

    NASA Astrophysics Data System (ADS)

    Andersen, G.; MacDonald, K.; Gelsinger-Austin, P.

    2013-09-01

    We present an adaptive optics system which uses a multiplexed hologram to deconvolve the phase aberrations in an input beam. This wavefront characterization is extremely fast as it is based on simple measurements of the intensity of focal spots and does not require any computations. Furthermore, the system does not require a computer in the loop and is thus much cheaper, less complex and more robust as well. A fully functional, closed-loop prototype incorporating a 32-element MEMS mirror has been constructed. The unit has a footprint no larger than a laptop but runs at a bandwidth of 100kHz over an order of magnitude faster than comparable, conventional systems occupying a significantly larger volume. Additionally, since the sensing is based on parallel, all-optical processing, the speed is independent of actuator number running at the same bandwidth for one actuator as for a million. We are developing the HALOS technology with a view towards next-generation surveillance systems for extreme adaptive optics applications. These include imaging, lidar and free-space optical communications for unmanned aerial vehicles and SSA. The small volume is ideal for UAVs, while the high speed and high resolution will be of great benefit to the ground-based observation of space-based objects.

  16. Discovery of Fast X-ray Oscillations During the 1998 Giant Flare from SGR 1900+14

    NASA Technical Reports Server (NTRS)

    Strohmayer, T.; Watts, A.

    2005-01-01

    We report the discovery of complex high frequency variability during the August 27, 1998 giant flare from SGR 1900+14 using the Rossi X-ray Timing Explorer (RXTE). We detect an approx. equals 84 Hz oscillation (QPO) during a 1 s interval beginning approximately 1 min after the initial hard spike. The amplitude is energy dependent, reaching a maximum of 26% (rms) for photons above 30 keV, and is not detected below 11 keV, with a 90% confidence upper limit of 14% (rms). Remarkably, additional QPOs are detected in the average power spectrum of data segments centered on the rotational phase at which the 84 Hz signal was detected. Two signals, at 53.5 and 155.1 Hz, are strongly detected, while a third feature at 28 Hz is found with lower significance. These QPOs are not detected at other rotational phases. The phenomenology seen in the SGR 1900+14 flare is similar to that of QPOs recently reported by Israel et al. (2005) from the December 27, 2004 flare from SGR 1806-20, suggesting they may have a common origin, perhaps torsional vibrations of the neutron star crust. Indeed, an association of the four frequencies (in increasing order) found in SGR 1900+14 with l = 2, 4, 7, and 13 toroidal modes appears plausible. We discuss our findings in the context of this model and show that if the stars have similar masses then the magnetic field in SGR 1806-20 must be about twice as large as in SGR 1900+14, broadly consistent with estimates from pulse timing.

  17. A FAST FLARE AND DIRECT REDSHIFT CONSTRAINT IN FAR-ULTRAVIOLET SPECTRA OF THE BLAZAR S5 0716+714

    SciTech Connect

    Danforth, Charles W.; Nalewajko, Krzysztof; France, Kevin; Keeney, Brian A.

    2013-02-10

    The BL Lacertae object S5 0716+714 is one of the most studied blazars on the sky due to its active variability and brightness in many bands, including very-high-energy gamma rays. We present here two serendipitous results from recent far-ultraviolet spectroscopic observations by the Cosmic Origins Spectrograph onboard the Hubble Space Telescope (HST). First, during the course of our 7.3 hr HST observations, the blazar increased in flux rapidly by {approx}40% (-0.45 mag hr{sup -1}) followed by a slower decline (+0.36 mag hr{sup -1}) to previous FUV flux levels. We model this flare using asymmetric flare templates and constrain the physical size and energetics of the emitting region. Furthermore, the spectral index of the object softens considerably during the course of the flare from {alpha}{sub {nu}} Almost-Equal-To -1.0 to {alpha}{sub {nu}} Almost-Equal-To -1.4. Second, we constrain the source redshift directly using the {approx}30 intervening absorption systems. A system at z = 0.2315 is detected in Ly{alpha}, Ly{beta}, O VI, and N V and defines the lower bound on the source redshift. No absorbers are seen in the remaining spectral coverage (0.2315 < z {sub Ly{alpha}} {approx}< 0.47) and we set a statistical upper bound of z < 0.322 (95% confidence) on the blazar. This is the first direct redshift limit for this object and is consistent with literature estimates of z = 0.31 {+-} 0.08 based on the detection of a host galaxy.

  18. A Fast Flare and Direct Redshift Constraint in Far-ultraviolet Spectra of the Blazar S5 0716+714

    NASA Astrophysics Data System (ADS)

    Danforth, Charles W.; Nalewajko, Krzysztof; France, Kevin; Keeney, Brian A.

    2013-02-01

    The BL Lacertae object S5 0716+714 is one of the most studied blazars on the sky due to its active variability and brightness in many bands, including very-high-energy gamma rays. We present here two serendipitous results from recent far-ultraviolet spectroscopic observations by the Cosmic Origins Spectrograph onboard the Hubble Space Telescope (HST). First, during the course of our 7.3 hr HST observations, the blazar increased in flux rapidly by ~40% (-0.45 mag hr-1) followed by a slower decline (+0.36 mag hr-1) to previous FUV flux levels. We model this flare using asymmetric flare templates and constrain the physical size and energetics of the emitting region. Furthermore, the spectral index of the object softens considerably during the course of the flare from αν ≈ -1.0 to αν ≈ -1.4. Second, we constrain the source redshift directly using the ~30 intervening absorption systems. A system at z = 0.2315 is detected in Lyα, Lyβ, O VI, and N V and defines the lower bound on the source redshift. No absorbers are seen in the remaining spectral coverage (0.2315 < z Lyα <~ 0.47) and we set a statistical upper bound of z < 0.322 (95% confidence) on the blazar. This is the first direct redshift limit for this object and is consistent with literature estimates of z = 0.31 ± 0.08 based on the detection of a host galaxy. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract NAS 5-26555.

  19. Fast Acting Optical Forces From Far Detuned, High Intensity Light

    NASA Astrophysics Data System (ADS)

    Corder, Christopher; Arnold, Brian; Hua, Xiang; Metcalf, Harold

    2015-05-01

    We are exploring fast acting, strong optical forces from standing wave light fields with high intensity and large detuning δ >> γ , where γ is the transition linewidth. We observe these fast acting forces on a time scale of a few times the excited state lifetime τ ≡ 1 / γ thus an atom may experience at most one or two spontaneous emission events. The dipole force is typically considered when the Rabi frequency Ω << δ , but we use Ω ~ δ so the usual approximations break down because a significant excited state population can occur, even for our short interaction times that limit spontaneous emission. Our experiment measures the transverse velocity distribution of a beam of 23S He after a chosen interaction time with a perpendicular standing wave detuned from the 23S -->33P transition near 389 nm. The distribution shows velocity resonance effects that persist over a large range of Ω. We also simulate the experiment numerically using the Optical Bloch Equations and the results are consistent with our measurements. Supported by ONR and Dept. of Education GAANN

  20. Two-dimensional fast marching for geometrical optics.

    PubMed

    Capozzoli, Amedeo; Curcio, Claudio; Liseno, Angelo; Savarese, Salvatore

    2014-11-01

    We develop an approach for the fast and accurate determination of geometrical optics solutions to Maxwell's equations in inhomogeneous 2D media and for TM polarized electric fields. The eikonal equation is solved by the fast marching method. Particular attention is paid to consistently discretizing the scatterers' boundaries and matching the discretization to that of the computational domain. The ray tracing is performed, in a direct and inverse way, by using a technique introduced in computer graphics for the fast and accurate generation of textured images from vector fields. The transport equation is solved by resorting only to its integral form, the transport of polarization being trivial for the considered geometry and polarization. Numerical results for the plane wave scattering of two perfectly conducting circular cylinders and for a Luneburg lens prove the accuracy of the algorithm. In particular, it is shown how the approach is capable of properly accounting for the multiple scattering occurring between the two metallic cylinders and how inverse ray tracing should be preferred to direct ray tracing in the case of the Luneburg lens. PMID:25401818

  1. Fast Optical Transillumination Tomography with Large-Size Projection Acquisition

    PubMed Central

    Huang, Hsuan-Ming; Xia, Jinjun; Haidekker, Mark A.

    2008-01-01

    Techniques such as optical coherence tomography and diffuse optical tomography have been shown to effectively image highly scattering samples such as tissue. An additional modality has received much less attention: Optical transillumination tomography (OT), a modality that promises very high acquisition speed for volumetric scans. With the motivation to image tissue-engineered blood vessels for possible biomechanical testing, we have developed a fast OT device using a collimated, non-coherent beam with a large diameter together with a large-size CMOS camera that has the ability to acquire 3D projections in a single revolution of the sample. In addition, we used accelerated iterative reconstruction techniques to improve image reconstruction speed, while at the same time obtaining better image quality than through filtered back projection. The device was tested using ink-filled PTFE tubes to determine geometric reconstruction accuracy and recovery of absorbance. Even in the presence of minor refractive index mismatch, the weighted error of the measured radius was less than 5% in all cases, and a high linear correlation of ink absorbance determined with a photospectrometer of R 2 =0.99 was found, although the OT device systematically underestimated absorbance. Reconstruction time was improved from several hours (standard arithmetic reconstruction) to 90 seconds per slice with our optimized algorithm. Composed of only a light source, two spatial filters, a sample bath, and a CMOS camera, this device was extremely simple and cost-efficient to build. PMID:18704687

  2. Gamma-ray observational constraints on the origin of the optical continuum emission from the white-light flare of 1980 July 1

    NASA Technical Reports Server (NTRS)

    Ryan, J. M.; Chupp, E. L.; Forrest, D. J.; Matz, S. M.; Rieger, E.; Reppin, C.; Kanbach, G.; Share, G. H.

    1983-01-01

    Results are presented for the flare of July 1, 1980, which started at approximately 1627 UT and in which simultaneous measurements were made of X-ray, gamma-ray, and optical continuum emission for the entire duration of the flare. The X-ray and gamma-ray observations were made by the Gamma-Ray Spectrometer on the Solar Maximum Mission satellite. The optical measurements were taken at the Sacramento Peak Observatory and the Big Bear Solar Observatory (Zirin and Neidig, 1981). It is found that the major white-light emission that occurs in the late phase of the flare could not have been due to heating by electron or ion precipitation. This conclusion derives from the fact that the X-ray and gamma-ray flux peaks approximately 1 minute before the maximum of the optical continuum mission emission. It is also found that approximately 73 percent of the optical continuum emission, representing a spatially and temporally distinct bright point, follows this maximum with little or no X-ray or gamma-ray emission in the same period.

  3. Performance analyses for fast variable optical attenuator-based optical current transformer

    NASA Astrophysics Data System (ADS)

    Wei, Pu; Chen, Chen; Wang, Xuefeng; Shan, Xuekang; Sun, Xiaohan

    2014-06-01

    In this paper, we analyze the performance of the electro-optic hybrid optical current transformer (HOCT) proposed by ourselves for high-voltage metering and protective relaying application. The transformer makes use of a fast variable optical attenuator (FVOA) to modulate the lightwave according to the voltage from the primary current sensor, such as low-power current transformer (LPCT). In order to improve the performance of the transformer, we use an optic-electro feedback loop with the PID control algorithm to compensate the nonlinearity of the FVOA. The linearity and accuracy of the transformer were analyzed and tested. The results indicate that the nonlinearity of the FVOA is completely compensated by the loop and the ratio and phase errors are under 0.07% and 5 minutes respectively, under the working power of less than 1 mW power. The transformer can be immune to the polarization and wavelength drift, and also robust against the environmental interference.

  4. Fast neutron dosimeter using Cooled Optically Stimulated Luminescence (COSL)

    SciTech Connect

    Eschbach, P.A.; Miller, S.D.

    1991-10-01

    Data is presented that demonstrates the concept of a fast neutron dosimeter using Cooled Optically Stimulated Luminescence. CaF{sub 2}:Mn powder, compounded with polyethylene, was injection molded and pressed into 0.1-cm-thick sheets. The sheets were then cut to form dosimeters with dimensions, 1.25 cm by 1.25 cm. After a laser anneal, the dosimeters were exposed to various amounts (from 10 mSv to 100 mSv) of fast {sup 252}Cf neutrons. The exposed dosimeters were cooled to liquid nitrogen temperature, stimulated with laser light, and then allowed to warm up to room temperature whereupon the dose dependent luminescence was recorded with a photon counting system. When the control and gamma components were subtracted from the {sup 252}Cf response, a dose-dependent neutron response was observed. The design, construction, and preliminary performance of an automated system for the dose interrogation of individual CaF{sub 2}:Mn grains within the polyethylene matrix will also be discussed. The system uses a small CO{sub 2} laser to heat areas of the cooled dosimeter to room temperature. If the readout of very small grain within the plastic matrix is successful, it will enhance the neutron to gamma response of the dosimeter.

  5. FLARES IN LONG AND SHORT GAMMA-RAY BURSTS

    SciTech Connect

    Dado, Shlomo; Dar, Arnon E-mail: arnon@physics.technion.ac.i

    2010-04-01

    The many similarities between the prompt emission pulses in gamma-ray bursts (GRBs) and X-ray flares during the fast decay and afterglow (AG) phases of GRBs suggest a common origin. In the cannonball (CB) model of GRBs, this common origin is mass accretion episodes of fall-back matter on a newly born compact object. The prompt emission pulses are produced by a bipolar jet of highly relativistic plasmoids (CBs) ejected in the early, major episodes of mass accretion. As the accretion material is consumed, one may expect the engine's activity to weaken. X-ray flares ending the prompt emission and during the AG phase are produced in such delayed episodes of mass accretion. The common engine, environment, and radiation mechanisms (inverse Compton scattering and synchrotron radiation) produce their observed similarities. Flares in both long GRBs and short hard gamma-ray bursts (SHBs) can also be produced by bipolar ejections of CBs following a phase transition in compact objects due to loss of angular momentum and/or cooling. Optical flares, however, are mostly produced in collisions of CBs with massive stellar winds/ejecta or with density bumps along their path. In this paper, we show that the master formulae of the CB model of GRBs and SHBs, which reproduce very well their prompt emission pulses and their smooth AGs, seem to reproduce also very well the light curves and spectral evolution of the prominent X-ray and optical flares that are well sampled.

  6. Blazar B2 1156+29 is in a flaring state in optical.

    NASA Astrophysics Data System (ADS)

    Jorstad, S.; Larionov, V.; Blinov, D.; Morozova, D.; Kopatskaya, E.; Konstantinova, T.; Pavlova, Yu.; Mokrushina, A.

    2012-04-01

    We perform optical photometric and R-band polarimetric monitoring of FSRQ B2 1156+29 = 4C +29.45 = Ton 599 using 1.8-m Perkins telescope (Az,USA), 70-cm AZT-8 (CrAO, Ukraine) and 0.4-m LX-200 (St.Petersburg, Russia) telescopes, partly in the frames of GASP project. Our data show that starting from 2012 April 2 this blazar entered a phase of violent optical activity.

  7. High frame rate CCD camera with fast optical shutter

    SciTech Connect

    Yates, G.J.; McDonald, T.E. Jr.; Turko, B.T.

    1998-09-01

    A high frame rate CCD camera coupled with a fast optical shutter has been designed for high repetition rate imaging applications. The design uses state-of-the-art microchannel plate image intensifier (MCPII) technology fostered/developed by Los Alamos National Laboratory to support nuclear, military, and medical research requiring high-speed imagery. Key design features include asynchronous resetting of the camera to acquire random transient images, patented real-time analog signal processing with 10-bit digitization at 40--75 MHz pixel rates, synchronized shutter exposures as short as 200pS, sustained continuous readout of 512 x 512 pixels per frame at 1--5Hz rates via parallel multiport (16-port CCD) data transfer. Salient characterization/performance test data for the prototype camera are presented, temporally and spatially resolved images obtained from range-gated LADAR field testing are included, an alternative system configuration using several cameras sequenced to deliver discrete numbers of consecutive frames at effective burst rates up to 5GHz (accomplished by time-phasing of consecutive MCPII shutter gates without overlap) is discussed. Potential applications including dynamic radiography and optical correlation will be presented.

  8. Terahertz-optical-asymmetric-demultiplexer (TOAD)-based arithmetic units for ultra-fast optical information processing

    NASA Astrophysics Data System (ADS)

    Cherri, Abdallah K.

    2010-04-01

    In this paper, designs of ultra-fast all-optical based Terahertz-optical-asymmetric-demultiplexer (TOAD)-based devices are reported. Using TOAD switches, adders/subtracters units are demonstrated. The high speed is achieved due to the use of the nonlinear optical materials and the nonbinary modified signed-digit (MSD) number representation. The proposed all-optical circuits are compared in terms of numbers TOAD switches, optical amplifiers and wavelength converters.

  9. On the Location of the 2009 GeV Flares of Blazar PKS 1510-089

    NASA Astrophysics Data System (ADS)

    Dotson, Amanda; Georganopoulos, Markos; Meyer, Eileen T.; McCann, Kevin

    2015-08-01

    Most of the radiated power of blazars is produced at GeV energies via inverse Compton scattering at an unknown distance from the central engine. Possible seed photon sources map to different locations along the jet spanning two orders of magnitude in distance from the black hole, ranging from the broad-line region (BLR, ˜0.1 pc), to the molecular torus (MT, ˜ 1- few pc), to the very long baseline interferometry (VLBI) radio core zone at ˜10 pc. Here, we apply a diagnostic for identifying the GeV emission zone (GEZ) in blazar PKS 1510-089 using four bright gamma-ray flares detected by Fermi in 2009. As shown by Dotson et al., the flare decay time should be energy-independent for flares in the BLR, but faster at higher energies for flares in the MT. We find that in the two cases where the gamma-ray flare was not accompanied by an optical flare, the decay times show an energy-dependence suggesting a location in the MT. For the two GeV flares accompanied by optical flares, we obtained very fast decay times (≲3 hr) in both low and high energy Fermi bands. For these flares, considering the simultaneous >100 GeV detection by HESS (H.E.S.S. Collaboration et al.) and the ejection of a superluminal component from the VLBI radio core in one case, our results suggest that both flares came from the vicinity of the VLBI core. We thus suggest that the GEZ is spread over a wide range of locations beyond the BLR.

  10. A Dramatic Optical Flare and Microvariability in the Blazar 3C 454.3

    NASA Astrophysics Data System (ADS)

    Balonek, Thomas J.; Boni, Samantha J.; Chapman, Katie J.; Didio, Nicholas A.; Sabyr, Alina; Stahlin, R. William; Weaver, Zachary R.; Zhang, Saiyang

    2016-06-01

    Following up on the report of optical and gamma-ray activity in the blazar 3C 454.3 by Jorstad (ATel# 9150), Lucarelli et al (ATel #9157), and Bulgarelli et al (ATel #9176), we report optical (R) observations which reveal a brightening of over 2 magnitudes in a 10 day interval between 2016 June 10 and 20. The brightness on June 20 (R = 13.7) is 1.2 magnitudes brighter than reported by Jorstad on June 13, and is the brightest 3C 454.3 has been observed in two years.

  11. Solar Flares

    NASA Technical Reports Server (NTRS)

    Savage, Sabrina

    2013-01-01

    Because the Earth resides in the atmosphere of our nearest stellar neighbor, events occurring on the Sun's surface directly affect us by interfering with satellite operations and communications, astronaut safety, and, in extreme circumstances, power grid stability. Solar flares, the most energetic events in our solar system, are a substantial source of hazardous space weather affecting our increasingly technology-dependent society. While flares have been observed using ground-based telescopes for over 150 years, modern space-bourne observatories have provided nearly continuous multi-wavelength flare coverage that cannot be obtained from the ground. We can now probe the origins and evolution of flares by tracking particle acceleration, changes in ionized plasma, and the reorganization of magnetic fields. I will walk through our current understanding of why flares occur and how they affect the Earth and also show several examples of these fantastic explosions.

  12. Solar Flares

    NASA Technical Reports Server (NTRS)

    Shih, Albert

    2011-01-01

    Solar flares accelerate both ions and electrons to high energies, and their X-ray and gamma-ray signatures not only probe the relationship between their respective acceleration, but also allow for the measurement of accelerated and ambient abundances. RHESSI observations have shown a striking close linear correlation of gamma-ray line fluence from accelerated ions > approx.20 MeV and bremsstrahlung emission from relativistic accelerated electrons >300 keV, when integrated over complete flares, suggesting a common acceleration mechanism. SMM/GRS observations, however, show a weaker correlation, and this discrepancy might be associated with previously observed electron-rich episodes within flares and/or temporal variability of gamma-ray line fluxes over the course of flares. We use the latest RHESSI gamma-ray analysis techniques to study the temporal behavior of the RHESSI flares, and determine what changes can be attributed to an evolving acceleration mechanism or to evolving abundances.

  13. The flares of August 1972. [solar flare characteristics and spectra

    NASA Technical Reports Server (NTRS)

    Zirin, H.; Tanaka, K.

    1973-01-01

    Observations of the August, 1972 flares at Big Bear and Tel Aviv, involving monochromatic movies, magnetograms, and spectra, are analyzed. The region (McMath 11976) showed inverted polarity from its inception on July 11; the great activity was due to extremely high shear and gradients in the magnetic field, as well as a constant invasion of one polarity into the opposite; observations in lambda 3835 show remarkable fast flashes in the impulsive flare of 18:38 UT on Aug. 2 with lifetimes of 5 sec, which may be due to dumping of particles in the lower chromosphere. Flare loops show evolutionary increases of their tilts to the neutral line in the flares of Aug. 4 and 7. Spectroscopic observations show red asymmetry and red shift of the H alpha emission in the flash phase of the Aug. 7 flare, as well as substantial velocity shear in the photosphere during the flare, somewhat like earthquake movement along a fault. Finally the total H alpha emission of the Aug. 7 flare could be measured accurately as about 2.5 x 10 to the 30th power erg, considerably less than coarser previous estimates for great flares.

  14. An integrated optic hydrogen sensor for fast detection of hydrogen

    NASA Astrophysics Data System (ADS)

    Alam, M. Z.; Moreno, J.; Aitchison, J. S.; Mojahedi, M.

    2007-09-01

    Hydrogen is used as the main propellant for space shuttles, as an energy source in fuel cells, in oil refineries, and for many other applications. Hydrogen is extremely volatile, easily flammable, and highly explosive. Storage and handling of hydrogen is a challenging task and a good hydrogen sensor is highly desirable. An ideal hydrogen sensor should be fast, reversible, highly selective, compact in size, easy to fabricate, and cheap in price. Unfortunately such a sensor to date is not available. In this paper we propose a multi-channel integrated optical sensor for detection of hydrogen. The sensor consists of a high index waveguide on a low index substrate and uses Pd or Pd alloy thin film as the sensing medium. Since a single channel hydrogen sensor will be affected by the presence of other gases and the variations of temperature, humidity, and input power; a multi-channel sensing scheme and differential measurements are proposed to correct for some of these effects. All the components of the multi-channel sensor can be realized using planar technology and the complete sensor can be fabricated on a single chip. The sensor is compact and the response time is expected to be very short. The concept of multi-channel sensing presented in this work is very general and can be extended to other gas sensors as well.

  15. Slow-rise and Fast-rise Phases of an Erupting Solar Filament and Flare Emission Onset

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.; Moore, Ronald L.

    2005-01-01

    We observe the eruption of an active-region solar filament of 1998 July 11 using high time cadence and high spatial resolution EUV observations from the TRACE satellite, along with soft X-ray images from the soft X-ray telescope (SXT) on the Yohkoh satellite, hard X-ray fluxes from the BATSE instrument on the Compton Gamma Ray Observatory (CGRO) satellite and from the hard X-ray telescope (HXT) on Yohkoh, and ground-based magnetograms. We concentrate on the initiation of the eruption in an effort to understand the eruption mechanism. Prior to eruption the filament undergoes slow upward movement in a "slow rise" phase with an approximately constant velocity of about 15 km/s that lasts about 10 min. It then erupts in a "fast-rise" phase, accelerating to a velocity of about 200 km/s in about 5 min, and then decelerating to approximately 150 km/s over the next 5 min. EUV brightenings begin about concurrent with the start of the filament's slow rise, and remain immediately beneath the rising filament during the slow rise; initial soft X-ray brightenings occur at about the same time and location. Strong hard X-ray emission begins after the onset of the fast rise, and does not peak until the filament has traveled to a substantial altitude (to a height about equal to the initial length of the erupting filament) beyond its initial location. Additional information is available in the original extended abstract.

  16. Statistical Analyses of White-Light Flares: Two Main Results about Flare Behaviour

    NASA Astrophysics Data System (ADS)

    Dal, Hasan Ali

    2012-08-01

    We present two main results, based on models and the statistical analyses of 1672 U-band flares. We also discuss the behaviour of white-light flares. In addition, the parameters of the flares detected from two years of observations on CR Dra are presented. By comparing with flare parameters obtained from other UV Ceti-type stars, we examine the behaviour of the optical flare processes along with the spectral types. Moreover, we aimed, using large white-light flare data, to analyse the flare time-scales with respect to some results obtained from X-ray observations. Using SPSS V17.0 and GraphPad Prism V5.02 software, the flares detected from CR Dra were modelled with the OPEA function, and analysed with the t-Test method to compare similar flare events in other stars. In addition, using some regression calculations in order to derive the best histograms, the time-scales of white-light flares were analysed. Firstly, CR Dra flares have revealed that white-light flares behave in a similar way as their counterparts observed in X-rays. As can be seen in X-ray observations, the electron density seems to be a dominant parameter in white-light flare process, too. Secondly, the distributions of the flare time-scales demonstrate that the number of observed flares reaches a maximum value in some particular ratios, which are 0.5, or its multiples, and especially positive integers. The thermal processes might be dominant for these white-light flares, while non-thermal processes might be dominant in the others. To obtain better results for the behaviour of the white-light flare process along with the spectral types, much more stars in a wide spectral range, from spectral type dK5e to dM6e, must be observed in white-light flare patrols.

  17. Solar flare model atmospheres

    NASA Technical Reports Server (NTRS)

    Hawley, Suzanne L.; Fisher, George H.

    1993-01-01

    Solar flare model atmospheres computed under the assumption of energetic equilibrium in the chromosphere are presented. The models use a static, one-dimensional plane parallel geometry and are designed within a physically self-consistent coronal loop. Assumed flare heating mechanisms include collisions from a flux of non-thermal electrons and x-ray heating of the chromosphere by the corona. The heating by energetic electrons accounts explicitly for variations of the ionized fraction with depth in the atmosphere. X-ray heating of the chromosphere by the corona incorporates a flare loop geometry by approximating distant portions of the loop with a series of point sources, while treating the loop leg closest to the chromospheric footpoint in the plane-parallel approximation. Coronal flare heating leads to increased heat conduction, chromospheric evaporation and subsequent changes in coronal pressure; these effects are included self-consistently in the models. Cooling in the chromosphere is computed in detail for the important optically thick HI, CaII and MgII transitions using the non-LTE prescription in the program MULTI. Hydrogen ionization rates from x-ray photo-ionization and collisional ionization by non-thermal electrons are included explicitly in the rate equations. The models are computed in the 'impulsive' and 'equilibrium' limits, and in a set of intermediate 'evolving' states. The impulsive atmospheres have the density distribution frozen in pre-flare configuration, while the equilibrium models assume the entire atmosphere is in hydrostatic and energetic equilibrium. The evolving atmospheres represent intermediate stages where hydrostatic equilibrium has been established in the chromosphere and corona, but the corona is not yet in energetic equilibrium with the flare heating source. Thus, for example, chromospheric evaporation is still in the process of occurring.

  18. Fast integral methods for integrated optical systems simulations: a review

    NASA Astrophysics Data System (ADS)

    Kleemann, Bernd H.

    2015-09-01

    Boundary integral equation methods (BIM) or simply integral methods (IM) in the context of optical design and simulation are rigorous electromagnetic methods solving Helmholtz or Maxwell equations on the boundary (surface or interface of the structures between two materials) for scattering or/and diffraction purposes. This work is mainly restricted to integral methods for diffracting structures such as gratings, kinoforms, diffractive optical elements (DOEs), micro Fresnel lenses, computer generated holograms (CGHs), holographic or digital phase holograms, periodic lithographic structures, and the like. In most cases all of the mentioned structures have dimensions of thousands of wavelengths in diameter. Therefore, the basic methods necessary for the numerical treatment are locally applied electromagnetic grating diffraction algorithms. Interestingly, integral methods belong to the first electromagnetic methods investigated for grating diffraction. The development started in the mid 1960ies for gratings with infinite conductivity and it was mainly due to the good convergence of the integral methods especially for TM polarization. The first integral equation methods (IEM) for finite conductivity were the methods by D. Maystre at Fresnel Institute in Marseille: in 1972/74 for dielectric, and metallic gratings, and later for multiprofile, and other types of gratings and for photonic crystals. Other methods such as differential and modal methods suffered from unstable behaviour and slow convergence compared to BIMs for metallic gratings in TM polarization from the beginning to the mid 1990ies. The first BIM for gratings using a parametrization of the profile was developed at Karl-Weierstrass Institute in Berlin under a contract with Carl Zeiss Jena works in 1984-1986 by A. Pomp, J. Creutziger, and the author. Due to the parametrization, this method was able to deal with any kind of surface grating from the beginning: whether profiles with edges, overhanging non

  19. Ultra-fast optical switches using 1D polymeric photonic crystals

    NASA Astrophysics Data System (ADS)

    Katouf, R.; Komikado, T.; Itoh, M.; Yatagai, T.; Umegaki, S.

    2005-12-01

    We report fabrication of ultra-fast optical switches operated at a wavelength of 1064 nm using spin-coated one-dimensional polymeric photonic crystals doped with nonlinear-optical dyes. The optical switches are controlled either by an applied electric-field voltage or by a pump light by use of two different optical-configurations. The response time of the electro-optic switch and the all-optical switch are limited by the applied voltage and the laser used, respectively. The polymeric photonic crystals can be easily fabricated with low cost.

  20. Solar Flares

    NASA Astrophysics Data System (ADS)

    Rust, David

    1998-01-01

    The Sun is constantly changing. Not an hour goes by without a rise or fall in solar x-radiation or radio emission. Not a day goes by without a solar flare. Our active star, this inconsistent Sun, this gaseous cloud that blows in all directions, warms the air we breathe and nourishes the food we eat. From Earth, it seems the very model of stability, but in space it often creates havoc. Over the past century, solar physicists have learned how to detect even the weakest of solar outbursts or flares. We know that flares must surely trace their origins to the magnetic strands stretched and tangled by the rolling plasma of the solar interior. Although a century of astrophysical research has produced widely accepted, fundamental understanding about the Sun, we have yet to predict successfully the emergence of any magnetic fields from inside the Sun or the ignition of any flare. As in any physical experiment, the ability to predict events not only validates the scientific ideas, it also has practical value. In astrophysics, a demonstrated understanding of sunspots, flares, and ejections of plasma would allow us to approach many other mysteries, such as stellar X-ray bursters, with tested theories.

  1. A recent strong X-ray flaring activity of 1ES 1959+650 with possibly less efficient stochastic acceleration

    NASA Astrophysics Data System (ADS)

    Kapanadze, B.; Dorner, D.; Vercellone, S.; Romano, P.; Kapanadze, S.; Mdzinarishvili, T.

    2016-09-01

    We present an X-ray flaring activity of 1ES 1959+650 in 2015 August-2016 January, which was the most powerful and prolonged during the 10.75 yr period since the start of its monitoring with X-ray Telescope onboard Swift. A new highest historical 0.3-10 keV count rate was recorded three times that makes this object the third BL Lacertae source exceeding the level of 20 counts s-1. Along with the overall variability by a factor of 5.7, this epoch was characterized by fast X-ray flares by a factor of 2.0-3.1, accompanied with an extreme spectral variability. The source also shows a simultaneous flaring activity in the optical - UV and 0.3-100 GeV bands, although a fast γ-ray flare without significant optical - X-ray counterparts is also found. In contrast to the X-ray flares in the previous years, the stochastic acceleration seems be less important for the electrons responsible for producing X-ray emission during this flare that challenges the earlier suggestion that the electrons in the jets of TeV-detected BL Lacertae objects should undergo an efficient stochastic acceleration resulting in a lower X-ray spectral curvature.

  2. A recent strong X-ray flaring activity of 1ES 1959+650 with possibly less efficient stochastic acceleration

    NASA Astrophysics Data System (ADS)

    Kapanadze, B.; Dorner, D.; Vercellone, S.; Romano, P.; Kapanadze, S.; Mdzinarishvili, T.

    2016-03-01

    We present an X-ray flaring activity of 1ES 1959+650 in 2015 August - 2016 January, which was the most powerful and prolonged during the 10.75 yr period since the start of its monitoring with X-ray Telescope onboard Swift. A new highest historical 0.3 - 10 keV count rate was recorded three times that makes this object the third BL Lacertae source exceeding the level of 20 cts s-1. Along with the overall variability by a factor of 5.7, this epoch was characterized by fast X-ray flares by a factor of 2.0 - 3.1, accompanied with an extreme spectral variability. The source also shows a simultaneous flaring activity in the optical - UV and 0.3 - 100 GeV bands, although a fast γ-ray flare without significant optical - X-ray counterparts is also found. In contrast to the X-ray flares in the previous years, the stochastic acceleration seems be less important for the electrons responsible for producing X-ray emission during this flare that challenges the earlier suggestion that the electrons in the jets of TeV-detected BL Lacertae objects should undergo an efficient stochastic acceleration resulting in a lower X-ray spectral curvature.

  3. Fast magneto-optic switch based on nanosecond pulses

    NASA Astrophysics Data System (ADS)

    Weng, Zi-Hua; Ruan, Jian-Jian; Lin, Shao-Han; Chen, Zhi-Min

    2011-09-01

    The paper studies an all fiber high-speed magneto-optic switch which includes an optical route, a nanosecond pulse generator, and a magnetic field module in order to reduce the switching time of the optical switch in the all optical network. A compact nanosecond pulse generator can be designed based on the special character of the avalanche transistor. The output current pulse of the nanosecond pulse generator is less than 5 ns, while the pulse amplitude is more than 100 V and the pulse width is about 10 to 20 ns, which is able to drive a high-speed magnetic field. A solenoid is used as the magnetic field module, and a bismuth-substituted rare-earth iron garnet single crystal is chosen as the Faraday rotator. By changing the direction of current in the solenoid quickly, the magnetization of the magneto-optic material is reversed, and the optical beam can be rapidly switched. The experimental results indicate that the switching time of the device is about 100 to 400 ns, which can partially meet the demand of the rapid development of the all optical network.

  4. Optical properties of fast-diffusing solid-state plasmas

    SciTech Connect

    Forchel, A.; Schweizer, H.; Mahler, G.

    1983-08-08

    Transmission and emission spectra of fast-diffusing nonequilibrium electron-hole plasmas in semiconductors are calculated with use of displaced Fermi distributions. The carrier drift significantly alters the plasma spectra and removes previously reported incomprehensible discrepancies between experimental and theoretical plasma parameters, indicating the necessity to reinterpret entirely the spectroscopic data from nonequilibrium plasmas.

  5. A radio jet from the optical and x-ray bright stellar tidal disruption flare ASASSN-14li

    NASA Astrophysics Data System (ADS)

    van Velzen, S.; Anderson, G. E.; Stone, N. C.; Fraser, M.; Wevers, T.; Metzger, B. D.; Jonker, P. G.; van der Horst, A. J.; Staley, T. D.; Mendez, A. J.; Miller-Jones, J. C. A.; Hodgkin, S. T.; Campbell, H. C.; Fender, R. P.

    2016-01-01

    The tidal disruption of a star by a supermassive black hole leads to a short-lived thermal flare. Despite extensive searches, radio follow-up observations of known thermal stellar tidal disruption flares (TDFs) have not yet produced a conclusive detection. We present a detection of variable radio emission from a thermal TDF, which we interpret as originating from a newly launched jet. The multiwavelength properties of the source present a natural analogy with accretion-state changes of stellar mass black holes, which suggests that all TDFs could be accompanied by a jet. In the rest frame of the TDF, our radio observations are an order of magnitude more sensitive than nearly all previous upper limits, explaining how these jets, if common, could thus far have escaped detection.

  6. A radio jet from the optical and x-ray bright stellar tidal disruption flare ASASSN-14li.

    PubMed

    van Velzen, S; Anderson, G E; Stone, N C; Fraser, M; Wevers, T; Metzger, B D; Jonker, P G; van der Horst, A J; Staley, T D; Mendez, A J; Miller-Jones, J C A; Hodgkin, S T; Campbell, H C; Fender, R P

    2016-01-01

    The tidal disruption of a star by a supermassive black hole leads to a short-lived thermal flare. Despite extensive searches, radio follow-up observations of known thermal stellar tidal disruption flares (TDFs) have not yet produced a conclusive detection. We present a detection of variable radio emission from a thermal TDF, which we interpret as originating from a newly launched jet. The multiwavelength properties of the source present a natural analogy with accretion-state changes of stellar mass black holes, which suggests that all TDFs could be accompanied by a jet. In the rest frame of the TDF, our radio observations are an order of magnitude more sensitive than nearly all previous upper limits, explaining how these jets, if common, could thus far have escaped detection. PMID:26612833

  7. Flare models: Chapter 9 of solar flares

    NASA Technical Reports Server (NTRS)

    Sturrock, P. A. (Editor)

    1979-01-01

    By reviewing the properties of solar flares analyzed by each of the seven teams of the Skylab workshop, a set of primary and secondary requirements of flare models are derived. A number of flare models are described briefly and their properties compared with the primary requirements. It appears that, at this time, each flare model has some strong points and some weak points. It has not yet been demonstrated that any one flare model meets all the proposed requirements.

  8. Fast, externally triggered, digital phase controller for an optical lattice

    NASA Astrophysics Data System (ADS)

    Sadgrove, Mark; Nakagawa, Ken'ichi

    2011-11-01

    We present a method to control the phase of an optical lattice according to an external trigger signal. The method has a latency of less than 30 μs. Two phase locked digital synthesizers provide the driving signal for two acousto-optic modulators which control the frequency and phase of the counter-propagating beams which form a standing wave (optical lattice). A micro-controller with an external interrupt function is connected to the desired external signal, and updates the phase register of one of the synthesizers when the external signal changes. The standing wave (period λ/2 = 390 nm) can be moved by units of 49 nm with a mean jitter of 28 nm. The phase change is well known due to the digital nature of the synthesizer, and does not need calibration. The uses of the scheme include coherent control of atomic matter-wave dynamics.

  9. Optical emission spectroscopy observations of fast pulsed capillary discharge plasmas

    NASA Astrophysics Data System (ADS)

    Avaria, G.; Ruiz, M.; Guzmán, F.; Favre, M.; Wyndham, E. S.; Chuaqui, H.; Bhuyan, H.

    2014-05-01

    We present time resolved optical emission spectroscopic (OES) observations of a low energy, pulsed capillary discharage (PCD). The optical emission from the capillary plasma and plasma jets emitted from the capillary volume was recorded with with a SpectraPro 275 spectrograph, fitted with a MCP gated OMA system, with 15 ns time resolution. The discharge was operated with different gases, including argon, nitrogen, hydrogen and methane, in a repetitive pulsed discharge mode at 10-50 Hz, with, 10-12 kV pulses applied at the cathode side. The time evolution of the electron density was measured using Stark broadening of the Hβ line. Several features of the capillary plasma dynamics, such as ionization growth, wall effects and plasma jet evolution, are inferred from the time evolution of the optical emission.

  10. Long-stroke fast tool servo and a tool setting method for freeform optics fabrication

    NASA Astrophysics Data System (ADS)

    Liu, Qiang; Zhou, Xiaoqin; Liu, Zhiwei; Lin, Chao; Ma, Long

    2014-09-01

    Diamond turning assisted by fast tool servo is of high efficiency for the fabrication of freeform optics. This paper describes a long-stroke fast tool servo to obtain a large-amplitude tool motion. It has the advantage of low cost and higher stiffness and natural frequency than other flexure-based long-stroke fast tool servo systems. The fast tool servo is actuated by a voice coil motor and guided by a flexure-hinge structure. Open-loop and close-loop control tests are conducted on the testing platform. While fast tool servo system is an additional motion axis for a diamond turning machine, a tool center adjustment method is described to confirm tool center position in the machine tool coordinate system when the fast tool servo system is fixed on the diamond turning machine. Last, a sinusoidal surface is machined and the results demonstrate that the tool adjustment method is efficient and precise for a flexure-based fast tool servo system, and the fast tool servo system works well on the fabrication of freeform optics.

  11. Development of a small scintillation detector with an optical fiber for fast neutrons.

    PubMed

    Yagi, T; Unesaki, H; Misawa, T; Pyeon, C H; Shiroya, S; Matsumoto, T; Harano, H

    2011-02-01

    To investigate the characteristics of a reactor and a neutron generator, a small scintillation detector with an optical fiber with ThO(2) has been developed to measure fast neutrons. However, experimental facilities where (232)Th can be used are limited by regulations, and S/N ratio is low because the background counts of this detector are increase by alpha decay of (232)Th. The purpose of this study is to develop a new optical fiber detector for measuring fast neutrons that does not use nuclear material such as (232)Th. From the measured and calculated results, the new optical fiber detector which uses ZnS(Ag) as a converter material together with a scintillator have the highest detection efficiency among several developed detectors. It is applied for the measurement of reaction rates generated from fast neutrons; furthermore, the absolute detection efficiency of this detector was obtained experimentally. PMID:21129989

  12. Fast optical recording media based on semiconductor nanostructures for image recording and processing

    SciTech Connect

    Kasherininov, P. G. Tomasov, A. A.

    2008-11-15

    Fast optical recording media based on semiconductor nanostructures (CdTe, GaAs) for image recording and processing with a speed to 10{sup 6} cycle/s (which exceeds the speed of known recording media based on metal-insulator-semiconductor-(liquid crystal) (MIS-LC) structures by two to three orders of magnitude), a photosensitivity of 10{sup -2}V/cm{sup 2}, and a spatial resolution of 5-10 (line pairs)/mm are developed. Operating principles of nanostructures as fast optical recording media and methods for reading images recorded in such media are described. Fast optical processors for recording images in incoherent light based on CdTe crystal nanostructures are implemented. The possibility of their application to fabricate image correlators is shown.

  13. Solar flares controlled by helicity conservation

    NASA Technical Reports Server (NTRS)

    Gliner, Erast B.; Osherovich, Vladimir A.

    1995-01-01

    The energy release in a class of solar flares is studied on the assumption that during burst events in highly conducting plasma the magnetic helicity of plasma is approximately conserved. The available energy release under a solar flare controlled by the helicity conservation is shown to be defined by the magnetic structure of the associated prominence. The approach throws light on some solar flare enigmas: the role of the associated prominence. The approach throws light on some solar flare enigmas: the role of the associated prominences; the discontinuation of the reconnection of magnetic lines long before the complete reconnection of participated fields occurs; the existence of quiet prominences which, in spite of their usual optical appearance, do not initiate any flare events; the small energy release under a solar flare in comparison with the stockpile of magnetic energy in surrounding fields. The predicted scale of the energy release is in a fair agreement with observations.

  14. Optical digital coherent detection technology enabled flexible and ultra-fast quantitative phase imaging.

    PubMed

    Feng, Yuan-Hua; Lu, Xing; Song, Lu; Guo, Xiaojie; Wang, Yawei; Zhu, Linyan; Sui, Qi; Li, Jianping; Shi, Kebin; Li, Zhaohui

    2016-07-25

    Quantitative phase imaging has been an important labeling-free microscopy modality for many biomedical and material science applications. In which, ultra-fast quantitative phase imaging is indispensable for dynamic or transient characteristics analysis. Conventional wide field optical interferometry is a common scheme for quantitative phase imaging, while its data acquisition rate is usually hindered by the frame rate of arrayed detector. By utilizing novel balanced-photo-detector based digital optics coherent detection techniques, we report on a method of constructing ultra-fast quantitative phase microscopy at the line-scan rate of 100 MHz with ~2 μm spatial resolution. PMID:27464166

  15. Optical observations of the fast nova V2491 Cyg

    NASA Astrophysics Data System (ADS)

    Tomov, T.; Mikolajewski, M.; Ragan, E.; Swierczynski, E.; Wychudzki, P.

    2008-04-01

    We report on optical spectral observations and UBVRI brightness estimations obtained with 60/90 cm Schmidt and 60 cm Cassegrain telescopes of the Nicolaus Copernicus University Observatory (Torun, Poland). The nova V2491 Cyg was discovered on Apr. 10.728 UT with about 7.7 mag on unfiltered CCD frames (IAUC#8934). Additionally, the X-ray emission was detected for the prenova several months ago (ATel#1473).

  16. Fast optical pH manipulation and imaging.

    PubMed

    Filevich, Oscar; Carrone, Guillermo; Pavlovsky, Victoria Andino; Etchenique, Roberto

    2012-07-01

    We describe a complete system for optical pH manipulation and imaging. The system consists of a photoactive Ruthenium complex capable of inducing a change of more than 5 pH units at the nanosecond time scale. A compatible imaging system acquires microscopic pH images at 1200 fps using a nonexpensive commercial digital camera and an LED illumination system. We use the system as a superb tool to investigate flow in Flow Injection Analysis (FIA) models. PMID:22703044

  17. Fast gain and phase recovery of semiconductor optical amplifiers based on submonolayer quantum dots

    SciTech Connect

    Herzog, Bastian Owschimikow, Nina; Kaptan, Yücel; Kolarczik, Mirco; Switaiski, Thomas; Woggon, Ulrike; Schulze, Jan-Hindrik; Rosales, Ricardo; Strittmatter, André; Bimberg, Dieter; Pohl, Udo W.

    2015-11-16

    Submonolayer quantum dots as active medium in opto-electronic devices promise to combine the high density of states of quantum wells with the fast recovery dynamics of self-assembled quantum dots. We investigate the gain and phase recovery dynamics of a semiconductor optical amplifier based on InAs submonolayer quantum dots in the regime of linear operation by one- and two-color heterodyne pump-probe spectroscopy. We find an as fast recovery dynamics as for quantum dot-in-a-well structures, reaching 2 ps at moderate injection currents. The effective quantum well embedding the submonolayer quantum dots acts as a fast and efficient carrier reservoir.

  18. Fast laser optical CT scanner with rotating mirror and Fresnel lenses

    NASA Astrophysics Data System (ADS)

    Conklin, J.; Deshpande, R.; Battista, J.; Jordan, K.

    2006-12-01

    Single laser beam and detector computed tomography (CT) scanner geometries provide excellent stray light rejection and these systems likely provide the largest dynamic range for optical CT scanning of gel dosimeters. In this work a rotating mirror, lens pair, laser scanner has been developed for a 10 x 15 cm2 field of view demonstrating a fast 3D single ray-detector optical CT scanner.

  19. On Flare and CME Predictability Based on Sunspot Group Evolution

    NASA Astrophysics Data System (ADS)

    Korsós, M. B.; Ruderman, M. S.

    2016-04-01

    We propose to apply the weighted horizontal magnetic gradient (WGM), introduced in Korsós et al. (2015), for analysing the pre-flare and pre-CME behaviour and evolution of Active Regions (ARs) using the SDO/HMI-Debrecen Data catalogue. To demonstrate the power of investigative capabilities of the WGM method in terms of flare/CME eruptions, we show the results of studying three typical active regions, namely, AR11818, AR12017 and AR11495. The choice of ARs represent typical cases of flaring with a fast CME, flare eruption without a CME and non-flaring cases, respectively. AR11818 produced an M1.4 energetic flare with a fast "halo" CME (vlinear=1202 km/s) while in AR12017 occurred an X1.0 flare without a CME. The AR11495 is a good example for non-flaring ARs. The value and temporal variation of WGM is found to possess potentially important diagnostic information about the intensity of expected flares. However, this test turns out not only to provide information about the intensity of expected flares but may also show whether a flare will occur with/without a fast CME.

  20. Fast figuring of large optics by reactive atom plasma

    NASA Astrophysics Data System (ADS)

    Castelli, Marco; Jourdain, Renaud; Morantz, Paul; Shore, Paul

    2012-09-01

    The next generation of ground-based astronomical observatories will require fabrication and maintenance of extremely large segmented mirrors tens of meters in diameter. At present, the large production of segments required by projects like E-ELT and TMT poses time frames and costs feasibility questions. This is principally due to a bottleneck stage in the optical fabrication chain: the final figuring step. State-of-the-art figure correction techniques, so far, have failed to meet the needs of the astronomical community for mass production of large, ultra-precise optical surfaces. In this context, Reactive Atom Plasma (RAP) is proposed as a candidate figuring process that combines nanometer level accuracy with high material removal rates. RAP is a form of plasma enhanced chemical etching at atmospheric pressure based on Inductively Coupled Plasma technology. The rapid figuring capability of the RAP process has already been proven on medium sized optical surfaces made of silicon based materials. In this paper, the figure correction of a 3 meters radius of curvature, 400 mm diameter spherical ULE mirror is presented. This work demonstrates the large scale figuring capability of the Reactive Atom Plasma process. The figuring is carried out by applying an in-house developed procedure that promotes rapid convergence. A 2.3 μm p-v initial figure error is removed within three iterations, for a total processing time of 2.5 hours. The same surface is then re-polished and the residual error corrected again down to λ/20 nm rms. These results highlight the possibility of figuring a metre-class mirror in about ten hours.

  1. Fast calibration of high-order adaptive optics systems

    NASA Astrophysics Data System (ADS)

    Kasper, Markus; Fedrigo, Enrico; Looze, Douglas P.; Bonnet, Henri; Ivanescu, Liviu; Oberti, Sylvain

    2004-06-01

    We present a new method of calibrating adaptive optics systems that greatly reduces the required calibration time or, equivalently, improves the signal-to-noise ratio. The method uses an optimized actuation scheme with Hadamard patterns and does not scale with the number of actuators for a given noise level in the wave-front sensor channels. It is therefore highly desirable for high-order systems and/or adaptive secondary systems on a telescope without a Gregorian focal plane. In the latter case, the measurement noise is increased by the effects of the turbulent atmosphere when one is calibrating on a natural guide star.

  2. Fast calibration of high-order adaptive optics systems.

    PubMed

    Kasper, Markus; Fedrigo, Enrico; Looze, Douglas P; Bonnet, Henri; Ivanescu, Liviu; Oberti, Sylvain

    2004-06-01

    We present a new method of calibrating adaptive optics systems that greatly reduces the required calibration time or, equivalently, improves the signal-to-noise ratio. The method uses an optimized actuation scheme with Hadamard patterns and does not scale with the number of actuators for a given noise level in the wavefront sensor channels. It is therefore highly desirable for high-order systems and/or adaptive secondary systems on a telescope without a Gregorian focal plane. In the latter case, the measurement noise is increased by the effects of the turbulent atmosphere when one is calibrating on a natural guide star. PMID:15191182

  3. Fast localization of optic disc and fovea in retinal images for eye disease screening

    NASA Astrophysics Data System (ADS)

    Yu, H.; Barriga, S.; Agurto, C.; Echegaray, S.; Pattichis, M.; Zamora, G.; Bauman, W.; Soliz, P.

    2011-03-01

    Optic disc (OD) and fovea locations are two important anatomical landmarks in automated analysis of retinal disease in color fundus photographs. This paper presents a new, fast, fully automatic optic disc and fovea localization algorithm developed for diabetic retinopathy (DR) screening. The optic disc localization methodology comprises of two steps. First, the OD location is identified using template matching and directional matched filter. To reduce false positives due to bright areas of pathology, we exploit vessel characteristics inside the optic disc. The location of the fovea is estimated as the point of lowest matched filter response within a search area determined by the optic disc location. Second, optic disc segmentation is performed. Based on the detected optic disc location, a fast hybrid level-set algorithm which combines the region information and edge gradient to drive the curve evolution is used to segment the optic disc boundary. Extensive evaluation was performed on 1200 images (Messidor) composed of 540 images of healthy retinas, 431 images with DR but no risk of macular edema (ME), and 229 images with DR and risk of ME. The OD location methodology obtained 98.3% success rate, while fovea location achieved 95% success rate. The average mean absolute distance (MAD) between the OD segmentation algorithm and "gold standard" is 10.5% of estimated OD radius. Qualitatively, 97% of the images achieved Excellent to Fair performance for OD segmentation. The segmentation algorithm performs well even on blurred images.

  4. GRB 090313 AND THE ORIGIN OF OPTICAL PEAKS IN GAMMA-RAY BURST LIGHT CURVES: IMPLICATIONS FOR LORENTZ FACTORS AND RADIO FLARES

    SciTech Connect

    Melandri, A.; Kobayashi, S.; Mundell, C. G.; Guidorzi, C.; Bersier, D.; Steele, I. A.; Smith, R. J.; De Ugarte Postigo, A.; Pooley, G.; Yoshida, M.; Castro-Tirado, A. J.; Gorosabel, J.; Kubanek, P.; Sota, A.; Gomboc, A.; Bremer, M.; Winters, J. M.; De Gregorio-Monsalvo, I.; GarcIa-Appadoo, D.

    2010-11-10

    We use a sample of 19 gamma-ray bursts (GRBs) that exhibit single-peaked optical light curves to test the standard fireball model by investigating the relationship between the time of the onset of the afterglow and the temporal rising index. Our sample includes GRBs and X-ray flashes for which we derive a wide range of initial Lorentz factors (40 < {Gamma} < 450). Using plausible model parameters, the typical frequency of the forward shock is expected to lie close to the optical band; within this low typical frequency framework, we use the optical data to constrain {epsilon}{sub e} and show that values derived from the early time light-curve properties are consistent with published typical values derived from other afterglow studies. We produce expected radio light curves by predicting the temporal evolution of the expected radio emission from forward and reverse shock components, including synchrotron self-absorption effects at early time. Although a number of GRBs in this sample do not have published radio measurements, we demonstrate the effectiveness of this method in the case of Swift GRB 090313, for which millimetric and centimetric observations were available, and conclude that future detections of reverse-shock radio flares with new radio facilities such as the EVLA and ALMA will test the low-frequency model and provide constraints on magnetic models.

  5. Solar flare nomenclature

    NASA Astrophysics Data System (ADS)

    Cliver, E. W.

    1995-03-01

    The evolution of solar flare nomenclature is reviewed in the context of the paradigm shift, in progress, from flares to coronal mass ejections (CMEs) in solar-terrestrial physics. Emphasis is placed on: the distinction between eruptive (Class II) flares and confined (Class I) flares; and the underlying similarity of eruptive flares inside (two-ribbon flares) and outside (flare-like brightenings accompanying disappearing filaments) of active regions. A list of reserach questions/ problems raised, or brought into focus, by the new paradigm is suggested; in general, these questions bear on the inter- relationships and associations of the two classes (or phases) or flares. Terms such as 'eruptive flare' and 'eruption' (defined to encompass both the CME and its associated eruptive flare) may be useful as nominal links between opposing viewpoints in the 'flares vs CMEs' controversy.

  6. Fast multi-copy entanglement purification with linear optics

    NASA Astrophysics Data System (ADS)

    Cai, Chun; Zhou, Lan; Sheng, Yu-Bo

    2015-12-01

    We describe an entanglement purification protocol for a polarization Bell state. Different from the previous protocols, it does not require the controlled-not gate, and only uses linear optical elements to complete the task. This protocol requires multi-copy degraded mixed states, which can make this protocol obtain a high fidelity in one purification step. It can also be extended to purify the multi-photon Greenberger-Horne-Zeilinger (GHZ) state. This protocol may be useful in future long-distance communication. Project supported by the National Natural Science Foundation of China (Grant Nos. 11474168 and 61401222), the Qing Lan Project of Jiangsu Province, China, the STITP Project in Nanjing University of Posts and Telecommunications, the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20151502), the Natural Science Foundation of the Jiangsu Higher Education Institutions (Grant No. 15KJA120002), and the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, China.

  7. Fast Optical Photometry of V404 Cyg at the MDM Observatory

    NASA Astrophysics Data System (ADS)

    Terndrup, D.; Wagner, R. M.; Starrfield, S.

    2015-06-01

    We obtained continuous fast differential optical photometry of V404 Cyg with the 1.3 m McGraw-Hill Telescope of the MDM Observatory on Kitt Peak on the nights of 2015 June 19.220-19.474, 20.194-20.472, 21.199-21.460, and 22.188-22.421 UT.

  8. Absolute calibration method for fast-streaked, fiber optic light collection, spectroscopy systems.

    SciTech Connect

    Johnston, Mark D.; Frogget, Brent; Oliver, Bryan Velten; Maron, Yitzhak; Droemer, Darryl W.; Crain, Marlon D.

    2010-04-01

    This report outlines a convenient method to calibrate fast (<1ns resolution) streaked, fiber optic light collection, spectroscopy systems. Such a system is used to collect spectral data on plasmas generated in the A-K gap of electron beam diodes fielded on the RITS-6 accelerator (8-12MV, 140-200kA). On RITS, light is collected through a small diameter (200 micron) optical fiber and recorded on a fast streak camera at the output of 1 meter Czerny-Turner monochromator (F/7 optics). To calibrate such a system, it is necessary to efficiently couple light from a spectral lamp into a 200 micron diameter fiber, split it into its spectral components, with 10 Angstroms or less resolution, and record it on a streak camera with 1ns or less temporal resolution.

  9. Measurement of the information velocity in fast- and slow-light optical pulse propagation

    NASA Astrophysics Data System (ADS)

    Stenner, Michael David

    This thesis describes a study of the velocity of information on optical pulses propagating through fast- and slow-light media. In fast- and slow-light media, the group velocity vg is faster than the speed of light in vacuum c (vg > c or vg < 0) or slower than c (0 < vg < c) respectively. While it is largely accepted that optical pulses can travel at these extreme group velocities, the velocity of information encoded on them is still the subject of considerable debate. There are many contradictory theories describing the velocity of information on optical pulses, but no accepted techniques for its experimental measurement. The velocity of information has broad implications for the principle of relativistic causality (which requires that information travels no faster than c) and for modern communications and computation. In this thesis, a new technique for measuring the information velocity vi is described and implemented for fast- and slow-light media. The fast- and slow-light media are generated using modern dispersion-tailoring techniques that use large atomic coherences to generate strong normal and anomalous dispersion. The information velocity in these media can then be measured using information-theoretic concepts by creating an alphabet of two distinct pulse symbols and transmitting the symbols through the media. By performing a detailed statistical analysis of the received information as a function of time, it is possible to calculate vi. This new technique makes it possible for the first time to measure the velocity of information on optical pulses. Applying this technique to fast-light pulses, where vg/c = -0.051 +/- 0.002, it is found that vi /c = 0.4(+0.7--0.2). In the slow-light case, where vg/c = 0.0097 +/- 0.0003, information is found to propagate at vi/c = 0.6. In the slow-light case, the error bars are slightly more complicated. The fast bound is -0.5c (which is faster than positive values) and the slow bound is 0.2c . These results represent the

  10. Characterization of total flare energy

    NASA Technical Reports Server (NTRS)

    Hudson, H. S.

    1986-01-01

    It is concluded that the estimates of total energy in the prime flares lie well below the Active Cavity Radiometer Irradiance Monitor upper limits. This is consistent with our knowledge of the energy distribution in solar flares. Insufficient data exist for us to be very firm about this conclusion, however, and major energetic components could exist undetected, especially in the EUV-XUV and optical bands. In addition, the radiant energy cannot quantitatively be compared at this time with non-radiant terms because of even larger uncertainties in the latter.

  11. COMBUSTION EFFICIENCY OF FLARES

    EPA Science Inventory

    The paper gives results of a study to provide data on industrial flare emissions. (Emissions of incompletely burned hydrocarbons from industrial flares may contribute to air pollution. Available data on flare emissions are sparse, and methods to sample operating flares are unavai...

  12. An integrated fiber-optic probe combined with support vector regression for fast estimation of optical properties of turbid media.

    PubMed

    Zhou, Yang; Fu, Xiaping; Ying, Yibin; Fang, Zhenhuan

    2015-06-23

    A fiber-optic probe system was developed to estimate the optical properties of turbid media based on spatially resolved diffuse reflectance. Because of the limitations in numerical calculation of radiative transfer equation (RTE), diffusion approximation (DA) and Monte Carlo simulations (MC), support vector regression (SVR) was introduced to model the relationship between diffuse reflectance values and optical properties. The SVR models of four collection fibers were trained by phantoms in calibration set with a wide range of optical properties which represented products of different applications, then the optical properties of phantoms in prediction set were predicted after an optimal searching on SVR models. The results indicated that the SVR model was capable of describing the relationship with little deviation in forward validation. The correlation coefficient (R) of reduced scattering coefficient μ'(s) and absorption coefficient μ(a) in the prediction set were 0.9907 and 0.9980, respectively. The root mean square errors of prediction (RMSEP) of μ'(s) and μ(a) in inverse validation were 0.411 cm(-1) and 0.338 cm(-1), respectively. The results indicated that the integrated fiber-optic probe system combined with SVR model were suitable for fast and accurate estimation of optical properties of turbid media based on spatially resolved diffuse reflectance. PMID:26092344

  13. Optical delay encoding for fast timing and detector signal multiplexing in PET

    PubMed Central

    Grant, Alexander M.; Levin, Craig S.

    2015-01-01

    Purpose: The large number of detector channels in modern positron emission tomography (PET) scanners poses a challenge in terms of readout electronics complexity. Multiplexing schemes are typically implemented to reduce the number of physical readout channels, but often result in performance degradation. Novel methods of multiplexing in PET must be developed to avoid this data degradation. The preservation of fast timing information is especially important for time-of-flight PET. Methods: A new multiplexing scheme based on encoding detector interaction events with a series of extremely fast overlapping optical pulses with precise delays is demonstrated in this work. Encoding events in this way potentially allows many detector channels to be simultaneously encoded onto a single optical fiber that is then read out by a single digitizer. A two channel silicon photomultiplier-based prototype utilizing this optical delay encoding technique along with dual threshold time-over-threshold is demonstrated. Results: The optical encoding and multiplexing prototype achieves a coincidence time resolution of 160 ps full width at half maximum (FWHM) and an energy resolution of 13.1% FWHM at 511 keV with 3 × 3 × 5 mm3 LYSO crystals. All interaction information for both detectors, including timing, energy, and channel identification, is encoded onto a single optical fiber with little degradation. Conclusions: Optical delay encoding and multiplexing technology could lead to time-of-flight PET scanners with fewer readout channels and simplified data acquisition systems. PMID:26233181

  14. Model of slowly evolving flare.

    NASA Astrophysics Data System (ADS)

    Chiuderi Drago, F.; Landini, M.; Monsignori Fossi, B. C.

    A gradual rise and fall flare with a duration of about one hour was observed on June 10, 1980 in the radio (Toyokawa and VLA), optical (Bing Bear) and XUV (SMM satellite) ranges of wavelengths. The flare developed as a large loop connecting two regions of opposite polarity in a pre-existing active region. A model of the differential emission measure of the loop observed at three different stages of the flare is deduced from the analysis of the XUV images in C IV (1549 Å), O VIII (18.97 Å), Ne IX (13.45 Å), Mg XI (9.17 Å) and Si XIII (6.65 Å) emission lines. The differential emission measure as a function of temperature is controlled by the conductive flux via the temperature gradient; the evaluation of the divergence of the conductive flux is used in the energy balance to have information on the power deposition function.

  15. Compact, highly sensitive optical gyros and sensors with fast-light

    NASA Astrophysics Data System (ADS)

    Christensen, Caleb A.; Zavriyev, Anton; Cummings, Malcolm; Beal, A. C.; Lucas, Mark; Lagasse, Michael

    2015-09-01

    Fast-light phenomena can enhance the sensitivity of an optical gyroscope of a given size by several orders of magnitude, and could be applied to other optical sensors as well. MagiQ Technologies has been developing a compact fiber-based fast light Inertial Measurement Unit (IMU) using Stimulated Brillouin Scattering in optical fibers with commercially mature technologies. We will report on our findings, including repeatable fast-light effects in the lab, numerical analysis of noise and stability given realistic optical specs, and methods for optimizing efficiency, size, and reliability with current technologies. The technology could benefit inertial navigation units, gyrocompasses, and stabilization techniques, and could allow high grade IMUs in spacecraft, unmanned aerial vehicles or sensors, where the current size and weight of precision gyros are prohibitive. By using photonic integrated circuits and telecom-grade components along with specialty fibers, we also believe that our design is appropriate for development without further advances in the state of the art of components.

  16. Connection of Very High Energy Gamma-ray Flares in Blazars to Activity at Lower Frequencies

    NASA Astrophysics Data System (ADS)

    Marscher, Alan P.; Jorstad, Svetlana G.

    2016-04-01

    The author will briefly review the results of multi-wavelength observations of blazars that emit very high-energy (VHE) gamma rays. The VHE gamma-ray emission is generally episodic, including flares that are often very short-lived. While many of these flares have counterparts only at X-ray energies, or no counterparts at all, some events are seen also at optical wavelengths, and a number are associated with the passage of new superluminal knots passing through the core in mm-wave VLBA images. Two explanations for the short-term VHE flares in the relativistic jets are supersonic turbulence and ultra-fast plasma jets resulting from magnetic reconnections. Observations of frequency-dependent linear polarization during flares can potentially decide between these models. VLBA images can help to locate VHE events that are seen at millimeter wavelengths. In some cases, the flares take place near the parsec-scale core, while in others they occur closer to the black hole.This research is supported in part by NASA through Swift Guest Investigator grants NNX15AR45G and NNX15AR34G.

  17. An active M star with X-ray double flares disguised as an ultra-luminous X-ray source

    NASA Astrophysics Data System (ADS)

    Guo, Jin-Cheng; Liu, Ji-Feng; Wang, Song; Wu, Yue; Qin, Yu-Xiang

    2016-02-01

    Here we present research on an ultra-luminous X-ray source (ULX) candidate 2XMM J140229.91+542118.8. The X-ray light curves of this ULX candidate in M101 exhibit features of a flare star. More importantly, the Chandra light curve displays unusual X-ray double flares, which is comprised of two close peaks. The X-ray (0.3-11.0 keV) flux of the first peak was derived from the two-temperature APEC model as ˜ 1.1 ± 0.1 × 10-12 erg cm-2 s-1. The observed flux at its first peak increased by about two orders of magnitude in X-ray as compared to quiescence. The slope of the second fast decay phase is steeper than the slope of the first fast decay phase, indicating that the appearance of a second flare accelerated the cooling of the first flare in a way we do not understand yet. We also observed its optical counterpart using a 2.16 m telescope administered by National Astronomical Observatories, Chinese Academy of Sciences. By optical spectral fitting, it is confirmed to be a late type dMe2.5 star. According to the spectral type and apparent magnitude of its optical counterpart, we estimate the photometric distance to be ˜ 133.4 ± 14.2 pc. According to the X-ray spectral fitting, a possible explanation is provided. However, more similar close double flares are needed to confirm whether this accelerated cooling event is a unique coincidence or a common physical process during double flaring.

  18. The H-alpha/H-beta ratio in solar flares

    NASA Technical Reports Server (NTRS)

    Zirin, H.; Liggett, M.; Patterson, A.

    1982-01-01

    The present investigation involves the study of an extensive body of data accumulated of simultaneous H-alpha and H-beta cinematography of flares. The data were obtained with two telescopes simultaneously photographing flares in H-alpha and H-beta. The results of measurements in a number of flares are presented in a table. The flares were selected purely by optical quality of the data. That the measured ratios are not too different from those in stellar flares is suggested by the last two columns of the table. These columns show that a variety of possible line width ratios could give an integrated intensity ratio of less than unity.

  19. Identification of complex scattered signals with a fast real-time hybrid electro-optical correlator

    NASA Astrophysics Data System (ADS)

    Majumdar, Arun K.; Sandomirsky, Sergey

    1997-10-01

    The goal of this work was to develop a fast optical correlator for automatic real-time target recognition. The tremendous importance of optical correlators for military and civilian applications was recognized recently and approved by a US conference committee of senators nd representatives. This publication presents the experimental results of detecting and identifying complex scattered signals by using an innovative, hybrid electro-optical correlator. Our technique is based on achieving optical correlation by utilizing state-of-the-art devices: time delay integration, charge coupled devices, liquid crystal displays, and electronically controllable light sources. Results of the experiment with our optical correlator, performed with simulated sonar signals with a center frequency of 100 kHz and duration of 8 to 512 pulses, show the possibility of recognizing a Doppler shift of 20 Hz. This Doppler shift corresponds to a target velocity of 20.7 m/sec. Simulation results indicate that we can achieve significant correlation for a noisy signal by using appropriate signal length. Our experiments demonstrate that we can perform approximately 1010 multiply accumulate operations per second with the high parallel optical corrector, compared to approximately 106 multiply accumulate operations per second using a Pentium 133 MHz personal computer. This new optical correlation scheme can provide solutions for overcoming the inherent shortcomings attributable to the low dynamic range of CCD, and the problem of compatibility caused by different pixel patterns between LCD and CCD by making use of high-quality optics and modern means of achieving uniform illumination.

  20. Interferometric adaptive optics for high-power laser beam correction in fast ignition experiments

    SciTech Connect

    Homoelle, D C; Baker, K L; Patel, P K; Utterback, E; Rushford, M C; Siders, C W; Barty, C J

    2009-10-22

    We present the design for a high-speed adaptive optics system that will be used to achieve the necessary laser pointing and beam-quality performance for initial fast-ignition coupling experiments. This design makes use of a 32 x 32 pixellated MEMS device as the adaptive optic and a two-channel interferometer as the wave-front sensor. We present results from a system testbed that demonstrates improvement of the Strehl ratio from 0.09 to 0.61 and stabilization of beam pointing from {approx}75{micro}rad to <2{micro}rad.

  1. ADAHELI: exploring the fast, dynamic Sun in the x-ray, optical, and near-infrared

    NASA Astrophysics Data System (ADS)

    Berrilli, Francesco; Soffitta, Paolo; Velli, Marco; Sabatini, Paolo; Bigazzi, Alberto; Bellazzini, Ronaldo; Bellot Rubio, Luis Ramon; Brez, Alessandro; Carbone, Vincenzo; Cauzzi, Gianna; Cavallini, Fabio; Consolini, Giuseppe; Curti, Fabio; Del Moro, Dario; Di Giorgio, Anna Maria; Ermolli, Ilaria; Fabiani, Sergio; Faurobert, Marianne; Feller, Alex; Galsgaard, Klaus; Gburek, Szymon; Giannattasio, Fabio; Giovannelli, Luca; Hirzberger, Johann; Jefferies, Stuart M.; Madjarska, Maria S.; Manni, Fabio; Mazzoni, Alessandro; Muleri, Fabio; Penza, Valentina; Peres, Giovanni; Piazzesi, Roberto; Pieralli, Francesca; Pietropaolo, Ermanno; Pillet, Valentin Martinez; Pinchera, Michele; Reale, Fabio; Romano, Paolo; Romoli, Andrea; Romoli, Marco; Rubini, Alda; Rudawy, Pawel; Sandri, Paolo; Scardigli, Stefano; Spandre, Gloria; Solanki, Sami K.; Stangalini, Marco; Vecchio, Antonio; Zuccarello, Francesca

    2015-10-01

    Advanced Astronomy for Heliophysics Plus (ADAHELI) is a project concept for a small solar and space weather mission with a budget compatible with an European Space Agency (ESA) S-class mission, including launch, and a fast development cycle. ADAHELI was submitted to the European Space Agency by a European-wide consortium of solar physics research institutes in response to the "Call for a small mission opportunity for a launch in 2017," of March 9, 2012. The ADAHELI project builds on the heritage of the former ADAHELI mission, which had successfully completed its phase-A study under the Italian Space Agency 2007 Small Mission Programme, thus proving the soundness and feasibility of its innovative low-budget design. ADAHELI is a solar space mission with two main instruments: ISODY: an imager, based on Fabry-Pérot interferometers, whose design is optimized to the acquisition of highest cadence, long-duration, multiline spectropolarimetric images in the visible/near-infrared region of the solar spectrum. XSPO: an x-ray polarimeter for solar flares in x-rays with energies in the 15 to 35 keV range. ADAHELI is capable of performing observations that cannot be addressed by other currently planned solar space missions, due to their limited telemetry, or by ground-based facilities, due to the problematic effect of the terrestrial atmosphere.

  2. FLARES AND THEIR UNDERLYING MAGNETIC COMPLEXITY

    SciTech Connect

    Engell, Alexander J.; Golub, Leon; Korreck, Kelly; Siarkowski, Marek; Gryciuk, Magda; Sylwester, Janusz; Sylwester, Barbara; Cirtain, Jonathan

    2011-01-01

    SphinX (Solar PHotometer IN X-rays), a full-disk-integrated spectrometer, observed 137 flare-like/transient events with active region (AR) 11024 being the only AR on disk. The Hinode X-Ray Telescope (XRT) and Solar Optical Telescope observe 67 of these events and identified their location from 12:00 UT on July 3 through 24:00 UT 2009 July 7. We find that the predominant mechanisms for flares observed by XRT are (1) flux cancellation and (2) the shearing of underlying magnetic elements. Point- and cusp-like flare morphologies seen by XRT all occur in a magnetic environment where one polarity is impeded by the opposite polarity and vice versa, forcing the flux cancellation process. The shearing is either caused by flux emergence at the center of the AR and separation of polarities along a neutral line or by individual magnetic elements having a rotational motion. Both mechanisms are observed to contribute to single- and multiple-loop flares. We observe that most loop flares occur along a large portion of a polarity inversion line. Point- and cusp-like flares become more infrequent as the AR becomes organized with separation of the positive and negative polarities. SphinX, which allows us to identify when these flares occur, provides us with a statistically significant temperature and emission scaling law for A and B class flares: EM = 6.1 x 10{sup 33} T{sup 1.9{+-}0.1}.

  3. Flares and Their Underlying Magnetic Complexity

    NASA Astrophysics Data System (ADS)

    Engell, Alexander J.; Siarkowski, Marek; Gryciuk, Magda; Sylwester, Janusz; Sylwester, Barbara; Golub, Leon; Korreck, Kelly; Cirtain, Jonathan

    2011-01-01

    SphinX (Solar PHotometer IN X-rays), a full-disk-integrated spectrometer, observed 137 flare-like/transient events with active region (AR) 11024 being the only AR on disk. The Hinode X-Ray Telescope (XRT) and Solar Optical Telescope observe 67 of these events and identified their location from 12:00 UT on July 3 through 24:00 UT 2009 July 7. We find that the predominant mechanisms for flares observed by XRT are (1) flux cancellation and (2) the shearing of underlying magnetic elements. Point- and cusp-like flare morphologies seen by XRT all occur in a magnetic environment where one polarity is impeded by the opposite polarity and vice versa, forcing the flux cancellation process. The shearing is either caused by flux emergence at the center of the AR and separation of polarities along a neutral line or by individual magnetic elements having a rotational motion. Both mechanisms are observed to contribute to single- and multiple-loop flares. We observe that most loop flares occur along a large portion of a polarity inversion line. Point- and cusp-like flares become more infrequent as the AR becomes organized with separation of the positive and negative polarities. SphinX, which allows us to identify when these flares occur, provides us with a statistically significant temperature and emission scaling law for A and B class flares: EM = 6.1 × 1033 T 1.9±0.1.

  4. Radiation studies of optical interferometric modulators with fast neutrons and high energy gamma-rays

    SciTech Connect

    Tsang, T.; Radeka, V. ); Bulmer, C.H.; Burns, W.K. )

    1991-11-01

    The possibility of using Ti : LiNbO{sub 3} and single mode fibers for nuclear particle detection and transmission in large-scale machines, such as Superconducting Super Collider, calls for a detailed radiation damage study. In this report, we present radiation studies on Ti : LiNbO{sub 3} Mach-Zehnder interferometric optical modulators with fast neutrons and high energy Gamma-rays.

  5. High speed all-optical data processing in fast semiconductor and optical fiber based devices

    NASA Astrophysics Data System (ADS)

    Sun, Hongzhi

    Future generations of communication systems demand ultra high speed data processing and switching components. Conventional electrical parts have reached their bottleneck both speed-wise and efficiency-wise. The idea of manipulating high speed data in optical domain is gaining more popularity. In this PhD thesis work, we proposed and demonstrated various schemes of all-optical Boolean logic gate at data rate as high as 80Gb/s by using semiconductor optical amplifier (SOA), SOA Mach-Zehnder interferometer (SOA-MZI), highly nonlinear fiber (HNLF) and optical fiber based components. With the invention of quantum dot (QD) based semiconductor devices, speed limit of all optical data processing has a chance to boost up to 250Gb/s. We proposed and simulated QD-SOA based Boolean functions, and their application such as shift register and pseudorandom bit sequence generation (PRBS). Clock and data recovery of high speed data signals has been simulated and demonstrated by injection lock and phase lock loop techniques in a fiber and SOA ring and an optical-electrical (OE) feedback loop.

  6. Solar Flare Aimed at Earth

    NASA Technical Reports Server (NTRS)

    2002-01-01

    At the height of the solar cycle, the Sun is finally displaying some fireworks. This image from the Solar and Heliospheric Observatory (SOHO) shows a large solar flare from June 6, 2000 at 1424 Universal Time (10:24 AM Eastern Daylight Savings Time). Associated with the flare was a coronal mass ejection that sent a wave of fast moving charged particles straight towards Earth. (The image was acquired by the Extreme ultaviolet Imaging Telescope (EIT), one of 12 instruments aboard SOHO) Solar activity affects the Earth in several ways. The particles generated by flares can disrupt satellite communications and interfere with power transmission on the Earth's surface. Earth's climate is tied to the total energy emitted by the sun, cooling when the sun radiates less energy and warming when solar output increases. Solar radiation also produces ozone in the stratosphere, so total ozone levels tend to increase during the solar maximum. For more information about these solar flares and the SOHO mission, see NASA Science News or the SOHO home page. For more about the links between the sun and climate change, see Sunspots and the Solar Max. Image courtesy SOHO Extreme ultaviolet Imaging Telescope, ESA/NASA

  7. White-light Flares on Close Binaries Observed with Kepler

    NASA Astrophysics Data System (ADS)

    Gao, Qing; Xin, Yu; Liu, Ji-Feng; Zhang, Xiao-Bin; Gao, Shuang

    2016-06-01

    Based on Kepler data, we present the results of a search for white light flares on 1049 close binaries. We identify 234 flare binaries, of which 6818 flares are detected. We compare the flare-binary fraction in different binary morphologies (“detachedness”). The result shows that the fractions in over-contact and ellipsoidal binaries are approximately 10%–20% lower than those in detached and semi-detached systems. We calculate the binary flare activity level (AL) of all the flare binaries, and discuss its variations along the orbital period (P orb) and rotation period (P rot, calculated for only detached binaries). We find that the AL increases with decreasing P orb or P rot, up to the critical values at P orb ∼ 3 days or P rot ∼ 1.5 days, and thereafter the AL starts decreasing no matter how fast the stars rotate. We examine the flaring rate as a function of orbital phase in two eclipsing binaries on which a large number of flares are detected. It appears that there is no correlation between flaring rate and orbital phase in these two binaries. In contrast, when we examine the function with 203 flares on 20 non-eclipse ellipsoidal binaries, bimodal distribution of amplitude-weighted flare numbers shows up at orbital phases 0.25 and 0.75. Such variation could be larger than what is expected from the cross section modification.

  8. Observational aspects of stellar radio flares

    NASA Technical Reports Server (NTRS)

    Bookbinder, Jay A.

    1991-01-01

    The study of stellar flares in the radio regime provides a nearly unique observational perspective, as the emission generally arises from the particle acceleration region. Continuum and spectral studies of radio burst emission for several classes of stars are reviewed, and some preliminary connections with the quiescent radio emission from flare stars are made. Further, the radio observations are placed in a broader observational context provided by X-ray, UV, and optical observations.

  9. Automatic Detection of the Optic Disc of the Retina: A Fast Method.

    PubMed

    Jamshidi, M; Rabbani, H; Amini, Z; Kafieh, R; Ommani, A; Lakshminarayanan, V

    2016-01-01

    Localizing the optic disc (OD) in retinal fundus images is of critical importance and many techniques have been developed for OD detection. In this paper, we present the results obtained from two fast methods, correlation and least square, to approximate the location of optic cup. These methods are simple and are not complex, while most of the OD detection algorithms are. The methods were tested on two groups of data (a total of 100 color fundus images) and were 98% successful in the detection of the optic cup. An algorithm using the vessel mask of fundus images is proposed to be run after correlation to ensure that the localization of OD in all images is successful. It was tested on 40 of the test images and had a 100% rate of success. PMID:27014613

  10. Automatic Detection of the Optic Disc of the Retina: A Fast Method

    PubMed Central

    Jamshidi, M.; Rabbani, H.; Amini, Z.; Kafieh, R.; Ommani, A.; Lakshminarayanan, V.

    2016-01-01

    Localizing the optic disc (OD) in retinal fundus images is of critical importance and many techniques have been developed for OD detection. In this paper, we present the results obtained from two fast methods, correlation and least square, to approximate the location of optic cup. These methods are simple and are not complex, while most of the OD detection algorithms are. The methods were tested on two groups of data (a total of 100 color fundus images) and were 98% successful in the detection of the optic cup. An algorithm using the vessel mask of fundus images is proposed to be run after correlation to ensure that the localization of OD in all images is successful. It was tested on 40 of the test images and had a 100% rate of success. PMID:27014613

  11. Fast spatial beam shaping by acousto-optic diffraction for 3D non-linear microscopy.

    PubMed

    Akemann, Walther; Léger, Jean-François; Ventalon, Cathie; Mathieu, Benjamin; Dieudonné, Stéphane; Bourdieu, Laurent

    2015-11-01

    Acousto-optic deflection (AOD) devices offer unprecedented fast control of the entire spatial structure of light beams, most notably their phase. AOD light modulation of ultra-short laser pulses, however, is not straightforward to implement because of intrinsic chromatic dispersion and non-stationarity of acousto-optic diffraction. While schemes exist to compensate chromatic dispersion, non-stationarity remains an obstacle. In this work we demonstrate an efficient AOD light modulator for stable phase modulation using time-locked generation of frequency-modulated acoustic waves at the full repetition rate of a high power laser pulse amplifier of 80 kHz. We establish the non-local relationship between the optical phase and the generating acoustic frequency function and verify the system for temporal stability, phase accuracy and generation of non-linear two-dimensional phase functions. PMID:26561090

  12. A novel fast optical switch based on two cascaded Terahertz Optical Asymmetric Demultiplexers (TOAD)

    NASA Astrophysics Data System (ADS)

    Wang, Bing; Baby, Varghese; Tong, Wilson; Xu, Lei; Friedman, Michelle; Runser, Robert J.; Glesk, Ivan; Prucnal, Paul R.

    2002-01-01

    A novel optical switch based on cascading two terahertz optical asymmetric demultiplexers (TOAD) is presented. By utilizing the sharp edge of the asymmetric TOAD switching window profile, two TOAD switching windows are overlapped to produce a narrower aggregate switching window, not limited by the pulse propagation time in the SOA of the TOAD. Simulations of the cascaded TOAD switching window show relatively constant window amplitude for different window sizes. Experimental results on cascading two TOADs, each with a switching window of 8ps, but with the SOA on opposite sides of the fiber loop, show a minimum switching window of 2.7ps.

  13. Demonstration of 720×720 optical fast circuit switch for intra-datacenter networks

    NASA Astrophysics Data System (ADS)

    Ueda, Koh; Mori, Yojiro; Hasegawa, Hiroshi; Matsuura, Hiroyuki; Ishii, Kiyo; Kuwatsuka, Haruhiko; Namiki, Shu; Sato, Ken-ichi

    2016-03-01

    Intra-datacenter traffic is growing more than 20% a year. In typical datacenters, many racks/pods including servers are interconnected via multi-tier electrical switches. The electrical switches necessitate power-consuming optical-to- electrical (OE) and electrical-to-optical (EO) conversion, the power consumption of which increases with traffic. To overcome this problem, optical switches that eliminate costly OE and EO conversion and enable low power consumption switching are being investigated. There are two major requirements for the optical switch. First, it must have a high port count to construct reduced tier intra-datacenter networks. Second, switching speed must be short enough that most of the traffic load can be offloaded from electrical switches. Among various optical switches, we focus on those based on arrayed-waveguide gratings (AWGs), since the AWG is a passive device with minimal power consumption. We previously proposed a high-port-count optical switch architecture that utilizes tunable lasers, route-and-combine switches, and wavelength-routing switches comprised of couplers, erbium-doped fiber amplifiers (EDFAs), and AWGs. We employed conventional external cavity lasers whose wavelength-tuning speed was slower than 100 ms. In this paper, we demonstrate a large-scale optical switch that offers fast wavelength routing. We construct a 720×720 optical switch using recently developed lasers whose wavelength-tuning period is below 460 μs. We evaluate the switching time via bit-error-ratio measurements and achieve 470-μs switching time (includes 10-μs guard time to handle EDFA surge). To best of our knowledge, this is the first demonstration of such a large-scale optical switch with practical switching time.

  14. Internal model control of a fast steering mirror for electro-optical fine tracking

    NASA Astrophysics Data System (ADS)

    Xia, Yun-xia; Bao, Qi-liang; Wu, Qiong-yan

    2010-11-01

    The objective of this research is to develop advanced control methods to improve the bandwidth and tracking precision of the electro-optical fine tracking system using a fast steering mirror (FSM). FSM is the most important part in this control system. The model of FSM is established at the beginning of this paper. Compared with the electro-optical fine tracking system with ground based platform, the electro-optical fine tracking system with movement based platform must be a wide bandwidth and a robustness system. An advanced control method based on internal model control law is developed for electro-optical fine tracking system. The IMC is an advanced algorithm. Theoretically, it can eliminate disturbance completely and make sure output equals to input even there is model error. Moreover, it separates process to the system dynamic characteristic and the object perturbation. Compared with the PID controller, the controller is simpler and the parameter regulation is more convenient and the system is more robust. In addition, we design an improved structure based on classic IMC. The tracking error of the two-port control system is much better than which of the classic IMC. The simulation results indicate that the electro-optical control system based on the internal model control algorithm is very effective. It shows a better performance at the tracing precision and the disturbance suppresses. Thus a new method is provided for the high-performance electro-optical fine tracking system.

  15. Understanding Solar Flare Statistics

    NASA Astrophysics Data System (ADS)

    Wheatland, M. S.

    2005-12-01

    A review is presented of work aimed at understanding solar flare statistics, with emphasis on the well known flare power-law size distribution. Although avalanche models are perhaps the favoured model to describe flare statistics, their physical basis is unclear, and they are divorced from developing ideas in large-scale reconnection theory. An alternative model, aimed at reconciling large-scale reconnection models with solar flare statistics, is revisited. The solar flare waiting-time distribution has also attracted recent attention. Observed waiting-time distributions are described, together with what they might tell us about the flare phenomenon. Finally, a practical application of flare statistics to flare prediction is described in detail, including the results of a year of automated (web-based) predictions from the method.

  16. Fast inspection of bulk and surface defects of large aperture optics in high power lasers

    NASA Astrophysics Data System (ADS)

    Zhao, Yuan'an; Hu, Guohang; Liu, Shijie; Yi, Kui; Shao, Jianda

    2015-05-01

    Laser induced damage for nanosecond pulse duration is attributed to the existence of defects. The growth and polishing, as well as coating deposition, may induce versatile kinds of defects, including dig, scratch and inclusion. It is special important to get the information of the defects, such as size and location, which is the basis to know the origin of the defects and figures out effective techniques to eliminate it. It is quite easy to get the information of the defects with micron-level resolution, but it is time-consuming and is not suitable for fast inspection of the large aperture (hundreds of millimeters). In this work, on-the-fly image capture technique was employed to realize fast inspection of large aperture optics. A continuous green laser was employed as illumination source to enhance and enlarge the image of bulk defects. So it could detect the submicron-scale defects. A transmission microscopy with white light illumination was employed to detect the surface defect. Its field of view was about 2.8mm×1.6mm. The sample was raster scanned driving by a stepper motor through the stationary illumination laser and digital camera, and the speed to scan the sample was about 10mm/s. The results of large aperture optics proved the functions of this fast inspection technique.

  17. Plasma flares in high power impulse magnetron sputtering

    SciTech Connect

    Ni, Pavel A.; Hornschuch, Christian; Panjan, Matjaz; Anders, Andre

    2012-11-26

    Self-organized ionization zones and associated plasma flares were recorded with fast cameras in side-on view. Flare velocities were estimated to be about 20 000 m/s suggesting that the local tangential field E{sub {xi}} is about 2000 V/m based on a concept where flare-causing electrons are initially ejected by E{sub {xi}} Multiplication-Sign B drift. At distances of 10 mm and greater from the target, where the electric field is very small, plasma flares are guided by the magnetic field B.

  18. LYRA Observations of Two Oscillation Modes in a Single Flare

    NASA Astrophysics Data System (ADS)

    Van Doorsselaere, T.; De Groof, A.; Zender, J.; Berghmans, D.; Goossens, M.

    2011-10-01

    We analyze light curves from the LYRA irradiance experiment on board PROBA2 during the flare of 2010 February 8. We see both long- and short-period oscillations during the flare. The long-period oscillation is interpreted in terms of standing slow sausage modes; the short-period oscillation is thought to be a standing fast sausage mode. The simultaneous presence of two oscillation modes in the same flaring structure allows for new coronal seismological applications. The periods are used to find seismological estimates of the plasma-β and the density contrast of the flaring loop. Also the wave mode number is estimated from the observed periods.

  19. A fibre-optic mode-filtered light sensor for general and fast chemical assay

    NASA Astrophysics Data System (ADS)

    Zhou, Leiji; Wang, Kemin; Choi, Martin M. F.; Xiao, Dan; Yang, Xiaohai; Chen, Rui; Tan, Weihong

    2004-01-01

    A simple and fast-response fibre-optic chemical sensor based on mode-filtered light detection (MFLD) has been successfully developed. The sensor was constructed by inserting an unmodified fibre core into a silica capillary tubing; a charge-coupled device which acted as a multi-channel detector was positioned alongside the capillary to detect the emanated mode-filtered light. An interesting finding was observed: there was an increase in the signal upon the decrease in the sample refractive index when an unclad optical fibre was employed, which was different from the results of a polymer-clad fibre reported previously. This phenomenon of opposite signal trend can clearly be interpreted by applying a mathematical derivation based on light propagation in the optical fibre. The derived mathematical model correlates well with the experimental results. It also provides a good theoretical foundation for the future development of MFLD-based analyser in conjunction with liquid chromatographic separation and assay. The proposed MFLD sensor was successfully applied to determine acetic acid with a linear response in the range 0-90 v/v % and a correlation coefficient of 0.9959. The sensor has the advantages of high S/N ratio and very fast response time. It offers the potential for use as a general sensor in food and chemical industries.

  20. Adaptive optics in spinning disk microscopy: improved contrast and brightness by a simple and fast method.

    PubMed

    Fraisier, V; Clouvel, G; Jasaitis, A; Dimitrov, A; Piolot, T; Salamero, J

    2015-09-01

    Multiconfocal microscopy gives a good compromise between fast imaging and reasonable resolution. However, the low intensity of live fluorescent emitters is a major limitation to this technique. Aberrations induced by the optical setup, especially the mismatch of the refractive index and the biological sample itself, distort the point spread function and further reduce the amount of detected photons. Altogether, this leads to impaired image quality, preventing accurate analysis of molecular processes in biological samples and imaging deep in the sample. The amount of detected fluorescence can be improved with adaptive optics. Here, we used a compact adaptive optics module (adaptive optics box for sectioning optical microscopy), which was specifically designed for spinning disk confocal microscopy. The module overcomes undesired anomalies by correcting for most of the aberrations in confocal imaging. Existing aberration detection methods require prior illumination, which bleaches the sample. To avoid multiple exposures of the sample, we established an experimental model describing the depth dependence of major aberrations. This model allows us to correct for those aberrations when performing a z-stack, gradually increasing the amplitude of the correction with depth. It does not require illumination of the sample for aberration detection, thus minimizing photobleaching and phototoxicity. With this model, we improved both signal-to-background ratio and image contrast. Here, we present comparative studies on a variety of biological samples. PMID:25940062

  1. Fast mode-hop-free acousto-optically tuned laser: theoretical and experimental investigations.

    PubMed

    Bösel, André; Salewski, Klaus-Dieter

    2009-02-10

    We developed a theory that describes fast mode-hop-free tuning of an external cavity diode laser in Littrow configuration with two acousto-optic modulators (AOMs) inside the laser cavity. The theory is based on synchronous shifting of the external cavity modes and the Littrow grating selectivity. It allows calculating the driving signals of both AOMs in order to reach a desired temporal variation of the laser frequency, including particularly fast tuning as well as an arbitrary shape of the tuning function. Furthermore, we present a laser setup for which the needed signals for both AOMs are generated by two direct digital synthesizer circuits. Thereby we were able to verify the theoretical predictions experimentally, achieving, e.g., sinusoidal single-mode tuning of the laser frequency over 40 GHz at a repetition rate of 10 kHz and over 12 GHz at 25 kHz. Finally, the limitations of the theory are discussed. PMID:19209191

  2. A fast IPv6 route lookup scheme for high-speed optical link

    NASA Astrophysics Data System (ADS)

    Yao, Xingmiao; Li, Lemin

    2004-05-01

    A fast IPv6 route lookup scheme implemented by hardware is proposed in this paper. It supports a fast IP address lookup and can insert and delete the prefixes effectively. A novel compressed multibit trie algorithm that decreases the memory space occupied and the average searching time is applied. The scheme proposed in this paper is superior to other IPV6 route lookup ones, for example, by using SRAM pipeline, a lookup speed of 125 x 106 per second can be realized to satisfy 40Gbps optical link rate with only 1.9Mbyte consumption of memory space. As there is no actual IPv6 route prefix, we generate various simulation databases in which prefix length distribution is different. Simulation results show that our scheme has reasonable lookup time, memory space for all the prefix length distribution.

  3. Fast left ventricle tracking in CMR images using localized anatomical affine optical flow

    NASA Astrophysics Data System (ADS)

    Queirós, Sandro; Vilaça, João. L.; Morais, Pedro; Fonseca, Jaime C.; D'hooge, Jan; Barbosa, Daniel

    2015-03-01

    In daily cardiology practice, assessment of left ventricular (LV) global function using non-invasive imaging remains central for the diagnosis and follow-up of patients with cardiovascular diseases. Despite the different methodologies currently accessible for LV segmentation in cardiac magnetic resonance (CMR) images, a fast and complete LV delineation is still limitedly available for routine use. In this study, a localized anatomically constrained affine optical flow method is proposed for fast and automatic LV tracking throughout the full cardiac cycle in short-axis CMR images. Starting from an automatically delineated LV in the end-diastolic frame, the endocardial and epicardial boundaries are propagated by estimating the motion between adjacent cardiac phases using optical flow. In order to reduce the computational burden, the motion is only estimated in an anatomical region of interest around the tracked boundaries and subsequently integrated into a local affine motion model. Such localized estimation enables to capture complex motion patterns, while still being spatially consistent. The method was validated on 45 CMR datasets taken from the 2009 MICCAI LV segmentation challenge. The proposed approach proved to be robust and efficient, with an average distance error of 2.1 mm and a correlation with reference ejection fraction of 0.98 (1.9 +/- 4.5%). Moreover, it showed to be fast, taking 5 seconds for the tracking of a full 4D dataset (30 ms per image). Overall, a novel fast, robust and accurate LV tracking methodology was proposed, enabling accurate assessment of relevant global function cardiac indices, such as volumes and ejection fraction

  4. Fast Simulators for Satellite Cloud Optical Centroid Pressure Retrievals, 1. Evaluation of OMI Cloud Retrievals

    NASA Technical Reports Server (NTRS)

    Joiner, J.; Vasilkov, A.; Gupta, P.; Bhartia, P. K.; Veefkind, P.; Sneep, M.; de Haan, J.; Polonsky, I.; Spurr, R.

    2012-01-01

    The cloud Optical Centroid Pressure (OCP), also known as the effective cloud pressure, is a satellite-derived parameter that is commonly used in trace-gas retrievals to account for the effects of clouds on near-infrared through ultraviolet radiance measurements. Fast simulators are desirable to further expand the use of cloud OCP retrievals into the operational and climate communities for applications such as data assimilation and evaluation of cloud vertical structure in general circulation models. In this paper, we develop and validate fast simulators that provide estimates of the cloud OCP given a vertical profile of optical extinction. We use a pressure-weighting scheme where the weights depend upon optical parameters of clouds and/or aerosol. A cloud weighting function is easily extracted using this formulation. We then use fast simulators to compare two different satellite cloud OCP retrievals from the Ozone Monitoring Instrument (OMI) with estimates based on collocated cloud extinction profiles from a combination of CloudS at radar and MODIS visible radiance data. These comparisons are made over a wide range of conditions to provide a comprehensive validation of the OMI cloud OCP retrievals. We find generally good agreement between OMI cloud OCPs and those predicted by CloudSat. However, the OMI cloud OCPs from the two independent algorithms agree better with each other than either does with the estimates from CloudSat/MODIS. Differences between OMI cloud OCPs and those based on CloudSat/MODIS may result from undetected snow/ice at the surface, cloud 3-D effects, low altitude clouds missed by CloudSat, and the fact that CloudSat only observes a relatively small fraction of an OMI field-of-view.

  5. SOHO Captures CME From X5.4 Solar Flare

    NASA Video Gallery

    The Solar Heliospheric Observatory (SOHO) captured this movie of the sun's coronal mass ejection (CME) associated with an X5.4 solar flare on the evening of March 6, 2012. The extremely fast and en...

  6. Self-Balancing, Optical-Center-Pivot, Fast-Steering Mirror

    NASA Technical Reports Server (NTRS)

    Moore, James D.; Carson, Johnathan W.

    2011-01-01

    A complete, self-contained fast-steering- mirror (FSM) mechanism is reported consisting of a housing, a mirror and mirror-mounting cell, three PZT (piezoelectric) actuators, and a counterbalance mass. Basically, it is a comparatively stiff, two-axis (tip-tilt), self-balanced FSM. The present invention requires only three (or three pairs for flight redundancy) actuators. If a PZT actuator degrades, the inherent balance remains, and compensation for degraded stroke is made by simply increasing the voltage to the PZT. Prior designs typically do not pivot at the mirror optical center, creating unacceptable beam shear.

  7. Immunobiosensor for fast detection of bacteria in water using plastic optical fiber (POF) bended

    NASA Astrophysics Data System (ADS)

    Rodrigues, Domingos M. C.; Lopes, Rafaela N.; Queiroz, Vanessa M.; Allil, Regina C. S. B.; Werneck, Marcelo M.

    2015-09-01

    This paper presents an immunobiosensor of fast response time to detection of bacteria, made by Plastic Optical Fiber. Probes were tested in U-shaped and Meander-shaped to investigate the best sensitivity, accuracy and repeatability. During calibration was used for sucrose solutions refractive index (RI) from 1.33 to 1.39. This is equivalent to IR range of the water and the highest concentration of bacteria, respectively. Immunobiosensor was able to detecting the presence of enteropathogenic Escherichia coli in water from suspensions of different concentrations of 106 and 104 colonies forming units per millilitre (CFU/mL) in twenty minutes.

  8. Optical absorption and luminescence studies of fast neutron-irradiated complex oxides for jewellery applications

    NASA Astrophysics Data System (ADS)

    Mironova-Ulmane, N.; Skvortsova, V.; Popov, A. I.

    2016-07-01

    We studied the optical absorption and luminescence of agate (SiO2), topaz (Al2[SiO4](F,OH)2), beryl (Be3Al2Si6O18), and prehnite (Ca2Al(AlSi3O10)(OH)2) doped with different concentrations of transition metal ions and exposed to fast neutron irradiation. The exchange interaction between the impurity ions and the defects arising under neutron irradiation causes additional absorption as well as bands' broadening in the crystals. These experimental results allow us to suggest the method for obtaining new radiation-defect induced jewellery colors of minerals due to neutron irradiation.

  9. Fast optical sectioning obtained by structured illumination microscopy using a digital mirror device

    NASA Astrophysics Data System (ADS)

    Xu, Dongli; Jiang, Tao; Li, Anan; Hu, Bihe; Feng, Zhao; Gong, Hui; Zeng, Shaoqun; Luo, Qingming

    2013-06-01

    High-throughput optical imaging is critical to obtain large-scale neural connectivity information of brain in neuroscience. Using a digital mirror device and a scientific complementary metal-oxide semiconductor camera, we report a significant speed improvement of structured illumination microscopy (SIM), which produces a maximum SIM net frame rate of 133 Hz. We perform three-dimensional (3-D) imaging of mouse brain slices at diffraction-limited resolution and demonstrate the fast 3-D imaging capability to a large sample with an imaging rate of 6.9 pixel/s of our system, an order of magnitude faster than previously reported.

  10. Fast optical source for quantum key distribution based on semiconductor optical amplifiers.

    PubMed

    Jofre, M; Gardelein, A; Anzolin, G; Amaya, W; Capmany, J; Ursin, R; Peñate, L; Lopez, D; San Juan, J L; Carrasco, J A; Garcia, F; Torcal-Milla, F J; Sanchez-Brea, L M; Bernabeu, E; Perdigues, J M; Jennewein, T; Torres, J P; Mitchell, M W; Pruneri, V

    2011-02-28

    A novel integrated optical source capable of emitting faint pulses with different polarization states and with different intensity levels at 100 MHz has been developed. The source relies on a single laser diode followed by four semiconductor optical amplifiers and thin film polarizers, connected through a fiber network. The use of a single laser ensures high level of indistinguishability in time and spectrum of the pulses for the four different polarizations and three different levels of intensity. The applicability of the source is demonstrated in the lab through a free space quantum key distribution experiment which makes use of the decoy state BB84 protocol. We achieved a lower bound secure key rate of the order of 3.64 Mbps and a quantum bit error ratio as low as 1.14×10⁻² while the lower bound secure key rate became 187 bps for an equivalent attenuation of 35 dB. To our knowledge, this is the fastest polarization encoded QKD system which has been reported so far. The performance, reduced size, low power consumption and the fact that the components used can be space qualified make the source particularly suitable for secure satellite communication. PMID:21369207

  11. Simultaneous X-ray and optical observations of the flaring X-ray source, Aquila A-1

    NASA Technical Reports Server (NTRS)

    Bowyer, C. S.; Charles, P. A.

    1979-01-01

    During the summer of 1978 the recurrent transient X-ray source, Aquila X-1, underwent its first major outburst in two years. The results of extensive observations at X-ray and optical wavelengths throughout this event, which lasted for approximately two months are presented. The peak X-ray luminosity was approximately 1.3 times that of the Crab and exhibited spectral dependent flickering on timescales approximately 5 minutes. The observations are interpreted in terms of a standard accretion disk model withparticular emphasis on the similarities to Sco X-1 and other dward X-ray systems, although the transient nature of the system remains unexplained. It was found that Aquila X-1 can be described adequately by the semi-detached Roche lobe model and yields a mass ratio of less than or approximate to 3.5.

  12. Test of relativistic time dilation with fast optical atomic clocks at different velocities

    NASA Astrophysics Data System (ADS)

    Reinhardt, Sascha; Saathoff, Guido; Buhr, Henrik; Carlson, Lars A.; Wolf, Andreas; Schwalm, Dirk; Karpuk, Sergei; Novotny, Christian; Huber, Gerhard; Zimmermann, Marcus; Holzwarth, Ronald; Udem, Thomas; Hänsch, Theodor W.; Gwinner, Gerald

    2007-12-01

    Time dilation is one of the most fascinating aspects of special relativity as it abolishes the notion of absolute time. It was first observed experimentally by Ives and Stilwell in 1938 using the Doppler effect. Here we report on a method, based on fast optical atomic clocks with large, but different Lorentz boosts, that tests relativistic time dilation with unprecedented precision. The approach combines ion storage and cooling with optical frequency counting using a frequency comb. 7Li+ ions are prepared at 6.4% and 3.0% of the speed of light in a storage ring, and their time is read with an accuracy of 2×10-10 using laser saturation spectroscopy. The comparison of the Doppler shifts yields a time dilation measurement represented by a Mansouri-Sexl parameter , consistent with special relativity. This constrains the existence of a preferred cosmological reference frame and CPT- and Lorentz-violating `new' physics beyond the standard model.

  13. Single-shot digital holography for fast measuring optical properties of fibers.

    PubMed

    Agour, Mostafa; El-Farahaty, Keremal; Seisa, Eman; Omar, Emam; Sokkar, Taha

    2015-10-01

    We propose a fast method for measuring optical properties, e.g., the refractive index profile and birefringence, of fibers. It is based on recovering the phase distribution of light refracted by a fiber sample at the recording plane from a single-shot digital hologram. During the recovering process, an optimized approach based on the spatial carrier frequency method was utilized. The proposed approach enhances affects that arise from the limited spatial extent of the bandpass filter associated with the implementation of the spatial carrier frequency method. In contrast to the low spatial resolution of off-axis digital holograms, the method ensures the best utilization of the camera support. From the recovered phase information, the optical path difference is measured; thus, the refractive index profile, the mean refractive index, and the birefringence of isotactic polypropylene (IPP) are determined. Experimental results are given for illustration. PMID:26479652

  14. Fast Restoration Based on Alternative Wavelength Paths in a Wide Area Optical IP Network

    NASA Astrophysics Data System (ADS)

    Matera, Francesco; Rea, Luca; Venezia, Matteo; Capanna, Lorenzo; Del Prete, Giuseppe

    In this article we describe an experimental investigation of IP network restoration based on wavelength recovery. We propose a procedure for metro and wide area gigabit Ethernet networks that allows us to route the wavelength in case of link failure to another existing link by exploiting wavelength division multiplexing in the fiber. Such a procedure is obtained by means of an optical switch that is managed by a loss-of-light signal that is generated by a router in case of link failure. Such a method has been tested in an IP network consisting of three core routers with optical gigabit Ethernet interfaces connected by means of 50-km-long single-mode fibers between Rome and Pomezia. Compared with other conventional restoration techniques, such as OSPF and MPLS, our method -in very fast (20 ms) and is compatible with real-time TV services and low-cost chips.

  15. Signatures of the coalescence instability in solar flares

    SciTech Connect

    Nakajima, H.; Tajima, T.; Brunel, F.

    1984-11-01

    Double sub-peak structures in the quasi periodic oscillations in the time profiles of solar flares in 1980 and 1982 are discussed. Computer simulations of the coalescence instability of two current loops agree with observations of the (widely differing) flares. The simultaneous accelerations of electrons and ions, and the double sub-peak structure in quasi periodic pulses are well explained. The double sub-peak structure is more pronounced when the currents in the two loops are sufficient for fast coalescence to occur. This corresponds to the 1980 flare. When the currents are insufficient for fast coalescence, the double sub-peak structure is less pronounced, as in the 1982 flare. Observations suggest the collision of the two microwave sources for the 1982 event. It is argued that this mechanism is a plausible particle acceleration mechanism in solar flares. (ESA)

  16. The flare kernel in the impulsive phase

    NASA Technical Reports Server (NTRS)

    Dejager, C.

    1986-01-01

    The impulsive phase of a flare is characterized by impulsive bursts of X-ray and microwave radiation, related to impulsive footpoint heating up to 50 or 60 MK, by upward gas velocities (150 to 400 km/sec) and by a gradual increase of the flare's thermal energy content. These phenomena, as well as non-thermal effects, are all related to the impulsive energy injection into the flare. The available observations are also quantitatively consistent with a model in which energy is injected into the flare by beams of energetic electrons, causing ablation of chromospheric gas, followed by convective rise of gas. Thus, a hole is burned into the chromosphere; at the end of impulsive phase of an average flare the lower part of that hole is situated about 1800 km above the photosphere. H alpha and other optical and UV line emission is radiated by a thin layer (approx. 20 km) at the bottom of the flare kernel. The upward rising and outward streaming gas cools down by conduction in about 45 s. The non-thermal effects in the initial phase are due to curtailing of the energy distribution function by escape of energetic electrons. The single flux tube model of a flare does not fit with these observations; instead we propose the spaghetti-bundle model. Microwave and gamma-ray observations suggest the occurrence of dense flare knots of approx. 800 km diameter, and of high temperature. Future observations should concentrate on locating the microwave/gamma-ray sources, and on determining the kernel's fine structure and the related multi-loop structure of the flaring area.

  17. Predicting the Response of the Mars Ionosphere to Solar Flares

    NASA Astrophysics Data System (ADS)

    Fallows, K.; Withers, P.; Gonzalez, G.

    2015-12-01

    The increased soft X-ray irradiance during solar flares generates increased electron densities in the lower ionosphere of Mars. The relative changes in electron density during a flare are greater for larger flares and also at lower altitudes and larger flares, due to the wavelength dependence of both the flux increase during the flare and the absorption of flux by the neutral atmosphere. These relationships have been explored [Bougher et al. 2001, Fox et al. 2004, Mendillo et al. 2006, Mahajan et al. 2011, Lollo et al. 2012] but not quantified, which has impeded the validation of simulations of the ionospheric effects of solar flares. Such simulations are necessary for developing accurate descriptions of the physical processes governing ionospheric behavior under extreme conditions. We present a response function, a mathematical expression for the change in electron density during a solar flare as a function of the change in solar flux and an optical depth proxy. This response function is based on analysis of 20 Mars Global Surveyor (MGS) radio occultation electron density profiles measured during solar flares. Characterizing the response as a function of optical depth, rather than altitude, provides the best description of ionospheric variability during a flare; otherwise non-negligible solar zenith angle effects are present. We demonstrate that the response function can be used to predict ionospheric electron densities during a specified solar flare by reproducing profiles known to be disturbed by a solar flare. We also demonstrate that the response function can be used to infer the strength of solar flares not visible at Earth by finding the flux enhancement required to reproduce an apparently flare affected profile given an undisturbed profile on the same date.

  18. Fast-response optical and near-infrared GRB science with RATIR and RIMAS

    NASA Astrophysics Data System (ADS)

    Capone, John; RIMAS Collaboration, RATIR project Team

    2016-01-01

    As the Universe's most luminous transient events, long gamma-ray bursts (GRBs) are observed at cosmological distances. The afterglow emission generated by the burst's interaction with the surrounding medium presents the opportunity to study the local environment, as well as intervening systems. The transient nature of these events requires observations starting within minutes of the GRB to maximize the scientific opportunities.This dissertation work comprises efforts to advance the field with a new instrument, the Rapid Infrared Imager and Spectrograph (RIMAS). The optical design is complicated by the broad band coverage (0.97 to 2.39 microns) and the necessity of transmissive optics due to space and weight limitations on the telescope. Additionally, the entire optical system must be cooled to cryogenic temperatures to decrease the background from thermal emission. The completed instrument will be permanently installed on Lowell Observatory's new 4.3 meter Discovery Channel Telescope (DCT) located in Happy Jack, Arizona. The fast slew time of the telescope, combined with the instrument's ability to image in two bands simultaneously and switch to spectroscopic configurations in under a minute will allow observers to obtain photometric data within minutes and spectra within ~ ten minutes.In addition to instrumentation work on RIMAS's optics, early time photometric light curves have been studied primarily using data from the Reionization and Transients Infrared/Optical Project (RATIR). Early time photometric data in six optical and near-infrared (NIR) bands has allowed a study of color evolution in the early to late time SEDs. This study probes possible impacts of the GRB on the local medium as well as intrinsic changes in the afterglow emission.This work is made possible by the RATIR and RIMAS collaborations as well as financial support by the NSF.

  19. Looking for Speed!! Go Optical Ultra-Fast Photonic Logic Gates for the Future Optical Communication and Computing

    NASA Technical Reports Server (NTRS)

    Abdeldayem, Hossin; Frazier, Donald O.; Penn, Benjamin; Paley, Mark S.

    2003-01-01

    Recently, we developed two ultra-fast all-optical switches in the nanosecond and picosecond regimes. The picosecond switch is made of a polydiacetylene thin film coated on the interior wall of a hollow capillary of approximately 50 micron diameter by a photo-polymerization process. In the setup a picosecond Nd:YAG laser at 10 Hz and at 532 nm with a pulse duration of approximately 40 ps was sent collinearly along a cw He-Ne laser beam and both were waveguided through the hollow capillary. The setup functioned as an Exclusive OR gate. On the other hand, the material used in the nanosecond switch is a phthalocyanine thin film, deposited on a glass substrate by a vapor deposition technique. In the setup a nanosecond, 10 Hz, Nd:YAG laser of 8 ns pulse duration was sent collinearly along a cw He-Ne laser beam and both were wave-guided through the phthalocyanine thin film. The setup in this case functioned as an all-optical AND logic gate. The characteristic table of the ExOR gate in polydiacetylene film was attributed to an excited state absorption process, while that of the AND gate was attributed to a saturation process of the first excited state. Both mechanisms were thoroughly investigated theoretically and found to agree remarkably well with the experimental results. An all-optical inverter gate has been designed but has not yet been demonstrated. The combination of all these three gates form the foundation for building all the necessary gates needed to build a prototype of an all-optical system.

  20. Fast single photon avalanche photodiode-based time-resolved diffuse optical tomography scanner

    PubMed Central

    Mu, Ying; Niedre, Mark

    2015-01-01

    Resolution in diffuse optical tomography (DOT) is a persistent problem and is primarily limited by high degree of light scatter in biological tissue. We showed previously that the reduction in photon scatter between a source and detector pair at early time points following a laser pulse in time-resolved DOT is highly dependent on the temporal response of the instrument. To this end, we developed a new single-photon avalanche photodiode (SPAD) based time-resolved DOT scanner. This instrument uses an array of fast SPADs, a femto-second Titanium Sapphire laser and single photon counting electronics. In combination, the overall instrument temporal impulse response function width was 59 ps. In this paper, we report the design of this instrument and validate its operation in symmetrical and irregularly shaped optical phantoms of approximately small animal size. We were able to accurately reconstruct the size and position of up to 4 absorbing inclusions, with increasing image quality at earlier time windows. We attribute these results primarily to the rapid response time of our instrument. These data illustrate the potential utility of fast SPAD detectors in time-resolved DOT. PMID:26417526

  1. Fast optical-resolution photoacoustic microscopy using a 2-axis water-proofing MEMS scanner

    PubMed Central

    Kim, Jin Young; Lee, Changho; Park, Kyungjin; Lim, Geunbae; Kim, Chulhong

    2015-01-01

    Optical-resolution photoacoustic microscopy (OR-PAM) is a novel label-free microscopic imaging tool to provide in vivo optical absorbing contrasts. Specially, it is crucial to equip a real-time imaging capability without sacrificing high signal-to-noise ratios (SNRs) for identifying and tracking specific diseases in OR-PAM. Herein we demonstrate a 2-axis water-proofing MEMS scanner made of flexible PDMS. This flexible scanner results in a wide scanning range (9 × 4 mm2 in a transverse plane) and a fast imaging speed (5 B-scan images per second). Further, the MEMS scanner is fabricated in a compact footprint with a size of 15 × 15 × 15 mm3. More importantly, the scanning ability in water makes the MEMS scanner possible to confocally and simultaneously reflect both ultrasound and laser, and consequently we can maintain high SNRs. The lateral and axial resolutions of the OR-PAM system are 3.6 and 27.7 μm, respectively. We have successfully monitored the flow of carbon particles in vitro with a volumetric display frame rate of 0.14 Hz. Finally, we have successfully obtained in vivo PA images of microvasculatures in a mouse ear. It is expected that our compact and fast OR-PAM system can be significantly useful in both preclinical and clinical applications. PMID:25604654

  2. A fast method for optical simulation of flood maps of light-sharing detector modules

    NASA Astrophysics Data System (ADS)

    Shi, Han; Du, Dong; Xu, JianFeng; Moses, William W.; Peng, Qiyu

    2015-12-01

    Optical simulation of the detector module level is highly desired for Position Emission Tomography (PET) system design. Commonly used simulation toolkits such as GATE are not efficient in the optical simulation of detector modules with complicated light-sharing configurations, where a vast amount of photons need to be tracked. We present a fast approach based on a simplified specular reflectance model and a structured light-tracking algorithm to speed up the photon tracking in detector modules constructed with polished finish and specular reflector materials. We simulated conventional block detector designs with different slotted light guide patterns using the new approach and compared the outcomes with those from GATE simulations. While the two approaches generated comparable flood maps, the new approach was more than 200-600 times faster. The new approach has also been validated by constructing a prototype detector and comparing the simulated flood map with the experimental flood map. The experimental flood map has nearly uniformly distributed spots similar to those in the simulated flood map. In conclusion, the new approach provides a fast and reliable simulation tool for assisting in the development of light-sharing-based detector modules with a polished surface finish and using specular reflector materials.

  3. High-frame-rate intensified fast optically shuttered TV cameras with selected imaging applications

    SciTech Connect

    Yates, G.J.; King, N.S.P.

    1994-08-01

    This invited paper focuses on high speed electronic/electro-optic camera development by the Applied Physics Experiments and Imaging Measurements Group (P-15) of Los Alamos National Laboratory`s Physics Division over the last two decades. The evolution of TV and image intensifier sensors and fast readout fast shuttered cameras are discussed. Their use in nuclear, military, and medical imaging applications are presented. Several salient characteristics and anomalies associated with single-pulse and high repetition rate performance of the cameras/sensors are included from earlier studies to emphasize their effects on radiometric accuracy of electronic framing cameras. The Group`s test and evaluation capabilities for characterization of imaging type electro-optic sensors and sensor components including Focal Plane Arrays, gated Image Intensifiers, microchannel plates, and phosphors are discussed. Two new unique facilities, the High Speed Solid State Imager Test Station (HSTS) and the Electron Gun Vacuum Test Chamber (EGTC) arc described. A summary of the Group`s current and developmental camera designs and R&D initiatives are included.

  4. Versatile illumination platform and fast optical switch to give standard observation camera gated active imaging capacity

    NASA Astrophysics Data System (ADS)

    Grasser, R.; Peyronneaudi, Benjamin; Yon, Kevin; Aubry, Marie

    2015-10-01

    CILAS, subsidiary of Airbus Defense and Space, develops, manufactures and sales laser-based optronics equipment for defense and homeland security applications. Part of its activity is related to active systems for threat detection, recognition and identification. Active surveillance and active imaging systems are often required to achieve identification capacity in case for long range observation in adverse conditions. In order to ease the deployment of active imaging systems often complex and expensive, CILAS suggests a new concept. It consists on the association of two apparatus working together. On one side, a patented versatile laser platform enables high peak power laser illumination for long range observation. On the other side, a small camera add-on works as a fast optical switch to select photons with specific time of flight only. The association of the versatile illumination platform and the fast optical switch presents itself as an independent body, so called "flash module", giving to virtually any passive observation systems gated active imaging capacity in NIR and SWIR.

  5. Towards Predicting Solar Flares

    NASA Astrophysics Data System (ADS)

    Winter, Lisa; Balasubramaniam, Karatholuvu S.

    2015-04-01

    We present a statistical study of solar X-ray flares observed using GOES X-ray observations of the ~50,000 fares that occurred from 1986 - mid-2014. Observed X-ray parameters are computed for each of the flares, including the 24-hour non-flare X-ray background in the 1-8 A band and the maximum ratio of the short (0.5 - 4 A) to long band (1-8 A) during flares. These parameters, which are linked to the amount of active coronal heating and maximum flare temperature, reveal a separation between the X-, M-, C-, and B- class fares. The separation was quantified and verified through machine-learning algorithms (k nearest neighbor; nearest centroid). Using the solar flare parameters learned from solar cycles 22-23, we apply the models to predict flare categories of solar cycle 24. Skill scores are then used to assess the success of our models, yielding correct predictions for ~80% of M-, C-, and B-class flares and 100% correct predictions for X-flares. We present details of the analysis along with the potential uses of our model in flare forecasting.

  6. Development of Fast Reactor Structural Integrity Monitoring Technology Using Optical Fiber Sensors

    NASA Astrophysics Data System (ADS)

    Matsuba, Ken-Ichi; Ito, Chikara; Kawahara, Hirotaka; Aoyama, Takafumi

    Significant thermal stresses are loaded onto the structures of sodium-cooled fast reactor (SFR) due to high temperature and large temperature gradients associated with employing sodium coolant with its high thermal conductivity and low heat capacity. Therefore, it is important to monitor the temperature variation, related stress and displacement, and vibration in the cooling system piping and components in order to assure structural integrity while the reactor plant is in-service. SFR structural integrity monitoring can be enhanced by an optical fiber sensor, which is capable of continuous or dispersed distribution measurements of various properties such as radiation dose, temperature, strain, displacement and acceleration. In the experimental fast reactor Joyo, displacement and vibration measurements of the primary cooling system have been carried out using Fiber Bragg Grating (FBG) sensors to evaluate the durability and measurement accuracy of FBG sensors in a high gamma-ray environment. The data were successfully obtained with no significant signal loss up to an accumulated gamma-ray dose of approximately 4×104 Gy corresponding to 120 EFPDs (effective full power days) operation. Measured displacement of the piping support was nearly equal to the calculated thermal displacement. Measured vibration power spectra of the piping support were similar to those measured with a reference acceleration sensor. The measured results indicate that the FBG sensor is suitable for monitoring the displacement and vibration aspects of fast reactor cooling system integrity in a high gamma-ray environment.

  7. Ultra fast all-optical fiber pressure sensor for blast event evaluation

    NASA Astrophysics Data System (ADS)

    Wu, Nan; Wang, Wenhui; Tian, Ye; Niezrecki, Christopher; Wang, Xingwei

    2011-05-01

    Traumatic brain injury (TBI) is a great potential threat to soldiers who are exposed to explosions or athletes who receive cranial impacts. Protecting people from TBI has recently attracted a significant amount of attention due to recent military operations in the Middle East. Recording pressure transient data in a blast event is very critical to the understanding of the effects of blast events on TBI. However, due to the fast change of the pressure during blast events, very few sensors have the capability to effectively track the dynamic pressure transients. This paper reports an ultra fast, miniature and all-optical fiber pressure sensor which could be mounted at different locations of a helmet to measure the fast changing pressure simultaneously. The sensor is based on Fabry-Perot (FP) principle. The end face of the fiber is wet etched. A well controlled thickness silicon dioxide diaphragm is thermal bonded on the end face to form an FP cavity. A shock tube test was conducted at Natick Soldier Research Development and Engineering Center, where the sensors were mounted in a shock tube side by side with a reference sensor to measure the rapidly changing pressure. The results of the test demonstrated that the sensor developed had an improved rise time (shorter than 0.4 μs) when compared to a commercially available reference sensor.

  8. Simultaneous detection of a large flare in the X-ray and optical regions on the RS CVn-type star II Peg

    NASA Astrophysics Data System (ADS)

    Doyle, J. G.; Kellett, B. J.; Byrne, P. B.; Avgoloupis, S.; Mavridis, L. N.; Seiradakis, J. H.; Bromage, G. E.; Tsuru, T.; Makishima, K.; Makishima, K.; McHardy, I. M.

    1991-02-01

    Results are presented for a large flare detected simultaneously on the RS CVn star II Peg by the X-ray satellite GINGA and from ground-based Johnson U-band measurements. The total U-band flare energy is estimated to be at least 6.6 x 10 to the 34th erg. This compares with at least 4.6 x 10 to 34th erg in the 1-10 keV energy range. These values are lower limits to the true radiative output, since the U-band data relates only to the rise phase of the flare, while the X-ray data were obtained during part of the decay phase. Using a 'smooth-burst model', the combined U-band plus X-ray radiative output is estimated to be about 3 x 10 to the 34th erg.

  9. Solar Flares: Magnetohydrodynamic Processes

    NASA Astrophysics Data System (ADS)

    Shibata, Kazunari; Magara, Tetsuya

    2011-12-01

    This paper outlines the current understanding of solar flares, mainly focused on magnetohydrodynamic (MHD) processes responsible for producing a flare. Observations show that flares are one of the most explosive phenomena in the atmosphere of the Sun, releasing a huge amount of energy up to about 10^32 erg on the timescale of hours. Flares involve the heating of plasma, mass ejection, and particle acceleration that generates high-energy particles. The key physical processes for producing a flare are: the emergence of magnetic field from the solar interior to the solar atmosphere (flux emergence), local enhancement of electric current in the corona (formation of a current sheet), and rapid dissipation of electric current (magnetic reconnection) that causes shock heating, mass ejection, and particle acceleration. The evolution toward the onset of a flare is rather quasi-static when free energy is accumulated in the form of coronal electric current (field-aligned current, more precisely), while the dissipation of coronal current proceeds rapidly, producing various dynamic events that affect lower atmospheres such as the chromosphere and photosphere. Flares manifest such rapid dissipation of coronal current, and their theoretical modeling has been developed in accordance with observations, in which numerical simulations proved to be a strong tool reproducing the time-dependent, nonlinear evolution of a flare. We review the models proposed to explain the physical mechanism of flares, giving an comprehensive explanation of the key processes mentioned above. We start with basic properties of flares, then go into the details of energy build-up, release and transport in flares where magnetic reconnection works as the central engine to produce a flare.

  10. Emergency flare tip repair

    SciTech Connect

    Harrison, G.A.

    1982-07-01

    Two damaged propane storage tank flares serving a large LPG storage facility near the Arabian Gulf were given emergency service. A diagram of over-all layout and spatial relationships between tanks and piping, and tables with general information relevant to selecting an acceptable radiant heat load factor and flare line flow characteristics were presented. The general equation for predicting radiant heat flux from a point source was used. The ignition of the temporary flare was discussed.

  11. Fast-response fiber-optic anemometer with temperature self-compensation.

    PubMed

    Liu, Guigen; Hou, Weilin; Qiao, Wei; Han, Ming

    2015-05-18

    We report a novel fiber-optic anemometer with self-temperature compensation capability based on a Fabry-Pérot interferometer (FPI) formed by a thin silicon film attached to the end face of a single-mode fiber. Guided in the fiber are a visible laser beam from a 635 nm diode laser used to heat the FPI and a white-light in the infrared wavelength range as the signal light to interrogate the optical length of the FPI. Cooling effects on the heated sensor head by wind is converted to a wavelength blueshift of the reflection spectral fringes of the FPI. Self-temperature-compensated measurement of wind speed is achieved by recording the difference in fringe wavelengths when the heating laser is turned on and then off. Large thermal-optic coefficient and thermal expansion coefficient of silicon render a high sensitivity that can also be easily tuned by altering the heating laser power. Furthermore, the large thermal diffusivity and the small mass of the thin silicon film endow a fast sensor response. PMID:26074604

  12. DISCOVERY OF FAST, LARGE-AMPLITUDE OPTICAL VARIABILITY OF V648 Car (=SS73-17)

    SciTech Connect

    Angeloni, R.; Di Mille, F.; Ferreira Lopes, C. E.

    2012-09-01

    We report on the discovery of large-amplitude flickering from V648 Car (= SS73-17), a poorly studied object listed among the very few hard X-ray-emitting symbiotic stars. We performed millimagnitude precision optical photometry with the Swope Telescope at the Las Campanas Observatory, Chile, and found that V648 Car shows large U-band variability over timescales of minutes. To our knowledge, it exhibits some of the largest flickering of a symbiotic star ever reported. Our finding supports the hypothesis that symbiotic white dwarfs producing hard X-rays are predominantly powered by accretion, rather than quasi-steady nuclear burning, and have masses close to the Chandrasekhar limit. No significant periodicity is evident from the flickering light curve. The All Sky Automated Survey long-term V light curve suggests the presence of a tidally distorted giant accreting via Roche lobe overflow, and a binary period of {approx}520 days. On the basis of the outstanding physical properties of V648 Car as hinted at by its fast and long-term optical variability, as well as by its nature as a hard X-ray emitter, we therefore call for simultaneous follow-up observations in different bands, ideally combined with time-resolved optical spectroscopy.

  13. “Seeing” electroencephalogram through the skull: imaging prefrontal cortex with fast optical signal

    PubMed Central

    Medvedev, Andrei V.; Kainerstorfer, Jana M.; Borisov, Sergey V.; Gandjbakhche, Amir H.; VanMeter, John

    2010-01-01

    Near-infrared spectroscopy is a novel imaging technique potentially sensitive to both brain hemodynamics (slow signal) and neuronal activity (fast optical signal, FOS). The big challenge of measuring FOS noninvasively lies in the presumably low signal-to-noise ratio. Thus, detectability of the FOS has been controversially discussed. We present reliable detection of FOS from 11 individuals concurrently with electroencephalogram (EEG) during a Go-NoGo task. Probes were placed bilaterally over prefrontal cortex. Independent component analysis (ICA) was used for artifact removal. Correlation coefficient in the best correlated FOS–EEG ICA pairs was highly significant (p < 10−8), and event-related optical signal (EROS) was found in all subjects. Several EROS components were similar to the event-related potential (ERP) components. The most robust “optical N200” at t = 225 ms coincided with the N200 ERP; both signals showed significant difference between targets and nontargets, and their timing correlated with subject’s reaction time. Correlation between FOS and EEG even in single trials provides further evidence that at least some FOS components “reflect” electrical brain processes directly. The data provide evidence for the early involvement of prefrontal cortex in rapid object recognition. EROS is highly localized and can provide cost-effective imaging tools for cortical mapping of cognitive processes. PMID:21198150

  14. Adaptive spatial carrier frequency method for fast monitoring optical properties of fibres

    NASA Astrophysics Data System (ADS)

    Sokkar, T. Z. N.; El-Farahaty, K. A.; El-Bakary, M. A.; Omar, E. Z.; Agour, M.; Hamza, A. A.

    2016-05-01

    We present an extension of the adaptive spatial carrier frequency method which is proposed for fast measuring optical properties of fibrous materials. The method can be considered as a two complementary steps. In the first step, the support of the adaptive filter shall be defined. In the second step, the angle between the sample under test and the interference fringe system generated by the utilized interferometer has to be determined. Thus, the support of the optical filter associated with the implementation of the adaptive spatial carrier frequency method is accordingly rotated. This method is experimentally verified by measuring optical properties of polypropylene (PP) fibre with the help of a Mach-Zehnder interferometer. The results show that errors resulting from rotating the fibre with respect to the interference fringes of the interferometer are reduced compared with the traditional band pass filter method. This conclusion was driven by comparing results of the mean refractive index of drown PP fibre at parallel polarization direction obtained from the new and adaptive spatial carrier frequency method.

  15. ``Seeing'' electroencephalogram through the skull: imaging prefrontal cortex with fast optical signal

    NASA Astrophysics Data System (ADS)

    Medvedev, Andrei V.; Kainerstorfer, Jana M.; Borisov, Sergey V.; Gandjbakhche, Amir H.; Vanmeter, John

    2010-11-01

    Near-infrared spectroscopy is a novel imaging technique potentially sensitive to both brain hemodynamics (slow signal) and neuronal activity (fast optical signal, FOS). The big challenge of measuring FOS noninvasively lies in the presumably low signal-to-noise ratio. Thus, detectability of the FOS has been controversially discussed. We present reliable detection of FOS from 11 individuals concurrently with electroencephalogram (EEG) during a Go-NoGo task. Probes were placed bilaterally over prefrontal cortex. Independent component analysis (ICA) was used for artifact removal. Correlation coefficient in the best correlated FOS-EEG ICA pairs was highly significant (p < 10-8), and event-related optical signal (EROS) was found in all subjects. Several EROS components were similar to the event-related potential (ERP) components. The most robust ``optical N200'' at t = 225 ms coincided with the N200 ERP; both signals showed significant difference between targets and nontargets, and their timing correlated with subject's reaction time. Correlation between FOS and EEG even in single trials provides further evidence that at least some FOS components ``reflect'' electrical brain processes directly. The data provide evidence for the early involvement of prefrontal cortex in rapid object recognition. EROS is highly localized and can provide cost-effective imaging tools for cortical mapping of cognitive processes.

  16. High-speed optical shutter coupled to fast-readout CCD camera

    NASA Astrophysics Data System (ADS)

    Yates, George J.; Pena, Claudine R.; McDonald, Thomas E., Jr.; Gallegos, Robert A.; Numkena, Dustin M.; Turko, Bojan T.; Ziska, George; Millaud, Jacques E.; Diaz, Rick; Buckley, John; Anthony, Glen; Araki, Takae; Larson, Eric D.

    1999-04-01

    A high frame rate optically shuttered CCD camera for radiometric imaging of transient optical phenomena has been designed and several prototypes fabricated, which are now in evaluation phase. the camera design incorporates stripline geometry image intensifiers for ultra fast image shutters capable of 200ps exposures. The intensifiers are fiber optically coupled to a multiport CCD capable of 75 MHz pixel clocking to achieve 4KHz frame rate for 512 X 512 pixels from simultaneous readout of 16 individual segments of the CCD array. The intensifier, Philips XX1412MH/E03 is generically a Generation II proximity-focused micro channel plate intensifier (MCPII) redesigned for high speed gating by Los Alamos National Laboratory and manufactured by Philips Components. The CCD is a Reticon HSO512 split storage with bi-direcitonal vertical readout architecture. The camera main frame is designed utilizing a multilayer motherboard for transporting CCD video signals and clocks via imbedded stripline buses designed for 100MHz operation. The MCPII gate duration and gain variables are controlled and measured in real time and up-dated for data logging each frame, with 10-bit resolution, selectable either locally or by computer. The camera provides both analog and 10-bit digital video. The camera's architecture, salient design characteristics, and current test data depicting resolution, dynamic range, shutter sequences, and image reconstruction will be presented and discussed.

  17. Solar flares. [plasma physics

    NASA Technical Reports Server (NTRS)

    Rust, D. M.

    1979-01-01

    The present paper deals with explosions in a magnetized solar plasma, known as flares, whose effects are seen throughout the electromagnetic spectrum, from gamma-rays through the visible and to the radio band. The diverse phenomena associated with flares are discussed, along with the physical mechanisms that have been advanced to explain them. The impact of solar flare research on the development of plasma physics and magnetohydrodynamics is noted. The rapid development of solar flare research during the past 20 years, owing to the availability of high-resolution images, detailed magnetic field measurements, and improved spectral data, is illustrated.

  18. Particle acceleration in flares

    NASA Technical Reports Server (NTRS)

    Benz, Arnold O.; Kosugi, Takeo; Aschwanden, Markus J.; Benka, Steve G.; Chupp, Edward L.; Enome, Shinzo; Garcia, Howard; Holman, Gordon D.; Kurt, Victoria G.; Sakao, Taro

    1994-01-01

    Particle acceleration is intrinsic to the primary energy release in the impulsive phase of solar flares, and we cannot understand flares without understanding acceleration. New observations in soft and hard X-rays, gamma-rays and coherent radio emissions are presented, suggesting flare fragmentation in time and space. X-ray and radio measurements exhibit at least five different time scales in flares. In addition, some new observations of delayed acceleration signatures are also presented. The theory of acceleration by parallel electric fields is used to model the spectral shape and evolution of hard X-rays. The possibility of the appearance of double layers is further investigated.

  19. Flared tube attachment fitting

    NASA Technical Reports Server (NTRS)

    Alkire, I. D.; King, J. P., Jr.

    1980-01-01

    Tubes can be flared first, then attached to valves and other flow line components, with new fitting that can be disassembled and reused. Installed fitting can be disassembled so parts can be inspected. It can be salvaged and reused without damaging flared tube; tube can be coated, tempered, or otherwise treated after it has been flared, rather than before, as was previously required. Fitting consists of threaded male portion with conical seating surface, hexagonal nut with hole larger than other diameter of flared end of tube, and split ferrule.

  20. Flare Emission Onset in the Slow-Rise and Fast-Rise Phases of an Erupting Solar Filament Observed with TRACE

    NASA Technical Reports Server (NTRS)

    Sterling, A. C.; Moore, R. L.

    2005-01-01

    We observe the eruption of an active-region solar filament of 1998 July 11 using high time cadence and high spatial resolution EUV observations from the TRACE sareiii'ce, along with soft X-ray images from the soft X-ray telescope (SXT) on the Yohkoh satellite, hard X-ray fluxes from the BATSE instrument on the (CGRO) satellite and from the hard X-ray telescope (HXT) on Yohkoh, and ground-based magnetograms. We concentrate on the initiation of the eruption in an effort to understand the eruption mechanism. First the filament undergoes slow upward movement in a "slow rise" phase with an approximately constant velocity of approximately 15 km/s that lasts about 10-min, and then it erupts in a "fast-rise" phase, reaching a velocity of about 200 km/s in about 5-min, followed by a period of deceleration. EUV brightenings begin just before the start of the filament's slow rise, and remain immediately beneath the rising filament during the slow rise; initial soft X-ray brightenings occur at about the same time and location. Strong hard X-ray emission begins after the onset of the fast rise, and does not peak until the filament has traveled a substantial altitude (to a height about equal to the initial length of the erupting filament) beyond its initial location. Our observations are consistent with the slow-rise phase of the eruption resulting from the onset of "tether cutting" reconnection between magnetic fields beneath the filament, and the fast rise resulting from an explosive increase in the reconnection rate or by catastrophic destabilization of the overlying filament-carrying fields. About two days prior to the event new flux emerged near the location of the initial brightenings, and this recently- emerged flux could have been a catalyst for initiating the tether-cutting reconnection. With the exception of the initial slow rise, our findings qualitatively agree with the prediction for erupting-flux-rope height as a function of time in a model discussed by Chen

  1. The role of input chirp on phase shifters based on slow and fast light effects in semiconductor optical amplifiers.

    PubMed

    Xue, Weiqi; Chen, Yaohui; Ohman, Filip; Mørk, Jesper

    2009-02-01

    We experimentally investigate the initial chirp dependence of slow and fast light effects in a semiconductor optical amplifier followed by an optical filter. It is shown that the enhancement of the phase shift due to optical filtering strongly depends on the chirp of the input optical signal. We demonstrate approximately 120 degrees phase delay as well as approximately 170 degrees phase advance at a microwave frequency of 19 GHz for different optimum values of the input chirp. The experimental results are shown to be in good agreement with numerical results based on a four-wave mixing model. Finally, a simple physical explanation based on an analytical perturbative approach is presented. PMID:19188968

  2. Ultra-fast detection of relativistic charged particle beam bunches using optical techniques

    NASA Astrophysics Data System (ADS)

    Nikas, Dimitrios S.

    The use of light as a carrier of information has been the subject of discussion for many scientific papers. This approach has some unique features which distinguish it from conventional electronics. These are realized in applications like telecommunications where the use of optical fibers and Electro-Optic sampling is the industry standard. Electro-Optic sampling employs the "Pockels" or "Electro-Optic" effect. Pockels discovered that an electric field applied to some crystals changes the birefringence properties of the crystal, and hence the polarization of light that propagates through it. By placing the crystal between crossed polarizers, the transmitted light intensity changes as a function of the applied field. We made the first Electro-Optical (EO) detection of a relativistic charged particle beam, applying its Lorentz contracted electric field on an EO LiNbO 3 crystal. The resulted intensity modulation was initially reconstructed using a fast photodiode and a digital oscilloscope. The signal rise time was bandwidth limited (˜90ps) from the electronics used and a series of tests to establish our signal EO nature was performed. In particular, the amplitude of the EO modulation was found to increase linearly with the charge of the particle beam and decrease with the optical beam path distance from the charged particle beam. Also the signal polarity changed sign when the direction of the applied electric field was reversed. Next an optimized (for maximum modulation), zero bias, EO modulator was constructed for use with the limited dynamic range of the Streak Camera for the first non destructive, completely optical, detection of a charged particle beam. The observed signal may be an image of unexpected piezoelectrically generated sound waves that propagate at the X-axis of the LiNbO3 crystal. In such a case, sound waves generated in the surface as well as inside the crystal, change the index of refraction of the crystal through the photoelastic effect and as a

  3. A kinematic model of a solar flare.

    NASA Technical Reports Server (NTRS)

    Nakagawa, Y.; Wu, S. T.; Han, S. M.

    1973-01-01

    Hyder advocated the idea that the optical (H-alpha) flares can be identified with the response of the solar chromosphere to an infalling material stream resulting from the 'disparition brusque' of a prominence. Since some flares are observed without any apparent association with infalling streams, in this paper we examine the possibility of identifying the optical flare with the response of the chromosphere to a supersonic disturbance, i.e., a shock, propagating downward. The undisturbed chromosphere is represented by the Harvard-Smithsonian Reference Atmosphere and the evolution of the shock is evaluated with the use of the CCW (Chisnell, Chester, Whitham) approximation based on the theory of characteristics. It is shown that the chromosphere is heated by the shock, that radiation is enhanced, and that the enhanced radiation terminates the shock around the height of the temperature minimum.

  4. Fast and precise point spread function measurements of IR optics at extreme temperatures based on reversed imaging conditions

    NASA Astrophysics Data System (ADS)

    Melzer, Volker; Heckmann, Hans-Georg; Ritter, Christian; Barenz, Joachim; Raab, Michael

    2010-04-01

    Point Spread Function (PSF), Modulation Transfer Function (MTF) and Ensquared Energy (EE) are important performance indicators of optical systems for surveillance, imaging and target tracking applications. We report on the development of a new measurement method which facilitates fast real time measurement of the two dimensional PSF and related performance parameters of a MWIR optical module under room temperature as well as under extreme temperature conditions. Our new measurement setup uses the law of reversibility of optical paths to capture a highly resolved, magnified image of the PSF. By using of an easy add-on thermally insulating enclosure the optical module can be exposed to and measured under both variable high and low temperatures (-50°C up to 90°C) without any external impact on the measurement. Also line of sight and various off-axis measurements are possible. Common PSF and MTF measurement methods need much more correction algorithms, whilst our method requires mainly a pinhole diameter correction only and allows fast measurements of optical parameters under temperature as well as fast and easy adjustment. Additionally comparison of the captured, highly resolved PSF with optical design data enables purposeful theoretical investigation of occurring optical artifacts.

  5. Fast response organic light-emitting diode for visible optical communication

    NASA Astrophysics Data System (ADS)

    Fukuda, Takeshi; Taniguchi, Yoshio

    2008-02-01

    We examined fast response organic light-emitting diodes (OLEDs) for new applications of visible optical communications. For the practical use in this field, the fast transmission speed of OLEDs is required to be used in many applications, but the low carrier mobility of organic materials and the long fluorescence lifetime (FL) organic emitting materials limit the transmission speed of OLEDs. Therefore, we investigated the influence of the FL on transient properties of photoluminescence (PL), which were evaluated by the frequency dependence of PL intensity excited by a modulated violet laser diode. The FLs of several organic emitting materials were also measured, and we found the clear relationship between the FL and the transient properties of PL intensity. The fastest cutoff frequency of PL intensity was achieved 160 MHz utilizing short FL material, 1,4-bis[2-[4-[N,N-di(ptolyl)amino]phenl]vinyl]benzene. We also investigated another way to increase the transmission speed utilizing a semiconductor-organic multilayer structure, of which ZnS was used as an electron transport layer. The maximum cutoff frequency of this device was achieved 20.3 MHz, while that of the organic multilayer structure was 8.7 MHz at a sine wave voltage of 7 V and a bias voltage of 5 V. This result indicates that the high carrier mobility of the ZnS layer causes the increase in the transmission speed of OLEDs. We demonstrated one institutive demonstrator module of visible optical communications, which consisted of the transceiver module with an OLED and the pen-type receiver module with a photo-diode at a point. The movie files was transmitted at a speed of 230 kbps, when the point of a pen-type receiver module approaches the emitting area of an OLED. Furthermore, the pseudo-random signal with 1Mbps was also transmitted with this visible optical communication system. Such a system enables to connect between transceiver and receiver module without precious alignment because of the large

  6. Models of the Solar Atmospheric Response to Flare Heating

    NASA Technical Reports Server (NTRS)

    Allred, Joel

    2011-01-01

    I will present models of the solar atmospheric response to flare heating. The models solve the equations of non-LTE radiation hydrodynamics with an electron beam added as a flare energy source term. Radiative transfer is solved in detail for many important optically thick hydrogen and helium transitions and numerous optically thin EUV lines making the models ideally suited to study the emission that is produced during flares. I will pay special attention to understanding key EUV lines as well the mechanism for white light production. I will also present preliminary results of how the model solar atmosphere responds to Fletcher & Hudson type flare heating. I will compare this with the results from flare simulations using the standard thick target model.

  7. Novel single-beam optical spectrophotometer for fast luminescence, absorption, and reflection measurements of turbid materials

    NASA Astrophysics Data System (ADS)

    Schmidt, Werner

    1995-02-01

    A novel spectrophotometer based on the deflection of a secondary element for measuring clear and highly turbid materials within the millisecond time range is developed. The number of optical components of the monochromator is reduced to the absolute minimum. This results in excellent light throughput and a low stray-light level. The spectrophotometer has been designed allowing spectral measurements of absorption, transmission, reflection, and luminescence in a single-beam mode, as documented by various examples. Its design is highly flexible and the price/quality relation might be adopted to the envisaged purpose. The main philosophy is to relocate as many functions as possible form the hardware to the software part of the spectrophotometer. Several novel procedures based on old concepts are proposed. An appropriate computer program providing data acquisition, control functions as well as numerous analytical capabilities is developed on the basis of the compiler language power basic and indispensably 'fast' routines are written in assembler language.

  8. [Measurement and retrieval of indicators for fast VOCs atmospheric photochemistry with differential optical absorption spectroscopy].

    PubMed

    Peng, Fu-Min; Xie, Pin-Hua; Shao, Shi-Yong; Li, Yu-Jin; Lin, Yi-Hui; Li, Su-Wen; Qin, Min; Liu, Wen-Qing

    2008-03-01

    Featuring excellent response characteristics and detection sensitivity and with much lower operational cost, differential optical absorption spectroscopy (DOAS) can be a powerful tool to trace concentration variation of trace indicators -O3, Ox (O3 + NO2) and HCHO for fast VOCs atmospheric photochemistry. But it's difficult to measure those gases accurately because of trace concentration. Here using a self-made DOAS system, the accurate measurement of those indicators was achieved through improving the ratio of signal to noise ratio and correcting the background scattering light; the retrieving method of those indicators was developed through eliminating the temperature effect of absorption cross section, accurately removing the intrinsic structure and lamp structure of spectrum. The preference of different spectral windows that could be used for the concentration retrieval of those indicators was analyzed and compared including interfering factors, results retrieved and the accuracy. PMID:18536400

  9. Fast mode-hop-free acousto-optically tuned laser with a simple laser diode.

    PubMed

    Bösel, André; Salewski, Klaus-Dieter; Kinder, Thomas

    2007-07-01

    A mode-hop-free tunable external-cavity Littrow diode laser with intracavity acousto-optic modulators (AOMs) has been built. The modes of the red laser diode without a special antireflection coating are shifted by varying the injection current. The external resonator modes and the grating selectivity are independently electrically alterable by two AOMs. Thus, a tuning of the external resonator over up to 1900 GHz is possible. A precise computer control of laser diode and AOMs allowed a single-mode tuning of the whole laser with a tuning range of 225 GHz in 250 s. Additionally, we demonstrated fast tuning over 90 GHz in 190 micros and a repetition rate of 2.5 kHz. PMID:17603626

  10. Nanowire humidity optical sensor system based on fast Fourier transform technique

    NASA Astrophysics Data System (ADS)

    Rota-Rodrigo, S.; Pérez-Herrera, R.; Lopez-Aldaba, A.; López Bautista, M. C.; Esteban, O.; López-Amo, M.

    2015-09-01

    In this paper, a new sensor system for relative humidity measurements based on its interaction with the evanescent field of a nanowire is presented. The interrogation of the sensing head is carried out by monitoring the fast Fourier transform phase variations of one of the nanowire interference frequencies. This method is independent of the signal amplitude and also avoids the necessity of tracking the wavelength evolution in the spectrum, which can be a handicap when there are multiple interference frequency components with different sensitivities. The sensor is operated within a wide humidity range (20%-70% relative humidity) with a maximum sensitivity achieved of 0.14rad/% relative humidity. Finally, due to the system uses an optical interrogator as unique active element, the system presents a cost-effective feature.

  11. Are fast atmospheric pulsations optical signatures of lightning-induced electron precipitation

    SciTech Connect

    LaBelle, J.

    1987-10-01

    Fast Atmospheric Light Pulsations (FAP's) consist of millisecond time-scale bursts of light which have been observed at L = 1.5--2.2 during searches for atmospheric light emissions associated with supernovae. Their statistics of occurrence resemble those of Lightning-induced Electron Precipitation (Trimpi events) observed at somewhat higher L-shells. Here we propose that FAP's are in fact optical signatures of LEP events associated with the greater than or equal to2 MeV electrons of the inner radiation belt (Lapprox. =1.4). These electrons would precipitate at low altitudes and could be modulated with time scales the order of 1 ms. The total loss rate of electrons from the inner belt resulting from these events would be comparable to, but somewhat smaller than, the loss rate due to Coulomb scattering.

  12. Image dissector photocathode solar damage test program. [solar radiation shielding using a fast optical lens

    NASA Technical Reports Server (NTRS)

    Smith, R. A.

    1977-01-01

    Image dissector sensors of the same type which will be used in the NASA shuttle star tracker were used in a series of tests directed towards obtaining solar radiation/time damage criteria. Data were evaluated to determine the predicted level of operability of the star tracker if tube damage became a reality. During the test series a technique for reducing the solar damage effect was conceived and verified. The damage concepts are outlined and the test methods and data obtained which were used for verification of the technique's feasibility are presented. The ability to operate an image dissector sensor with the solar image focussed on the photocathode by a fast optical lens under certain conditions is feasible and the elimination of a mechanical protection device is possible.

  13. Two-dimensional electronic spectroscopy based on conventional optics and fast dual chopper data acquisition

    SciTech Connect

    Heisler, Ismael A. Moca, Roberta; Meech, Stephen R.; Camargo, Franco V. A.

    2014-06-15

    We report an improved experimental scheme for two-dimensional electronic spectroscopy (2D-ES) based solely on conventional optical components and fast data acquisition. This is accomplished by working with two choppers synchronized to a 10 kHz repetition rate amplified laser system. We demonstrate how scattering and pump-probe contributions can be removed during 2D measurements and how the pump probe and local oscillator spectra can be generated and saved simultaneously with each population time measurement. As an example the 2D-ES spectra for cresyl violet were obtained. The resulting 2D spectra show a significant oscillating signal during population evolution time which can be assigned to an intramolecular vibrational mode.

  14. Time-resolved diffuse optical tomography using fast-gated single-photon avalanche diodes

    PubMed Central

    Puszka, Agathe; Di Sieno, Laura; Mora, Alberto Dalla; Pifferi, Antonio; Contini, Davide; Boso, Gianluca; Tosi, Alberto; Hervé, Lionel; Planat-Chrétien, Anne; Koenig, Anne; Dinten, Jean-Marc

    2013-01-01

    We present the first experimental results of reflectance Diffuse Optical Tomography (DOT) performed with a fast-gated single-photon avalanche diode (SPAD) coupled to a time-correlated single-photon counting system. The Mellin-Laplace transform was employed to process time-resolved data. We compare the performances of the SPAD operated in the gated mode vs. the non-gated mode for the detection and localization of an absorbing inclusion deeply embedded in a turbid medium for 5 and 15 mm interfiber distances. We demonstrate that, for a given acquisition time, the gated mode enables the detection and better localization of deeper absorbing inclusions than the non-gated mode. These results obtained on phantoms demonstrate the efficacy of time-resolved DOT at small interfiber distances. By achieving depth sensitivity with limited acquisition times, the gated mode increases the relevance of reflectance DOT at small interfiber distance for clinical applications. PMID:24009998

  15. TimepixCam: a fast optical imager with time-stamping

    NASA Astrophysics Data System (ADS)

    Fisher-Levine, M.; Nomerotski, A.

    2016-03-01

    We describe a novel fast optical imager, TimepixCam, based on an optimized silicon pixel sensor with a thin entrance window, read out by a Timepix ASIC. TimepixCam is able to record and time-stamp light flashes in excess of 1,000 photons with high quantum efficiency in the 400-1000nm wavelength range with 20ns timing resolution, corresponding to an effective rate of 50 Megaframes per second. The camera was used for imaging ions impinging on a microchannel plate followed by a phosphor screen. Possible applications include spatial and velocity map imaging of ions in time-of-flight mass spectroscopy; coincidence imaging of ions and electrons, and other time-resolved types of imaging spectroscopy.

  16. Fast wavelength calibration method for spectrometers based on waveguide comb optical filter

    SciTech Connect

    Yu, Zhengang; Huang, Meizhen Zou, Ye; Wang, Yang; Sun, Zhenhua; Cao, Zhuangqi

    2015-04-15

    A novel fast wavelength calibration method for spectrometers based on a standard spectrometer and a double metal-cladding waveguide comb optical filter (WCOF) is proposed and demonstrated. By using the WCOF device, a wide-spectrum beam is comb-filtered, which is very suitable for spectrometer wavelength calibration. The influence of waveguide filter’s structural parameters and the beam incident angle on the comb absorption peaks’ wavelength and its bandwidth are also discussed. The verification experiments were carried out in the wavelength range of 200–1100 nm with satisfactory results. Comparing with the traditional wavelength calibration method based on discrete sparse atomic emission or absorption lines, the new method has some advantages: sufficient calibration data, high accuracy, short calibration time, fit for produce process, stability, etc.

  17. Theoretical gravity darkening as a function of optical depth. A first approach to fast rotating stars

    NASA Astrophysics Data System (ADS)

    Claret, A.

    2016-04-01

    Aims: Recent observations of very fast rotating stars show systematic deviations from the von Zeipel theorem and pose a challenge to the theory of gravity-darkening exponents (β1). In this paper, we present a new insight into the problem of temperature distribution over distorted stellar surfaces to try to reduce these discrepancies. Methods: We use a variant of the numerical method based on the triangles strategy, which we previously introduced, to evaluate the gravity-darkening exponents. The novelty of the present method is that the theoretical β1 is now computed as a function of the optical depth, that is, β1 ≡ β1(τ). The stellar evolutionary models, which are necessary to obtain the physical conditions of the stellar envelopes/atmospheres inherent to the numerical method, are computed via the code GRANADA. Results: When the resulting theoretical β1(τ) are compared with the best accurate data of very fast rotators, a good agreement for the six systems is simultaneously achieved. In addition, we derive an equation that relates the locus of constant convective efficiency in the Hertzsprung-Russell (HR) diagram with gravity-darkening exponents.

  18. Fast Simulators for Satellite Cloud Optical Centroid Pressure Retrievals, 1. Evaluation of OMI Cloud Retrievals

    NASA Technical Reports Server (NTRS)

    Joiner, J.; Vasilkov, A. P.; Gupta, Pawan; Bhartia, P. K.; Veefkind, Pepijn; Sneep, Maarten; deHaan, Johan; Polonsky, Igor; Spurr, Robert

    2011-01-01

    We have developed a relatively simple scheme for simulating retrieved cloud optical centroid pressures (OCP) from satellite solar backscatter observations. We have compared simulator results with those from more detailed retrieval simulators that more fully account for the complex radiative transfer in a cloudy atmosphere. We used this fast simulator to conduct a comprehensive evaluation of cloud OCPs from the two OMI algorithms using collocated data from CloudSat and Aqua MODIS, a unique situation afforded by the A-train formation of satellites. We find that both OMI algorithms perform reasonably well and that the two algorithms agree better with each other than either does with the collocated CloudSat data. This indicates that patchy snow/ice, cloud 3D, and aerosol effects not simulated with the CloudSat data are affecting both algorithms similarly. We note that the collocation with CloudSat occurs mainly on the East side of OMI's swath. Therefore, we are not able to address cross-track biases in OMI cloud OCP retrievals. Our fast simulator may also be used to simulate cloud OCP from output generated by general circulation models (GCM) with appropriate account of cloud overlap. We have implemented such a scheme and plan to compare OMI data with GCM output in the near future.

  19. Fast electron temperature measurements using a 'multicolor' optical soft x-ray array

    SciTech Connect

    Delgado-Aparicio, L. F.; Stutman, D.; Tritz, K.; Finkenthal, M.; Bell, R.; Hosea, J.; Kaita, R.; LeBlanc, B.; Roquemore, L.; Wilson, J. R.

    2007-10-01

    A fast ({<=}0.1 ms) and compact 'multicolor' scintillator-based optical soft x-ray (OSXR) array has been developed for time- and space-resolved measurements of the electron temperature [T{sub e}(R,t)] profiles in magnetically confined fusion plasmas. The 48-channel tangential multicolor OSXR prototype was tested on the National Spherical Torus Experiment. Each sight line views the same plasma volume at the midplane (0{<=}r/a{<=}1), in three distinct energy ranges determined by beryllium foils with different thicknesses. A tangential view of the toroidally (circular) symmetric plasma allows an Abel inversion of the line-integrated SXR brightness to obtain the x-ray emissivity profiles which are then used to constrain the reconstruction of the fast T{sub e}(R,t). The first assessment of the electron temperature is obtained by modeling the slope of the continuum radiation with the ideal double-foil method using both the line-integrated intensity measurements as well as the inverted SXR emissivity profiles.

  20. The speed of information in a 'fast-light' optical medium.

    PubMed

    Stenner, Michael D; Gauthier, Daniel J; Neifeld, Mark A

    2003-10-16

    One consequence of the special theory of relativity is that no signal can cause an effect outside the source light cone, the space-time surface on which light rays emanate from the source. Violation of this principle of relativistic causality leads to paradoxes, such as that of an effect preceding its cause. Recent experiments on optical pulse propagation in so-called 'fast-light' media--which are characterized by a wave group velocity upsilon(g) exceeding the vacuum speed of light c or taking on negative values--have led to renewed debate about the definition of the information velocity upsilon(i). One view is that upsilon(i) = upsilon(g) (ref. 4), which would violate causality, while another is that upsilon(i) = c in all situations, which would preserve causality. Here we find that the time to detect information propagating through a fast-light medium is slightly longer than the time required to detect the same information travelling through a vacuum, even though upsilon(g) in the medium vastly exceeds c. Our observations are therefore consistent with relativistic causality and help to resolve the controversies surrounding superluminal pulse propagation. PMID:14562097

  1. Assessment of a fast electro-optical shutter for 1D spontaneous Raman scattering in flames

    NASA Astrophysics Data System (ADS)

    Ajrouche, Hassan; Lo, Amath; Vervisch, Pierre; Cessou, Armelle

    2015-07-01

    A critical aspect of 1D single-shot spontaneous Raman scattering (SRS) experiments in turbulent flames is the need to ensure highly efficient detection associated with fast temporal gating to remove flame emission. Back-illuminated CCD cameras are remarkable for their high quantum efficiency, large dynamic range, good spatial resolution and low readout noise. However, their full-frame architecture makes these detectors difficult to use for SRS measurements in flame and requires the development of a high-speed shutter. The present work proposes a fast electro-optical shutter composed of a large aperture Pockels cell placed between two crossed polarizers, providing high-speed gating up to 500 ns. The throughput of the shutter and its spatial homogeneity are measured. The angular tolerance of the Pockels cell is determined and its suitability for 1D probing is assessed. Spectra acquired in a premixed methane-air flame show the capacity of the shutter to remove flame emission and increase the signal-to-noise ratio for major Raman species.

  2. Flares in childhood eczema.

    PubMed

    Langan, S M

    2009-01-01

    Eczema is a major public health problem affecting children worldwide. Few studies have directly assessed triggers for disease flares. This paper presents evidence from a published systematic review and a prospective cohort study looking at flare factors in eczema. This systematic review suggested that foodstuffs in selected groups, dust exposure, unfamiliar pets, seasonal variation, stress, and irritants may be important in eczema flares. We performed a prospective cohort study that focused on environmental factors and identified associations between exposure to nylon clothing, dust, unfamiliar pets, sweating, shampoo, and eczema flares. Results from this study also demonstrated some new key findings. First, the effect of shampoo was found to increase in cold weather, and second, combinations of environmental factors were associated with disease exacerbation, supporting a multiple component disease model. This information is likely to be useful to families and may lead to the ability to reduce disease flares in the future. PMID:20054505

  3. Fabrication of continuous diffractive optical elements using a fast tool servo diamond turning process

    NASA Astrophysics Data System (ADS)

    Zhou, Jingbo; Li, Lei; Naples, Neil; Sun, Tao; Yi, Allen Y.

    2013-07-01

    Continuous diffractive optical elements (CDOEs) can be used for laser-beam reshaping, pattern generation and can help reduce large angle scattering. Lithography, the method for the production of binary diffractive surfaces, is not suitable for fabrication of CDOEs. Diamond turning using fast tool servo, on the other hand, is a non-cleanroom method for generating continuous microstructures with high precision and efficiency. In this paper, an algorithm for designing CDOEs is introduced. The moving least-squares (MLS) method is then used to obtain the local fitting equation of the diffractive surface. Based on the MLS fitting equation, the selection of diamond cutting tool geometries (including the tool nose radius, rake angle and clearance angle) is discussed and a tool nose radius compensation algorithm is included. This algorithm is a general method for the diamond turning of complex surfaces that can be represented by a point cloud. Surface measurements and diffractive patterns generated on test samples have shown that continuous diffractive surfaces were successfully machined. In the future, CDOEs can be machined on an optical mold surface for high-volume industrial production using methods such as injection molding.

  4. Fast Face-Recognition Optical Parallel Correlator Using High Accuracy Correlation Filter

    NASA Astrophysics Data System (ADS)

    Watanabe, Eriko; Kodate, Kashiko

    2005-11-01

    We designed and fabricated a fully automatic fast face recognition optical parallel correlator [E. Watanabe and K. Kodate: Appl. Opt. 44 (2005) 5666] based on the VanderLugt principle. The implementation of an as-yet unattained ultra high-speed system was aided by reconfiguring the system to make it suitable for easier parallel processing, as well as by composing a higher accuracy correlation filter and high-speed ferroelectric liquid crystal-spatial light modulator (FLC-SLM). In running trial experiments using this system (dubbed FARCO), we succeeded in acquiring remarkably low error rates of 1.3% for false match rate (FMR) and 2.6% for false non-match rate (FNMR). Given the results of our experiments, the aim of this paper is to examine methods of designing correlation filters and arranging database image arrays for even faster parallel correlation, underlining the issues of calculation technique, quantization bit rate, pixel size and shift from optical axis. The correlation filter has proved its excellent performance and higher precision than classical correlation and joint transform correlator (JTC). Moreover, arrangement of multi-object reference images leads to 10-channel correlation signals, as sharply marked as those of a single channel. This experiment result demonstrates great potential for achieving the process speed of 10000 face/s.

  5. Pre-Hardware Optimization and Implementation Of Fast Optics Closed Control Loop Algorithms

    NASA Technical Reports Server (NTRS)

    Kizhner, Semion; Lyon, Richard G.; Herman, Jay R.; Abuhassan, Nader

    2004-01-01

    One of the main heritage tools used in scientific and engineering data spectrum analysis is the Fourier Integral Transform and its high performance digital equivalent - the Fast Fourier Transform (FFT). The FFT is particularly useful in two-dimensional (2-D) image processing (FFT2) within optical systems control. However, timing constraints of a fast optics closed control loop would require a supercomputer to run the software implementation of the FFT2 and its inverse, as well as other image processing representative algorithm, such as numerical image folding and fringe feature extraction. A laboratory supercomputer is not always available even for ground operations and is not feasible for a night project. However, the computationally intensive algorithms still warrant alternative implementation using reconfigurable computing technologies (RC) such as Digital Signal Processors (DSP) and Field Programmable Gate Arrays (FPGA), which provide low cost compact super-computing capabilities. We present a new RC hardware implementation and utilization architecture that significantly reduces the computational complexity of a few basic image-processing algorithm, such as FFT2, image folding and phase diversity for the NASA Solar Viewing Interferometer Prototype (SVIP) using a cluster of DSPs and FPGAs. The DSP cluster utilization architecture also assures avoidance of a single point of failure, while using commercially available hardware. This, combined with the control algorithms pre-hardware optimization, or the first time allows construction of image-based 800 Hertz (Hz) optics closed control loops on-board a spacecraft, based on the SVIP ground instrument. That spacecraft is the proposed Earth Atmosphere Solar Occultation Imager (EASI) to study greenhouse gases CO2, C2H, H2O, O3, O2, N2O from Lagrange-2 point in space. This paper provides an advanced insight into a new type of science capabilities for future space exploration missions based on on-board image processing

  6. Flare build-up study - Homologous flares group. I

    NASA Technical Reports Server (NTRS)

    Martres, M.-J.; Mein, N.; Mouradian, Z.; Rayrole, J.; Schmieder, B.; Simon, G.; Soru-Escaut, I.; Woodgate, B. E.

    1984-01-01

    Solar Maximum Mission observations have been used to study the origin and amount of energy, mechanism of storage and release, and conditions for the occurrence of solar flares, and some results of these studies as they pertain to homologous flares are briefly discussed. It was found that every set of flares produced 'rafales' of homologous flares, i.e., two, three, four, or more flares separated in time by an hour or less. No great changes in macroscopic photospheric patterns were observed during these flaring periods. A quantitative brightness parameter of the relation between homologous flares is defined. Scale changes detected in the dynamic spectrum of flare sites are in good agreement with a theoretical suggestion by Sturrock. Statistical results for different homologous flare active regions show the existence in homologous flaring areas of a 'pivot' of previous filaments interpreted as a signature of an anomaly in the solar rotation.

  7. Experimental demonstration of enhanced slow and fast light by forced coherent population oscillations in a semiconductor optical amplifier.

    PubMed

    Berger, Perrine; Bourderionnet, Jérôme; de Valicourt, Guilhem; Brenot, Romain; Bretenaker, Fabien; Dolfi, Daniel; Alouini, Mehdi

    2010-07-15

    We experimentally demonstrate enhanced slow and fast light by forced coherent population oscillations in a semiconductor optical amplifier at gigahertz frequencies. This approach is shown to rely on the interference between two different contributions. This opens up the possibility of conceiving a controllable rf phase shifter based on this setup. PMID:20634862

  8. COMPTEL solar flare observations

    NASA Technical Reports Server (NTRS)

    Ryan, J. M.; Aarts, H.; Bennett, K.; Debrunner, H.; Devries, C.; Denherder, J. W.; Eymann, G.; Forrest, D. J.; Diehl, R.; Hermsen, W.

    1992-01-01

    COMPTEL as part of a solar target of opportunity campaign observed the sun during the period of high solar activity from 7-15 Jun. 1991. Major flares were observed on 9 and 11 Jun. Although both flares were large GOES events (greater than or = X10), they were not extraordinary in terms of gamma-ray emission. Only the decay phase of the 15 Jun. flare was observed by COMPTEL. We report the preliminary analysis of data from these flares, including the first spectroscopic measurement of solar flare neutrons. The deuterium formation line at 2.223 MeV was present in both events and for at least the 9 Jun. event, was comparable to the flux in the nuclear line region of 4-8 MeV, consistent with Solar-Maximum Mission (SSM) Observations. A clear neutron signal was present in the flare of 9 Jun. with the spectrum extending up to 80 MeV and consistent in time with the emission of gamma-rays, confirming the utility of COMPTEL in measuring the solar neutron flux at low energies. The neutron flux below 100 MeV appears to be lower than that of the 3 Jun. 1982 flare by more than an order of magnitude. The neutron signal of the 11 Jun. event is under study. Severe dead time effects resulting from the intense thermal x-rays require significant corrections to the measured flux which increase the magnitude of the associated systematic uncertainties.

  9. SIZE DISTRIBUTIONS OF SOLAR FLARES AND SOLAR ENERGETIC PARTICLE EVENTS

    SciTech Connect

    Cliver, E. W.; Ling, A. G.; Belov, A.; Yashiro, S.

    2012-09-10

    We suggest that the flatter size distribution of solar energetic proton (SEP) events relative to that of flare soft X-ray (SXR) events is primarily due to the fact that SEP flares are an energetic subset of all flares. Flares associated with gradual SEP events are characteristically accompanied by fast ({>=}1000 km s{sup -1}) coronal mass ejections (CMEs) that drive coronal/interplanetary shock waves. For the 1996-2005 interval, the slopes ({alpha} values) of power-law size distributions of the peak 1-8 A fluxes of SXR flares associated with (a) >10 MeV SEP events (with peak fluxes {>=}1 pr cm{sup -2} s{sup -1} sr{sup -1}) and (b) fast CMEs were {approx}1.3-1.4 compared to {approx}1.2 for the peak proton fluxes of >10 MeV SEP events and {approx}2 for the peak 1-8 A fluxes of all SXR flares. The difference of {approx}0.15 between the slopes of the distributions of SEP events and SEP SXR flares is consistent with the observed variation of SEP event peak flux with SXR peak flux.

  10. Size Distributions of Solar Flares and Solar Energetic Particle Events

    NASA Technical Reports Server (NTRS)

    Cliver, E. W.; Ling, A. G.; Belov, A.; Yashiro, S.

    2012-01-01

    We suggest that the flatter size distribution of solar energetic proton (SEP) events relative to that of flare soft X-ray (SXR) events is primarily due to the fact that SEP flares are an energetic subset of all flares. Flares associated with gradual SEP events are characteristically accompanied by fast (much > 1000 km/s) coronal mass ejections (CMEs) that drive coronal/interplanetary shock waves. For the 1996-2005 interval, the slopes (alpha values) of power-law size distributions of the peak 1-8 Angs fluxes of SXR flares associated with (a) >10 MeV SEP events (with peak fluxes much > 1 pr/sq cm/s/sr) and (b) fast CMEs were approx 1.3-1.4 compared to approx 1.2 for the peak proton fluxes of >10 MeV SEP events and approx 2 for the peak 1-8 Angs fluxes of all SXR flares. The difference of approx 0.15 between the slopes of the distributions of SEP events and SEP SXR flares is consistent with the observed variation of SEP event peak flux with SXR peak flux.

  11. Hot electron bolometer for detection of fast terahertz pulses from optical parametric oscillator

    NASA Astrophysics Data System (ADS)

    Palka, Norbert; Zagrajek, Przemyslaw; Czerwinski, Adam; Trzcinski, Tomasz; Rurka, Elzbieta; Szustakowski, Mieczyslaw; Sypek, Maciej

    2012-10-01

    Detection of nanosecond pulses by fast and sensitive Hot Electron Bolometer (HEB) is reported. Pulses were generated by an Optical Parametric Oscillator (OPO)-based source. The laser can be tuned in the range 0.7-2.5 THz; its repetition rate equals to 53Hz, duration of the pulse is about 10-20ns, energy is 10nJ and spectral width 50GHz. HEB operates at temperature of about 8.8K in a cryogenic refrigeration system. A sensitive element is a bridge from a 4-mm thick NbN film integrated with a planar logarithmic spiral antenna on a high-resistive silicon. HEB works in 0.3-3THz range with NEP ~3x10-13 W/Hz1/2 and dynamic range 0.1 uW. Thanks to exploitation of hot electrons in superconducting state, the detector is very fast with minimum response time equals to 50ps. The THz radiation is focused with a silicon lens, and then is coupled to a sensitive bolometer using the planar antenna. THz radiation from the OPO, through a set of mirrors and attenuators, was coupled to the detector. The distance between the source and detector was about 3m. Full Width at Half Maximum of the recorded pulses was about 20 ns. Moreover, we measured linearity of the detector in the range 0.7- 2.0 THz by rotation of the polarizer axis. The pulses were averaged and integrated for better stability. We obtained a good similarity to the theoretical curve of the polarizer.

  12. Unveiling the nature of an X-ray flare from 3XMM* J014528.9+610729: a candidate spiral galaxy

    NASA Astrophysics Data System (ADS)

    Bhatt, Himali; Bhattacharyya, Subir; Bhatt, Nilay; Pandey, J. C.

    2014-11-01

    We report an X-ray flare from 3XMM J014528.9+610729, serendipitously detected during the observation of the open star cluster NGC 663. The colour-colour space technique using optical and infrared data reveals the X-ray source as a candidate spiral galaxy. The flare shows fast rise and exponential decay shape with a ratio of the peak and the quiescent count rates of ˜60 and duration of ˜5.4 ks. The spectrum during the flaring state is well fitted with a combination of thermal (APEC) model with a plasma temperature of 1.3 ± 0.1 keV and non-thermal (POWER-LAW) model with power-law index of 1.9 ± 0.2. However, no firm conclusion can be made for the spectrum during the quiescent state. The temporal behaviour, plasma temperature and spectral evolution during flare suggest that the flare from 3XMM J014528.9+610729 cannot be associated with tidal disruption events.

  13. Radiative transfer simulations of magnetar flare beaming

    NASA Astrophysics Data System (ADS)

    van Putten, T.; Watts, A. L.; Baring, M. G.; Wijers, R. A. M. J.

    2016-05-01

    Magnetar giant flares show oscillatory modulations in the tails of their light curves, which can only be explained via some form of beaming. The fireball model for magnetar bursts has been used successfully to fit the phase-averaged light curves of the tails of giant flares, but so far no attempts have been made to fit the pulsations. We present a relatively simple numerical model to simulate beaming of magnetar flare emission. In our simulations, radiation escapes from the base of a fireball trapped in a dipolar magnetic field, and is scattered through the optically thick magnetosphere of the magnetar until it escapes. Beaming is provided by the presence of a relativistic outflow, as well as by the geometry of the system. We find that a simple picture for the relativistic outflow is enough to create the pulse fraction and sharp peaks observed in pulse profiles of magnetar flares, while without a relativistic outflow the beaming is insufficient to explain giant flare rotational modulations.

  14. Radiative transfer simulations of magnetar flare beaming

    NASA Astrophysics Data System (ADS)

    van Putten, T.; Watts, A. L.; Baring, M. G.; Wijers, R. A. M. J.

    2016-09-01

    Magnetar giant flares show oscillatory modulations in the tails of their light curves, which can only be explained via some form of beaming. The fireball model for magnetar bursts has been used successfully to fit the phase-averaged light curves of the tails of giant flares, but so far no attempts have been made to fit the pulsations. We present a relatively simple numerical model to simulate beaming of magnetar flare emission. In our simulations, radiation escapes from the base of a fireball trapped in a dipolar magnetic field, and is scattered through the optically thick magnetosphere of the magnetar until it escapes. Beaming is provided by the presence of a relativistic outflow, as well as by the geometry of the system. We find that a simple picture for the relativistic outflow is enough to create the pulse fraction and sharp peaks observed in pulse profiles of magnetar flares, while without a relativistic outflow the beaming is insufficient to explain giant flare rotational modulations.

  15. Characterizing New Fast Optical Transients with HST: Astrometry, Geometry, and Host Galaxies

    NASA Astrophysics Data System (ADS)

    Cenko, Stephen

    2014-10-01

    The Palomar Transient Factory (PTF) is a wide-field, high-cadence optical survey designed with two primary objectives: (1) to perform a systematic study of known classes of transient and/or variable sources (e.g., Type Ia supernovae, RR Lyrae stars, etc.); and (2) to enable the discovery of new classes of transient phenomena by exploring new regimes of sensitivity and variability. PTF recently transitioned to a new observing strategy (dubbed "iPTF"), in large part due to a desire to investigate even shorter time scales (tau < 1 day). The systematic exploration of this new phase should enable the discovery of new astrophysical phenomenon, including both those predicted but not yet observationally confirmed (e.g., orphan gamma-ray burst afterglows) and those entirely unknown.Here we request HST ToO observations of a newly discovered "fast" optical transient, typified by our previous discovery of PTF11agg. We argue that PTF11agg may represent a new class of distant, relativistic outbursts lacking in high-energy emission altogether (i.e., "dirty" fireballs), and that these sources may be at least as common as normal, on-axis gamma-ray bursts. Our transient detection pipeline now enables us to identify and confirm these sources in real-time, as demonstrated by our recent discovery of iPTF14yb (the first gamma-ray burst identified via its long-wavelength afterglow emission). HST can provide three vital diagnostics that cannot be achieved with any other facility: (1) resolved host imaging; (2) sub-galactic localizations; and (3) sensitive late-time photometry when the transient emission is comparable to or fainter than the underlying host.

  16. Flare Activity on Stars

    NASA Astrophysics Data System (ADS)

    Oskanian, V. S.

    A review of the existing flare data analyses indicates that most probably the flare phenomenon should be considered as one of the manifestation forms of solar-type chromospheric activity on stars and therefore has to be investigated in common with other phenomena specifying this activity. In order to estimate the reliability of such an approach different types of observational data are discussed. It could be shown that most of the phenomena specifying the solar chromospheric activity (BY Dra syndrome, indicating the spottedness of the stellar surface, long-term cyclic variations of emission line intensities, variable local magnetic fields, flares, coronal phenomena, etc.) are observable on a constantly growing number of stars of almost all spectral types and luminosity classes. This fact indicates that the proposed approach could be the right way to solve the problem of the flare phenomenon.

  17. Optimization of a fast optical CT scanner for nPAG gel dosimetry

    NASA Astrophysics Data System (ADS)

    Vandecasteele, Jan; DeDeene, Yves

    2009-05-01

    A fast laser scanning optical CT scanner was constructed and optimized at the Ghent university. The first images acquired were contaminated with several imaging artifacts. The origins of the artifacts were investigated. Performance characteristics of different components were measured such as the laser spot size, light attenuation by the lenses and the dynamic range of the photo-detector. The need for a differential measurement using a second photo-detector was investigated. Post processing strategies to compensate for hardware related errors were developed. Drift of the laser and of the detector was negligible. Incorrectly refractive index matching was dealt with by developing an automated matching process. When scratches on the water bath and phantom container are present, these pose a post processing challenge to eliminate the resulting artifacts from the reconstructed images Secondary laser spots due to multiple reflections need to be further investigated. The time delay in the control of the galvanometer and detector was dealt with using black strips that serve as markers of the projection position. Still some residual ringing artifacts are present. Several small volumetric test phantoms were constructed to obtain an overall picture of the accuracy.

  18. Fast wide-field photothermal and quantitative phase cell imaging with optical lock-in detection

    PubMed Central

    Eldridge, Will J.; Meiri, Amihai; Sheinfeld, Adi; Rinehart, Matthew T.; Wax, Adam

    2014-01-01

    We present a fast, wide-field holography system for detecting photothermally excited gold nanospheres with combined quantitative phase imaging. An interferometric photothermal optical lock-in approach (POLI) is shown to improve SNR for detecting nanoparticles (NPs) on multiple substrates, including a monolayer of NPs on a silanized coverslip, and NPs bound to live cells. Furthermore, the set up allowed for co-registered quantitative phase imaging (QPI) to be acquired in an off-axis holographic set-up. An SNR of 103 was obtained for NP-tagging of epidermal growth factor receptor (EGFR) in live cells with a 3 second acquisition, while an SNR of 47 was seen for 20 ms acquisition. An analysis of improvements in SNR due to averaging multiple frames is presented, which suggest that residual photothermal signal can be a limiting factor. The combination of techniques allows for high resolution imaging of cell structure via QPI with the ability to identify receptor expression via POLI. PMID:25136482

  19. Adaptive optics system for fast automatic control of laser beam jitters in air

    NASA Astrophysics Data System (ADS)

    Grasso, Salvatore; Acernese, Fausto; Romano, Rocco; Barone, Fabrizio

    2010-04-01

    Adaptive Optics (AO) Systems can operate fast automatic control of laser beam jitters for several applications of basic research as well as for the improvement of industrial and medical devices. We here present our theoretical and experimental research showing the opportunity of suppressing laser beam geometrical fluctuations of higher order Hermite Gauss modes in interferometric Gravitational Waves (GW) antennas. This in turn allows to significantly reduce the noise that originates from the coupling of the laser source oscillations with the interferometer asymmetries and introduces the concrete possibility of overcoming the sensitivity limit of the GW antennas actually set at 10-23 1 Hz value. We have carried out the feasibility study of a novel AO System which performs effective laser jitters suppression in the 200 Hz bandwidth. It extracts the wavefront error signals in terms of Hermite Gauss (HG) coefficients and performs the wavefront correction using the Zernike polynomials. An experimental Prototype of the AO System has been implemented and tested in our laboratory at the University of Salerno and the results we have achieved fully confirm effectiveness and robustness of the control upon first and second order laser beam geometrical fluctuations, in good accordance with GW antennas requirements. Above all, we have measured 60 dB reduction of astigmatism and defocus modes at low frequency below 1 Hz and 20 dB reduction in the 200 Hz bandwidth.

  20. An ultra-fast fiber optic pressure sensor for blast event measurements

    NASA Astrophysics Data System (ADS)

    Wu, Nan; Zou, Xiaotian; Tian, Ye; Fitek, John; Maffeo, Michael; Niezrecki, Christopher; Chen, Julie; Wang, Xingwei

    2012-05-01

    Soldiers who are exposed to explosions are at risk of suffering traumatic brain injury (TBI). Since the causal relationship between a blast and TBI is poorly understood, it is critical to have sensors that can accurately quantify the blast dynamics and resulting wave propagation through a helmet and skull that are imparted onto and inside the brain. To help quantify the cause of TBI, it is important to record transient pressure data during a blast event. However, very few sensors feature the capabilities of tracking the dynamic pressure transients due to the rapid change of the pressure during blast events, while not interfering with the physical material layers or wave propagation. In order to measure the pressure transients efficiently, a pressure sensor should have a high resonant frequency and a high spatial resolution. This paper describes an ultra-fast fiber optic pressure sensor based on the Fabry-Perot principle for the application of measuring the rapid pressure changes in a blast event. A shock tube experiment performed in US Army Natick Soldier Research, Development and Engineering Center has demonstrated that the resonant frequency of the sensor is 4.12 MHz, which is relatively close to the designed theoretical value of 4.113 MHz. Moreover, the experiment illustrated that the sensor has a rise time of 120 ns, which demonstrates that the sensor is capable of observing the dynamics of the pressure transient during a blast event.

  1. Flare ignition system

    SciTech Connect

    Sorelle, R.R.

    1984-05-22

    A flare ignition system is claimed for oil well flaring of combustible gases. It includes a central control unit, low voltage interconnect line and plural remote igniter units which include alternate first and second spark gaps coordinated in fail-safe operation. Coordination is carried out by pulse counting and validating circuitry which assures that one of the spark gaps will always be ignitable or alarm condition will exist.

  2. Solar flare particle radiation

    NASA Technical Reports Server (NTRS)

    Lanzerotti, L. J.

    1972-01-01

    The characteristics of the solar particles accelerated by solar flares and subsequently observed near the orbit of the earth are studied. Considered are solar particle intensity-time profiles, the composition and spectra of solar flare events, and the propagation of solar particles in interplanetary space. The effects of solar particles at the earth, riometer observations of polar cap cosmic noise absorption events, and the production of solar cell damage at synchronous altitudes by solar protons are also discussed.

  3. Metal Optics Based nanoLEDs: In Search of a Fast, Efficient, Nanoscale Light Emitter

    NASA Astrophysics Data System (ADS)

    Eggleston, Michael Scott

    Since the invention of the laser, stimulated emission has been the de facto king of optical communication. Lasers can be directly modulated at rates as high as 50GHz, much faster than a typical solid state light-emitting diode (LED) that is limited by spontaneous emission to <1GHz. Unfortunately, lasers have a severe scaling problem; they require large cavities operated at high power to achieve efficient lasing. A properly designed LED can be made arbitrarily small and still operate with high-efficiency. On-chip interconnects is an area that is in desperate need of a high-speed, low-power optical emitter that can enable on-chip links to replace current high-loss metal wires. In this work, I will show that by utilizing proper antenna design, a nanoLED can be created that is faster than a laser while still operating at >50% efficiency. I start by formulating an optical antenna circuit model whose elements are based completely off of antenna geometry. This allows for intuitive antenna design and suggests that rate enhancements up to ~3,000x are possible while keeping antenna efficiency >50%. Such a massive speed-up in spontaneous emission would enable an LED that can be directly modulated at 100's of GHz, much faster than any laser. I then use the circuit model to design an arch-dipole antenna, a dipole antenna with an inductive arch across the feedgap. I experimentally demonstrate a free-standing arch-dipole based nanoLED with rate enhancement of 115x and 66% antenna efficiency. Because the emitter is InGaAsP, a common III-V material, I experimentally show that this device can be easily and efficiently coupled into an InP waveguide. Experimental coupling efficiencies up to 70% are demonstrated and directional antennas are employed that offer front to back emission ratios of 3:1. Finally, I show that a nanoLED can still have high quantum yield by using a transition metal dichalcogenide, WSe2, as the emitter material. By coupling a monolayer of WSe2 to a cavity

  4. Flares on Mira stars?

    NASA Technical Reports Server (NTRS)

    Schaefer, Bradley E.

    1991-01-01

    Fourteen cases of flares reported on Mira type stars have been collected. These flares typically have an amplitude of over half a magnitude, a rise time of minutes, and a duration of tens of minutes. Nine of the 11 stars represent a normal cross section of the Mira population, while the remaining two are in symbiotic systems (CH Cyg and RX Pup). The flares were observed photographically (five cases), photometrically (three cases), visually (three cases), and with radio telescopes (two cases), while CH Cyg has had flares observed by many techniques. The evidence for the existence of flares on Miras is strong but not definitive. It is possible to hypothesize a variety of background or instrumental effects that could explain all 14 events; however, there is no evidence that suggests the data should be taken at other than face value, and there are good arguments for rejecting the possibility of artifacts. It is felt that the current data warrant systematic observational and theoretical investigation of the possibility of flares on Mira stars.

  5. The solar flare myth

    NASA Technical Reports Server (NTRS)

    Gosling, J. T.

    1993-01-01

    Many years of research have demonstrated that large, nonrecurrent geomagnetic storms, shock wave disturbances in the solar wind, and energetic particle events in interplanetary space often occur in close association with large solar flares. This result has led to a pradigm of cause and effect - that large solar flares are the fundamental cause of these events in the near-Earth space environmemt. This paradigm, which I call 'the solar flare myth,' dominates the popular perception of the relationship between solar activity and interplanetary and geomagnetic events and has provided much of the pragmatic rationale for the study of the solar flare phenomenon. Yet there is good evidence that this paradigm is wrong and that flares do not generally play a central role in producing major transient disturbances in the near-Earth space environment. In this paper I outline a different paradigm of cause and effect that removes solar flares from their central position in the chain of events leading from the Sun to near-Earth space. Instead, this central role is given to events known as coronal mass ejections.

  6. Solar flares, flare particles and geomagnetic disturbances

    NASA Astrophysics Data System (ADS)

    Ogawa, T.

    1986-03-01

    Geomagnetic disturbances related to solar-terrestrial events during the period June-September 1982 are described. The cause of these activities is investigated using solar phenomena and solar flare particles observed by the geostationary satellite GMS-2/SEM (Space Environment Monitor). It is noted that the geomagnetic disturbances in June were weak, two big geomagnetic storms occurred in September, and the largest storm, caused by a large flare, occurred on July 13-14. The July 13-14, 1972 storm is compared to the February 11-12, 1958 storm observed by Hakura and Nagai (1964, 1965) and the August 4-5, 1972 storm data of Hakura (1976). The July storm was characterized by a deep depression of the H-component caused by an abnormal expansion of the substorm-associated current system in the auroral zone toward the Far East and was short-lived.

  7. Longitudinal distribution of major solar flares during 1975 2005

    NASA Astrophysics Data System (ADS)

    Zhang, L. Y.; Cui, Y. M.; He, Y. L.; He, H.; Du, Z. L.; Li, R.; Wang, H. N.

    We have analyzed the coordinates of optical flares associated with the X-ray flares of class X observed by GOES satellite during the period from January 1975 through September 2005. The results can be summarized as follows. The latitude distribution of X-ray flares of class X displays the Maunder butterfly diagram pattern. The longitude distribution suggests that the place where X-ray flares of class X preferentially occur migrates in Carrington longitude. In the new dynamic reference frame inferred from the differential rotation law on the Sun, the longitude distribution diagram shows that there are two persistent preferred longitudes of strong X-ray flare occurrence separated by about 180°. This suggests that strong X-ray flare active longitudes exist indeed for tens of years. The strength of the two active longitudes alternates similarly to the "flip-flop" phenomenon. The non-axisymmetry of the X-ray flare distribution is found to be highly significant 42.5% (43.0%) for Northern (Southern) hemisphere for the peak intensity and 55% (49%) for Northern (Southern) hemisphere for the flare number.

  8. Fiber optic thermal/fast neutron and gamma ray scintillation detector

    DOEpatents

    Neal, John S.; Mihalczo, John T.

    2006-11-28

    A detector system that combines a .sup.6Li loaded glass fiber scintillation thermal neutron detector with a fast scintillation detector in a single layered structure. Detection of thermal and fast neutrons and ionizing electromagnetic radiation is achieved in the unified detector structure. The fast scintillator replaces the polyethelene moderator layer adjacent the .sup.6Li loaded glass fiber panel of the neutron detector and acts as the moderator for the glass fibers. Fast neutrons, x-rays and gamma rays are detected in the fast scintillator. Thermal neutrons, x-rays and gamma rays are detected in the glass fiber scintillator.

  9. Fiber optic thermal/fast neutron and gamma ray scintillation detector

    DOEpatents

    Neal, John S.; Mihalczo, John T

    2007-10-30

    A system for detecting fissile and fissionable material originating external to the system includes: a .sup.6Li loaded glass fiber scintillator for detecting thermal neutrons, x-rays and gamma rays; a fast scintillator for detecting fast neutrons, x-rays and gamma rays, the fast scintillator conjoined with the glass fiber scintillator such that the fast scintillator moderates fast neutrons prior to their detection as thermal neutrons by the glass fiber scintillator; and a coincidence detection system for processing the time distributions of arriving signals from the scintillators.

  10. Event-related fast optical signal in a rapid object recognition task: improving detection by the Independent Component Analysis

    PubMed Central

    Medvedev, Andrei V.; Kainerstorfer, Jana; Borisov, Sergey V.; Barbour, Randall L.; VanMeter, John

    2008-01-01

    Noninvasive recording of fast optical signals presumably reflecting neuronal activity is a challenging task because of a relatively low signal-to-noise ratio. To improve detection of those signals in rapid object recognition tasks, we used the Independent Component Analysis (ICA) to reduce “global interference” (heartbeat and contribution of superficial layers). We recorded optical signals from the left prefrontal cortex in 10 right-handed participants with a continuous-wave instrument (DYNOT, NIRx, Brooklyn, NY). Visual stimuli were pictures of urban, landscape and seashore scenes with various vehicles as targets (target-to-non-target ratio 1:6) presented at ISI = 166 ms or 250 ms. Subjects mentally counted targets. Data were filtered at 2–30 Hz and artifactual components were identified visually (for heartbeat) and using the ICA weight matrix (for superficial layers). Optical signals were restored from the ICA components with artifactual components removed and then averaged over target and non-target epochs. After ICA processing, the event-related response was detected in 70–100% of subjects. The refined signal showed a significant decrease from baseline within 200–300 ms after targets and a slight increase after non-targets. The temporal profile of the optical signal corresponded well to the profile of a “differential ERP response”, the difference between targets and non-targets which peaks at 200 ms in similar object detection tasks. These results demonstrate that the detection of fast optical responses with continuous-wave instruments can be improved through the ICA method capable to remove noise, global interference and the activity of superficial layers. Fast optical signals may provide further information on brain processing during higher-order cognitive tasks such as rapid categorization of objects. PMID:18725213

  11. Study on the triggering process of solar flares based on Hinode/SOT observations

    SciTech Connect

    Bamba, Y.; Kusano, K.; Yamamoto, T. T.; Okamoto, T. J.

    2013-11-20

    We investigated four major solar flare events that occurred in active regions NOAA 10930 (2006 December 13 and 14) and NOAA 11158 (2011 February 13 and 15) by using data observed by the Solar Optical Telescope on board the Hinode satellite. To reveal the trigger mechanism of solar flares, we analyzed the spatio-temporal correlation between the detailed magnetic field structure and the emission image of the Ca II H line at the central part of flaring regions for several hours prior to the onset of the flares. In all the flare events, we observed that the magnetic shear angle in the flaring regions exceeded 70°, as well as that characteristic magnetic disturbances developed at the centers of flaring regions in the pre-flare phase. These magnetic disturbances can be classified into two groups depending on the structure of their magnetic polarity inversion lines; the so-called opposite-polarity and reversed-shear magnetic field recently proposed by our group, although the magnetic disturbance in one event of the four samples is too subtle to clearly recognize the detailed structure. The result suggests that some major solar flares are triggered by rather small magnetic disturbances. We also show that the critical size of the flare-trigger field varies among flare events and briefly discuss how the flare-trigger process depends on the evolution of active regions.

  12. An integrated laser Raman optical sensor for fast detection of nitrogen and oxygen in a cryogenic mixture.

    PubMed

    Tiwari, Vidhu S; Luanje, Appolinaire T; Kalluru, Rajamohan R; Yueh, Fang Y; Singh, Jagdish P

    2011-04-01

    An integrated fiber optic Raman sensor was designed for real-time, nonintrusive detection of liquid nitrogen (LN(2)) in liquid oxygen (LO(2)) at high pressures and high flow rates. This was intended to monitor the quality of LO(2) in oxidizer feed lines during the ground testing of rocket engines. Various issues related to optical diagnosis of cryogenic fluids (LN(2)/LO(2)) in supercritical environment of rocket engine test facility, such as fluorescence from impurity in optical window of feed line, signal-noise ratio, and fast data acquisition time, etc., are well addressed. The integrated sensor employed a frequency doubled 532-nm continuous wave Nd:YAG laser as an excitation light source. The other optical components included were InPhotonics Raman probes, spectrometers, and photomultiplier tubes (PMTs). The spectrometer was used to collect the Raman spectrum of LN(2) and LO(2). The PMT detection unit was integrated with home-built LABVIEW software for fast monitoring of concentration ratios LN(2) and LO(2). Prior to designing an integrated sensor system, its optical components were also tested with gaseous nitrogen (GN(2)) and oxygen (GO(2)). PMID:21528996

  13. Collisionless Three-dimensional Reconnection In Impulsive Solar Flares

    NASA Astrophysics Data System (ADS)

    Somov, Boris V.; Kosugi, Takeo; Sakao, Taro

    1998-04-01

    Two subclasses of impulsive solar flares, observed with the Hard X-Ray Telescope (HXT) onboard Yohkoh, have been discovered by Sakao et al. The two subclasses can be characterized as more impulsive (MI) and less impulsive (LI) flares, the former having a shorter total duration of the impulsive phase in the hard X-ray emission than the latter. We assume that in both subclasses, the collisionless three-dimensional reconnection process occurs at the separator with a longitudinal magnetic field. The high-temperature turbulent-current sheet (HTTCS), located along the separator, generates accelerated particles and fast outflows of ``superhot'' (T >= 30 MK) plasma. Powerful anomalous heat-conductive fluxes along the reconnected field lines maintain a high temperature in the superhot plasma. The difference between the LI and MI flares presumably appears because the footpoint separation (the distance between two brightest hard X-ray sources) increases in time in the LI flares, but decreases in the MI flares. According to our model, in the LI flares the three-dimensional reconnection process accompanies an increase in the longitudinal magnetic field at the separator. In contrast, in the MI flares the reconnection proceeds with a decrease of the longitudinal field; hence, the reconnection rate is higher in the MI flares. Since reconnection in the MI flares proceeds with a decrease of the longitudinal field, the reconnected field lines become shorter in this process. As the reconnected lines become shorter, accelerated electron beams arrive at the upper chromosphere faster. So, in the MI flares chromospheric evaporation begins earlier than in the LI flares. The evaporation process driven by accelerated electron beams generates upflows of ``warm'' (T <= 10 MK) plasma that interacts with downflows of superhot plasma and can switch off the accumulation of superhot plasma in the MI flares during the impulsive phase. In the LI flares, however, an observable amount of superhot

  14. The influence of posterior parietal cortex on extrastriate visual activity: A concurrent TMS and fast optical imaging study.

    PubMed

    Parks, Nathan A; Mazzi, Chiara; Tapia, Evelina; Savazzi, Silvia; Fabiani, Monica; Gratton, Gabriele; Beck, Diane M

    2015-11-01

    The posterior parietal cortex (PPC) is a critical node in attentional and saccadic eye movement networks of the cerebral cortex, exerting top-down control over activity in visual cortex. Here, we sought to further elucidate the properties of PPC feedback by providing a time-resolved map of functional connectivity between parietal and occipital cortex using single-pulse TMS to stimulate the left PPC while concurrently recording fast optical imaging data from bilateral occipital cortex. Magnetic stimulation of the PPC induced transient ipsilateral occipital activations (BA 18) 24-48ms post-TMS. Concurrent TMS and fast optical imaging results demonstrate a clear influence of PPC stimulation on activity within human extrastriate visual cortex and further extend this time- and space-resolved method for examining functional connectivity. PMID:26449990

  15. Spontaneous helix formation in non-chiral bent-core liquid crystals with fast linear electro-optic effect

    PubMed Central

    Sreenilayam, Sithara P.; Panarin, Yuri P.; Vij, Jagdish K.; Panov, Vitaly P.; Lehmann, Anne; Poppe, Marco; Prehm, Marko; Tschierske, Carsten

    2016-01-01

    Liquid crystals (LCs) represent one of the foundations of modern communication and photonic technologies. Present display technologies are based mainly on nematic LCs, which suffer from limited response time for use in active colour sequential displays and limited image grey scale. Herein we report the first observation of a spontaneously formed helix in a polar tilted smectic LC phase (SmC phase) of achiral bent-core (BC) molecules with the axis of helix lying parallel to the layer normal and a pitch much shorter than the optical wavelength. This new phase shows fast (∼30 μs) grey-scale switching due to the deformation of the helix by the electric field. Even more importantly, defect-free alignment is easily achieved for the first time for a BC mesogen, thus providing potential use in large-scale devices with fast linear and thresholdless electro-optical response. PMID:27156514

  16. Spontaneous helix formation in non-chiral bent-core liquid crystals with fast linear electro-optic effect.

    PubMed

    Sreenilayam, Sithara P; Panarin, Yuri P; Vij, Jagdish K; Panov, Vitaly P; Lehmann, Anne; Poppe, Marco; Prehm, Marko; Tschierske, Carsten

    2016-01-01

    Liquid crystals (LCs) represent one of the foundations of modern communication and photonic technologies. Present display technologies are based mainly on nematic LCs, which suffer from limited response time for use in active colour sequential displays and limited image grey scale. Herein we report the first observation of a spontaneously formed helix in a polar tilted smectic LC phase (SmC phase) of achiral bent-core (BC) molecules with the axis of helix lying parallel to the layer normal and a pitch much shorter than the optical wavelength. This new phase shows fast (∼30 μs) grey-scale switching due to the deformation of the helix by the electric field. Even more importantly, defect-free alignment is easily achieved for the first time for a BC mesogen, thus providing potential use in large-scale devices with fast linear and thresholdless electro-optical response. PMID:27156514

  17. Spontaneous helix formation in non-chiral bent-core liquid crystals with fast linear electro-optic effect

    NASA Astrophysics Data System (ADS)

    Sreenilayam, Sithara P.; Panarin, Yuri P.; Vij, Jagdish K.; Panov, Vitaly P.; Lehmann, Anne; Poppe, Marco; Prehm, Marko; Tschierske, Carsten

    2016-05-01

    Liquid crystals (LCs) represent one of the foundations of modern communication and photonic technologies. Present display technologies are based mainly on nematic LCs, which suffer from limited response time for use in active colour sequential displays and limited image grey scale. Herein we report the first observation of a spontaneously formed helix in a polar tilted smectic LC phase (SmC phase) of achiral bent-core (BC) molecules with the axis of helix lying parallel to the layer normal and a pitch much shorter than the optical wavelength. This new phase shows fast (~30 μs) grey-scale switching due to the deformation of the helix by the electric field. Even more importantly, defect-free alignment is easily achieved for the first time for a BC mesogen, thus providing potential use in large-scale devices with fast linear and thresholdless electro-optical response.

  18. Good imaging with very fast paraboloidal primaries - An optical solution and some applications. [performance improvement of astronomical telescopes

    NASA Technical Reports Server (NTRS)

    Angel, J. R. P.; Woolf, N. J.; Epps, N. W.

    1982-01-01

    Attention is given to the imaging performance improvement obtainable in telescopes with fast parabolic primaries by means of two-mirror correctors of the Paul-Baker type. Images with 80 percent of the energy concentrated within 0.2 arcsec are projected for an f/1 primary relaying to an f/2 final focus, over a 1 deg-diameter field. It is noted that the mechanical structure and enclosure of a large telescope built with these fast optics should be significantly smaller and less expensive than those for conventional optics. The application of the Paul-Baker corrector system is explored for such diverse telescope types as those employing six off-axis primary mirrors, UV astronomy telescopes with no chromatic aberration, a low emissivity IR astronomy instrument with an off-axis f/1 parent primary mirror part, and thin rectangular aperture telescopes which are useful for spectroscopy and photometry.

  19. Very low luminosity stars with very large amplitude flares

    SciTech Connect

    Schaefer, B.E. )

    1990-04-01

    CCD frames of CZ Cnc, KY Cep, the gamma-ray burster optical transient, and NSV 12006 are analyzed. Also studied are 549 archival photographic plates of the CZ Cnc field. These observations are compared with the data of Lovas (1976). Flare events on CZ Cnc are examined. Based on the data it is noted that CZ Cnc is a main-sequence star, has a magnitude of 16.1, a distance of 100 pc, occasional large-amplitude flares, and frequent flares with amplitudes greater than 4 mag. 36 refs.

  20. Very low luminosity stars with very large amplitude flares

    NASA Technical Reports Server (NTRS)

    Schaefer, Bradley E.

    1990-01-01

    CCD frames of CZ Cnc, KY Cep, the gamma-ray burster optical transient, and NSV 12006 are analyzed. Also studied are 549 archival photographic plates of the CZ Cnc field. These observations are compared with the data of Lovas (1976). Flare events on CZ Cnc are examined. Based on the data it is noted that CZ Cnc is a main-sequence star, has a magnitude of 16.1, a distance of 100 pc, occasional large-amplitude flares, and frequent flares with amplitudes greater than 4 mag.

  1. Retro-modulators and fast beam steering for free-space optical communications

    NASA Astrophysics Data System (ADS)

    Chan, Trevor Keith

    Free-space optical (FSO) communications is a means of secure, high bandwidth communication through the use of a modulated laser beam in free-space as the information medium. The chaotic nature of the atmosphere and the motion of the communication nodes make laser alignment a crucial concern. The employment of retro-reflecting modulators makes the bidirectional quality of a communication link into a one sided alignment problem. While there are existing retro-reflecting modulators, their trade-offs create a lack of abilities (such as aperture size, angular range, high modulation speeds, economic viability) which do not fulfill the requirements for certain applications. Also, the beam must be directed towards the intended receiver. Form mobile or scintillated communication links, beam direction must be adaptable in real time. Once again, this area suffers from trade-offs where beamsteering speed is often limited. Research used to mitigate the trade-offs and adapt the devices into viable options for a wider range of applications is explored in this dissertation. Two forms of retro-modulators were explored; a MEMS deformable mirror retro-modulator and a solid silicon retro-modulator that modulated the light by frustrated total internal reflection (FTIR). The MEMS version offered a high speed, scalable, wavelength/angle insensitive retro-modulator which can be massed produced at low cost, while the solid retro-modulator offered a large field of view with low cost as well. Both modulator's design, simulated performances, fabrication and experimental characterization are described in this dissertation. An ultra-fast beamscanner was also designed using 2-dimensional dispersion. By using wavelength switching for directional control, a beamscanner was developed that could switch light faster than pre-existing beamscanners while the beams characteristics (most importantly its aperture) could be freely adjusted by the independent optics. This beamscanner was preceded by our

  2. A Model of Solar Flares Based on Arcade Field Reconnection and Merging of Magnetic Islands

    SciTech Connect

    G.S. Choe; C.Z. Cheng

    2001-12-12

    Solar flares are intense, abrupt releases of energy in the solar corona. In the impulsive phase of a flare, the intensity of hard X-ray emission reaches a sharp peak indicating the highest reconnection rate. It is often observed that an X-ray emitting plasma ejecta (plasmoid) is launched before the impulsive phase and accelerated throughout the phase. Thus, the plasmoid ejection may not be an effect of fast magnetic reconnection as conventionally assumed, but a cause of fast reconnection. Based on resistive magnetohydrodynamic simulations, a solar flare model is presented, which can explain these observational characteristics of flares. In the model, merging of a newly generated magnetic island and a pre-existing island results in stretching and thinning of a current sheet, in which fast magnetic reconnection is induced. Recurrence of homologous flares naturally arises in this model. Mechanisms of magnetic island formation are also discussed.

  3. SU-E-T-75: Commissioning Optically Stimulated Luminescence Dosimeters for Fast Neutron Therapy

    SciTech Connect

    Young, L; Yang, F; Sandison, G; Woodworth, D; McCormick, Z

    2014-06-01

    Purpose: Fast neutrons therapy used at the University of Washington is clinically proven to be more effective than photon therapy in treating salivary gland and other cancers. A nanodot optically stimulated luminescence (OSL) system was chosen to be commissioned for patient in vivo dosimetry for neutron therapy. The OSL-based radiation detectors are not susceptible to radiation damage caused by neutrons compared to diodes or MOSFET systems. Methods: An In-Light microStar OSL system was commissioned for in vivo use by radiating Landauer nanodots with neutrons generated from 50.0 MeV protons accelerated onto a beryllium target. The OSLs were calibrated the depth of maximum dose in solid water localized to 150 cm SAD isocenter in a 10.3 cm square field. Linearity was tested over a typical clinical dose fractionation range i.e. 0 to 150 neutron-cGy. Correction factors for transient signal fading, trap depletion, gantry angle, field size, and wedge factor dependencies were also evaluated. The OSLs were photo-bleached between radiations using a tungsten-halogen lamp. Results: Landauer sensitivity factors published for each nanodot are valid for measuring photon and electron doses but do not apply for neutron irradiation. Individually calculated nanodot calibration factors exhibited a 2–5% improvement over calibration factors computed by the microStar InLight software. Transient fading effects had a significant impact on neutron dose reading accuracy compared to photon and electron in vivo dosimetry. Greater accuracy can be achieved by calibrating and reading each dosimeter within 1–2 hours after irradiation. No additional OSL correction factors were needed for field size, gantry angle, or wedge factors in solid water phantom measurements. Conclusion: OSL detectors are a useful for neutron beam in vivo dosimetry verification. Dosimetric accuracy comparable to conventional diode systems can be achieved. Accounting for transient fading effects during the neutron beam

  4. Fast and automatic depth control of iterative bone ablation based on optical coherence tomography data

    NASA Astrophysics Data System (ADS)

    Fuchs, Alexander; Pengel, Steffen; Bergmeier, Jan; Kahrs, Lüder A.; Ortmaier, Tobias

    2015-07-01

    Laser surgery is an established clinical procedure in dental applications, soft tissue ablation, and ophthalmology. The presented experimental set-up for closed-loop control of laser bone ablation addresses a feedback system and enables safe ablation towards anatomical structures that usually would have high risk of damage. This study is based on combined working volumes of optical coherence tomography (OCT) and Er:YAG cutting laser. High level of automation in fast image data processing and tissue treatment enables reproducible results and shortens the time in the operating room. For registration of the two coordinate systems a cross-like incision is ablated with the Er:YAG laser and segmented with OCT in three distances. The resulting Er:YAG coordinate system is reconstructed. A parameter list defines multiple sets of laser parameters including discrete and specific ablation rates as ablation model. The control algorithm uses this model to plan corrective laser paths for each set of laser parameters and dynamically adapts the distance of the laser focus. With this iterative control cycle consisting of image processing, path planning, ablation, and moistening of tissue the target geometry and desired depth are approximated until no further corrective laser paths can be set. The achieved depth stays within the tolerances of the parameter set with the smallest ablation rate. Specimen trials with fresh porcine bone have been conducted to prove the functionality of the developed concept. Flat bottom surfaces and sharp edges of the outline without visual signs of thermal damage verify the feasibility of automated, OCT controlled laser bone ablation with minimal process time.

  5. Flare Plasma Iron Abundance

    NASA Technical Reports Server (NTRS)

    Dennis, Brian R.; Dan, Chau; Jain, Rajmal; Schwartz, Richard A.; Tolbert, Anne K.

    2008-01-01

    The equivalent width of the iron-line complex at 6.7 keV seen in flare X-ray spectra suggests that the iron abundance of the hottest plasma at temperatures >approx.10 MK may sometimes be significantly lower than the nominal coronal abundance of four times the photospheric value that is commonly assumed. This conclusion is based on X-ray spectral observations of several flares seen in common with the Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and the Solar X-ray Spectrometer (SOXS) on the second Indian geostationary satellite, GSAT-2. The implications of this will be discussed as it relates to the origin of the hot flare plasma - either plasma already in the corona that is directly heated during the flare energy release process or chromospheric plasma that is heated by flare-accelerated particles and driven up into the corona. Other possible explanations of lower-than-expected equivalent widths of the iron-line complex will also be discussed.

  6. Flares and habitability

    NASA Astrophysics Data System (ADS)

    Abrevaya, Ximena C.; Cortón, Eduardo; Mauas, Pablo J. D.

    2012-07-01

    At present, dwarf M stars are being considered as potential hosts for habitable planets. However, an important fraction of these stars are flare stars, which among other kind of radiation, emit large amounts of UV radiation during flares, and it is unknown how this events can affect life, since biological systems are particularly vulnerable to UV. In this work we evaluate a well known dMe star, EV Lacertae (GJ 873) as a potential host for the emergence and evolution of life, focusing on the effects of the UV emission associated with flare activity. Since UV-C is particularly harmful for living organisms, we studied the effect of UV-C radiation on halophile archaea cultures. The halophile archaea or haloarchaea are extremophile microorganisms, which inhabit in hypersaline environments and which show several mechanisms to cope with UV radiation since they are naturally exposed to intense solar UV radiation on Earth. To select the irradiance to be tested, we considered a moderate flare on this star. We obtained the mean value for the UV-C irradiance integrating the IUE spectrum in the impulsive phase, and considering a hypothetical planet in the center of the liquid water habitability zone. To select the irradiation times we took the most frequent duration of flares on this star which is from 9 to 27 minutes. Our results show that even after considerable UV damage, the haloarchaeal cells survive at the tested doses, showing that this kind of life could survive in a relatively hostile UV environment.

  7. Flare build-up study: Homologous flares group - Interim report

    NASA Technical Reports Server (NTRS)

    Woodgate, B. E.

    1982-01-01

    When homologous flares are broadly defined as having footpoint structures in common, it is found that a majority of flares fall into homologous sets. Filament eruptions and mass ejection in members of an homologous flare set show that maintainance of the magnetic structure is not a necessary condition for homology.

  8. Implications for flare build-up and heating from observations made by OSO-7

    NASA Technical Reports Server (NTRS)

    Neupert, W. M.

    1975-01-01

    The evolution of the EUV and soft X-ray emission in the event on January 19, 1972 are discussed in terms of the slow (passive) and fast (active) phases of flare evolution that were previously discussed. The implications are summarized for a flare build-up model which was derived-from these observations.

  9. Towards understanding solar flares

    NASA Technical Reports Server (NTRS)

    Acton, L. W.

    1982-01-01

    Instrumentation and spacecraft payloads developed at Lockheed for solar flare studies are reviewed, noting the significance of the observations for adding to a data base for eventual prediction of the occurrence of flares and subsequent radiation hazards to people in space. Developmental work on the two solar telescopes on board the Skylab pallet was performed at a Lockheed facility, as was the fabrication of very-large-area proportional counter for flights on the Aerobee rocket in 1967. The rocket work led to the fabrication of the Mapping X Ray Heliometer on the Orbiting Solar Observatory and the X Ray Polychromator for the Solar Maximum Mission. The Polychromator consists of a bent crystal spectrometer for high time resolution flare studies over a wide field of view, and a flat crystal spectrometer for simultaneous polychromatic imaging at 7 different X ray wavelengths.

  10. Fields, Flares, And Forecasts

    NASA Astrophysics Data System (ADS)

    Boucheron, L.; Al-Ghraibah, Amani; McAteer, J.; Cao, H.; Jackiewicz, J.; McNamara, B.; Voelz, D.; Calabro, B.; DeGrave, K.; Kirk, M.; Madadi, A.; Petsov, A.; Taylor, G.

    2011-05-01

    Solar active regions are the source of many energetic and geo-effective events such as solar flares and coronal mass ejections (CMEs). Understanding how these complex source regions evolve and produce these events is of fundamental importance, not only to solar physics, but also to the demands of space weather forecasting. We propose to investigate the physical properties of active region magnetic fields using fractal-, gradient-, neutral line-, emerging flux-, wavelet- and general image-based techniques, and to correlate them to solar activity. The combination of these projects with solarmonitor.org and the international Max Millenium Campaign presents an opportunity for accurate and timely flare predictions for the first time. Many studies have attempted to relate solar flares to their concomitant magnetic field distributions. However, a consistent, causal relationship between the magnetic field on the photosphere and the production of solar flares is unknown. Often the local properties of the active region magnetic field - critical in many theories of activity - are lost in the global definition of their diagnostics, in effect smoothing out variations that occur on small spatial scales. Mindful of this, our overall goal is to create measures that are sensitive to both the global and the small-scale nature of energy storage and release in the solar atmosphere in order to study solar flare prediction. This set of active region characteristics will be automatically explored for discriminating features through the use of feature selection methods. Such methods search a feature space while optimizing a criterion - the prediction of a flare in this case. The large size of the datasets used in this project make it well suited for an exploration of a large feature space. This work is funded through a New Mexico State University Interdisciplinary Research Grant.

  11. Valentines Day X2 Flare

    NASA Video Gallery

    Active region 1158 let loose with an X2.2 flare at 0153 UT or 8:50 pm ET on February 15, 2011, the largest flare since Dec. 2006 and the biggest flare so far in Solar Cycle 24. This video was taken...

  12. Fast, large field-of-view, telecentric optical-CT scanning system for 3D radiochromic dosimetry

    PubMed Central

    Thomas, A; Oldham, M

    2010-01-01

    We describe initial experiences with an in-house, fast, large field-of-view optical-CT telecentric scanner (the Duke Large field of view Optical-CT Scanner (DLOS)). The DLOS system is designed to enable telecentric optical-CT imaging of dosimeters up to 24 cm in diameter with a spatial resolution of 1 mm3, in approximately 10 minutes. These capabilities render the DLOS system a unique device at present. The system is a scaled up version of early prototypes in our lab. This scaling introduces several challenges, including the accurate measurement of a greatly increased range of light attenuation within the dosimeter, and the need to reduce even minor reflections and scattered light within the imaging chain. We present several corrections and techniques that enable accurate, low noise, 3D dosimetery with the DLOS system. PMID:21218169

  13. A significant hardening and rising shape detected in the MeV/GeV νFν spectrum from the recently discovered very-high-energy blazar S4 0954+65 during the bright optical flare in 2015 February

    NASA Astrophysics Data System (ADS)

    Tanaka, Yasuyuki T.; Becerra Gonzalez, Josefa; Itoh, Ryosuke; Finke, Justin D.; Inoue, Yoshiyuki; Ojha, Roopesh; Carpenter, Bryce; Lindfors, Elina; Krauß, Felicia; Desiante, Rachele; Shiki, Kensei; Fukazawa, Yasushi; Longo, Francesco; McEnery, Julie E.; Buson, Sara; Nilsson, Kari; Fallah Ramazani, Vandad; Reinthal, Riho; Takalo, Leo; Pursimo, Tapio; Boschin, Walter

    2016-08-01

    We report on Fermi Large Area Telescope (LAT) and multi-wavelength results on the recently discovered very-high-energy (VHE, E > 100 GeV) blazar S4 0954+65 (z = 0.368) during an exceptionally bright optical flare in 2015 February. During the time period (2015 February 13/14, or MJD 57067) when the MAGIC telescope detected VHE γ-ray emission from the source, the Fermi-LAT data indicated a significant spectral hardening at GeV energies, with a power-law photon index of 1.8 ± 0.1-compared with the 3FGL (The Fermi LAT 4-Year Point Source Catalog) value (averaged over four years of observation) of 2.34 ± 0.04. In contrast, Swift X-Ray Telescope data showed a softening of the X-ray spectrum, with a photon index of 1.72 ± 0.08 (compared with 1.38 ± 0.03 averaged during the flare from MJD 57066 to 57077), possibly indicating a modest contribution of synchrotron photons by the highest-energy electrons superposed on the inverse Compton component. Fitting of the quasi-simultaneous (<1 d) broad-band spectrum with a one-zone synchrotron plus inverse-Compton model revealed that GeV/TeV emission could be produced by inverse-Compton scattering of external photons from the dust torus. We emphasize that a flaring blazar showing high flux of ≳1.0 × 10-6 photons cm-2 s-1 (E > 100 MeV) and a hard spectral index of ΓGeV < 2.0 detected by Fermi-LAT on daily timescales is a promising target for TeV follow-up by ground-based Cherenkov telescopes to discover high-redshift blazars, investigate their temporal variability and spectral features in the VHE band, and also constrain the intensity of the extragalactic background light.

  14. A significant hardening and rising shape detected in the MeV/GeV νFν spectrum from the recently discovered very-high-energy blazar S4 0954+65 during the bright optical flare in 2015 February

    NASA Astrophysics Data System (ADS)

    Tanaka, Yasuyuki T.; Becerra Gonzalez, Josefa; Itoh, Ryosuke; Finke, Justin D.; Inoue, Yoshiyuki; Ojha, Roopesh; Carpenter, Bryce; Lindfors, Elina; Krauß, Felicia; Desiante, Rachele; Shiki, Kensei; Fukazawa, Yasushi; Longo, Francesco; McEnery, Julie E.; Buson, Sara; Nilsson, Kari; Fallah Ramazani, Vandad; Reinthal, Riho; Takalo, Leo; Pursimo, Tapio; Boschin, Walter

    2016-05-01

    We report on Fermi Large Area Telescope (LAT) and multi-wavelength results on the recently discovered very-high-energy (VHE, E > 100 GeV) blazar S4 0954+65 (z = 0.368) during an exceptionally bright optical flare in 2015 February. During the time period (2015 February 13/14, or MJD 57067) when the MAGIC telescope detected VHE γ-ray emission from the source, the Fermi-LAT data indicated a significant spectral hardening at GeV energies, with a power-law photon index of 1.8 ± 0.1-compared with the 3FGL (The Fermi LAT 4-Year Point Source Catalog) value (averaged over four years of observation) of 2.34 ± 0.04. In contrast, Swift X-Ray Telescope data showed a softening of the X-ray spectrum, with a photon index of 1.72 ± 0.08 (compared with 1.38 ± 0.03 averaged during the flare from MJD 57066 to 57077), possibly indicating a modest contribution of synchrotron photons by the highest-energy electrons superposed on the inverse Compton component. Fitting of the quasi-simultaneous (<1 d) broad-band spectrum with a one-zone synchrotron plus inverse-Compton model revealed that GeV/TeV emission could be produced by inverse-Compton scattering of external photons from the dust torus. We emphasize that a flaring blazar showing high flux of ≳1.0 × 10-6 photons cm-2 s-1 (E > 100 MeV) and a hard spectral index of ΓGeV < 2.0 detected by Fermi-LAT on daily timescales is a promising target for TeV follow-up by ground-based Cherenkov telescopes to discover high-redshift blazars, investigate their temporal variability and spectral features in the VHE band, and also constrain the intensity of the extragalactic background light.

  15. Activation of solar flares

    SciTech Connect

    Cargill, P.J.; Migliuolo, S.; Hood, A.W.

    1984-11-01

    The physics of the activation of two-ribbon solar flares via the MHD instability of coronal arcades is presented. The destabilization of a preflare magnetic field is necessary for a rapid energy release, characteristic of the impulsive phase of the flare, to occur. The stability of a number of configurations are examined, and the physical consequences and relative importance of varying pressure profiles and different sets of boundary conditions (involving field-line tying) are discussed. Instability modes, driven unstable by pressure gradients, are candidates for instability. Shearless vs. sheared equilibria are also discussed. (ESA)

  16. Particle kinematics in solar flares: observations and theory

    NASA Astrophysics Data System (ADS)

    Battaglia, Marina

    2008-12-01

    flare loops. In a second part, observations of so-called ``pre-flares'' are presented. This earliest phase of a flare cannot be explained by the standard flare model of chromospheric evaporation which involves energy transport and deposition in the chromosphere by beams of accelerated electrons. In pre-flares, an increase in density and emission measure is observed, indicating that chromospheric evaporation is occurring. However, no observational signatures of fast electrons are found. We show that if energy is transported by means of thermal conduction instead of an electron beam, the observations can explained.

  17. Dust Reprocessing of Stellar Tidal Disruption Flares

    NASA Astrophysics Data System (ADS)

    van Velzen, Sjoert; Gorjian, Varoujan; Krolik, Julian; Mendez, Alexander

    2015-10-01

    A stellar tidal disruption flare (TDF) occurs when a star gets too close to a supermassive black hole and is shredded into streams that are accreted. Traditionally, TDFs are observed at optical to soft X-ray wavelengths. We have recently made a discovery that opens a new (and unexpected) wavelength regime for the study of these flares: transient emission at 3.4 micron in WISE multi-epoch imaging. This dust reprocessing signal was not previously predicted, but will likely be of great importance to further our (limited) understanding the TDF emission mechanism. Since the radius of the IR-emitting shell is determined by the dust sublimation temperature, the break in the IR light curve can be used to measure the bolometric luminosity of the tidal flare. With the low-cadence WISE observations as a proof-of-concept, the time is ripe to use warm Spitzer observations to make a major breakthrough: we wish to obtain the first well-sampled light curve of dust reverberation by a stellar tidal flare. If successful, these observations will have lasting impact; near-future synoptic surveys (ZTF, LSST) will find thousands of TDFs per year, which can be followed-up by IR missions (JWST, WFIRST) to obtain a census of dust within the sphere of influence of quiescent supermassive black holes.

  18. Radio Frequency-Tomography of Solar Flares

    NASA Astrophysics Data System (ADS)

    Aschwanden, M. J.

    2002-05-01

    The Frequency-Agile Solar Radiotelescope (FASR) is designed to produce simultaneous images of solar phenomena at many frequencies. A data cube with a stack of multiple frequency images can be used for tomographic reconstruction of the 3D density and temperature distribution of flares, based on the free-free emission at cm and mm wavelengths. We simulate a set of multi-frequency images for the Bastille-Day flare of 2000-July-14, based on EUV observations from TRACE and soft X-ray observations from Yohkoh. The 3D model consists of some 200 postflare loops with observationally constrained densities and temperatures. The temporal evolution involves flare plasma heating, a phase of conductive cooling, followed by a phase of radiative cooling. The images simulated at different microwave frequencies reveal a sequence of optically-thick free-free emission layers, which can be "pealed off" like onion shells with increasing radio frequency. We envision a tomographic method that yields information on the density and temperature structure of flare systems and their evolution. Comparison with EUV and soft X-ray based 3D models will also allow to quantify wave scattering at radio frequencies and provide information on small-scale inhomogeneities and wave turbulence. Besides the thermal free-free emission, radio images contain also information on coherent emission processes, such as plasma emission from electron beams and loss-cone emission from gyroresonant trapped particles, conveying information on particle acceleration processes.

  19. White-light flares observed by Yohkoh

    NASA Technical Reports Server (NTRS)

    Hudson, Hugh S.; Acton, Loren W.; Hirayama, Tadashi; Uchida, Yutaka

    1992-01-01

    The Yohkoh observatory is producing a first sample of white-light flares observed from space. We present observations of four of them, all X-class events. The Yohkoh Soft X-ray Telescope white-light data typically have a 12-s cadence for images with 2.46 arcsec pixels over a field of view of 2.62 arcmin in one of two broad-band optical filters, and the November 15, 1991 flare produced a brightness increase of about 38 percent over the photospheric brightness in the 30 A passband filter centered at 4308 A. The white-light flare morphology in the best-observed flares displays a double 'footpoint' character, establishing a close relationship with the compact magnetic flux tubes involved with both hard and soft X-ray emissions. We describe the data in the context of the soft and hard X-ray observations simultaneously carried out on board the Yohkoh satellite, emphasizing energetics and timing.

  20. The DAWN and FLARE Surveys

    NASA Astrophysics Data System (ADS)

    Rhoads, James E.; Malhotra, Sangeeta; Zheng, Zhenya; Monson, Andrew; Persson, S. Eric; Gonzalez, Alicia; Probst, Ronald G.; Swaters, Robert A.; Tilvi, Vithal; Finkelstein, Steven L.; Jiang, Tianxing; Mobasher, Bahram; Dickinson, Mark; Dressler, Alan; Lee, Janice C.; Ammons, S. Mark; Zabludoff, Ann I.; Emig, Kimberly; Hibon, Pascale; Joshi, Bhavin; Pharo, John; Smith, Mark David; Trahan, Jacob; Veilleux, Sylvain; Wang, JunXian; Wong, Kenneth C.; Yang, Huan; Zabl, Johannes; FLARE Team, the DAWN Team

    2016-01-01

    Lyman alpha galaxy populations at redshifts 8 and 9 offer a unique probe of cosmological reionization. Resonant scattering by neutral hydrogen should obscure such galaxies if the intergalactic medium is neutral, implying a steep decline in their observed counts at redshifts prior to the central phases of reionization. We are pursuing a pair of ambitious near-infrared narrow bandpass surveys to probe these populations: The Cosmic Deep and Wide Narrowband (DAWN) survey, using the NEWFIRM camera at the National Optical Astronomy Observatory's 4m Mayall telescope, and the First Light And Reionization Experiment (FLARE), using the FourStar camera at the 6.5m Magellan Telescopes. DAWN is an NOAO survey program, covering a total of five NEWFIRM fields (one square degree in all) to a limiting sensitivity around 9e-18 erg/cm2/s for emission lines at 1.06 micron wavelength, corresponding to redshift 7.7 for Lyman alpha. FLARE uses the larger aperture of the Magellan telescope to push to still higher redshift, with a limiting line flux near 5e-18 erg/cm2/s in the COSMOS field, and with additional coverage of a half dozen strongly lensed fields where we can probe still further down the Lyman alpha luminosity function. Imaging observations are largely complete for both surveys, and we are now pursuing spectroscopic followup at both near-IR and optical wavelengths. We will summarize initial results from both surveys in this meeting. With two nights of Keck+MOSFIRE observations complete already (and more scheduled in late 2015), we have numerous emission line confirmations-- both including many H alpha and Oxygen emitters in the foreground, and at least one Lyman alpha galaxy in the epoch of reionization.

  1. RAPID TRANSITION OF UNCOMBED PENUMBRAE TO FACULAE DURING LARGE FLARES

    SciTech Connect

    Wang Haimin; Deng Na; Liu Chang

    2012-04-01

    In the past two decades, the complex nature of sunspots has been disclosed with high-resolution observations. One of the most important findings is the 'uncombed' penumbral structure, where a more horizontal magnetic component carrying most of Evershed flows is embedded in a more vertical magnetic background. The penumbral bright grains are locations of hot upflows and dark fibrils are locations of horizontal flows that are guided by a nearly horizontal magnetic field. On the other hand, it was found that flares may change the topology of sunspots in {delta} configuration: the structure at the flaring polarity inversion line becomes darkened while sections of peripheral penumbrae may disappear quickly and permanently associated with flares. The high spatial and temporal resolution observations obtained with the Hinode/Solar Optical Telescope provide an excellent opportunity to study the evolution of penumbral fine structures associated with major flares. Taking advantage of two near-limb events, we found that in sections of peripheral penumbrae swept by flare ribbons the dark fibrils completely disappear, while the bright grains evolve into faculae that are signatures of vertical magnetic flux tubes. The corresponding magnetic fluxes measured in the decaying penumbrae show stepwise changes temporally correlated with the flares. These observations suggest that the horizontal magnetic field component of the penumbra could be straightened upward (i.e., turning from horizontal to vertical) due to magnetic field restructuring associated with flares, which results in the transition of penumbrae to faculae.

  2. Flare activity, sunspot motions, and the evolution of vector magnetic fields in Hale region 17244

    NASA Technical Reports Server (NTRS)

    Neidig, Donald F.; Hagyard, Mona J.; Machado, Marcos E.; Smith, Jesse B., Jr.

    1986-01-01

    The magnetic and dynamical circumstances leading to the 1B/M4 flare of November 5, 1980 are studied, and a strong association is found between the buildup of magnetic shear and the onset of flare activity within the active region. The development of shear, as observed directly in vector magnetograms, is consistent in detail with the dynamical history of the active region and identifies the precise location of the optical and hard-X-ray kernels of the flare emission.

  3. FLARE EFFICIENCY STUDY

    EPA Science Inventory

    The report gives results of a full-scale experimental study to determine the efficiencies of flare burners for disposing of hydrocarbon (HC) emissions from refinery and petrochemical processes. With primary objectives of determining the combustion efficiency and HC destruction ef...

  4. Observational evidence for thermal wave fronts in solar flares

    NASA Technical Reports Server (NTRS)

    Rust, D. M.; Simnett, G. M.; Smith, D. F.

    1985-01-01

    Images in 3.5-30 keV X-rays obtained during the first few minutes of seven solar flares show rapid motions. In each case X-ray emission first appeared at one end of a magnetic field structure, and then propagated along the field at a velocity between 800 and 1700 km/s. The observed X-ray structures were 45,000-230,000 km long. Simultaneous H-alpha images were available in three cases; they showed brightenings when the fast-moving fronts arrived at the chromosphere. The fast-moving fronts are interpreted as electron thermal conduction fronts since their velocities are consistent with conduction at the observed temperatures of 1-3 x 10 to the 7th K. The inferred conductive heat flux of up to 10-billion ergs/s sq cm accounts for most of the energy released in the flares, implying that the flares were primarily thermal phenomena.

  5. Impulsively generated fast coronal pulsations

    NASA Technical Reports Server (NTRS)

    Edwin, P. M.; Roberts, B.

    1986-01-01

    Rapid oscillations in the corona are discussed from a theoretical standpoint, developing some previous work on ducted, fast magnetoacoustic waves in an inhomogeneous medium. In the theory, impulsively (e.g., flare) generated mhd (magnetohydrodynamic) waves are ducted by regions of low Alfven speed (high density) such as coronal loops. Wave propagation in such ducts is strongly dispersive and closely akin to the behavior of Love waves in seismology, Pekeris waves in oceanography and guided waves in fiber optics. Such flare-generated magnetoacoustic waves possess distinctive temporal signatures consisting of periodic, quasi-periodic and decay phases. The quasi-periodic phase possesses the strongest amplitudes and the shortest time scales. Time scales are typically of the order of a second for inhomogeneities (coronal loop width) of 1000 km and Alfven speeds of 1000/kms, and pulse duration times are of tens of seconds. Quasi-periodic signatures have been observed in radio wavelengths for over a decade and more recently by SMM. It is hoped that the theoretical ideas outlined may be successfully related to these observations and thus aid the interpretation of oscillatory signatures recorded by SMM. Such signatures may also provide a diagnostic of coronal conditions. New aspects of the ducted mhd waves, for example their behavior in smoothly varying as opposed to tube-like inhomogeneities, are currently under investigation. The theory is not restricted to loops but applied equally to open field regions.

  6. Development of a fast and sensitive glucose biosensor using iridium complex-doped electrospun optical fibrous membrane.

    PubMed

    Zhou, Cuisong; Shi, Yalin; Ding, Xiaodong; Li, Ming; Luo, Jiaojiao; Lu, Zhiyun; Xiao, Dan

    2013-01-15

    Polystyrene electrospun optical fibrous membrane (EOF) was fabricated using a one-step electrospinning technique, functionalized with glucose oxidases (GOD/EOF), and used as a quick and highly sensitive optical biosensor. Because of the doped iridium complex, the fibrous membrane emitted yellow luminescence (562 nm) when excited at 405 nm. Its luminescence was significantly enhanced with the presence of extremely low concentration glucose. The detection limit was of 1.0 × 10(-10) M (S/N = 3), superior to that of reported glucose biosensor with 1.2 × 10(-10) M. A linear range between the relative intensity increase and the logarithm of glucose concentration was exhibited from 3.0 × 10(-10) M to 1.3 × 10(-4) M, which was much wider than reported results. Notably, the response time was less than 1 s. These high sensitivity and fast response were attributed to the high surface-area-to-volume of the porous fibrous membrane, the efficient GOD biocatalyst reaction on the fibers surface, as well as the fast electron or energy transfer between dissolved oxygen and the optical fibrous membrane. PMID:23215003

  7. Damage testing of critical optical components for high power ultra-fast lasers

    NASA Astrophysics Data System (ADS)

    Chowdhury, Enam; Poole, Patrick; Jiang, Sheng; Taylor, Brittany; Daskalova, Rebecca; Van Woerkom, Linn; Freeman, Richard; Smith, Douglas

    2010-11-01

    Mirrors and gratings used in high power ultra fast lasers require a broad bandwidth and high damage fluence, which is essential to the design and construction of petawatt class short pulse lasers. Damage fluence of several commercially available high energy broad band dielectric mirrors with over 100 nm bandwidth at 45 degree angle of incidence, and pulse compression reflection gratings with gold coating with varying processing conditions is studied using a 25 femtosecond ultra-fast laser.

  8. Optically-energized, emp-resistant, fast-acting, explosion initiating device

    DOEpatents

    Benson, David A.; Kuswa, Glenn W.

    1987-01-01

    Optical energy, provided from a remote user-operated source, is utilized to initially electrically charge a capacitor in a circuit that also contains an explosion initiating transducer in contact with a small explosive train contained in an attachable housing. Additional optical energy is subsequently supplied in a preferred embodiment to an optically responsive phototransistor acting in conjunction with a silicon controlled rectifer to release the stored electrical energy through the explosion initiating transducer to set off the explosive train. All energy transfers between the user and the explosive apparatus, either for charging it up or for setting it off, are conveyed optically and may be accomplished in a single optical fiber with coding to distinguish between specific optical energy transfers and between these and any extraneous signals.

  9. Fast and efficient loading of a Rb magneto-optical trap using light-induced atomic desorption

    SciTech Connect

    Atutov, S.N.; Calabrese, R.; Guidi, V.; Mai, B.; Rudavets, A.G.; Scansani, E.; Tomassetti, L.; Biancalana, V.; Burchianti, A.; Marinelli, C.; Mariotti, E.; Moi, L.; Veronesi, S.

    2003-05-01

    We have obtained fast loading of a rubidium magneto-optical trap and very high collection efficiency by capturing the atoms desorbed by a light flash from a polydimethylsiloxane film deposited on the internal surface of a cell. The atoms are trapped with an effective loading time of about 65 ms at a loading rate greater than 2x10{sup 8} atoms per second. This rate is larger than the values reported in literature and is obtained by preserving a long lifetime of the trapped atoms. This lifetime exceeds the filling time by nearly two orders of magnitude. Trap loading by light-induced desorption from siloxane compounds can be very effectively applied to store and trap a large number of atoms in the case of very weak atomic flux or extremely low vapor density. It can be also effectively used for fast production of ultracold atoms.

  10. Fast, high-fidelity, all-optical and dynamically-controlled polarization gate using room-temperature atomic vapor

    SciTech Connect

    Li, Runbing; Zhu, Chengjie; Deng, L.; Hagley, E. W.

    2014-10-20

    We demonstrate a fast, all-optical polarization gate in a room-temperature atomic medium. Using a Polarization-Selective-Kerr-Phase-Shift (PSKPS) technique, we selectively write a π phase shift to one circularly-polarized component of a linearly-polarized input signal field. The output signal field maintains its original strength but acquires a 90° linear polarization rotation, demonstrating fast, high-fidelity, dynamically-controlled polarization gate operation. The intensity of the polarization-switching field used in this PKSPK-based polarization gate operation is only 2 mW/cm{sup 2}, which would be equivalent to 0.5 nW of light power (λ = 800 nm) confined in a typical commercial photonic hollow-core fiber. This development opens a realm of possibilities for potential future extremely low light level telecommunication and information processing systems.

  11. A static model of chromospheric heating in solar flares

    NASA Technical Reports Server (NTRS)

    Ricchiazzi, P. J.; Canfield, R. C.

    1983-01-01

    The response of the solar chromosphere to flare processes, namely nonthermal electrons, thermal conduction, and coronal pressure, is modeled. Finite difference methods employing linearization and iteration are used in obtaining simultaneous solutions to the equations of steady-state energy balance, hydrostatic equilibrium, radiative transfer, and atomic statistical equilibrium. The atmospheric response is assumed to be confined to one dimension by a strong vertical magnetic field. A solution is obtained to the radiative transfer equation for the most important optically thick transitions of hydrogen, magnesium, and calcium. The theoretical atmospheres discussed here are seen as elucidating the role of various physical processes in establishing the structure of flare chromospheres. At low coronal pressures, conduction is found to be more important than nonthermal electrons in establishing the position of the transition region. Only thermal conduction can adequately account for the chromospheric evaporation in compact flares. Of the mechanisms considered, only nonthermal electrons bring about significant heating below the flare transition region.

  12. The dark side of the Solar Flare Myth

    NASA Astrophysics Data System (ADS)

    Reames, D. V.

    Gosling [1993, 1994] reviewed the growing observational evidence that traveling interplanetary shocks, large solar energetic particle (SEP) events, and large nonrecurrent geomagnetic storms are produced by coronal mass ejections (CMEs), not by solar flares. The growing evidence for CMEs as the cause of these phenomena constituted a declaration of independence from the flare community, and certainly squelched the attitude of benign neglect that had beset interplanetary phenomena and observations. In one case it produced hostile dismay that [Jack Gosling and a few other revisionists] would [wage an assault on the last 30 years of solar-flare research] based on the [low-grade optical data that the CME people use] [Zirin, 1994]. Calmer objections were raised by Hudson, Haisch, and Strong [1995], who accept the interplanetary consequences of CMEs but suggest that [it is shortsighted to distinguish CMEs and flares.

  13. Performance evaluation of coherent free space optical communications with a double-stage fast-steering-mirror adaptive optics system depending on the Greenwood frequency.

    PubMed

    Liu, Wei; Yao, Kainan; Huang, Danian; Lin, Xudong; Wang, Liang; Lv, Yaowen

    2016-06-13

    The Greenwood frequency (GF) is influential in performance improvement for the coherent free space optical communications (CFSOC) system with a closed-loop adaptive optics (AO) unit. We analyze the impact of tilt and high-order aberrations on the mixing efficiency (ME) and bit-error-rate (BER) under different GF. The root-mean-square value (RMS) of the ME related to the RMS of the tilt aberrations, and the GF is derived to estimate the volatility of the ME. Furthermore, a numerical simulation is applied to verify the theoretical analysis, and an experimental correction system is designed with a double-stage fast-steering-mirror and a 97-element continuous surface deformable mirror. The conclusions of this paper provide a reference for designing the AO system for the CFSOC system. PMID:27410346

  14. A fast multispectral diffuse optical tomography system for in vivo three-dimensional imaging of seizure dynamics

    PubMed Central

    Yang, Jianjun; Zhang, Tao; Yang, Hao; Jiang, Huabei

    2013-01-01

    We describe a multispectral continuous-wave diffuse optical tomography (DOT) system that can be used for in vivo three-dimensional (3-D) imaging of seizure dynamics. Fast 3-D data acquisition is realized through a time multiplexing approach based on a parallel lighting configuration - our system can achieve 0.12ms per source per wavelength and up to 14Hz sampling rate for a full set of data for 3-D DOT image reconstruction. The system is validated using both static and dynamic tissue-like phantoms. An initial in vivo experiment using a rat model of seizure is also demonstrated. PMID:22695584

  15. Was the soft X-ray flare in NGC 3599 due to an AGN disc instability or a delayed tidal disruption event?

    NASA Astrophysics Data System (ADS)

    Saxton, R. D.; Motta, S. E.; Komossa, S.; Read, A. M.

    2015-12-01

    We present unpublished data from a tidal disruption candidate in NGC 3599 which show that the galaxy was already X-ray bright 18 months before the measurement which led to its classification. This removes the possibility that the flare was caused by a classical, fast-rising, short-peaked, tidal disruption event. Recent relativistic simulations indicate that the majority of disruptions will actually take months or years to rise to a peak, which will then be maintained for longer than previously thought. NGC 3599 could be one of the first identified examples of such an event. The optical spectra of NGC 3599 indicate that it is a low-luminosity Seyfert/low-ionization nuclear emission-line region (LINER) with Lbol ˜ 1040 erg s-1. The flare may alternatively be explained by a thermal instability in the accretion disc, which propagates through the inner region at the sound speed, causing an increase of the disc scaleheight and local accretion rate. This can explain the ≤9 yr rise time of the flare. If this mechanism is correct then the flare may repeat on a time-scale of several decades as the inner disc is emptied and refilled.

  16. Multi-stencil character projection e-beam lithography: a fast and flexible way for high quality optical metamaterials

    NASA Astrophysics Data System (ADS)

    Huebner, Uwe; Falkner, Matthias; Zeitner, Uwe D.; Banasch, Michael; Dietrich, Kay; Kley, Ernst-Bernhard

    2014-10-01

    In this work we report on the strong improvement of pattern quality and significant write-time reduction using Character Projection with a multi-stencil character stage with more than 2000 apertures for the fabrication of nanomaterials and, in particular, on an optical metamaterial, which is called "Metamaterial Perfect Absorber". The Character Projection ebeam lithography allows the transition from the time-consuming serial to a fast quasi-parallel writing method and opens the way for the fabrication of device areas which are impossible to realize with often in the R&D used SEM based Gaussian electron beam-writers. More than 150.000 times faster than the comparable Gaussian E-beam exposure, 100 times faster and with a factor of 10 improved pattern size homogeneity than the corresponding Variable Shaped E-beam exposure - these are our main results for the fabrication of optical metamaterials using a Variable Shaped E-beam with Character Projection.

  17. Microwave phase shifter with controllable power response based on slow- and fast-light effects in semiconductor optical amplifiers.

    PubMed

    Xue, Weiqi; Sales, Salvador; Capmany, José; Mørk, Jesper

    2009-04-01

    We suggest and experimentally demonstrate a method for increasing the tunable rf phase shift of semiconductor waveguides while at the same time enabling control of the rf power. This method is based on the use of slow- and fast-light effects in a cascade of semiconductor optical amplifiers combined with the use of spectral filtering to enhance the role of refractive index dynamics. A continuously tunable phase shift of approximately 240 degrees at a microwave frequency of 19 GHz is demonstrated in a cascade of two semiconductor optical amplifiers, while maintaining an rf power change of less than 1.6 dB. The technique is scalable to more amplifiers and should allow realization of an rf phase shift of 360 degrees. PMID:19340174

  18. Fast production of large {sup 23}Na Bose-Einstein condensates in an optically plugged magnetic quadrupole trap

    SciTech Connect

    Heo, Myoung-Sun; Choi, Jae-yoon; Shin, Yong-il

    2011-01-15

    We demonstrate a fast production of large {sup 23}Na Bose-Einstein condensates in an optically plugged magnetic quadrupole trap. A single global minimum of the trapping potential is generated by slightly displacing the plug beam from the center of the quadrupole field. With a dark magneto-optical trap and a simple rf evaporation, our system produces a condensate with N{approx_equal}10{sup 7} atoms every 17 s. The Majorana loss rates and the resultant heating rates for various temperatures are measured with and without plugging. The average energy of a spin-flipped atom is almost linearly proportional to temperature and determined to be about 60% of the average energy of a trapped atom. We present a numerical study of the evaporation dynamics in a plugged linear trap.

  19. SnO2-MOF-Fabry-Perot humidity optical sensor system based on fast Fourier transform technique

    NASA Astrophysics Data System (ADS)

    Lopez-Aldaba, A.; Lopez-Torres, D.; Ascorbe, J.; Rota-Rodrigo, S.; Elosua, C.; Lopez-Amo, M.; Arregui, F. J.; Corres, J. M.; Auguste, J.-L.; Jamier, R.; Roy, P.

    2016-05-01

    In this paper, a new sensor system for relative humidity measurements based on a SnO2 sputtering deposition on a microstructured optical fiber (MOF) low-finesse Fabry-Perot (FP) sensing head is presented and characterized. The interrogation of the sensing head is carried out by monitoring the Fast Fourier Transform phase variations of the FP interference frequency. This method is low-sensitive to signal amplitude variations and also avoids the necessity of tracking the evolution of peaks and valleys in the spectrum. The sensor is operated within a wide humidity range (20%-90% relative humidity) with a maximum sensitivity achieved of 0.14rad/%. The measurement method uses a commercial optical interrogator as the only active element, this compact solution allows real time analysis of the data.

  20. Microwave Type III Pair Bursts in Solar Flares

    NASA Astrophysics Data System (ADS)

    Tan, Baolin; Mészárosová, Hana; Karlický, Marian; Huang, Guangli; Tan, Chengming

    2016-03-01

    A solar microwave type III pair burst is composed of normal and reverse-sloped (RS) burst branches with oppositely fast frequency drifts. It is the most sensitive signature of the primary energy release and electron accelerations in flares. This work reports 11 microwave type III pair events in 9 flares observed by radio spectrometers in China and the Czech Republic at a frequency of 0.80-7.60 GHz during 1994-2014. These type III pairs occurred in flare impulsive and postflare phases with separate frequencies in the range of 1.08-3.42 GHz and a frequency gap of 10-1700 MHz. The frequency drift increases with the separate frequency (fx), the lifetime of each burst is anti-correlated to fx, while the frequency gap is independent of fx. In most events, the normal branches are drifting obviously faster than the RS branches. The type III pairs occurring in flare impulsive phase have lower separate frequencies, longer lifetimes, wider frequency gaps, and slower frequency drifts than that occurring in postflare phase. Also, the latter always has strong circular polarization. Further analysis indicates that near the flare energy release sites the plasma density is about {10}10{--}{10}11 cm-3 and the temperature is higher than 107 K. These results provide new constraints to the acceleration mechanism in solar flares.

  1. Millimeter Observation of Solar Flares with Polarization

    NASA Astrophysics Data System (ADS)

    Silva, D. F.; Valio, A. B. M.

    2016-04-01

    We present the investigation of two solar flares on February 17 and May 13, 2013, studied in radio from 5 to 405 GHz (RSTN, POEMAS, SST), and in X-rays up to 300 keV (FERMI and RHESSI). The objective of this work is to study the evolution and energy distribution of the population of accelerated electrons and the magnetic field configuration. For this we constructed and fit the radio spectrum by a gyro synchrotron model. The optically thin spectral indices from radio observations were compared to that of the hard X-rays, showing that the radio spectral index is harder than the latter by 2. These flares also presented 10-15 % circular polarized emission at 45 and 90 GHz that suggests that the sources are located at different legs of an asymmetric loop.

  2. Dynamics of flare sprays. [in sun

    NASA Technical Reports Server (NTRS)

    Tandberg-Hanssen, E.; Martin, S. F.; Hansen, R. T.

    1980-01-01

    During solar cycle No. 20 new insight into the flare-spray phenomenon has been attained due to several innovations in solar optical-observing techniques (higher spatial resolution cinema-photography, tunable passband filters, multislit spectroscopy and extended angular field coronagraphs). From combined analysis of 13 well-observed sprays which occurred between 1969-1974 it is concluded that (1) the spray material originates from a preexisting active region filament which undergoes increased absorption some tens of minutes prior to the abrupt chromospheric brightening at the 'flare-start', and (2) the spray material is confined within a steadily expanding, loop-shaped (presumable magnetically controlled) envelope with part of the materials draining back down along one or both legs of the loop.

  3. Derivation of the physical parameters for strong and weak flares from the Hα line

    NASA Astrophysics Data System (ADS)

    Semeida, M. A.; Rashed, M. G.

    2016-06-01

    The two flares of 19 and 30 July 1999 were observed in the Hα line using the multichannel flare spectrograph (MFS) at the Astronomical Institute in Ondřejov, Czech Republic. We use a modified cloud method to fit the Hα line profiles which avoids using the background profile. We obtain the four parameters of the two flares: the source function, the optical thickness at line center, the line-of-sight velocity and the Doppler width. The observed asymmetry profiles have been reproduced by the theoretical ones based on our model. A discussion is made about the results of strong and weak flares using the present method.

  4. 26 Tbit s-1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing

    NASA Astrophysics Data System (ADS)

    Hillerkuss, D.; Schmogrow, R.; Schellinger, T.; Jordan, M.; Winter, M.; Huber, G.; Vallaitis, T.; Bonk, R.; Kleinow, P.; Frey, F.; Roeger, M.; Koenig, S.; Ludwig, A.; Marculescu, A.; Li, J.; Hoh, M.; Dreschmann, M.; Meyer, J.; Ben Ezra, S.; Narkiss, N.; Nebendahl, B.; Parmigiani, F.; Petropoulos, P.; Resan, B.; Oehler, A.; Weingarten, K.; Ellermeyer, T.; Lutz, J.; Moeller, M.; Huebner, M.; Becker, J.; Koos, C.; Freude, W.; Leuthold, J.

    2011-06-01

    Optical transmission systems with terabit per second (Tbit s-1) single-channel line rates no longer seem to be too far-fetched. New services such as cloud computing, three-dimensional high-definition television and virtual-reality applications require unprecedented optical channel bandwidths. These high-capacity optical channels, however, are fed from lower-bitrate signals. The question then is whether the lower-bitrate tributary information can viably, energy-efficiently and effortlessly be encoded to and extracted from terabit per second data streams. We demonstrate an optical fast Fourier transform scheme that provides the necessary computing power to encode lower-bitrate tributaries into 10.8 and 26.0 Tbit s-1 line-rate orthogonal frequency-division multiplexing (OFDM) data streams and to decode them from fibre-transmitted OFDM data streams. Experiments show the feasibility and ease of handling terabit per second data with low energy consumption. To the best of our knowledge, this is the largest line rate ever encoded onto a single light source.

  5. Optically fast, wide field-of-view, five-mirror anastigmat (5MA) imagers for remote sensing applications

    NASA Astrophysics Data System (ADS)

    Silny, John F.; Kim, Eugene D.; Cook, Lacy G.; Moskun, Eric M.; Patterson, Robert L.

    2011-10-01

    Recent trends in focal plane array (FPA) technology have led naturally to the development of very large format remote sensors that require optically fast, wide field-of-view (FOV) imaging optics. Systems that cover broad spectral ranges, such as multispectral imagers (MSI) and hyperspectral imagers (HSI), require reflective optics to provide aberration and distortion control without the complication of wavelength dependent errors induced by powered refractive elements. These large format systems require even wider fields-of-view than offered by the conventional three-mirror anastigmat (TMA) and four-mirror anastigmat (4MA) designs. Recently, Raytheon has demonstrated in hardware the first-ever aligned and tested five-mirror anastigmat (5MA) imager. The 5MA was designed with an F/3.0 optical speed and a 36 degree cross-scan FOV for use with a large format imaging spectrometer. The 5MA imager has useful features such as: (1) a real entrance pupil to support a full-aperture calibrator or a small scan mirror, (2) an intermediate image for stray light control, and (3) a real exit pupil for optimal cold-shielding in infrared applications. A computer-aided alignment method was used to align the 5MA imager with a final target of balanced wavefront error (WFE) across the full 36 deg FOV. This paper discusses the design and development of the first-ever 5MA imager and some potential air- and space-borne remote sensing applications.

  6. Design and simulation of fast-pulse control signal generator for the electro-holographic optical switch

    NASA Astrophysics Data System (ADS)

    Song, Yansheng; Ji, Jiarong; Dou, Wenhua; Wen, Changli

    2010-10-01

    The electro-holographic optical switch based on the quadratic electro-optic effect in paraelectric photorefractive crystals requires driving signal of fast pulse. The pulse rise/fall time and voltage are 10-10-10-8s and 102-103V, respectively, depending on the applications. A pulse control signal generator for the electro-holographic optical switch was designed and simulated. Considering the integration of pulse signal generator and the switch, the circuit employs three stages compact Marx generators utilizing parallel avalanche bipolar junction transistors series operated in the avalanche mode in each stage. These transistors and the crystals are mounted on printed circuit board. According to the simulated results, the output voltage ranged from 1.2kV to 1.5kV. The rise/fall time of this pulse is less than 3 nanoseconds. The pulse width is 20 nanoseconds, and trigger delay is about 1 nanosecond. The repetition rate is less than 50MHz which can be increased by reducing the pulse width of the trigger. The simulation results indicate that the pulse control signals from the designed generator can match the application of electro-holographic optical switch well.

  7. Ultra-fast solid state electro-optical modulator based on liquid crystal polymer and liquid crystal composites

    SciTech Connect

    Ouskova, Elena; Sio, Luciano De Vergara, Rafael; Tabiryan, Nelson; White, Timothy J.; Bunning, Timothy J.

    2014-12-08

    A different generation of polymer-dispersed liquid crystals (PDLCs) based on a liquid crystalline polymer host is reported wherein the fluid behavior of the reactive mesogenic monomer is an enabler to concentration windows (liquid crystal polymer/liquid crystal) (and subsequent morphologies) not previously explored. These liquid crystal (LC) polymer/LC composites, LCPDLCs, exhibit excellent optical and electro-optical properties with negligible scattering losses in both the ON and OFF states. These systems thus have application in systems where fast phase modulation of optical signal instead of amplitude control is needed. Polarized optical microscopy and high resolution scanning electron microscopy confirm a bicontinuous morphology composed of aligned LC polymer coexisting with a phase separated LC fluid. Operating voltages, switching times, and spectra of LCPDLCs compare favourably to conventional PDLC films. The LCPDLCs exhibit a low switching voltage (4–5 V/μm), symmetric and submillisecond (200 μs) on/off response times, and high transmission in both the as formed and switched state in a phase modulation geometry.

  8. Fast optical frequency sweeping using voltage controlled oscillator driven single sideband modulation combined with injection locking.

    PubMed

    Wang, Jian; Chen, Dijun; Cai, Haiwen; Wei, Fang; Qu, Ronghui

    2015-03-23

    An ultrafast optical frequency sweeping technique for narrow linewidth lasers is reported. This technique exploits the large frequency modulation bandwidth of a wideband voltage controlled oscillator (VCO) and a high speed electro-optic dual parallel Mach-Zehnder modulator (DPMZM) which works on the state of carrier suppressed single sideband modulation(CS-SSB). Optical frequency sweeping of a narrow linewidth fiber laser with 3.85 GHz sweeping range and 80 GHz/μs tuning speed is demonstrated, which is an extremely high tuning speed for frequency sweeping of narrow linewidth lasers. In addition, injection locking technique is adopted to improve the sweeper's low optical power output and small side-mode suppression ratio (SMSR). PMID:25837048

  9. 15 Gbit/s indoor optical wireless systems employing fast adaptation and imaging reception in a realistic environment

    NASA Astrophysics Data System (ADS)

    Alsaadi, Fuad E.

    2016-03-01

    Optical wireless systems are promising candidates for next-generation indoor communication networks. Optical wireless technology offers freedom from spectrum regulations and, compared to current radio-frequency networks, higher data rates and increased security. This paper presents a fast adaptation method for multibeam angle and delay adaptation systems and a new spot-diffusing geometry, and also considers restrictions needed for complying with eye safety regulations. The fast adaptation algorithm reduces the computational load required to reconfigure the transmitter in the case of transmitter and/or receiver mobility. The beam clustering approach enables the transmitter to assign power to spots within the pixel's field of view (FOV) and increases the number of such spots. Thus, if the power per spot is restricted to comply with eye safety standards, the new approach, in which more spots are visible within the FOV of the pixel, leads to enhanced signal-to-noise ratio (SNR). Simulation results demonstrate that the techniques proposed in this paper lead to SNR improvements that enable reliable operation at data rates as high as 15 Gbit/s. These results are based on simulation and not on actual measurements or experiments.

  10. Stochastic Acceleration of Electrons in Solar Flares

    NASA Astrophysics Data System (ADS)

    Pongkitiwanichakul, P.; Chandran, B. D.

    2012-12-01

    Stochastic particle acceleration (SPA) is a process in which turbulent fluctuations or randomly phased waves energize particles. We develop an SPA model for electron acceleration in solar flares based on turbulent fast magnetosonic waves and transit-time damping. Our model is two dimensional in both velocity space and wavenumber space, so that it takes into account anisotropy in the wave power spectrum P and electron distribution function f. We use quasilinear theory to obtain a set of equations that describes the coupled evolution of P and f. We solve these equations numerically, and find that the electron distribution function develops a power-law-like non-thermal tail between energies Emin and Emax. We obtain approximate analytic expressions for Emin and Emax that describe how these minimum and maximum energies depend upon plasma parameters such as the electron temperature and number density. We compare our results to previous studies that assume that P and f are isotropic and use our analysis to explain the observed hard x-ray spectrum seen in the June 27, 1980 flare. In our numerical simulations, the power-law indices of the electron energy spectra range from -2.3 to -4.4. The absolute values of these indices are larger than the corresponding values in studies with isotropic P and f and closer to the observed values in solar flares.

  11. Acceleration of runaway electrons in solar flares

    NASA Technical Reports Server (NTRS)

    Moghaddam-Taaheri, E.; Goertz, C. K.

    1990-01-01

    The dc electric field acceleration of electrons out of a thermal plasma and the evolution of the runaway tail are studied numerically, using a relativistic quasi-linear code based on the Ritz-Galerkin method and finite elements. A small field-aligned electric field is turned on at a certain time. The resulting distribution function from the runaway process is used to calculate the synchrotron emission during the evolution of the runaway tail. It is found that, during the runaway tail formation, which lasts a few tens of seconds for typical solar flare conditions, the synchrotron emission level is low, almost ot the same order as the emission from the thermal plasma, at the high-frequency end of the spectrum. However, the emission is enhanced explosively in a few microseconds by several orders of magnitude at the time the runaway tail stops growing along the magnetic field and tends toward isotropy due to the pitch-angle scattering of the fast particles. Results indicate that, in order to account for the observed synchrotron emission spectrum of a typical solar flare, the electric field acceleration phase must be accompanied or preceded by a heating phase which yields an enhanced electron temperature of about 2-15 keV in the flare region if the electric field is 0.1-0.2 times the Dreicer field and cyclotron-to-plasma frequency ratios are of order 1-2.

  12. Acceleration of runaway electrons in solar flares

    SciTech Connect

    Moghaddam-taaheri, E.; Goertz, C.K. )

    1990-03-01

    The dc electric field acceleration of electrons out of a thermal plasma and the evolution of the runaway tail are studied numerically, using a relativistic quasi-linear code based on the Ritz-Galerkin method and finite elements. A small field-aligned electric field is turned on at a certain time. The resulting distribution function from the runaway process is used to calculate the synchrotron emission during the evolution of the runaway tail. It is found that, during the runaway tail formation, which lasts a few tens of seconds for typical solar flare conditions, the synchrotron emission level is low, almost ot the same order as the emission from the thermal plasma, at the high-frequency end of the spectrum. However, the emission is enhanced explosively in a few microseconds by several orders of magnitude at the time the runaway tail stops growing along the magnetic field and tends toward isotropy due to the pitch-angle scattering of the fast particles. Results indicate that, in order to account for the observed synchrotron emission spectrum of a typical solar flare, the electric field acceleration phase must be accompanied or preceded by a heating phase which yields an enhanced electron temperature of about 2-15 keV in the flare region if the electric field is 0.1-0.2 times the Dreicer field and cyclotron-to-plasma frequency ratios are of order 1-2. 23 refs.

  13. Solar Flare Physics

    NASA Technical Reports Server (NTRS)

    Schmahl, Edward J.; Kundu, Mukul R.

    2000-01-01

    During the past year we have been working with the HESSI (High Energy Solar Spectroscopic Imager) team in preparation for launch in early 2001. HESSI has as its primary scientific goal photometric imaging and spectroscopy of solar flares in hard X-rays and gamma-rays with an approx. 2 sec angular resolution, approx. keV energy resolution and approx. 2 s time resolution over the 6 keV to 15 MeV energy range. We have performed tests of the imager using a specially designed experiment which exploits the second-harmonic response of HESSI's sub-collimators to an artificial X-ray source at a distance of 1550 cm from its front grids. Figures show the response to X-rays at energies in the range where HESSI is expected to image solar flares. To prepare the team and the solar user community for imaging flares with HESSI, we have written a description of the major imaging concepts. This paper will be submitted for publication in a referred journal.

  14. Well-observed dynamics of flaring and peripheral coronal magnetic loops during an M-class limb flare

    SciTech Connect

    Shen, Jinhua; Zhou, Tuanhui; Ji, Haisheng; Feng, Li; Wiegelmann, Thomas; Inhester, Bernd

    2014-08-20

    In this paper, we present a variety of well-observed dynamic behaviors for the flaring and peripheral magnetic loops of the M6.6 class extreme limb flare that occurred on 2011 February 24 (SOL2011-02-24T07:20) from EUV observations by the Atmospheric Imaging Assembly on the Solar Dynamics Observatory and X-ray observations by RHESSI. The flaring loop motion confirms the earlier contraction-expansion picture. We find that the U-shaped trajectory delineated by the X-ray corona source of the flare roughly follows the direction of a filament eruption associated with the flare. Different temperature structures of the coronal source during the contraction and expansion phases strongly suggest different kinds of magnetic reconnection processes. For some peripheral loops, we discover that their dynamics are closely correlated with the filament eruption. During the slow rising to abrupt, fast rising of the filament, overlying peripheral magnetic loops display different responses. Two magnetic loops on the elbow of the active region had a slow descending motion followed by an abrupt successive fast contraction, while magnetic loops on the top of the filament were pushed outward, slowly being inflated for a while and then erupting as a moving front. We show that the filament activation and eruption play a dominant role in determining the dynamics of the overlying peripheral coronal magnetic loops.

  15. Well-observed Dynamics of Flaring and Peripheral Coronal Magnetic Loops during an M-class Limb Flare

    NASA Astrophysics Data System (ADS)

    Shen, Jinhua; Zhou, Tuanhui; Ji, Haisheng; Wiegelmann, Thomas; Inhester, Bernd; Feng, Li

    2014-08-01

    In this paper, we present a variety of well-observed dynamic behaviors for the flaring and peripheral magnetic loops of the M6.6 class extreme limb flare that occurred on 2011 February 24 (SOL2011-02-24T07:20) from EUV observations by the Atmospheric Imaging Assembly on the Solar Dynamics Observatory and X-ray observations by RHESSI. The flaring loop motion confirms the earlier contraction-expansion picture. We find that the U-shaped trajectory delineated by the X-ray corona source of the flare roughly follows the direction of a filament eruption associated with the flare. Different temperature structures of the coronal source during the contraction and expansion phases strongly suggest different kinds of magnetic reconnection processes. For some peripheral loops, we discover that their dynamics are closely correlated with the filament eruption. During the slow rising to abrupt, fast rising of the filament, overlying peripheral magnetic loops display different responses. Two magnetic loops on the elbow of the active region had a slow descending motion followed by an abrupt successive fast contraction, while magnetic loops on the top of the filament were pushed outward, slowly being inflated for a while and then erupting as a moving front. We show that the filament activation and eruption play a dominant role in determining the dynamics of the overlying peripheral coronal magnetic loops.

  16. Fast and scalable algorithm for the simulation of multiple Mie scattering in optical systems.

    PubMed

    Kalthoff, Oliver; Kampmann, Ronald; Streicher, Simon; Sinzinger, Stefan

    2016-05-20

    The Monte Carlo simulation of light propagation in optical systems requires the processing of a large number of photons to achieve a satisfactory statistical accuracy. Based on classical Mie scattering, we experimentally show that the independence of photons propagating through a turbid medium imposes a postulate for a concurrent and scalable programming paradigm of general purpose graphics processing units. This ensures that, without rewriting code, increasingly complex optical systems can be simulated if more processors are available in the future. PMID:27411111

  17. Ion Acceleration and Transport in Solar Flares

    NASA Technical Reports Server (NTRS)

    Miller, James A.

    1995-01-01

    The purpose of the work proposed for this grant was to develop a promising model for ion acceleration in impulsive solar flares. Solar flares are among the most energetic and interesting phenomena in the solar system, releasing up to 10(exp 32) ergs of energy over timescales ranging from a few tens of seconds to a few tens of minutes. Much of this energy appears as energetic electrons and ions, which produce a wide range of observable radiations. These radiations, in turn, are valuable diagnostics of the acceleration mechanism, the identification of which is the fundamental goal of solar flare research. The specific mechanism we proposed to investigate was based on cascading Alfven waves, the essence of which was as follows: During the primary flare energy release, it is widely believed that magnetic free energy is made available through the large-scale restructuring of the flare magnetic field. Any perturbation of a magnetic field will lead to the formation of MagnetoHydroDynamic (MHD) waves of wavelength comparable to the initial scale of the perturbation. Since the scalesize of a flare energy release region will likely be 10(exp 8)-10(exp 9) cm, the MHD waves will be of very long wavelength. However, it is well known that wave steepening will lead to a cascade of wave energy to smaller wavelengths. Now, MHD waves consist of two specific modes-the Alfven wave and the fast mode wave, and it is the Alfven wave which can interact with the ambient ions and accelerate them via cyclotron resonance. As the Alfven waves cascade to smaller wavenumbers, they can resonate with ions of progressively lower energy, until they eventually (actually, this is less than approx. 1 s) can resonate with ions in the thermal distribution. These ions are then energized out of the thermal background and, since lower-frequency waves are already present as a result of the cascading, to relativistic energies. Hence, cascading Alfven waves naturally accelerate ions from thermal to

  18. Energy release in solar flares

    NASA Technical Reports Server (NTRS)

    Brown, John C.; Correia, Emilia; Farnik, Frantisek; Garcia, Howard; Henoux, Jean-Claude; La Rosa, Ted N.; Machado, Marcos E. (Compiler); Nakajima, Hiroshi; Priest, Eric R.

    1994-01-01

    Team 2 of the Ottawa Flares 22 Workshop dealt with observational and theoretical aspects of the characteristics and processes of energy release in flares. Main results summarized in this article stress the global character of the flaring phenomenon in active regions, the importance of discontinuities in magnetic connectivity, the role of field-aligned currents in free energy storage, and the fragmentation of energy release in time and space.

  19. Evaporative cooling of flare plasma

    NASA Technical Reports Server (NTRS)

    Antiochos, S. K.; Sturrock, P. A.

    1978-01-01

    We investigate a one-dimensional loop model for the evaporative cooling of the coronal flare plasma. The important assumptions are that conductive losses dominate radiative cooling and that the evaporative velocities are small compared with the sound speed. We calculate the profile and evolution of the temperature and verify the accuracy of our assumptions for plasma parameters typical of flare regions. The model is in agreement with soft X-ray observations on the evolution of flare temperatures and emission measures. The effect of evaporation is to greatly reduce the conductive heat flux into the chromosphere and to enhance the EUV emission from the coronal flare plasma.

  20. Design and development of a profilometer for the fast and accurate characterization of optical surfaces

    NASA Astrophysics Data System (ADS)

    Gómez-Pedrero, José A.; Rodríguez-Ibañez, Diego; Alonso, José; Quirgoa, Juan A.

    2015-09-01

    With the advent of techniques devised for the mass production of optical components made with surfaces of arbitrary form (also known as free form surfaces) in the last years, a parallel development of measuring systems adapted for these new kind of surfaces constitutes a real necessity for the industry. Profilometry is one of the preferred methods for the assessment of the quality of a surface, and is widely employed in the optical fabrication industry for the quality control of its products. In this work, we present the design, development and assembly of a new profilometer with five axis of movement, specifically suited to the measurement of medium size (up to 150 mm of diameter) "free-form" optical surfaces with sub-micrometer accuracy and low measuring times. The apparatus is formed by three X, Y, Z linear motorized positioners plus and additional angular and a tilt positioner employed to locate accurately the surface to be measured and the probe which can be a mechanical or an optical one, being optical one a confocal sensor based on chromatic aberration. Both optical and mechanical probes guarantee an accuracy lower than the micrometer in the determination of the surface height, thus ensuring an accuracy in the surface curvatures of the order of 0.01 D or better. An original calibration procedure based on the measurement of a precision sphere has been developed in order to correct the perpendicularity error between the axes of the linear positioners. To reduce the measuring time of the profilometer, a custom electronics, based on an Arduino™ controller, have been designed and produced in order to synchronize the five motorized positioners and the optical and mechanical probes so that a medium size surface (around 10 cm of diameter) with a dynamic range in curvatures of around 10 D, can be measured in less than 300 seconds (using three axes) keeping the resolution in height and curvature in the figures mentioned above.

  1. DRAFTS: A DEEP, RAPID ARCHIVAL FLARE TRANSIENT SEARCH IN THE GALACTIC BULGE

    SciTech Connect

    Osten, Rachel A.; Sahu, Kailash; Kowalski, Adam; Hawley, Suzanne L.

    2012-07-20

    We utilize the Sagittarius Window Eclipsing Extrasolar Planet Search Hubble Space Telescope/Advanced Camera for Surveys data set for a Deep Rapid Archival Flare Transient Search to constrain the flare rate toward the older stellar population in the Galactic bulge. During seven days of monitoring 229,293 stars brighter than V = 29.5, we find evidence for flaring activity in 105 stars between V = 20 and V = 28. We divided the sample into non-variable stars and variable stars whose light curves contain large-scale variability. The flare rate on variable stars is {approx}700 times that of non-variable stars, with a significant correlation between the amount of underlying stellar variability and peak flare amplitude. The flare energy loss rates are generally higher than those of nearby well-studied single dMe flare stars. The distribution of proper motions is consistent with the flaring stars being at the distance and age of the Galactic bulge. If they are single dwarfs, then they span a range of Almost-Equal-To 1.0-0.25 M{sub Sun }. A majority of the flaring stars exhibit periodic photometric modulations with P < 3 days. If these are tidally locked magnetically active binary systems, then their fraction in the bulge is enhanced by a factor of {approx}20 compared to the local value. These stars may be useful for placing constraints on the angular momentum evolution of cool close binary stars. Our results expand the type of stars studied for flares in the optical band, and suggest that future sensitive optical time-domain studies will have to contend with a larger sample of flaring stars than the M dwarf flare stars usually considered.

  2. A Cold Flare with Delayed Heating

    NASA Astrophysics Data System (ADS)

    Fleishman, Gregory D.; Pal'shin, Valentin D.; Meshalkina, Natalia; Lysenko, Alexandra L.; Kashapova, Larisa K.; Altyntsev, Alexander T.

    2016-05-01

    Recently, a number of peculiar flares have been reported that demonstrate significant nonthermal particle signatures with low, if any, thermal emission, which implies a close association of the observed emission with the primary energy release/electron acceleration region. This paper presents a flare that appears “cold” at the impulsive phase, while displaying delayed heating later on. Using hard X-ray data from Konus-Wind, microwave observations by SSRT, RSTN, NoRH, and NoRP, context observations, and three-dimensional modeling, we study the energy release, particle acceleration, and transport, and the relationships between the nonthermal and thermal signatures. The flaring process is found to involve the interaction between a small loop and a big loop with the accelerated particles divided roughly equally between them. Precipitation of the electrons from the small loop produced only a weak thermal response because the loop volume was small, while the electrons trapped in the big loop lost most of their energy in the coronal part of the loop, which resulted in coronal plasma heating but no or only weak chromospheric evaporation, and thus unusually weak soft X-ray emission. The energy losses of the fast electrons in the big tenuous loop were slow, which resulted in the observed delay of the plasma heating. We determined that the impulsively accelerated electron population had a beamed angular distribution in the direction of the electric force along the magnetic field of the small loop. The accelerated particle transport in the big loop was primarily mediated by turbulent waves, which is similar to other reported cold flares.

  3. Observations of a Two Ribbon White Light Flare

    NASA Astrophysics Data System (ADS)

    Li, J.; Mickey, D.; LaBonte, B.

    2003-05-01

    On July 15 2002, an X3 flare occured within AR10030 and it was accompanied with a white light flare (WLF). The Imaging Vector Magnetograph (IVM) at Mees Solar Observatory recorded the entire event including several hours of data before and after the flare. The IVM continuum images are taken at time cadence as high as 1 seconds per image. Such observations enabled us to resolve the WLF patches in time and space. We will present (1). the initial WLF patch fell on a small sunspot located at an area surrounded with single relatively weak magnetic polarity between proceeding and following sunspot groups; (2) the energy deposited during the WLF flare; (3) the light curves of the optical continuum, the UV continuum (TRACE/1600) and microwaves (1.2 - 18 GHz from Oven's Valley Solar Array). They demonstrate the same profiles during flare impulsive phase. The observations suggest that the origin of the WLF flare was caused by accelerated particles precipitate into lower atmosphere along magnetic field lines. This work is supported by NASA grant to Mess Solar Observatory and MURI program.

  4. Fast, All-Optical, Zero to π Continuously Controllable Kerr Phase Gate

    NASA Astrophysics Data System (ADS)

    Li, R. B.; Deng, L.; Hagley, E. W.

    2013-03-01

    We demonstrate a fast Kerr phase gate in a room-temperature Rb85 vapor using a Raman gain method where the probe wave travels “superluminally”. Continuously variable, zero to π radian nonlinear Kerr phase shifts of the probe wave relative to a reference wave have been observed at 333 K. We show rapid manipulation of digitally encoded probe waves using a digitally encoded phase-control light field, demonstrating the capability of the system in information science and telecommunication applications.

  5. High-energy gamma-ray emission from solar flares: Summary of Fermi large area telescope detections and analysis of two M-class flares

    SciTech Connect

    Ackermann, M.; Ajello, M.; Albert, A.; Allafort, A.; Bechtol, K.; Bottacini, E.; Buehler, R.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Buson, S.; Bellazzini, R.; Bregeon, J.; Bissaldi, E.; Bonamente, E.; Bouvier, A.; Brandt, T. J.; Brigida, M.; Bruel, P.; and others

    2014-05-20

    We present the detections of 18 solar flares detected in high-energy γ-rays (above 100 MeV) with the Fermi Large Area Telescope (LAT) during its first 4 yr of operation. This work suggests that particle acceleration up to very high energies in solar flares is more common than previously thought, occurring even in modest flares, and for longer durations. Interestingly, all these flares are associated with fairly fast coronal mass ejections (CMEs). We then describe the detailed temporal, spatial, and spectral characteristics of the first two long-lasting events: the 2011 March 7 flare, a moderate (M3.7) impulsive flare followed by slowly varying γ-ray emission over 13 hr, and the 2011 June 7 M2.5 flare, which was followed by γ-ray emission lasting for 2 hr. We compare the Fermi LAT data with X-ray and proton data measurements from GOES and RHESSI. We argue that the γ-rays are more likely produced through pion decay than electron bremsstrahlung, and we find that the energy spectrum of the proton distribution softens during the extended emission of the 2011 March 7 flare. This would disfavor a trapping scenario for particles accelerated during the impulsive phase of the flare and point to a continuous acceleration process at play for the duration of the flares. CME shocks are known for accelerating the solar energetic particles (SEPs) observed in situ on similar timescales, but it might be challenging to explain the production of γ-rays at the surface of the Sun while the CME is halfway to the Earth. A stochastic turbulence acceleration process occurring in the solar corona is another likely scenario. Detailed comparison of characteristics of SEPs and γ-ray-emitting particles for several flares will be helpful to distinguish between these two possibilities.

  6. FAST TRACK COMMUNICATION: Controllable optical bistability and multistability in a double two-level atomic system

    NASA Astrophysics Data System (ADS)

    Wu, Jing; Lü, Xin-You; Zheng, Li-Li

    2010-08-01

    We theoretically investigate the behaviour of optical bistability (OB) and optical multistability (OM) in a generic double two-level atomic system driven by two orthogonally polarized fields (a π-polarized control field and a σ-polarized probe field). It is found that the behaviour of OB can be controlled by adjusting the intensity or the frequency detuning of the control field. Interestingly enough, our numerical results also show that it is easy to realize the transition from OB to OM or vice versa by adjusting the relative phase between the control and probe fields. This investigation can be used for the development of new types of devices for realizing an all-optic switching process.

  7. How fast is optically induced electron transfer in organic mixed valence systems?

    PubMed

    Lambert, C; Moos, M; Schmiedel, A; Holzapfel, M; Schäfer, J; Kess, M; Engel, V

    2016-07-28

    The rate of thermally induced electron transfer in organic mixed valence compounds has thoroughly been investigated by e.g. temperature dependent ESR spectroscopy. However, almost nothing is known about the dynamics of optically induced electron transfer processes in such systems. Therefore, we investigated these processes in mixed valence compounds based on triphenylamine redox centres bridged by conjugated spacers by NIR transient absorption spectroscopy with fs-time resolution. These experiments revealed an internal conversion (IC) process to be on the order of 50-200 fs which is equivalent to the back electron transfer after optical excitation into the intervalence charge transfer band. This IC is followed by ultrafast cooling to the ground state within 1 ps. Thus, in the systems investigated optically induced electron transfer is about 3-4 orders of magnitude faster than thermally induced ET. PMID:27376572

  8. Highly accurate and fast optical penetration-based silkworm gender separation system

    NASA Astrophysics Data System (ADS)

    Kamtongdee, Chakkrit; Sumriddetchkajorn, Sarun; Chanhorm, Sataporn

    2015-07-01

    Based on our research work in the last five years, this paper highlights our innovative optical sensing system that can identify and separate silkworm gender highly suitable for sericulture industry. The key idea relies on our proposed optical penetration concepts and once combined with simple image processing operations leads to high accuracy in identifying of silkworm gender. Inside the system, there are electronic and mechanical parts that assist in controlling the overall system operation, processing the optical signal, and separating the female from male silkworm pupae. With current system performance, we achieve a very highly accurate more than 95% in identifying gender of silkworm pupae with an average system operational speed of 30 silkworm pupae/minute. Three of our systems are already in operation at Thailand's Queen Sirikit Sericulture Centers.

  9. Fast time-domain diffuse optical tomography using pseudorandom bit sequences.

    PubMed

    Mo, Weirong; Chen, Nanguang

    2008-09-01

    We report a novel time-domain diffuse optical tomography to determine the optical properties in a faster speed than the conventional ones. Instead of using the ultrashort pulse laser, a 2.5 Gbps pseudorandom bit sequence is used to modulate the near-infrared light for tissue-like phantom illumination. The time-resolved signal can be retrieved very quickly by demodulation with the reference signal. The system impulse response has a full width at half maximum around 800 picoseconds and the 2-dimentional maps of optical properties can be obtained within a few seconds. The high signal-to-noise ratio and the environmental illumination insensitivity warrant a great potential for applications in clinical noninvasive breast cancer detection. PMID:18772975

  10. Fast and accurate determination of the detergent efficiency by optical fiber sensors

    NASA Astrophysics Data System (ADS)

    Patitsa, Maria; Pfeiffer, Helge; Wevers, Martine

    2011-06-01

    An optical fiber sensor was developed to control the cleaning efficiency of surfactants. Prior to the measurements, the sensing part of the probe is covered with a uniform standardized soil layer (lipid multilayer), and a gold mirror is deposited at the end of the optical fiber. For the lipid multilayer deposition on the fiber, Langmuir-Blodgett technique was used and the progress of deposition was followed online by ultraviolet spectroscopy. The invention provides a miniaturized Surface Plasmon Resonance dip-sensor for automated on-line testing that can replace the cost and time consuming existing methods and develop a breakthrough in detergent testing in combining optical sensing, surface chemistry and automated data acquisition. The sensor is to be used to evaluate detergency of different cleaning products and also indicate how formulation, concentration, lipid nature and temperature affect the cleaning behavior of a surfactant.

  11. Fast optical cooling of nanomechanical cantilever with the dynamical Zeeman effect.

    PubMed

    Zhang, Jian-Qi; Zhang, Shuo; Zou, Jin-Hua; Chen, Liang; Yang, Wen; Li, Yong; Feng, Mang

    2013-12-01

    We propose an efficient optical electromagnetically induced transparency (EIT) cooling scheme for a cantilever with a nitrogen-vacancy center attached in a non-uniform magnetic field using dynamical Zeeman effect. In our scheme, the Zeeman effect combined with the quantum interference effect enhances the desired cooling transition and suppresses the undesired heating transitions. As a result, the cantilever can be cooled down to nearly the vibrational ground state under realistic experimental conditions within a short time. This efficient optical EIT cooling scheme can be reduced to the typical EIT cooling scheme under special conditions. PMID:24514521

  12. FAST TRACK COMMUNICATION: Fabrication and optical properties of gold nanotube arrays

    NASA Astrophysics Data System (ADS)

    Hendren, W. R.; Murphy, A.; Evans, P.; O'Connor, D.; Wurtz, G. A.; Zayats, A. V.; Atkinson, R.; Pollard, R. J.

    2008-09-01

    Arrays of gold nanotubes with polypyrrole cores were grown on glass substrates by electrodeposition into thin film porous alumina templates. Measurements of optical transmission revealed strong extinction peaks related to plasmonic resonances, which were sensitive to the polarization state and angle of incidence. On prolonging the electrodeposition of gold, the polypyrrole core became fully encapsulated and this had a dramatic effect on the optical properties of the arrays, which was rationalized by finite element simulation of the local field intensities resulting from plasmon excitation.

  13. Synchronous triple-optical-path digital speckle pattern interferometry with fast discrete curvelet transform for measuring three-dimensional displacements

    NASA Astrophysics Data System (ADS)

    Gu, Guoqing; Wang, Kaifu; Wang, Yanfang; She, Bin

    2016-06-01

    Digital speckle pattern interferometry (DSPI) is a well-established and widely used optical measurement technique for obtaining qualitative as well as quantitative measurements of objects deformation. The simultaneous measurement of an object's surface displacements in three dimensions using DSPI is of great interest. This paper presents a triple-optical-path DSPI based method for the simultaneous and independent measurement of three-dimensional (3D) displacement fields. In the proposed method, in-plane speckle interferometers with dual-observation geometry and an out-of-plane interferometer are optimally combined to construct an integrated triple-optical-path DSPI system employing the phase shift technique, which uses only a single laser source and three cameras. These cameras are placed along a single line to synchronously capture real-time visible speckle fringe patterns in three dimensions. In addition, a pre-filtering method based on the fast discrete curvelet transform (FDCT) is utilized for denoising the obtained wrapped phase patterns to improve measurement accuracy. Finally, the simultaneous measurement of the 3D displacement fields of a simple beam and a composite laminated plate respectively subjected to three-point and single-point bend loading are investigated to validate the feasibility and effectiveness of the proposed method.

  14. Multifocal fluorescence microscope for fast optical recordings of neuronal action potentials.

    PubMed

    Shtrahman, Matthew; Aharoni, Daniel B; Hardy, Nicholas F; Buonomano, Dean V; Arisaka, Katsushi; Otis, Thomas S

    2015-02-01

    In recent years, optical sensors for tracking neural activity have been developed and offer great utility. However, developing microscopy techniques that have several kHz bandwidth necessary to reliably capture optically reported action potentials (APs) at multiple locations in parallel remains a significant challenge. To our knowledge, we describe a novel microscope optimized to measure spatially distributed optical signals with submillisecond and near diffraction-limit resolution. Our design uses a spatial light modulator to generate patterned illumination to simultaneously excite multiple user-defined targets. A galvanometer driven mirror in the emission path streaks the fluorescence emanating from each excitation point during the camera exposure, using unused camera pixels to capture time varying fluorescence at rates that are ∼1000 times faster than the camera's native frame rate. We demonstrate that this approach is capable of recording Ca(2+) transients resulting from APs in neurons labeled with the Ca(2+) sensor Oregon Green Bapta-1 (OGB-1), and can localize the timing of these events with millisecond resolution. Furthermore, optically reported APs can be detected with the voltage sensitive dye DiO-DPA in multiple locations within a neuron with a signal/noise ratio up to ∼40, resolving delays in arrival time along dendrites. Thus, the microscope provides a powerful tool for photometric measurements of dynamics requiring submillisecond sampling at multiple locations. PMID:25650920

  15. Fast Calcium Imaging with Optical Sectioning via HiLo Microscopy.

    PubMed

    Lauterbach, Marcel A; Ronzitti, Emiliano; Sternberg, Jenna R; Wyart, Claire; Emiliani, Valentina

    2015-01-01

    Imaging intracellular calcium concentration via reporters that change their fluorescence properties upon binding of calcium, referred to as calcium imaging, has revolutionized our way to probe neuronal activity non-invasively. To reach neurons densely located deep in the tissue, optical sectioning at high rate of acquisition is necessary but difficult to achieve in a cost effective manner. Here we implement an accessible solution relying on HiLo microscopy to provide robust optical sectioning with a high frame rate in vivo. We show that large calcium signals can be recorded from dense neuronal populations at high acquisition rates. We quantify the optical sectioning capabilities and demonstrate the benefits of HiLo microscopy compared to wide-field microscopy for calcium imaging and 3D reconstruction. We apply HiLo microscopy to functional calcium imaging at 100 frames per second deep in biological tissues. This approach enables us to discriminate neuronal activity of motor neurons from different depths in the spinal cord of zebrafish embryos. We observe distinct time courses of calcium signals in somata and axons. We show that our method enables to remove large fluctuations of the background fluorescence. All together our setup can be implemented to provide efficient optical sectioning in vivo at low cost on a wide range of existing microscopes. PMID:26625116

  16. Fast Calcium Imaging with Optical Sectioning via HiLo Microscopy

    PubMed Central

    Sternberg, Jenna R.; Wyart, Claire; Emiliani, Valentina

    2015-01-01

    Imaging intracellular calcium concentration via reporters that change their fluorescence properties upon binding of calcium, referred to as calcium imaging, has revolutionized our way to probe neuronal activity non-invasively. To reach neurons densely located deep in the tissue, optical sectioning at high rate of acquisition is necessary but difficult to achieve in a cost effective manner. Here we implement an accessible solution relying on HiLo microscopy to provide robust optical sectioning with a high frame rate in vivo. We show that large calcium signals can be recorded from dense neuronal populations at high acquisition rates. We quantify the optical sectioning capabilities and demonstrate the benefits of HiLo microscopy compared to wide-field microscopy for calcium imaging and 3D reconstruction. We apply HiLo microscopy to functional calcium imaging at 100 frames per second deep in biological tissues. This approach enables us to discriminate neuronal activity of motor neurons from different depths in the spinal cord of zebrafish embryos. We observe distinct time courses of calcium signals in somata and axons. We show that our method enables to remove large fluctuations of the background fluorescence. All together our setup can be implemented to provide efficient optical sectioning in vivo at low cost on a wide range of existing microscopes. PMID:26625116

  17. Fast optical brightening of the blazar 3C 454.3 (2251+158)

    NASA Astrophysics Data System (ADS)

    Mirzaqulov, D. O.; Ehgamberdiev, Sh. A.; Villata, M.; Raiteri, C. M.

    2013-09-01

    With reference to ATel #5411, the GLAST-AGILE Support Program (GASP) of the Whole Earth Blazar Telescope (WEBT) reports on the recent observation of a strong optical brightening of the gamma-loud quasar 3C 454.3. This is one of the 28 blazars for which the GASP performs a long-term, multiwavelength monitoring.

  18. New generation of Fourier optics instruments for fast multispectral BRDF characterization

    NASA Astrophysics Data System (ADS)

    Boher, Pierre; Leroux, Thierry; Collomb-Patton, Véronique; Bignon, Thibault

    2015-03-01

    A new generation of Fourier optics multispectral instruments that allow rapid full diffused or collimated beam spectral BRDF measurements is presented. Light detection is made simultaneously at all angular locations including the illumination direction. Backscattering effect in the fields of cosmetics and parasitic reflection of mobile displays are reported as examples.

  19. FAST TRACK COMMUNICATION: Factorizing numbers with classical interference: several implementations in optics

    NASA Astrophysics Data System (ADS)

    Rangelov, A. A.

    2009-01-01

    Truncated Fourier, Gauss, Kummer and exponential sums can be used to factorize numbers: for a factor these sums equal unity in absolute value, whereas they nearly vanish for any other number. We show how this factorization algorithm can emerge from superpositions of classical light waves and we present a number of simple implementations in optics.

  20. Multifocal Fluorescence Microscope for Fast Optical Recordings of Neuronal Action Potentials

    PubMed Central

    Shtrahman, Matthew; Aharoni, Daniel B.; Hardy, Nicholas F.; Buonomano, Dean V.; Arisaka, Katsushi; Otis, Thomas S.

    2015-01-01

    In recent years, optical sensors for tracking neural activity have been developed and offer great utility. However, developing microscopy techniques that have several kHz bandwidth necessary to reliably capture optically reported action potentials (APs) at multiple locations in parallel remains a significant challenge. To our knowledge, we describe a novel microscope optimized to measure spatially distributed optical signals with submillisecond and near diffraction-limit resolution. Our design uses a spatial light modulator to generate patterned illumination to simultaneously excite multiple user-defined targets. A galvanometer driven mirror in the emission path streaks the fluorescence emanating from each excitation point during the camera exposure, using unused camera pixels to capture time varying fluorescence at rates that are ∼1000 times faster than the camera’s native frame rate. We demonstrate that this approach is capable of recording Ca2+ transients resulting from APs in neurons labeled with the Ca2+ sensor Oregon Green Bapta-1 (OGB-1), and can localize the timing of these events with millisecond resolution. Furthermore, optically reported APs can be detected with the voltage sensitive dye DiO-DPA in multiple locations within a neuron with a signal/noise ratio up to ∼40, resolving delays in arrival time along dendrites. Thus, the microscope provides a powerful tool for photometric measurements of dynamics requiring submillisecond sampling at multiple locations. PMID:25650920

  1. Controlling slow and fast light and dynamic pulse-splitting with tunable optical gain in a whispering-gallery-mode microcavity

    NASA Astrophysics Data System (ADS)

    Asano, M.; Özdemir, Ş. K.; Chen, W.; Ikuta, R.; Yang, L.; Imoto, N.; Yamamoto, T.

    2016-05-01

    We report controllable manipulation of slow and fast light in a whispering-gallery-mode microtoroid resonator fabricated from Erbium (Er3+) doped silica. We observe continuous transition of the coupling between the fiber-taper waveguide and the microresonator from undercoupling to critical coupling and then to overcoupling regimes by increasing the pump power even though the spatial distance between the resonator and the waveguide was kept fixed. This, in turn, enables switching from fast to slow light and vice versa just by increasing the optical gain. An enhancement of delay of two-fold over the passive silica resonator (no optical gain) was observed in the slow light regime. Moreover, we show dynamic pulse splitting and its control in slow/fast light systems using optical gain.

  2. Mid infra-red hyper-spectral imaging with bright super continuum source and fast acousto-optic tuneable filter for cytological applications.

    NASA Astrophysics Data System (ADS)

    Farries, Mark; Ward, Jon; Valle, Stefano; Stephens, Gary; Moselund, Peter; van der Zanden, Koen; Napier, Bruce

    2015-06-01

    Mid-IR imaging spectroscopy has the potential to offer an effective tool for early cancer diagnosis. Current development of bright super-continuum sources, narrow band acousto-optic tunable filters and fast cameras have made feasible a system that can be used for fast diagnosis of cancer in vivo at point of care. The performance of a proto system that has been developed under the Minerva project is described.

  3. Fast and efficient image reconstruction for high density diffuse optical imaging of the human brain

    PubMed Central

    Wu, Xue; Eggebrecht, Adam T.; Ferradal, Silvina L.; Culver, Joseph P.; Dehghani, Hamid

    2015-01-01

    Real-time imaging of human brain has become an important technique within neuroimaging. In this study, a fast and efficient sensitivity map generation based on Finite Element Models (FEM) is developed which utilises a reduced sensitivitys matrix taking advantage of sparsity and parallelisation processes. Time and memory efficiency of these processes are evaluated and compared with conventional method showing that for a range of mesh densities from 50000 to 320000 nodes, the required memory is reduced over tenfold and computational time fourfold allowing for near real-time image recovery. PMID:26601019

  4. Fast and efficient image reconstruction for high density diffuse optical imaging of the human brain.

    PubMed

    Wu, Xue; Eggebrecht, Adam T; Ferradal, Silvina L; Culver, Joseph P; Dehghani, Hamid

    2015-11-01

    Real-time imaging of human brain has become an important technique within neuroimaging. In this study, a fast and efficient sensitivity map generation based on Finite Element Models (FEM) is developed which utilises a reduced sensitivitys matrix taking advantage of sparsity and parallelisation processes. Time and memory efficiency of these processes are evaluated and compared with conventional method showing that for a range of mesh densities from 50000 to 320000 nodes, the required memory is reduced over tenfold and computational time fourfold allowing for near real-time image recovery. PMID:26601019

  5. Combined Particle Acceleration in Solar Flares and Associated CME Shocks

    NASA Astrophysics Data System (ADS)

    Petrosian, Vahe

    2016-07-01

    I will review some observations of the characteristics of accelerated electrons seen near Earth (as SEPs) and those producing flare radiation in the low corona and chromosphere. The similarities and differences between the numbers, spectral distribution, etc. of the two population can shed light on the mechanism and sites of the acceleration. I will show that in some events the origin of both population appears to be the flare site while in others, with harder SEP spectra, in addition to acceleration at the flare site, there appears to be a need for a second stage re-acceleration in the associated fast Coronal Mass Ejection (CME) environment. This scenario can also describe a similar dichotomy that exists between the so called impulsive, highly enriched (3He and heavy ions) and softer SEP ion events, and stronger more gradual SEP events with near normal ionic abundances and harder spectra. I will also describe under what conditions such hardening can be achieved.

  6. On the State of a Solar Active Region Before Flares and CMEs

    NASA Astrophysics Data System (ADS)

    Korsós, M. B.; Erdélyi, R.

    2016-06-01

    Several attempts have been made to find reliable diagnostic tools to determine the state prior to flares and related coronal mass ejections (CMEs) in solar active regions (ARs). Characterization of the level of mixed states is carried out using the Debrecen sunspot Data for 116 flaring ARs. Conditional flare probabilities (CFPs) are calculated for different flaring classes. The association with slow/fast CMEs is examined. Two precursor parameters are introduced: (i) the sum of the (daily averaged) horizontal magnetic gradient G S (G DS ) and (ii) the separation parameter {S}l-f. We found that if {S}l-f≤slant 1 for a flaring AR then the CFP of the expected highest-intensity flare being X-class is more than 70%. If 1≤slant {S}l-f≤slant 3 the CFP is more than 45% for the highest-intensity flare(s) to be M-class, and if 3≤slant {S}l-f≤slant 13 there is larger than 60% CFP that C-class flare(s) may have the strongest intensity within 48 hr. Next, from analyzing G S for determining CFP we found: if 5.5≤slant {log}({G}S) ≤slant 6.5, then it is very likely that C-class flare(s) may be the most intense; if 6.5≤slant {log}({G}S)≤slant 7.5 then there is ∼45% CFP that M-class could have the highest intensity; finally, if 7.5≤slant {log}({G}S) then there is at least 70% chance that the strongest energy release will be X-class in the next 48 hr. ARs are unlikely to produce X-class flare(s) if 13≤slant {S}l-f and log(G S ) ≤slant 5.5. Finally, in terms of providing an estimate of an associated slow/fast CME, we found that, if {log}({S}l-f) ≥slant 0.4 or {log}({G}{DS}) ≤slant 6.5, there is no accompanying fast CME in the following 24 hr.

  7. Nuclear processes in solar flares

    NASA Technical Reports Server (NTRS)

    Ramaty, R.

    1982-01-01

    The theory of solar gamma-ray line production is reviewed and new calculations of line production yields are presented. Observations, carried out with gamma-ray spectrometers on OSO-7, HEAO-1, HEAO-3 and SMM are reviewed and compared with theory. These observations provide direct evidence for nuclear reactions in flares and furnish unique information on particle acceleration and flare mechanisms.

  8. Solar flare discovery

    NASA Technical Reports Server (NTRS)

    Hudson, Hugh S.

    1987-01-01

    This paper considers the discoveries that have appreciably changed our understanding of the physics of solar flares. A total of 42 discoveries from all disciplines, ranging from Galileo's initial observation of faculae to the recent discovery of strong limb brightening in 10-MeV gamma-radiation, are identified. The rate of discovery increased dramatically over the past four decades as new observational tools became available. The assessment of significance suggests that recent discoveries -though more numerous - are individually less significant; perhaps this is because the minor early discoveries tend to be taken for granted.

  9. FLARE EFFICIENCY MONITORING BY REMOTE INFRARED SENSING: A FEASIBILITY DEMONSTRATION

    EPA Science Inventory

    The report gives results of an evaluation, involving field tests, of passive infrared methods for use in remotely monitoring the efficiency of industrial flares. The tests utilized a general infrared measurement device, the EPA ROSE (Remote Optical Sensing of Emissions), a Fourie...

  10. Holographic polymer networks formed in liquid crystal phase modulators via a He-Ne laser to achieve ultra-fast optical response.

    PubMed

    Chien, Chun-Yu; Hsu, Che-Ju; Chen, Yu-Wen; Tseng, Sheng-Hao; Sheu, Chia-Rong

    2016-04-01

    The holographic polymer network formed in liquid crystal (LC) phase modulators via a He-Ne laser in this study demonstrates ultra-fast optically response and low light scattering. These advantages are mainly caused by the small LC domains and uniform polymer network when processing LC cells via holographic exposure to a He-Ne laser. The use of this method to fabricate LC cells as phase modulators results in a decay time of 49 μs under 2π phase modulation at room temperature. The predicted fast optical response can be achieved when operating devices at high temperatures. PMID:27137042

  11. DETERMINING HEATING RATES IN RECONNECTION FORMED FLARE LOOPS OF THE M8.0 FLARE ON 2005 MAY 13

    SciTech Connect

    Liu Wenjuan; Qiu Jiong; Longcope, Dana W.; Caspi, Amir

    2013-06-20

    We analyze and model an M8.0 flare on 2005 May 13 observed by the Transition Region and Coronal Explorer and the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) to determine the energy release rate from magnetic reconnection that forms and heats numerous flare loops. The flare exhibits two ribbons in UV 1600 A emission. Analysis shows that the UV light curve at each flaring pixel rises impulsively within a few minutes, and decays slowly with a timescale longer than 10 minutes. Since the lower atmosphere (the transition region and chromosphere) responds to energy deposit nearly instantaneously, the rapid UV brightening is thought to reflect the energy release process in the newly formed flare loop rooted at the footpoint. In this paper, we utilize the spatially resolved (down to 1'') UV light curves and the thick-target hard X-ray emission to construct heating functions of a few thousand flare loops anchored at the UV footpoints, and compute plasma evolution in these loops using the enthalpy-based thermal evolution of loops model. The modeled coronal temperatures and densities of these flare loops are then used to calculate coronal radiation. The computed soft X-ray spectra and light curves compare favorably with those observed by RHESSI and by the Geostationary Operational Environmental Satellite X-ray Sensor. The time-dependent transition region differential emission measure for each loop during its decay phase is also computed with a simplified model and used to calculate the optically thin C IV line emission, which dominates the UV 1600 A bandpass during the flare. The computed C IV line emission decays at the same rate as observed. This study presents a method to constrain heating of reconnection-formed flare loops using all available observables independently, and provides insight into the physics of energy release and plasma heating during the flare. With this method, the lower limit of the total energy used to heat the flare loops in this event

  12. New method for fast morphological characterization of organic polycrystalline films by polarized optical microscopy

    NASA Astrophysics Data System (ADS)

    He, Xiao-Chuan; Yang, Jian-Bing; Yan, Dong-Hang; Weng, Yu-Xiang

    2015-07-01

    A new method to visualize the large-scale crystal grain morphology of organic polycrystalline films is proposed. First, optical anisotropic transmittance images of polycrystalline zinc phthalocyanine (ZnPc) films vacuum deposited by weak epitaxial growth (WEG) method were acquired with polarized optical microscopy (POM). Then morphology properties including crystal grain size, distribution, relative orientation, and crystallinity were derived from these images by fitting with a transition dipole model. At last, atomic force microscopy (AFM) imaging was carried out to confirm the fitting and serve as absolute references. This method can be readily generalized to other organic polycrystalline films, thus providing an efficient way to access the large-scale morphologic properties of organic polycrystalline films, which may prove to be useful in industry as a film quality monitoring method. Project supported by the National Natural Science Foundation of China (Grant No. 20933010) and the National Basic Research Program of China (Grant No. 2013CB834800).

  13. A Fast and Scalable Kymograph Alignment Algorithm for Nanochannel-Based Optical DNA Mappings

    PubMed Central

    Noble, Charleston; Nilsson, Adam N.; Freitag, Camilla; Beech, Jason P.; Tegenfeldt, Jonas O.; Ambjörnsson, Tobias

    2015-01-01

    Optical mapping by direct visualization of individual DNA molecules, stretched in nanochannels with sequence-specific fluorescent labeling, represents a promising tool for disease diagnostics and genomics. An important challenge for this technique is thermal motion of the DNA as it undergoes imaging; this blurs fluorescent patterns along the DNA and results in information loss. Correcting for this effect (a process referred to as kymograph alignment) is a common preprocessing step in nanochannel-based optical mapping workflows, and we present here a highly efficient algorithm to accomplish this via pattern recognition. We compare our method with the one previous approach, and we find that our method is orders of magnitude faster while producing data of similar quality. We demonstrate proof of principle of our approach on experimental data consisting of melt mapped bacteriophage DNA. PMID:25875920

  14. A Fast Optical Method for the Determination of Liquid Levels in Microplates

    PubMed Central

    Thurow, Kerstin; Stoll, Norbert; Ritterbusch, Kai

    2011-01-01

    Parallel liquid handling systems are widely used in different applications of life sciences. In order to avoid false positive or negative results which lead to higher costs due to the replication of the experiments it is necessary to monitor the process and success of liquid delivery. An easy method for the determination of the liquid levels in microplates has been developed and evaluated. The optical method bases on the measurement of the liquid level using CCD cameras followed by special algorithms for the evaluation and visualization of the measured data. The proposed method was tested in changing environmental lighting for two different liquids. These tests confirm our approach towards optical liquid level determination for smallest volumes in microplates and also show the challenges regarding environmental lighting and different physical properties of fluids. PMID:21747734

  15. Fine Structure in Solar Flares.

    PubMed

    Warren

    2000-06-20

    We present observations of several large two-ribbon flares observed with both the Transition Region and Coronal Explorer (TRACE) and the soft X-ray telescope on Yohkoh. The high spatial resolution TRACE observations show that solar flare plasma is generally not confined to a single loop or even a few isolated loops but to a multitude of fine coronal structures. These observations also suggest that the high-temperature flare plasma generally appears diffuse while the cooler ( less, similar2 MK) postflare plasma is looplike. We conjecture that the diffuse appearance of the high-temperature flare emission seen with TRACE is due to a combination of the emission measure structure of these flares and the instrumental temperature response and does not reflect fundamental differences in plasma morphology at the different temperatures. PMID:10859129

  16. Parameterization of solar flare dose

    SciTech Connect

    Lamarche, A.H.; Poston, J.W.

    1996-12-31

    A critical aspect of missions to the moon or Mars will be the safety and health of the crew. Radiation in space is a hazard for astronauts, especially high-energy radiation following certain types of solar flares. A solar flare event can be very dangerous if astronauts are not adequately shielded because flares can deliver a very high dose in a short period of time. The goal of this research was to parameterize solar flare dose as a function of time to see if it was possible to predict solar flare occurrence, thus providing a warning time. This would allow astronauts to take corrective action and avoid receiving a dose greater than the recommended limit set by the National Council on Radiation Protection and Measurements (NCRP).

  17. Flares from small to large: X-ray spectroscopy of Proxima Centauri with XMM-Newton

    NASA Astrophysics Data System (ADS)

    Güdel, M.; Audard, M.; Reale, F.; Skinner, S. L.; Linsky, J. L.

    2004-03-01

    We report results from a comprehensive study of the nearby M dwarf Proxima Centauri with the XMM-Newton satellite, using simultaneously its X-ray detectors and the Optical Monitor with its U band filter. We find strongly variable coronal X-ray emission, with flares ranging over a factor of 100 in peak flux. The low-level emission is found to be continuously variable on at least three time scales (a slow decay of several hours, modulation on a time scale of 1 hr, and weak flares with time scales of a few minutes). Several weak flares are characteristically preceded by an optical burst, compatible with predictions from standard solar flare models. We propose that the U band bursts are proxies for the elusive stellar non-thermal hard X-ray bursts suggested from solar observations. In the course of the observation, a very large X-ray flare started and was observed essentially in its entirety. Its peak luminosity reached 3.9× 1028 erg s-1 [0.15-10 keV], and the total X-ray energy released in the same band is derived to be 1.5× 1032 ergs. This flare has for the first time allowed to measure significant density variations across several phases of the flare from X-ray spectroscopy of the O VII He-like triplet; we find peak densities reaching up to 4× 1011 cm-3 for plasma of about 1-5 MK. Abundance ratios show little variability in time, with a tendency of elements with a high first ionization potential to be overabundant relative to solar photospheric values. Using Fe XVII lines with different oscillator strengths, we do not find significant effects due to opacity during the flare, indicating that large opacity increases are not the rule even in extreme flares. We model the large flare in terms of an analytic 2-Ribbon flare model and find that the flaring loop system should have large characteristic sizes (≈ 1R*) within the framework of this simplistic model. These results are supported by full hydrodynamic simulations. Comparing the large flare to flares of similar

  18. Development of a processing and visualization software suite, and optical hardware for the fast infrared diagnostic on NSTX

    NASA Astrophysics Data System (ADS)

    Benjamin, Mark; McLean, Adam; Maingi, Rajesh

    2010-11-01

    Infrared (IR) video is regularly captured at a rate of up to 1.6 kHz during plasma discharges in the National Spherical Torus Experiment (NSTX). Analysis of data collected by this diagnostic is complicated by the recent enhancement to dual-band infrared operation, in which both bands are projected side-by-side on the IR detector. In this work, a suite of IDL and JAVA-based processing and visualization tools have been developed to implement automatic image recognition, incorporate temperature and heat flux calibration, and present key video features essential for study of plasma interaction with the NSTX divertor. In addition, design and development work has been carried out for a broadband, low-aberration optical relay for the fast IR camera to make it possible to move the camera outside of the high magnetic field of the machine where electromagnetic interference sometimes leads to unreliable operation.

  19. Electrowetting on liquid-infused film (EWOLF): Complete reversibility and controlled droplet oscillation suppression for fast optical imaging

    PubMed Central

    Hao, Chonglei; Liu, Yahua; Chen, Xuemei; He, Yuncheng; Li, Qiusheng; Li, K. Y.; Wang, Zuankai

    2014-01-01

    Electrowetting on dielectric (EWOD) has emerged as a powerful tool to electrically manipulate tiny individual droplets in a controlled manner. Despite tremendous progress over the past two decades, current EWOD operating in ambient conditions has limited functionalities posing challenges for its applications, including electronic display, energy generation, and microfluidic systems. Here, we demonstrate a new paradigm of electrowetting on liquid-infused film (EWOLF) that allows for complete reversibility and tunable transient response simultaneously. We determine that these functionalities in EWOLF are attributed to its novel configuration, which allows for the formation of viscous liquid-liquid interfaces as well as additional wetting ridges, thereby suppressing the contact line pinning and severe droplet oscillation encountered in the conventional EWOD. Finally, by harnessing these functionalities demonstrated in EWOLF, we also explore its application as liquid lens for fast optical focusing. PMID:25355005

  20. Optical shadowgraphy and proton imaging as diagnostics tools for fast electron propagation in ultrahigh-intensity laser-matter interaction

    NASA Astrophysics Data System (ADS)

    Manclossi, M.; Batani, D.; Piazza, D.; Baton, S.; Amiranoff, F.; Koenig, M.; Popescu, H.; Audebert, P.; Santos, J. J.; Martinolli, E.; Benuzzi-Mounaix, A.; Le Gloahec, M. R.; Antonicci, A.; Rousseaux, C.; Borghesi, M.; Cecchetti, C.; Malka, V.; Hall, T.

    2005-10-01

    This paper reports the results of some recent experiments performed at the LULI laboratory (Palaiseau, France) concerning the propagation of large relativistic electron currents in a gas jet. We present our experimental results according to the type of diagnostics used in the experiments: (1) time resolved optical shadowgraphy and (2) proton imaging. Proton radiography images did show the presence of very strong fields in the gas probably produced by charge separation. In turn, these imply a slowing down of the fast electron cloud as it penetrates in the gas. Indeed, shadowgraphy images show a strong inhibition of propagation and a strong reduction in time of the velocity of the electron cloud from the initial value, which is of the order of a fraction of c.

  1. Electrowetting on liquid-infused film (EWOLF): Complete reversibility and controlled droplet oscillation suppression for fast optical imaging

    NASA Astrophysics Data System (ADS)

    Hao, Chonglei; Liu, Yahua; Chen, Xuemei; He, Yuncheng; Li, Qiusheng; Li, K. Y.; Wang, Zuankai

    2014-10-01

    Electrowetting on dielectric (EWOD) has emerged as a powerful tool to electrically manipulate tiny individual droplets in a controlled manner. Despite tremendous progress over the past two decades, current EWOD operating in ambient conditions has limited functionalities posing challenges for its applications, including electronic display, energy generation, and microfluidic systems. Here, we demonstrate a new paradigm of electrowetting on liquid-infused film (EWOLF) that allows for complete reversibility and tunable transient response simultaneously. We determine that these functionalities in EWOLF are attributed to its novel configuration, which allows for the formation of viscous liquid-liquid interfaces as well as additional wetting ridges, thereby suppressing the contact line pinning and severe droplet oscillation encountered in the conventional EWOD. Finally, by harnessing these functionalities demonstrated in EWOLF, we also explore its application as liquid lens for fast optical focusing.

  2. Fast ground state manipulation of neutral atoms in microscopic optical traps.

    PubMed

    Yavuz, D D; Kulatunga, P B; Urban, E; Johnson, T A; Proite, N; Henage, T; Walker, T G; Saffman, M

    2006-02-17

    We demonstrate Rabi flopping at MHz rates between ground hyperfine states of neutral 87Rb atoms that are trapped in two micron sized optical traps. Using tightly focused laser beams we demonstrate high fidelity, site specific Rabi rotations with cross talk on neighboring sites separated by 8 microm at the level of 10(-3). Ramsey spectroscopy is used to measure a dephasing time of 870 micros, which is approximately 5000 longer than the time for a pi/2 pulse. PMID:16605988

  3. Fast Optical Hazard Detection for Planetary Rovers Using Multiple Spot Laser Triangulation

    NASA Technical Reports Server (NTRS)

    Matthies, L.; Balch, T.; Wilcox, B.

    1997-01-01

    A new laser-based optical sensor system that provides hazard detection for planetary rovers is presented. It is anticipated that the sensor can support safe travel at speeds up to 6cm/second for large (1m) rovers in full sunlight on Earth or Mars. The system overcomes limitations in an older design that require image differencing ot detect a laser stripe in full sun.

  4. Fast and robust optical flow for time-lapse microscopy using super-voxels

    PubMed Central

    Amat, Fernando; Myers, Eugene W.; Keller, Philipp J.

    2013-01-01

    Motivation: Optical flow is a key method used for quantitative motion estimation of biological structures in light microscopy. It has also been used as a key module in segmentation and tracking systems and is considered a mature technology in the field of computer vision. However, most of the research focused on 2D natural images, which are small in size and rich in edges and texture information. In contrast, 3D time-lapse recordings of biological specimens comprise up to several terabytes of image data and often exhibit complex object dynamics as well as blurring due to the point-spread-function of the microscope. Thus, new approaches to optical flow are required to improve performance for such data. Results: We solve optical flow in large 3D time-lapse microscopy datasets by defining a Markov random field (MRF) over super-voxels in the foreground and applying motion smoothness constraints between super-voxels instead of voxel-wise. This model is tailored to the specific characteristics of light microscopy datasets: super-voxels help registration in textureless areas, the MRF over super-voxels efficiently propagates motion information between neighboring cells and the background subtraction and super-voxels reduce the dimensionality of the problem by an order of magnitude. We validate our approach on large 3D time-lapse datasets of Drosophila and zebrafish development by analyzing cell motion patterns. We show that our approach is, on average, 10 × faster than commonly used optical flow implementations in the Insight Tool-Kit (ITK) and reduces the average flow end point error by 50% in regions with complex dynamic processes, such as cell divisions. Availability: Source code freely available in the Software section at http://janelia.org/lab/keller-lab. Contact: amatf@janelia.hhmi.org or kellerp@janelia.hhmi.org Supplementary information: Supplementary data are available at Bioinformatics online. PMID:23242263

  5. Fast beam steering with full polarization control using a galvanometric optical scanner and polarization controller.

    PubMed

    Jofre, M; Anzolin, G; Steinlechner, F; Oliverio, N; Torres, J P; Pruneri, V; Mitchell, M W

    2012-05-21

    Optical beam steering is a key element in many industrial and scientific applications like in material processing, information technologies, medical imaging and laser display. Even though galvanometer-based scanners offer flexibility, speed and accuracy at a relatively low cost, they still lack the necessary control over the polarization required for certain applications. We report on the development of a polarization steerable system assembled with a fiber polarization controller and a galvanometric scanner, both controlled by a digital signal processor board. The system implements control of the polarization decoupled from the pointing direction through a feed-forward control scheme. This enables to direct optical beams to a desired direction without affecting its initial polarization state. When considering the full working field of view, we are able to compensate polarization angle errors larger than 0.2 rad, in a temporal window of less than ∼ 20 ms. Given the unification of components to fully control any polarization state while steering an optical beam, the proposed system is potentially integrable and robust. PMID:22714214

  6. En-face full-field optical coherence tomography for fast and efficient fingerprints acquisition

    NASA Astrophysics Data System (ADS)

    Harms, Fabrice; Dalimier, Eugénie; Boccara, A. Claude

    2014-05-01

    Optical coherence tomography (OCT) has been recently proposed by a number of laboratories as a promising tool for fingerprints acquisitions and for fakes discrimination. Indeed OCT being a non-contact, non-destructive optical method that virtually sections the volume of biological tissues that strongly scatter light it appears obvious to use it for fingerprints. Nevertheless most of the OCT setups have to go through the long acquisition of a full 3D image to isolate an "en-face" image suitable for fingerprint analysis. A few "en-face" OCT approaches have been proposed that use either a complex 2D scanning setup and image processing, or a full-field illumination using a camera and a spatially coherent source that induces crosstalks and degrades the image quality. We show here that Full Field OCT (FFOCT) using a spatially incoherent source is able to provide "en-face" high quality optical sectioning of the fingers skin. Indeed such approach shows a unique spatial resolution able to reveal a number of morphological details of fingerprints that are not seen with competing OCT setups. In particular the cellular structure of the stratum corneum and the epidermis-dermis interface appear clearly. We describe our high-resolution (1 micrometer, isotropic) setup and show our first design to get a large field of view while keeping a good sectioning ability of about 3 micrometers. We display the results obtained using these two setups for fingerprints examination.

  7. A proposed optical system for implementing the novel super-fast image processing scheme: the LPED method

    NASA Astrophysics Data System (ADS)

    Hu, Chialun John

    2014-04-01

    LPED method, or Local Polar Edge Detection method, is a novel method the author discovered and implemented in many image processing schemes in the last 3 years with 3 papers published in this and other SPIE national conferences. It uses a special real-time boundary extraction method applied to some binary images taken by an uncooled IR camera on some high temperature objects embedded in a cold environment background in the far field. The unique boundary shape of each high temperature object can then be used to construct a 36D analog vector (a 36 - "digit" number U, with each "digit" being a positive analog number of any magnitude). This 36D analog vector U then represents the ID code to identify this object possessing this particular boundary shape. Therefore, U may be used for tracking and targeting on this particular object when this object is moving very fast in a 2D space and criss-crossing with other fast moving objects embedded in the same field of view. The current paper will report a preliminary optical bench design of the optical system that will use the above developed soft-ware to construct a real-time, instant-detect, instant track, and automatic targeting high power laser gun system, for shooting down any spontaneously launched enemy surface-to-air-missiles from the near-by battle ground. It uses the total reflection phenomenon in the Wollastron beam combiner and real-time monitor screen auto-targeting and firing system to implement this "instant-detect, instant-kill, SAM killer system".

  8. NIR Flare of PKS2032+107

    NASA Astrophysics Data System (ADS)

    Carrasco, L.; Miramon, J.; Recillas, E.; Porras, A.; Chabushyan, V.; Carraminana, A.; Mayya, D.

    2013-11-01

    We have observed a recent NIR flare of the intermediate redshift quasar PKS2032+107. This radio source is cross identified with the gamma ray source 2FGLJ2035.4+1058 and the optical source BZQJ2035+1056. From observations carried out on November 12th, 2013 (JD 2456608.603380), we determined the following photometric values H = 13.452 +/- 0.03, J = 14.628 +/- 0.03 and Ks = 12.777 +/- 0.05. Our previous NIR photometry of the object (JD2456595.644780) yielded the value: H = 15.012 =/- 0.05.

  9. Analysis of flares in the chromosphere and corona of main- and pre-main-sequence M-type stars

    NASA Astrophysics Data System (ADS)

    Crespo-Chacón, I.

    2015-11-01

    This Ph.D. Thesis revolves around flares on main- and pre-main-sequence M-type stars. We use observations in different wavelength ranges with the aim of analysing the effects of flares at different layers of stellar atmospheres. In particular, optical and X-ray observations are used so that we can study how flares affect, respectively, the chromosphere and the corona of stars. In the optical range we carry out a high temporal resolution spectroscopic monitoring of UV Ceti-type stars aimed at detecting non-white-light flares (the most typical kind of solar flares) in stars other than the Sun. With these data we confirm that non-white-light flares are a frequent phenomenon in UV Ceti-type stars, as observed in the Sun. We study and interpret the behaviour of different chromospheric lines during the flares detected on AD Leo. By using a simplified slab model of flares (Jevremović et al. 1998), we are able to determine the physical parameters of the chromospheric flaring plasma (electron density and electron temperature), the temperature of the underlying source, and the surface area covered by the flaring plasma. We also search for possible relationships between the physical parameters of the flaring plasma and other properties such as the flare duration, area, maximum flux and released energy. This work considerably extends the existing sample of stellar flares analysed with good quality spectroscopy in the optical range. In X-rays we take advantage of the great sensitivity, wide energy range, high energy resolution, and continuous time coverage of the EPIC detectors - on-board the XMMNewton satellite - in order to perform time-resolved spectral analysis of coronal flares. In particular, in the UV Ceti-type star CC Eri we study two flares that are weaker than those typically reported in the literature (allowing us to speculate about the role of flares as heating agents of stellar atmospheres); while in the pre-main-sequence M-type star TWA 11B (with no signatures of

  10. Optical recording of fast neuronal membrane potential transients in acute mammalian brain slices by second-harmonic generation microscopy.

    PubMed

    Dombeck, Daniel A; Sacconi, Leonardo; Blanchard-Desce, Mireille; Webb, Watt W

    2005-11-01

    Although nonlinear microscopy and fast (approximately 1 ms) membrane potential (Vm) recording have proven valuable for neuroscience applications, their potentially powerful combination has not yet been shown for studies of Vm activity deep in intact tissue. We show that laser illumination of neurons in acute rat brain slices intracellularly filled with FM4-64 dye generates an intense second-harmonic generation (SHG) signal from somatic and dendritic plasma membranes with high contrast >125 microm below the slice surface. The SHG signal provides a linear response to DeltaVm of approximately 7.5%/100 mV. By averaging repeated line scans (approximately 50), we show the ability to record action potentials (APs) optically with a signal-to-noise ratio (S/N) of approximately 7-8. We also show recording of fast Vm steps from the dendritic arbor at depths inaccessible with previous methods. The high membrane contrast and linear response of SHG to DeltaVm provides the advantage that signal changes are not degraded by background and can be directly quantified in terms of DeltaVm. Experimental comparison of SHG and two-photon fluorescence Vm recording with the best known probes for each showed that the SHG technique is superior for Vm recording in brain slice applications, with FM4-64 as the best tested SHG Vm probe. PMID:16093337

  11. GPU-accelerated non-uniform fast Fourier transform-based compressive sensing spectral domain optical coherence tomography.

    PubMed

    Xu, Daguang; Huang, Yong; Kang, Jin U

    2014-06-16

    We implemented the graphics processing unit (GPU) accelerated compressive sensing (CS) non-uniform in k-space spectral domain optical coherence tomography (SD OCT). Kaiser-Bessel (KB) function and Gaussian function are used independently as the convolution kernel in the gridding-based non-uniform fast Fourier transform (NUFFT) algorithm with different oversampling ratios and kernel widths. Our implementation is compared with the GPU-accelerated modified non-uniform discrete Fourier transform (MNUDFT) matrix-based CS SD OCT and the GPU-accelerated fast Fourier transform (FFT)-based CS SD OCT. It was found that our implementation has comparable performance to the GPU-accelerated MNUDFT-based CS SD OCT in terms of image quality while providing more than 5 times speed enhancement. When compared to the GPU-accelerated FFT based-CS SD OCT, it shows smaller background noise and less side lobes while eliminating the need for the cumbersome k-space grid filling and the k-linear calibration procedure. Finally, we demonstrated that by using a conventional desktop computer architecture having three GPUs, real-time B-mode imaging can be obtained in excess of 30 fps for the GPU-accelerated NUFFT based CS SD OCT with frame size 2048(axial) × 1,000(lateral). PMID:24977582

  12. GPU-accelerated non-uniform fast Fourier transform-based compressive sensing spectral domain optical coherence tomography

    PubMed Central

    Xu, Daguang; Huang, Yong; Kang, Jin U.

    2014-01-01

    We implemented the graphics processing unit (GPU) accelerated compressive sensing (CS) non-uniform in k-space spectral domain optical coherence tomography (SD OCT). Kaiser-Bessel (KB) function and Gaussian function are used independently as the convolution kernel in the gridding-based non-uniform fast Fourier transform (NUFFT) algorithm with different oversampling ratios and kernel widths. Our implementation is compared with the GPU-accelerated modified non-uniform discrete Fourier transform (MNUDFT) matrix-based CS SD OCT and the GPU-accelerated fast Fourier transform (FFT)-based CS SD OCT. It was found that our implementation has comparable performance to the GPU-accelerated MNUDFT-based CS SD OCT in terms of image quality while providing more than 5 times speed enhancement. When compared to the GPU-accelerated FFT based-CS SD OCT, it shows smaller background noise and less side lobes while eliminating the need for the cumbersome k-space grid filling and the k-linear calibration procedure. Finally, we demonstrated that by using a conventional desktop computer architecture having three GPUs, real-time B-mode imaging can be obtained in excess of 30 fps for the GPU-accelerated NUFFT based CS SD OCT with frame size 2048(axial)×1000(lateral). PMID:24977582

  13. Detection of a flaring low-energy gamma-ray source

    NASA Technical Reports Server (NTRS)

    Bhattacharya, Dipen; Owens, Alan

    1994-01-01

    We report the detection of a flaring gamma-ray source by the University of New Hampshire (UNH) balloon-borne coded aperture gamma-ray telescope (DGT) on 1984 October 2. The source was detected at the significance level of 7.2 sigma over the energy range 160-2000 keV. The intensity in the range (160-200) keV was 1.1 Crab. The best-fit position of the source is given by R.A. = 3h 25.8m and Decl. = 67 deg 653 min and is located in the constellation of Camelopardia. The source was visible within the Field of View (FOV) of the telescope for approximately = 2 hr and exhibited signs of flaring. The derived photon spectrum can be equally fitted by an optically thin bremsstrahlung distribution of kT approximately = 52 keV or a power law of the form, dN(E)/dE = 3.7 x 10(exp -6) (E/400)(exp -4.5) photons/sq cm/keV. We compare its spectral characteristics ad energy output to various types of fast X-ray transients. No measurable flux could be detected from CG 135+1, the COS B source which was in the FOV and therefore, we present 2 sigma upper flux limits on its spectral emission over the energy range 160 keV to 9.3 MeV.

  14. Inferring Flare Loop Parameters with Measurements of Standing Sausage Modes

    NASA Astrophysics Data System (ADS)

    Guo, Ming-Zhe; Chen, Shao-Xia; Li, Bo; Xia, Li-Dong; Yu, Hui

    2016-03-01

    Standing fast sausage modes in flare loops were suggested to account for a considerable number of quasi-periodic pulsations (QPPs) in the light curves of solar flares. This study continues our investigation into the possibility of inverting the measured periods P and damping times τ of sausage modes to deduce the transverse Alfvén time R/v_{Ai}, density contrast ρi/ρe, and the steepness of the density distribution transverse to flare loops. A generic dispersion relation governing linear sausage modes is derived for pressureless cylinders where density inhomogeneity of arbitrary form takes place within the cylinder. We show that in general the inversion problem is under-determined for QPP events where only a single sausage mode exists, whether the measurements are spatially resolved or unresolved. While R/v_{Ai} can be inferred to some extent, the range of possible steepness parameters may be too broad to be useful. However, for spatially resolved measurements where an additional mode is present, it is possible to deduce self-consistently ρi/ρe, the profile steepness, and the internal Alfvén speed v_{Ai}. We show that at least for a recent QPP event that involves a fundamental kink mode in addition to a sausage one, flare loop parameters are well constrained even if the specific form of the transverse density distribution remains unknown. We conclude that spatially resolved, multi-mode QPP measurements need to be pursued to infer flare loop parameters.

  15. The high accuracy model of the 19 July 2012 solar flare: kinetic description, calculations of X-Ray and microwave emission

    NASA Astrophysics Data System (ADS)

    Gritsyk, Pavel; Somov, Boris

    2016-04-01

    The limb white-light solar flare M7.7 class was observed at the 19 July 2012 at 05:58UT by RHESSI, GOES and SDO with high spectral, spatial and temporal resolution. These new data make possible to test modern models of solar flares. The flare, which considered here, locates in the picture plane, so we well see two different hard X-ray sources: footpoint and above-the-loop-top. The loop was observed in whit-light and microwave wavelengths. The key part of the presented work is high accuracy kinetic model, which describe behavior of electrons in the target - solar flare loop. We interpret the footpoint source in approximation of the thick target model with reverse current and above-the-loop-top source - in the thin target approximation. The microwave spectrum in the range from 1 to 50 GHz was calculated. Our results fit well the observational data, particularly so important parameter as hard X-Ray spectral index. But intensity of emission of the coronal source was estimated incorrect, it was low than observed. This problem can be solved by taking into account effects of particles acceleration in the collapsing magnetic trap, when fast electrons receive additional energy without changing the index of their energy spectrum. In the result we have flux ~ 5 1010 erg cm-2 s-1 for electrons with energies more then 15 keV, that ~ 5 times larger then in the case classical thick target model. Accordingly , so high flux of electrons to the Chromosphere provides effective heating of the cold plasma in the target, but the reverse current electric field restrict depth of the electron penetration. Received in this work estimates may be used for interpretation of the solar flare optical source formation and evolution.

  16. Optical design of wide waveband compact imaging spectrometer with fast speed

    NASA Astrophysics Data System (ADS)

    Xu, Li; Ji, Yiqun; Shen, Weimin; Tang, Minxue

    2011-11-01

    Here two imaging spectrometers, based on a different prism-grating-prism (PGP) dispersing component, are designed and presented. One works at the visible near infrared (VNIR) waveband from 400nm to 1000nm with 1.7nm/pixel spectral resolution, 85mm track length. As for the other, its spectral coverage, spectral resolution, and track length are the short wavelength infrared (SWIR) waveband from 900nm to 1700nm, 3nm/pixel, and 108mm, respectively. Both of the imaging spectrometers have advantages of fast speed (F/2.0), wide spectral range, low distortion, low cost, even relative illumination, and compactness made them ideally suited for hyperspectral imaging remote sensing. Either of them gains the preferable imaging quality.

  17. Fast switchable ferroelectric liquid crystal gratings with two electro-optical modes

    NASA Astrophysics Data System (ADS)

    Ma, Ying; Wang, Xiaoqian; Srivastava, A. K.; Chigrinov, V. G.; Kwok, H.-S.

    2016-03-01

    In this article, we reveal a theoretical and experimental illustration of the Ferroelectric liquid crystal (FLC) grating fabricated by mean of patterned alignment based on photo-alignment. The complexity related to the mismatching of the predefined alignment domains on the top and bottom substrate has been avoided by incorporating only one side photo aligned substrate while the other substrate does not have any alignment layer. Depending on the easy axis in the said alignment domains and the azimuth plane of the impinging polarized light, the diffracting element can be tuned in two modes i.e. DIFF/OFF switchable and DIFF/TRANS switchable modes, which can be applied to different applications. The diffraction profile has been illustrated theoretically that fits well with the experimental finding and thus the proposed diffraction elements with fast response time and high diffraction efficiency could find application in many modern devices.

  18. Early stage time evolution of a dense nanosecond microdischarge used in fast optical switching applications

    NASA Astrophysics Data System (ADS)

    Levko, Dmitry; Raja, Laxminarayan L.

    2015-12-01

    The mechanism of high-voltage nanosecond microdischarges is studied by the self-consistent two-dimensional Particle-in-Cell/Monte Carlo Collisions model. These microdischarges were recently proposed for use as fast switches of visible light in Bataller et al. [Appl. Phys. Lett. 105, 223501 (2014)]. The microdischarge is found to develop in two stages. The first stage is associated with the electrons initially seeded in the cathode-anode gap. These electrons lead to the formation of a cathode-directed streamer. The second stage starts when the secondary electron emission from the cathode begins. In this stage, a rather dense plasma (˜1016 cm-3) is generated which results in the narrow cathode sheath. The electric field in this sheath exceeds the critical electric field which is necessary for the runaway electrons generation. We have found that the presence of these energetic electrons is crucial for the discharge maintenance.

  19. Early stage time evolution of a dense nanosecond microdischarge used in fast optical switching applications

    SciTech Connect

    Levko, Dmitry; Raja, Laxminarayan L.

    2015-12-15

    The mechanism of high-voltage nanosecond microdischarges is studied by the self-consistent two-dimensional Particle-in-Cell/Monte Carlo Collisions model. These microdischarges were recently proposed for use as fast switches of visible light in Bataller et al. [Appl. Phys. Lett. 105, 223501 (2014)]. The microdischarge is found to develop in two stages. The first stage is associated with the electrons initially seeded in the cathode-anode gap. These electrons lead to the formation of a cathode-directed streamer. The second stage starts when the secondary electron emission from the cathode begins. In this stage, a rather dense plasma (∼10{sup 16 }cm{sup −3}) is generated which results in the narrow cathode sheath. The electric field in this sheath exceeds the critical electric field which is necessary for the runaway electrons generation. We have found that the presence of these energetic electrons is crucial for the discharge maintenance.

  20. Fast optical cooling of a nanomechanical cantilever by a dynamical Stark-shift gate

    PubMed Central

    Yan, Leilei; Zhang, Jian-Qi; Zhang, Shuo; Feng, Mang

    2015-01-01

    The efficient cooling of nanomechanical resonators is essential to exploration of quantum properties of the macroscopic or mesoscopic systems. We propose such a laser-cooling scheme for a nanomechanical cantilever, which works even for the low-frequency mechanical mode and under weak cooling lasers. The cantilever is coupled by a diamond nitrogen-vacancy center under a strong magnetic field gradient and the cooling is assisted by a dynamical Stark-shift gate. Our scheme can effectively enhance the desired cooling efficiency by avoiding the off-resonant and undesired carrier transitions, and thereby cool the cantilever down to the vicinity of the vibrational ground state in a fast fashion. PMID:26455901

  1. Multi-frequency observation of high mass X-ray binary Cygnus X-3 during flares

    NASA Astrophysics Data System (ADS)

    Pal, Sabyasachi; Patra, Dusmanta; Ishwara-Chandra, C. H.; Rao, A. P.

    2016-07-01

    We studied the multi-frequency properties of the Galactic high mass X-ray binary Cygnus X-3 during various flaring activities using The Rossi X-ray Timing Explorer (RXTE), the Giant Metrewave Radio Telescope (GMRT), Jansky Very Large Array (JVLA) etc. The flare of 2006 May-June was one of the largest flare in the history of the source which is thoroughly discussed. We also observed few large flares of this source between 2007 and 2009. We commented on correlation and lag between X-ray and radio emissions during flares. We construct the radio spectrum of the source in the rising and fading phase of flares using GMRT, JVLA and published results using RATAN. We clearly see that the turn-over frequency is shifting towards lower frequencies as the flares evolve gradually. The two point spectral index between 614 MHz and 235 MHz varies from positive (optically thick) and negative (optically thin) values which is consistent with the synchrotron self absorption model. We calculated some physical parameters of the source such as the size of emitting region using the synchrotron self absorption model. The size of the emitting region expands with the flare. We estimate the velocity of the expansion of the blob in the non-relativistic range from the expansion of the size of emitting region.

  2. An optical technique for fast and ultrasensitive detection of ammonia using magnetic nanofluids

    NASA Astrophysics Data System (ADS)

    Mahendran, V.; Philip, John

    2013-02-01

    We report a simple, in-expensive, portable, and ultrasensitive optical sensor for detection of ammonia in parts per million levels using magnetic nanofluids. The sensor produces visually perceptible color changes, in the presence of ammonia, due to the changes in the lattice periodicity of 1-dimensional array of droplets. The penetration of ammonia into the diffused electric double layer around the emulsion droplet causes significant blue shift in the diffracted Bragg peak. The mechanism of the blue shift is probed by measuring the subtle changes in the intermolecular forces in the presence of ammonia. The present approach is useful for online monitoring of ammonia.

  3. Fiber-optic pulsed photothermal radiometry for fast surface-temperature measurements.

    PubMed

    Eyal, O; Scharf, V; Katzir, A

    1998-09-01

    Temperature measurement based on pulsed photothermal radiometry is described. In this technique a body is irradiated by a laser pulse and its temperature is inferred from the shape of the emitted photothermal-signal curve. A prototypical system based on a pulsed CO(2) laser, an IR detector, and IR-transmitting silver halide optical fibers was constructed and used to evaluate the feasibility of this technique. An important feature of the technique is that changes in sample emissivity or geometric factors do not introduce errors in the temperature determination. Theory, simulation, and experimental results are given and discussed. PMID:18286089

  4. Fast Fourier and Wavelet Transforms for Wavefront Reconstruction in Adaptive Optics

    SciTech Connect

    Dowla, F U; Brase, J M; Olivier, S S

    2000-07-28

    Wavefront reconstruction techniques using the least-squares estimators are computationally quite expensive. We compare wavelet and Fourier transforms techniques in addressing the computation issues of wavefront reconstruction in adaptive optics. It is shown that because the Fourier approach is not simply a numerical approximation technique unlike the wavelet method, the Fourier approach might have advantages in terms of numerical accuracy. However, strictly from a numerical computations viewpoint, the wavelet approximation method might have advantage in terms of speed. To optimize the wavelet method, a statistical study might be necessary to use the best basis functions or ''approximation tree.''

  5. Optical phased array using high-contrast grating all-pass filters for fast beam steering

    NASA Astrophysics Data System (ADS)

    Yang, Weijian; Sun, Tianbo; Rao, Yi; Chan, Trevor; Megens, Mischa; Yoo, Byung-Wook; Horsley, David A.; Wu, Ming C.; Chang-Hasnain, Connie J.

    2013-03-01

    A novel 8x8 optical phased array based on high-contrast grating (HCG) all-pass filters (APFs) is experimentally demonstrated with high speed beam steering. Highly efficient phase tuning is achieved by micro-electro-mechanical actuation of the HCG to tune the cavity length of the APFs. Using APF phase-shifters allows a large phase shift with an actuation range of only tens of nanometers. The ultrathin HCG further ensures a high tuning speed (0.626 MHz). Both one-dimensional and two-dimensional HCGs are demonstrated as the actuation mirrors of the APF arrays with high beam steering performance.

  6. Fast processing of optical fringe movement in displacement sensors without using an ADC

    NASA Astrophysics Data System (ADS)

    Hussain, Babar; Muhammad, Taj; Rehan, Muhammad; Aman, Haroon; Aslam, Muhammad; Ikram, Masroor; Raja, M. Yasin Akhtar

    2013-09-01

    An interferometer based optical sensor for displacement measurement is reported. This method requires quite simple signal processing as well as least electronic components. Referring to this technique, two photodiodes spatially shifted by 90 degrees were used. The output of photodiodes was converted into rectangular signals which were extracted in LabVIEW using the data acquisition card without using an analog to digital converters (ADC). We have also processed the signals in C++ after acquiring via parallel port. A Michelson interferometer configuration was used to produce linear fringes for the detection of displacements. The displacement less than 100 nm could be measured using this technique.

  7. Fast and Accurate Cell Tracking by a Novel Optical-Digital Hybrid Method

    NASA Astrophysics Data System (ADS)

    Torres-Cisneros, M.; Aviña-Cervantes, J. G.; Pérez-Careta, E.; Ambriz-Colín, F.; Tinoco, Verónica; Ibarra-Manzano, O. G.; Plascencia-Mora, H.; Aguilera-Gómez, E.; Ibarra-Manzano, M. A.; Guzman-Cabrera, R.; Debeir, Olivier; Sánchez-Mondragón, J. J.

    2013-09-01

    An innovative methodology to detect and track cells using microscope images enhanced by optical cross-correlation techniques is proposed in this paper. In order to increase the tracking sensibility, image pre-processing has been implemented as a morphological operator on the microscope image. Results show that the pre-processing process allows for additional frames of cell tracking, therefore increasing its robustness. The proposed methodology can be used in analyzing different problems such as mitosis, cell collisions, and cell overlapping, ultimately designed to identify and treat illnesses and malignancies.

  8. Above-the-loop-top Oscillation and Quasi-periodic Coronal Wave Generation in Solar Flares

    NASA Astrophysics Data System (ADS)

    Takasao, Shinsuke; Shibata, Kazunari

    2016-06-01

    Observations revealed that various kinds of oscillations are excited in solar flare regions. Quasi-periodic pulsations (QPPs) in flare emissions are commonly observed in a wide range of wavelengths. Recent observations have found that fast-mode magnetohydrodynamic (MHD) waves are quasi-periodically emitted from some flaring sites (quasi-periodic propagating fast-mode magnetoacoustic waves; QPFs). Both QPPs and QPFs imply a cyclic disturbance originating from the flaring sites. However, the physical mechanisms remain puzzling. By performing a set of two-dimensional MHD simulations of a solar flare, we discovered the local oscillation above the loops filled with evaporated plasma (above-the-loop-top region) and the generation of QPFs from such oscillating regions. Unlike all previous models for QPFs, our model includes essential physics for solar flares such as magnetic reconnection, heat conduction, and chromospheric evaporation. We revealed that QPFs can be spontaneously excited by the above-the-loop-top oscillation. We found that this oscillation is controlled by the backflow of the reconnection outflow. The new model revealed that flare loops and the above-the-loop-top region are full of shocks and waves, which is different from the previous expectations based on a standard flare model and previous simulations. In this paper, we show the QPF generation process based on our new picture of flare loops and will briefly discuss a possible relationship between QPFs and QPPs. Our findings will change the current view of solar flares to a new view in which they are a very dynamic phenomenon full of shocks and waves.

  9. Coordinated observations of a large impulsive flare on UV Ceti

    NASA Astrophysics Data System (ADS)

    de Jager, C.; Heise, J.; van Genderen, A. M.; Foing, B. H.; Ilyin, I. V.; Kilkenny, D. S.; Marvridis, L.; Cutispoto, G.; Rodono, M.; Seeds, M. A.; Yuen, K. Ng.; van Driel, W.; Rabattu, X.; Zodi, A. M.; Vilas Boas, J. W. S.; Scalise, E.; Schaal, R. E.; Kaufmann, P.; Waelkens, C.

    1989-02-01

    The characteristics of the major flare observed on UV Ceti on Decemmber 1985 at 01:26 UT during an international observing campaign are described. X-ray observations were obtained with Exosat in the 0.06-0.3 keV bands and 1-6 keV bands; optical photometry was obtained in 11 wavelength bands, and spectra were recorded in the wavelength range 3500 to 7000 A. The results of the data analysis support the Impulsive Explosion Model proposed for stellar flares and disclose some differences with the solar case.

  10. Gage tests tube flares quickly and accurately

    NASA Technical Reports Server (NTRS)

    Griffin, F. D.

    1966-01-01

    Flared tube gage with a test cone that is precisely made with a tapering surface to complement the tube flare is capable of determining the accuracy of a tube flare efficiently and economically. This device should improve the speed, efficiency, and accuracy of tube flare inspections.

  11. Fast error simulation of optical 3D measurements at translucent objects

    NASA Astrophysics Data System (ADS)

    Lutzke, P.; Kühmstedt, P.; Notni, G.

    2012-09-01

    The scan results of optical 3D measurements at translucent objects deviate from the real objects surface. This error is caused by the fact that light is scattered in the objects volume and is not exclusively reflected at its surface. A few approaches were made to separate the surface reflected light from the volume scattered. For smooth objects the surface reflected light is dominantly concentrated in specular direction and could only be observed from a point in this direction. Thus the separation either leads to measurement results only creating data for near specular directions or provides data from not well separated areas. To ensure the flexibility and precision of optical 3D measurement systems for translucent materials it is necessary to enhance the understanding of the error forming process. For this purpose a technique for simulating the 3D measurement at translucent objects is presented. A simple error model is shortly outlined and extended to an efficient simulation environment based upon ordinary raytracing methods. In comparison the results of a Monte-Carlo simulation are presented. Only a few material and object parameters are needed for the raytracing simulation approach. The attempt of in-system collection of these material and object specific parameters is illustrated. The main concept of developing an error-compensation method based on the simulation environment and the collected parameters is described. The complete procedure is using both, the surface reflected and the volume scattered light for further processing.

  12. Fast ray-tracing of human eye optics on Graphics Processing Units.

    PubMed

    Wei, Qi; Patkar, Saket; Pai, Dinesh K

    2014-05-01

    We present a new technique for simulating retinal image formation by tracing a large number of rays from objects in three dimensions as they pass through the optic apparatus of the eye to objects. Simulating human optics is useful for understanding basic questions of vision science and for studying vision defects and their corrections. Because of the complexity of computing such simulations accurately, most previous efforts used simplified analytical models of the normal eye. This makes them less effective in modeling vision disorders associated with abnormal shapes of the ocular structures which are hard to be precisely represented by analytical surfaces. We have developed a computer simulator that can simulate ocular structures of arbitrary shapes, for instance represented by polygon meshes. Topographic and geometric measurements of the cornea, lens, and retina from keratometer or medical imaging data can be integrated for individualized examination. We utilize parallel processing using modern Graphics Processing Units (GPUs) to efficiently compute retinal images by tracing millions of rays. A stable retinal image can be generated within minutes. We simulated depth-of-field, accommodation, chromatic aberrations, as well as astigmatism and correction. We also show application of the technique in patient specific vision correction by incorporating geometric models of the orbit reconstructed from clinical medical images. PMID:24713524

  13. Fiber-optic evanescent-wave spectroscopy for fast multicomponent analysis of human blood

    NASA Astrophysics Data System (ADS)

    Simhi, Ronit; Gotshal, Yaron; Bunimovich, David; Katzir, Abraham; Sela, Ben-Ami

    1996-07-01

    A spectral analysis of human blood serum was undertaken by fiber-optic evanescent-wave spectroscopy (FEWS) by the use of a Fourier-transform infrared spectrometer. A special cell for the FEWS measurements was designed and built that incorporates an IR-transmitting silver halide fiber and a means for introducing the blood-serum sample. Further improvements in analysis were obtained by the adoption of multivariate calibration techniques that are already used in clinical chemistry. The partial least-squares algorithm was used to calculate the concentrations of cholesterol, total protein, urea, and uric acid in human blood serum. The estimated prediction errors obtained (in percent from the average value) were 6% for total protein, 15% for cholesterol, 30% for urea, and 30% for uric acid. These results were compared with another independent prediction method that used a neural-network model. This model yielded estimated prediction errors of 8.8% for total protein, 25% for cholesterol, and 21% for uric acid. spectroscopy, fiber-optic evanescent-wave spectroscopy, Fourier-transform infrared spectrometer, blood, multivariate calibration, neural networks.

  14. Ranque-Hilsch vortex tube thermocycler for fast DNA amplification and real-time optical detection

    NASA Astrophysics Data System (ADS)

    Ebmeier, Ryan J.; Whitney, Scott E.; Sarkar, Amitabha; Nelson, Michael; Padhye, Nisha V.; Gogos, George; Viljoen, Hendrik J.

    2004-12-01

    An innovative polymerase chain reaction (PCR) thermocycler capable of performing real-time optical detection is described below. This device utilizes the Ranque-Hilsch vortex tube in a system to efficiently and rapidly cycle three 20 μL samples between the denaturation, annealing, and elongation temperatures. The reaction progress is displayed real-time by measuring the size of a fluorescent signal emitted by SYBR green/double-stranded DNA complexes. This device can produce significant reaction yields with very small amounts of initial DNA, for example, it can amplify 0.25 fg (˜5 copies) of a 96 bp bacteriophage λ-DNA fragment 2.7×1011-fold by performing 45 cycles in less than 12 min. The optical threshold (150% of the baseline intensity) was passed 8 min into the reaction at cycle 34. Besides direct applications, the speed and sensitivity of this device enables it to be used as a scientific instrument for basic studies such as PCR assembly and polymerase kinetics.

  15. Mosaicing for fast wide-field-of-view optical resolution photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Shao, Peng; Shi, Wei; Chee, Ryan K.; Forbrich, Alexander; Zemp, Roger J.

    2012-02-01

    The acquisition speed of previously reported mechanically-scanned Optical-Resolution Photoacoustic Microscopy (OR-PAM) systems has been limited by both laser pulse repetition rate and mechanical scanning speed. In this paper we introduce a mosaicing scheme wherein a grid of small sub-mm-scale field-of-view (FOV) patches are acquired in 0.5s per patch, and a 3-axis stepper-motor system is used to mechanically move the object to be imaged from patch-to-patch in less than 0.5s. Patch images are aligned and stitched to generate a large FOV image composite. This system retains the SNR-advantages of focused-transducer OR-PAM systems, and is a hybrid approach between optical-scanning and mechanical scanning. With this strategy we reduce the data acquisition time of previously reported large-FOV systems by a factor of around 23. SCID hairless mice are imaged. The wide-FOV, high-speed data acquisition OR-PAM system broadens the potential applications of the imaging modality.

  16. Tuning the Sensitivity of an Optical Cavity with Slow and Fast Light

    NASA Technical Reports Server (NTRS)

    Smith, David D.; Myneni, Krishna; Chang, H.; Toftul, A.; Schambeau, C.; Odutola, J. A.; Diels, J. C.

    2012-01-01

    We have measured mode pushing by the dispersion of a rubidium vapor in a Fabry-Perot cavity and have shown that the scale factor and sensitivity of a passive cavity can be strongly enhanced by the presence of such an anomalous dispersion medium. The enhancement is the result of the atom-cavity coupling, which provides a positive feedback to the cavity response. The cavity sensitivity can also be controlled and tuned through a pole by a second, optical pumping, beam applied transverse to the cavity. Alternatively, the sensitivity can be controlled by the introduction of a second counter-propagating input beam that interferes with the first beam, coherently increasing the cavity absorptance. We show that the pole in the sensitivity occurs when the sum of the effective group index and an additional cavity delay factor that accounts for mode reshaping goes to zero, and is an example of an exceptional point, commonly associated with coupled non-Hermitian Hamiltonian systems. Additionally we show that a normal dispersion feature can decrease the cavity scale factor and can be generated through velocity selective optical pumping

  17. Fast parallel interferometric 3D tracking of numerous optically trapped particles and their hydrodynamic interaction.

    PubMed

    Ruh, Dominic; Tränkle, Benjamin; Rohrbach, Alexander

    2011-10-24

    Multi-dimensional, correlated particle tracking is a key technology to reveal dynamic processes in living and synthetic soft matter systems. In this paper we present a new method for tracking micron-sized beads in parallel and in all three dimensions - faster and more precise than existing techniques. Using an acousto-optic deflector and two quadrant-photo-diodes, we can track numerous optically trapped beads at up to tens of kHz with a precision of a few nanometers by back-focal plane interferometry. By time-multiplexing the laser focus, we can calibrate individually all traps and all tracking signals in a few seconds and in 3D. We show 3D histograms and calibration constants for nine beads in a quadratic arrangement, although trapping and tracking is easily possible for more beads also in arbitrary 2D arrangements. As an application, we investigate the hydrodynamic coupling and diffusion anomalies of spheres trapped in a 3 × 3 arrangement. PMID:22109012

  18. Fast, high-resolution 3D dosimetry utilizing a novel optical-CT scanner incorporating tertiary telecentric collimation.

    PubMed

    Sakhalkar, H S; Oldham, M

    2008-01-01

    This study introduces a charge coupled device (CCD) area detector based optical-computed tomography (optical-CT) scanner for comprehensive verification of radiation dose distributions recorded in nonscattering radiochromic dosimeters. Defining characteristics include: (i) a very fast scanning time of approximately 5 min to acquire a complete three-dimensional (3D) dataset, (ii) improved image formation through the use of custom telecentric optics, which ensures accurate projection images and minimizes artifacts from scattered and stray-light sources, and (iii) high resolution (potentially 50 microm) isotropic 3D dose readout. The performance of the CCD scanner for 3D dose readout was evaluated by comparison with independent 3D readout from the single laser beam OCTOPUS-scanner for the same PRESAGE dosimeters. The OCTOPUS scanner was considered the "gold standard" technique in light of prior studies demonstrating its accuracy. Additional comparisons were made against calculated dose distributions from the ECLIPSE treatment-planning system. Dose readout for the following treatments were investigated: (i) a single rectangular beam irradiation to investigate small field and very steep dose gradient dosimetry away from edge effects, (ii) a 2-field open beam parallel-opposed irradiation to investigate dosimetry along steep dose gradients, and (iii) a 7-field intensity modulated radiation therapy (IMRT) irradiation to investigate dosimetry for complex treatment delivery involving modulation of fluence and for dosimetry along moderate dose gradients. Dose profiles, dose-difference plots, and gamma maps were employed to evaluate quantitative estimates of agreement between independently measured and calculated dose distributions. Results indicated that dose readout from the CCD scanner was in agreement with independent gold-standard readout from the OCTOPUS-scanner as well as the calculated ECLIPSE dose distribution for all treatments, except in regions within a few

  19. Ultraviolet flare on Lambda Andromedae

    NASA Technical Reports Server (NTRS)

    Baliunas, S. L.; Guinan, E. F.; Dupree, A. K.

    1984-01-01

    On November 5, 6, 1982, a luminous, flarelike brightening of the ultraviolet emissions was observed with IUE from the active RS CVn type star Lambda And during the phase of rotation period corresponding to maximum area coverage of the visible hemisphere by starspots and active regions. Enhancements during the flare in the ultraviolet emission lines as large as factors of several and in the ultraviolet continuum up to 80 percent persisted for over 5 hours. The bulk of the radiative output of the flare occurred in Mg II h and k and H I Ly-alpha. Because of the long duration and extreme luminosity of the event, the energy radiated by the flare alone is in excess of 10 to the 35th ergs just in the ultraviolet region. This is the most energetic stellar flare ever recorded in the ultraviolet. In addition, it is the first ultraviolet flare observed from a giant star. In comparison to the largest solar flares, the flare on Lambda And is at least three orders of magnitude more energetic in similar emission lines.

  20. SCATTERING POLARIZATION IN SOLAR FLARES

    SciTech Connect

    Štěpán, Jiří; Heinzel, Petr

    2013-11-20

    There is ongoing debate about the origin and even the very existence of a high degree of linear polarization of some chromospheric spectral lines observed in solar flares. The standard explanation of these measurements is in terms of the impact polarization caused by non-thermal proton and/or electron beams. In this work, we study the possible role of resonance line polarization due to radiation anisotropy in the inhomogeneous medium of the flare ribbons. We consider a simple two-dimensional model of the flaring chromosphere and we self-consistently solve the non-LTE problem taking into account the role of resonant scattering polarization and of the Hanle effect. Our calculations show that the horizontal plasma inhomogeneities at the boundary of the flare ribbons can lead to a significant radiation anisotropy in the line formation region and, consequently, to a fractional linear polarization of the emergent radiation of the order of several percent. Neglecting the effects of impact polarization, our model can provide a clue for resolving some of the common observational findings, namely: (1) why a high degree of polarization appears mainly at the edges of the flare ribbons; (2) why polarization can also be observed during the gradual phase of a flare; and (3) why polarization is mostly radial or tangential. We conclude that radiation transfer in realistic multi-dimensional models of solar flares needs to be considered as an essential ingredient for understanding the observed spectral line polarization.

  1. Optical Filters to Exclude Non-Doppler-Shifted Light in Fast Velocimetry

    SciTech Connect

    Goosman, D; Avara, G; Wade, J; Rivera, A

    2002-06-19

    We have used optical velocimetry for 25 years at LLNL to measure velocity-time histories of many dynamic experiments. In certain ones, the shifted light was often quite weak compared to non-shifted light returning from surfaces and imperfections in glass components. In an intensity-measuring VISAR system, this would mean failure, and even with Fabry-Perot (FP) based systems which handle multiple frequencies, data is lost where the fringes coincide. We designed, constructed and successfully used an experimental facility for doing experiments under such conditions by selectively eliminating most of the non-shifted light. Instead of making experimental records which were mostly non-shifted light prior to the use of the filter, we now obtain records where almost all of the light is shifted. The first system had a maximum efficiency of 25% for the desired light, but another version is under construction with a maximum efficiency of over 50%. The first version excluded the non-shifted light by a factor of 300 when manually tuned, and by 150 when run in a Window-based auto-tuning mode. Our first version used a 50 mm diameter FP as the filter with a spacing of 1.65 mm and reflectivities of 77%. It was constructed for use in one of our 5-beam velocimeters. Rather than using five separate filters, we multiplexed all five records so that the desired light would reflect from the filter FPl and image onto separate fibers. These five output fibers then fed our standard tau-table with 5 cameras as described in our report for the 1996 HSPC in Santa Fe, USA. One use of the filter system involved embedding optical fibers in long sections of explosives to make continuous detonation velocity-time histories. To date we have recently carried out 6 tests with this new facility, and two prior ones without. Explosive safety required that four shutters be used to assure that no significant light could illuminate the explosive from the end of the embedded fiber when personnel were close. An

  2. A fast inverse consistent deformable image registration method based on symmetric optical flow computation

    PubMed Central

    Li, Hua; Low, Daniel A; Deasy, Joseph O; Naqa, Issam El

    2014-01-01

    Deformable image registration is widely used in various radiation therapy applications including daily treatment planning adaptation to map planned tissue or dose to changing anatomy. In this work, a simple and efficient inverse consistency deformable registration method is proposed with aims of higher registration accuracy and faster convergence speed. Instead of registering image I to a second image J, the two images are symmetrically deformed toward one another in multiple passes, until both deformed images are matched and correct registration is therefore achieved. In each pass, a delta motion field is computed by minimizing a symmetric optical flow system cost function using modified optical flow algorithms. The images are then further deformed with the delta motion field in the positive and negative directions respectively, and then used for the next pass. The magnitude of the delta motion field is forced to be less than 0.4 voxel for every pass in order to guarantee smoothness and invertibility for the two overall motion fields that are accumulating the delta motion fields in both positive and negative directions, respectively. The final motion fields to register the original images I and J, in either direction, are calculated by inverting one overall motion field and combining the inversion result with the other overall motion field. The final motion fields are inversely consistent and this is ensured by the symmetric way that registration is carried out. The proposed method is demonstrated with phantom images, artificially deformed patient images and 4D-CT images. Our results suggest that the proposed method is able to improve the overall accuracy (reducing registration error by 30% or more, compared to the original and inversely inconsistent optical flow algorithms), reduce the inverse consistency error (by 95% or more) and increase the convergence rate (by 100% or more). The overall computation speed may slightly decrease, or increase in most cases

  3. Imaging of noncarious cervical lesions by means of a fast swept source optical coherence tomography system

    NASA Astrophysics Data System (ADS)

    Stoica, Eniko T.; Marcauteanu, Corina; Bradu, Adrian; Sinescu, Cosmin; Topala, Florin Ionel; Negrutiu, Meda Lavinia; Duma, Virgil Florin; Podoleanu, Adrian Gh.

    2014-01-01

    Non-carious cervical lesions (NCCL) are defined as the loss of tooth substance at the cemento-enamel junction and are caused by abrasion, erosion and/or occlusal overload. In this paper we proved that our fast swept source OCT system is a valuable tool to track the evolution of NCCL lesions in time. On several extracted bicuspids, four levels of NCCL were artificially created. After every level of induced lesion, OCT scanning was performed. B scans were acquired and 3D reconstructions were generated. The swept source OCT instrument used in this study has a central wavelength of 1050 nm, a sweeping range of 106 nm (measured at 10 dB), an average output power of 16 mW and a sweeping rate of 100 kHz. A depth resolution determined by the swept source of 12 μm in air was experimentally obtained. NCCL were measured on the B-scans as 2D images and 3D reconstructions (volumes). For quantitative evaluations of volumes, the Image J software was used. By calculating the areas of the amount of lost tissue corresponding to each difference of Bscans, the final volumes of NCCL were obtained. This swept source OCT method allows the dynamic diagnosis of NCCL in time.

  4. Design of a single-star optical emulator for a fast telescope

    NASA Astrophysics Data System (ADS)

    Haupt, J.; O'Connor, P.

    2015-07-01

    The design of a simple lens system is described capable of projecting a diffraction limited f1/.2 point of light through a variety of plane parallel vacuum windows. The system was built for the purpose of testing prototype CCDs for the Large Synpotic Survey Telescope in which lab testing drove the desire to create a beam that matches the telescope's f-ratio and obstruction, and which would have sufficient back-focal distance to allow imaging onto a sensor at least 50 mm away in various dewars with various window thicknesses. Also used as the final optic in an atmospheric turbulence simulator, the lens can simulate the real-world star PSF as it will appear on the Large Synoptic Survey Telescope (LSST) focal plane.

  5. Fast retinal layer segmentation of spectral domain optical coherence tomography images

    NASA Astrophysics Data System (ADS)

    Zhang, Tianqiao; Song, Zhangjun; Wang, Xiaogang; Zheng, Huimin; Jia, Fucang; Wu, Jianhuang; Li, Guanglin; Hu, Qingmao

    2015-09-01

    An approach to segment macular layer thicknesses from spectral domain optical coherence tomography has been proposed. The main contribution is to decrease computational costs while maintaining high accuracy via exploring Kalman filtering, customized active contour, and curve smoothing. Validation on 21 normal volumes shows that 8 layer boundaries could be segmented within 5.8 s with an average layer boundary error <2.35 μm. It has been compared with state-of-the-art methods for both normal and age-related macular degeneration cases to yield similar or significantly better accuracy and is 37 times faster. The proposed method could be a potential tool to clinically quantify the retinal layer boundaries.

  6. Measuring fast stochastic displacements of bio-membranes with dynamic optical displacement spectroscopy

    PubMed Central

    Monzel, C.; Schmidt, D.; Kleusch, C.; Kirchenbüchler, D.; Seifert, U.; Smith, A-S; Sengupta, K.; Merkel, R.

    2015-01-01

    Stochastic displacements or fluctuations of biological membranes are increasingly recognized as an important aspect of many physiological processes, but hitherto their precise quantification in living cells was limited due to a lack of tools to accurately record them. Here we introduce a novel technique—dynamic optical displacement spectroscopy (DODS), to measure stochastic displacements of membranes with unprecedented combined spatiotemporal resolution of 20 nm and 10 μs. The technique was validated by measuring bending fluctuations of model membranes. DODS was then used to explore the fluctuations in human red blood cells, which showed an ATP-induced enhancement of non-Gaussian behaviour. Plasma membrane fluctuations of human macrophages were quantified to this accuracy for the first time. Stimulation with a cytokine enhanced non-Gaussian contributions to these fluctuations. Simplicity of implementation, and high accuracy make DODS a promising tool for comprehensive understanding of stochastic membrane processes. PMID:26437911

  7. Fast retinal layer segmentation of spectral domain optical coherence tomography images.

    PubMed

    Zhang, Tianqiao; Song, Zhangjun; Wang, Xiaogang; Zheng, Huimin; Jia, Fucang; Wu, Jianhuang; Li, Guanglin; Hu, Qingmao

    2015-01-01

    An approach to segment macular layer thicknesses from spectral domain optical coherence tomography has been proposed. The main contribution is to decrease computational costs while maintaining high accuracy via exploring Kalman filtering, customized active contour, and curve smoothing. Validation on 21 normal volumes shows that 8 layer boundaries could be segmented within 5.8 s with an average layer boundary error <2.35 μm. It has been compared with state-of-the-art methods for both normal and age-related macular degeneration cases to yield similar or significantly better accuracy and is 37 times faster. The proposed method could be a potential tool to clinically quantify the retinal layer boundaries. PMID:26385655

  8. Measuring fast stochastic displacements of bio-membranes with dynamic optical displacement spectroscopy.

    PubMed

    Monzel, C; Schmidt, D; Kleusch, C; Kirchenbüchler, D; Seifert, U; Smith, A-S; Sengupta, K; Merkel, R

    2015-01-01

    Stochastic displacements or fluctuations of biological membranes are increasingly recognized as an important aspect of many physiological processes, but hitherto their precise quantification in living cells was limited due to a lack of tools to accurately record them. Here we introduce a novel technique--dynamic optical displacement spectroscopy (DODS), to measure stochastic displacements of membranes with unprecedented combined spatiotemporal resolution of 20 nm and 10 μs. The technique was validated by measuring bending fluctuations of model membranes. DODS was then used to explore the fluctuations in human red blood cells, which showed an ATP-induced enhancement of non-Gaussian behaviour. Plasma membrane fluctuations of human macrophages were quantified to this accuracy for the first time. Stimulation with a cytokine enhanced non-Gaussian contributions to these fluctuations. Simplicity of implementation, and high accuracy make DODS a promising tool for comprehensive understanding of stochastic membrane processes. PMID:26437911

  9. Measuring fast stochastic displacements of bio-membranes with dynamic optical displacement spectroscopy

    NASA Astrophysics Data System (ADS)

    Monzel, C.; Schmidt, D.; Kleusch, C.; Kirchenbüchler, D.; Seifert, U.; Smith, A.-S.; Sengupta, K.; Merkel, R.

    2015-10-01

    Stochastic displacements or fluctuations of biological membranes are increasingly recognized as an important aspect of many physiological processes, but hitherto their precise quantification in living cells was limited due to a lack of tools to accurately record them. Here we introduce a novel technique--dynamic optical displacement spectroscopy (DODS), to measure stochastic displacements of membranes with unprecedented combined spatiotemporal resolution of 20 nm and 10 μs. The technique was validated by measuring bending fluctuations of model membranes. DODS was then used to explore the fluctuations in human red blood cells, which showed an ATP-induced enhancement of non-Gaussian behaviour. Plasma membrane fluctuations of human macrophages were quantified to this accuracy for the first time. Stimulation with a cytokine enhanced non-Gaussian contributions to these fluctuations. Simplicity of implementation, and high accuracy make DODS a promising tool for comprehensive understanding of stochastic membrane processes.

  10. Optical emission from a fast shock wave - The remnants of Tycho's supernova and SN 1006

    NASA Technical Reports Server (NTRS)

    Chevalier, R. A.; Raymond, J. C.

    1978-01-01

    The faint optical filaments in Tycho's supernova remnant appear to be emission from a shock front moving at 5600 km/s. The intensity of the hydrogen lines, the absence of forbidden lines of heavy elements in the spectrum, and the width of the filaments are explained by a model in which a collisionless shock wave is moving into partially neutral gas. The presence of the neutral gas can be used to set an upper limit of approximately 5 x 10 to the 47th power ergs to the energy in ionizing radiation emitted by a Type I supernova. The patchy neutral gas is probably part of the warm neutral component of the interstellar medium. The existing information on the remnant of SN 1006 indicates that its emission is similar in nature to that from Tycho's remnant.

  11. Fast Acquisition and Reconstruction of Optical Coherence Tomography Images via Sparse Representation

    PubMed Central

    Li, Shutao; McNabb, Ryan P.; Nie, Qing; Kuo, Anthony N.; Toth, Cynthia A.; Izatt, Joseph A.; Farsiu, Sina

    2014-01-01

    In this paper, we present a novel technique, based on compressive sensing principles, for reconstruction and enhancement of multi-dimensional image data. Our method is a major improvement and generalization of the multi-scale sparsity based tomographic denoising (MSBTD) algorithm we recently introduced for reducing speckle noise. Our new technique exhibits several advantages over MSBTD, including its capability to simultaneously reduce noise and interpolate missing data. Unlike MSBTD, our new method does not require an a priori high-quality image from the target imaging subject and thus offers the potential to shorten clinical imaging sessions. This novel image restoration method, which we termed sparsity based simultaneous denoising and interpolation (SBSDI), utilizes sparse representation dictionaries constructed from previously collected datasets. We tested the SBSDI algorithm on retinal spectral domain optical coherence tomography images captured in the clinic. Experiments showed that the SBSDI algorithm qualitatively and quantitatively outperforms other state-of-the-art methods. PMID:23846467

  12. Early warning for VHE gamma-ray flares with the ARGO-YBJ detector

    NASA Astrophysics Data System (ADS)

    ARGO-YBJ Collaboration; Bartoli, B.; Bernardini, P.; Bi, X. J.; Bleve, C.; Bolognino, I.; Branchini, P.; Budano, A.; Calabrese Melcarne, A. K.; Camarri, P.; Cao, Z.; Cappa, A.; Cardarelli, R.; Catalanotti, S.; Cattaneo, C.; Celio, P.; Chen, S. Z.; Chen, T. L.; Chen, Y.; Creti, P.; Cui, S. W.; Dai, B. Z.; D'Alí Staiti, G.; Danzengluobu; Dattoli, M.; de Mitri, I.; D'Ettorre Piazzoli, B.; di Girolamo, T.; Ding, X. H.; di Sciascio, G.; Feng, C. F.; Feng, Zhaoyang; Feng, Zhenyong; Galeazzi, F.; Galeotti, P.; Giroletti, E.; Gou, Q. B.; Guo, Y. Q.; He, H. H.; Hu, Haibing; Hu, Hongbo; Huang, Q.; Iacovacci, M.; Iuppa, R.; James, I.; Jia, H. Y.; Labaciren; Li, H. J.; Li, J. Y.; Li, X. X.; Liguori, G.; Liu, C.; Liu, C. Q.; Liu, J.; Liu, M. Y.; Lu, H.; Ma, X. H.; Mancarella, G.; Mari, S. M.; Marsella, G.; Martello, D.; Mastroianni, S.; Montini, P.; Ning, C. C.; Pagliaro, A.; Panareo, M.; Panico, B.; Perrone, L.; Pistilli, P.; Qu, X. B.; Rossi, E.; Ruggieri, F.; Salvini, P.; Santonico, R.; Shen, P. R.; Sheng, X. D.; Shi, F.; Stanescu, C.; Surdo, A.; Tan, Y. H.; Vallania, P.; Vernetto, S.; Vigorito, C.; Wang, B.; Wang, H.; Wu, C. Y.; Wu, H. R.; Xu, B.; Xue, L.; Yan, Y. X.; Yang, Q. Y.; Yang, X. C.; Yao, Z. G.; Yuan, A. F.; Zha, M.; Zhang, H. M.; Zhang, Jilong; Zhang, Jianli; Zhang, L.; Zhang, P.; Zhang, X. Y.; Zhang, Y.; Zhaxiciren; Zhaxisangzhu; Zhou, X. X.; Zhu, F. R.; Zhu, Q. Q.; Zizzi, G.

    2011-12-01

    Detecting and monitoring emissions from flaring gamma-ray sources in the very-high-energy (VHE, > 100 GeV) band is a very important topic in gamma-ray astronomy. The ARGO-YBJ detector is characterized by a high duty cycle and a wide field of view. Therefore, it is particularly capable of detecting flares from extragalactic objects. Based on fast reconstruction and analysis, real-time monitoring of 33 selected VHE extragalactic sources is implemented. Flares exceeding a specific threshold are reported timely, hence enabling the follow-up observation of these objects using more sensitive detectors, such as Cherenkov telescopes.

  13. Evaporative cooling of flare plasma

    NASA Technical Reports Server (NTRS)

    Antiochos, S. K.; Sturrock, P. A.

    1976-01-01

    A one-dimensional loop model for the evaporative cooling of the coronal flare plasma was investigated. Conductive losses dominated radiative cooling, and the evaporative velocities were small compared to the sound speed. The profile and evolution of the temperature were calculated. The model was in agreement with soft X-ray observations on the evolution of flare temperatures and emission measures. The effect of evaporation was to greatly reduce the conductive heat flux into the chromosphere and to enhance the EUV emission from the coronal flare plasma.

  14. Flare physics at high energies

    NASA Technical Reports Server (NTRS)

    Ramaty, R.

    1990-01-01

    High-energy processes, involving a rich variety of accelerated particle phenomena, lie at the core of the solar flare problem. The most direct manifestation of these processes are high-energy radiations, gamma rays, hard X-rays and neutrons, as well as the accelerated particles themselves, which can be detected in interplanetary space. In the study of astrophysics from the moon, the understanding of these processes should have great importance. The inner solar system environment is strongly influenced by activity on the sun; the physics of solar flares is of great intrinsic interest; and much high-energy astrophysics can be learned from investigations of flare physics at high energies.

  15. Doppler-Shifted Flare Emissions Observed by SDO/EVE

    NASA Technical Reports Server (NTRS)

    Chamberlin, Phillip C.

    2012-01-01

    The EUV Variability Experiment (EVE) onboard the Solar Dynamics Observatory (SDO) has been obtaining unprecedented observations of solar variation on times scales of seconds during flares and over the rising phase of Solar Cycle 24 since its start of normal operations in May 2010. Unexpectedly, as first pointed out in Hudson et. al., Ap.j. (2011), even with EVE's spectral resolution of 0.1 nm and 'irradiance' measurements, EVE has the ability to very accurately determine Doppler shifts in all emissions during solar flares and coronal mass ejections (CMEs). The technique for deriving these absolute velocities is not straightforward, as the optical and instrumental effects must first be eliminated in order to separate the absolute plasma velocities from the instrument effects. This talk will discuss these efforts to eliminate the instrumental component, as well as show some of the first results of absolute velocities of multiple emissions at a wide range of temperatures during solar flares.

  16. Experimental demonstration of a real-time high-throughput digital DC blocker for compensating ADC imperfections in optical fast-OFDM receivers.

    PubMed

    Zhang, Lu; Ouyang, Xing; Shao, Xiaopeng; Zhao, Jian

    2016-06-27

    Performance degradation induced by the DC components at the output of real-time analogue-to-digital converter (ADC) is experimentally investigated for optical fast-OFDM receiver. To compensate this degradation, register transfer level (RTL) circuits for real-time digital DC blocker with 20GS/s throughput are proposed and implemented in field programmable gate array (FPGA). The performance of the proposed real-time digital DC blocker is experimentally investigated in a 15Gb/s optical fast-OFDM system with intensity modulation and direct detection over 40 km standard single-mode fibre. The results show that the fixed-point DC blocker has negligible performance penalty compared to the offline floating point one, and can overcome the error floor of the fast OFDM receiver caused by the DC components from the real-time ADC output. PMID:27410579

  17. Solar Flare Physics

    NASA Technical Reports Server (NTRS)

    Schmahl, Edward J.; Kundu, Mukul R.

    1998-01-01

    We have continued our previous efforts in studies of fourier imaging methods applied to hard X-ray flares. We have performed physical and theoretical analysis of rotating collimator grids submitted to GSFC(Goddard Space Flight Center) for the High Energy Solar Spectroscopic Imager (HESSI). We have produced simulation algorithms which are currently being used to test imaging software and hardware for HESSI. We have developed Maximum-Entropy, Maximum-Likelihood, and "CLEAN" methods for reconstructing HESSI images from count-rate profiles. This work is expected to continue through the launch of HESSI in July, 2000. Section 1 shows a poster presentation "Image Reconstruction from HESSI Photon Lists" at the Solar Physics Division Meeting, June 1998; Section 2 shows the text and viewgraphs prepared for "Imaging Simulations" at HESSI's Preliminary Design Review on July 30, 1998.

  18. Building Big Flares: Constraining Generating Processes of Solar Flare Distributions

    NASA Astrophysics Data System (ADS)

    Wyse Jackson, T.; Kashyap, V.; McKillop, S.

    2015-12-01

    We address mechanisms which seek to explain the observed solar flare distribution, dN/dE ~ E1.8. We have compiled a comprehensive database, from GOES, NOAA, XRT, and AIA data, of solar flares and their characteristics, covering the year 2013. These datasets allow us to probe how stored magnetic energy is released over the course of an active region's evolution. We fit power-laws to flare distributions over various attribute groupings. For instance, we compare flares that occur before and after an active region reaches its maximum area, and show that the corresponding flare distributions are indistinguishable; thus, the processes that lead to magnetic reconnection are similar in both cases. A turnover in the distribution is not detectable at the energies accessible to our study, suggesting that a self-organized critical (SOC) process is a valid mechanism. However, we find changes in the distributions that suggest that the simple picture of an SOC where flares draw energy from an inexhaustible reservoir of stored magnetic energy is incomplete. Following the evolution of the flare distribution over the lifetimes of active regions, we find that the distribution flattens with time, and for larger active regions, and that a single power-law model is insufficient. This implies that flares that occur later in the lifetime of the active region tend towards higher energies. We conclude that the SOC process must have an upper bound. Increasing the scope of the study to include data from other years and more instruments will increase the robustness of these results. This work was supported by the NSF-REU Solar Physics Program at SAO, grant number AGS 1263241, NASA Contract NAS8-03060 to the Chandra X-ray Center and by NASA Hinode/XRT contract NNM07AB07C to SAO

  19. Rotation Modulations and Distributions of the Flare Occurrence Rates on the Surface of Five UV Ceti Type Stars

    NASA Astrophysics Data System (ADS)

    Dal, Hasan Ali; Evren, Serdar

    2011-04-01

    In this study, we considered stellar spots, stellar flares, and also the relation between these two magnetic proccesses that take place on UV Cet stars. In addition, the hypothesis about slow flares described by Gurzadyan (1986 Ap&SS, 125, 127) was investigated. All of these discussions were based on the results of three years of observations of UV Cet-type stars: AD Leo, EV Lac, V1005 Ori, EQ Peg, and V1054 Oph. First of all, the results show that stellar spot activity occurs on the stellar surface of EV Lac, V1005 Ori, and EQ Peg, while AD Leo does not show any short-term variability and V1054 Oph does not exhibit any variability. We report on new ephemerides for EV Lac, V1005 Ori, and EQ Peg, obtained from time-series analyses. The phases, computed at intervals of 0.10 phase length, where the mean flare occurence rates to obtain maximum amplitude; also, the phases of rotational modulation were compared in order to investigate whether there is any longitudinal relation between stellar flares and spots. Although the results show that flare events are related with spotted areas on stellar surfaces during some of the observing seasons, we did not find any clear correlation among them. Finally, it was tested whether slow flares are fast flares occurring on the opposite side of the stars according to the direction of the observers, as mentioned in a hypothesis developed by Gurzadyan (1986). The flare occurence rates reveal that both slow and fast flares can occur in any rotational phases. The flare occurence rates of both fast and slow flares vary in the same way along the longitudes for all program stars. These results are not expected based on the case mentioned in the hypothesis.

  20. Ultra-fast optical manipulation of single proteins binding to the actin cytoskeleton

    NASA Astrophysics Data System (ADS)

    Capitanio, Marco; Gardini, Lucia; Pavone, Francesco Saverio

    2014-02-01

    In the last decade, forces and mechanical stresses acting on biological systems are emerging as regulatory factors essential for cell life. Emerging evidences indicate that factors such as applied forces or the rigidity of the extracellular matrix (ECM) determine the shape and function of cells and organisms1. Classically, the regulation of biological systems is described through a series of biochemical signals and enzymatic reactions, which direct the processes and cell fate. However, mechanotransduction, i.e. the conversion of mechanical forces into biochemical and biomolecular signals, is at the basis of many biological processes fundamental for the development and differentiation of cells, for their correct function and for the development of pathologies. We recently developed an in vitro system that allows the investigation of force-dependence of the interaction of proteins binding the actin cytoskeleton, at the single molecule level. Our system displays a delay of only ~10 μs between formation of the molecular bond and application of the force and is capable of detecting interactions as short as 100 μs. Our assay allows direct measurements of load-dependence of lifetimes of single molecular bonds and conformational changes of single proteins and molecular motors. We demonstrate our technique on molecular motors, using myosin II from fast skeletal muscle and on protein-DNA interaction, specifically on Lactose repressor (LacI). The apparatus is stabilized to less than 1 nm with both passive and active stabilization, allowing resolving specific binding regions along the actin filament and DNA molecule. Our technique extends single-molecule force-clamp spectroscopy to molecular complexes that have been inaccessible up to now, opening new perspectives for the investigation of the effects of forces on biological processes.

  1. A search for proton beams during flares on AU Microscopii

    NASA Technical Reports Server (NTRS)

    Robinson, R. D.; Carpenter, K. G.; Woodgate, B. E.; Maran, S. P.

    1993-01-01

    We report the results of a coordinated observing campaign on the active M dwarf star AU Mic. The purpose of the campaign was to search for evidence of proton beams during the impulsive phase of stellar flares and to determine whether the energy contained in these beams represented a significant fraction of the energy budget of the flare. During a total of 3.5 hr of monitoring a small flare was observed simultaneously by the HST, IUE, and the AAT. This event, which had a total optical + UV emission of 1.3 x 10 exp 32 ergs, occurred during the decay phase of a much larger event and showed no evidence for a proton beam with an energy greater than a few times 10 exp 29 ergs/s. This is comparable to the maximum energy flux released by the flare, though this energy release rate must occur over a time interval much shorter than that of the impulsive phase itself. We conclude that the proton beams may be capable of transporting some energy during the impulsive phase of a flare, but that they are unlikely to be the major contributor, at least for this particular event.

  2. M Dwarf Flares: Exoplanet Detection Implications

    NASA Astrophysics Data System (ADS)

    Tofflemire, B. M.; Wisniewski, J. P.; Hilton, E. J.; Kowalski, A. F.; Kundurthy, P.; Schmidt, S. J.; Hawley, S. L.; Holtzman, J. A.

    2011-12-01

    Low mass stars such as M dwarfs have become prime targets for exoplanet transit searches as their low luminosities and small stellar radii could enable the detection of super-Earths residing in their habitable zones. While promising transit targets, M dwarfs are also inherently variable and can exhibit up to ˜6 magnitude flux enhancements in the optical U-band. This is significantly higher than the predicted transit depths of habitable zone super-Earths (0.005 magnitude flux decrease). The behavior of flares at infrared (IR) wavelengths, particularly those likely to be used to study and characterize M dwarf exoplanets using facilities such as the James Web Space Telescope (JWST), remains largely unknown. To address these uncertainties, we are executing a coordinated, contemporaneous monitoring program of the optical and IR flux of M dwarfs known to regularly flare. A suite of telescopes located at the Kitt Peak National Observatory and the Apache Point Observatory are used for the observations. We present the initial results of this program.

  3. High Energy Neutrino Flash From Far-UV/X-Ray Flares of Gamma-Ray Bursts

    SciTech Connect

    Murase, Kohta; Nagataki, Shigehiro; /Kyoto U., Yukawa Inst., Kyoto /KIPAC, Menlo Park

    2006-04-25

    The recent observations of bright optical and X-ray flares by the Swift satellite suggest these are produced by the late activities of the central engine. We study the neutrino emission from far-UV/X-ray flares under the late internal shock model. Since the efficiency of pion production in the highest energy is higher than that of the prompt bursts, such neutrino flashes from flares can give comparable or larger contributions to a diffuse very high energy neutrino background if the total energy input into flares is comparable to the radiated energy of the prompt bursts. These signals are very important because they have possibility to probe the nature of flares (baryonic or magnetic, the photon field, the magnetic field, and so on).

  4. Effect of an X-Class Solar Flare on the OI 630 nm Dayglow Emissions

    NASA Technical Reports Server (NTRS)

    Das, Uma; Pallamraju, Duggirala; Chakrabarti, Supriya

    2010-01-01

    We present a striking event that shows a prompt effect of an X-class solar flare (X6.2/3B) in the neutral optical dayglow emissions. This flare occurred on 13 December 2001 at 1424 UT and peaked at 1430 UT. The peak-to pre-flare X-ray intensity ratio as observed by GOES-10 was greater than 300 and the EUV flux observed by SEM/SOHO was greater by around 60%. As a response to this flare, the daytime redline (OI 630 nm) column integrated emission intensity measured from Carmen Alto (23.16degS, 70.66degW), in Chile, showed a prompt increase of around 50%. Our results show that this prompt enhancement in the thermospheric dayglow seems to be caused mainly due to an increase in photoelectrons due to a sudden increase in the solar EUV flux associated with this flare.

  5. Near Infrared Activity Close to the Crab Pulsar Correlated with Giant Gamma-ray Flares

    NASA Technical Reports Server (NTRS)

    Rudy, Alexander R.; Max, Claire E.; Weisskopf, Martin C.

    2014-01-01

    We describe activity observed in the near-infrared correlated with a giant gamma-ray flare in the Crab Pulsar. The Crab Pulsar has been observed by the Fermi and AGILE satellites to flare for a period of 3 to 7 days, once every 1-1.5 years, increasing in brightness by a factor of 3-10 between 100MeV and 1GeV. We used Keck NIRC2 laser guide star adaptive optics imaging to observe the Crab Pulsar and environs before and during the March 2013 flare. We discuss the evidence for the knot as the location of the flares, and the theoretical implications of these observations. Ongoing target-of-opportunity programs hope to confirm this correlation for future flares.

  6. Mechanics of protein-DNA interaction studied with ultra-fast optical tweezers

    NASA Astrophysics Data System (ADS)

    Monico, Carina; Tempestini, Alessia; Vanzi, Francesco; Pavone, Francesco S.; Capitanio, Marco

    2014-05-01

    The lac operon is a well known example of gene expression regulation, based on the specific interaction of Lac repressor protein (LacI) with its target DNA sequence (operator). LacI and other DNA-binding proteins bind their specific target sequences with rates higher than allowed by 3D diffusion alone. Generally accepted models predict a combination of free 3D diffusion and 1D sliding along non-specific DNA. We recently developed an ultrafast force-clamp laser trap technique capable of probing molecular interactions with sub-ms temporal resolution, under controlled pN-range forces. With this technique, we tested the interaction of LacI with two different DNA constructs: a construct with two copies of the O1 operator separated by 300 bp and a construct containing the native E.coli operator sequences. Our measurements show at least two classes of LacI-DNA interactions: long (in the tens of s range) and short (tens of ms). Based on position along the DNA sequence, the observed interactions can be interpreted as specific binding to operator sequences (long events) and transient interactions with nonspecific sequences (short events). Moreover, we observe continuous sliding of the protein along DNA, passively driven by the force applied with the optical tweezers.

  7. Optical diagnostics of a single evaporating droplet using fast parallel computing on graphics processing units

    NASA Astrophysics Data System (ADS)

    Jakubczyk, D.; Migacz, S.; Derkachov, G.; Woźniak, M.; Archer, J.; Kolwas, K.

    2016-09-01

    We report on the first application of the graphics processing units (GPUs) accelerated computing technology to improve performance of numerical methods used for the optical characterization of evaporating microdroplets. Single microdroplets of various liquids with different volatility and molecular weight (glycerine, glycols, water, etc.), as well as mixtures of liquids and diverse suspensions evaporate inside the electrodynamic trap under the chosen temperature and composition of atmosphere. The series of scattering patterns recorded from the evaporating microdroplets are processed by fitting complete Mie theory predictions with gradientless lookup table method. We showed that computations on GPUs can be effectively applied to inverse scattering problems. In particular, our technique accelerated calculations of the Mie scattering theory on a single-core processor in a Matlab environment over 800 times and almost 100 times comparing to the corresponding code in C language. Additionally, we overcame problems of the time-consuming data post-processing when some of the parameters (particularly the refractive index) of an investigated liquid are uncertain. Our program allows us to track the parameters characterizing the evaporating droplet nearly simultaneously with the progress of evaporation.

  8. Optical Filters to Exclude Non-Doppler-Shifted Light in Fast Velocimetry

    SciTech Connect

    Goosman, D; Avara, G; Wade, J; Rivera, A

    2002-08-22

    We frequently measure velocity-time histories of dynamic experiments. In some, the Doppler-shifted light is often weak compared to non-shifted light reflected from stationary surfaces and imperfections in components. With our Fabry-Perot (FP) based systems which handle multiple frequencies, data is lost where the fringes coincide; if we had used an intensity-measuring VISAR system, it would probably fail. We designed a facility for doing experiments under such conditions by selectively eliminating most of the non-shifted light. Our first filter excluded non-shifted light by a factor of 300 when manually tuned, and by 150 when run in an auto-tuning mode. It used a single 50 mm diameter FP as the filter with a spacing of 1.65 mm and reflectivities of 77%, and filters five channels prior to use in one of our 5-beam velocimeters. One use of the filter system was to embed optical fibers in long sections of explosives to make continuous detonation velocity-time histories. We have carried out many such tests with this filter, and two without. A special single-beam filter was constructed with a 40% efficiency for shifted light that rejected non-shifted light by 4 million times, with a bandpass of a few GHz.

  9. Fast whole-brain optical tomography capable of automated slice-collection (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yuan, Jing; Jiang, Tao; Deng, Lei; Long, Beng; Peng, Jie; Luo, Qingming; Gong, Hui

    2016-03-01

    Acquiring brain-wide composite information of neuroanatomical and molecular phenotyping is crucial to understand brain functions. However, current whole-brain imaging methods based on mechnical sectioning haven't achieved brain-wide acquisition of both neuroanatomical and molecular phenotyping due to the lack of appropriate whole-brain immunostaining of embedded samples. Here, we present a novel strategy of acquiring brain-wide structural and molecular maps in the same brain, combining whole-brain imaging and subsequent immunostaining of automated-collected slices. We developed a whole-brain imaging system capable of automatically imaging and then collecting imaged tissue slices in order. The system contains three parts: structured illumination microscopy for high-throughput optical sectioning, vibratome for high-precision sectioning and slice-collection device for automated collecting of tissue slices. Through our system, we could acquire a whole-brain dataset of agarose-embedded mouse brain at lateral resolution of 0.33 µm with z-interval sampling of 100 µm in 9 h, and automatically collect the imaged slices in sequence. Subsequently, we performed immunohistochemistry of the collected slices in the routine way. We acquired mouse whole-brain imaging datasets of multiple specific types of neurons, proteins and gene expression profiles. We believe our method could accelerate systematic analysis of brain anatomical structure with specific proteins or genes expression information and understanding how the brain processes information and generates behavior.

  10. Fast computation of an optimal controller for large-scale adaptive optics.

    PubMed

    Massioni, Paolo; Kulcsár, Caroline; Raynaud, Henri-François; Conan, Jean-Marc

    2011-11-01

    The linear quadratic Gaussian regulator provides the minimum-variance control solution for a linear time-invariant system. For adaptive optics (AO) applications, under the hypothesis of a deformable mirror with instantaneous response, such a controller boils down to a minimum-variance phase estimator (a Kalman filter) and a projection onto the mirror space. The Kalman filter gain can be computed by solving an algebraic Riccati matrix equation, whose computational complexity grows very quickly with the size of the telescope aperture. This "curse of dimensionality" makes the standard solvers for Riccati equations very slow in the case of extremely large telescopes. In this article, we propose a way of computing the Kalman gain for AO systems by means of an approximation that considers the turbulence phase screen as the cropped version of an infinite-size screen. We demonstrate the advantages of the methods for both off- and on-line computational time, and we evaluate its performance for classical AO as well as for wide-field tomographic AO with multiple natural guide stars. Simulation results are reported. PMID:22048298

  11. Fast robust non-sequential optical ray-tracing with implicit algebraic surfaces

    NASA Astrophysics Data System (ADS)

    Greynolds, Alan W.

    2015-09-01

    The fastest, most robust, general technique for non-sequentially ray-tracing a large class of imaging and non-imaging optical systems is by geometric modeling with algebraic (i.e. polynomial) implicit surfaces. The basic theory of these surfaces with special attention to optimizing their precise intersection with a ray (even at grazing incidence) is outlined for an admittedly limited software implementation. On a couple of "tame" examples, a 64-bit Windows 7 version is significantly faster than the fastest commercial design software (all multi-threaded). Non-sequential ray-surface interactions approaching 30M/sec are achieved on a 12-core 2.67 GHz Mac Pro desktop computer. For a more exotic example of a 6th degree Wood's horn beam dump (light trap), a 32-bit Windows single thread version traces rays nearly 4 times faster than the commercial ASAP software's implicit algebraic surface and over 13 times faster than its equivalent NURBS surface. However, implicit surfaces are foreign to most CAD systems and thus unfortunately, don't easily fit into a modern workflow.

  12. Ultra-fast displaying Spectral Domain Optical Doppler Tomography system using a Graphics Processing Unit.

    PubMed

    Jeong, Hyosang; Cho, Nam Hyun; Jung, Unsang; Lee, Changho; Kim, Jeong-Yeon; Kim, Jeehyun

    2012-01-01

    We demonstrate an ultrafast displaying Spectral Domain Optical Doppler Tomography system using Graphics Processing Unit (GPU) computing. The calculation of FFT and the Doppler frequency shift is accelerated by the GPU. Our system can display processed OCT and ODT images simultaneously in real time at 120 fps for 1,024 pixels × 512 lateral A-scans. The computing time for the Doppler information was dependent on the size of the moving average window, but with a window size of 32 pixels the ODT computation time is only 8.3 ms, which is comparable to the data acquisition time. Also the phase noise decreases significantly with the window size. Since the performance of a real-time display for OCT/ODT is very important for clinical applications that need immediate diagnosis for screening or biopsy. Intraoperative surgery can take much benefit from the real-time display flow rate information from the technology. Moreover, the GPU is an attractive tool for clinical and commercial systems for functional OCT features as well. PMID:22969328

  13. Rotational modulation and flares on the RS Canum Venaticorum binary II Pegasi in July/September 1990: Spots and flares on II Peg

    NASA Astrophysics Data System (ADS)

    Doyle, J. G.; Mathioudakis, M.; Murphy, H. M.; Avgoloupis, S.; Mavridis, L. N.; Seiradakis, J. H.

    1993-11-01

    During ultraviolet spectroscopic observations of the RS CVn star II Peg in September 1990 a long duration (greater than or = 3 hrs.) flare was observed. During the early stage of the event, a feature at 1354 A was present, however, within the spectral resolution of the data it is not possible to identify this line. A contribution from the hot coronal ion Fe XXI is suspected. From line diagnostic ratios, the electron pressure at flare peak was estimated to be 1017/cu cm K, decreasing to 1016/cu cm K towards the end of the flare. One other flare was observed with IUE, and three optical flares (unfortunately none of these were observed simultaneously). The chromospheric and transition region losses from the larger of the two IUE flares was approx. 3 x 1031 erg/s at flare maximum, with total chromospheric/transition region radiative losses over the duration of the event being approx. 1.5 x 1035 erg. Continuum radiative losses over the wavelength region 1150A to 1950A were approximately 3% of the above figure. At flare maximum, the N V 1240 A line showed an enhancement factor of approx. 3 over the preflare value compared to 9 for the C IV 1550 A line. We interpret this difference as due to an underabundance of nitrogen during the flare, possibly related to photoionization of lower chromospheric material by soft X-ray photons sometime prior to the flare. No evidence of rotational modulation was present in any of the transition region lines, although the chromospheric lines did show a phase variation. However, these lines (H-alpha, Ca II K and Mg II h&k) were not consistent with one another although it is clear that the H-alpha equivalent width showed variations faster than the star's rotation period, being perhaps related to the decay/activation of individual active regions.

  14. Blind, fast and SOP independent polarization recovery for square dual polarization-MQAM formats and optical coherent receivers.

    PubMed

    Chagnon, Mathieu; Osman, Mohamed; Xu, Xian; Zhuge, Qunbi; Plant, David V

    2012-12-01

    We present both theoretically and experimentally a novel blind and fast method for estimating the State of Polarization (SOP) of a single carrier channel modulated in square Dual Polarization (DP) MQAM format for optical coherent receivers. The method can be used on system startup, for quick channel reconfiguration, or for burst mode receivers. It consists of converting the received waveform from Jones to Stokes space and looping over an algorithm until a unitary polarization derotation matrix is estimated. The matrix is then used to initialize the center taps of the subsequent classical decision-directed stochastic gradient algorithm (DD-LMS). We present experimental comparisons of the initial Bit Error Rate (BER) and the speed of convergence of this blind Stokes space polarization recovery (PR) technique against the common Constant Modulus Algorithm (CMA). We demonstrate that this technique works on any square DP-MQAM format by presenting experimental results for DP-4QAM, -16QAM and -64QAM at varying distances and baud rates. We additionally numerically assess the technique for varying differential group delays (DGD) and sampling offsets on 28 Gbaud DP-4QAM format and show fast polarization recovery for instantaneous DGD as high as 90% of symbol duration. We show that the convergence time of this blind PR technique does not depend on the initial SOP as CMA does and allows switching to DD-LMS faster by more than an order of magnitude. For DP-4QAM, it shows a convergence time of 5.9 ns, which is much smaller than the convergence time of recent techniques using modified CMA algorithms for quicker convergence. BER of the first 20 × 10(3) symbols is always smaller by several factors for DP-16QAM and -64QAM but not always for DP-4QAM. PMID:23262730

  15. Multichannel spectrophotometry of stellar flares

    NASA Technical Reports Server (NTRS)

    Mochnacki, S. W.; Zirin, H.

    1980-01-01

    Stellar flares have been observed using the 32 channel spectrophotometer on the 5 m telescope. Net flare fluxes in the region 3200-7000 A are presented. A simple model of blackbody radiation and hydrogen recombination emission appears to fit the continuum points well. Owing to vignetting problems, only the region between 4200 and 7000 A was used for a detailed fit to the Planck function to obtain apparent temperatures and effective areas. The rise of each flare was associated with an increase of the area, while the initial steep decline of the light was associated with a similar decrease of the blackbody temperature. The maximum temperatures, coincident with maximum light, were 7500-9500 K, similar to values for solar flares. The hydrogen line emission rose simultaneously with the continuum but declined more slowly. The ratio of H sub gamma to H sub alpha was about 1.5 at the peak, declining to about 1.0 after the peak.

  16. Chandra Monitors the Flaring Crab

    NASA Video Gallery

    Scientists hoped that NASA's Chandra X-ray Observatory would locate X-ray sources correlated to the gamma-ray flares seen by Fermi and Italy's AGILE satellites. Two observations were made during th...

  17. Radiation hydrodynamics in solar flares

    SciTech Connect

    Fisher, G.H.

    1985-10-18

    Solar flares are rather violent and extremely complicated phenomena, and it should be made clear at the outset that a physically complete picture describing all aspects of flares does not exist. From the wealth of data which is available, it is apparent that many different types of physical processes are involved during flares: energetic particle acceleration, rapid magnetohydrodynamic motion of complex field structures, magnetic reconnection, violent mass motion along magnetic field lines, and the heating of plasma to tens of millions of degrees, to name a few. The goal of this paper is to explore just one aspect of solar flares, namely, the interaction of hydrodynamics and radiation processes in fluid being rapidly heated along closed magnetic field lines. The models discussed are therefore necessarily restrictive, and will address only a few of the observed or observable phenomena. 46 refs., 6 figs.

  18. Spots and Flares: Stellar Activity in the Time Domain Era

    NASA Astrophysics Data System (ADS)

    Davenport, James R. A.

    Time domain photometric surveys for large numbers of stars have ushered in a new era of statistical studies of astrophysics. This new parameter space allows us to observe how stars behave and change on a human timescale, and facilitates ensemble studies to understand how stars change over cosmic timescales. With current and planned time domain stellar surveys, we will be able to put the Sun in a Galactic context, and discover how typical or unique our parent star truly is. The goal of this thesis is to develop techniques for detecting and analyzing the most prominent forms of magnetic activity from low-mass stars in modern time domain surveys: starspots and flares. Magnetic field strength is a fundamental property that decays over a star's life. As a result, flux modulations from both flares and starspots become smaller amplitude and more infrequent in light curves. Methods for detecting these forms of magnetic activity will be extensible to future time domain surveys, and helpful in characterizing the properties of stars as they age. Flares can be detected in sparsely sampled wide field surveys by searching for bright single-point outliers in light curves. Using both red optical and near infrared data from ground-based surveys over many years, I have constrained the rate of flares in multiple wavelengths for an ensemble of M dwarfs. Studying flares in these existing ground-based datasets will enable predictions for future survey yields. Space-based photometry enables continuous and precise monitoring of stars for many years, which is crucial for obtaining a complete census of flares from a single star. Using 11 months of 1-minute photometry for the M dwarf GJ 1243, I have amassed over 6100 flare events, the largest sample of white light flares for any low-mass star. I have also created the first high fidelity empirical white light flare template, which shows three distinct phases in typical flare light curves. With this template, I demonstrate that complex multi

  19. Spots and Flares: Stellar Activity in the Time Domain Era

    NASA Astrophysics Data System (ADS)

    Davenport, James

    2015-08-01

    Time domain photometric surveys for large numbers of stars have ushered in a new era of statistical studies of astrophysics. This new parameter space allows us to observe how stars behave and change on a human timescale, and facilitates ensemble studies to understand how stars change over cosmic timescales. With current and planned time domain stellar surveys, we will be able to put the Sun in a Galactic context, and discover how typical or unique our parent star truly is. The goal of this thesis is to develop techniques for detecting and analyzing the most prominent forms of magnetic activity from low-mass stars in modern time domain surveys: starspots and flares. Magnetic field strength is a fundamental property that decays over a star's life. As a result, flux modulations from both flares and starspots become smaller amplitude and more infrequent in light curves. Methods for detecting these forms of magnetic activity will be extensible to future time domain surveys, and helpful in characterizing the properties of stars as they age. Flares can be detected in sparsely sampled wide field surveys by searching for bright single-point outliers in light curves. Using both red optical and near infrared data from ground-based surveys over many years, I have constrained the rate of flares in multiple wavelengths for an ensemble of M dwarfs. Studying flares in these existing ground-based datasets will enable predictions for future survey yields. Space-based photometry enables continuous and precise monitoring of stars for many years, which is crucial for obtaining a complete census of flares from a single star. Using 11 months of 1-minute photometry for the M dwarf GJ 1243, I have amassed over 6100 flare events, the largest sample of white light flares for any low-mass star. I have also created the first high fidelity empirical white light flare template, which shows three distinct phases in typical flare light curves. With this template, I demonstrate that complex multi

  20. Simulating VIIRS Observed Gas Flare

    NASA Astrophysics Data System (ADS)

    Hsu, F. C.

    2015-12-01

    VIIRS Nightfire (VNF) had been proved being able to effectively detect gas flares at night, and characterize their temperature and source size. [1] However, limited access to generally confidential gas flare operation measurements made it difficult to verify the output. Although flared gas volume is occasionally available, it is not common to log the temperature and flames size which directly links to VNF output. To understand the mechanism of gas flare and how VIIRS perceives the event, a platform is proposed to simulate the gas flare being observed by VIIRS. The methodology can be described in three steps. (1) Use CFD simulation software ISIS-3D to simulate a simple gas flare. [2] Scalar fields of temperature and species concentration related to combustion are extracted from the simulation. The instantaneous scalar can be determined from time-averaging or guess by stochastic time and space series (TASS) from single-point statistics [3]. (2) Model spectral radiance intensity of simulated gas flare using RADCAL. [4] RADCAL developed by NIST can accurately model the spectral radiance emitted on the direction of lineof-sight given the spatial profile of temperature and concentration of species. (3) Use radiative transfer modeling to calculate the energy propagated to VIIRS. The modeled radiation will then be weighted by the MODTRAN [5] modeled transmissivity over predefined atmosphere to the satellite, with geometrical effects considered. Such platform can help understanding how exactly VNF is measuring gas flares, and thus lead to more precise characterization of combustion events. [1] C. D. Elvidge et al, Remote Sensing, 2013[2] IRSN ISIS-3D[3] M. E. Kounalakis et al, ASME J. Heat Transfer, 1991 [4] W. L. Grosshandler, NIST Technical Note 1402, 1993 [5] A. Berk et al, MODTRAN 5.2.0.0 User's Manual

  1. Particle acceleration in solar flares

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Forman, M. A.

    1987-01-01

    The most direct signatures of particle acceleration in flares are energetic particles detected in interplanetary space and in the Earth atmosphere, and gamma rays, neutrons, hard X-rays, and radio emissions produced by the energetic particles in the solar atmosphere. The stochastic and shock acceleration theories in flares are reviewed and the implications of observations on particle energy spectra, particle confinement and escape, multiple acceleration phases, particle anistropies, and solar atmospheric abundances are discussed.

  2. Stochastic Particle Acceleration in Impulsive Solar Flares

    NASA Technical Reports Server (NTRS)

    Miller, James A.

    2001-01-01

    The acceleration of a huge number of electrons and ions to relativistic energies over timescales ranging from several seconds to several tens of seconds is the fundamental problem in high-energy solar physics. The cascading turbulence model we have developed has been shown previously (e.g., Miller 2000; Miller & Roberts 1995; Miner, LaRosa, & Moore 1996) to account for all the bulk features (such as acceleration timescales, fluxes, total number of energetic particles, and maximum energies) of electron and proton acceleration in impulsive solar flares. While the simulation of this acceleration process is involved, the essential idea of the model is quite simple, and consists of just a few parts: 1. During the primary flare energy release phase, we assume that low-amplitude MHD Alfven and fast mode waves are excited at long wavelengths, say comparable to the size of the event (although the results are actually insensitive to this initial wavelength). While an assumption, this appears reasonable in light of the likely highly turbulent nature of the flare. 2. These waves then cascade in a Kolmogorov-like fashion to smaller wavelengths (e.g., Verma et al. 1996), forming a power-law spectral density in wavenumber space through the inertial range. 3. When the mean wavenumber of the fast mode waves has increased sufficiently, the transit-time acceleration rate (Miller 1997) for superAlfvenic electrons can overcome Coulomb energy losses, and these electrons are accelerated out of the thermal distribution and to relativistic energies (Miller et al. 1996). As the Alfven waves cascade to higher wavenumbers, they can cyclotron resonate with progressively lower energy protons. Eventually, they will resonate with protons in the tail of the thermal distribution, which will then be accelerated to relativistic energies as well (Miller & Roberts 1995). Hence, both ions and electrons are stochastically accelerated, albeit by different mechanisms and different waves. 4. When the

  3. Ultrasensitive detection in optically dense physiological media: applications to fast reliable biological assays

    NASA Astrophysics Data System (ADS)

    Matveeva, Evgenia G.; Gryczynski, Ignacy; Berndt, Klaus W.; Lakowicz, Joseph R.; Goldys, Ewa; Gryczynski, Zygmunt

    2006-02-01

    We present a novel approach for performing fluorescence immunoassay in serum and whole blood using fluorescently labeled anti-rabbit IgG. This approach, which is based on Surface Plasmon-Coupled Emission (SPCE), provides increased sensitivity and substantial background reduction due to exclusive selection of the signal from the fluorophores located near a bio-affinity surface. Effective coupling range for SPCE is only couple of hundred nanometers from the metallic surface. Excited fluorophores outside the coupling layer do not contribute to SPCE, and their free-space emission is not transmitted through the opaque metallic film into the glass substrate. An antigen (rabbit IgG) was adsorbed to a slide covered with a thin silver metal layer, and the SPCE signal from the fluorophore-labeled anti-rabbit antibody, binding to the immobilized antigen, was detected. The effect of the sample matrix (buffer, human serum, or human whole blood) on the end-point immunoassay SPCE signal is discussed. The kinetics of binding could be monitored directly in whole blood or serum. The results showed that human serum and human whole blood attenuate the SPCE end-point signal and the immunoassay kinetic signal only approximately 2- and 3-fold, respectively (compared to buffer), resulting in signals that are easily detectable even in whole blood. The high optical absorption of the hemoglobin can be tolerated because only fluorophores within a couple of hundred nanometers from the metallic film contribute to SPCE. Both glass and plastic slides can be used for SPCE-based assays. We believe that SPCE has the potential of becoming a powerful approach for performing immunoassays based on surface-bound analytes or antibodies for many biomarkers directly in dense samples such as whole blood, without any need for washing steps.

  4. A Fast, Portable, Fiber Optic Spectrofluorometer for Eddy Correlation Flux Measurement in the Aquatic Environment

    NASA Astrophysics Data System (ADS)

    Hu, I. H.; Senft-Grupp, S.; Hemond, H.

    2014-12-01

    The measurement of chemical fluxes between natural waters and their benthic sediments by most existing methods, such as benthic chambers and sediment core incubations, is slow, cumbersome, and often inaccurate. One promising new method for determining benthic fluxes is eddy correlation (EC), a minimally invasive, in situ technique based on high-speed velocity and concentration measurements. Widespread application of EC to a large range of chemicals of interest is currently limited, however, by the availability of rapid, high-resolution chemical sensors capable of precisely measuring concentrations at a point location and at sufficient speed (several Hz). A proof of concept spectrofluorometry instrument has been created that is capable of high-frequency concentration measurements of naturally fluorescent substances. Designed with the EC application in mind, the system utilizes optical fibers to transmit excitation and emission light, enabling in situ measurements at high spatial resolution. Emitted fluorescence light is passed through a tunable monochromator before reaching a photomultiplier tube; photons are quantified by a custom miniaturized, low-power photon counting circuit board. Preliminary results indicate that individual measurements made at 100 Hz of a 10 ppm humic acid solution were precise within 10%, thus yielding a precision of the order of +/- 1% in a second. Used in an EC system, this instrument will enable flux measurements of substances such as naturally occurring fluorescent dissolved organic material (FDOM). Measurement of fluxes of FDOM is significant in its own right, and also will allow the indirect measurement of the numerous other chemical fluxes that are associated with FDOM by using tracer techniques. The use of a tunable monochromator not only allows flexibility in detection wavelength, but also enables full wavelength scans of the emission spectrum, making the spectrofluorometer a dual-function device capable of both characterizing the

  5. M Dwarf Flare Continuum Variations on One-second Timescales: Calibrating and Modeling of ULTRACAM Flare Color Indices

    NASA Astrophysics Data System (ADS)

    Kowalski, Adam F.; Mathioudakis, Mihalis; Hawley, Suzanne L.; Wisniewski, John P.; Dhillon, Vik S.; Marsh, Tom R.; Hilton, Eric J.; Brown, Benjamin P.

    2016-04-01

    We present a large data set of high-cadence dMe flare light curves obtained with custom continuum filters on the triple-beam, high-speed camera system ULTRACAM. The measurements provide constraints for models of the near-ultraviolet (NUV) and optical continuum spectral evolution on timescales of ≈1 s. We provide a robust interpretation of the flare emission in the ULTRACAM filters using simultaneously obtained low-resolution spectra during two moderate-sized flares in the dM4.5e star YZ CMi. By avoiding the spectral complexity within the broadband Johnson filters, the ULTRACAM filters are shown to characterize bona fide continuum emission in the NUV, blue, and red wavelength regimes. The NUV/blue flux ratio in flares is equivalent to a Balmer jump ratio, and the blue/red flux ratio provides an estimate for the color temperature of the optical continuum emission. We present a new “color-color” relationship for these continuum flux ratios at the peaks of the flares. Using the RADYN and RH codes, we interpret the ULTRACAM filter emission using the dominant emission processes from a radiative-hydrodynamic flare model with a high nonthermal electron beam flux, which explains a hot, T ≈ 104 K, color temperature at blue-to-red optical wavelengths and a small Balmer jump ratio as observed in moderate-sized and large flares alike. We also discuss the high time resolution, high signal-to-noise continuum color variations observed in YZ CMi during a giant flare, which increased the NUV flux from this star by over a factor of 100. Based on observations obtained with the Apache Point Observatory 3.5 m telescope, which is owned and operated by the Astrophysical Research Consortium, based on observations made with the William Herschel Telescope operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofsica de Canarias, and observations, and based on observations made with the ESO Telescopes

  6. Analysis of H-alpha flare spectra

    NASA Technical Reports Server (NTRS)

    Kulander, J. L.

    1977-01-01

    Spectrographs of the H-alpha line taken at 15 second intervals from the event of 5 Sept. 1973 were interpreted by comparison with synthetic profiles. A sequence of 27 high resolution H alpha profiles was obtained from the second brightest flare kernel. The profiles were generally self reversed with a maximum peak intensity of 1.16 x continuum and a maximum central intensity of .91 x continuum. The line characteristics such as red and violet peak intensities and positions, center shifts and wing intensities were tabulated. Synthetic H-alpha profiles were generated from a finite layer assuming simple parameteric forms for the source function and velocity field. The velocity chosen always decreased with optical depth and had the same sign. For absorption profiles, bisector shifts were calculated for a variety of velocities. The velocity field and source function were derived as a function of optical depth and time.

  7. RAPID TeV GAMMA-RAY FLARING OF BL LACERTAE

    SciTech Connect

    Arlen, T.; Aune, T.; Bouvier, A.; Beilicke, M.; Buckley, J. H.; Bugaev, V.; Dickherber, R.; Benbow, W.; Cesarini, A.; Connolly, M. P.; Ciupik, L.; Cui, W.; Feng, Q.; Finley, J. P.; Dumm, J.; Fortson, L.; Errando, M.; Falcone, A.; Federici, S.; Finnegan, G. E-mail: cui@purdue.edu; Collaboration: VERITAS Collaboration; and others

    2013-01-10

    We report on the detection of a very rapid TeV gamma-ray flare from BL Lacertae on 2011 June 28 with the Very Energetic Radiation Imaging Telescope Array System (VERITAS). The flaring activity was observed during a 34.6 minute exposure, when the integral flux above 200 GeV reached (3.4 {+-} 0.6) Multiplication-Sign 10{sup -6} photons m{sup -2} s{sup -1}, roughly 125% of the Crab Nebula flux measured by VERITAS. The light curve indicates that the observations missed the rising phase of the flare but covered a significant portion of the decaying phase. The exponential decay time was determined to be 13 {+-} 4 minutes, making it one of the most rapid gamma-ray flares seen from a TeV blazar. The gamma-ray spectrum of BL Lacertae during the flare was soft, with a photon index of 3.6 {+-} 0.4, which is in agreement with the measurement made previously by MAGIC in a lower flaring state. Contemporaneous radio observations of the source with the Very Long Baseline Array revealed the emergence of a new, superluminal component from the core around the time of the TeV gamma-ray flare, accompanied by changes in the optical polarization angle. Changes in flux also appear to have occurred at optical, UV, and GeV gamma-ray wavelengths at the time of the flare, although they are difficult to quantify precisely due to sparse coverage. A strong flare was seen at radio wavelengths roughly four months later, which might be related to the gamma-ray flaring activities. We discuss the implications of these multiwavelength results.

  8. Gabor-domain optical coherence microscopy with integrated dual-axis MEMS scanner for fast 3D imaging and metrology

    NASA Astrophysics Data System (ADS)

    Canavesi, Cristina; Cogliati, Andrea; Hayes, Adam; Santhanam, Anand P.; Tankam, Patrice; Rolland, Jannick P.

    2015-10-01

    Fast, robust, nondestructive 3D imaging is needed for characterization of microscopic structures in industrial and clinical applications. A custom micro-electromechanical system (MEMS)-based 2D scanner system was developed to achieve 55 kHz A-scan acquisition in a Gabor-domain optical coherence microscopy (GD-OCM) instrument with a novel multilevel GPU architecture for high-speed imaging. GD-OCM yields high-definition volumetric imaging with dynamic depth of focusing through a bio-inspired liquid lens-based microscope design, which has no moving parts and is suitable for use in a manufacturing setting or in a medical environment. A dual-axis MEMS mirror was chosen to replace two single-axis galvanometer mirrors; as a result, the astigmatism caused by the mismatch between the optical pupil and the scanning location was eliminated and a 12x reduction in volume of the scanning system was achieved. Imaging at an invariant resolution of 2 μm was demonstrated throughout a volume of 1 × 1 × 0.6 mm3, acquired in less than 2 minutes. The MEMS-based scanner resulted in improved image quality, increased robustness and lighter weight of the system - all factors that are critical for on-field deployment. A custom integrated feedback system consisting of a laser diode and a position-sensing detector was developed to investigate the impact of the resonant frequency of the MEMS and the driving signal of the scanner on the movement of the mirror. Results on the metrology of manufactured materials and characterization of tissue samples with GD-OCM are presented.

  9. Constructing a safety and security system by medical applications of a fast face recognition optical parallel correlator

    NASA Astrophysics Data System (ADS)

    Watanabe, Eriko; Ishikawa, Mami; Ohta, Maiko; Murakami, Yasuo; Kodate, Kashiko

    2006-01-01

    Medical errors and patient safety have always received a great deal of attention, as they can be critically life-threatening and significant matters. Hospitals and medical personnel are trying their utmost to avoid these errors. Currently in the medical field, patients' record is identified through their PIN numbers and ID cards. However, for patients who cannot speak or move, or who suffer from memory disturbances, alternative methods would be more desirable, and necessary in some cases. The authors previously proposed and fabricated a specially-designed correlator called FARCO (Fast Face Recognition Optical Correlator) based on the Vanderlugt Correlator1, which operates at the speed of 1000 faces/s 2,3,4. Combined with high-speed display devices, the four-channel processing could achieve such high operational speed as 4000 faces/s. Running trial experiments on a 1-to-N identification basis using the optical parallel correlator, we succeeded in acquiring low error rates of 1 % FMR and 2.3 % FNMR. In this paper, we propose a robust face recognition system using the FARCO for focusing on the safety and security of the medical field. We apply our face recognition system to registration of inpatients, in particular children and infants, before and after medical treatments or operations. The proposed system has recorded a higher recognition rate by multiplexing both input and database facial images from moving images. The system was also tested and evaluated for further practical use, leaving excellent results. Hence, our face recognition system could function effectively as an integral part of medical system, meeting these essential requirements of safety, security and privacy.

  10. New raster-based laser display with fast electro-optical deflection

    NASA Astrophysics Data System (ADS)

    Vohsbeck-Petermann, Ralf; Hinkov, Vladimir

    1997-02-01

    propose the development of a deflection system based on a novel simple electro-optical deflector fabricated in LiNbO3.

  11. Unprecedented Fine Structure of a Solar Flare Revealed by the 1.6 m New Solar Telescope

    PubMed Central

    Jing, Ju; Xu, Yan; Cao, Wenda; Liu, Chang; Gary, Dale; Wang, Haimin

    2016-01-01

    Solar flares signify the sudden release of magnetic energy and are sources of so called space weather. The fine structures (below 500 km) of flares are rarely observed and are accessible to only a few instruments world-wide. Here we present observation of a solar flare using exceptionally high resolution images from the 1.6 m New Solar Telescope (NST) equipped with high order adaptive optics at Big Bear Solar Observatory (BBSO). The observation reveals the process of the flare in unprecedented detail, including the flare ribbon propagating across the sunspots, coronal rain (made of condensing plasma) streaming down along the post-flare loops, and the chromosphere’s response to the impact of coronal rain, showing fine-scale brightenings at the footpoints of the falling plasma. Taking advantage of the resolving power of the NST, we measure the cross-sectional widths of flare ribbons, post-flare loops and footpoint brighenings, which generally lie in the range of 80–200 km, well below the resolution of most current instruments used for flare studies. Confining the scale of such fine structure provides an essential piece of information in modeling the energy transport mechanism of flares, which is an important issue in solar and plasma physics. PMID:27071459

  12. Unprecedented Fine Structure of a Solar Flare Revealed by the 1.6 m New Solar Telescope

    NASA Astrophysics Data System (ADS)

    Jing, Ju; Xu, Yan; Cao, Wenda; Liu, Chang; Gary, Dale; Wang, Haimin

    2016-04-01

    Solar flares signify the sudden release of magnetic energy and are sources of so called space weather. The fine structures (below 500 km) of flares are rarely observed and are accessible to only a few instruments world-wide. Here we present observation of a solar flare using exceptionally high resolution images from the 1.6 m New Solar Telescope (NST) equipped with high order adaptive optics at Big Bear Solar Observatory (BBSO). The observation reveals the process of the flare in unprecedented detail, including the flare ribbon propagating across the sunspots, coronal rain (made of condensing plasma) streaming down along the post-flare loops, and the chromosphere’s response to the impact of coronal rain, showing fine-scale brightenings at the footpoints of the falling plasma. Taking advantage of the resolving power of the NST, we measure the cross-sectional widths of flare ribbons, post-flare loops and footpoint brighenings, which generally lie in the range of 80–200 km, well below the resolution of most current instruments used for flare studies. Confining the scale of such fine structure provides an essential piece of information in modeling the energy transport mechanism of flares, which is an important issue in solar and plasma physics.

  13. Unprecedented Fine Structure of a Solar Flare Revealed by the 1.6~m New Solar Telescope

    NASA Astrophysics Data System (ADS)

    Jing, Ju; Xu, Yan; Cao, Wenda; Liu, Chang; Gary, Dale E.; Wang, Haimin

    2016-05-01

    Solar flares signify the sudden release of magnetic energy and are sources of so called space weather. The fine structures (below 500 km) of flares are rarely observed and are accessible to only a few instruments world-wide. Here we present observation of a solar flare using exceptionally high resolution images from the 1.6~m New Solar Telescope (NST) equipped with high order adaptive optics at Big Bear Solar Observatory (BBSO). The observation reveals the process of the flare in unprecedented detail, including the flare ribbon propagating across the sunspots, coronal rain (made of condensing plasma) streaming down along the post-flare loops, and the chromosphere's response to the impact of coronal rain, showing fine-scale brightenings at the footpoints of the falling plasma. Taking advantage of the resolving power of the NST, we measure the cross-sectional widths of flare ribbons, post-flare loops and footpoint brighenings, which generally lie in the range of 80-200 km, well below the resolution of most current instruments used for flare studies. Confining the scale of such fine structure provides an essential piece of information in modeling the energy transport mechanism of flares, which is an important issue in solar and plasma physics.

  14. Unprecedented Fine Structure of a Solar Flare Revealed by the 1.6 m New Solar Telescope.

    PubMed

    Jing, Ju; Xu, Yan; Cao, Wenda; Liu, Chang; Gary, Dale; Wang, Haimin

    2016-01-01

    Solar flares signify the sudden release of magnetic energy and are sources of so called space weather. The fine structures (below 500 km) of flares are rarely observed and are accessible to only a few instruments world-wide. Here we present observation of a solar flare using exceptionally high resolution images from the 1.6 m New Solar Telescope (NST) equipped with high order adaptive optics at Big Bear Solar Observatory (BBSO). The observation reveals the process of the flare in unprecedented detail, including the flare ribbon propagating across the sunspots, coronal rain (made of condensing plasma) streaming down along the post-flare loops, and the chromosphere's response to the impact of coronal rain, showing fine-scale brightenings at the footpoints of the falling plasma. Taking advantage of the resolving power of the NST, we measure the cross-sectional widths of flare ribbons, post-flare loops and footpoint brighenings, which generally lie in the range of 80-200 km, well below the resolution of most current instruments used for flare studies. Confining the scale of such fine structure provides an essential piece of information in modeling the energy transport mechanism of flares, which is an important issue in solar and plasma physics. PMID:27071459

  15. Fast and slow ion diffusion processes in lithium ion pouch cells during cycling observed with fiber optic strain sensors

    NASA Astrophysics Data System (ADS)

    Sommer, Lars Wilko; Kiesel, Peter; Ganguli, Anurag; Lochbaum, Alexander; Saha, Bhaskar; Schwartz, Julian; Bae, Chang-Jun; Alamgir, Mohamed; Raghavan, Ajay

    2015-11-01

    Cell monitoring for safe capacity utilization while maximizing pack life and performance is a key requirement for effective battery management and encouraging their adoption for clean-energy technologies. A key cell failure mode is the build-up of residual electrode strain over time, which affects both cell performance and life. Our team has been exploring the use of fiber optic (FO) sensors as a new alternative for cell state monitoring. In this present study, various charge-cycling experiments were performed on Lithium-ion pouch cells with a particular class of FO sensors, fiber Bragg gratings (FBGs), that were externally attached to the cells. An overshooting of the volume change at high SOC that recovers during rest can be observed. This phenomenon originates from the interplay between a fast and a slow Li ion diffusion process, which leads to non-homogeneous intercalation of Li ions. This paper focuses on the strain relaxation processes that occur after switching from charge to no-load phases. The correlation of the excess volume and subsequent relaxation to SOC as well as temperature is discussed. The implications of being able to monitor this phenomenon to control battery utilization for long life are also discussed.

  16. A surface data generation method of optical micro-structure and analysis system for Fast Tool Servo fabricating

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Dai, Yi-fan; Wan, Fei; Wang, Gui-lin

    2010-10-01

    High-precision optical micro-structured components are now widely used in the field of military and civilian use. Ultraprecision machining with a fast tool servo (FTS) is one of the leading methodologies for fabrication of such surfaces. The first important issue that faced in ultra-precision and high-effectively fabricating is how to properly describe the complex shapes based on the principle of FTS. In order to meet the demands of FTS machining that need for tool high-frequency response, high data throughput and huge memory space, an off-line discrete data points generation method for microstructure surfaces is presented which can avoid on-line shape calculation in fabricating process. A new analysis software package is developed to compute the speed, acceleration and spectrum over the generated data points which helps to analysis the tool tracking characteristics needed in fabricating. Also a new mechanism for FTS machining data transmission based on the huge-capacity storage device is proposed. Experiments show that the off-line surface data generation method and data transfer mechanism can effectively improve FTS fabricating efficiency, the surface analysis software can help to determine the machining ability of tool-holder and to guide and optimize the processing parameters such as spindle speed, feed rate, etc.

  17. Novel scheme of assist-light injection through waveguide coupling in a semiconductor optical amplifier for fast gain recovery

    NASA Astrophysics Data System (ADS)

    Nithin, V.; Kumar, Yogesh; Shenoy, M. R.

    2016-01-01

    We propose a novel scheme for injection of assist-light into the active region of a semiconductor optical amplifier (SOA) for fast gain recovery. In the proposed scheme, the assist-light is coupled into the active region of the SOA through an adjacent channel waveguide. Numerical results based on the well established model for carrier dynamics in SOA show that the gain recovery is faster in the proposed scheme as compared to the earlier reported scheme of counter-propagating assist-light injection. Our analysis shows that a desired power profile of the assist-light can be maintained in the active region of the SOA by tailoring the coupling through suitable design of the adjacent channel waveguide. The dependence of gain recovery on the input power of the assist-light in the proposed scheme has also been studied. Under typical operating conditions, it is found that 20 dBm of assist-light power injection in the proposed scheme is as effective as 27 dBm of assist-light power in the counter-propagating scheme.

  18. A Novel Scheme of Fast-frequency Hopping Optical CDMA System with No-hit-zone Sequence

    NASA Astrophysics Data System (ADS)

    Ji, Jianhua; liu, Ling; Wang, Ke; Zhang, Zhipeng; Xu, Ming

    2013-09-01

    In traditional fast frequency-hopping OCDMA (FFH-OCDMA) system, beat noise and multiple-access interference are the main performance limitations, and complicated power control must be employed to eliminate the near-far effect. In this paper, a novel scheme of FFH-OCDMA with no-hit-zone sequence is proposed, which is named NHZ FFH-OCDMA. In NHZ FFH-OCDMA, the synchronization among users can be controlled within permissible time delay, and the code cross-correlation for different users equals zero. Therefore, near-far effect can be eliminated. Furthermore, beat noise and multiple-access interference also can be removed. Simulation of eight simultaneous users with dada rate 100 Mbit/s is demonstrated, where the fiber link consists of 50 km single-mode fiber, plus 5 km dispersion compensating fiber. Simulation results show that the near-far problem of NHZ FFH-OCDMA can be eliminated, and complicated power control can be removed. Therefore, this scheme is a good candidate for optical access network.

  19. Optical visualization and electrical characterization of fast-rising pulsed dielectric barrier discharge for airflow control applications

    NASA Astrophysics Data System (ADS)

    Benard, Nicolas; Zouzou, Nourredine; Claverie, Alain; Sotton, Julien; Moreau, Eric

    2012-02-01

    Flow control consists of manipulating flows in an effective and robust manner to improve the global performances of transport systems or industrial processes. Plasma technologies, and particularly surface dielectric barrier discharge (DBD), can be a good candidate for such purpose. The present experimental study focuses on optical and electrical characterization of plasma sheet formed by applying a pulse of voltage with rising and falling periods of 50 ns for a typical surface DBD geometry. Positive and negative polarities are compared in terms of current behavior, deposited energy, fast-imaging of the plasma propagation, and resulting modifications of the surrounding medium by using shadowgraphy acquisitions. Positive and negative pulses of voltage produce streamers and corona type plasma, respectively. Both of them result in the production of a localized pressure wave propagating in the air with a speed maintained at 343 m/s (measurements at room temperature of 20 °C). This suggests that the produced pressure wave can be considered as a propagating sound wave. The intensity of the pressure wave is directly connected to the dissipated energy at the dielectric wall with a linear increase with the applied voltage amplitude and a strong dependence toward the rising time. At constant voltage amplitude, the pressure wave is reinforced by using a positive pulse. The present investigation also reveals that rising and decaying periods of a single pulse of voltage result in two distinct pressure waves. As a result, superposition or successive pressure wave can be produced by adjusting the width of the pulse.

  20. Starspots on flare stars

    NASA Technical Reports Server (NTRS)

    Mullan, D. J.

    1974-01-01

    Sizes of starspots on flare stars can be derived from the author's convection-cell hypothesis. The sizes are in fair agreement with those observed on YY Gem, CC Eri, and BY Dra by Bopp and Evans (1973). The hypothesis predicts that periodic brightness variations due to starspots are restricted to stars brighter than a critical absolute visual magnitude. A convective model of a starspot on YY Gem has been computed, assuming that the missing flux is in the form of Alfven waves. It is found that the surface field must exceed 10,000 G, and is probably less than about 30,000 G. With a surface field of 20,000 G, the effective temperature of the spot is in the range from 1590 to 1890 K, depending on the field gradient. These figures are to be compared with an effective temperature of 2000 K estimated from observations by Bopp and Evans. Efficient dynamo action is shown to be a possible mechanism for generating such large surface fields. There is a possibility that tidal effects may influence starspot formation.

  1. High resolution magnetic resonance imaging of the anterior visual pathway in patients with optic neuropathies using fast spin echo and phased array local coils.

    PubMed Central

    Gass, A; Barker, G J; MacManus, D; Sanders, M; Riordan-Eva, P; Tofts, P S; Thorpe, J; McDonald, W I; Moseley, I F; Miller, D H

    1995-01-01

    High resolution MRI of the anterior visual pathways was evaluated using frequency selective fat suppressed fast spin echo (FSE) sequences in conjunction with phased array local coils in patients with optic neuropathies. Fifteen normal controls and 57 patients were examined. Coronal T2 weighted fat suppressed FSE images were obtained in 11 minutes with an in plane resolution of 0.39 x 0.39 mm. The optic nerve and its sheath containing CSF were clearly differentiated. Central retinal vessels were often visible. In demyelinating optic neuritis and in anterior ischaemic optic neuropathy high signal within the nerve was readily delineated. Meningiomas and gliomas involving the optic nerve were precisely visualised both in the orbit and intracranially. Extrinsic compression of the optic nerves was readily visualised in carotid artery ectasia and dysthyroid eye disease. Enlarged subarachnoid spaces around the optic nerves were demonstrated in benign intracranial hypertension. High resolution MRI of the anterior visual pathway represents an advance in the diagnosis and management of patients presenting with optic neuropathy. Images PMID:7745403

  2. Detecting Solar Neutrino Flare in Megaton and km3 detectors

    NASA Astrophysics Data System (ADS)

    Fargion, Daniele; di Giacomo, Paola

    2009-03-01

    To foresee a solar flare neutrino signal we infer its upper and lower bound. The upper bound was derived since a few years by general energy equipartition arguments on observed solar particle flare. The lower bound, the most compelling one for any guarantee neutrino signal, is derived by most recent records of hard Gamma bump due to solar flare on January 2005 (by neutral pion decay). Because neutral and charged pions (made by hadron scattering in the flare) are born on the same foot, their link is compelling: the observed gamma flux [Grechnev V.V. et al., arXiv:0806.4424, Solar Physics, Vol. 1, October, (2008), 252] reflects into a corresponding one for the neutrinos, almost one to one. Moreover while gamma photons might be absorbed (in deep corona) or at least reduced inside the flaring plasma, the secondaries neutrino are not. So pion neutrinos should be even more abundant than gamma ones. Tens-hundred MeV neutrinos may cross undisturbed the whole Sun, doubling at least their rate respect a unique solar-side for gamma flare. Therefore we obtain minimal bounds opening a windows for neutrino astronomy, already at the edge of present but quite within near future Megaton neutrino detectors. Such detectors are considered mostly to reveal cosmic supernova background or rare Local Group (few Mpc) Supernovas events [Matthew D. Kistler et al. 0810.1959v1]. However rarest (once a decade), brief (a few minutes) powerful solar neutrino “flare” may shine and they may overcome by two to three order of magnitude the corresponding steady atmospheric neutrino noise on the Earth, leading in largest Neutrino detector at least to one or to meaning-full few events clustered signals. The voice of such a solar anti-neutrino flare component at a few tens MeVs may induce an inverse beta decay over a vanishing anti-neutrino solar background. Megaton or even inner ten Megaton Ice Cube detector at ten GeV threshold may also reveal traces in hardest energy of solar flares. Icecube

  3. The Nature of CME-flare-Associated Coronal Dimming

    NASA Astrophysics Data System (ADS)

    Cheng, J. X.; Qiu, J.

    2016-07-01

    Coronal mass ejections (CMEs) are often accompanied by coronal dimming that is evident in extreme ultraviolet (EUV) and soft X-ray observations. The locations of dimming are sometimes considered to map footpoints of the erupting flux rope. As the emitting material expands in the corona, the decreased plasma density leads to reduced emission observed in spectral and irradiance measurements. Therefore, signatures of dimming may reflect the properties of CMEs in the early phase of their eruption. In this study, we analyze the event of flare, CME, and coronal dimming on 2011 December 26. We use the data from the Atmospheric Imaging Assembly on the Solar Dynamics Observatory for disk observations of the dimming, and analyze images taken by EUVI, COR1, and COR2 on board the Solar Terrestrial Relations Observatory to obtain the height and velocity of the associated CMEs observed at the limb. We also measure the magnetic reconnection rate from flare observations. Dimming occurs in a few locations next to the flare ribbons, and it is observed in multiple EUV passbands. Rapid dimming starts after the onset of fast reconnection and CME acceleration, and its evolution tracks the CME height and flare reconnection. The spatial distribution of dimming exhibits cores of deep dimming with a rapid growth, and their light curves are approximately linearly scaled with the CME height profile. From the dimming analysis we infer the process of the CME expansion, and estimate properties of the CME.

  4. THE SOLAR FLARE IRON ABUNDANCE

    SciTech Connect

    Phillips, K. J. H.; Dennis, B. R. E-mail: Brian.R.Dennis@nasa.gov

    2012-03-20

    The abundance of iron is measured from emission line complexes at 6.65 keV (Fe line) and 8 keV (Fe/Ni line) in RHESSI X-ray spectra during solar flares. Spectra during long-duration flares with steady declines were selected, with an isothermal assumption and improved data analysis methods over previous work. Two spectral fitting models give comparable results, viz., an iron abundance that is lower than previous coronal values but higher than photospheric values. In the preferred method, the estimated Fe abundance is A(Fe) = 7.91 {+-} 0.10 (on a logarithmic scale, with A(H) = 12) or 2.6 {+-} 0.6 times the photospheric Fe abundance. Our estimate is based on a detailed analysis of 1898 spectra taken during 20 flares. No variation from flare to flare is indicated. This argues for a fractionation mechanism similar to quiet-Sun plasma. The new value of A(Fe) has important implications for radiation loss curves, which are estimated.

  5. Largest Solar Flare on Record

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The largest solar flare ever recorded occurred at 4:51 p.m. EDT, on Monday, April 2, 2001. as Observed by the Solar and Heliospheric Observatory (SOHO) satellite. Solar flares, among the solar systems mightiest eruptions, are tremendous explosions in the atmosphere of the Sun capable of releasing as much energy as a billion megatons of TNT. Caused by the sudden release of magnetic energy, in just a few seconds, solar flares can accelerate solar particles to very high velocities, almost to the speed of light, and heat solar material to tens of millions of degrees. The recent explosion from the active region near the sun's northwest limb hurled a coronal mass ejection into space at a whopping speed of roughly 7.2 million kilometers per hour. Luckily, the flare was not aimed directly towards Earth. Second to the most severe R5 classification of radio blackout, this flare produced an R4 blackout as rated by the NOAA SEC. This classification measures the disruption in radio communications. Launched December 2, 1995 atop an ATLAS-IIAS expendable launch vehicle, the SOHO is a cooperative effort involving NASA and the European Space Agency (ESA). (Image courtesy NASA Goddard SOHO Project office)

  6. Magnetic reconnection in solar flares

    NASA Technical Reports Server (NTRS)

    Forbes, T. G.

    1991-01-01

    The magnetic energy stored in the corona is the only plausible source for the energy released during large solar flares. During the last 20 years most theoretical work has concentrated on models which store magnetic energy in the corona in the form of electrical currents, and a major goal of present day research is to understand how these currents are created, and then later dissipated during a flare. Another important goal is to find a flare model which can eject magnetic flux into interplanetary space. Although many flares do not eject magnetic flux, those which do are of special importance for solar-terrestrial relations since the ejected flux can have dramatic effects if it hits the Earth's magnetosphere. Three flare models which have been extensively investigated are the emerging-flux model, the sheared-arcade model, and the magnetic-flux-rope model. All of these models can store and release magnetic energy efficiently provided that rapid magnetic reconnection occurs. However, only the magnetic-flux-rope model appears to provide a plausible mechanism for ejecting magnetic flux into interplanetary space.

  7. Space observations of comets during solar flares

    NASA Astrophysics Data System (ADS)

    Ibadov, Subhon; Ibodov, Firuz S.

    Problems connected with mechanisms for comet outbursts as well as for gamma-ray bursts remain open. Meantime, calculations show that an irradiation of a certain class of cometary nuclei, having high specific electric resistance, by intense fluxes of energetic protons and posi-tively charged ions with kinetic energies more than 1 MeV/nucleon, ejected from the Sun during strong solar flares, can produce a macroscopic high-voltage electric double layer with positive charge in the subsurface region of the nucleus, during irradiation time of the order of 10-100 hours at heliocentric distances around 1-10 AU. The maximum electric energy accumulated in such layer will be restricted by discharge potential of the layer material. For the comet nuclei with the typical radius of the order of 1-10 km the accumulated energy of such natural electric capacitor is comparable to the energy of large comet outbursts that are estimated on the basis of ground-based optical observations of comets. The impulse X-ray radiation anticipated from the high-voltage electric discharge of the capacitor may serve as an indicator of realization of the processes above considered. Therefore, space observations of comets and pseudo-asteroids of cometary origin, having brightness correlation with solar activity, using space X-ray obser-vatories during strong solar flares are very interesting for the physics of comets as well as for high energy astrophysics.

  8. Quasi-periodic Pulsations in Solar and Stellar Flares: Re-evaluating their Nature in the Context of Power-law Flare Fourier Spectra

    NASA Astrophysics Data System (ADS)

    Inglis, A. R.; Ireland, J.; Dominique, M.

    2015-01-01

    The nature of quasi-periodic pulsations (QPPs) in solar and stellar flares remains debated. Recent work has shown that power-law-like Fourier power spectra are an intrinsic property of solar and stellar flare signals, a property that many previous studies of this phenomenon have not accounted for. Hence a re-evaluation of the existing interpretations and assumptions regarding QPPs is needed. We adopt a Bayesian method for investigating this phenomenon, fully considering the Fourier power-law properties of flare signals. Using data from the PROBA2/Large Yield Radiometer, Fermi/Gamma-ray Burst Monitor, Nobeyama Radioheliograph, and Yohkoh/HXT instruments, we study a selection of flares from the literature identified as QPP events. Additionally, we examine optical data from a recent stellar flare that appears to exhibit oscillatory properties. We find that, for all but one event tested, an explicit oscillation is not required to explain the observations. Instead, the flare signals are adequately described as a manifestation of a power law in the Fourier power spectrum. However, for the flare of 1998 May 8, strong evidence for an explicit oscillation with P ≈ 14-16 s is found in the 17 GHz radio data and the 13-23 keV Yohkoh/HXT data. We conclude that, most likely, many previously analyzed events in the literature may be similarly described by power laws in the flare Fourier power spectrum, without invoking a narrowband, oscillatory component. Hence the prevalence of oscillatory signatures in solar and stellar flares may be less than previously believed. The physical mechanism behind the appearance of the observed power laws is discussed.

  9. QUASI-PERIODIC PULSATIONS IN SOLAR AND STELLAR FLARES: RE-EVALUATING THEIR NATURE IN THE CONTEXT OF POWER-LAW FLARE FOURIER SPECTRA

    SciTech Connect

    Inglis, A. R.; Ireland, J.; Dominique, M.

    2015-01-10

    The nature of quasi-periodic pulsations (QPPs) in solar and stellar flares remains debated. Recent work has shown that power-law-like Fourier power spectra are an intrinsic property of solar and stellar flare signals, a property that many previous studies of this phenomenon have not accounted for. Hence a re-evaluation of the existing interpretations and assumptions regarding QPPs is needed. We adopt a Bayesian method for investigating this phenomenon, fully considering the Fourier power-law properties of flare signals. Using data from the PROBA2/Large Yield Radiometer, Fermi/Gamma-ray Burst Monitor, Nobeyama Radioheliograph, and Yohkoh/HXT instruments, we study a selection of flares from the literature identified as QPP events. Additionally, we examine optical data from a recent stellar flare that appears to exhibit oscillatory properties. We find that, for all but one event tested, an explicit oscillation is not required to explain the observations. Instead, the flare signals are adequately described as a manifestation of a power law in the Fourier power spectrum. However, for the flare of 1998 May 8, strong evidence for an explicit oscillation with P ≈ 14-16 s is found in the 17 GHz radio data and the 13-23 keV Yohkoh/HXT data. We conclude that, most likely, many previously analyzed events in the literature may be similarly described by power laws in the flare Fourier power spectrum, without invoking a narrowband, oscillatory component. Hence the prevalence of oscillatory signatures in solar and stellar flares may be less than previously believed. The physical mechanism behind the appearance of the observed power laws is discussed.

  10. Anvil for Flaring PCB Guide Pins

    NASA Technical Reports Server (NTRS)

    Winn, E.; Turner, R.

    1985-01-01

    Spring-loaded anvil results in fewer fractured pins. New anvil for flaring guide pins in printed-circuit boards absorbs approximately 80 percent of press force. As result fewer pins damaged, and work output of flaring press greatly increased.

  11. What's an Asthma Flare-Up?

    MedlinePlus

    ... Things to Know About Zika & Pregnancy What's an Asthma Flare-Up? KidsHealth > For Parents > What's an Asthma ... of a straw that's being pinched. Causes of Asthma Flare-Ups People with asthma have airways that ...

  12. The Flare Genesis Experiment

    NASA Technical Reports Server (NTRS)

    Rust, D. M.

    2002-01-01

    Using the Flare Genesis Experiment (FGE), a balloon-borne observatory with an 80-cm solar telescope we observed the active region NOAA 8844 on January 25, 2000 for several hours. FGE was equipped with a vector polarimeter and a tunable Fabry-Perot narrow-band filter. It recorded time series of filtergrams, vector magnetograms, and Dopplergrams at the Ca(I) 6122.2 angstrom line, and H-alpha filtergrams with a cadence between 2.5 and 7.5 minutes. At the time of the observations, NOAA 8844 was located at approximately 5 N 30 W. The region was rapidly growing during the observations; new magnetic flux was constantly emerging in three supergranules near its center. We describe in detail how the FGE data were analyzed and report on the structure and behavior of peculiar moving dipolar features (MDFs) observed in the active region. In longitudinal magnetograms, the MDFs appeared to be small dipoles in the emerging fields. The east-west orientation of their polarities was opposite that of the sunspots. The dipoles were oriented parallel to their direction of motion, which was in most cases towards the sunspots. Previously, dipolar moving magnetic features have only been observed flowing out from sunspots. Vector magnetograms show that the magnetic field of each MDF negative part was less inclined to the local horizontal than the ones of the positive part. We identify the MDFs as undulations, or stitches, where the emerging flux ropes are still tied to the photosphere. We present a U-loop model that can account for their unusual structure and behavior, and it shows how emerging flux can shed its entrained mass.

  13. Optical and near-IR observations of the faint and fast 2008ha-like supernova 2010ae

    NASA Astrophysics Data System (ADS)

    Stritzinger, M. D.; Hsiao, E.; Valenti, S.; Taddia, F.; Rivera-Thorsen, T. J.; Leloudas, G.; Maeda, K.; Pastorello, A.; Phillips, M. M.; Pignata, G.; Baron, E.; Burns, C. R.; Contreras, C.; Folatelli, G.; Hamuy, M.; Höflich, P.; Morrell, N.; Prieto, J. L.; Benetti, S.; Campillay, A.; Haislip, J. B.; LaClutze, A. P.; Moore, J. P.; Reichart, D. E.

    2014-01-01

    A comprehensive set of optical and near-infrared (NIR) photometry and spectroscopy is presented for the faint and fast 2008ha-like supernova (SN) 2010ae. Contingent on the adopted value of host extinction, SN 2010ae reached a peak brightness of -13.8 > MV > -15.3 mag, while modeling of the UVOIR light curve suggests it produced 0.003-0.007 M⊙ of 56Ni, ejected 0.30-0.60 M⊙ of material, and had an explosion energy of 0.04-0.30 × 1051 erg. The values of these explosion parameters are similar to the peculiar SN 2008ha -for which we also present previously unpublished early phase optical and NIR light curves - and places these two transients at the faint end of the 2002cx-like SN population. Detailed inspection of the post-maximum NIR spectroscopic sequence indicates the presence of a multitude of spectral features, which are identified through SYNAPPS modeling to be mainly attributed to Co ii. Comparison with a collection of published and unpublished NIR spectra of other 2002cx-like SNe, reveals that a Co ii footprint is ubiquitous to this subclass of transients, providing a link to Type Ia SNe. A visual-wavelength spectrum of SN 2010ae obtained at +252 days past maximum shows a striking resemblance to a similar epoch spectrum of SN 2002cx. However, subtle differences in the strength and ratio of calcium emission features, as well as diversity among similar epoch spectra of other 2002cx-like SNe indicates a range of physical conditions of the ejecta, highlighting the heterogeneous nature of thispeculiar class of transients. Based on observations collected at the European Organization for Astronomical Research in the Southern Hemisphere, Chile (ESO Programs 082.A-0526, 084.D-0719, 088.D-0222, 184.D-1140, and 386.D-0966); the Gemini Observatory, Cerro Pachon, Chile (Gemini Programs GS-2010A-Q-14 and GS-2010A-Q-38); the Magellan 6.5 m telescopes at Las Campanas Observatory; and the SOAR telescope.Tables 1-5 and Appendix A are available in electronic form at http

  14. Grazing Optical Polishing: a Fast and Efficient Technique for Making Lightweight Sub- Arc-Second X-ray Mirrors

    NASA Astrophysics Data System (ADS)

    Zhang, William

    Future x-ray telescopes, including the proposed WFXT, Generation-X, and SMART-X missions, measured in terms of angular resolution, energy resolution, and photon collection areas, must be significantly more powerful than the four currently in operation: Chandra, XMM-Newton, Suzaku, and NuSTAR. Given constraints imposed by existing launch vehicles and budgets likely to be austere, future missions can only be realized if a new technique is developed that can fabricate high angular resolution (sub-arc-second) and lightweight x-ray mirrors (areal density less than 1 kg/m2) at low cost (less than $105 per square meter of mirror area). Existing x-ray mirror fabrication technologies can be broadly classified into two categories: polishing and replication. Polishing is expensive and slow, producing high angular resolution mirrors that are heavy, like those in the Chandra telescope. Replication is inexpensive and fast, producing mirrors that are lightweight but have low angular resolution, like those in the Suzaku telescopes. The future of x-ray astronomy calls for a mirror fabrication process that can simultaneously achieve high angular resolution, light weight, and low cost. We propose a new mirror fabrication process, called grazing optical polishing (GOP), designed to polish grazing incidence optics using shear or grazing force. It is based on polishing and therefore can achieve sub-arc-second angular resolution. It takes advantage of the nearly conical nature of x-ray mirrors to achieve a high polishing rate, minimizing fabrication cost and time. Combined with the use of single crystal silicon as the mirror material, this process can achieve unprecedentedly lightweight and accurate mirrors. (See Table 4 for a succinct description of the entire fabrication process.) At the end of this three-year effort, we expect to be able to make high resolution and lightweight x-ray mirrors that, when properly integrated into mirror modules, are capable of forming sub-arc-second x

  15. Solar gamma-ray-line flares, type II radio bursts, and coronal mass ejections

    NASA Astrophysics Data System (ADS)

    Cliver, E. W.; Cane, H. V.; Forrest, D. J.; Koomen, M. J.; Howard, R. A.; Wright, C. S.

    1991-10-01

    A Big Flare Syndrome (BFS) test is used to substantiate earlier reports of a statistically significant association between nuclear gamma-ray-line (GRL) flares and metric type II bursts from coronal shocks. The type II onset characteristically follows the onset of gamma-ray emission with a median delay of two minutes. It is found that 70-90 percent of GRL flares for which coronagraph data were available were associated with coronal mass ejections (CMEs). Gradual and impulsive GRL flares were equally well associated with CMEs. The CMEs were typically fast, with a median speed greater than 800 km/s. possible `non-BFS' explanations for the GRL-type II association are discussed.

  16. Solar gamma-ray-line flares, type II radio bursts, and coronal mass ejections

    NASA Technical Reports Server (NTRS)

    Cliver, E. W.; Cane, H. V.; Forrest, D. J.; Koomen, M. J.; Howard, R. A.; Wright, C. S.

    1991-01-01

    A Big Flare Syndrome (BFS) test is used to substantiate earlier reports of a statistically significant association between nuclear gamma-ray-line (GRL) flares and metric type II bursts from coronal shocks. The type II onset characteristically follows the onset of gamma-ray emission with a median delay of two minutes. It is found that 70-90 percent of GRL flares for which coronagraph data were available were associated with coronal mass ejections (CMEs). Gradual and impulsive GRL flares were equally well associated with CMEs. The CMEs were typically fast, with a median speed greater than 800 km/s. possible `non-BFS' explanations for the GRL-type II association are discussed.

  17. Crab Flares due to Turbulent Dissipation of the Pulsar Striped Wind

    NASA Astrophysics Data System (ADS)

    Zrake, Jonathan

    2016-05-01

    We interpret γ-ray flares from the Crab Nebula as the signature of turbulence in the pulsar’s electromagnetic outflow. Turbulence is triggered upstream by dynamical instability of the wind’s oscillating magnetic field and accelerates non-thermal particles. On impacting the wind-termination shock, these particles emit a distinct synchrotron component {F}ν ,{flare}, which is constantly modulated by intermittency of the upstream plasma flow. Flares are observed when the high-energy cutoff of {F}ν ,{flare} emerges above the fast-declining nebular emission around 0.1–1 GeV. Simulations carried out in the force-free electrodynamics approximation predict the striped wind to become fully turbulent well ahead of the wind-termination shock, provided its terminal Lorentz factor is ≲ {10}4.

  18. Fiber optic-SPR platform for fast and sensitive infliximab detection in serum of inflammatory bowel disease patients.

    PubMed

    Lu, Jiadi; Van Stappen, Thomas; Spasic, Dragana; Delport, Filip; Vermeire, Séverine; Gils, Ann; Lammertyn, Jeroen

    2016-05-15

    Infliximab (IFX) is a therapeutic monoclonal antibody used for treating patients with inflammatory bowel disease (IBD). In order to improve therapeutic outcomes it is recommended to monitor IFX trough concentrations. Although ELISA is currently widely used for this purpose, this method is not suitable for single patient testing. In this paper we describe the development of a fast bioassay for determining IFX concentration in serum using an in-house developed fiber-optic surface plasmon resonance (FO-SPR) biosensor. Studies were first conducted to optimize covalent immobilization of the IFX-specific antibody on the sensor surface as well as to select an optimal blocking buffer for restraining the non-specific binding. In order to reach clinically relevant sensitivity for detecting IFX in patients' serum, the SPR signal was amplified by employing gold nanoparticles functionalized with another set of IFX specific antibodies. Using the optimized sandwich bioassay, calibration curves were made with series of IFX concentrations spiked in buffer and 100-fold diluted serum, reaching the limit of detection of 0.3 and 2.2ng/ml, respectively. The established bioassay was finally validated using five IFX treated IBD patients samples. Results from the FO-SPR platform were compared with an in-house developed, clinically validated ELISA resulting in excellent Pearson and intraclass correlation coefficient of 0.998 and 0.983, respectively. Furthermore, the assay time of the FO-SPR platform was significantly reduced compared to ELISA, demonstrating the potential of this platform to be used as a point-of-care diagnostic tool for improving therapeutic outcomes of IBD patients. PMID:26706938

  19. Chasing White-Light Flares

    NASA Astrophysics Data System (ADS)

    Hudson, H. S.

    2016-05-01

    In this memoir I describe my life in research, mostly in the area of solar physics. The recurring theme is "white-light flares," and several sections of this paper deal with this and related phenomena; I wind up describing how I see the state of the art in this still-interesting and crucially important (as it has been since 1859) area of flare research. I also describe my participation in two long-lived satellite programs dedicated to solar observations ( Yohkoh and RHESSI) and elaborate on their discoveries. These have both helped with white-light flares both directly and also with closely related X-ray and γ-ray emissions), with the result that this article leans heavily in that direction.

  20. Chasing White-Light Flares

    NASA Astrophysics Data System (ADS)

    Hudson, H. S.

    2016-06-01

    In this memoir I describe my life in research, mostly in the area of solar physics. The recurring theme is "white-light flares," and several sections of this paper deal with this and related phenomena; I wind up describing how I see the state of the art in this still-interesting and crucially important (as it has been since 1859) area of flare research. I also describe my participation in two long-lived satellite programs dedicated to solar observations (Yohkoh and RHESSI) and elaborate on their discoveries. These have both helped with white-light flares both directly and also with closely related X-ray and γ-ray emissions), with the result that this article leans heavily in that direction.