Science.gov

Sample records for fast rise time

  1. Rugged calorimeter with a fast rise time

    SciTech Connect

    McMurtry, W.M.; Dolce, S.R.

    1980-01-01

    An intrinsic 1-mil-thick gold foil calorimeter has been developed which rises to 95% of the energy deposited in less than 2 microseconds. This calorimeter is very rugged, and can withstand rough handling without damage. The time constant is long, in the millisecond range, because of its unique construction. Use of this calorimeter has produced 100% data recovery, and agreement with true deposition to less than 10%.

  2. Fast rise times and the physical mechanism of deep earthquakes

    NASA Technical Reports Server (NTRS)

    Houston, H.; Williams, Q.

    1991-01-01

    A systematic global survey of the rise times and stress drops of deep and intermediate earthquakes is reported. When the rise times are scaled to the seismic moment release of the events, their average is nearly twice as fast for events deeper than about 450 km as for shallower events.

  3. Fast rise time IR detectors for lepton colliders

    NASA Astrophysics Data System (ADS)

    Drago, A.; Bini, S.; Cestelli Guidi, M.; Marcelli, A.; Pace, E.

    2016-07-01

    Diagnostics is a fundamental issue for accelerators whose demands are continuously increasing. In particular bunch-by-bunch diagnostics is a key challenge for the latest generation of lepton colliders and storage rings. The Frascati Φ-factory, DAΦNE, colliding at 1.02 GeV in the centre of mass, hosts in the main rings few synchrotron radiation beamlines and two of them collect the synchrotron radiation infrared emission: SINBAD from the electron ring and 3+L from the positron ring. At DAΦNE each bucket is 2.7 ns long and particles are gathered in bunches emitting pulsed IR radiation, whose intensity in the long wavelength regime is directly proportional to the accumulated particles. Compact uncooled photoconductive HgCdTe detectors have been tested in both beamlines using dedicated optical layouts. Actually, the fast rise time of HgCdTe semiconductors give us the chance to test bunch-by-bunch devices for both longitudinal and transverse diagnostics. For the longitudinal case, single pixel detectors have been used, while for the transverse diagnostics, multi-pixel array detectors, with special custom design, are under test. This contribution will briefly describe the status of the research on fast IR detectors at DAΦNE, the results obtained and possible foreseen developments.

  4. Accurate measurement of the rise and decay times of fast scintillators with solid state photon counters

    NASA Astrophysics Data System (ADS)

    Seifert, S.; Steenbergen, J. H. L.; van Dam, H. T.; Schaart, D. R.

    2012-09-01

    In this work we present a measurement setup for the determination of scintillation pulse shapes of fast scintillators. It is based on a time-correlated single photon counting approach that utilizes the correlation between 511 keV annihilation photons to produce start and stop signals in two separate crystals. The measurement is potentially cost-effective and simple to set up while maintaining an excellent system timing resolution of 125 ps. As a proof-of-concept the scintillation photon arrival time histograms were recorded for two well-known, fast scintillators: LYSO:Ce and LaBr3:5%Ce. The scintillation pulse shapes were modeled as a linear combination of exponentially distributed charge transfer and photon emission processes. Correcting for the system timing resolution, the exponential time constants were extracted from the recorded histograms. A decay time of 43 ns and a rise time of 72 ps were determined for LYSO:Ce thus demonstrating the capability of the system to accurately measure very fast rise times. In the case of LaBr3:5%Ce two processes were observed to contribute to the rising edge of the scintillation pulse. The faster component (270 ps) contributes with 72% to the rising edge of the scintillation pulse while the second, slower component (2.0 ns) contributes with 27%. The decay of the LaBr3:5%Ce scintillation pulse was measured to be 15.4 ns with a small contribution (2%) of a component with a larger time constant (130 ns).

  5. CHARACTERISTICS OF A FAST RISE TIME POWER SUPPLY FOR A PULSED PLASMA REACTOR FOR CHEMICAL VAPOR DESTRUCTION

    EPA Science Inventory

    Rotating spark gap devices for switching high-voltage direct current (dc) into a corona plasma reactor can achieve pulse rise times in the range of tens of nanoseconds. The fast rise times lead to vigorous plasma generation without sparking at instantaneous applied voltages highe...

  6. Application of piezoelectric stress gauges to the measurement of fast-rise-time multimegampere electric currents

    NASA Astrophysics Data System (ADS)

    Hanson, D. L.; Spielman, R. B.; Seamen, J. F.; Struve, K. W.

    1993-02-01

    Modeling of load behavior in Z-pinch plasma radiation sources driven by high current generators requires accurate measurement of fast-rise-time multimegampere electrical currents close to the load. Using a novel application of high pressure technology, we have demonstrated that fast-response piezoelectric stress transducers can measure such currents under conditions of extremely high current density, induced electric fields, and bremsstrahlung radiation where conventional current diagnostics fail. Large signal, nanosecond-time-resolution lithium niobate piezoelectric stress gauges are employed to directly measure the magnetic pressure B(sup 2)/2(mu)(sub 0) = (mu)(sub 0)I(sup 2)/8(pi)(sup 2)r(sup 2) generated at radius r by a current I flowing in a radial transmission line near the load of a pulsed power current source. With a current diagnostic consisting of a pure tungsten electrode on a Y-cut lithium niobate stress gauge, current densities up to 1/2(pi)cr = 78MA/m can be measured before the electrode yield strength and piezoelectric operating stress limit are exceeded. Based on this work, we have developed a compact modular current probe for use on the high current (20-25 MA) DECADE simulator being constructed for the Defense Nuclear Agency. We also describe recent work extending this measurement technique to higher current densities (125 MA/m) using a copper-sapphire electrode impedance stack on an X-cut quartz piezoelectric element.

  7. Application of piezoelectric stress gauges to the measurement of fast-rise-time multimegampere electric currents

    NASA Astrophysics Data System (ADS)

    Hanson, D. L.; Struve, K. W.; Spielman, R. B.; Seamen, J. F.

    1994-07-01

    Modeling of load behavior in Z-pinch plasma radiation sources driven by high current generators requires accurate measurement of fast-rise-time multimegampere electrical currents close to the load. Using a novel applications of high pressure technology, we have demonstrated that fast-response piezoelectric stress transducers can measure such currents under conditions of extremely high current density, induced electric fields, and bremsstrahlung radiation where conventional current diagnostics fail. Large signal, nanosecond-time-resolution lithium niobate piezoelectric stress gauges are employed to directly measure the magnetic pressure B2/dμ0=μ0I2/ 8π2r2 generated at radius r by a curret I flowing in a radial transmission line near the load of a pulsed power current source. With a current diagnostic consisting of a pure tungsten electrode of a Y-cut lithium niobate stress gauge, current densities up to I/2πr=78 MA/m can be measured before the electrode yield strength and piezoelectric operating stress limit are exceeded. Based on this work, we have developed a compact modular current probe for use on the high current (20-25 MA) DECADE simulator being constructed for the Defense Nuclear Agency. We also describe recent work extending this measurement technique to higher current densities (125 MA/m) using a copper-sapphire electrode impedance stack on an X-cut quartz piezoelectric element.

  8. Application of piezoelectric stress gauges to the measurement of fast-rise-time multimegampere electric currents

    SciTech Connect

    Hanson, D.L.; Spielman, R.B.; Seamen, J.F.; Struve, K.W.

    1993-07-01

    Modeling of load behavior in Z-pinch plasma radiation sources driven by high current generators requires accurate measurement of fast-rise-time multimegampere electrical currents close to the load. Using a novel application of high pressure technology, we have demonstrated that fast-response piezoelectric stress transducers can measure such currents under conditions of extremely high current density, induced electric fields, and bremsstrahlung radiation where conventional current diagnostics fail. Large signal, nanosecond-time-resolution lithium niobate piezoelectric stress gauges are employed to directly measure the magnetic pressure B{sup 2}/2{mu}{sub 0} = {mu}{sub 0}I{sup 2}/8{pi}{sup 2}r{sup 2} generated at radius r by a current I flowing in a radial transmission line near the load of a pulsed power current source. With a current diagnostic consisting of a pure tungsten electrode on a Y-cut lithium niobate stress gauge, current densities up to 1/2{pi}cr = 78MA/m can be measured before the electrode yield strength and piezoelectric operating stress limit are exceeded. Based on this work, we have developed a compact modular current probe for use on the high current (20--25 MA) DECADE simulator being constructed for the Defense Nuclear Agency. We also describe recent work extending this measurement technique to higher current densities (125 MA/m) using a cooper-sapphire electrode impedance stack on an X-cut quartz piezoelectric element.

  9. High-Voltage Power Supply With Fast Rise and Fall Times

    NASA Technical Reports Server (NTRS)

    Bearden, Douglas B.; Acker, Richard M.; Kapuslka, Robert E.

    2007-01-01

    A special-purpose high-voltage power supply can be electronically switched on and off with fast rise and fall times, respectively. The output potential is programmable from 20 to 1,250 V. An output current of 50 A can be sustained at 1,250 V. The power supply was designed specifically for electronically shuttering a microchannel plate in an x-ray detector that must operate with exposure times as short as 1 ms. The basic design of the power supply is also adaptable to other applications in which there are requirements for rapid slewing of high voltages. The power-supply circuitry (see figure) includes a preregulator, which is used to program the output at 1/30 of the desired output potential. After the desired voltage has been set, the outputs of a pulse width modulator (PWM) are enabled and used to amplify the preregulator output potential by 30. The amplification is achieved by use of two voltage doublers with a transformer that has two primary and two secondary windings. A resistor is used to limit the current by controlling the drive voltage of two field-effect transistors (FETs) during turn-on of the PWM. A pulse transformer is used to turn on four FETs to short-circuit four output capacitors when the outputs of the PWM have been disabled. The most notable aspects of the performance of the power supply are a rise time of only 80 s and a fall time of only 60 s at a load current of 50 A or less. Another notable aspect is that the application of a 0-to-5-V square wave to a shutdown pin of the PWM causes the production of a 0-to-1,250-V square wave at the output terminals.

  10. A 200 kV fast rise time, low jitter, trigger system with magnetic pulse sharpener

    SciTech Connect

    Jaitly, N.C.; Coleman, M.D.; Ramrus, A.; Earley, L.M.; Downing, J.N.; Reisch, H.H.; Caudill, L.D.; Eversol, S.A.

    1992-09-01

    The DARHT Facility is being designed at Los Alamos national Laboratory to produce high resolution flash radiographs of hydrodynamic experiments. Two linear induction accelerators (LIA), each in the range of 16 to 20 MeV, will be used to produce intense bremsstrahlung X-ray pulses of short duration (60 ns flat top). Each LIA will produce a 3 kA, high brightness, electron beam using a 4 MeV injector and a series of 250 kV induction cells. Technology demonstration of key accelerator subsystems is under progress at the DARHT Integrated Test Stand (ITS). The eight inductions cells present in the ITS are driven by a Maxwell prototype Induction Cell Pulsed Power supply (ICPPS) which provides 250 kV, 70 ns pulses via four Blumieins. Each Blumiein drives two cells and is triggered using independently controlled trigger units. This turnkey DARHT Trigger System, consisting of four separate trigger units, provides 200 kV trigger pulses with low jitter and fast rise time to each of the four Blumiein coaxial spark gaps. Details of the trigger system design and results obtained during extensive testing at Maxwell are described.

  11. Considerations for human exposure standards for fast-rise-time high-peak-power electromagnetic pulses.

    PubMed

    Merritt, J H; Kiel, J L; Hurt, W D

    1995-06-01

    Development of new emitter systems capable of producing high-peak-power electromagnetic pulses with very fast rise times and narrow pulse widths is continuing. Such directed energy weapons systems will be used in the future to defeat electronically vulnerable targets. Human exposures to these pulses can be expected during testing and operations. Development of these technologies for radar and communications purposes has the potential for wider environmental exposure, as well. Current IEEE C95.1-1991 human exposure guidelines do not specifically address these types of pulses, though limits are stated for pulsed emissions. The process for developing standards includes an evaluation of the relevant bioeffects data base. A recommendation has been made that human exposure to ultrashort electromagnetic pulses that engender electromagnetic transients, called precursor waves, should be avoided. Studies that purport to show the potential for tissue damage induced by such pulses were described. The studies cited in support of the recommendation were not relevant to the issues of tissue damage by propagated pulses. A number of investigations are cited in this review that directly address the biological effects of electromagnetic pulses. These studies have not shown evidence of tissue damage as a result of exposure to high-peak-power pulsed microwaves. It is our opinion that the current guidelines are sufficiently protective for human exposure to these pulses. PMID:7646411

  12. A 200 kV fast rise time, low jitter, trigger system with magnetic pulse sharpener

    SciTech Connect

    Jaitly, N.C.; Ramrus, A.; Coleman, M.D.; Earley, L.M.; Downing, J.N.; Reisch, H.H.; Caudill, L.D.; Eversol, S.A.

    1993-12-31

    The DARHT Facility is being designed at Los Alamos National Laboratory to produce high resolution flash radiographs of hydrodynamic experiments. Two linear induction accelerators (LIA), each in the range of 16 to 20 MeV, will be used to produce intense bremsstrahlung X-ray pulses of short duration (60 ns flat top). Each LIA will produce a 3 kA, high brightness, electron beam using a 4 MeV injector and a series of 250 kV induction cells. Technology demonstration of key accelerator subsystems is under progress at the DARHT Integrated Test Stand (ITS). The eight inductions cells present in the ITS are driven by a Maxwell prototype Induction Cell Pulsed Power Supply (ICPPS) which provides 250 kV, 70ns pulses via four Blumleins. Each Blumlein drives two cells and is triggered using independently controlled trigger units. This turnkey DARHT Trigger System, consisting of four separate trigger units, provides 200 kV trigger pulses with low jitter and fast rise time to each of the four Blumlein coaxial spark gaps. Details of the trigger system design and results obtained during extensive testing at Maxwell are described.

  13. Destruction of hazardous air pollutants using a fast rise time pulsed corona reactor

    SciTech Connect

    Korzekwa, R.A.; Grothaus, M.G.; Hutcherson, R.K.; Roush, R.A.; Brown, R.

    1998-04-01

    Increasingly stringent environmental regulation imposed on both the military and civilian sectors has created a growing demand for alternative abatement methods for a variety of hazardous compounds. One alternative, the nonthermal plasma, shows promise of providing an efficient means for the destruction of dilute concentrations of hazardous air pollutants. The Dahlgren Laboratory of the Naval Surface Warfare Center has extensively investigated one type of nonthermal plasma discharge, the pulsed corona reactor, for the destruction of volatile organic compounds and chemical warfare agents. In this reactor, a fast rise time ({approximately}10ns), short duration ({lt}100ns), high-voltage pulse is repetitively delivered to a wire-cylinder electrode geometry, thereby producing a multitude of streamer discharges along its length. The resulting nonthermal plasma contains highly reactive chemical radicals which can interact with and destroy the hazardous molecules entrained in the ambient atmosphere flowing through the reactor volume. Increased electrical efficiency was obtained using a combination of high efficiency constant-current capacitor-charging, high repetition-rate spark gap switching, and resonant energy transfer to the reactor. Promising results have been obtained for toluene, methylene chloride, and dichlorodifluoromethane in air at concentrations of a few hundred parts per million. The device has been operated at voltages up to 30 kV, pulse repetition rates up to 1.4 kHz, and flow rates up to 60 scr(l)/min. Detailed electrical measurements have been made to properly characterize the electrical properties of the pulsed corona reactor and to validate subsequent improvements in the reactor energy efficiency. {copyright} {ital 1998 American Institute of Physics.}

  14. Fast Rise Time and High Voltage Nanosecond Pulses at High Pulse Repetition Frequency

    NASA Astrophysics Data System (ADS)

    Miller, Kenneth E.; Ziemba, Timothy; Prager, James; Picard, Julian; Hashim, Akel

    2015-09-01

    Eagle Harbor Technologies (EHT), Inc. is conducting research to decrease the rise time and increase the output voltage of the EHT Nanosecond Pulser product line, which allows for independently, user-adjustable output voltage (0 - 20 kV), pulse width (20 - 500 ns), and pulse repetition frequency (0 - 100 kHz). The goals are to develop higher voltage pulses (50 - 60 kV), decrease the rise time from 20 to below 10 ns, and maintain the high pulse repetition capabilities. These new capabilities have applications to pseudospark generation, corona production, liquid discharges, and nonlinear transmission line driving for microwave production. This work is supported in part by the US Navy SBIR program.

  15. From RISING to the DESPEC fast-timing project within NUSTAR at FAIR: sub-nanosecond nuclear timing spectroscopy with LaBr3 scintillators.

    PubMed

    Regan, P H

    2012-07-01

    This paper summarises a presentation given at the IRRMA8 conference in June 2011 which reviewed briefly the topic of current research studies in the evolution of nuclear structure with changing proton and neutron numbers. A short review of relevant contemporary spectroscopic studies of the structure of nuclei with highly exotic N/Z ratios using projectile fragmentation and fission reactions is given, together with an overview of some of the physics research aims to be attacked using the proposed Decay Spectroscopy (DESPEC) LaBr3 Fast-Timing gamma-ray array for the NUSTAR project at the upcoming Facility for Anti-Proton and Ion Research (FAIR). Examples of recent results using both 'isomer' and β--delayed gamma-ray decay measurements with the Stopped RISING hyper-pure germanium array at GSI are summarised and used to highlight some of the fundamental physics studies which are expected to become available in this area of research in the coming decade. Examples of the performance of cerium-doped LaBr3 detectors from 'in-beam' test experiments are presented together with initial plans for the geometry of the planned multi-detector LaBr3(Ce) array for DESPEC. PMID:22285659

  16. Amplitude- and rise-time-compensated filters

    DOEpatents

    Nowlin, Charles H.

    1984-01-01

    An amplitude-compensated rise-time-compensated filter for a pulse time-of-occurrence (TOOC) measurement system is disclosed. The filter converts an input pulse, having the characteristics of random amplitudes and random, non-zero rise times, to a bipolar output pulse wherein the output pulse has a zero-crossing time that is independent of the rise time and amplitude of the input pulse. The filter differentiates the input pulse, along the linear leading edge of the input pulse, and subtracts therefrom a pulse fractionally proportional to the input pulse. The filter of the present invention can use discrete circuit components and avoids the use of delay lines.

  17. Slow-rise and Fast-rise Phases of an Erupting Solar Filament and Flare Emission Onset

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.; Moore, Ronald L.

    2005-01-01

    We observe the eruption of an active-region solar filament of 1998 July 11 using high time cadence and high spatial resolution EUV observations from the TRACE satellite, along with soft X-ray images from the soft X-ray telescope (SXT) on the Yohkoh satellite, hard X-ray fluxes from the BATSE instrument on the Compton Gamma Ray Observatory (CGRO) satellite and from the hard X-ray telescope (HXT) on Yohkoh, and ground-based magnetograms. We concentrate on the initiation of the eruption in an effort to understand the eruption mechanism. Prior to eruption the filament undergoes slow upward movement in a "slow rise" phase with an approximately constant velocity of about 15 km/s that lasts about 10 min. It then erupts in a "fast-rise" phase, accelerating to a velocity of about 200 km/s in about 5 min, and then decelerating to approximately 150 km/s over the next 5 min. EUV brightenings begin about concurrent with the start of the filament's slow rise, and remain immediately beneath the rising filament during the slow rise; initial soft X-ray brightenings occur at about the same time and location. Strong hard X-ray emission begins after the onset of the fast rise, and does not peak until the filament has traveled to a substantial altitude (to a height about equal to the initial length of the erupting filament) beyond its initial location. Additional information is available in the original extended abstract.

  18. Rise Time Measurement for Ultrafast X-Ray Pulses

    DOEpatents

    Celliers, Peter M.; Weber, Franz A.; Moon, Stephen J.

    2005-04-05

    A pump-probe scheme measures the rise time of ultrafast x-ray pulses. Conventional high speed x-ray diagnostics (x-ray streak cameras, PIN diodes, diamond PCD devices) do not provide sufficient time resolution to resolve rise times of x-ray pulses on the order of 50 fs or less as they are being produced by modern fast x-ray sources. Here, we are describing a pump-probe technique that can be employed to measure events where detector resolution is insufficient to resolve the event. The scheme utilizes a diamond plate as an x-ray transducer and a p-polarized probe beam.

  19. Rise time measurement for ultrafast X-ray pulses

    DOEpatents

    Celliers, Peter M.; Weber, Franz A.; Moon, Stephen J.

    2005-04-05

    A pump-probe scheme measures the rise time of ultrafast x-ray pulses. Conventional high speed x-ray diagnostics (x-ray streak cameras, PIN diodes, diamond PCD devices) do not provide sufficient time resolution to resolve rise times of x-ray pulses on the order of 50 fs or less as they are being produced by modern fast x-ray sources. Here, we are describing a pump-probe technique that can be employed to measure events where detector resolution is insufficient to resolve the event. The scheme utilizes a diamond plate as an x-ray transducer and a p-polarized probe beam.

  20. Response of surge protection devices to fast rising pulses

    NASA Technical Reports Server (NTRS)

    Mindel, I. N.

    1980-01-01

    Two types of lightning protection modules incorporating leadless (pill type) Zener like devices were evaluated with regard to their ability to suppress EMP induced transients. Two series of tests were performed to evaluate the ability of these modules to react to fast rate of rise ( 1Kv/ns) transients, and the attenuation introduced and the ability to limit damped sinusoid pulses which may be induced due to an EMP resulting from a nuclear detonation.

  1. Compton suppression through rise-time analysis.

    PubMed

    Selvi, S; Celiktas, C

    2007-11-01

    We studied Compton suppression for 60Co and 137Cs radioisotopes using a signal selection criterion based on contrasting the fall time of the signals composing the photo peak with those composing the Compton continuum. The fall time criterion is employed by using the pulse shape analysis observing the change in the fall times of the gamma-ray pulses. This change is determined by measuring the changes in the rise times related to the fall time of the scintillator and the timing signals related to the fall time of the input signals. We showed that Compton continuum suppression is achieved best via the precise timing adjustment of an analog rise-time analyzer connected to a NaI(Tl) scintillation spectrometer. PMID:17703943

  2. Short rise time intense electron beam generator

    DOEpatents

    Olson, C.L.

    1984-03-16

    A generator for producing an intense relativisitc electron beam having a subnanosecond current rise time includes a conventional generator of intense relativistic electrons feeding into a short electrically conductive drift tube including a cavity containing a working gas at a low enough pressure to prevent the input beam from significantly ionizing the working gas. Ionizing means such as a laser simultaneously ionize the entire volume of working gas in the cavity to generate an output beam having a rise time less than one nanosecond.

  3. Short rise time intense electron beam generator

    DOEpatents

    Olson, Craig L.

    1987-01-01

    A generator for producing an intense relativistic electron beam having a subnanosecond current rise time includes a conventional generator of intense relativistic electrons feeding into a short electrically conductive drift tube including a cavity containing a working gas at a low enough pressure to prevent the input beam from significantly ionizing the working gas. Ionizing means such as a laser simultaneously ionize the entire volume of working gas in the cavity to generate an output beam having a rise time less than one nanosecond.

  4. Dielectric-wall linear accelerator with a high voltage fast rise time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators

    DOEpatents

    Caporaso, George J.; Sampayan, Stephen E.; Kirbie, Hugh C.

    1998-01-01

    A dielectric-wall linear accelerator is improved by a high-voltage, fast rise-time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators. A high voltage is placed between the electrodes sufficient to stress the voltage breakdown of the insulator on command. A light trigger, such as a laser, is focused along at least one line along the edge surface of the laminated alternating layers of isolated conductors and insulators extending between the electrodes. The laser is energized to initiate a surface breakdown by a fluence of photons, thus causing the electrical switch to close very promptly. Such insulators and lasers are incorporated in a dielectric wall linear accelerator with Blumlein modules, and phasing is controlled by adjusting the length of fiber optic cables that carry the laser light to the insulator surface.

  5. Dielectric-wall linear accelerator with a high voltage fast rise time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators

    DOEpatents

    Caporaso, G.J.; Sampayan, S.E.; Kirbie, H.C.

    1998-10-13

    A dielectric-wall linear accelerator is improved by a high-voltage, fast rise-time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators. A high voltage is placed between the electrodes sufficient to stress the voltage breakdown of the insulator on command. A light trigger, such as a laser, is focused along at least one line along the edge surface of the laminated alternating layers of isolated conductors and insulators extending between the electrodes. The laser is energized to initiate a surface breakdown by a fluence of photons, thus causing the electrical switch to close very promptly. Such insulators and lasers are incorporated in a dielectric wall linear accelerator with Blumlein modules, and phasing is controlled by adjusting the length of fiber optic cables that carry the laser light to the insulator surface. 12 figs.

  6. Subnanosecond-rise-time, low-impedance pulse generator

    SciTech Connect

    Druce, R.; Vogtlin, G.

    1983-06-03

    This paper describes a fast rise, low-impedance pulse generator that has been developed at the Lawrence Livermore National Laboratory. The design specifications of this generator are: 50-kV operating voltage, 1-ohm output impedance, subnanosecond rise time, and a 2 to 10 nanosecond pulse length. High repetition rate is not required. The design chosen is a parallel-plate, folded Blumlein generator. A tack switch is utilized for its simple construction and high performance. The primary diagnostic is a capacitive voltage divider with a B probe used to measure the current waveform.

  7. Diffusion of fast rising strong magnetic fields into conductors

    NASA Astrophysics Data System (ADS)

    Labetskaya, N. A.; Oreshkin, V. I.; Chaikovsky, S. A.; Datsko, I. M.; Kuskova, N. I.; Rud, A. D.

    2014-11-01

    The basic processes occurring in a conductor exploding in a current skinning mode are the propagation of a nonlinear magnetic diffusion wave in the conductor and the formation of low-temperature plasma at its surface. An experimental study of the phenomenon of nonlinear magnetic diffusion into conductors in magnetic fields of induction rising at a rate up to 3·109 T/s was carried out on the MIG generator capable of producing a peak current up to 2.5 MA within a rise time of 100 ns. It has been found experimentally that the average velocity of a nonlinear magnetic diffusion wave in an aluminum conductor placed in a strong magnetic field (up to 300 T) rising at a high rate (on average, 3·109 T/s) is (2.7÷3.3)·105 cm/s. This is comparable to the velocity of sound in aluminum under normal conditions and reasonably agrees with predictions of numerical simulations.

  8. Crustal Thickness and Moho Character of the Fast-Spreading East Pacific Rise Between 9º37.5'N and 9º57'N From Poststack and Prestack Time Migrated 3D MCS data

    NASA Astrophysics Data System (ADS)

    Nedimovic, M. R.; Aghaei, O.; Carbotte, S. M.; Carton, H. D.; Canales, J. P.

    2014-12-01

    We measured crustal thickness and mapped Moho transition zone (MTZ) character over an 880 km2 section of the fast-spreading East Pacific Rise (EPR) using the first full 3D multichannel seismic (MCS) dataset collected across a mid-ocean ridge (MOR). The 9°42'-9°57'N area was initially investigated using 3D poststack time migration, which was followed by application of 3D prestack time migration (PSTM) to the whole dataset. This first attempt at applying 3D PSTM to MCS data from a MOR environment resulted in the most detailed reflection images of a spreading center to date. MTZ reflections are for the first time imaged below the ridge axis away from axial discontinuities indicating that Moho is formed at zero age at least at some sections of the MOR system. The average crustal thickness and crustal velocity derived from PSTM are 5920±320 m and 6320±290 m/s, respectively. The average crustal thickness varies little from Pacific to Cocos plate suggesting mostly uniform crustal production in the last ~180 Ka. However, the crust thins by ~400 m from south to north. The MTZ reflections were imaged within ~92% of the study area, with ~66% of the total characterized by impulsive reflections interpreted to originate from a thin MTZ and 26% characterized by diffusive reflections interpreted to originate from a thick MTZ. The MTZ is dominantly diffusive at the southern (9°37.5'-9°40'N) and northern (9°51'-9°57'N) ends of the study area, and it is impulsive in the central region (9°42'-9°51'N). No data were collected between 9°40'N and 9°42'N. More efficient mantle melt extraction is inferred within the central region with greater proportion of the lower crust accreted from the axial magma lens than within the northern and southern sections. This along-axis variation in the crustal accretion style may be caused by interaction between the melt sources for the ridge and the local seamounts, which are present within the northern and southern survey sections. Third

  9. Dependence of current rise time on laser-triggered discharge plasma

    NASA Astrophysics Data System (ADS)

    Lim, Soowon; Kamohara, Takashi; Hosseini, S. Hamid R.; Katsuki, Sunao

    2016-07-01

    A powerful, stable extreme ultraviolet (EUV) source is the most important component for EUV lithography and EUV mask inspection. Here, we investigate the characteristics of laser-triggered discharge plasma at three different current rise times, fast, middle and slow. A height-adjustable coaxial birdcage was used to change circuit inductance. The rise time was varied between 30 ns–55 ns with peak current of 10 kA. The time-integrated EUV (at 13.5 nm in 2% bandwidth) intensity for the fast rise time was found to be 55% stronger than that of the slow rise time despite its lower energy. A high-speed Mach–Zehnder interferogram and visible imaging of the pinch plasma were employed to discuss plasma compression processes qualitatively and quantitatively. Also discharge produced debris was investigated using a silicon-crystal witness plate. The fast rise current was found to have advantages such as lower debris, higher EUV intensity, and possibility of suppressing instability in comparison with the slow rise time. As expected, total debris amounts lessened proportionally to the primary charged energy, as found from a comparison of fast and slow rise currents.

  10. Mapping Rise Time Information with Down-Shift Analysis

    SciTech Connect

    Tunnell, T. W., Machorro, E. A., Diaz, A. B.

    2011-11-01

    These viewgraphs summarize the application of recent developments in digital down-shift (DDS) analysis of up converted PDV data to map out how well the PDV diagnostic would capture rise time information (mid point and rise time) in short rise time (<1 ns) shock events. The mapping supports a PDV vs VISAR challenge. The analysis concepts are new (~September FY 2011), simple, and run quickly, which makes them good tools to map out (with ~1 million Monte Carlo simulations) how well PDV captures rise time information as function of baseline velocity, rise time, velocity jump, and signal-to-noise ratios.

  11. Initiation of the Slow-Rise and Fast-Rise Phases of an Erupting Solar Filament by Localized Emerging Magnetic Field via Microflaring

    NASA Technical Reports Server (NTRS)

    Sterling, A. C.; Moore, R. L.; Harra, L. K.

    2006-01-01

    EUV data from EIT show that a filament of 2001 February 28 underwent a slow-rise phase lasting about 6 hrs, before rapidly erupting in a fast-rise phase. Concurrent images in soft X-rays (SXRs) from Yohkoh/SXT show that a series of three microflares, prominent in SXT images but weak in EIT approx.195 Ang EUV images, occurred near one end of the filament. The first and last microflares occurred respectively in conjunction with the start of the slow-rise phase and the start of the fast-rise phase, and the second microflare corresponded to a kink in the filament trajectory. Beginning within 10 hours of the start of the slow rise, new magnetic flux emerged at the location of the microflaring. This localized new flux emergence and the resulting microflares, consistent with reconnection between the emerging field and the sheared sigmoid core magnetic field holding the filament, apparently caused the slow rise of this field and the transition to explosive eruption. For the first time in such detail, the observations show this direct action of localized emerging flux in the progressive destabilization of a sheared core field in the onset of a coronal mass ejection (CME). Similar processes may have occurred in other recently-studied events, NASA supported this work through NASA SR&T and SEC GI grants.

  12. Detection of Sound Rise Time by Adults with Dyslexia

    ERIC Educational Resources Information Center

    Hamalainen, J.; Leppanen, P.H.T.; Torppa, M.; Muller, K.; Lyytinen, H.

    2005-01-01

    Low sensitivity to amplitude modulated (AM) sounds is reported to be associated with dyslexia. An important aspect of amplitude modulation cycles are the rise and fall times within the sound. In this study, simplified stimuli equivalent to just one cycle were used and sensitivity to varying rise times was explored. Adult participants with dyslexia…

  13. Flare Emission Onset in the Slow-Rise and Fast-Rise Phases of an Erupting Solar Filament Observed with TRACE

    NASA Technical Reports Server (NTRS)

    Sterling, A. C.; Moore, R. L.

    2005-01-01

    We observe the eruption of an active-region solar filament of 1998 July 11 using high time cadence and high spatial resolution EUV observations from the TRACE sareiii'ce, along with soft X-ray images from the soft X-ray telescope (SXT) on the Yohkoh satellite, hard X-ray fluxes from the BATSE instrument on the (CGRO) satellite and from the hard X-ray telescope (HXT) on Yohkoh, and ground-based magnetograms. We concentrate on the initiation of the eruption in an effort to understand the eruption mechanism. First the filament undergoes slow upward movement in a "slow rise" phase with an approximately constant velocity of approximately 15 km/s that lasts about 10-min, and then it erupts in a "fast-rise" phase, reaching a velocity of about 200 km/s in about 5-min, followed by a period of deceleration. EUV brightenings begin just before the start of the filament's slow rise, and remain immediately beneath the rising filament during the slow rise; initial soft X-ray brightenings occur at about the same time and location. Strong hard X-ray emission begins after the onset of the fast rise, and does not peak until the filament has traveled a substantial altitude (to a height about equal to the initial length of the erupting filament) beyond its initial location. Our observations are consistent with the slow-rise phase of the eruption resulting from the onset of "tether cutting" reconnection between magnetic fields beneath the filament, and the fast rise resulting from an explosive increase in the reconnection rate or by catastrophic destabilization of the overlying filament-carrying fields. About two days prior to the event new flux emerged near the location of the initial brightenings, and this recently- emerged flux could have been a catalyst for initiating the tether-cutting reconnection. With the exception of the initial slow rise, our findings qualitatively agree with the prediction for erupting-flux-rope height as a function of time in a model discussed by Chen

  14. A sub-nanosecond rise time intense electron beam source

    NASA Astrophysics Data System (ADS)

    Kumar, R.; Chandra, R.; Mitra, S.; Beg, M. D.; Sharma, D. K.; Sharma, A.; Mittal, K. C.

    2014-04-01

    This paper presents the design and development of a 75 kV, 55 A, 2 nanosecond duration, <= 850 ps rise time, single shot, intense ( >= 100 A/cm2) electron beam source and also the measurement technique adopted in sub-nanosecond regime. A 200 kV (nanosecond pulse) coaxial pulse forming line (PFL) based pulser is designed to drive a cold cathode explosive emission electron gun. The electron gun diode consists with a planer graphite cathode, which has the emission area of 8 mm diameter and a SS 304L anode mesh. Vacuum is achieved of the order of 3.5e-5 mbar by using a diffusion pump, backed by rotary pump. At the diagnostic side for diode voltage measurement a fast response copper sulphate aqueous solution resistive voltage divider is designed and implemented. For the beam current diagnostic a graphite Faraday cup is designed with taking care of response time in GHz (1.0-3.0 GHz) regime. The circuit diagram, voltage and current waveforms and the experimental setup is presented.

  15. An evaluation of rise time characterization and prediction methods

    NASA Technical Reports Server (NTRS)

    Robinson, Leick D.

    1994-01-01

    One common method of extrapolating sonic boom waveforms from aircraft to ground is to calculate the nonlinear distortion, and then add a rise time to each shock by a simple empirical rule. One common rule is the '3 over P' rule which calculates the rise time in milliseconds as three divided by the shock amplitude in psf. This rule was compared with the results of ZEPHYRUS, a comprehensive algorithm which calculates sonic boom propagation and extrapolation with the combined effects of nonlinearity, attenuation, dispersion, geometric spreading, and refraction in a stratified atmosphere. It is shown there that the simple empirical rule considerably overestimates the rise time estimate. In addition, the empirical rule does not account for variations in the rise time due to humidity variation or propagation history. It is also demonstrated that the rise time is only an approximate indicator of perceived loudness. Three waveforms with identical characteristics (shock placement, amplitude, and rise time), but with different shock shapes, are shown to give different calculated loudness. This paper is based in part on work performed at the Applied Research Laboratories, the University of Texas at Austin, and supported by NASA Langley.

  16. SNLS: Supernova Rise Times from the SNLS Sample

    NASA Astrophysics Data System (ADS)

    Conley, A.; Howell, D. A.; Howes, A.; Astier, P.; Aubourg, E.; Balam, D.; Basa, S.; Carlberg, R. G.; Fabbro, S.; Fouchez, D.; Guy, J.; Hook, I.; Lafoux, H.; Neill, J. D.; Pain, R.; Palanque-Delabrouille, N.; Perett, K.; Pritchet, C. J.; Regnault, N.; Rich, J.; Sullivan, M.; Taillet, R.; Baumont, S.; Bronder, J.; Lusset, V.; Ripoche, P.; Mourao, A.; Perlmutter, S.; Tao, C.

    2005-12-01

    Type Ia supernovae (SNe Ia) provide the most direct evidence for the acceleration of the Universe. This evidence relies on a comparison between the luminosities of distant and nearby SNe Ia, and hence is potentially sensitive to any evolution in the mean lightcurve properties between these two samples. One method for testing for the presence of such effects is to measure and compare the rise time, which is the time between explosion and maximum luminosity, of the two samples. The Supernova Legacy Survey provides an excellent data sample for the analysis of this issue, since it's 'rolling search' nature yields lightcurves which are well sampled prior to maximum light. Here we discuss measurements of the rise time from SNLS data and what they can tell us about evolutionary effects.

  17. A note on some statistical properties of rise time parameters used in muon arrival time measurements

    NASA Technical Reports Server (NTRS)

    Vanderwalt, D. J.; Devilliers, E. J.

    1985-01-01

    Most investigations of the muon arrival time distribution in EAS during the past decade made use of parameters which can collectively be called rise time parameters. The rise time parameter T sub A/B is defined as the time taken for the integrated pulse from a detector to rise from A% to B% of its full amplitude. The use of these parameters are usually restricted to the determination of the radial dependence thereof. This radial dependence of the rise time parameters are usually taken as a signature of the particle interaction characteristics in the shower. As these parameters have a stochastic nature, it seems reasonable that one should also take notice of this aspect of the rise time parameters. A statistical approach to rise time parameters is presented.

  18. Neural processing of amplitude and formant rise time in dyslexia.

    PubMed

    Peter, Varghese; Kalashnikova, Marina; Burnham, Denis

    2016-06-01

    This study aimed to investigate how children with dyslexia weight amplitude rise time (ART) and formant rise time (FRT) cues in phonetic discrimination. Passive mismatch responses (MMR) were recorded for a/ba/-/wa/contrast in a multiple deviant odd-ball paradigm to identify the neural response to cue weighting in 17 children with dyslexia and 17 age-matched control children. The deviant stimuli had either partial or full ART or FRT cues. The results showed that ART did not generate an MMR in either group, whereas both partial and full FRT cues generated MMR in control children while only full FRT cues generated MMR in children with dyslexia. These findings suggest that children, both controls and those with dyslexia, discriminate speech based on FRT cues and not ART cues. However, control children have greater sensitivity to FRT cues in speech compared to children with dyslexia. PMID:27017263

  19. Fission-neutrons source with fast neutron-emission timing

    NASA Astrophysics Data System (ADS)

    Rusev, G.; Baramsai, B.; Bond, E. M.; Jandel, M.

    2016-05-01

    A neutron source with fast timing has been built to help with detector-response measurements. The source is based on the neutron emission from the spontaneous fission of 252Cf. The time is provided by registering the fission fragments in a layer of a thin scintillation film with a signal rise time of 1 ns. The scintillation light output is measured by two silicon photomultipliers with rise time of 0.5 ns. Overall time resolution of the source is 0.3 ns. Design of the source and test measurements using it are described. An example application of the source for determining the neutron/gamma pulse-shape discrimination by a stilbene crystal is given.

  20. A LUMINOUS, FAST RISING UV-TRANSIENT DISCOVERED BY ROTSE: A TIDAL DISRUPTION EVENT?

    SciTech Connect

    Vinkó, J.; Wheeler, J. C.; Chatzopoulos, E.; Marion, G. H.; Yuan, F.; Akerlof, C.; Quimby, R. M.; Ramirez-Ruiz, E.; Guillochon, J.

    2015-01-01

    We present follow-up observations of an optical transient (OT) discovered by ROTSE on 2009 January 21. Photometric monitoring was carried out with ROTSE-IIIb in the optical and Swift in the UV up to +70 days after discovery. The light curve showed a fast rise time of ∼10 days followed by a steep decline over the next 60 days, which was much faster than that implied by {sup 56}Ni—{sup 56}Co radioactive decay. The Sloan Digital Sky Survey Data Release 10 database contains a faint, red object at the position of the OT, which appears slightly extended. This and other lines of evidence suggest that the OT is of extragalactic origin, and this faint object is likely the host galaxy. A sequence of optical spectra obtained with the 9.2 m Hobby-Eberly Telescope between +8 and +45 days after discovery revealed a hot, blue continuum with no visible spectral features. A few weak features that appeared after +30 days probably originated from the underlying host. Fitting synthetic templates to the observed spectrum of the host galaxy revealed a redshift of z = 0.19. At this redshift, the peak magnitude of the OT is close to –22.5, similar to the brightest super-luminous supernovae; however, the lack of identifiable spectral features makes the massive stellar death hypothesis less likely. A more plausible explanation appears to be the tidal disruption of a Sun-like star by the central supermassive black hole. We argue that this transient likely belongs to a class of super-Eddington tidal disruption events.

  1. DOI Determination by Rise Time Discrimination in Single-Ended Readout for TOF PET Imaging

    PubMed Central

    Wiener, R.I.; Surti, S.; Karp, J.S.

    2013-01-01

    Clinical TOF PET systems achieve detection efficiency using thick crystals, typically of thickness 2–3cm. The resulting dispersion in interaction depths degrades spatial resolution for increasing radial positions due to parallax error. Furthermore, interaction depth dispersion results in time pickoff dispersion and thus in degraded timing resolution, and is therefore of added concern in TOF scanners. Using fast signal digitization, we characterize the timing performance, pulse shape and light output of LaBr3:Ce, CeBr3 and LYSO. Coincidence timing resolution is shown to degrade by ~50ps/cm for scintillator pixels of constant cross section and increasing length. By controlling irradiation depth in a scintillator pixel, we show that DOI-dependence of time pickoff is a significant factor in the loss of timing performance in thick detectors. Using the correlated DOI-dependence of time pickoff and charge collection, we apply a charge-based correction to the time pickoff, obtaining improved coincidence timing resolution of <200ps for a uniform 4×4×30mm3 LaBr3 pixel. In order to obtain both DOI identification and improved timing resolution, we design a two layer LaBr3[5%Ce]/LaBr3[30%Ce] detector of total size 4×4×30mm3, exploiting the dependence of scintillator rise time on [Ce] in LaBr3:Ce. Using signal rise time to determine interaction layer, excellent interaction layer discrimination is achieved, while maintaining coincidence timing resolution of <250ps and energy resolution <7% using a R4998 PMT. Excellent layer separation and timing performance is measured with several other commercially-available TOF photodetectors, demonstrating the practicality of this design. These results indicate the feasibility of rise time discrimination as a technique for measuring event DOI while maintaining sensitivity, timing and energy performance, in a well-known detector architecture. PMID:24403611

  2. Supernova Rates, Rise-Times, and their Relations to Progenitors

    NASA Astrophysics Data System (ADS)

    Gonzalez Gaitan, Santiago

    Supernovae are fundamental in astronomy: they inject high mass elements into the interstellar medium enriching the chemistry of galaxies, they feed processes of star formation and active galactic nuclei, and they have been a key for the developments in cosmology of the past decades. This dissertation presents a set of subluminous type Ia supernovae (SNe Ia) at z > 0.1 from the Supernova Legacy Survey (SNLS). These faint and short-lived transients are found in massive and passive host galaxies. We measure a volumetric rate as a function of redshift that is different from the normal SN Ia population. The observations point towards a long delay time since the birth of the progenitors systems and argue for progenitor stars of initial low mass. We calculate a stretch-corrected rise-time since explosion to maximum brightness for different sets of SNe Ia. We find that a fiducial 17 day quadratic rise is sufficient to explain all SNe Ia, including subluminous ones, arguing for their homogeneity throughout the entire light-curve. Subluminous SNe Ia are powered by as little as 0.05 solar masses of radioactive nickel synthesized in the explosion. Theoretical models need to explain these challenging weak explosions within the framework of SNe Ia. Finally, we develop one of the first robust automated techniques to identify plateau supernovae (SNe IIP) in large photometric transient surveys. This simple method was tested with a variety of real and simulated SN samples and proved to be effective across different redshifts. Such a photometric typing will be of great power for coming surveys and will allow numerous scientific studies of SNe IIP.

  3. Rise Times of Solar Energetic Particle Events and Speeds of CMEs

    NASA Astrophysics Data System (ADS)

    Kahler, S.; Reames, D.

    2002-12-01

    Gradual solar energetic particle (SEP) events are assumed to be produced in coronal and interplanetary shocks driven by fast coronal mass ejections (CMEs). These fast CMEs are decelerated as they move through the slower ambient solar wind. However, the Alfven speed is decreasing with increasing distance. Faster CMEs may therefore continue to drive strong shocks for longer characteristic times than do the slower CMEs, such that shock production and injection of SEPs of a given energy will also continue longer with the faster CMEs. We test this proposition observationally by comparing the times to maxima of 20 MeV SEP events with the observed speeds of associated CMEs. The SEP/CME events are sorted by solar longitude to factor out the longitudinal dependence of the SEP rise times. A preliminary analysis comparing 20 MeV protons from the GSFC EPACT detector on the Wind satellite with CMEs observed by the LASCO coronagraph on the SOHO spacecraft showed a correlation between SEP rise times and CME speeds. We expand the database to include the 1996-2001 period for a more definitive test of the correlation. The implications of the results will be discussed.

  4. Fast timing methods for semiconductor detectors. Revision

    SciTech Connect

    Spieler, H.

    1984-10-01

    This tutorial paper discusses the basic parameters which determine the accuracy of timing measurements and their effect in a practical application, specifically timing with thin-surface barrier detectors. The discussion focusses on properties of the detector, low-noise amplifiers, trigger circuits and time converters. New material presented in this paper includes bipolar transistor input stages with noise performance superior to currently available FETs, noiseless input terminations in sub-nanosecond preamplifiers and methods using transmission lines to couple the detector to remotely mounted preamplifiers. Trigger circuits are characterized in terms of effective rise time, equivalent input noise and residual jitter.

  5. Optical visualization and electrical characterization of fast-rising pulsed dielectric barrier discharge for airflow control applications

    NASA Astrophysics Data System (ADS)

    Benard, Nicolas; Zouzou, Nourredine; Claverie, Alain; Sotton, Julien; Moreau, Eric

    2012-02-01

    Flow control consists of manipulating flows in an effective and robust manner to improve the global performances of transport systems or industrial processes. Plasma technologies, and particularly surface dielectric barrier discharge (DBD), can be a good candidate for such purpose. The present experimental study focuses on optical and electrical characterization of plasma sheet formed by applying a pulse of voltage with rising and falling periods of 50 ns for a typical surface DBD geometry. Positive and negative polarities are compared in terms of current behavior, deposited energy, fast-imaging of the plasma propagation, and resulting modifications of the surrounding medium by using shadowgraphy acquisitions. Positive and negative pulses of voltage produce streamers and corona type plasma, respectively. Both of them result in the production of a localized pressure wave propagating in the air with a speed maintained at 343 m/s (measurements at room temperature of 20 °C). This suggests that the produced pressure wave can be considered as a propagating sound wave. The intensity of the pressure wave is directly connected to the dissipated energy at the dielectric wall with a linear increase with the applied voltage amplitude and a strong dependence toward the rising time. At constant voltage amplitude, the pressure wave is reinforced by using a positive pulse. The present investigation also reveals that rising and decaying periods of a single pulse of voltage result in two distinct pressure waves. As a result, superposition or successive pressure wave can be produced by adjusting the width of the pulse.

  6. High-power megavolt pulse generator with nanosecond rise time

    SciTech Connect

    Basov, G.F.; Bastrikov, A.N.; Koval`chuk, B.M.

    1995-10-01

    A pulse generator with a power of 0.1 TW, an amplitude of up to 2 MV and {approximately}1.5-nsec rise time is described. A Marx voltage pulse generator charges a low-inductance capacitor (1.8 nF) and a radial line (0.9 nF) to a voltage of {approximately}2 MV in 200 nsec. At the peak voltage, a water switch is actuated at the center of the radial line resulting in {approximately} 2.5-MV voltage pulse at the end of the line. This pulse propagates along the oil-insulated line. The line is connected to an oil-filled peaking switch with a metal diaphragm, which reduces the transfer capacitance of the discharge gap to 5 pF to match the radial-line wave impedance to the load connected to the switch output. A crossover switch may be used when operating in the short-pulse mode. A pulse with a width of up to 20 nsec has been generated across a load equivalent matched to the line.

  7. High voltage electrical amplifier having a short rise time

    DOEpatents

    Christie, David J.; Dallum, Gregory E.

    1991-01-01

    A circuit, comprising an amplifier and a transformer is disclosed that produces a high power pulse having a fast response time, and that responds to a digital control signal applied through a digital-to-analog converter. The present invention is suitable for driving a component such as an electro-optic modulator with a voltage in the kilovolt range. The circuit is stable at high frequencies and during pulse transients, and its impedance matching circuit matches the load impedance with the output impedance. The preferred embodiment comprises an input stage compatible with high-speed semiconductor components for amplifying the voltage of the input control signal, a buffer for isolating the input stage from the output stage; and a plurality of current amplifiers connected to the buffer. Each current amplifier is connected to a field effect transistor (FET), which switches a high voltage power supply to a transformer which then provides an output terminal for driving a load. The transformer comprises a plurality of transmission lines connected to the FETs and the load. The transformer changes the impedance and voltage of the output. The preferred embodiment also comprises a low voltage power supply for biasing the FETs at or near an operational voltage.

  8. Fluid flow patterns in fast spreading East Pacific Rise crust exposed at Hess Deep

    NASA Astrophysics Data System (ADS)

    Gillis, Kathryn M.; Muehlenbachs, Karlis; Stewart, Michael; Gleeson, Thomas; Karson, Jeffrey

    2001-11-01

    Tectonic exposures of a volcanic sequence and sheeted dike complex over a 4-km-wide region at Hess Deep (equatorial Pacific) reveal significant spatial heterogeneity (10-103 m) in the extent and nature of hydrothermal alteration in young, fast spreading East Pacific Rise crust. The volcanic sequence is fairly uniformly altered, with only minor oxidation and alteration to clay minerals. Sheeted dikes in the eastern part of the field area are highly fractured with narrow intervals of intact dikes that dip up to 60°. Their alteration characteristics show a simple depth trend such that with increasing depth the dominant secondary mafic mineral changes from chlorite to amphibole, clinopyroxene replacement increases (<20% to >40%), whole rock δ18O values decreases (4.4-5.5‰ to 3.5-4.5‰), and calculated peak metamorphic temperatures increase (˜250°C to 450°-700°C). Within the deepest dikes, localized zones up to 400-m-wide are chlorite-rich and have low-δ18O (2.9-4.1‰) and low peak metamorphic temperatures (˜345°C). These alteration patterns likely formed within broad recharge zones whereby the low-δ18O zones developed in the regions with the highest fluid flux. In the west, massive, slightly rotated sheeted dikes near the volcanic-sheeted dike transition are δ18O and Cu depleted and display higher peak temperatures (≥345°C) than elsewhere in the shallow dikes. These characteristics are consistent with formation within a high temperature, hydrothermal discharge zone. We propose that the spreading history of a fast spreading ridge segment can create significant spatial heterogeneity in fluid flow and alteration patterns within sheeted dike complexes, similar to those preserved in many ophiolites.

  9. Measurement of breakdown characteristics of SF 6 insulated spark gaps at fast rising overvoltages

    NASA Astrophysics Data System (ADS)

    Machlitt, N.; Assmann, W.; Skorka, S. J.

    1988-05-01

    A new experimental setup has been designed to extend previous investigations of the time response at large overvoltages of SF 6 insulated spark gaps to a higher voltage range. The setup consists of a double gap coaxial transmission line, the first gap acting as fast switch, the second one as a test gap. The gap ratio defines the overvoltages. Technical data and features of the discharge-line and the fast capacitive pickups are presented. First experiments were done with maximum pulse voltages of 140 kV and slopes of approximately 300 kV/ns. The gas pressure varied between 6 and 8 bar and the gap width of the test gap reached a value of 1.6 mm.

  10. THE TEMPORAL AND SPECTRAL CHARACTERISTICS OF 'FAST RISE AND EXPONENTIAL DECAY' GAMMA-RAY BURST PULSES

    SciTech Connect

    Peng, Z. Y.; Ma, L.; Yin, Y.; Bi, X. W.; Zhao, X. H.; Bao, Y. Y. E-mail: astromali@126.co

    2010-08-01

    In this paper, we have analyzed the temporal and spectral behavior of 52 fast rise and exponential decay (FRED) pulses in 48 long-duration gamma-ray bursts (GRBs) observed by the CGRO/BATSE, using a pulse model with two shape parameters and the Band model with three shape parameters, respectively. It is found that these FRED pulses are distinguished both temporally and spectrally from those in the long-lag pulses. In contrast to the long-lag pulses, only one parameter pair indicates an evident correlation among the five parameters, which suggests that at least four parameters are needed to model burst temporal and spectral behavior. In addition, our studies reveal that these FRED pulses have the following correlated properties: (1) long-duration pulses have harder spectra and are less luminous than short-duration pulses and (2) the more asymmetric the pulses are, the steeper are the evolutionary curves of the peak energy (E{sub p}) in the {nu}f{sub {nu}} spectrum within the pulse decay phase. Our statistical results give some constraints on the current GRB models.

  11. Time of flight fast neutron radiography

    NASA Astrophysics Data System (ADS)

    Loveman, R.; Bendahan, J.; Gozani, T.; Stevenson, J.

    1995-05-01

    Neutron radiography with fast or thermal neutrons is a standard technique for non-destructive testing (NDT). Here we report results for fast neutron radiography both as an adjunct to pulsed fast neutron analysis (PFNA) and as a stand-alone method for NDT. PFNA is a new technique for utilizing a collimated pulsed neutron beam to interrogate items and determine their elemental composition. By determining the time of flight for gamma-rays produced by (n,n' gamma X) reactions, a three dimensional image can be produced. Neutron radiography data taken with the same beam provides an important constraint for image reconstruction, and in particular is important in inferring the amount of hydrogen within the interrogated item. As a stand-alone device, the radiography measurement can be used to image items as large as cargo containers as long as their density is not too high. The use of a pulsed beam gives the further advantage of a time of flight measurement on the transmitted neutrons. By gating the radiography signal on the time of flight appropriate to the energy of the primary neutrons, most build-up from scattered neutrons can be eliminated. The pulsed beam also greatly improves the signal to background and extends the range of the neutron radiography. Simulation results will be presented which display the advantage of this constraint in particular for statistically limited data. Experimental results will be presented which show some of the limitations likely in a PFNA system utilizing neutron radiography data. Experimental and simulation results will demonstrate possible uses for this type of radiographic data in identifying contraband substances such as drugs.

  12. Estimating optimal time for fast chromatographic separations.

    PubMed

    Welch, Christopher J; Regalado, Erik L

    2014-09-01

    The term t(min cc) provides a ready estimate of the shortest time that can be obtained by "column cutting" for baseline resolution of two components showing excess chromatographic resolution. While actual column cutting is impractical, the t(min cc) value is shown to be closely related to the minimum separation time obtainable by adjusting other parameters such as flow rate, mobile phase composition, and temperature, affording scientists interested in the development of fast chromatographic separations a convenient tool for estimating the minimum separation time that can be obtained by modifying a given method development screening result. Furthermore, the relationship between t(min cc) and the minimum separation time obtainable by adjusting other parameters is shown to be dependent on the speed of the screening method, with aggressive screening gradients affording t(min cc) estimates that match the actual minimum separation time, and "lazy" screening gradients affording t(min cc) values that overestimate minimum separation time. Consequently, the analysis of the relationship between t(min cc) and actual minimum separation time may be a useful tool for determining the "fitness" of method development screening methods. PMID:24995384

  13. Skin explosion of double-layer conductors in fast-rising high magnetic fields

    SciTech Connect

    Chaikovsky, S. A. Datsko, I. M.; Labetskaya, N. A.; Ratakhin, N. A.

    2014-04-15

    An experiment has been performed to study the electrical explosion of thick cylindrical conductors using the MIG pulsed power generator capable of producing a peak current of 2.5 MA within 100 ns rise time. The experimental goal was to compare the skin explosion of a solid conductor with that of a double-layer conductor whose outer layer had a lower conductivity than the inner one. It has been shown that in magnetic fields of peak induction up to 300 T and average induction rise rate 3 × 10{sup 9} T/s, the double-layer structure of a conductor makes it possible to achieve higher magnetic induction at the conductor surface before it explodes. This can be accounted for, in particular, by the reduction of the ratio of the Joule heat density to the energy density of the magnetic field at the surface of a double-layer conductor due to redistribution of the current density over the conductor cross section.

  14. RISE/FALL TIME ENHANCEMENT OF THE SPALLATION NEUTRON SOURCE LINAC LEBT CHOPPER SYSTEM

    SciTech Connect

    Peplov, Vladimir V; Saethre, Robert B

    2013-01-01

    The Spallation Neutron Source (SNS) Linac Low Energy Beam Transport (LEBT) chopper system provides fast chopping of the H- ion beam in the LEBT structure. Four identical pulsed power supplies (pulsers) create a series of 2.5 kV pulses to the four deflection electrodes floating on the focusing voltage of -50 kV. Each pulser is connected to the electrode through the network which consists of high voltage (HV) cables, a blocking capacitor, HV feed-through connectors, current-limiting resistors and transient voltage suppressors. Effective beam chopping requires minimal rise/fall time of the rectangular HV pulses on the load. In the present configuration these values are approximately 100 ns. Methods of reducing rise/fall time on the LEBT electrodes are discussed. Results of simulation and comparative measurements of the original and upgraded system on the test stand are presented. Furthermore, the effect of these changes on reliability degradation caused by arcing in the LEBT structure is discussed.

  15. A fast rise-rate, adjustable-mass-bit gas puff valve for energetic pulsed plasma experiments

    SciTech Connect

    Loebner, Keith T. K. Underwood, Thomas C.; Cappelli, Mark A.

    2015-06-15

    A fast rise-rate, variable mass-bit gas puff valve based on the diamagnetic repulsion principle was designed, built, and experimentally characterized. The ability to hold the pressure rise-rate nearly constant while varying the total overall mass bit was achieved via a movable mechanical restrictor that is accessible while the valve is assembled and pressurized. The rise-rates and mass-bits were measured via piezoelectric pressure transducers for plenum pressures between 10 and 40 psig and restrictor positions of 0.02-1.33 cm from the bottom of the linear restrictor travel. The mass-bits were found to vary linearly with the restrictor position at a given plenum pressure, while rise-rates varied linearly with plenum pressure but exhibited low variation over the range of possible restrictor positions. The ability to change the operating regime of a pulsed coaxial plasma deflagration accelerator by means of altering the valve parameters is demonstrated.

  16. A fast rise-rate, adjustable-mass-bit gas puff valve for energetic pulsed plasma experiments

    NASA Astrophysics Data System (ADS)

    Loebner, Keith T. K.; Underwood, Thomas C.; Cappelli, Mark A.

    2015-06-01

    A fast rise-rate, variable mass-bit gas puff valve based on the diamagnetic repulsion principle was designed, built, and experimentally characterized. The ability to hold the pressure rise-rate nearly constant while varying the total overall mass bit was achieved via a movable mechanical restrictor that is accessible while the valve is assembled and pressurized. The rise-rates and mass-bits were measured via piezoelectric pressure transducers for plenum pressures between 10 and 40 psig and restrictor positions of 0.02-1.33 cm from the bottom of the linear restrictor travel. The mass-bits were found to vary linearly with the restrictor position at a given plenum pressure, while rise-rates varied linearly with plenum pressure but exhibited low variation over the range of possible restrictor positions. The ability to change the operating regime of a pulsed coaxial plasma deflagration accelerator by means of altering the valve parameters is demonstrated.

  17. Fast Rise Exponential Decay (FRED) Gamma-Ray Bursts and the Fluence Duration Bias

    NASA Astrophysics Data System (ADS)

    Young, K. C.; Hakkila, J.; Giblin, T. W.

    2003-05-01

    The fluences and durations of gamma-ray bursts (GRBs) can be systematically underestimated for low signal-to-noise ratios. This is the result of a human operator selecting a time interval shorter than the burst interval, effectively ignoring burst flux in the fluence calculation. The gradual rise and decay of the FRED-type GRBs are especially susceptible to this bias. Because of the large number of FREDs in the BATSE catalogue, a series of Monte Carlo simulations of hypothetical FREDs have been analyzed. By varying the parameters of the Norris et al. pulse model, the properties of those FREDs most susceptible to the fluence duration bias have been identified. This work is funded by NASA grant NRA-98-OSS-03 and NSF grant AST00-98499.

  18. Evaluation of Fast-Time Wake Vortex Prediction Models

    NASA Technical Reports Server (NTRS)

    Proctor, Fred H.; Hamilton, David W.

    2009-01-01

    Current fast-time wake models are reviewed and three basic types are defined. Predictions from several of the fast-time models are compared. Previous statistical evaluations of the APA-Sarpkaya and D2P fast-time models are discussed. Root Mean Square errors between fast-time model predictions and Lidar wake measurements are examined for a 24 hr period at Denver International Airport. Shortcomings in current methodology for evaluating wake errors are also discussed.

  19. Fast time-resolved electrostatic force microscopy: Achieving sub-cycle time resolution.

    PubMed

    Karatay, Durmus U; Harrison, Jeffrey S; Glaz, Micah S; Giridharagopal, Rajiv; Ginger, David S

    2016-05-01

    The ability to measure microsecond- and nanosecond-scale local dynamics below the diffraction limit with widely available atomic force microscopy hardware would enable new scientific studies in fields ranging from biology to semiconductor physics. However, commercially available scanning-probe instruments typically offer the ability to measure dynamics only on time scales of milliseconds to seconds. Here, we describe in detail the implementation of fast time-resolved electrostatic force microscopy using an oscillating cantilever as a means to measure fast local dynamics following a perturbation to a sample. We show how the phase of the oscillating cantilever relative to the perturbation event is critical to achieving reliable sub-cycle time resolution. We explore how noise affects the achievable time resolution and present empirical guidelines for reducing noise and optimizing experimental parameters. Specifically, we show that reducing the noise on the cantilever by using photothermal excitation instead of piezoacoustic excitation further improves time resolution. We demonstrate the discrimination of signal rise times with time constants as fast as 10 ns, and simultaneous data acquisition and analysis for dramatically improved image acquisition times. PMID:27250430

  20. Fast time-resolved electrostatic force microscopy: Achieving sub-cycle time resolution

    NASA Astrophysics Data System (ADS)

    Karatay, Durmus U.; Harrison, Jeffrey S.; Glaz, Micah S.; Giridharagopal, Rajiv; Ginger, David S.

    2016-05-01

    The ability to measure microsecond- and nanosecond-scale local dynamics below the diffraction limit with widely available atomic force microscopy hardware would enable new scientific studies in fields ranging from biology to semiconductor physics. However, commercially available scanning-probe instruments typically offer the ability to measure dynamics only on time scales of milliseconds to seconds. Here, we describe in detail the implementation of fast time-resolved electrostatic force microscopy using an oscillating cantilever as a means to measure fast local dynamics following a perturbation to a sample. We show how the phase of the oscillating cantilever relative to the perturbation event is critical to achieving reliable sub-cycle time resolution. We explore how noise affects the achievable time resolution and present empirical guidelines for reducing noise and optimizing experimental parameters. Specifically, we show that reducing the noise on the cantilever by using photothermal excitation instead of piezoacoustic excitation further improves time resolution. We demonstrate the discrimination of signal rise times with time constants as fast as 10 ns, and simultaneous data acquisition and analysis for dramatically improved image acquisition times.

  1. Fast Simulation of Tsunamis in Real Time

    NASA Astrophysics Data System (ADS)

    Fryer, G. J.; Wang, D.; Becker, N. C.; Weinstein, S. A.; Walsh, D.

    2011-12-01

    The U.S. Tsunami Warning Centers primarily base their wave height forecasts on precomputed tsunami scenarios, such as the SIFT model (Standby Inundation Forecasting of Tsunamis) developed by NOAA's Center for Tsunami Research. In SIFT, tsunami simulations for about 1600 individual earthquake sources, each 100x50 km, define shallow subduction worldwide. These simulations are stored in a database and combined linearly to make up the tsunami from any great earthquake. Precomputation is necessary because the nonlinear shallow-water wave equations are too time consuming to compute during an event. While such scenario-based models are valuable, they tacitly assume all energy in a tsunami comes from thrust at the décollement. The thrust assumption is often violated (e.g., 1933 Sanriku, 2007 Kurils, 2009 Samoa), while a significant number of tsunamigenic earthquakes are completely unrelated to subduction (e.g., 1812 Santa Barbara, 1939 Accra, 1975 Kalapana). Finally, parts of some subduction zones are so poorly defined that precomputations may be of little value (e.g., 1762 Arakan, 1755 Lisbon). For all such sources, a fast means of estimating tsunami size is essential. At the Pacific Tsunami Warning Center, we have been using our model RIFT (Real-time Inundation Forecasting of Tsunamis) experimentally for two years. RIFT is fast by design: it solves only the linearized form of the equations. At 4 arc-minutes resolution calculations for the entire Pacific take just a few minutes on an 8-processor Linux box. Part of the rationale for developing RIFT was earthquakes of M 7.8 or smaller, which approach the lower limit of the more complex SIFT's abilities. For such events we currently issue a fixed warning to areas within 1,000 km of the source, which typically means a lot of over-warning. With sources defined by W-phase CMTs, exhaustive comparison with runup data shows that we can reduce the warning area significantly. Even before CMTs are available, we routinely run models

  2. Testing Time Dilation on Fast Ion Beams

    NASA Astrophysics Data System (ADS)

    Saathoff, G.; Reinhardt, S.; Bernhardt, B.; Holzwarth, R.; Udem, T.; Hänsch, T. W.; Bing, D.; Schwalm, D.; Wolf, A.; Botermann, B.; Karpuk, S.; Novotny, C.; Nörtershäuser, W.; Huber, G.; Geppert, C.; Kühl, T.; Stöhlker, T.; Rempel, T.; Gwinner, G.

    2011-12-01

    We report the status of an experimental test of special-relativistic time dilation. Following an idea of Ives and Stilwell in 1938, we measure the forward and backward Doppler shifts of an electronic transition of fast moving ions, using high-precision laser spectroscopy. From these Doppler shifts both the ion velocity β = υ/c and the time dilation factor γ = γ {SR} (1 + hat α β 2 ) can be derived for testing Special Relativity. From measurements based on saturation spectroscopy on lithium ions stored at β = 0.03 and β = 0.06, we achieved an upper limit for deviation from Special Relativity of <=ft| {hat α } ; | \\underline < 8 × 10{ - 8} . Recent measurements on a β = 0.338 Li+ beam show similar sensitivity and promise an improvement by at least one order of magnitude. Finally we discuss present sensitivities to various coefficients in the photon and particle sector of the Standard-Model Extension, as well as possible modifications of the experiment for the test of further, hitherto unbounded, coefficients.

  3. Abrupt rise of new machine ecology beyond human response time

    PubMed Central

    Johnson, Neil; Zhao, Guannan; Hunsader, Eric; Qi, Hong; Johnson, Nicholas; Meng, Jing; Tivnan, Brian

    2013-01-01

    Society's techno-social systems are becoming ever faster and more computer-orientated. However, far from simply generating faster versions of existing behaviour, we show that this speed-up can generate a new behavioural regime as humans lose the ability to intervene in real time. Analyzing millisecond-scale data for the world's largest and most powerful techno-social system, the global financial market, we uncover an abrupt transition to a new all-machine phase characterized by large numbers of subsecond extreme events. The proliferation of these subsecond events shows an intriguing correlation with the onset of the system-wide financial collapse in 2008. Our findings are consistent with an emerging ecology of competitive machines featuring ‘crowds' of predatory algorithms, and highlight the need for a new scientific theory of subsecond financial phenomena. PMID:24022120

  4. Coefficient of restitution dependence of intruder rise time in two-dimensional Brazil-nut effect

    NASA Astrophysics Data System (ADS)

    Kesuma, T.; Aji, D. P. Purwa; Viridi, S.; Suprijadi

    2016-04-01

    Brazil-Nut Effect (BNE) is a granular material phenomenon, where larger grains (usually known as intruder) rise to the top when the granular system vibrated. We observe a single intruder rise time of BNE phenomenon in a two-dimensional molecular dynamics simulation of hard spheres collision scheme. Some experiments have shown that some granular properties, such as size and density ratio, play an important role to determine the rise time. However, other property, such as coefficients of restitution, is considered not to have a measurable impact. We explore the intruder inelasticity dependence of the rise time by varying its coefficient of restitution. We found that the intruder rise time tends to be flat for relatively high coefficient of restitution and increases exponentially below a certain deflecting point for low coefficient of restitution. This holds for specific mass ratio.

  5. Note: A rectangular pulse generator for 50 kV voltage, 0.8 ns rise time, and 10 ns pulse width based on polymer-film switch.

    PubMed

    Wu, Hanyu; Zhang, Xinjun; Sun, Tieping; Zeng, Zhengzhong; Cong, Peitian; Zhang, Shaoguo

    2015-10-01

    In this article, we describe a rectangular pulse generator, consisting of a polymer-film switch, a tri-plate transmission line, and parallel post-shaped ceramic resistor load, for 50-kV voltage, 0.8-ns rise time, and 10-ns width. The switch and resistors are arranged in atmospheric air and the transmission line can work in atmospheric air or in transformer oil to change the pulse width from 6.7 ns to 10 ns. The fast switching and low-inductance characteristics of the polymer-film switch ensure the fast rising wavefront of <1 ns. This generator can be applied in the calibration of nanosecond voltage dividers and used for electromagnetic pulse tests as a fast-rising current injection source. PMID:26521006

  6. Note: A rectangular pulse generator for 50 kV voltage, 0.8 ns rise time, and 10 ns pulse width based on polymer-film switch

    NASA Astrophysics Data System (ADS)

    Wu, Hanyu; Zhang, Xinjun; Sun, Tieping; Zeng, Zhengzhong; Cong, Peitian; Zhang, Shaoguo

    2015-10-01

    In this article, we describe a rectangular pulse generator, consisting of a polymer-film switch, a tri-plate transmission line, and parallel post-shaped ceramic resistor load, for 50-kV voltage, 0.8-ns rise time, and 10-ns width. The switch and resistors are arranged in atmospheric air and the transmission line can work in atmospheric air or in transformer oil to change the pulse width from 6.7 ns to 10 ns. The fast switching and low-inductance characteristics of the polymer-film switch ensure the fast rising wavefront of <1 ns. This generator can be applied in the calibration of nanosecond voltage dividers and used for electromagnetic pulse tests as a fast-rising current injection source.

  7. Influence of voltage rise time on microwave generation in relativistic backward wave oscillator

    NASA Astrophysics Data System (ADS)

    Wu, Ping; Sun, Jun; Teng, Yan; Deng, Yuqun; Shi, Yanchao; Chen, Changhua

    2015-10-01

    In relativistic backward wave oscillators (RBWOs), although the slow wave structure (SWS) and electron beam determine the main characteristics of beam-wave interaction, many other factors can also significantly affect the microwave generation process. This paper investigates the influence of voltage rise time on beam-wave interaction in RBWOs. Preliminary analysis and PIC simulations demonstrate if the voltage rise time is moderately long, the microwave frequency will gradually increase during the startup process until the voltage reaches its amplitude, which can be explained by the dispersion relation. However, if the voltage rise time is long enough, the longitudinal resonance of the finitely-long SWS will force the RBWO to work with unwanted longitudinal modes for a while and then gradually hop to the wanted longitudinal mode, and this will lead to an impure microwave frequency spectrum. Besides, a longer voltage rise time will delay the startup process and thus lead to a longer microwave saturation time. And if unwanted longitudinal modes are excited due to long voltage rise time, the microwave saturation time will be further lengthened. Therefore, the voltage rise time of accelerators adopted in high power microwave technology should not be too long in case unwanted longitudinal modes are excited.

  8. Influence of voltage rise time on microwave generation in relativistic backward wave oscillator

    SciTech Connect

    Wu, Ping; Deng, Yuqun; Sun, Jun; Teng, Yan; Shi, Yanchao; Chen, Changhua

    2015-10-15

    In relativistic backward wave oscillators (RBWOs), although the slow wave structure (SWS) and electron beam determine the main characteristics of beam-wave interaction, many other factors can also significantly affect the microwave generation process. This paper investigates the influence of voltage rise time on beam-wave interaction in RBWOs. Preliminary analysis and PIC simulations demonstrate if the voltage rise time is moderately long, the microwave frequency will gradually increase during the startup process until the voltage reaches its amplitude, which can be explained by the dispersion relation. However, if the voltage rise time is long enough, the longitudinal resonance of the finitely-long SWS will force the RBWO to work with unwanted longitudinal modes for a while and then gradually hop to the wanted longitudinal mode, and this will lead to an impure microwave frequency spectrum. Besides, a longer voltage rise time will delay the startup process and thus lead to a longer microwave saturation time. And if unwanted longitudinal modes are excited due to long voltage rise time, the microwave saturation time will be further lengthened. Therefore, the voltage rise time of accelerators adopted in high power microwave technology should not be too long in case unwanted longitudinal modes are excited.

  9. Note: A timing micro-channel plate detector with backside fast preamplifier

    SciTech Connect

    Wang, Wei; Yu, Deyang Lu, Rongchun; Liu, Junliang; Cai, Xiaohong

    2014-03-15

    A timing micro-channel plate detector with a backside double-channel fast preamplifier was developed to avoid distortion during signal propagation from the anode to the preamplifier. The mechanical and electronic structure is described. The detector including its backside preamplifier is tested by a {sup 241}Am α-source and a rise time of ∼2 ns with an output background noise of 4 mV{sub rms} was achieved.

  10. Reducing preoperative fasting time: A trend based on evidence

    PubMed Central

    de Aguilar-Nascimento, José Eduardo; Dock-Nascimento, Diana Borges

    2010-01-01

    Preoperative fasting is mandatory before anesthesia to reduce the risk of aspiration. However, the prescribed 6-8 h of fasting is usually prolonged to 12-16 h for various reasons. Prolonged fasting triggers a metabolic response that precipitates gluconeogenesis and increases the organic response to trauma. Various randomized trials and meta-analyses have consistently shown that is safe to reduce the preoperative fasting time with a carbohydrate-rich drink up to 2 h before surgery. Benefits related to this shorter preoperative fasting include the reduction of postoperative gastrointestinal discomfort and insulin resistance. New formulas containing amino acids such as glutamine and other peptides are being studied and are promising candidates to be used to reduce preoperative fasting time. PMID:21160851

  11. CONSTRAINING PHYSICAL PROPERTIES OF TYPE IIn SUPERNOVAE THROUGH RISE TIMES AND PEAK LUMINOSITIES

    SciTech Connect

    Moriya, Takashi J.; Maeda, Keiichi

    2014-08-01

    We investigate the diversity in the wind density, supernova ejecta energy, and ejecta mass in Type IIn supernovae based on their rise times and peak luminosities. We show that the wind density and supernova ejecta properties can be estimated independently if both the rise time and peak luminosity are observed. The peak luminosity is mostly determined by the supernova properties and the rise time can be used to estimate the wind density. We find that the ejecta energies of Type IIn supernovae need to vary by factors of 0.2-5 from the average if their ejecta masses are similar. The diversity in the observed rise times indicates that their wind densities vary by factors of 0.2-2 from the average. We show that Type IIn superluminous supernovae should have not only large wind density but also large ejecta energy and/or small ejecta mass to explain their large luminosities and the rise times at the same time. We also note that shock breakout does not necessarily occur in the wind even if it is optically thick, except for the case of superluminous supernovae, and we analyze the observational data both with and without assuming that the shock breakout occurs in the dense wind of Type IIn supernovae.

  12. Rise Time of the Simulated VERITAS 12 m Davies-Cotton Reflector

    SciTech Connect

    White, Richard J.

    2005-02-21

    The Very Energetic Radiation Imaging Telescope Array System (VERITAS) will utilise Imaging Atmospheric Cherenkov Telescopes (IACTs) based on a Davies-Cotton design with f-number f/1.0 to detect cosmic gamma-rays. Unlike a parabolic reflector, light from the Davies-Cotton does not arrive isochronously at the camera. Here the effect of the telescope geometry on signal rise-time is examined. An almost square-pulse arrival time profile with a rise time of 1.7 ns is found analytically and confirmed through simulation.

  13. Transistorized Marx bank pulse circuit provides voltage multiplication with nanosecond rise-time

    NASA Technical Reports Server (NTRS)

    Jung, E. A.; Lewis, R. N.

    1968-01-01

    Base-triggered avalanche transistor circuit used in a Marx bank pulser configuration provides voltage multiplication with nanosecond rise-time. The avalanche-mode transistors replace conventional spark gaps in the Marx bank. The delay time from an input signal to the output signal to the output is typically 6 nanoseconds.

  14. Rise Time. Operational Control Tests for Wastewater Treatment Facilities. Instructor's Manual [and] Student Workbook.

    ERIC Educational Resources Information Center

    Carnegie, John W.

    The rise time test (along with the settleometer procedure) is used to monitor sludge behavior in the secondary clarifier of an activated sludge system. The test monitors the effect of the nitrification/denitrification process and aids the operator in determining optimum clarifier sludge detention time and, to some extent, optimum degree of…

  15. Distinct Effect of Impact Rise Times on Immediate and Early Neuropathology After Brain Injury in Juvenile Rats

    PubMed Central

    Jayakumar, Archana; Pfister, Bryan J.; Santhakumar, Vijayalakshmi

    2015-01-01

    Traumatic brain injury (TBI) can occur from physical trauma from a wide spectrum of insults ranging from explosions to falls. The biomechanics of the trauma can vary in key features, including the rate and magnitude of the insult. Although the effect of peak injury pressure on neurological outcome has been examined in the fluid percussion injury (FPI) model, it is unknown whether differences in rate of rise of the injury waveform modify cellular and physiological changes after TBI. Using a programmable FPI device, we examined juvenile rats subjected to a constant peak pressure at two rates of injury: a standard FPI rate of rise and a faster rate of rise to the same peak pressure. Immediate postinjury assessment identified fewer seizures and relatively brief loss of consciousness after fast-rise injuries than after standard-rise injuries at similar peak pressures. Compared with rats injured at standard rise, fewer silver-stained injured neuronal profiles and degenerating hilar neurons were observed 4-6 hr after fast-rise FPI. However, 1 week postinjury, both fast- and standard-rise FPI resulted in hilar cell loss and enhanced perforant path-evoked granule cell field excitability compared with sham controls. Notably, the extent of neuronal loss and increase in dentate excitability were not different between rats injured at fast and standard rates of rise to peak pressure. Our data indicate that reduced cellular damage and improved immediate neurological outcome after fast rising primary concussive injuries mask the severity of the subsequent cellular and neurophysiological pathology and may be unreliable as a predictor of prognosis. PMID:24799156

  16. Brainstem auditory evoked responses in man. 1: Effect of stimulus rise-fall time and duration

    NASA Technical Reports Server (NTRS)

    Hecox, K.; Squires, N.; Galambos, R.

    1975-01-01

    Short latency (under 10 msec) responses elicited by bursts of white noise were recorded from the scalps of human subjects. Response alterations produced by changes in the noise burst duration (on-time), inter-burst interval (off-time), and onset and offset shapes were analyzed. The latency of the most prominent response component, wave V, was markedly delayed with increases in stimulus rise time but was unaffected by changes in fall time. Increases in stimulus duration, and therefore in loudness, resulted in a systematic increase in latency. This was probably due to response recovery processes, since the effect was eliminated with increases in stimulus off-time. The amplitude of wave V was insensitive to changes in signal rise and fall times, while increasing signal on-time produced smaller amplitude responses only for sufficiently short off-times. It was concluded that wave V of the human auditory brainstem evoked response is solely an onset response.

  17. Measurement of the Rise-Time in a Single Sided Ladder Detector

    SciTech Connect

    Gerber, C.E.; /Fermilab

    1997-11-10

    In this note we report on the measurement of the preamplifier output rise time for a SVXII chip mounted on a D0 single sided ladder. The measurements were performed on the ladder 001-883-L, using the laser test stand of Lab D. The rise time was measured for different values of the response (or bandwidth) of the preamplifier. As a bigger bandwidth results in longer rise times and therefore in less noise, the largest possible bandwidth consistent with the time between bunch crossings should be chosen to operate the detectors. The rise time is defined as the time elapsed between 10% and 90% of the charge is collected. It is also interesting to measure the time for full charge collection and the percentage of charge collected in 132 ns and 396 ns. The results are shown in table 1, for bandwidths between 2 and 63 (binary numbers). The uncertainty on the time measurement is considered to be {approx} 10 ns. Figure 1 schematically defines the four quantities measured: rise time, time of full charge collection, and percentage of charge collected in 132 ns and 396 ns. Figures 2 to 8 are the actual measurements for bandwidths of 2, 4, 8, 12, 24, 32 and 63. Figure 9 is a second measurement for BW=24, used as a consistency check of the system and the time measurement performed on the plots. The data indicate that the single sided ladders can be operated at BW=63 for 396 ns and BW=12 for 132 ns, achieving full charge collection. This will result in smaller noise than originally anticipated.

  18. Extremum seeking-based optimization of high voltage converter modulator rise-time

    SciTech Connect

    Scheinker, Alexander; Bland, Michael; Krstic, Miroslav; Audia, Jeff

    2013-02-01

    We digitally implement an extremum seeking (ES) algorithm, which optimizes the rise time of the output voltage of a high voltage converter modulator (HVCM) at the Los Alamos Neutron Science Center (LANSCE) HVCM test stand by iteratively, simultaneously tuning the first 8 switching edges of each of the three phase drive waveforms (24 variables total). We achieve a 50 μs rise time, which is reduction in half compared to the 100 μs achieved at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory. Considering that HVCMs typically operate with an output voltage of 100 kV, with a 60Hz repetition rate, the 50 μs rise time reduction will result in very significant energy savings. The ES algorithm will prove successful, despite the noisy measurements and cost calculations, confirming the theoretical results that the algorithm is not affected by noise whose frequency components are independent of the perturbing frequencies.

  19. Discriminating cosmic muons and X-rays based on rise time using a GEM detector

    NASA Astrophysics Data System (ADS)

    Wu, Hui-Yin; Zhao, Sheng-Ying; Wang, Xiao-Dong; Zhang, Xian-Ming; Qi, Hui-Rong; Zhang, Wei; Wu, Ke-Yan; Hu, Bi-Tao; Zhang, Yi

    2016-08-01

    Gas electron multiplier (GEM) detectors have been used in cosmic muon scattering tomography and neutron imaging over the last decade. In this work, a triple GEM device with an effective readout area of 10 cm × 10 cm is developed, and a method of discriminating between cosmic muons and X-rays based on rise time is tested. The energy resolution of the GEM detector is tested by 55Fe ray source to prove the GEM detector has a good performance. Analysis of the complete signal-cycles allows us to get the rise time and pulse heights. The experiment result indicates that cosmic muons and X-rays can be discriminated with an appropriate rise time threshold. Supported by National Natural Science Foundation of China (11135002, 11275235, 11405077, 11575073)

  20. A fast preamplifier concept for SiPM-based time-of-flight PET detectors

    NASA Astrophysics Data System (ADS)

    Huizenga, J.; Seifert, S.; Schreuder, F.; van Dam, H. T.; Dendooven, P.; Löhner, H.; Vinke, R.; Schaart, D. R.

    2012-12-01

    Silicon photomultipliers (SiPMs) offer high gain and fast response to light, making them interesting for fast timing applications such as time-of-flight (TOF) PET. To fully exploit the potential of these photosensors, dedicated preamplifiers that do not deteriorate the rise time and signal-to-noise ratio are crucial. Challenges include the high sensor capacitance, typically >300 pF for a 3 mm×3 mm SiPM sensor, as well as oscillation issues. Here we present a preamplifier concept based on low noise, high speed transistors, designed for optimum timing performance. The input stage consists of a transimpedance common-base amplifier with a very low input impedance even at high frequencies, which assures a good linearity and avoids that the high detector capacitance affects the amplifier bandwidth. The amplifier has a fast timing output as well as a 'slow' energy output optimized for determining the total charge content of the pulse. The rise time of the amplifier is about 300 ps. The measured coincidence resolving time (CRT) for 511 keV photon pairs using the amplifiers in combination with 3 mm×3 mm SiPMs (Hamamatsu MPPC-S10362-33-050C) coupled to 3 mm×3 mm×5 mm LaBr3:Ce and LYSO:Ce crystals equals 95 ps FWHM and 138 ps FWHM, respectively.

  1. Brainstem auditory evoked responses in man. 1: Effect of stimulus rise-fall time and duration

    NASA Technical Reports Server (NTRS)

    Hecox, K.; Squires, N.; Galambos, R.

    1975-01-01

    Short latency (under 10 msec) evoked responses elicited by bursts of white noise were recorded from the scalp of human subjects. Response alterations produced by changes in the noise burst duration (on-time) inter-burst interval (off-time), and onset and offset shapes are reported and evaluated. The latency of the most prominent response component, wave V, was markedly delayed with increases in stimulus rise-time but was unaffected by changes in fall-time. The amplitude of wave V was insensitive to changes in signal rise-and-fall times, while increasing signal on-time produced smaller amplitude responses only for sufficiently short off-times. It is concluded that wave V of the human auditory brainstem evoked response is solely an onset response.

  2. Prelude to Cycle 23: The Case for a Fast-Rising, Large Amplitude Cycle

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.; Hathaway, David H.; Reichmann, Edwin J.

    1996-01-01

    For the common data-available interval of cycles 12 to 22, we show that annual averages of sunspot number for minimum years (R(min)) and maximum years (R(max)) and of the minimum value of the aa geomagnetic index in the vicinity of sunspot minimum (aa(min)) are consistent with the notion that each has embedded within its respective record a long-term, linear, secular increase. Extrapolating each of these fits to cycle 23, we infer that it will have R(min) = 12.7 +/- 5.7, R(max) = 176.7 +/- 61.8, and aa(min) = 21.0 +/- 5.0 (at the 95-percent level of confidence), suggesting that cycle 23 will have R(min) greater than 7.0, R(max) greater than 114.9, and aa(min) greater than 16.0 (at the 97.5-percent level of confidence). Such values imply that cycle 23 will be larger than average in size and, consequently (by the Waidmeier effect), will be a fast riser. We also infer from the R(max) and aa(min) records the existence of an even- odd cycle effect, one in which the odd-following cycle is numerically larger in value than the even-leading cycle. For cycle 23, the even-odd cycle effect suggests that R(max) greater than 157.6 and aa(min) greater than 19.0, values that were recorded for cycle 22, the even-leading cycle of the current even-odd cycle pair (cycles 22 and 23). For 1995, the annual average of the aa index measured about 22, while for sunspot number, it was about 18. Because aa(min) usually lags R(min) by 1 year (true for 8 of 11 cycles) and 1996 seems destined to be the year of R(min) for cycle 23, it may be that aa(min) will occur in 1997, although it could occur in 1996 in conjunction with R(min) (true for 3 of 11 cycles). Because of this ambiguity in determining aa(min), no formal prediction based on the correlation of R(max) against aa(min), having r = 0.90, or of R(max) against the combined effects of R(min) and aa(min)-the bivariate technique-having r = 0.99, is possible until 1997, at the earliest.

  3. Ultra-Fast Flash Observatory: Fast Response Space Missions for Early Time Phase of Gamma Ray Bursts

    NASA Astrophysics Data System (ADS)

    Park, I. H.; Ahmad, S.; Barrillon, P.; Brandt, S.; Budtz-Jørgensen, C.; Castro-Tirado, A. J.; Chen, P.; Choi, J. N.; Choi, Y. J.; Connell, P.; Dagoret-Campagne, S.; Eyles, C.; Grossan, B.; Huang, M.-H. A. Huang; Jung, A.; Jeong, S.; Kim, J. E.; Kim, M. B.; Kim, S.-W.; Kim, Y. W.; Krasnov, A. S.; Lee, J.; Lim, H.; Linder, E. V.; Liu, T.-C.; Min, K. W.; Na, G. W.; Nam, J. W.; Panasyuk, M. I.; Park, H. W.; Ripa, J.; Reglero, V.; Rodrigo, J. M.; Smoot, G. F.; Svertilov, S.; Vedenkin, N.; Wang, M.-Z.; Yashin, I.

    2013-07-01

    One of the unexplored domains in the study of gamma-ray bursts (GRBs) is the early time phase of the optical light curve. We have proposed Ultra-Fast Flash Observatory (UFFO) to address this question through extraordinary opportunities presented by a series of small space missions. The UFFO is equipped with a fast-response Slewing Mirror Telescope that uses a rapidly moving mirror or mirror array to redirect the optical beam rather than slewing the entire spacecraft or telescope to aim the optical instrument at the GRB position. The UFFO will probe the early optical rise of GRBs with sub-second response, for the first time, opening a completely new frontier in GRB and transient studies. Its fast response measurements of the optical emission of dozens of GRB each year will provide unique probes of the burst mechanism and test the prospect of GRB as a new standard candle, potentially opening up the z > 10 universe. We describe the current limit in early photon measurements, the aspects of early photon physics, our soon-to-be-launched UFFO-pathfinder mission, and our next planned mission, the UFFO-100.

  4. Rise Time Perception in Children with Reading and Combined Reading and Language Difficulties

    ERIC Educational Resources Information Center

    Beattie, Rachel L.; Manis, Franklin R.

    2013-01-01

    Using a non-speech-specific measure of prosody, rise time perception, Goswami and her colleagues have found that individuals with dyslexia perform significantly worse than nonimpaired readers. Studies have also found that children and adults with specific language impairment were impaired on these tasks. Despite the high comorbidity of these…

  5. Rise Time Perception and Detection of Syllable Stress in Adults with Developmental Dyslexia

    ERIC Educational Resources Information Center

    Leong, Victoria; Hamalainen, Jarmo; Soltesz, Fruzsina; Goswami, Usha

    2011-01-01

    Introduction: The perception of syllable stress has not been widely studied in developmental dyslexia, despite strong evidence for auditory rhythmic perceptual difficulties. Here we investigate the hypothesis that perception of sound rise time is related to the perception of syllable stress in adults with developmental dyslexia. Methods: A…

  6. Very fast doped LaBr.sub.3 scintillators and time-of-flight PET

    DOEpatents

    Shah, Kanai S.

    2006-10-31

    The present invention concerns very fast scintillator materials capable of resolving the position of an annihilation event within a portion of a human body cross-section. In one embodiment, the scintillator material comprises LaBr.sub.3 doped with cerium. Particular attention is drawn to LaBr.sub.3 doped with a quantity of Ce that is chosen for improving the timing properties, in particular the rise time and resultant timing resolution of the scintillator, and locational capabilities of the scintillator.

  7. Fast multigrid fluorescent ion chamber with 0.1 ms time response.

    PubMed

    Suzuki, Motohiro; Kawamura, Naomi; Lytle, Farrel W; Ishikawa, Tetsuya

    2002-03-01

    A fast multigrid ion chamber for the detection of fluorescent X-rays has been developed. The structure of 17 grids with close separation was employed to maximize the time response as well as to give sufficient detection efficiency. The measured rise/fall response time to cyclic X-rays was shorter than that of an existing three-grid ion chamber by more than one order of magnitude. A 0.13 ms time response was obtained at the 500 V applied voltage, where the detector can stably operate without any discharge. The available frequency range is as high as 1 kHz with a practical amplitude response. PMID:11872931

  8. Comparison of occlusion break responses and vacuum rise times of phacoemulsification systems

    PubMed Central

    2014-01-01

    Background Occlusion break surge during phacoemulsification cataract surgery can lead to potential surgical complications. The purpose of this study was to quantify occlusion break surge and vacuum rise time of current phacoemulsification systems used in cataract surgery. Methods Occlusion break surge at vacuum pressures between 200 and 600 mmHg was assessed with the Infiniti® Vision System, the WhiteStar Signature® Phacoemulsification System, and the Centurion® Vision System using gravity-fed fluidics. Centurion Active FluidicsTM were also tested at multiple intraoperative pressure target settings. Vacuum rise time was evaluated for Infiniti, WhiteStar Signature, Centurion, and Stellaris® Vision Enhancement systems. Rise time to vacuum limits of 400 and 600 mmHg was assessed at flow rates of 30 and 60 cc/minute. Occlusion break surge was analyzed by 2-way analysis of variance. Results The Centurion system exhibited substantially less occlusion break surge than the other systems tested. Surge area with Centurion Active Fluidics was similar to gravity fluidics at an equivalent bottle height. At all Centurion Active Fluidics intraoperative pressure target settings tested, surge was smaller than with Infiniti and WhiteStar Signature. Infiniti had the fastest vacuum rise time and Stellaris had the slowest. No system tested reached the 600-mmHg vacuum limit. Conclusions In this laboratory study, Centurion had the least occlusion break surge and similar vacuum rise times compared with the other systems tested. Reducing occlusion break surge may increase safety of phacoemulsification cataract surgery. PMID:25074069

  9. Rise and fall time behavior of the gyrotron backward-wave oscillator.

    PubMed

    Pao, K F; Chang, T H; Chen, S H; Chu, K R

    2006-10-01

    The rise and fall time behavior of a pulsed microwave oscillator is a problem of academic interest. It is also of importance to radar and other applications because it can lead to phase and frequency jitters or even lock the entire pulse into an undesired mode. Here we present a study of the rise and fall time behavior in the gyrotron backward-wave oscillator (gyro-BWO). Single-mode simulations reveal that, during the rise and fall portions of the electron beam pulse, oscillation frequencies of the axial modes vary in such a way that their transit angles remain at the respective optimum values. Thus, axial mode competition and mode switching can readily take place in these transient stages. Time-dependent simulations demonstrate that, under both the gradual and instant turn-on conditions, the axial modes compete in a pattern governed by the characteristic asymmetry of the mode profiles. Other aspects of physics interest include the analysis and explanation of a resultant hysteresis effect between the rise and fall portions of the beam pulse. These understandings are expected to provide the basis for achieving a stable gyro-BWO operating at a single mode throughout the entire beam pulse. PMID:17155180

  10. Pulse Rise Time Characterization of a High Pressure Xenon Gamma Detector for use in Resolution Enhancement

    SciTech Connect

    TROYER, G.L.

    2000-08-25

    High pressure xenon ionization chamber detectors are possible alternatives to traditional thallium doped sodium iodide (NaI(Tl)) and hyperpure germanium as gamma spectrometers in certain applications. Xenon detectors incorporating a Frisch grid exhibit energy resolutions comparable to cadmium/zinc/telluride (CZT) (e.g. 2% {at} 662keV) but with far greater sensitive volumes. The Frisch grid reduces the position dependence of the anode pulse risetimes, but it also increases the detector vibration sensitivity, anode capacitance, voltage requirements and mechanical complexity. We have been investigating the possibility of eliminating the grid electrode in high-pressure xenon detectors and preserving the high energy resolution using electronic risetime compensation methods. A two-electrode cylindrical high pressure xenon gamma detector coupled to time-to-amplitude conversion electronics was used to characterize the pulse rise time of deposited gamma photons. Time discrimination was used to characterize the pulse rise time versus photo peak position and resolution. These data were collected to investigate the effect of pulse rise time compensation on resolution and efficiency.

  11. In-flight fast-timing measurements in Sm152

    NASA Astrophysics Data System (ADS)

    Plaisir, C.; Gaudefroy, L.; Méot, V.; Blanc, A.; Daugas, J. M.; Roig, O.; Arnal, N.; Bonnet, T.; Gobet, F.; Hannachi, F.; Tarisien, M.; Versteegen, M.; Roger, T.; Rejmund, M.; Navin, A.; Schmitt, C.; Fremont, G.; Goupil, J.; Pancin, J.; Spitaels, C.; Zielińska, M.

    2014-02-01

    We report on the first application of in-flight fast-timing measurements, a method developed in order to directly measure lifetimes in the picosecond to nanosecond range. As a proof of principle of the method, lifetimes of the states belonging to the ground-state band in Sm152 are measured up to the 81+ state. An excellent agreement with recommended values is found. A slightly improved determination of the spectroscopic quadrupole moment of the 41+ state is also reported. In-flight fast-timing measurements open interesting opportunities for future studies of collective properties in radioactive nuclei.

  12. Effect of air on energy and rise-time spectra measured by proportional gas counter

    SciTech Connect

    Kawano, T.; Tanaka, M.; Isozumi, S.; Isozumi, Y.; Tosaki, M.; Sugiyama, T.

    2015-03-15

    Air exerts a negative effect on radiation detection using a gas counter because oxygen contained in air has a high electron attachment coefficient and can trap electrons from electron-ion pairs created by ionization from incident radiation in counting gas. This reduces radiation counts. The present study examined the influence of air on energy and rise-time spectra measurements using a proportional gas counter. In addition, a decompression procedure method was proposed to reduce the influence of air and its effectiveness was investigated. For the decompression procedure, the counting gas inside the gas counter was decompressed below atmospheric pressure before radiation detection. For the spectrum measurement, methane as well as various methane and air mixtures were used as the counting gas to determine the effect of air on energy and rise-time spectra. Results showed that the decompression procedure was effective for reducing or eliminating the influence of air on spectra measurement using a proportional gas counter. (authors)

  13. Rise time of voltage pulses in NbN superconducting single photon detectors

    NASA Astrophysics Data System (ADS)

    Smirnov, K. V.; Divochiy, A. V.; Vakhtomin, Yu. B.; Sidorova, M. V.; Karpova, U. V.; Morozov, P. V.; Seleznev, V. A.; Zotova, A. N.; Vodolazov, D. Yu.

    2016-08-01

    We have found experimentally that the rise time of voltage pulse in NbN superconducting single photon detectors increases nonlinearly with increasing the length of the detector L. The effect is connected with dependence of resistance of the detector Rn, which appears after photon absorption, on its kinetic inductance Lk and, hence, on the length of the detector. This conclusion is confirmed by our calculations in the framework of two temperature model.

  14. Extremum seeking-based optimization of high voltage converter modulator rise-time

    DOE PAGESBeta

    Scheinker, Alexander; Bland, Michael; Krstic, Miroslav; Audia, Jeff

    2014-01-01

    We digitally implement an extremum seeking (ES) algorithm, which optimizes the rise time of the output voltage of a high voltage converter modulator (HVCM) at the Los Alamos Neutron Science Center (LANSCE) HVCM test stand by iteratively, simultaneously tuning the first 8 switching edges of each of the three phase drive waveforms (24 variables total). We achieve a 50 μs rise time, which is reduction in half compared to the 100 μs achieved at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory. Considering that HVCMs typically operate with an output voltage of 100 kV, with a 60Hz repetitionmore » rate, the 50 μs rise time reduction will result in very significant energy savings. The ES algorithm will prove successful, despite the noisy measurements and cost calculations, confirming the theoretical results that the algorithm is not affected by noise whose frequency components are independent of the perturbing frequencies.« less

  15. Investigating Two Different Training Time Frames during Ramadan Fasting

    PubMed Central

    Kordi, Ramin; Abdollahi, Mohammad; Memari, Amir-Hossein; Najafabadi, Mahboubeh Ghayour

    2011-01-01

    Purpose Muslim athletes may continue training and competing while they are fasting. There is a concern about negative effects of fasting on sports performance. This study aimed to investigate the influence of two training time frames on athletes’ body composition and performance during Ramadan fasting. Methods An observational study was conducted and thirty four male volunteer athletes from different sports including volleyball, karate, taekwondo and football were assigned in two groups. The first group included 14 elite athletes who during Ramadan voluntarily participated in training sessions at 1 hour before Iftar (BI) and the second group of 20 elite athletes who during Ramadan participated in training sessions at 3 hours after Iftar (AI). Testing was performed one week before; in the first and fourth weeks of Ramadan and one week after Ramadan. Weights, heights and skinfold thickness were assessed at each time point and body mass index was calculated. Each player was assessed for agility and explosive strength as well. Results The mean weight and body mass index of both groups decreased significantly during Ramadan (P<0.001). Performance variables were not negatively affected by fasting in BI or AI group athletes. Conclusions Weight reduction might come with either BI or AI training schedules in Ramadan. Daytime or evening training did not inversely affect the agility and power performances in a group of elite athletes during Ramadan fasting. PMID:22375240

  16. Effects of lung time constant, gas analyser delay and rise time on measurements of respiratory dead-space.

    PubMed

    Tang, Yongquan; Turner, Martin J; Baker, A Barry

    2005-12-01

    This study evaluated effects of mechanical time constants (tau(m)) of the respiratory system, delays between flow and CO(2) partial pressure (P(CO)(2)) signals and rise time of the CO(2) analyser on dead-space measurements. A computer model simulated low alveolar dead-space, high alveolar dead-space, 0.2 time delays and anatomic and physiological dead-spaces were calculated. The CO(2) analyser was simulated as a critically damped second-order system with 10-90% rise times of 25-400 ms. The error in measured dead-space increases approximately 2.5% per 10 ms signal delay for normal lungs (tau(m) = 1 s), but has low sensitivity (0.58% per 10 ms) to the rise time of the CO(2) analyser. Sensitivity of physiological dead-space, but not anatomic dead-space to delay is decreased in high alveolar dead-space and abnormal V/Q distribution. Shorter tau(m) increase the error sensitivity of both physiological and anatomic dead-spaces to both delay and rise time. P(CO)(2) and flow should be well synchronized, particularly when tau(m) are short, to avoid dead-space errors. PMID:16311457

  17. Fast Supervision: Changing Supervisory Practice in Changing Times.

    ERIC Educational Resources Information Center

    Green, Pam; Usher, Robin

    2003-01-01

    Describes how research training in Australia is shaped by the knowledge economy and emphasis on "fast" supervision that results in timely degree completion. This pressure limits development of subject-specific methods skills, general research skills, and employability skills. Reconfiguration of the research culture may be necessary. (SK)

  18. Picosecond transient absorption rise time for ultrafast tagging of the interaction of ionizing radiation with scintillating crystals in high energy physics experiments

    NASA Astrophysics Data System (ADS)

    Auffray, E.; Buganov, O.; Fedorov, A.; Korjik, M.; Mechinsky, V.; Tikhomirov, A.; Vasil'ev, A.; Lecoq, P.

    2014-07-01

    Here we report the first results of a search of a signature for picosecond time stamps of the interaction between ionizing particles and transparent crystalline media. The induced absorption with sub-picosecond rise time observed in a cerium fluoride scintillation single crystal under UV excitation is directly associated with the ionization of Ce3+ atoms in CeF3 crystals, and the very fast occurrence thereof can be used to generate picosecond-precise time stamps corresponding to the interaction of ionizing particles with the crystal in high energy physics experiments.

  19. Effect of stratification and geometrical spreading on sonic boom rise time

    NASA Technical Reports Server (NTRS)

    Cleveland, Robin O.; Hamilton, Mark F.; Blackstock, David T.

    1994-01-01

    The purpose of our investigation is to determine the effect of unsteadiness (not associated with turbulence) on rise time. The unsteadiness considered here is due to (1) geometrical spreading, (2) stratification, which includes variation in density, temperature, and relative humidity, and (3) N shaped waveform. A very general Burgers equation, which includes all these effects, is the propagation model for our study. The equation is solved by a new computational algorithm in which all the calculations are done in the time domain. The present paper is a progress report in which some of the factors contributing to unsteadiness are studied, namely geometrical spreading and variation in relative humidity. The work of Pierce and Kang, which motivated our study, is first reviewed. We proceed with a discussion of the Burgers equation model and the algorithm for solving the equation. Some comparison tests to establish the validity of the algorithm are presented. The algorithm is then used to determine the distance required for a steady-state shock, on encountering an abrupt change in relative humidity, to reach a new steady state based on the new humidity. It is found that the transition distance for plane shocks of amplitude 70 Pa is about 4 km when the change in relative humidity is 10 percent. Shocks of amplitude 140 Pa require less distance. The effect of spherical and cylindrical spreading is also considered. We demonstrate that a spreading shock wave never reaches steady state and that its rise time will be less than the equivalent steady state shock. Finally we show that an N wave has a slightly shorter rise time than a step shock of the same amplitude.

  20. NASA AVOSS Fast-Time Wake Prediction Models: User's Guide

    NASA Technical Reports Server (NTRS)

    Ahmad, Nash'at N.; VanValkenburg, Randal L.; Pruis, Matthew

    2014-01-01

    The National Aeronautics and Space Administration (NASA) is developing and testing fast-time wake transport and decay models to safely enhance the capacity of the National Airspace System (NAS). The fast-time wake models are empirical algorithms used for real-time predictions of wake transport and decay based on aircraft parameters and ambient weather conditions. The aircraft dependent parameters include the initial vortex descent velocity and the vortex pair separation distance. The atmospheric initial conditions include vertical profiles of temperature or potential temperature, eddy dissipation rate, and crosswind. The current distribution includes the latest versions of the APA (3.4) and the TDP (2.1) models. This User's Guide provides detailed information on the model inputs, file formats, and the model output. An example of a model run and a brief description of the Memphis 1995 Wake Vortex Dataset is also provided.

  1. Subjective response to sonic booms having different shapes, rise times, and durations

    NASA Technical Reports Server (NTRS)

    Mccurdy, David A.

    1994-01-01

    Two laboratory experiments were conducted to quantify the subjective response of people to simulated outdoor sonic booms having different pressure signatures. The specific objectives of the experiments were to compare subjective response to sonic booms when described in terms of 'loudness' and 'annoyance'; to determine the ability of various noise metrics to predict subjective response to sonic booms; to determine the effects on subjective response of rise time, duration, and level; and to compare the subjective response to 'N-wave' sonic boom signatures with the subjective response to 'minimized' sonic boom signatures. The experiments were conducted in a computer-controlled, man-rated sonic boom simulator capable of reproducing user-specified pressure signatures for a wide range of sonic boom parameters. One hundred and fifty sonic booms representing different combinations of two wave shapes, four rise times, seven durations, and three peak overpressures were presented to 36 test subjects in each experiment. The test subjects in the first experiment made judgments of 'loudness' while the test subjects in the second experiment judged 'annoyance.' Subjective response to sonic booms was the same whether expressed in terms of loudness or in terms of annoyance. Analyses of several different noise metrics indicated that A-weighted sound exposure level and Perceived Level were the best predictors of subjective response. Further analyses indicated that, of these two noise metrics, only Perceived Level completely accounted for the effects of wave shape, rise time, and peak overpressure. Neither metric fully accounted for the effect of duration. However, the magnitude of the duration effect was small over the very wide range of durations considered.

  2. Rise time in 20-32 keV impulsive X-radiation

    NASA Technical Reports Server (NTRS)

    Vorpahl, J. A.; Takakura, T.

    1974-01-01

    A new property of the X-ray impulsive component observed in solar flares is discussed, giving attention to the relation between the slope of the electron power spectrum and the rise time in the 20-32 keV X-ray spike. This particular energy range was chosen because it offered the greatest number of impulsive events while being sufficiently high to avoid contamination by soft X radiation. It is found for the thin-target model that the electron spectrum tends to be softer when the acceleration rate is smaller.

  3. Rise time of inverted triangular prism intruder in vibrating granular bed: Experiments and model

    NASA Astrophysics Data System (ADS)

    Nuraini, N.; Adriani, I. K.; Baladram, M. S.; Viridi, S.

    2012-05-01

    Experiment results and a qualitative model of the phenomenon called Brazil nut effect (BNE) with inverted triangular prism are reported in this work. The model is constructed by considering some forces (earth gravitational force, buoyant force, and fluid viscous force) and using Newton's second law of motion. The rise time of BNE T is defined as time needed for the intruder to be on granular surface with all of his parts (no part is still immersed in the granular bed). One side of the triangular base of the intruder l is varied from 1.5 to 5 cm with other two sides are kept in constant values (1 and 3 cm). It has been observed in experiment that l with value 3-4 cm gives the smaller rise time. Plot of T versus l has the form of concave up parabolic curve with minimum lies at l between 3-4 cm. This observation has been confirmed by the proposed model with the same order of magnitude and similar curve trend.

  4. Fast sensors for time-of-flight imaging applications.

    PubMed

    Vallance, Claire; Brouard, Mark; Lauer, Alexandra; Slater, Craig S; Halford, Edward; Winter, Benjamin; King, Simon J; Lee, Jason W L; Pooley, Daniel E; Sedgwick, Iain; Turchetta, Renato; Nomerotski, Andrei; John, Jaya John; Hill, Laura

    2014-01-14

    The development of sensors capable of detecting particles and radiation with both high time and high positional resolution is key to improving our understanding in many areas of science. Example applications of such sensors range from fundamental scattering studies of chemical reaction mechanisms through to imaging mass spectrometry of surfaces, neutron scattering studies aimed at probing the structure of materials, and time-resolved fluorescence measurements to elucidate the structure and function of biomolecules. In addition to improved throughput resulting from parallelisation of data collection - imaging of multiple different fragments in velocity-map imaging studies, for example - fast image sensors also offer a number of fundamentally new capabilities in areas such as coincidence detection. In this Perspective, we review recent developments in fast image sensor technology, provide examples of their implementation in a range of different experimental contexts, and discuss potential future developments and applications. PMID:24002354

  5. Directional Detection of Fast Neutrons Using a Time Projection Chamber

    SciTech Connect

    Bowden, N; Heffner, M; Carosi, G; Carter, D; Foxe, M; Jovanovic, I

    2009-06-03

    Spontaneous fission in Special Nuclear Material (SNM) such as plutonium and highly enriched uranium (HEU) results in the emission of neutrons with energies in the MeV range (hereafter 'fast neutrons'). These fast neutrons are largely unaffected by the few centimeters of intervening high-Z material that would suffice for attenuating most emitted gamma rays, while tens of centimeters of hydrogenous materials are required to achieve substantial attenuation of neutron fluxes from SNM. Neutron detectors are therefore an important complement to gamma-ray detectors in SNM search and monitoring applications. The rate at which SNM emits fast neutrons varies from about 2 per kilogram per second for typical HEU to some 60,000 per kilogram per second for metallic weapons grade plutonium. These rates can be compared with typical sea-level (cosmogenic) neutron backgrounds of roughly 5 per second per square meter per steradian in the relevant energy range [1]. The fact that the backgrounds are largely isotropic makes directional neutron detection especially attractive for SNM detection. The ability to detect, localize, and ultimately identify fast neutron sources at standoff will ultimately be limited by this background rate. Fast neutrons are particularly well suited to standoff detection and localization of SNM or other fast neutrons sources. Fast neutrons have attenuation lengths of about 60 meters in air, and retain considerable information about their source direction even after one or two scatters. Knowledge of the incoming direction of a fast neutron, from SNM or otherwise, has the potential to significantly improve signal to background in a variety of applications, since the background arriving from any one direction is a small fraction of the total background. Imaging or directional information therefore allows for source detection at a larger standoff distance or with shorter dwell times compared to nondirectional detectors, provided high detection efficiency can be

  6. Attractors of relaxation discrete-time systems with chaotic dynamics on a fast time scale

    NASA Astrophysics Data System (ADS)

    Maslennikov, Oleg V.; Nekorkin, Vladimir I.

    2016-07-01

    In this work, a new type of relaxation systems is considered. Their prominent feature is that they comprise two distinct epochs, one is slow regular motion and another is fast chaotic motion. Unlike traditionally studied slow-fast systems that have smooth manifolds of slow motions in the phase space and fast trajectories between them, in this new type one observes, apart the same geometric objects, areas of transient chaos. Alternating periods of slow regular motions and fast chaotic ones as well as transitions between them result in a specific chaotic attractor with chaos on a fast time scale. We formulate basic properties of such attractors in the framework of discrete-time systems and consider several examples. Finally, we provide an important application of such systems, the neuronal electrical activity in the form of chaotic spike-burst oscillations.

  7. Fast computation of recurrences in long time series

    NASA Astrophysics Data System (ADS)

    Rawald, Tobias; Sips, Mike; Marwan, Norbert; Dransch, Doris

    2014-05-01

    The quadratic time complexity of calculating basic RQA measures, doubling the size of the input time series leads to a quadrupling in operations, impairs the fast computation of RQA in many application scenarios. As an example, we analyze the Potsdamer Reihe, an ongoing non-interrupted hourly temperature profile since 1893, consisting of 1,043,112 data points. Using an optimized single-threaded CPU implementation this analysis requires about six hours. Our approach conducts RQA for the Potsdamer Reihe in five minutes. We automatically split a long time series into smaller chunks (Divide) and distribute the computation of RQA measures across multiple GPU devices. To guarantee valid RQA results, we employ carryover buffers that allow sharing information between pairs of chunks (Recombine). We demonstrate the capabilities of our Divide and Recombine approach to process long time series by comparing the runtime of our implementation to existing RQA tools. We support a variety of platforms by employing the computing framework OpenCL. Our current implementation supports the computation of standard RQA measures (recurrence rate, determinism, laminarity, ratio, average diagonal line length, trapping time, longest diagonal line, longest vertical line, divergence, entropy, trend) and also calculates recurrence times. To utilize the potential of our approach for a number of applications, we plan to release our implementation under an Open Source software license. It will be available at http://www.gfz-potsdam.de/fast-rqa/. Since our approach allows to compute RQA measures for a long time series fast, we plan to extend our implementation to support multi-scale RQA.

  8. Rise time and response measurements on a LiSOCl2 cell

    NASA Technical Reports Server (NTRS)

    Bastien, Caroline; Lecomte, Eric J.

    1992-01-01

    Dynamic impedance tests were performed on a 180 Ah LiSOCl2 cell in the frame of a short term work contract awarded by Aerospatiale as part of the Hermes Space Plane development work. These tests consisted of rise time and response measurements. The rise time test was performed to show the ability to deliver 4 KW, in the nominal voltage range (75-115 V), within less than 100 microseconds, and after a period at rest of 13 days. The response measurements test consisted of step response and frequency response tests. The frequency response test was performed to characterize the response of the LiSOCl2 cell to a positive or negative load step of 10 A starting from various currents. The test was performed for various depths of discharge and various temperatures. The test results were used to build a mathematical, electrical model of the LiSOCl2 cell which are also presented. The test description, test results, electrical modelization description, and conclusions are presented.

  9. Evolution of the solar radius during the solar cycle 24 rise time

    NASA Astrophysics Data System (ADS)

    Meftah, Mustapha

    2015-08-01

    One of the real motivations to observe the solar radius is the suspicion that it might be variable. Possible temporal variations of the solar radius are important as an indicator of internal energy storage and as a mechanism for changes in the total solar irradiance. Measurements of the solar radius are of great interest within the scope of the debate on the role of the Sun in climate change. Solar energy input dominates the surface processes (climate, ocean circulation, wind, etc.) of the Earth. Thus, it appears important to know on what time scales the solar radius and other fundamental solar parameters, like the total solar irradiance, vary in order to better understand and assess the origin and mechanisms of the terrestrial climate changes. The current solar cycle is probably going to be the weakest in 100 years, which is an unprecedented opportunity for studying the variability of the solar radius during this period. This paper presents more than four years of solar radius measurements obtained with a satellite and a ground-based observatory during the solar cycle 24 rise time. Our measurements show the benefit of simultaneous measurements obtained from ground and space observatories. Space observations are a priori most favourable, however, space entails also technical challenges, a harsh environment, and a finite mission lifetime. The evolution of the solar radius during the rising phase of the solar cycle 24 show small variations that are out of phase with solar activity.

  10. A CMOS integrated timing discriminator circuit for fast scintillation counters

    SciTech Connect

    Jochmann, M.W.

    1998-06-01

    Based on a zero-crossing discriminator using a CR differentiation network for pulse shaping, a new CMOS integrated timing discriminator circuit is proposed for fast (t{sub r} {ge} 2 ns) scintillation counters at the cooler synchrotron COSY-Juelich. By eliminating the input signal`s amplitude information by means of an analog continuous-time divider, a normalized pulse shape at the zero-crossing point is gained over a wide dynamic input amplitude range. In combination with an arming comparator and a monostable multivibrator this yields in a highly precise timing discriminator circuit, that is expected to be useful in different time measurement applications. First measurement results of a CMOS integrated logarithmic amplifier, which is part of the analog continuous-time divider, agree well with the corresponding simulations. Moreover, SPICE simulations of the integrated discriminator circuit promise a time walk well below 200 ps (FWHM) over a 40 dB input amplitude dynamic range.

  11. Fast timing and trigger Cherenkov detector for collider experiments

    NASA Astrophysics Data System (ADS)

    Grigoryev, V. A.; Kaplin, V. A.; Karavicheva, T. L.; Konevskikh, A. S.; Kurepin, A. B.; Loginov, V. A.; Melikyan, Yu A.; Morozov, I. V.; Reshetin, A. I.; Serebryakov, D. V.; Shabanov, A. I.; Slupecki, M.; Trzaska, W. H.; Tykmanov, E. M.

    2016-02-01

    Analysis of fast timing and trigger Cherenkov detector's design for its use in collider experiments is presented. Several specific requirements are taken into account - necessity of the radiator's placement as close to the beam pipe as possible along with the requirement of gapless (solid) radiator's design. Characteristics of the Cherenkov detector's laboratory prototype obtained using a pion beam at the CERN Proton Synchrotron are also presented, showing the possibility of obtaining sufficiently high geometrical efficiency along with good enough time resolution (50 ps sigma).

  12. Generation of high-voltage pulses with subnanosecond front rise times in open discharge

    SciTech Connect

    Bokhan, P. A.; Gugin, P. P.; Lavrukhin, M. A.; Zakrevsky, Dm. E.

    2013-03-15

    The investigation results for plasma switching devices of high-voltage pulses with pulse rise times less than 1 ns are presented. The approach is based on using conditions suitable for bringing a gas discharge chamber in a state with high conductivity due to generation of an electron beam owing to photoelectron emission from the device cathode. It is shown that in co-axial geometry pulses, switching time 0.45 ns on an active load R{sub L} = 50 {Omega} at voltage U = 20 kV can be achieved. It is shown with the method of doubled impulses that such a device can regenerate the acceptable electric strength during 10 {mu}s. It is indicated of the principle possibility of working in the pulse-periodical regime to the repetition rate of 100 kHz.

  13. Fluorescence Rise Time Measurements for High Temperature Fluorescence-Based Thermometry

    SciTech Connect

    Allison, S.W.

    2005-03-24

    Certain ceramic-like phosphor materials exhibit bright fluorescence with a pronounced temperature dependence over a range which spans the cryogenic to 1700 C, depending on the specific phosphor. To measure temperature, a surface, for instance a turbine blade, is coated with the material. An optical system, sometimes including optical fibers, conveys stimulating light and collects the emission for analysis. Either emission intensity or decay time may indicate temperature. Previously fielded tests have involved surfaces such as blades, vanes, pistons, in-take valves, sheets of galvanneal steel, etc. The fluorescent coatings may be applied to small parts via sputtering methods or to large areas by mixture with inorganic binders. Presented here are results characterizing fluorescence rise times as a means of determining temperature from ambient to 700 C for Y{sub 2}O{sub 3}:Eu.

  14. Moon Rise

    NASA Video Gallery

    Aboard the International Space Station in May 2012, Expedition 31 astronaut Don Pettit opened the shutters covering the cupola observation windows in time to watch the moon rise. The time-lapse sce...

  15. The Rise Time of Type Ia Supernovae from the Supernova Legacy Survey

    NASA Astrophysics Data System (ADS)

    Conley, A.; Howell, D. A.; Howes, A.; Sullivan, M.; Astier, P.; Balam, D.; Basa, S.; Carlberg, R. G.; Fouchez, D.; Guy, J.; Hook, I.; Neill, J. D.; Pain, R.; Perrett, K.; Pritchet, C. J.; Regnault, N.; Rich, J.; Taillet, R.; Aubourg, E.; Bronder, J.; Ellis, R. S.; Fabbro, S.; Filiol, M.; Le Borgne, D.; Palanque-Delabrouille, N.; Perlmutter, S.; Ripoche, P.

    2006-10-01

    We compare the rise times of nearby and distant Type Ia supernovae (SNe Ia) as a test for evolution using 73 high-redshift spectroscopically confirmed SNe Ia from the first 2 years of the 5 year Supernova Legacy Survey (SNLS) and published observations of nearby SNe. Because of the ``rolling'' search nature of the SNLS, our measurement is approximately 6 times more precise than previous studies, allowing for a more sensitive test of evolution between nearby and distant SNe. Adopting a simple t2 early-time model (as in previous studies), we find that the rest-frame B rise times for a fiducial SN Ia at high and low redshift are consistent, with values 19.10+0.18-0.17(stat)+/-0.2(syst) and 19.58+0.22-0.19 days, respectively; the statistical significance of this difference is only 1.4 σ. The errors represent the uncertainty in the mean rather than any variation between individual SNe. We also compare subsets of our high-redshift data set based on decline rate, host galaxy star formation rate, and redshift, finding no substantive evidence for any subsample dependence. Based on observations obtained with MegaPrime/MegaCam, a joint project of the Canada-France-Hawaii Telescope (CFHT) and CEA/DAPNIA, at CFHT, which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in part on data products produced at the Canadian Astronomy Data Centre as part of the CFHT Legacy Survey, a collaborative project of NRC and CNRS.

  16. Anode initiated impulse breakdown in water: the dependence on pulse rise time for nanosecond and sub-nanosecond pulses and initiation mechanism based on electrostriction

    NASA Astrophysics Data System (ADS)

    Seepersad, Yohan; Fridman, Alexander; Dobrynin, Danil

    2015-10-01

    The effect of the voltage rise time on nanosecond and sub-nanosecond impulse breakdown of distilled water is studied. The dependence of anode initiated streamer inception on this parameter is shown to be more intricate than previously reported, particularly as it relates to mechanisms directly in the liquid phase. Dynamics of the emission phase for sub-nanosecond pulses with 600 ps rise time are presented to enable comparison with previous work on nanosecond initiation features. Schlieren imaging is also used to show the development of optical density perturbations and rarefactions as a result of electrostriction in the liquid which were previously found for nanosecond pulses as well. The mechanism of nanopore generation in the liquid due to fast impulses proposed by Shneider, Pekker and Fridman is used to explain the results.

  17. Fast fall-time ion beam in neutron generators

    SciTech Connect

    Ji, Q.; Kwan, J.; Regis, M.; Wu, Y.; Wilde, S.B.; Wallig, J.

    2008-08-10

    Ion beam with a fast fall time is useful in building neutron generators for the application of detecting hidden, gamma-shielded SNM using differential die-away (DDA) technique. Typically a fall time of less than 1 {micro}s can't be achieved by just turning off the power to the ion source due to the slow decay of plasma density (partly determined by the fall time of the RF power in the circuit). In this paper, we discuss the method of using an array of mini-apertures (instead of one large aperture beam) such that gating the beamlets can be done with low voltage and a small gap. This geometry minimizes the problem of voltage breakdown as well as reducing the time of flight to produce fast gating. We have designed and fabricated an array of 16 apertures (4 x 4) for a beam extraction experiment. Using a gating voltage of 1400 V and a gap distance of 1 mm, the fall time of extracted ion beam pulses is less than 1 {micro}s at various beam energies ranging between 400 eV to 800 eV. Usually merging an array of beamlets suffers the loss of beam brightness, i.e., emittance growth, but that is not an important issue for neutron source applications.

  18. Temporal features of spectral integration in the inferior colliculus: effects of stimulus duration and rise time.

    PubMed

    Gans, Donald; Sheykholeslami, Kianoush; Peterson, Diana Coomes; Wenstrup, Jeffrey

    2009-07-01

    This report examines temporal features of facilitation and suppression that underlie spectrally integrative responses to complex vocal signals. Auditory responses were recorded from 160 neurons in the inferior colliculus (IC) of awake mustached bats. Sixty-two neurons showed combination-sensitive facilitation: responses to best frequency (BF) signals were facilitated by well-timed signals at least an octave lower in frequency, in the range 16-31 kHz. Temporal features and strength of facilitation were generally unaffected by changes in duration of facilitating signals from 4 to 31 ms. Changes in stimulus rise time from 0.5 to 5.0 ms had little effect on facilitatory strength. These results suggest that low frequency facilitating inputs to high BF neurons have phasic-on temporal patterns and are responsive to stimulus rise times over the tested range. We also recorded from 98 neurons showing low-frequency (11-32 kHz) suppression of higher BF responses. Effects of changing duration were related to the frequency of suppressive signals. Signals<23 kHz usually evoked suppression sustained throughout signal duration. This and other features of such suppression are consistent with a cochlear origin that results in masking of responses to higher, near-BF signal frequencies. Signals in the 23- to 30-kHz range-frequencies in the first sonar harmonic-generally evoked phasic suppression of BF responses. This may result from neural inhibitory interactions within and below IC. In many neurons, we observed two or more forms of the spectral interactions described here. Thus IC neurons display temporally and spectrally complex responses to sound that result from multiple spectral interactions at different levels of the ascending auditory pathway. PMID:19403742

  19. Distinguishing Between Electrons and γ-Rays in Experiment TGV Using a Pulse Rise Time

    NASA Astrophysics Data System (ADS)

    Čermák, P.; Štekl, I.; Beneš, P.; Brudanin, V. B.; Rukhadze, N. I.; Egorov, V. G.; Kovalenko, V. E.; Kovalík, A.; Pismenniy, R.; Salamatin, A. V.; Timkin, V.; Vylov, Ts.; Vénos, D.

    2002-04-01

    The TGV (Telescope Germanium Vertical) collaboration is interested in the measurement of double-beta decay of 48Ca (TGV I) and 106Cd (TGV II). The background in the experiment TGV I has been suppressed by several methods. One of them was based on distinguishing between electrons and -rays due to the different rise time of the signals obtained from semiconductor detector. Two experimental setups have been tested, the first one used a charge-sensitive analog-to-digital converter, while the second one utilized digital oscilloscope. The reduction of the background counting rate (due to -rays) in single HPGe detector by a factor of (1.4-3.8) was reached.

  20. Breakdown in Atmospheric Pressure Plasma Jets: Nearby Grounds and Voltage Rise Time

    NASA Astrophysics Data System (ADS)

    Lietz, Amanda; Kushner, Mark J.

    2015-09-01

    Atmospheric pressure plasma jets (APPJs) are being investigated to stimulate therapeutic responses in biological systems. These responses are not always consistent. One source of variability may be the design of the APPJs - the number and placement of electrodes, pulse power format - which affects the production of reactive species. In this study, the consequences of design parameters of an APPJ were computationally investigated using nonPDPSIM, a 2 d model. The configuration is a cylindrical tube with one or two ring exterior electrodes, with or without a center pin electrode. The APPJ operates in He/O2 flowing into humid air. We found that the placement of the electrical ground on and around the system is important to the breakdown characteristics of the APPJ, and the electron density and temperature of the resulting plasma. With a single powered ring electrode, the placement of the nearest ground may vary depending on the setup, and this significantly affects the discharge. With two-ring electrodes, the nearest ground plane is well defined, however more distant ground planes can also influence the discharge. With an ionization wave (IW) that propagates out of the tube and into the plume in tens of ns, the rise time of the voltage waveform can be on the same timescale, and so variations in the voltage rise time could produce different IW properties. The effect of ground placement and voltage waveform on IW formation (ns timescales) and production of reactive neutrals (ms timescales) will be discussed. Work supported by DOE (DE-SC0001319) and NSF (CHE-1124724). Done...processed 598 records...15:12:56

  1. Brownian motion at fast time scales and thermal noise imaging

    NASA Astrophysics Data System (ADS)

    Huang, Rongxin

    This dissertation presents experimental studies on Brownian motion at fast time scales, as well as our recent developments in Thermal Noise Imaging which uses thermal motions of microscopic particles for spatial imaging. As thermal motions become increasingly important in the studies of soft condensed matters, the study of Brownian motion is not only of fundamental scientific interest but also has practical applications. Optical tweezers with a fast position-sensitive detector provide high spatial and temporal resolution to study Brownian motion at fast time scales. A novel high bandwidth detector was developed with a temporal resolution of 30 ns and a spatial resolution of 1 A. With this high bandwidth detector, Brownian motion of a single particle confined in an optical trap was observed at the time scale of the ballistic regime. The hydrodynamic memory effect was fully studied with polystyrene particles of different sizes. We found that the mean square displacements of different sized polystyrene particles collapse into one master curve which is determined by the characteristic time scale of the fluid inertia effect. The particle's inertia effect was shown for particles of the same size but different densities. For the first time the velocity autocorrelation function for a single particle was shown. We found excellent agreement between our experiments and the hydrodynamic theories that take into account the fluid inertia effect. Brownian motion of a colloidal particle can be used to probe three-dimensional nano structures. This so-called thermal noise imaging (TNI) has been very successful in imaging polymer networks with a resolution of 10 nm. However, TNI is not efficient at micrometer scale scanning since a great portion of image acquisition time is wasted on large vacant volume within polymer networks. Therefore, we invented a method to improve the efficiency of large scale scanning by combining traditional point-to-point scanning to explore large vacant

  2. A hybrid model for simulation of secondary electron emission in plasma immersion ion implantation under different pulse rise time

    SciTech Connect

    Navab Safa, N. Ghomi, H.

    2015-02-15

    A hybrid fluid Particle in Cell–Monte Carlo Collision (PiC–MCC) model is presented to study the effect of secondary electron emission on the plasma immersion ion implantation process under different pulse rise time. The model describes the temporal evolution of various parameters of plasma such as ion density, ion velocity, secondary electron density, and secondary electron current for different rise times. A 3D–3 V PiC–MCC model is developed to simulate the secondary electrons which are emitted from the sample surface while the plasma ions and electrons are treated using a 1D fluid model. The simulation results indicate that the secondary electron density and secondary electron current increase as the rise time decreases. The main differences between the results for different rise times are found during the initial phase of the pulse. The results are explained through studying the fundamental parameters of plasma.

  3. Time-resolved and time-integrated radiography of fast reactor fuel elements

    SciTech Connect

    De Volpi, A.

    1981-01-01

    The fast-reactor safety program has some unusual requirements in radiography. Applications may be divided into two areas: time-resolved or time-integrated radiography. The fast-neutron hodoscope has supplied all recent time-resolved cineradiographic in-pile fuel-motion data, and various x-ray and photographic techniques have been used for out-of-pile experiments. Thick containers and the large number of radioactive fuel pins involved in safety research have been responsible for some nonconventional applications of time-integrated radiography of stationary objects. Hodoscopes record fuel-motion during transient experiments at the TREAT reactor in the United States and CABRI in France. Other special techniques have been under development for out-of-pile nondestructive radiography of fuel element subassemblies, including fast-neutron and gamma-ray tomographic methods.

  4. Rapid rise time pulsed magnetic field circuit for pump-probe field effect studies.

    PubMed

    Salaoru, T A; Woodward, Jonathan R

    2007-03-01

    Here we describe an electronic circuit capable of producing rapidly switched dc magnetic fields of up to 20 mT with a rise time of 10 ns and a pulse length variable from 50 ns to more than 10 micros, suitable for use in the study of magnetic field effects on radical pair (RP) reactions. This corresponds to switching the field on a time scale short relative to the lifetime of typical RPs and maintaining it well beyond their lifetimes. Previous experiments have involved discharging a capacitor through a low inductance coil for a limited time using a switching circuit. These suffer from decaying field strength over the duration of the pulse given primarily by the ratio of the pulse width to the RC constant of the circuit. We describe here a simple yet elegant solution that completely eliminates this difficulty by employing a feedback loop. This allows a constant field to be maintained over the entire length of the pulse. PMID:17411229

  5. Low Power, High Voltage Power Supply with Fast Rise/Fall Time

    NASA Technical Reports Server (NTRS)

    Bearden, Douglas B. (Inventor)

    2007-01-01

    A low power, high voltage power supply system includes a high voltage power supply stage and a preregulator for programming the power supply stage so as to produce an output voltage which is a predetermined fraction of a desired voltage level. The power supply stage includes a high voltage, voltage doubler stage connected to receive the output voltage from the preregulator and for, when activated, providing amplification of the output voltage to the desired voltage level. A first feedback loop is connected between the output of the preregulator and an input of the preregulator while a second feedback loop is connected between the output of the power supply stage and the input of the preregulator.

  6. Laser pumping of thyristors for fast high current rise-times

    DOEpatents

    Glidden, Steven C.; Sanders, Howard D.

    2013-06-11

    An optically triggered semiconductor switch includes an anode metallization layer; a cathode metallization layer; a semiconductor between the anode metallization layer and the cathode metallization layer and a photon source. The semiconductor includes at least four layers of alternating doping in the form P-N-P-N, in which an outer layer adjacent to the anode metallization layer forms an anode and an outer layer adjacent the cathode metallization layer forms a cathode and in which the anode metallization layer has a window pattern of optically transparent material exposing the anode layer to light. The photon source emits light having a wavelength, with the light from the photon source being configured to match the window pattern of the anode metallization layer.

  7. Low power, high voltage power supply with fast rise/fall time

    NASA Technical Reports Server (NTRS)

    Bearden, Douglas B. (Inventor)

    2007-01-01

    A low power, high voltage power supply system includes a high voltage power supply stage and a preregulator for programming the power supply stage so as to produce an output voltage which is a predetermined fraction of a desired voltage level. The power supply stage includes a high voltage, voltage doubler stage connected to receive the output voltage from the preregulator and for, when activated, providing amplification of the output voltage to the desired voltage level. A first feedback loop is connected between the output of the preregulator and an input of the preregulator while a second feedback loop is connected between the output of the power supply stage and the input of the preregulator.

  8. Fast time variations of supernova neutrino fluxes and their detectability

    SciTech Connect

    Lund, Tina; Marek, Andreas; Janka, Hans-Thomas; Lunardini, Cecilia; Raffelt, Georg

    2010-09-15

    In the delayed explosion scenario of core-collapse supernovae, the accretion phase shows pronounced convective overturns and a low-multipole hydrodynamic instability, the standing accretion shock instability. These effects imprint detectable fast time variations on the emerging neutrino flux. Among existing detectors, IceCube is best suited to this task, providing an event rate of {approx}1000 ms{sup -1} during the accretion phase for a fiducial SN distance of 10 kpc, comparable to what could be achieved with a megaton water Cherenkov detector. If the standing accretion shock instability activity lasts for several hundred ms, a Fourier component with an amplitude of 1% of the average signal clearly sticks out from the shot noise. We analyze in detail the output of axially symmetric hydrodynamical simulations that predict much larger amplitudes up to frequencies of a few hundred Hz. If these models are roughly representative for realistic SNe, fast time variations of the neutrino signal are easily detectable in IceCube or future megaton-class instruments. We also discuss the information that could be deduced from such a measurement about the physics in the SN core and the explosion mechanism of the SN.

  9. A next generation Ultra-Fast Flash Observatory (UFFO-100) for IR/optical observations of the rise phase of gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Grossan, B.; Park, I. H.; Ahmad, S.; Ahn, K. B.; Barrillon, P.; Brandt, S.; Budtz-Jørgensen, C.; Castro-Tirado, A. J.; Chen, P.; Choi, H. S.; Choi, Y. J.; Connell, P.; Dagoret-Campagne, S.; De La Taille, C.; Eyles, C.; Hermann, I.; Huang, M.-H. A.; Jung, A.; Jeong, S.; Kim, J. E.; Kim, M.; Kim, S.-W.; Kim, Y. W.; Lee, J.; Lim, H.; Linder, E. V.; Liu, T.-C.; Lund, N.; Min, K. W.; Na, G. W.; Nam, J. W.; Panasyuk, M. I.; Ripa, J.; Reglero, V.; Rodrigo, J. M.; Smoot, G. F.; Suh, J. E.; Svertilov, S.; Vedenkin, N.; Wang, M.-Z.; Yashin, I.; Zhao, M. H.

    2012-09-01

    The Swift Gamma-ray Burst (GRB) observatory responds to GRB triggers with optical observations in ~ 100 s, butcannot respond faster than ~ 60 s. While some rapid-response ground-based telescopes have responded quickly, thenumber of sub-60 s detections remains small. In 2013 June, the Ultra-Fast Flash Observatory-Pathfinder is expected tobe launched on the Lomonosov spacecraft to investigate early optical GRB emission. Though possessing uniquecapability for optical rapid-response, this pathfinder mission is necessarily limited in sensitivity and event rate; here wediscuss the next generation of rapid-response space observatory instruments. We list science topics motivating ourinstruments, those that require rapid optical-IR GRB response, including: A survey of GRB rise shapes/times,measurements of optical bulk Lorentz factors, investigation of magnetic dominated (vs. non-magnetic) jet models,internal vs. external shock origin of prompt optical emission, the use of GRBs for cosmology, and dust evaporation inthe GRB environment. We also address the impacts of the characteristics of GRB observing on our instrument andobservatory design. We describe our instrument designs and choices for a next generation space observatory as a secondinstrument on a low-earth orbit spacecraft, with a 120 kg instrument mass budget. Restricted to relatively modest mass,power, and launch resources, we find that a coded mask X-ray camera with 1024 cm2 of detector area could rapidlylocate about 64 GRB triggers/year. Responding to the locations from the X-ray camera, a 30 cm aperture telescope witha beam-steering system for rapid (~ 1 s) response and a near-IR camera should detect ~ 29 GRB, given Swift GRBproperties. The additional optical camera would permit the measurement of a broadband optical-IR slope, allowingbetter characterization of the emission, and dynamic measurement of dust extinction at the source, for the first time.

  10. Waiting time at a fast-track diagnostic clinic.

    PubMed

    Basta, Y L; Tytgat, K M A J; Klinkenbijl, J H G; Fockens, P; Smets, E M A

    2016-06-13

    Purpose - Guidelines stating maximum waiting times fail to take cancer patients' expectations into account. Therefore, the purpose of this paper is to assess patients' expectations and experiences with their waiting time at a fast-track clinic. Design/methodology/approach - Patients were selected using a purposeful sampling strategy and were interviewed four times: before the visit; one day after; two weeks after the visit; and one week after starting treatment. Interviews were audiotaped and independently coded by two researchers. Findings - All patients (n=9) preferred a short waiting time before the first visit; they feared that their disease would spread and believed that cancer warrants priority treatment. Six patients experienced the waiting time as short, one had no expectations and two felt they waited longer than expected; three patients changed this evaluation during the study. Six patients received treatment - four preferred to wait before treatment and two wanted to start treatment immediately. Reasons to wait included putting one's affairs in order, or needing to adjust to the diagnosis. Practical implications - Cancer patients prefer a short waiting time before the first visit but have different expectations and needs regarding waiting time before treatment. Ideally, their expectations are managed by their treating physician to match waiting time reality. Originality/value - This is the first study to assess cancer patients' waiting time experiences and how these experiences change over time. This study paves the way for establishing a framework to better assess patient satisfaction with oncology care waiting time. An important aspect, is managing patients' expectations. PMID:27256775

  11. Fast Nonparametric Clustering of Structured Time-Series.

    PubMed

    Hensman, James; Rattray, Magnus; Lawrence, Neil D

    2015-02-01

    In this publication, we combine two Bayesian nonparametric models: the Gaussian Process (GP) and the Dirichlet Process (DP). Our innovation in the GP model is to introduce a variation on the GP prior which enables us to model structured time-series data, i.e., data containing groups where we wish to model inter- and intra-group variability. Our innovation in the DP model is an implementation of a new fast collapsed variational inference procedure which enables us to optimize our variational approximation significantly faster than standard VB approaches. In a biological time series application we show how our model better captures salient features of the data, leading to better consistency with existing biological classifications, while the associated inference algorithm provides a significant speed-up over EM-based variational inference. PMID:26353249

  12. Controllable high voltage source having fast settling time

    NASA Technical Reports Server (NTRS)

    Doong, H.; Acuna, M. H. (Inventor)

    1975-01-01

    A high voltage dc stepping power supply for sampling a utilization device such as an electrostatic analyzer has a relatively fast settling time for voltage steps. The supply includes a waveform generator for deriving a low voltage staircase waveform that feeds a relatively long response time power supply, deriving a high output voltage generally equal to a predetermined multiple of the input voltage. In the power supply, an ac voltage modulated by the staircase waveform is applied to a step-up transformer and then to a voltage multiplier stack to form a high voltage, relatively poor replica of the input waveform at an intermediate output terminal. A constant dc source, applied to the input of the power supply, biases the voltage at the intermediate output terminal to be in excess of the predetermined multiple of the input voltage.

  13. Measurement of intrinsic rise times for various L(Y)SO and LuAG scintillators with a general study of prompt photons to achieve 10 ps in TOF-PET.

    PubMed

    Gundacker, Stefan; Auffray, Etiennette; Pauwels, Kristof; Lecoq, Paul

    2016-04-01

    The coincidence time resolution (CTR) of scintillator based detectors commonly used in positron emission tomography is well known to be dependent on the scintillation decay time (τd) and the number of photons detected (n'), i.e. CTR proportional variant √τd/n'. However, it is still an open question to what extent the scintillation rise time (τr) and other fast or prompt photons, e.g. Cherenkov photons, at the beginning of the scintillation process influence the CTR. This paper presents measurements of the scintillation emission rate for different LSO type crystals, i.e. LSO:Ce, LYSO:Ce, LSO:Ce codoped Ca and LGSO:Ce. For the various LSO-type samples measured we find an average value of 70 ps for the scintillation rise time, although some crystals like LSO:Ce codoped Ca seem to have a much faster rise time in the order of 20 ps. Additional measurements for LuAG:Ce and LuAG:Pr show a rise time of 535 ps and 251 ps, respectively. For these crystals, prompt photons (Cherenkov) can be observed at the beginning of the scintillation event. Furthermore a significantly lower rise time value is observed when codoping with calcium. To quantitatively investigate the influence of the rise time to the time resolution we measured the CTR with the same L(Y)SO samples and compared the values to Monte Carlo simulations. Using the measured relative light yields, rise- and decay times of the scintillators we are able to quantitatively understand the measured CTRs in our simulations. Although the rise time is important to fully explain the CTR variation for the different samples tested we determined its influence on the CTR to be in the order of a few percent only. This result is surprising because, if only photonstatistics of the scintillation process is considered, the CTR would be proportional to the square root of the rise time. The unexpected small rise time influence on the CTR can be explained by the convolution of the scintillation rate with the single photon time

  14. Measurement of intrinsic rise times for various L(Y)SO and LuAG scintillators with a general study of prompt photons to achieve 10 ps in TOF-PET

    NASA Astrophysics Data System (ADS)

    Gundacker, Stefan; Auffray, Etiennette; Pauwels, Kristof; Lecoq, Paul

    2016-04-01

    The coincidence time resolution (CTR) of scintillator based detectors commonly used in positron emission tomography is well known to be dependent on the scintillation decay time ({τd} ) and the number of photons detected ({{n}\\prime} ), i.e. CTR\\propto \\sqrt{{τd}/{{n}\\prime}} . However, it is still an open question to what extent the scintillation rise time ({τr} ) and other fast or prompt photons, e.g. Cherenkov photons, at the beginning of the scintillation process influence the CTR. This paper presents measurements of the scintillation emission rate for different LSO type crystals, i.e. LSO:Ce, LYSO:Ce, LSO:Ce codoped Ca and LGSO:Ce. For the various LSO-type samples measured we find an average value of 70 ps for the scintillation rise time, although some crystals like LSO:Ce codoped Ca seem to have a much faster rise time in the order of 20 ps. Additional measurements for LuAG:Ce and LuAG:Pr show a rise time of 535 ps and 251 ps, respectively. For these crystals, prompt photons (Cherenkov) can be observed at the beginning of the scintillation event. Furthermore a significantly lower rise time value is observed when codoping with calcium. To quantitatively investigate the influence of the rise time to the time resolution we measured the CTR with the same L(Y)SO samples and compared the values to Monte Carlo simulations. Using the measured relative light yields, rise- and decay times of the scintillators we are able to quantitatively understand the measured CTRs in our simulations. Although the rise time is important to fully explain the CTR variation for the different samples tested we determined its influence on the CTR to be in the order of a few percent only. This result is surprising because, if only photonstatistics of the scintillation process is considered, the CTR would be proportional to the square root of the rise time. The unexpected small rise time influence on the CTR can be explained by the convolution of the scintillation rate with the

  15. Experimental control of a fast chaotic time-delay opto-electronic device

    NASA Astrophysics Data System (ADS)

    Blakely, Jonathan Neal

    2003-10-01

    The focus of this thesis is the experimental investigation of the dynamics and control of a new type of fast chaotic opto-electronic device: an active interferometer with electronic bandpass filtered delayed feedback displaying chaotic oscillations with a fundamental frequency as high as 100 MHz. To stabilize the system, I introduce a new form of delayed feedback control suitable for fast time-delay systems. The method provides a new tool for the fundamental study of fast dynamical systems as well as for technological exploitation of chaos. The new opto-electronic device consists of a semiconductor laser, a Mach-Zehnder interferometer, and an electronic feedback loop. The device offers a high degree of design flexibility at a much lower cost than other known sources of fast optical chaos. Both the nonlinearity and the timescale of the oscillations are easily manipulated experimentally. To characterize the dynamics of the system, I observe experimentally its behavior in the time and frequency domains as the feedback-loop gain is varied. The system displays a route to chaos that begins with a Hopf bifurcation from a steady state to a periodic oscillation at the so-called fundamental frequency. Further bifurcations give rise to a chaotic regime with a broad, flattened power spectrum. I develop a mathematical model of the device that shows very good agreement with the observed dynamics. To control chaos in the device, I introduce a new control method suitable for fast time-delay systems, in particular. The method is a modification of a well known control approach called time-delay autosynchronization (TDAS) in which the control perturbation is formed by comparing the current value of a system variable to its value at a time in the past equal to the period of the orbit to be stabilized. The current state of a time-delay dynamical system retains a memory of the state of the system one feedback delay time in the past. As a result, the past state of the system can be used

  16. Fast-track for fast times: catching and keeping generation Y in the nursing workforce.

    PubMed

    Walker, Kim

    2007-04-01

    There is little doubt we find ourselves in challenging times as never before has there been such generational diversity in the nursing workforce. Currently, nurses from four distinct (and now well recognised and discussed) generational groups jostle for primacy of recognition and reward. Equally significant is the acute realisation that our ageing profession must find ways to sustain itself in the wake of huge attrition as the 'baby boomer' nurses start retiring over the next ten to fifteen years. These realities impel us to become ever more strategic in our thinking about how best to manage the workforce of the future. This paper presents two exciting and original innovations currently in train at one of Australia's leading Catholic health care providers: firstly, a new fast-track bachelor of nursing program for fee-paying domestic students. This is a collaborative venture between St Vincent's and Mater Health, Sydney (SV&MHS) and the University of Tasmania (UTas); as far as we know, it is unprecedented in Australia. As well, the two private facilities of SV&MHS, St Vincent's Private (SVPH) and the Mater Hospitals, have developed and implemented a unique 'accelerated progression pathway' (APP) to enable registered nurses with talent and ambition to fast track their career through a competency and merit based system of performance management and reward. Both these initiatives are aimed squarely at the gen Y demographic and provide potential to significantly augment our capacity to recruit and retain quality people well into the future. PMID:17563323

  17. Timed Rise from Floor as a Predictor of Disease Progression in Duchenne Muscular Dystrophy: An Observational Study

    PubMed Central

    Mazzone, Elena S.; Coratti, Giorgia; Sormani, Maria Pia; Messina, Sonia; Pane, Marika; D'Amico, Adele; Colia, Giulia; Fanelli, Lavinia; Berardinelli, Angela; Gardani, Alice; Lanzillotta, Valentina; D’Ambrosio, Paola; Petillo, Roberta; Cavallaro, Filippo; Frosini, Silvia; Bello, Luca; Bonfiglio, Serena; De Sanctis, Roberto; Rolle, Enrica; Forcina, Nicola; Magri, Francesca; Vita, Gianluca; Palermo, Concetta; Donati, Maria Alice; Procopio, Elena; Arnoldi, Maria Teresa; Baranello, Giovanni; Mongini, Tiziana; Pini, Antonella; Battini, Roberta; Pegoraro, Elena; Torrente, Yvan; Previtali, Stefano C.; Bruno, Claudio; Politano, Luisa; Comi, Giacomo P.; D’Angelo, Maria Grazia; Bertini, Enrico; Mercuri, Eugenio

    2016-01-01

    Background The role of timed items, and more specifically, of the time to rise from the floor, has been reported as an early prognostic factor for disease progression and loss of ambulation. The aim of our study was to investigate the possible effect of the time to rise from the floor test on the changes observed on the 6MWT over 12 months in a cohort of ambulant Duchenne boys. Subjects and methods A total of 487 12-month data points were collected from 215 ambulant Duchenne boys. The age ranged between 5.0 and 20.0 years (mean 8.48 ±2.48 DS). Results The results of the time to rise from the floor at baseline ranged from 1.2 to 29.4 seconds in the boys who could perform the test. 49 patients were unable to perform the test at baseline and 87 at 12 month The 6MWT values ranged from 82 to 567 meters at baseline. 3 patients lost the ability to perform the 6mwt at 12 months. The correlation between time to rise from the floor and 6MWT at baseline was high (r = 0.6, p<0.01). Conclusions Both time to rise from the floor and baseline 6MWT were relevant for predicting 6MWT changes in the group above the age of 7 years, with no interaction between the two measures, as the impact of time to rise from the floor on 6MWT change was similar in the patients below and above 350 m. Our results suggest that, time to rise from the floor can be considered an additional important prognostic factor of 12 month changes on the 6MWT and, more generally, of disease progression. PMID:26982196

  18. Distinguishing Fast and Slow Processes in Accuracy - Response Time Data.

    PubMed

    Coomans, Frederik; Hofman, Abe; Brinkhuis, Matthieu; van der Maas, Han L J; Maris, Gunter

    2016-01-01

    We investigate the relation between speed and accuracy within problem solving in its simplest non-trivial form. We consider tests with only two items and code the item responses in two binary variables: one indicating the response accuracy, and one indicating the response speed. Despite being a very basic setup, it enables us to study item pairs stemming from a broad range of domains such as basic arithmetic, first language learning, intelligence-related problems, and chess, with large numbers of observations for every pair of problems under consideration. We carry out a survey over a large number of such item pairs and compare three types of psychometric accuracy-response time models present in the literature: two 'one-process' models, the first of which models accuracy and response time as conditionally independent and the second of which models accuracy and response time as conditionally dependent, and a 'two-process' model which models accuracy contingent on response time. We find that the data clearly violates the restrictions imposed by both one-process models and requires additional complexity which is parsimoniously provided by the two-process model. We supplement our survey with an analysis of the erroneous responses for an example item pair and demonstrate that there are very significant differences between the types of errors in fast and slow responses. PMID:27167518

  19. Fast Context Switching in Real-Time Propositional Reasoning

    NASA Technical Reports Server (NTRS)

    Nayak, P. Pandurang; Williams, Brian C.

    1997-01-01

    The trend to increasingly capable and affordable control processors has generated an explosion of embedded real-time gadgets that serve almost every function imaginable. The daunting task of programming these gadgets is greatly alleviated with real-time deductive engines that perform all execution and monitoring functions from a single core model, Fast response times are achieved using an incremental propositional deductive database (an LTMS). Ideally the cost of an LTMS's incremental update should be linear in the number of labels that change between successive contexts. Unfortunately an LTMS can expend a significant percentage of its time working on labels that remain constant between contexts. This is caused by the LTMS's conservative approach: a context switch first removes all consequences of deleted clauses, whether or not those consequences hold in the new context. This paper presents a more aggressive incremental TMS, called the ITMS, that avoids processing a significant number of these consequences that are unchanged. Our empirical evaluation for spacecraft control shows that the overhead of processing unchanged consequences can be reduced by a factor of seven.

  20. Distinguishing Fast and Slow Processes in Accuracy - Response Time Data

    PubMed Central

    Coomans, Frederik; Hofman, Abe; Brinkhuis, Matthieu; van der Maas, Han L. J.; Maris, Gunter

    2016-01-01

    We investigate the relation between speed and accuracy within problem solving in its simplest non-trivial form. We consider tests with only two items and code the item responses in two binary variables: one indicating the response accuracy, and one indicating the response speed. Despite being a very basic setup, it enables us to study item pairs stemming from a broad range of domains such as basic arithmetic, first language learning, intelligence-related problems, and chess, with large numbers of observations for every pair of problems under consideration. We carry out a survey over a large number of such item pairs and compare three types of psychometric accuracy-response time models present in the literature: two ‘one-process’ models, the first of which models accuracy and response time as conditionally independent and the second of which models accuracy and response time as conditionally dependent, and a ‘two-process’ model which models accuracy contingent on response time. We find that the data clearly violates the restrictions imposed by both one-process models and requires additional complexity which is parsimoniously provided by the two-process model. We supplement our survey with an analysis of the erroneous responses for an example item pair and demonstrate that there are very significant differences between the types of errors in fast and slow responses. PMID:27167518

  1. Diversity of Decline-Rate-Corrected Type 1a Supernova Rise times:One Mode or Two?

    SciTech Connect

    Strovink, Mark

    2007-05-01

    B-band light-curve rise times for eight unusually well-observed nearby Type Ia supernova (SNe) are fitted by a newly developed template-building algorithm, using light-curve functions that are smooth, flexible, and free of potential bias from externally derived templates and other prior assumptions. From the available literature, photometric BVRI data collected over many months, including the earliest points, are reconciled, combined, and fitted to a unique time of explosion for each SN. On average, after they are corrected for light-curve decline rate, three SNe rise in 18.81 {+-} 0.36 days, while five SNe rise in 16.64 {+-} 0.21 days. If all eight SNe are sampled from a single parent population (a hypothesis not favored by statistical tests), the rms intrinsic scatter of the decline-rate-corrected SN rise time is 0.96{sub -0.25}{sup +0.52} days--a first measurement of this dispersion. The corresponding global mean rise time is 17.44 {+-} 0.39 days, where the uncertainty is dominated by intrinsic variance. This value is {approx}2 days shorter than two published averages that nominally are twice as precise, though also based on small samples. When comparing high-z to low-z SN luminosities for determining cosmological parameters, bias can be introduced by use of a light-curve template with an unrealistic rise time. If the period over which light curves are sampled depends on z in a manner typical of current search and measurement strategies, a two-day discrepancy in template rise time can bias the luminosity comparison by {approx}0.03 magnitudes.

  2. Fast-Response-Time Shape-Memory-Effect Foam Actuators

    NASA Technical Reports Server (NTRS)

    Jardine, Peter

    2010-01-01

    Bulk shape memory alloys, such as Nitinol or CuAlZn, display strong recovery forces undergoing a phase transformation after being strained in their martensitic state. These recovery forces are used for actuation. As the phase transformation is thermally driven, the response time of the actuation can be slow, as the heat must be passively inserted or removed from the alloy. Shape memory alloy TiNi torque tubes have been investigated for at least 20 years and have demonstrated high actuation forces [3,000 in.-lb (approximately equal to 340 N-m) torques] and are very lightweight. However, they are not easy to attach to existing structures. Adhesives will fail in shear at low-torque loads and the TiNi is not weldable, so that mechanical crimp fits have been generally used. These are not reliable, especially in vibratory environments. The TiNi is also slow to heat up, as it can only be heated indirectly using heater and cooling must be done passively. This has restricted their use to on-off actuators where cycle times of approximately one minute is acceptable. Self-propagating high-temperature synthesis (SHS) has been used in the past to make porous TiNi metal foams. Shape Change Technologies has been able to train SHS derived TiNi to exhibit the shape memory effect. As it is an open-celled material, fast response times were observed when the material was heated using hot and cold fluids. A methodology was developed to make the open-celled porous TiNi foams as a tube with integrated hexagonal ends, which then becomes a torsional actuator with fast response times. Under processing developed independently, researchers were able to verify torques of 84 in.-lb (approximately equal to 9.5 Nm) using an actuator weighing 1.3 oz (approximately equal to 37 g) with very fast (less than 1/16th of a second) initial response times when hot and cold fluids were used to facilitate heat transfer. Integrated structural connections were added as part of the net shape process, eliminating

  3. FTSPlot: Fast Time Series Visualization for Large Datasets

    PubMed Central

    Riss, Michael

    2014-01-01

    The analysis of electrophysiological recordings often involves visual inspection of time series data to locate specific experiment epochs, mask artifacts, and verify the results of signal processing steps, such as filtering or spike detection. Long-term experiments with continuous data acquisition generate large amounts of data. Rapid browsing through these massive datasets poses a challenge to conventional data plotting software because the plotting time increases proportionately to the increase in the volume of data. This paper presents FTSPlot, which is a visualization concept for large-scale time series datasets using techniques from the field of high performance computer graphics, such as hierarchic level of detail and out-of-core data handling. In a preprocessing step, time series data, event, and interval annotations are converted into an optimized data format, which then permits fast, interactive visualization. The preprocessing step has a computational complexity of ; the visualization itself can be done with a complexity of and is therefore independent of the amount of data. A demonstration prototype has been implemented and benchmarks show that the technology is capable of displaying large amounts of time series data, event, and interval annotations lag-free with ms. The current 64-bit implementation theoretically supports datasets with up to bytes, on the x86_64 architecture currently up to bytes are supported, and benchmarks have been conducted with bytes/1 TiB or double precision samples. The presented software is freely available and can be included as a Qt GUI component in future software projects, providing a standard visualization method for long-term electrophysiological experiments. PMID:24732865

  4. Bubble masks for time-encoded imaging of fast neutrons.

    SciTech Connect

    Brubaker, Erik; Brennan, James S.; Marleau, Peter; Nowack, Aaron B.; Steele, John; Sweany, Melinda; Throckmorton, Daniel J.

    2013-09-01

    Time-encoded imaging is an approach to directional radiation detection that is being developed at SNL with a focus on fast neutron directional detection. In this technique, a time modulation of a detected neutron signal is induced-typically, a moving mask that attenuates neutrons with a time structure that depends on the source position. An important challenge in time-encoded imaging is to develop high-resolution two-dimensional imaging capabilities; building a mechanically moving high-resolution mask presents challenges both theoretical and technical. We have investigated an alternative to mechanical masks that replaces the solid mask with a liquid such as mineral oil. Instead of fixed blocks of solid material that move in pre-defined patterns, the oil is contained in tubing structures, and carefully introduced air gaps-bubbles-propagate through the tubing, generating moving patterns of oil mask elements and air apertures. Compared to current moving-mask techniques, the bubble mask is simple, since mechanical motion is replaced by gravity-driven bubble propagation; it is flexible, since arbitrary bubble patterns can be generated by a software-controlled valve actuator; and it is potentially high performance, since the tubing and bubble size can be tuned for high-resolution imaging requirements. We have built and tested various single-tube mask elements, and will present results on bubble introduction and propagation as a function of tubing size and cross-sectional shape; real-time bubble position tracking; neutron source imaging tests; and reconstruction techniques demonstrated on simple test data as well as a simulated full detector system.

  5. Real-time lucky imaging in FastCam project

    NASA Astrophysics Data System (ADS)

    Rodríguez Ramos, L. F.; Piqueras Meseguer, J. J.; Martin Hernando, Y.; Oscoz, A.; Rebolo, R.

    2008-07-01

    Lucky imaging techniques implemented by the FastCam group (see http://www.iac.es/proyecto/fastcam/) at the Instituto de Astrofisica de Canarias have demonstrated its ability to obtain spectacular diffraction limited images in telescopes ranging from 1 to 4.2 m in visible wavelengths (mainly in the I band), at the expense of using only a small percentage of the available images. This work presents the development of a real-time processor, FPGA-based, capable of performing all the required processing involved in the lucky imaging technique: Bias and flat-field correction, quality evaluation of images, quality threshold for image selection, image recentering and accumulation, and finally sending through Gigabit Ethernet both raw and processed images to a PC computer. Furthermore, a real time display is generated directly from FPGA showing both types of images, plus a histogram of the computed quality values and the threshold used. All processes can co-exist physically located in separated places inside the FPGA, using its natural parallel approach, and can easily handle the 512x512 pixels at 30 fps found at the sensor camera output (an Andor Ixon+ DU-897ECSO EMCCD). Flexibility and parallel processing features of the reconfigurable logic have been used to implement a novel imaging strategy for segmented-mirror telescopes, allowing separate evaluation of every segment and posterior accumulation to achieve the resolution limit of a single segment with the integration capability of the full primary mirror.

  6. Taxi Time Prediction at Charlotte Airport Using Fast-Time Simulation and Machine Learning Techniques

    NASA Technical Reports Server (NTRS)

    Lee, Hanbong

    2016-01-01

    Accurate taxi time prediction is required for enabling efficient runway scheduling that can increase runway throughput and reduce taxi times and fuel consumptions on the airport surface. Currently NASA and American Airlines are jointly developing a decision-support tool called Spot and Runway Departure Advisor (SARDA) that assists airport ramp controllers to make gate pushback decisions and improve the overall efficiency of airport surface traffic. In this presentation, we propose to use Linear Optimized Sequencing (LINOS), a discrete-event fast-time simulation tool, to predict taxi times and provide the estimates to the runway scheduler in real-time airport operations. To assess its prediction accuracy, we also introduce a data-driven analytical method using machine learning techniques. These two taxi time prediction methods are evaluated with actual taxi time data obtained from the SARDA human-in-the-loop (HITL) simulation for Charlotte Douglas International Airport (CLT) using various performance measurement metrics. Based on the taxi time prediction results, we also discuss how the prediction accuracy can be affected by the operational complexity at this airport and how we can improve the fast time simulation model before implementing it with an airport scheduling algorithm in a real-time environment.

  7. EARLY-PHASE PHOTOMETRY AND SPECTROSCOPY OF TRANSITIONAL TYPE Ia SN 2012ht: DIRECT CONSTRAINT ON THE RISE TIME

    SciTech Connect

    Yamanaka, Masayuki; Nogami, Daisaku; Maeda, Keiichi; Kawabata, Miho; Masumoto, Kazunari; Matsumoto, Katsura; Tanaka, Masaomi; Takaki, Katsutoshi; Ueno, Issei; Itoh, Ryosuke; Kawabata, Koji S.; Moritani, Yuki; Akitaya, Hiroshi; Yoshida, Michitoshi; Arai, Akira; Honda, Satoshi; Nishiyama, Koichi; Kabashima, Fujio

    2014-02-20

    We report photometric and spectroscopic observations of the nearby Type Ia Supernova (SN Ia) 2012ht from –15.8 days to +49.1 days after B-band maximum. The decline rate of the light curve is Δm {sub 15}(B) = 1.39 ± 0.05 mag, which is intermediate between normal and subluminous SNe Ia, and similar to that of the ''transitional'' Type Ia SN 2004eo. The spectral line profiles also closely resemble those of SN 2004eo. We were able to observe SN 2012ht at a very early phase, when it was still rising and was about three magnitudes fainter than at the peak. The rise time to the B-band maximum is estimated to be 17.6 ± 0.5 days and the time of the explosion is MJD 56277.98 ± 0.13. SN 2012ht is the first transitional SN Ia whose rise time is directly measured without using light curve templates, and the fifth SN Ia overall. This rise time is consistent with those of the other four SNe within the measurement error, even including the extremely early detection of SN 2013dy. The rising part of the light curve can be fitted by a quadratic function, and shows no sign of a shock-heating component due to the interaction of the ejecta with a companion star. The rise time is significantly longer than that inferred for subluminous SNe such as SN 1991bg, which suggests that a progenitor and/or explosion mechanism of transitional SNe Ia are more similar to normal SNe Ia rather than to subluminous SNe Ia.

  8. Parallel Configuration For Fast Superconducting Strip Line Detectors With Very Large Area In Time Of Flight Mass Spectrometry

    SciTech Connect

    Casaburi, A.; Zen, N.; Suzuki, K.; Ohkubo, M.; Ejrnaes, M.; Cristiano, R.; Pagano, S.

    2009-12-16

    We realized a very fast and large Superconducting Strip Line Detector based on a parallel configuration of nanowires. The detector with size 200x200 {mu}m{sup 2} recorded a sub-nanosecond pulse width of 700 ps in FWHM (400 ps rise time and 530 ps relaxation time) for lysozyme monomers/multimers molecules accelerated at 175 keV in a Time of Flight Mass Spectrometer. This record is the best in the class of superconducting detectors and comparable with the fastest NbN superconducting single photon detector of 10x10 {mu}m{sup 2}. We succeeded in acquiring mass spectra as the first step for a scale-up to {approx}mm pixel size for high throughput MS analysis, while keeping a fast response.

  9. Lava Morphology Classification of a Fast-Spreading Ridge Using Deep-Towed Sonar Data: East Pacific Rise

    NASA Astrophysics Data System (ADS)

    Meyer, J.; White, S.

    2005-05-01

    Classification of lava morphology on a regional scale contributes to the understanding of the distribution and extent of lava flows at a mid-ocean ridge. Seafloor classification is essential to understand the regional undersea environment at midocean ridges. In this study, the development of a classification scheme is found to identify and extract textural patterns of different lava morphologies along the East Pacific Rise using DSL-120 side-scan and ARGO camera imagery. Application of an accurate image classification technique to side-scan sonar allows us to expand upon the locally available visual ground reference data to make the first comprehensive regional maps of small-scale lava morphology present at a mid-ocean ridge. The submarine lava morphologies focused upon in this study; sheet flows, lobate flows, and pillow flows; have unique textures. Several algorithms were applied to the sonar backscatter intensity images to produce multiple textural image layers useful in distinguishing the different lava morphologies. The intensity and spatially enhanced images were then combined and applied to a hybrid classification technique. The hybrid classification involves two integrated classifiers, a rule-based expert system classifier and a machine learning classifier. The complementary capabilities of the two integrated classifiers provided a higher accuracy of regional seafloor classification compared to using either classifier alone. Once trained, the hybrid classifier can then be applied to classify neighboring images with relative ease. This classification technique has been used to map the lava morphology distribution and infer spatial variability of lava effusion rates along two segments of the East Pacific Rise, 17 deg S and 9 deg N. Future use of this technique may also be useful for attaining temporal information. Repeated documentation of morphology classification in this dynamic environment can be compared to detect regional seafloor change.

  10. MOSFET solid state switching circuit improves the 0 to 99% rise time for framing camera deflection electronics

    SciTech Connect

    Rivera, A.T.; Thomas, S.

    1996-09-01

    We have improved the 0 to 99% rise time voltage on our 2 frame deflection plates from 160 to 65 nS with the addition of a peaking circuit that works in conjunction with our primary 2 frame deflection circuitry. Our peaking technique has applications to other HV pulsers including those which must drive 51 ohm loads. Generally, rise time voltages are measured between 10 and 90%. To minimize the camera image blur resulting from the dynamic influence of deflection plate potentials acting on photocathode electrons, it was necessary to design a circuit that would rise from 0 to the 99% voltage level in under 100nS. Once this voltage was reached, it was necessary to stay within 1% of the attained voltage level for a duration of 1 uS. This was accomplished with the use of MOSFET solid state switching.

  11. Lifetime measurements in transitional nuclei by fast electronic scintillation timing

    NASA Astrophysics Data System (ADS)

    Caprio, M. A.; Zamfir, N. V.; Casten, R. F.; Amro, H.; Barton, C. J.; Beausang, C. W.; Cooper, J. R.; Gürdal, G.; Hecht, A. A.; Hutter, C.; Krücken, R.; McCutchan, E. A.; Meyer, D. A.; Novak, J. R.; Pietralla, N.; Ressler, J. J.; Berant, Z.; Brenner, D. S.; Gill, R. L.; Regan, P. H.

    2002-10-01

    A new generation of experiments studying nuclei in spherical-deformed transition regions has been motivated by the introduction of innovative theoretical approaches to the treatment of these nuclei. The important structural signatures in the transition regions, beyond the basic yrast level properties, involve γ-ray transitions between low-spin, non-yrast levels, and so information on γ-ray branching ratios and absolute matrix elements (or level lifetimes) for these transitions is crucial. A fast electronic scintillation timing (FEST) system [H. Mach, R. L. Gill, and M. Moszyński, Nucl. Instrum. Methods A 280, 49 (1989)], making use of BaF2 and plastic scintillation detectors, has been implemented at the Yale Moving Tape Collector for the measurement of lifetimes of states populated in β^ decay. Experiments in the A100 (Pd, Ru) and A150 (Dy, Yb) regions have been carried out, and a few examples will be presented. Supported by the US DOE under grants and contracts DE-FG02-91ER-40609, DE-FG02-88ER-40417, and DE-AC02-98CH10886 and by the German DFG under grant Pi 393/1.

  12. Synchronous timing of multi-energy fast beam extraction during a single AGS cycle

    SciTech Connect

    Gabusi, J.; Naase, S.

    1985-01-01

    Synchronous triggering of fast beams is required because the field of Kicker Magnets must rise within the open space between one beam bunch and the next. Within the Brookhaven AGS, Fast Extracted Beam (FEB) triggering combines nominal timing, based on beam energy with bunch-to-bunch synchronization, based on the accelerating rf waveform. During beam acceleration, a single bunch is extracted at 22 GeV/c and within the same AGS cycle, the remaining eleven bunches are extracted at 28.4 GeV/c. When the single bunch is extracted, a ''hole'', which is left in the remaining circulating beam, can appear in random locations within the second extraction during successive AGS cycles. To overcome this problem, a synchronous rf/12 counting scheme and logic circuitry are used to keep track of the bunch positions relative to each other, and to place the ''hole'' in any desired location within the second extraction. The rf/12 signal is used also to synchronize experimenters triggers.

  13. Study of the time response of a LuAG(Pr) crystal for fast timing applications

    NASA Astrophysics Data System (ADS)

    Fraile, L. M.; Mach, H.; Picado, E.; Vedia, V.; Udías, J. M.

    2013-06-01

    The recently developed praseodymium-doped lutetium aluminum garnet, LuAG(Pr), holds a strong potential for fast timing applications. In this study we report on the time response of LuAG(Pr) at 22Na and 60Co photon energies. The measurements were performed using a small crystal cube of 1 cm3 coupled to a Hamamatsu R5320 photomultiplier tube. The full width at half maximum (FWHM) time resolution is found to be 147±2 ps at 60Co energies, and 238±2 ps at 22Na.

  14. Turbulence Scales, Rise Times, Caustics, and the Simulation of Sonic Boom Propagation

    NASA Technical Reports Server (NTRS)

    Pierce, Allan D.

    1996-01-01

    The general topic of atmospheric turbulence effects on sonic boom propagation is addressed with especial emphasis on taking proper and efficient account of the contributions of the portion oi the turbulence that is associated with extremely high wavenumber components. The recent work reported by Bart Lipkens in his doctoral thesis is reexamined to determine whether the good agreement between his measured rise times with the 1971 theory of the author is fortuitous. It is argued that Lipken's estimate of the distance to the first caustic was a gross overestimate because of the use of a sound speed correlation function shaped like a gaussian curve. In particular, it is argued that the expected distance to the first caustic varies with the kinematic viscosity nu and the energy epsilon dissipated per unit mass per unit time, and the sound speed c as : d(sub first caustic) = nu(exp 7/12) c(exp 2/3)/ epsilon(exp 5/12)(nu x epsilon/c(exp 4))(exp a), where the exponent a is greater than -7/12 and can be argued to be either O or 1/24. In any event, the surprising aspect of the relationship is that it actually goes to zero as the viscosity goes to zero with s held constant. It is argued that the apparent overabundance of caustics can be grossly reduced by a general computational and analytical perspective that partitions the turbulence into two parts, divided by a wavenumber k(sub c). Wavenumbers higher than kc correspond to small-scale turbulence, and the associated turbulence can be taken into account by a renormalization of the ambient sound speed so that the result has a small frequency dependence that results from a spatial averaging over of the smaller-scale turbulent fluctuations. Selection of k(sub c). can be made so large that only a very small number of caustics are encountered if one adopts the premise that the frequency dispersion of pulses is caused by that part of the turbulence spectrum which lies in the inertial range originally predicted by Kolmogoroff. The

  15. Learning Novel Phonological Representations in Developmental Dyslexia: Associations with Basic Auditory Processing of Rise Time and Phonological Awareness

    ERIC Educational Resources Information Center

    Thomson, Jennifer M.; Goswami, Usha

    2010-01-01

    Across languages, children with developmental dyslexia are known to have impaired lexical phonological representations. Here, we explore associations between learning new phonological representations, phonological awareness, and sensitivity to amplitude envelope onsets (rise time). We show that individual differences in learning novel phonological…

  16. Fasting, Circadian Rhythms, and Time-Restricted Feeding in Healthy Lifespan.

    PubMed

    Longo, Valter D; Panda, Satchidananda

    2016-06-14

    Most animals alternate periods of feeding with periods of fasting often coinciding with sleep. Upon >24 hr of fasting, humans, rodents, and other mammals enter alternative metabolic phases, which rely less on glucose and more on ketone body-like carbon sources. Both intermittent and periodic fasting result in benefits ranging from the prevention to the enhanced treatment of diseases. Similarly, time-restricted feeding (TRF), in which food consumption is restricted to certain hours of the day, allows the daily fasting period to last >12 hr, thus imparting pleiotropic benefits. Understanding the mechanistic link between nutrients and the fasting benefits is leading to the identification of fasting-mimicking diets (FMDs) that achieve changes similar to those caused by fasting. Given the pleiotropic and sustained benefits of TRF and FMDs, both basic science and translational research are warranted to develop fasting-associated interventions into feasible, effective, and inexpensive treatments with the potential to improve healthspan. PMID:27304506

  17. Interaction-powered Supernovae: Rise-time versus Peak-luminosity Correlation and the Shock-breakout Velocity

    NASA Astrophysics Data System (ADS)

    Ofek, Eran O.; Arcavi, Iair; Tal, David; Sullivan, Mark; Gal-Yam, Avishay; Kulkarni, Shrinivas R.; Nugent, Peter E.; Ben-Ami, Sagi; Bersier, David; Cao, Yi; Cenko, S. Bradley; De Cia, Annalisa; Filippenko, Alexei V.; Fransson, Claes; Kasliwal, Mansi M.; Laher, Russ; Surace, Jason; Quimby, Robert; Yaron, Ofer

    2014-06-01

    Interaction of supernova (SN) ejecta with the optically thick circumstellar medium (CSM) of a progenitor star can result in a bright, long-lived shock-breakout event. Candidates for such SNe include Type IIn and superluminous SNe. If some of these SNe are powered by interaction, then there should be a specific relation between their peak luminosity, bolometric light-curve rise time, and shock-breakout velocity. Given that the shock velocity during shock breakout is not measured, we expect a correlation, with a significant spread, between the rise time and the peak luminosity of these SNe. Here, we present a sample of 15 SNe IIn for which we have good constraints on their rise time and peak luminosity from observations obtained using the Palomar Transient Factory. We report on a possible correlation between the R-band rise time and peak luminosity of these SNe, with a false-alarm probability of 3%. Assuming that these SNe are powered by interaction, combining these observables and theory allows us to deduce lower limits on the shock-breakout velocity. The lower limits on the shock velocity we find are consistent with what is expected for SNe (i.e., ~104 km s-1). This supports the suggestion that the early-time light curves of SNe IIn are caused by shock breakout in a dense CSM. We note that such a correlation can arise from other physical mechanisms. Performing such a test on other classes of SNe (e.g., superluminous SNe) can be used to rule out the interaction model for a class of events.

  18. Interaction-powered supernovae: rise-time versus peak-luminosity correlation and the shock-breakout velocity

    SciTech Connect

    Ofek, Eran O.; Arcavi, Iair; Tal, David; Gal-Yam, Avishay; Ben-Ami, Sagi; De Cia, Annalisa; Yaron, Ofer; Sullivan, Mark; Kulkarni, Shrinivas R.; Cao, Yi; Nugent, Peter E.; Bersier, David; Cenko, S. Bradley; Filippenko, Alexei V.; Fransson, Claes; Kasliwal, Mansi M.; Laher, Russ; Surace, Jason; Quimby, Robert

    2014-06-20

    Interaction of supernova (SN) ejecta with the optically thick circumstellar medium (CSM) of a progenitor star can result in a bright, long-lived shock-breakout event. Candidates for such SNe include Type IIn and superluminous SNe. If some of these SNe are powered by interaction, then there should be a specific relation between their peak luminosity, bolometric light-curve rise time, and shock-breakout velocity. Given that the shock velocity during shock breakout is not measured, we expect a correlation, with a significant spread, between the rise time and the peak luminosity of these SNe. Here, we present a sample of 15 SNe IIn for which we have good constraints on their rise time and peak luminosity from observations obtained using the Palomar Transient Factory. We report on a possible correlation between the R-band rise time and peak luminosity of these SNe, with a false-alarm probability of 3%. Assuming that these SNe are powered by interaction, combining these observables and theory allows us to deduce lower limits on the shock-breakout velocity. The lower limits on the shock velocity we find are consistent with what is expected for SNe (i.e., ∼10{sup 4} km s{sup –1}). This supports the suggestion that the early-time light curves of SNe IIn are caused by shock breakout in a dense CSM. We note that such a correlation can arise from other physical mechanisms. Performing such a test on other classes of SNe (e.g., superluminous SNe) can be used to rule out the interaction model for a class of events.

  19. Preoperative fasting times in elective surgical patients at a referral Hospital in Botswana

    PubMed Central

    Abebe, Worknehe Agegnehu; Rukewe, Ambrose; Bekele, Negussie Alula; Stoffel, Moeng; Dichabeng, Mompelegi Nicoh; Shifa, Jemal Zeberga

    2016-01-01

    Introduction Adults and children are required to fast before anaesthesia to reduce the risk of regurgitation and aspiration of gastric contents. However, prolonged periods of fasting are unnecessary and may cause complications. This study was conducted to evaluate preoperative fasting period in our centre and compare it with the ASA recommendations and factors that influence fasting periods. Methods This is a cross-sectional study of preoperative fasting times among elective surgical patients. A total numbers of 260 patients were interviewed as they arrived at the reception area of operating theatre using questionnaire. Results Majority of patients (98.1%) were instructed to fast from midnight. Fifteen patients (5.8%) reported that they were told the importance of preoperative fasting. The mean fasting period were 15.9±2.5 h (range 12.0-25.3 h) for solids and 15.3±2.3 h (range 12.0-22.0 h) for liquids. The mean duration of fasting was significantly longer for patients operated after midday compared to those operated before midday, p<0.001. Conclusion The mean fasting periods were 7.65 times longer for clear liquid and 2.5 times for solids than the ASA guidelines. It is imperative that the Hospital should establish Preoperative fasting policies and teach the staff who should ensure compliance with guidelines. PMID:27222691

  20. Universal relations for solitary waves in granular crystals under shocks with finite rise and decay times

    NASA Astrophysics Data System (ADS)

    Arif Hasan, M.; Nemat-Nasser, Sia

    2016-04-01

    We focus on solitary waves generated in arrays of lightly contacting spherical elastic granules by shock forces of steep rise and slow decay durations and establish a priori: (i) whether the peak value of the resulting solitary wave would be greater than, equal to, or less than the peak value of the input shock force; (ii) the magnitude of the peak value of the solitary waves; (iii) the magnitude of the linear momentum in each solitary wave; (iv) the magnitude of the linear momentum added to the remaining granules if the first granule is ejected; and (v) a quantitative estimate of the effect of the granules' radius, density, and stiffness on force amplification or mitigation. We have supported the analytical results by direct numerical simulations.

  1. Actual preoperative fasting time in Brazilian hospitals: the BIGFAST multicenter study

    PubMed Central

    de Aguilar-Nascimento, José E; de Almeida Dias, Ana L; Dock-Nascimento, Diana B; Correia, Maria Isabel TD; Campos, Antonio CL; Portari-Filho, Pedro Eder; Oliveira, Sergio S

    2014-01-01

    Background Prolonged fasting increases organic response to trauma. This multicenter study investigated the gap between the prescribed and the actual preoperative fasting times in Brazilian hospitals and factors associated with this gap. Methods Patients (18–90-years-old) who underwent elective operations between August 2011 and September 2012 were included in the study. The actual and prescribed times for fasting were collected and correlated with sex, age, surgical disease (malignancies or benign disease), operation type, American Society of Anesthesiologists score, type of hospital (public or private), and nutritional status. Results A total of 3,715 patients (58.1% females) with a median age of 49 (18–94) years from 16 Brazilian hospitals entered the study. The median (range) preoperative fasting time was 12 (2–216) hours, and fasting time was longer (P<0.001) in hospitals using a traditional fasting protocol (13 [6–216] hours) than in others that had adopted new guidelines (8 [2–48] hours). Almost 80% (n=2,962) of the patients were operated on after 8 or more hours of fasting and 46.2% (n=1,718) after more than 12 hours. Prolonged fasting was not associated with physical score, age, sex, type of surgery, or type of hospital. Patients operated on due to a benign disease had an extended duration of preoperative fasting. Conclusion Actual preoperative fasting time is significantly longer than prescribed fasting time in Brazilian hospitals. Most of these hospitals still adopt traditional rather than modern fasting guidelines. All patients are at risk of long periods of fasting, especially those in hospitals that follow traditional practices. PMID:24627636

  2. A time-gating scintillation detector for the measurement of laser-induced fast neutrons

    SciTech Connect

    Lee, Sungman; Park, Sangsoon; Yea, Kwon-hae; Cha, Hyungki

    2009-06-15

    A time-gating scintillation detector, in which a fast high voltage switch is used for gating a channel photomultiplier, was developed for a measurement of laser-induced fast neutrons. The x rays generated from the intense femtosecond laser and the solid target interactions were suppressed selectively and a time-of-flight signal of a laser-generated fast neutron was measured effectively. The detector was used successfully to measure the neutron yield of a femtosecond, deuterated, polystyrene plasma.

  3. A time-gating scintillation detector for the measurement of laser-induced fast neutrons.

    PubMed

    Lee, Sungman; Park, Sangsoon; Yea, Kwon-hae; Cha, Hyungki

    2009-06-01

    A time-gating scintillation detector, in which a fast high voltage switch is used for gating a channel photomultiplier, was developed for a measurement of laser-induced fast neutrons. The x rays generated from the intense femtosecond laser and the solid target interactions were suppressed selectively and a time-of-flight signal of a laser-generated fast neutron was measured effectively. The detector was used successfully to measure the neutron yield of a femtosecond, deuterated, polystyrene plasma. PMID:19566199

  4. Early to Rise? The Effect of Daily Start Times on Academic Performance

    ERIC Educational Resources Information Center

    Edwards, Finley

    2012-01-01

    Local school districts often stagger daily start times for their schools in order to reduce busing costs. This paper uses data on all middle school students in Wake County, NC from 1999 to 2006 to identify the causal effect of daily start times on academic performance. Using variation in start times within schools over time, the effect is a two…

  5. Crustal thickness from 3D MCS data collected over the fast-spreading East Pacific Rise at 9°50'N

    NASA Astrophysics Data System (ADS)

    Aghaei, O.; Nedimović, M. R.; Canales, J.; Carton, H. D.; Carbotte, S. M.; Mutter, J. C.

    2011-12-01

    We compute, analyze and present crustal thickness variations for a section of the fast-spreading East Pacific Rise (EPR). The area of 3D coverage is between 9°38'N and 9°58' N (~1000 km2), where the documented eruptions of 1990-91 and 2005-06 occurred. The crustal thickness is computed by depth converting the two-way reflection travel times from the seafloor to the Moho. The seafloor and Moho reflections are picked on the migrated stack volume produced from the 3D multichannel seismic (MCS) data collected on R/V Marcus G. Langseth in summer of 2008 during cruise MGL0812. The crustal velocities used for depth conversion were computed by Canales et al. (2003; 2011) by simultaneous inversion of seismic refractions and wide-angle Moho reflection traveltimes from four ridge-parallel and one ridge-perpendicular ocean bottom seismometer (OBS) profile for which data were collected during the 1998 UNDERSHOOT experiment. The MCS data analysis included 1D and 2D filtering, offset-dependent spherical divergence correction, surface-consistent amplitude correction, common midpoint (CMP) sort with flex binning, velocity analysis, normal moveout, and CMP stretch mute. The poststack processing includes seafloor multiple mute and 3D Kirchhoff poststack time migration. Here we use the crustal thickness and Moho seismic signature variations to detail their relationship with ridge segmentation, crustal age, bathymetry, and on- and off-axis magmatism. On the western flank (Pacific plate) from 9°41' to 9°48', the Moho reflection is strong. From 9°48' to 9°52', the Moho reflection varies from moderate to weak and disappears from ~3 km to ~9 km from the ridge axis. On the eastern flank (Cocos plate) from 9°41' to 9°51', the Moho reflection varies from strong to moderate. From 9°51' to 9°54' the Moho reflection varies from moderate to weak and disappears beneath a region ~3 km to ~9 km from the axis. On the Cocos plate, across-axis crustal thickness variations (5.5-6.2 km) show a

  6. Spark-Timing Control Based on Correlation of Maximum-Economy Spark Timing, Flame-front Travel, and Cylinder-Pressure Rise

    NASA Technical Reports Server (NTRS)

    Cook, Harvey A; Heinicke, Orville H; Haynie, William H

    1947-01-01

    An investigation was conducted on a full-scale air-cooled cylinder in order to establish an effective means of maintaining maximum-economy spark timing with varying engine operating conditions. Variable fuel-air-ratio runs were conducted in which relations were determined between the spark travel, and cylinder-pressure rise. An instrument for controlling spark timing was developed that automatically maintained maximum-economy spark timing with varying engine operating conditions. The instrument also indicated the occurrence of preignition.

  7. Investigation of spatial gusts with extreme rise time on the extreme loads of pitch-regulated wind turbines

    NASA Astrophysics Data System (ADS)

    Bierbooms, Wim

    2005-01-01

    It is assumed that the extreme loading of pitch-regulated turbines is caused by gusts with an extreme rise time rather than an extreme gust amplitude. A special kind of wind field simulation, so-called constrained stochastic simulation, is dealt with in order to generate the desired gusts. Just as in wind field simulation for fatigue purposes, it is assumed that turbulence is Gaussian; a possibility is mentioned of how to deal with non-Gaussian behaviour. On the basis of the presented theory it can be stated that the stochastic gusts produced in this way are, in a statistical sense, not distinguishable from gusts selected from a (very long) time series. An example of a spatial gust as well as the mean spatial gust shape is shown. For a reference turbine the maximum blade root flapping moment has been determined as a function of the gust centre in the rotor plane; the maximum response is obtained in the case where the gust hits one of the rotor blades at 75% of the radius. When the gust duration is large compared with the integral time constant of the controller, the controller can handle the gust as expected. However, even for small rise times it turns out that the maximum flap moment due to the gust is not significantly higher than that due to the background turbulence and 1P excitations. This may indicate that perhaps extreme rise time gusts do not lead to extreme loading of pitch-regulated wind turbines. For a final judgement a proper probabilistic approach is necessary; an outline of such an approach has been sketched. Furthermore, it is recommended to do research on other gust types in order to find out the type which leads to the extreme wind turbine loading. Copyright

  8. Extracting Short Rise-Time Velocity Profiles with Digital Down-Shift Analysis of Optically Up-Converted PDV Data

    SciTech Connect

    Abel Diaz, Nathan Riley, Cenobio Gallegos, Matthew Teel, Michael Berninger, Thomas W. Tunnell

    2010-09-08

    This work describes the digital down-shift (DDS) technique, a new method of extracting short rise-time velocity profiles in the analysis of optically up-converted PDV data. The DDS technique manipulates the PDV data by subtracting a constant velocity (i.e., the DDS velocity νDDS) from the velocity profile. DDS exploits the simple fact that the optically up-converted data ride on top of a base velocity (ν0, the apparent velocity at no motion) with a rapid rise to a high velocity (νf) of a few km/s or more. Consequently, the frequency content of the signal must describe a velocity profile that increases from ν0 to ν0 + νf. The DDS technique produces velocity reversals in the processed data before shock breakout when ν0 < νDDS < ν0 + νf. The DDS analysis process strategically selects specific DDS velocities (velocity at which the user down shifts the data) that produce anomalous reversals (maxima and/or minima), which are predictable and easy to identify in the mid-range of the data. Additional analysis determines when these maxima and minima occur. By successive application of the DDS technique and iterative analysis, velocity profiles are extracted as time as a function of velocity rather than as a function of time as it would be in a conventional velocity profile. Presented results include a description of DDS, velocity profiles extracted from laser-driven shock data with rise times of 200 ps or less, and a comparison with other techniques.

  9. Simple scaling laws for influenza A rise time, duration, and severity.

    PubMed

    Chang, David B; Young, Carl S

    2007-06-21

    Simple scaling laws are developed for the severity and characteristic time scales of influenza A infection in man. The scaling laws are based on a model of the infection described by six coupled ordinary differential equations that describe the time courses of the numbers of infectious viral particles, activated cytotoxic T-lymphocytes, interferon molecules, infected cells, uninfected cells, and the subset of uninfected cells that are protected by interferon from viral infection. Computer simulations show that the disease can be regarded approximately as a two-stage process. In the first stage, the growth in the number of infected cells is determined primarily by the interferon-enhanced limitation in the available number of target cells. In the second stage, the bulk of the duration of the infection is determined mainly by the destruction of the infected cells by the cytotoxic T-lymphocytes. The severity and characteristic times of the infection are found to depend simply on the logarithm of the initial number of viruses. PMID:17379249

  10. Rise-time response of nickel-foil-on-Kapton-substrate, hot-film, shear-stress sensors

    NASA Technical Reports Server (NTRS)

    Reda, Daniel C.

    1991-01-01

    An existing nickel-foil-on-Kapton-substrate sensor design was modified by including two heated elements in an attempt to minimize or reduce substrate conduction effects. The rise-time responses of the original and modified sensors were then investigated in unsteady flows of 0.5-1-s duration, consistent with flows encountered in wind-energy applications. The results obtained indicate a measurable degradation in transient performance due to the activation of the dynamic guard heater. Transient heat conduction within the substrate remains the limiting factor in such applications.

  11. Analog electro-optical readout of SiPMs achieves fast timing required for time-of-flight PET/MR

    PubMed Central

    Bieniosek, MF

    2015-01-01

    The design of combined positron emission tomography/magnetic resonance (PET/MR) systems presents a number of challenges to engineers, as it forces the PET system to acquire data in space constrained environment that is sensitive to electro-magnetic interference and contains high static, radio frequency (RF) and gradient fields. In this work we validate fast timing performance of a PET scintillation detector using a potentially very compact, very low power, and MR compatible readout method in which analog silicon photomultipliers (SiPM) signals are transmitted optically away from the MR bore with little or even no additional readout electronics. This analog ‘electro-optial’ method could reduce the entire PET readout in the MR bore to two compact, low power components (SiPMs and lasers). Our experiments show fast timing performance from analog electro-optical readout with and without pre-amplification. With 3mm × 3mm × 20mm lutetium-yttrium oxyorthosilicate (LYSO) crystals and Excelitas SiPMs the best two-sided fwhm coincident timing resolution achieved was 220 +/- 3ps in electrical mode, 230 +/- 2ps in electro-optical with preamp mode, and 253 +/- 2ps in electro-optical without preamp mode. Timing measurements were also performed with Hamamatsu SiPMs and 3mm × 3mm × 5mm crystals. In the future the timing degradation seen can be further reduced with lower laser noise or improvements SiPM rise time or gain. PMID:25905626

  12. Analog electro-optical readout of SiPMs achieves fast timing required for time-of-flight PET/MR

    NASA Astrophysics Data System (ADS)

    Bieniosek, M. F.; Levin, C. S.

    2015-05-01

    The design of combined positron emission tomography/magnetic resonance (PET/MR) systems presents a number of challenges to engineers, as it forces the PET system to acquire data in a space constrained environment that is sensitive to electro-magnetic interference and contains high static, radio frequency and gradient fields. In this work we validate fast timing performance of a PET scintillation detector using a potentially very compact, very low power, and MR compatible readout method in which analog silicon photomultipliers (SiPM) signals are transmitted optically away from the MR bore with little or even no additional readout electronics. This analog ‘electro-optial’ method could reduce the entire PET readout in the MR bore to two compact, low power components (SiPMs and lasers). Our experiments show fast timing performance from analog electro-optical readout with and without pre-amplification. With 3 mm × 3 mm × 20 mm lutetium-yttrium oxyorthosilicate (LYSO) crystals and Excelitas SiPMs the best two-sided fwhm coincident timing resolution achieved was 220 +/- 3 ps in electrical mode, 230 +/- 2 ps in electro-optical with preamp mode, and 253 +/- 2 ps in electro-optical without preamp mode. Timing measurements were also performed with Hamamatsu SiPMs and 3 mm × 3 mm × 5 mm crystals. In the future the timing degradation seen can be further reduced with lower laser noise or improvements SiPM rise time or gain.

  13. A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity.

    PubMed

    Magallón, Susana; Gómez-Acevedo, Sandra; Sánchez-Reyes, Luna L; Hernández-Hernández, Tania

    2015-07-01

    The establishment of modern terrestrial life is indissociable from angiosperm evolution. While available molecular clock estimates of angiosperm age range from the Paleozoic to the Late Cretaceous, the fossil record is consistent with angiosperm diversification in the Early Cretaceous. The time-frame of angiosperm evolution is here estimated using a sample representing 87% of families and sequences of five plastid and nuclear markers, implementing penalized likelihood and Bayesian relaxed clocks. A literature-based review of the palaeontological record yielded calibrations for 137 phylogenetic nodes. The angiosperm crown age was bound within a confidence interval calculated with a method that considers the fossil record of the group. An Early Cretaceous crown angiosperm age was estimated with high confidence. Magnoliidae, Monocotyledoneae and Eudicotyledoneae diversified synchronously 135-130 million yr ago (Ma); Pentapetalae is 126-121 Ma; and Rosidae (123-115 Ma) preceded Asteridae (119-110 Ma). Family stem ages are continuously distributed between c. 140 and 20 Ma. This time-frame documents an early phylogenetic proliferation that led to the establishment of major angiosperm lineages, and the origin of over half of extant families, in the Cretaceous. While substantial amounts of angiosperm morphological and functional diversity have deep evolutionary roots, extant species richness was probably acquired later. PMID:25615647

  14. Temperature Rise Induced by Light Curing Unit Can Shorten Enamel Acid-Etching Time

    PubMed Central

    Najafi Abrandabadi, Ahmad; Sheikh-Al-Eslamian, Seyedeh Mahsa; Panahandeh, Narges

    2015-01-01

    Objectives: The aim of this in-vitro study was to assess the thermal effect of light emitting diode (LED) light curing unit on the enamel etching time. Materials and Methods: Three treatment groups with 15 enamel specimens each were used in this study: G1: Fifteen seconds of etching, G2: Five seconds of etching, G3: Five seconds of etching plus LED light irradiation (simultaneously). The micro shear bond strength (μSBS) of composite resin to enamel was measured. Results: The mean μSBS values ± standard deviation were 51.28±2.35, 40.47±2.75 and 50.00±2.59 MPa in groups 1, 2 and 3, respectively. There was a significant difference between groups 1 and 2 (P=0.013) and between groups 2 and 3 (P=0.032) in this respect, while there was no difference between groups 1 and 3 (P=0.932). Conclusion: Simultaneous application of phosphoric acid gel over enamel surface and light irradiation using a LED light curing unit decreased enamel etching time to five seconds without compromising the μSBS. PMID:27559352

  15. Local time distributions of repetition periods for rising tone lower band chorus waves in the magnetosphere

    NASA Astrophysics Data System (ADS)

    Shue, Jih-Hong; Hsieh, Yi-Kai; Tam, Sunny W. Y.; Wang, Kaiti; Fu, Hui Shan; Bortnik, Jacob; Tao, Xin; Hsieh, Wen-Chieh; Pi, Gilbert

    2015-10-01

    Whistler mode chorus waves generally occur outside the plasmapause in the magnetosphere. The most striking feature of the waves is their occurrence in discrete elements. One of the parameters that describe the discrete elements is the repetition period (Trp), the time between consecutive elements. The Trp has not been studied statistically before. We use high-resolution waveform data to derive distributions of Trp for different local times. We find that the average Trp for the nightside (0.56 s) and dawnside (0.53 s) are smaller than those for the dayside (0.81 s) and duskside (0.97 s). Through a comparison with the background plasma and magnetic fields, we also find that the total magnetic field and temperature are the main controlling factors that affect the variability of Trp. These results are important for understanding the generation mechanism of chorus and choosing parameters in simulations that model the acceleration and loss of electrons by wave-particle interactions.

  16. Achieving fast timing performance with multiplexed SiPMs.

    PubMed

    Bieniosek, M F; Cates, J W; Levin, C S

    2016-04-01

    Using time of flight (ToF) measurements for positron emission tomography (PET) is an attractive avenue for increasing the signal to noise (SNR) ratio of PET images. However, achieving excellent time resolution required for high SNR gain using silicon photomultipliers (SiPM) requires many resource heavy high bandwidth readout channels. A method of multiplexing many SiPM signals into a single electronic channel would greatly simplify ToF PET systems. However, multiplexing SiPMs degrades time resolution because of added dark counts and signal shaping. In this work the relative contribution of dark counts and signal shaping to timing degradation is simulated and a baseline correction technique to mitigate the effect of multiplexing on the time resolution of analog SiPMs is simulated and experimentally verified. A charge sharing network for multiplexing is proposed and tested. Results show a full width at half maximum (FWHM) coincidence time resolution of [Formula: see text] ps for a single 3 mm  ×  3 mm  ×  20 mm LYSO scintillation crystals coupled to an array of sixteen 3 mm  ×  3 mm SiPMs that are multiplexed to a single timing channel (in addition to 4 position channels). A [Formula: see text] array of 3 mm  ×  3 mm  ×  20 mm LFS crystals showed an average FWHM coincidence time resolution of [Formula: see text] ps using the same timing scheme. All experiments were performed at room temperature with no thermal regulation. These results show that excellent time resolution for ToF can be achieved with a highly multiplexed analog SiPM readout. PMID:26987898

  17. Achieving fast timing performance with multiplexed SiPMs

    NASA Astrophysics Data System (ADS)

    Bieniosek, M. F.; Cates, J. W.; Levin, C. S.

    2016-04-01

    Using time of flight (ToF) measurements for positron emission tomography (PET) is an attractive avenue for increasing the signal to noise (SNR) ratio of PET images. However, achieving excellent time resolution required for high SNR gain using silicon photomultipliers (SiPM) requires many resource heavy high bandwidth readout channels. A method of multiplexing many SiPM signals into a single electronic channel would greatly simplify ToF PET systems. However, multiplexing SiPMs degrades time resolution because of added dark counts and signal shaping. In this work the relative contribution of dark counts and signal shaping to timing degradation is simulated and a baseline correction technique to mitigate the effect of multiplexing on the time resolution of analog SiPMs is simulated and experimentally verified. A charge sharing network for multiplexing is proposed and tested. Results show a full width at half maximum (FWHM) coincidence time resolution of 232+/- 2 ps for a single 3 mm  ×  3 mm  ×  20 mm LYSO scintillation crystals coupled to an array of sixteen 3 mm  ×  3 mm SiPMs that are multiplexed to a single timing channel (in addition to 4 position channels). A 4× 4 array of 3 mm  ×  3 mm  ×  20 mm LFS crystals showed an average FWHM coincidence time resolution of 278+/- 7 ps using the same timing scheme. All experiments were performed at room temperature with no thermal regulation. These results show that excellent time resolution for ToF can be achieved with a highly multiplexed analog SiPM readout.

  18. Composition and timing of carbonate vein precipitation within the igneous basement of the Early Cretaceous Shatsky Rise, NW Pacific

    NASA Astrophysics Data System (ADS)

    Geldmacher, J.; Li, S.; Hauff, F. F.; Garbe-Schoenberg, C.; Yu, S.; Zhao, S.; Rausch, S.

    2013-12-01

    Shatsky Rise is an Early Cretaceous large igneous province located in the NW Pacific ca. 1500 km east of Japan and is the third-largest oceanic plateau on Earth (after Ontong Java and Kerguelen). Numerous calcium carbonate veins were recovered from the igneous basement of Shatsky Rise during Integrated Ocean Drilling Program Expedition 324 (Sager et al., 2010). The chemical (Sr/Ca, Mg/Ca) and isotopic (87Sr/86Sr, 143Nd/144Nd, δ18O, δ13C) compositions of these veins were determined to constrain the timing of vein formation and to provide valuable data for the reconstruction of past seawater composition. A dominant control of seawater chemistry on calcite composition is evident for most investigated vein samples with varying compositional contribution from the basaltic basement. The Sr/Ca ratio of the vein calcite is positively correlated with Mg/Ca and with δ18O, indicating warmer/colder precipitation temperatures with decreasing/increasing Sr/Ca (and Mg/Ca) ratios, respectively. Distinctly higher formation temperatures (as inferred from oxygen isotope ratios) indicative of hydrothermal vein formation are only observed at one site (Site U1350, drilled into the central part of Shatsky Rise). The highest 87Sr/86Sr ratios (least basement influence) of vein samples at each drill site range form 0.707264 to 0.707550 and are believed to best reflect contemporaneous Early Cretaceous seawater composition. In principle, age information can be deduced by correlating these ratios with the global seawater Sr isotope evolution. Since the Sr isotopic composition of seawater has fluctuated three times between the early and mid Cretaceous (McArthur et al., 2001) no unambiguous precipitation ages can be constrained by this method and vein precipitation could have occurred at any time between ˜80 and 140 Ma. However, based on combined chemical and isotopic data and correlations of vein composition with formation depth and inferred temperature, we argue for a rather early

  19. TIME EVOLUTION OF PLASMA PARAMETERS DURING THE RISE OF A SOLAR PROMINENCE INSTABILITY

    SciTech Connect

    Orozco Suárez, D.; Asensio Ramos, A.; Trujillo Bueno, J.; Díaz, A. J.

    2014-04-10

    We present high-spatial resolution spectropolarimetric observations of a quiescent hedgerow prominence taken in the He I 1083.0 nm triplet. The observation consisted of a time series in sit-and-stare mode of ∼36 minutes duration. The spectrograph's slit crossed the prominence body and we recorded the time evolution of individual vertical threads. Eventually, we observed the development of a dark Rayleigh-Taylor plume that propagated upward with a velocity, projected onto the plane of the sky, of 17 km s{sup –1}. Interestingly, the plume apex collided with the prominence threads pushing them aside. We inferred Doppler shifts, Doppler widths, and magnetic field strength variations by interpreting the He I Stokes profiles with the HAZEL code. The Doppler shifts show that clusters of threads move coherently while individual threads have oscillatory patterns. Regarding the plume we found strong redshifts (∼9-12 km s{sup –1}) and large Doppler widths (∼10 km s{sup –1}) at the plume apex when it passed through the prominence body and before it disintegrated. We associate the redshifts with perspective effects while the Doppler widths are more likely due to an increase in the local temperature. No local variations of the magnetic field strength associated with the passage of the plume were found; this leads us to conclude that the plumes are no more magnetized than the surroundings. Finally, we found that some of the threads' oscillations are locally damped, what allowed us to apply prominence seismology techniques to infer additional prominence physical parameters.

  20. Geochemistry of Fast-Spreading Lower Oceanic Crust: Results from Drilling at the Hess Deep Rift (ODP Leg 147 and IODP Expedition 345; East Pacific Rise)

    NASA Astrophysics Data System (ADS)

    Godard, M.; Falloon, T.; Gillis, K. M.; Akizawa, N.; de Brito Adriao, A.; Koepke, J.; Marks, N.; Meyer, R.; Saha, A.; Garbe-Schoenberg, C. D.

    2014-12-01

    The Hess Deep Rift, where the Cocos Nazca Ridge propagates into the young, fast-spread East Pacific Rise crust, exposes a dismembered, but nearly complete, lower crustal section. The extensive exposures of the plutonic crust were drilled at 3 sites during ODP Leg 147 (Nov. 1992-Jan. 1993) and IODP Expedition 345 (Dec. 2012-Feb. 2013). We report preliminary results of a bulk rock geochemical study (major and trace elements) carried out on 109 samples representative of the different drilled lithologies. The shallowest gabbroic rocks were sampled at ODP Site 894. They comprise gabbronorite, gabbro, olivine gabbro and gabbronorite. They have evolved compositions with Mg# 39-55, Yb 4-8 x chondrite and Eu/Eu* 1-1.6. Olivine gabbro and troctolite were dominant at IODP Site U1415, with minor gabbro, gabbronorite and clinopyroxene oikocryst-bearing troctolite and gabbro. All U1415 gabbroic rocks have primitive compositions except for one gabbronorite rubble that is similar in composition to the shallow gabbros. Olivine gabbro, gabbro and gabbronorite overlap in composition: they have high Mg# (79-87) and Ni (130-570 ppm), low TiO2 (0.1-0.3 wt.%) and Yb (1.3-2.3 x chondrite) and positive Eu anomaly (Eu/Eu*=1.9-2.7). Troctolite has high Mg# (81-89), Ni (260-1500 ppm) and low TiO2 (<0.1 wt.%) and Yb (~0.5xchondrite) and large Eu/Eu* (>4). ODP Site 895 recovered sequences of highly depleted harzburgite, dunite and troctolite (Yb down to <0.1xchondrite) that are interpreted as a mantle-crust transition zone. Basalts were recovered at Sites 894 and U1415: they have low Yb (0.5-0.9xN6MORB) and are depleted in the most incompatible elements (Ce/Yb=0.6-0.9xN-MORB). The main geochemical characteristics of Site U1415 and 894 gabbroic rocks are consistent with formation as a cumulate sequence from a common parental MORB melt; troctolites are the most primitive end-member of this sequence. They overlap in composition with the most primitive of slow and fast spread crust gabbroic rocks.

  1. Fast underdetermined BSS architecture design methodology for real time applications.

    PubMed

    Mopuri, Suresh; Reddy, P Sreenivasa; Acharyya, Amit; Naik, Ganesh R

    2015-01-01

    In this paper, we propose a high speed architecture design methodology for the Under-determined Blind Source Separation (UBSS) algorithm using our recently proposed high speed Discrete Hilbert Transform (DHT) targeting real time applications. In UBSS algorithm, unlike the typical BSS, the number of sensors are less than the number of the sources, which is of more interest in the real time applications. The DHT architecture has been implemented based on sub matrix multiplication method to compute M point DHT, which uses N point architecture recursively and where M is an integer multiples of N. The DHT architecture and state of the art architecture are coded in VHDL for 16 bit word length and ASIC implementation is carried out using UMC 90 - nm technology @V DD = 1V and @ 1MHZ clock frequency. The proposed architecture implementation and experimental comparison results show that the DHT design is two times faster than state of the art architecture. PMID:26737514

  2. An advanced vision-based system for real-time displacement measurement of high-rise buildings

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Han; Ho, Hoai-Nam; Shinozuka, Masanobu; Lee, Jong-Jae

    2012-12-01

    This paper introduces an advanced vision-based system for dynamic real-time displacement measurement of high-rise buildings using a partitioning approach. The partitioning method is based on the successive estimation of relative displacements and rotational angles at several floors using a multiple vision-based displacement measurement system. In this study, two significant improvements were made to realize the partitioning method: (1) time synchronization, (2) real-time dynamic measurement. Displacement data and time synchronization information are wirelessly transferred via a network using the TCP/IP protocol. The time synchronization process is periodically conducted by the master system to guarantee the system time at the master and slave systems are synchronized. The slave system is capable of dynamic real-time measurement and it is possible to economically expand measurement points at slave levels using commercial devices. To verify the accuracy and feasibility of the synchronized multi-point vision-based system and partitioning approach, many laboratory tests were carried out on a three-story steel frame model. Furthermore, several tests were conducted on a five-story steel frame tower equipped with a hybrid mass damper to experimentally confirm the effectiveness of the proposed system.

  3. A fast, time-accurate unsteady full potential scheme

    NASA Technical Reports Server (NTRS)

    Shankar, V.; Ide, H.; Gorski, J.; Osher, S.

    1985-01-01

    The unsteady form of the full potential equation is solved in conservation form by an implicit method based on approximate factorization. At each time level, internal Newton iterations are performed to achieve time accuracy and computational efficiency. A local time linearization procedure is introduced to provide a good initial guess for the Newton iteration. A novel flux-biasing technique is applied to generate proper forms of the artificial viscosity to treat hyperbolic regions with shocks and sonic lines present. The wake is properly modeled by accounting not only for jumps in phi, but also for jumps in higher derivatives of phi, obtained by imposing the density to be continuous across the wake. The far field is modeled using the Riemann invariants to simulate nonreflecting boundary conditions. The resulting unsteady method performs well which, even at low reduced frequency levels of 0.1 or less, requires fewer than 100 time steps per cycle at transonic Mach numbers. The code is fully vectorized for the CRAY-XMP and the VPS-32 computers.

  4. Fast SIFT design for real-time visual feature extraction.

    PubMed

    Chiu, Liang-Chi; Chang, Tian-Sheuan; Chen, Jiun-Yen; Chang, Nelson Yen-Chung

    2013-08-01

    Visual feature extraction with scale invariant feature transform (SIFT) is widely used for object recognition. However, its real-time implementation suffers from long latency, heavy computation, and high memory storage because of its frame level computation with iterated Gaussian blur operations. Thus, this paper proposes a layer parallel SIFT (LPSIFT) with integral image, and its parallel hardware design with an on-the-fly feature extraction flow for real-time application needs. Compared with the original SIFT algorithm, the proposed approach reduces the computational amount by 90% and memory usage by 95%. The final implementation uses 580-K gate count with 90-nm CMOS technology, and offers 6000 feature points/frame for VGA images at 30 frames/s and ∼ 2000 feature points/frame for 1920 × 1080 images at 30 frames/s at the clock rate of 100 MHz. PMID:23743775

  5. Fast and Flexible Multivariate Time Series Subsequence Search

    NASA Technical Reports Server (NTRS)

    Bhaduri, Kanishka; Oza, Nikunj C.; Zhu, Qiang; Srivastava, Ashok N.

    2010-01-01

    Multivariate Time-Series (MTS) are ubiquitous, and are generated in areas as disparate as sensor recordings in aerospace systems, music and video streams, medical monitoring, and financial systems. Domain experts are often interested in searching for interesting multivariate patterns from these MTS databases which often contain several gigabytes of data. Surprisingly, research on MTS search is very limited. Most of the existing work only supports queries with the same length of data, or queries on a fixed set of variables. In this paper, we propose an efficient and flexible subsequence search framework for massive MTS databases, that, for the first time, enables querying on any subset of variables with arbitrary time delays between them. We propose two algorithms to solve this problem (1) a List Based Search (LBS) algorithm which uses sorted lists for indexing, and (2) a R*-tree Based Search (RBS) which uses Minimum Bounding Rectangles (MBR) to organize the subsequences. Both algorithms guarantee that all matching patterns within the specified thresholds will be returned (no false dismissals). The very few false alarms can be removed by a post-processing step. Since our framework is also capable of Univariate Time-Series (UTS) subsequence search, we first demonstrate the efficiency of our algorithms on several UTS datasets previously used in the literature. We follow this up with experiments using two large MTS databases from the aviation domain, each containing several millions of observations. Both these tests show that our algorithms have very high prune rates (>99%) thus needing actual disk access for only less than 1% of the observations. To the best of our knowledge, MTS subsequence search has never been attempted on datasets of the size we have used in this paper.

  6. Fast Analysis of Potential Scintillators Using Ion Time Of Flight

    NASA Astrophysics Data System (ADS)

    Milbrath, Brian; Zhang, Yanwen

    2008-05-01

    The development of scintillators for radiation applications such as national security, medical imaging, and experimental nuclear/particle physics has historically been rather slow, principally due to the developmental time necessary for large crystal growth. Scintillator crystals must achieve dimensions of a few mm before important characterizations, such as gamma ray energy resolution, can be performed. In order to facilitate accelerated discovery, we developed a time of flight (TOF) telescope for use on an ion beam. This allows individual determination of the ion energies prior to impinging the crystal, which may be a very thin prototype material. With such a technique, the scintillator performance in terms of energy resolution, light yield, decay time, and spectrum, can be determined quickly over a broad energy range. Though the analysis is performed using ions rather than the gamma-rays whose detection is the ultimate aim of the materials investigated, we have found useful correlations between the ion and gamma responses of the materials we have investigated (CaF2:Eu, YAP:Ce, BGO, CsI:Tl, and plastic scintillator). The technique appears to be able to rapidly determine whether a scintillator material has promise for further development.

  7. Peri-parturient rise of Cryptosporidium oocysts in cows: new insights provided by duplex quantitative real-time PCR.

    PubMed

    De Waele, Valérie; Berzano, Marco; Speybroeck, Niko; Berkvens, Dirk; Mulcahy, Grace M; Murphy, Thomas M

    2012-10-26

    In order to clarify if a peri-parturient rise of Cryptosporidium parvum oocysts occurs in cows, faecal samples from 42 cows on two farms were collected. These samples were taken during the pre-parturient, the peri-parturient and the post-parturient periods. Two methods were used to detect the oocysts, a nested-PCR coupled with sequencing and a duplex real-time PCR (qPCR) that quantified Cryptosporidium spp. DNA concentration. The qPCR results were adjusted using a hierarchical Bayesian model taking into account within and between run variation. Generalised Estimating Equation models (GEE) were used to determine if peri-parturient cows were at greater risk of being infected than pre- or post-parturient cows. Fourteen dairy cows exhibited a peri-parturient and post-parturient rise in the excretion of Cryptosporidium spp. oocysts, other than the zoonotic C. parvum. The cows in the suckler beef farm were the only ones infected with the zoonotic species C. parvum at calving. Due to the low concentration of oocysts excreted mainly from species other than C. parvum, it would appear unlikely that cows act as a source of infection for their calves or contribute significantly to environmental contamination. PMID:22681972

  8. RISE TIME DELAY DISCRIMINATOR

    DOEpatents

    Johnstone, C.W.

    1959-09-29

    A pulse-height discriminator for generating an output pulse when the accepted input pulse is approximately at its maximum value is described. A gating tube and a negative bias generator responsive to the derivative of the input pulse and means for impressing the output of the bias generator to at least one control electrode of the gating tube are included.

  9. Time variant cross correlation to assess residence time of water and implication for hydraulics of a sink-rise karst system

    NASA Astrophysics Data System (ADS)

    Bailly-Comte, V.; Martin, Jonathan B.; Screaton, E. J.

    2011-05-01

    Transport rates and residence time in the subsurface are critical parameters for understanding water-rock interactions for efficient contaminant remediation. This paper presents a methodology for assessing flow and transit time of water through hydrological systems, with specific applications to karst systems and implication for hydraulics of a conduit system surrounded by a porous and permeable intergranular matrix. A time variant cross-correlation function analysis is applied to bivariate time series that characterize mass transfer, assuming a stationary system using sliding windows of various sizes. We apply the method to 1 year long temperature records in the Santa Fe River (north central Florida) measured at (1) the River Sink, where all the incoming surface water drains into a sinkhole, (2) Sweetwater Lake, where the river resurges into a 500 m long karst window, and (3) the River Rise, where the water discharges from a first-magnitude karst spring. Results are compared with those obtained using specific conductivity. Estimated residence time ranges from less than 1 day during floods to more than 15 days during base flow within the 8000 m flow path between the River Sink and the River Rise. Results are used to characterize geometric, hydraulic, and hydrodynamic properties of this sink-rise system with strong matrix-conduit interactions. These properties are critical to the chemical and physical behavior of surface water-groundwater mixing. Our results also have direct implications for sampling strategies and hydrograph separation of many karst systems with different degrees and types of matrix porosity and permeability.

  10. Investigation on F layer height rise and equatorial spread F onset time: Signature of standing large-scale wave

    NASA Astrophysics Data System (ADS)

    Joshi, Lalit Mohan; Balwada, S.; Pant, T. K.; Sumod, S. G.

    2015-04-01

    Equatorial spread F observations have been categorized into three categories based on ionograms recorded over Sriharikota. First category comprised cases where the onset of equatorial spread F (ESF) was concurrent with the peak h'F time. Second and third categories comprised cases where the onset of ESF happened with a delay of 30 min and more than 30 min, respectively, with reference to the peak h'F time. Average peak h'F in the first category was more than 35 km higher than that in the second and third categories. Also, the peak vertical (upward) plasma drift was higher in the first category. Assuming the genesis of F region irregularity to have happened at or before the time of F layer attaining the peak height, late onset of ESF indicates the genesis of irregularities to have happened westward of Sriharikota. The fact that the peak h'F values were remarkably different in the three categories indicates a zonal variation of eastward electric field and postsunset height rise of F layer. The relative magnitude of the F layer height rise in the three different categories over Sriharikota has also been found to be significantly different than that over Thumba, an equatorial (magnetic) station located ~360 km westward of Sriharikota longitude. This scenario points toward the existence of a large-scale zonal standing wave in the F layer and its important role in F region instability process. Results presented in the manuscript have been discussed in the light of current understanding on the large-scale wave structure.

  11. A Fast-Time Simulation Tool for Analysis of Airport Arrival Traffic

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz; Meyn, Larry A.; Neuman, Frank

    2004-01-01

    The basic objective of arrival sequencing in air traffic control automation is to match traffic demand and airport capacity while minimizing delays. The performance of an automated arrival scheduling system, such as the Traffic Management Advisor developed by NASA for the FAA, can be studied by a fast-time simulation that does not involve running expensive and time-consuming real-time simulations. The fast-time simulation models runway configurations, the characteristics of arrival traffic, deviations from predicted arrival times, as well as the arrival sequencing and scheduling algorithm. This report reviews the development of the fast-time simulation method used originally by NASA in the design of the sequencing and scheduling algorithm for the Traffic Management Advisor. The utility of this method of simulation is demonstrated by examining the effect on delays of altering arrival schedules at a hub airport.

  12. Development of a novel voltage divider for measurement of sub-nanosecond rise time high voltage pulses

    NASA Astrophysics Data System (ADS)

    Mitra, S.; Senthil, K.; Singh, S. K.; Kumar, Ranjeet; Sharma, Archana

    2016-02-01

    This paper is about the development of a copper sulphate based aqueous-electrolytic voltage divider for the measurement of high voltage pulses, 100 kV, with pulse widths of 1-2 ns and rise time <1 ns. Novel features are incorporated in the design of the divider, to meet the performance requirements for the application. Analytical calculations to justify design are described. Structural simulation of the divider is carried out using field wave simulation software to verify the effectiveness. A calibration procedure has been developed to calibrate the divider. Results obtained during calibration are subjected to statistical analysis to determine the confidence of measurement. Details of design, analysis, and simulation are described in this paper.

  13. Fault plane orientations of microearthquakes at Mt. Etna from the inversion of P-wave rise times

    NASA Astrophysics Data System (ADS)

    de Lorenzo, Salvatore; Giampiccolo, Elisabetta; Martinez-Arevalo, Carmen; Patanè, Domenico; Romeo, Annalisa

    2010-01-01

    A crucial point in the analysis of tectonic earthquakes occurring in a volcanic area is the inference of the orientation of the structures along which the ruptures occur. These structures represent zones of weakness which could favor the migration of melt toward the surface and the assessment of their geometry is a fundamental step toward efficient evaluation of volcanic risk. We analyzed a high-quality dataset of 171 low-magnitude, tectonic earthquakes that occurred at Mt. Etna during the 2002-2003 eruption. We applied a recently developed technique aimed at inferring the source parameters (source size, dip and strike fault) and the intrinsic quality factor Qp of P waves from the inversion of rise times. The technique is based on numerically calibrated relationships among the rise time of first P waves and the source parameters for a circular crack rupturing at a constant velocity. For the most of the events the directivity source effect did not allow us to constrain the fault plane orientation. For a subset of 45 events with well constrained focal mechanisms we were able to constrain the "true" fault plane orientation. The level of resolution of the fault planes was assessed through a non linear analysis based on the random deviates technique. The significance of the retrieved fault plane solutions and the fit of the assumed source model to data were assessed through a χ-square test. Most of the retrieved fault plane solutions agree with the geometrical trend of known surface faults. The inferred source parameters and Qp are in agreement with the results of previous studies.

  14. A TRANSIT TIMING ANALYSIS OF NINE RISE LIGHT CURVES OF THE EXOPLANET SYSTEM TrES-3

    SciTech Connect

    Gibson, N. P.; Pollacco, D.; Simpson, E. K.; Barros, S.; Joshi, Y. C.; Todd, I.; Keenan, F. P.; Skillen, I.; Benn, C.; Christian, D.; Hrudkova, M.; Steele, I. A.

    2009-08-01

    We present nine newly observed transits of TrES-3, taken as part of a transit timing program using the RISE instrument on the Liverpool Telescope. A Markov-Chain Monte Carlo analysis was used to determine the planet-star radius ratio and inclination of the system, which were found to be R{sub p} /R {sub *} = 0.1664{sup +0.0011} {sub -0.0018} and i = 81.73{sup +0.13} {sub -0.04}, respectively, consistent with previous results. The central transit times and uncertainties were also calculated, using a residual-permutation algorithm as an independent check on the errors. A re-analysis of eight previously published TrES-3 light curves was conducted to determine the transit times and uncertainties using consistent techniques. Whilst the transit times were not found to be in agreement with a linear ephemeris, giving {chi}{sup 2} = 35.07 for 15 degrees of freedom, we interpret this to be the result of systematics in the light curves rather than a real transit timing variation. This is because the light curves that show the largest deviation from a constant period either have relatively little out-of-transit coverage or have clear systematics. A new ephemeris was calculated using the transit times and was found to be T{sub c} (0) = 2454632.62610 {+-} 0.00006 HJD and P = 1.3061864 {+-} 0.0000005 days. The transit times were then used to place upper mass limits as a function of the period ratio of a potential perturbing planet, showing that our data are sufficiently sensitive to have probed sub-Earth mass planets in both interior and exterior 2:1 resonances, assuming that the additional planet is in an initially circular orbit.

  15. Slow and Fast Transitions in the Rising Phase of Outbursts from NS-LMXB Transients, Aquila X-1 and 4U 1608-52

    NASA Astrophysics Data System (ADS)

    Asai, Kazumi; Matsuoka, Masaru; Mihara, Tatehiro; Sugizaki, Mutsumi; Serino, Motoko; Nakahira, Satoshi; Negoro, Hitoshi; Ueda, Yoshihiro; Yamaoka, Kazutaka

    2012-12-01

    We analyzed the initial rising behaviors of X-ray outbursts from two transient low-mass X-ray binaries (LMXBs) containing a neutron-star (NS), Aquila X-1 (Aql X-1) and 4U 1608-52, which are continuously being monitored by MAXI/GSC in 2-20 keV, RXTE/ASM in 2-10 keV, and Swift/BAT in 15-50 keV. We found that the observed ten outbursts can be classified into two types based on the patterns of the relative intensity evolutions in the two energy bands below/above 15 keV. One type behaves as the 15-50 keV intensity achieves the maximum during the initial hard-state period, and drops greatly at the hard-to-soft state transition. On the other hand, the other type does as both the 2-15 keV and 15-50 keV intensities achieve the maximums after the transition. The former have the longer initial hard-state (gtrsim 9 d) than the latter (lesssim 5 d). Therefore, we named them as slow-type (S-type) and fast-type (F-type), respectively. These two types also show differences in the luminosity at the hard-to-soft state transition as well as in the average luminosity before the outburst started, where the S-type are higher than the F-type in both. These results suggest that the X-ray radiation during the pre-outburst period, which heats up the accretion disk and delays the disk transition (i.e., from a geometrically thick disk to a thin one), would determine whether the following outburst becomes S-type or F-type. The luminosity when the hard-to-soft state transition occurs is higher than ˜8 × 1036 erg s-1 in the S-type, which corresponds to 4% of the Eddington luminosity for a 1.4 M⊙ NS.

  16. Hydrothermal Mineral Deposits From a Young (0.1Ma) Abyssal Hill on the Flank of the Fast-Spreading East Pacific Rise

    NASA Astrophysics Data System (ADS)

    Benjamin, S. B.; Haymon, R. M.

    2004-12-01

    It has been estimated from heat flow measurements that at least 40% of the total hydrothermal heat lost from oceanic lithosphere is removed from 0.1-5 Ma abyssal hill terrain on mid-ocean ridge flanks. Despite the large magnitude of estimated hydrothermal heat loss from young abyssal hills, little is known about characteristics of hydrothermal vents and mineral deposits in this setting. This study describes the first abyssal hill hydrothermal samples to be collected on the flank of a fast-spreading ridge. The mineral deposits were discovered at "Tevnia Site" on the axis-facing fault scarp of an abyssal hill, located on ˜0.1 Ma lithosphere ˜5 km east of the East Pacific Rise (EPR) axis at 10\\deg 20'N. Observations of Galatheid crabs, "dandelion" siphonophores, and colonies of dead, yet still intact, Tevnia worm tubes at this site during Alvin dives in 1994 suggests relatively recent hydrothermal activity. The deposits are friable hydrothermal precipitates incorporating volcanic clasts brecciated at both the micro and macro scales. The petrographic sequence of brecciation, alteration, and cementation exhibited by the samples suggests that they formed from many pulses of hydrothermal venting interspersed with, and perhaps triggered by, repeated tectonic events as the abyssal hill was uplifted and moved off-axis (see also Haymon et al., this session). Observed minerals include x-ray amorphous opaline silica and Fe-oxide phases, crystalline Mn-oxides (birnessite and todorokite), an irregularly stratified mixed layer nontronite-celadonite, and residual calcite in sediment-derived microfossils incorporated into the breccia matrix. This mineral assemblage suggests that the deposits precipitated from moderately low-temperature (<140\\deg C) fluids, enriched in K, Fe, Si, and Mn, with a near-neutral pH. The presence of tubeworm casings at the site is evidence that the hydrothermal fluids carried H2S, however no metal sulfide phases were identified in the samples. Although

  17. Fast Time and Space Parallel Algorithms for Solution of Parabolic Partial Differential Equations

    NASA Technical Reports Server (NTRS)

    Fijany, Amir

    1993-01-01

    In this paper, fast time- and Space -Parallel agorithms for solution of linear parabolic PDEs are developed. It is shown that the seemingly strictly serial iterations of the time-stepping procedure for solution of the problem can be completed decoupled.

  18. Copernicus Rising

    NASA Astrophysics Data System (ADS)

    Rose, Michael A.

    2007-08-01

    Copernicus Rising began as a historical biography when it was first conceived, but as the writing progressed it quickly became a rather absurd play that took historical research and twisted it through the lens of my own wit, philosophy and personal affection for the characters. When working with historical figures--characters who existed in a very tangible way in our own history--the playwriting process opens a dialogue between different points in time and space. The difficulty lies in finding a unique and clear voice amongst the discordant personalities involved in this time and space overlap, both in the writing and production processes, in order to get to the heart of what the play is really all about. This thesis follows the journey of the play from its historical roots through the creation of an absurd journey both insides and outside time, space and the human mind. The first part of the thesis explains the beginnings of the concept and outlines much of the research and development that went into the play. The next part outlines the process of production and integrating the world on paper with that of moving bodies on stage. In the final part, post-production discussions and audience feedback sessions shape the play into the draft included in this thesis.

  19. A comparative study of Type II-P and II-L supernova rise times as exemplified by the case of LSQ13cuw

    NASA Astrophysics Data System (ADS)

    Gall, E. E. E.; Polshaw, J.; Kotak, R.; Jerkstrand, A.; Leibundgut, B.; Rabinowitz, D.; Sollerman, J.; Sullivan, M.; Smartt, S. J.; Anderson, J. P.; Benetti, S.; Baltay, C.; Feindt, U.; Fraser, M.; González-Gaitán, S.; Inserra, C.; Maguire, K.; McKinnon, R.; Valenti, S.; Young, D.

    2015-10-01

    We report on our findings based on the analysis of observations of the Type II-L supernova LSQ13cuw within the framework of currently accepted physical predictions of core-collapse supernova explosions. LSQ13cuw was discovered within a day of explosion, hitherto unprecedented for Type II-L supernovae. This motivated a comparative study of Type II-P and II-L supernovae with relatively well-constrained explosion epochs and rise times to maximum (optical) light. From our sample of twenty such events, we find evidence of a positive correlation between the duration of the rise and the peak brightness. On average, SNe II-L tend to have brighter peak magnitudes and longer rise times than SNe II-P. However, this difference is clearest only at the extreme ends of the rise time versus peak brightness relation. Using two different analytical models, we performed a parameter study to investigate the physical parameters that control the rise time behaviour. In general, the models qualitatively reproduce aspects of the observed trends. We find that the brightness of the optical peak increases for larger progenitor radii and explosion energies, and decreases for larger masses. The dependence of the rise time on mass and explosion energy is smaller than the dependence on the progenitor radius. We find no evidence that the progenitors of SNe II-L have significantly smaller radii than those of SNe II-P. Appendices are available in electronic form at http://www.aanda.org

  20. Evaluation of Fast-Time Wake Vortex Models using Wake Encounter Flight Test Data

    NASA Technical Reports Server (NTRS)

    Ahmad, Nashat N.; VanValkenburg, Randal L.; Bowles, Roland L.; Limon Duparcmeur, Fanny M.; Gloudesman, Thijs; van Lochem, Sander; Ras, Eelco

    2014-01-01

    This paper describes a methodology for the integration and evaluation of fast-time wake models with flight data. The National Aeronautics and Space Administration conducted detailed flight tests in 1995 and 1997 under the Aircraft Vortex Spacing System Program to characterize wake vortex decay and wake encounter dynamics. In this study, data collected during Flight 705 were used to evaluate NASA's fast-time wake transport and decay models. Deterministic and Monte-Carlo simulations were conducted to define wake hazard bounds behind the wake generator. The methodology described in this paper can be used for further validation of fast-time wake models using en-route flight data, and for determining wake turbulence constraints in the design of air traffic management concepts.

  1. Fast timing study of a CeBr3 crystal: Time resolution below 120 ps at 60Co energies

    NASA Astrophysics Data System (ADS)

    Fraile, L. M.; Mach, H.; Vedia, V.; Olaizola, B.; Paziy, V.; Picado, E.; Udías, J. M.

    2013-02-01

    We report on the time response of a novel inorganic scintillator, CeBr3. The measurements were performed using a cylindrical crystal of 1-in. in height and 1-in. in diameter at 22Na and 60Co photon energies. The time response was measured against a fast reference BaF2 detector. Hamamatsu R9779 and Photonis XP20D0 fast photomultipliers (PMTs) were used. The PMT bias voltages and Constant Fraction Discriminator settings were optimized with respect to the timing resolution. The Full Width at Half Maximum (FWHM) time resolution for an individual CeBr3 crystal coupled to Hamamatsu PMT is found here to be as low as 119 ps at 60Co energies, which is comparable to the resolution of 107 ps reported for LaBr3(Ce). For 511 keV photons the measured FWHM time resolution for CeBr3 coupled to the Hamamatsu PMT is 164 ps.

  2. Analog electro-optical readout of SiPMs achieves fast timing required for time-of-flight PET/MR.

    PubMed

    Bieniosek, M F; Levin, C S

    2015-05-01

    The design of combined positron emission tomography/magnetic resonance (PET/MR) systems presents a number of challenges to engineers, as it forces the PET system to acquire data in a space constrained environment that is sensitive to electro-magnetic interference and contains high static, radio frequency and gradient fields. In this work we validate fast timing performance of a PET scintillation detector using a potentially very compact, very low power, and MR compatible readout method in which analog silicon photomultipliers (SiPM) signals are transmitted optically away from the MR bore with little or even no additional readout electronics. This analog 'electro-optial' method could reduce the entire PET readout in the MR bore to two compact, low power components (SiPMs and lasers). Our experiments show fast timing performance from analog electro-optical readout with and without pre-amplification. With 3 mm × 3 mm × 20 mm lutetium-yttrium oxyorthosilicate (LYSO) crystals and Excelitas SiPMs the best two-sided fwhm coincident timing resolution achieved was 220 +/- 3 ps in electrical mode, 230 +/- 2 ps in electro-optical with preamp mode, and 253 +/- 2 ps in electro-optical without preamp mode. Timing measurements were also performed with Hamamatsu SiPMs and 3 mm × 3 mm × 5 mm crystals. In the future the timing degradation seen can be further reduced with lower laser noise or improvements SiPM rise time or gain. PMID:25905626

  3. Fast X-ray micro-CT for real-time 4D observation

    NASA Astrophysics Data System (ADS)

    Takano, H.; Yoshida, K.; Tsuji, T.; Koyama, T.; Tsusaka, Y.; Kagoshima, Y.

    2009-09-01

    Fast X-ray computed tomography (CT) system with sub-second order measurement for single CT acquisition has been developed. The system, consisting of a high-speed sample rotation stage and a high-speed X-ray camera, is constructed at synchrotron radiation beamline in order to utilize fully intense X-rays. A time-resolving CT movie (i.e. 4D CT) can be available by operating the fast CT system continuously. Real-time observation of water absorbing process of super-absorbent polymer (SAP) has been successfully performed with the 4D CT operation.

  4. Mesoscale Simulation Data for Initializing Fast-Time Wake Transport and Decay Models

    NASA Technical Reports Server (NTRS)

    Ahmad, Nashat N.; Proctor, Fred H.; Vanvalkenburg, Randal L.; Pruis, Mathew J.; LimonDuparcmeur, Fanny M.

    2012-01-01

    The fast-time wake transport and decay models require vertical profiles of crosswinds, potential temperature and the eddy dissipation rate as initial conditions. These inputs are normally obtained from various field sensors. In case of data-denied scenarios or operational use, these initial conditions can be provided by mesoscale model simulations. In this study, the vertical profiles of potential temperature from a mesoscale model were used as initial conditions for the fast-time wake models. The mesoscale model simulations were compared against available observations and the wake model predictions were compared with the Lidar measurements from three wake vortex field experiments.

  5. Fast photochromism in polymer matrix with plasticizer and real-time dynamic holographic properties

    NASA Astrophysics Data System (ADS)

    Ishii, Norihito; Abe, Jiro

    2013-04-01

    We have developed a photochromic polymer film for the use of real-time dynamic hologram, fabricated by the plasticized polymer doped with the fast photochromic molecule. The addition of a plasticizer into the conventional polymer is proved to be effective to improve the photochromic performances for the polymer film doped with the fast photochromic molecule that shows instantaneous coloration upon exposure to UV light and rapid fading in the dark. The plasticized photochromic polymers enable the real-time control of the writing and erasing of a holographic grating and show a higher recording sensitivity compared with other organic holographic materials.

  6. A signal distribution board for the timing and fast control master of the CBM experiment

    NASA Astrophysics Data System (ADS)

    Meder, L.; Dreschmann, M.; Sander, O.; Becker, J.

    2016-02-01

    For the CBM experiment a Timing and Fast-Control (TFC) system is being developed. In the detector readout, FPGA-based data processing boards (DPB) are organized in a large number of computing crates. At the crate level, the TFC master is connected to one TFC slave per crate, whereas the DPB AMCs are interconnected by the crates' infrastructure. In this article, an FMC-based signal distribution board is proposed allowing the transmission of a high-quality clock and timing and fast-control data from and to connected TFC slaves at distances of about 30 meters using twisted-pair cables.

  7. Crustal structure in the ROSE area of the East Pacific Rise: One-dimensional travel time inversion of sonobuoys and expanded spread profiles

    NASA Astrophysics Data System (ADS)

    Vera, Emilio E.; Mutter, John C.

    1988-06-01

    We study the variability of the young oceanic crust as a function of age by analyzing 11 digitally recorded sonobuoys and three expanded spread profiles over 0.5-, 2.5-, and 4.5-m.y.-old oceanic crust. The data were collected during the Rivera Ocean Seismic Experiment at the East Pacific Rise between 11° and 13°N. We analyze the data within a one-dimensional travel time scheme using the tau-p method and travel time forward modeling. We perform the tau-p mapping by using a polynomial least squares technique that is fast and can be applied even to poor quality data as in this case. We do not see large changes in the velocity structure between 0.5-and 4.5-m.y.-old oceanic crust. The overall structure consists of a rapid increase in velocity from about 2.5-6 km/s within the uppermost 1 km of crust (layer 2A), a zone ≤1 km in thickness with little or no velocity gradient (layer 2B), a thin transition layer with a relatively rapid increase in velocity from about 6.2 to 7 km/s (layer 2C), and a thick nearly homogeneous basal layer with velocities around 7.2 km/s (layer 3). We find that the low velocities at the seafloor and large velocity gradients within the shallow crust can be explained by the hypothesis of large-scale cracks and their behavior under confining pressure. For the variation of velocity V versus depth below seafloor z, this hypothesis yields V = (V02 + Bz)1/2, a relationship that fits our solutions.

  8. Ultra-fast consensus of discrete-time multi-agent systems under a unified framework

    NASA Astrophysics Data System (ADS)

    Zhang, Wenle; Liu, Jianchang

    2015-06-01

    This paper deals with the ultra-fast consensus problem of high-order discrete-time multi-agent systems under a unified framework. A multi-step neighbour-error predictive mechanism is established based on the future evolution of the network dynamic without predictive information. By predicting the dynamics of a network several steps ahead and adding this information into the consensus protocol, a novel ultra-fast consensus protocol with the self-feedback term is proposed. The asymptotic convergence factor is improved by a power of q + 1 compared to the routine consensus protocol. The ultra-fast consensus algorithm can overcome the influence of communication topology to the convergence speed toward consensus, and solve the difficult problem of selecting the optimal control gain which minimises the asymptotic convergence factor. Moveover, some sufficient conditions for ultra-fast consensus design are given herein. The ones decouple the design of the synchronising gains from the detailed graph properties, and explicitly reveal how the agent dynamic and the communication graph jointly affect ultra-fast consensus of discrete-time multi-agent systems. A simulation is performed to illustrate the effectiveness of the theoretical results.

  9. Natural fast speech is perceived as faster than linearly time-compressed speech.

    PubMed

    Reinisch, Eva

    2016-05-01

    Listeners compensate for variation in speaking rate: In a fast context, a given sound is interpreted as longer than in a slow context. Experimental rate manipulations have been achieved either through linear compression or by using natural fast speech. However, in natural fast speech, segments are subject to processes such as reduction or deletion. If speaking rate is then defined as the number of segments per unit time, the question arises as to what impact such processes have on listeners' normalization for speaking rate. The present study tested the effect of sentence duration and fast-speech processes on rate normalization for a German vowel duration contrast. Results showed that a naturally produced short sentence containing segmental reductions and deletions led to the most "long" vowel responses whereas the long sentence with clearly articulated segments led to the fewest. This suggests that speaking rate is not merely calculated as the number of segments realized per unit time. Rather, listeners associate properties of natural fast speech with a higher speaking rate. This contrasts with earlier results and a second experiment in which perceived speaking rate was measured in an explicit task. Models of speech comprehension are evaluated with regard to the present findings. PMID:26860711

  10. Waveform timing performance of a 5 GS/s fast pulse sampling module with DRS4

    NASA Astrophysics Data System (ADS)

    Wang, Jin-Hong; Liu, Shu-Bin; An, Qi

    2015-10-01

    We first clarify timing issues of non-uniform sampling intervals regarding a 5 GS/s fast pulse sampling module with DRS4. A calibration strategy is proposed, and as a result, the waveform timing performance is improved to below 10 ps RMS. We then further evaluate waveform-timing performance of the module by comparing with a 10 GS/s oscilloscope in a setup with plastic scintillators and fast PMTs. Different waveform timing algorithms are employed for analysis, and the module shows comparable timing performance with that of the oscilloscope. Supported by Knowledge Innovation Program of the Chinese Academy of Sciences (KJCX2-YW-N27), and National Natural Science Foundation of China (11175176)

  11. Demonstration of two-dimensional time-encoded imaging of fast neutrons

    DOE PAGESBeta

    Brennan, J.; Brubaker, E.; Gerling, M.; Marleau, P.; McMillan, K.; Nowack, A.; Galloudec, N. Renard-Le; Sweany, M.

    2015-09-09

    Here, we present a neutron detector system based on time-encoded imaging, and demonstrate its applicability toward the spatial mapping of special nuclear material. We also demonstrate that two-dimensional fast-neutron imaging with 2° resolution at 2 m stand-off is feasible with only two instrumented detectors.

  12. Wide dynamic range neutron flux monitor having fast time response for the Large Helical Device.

    PubMed

    Isobe, M; Ogawa, K; Miyake, H; Hayashi, H; Kobuchi, T; Nakano, Y; Watanabe, K; Uritani, A; Misawa, T; Nishitani, T; Tomitaka, M; Kumagai, T; Mashiyama, Y; Ito, D; Kono, S; Yamauchi, M; Takeiri, Y

    2014-11-01

    A fast time response, wide dynamic range neutron flux monitor has been developed toward the LHD deuterium operation by using leading-edge signal processing technologies providing maximum counting rate up to ∼5 × 10(9) counts/s. Because a maximum total neutron emission rate over 1 × 10(16) n/s is predicted in neutral beam-heated LHD plasmas, fast response and wide dynamic range capabilities of the system are essential. Preliminary tests have demonstrated successful performance as a wide dynamic range monitor along the design. PMID:25430293

  13. Wide dynamic range neutron flux monitor having fast time response for the Large Helical Device

    SciTech Connect

    Isobe, M. Takeiri, Y.; Ogawa, K.; Miyake, H.; Hayashi, H.; Kobuchi, T.; Nakano, Y.; Watanabe, K.; Uritani, A.; Misawa, T.; Nishitani, T.; Tomitaka, M.; Kumagai, T.; Mashiyama, Y.; Ito, D.; Kono, S.; Yamauchi, M.

    2014-11-15

    A fast time response, wide dynamic range neutron flux monitor has been developed toward the LHD deuterium operation by using leading-edge signal processing technologies providing maximum counting rate up to ∼5 × 10{sup 9} counts/s. Because a maximum total neutron emission rate over 1 × 10{sup 16} n/s is predicted in neutral beam-heated LHD plasmas, fast response and wide dynamic range capabilities of the system are essential. Preliminary tests have demonstrated successful performance as a wide dynamic range monitor along the design.

  14. Recovery time course in contractile function of fast and slow skeletal muscle after hindlimb immobilization

    NASA Technical Reports Server (NTRS)

    Witzmann, F. A.; Kim, D. H.; Fitts, R. H.

    1982-01-01

    The present study was undertaken to characterize the time course and extent of recovery in the isometric and isotonic contractile properties of fast and slow skeletal muscle following 6 wk of hindlimb immobilization. Female Sprague-Dawley rats were randomly assigned to an immobilized group or a control group. The results of the study show that fast and slow skeletal muscles possess the ability to completely recover normal contractile function following 6 wk of hindlimb immobilization. The rate of recovery is dependent on the fiber type composition of the affected muscle.

  15. Fast damage imaging using the time-reversal technique in the frequency-wavenumber domain

    NASA Astrophysics Data System (ADS)

    Zhu, R.; Huang, G. L.; Yuan, F. G.

    2013-07-01

    The time-reversal technique has been successfully used in structural health monitoring (SHM) for quantitative imaging of damage. However, the technique is very time-consuming when it is implemented in the time domain. In this paper, we study the technique in the frequency-wavenumber (f-k) domain for fast real-time imaging of multiple damage sites in plates using scattered flexural plate waves. Based on Mindlin plate theory, the time reversibility of dispersive flexural waves in an isotropic plate is theoretically investigated in the f-k domain. A fast damage imaging technique is developed by using the cross-correlation between the back-propagated scattered wavefield and the incident wavefield in the frequency domain. Numerical simulations demonstrate that the proposed technique cannot only localize multiple damage sites but also potentially identify their sizes. Moreover, the time-reversal technique in the f-k domain is about two orders of magnitude faster than the method in the time domain. Finally, experimental testing of an on-line SHM system with a sparse piezoelectric sensor array is conducted for fast multiple damage identification using the proposed technique.

  16. Relationship between ridge segmentation and Moho transition zone structure from 3D multichannel seismic data collected over the fast-spreading East Pacific Rise at 9°50'N

    NASA Astrophysics Data System (ADS)

    Aghaei, O.; Nedimovic, M. R.; Canales, J.; Carton, H. D.; Carbotte, S. M.; Mutter, J. C.

    2010-12-01

    We present stack and migrated stack volumes of a fast-spreading center produced from the high-resolution 3D multichannel seismic (MCS) data collected in summer of 2008 over the East Pacific Rise (EPR) at 9°50’N during cruise MGL0812. These volumes give us new insight into the 3D structure of the lower crust and Moho Transition Zone (MTZ) along and across the ridge axis, and how this structure relates to the ridge segmentation at the spreading axis. The area of 3D coverage is between 9°38’N and 9°58’N (~1000 km2) where the documented eruptions of 1990-91 and 2005-06 occurred. This high-resolution survey has a nominal bin size of 6.25 m in cross-axis direction and 37.5 m in along-axis direction. The prestack processing sequence applied to data includes 1D and 2D filtering to remove low-frequency cable noise, offset-dependent spherical divergence correction to compensate for geometrical spreading, surface-consistent amplitude correction to balance abnormally high/low shot and channel amplitudes, trace editing, velocity analysis, normal moveout (NMO), and CMP mute of stretched far offset arrivals. The poststack processing includes seafloor multiple mute to reduce migration noise and poststack time migration. We also will apply primary multiple removal and prestack time migration to the data and compare the results to the migrated stack volume. The poststack and prestack migrated volumes will then be used to detail Moho seismic signature variations and their relationship to ridge segmentation, crustal age, bathymetry, and magmatism. We anticipate that the results will also provide insight into the mantle upwelling pattern, which is actively debated for the study area.

  17. A novel fast gas chromatography method for higher time resolution measurements of speciated monoterpenes in air

    NASA Astrophysics Data System (ADS)

    Jones, C. E.; Kato, S.; Nakashima, Y.; Kajii, Y.

    2014-05-01

    Biogenic emissions supply the largest fraction of non-methane volatile organic compounds (VOC) from the biosphere to the atmospheric boundary layer, and typically comprise a complex mixture of reactive terpenes. Due to this chemical complexity, achieving comprehensive measurements of biogenic VOC (BVOC) in air within a satisfactory time resolution is analytically challenging. To address this, we have developed a novel, fully automated Fast Gas Chromatography (Fast-GC) based technique to provide higher time resolution monitoring of monoterpenes (and selected other C9-C15 terpenes) during plant emission studies and in ambient air. To our knowledge, this is the first study to apply a Fast-GC based separation technique to achieve quantification of terpenes in ambient air. Three chromatography methods have been developed for atmospheric terpene analysis under different sampling scenarios. Each method facilitates chromatographic separation of selected BVOC within a significantly reduced analysis time compared to conventional GC methods, whilst maintaining the ability to quantify individual monoterpene structural isomers. Using this approach, the C9-C15 BVOC composition of single plant emissions may be characterised within a 14.5 min analysis time. Moreover, in-situ quantification of 12 monoterpenes in unpolluted ambient air may be achieved within an 11.7 min chromatographic separation time (increasing to 19.7 min when simultaneous quantification of multiple oxygenated C9-C10 terpenoids is required, and/or when concentrations of anthropogenic VOC are significant). These analysis times potentially allow for a twofold to fivefold increase in measurement frequency compared to conventional GC methods. Here we outline the technical details and analytical capability of this chromatographic approach, and present the first in-situ Fast-GC observations of 6 monoterpenes and the oxygenated BVOC (OBVOC) linalool in ambient air. During this field deployment within a suburban forest

  18. Fast Mapping Across Time: Memory Processes Support Children’s Retention of Learned Words

    PubMed Central

    Vlach, Haley A.; Sandhofer, Catherine M.

    2012-01-01

    Children’s remarkable ability to map linguistic labels to referents in the world is commonly called fast mapping. The current study examined children’s (N = 216) and adults’ (N = 54) retention of fast-mapped words over time (immediately, after a 1-week delay, and after a 1-month delay). The fast mapping literature often characterizes children’s retention of words as consistently high across timescales. However, the current study demonstrates that learners forget word mappings at a rapid rate. Moreover, these patterns of forgetting parallel forgetting functions of domain-general memory processes. Memory processes are critical to children’s word learning and the role of one such process, forgetting, is discussed in detail – forgetting supports extended mapping by promoting the memory and generalization of words and categories. PMID:22375132

  19. Fast-ball sports experts depend on an inhibitory strategy to reprogram their movement timing.

    PubMed

    Nakamoto, Hiroki; Ikudome, Sachi; Yotani, Kengo; Maruyama, Atsuo; Mori, Shiro

    2013-07-01

    The purpose of our study was to clarify whether an inhibitory strategy is used for reprogramming of movement timing by experts in fast-ball sports when they correct their movement timing due to unexpected environmental changes. We evaluated the influence of disruption of inhibitory function of the right inferior frontal gyrus (rIFG) on reprogramming of movement timing of experts and non-experts in fast-ball sports. The task was to manually press a button to coincide with the arrival of a moving target. The target moved at a constant velocity, and its velocity was suddenly either increased or decreased in some trials. The task was performed either with or without transcranial magnetic stimulation (TMS), which was delivered to the region of the rIFG. Under velocity change conditions without TMS, the experts showed significantly smaller timing errors and a higher rate of reprogramming of movement timing than the non-experts. Moreover, TMS application during the task significantly diminished the expert group's performance, but not the control group, particularly in the condition where the target velocity decreases. These results suggest that experts use an inhibitory strategy for reprogramming of movement timing. In addition, the rIFG inhibitory function contributes to the superior movement correction of experts in fast-ball sports. PMID:23660742

  20. New Evidence for the Role of Emerging Flux in a Solar Filament's Slow Rise Preceding its CME-Producing Fast Eruption

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.; Harra, Louis K.; Moore, Ronald L.

    2007-01-01

    We observe the eruption of a large-scale (approx.300,000 km) quiet-region solar filament, leading to an Earth-directed "halo" coronal mass ejection (CME). We use coronal imaging data in EUV from the EUV Imaging Telescope (EIT) on the Solar and Heliospheric Observatory (SOHO) satellite, and in soft X-rays (SXRs) from the Soft X-ray Telescope (SXT) on the Yohkoh satellite. We also use spectroscopic data from the Coronal Diagnostic Spectrometer (CDS), magnetic data from the Michelson Doppler Imager (MDI), and white-light coronal data from the Large Angle and Spectrometric Coronagraph Experiment (LASCO), all on SOHO. Initially the filament shows a slow (approx.1 km/s projected against the solar disk) and approximately constant-velocity rise for about 6 hours, before erupting rapidly, reaching a velocity of approx. 8 km/s over the next approx. 25 min. CDS Doppler data show Earth-directed filament velocities ranging from < 20 km/s (the noise limit) during the slow-rise phase, to approx. 100 km/s-1 early in the eruption. Beginning within 10 hours prior to the start of the slow rise, localized new magnetic flux emerged near one end of the filament. Near the start of and during the slow-rise phase, SXR microflaring occurred repeatedly at the flux-emergence site, in conjunction with the development of a fan of SXR illumination of the magnetic arcade over the filament. The SXR microflares, development of the SXR fan, and motion of the slow-rising filament are all consistent with "tether-weakening" reconnection occurring between the newly-emerging flux and the overlying arcade field containing the filament field. The microflares and fan structure are not prominent in EUV, and would not have been detected without the SXR data. Standard "twin dimmings" occur near the location of the filament, and "remote dimmings" and "brightenings" occur further removed from the filament.

  1. Fast time-reversible algorithms for molecular dynamics of rigid-body systems.

    PubMed

    Kajima, Yasuhiro; Hiyama, Miyabi; Ogata, Shuji; Kobayashi, Ryo; Tamura, Tomoyuki

    2012-06-21

    In this paper, we present time-reversible simulation algorithms for rigid bodies in the quaternion representation. By advancing a time-reversible algorithm [Y. Kajima, M. Hiyama, S. Ogata, and T. Tamura, J. Phys. Soc. Jpn. 80, 114002 (2011)] that requires iterations in calculating the angular velocity at each time step, we propose two kinds of iteration-free fast time-reversible algorithms. They are easily implemented in codes. The codes are compared with that of existing algorithms through demonstrative simulation of a nanometer-sized water droplet to find their stability of the total energy and computation speeds. PMID:22779579

  2. A real-time dynamic holographic material using a fast photochromic molecule

    NASA Astrophysics Data System (ADS)

    Ishii, Norihito; Kato, Tetsuya; Abe, Jiro

    2012-11-01

    We have developed a real-time, dynamic holographic material that exhibits rapid colouration upon irradiation with UV light and successive fast thermal bleaching within tens of milliseconds at room temperature. Photochromic polymer films were prepared by a simple solution-casting method from the benzene solution of the mixture of the photochromic molecule, poly(ethyl acrylate), and poly(phenoxyethyl acrylate). The real-time control of holographic images using the photochromic polymer film yields a speed equivalent to the time resolution of the human eye. This new type of dynamic holographic material based on fast photochromism opens up an exciting new area of research in the future development of a large dynamic 3D display.

  3. A real-time dynamic holographic material using a fast photochromic molecule

    PubMed Central

    Ishii, Norihito; Kato, Tetsuya; Abe, Jiro

    2012-01-01

    We have developed a real-time, dynamic holographic material that exhibits rapid colouration upon irradiation with UV light and successive fast thermal bleaching within tens of milliseconds at room temperature. Photochromic polymer films were prepared by a simple solution-casting method from the benzene solution of the mixture of the photochromic molecule, poly(ethyl acrylate), and poly(phenoxyethyl acrylate). The real-time control of holographic images using the photochromic polymer film yields a speed equivalent to the time resolution of the human eye. This new type of dynamic holographic material based on fast photochromism opens up an exciting new area of research in the future development of a large dynamic 3D display. PMID:23139865

  4. The Commensal Real-Time ASKAP Fast-Transients (CRAFT) Survey

    NASA Astrophysics Data System (ADS)

    Macquart, Jean-Pierre; Bailes, M.; Bhat, N. D. R.; Bower, G. C.; Bunton, J. D.; Chatterjee, S.; Colegate, T.; Cordes, J. M.; D'Addario, L.; Deller, A.; Dodson, R.; Fender, R.; Haines, K.; Halll, P.; Harris, C.; Hotan, A.; Johnston, S.; Jones, D. L.; Keith, M.; Koay, J. Y.; Lazio, T. J. W.; Majid, W.; Murphy, T.; Navarro, R.; Phillips, C.; Quinn, P.; Preston, R. A.; Stansby, B.; Stairs, I.; Stappers, B.; Staveley-Smith, L.; Tingay, S.; Thompson, D.; van Straten, W.; Wagstaff, K.; Warren, M.; Wayth, R.; Wen, L.; CRAFT Collaboration

    2010-06-01

    We are developing a purely commensal survey experiment for fast (<5 s) transient radio sources. Short-timescale transients are associated with the most energetic and brightest single events in the Universe. Our objective is to cover the enormous volume of transients parameter space made available by ASKAP, with an unprecedented combination of sensitivity and field of view. Fast timescale transients open new vistas on the physics of high brightness temperature emission,extreme states of matter and the physics of strong gravitational fields. In addition, the detection of extragalactic objects affords us an entirely new and extremely sensitive probe on the huge reservoir of baryons present in the IGM. We outline here our approach to the considerable challenge involved in detecting fast transients, particularly the development of hardware fast enough to dedisperse and search the ASKAP data stream at or near real-time rates. Through CRAFT, ASKAP will provide the testbed of many of the key technologies and survey modes proposed for high time resolution science with the SKA.

  5. Investigation of the rise time and damping of spin excitations in Ni{sub 81}Fe{sub 19} thin films

    SciTech Connect

    Wu, J.; Hughes, N. D.; Moore, J. R.; Hicken, R. J.

    2001-06-01

    The rise and damping of spin excitations in three Ni{sub 81}Fe{sub 19} films of thickness 50, 500, and 5000 Aa have been studied with an optical pump{endash}probe technique in which the sample is pumped with an optically triggered magnetic field pulse. The motion of the magnetization was described by the uniform mode solution of the Landau{endash}Lifshitz{endash}Gilbert equation. The rise time of the pulsed field within the film was smallest in the 50 Aa sample and was generally greater when the pulsed field was perpendicular to the film plane. The damping constant was smallest in the 500 Aa sample. The variations in the rise time and damping are attributed to the presence of eddy currents and structural disorder in the films. Under certain excitation conditions a second mode was observed in the 5000 Aa sample which we believe to be a magnetostatic surface mode. {copyright} 2001 American Institute of Physics.

  6. Fast monitoring of epileptic seizures using recurrence time statistics of electroencephalography.

    PubMed

    Gao, Jianbo; Hu, Jing

    2013-01-01

    Epilepsy is a relatively common brain disorder which may be very debilitating. Currently, determination of epileptic seizures often involves tedious, time-consuming visual inspection of electroencephalography (EEG) data by medical experts. To better monitor seizures and make medications more effective, we propose a recurrence time based approach to characterize brain electrical activity. Recurrence times have a number of distinguished properties that make it very effective for forewarning epileptic seizures as well as studying propagation of seizures: (1) recurrence times amount to periods of periodic signals, (2) recurrence times are closely related to information dimension, Lyapunov exponent, and Kolmogorov entropy of chaotic signals, (3) recurrence times embody Shannon and Renyi entropies of random fields, and (4) recurrence times can readily detect bifurcation-like transitions in dynamical systems. In particular, property (4) dictates that unlike many other non-linear methods, recurrence time method does not require the EEG data be chaotic and/or stationary. Moreover, the method only contains a few parameters that are largely signal-independent, and hence, is very easy to use. The method is also very fast-it is fast enough to on-line process multi-channel EEG data with a typical PC. Therefore, it has the potential to be an excellent candidate for real-time monitoring of epileptic seizures in a clinical setting. PMID:24137126

  7. Summary of Sonic Boom Rise Times Observed During FAA Community Response Studies over a 6-Month Period in the Oklahoma City Area

    NASA Technical Reports Server (NTRS)

    Maglieri, Domenic J.; Sothcott, Victor E.

    1990-01-01

    The sonic boom signature data acquired from about 1225 supersonic flights, over a 6-month period in 1964 in the Oklahoma City area, was enhanced with the addition of data relating to rise times and total signature duration. These later parameters, not available at the time of publication of the original report on the Oklahoma City sonic boom exposures, are listed in tabular form along with overpressure, positive impulse, positive duration, and waveform category. Airplane operating information along with the surface weather observations are also included. Sonic boom rise times include readings to the 1/2, 3/4, and maximum overpressure values. Rise time relative probabilities for various lateral locations from the ground track of 0, 5, and 10 miles are presented along with the variation of rise times with flight altitude. The tabulated signature data, along with corresponding airplane operating conditions and surface and upper level atmospheric information, are also available on electronic files to provide it in the format for more efficient and effective utilization.

  8. "Fast" Is Not "Real-Time": Designing Effective Real-Time AI Systems

    NASA Astrophysics Data System (ADS)

    O'Reilly, Cindy A.; Cromarty, Andrew S.

    1985-04-01

    Realistic practical problem domains (such as robotics, process control, and certain kinds of signal processing) stand to benefit greatly from the application of artificial intelligence techniques. These problem domains are of special interest because they are typified by complex dynamic environments in which the ability to select and initiate a proper response to environmental events in real time is a strict prerequisite to effective environmental interaction. Artificial intelligence systems developed to date have been sheltered from this real-time requirement, however, largely by virtue of their use of simplified problem domains or problem representations. The plethora of colloquial and (in general) mutually inconsistent interpretations of the term "real-time" employed by workers in each of these domains further exacerbates the difficul-ties in effectively applying state-of-the-art problem solving tech-niques to time-critical problems. Indeed, the intellectual waters are by now sufficiently muddied that the pursuit of a rigorous treatment of intelligent real-time performance mandates the redevelopment of proper problem perspective on what "real-time" means, starting from first principles. We present a simple but nonetheless formal definition of real-time performance. We then undertake an analysis of both conventional techniques and AI technology with respect to their ability to meet substantive real-time performance criteria. This analysis provides a basis for specification of problem-independent design requirements for systems that would claim real-time performance. Finally, we discuss the application of these design principles to a pragmatic problem in real-time signal understanding.

  9. Sensitivity Analysis of Reprocessing Cooling Times on Light Water Reactor and Sodium Fast Reactor Fuel Cycles

    SciTech Connect

    R. M. Ferrer; S. Bays; M. Pope

    2008-04-01

    The purpose of this study is to quantify the effects of variations of the Light Water Reactor (LWR) Spent Nuclear Fuel (SNF) and fast reactor reprocessing cooling time on a Sodium Fast Reactor (SFR) assuming a single-tier fuel cycle scenario. The results from this study show the effects of different cooling times on the SFR’s transuranic (TRU) conversion ratio (CR) and transuranic fuel enrichment. Also, the decay heat, gamma heat and neutron emission of the SFR’s fresh fuel charge were evaluated. A 1000 MWth commercial-scale SFR design was selected as the baseline in this study. Both metal and oxide CR=0.50 SFR designs are investigated.

  10. A Fast-Time Simulation Environment for Airborne Merging and Spacing Research

    NASA Technical Reports Server (NTRS)

    Bussink, Frank J. L.; Doble, Nathan A.; Barmore, Bryan E.; Singer, Sharon

    2005-01-01

    As part of NASA's Distributed Air/Ground Traffic Management (DAG-TM) effort, NASA Langley Research Center is developing concepts and algorithms for merging multiple aircraft arrival streams and precisely spacing aircraft over the runway threshold. An airborne tool has been created for this purpose, called Airborne Merging and Spacing for Terminal Arrivals (AMSTAR). To evaluate the performance of AMSTAR and complement human-in-the-loop experiments, a simulation environment has been developed that enables fast-time studies of AMSTAR operations. The environment is based on TMX, a multiple aircraft desktop simulation program created by the Netherlands National Aerospace Laboratory (NLR). This paper reviews the AMSTAR concept, discusses the integration of the AMSTAR algorithm into TMX and the enhancements added to TMX to support fast-time AMSTAR studies, and presents initial simulation results.

  11. AQUA: a very fast automatic reduction pipeline for near real-time GRBs early afterglow detection

    NASA Astrophysics Data System (ADS)

    Di Paola, Andrea; Antonelli, Lucio A.; Testa, Vincenzo; Patria, Giorgio

    2002-12-01

    AQUA (Automated QUick Analysis) is the fast reduction pipeline of the Near Infra-Red (NIR) images obtained by the REM telescope. REM (Rapid Eye Mount) is a robotic NIR/Optical 60cm telescope for fast detection of early afterglow of Gamma Ray Bursts (GRB). NIR observations of GRBs early afterglow are of crucial importance for GRBs science, revealing even optical obscured or high redshift events. On the technical side, they pose a series of problems: luminous background, bright sources (as the counterparts should be observed few seconds after the satellite trigger) and fast detection force high rate images acquisition. Even if the observational strategy will change during the same event observation depending on the counterpart characteristics, we will start with 1 second exposures at the fastest possible rate. The main guideline in the AQUA pipeline development is to allow such a data rate along all the night with nearly real-time results delivery. AQUA will start from the raw images and will deliver an alert with coordinates, photometry and colors to larger telescopes to allow prompt spectroscopic and polarimetric observations. Very fast processing for the raw 512×512 32bit images and variable sources detection with both sources catalogs and images comparison have been implemented to obtain a processing speed of at least 1 image/sec. AQUA is based on ANSI-C code optimized to run on a dual Athlon Linux PC with careful MMX and SSE instructions utilization.

  12. In-beam fast-timing measurements in {sup 103,105,107}Cd

    SciTech Connect

    Kisyov, S.; Lalkovski, S.; Radulov, D.; Zhekova, M.; Marginean, N.; Bucurescu, D.; Cata-Danil, Gh.; Cata-Danil, I.; Deleanu, D.; Filipescu, D.; Ghita, D.; Glodariu, T.; Marginean, R.; Mihai, C.; Negret, A.; Pascu, S.; Sava, T.; Stroe, L.; Suliman, G.; Zamfir, N. V.

    2011-07-15

    Fast-timing measurements were performed in the region of the medium-mass {sup 103,105,107}Cd isotopes, produced in fusion evaporation reactions. Results on new and reevaluated half-lives are analyzed within a systematic study of transition rates. The 7/2{sub 1}{sup +} states in {sup 103,105,107}Cd are interpreted as arising from a single-particle excitation. The 9/2{sup +} states configuration assignment is based on the observed decay branches.

  13. Impact of Miscanthus x giganteus senescence times on fast pyrolysis bio-oil quality.

    PubMed

    Mos, M; Banks, S W; Nowakowski, D J; Robson, P R H; Bridgwater, A V; Donnison, I S

    2013-02-01

    In this study the impact of senescence and harvest time in Miscanthus on the quality of fast pyrolysis liquid (bio-oil) was investigated. Bio-oil was produced using a 1 kg h(-1) fast pyrolysis reactor to obtain a quantity of bio-oil comparable with existing industrial reactors. Bio-oil stability was measured using viscosity, water content, pH and heating value changes under specific conditions. Plant developmental characteristics were significantly different (P≤0.05) between all harvest points. The stage of crop senescence was correlated with nutrient remobilisation (N, P, K; r2=0.9043, r2=0.9920, r2=0.9977 respectively) and affected bio-oil quality. Harvest time and senescence impacted bio-oil quality and stability. For fast pyrolysis processing of Miscanthus, the harvest time of Miscanthus can be extended to cover a wider harvest window whilst still maintaining bio-oil quality but this may impact mineral depletion in, and long term sustainability of, the crop unless these minerals can be recycled. PMID:23262009

  14. Fast Time-Varying Volume Rendering Using Time-Space Partition (TSP) Tree

    NASA Technical Reports Server (NTRS)

    Shen, Han-Wei; Chiang, Ling-Jen; Ma, Kwan-Liu

    1999-01-01

    We present a new, algorithm for rapid rendering of time-varying volumes. A new hierarchical data structure that is capable of capturing both the temporal and the spatial coherence is proposed. Conventional hierarchical data structures such as octrees are effective in characterizing the homogeneity of the field values existing in the spatial domain. However, when treating time merely as another dimension for a time-varying field, difficulties frequently arise due to the discrepancy between the field's spatial and temporal resolutions. In addition, treating spatial and temporal dimensions equally often prevents the possibility of detecting the coherence that is unique in the temporal domain. Using the proposed data structure, our algorithm can meet the following goals. First, both spatial and temporal coherence are identified and exploited for accelerating the rendering process. Second, our algorithm allows the user to supply the desired error tolerances at run time for the purpose of image-quality/rendering-speed trade-off. Third, the amount of data that are required to be loaded into main memory is reduced, and thus the I/O overhead is minimized. This low I/O overhead makes our algorithm suitable for out-of-core applications.

  15. A fast real time time-dependent density functional theory simulation method

    NASA Astrophysics Data System (ADS)

    Wang, Lin-Wang; Wang, Zhi; Li, Shu-Sheng

    2015-03-01

    We have developed an efficient real-time time-dependent density functional theory (TDDFT) method that can increase the effective time step from <1 attosecond in traditional methods to 0.1 0.5 femtosecond. Our algorithm, which carries out the non-adiabatic molecular dynamics TDDFT simulations, can have comparable speed to the Born-Oppenheimer (BO) ab initio molecular dynamics (MD). As an application, we simulated the process of an energetic Cl particle colliding onto a monolayer of MoSe2. Our simulations show a significant energy transfer from the kinetic energy of the Cl particle to the electronic energy of MoSe2, and the result of TDDFT is very different from that of BO MD simulations. This new algorithm will enable the use of real-time TD-DFT for many new simulations involving carrier dynamics and electron-phonon couplings. This work is supported by the Director, Office of Science, BES/MSED, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, through the Material Theory program in LBNL. Zhi Wang is supported by the China Scholarship Council.

  16. Fast single photon avalanche photodiode-based time-resolved diffuse optical tomography scanner

    PubMed Central

    Mu, Ying; Niedre, Mark

    2015-01-01

    Resolution in diffuse optical tomography (DOT) is a persistent problem and is primarily limited by high degree of light scatter in biological tissue. We showed previously that the reduction in photon scatter between a source and detector pair at early time points following a laser pulse in time-resolved DOT is highly dependent on the temporal response of the instrument. To this end, we developed a new single-photon avalanche photodiode (SPAD) based time-resolved DOT scanner. This instrument uses an array of fast SPADs, a femto-second Titanium Sapphire laser and single photon counting electronics. In combination, the overall instrument temporal impulse response function width was 59 ps. In this paper, we report the design of this instrument and validate its operation in symmetrical and irregularly shaped optical phantoms of approximately small animal size. We were able to accurately reconstruct the size and position of up to 4 absorbing inclusions, with increasing image quality at earlier time windows. We attribute these results primarily to the rapid response time of our instrument. These data illustrate the potential utility of fast SPAD detectors in time-resolved DOT. PMID:26417526

  17. Optical delay encoding for fast timing and detector signal multiplexing in PET

    PubMed Central

    Grant, Alexander M.; Levin, Craig S.

    2015-01-01

    Purpose: The large number of detector channels in modern positron emission tomography (PET) scanners poses a challenge in terms of readout electronics complexity. Multiplexing schemes are typically implemented to reduce the number of physical readout channels, but often result in performance degradation. Novel methods of multiplexing in PET must be developed to avoid this data degradation. The preservation of fast timing information is especially important for time-of-flight PET. Methods: A new multiplexing scheme based on encoding detector interaction events with a series of extremely fast overlapping optical pulses with precise delays is demonstrated in this work. Encoding events in this way potentially allows many detector channels to be simultaneously encoded onto a single optical fiber that is then read out by a single digitizer. A two channel silicon photomultiplier-based prototype utilizing this optical delay encoding technique along with dual threshold time-over-threshold is demonstrated. Results: The optical encoding and multiplexing prototype achieves a coincidence time resolution of 160 ps full width at half maximum (FWHM) and an energy resolution of 13.1% FWHM at 511 keV with 3 × 3 × 5 mm3 LYSO crystals. All interaction information for both detectors, including timing, energy, and channel identification, is encoded onto a single optical fiber with little degradation. Conclusions: Optical delay encoding and multiplexing technology could lead to time-of-flight PET scanners with fewer readout channels and simplified data acquisition systems. PMID:26233181

  18. Time-resolved spectroscopy using a chopper wheel as a fast shutter

    NASA Astrophysics Data System (ADS)

    Wang, Shicong; Wendt, Amy E.; Boffard, John B.; Lin, Chun C.

    2015-01-01

    Widely available, small form-factor, fiber-coupled spectrometers typically have a minimum exposure time measured in milliseconds, and thus cannot be used directly for time-resolved measurements at the microsecond level. Spectroscopy at these faster time scales is typically done with an intensified charge coupled device (CCD) system where the image intensifier acts as a "fast" electronic shutter for the slower CCD array. In this paper, we describe simple modifications to a commercially available chopper wheel system to allow it to be used as a "fast" mechanical shutter for gating a fiber-coupled spectrometer to achieve microsecond-scale time-resolved optical measurements of a periodically pulsed light source. With the chopper wheel synchronized to the pulsing of the light source, the time resolution can be set to a small fraction of the pulse period by using a chopper wheel with narrow slots separated by wide spokes. Different methods of synchronizing the chopper wheel and pulsing of the light sources are explored. The capability of the chopper wheel system is illustrated with time-resolved measurements of pulsed plasmas.

  19. Fast Chebyshev-polynomial method for simulating the time evolution of linear dynamical systems.

    PubMed

    Loh, Y L; Taraskin, S N; Elliott, S R

    2001-05-01

    We present a fast method for simulating the time evolution of any linear dynamical system possessing eigenmodes. This method does not require an explicit calculation of the eigenvectors and eigenfrequencies, and is based on a Chebyshev polynomial expansion of the formal operator matrix solution in the eigenfrequency domain. It does not suffer from the limitations of ordinary time-integration methods, and can be made accurate to almost machine precision. Among its possible applications are harmonic classical mechanical systems, quantum diffusion, and stochastic transport theory. An example of its use is given for the problem of vibrational wave-packet propagation in a disordered lattice. PMID:11415044

  20. Development of a low-cost fast-timing microchannel plate photodetector

    NASA Astrophysics Data System (ADS)

    Xie, Junqi; Byrum, Karen; Demarteau, Marcel; May, Edward; Wagner, Robert; Walters, Dean; Wang, Jingbo; Xia, Lei; Zhao, Huyue

    2016-07-01

    We report on the design, fabrication and characterization of a prototype 6 × 6cm2 microchannel plate photodetector with precise fast-timing measurement capability. The whole assembly is made of low cost glass materials with a bialkali photocathode top window. All components are hermetically sealed in vacuum. The prototype photodetector exhibits time resolution of 65 ps and 16 ps at single-photoelectron and multi-photoelectron levels, respectively. The spatial resolution reaches 0.54 mm for multi-photoelectron measurements. The bialkali photocathode exhibits a maximum quantum efficiency exceeding 20% with a uniformity of ± 40 %.

  1. A Fast Pulsed Neutron Source for Time-of-Flight Detection of Nuclear Materials and Explosives

    SciTech Connect

    Krishnan, Mahadevan; Bures, Brian; James, Colt; Madden, Robert; Hennig, Wolfgang; Breus, Dimitry; Asztalos, Stephen; Sabourov, Konstantin; Lane, Stephen

    2011-12-13

    AASC has built a fast pulsed neutron source based on the Dense Plasma Focus (DPF). The more current version stores only 100 J but fires at {approx}10-50 Hz and emits {approx}10{sup 6}n/pulse at a peak current of 100 kA. Both sources emit 2.45{+-}0.1 MeV(DD) neutron pulses of {approx}25-40 ns width. Such fast, quasi-monoenergetic pulses allow time-of-flight detection of characteristic emissions from nuclear materials or high explosives. A test is described in which iron targets were placed at different distances from the point neutron source. Detectors such as Stilbene and LaBr3 were used to capture inelastically induced, 847 keV gammas from the iron target. Shielding of the source and detectors eliminated most (but not all) of the source neutrons from the detectors. Gated detection, pulse shape analysis and time-of-flight discrimination enable separation of gamma and neutron signatures and localization of the target. A Monte Carlo simulation allows evaluation of the potential of such a fast pulsed source for a field-portable detection system. The high rep-rate source occupies two 200 liter drums and uses a cooled DPF Head that is <500 cm{sup 3} in volume.

  2. Fast neutron measurements at the nELBE time-of-flight facility

    NASA Astrophysics Data System (ADS)

    Junghansa, A. R.; Beyer, R.; Grosse, E.; Hannaske, R.; Kögler, T.; Massarczyk, R.; Schwengner, R.; Wagner, A.

    2015-05-01

    The compact neutron-time-of-flight facility nELBE at the superconducting electron accelerator ELBE of Helmholtz-Zentrum Dresden-Rossendorf has been rebuilt. A new enlarged experimental hall with a flight path of up to 10 m is available for neutron time-of-flight experiments in the fast energy range from about 50 keV to 10 MeV. nELBE is intended to deliver nuclear data of fast neutron nuclear interactions e.g. for the transmutation of nuclear waste and improvement of neutron physical simulations of innovative nuclear systems. The experimental programme consists of transmission measurements of neutron total cross sections, elastic and inelastic scattering cross section measurements, and neutron induced fission cross sections. The inelastic scattering to the first few excited states in 56Fe was investigated by measuring the gamma production cross section with an HPGe detector. The neutron induced fission of 242Pu was studied using fast ionisation chambers with large homogeneous actinide deposits.

  3. FASTING IN ELECTIVE SURGICAL PATIENTS: COMPARISON AMONG THE TIME PRESCRIBED, PERFORMED AND RECOMMENDED ON PERIOPERATIVE CARE PROTOCOLS

    PubMed Central

    FRANCISCO, Saionara Cristina; BATISTA, Sandra Teixeira; PENA, Geórgia das Graças

    2015-01-01

    Background: Prolonged preoperative fasting may impair nutritional status of the patient and their recovery. In contrast, some studies show that fasting abbreviation can improve the response to trauma and decrease the length of hospital stay. Aim: Investigate whether the prescribed perioperative fasting time and practiced by patients is in compliance with current multimodal protocols and identify the main factors associated. Methods: Cross-sectional study with 65 patients undergoing elective surgery of the digestive tract or abdominal wall. We investigated the fasting time in the perioperative period, hunger and thirst reports, physical status, diabetes diagnosis, type of surgery and anesthesia. Results: The patients were between 19 and 87 years, mostly female (73.8%). The most performed procedure was cholecystectomy (47.69%) and general anesthesia the most used (89.23%). The most common approach was to start fasting from midnight for liquids and solids, and most of the patients received grade II (64.6%) to the physical state. The real fasting average time was 16 h (9.5-41.58) was higher than prescribed (11 h, 6.58 -26.75). The patients submitted to surgery in the afternoon were in more fasting time than those who did in the morning (p<0.001). The intensity of hunger and thirst increased in postoperative fasting period (p=0.010 and 0.027). The average period of postoperative fasting was 18.25 h (3.33-91.83) and only 23.07% restarted feeding on the same day. Conclusion: Patients were fasted for prolonged time, higher even than the prescribed time and intensity of the signs of discomfort such as hunger and thirst increased over time. To better recovery and the patient's well-being, it is necessary to establish a preoperative fasting abbreviation protocol. PMID:26734794

  4. Fast neutron flux analyzer with real-time digital pulse shape discrimination

    NASA Astrophysics Data System (ADS)

    Ivanova, A. A.; Zubarev, P. V.; Ivanenko, S. V.; Khilchenko, A. D.; Kotelnikov, A. I.; Polosatkin, S. V.; Puryga, E. A.; Shvyrev, V. G.; Sulyaev, Yu. S.

    2016-08-01

    Investigation of subthermonuclear plasma confinement and heating in magnetic fusion devices such as GOL-3 and GDT at the Budker Institute (Novosibirsk, Russia) requires sophisticated equipment for neutron-, gamma- diagnostics and upgrading data acquisition systems with online data processing. Measurement of fast neutron flux with stilbene scintillation detectors raised the problem of discrimination of the neutrons (n) from background cosmic particles (muons) and neutron-induced gamma rays (γ). This paper describes a fast neutron flux analyzer with real-time digital pulse-shape discrimination (DPSD) algorithm FPGA-implemented for the GOL-3 and GDT devices. This analyzer was tested and calibrated with the help of 137Cs and 252Cf radiation sources. The Figures of Merit (FOM) calculated for different energy cuts are presented.

  5. Optimal output fast feedback in two-time scale control of flexible arms

    NASA Technical Reports Server (NTRS)

    Siciliano, B.; Calise, A. J.; Jonnalagadda, V. R. P.

    1986-01-01

    Control of lightweight flexible arms moving along predefined paths can be successfully synthesized on the basis of a two-time scale approach. A model following control can be designed for the reduced order slow subsystem. The fast subsystem is a linear system in which the slow variables act as parameters. The flexible fast variables which model the deflections of the arm along the trajectory can be sensed through strain gage measurements. For full state feedback design the derivatives of the deflections need to be estimated. The main contribution of this work is the design of an output feedback controller which includes a fixed order dynamic compensator, based on a recent convergent numerical algorithm for calculating LQ optimal gains. The design procedure is tested by means of simulation results for the one link flexible arm prototype in the laboratory.

  6. Time-resolved diffuse optical tomography using fast-gated single-photon avalanche diodes

    PubMed Central

    Puszka, Agathe; Di Sieno, Laura; Mora, Alberto Dalla; Pifferi, Antonio; Contini, Davide; Boso, Gianluca; Tosi, Alberto; Hervé, Lionel; Planat-Chrétien, Anne; Koenig, Anne; Dinten, Jean-Marc

    2013-01-01

    We present the first experimental results of reflectance Diffuse Optical Tomography (DOT) performed with a fast-gated single-photon avalanche diode (SPAD) coupled to a time-correlated single-photon counting system. The Mellin-Laplace transform was employed to process time-resolved data. We compare the performances of the SPAD operated in the gated mode vs. the non-gated mode for the detection and localization of an absorbing inclusion deeply embedded in a turbid medium for 5 and 15 mm interfiber distances. We demonstrate that, for a given acquisition time, the gated mode enables the detection and better localization of deeper absorbing inclusions than the non-gated mode. These results obtained on phantoms demonstrate the efficacy of time-resolved DOT at small interfiber distances. By achieving depth sensitivity with limited acquisition times, the gated mode increases the relevance of reflectance DOT at small interfiber distance for clinical applications. PMID:24009998

  7. Test of relativistic time dilation with fast optical atomic clocks at different velocities

    NASA Astrophysics Data System (ADS)

    Reinhardt, Sascha; Saathoff, Guido; Buhr, Henrik; Carlson, Lars A.; Wolf, Andreas; Schwalm, Dirk; Karpuk, Sergei; Novotny, Christian; Huber, Gerhard; Zimmermann, Marcus; Holzwarth, Ronald; Udem, Thomas; Hänsch, Theodor W.; Gwinner, Gerald

    2007-12-01

    Time dilation is one of the most fascinating aspects of special relativity as it abolishes the notion of absolute time. It was first observed experimentally by Ives and Stilwell in 1938 using the Doppler effect. Here we report on a method, based on fast optical atomic clocks with large, but different Lorentz boosts, that tests relativistic time dilation with unprecedented precision. The approach combines ion storage and cooling with optical frequency counting using a frequency comb. 7Li+ ions are prepared at 6.4% and 3.0% of the speed of light in a storage ring, and their time is read with an accuracy of 2×10-10 using laser saturation spectroscopy. The comparison of the Doppler shifts yields a time dilation measurement represented by a Mansouri-Sexl parameter , consistent with special relativity. This constrains the existence of a preferred cosmological reference frame and CPT- and Lorentz-violating `new' physics beyond the standard model.

  8. Fast and accurate Monte Carlo sampling of first-passage times from Wiener diffusion models

    PubMed Central

    Drugowitsch, Jan

    2016-01-01

    We present a new, fast approach for drawing boundary crossing samples from Wiener diffusion models. Diffusion models are widely applied to model choices and reaction times in two-choice decisions. Samples from these models can be used to simulate the choices and reaction times they predict. These samples, in turn, can be utilized to adjust the models’ parameters to match observed behavior from humans and other animals. Usually, such samples are drawn by simulating a stochastic differential equation in discrete time steps, which is slow and leads to biases in the reaction time estimates. Our method, instead, facilitates known expressions for first-passage time densities, which results in unbiased, exact samples and a hundred to thousand-fold speed increase in typical situations. In its most basic form it is restricted to diffusion models with symmetric boundaries and non-leaky accumulation, but our approach can be extended to also handle asymmetric boundaries or to approximate leaky accumulation. PMID:26864391

  9. Fast Estimate of Rupture Process of Large Earthquakes via Real Time Hi-net Data

    NASA Astrophysics Data System (ADS)

    Wang, D.; Kawakatsu, H.; Mori, J. J.

    2014-12-01

    We developed a real time system based on Hi-net seismic array that can offer fast and reliable source information, for example, source extent and rupture velocity, for earthquakes that occur at distance of roughly 30°- 85°with respect to the array center. We perform continuous grid search on a Hi-net real time data stream to identify possible source locations (following Nishida, K., Kawakatsu, H., and S. Obara, 2008). Earthquakes that occurred off the bright area of the array (30°- 85°with respect to the array center) will be ignored. Once a large seismic event is identified successfully, back-projection will be implemented to trace the source propagation and energy radiation. Results from extended global GRiD-MT and real time W phase inversion will be combined for the better identification of large seismic events. The time required is mainly due to the travel time from the epicenter to the array stations, so we can get the results between 6 to 13 min depending on the epicenter distances. This system can offer fast and robust estimates of earthquake source information, which will be useful for disaster mitigation, such as tsunami evacuation, emergency rescue, and aftershock hazard evaluation.

  10. Modeling of Time-correlated Detection of Fast Neutrons Emitted in Induced SNM Fission

    NASA Astrophysics Data System (ADS)

    Guckes, Amber; Barzilov, Alexander; Richardson, Norman

    Neutron multiplicity methods are widely used in the assay of fissile materials. Fission reactions release multiple neutrons simultaneously. Time-correlated detection of neutrons provides a coincidence signature that is unique to fission,which enables distinguishing it from other events. In general, fission neutrons are fast. Thermal neutron sensors require the moderation of neutrons prior to a detection event; therefore, the neutron's energy and the event's timing information may be distorted, resulting in the wide time windows in the correlation analysis. Fastneutron sensing using scintillators allows shortening the time correlation window. In this study, four EJ-299-33A plastic scintillator detectors with neutron/photon pulse shape discrimination properties were modeled usingthe MCNP6 code. This sensor array was studied for time-correlated detection of fast neutrons emitted inthe induced fission of 239Pu and (α,n) neutron sources. This paper presents the results of computational modeling of arrays of these plastic scintillator sensors as well as3He detectors equipped with a moderator.