Fast surface design based on sketched networks
NASA Astrophysics Data System (ADS)
van Dijk, Casper G. C.
1992-11-01
Computer aided design of freeformed surfaces is strongly biased towards input and optimization of surfaces. Input modules are based on digitizing drawings or placing and manipulating spline control vertices. Design, especially during the idea generation (or conceptual) design phase, is poorly supported. We present a system based on direct manipulation of shaded images of the surfaces. The designer sketches profiles on a tablet. The profiles are positioned in object space with a spaceball (6D joystick). A network of crossing curves is built interactively. The system constructs patches over this network in realtime. The designer can correct a profile by sketching. The affected surfaces are updated immediately. Patches are defined by the curves and estimated cross-boundary derivatives. They connect with G1 continuity. Our prototype surface modeler avoids the need for exact dimensions and precise coordinates, as seen in traditional systems. Instead, it supports fast, intuitive generation and evaluation of surfaces. We discuss a comparison with other systems regarding the time needed to model shapes, and some opinions of professional industrial designers.
A Fast Terahertz Spectrometer Based on Frequency Selective Surface Filters
NASA Astrophysics Data System (ADS)
Carelli, P.; Chiarello, F.; Cibella, S.; Di Gaspare, A.; Leoni, R.; Ortolani, M.; Torrioli, G.
2012-05-01
We present a fast spectrometer working in the 0.7-4.8 THz range. Broadband radiation from a blackbody source is focused first on a rotating silicon wafer, whose surface was patterned with 18 metal band-pass filters, then on the sample under test and finally is detected by a superconducting microbolometer with microsecond time constant. The bolometer sensor is coupled to a spiral antenna whose frequency band matches the spectral range of the filters. The spectral resolution is set by the filters quality factor of about 3. A dynamic range of 100 and a S/N ratio of 20 are achieved by integrating for less than 10 second. The detector can operate up to 6 K in a closed-cycle cooler, hence making the present apparatus suitable for building up a simple terahertz video-rate spectrometer.
Metadyn View: Fast web-based viewer of free energy surfaces calculated by metadynamics
NASA Astrophysics Data System (ADS)
Hošek, Petr; Spiwok, Vojtěch
2016-01-01
Metadynamics is a highly successful enhanced sampling technique for simulation of molecular processes and prediction of their free energy surfaces. An in-depth analysis of data obtained by this method is as important as the simulation itself. Although there are several tools to compute free energy surfaces from metadynamics data, they usually lack user friendliness and a build-in visualization part. Here we introduce Metadyn View as a fast and user friendly viewer of bias potential/free energy surfaces calculated by metadynamics in Plumed package. It is based on modern web technologies including HTML5, JavaScript and Cascade Style Sheets (CSS). It can be used by visiting the web site and uploading a HILLS file. It calculates the bias potential/free energy surface on the client-side, so it can run online or offline without necessity to install additional web engines. Moreover, it includes tools for measurement of free energies and free energy differences and data/image export.
Fast Disinfecting Antimicrobial Surfaces
Madkour, Ahmad E.; Dabkowski, Jeffery M.; Nüsslein, Klaus; Tew, Gregory N.
2013-01-01
Silicon wafers and glass surfaces were functionalized with facially amphiphilic antimicrobial copolymers using the “grafting from” technique. Surface initiated atom transfer radical polymerization (ATRP) was used to grow poly(butylmethacrylate)-co-poly(Boc-aminoethyl methacrylate) from the surfaces. Upon Boc-deprotection, these surfaces became highly antimicrobial and killed S. aureus and E. coli 100% in less than 5 min. The molecular weight and grafting density of the polymer were controlled by varying the polymerization time and initiator surface density. Antimicrobial studies showed that the killing efficiency of these surfaces was independent of polymer layer thickness or grafting density within the range of surfaces studied. PMID:19177651
Fast time-of-flight camera based surface registration for radiotherapy patient positioning
Placht, Simon; Stancanello, Joseph; Schaller, Christian; Balda, Michael; Angelopoulou, Elli
2012-01-15
Purpose: This work introduces a rigid registration framework for patient positioning in radiotherapy, based on real-time surface acquisition by a time-of-flight (ToF) camera. Dynamic properties of the system are also investigated for future gating/tracking strategies. Methods: A novel preregistration algorithm, based on translation and rotation-invariant features representing surface structures, was developed. Using these features, corresponding three-dimensional points were computed in order to determine initial registration parameters. These parameters became a robust input to an accelerated version of the iterative closest point (ICP) algorithm for the fine-tuning of the registration result. Distance calibration and Kalman filtering were used to compensate for ToF-camera dependent noise. Additionally, the advantage of using the feature based preregistration over an ''ICP only'' strategy was evaluated, as well as the robustness of the rigid-transformation-based method to deformation. Results: The proposed surface registration method was validated using phantom data. A mean target registration error (TRE) for translations and rotations of 1.62 {+-} 1.08 mm and 0.07 deg. {+-} 0.05 deg., respectively, was achieved. There was a temporal delay of about 65 ms in the registration output, which can be seen as negligible considering the dynamics of biological systems. Feature based preregistration allowed for accurate and robust registrations even at very large initial displacements. Deformations affected the accuracy of the results, necessitating particular care in cases of deformed surfaces. Conclusions: The proposed solution is able to solve surface registration problems with an accuracy suitable for radiotherapy cases where external surfaces offer primary or complementary information to patient positioning. The system shows promising dynamic properties for its use in gating/tracking applications. The overall system is competitive with commonly-used surface
NASA Astrophysics Data System (ADS)
Li, Yinan; Kästner, Markus; Reithmeier, Eduard
2015-05-01
Vertical scanning interferometry (VSI) techniques are widely used to profile microscopic surface structures of industrial products. This paper introduces a high-precision fast optical measurement system with an optimized small sensor head for the measurement of precision surfaces on a turbine blade or blisks (blade integrated discs). The non-contact measurement system is based on a low coherence interferometer (LCI), which is capable of fast profiling of 3D sample surface with a nanometer resolution and has a larger measurement range compared to conventional microscopes. This results in a large amount of sampled data and a high computational time for the evaluation of the data. For this reason, the used evaluation algorithm in this paper is accelerated by the Compute Unified Device Architecture (CUDA) technology, which allows parallel evaluation of the data stack on independent cores of a General Purpose Graphics Processing Unit (GPGPU). As a result, the GPU-based optimized algorithm is compared with the original CPU-based single-threaded algorithm to show the approximate 60x speedup of computing the Hilbert Transformation, which is used to find the depth position in the correlogram of each pixel of the sampled data. The main advantage of the GPU computing for the evaluation algorithm of the LCI is that it can reduce the time-consuming data evaluation process and further accelerates the whole measurement.
Surface retrievals from Hyperion EO1 using a new, fast, 1D-Var based retrieval code
NASA Astrophysics Data System (ADS)
Thelen, Jean-Claude; Havemann, Stephan; Wong, Gerald
2015-05-01
We have developed a new algorithm for the simultaneous retrieval of the atmospheric profiles (temperature, humidity, ozone and aerosol) and the surface reflectance from hyperspectral radiance measurements obtained from air/space-borne, hyperspectral imagers such as Hyperion EO-1. The new scheme, proposed here, consists of a fast radiative transfer code, based on empirical orthogonal functions (EOFs), in conjunction with a 1D-Var retrieval scheme. The inclusion of an 'exact' scattering code based on spherical harmonics, allows for an accurate treatment of Rayleigh scattering and scattering by aerosols, water droplets and ice-crystals, thus making it possible to also retrieve cloud and aerosol optical properties, although here we will concentrate on non-cloudy scenes. We successfully tested this new approach using hyperspectral images taken by Hyperion EO-1, an experimental pushbroom imaging spectrometer operated by NASA.
Manybeam velocimeter for fast surfaces
Goosman, D.; Avara, G.; Steinmetz, L.; Lai, C.; Perry, S.
1996-09-01
For the past 5 years, we have conceived, built and successfully used a new 10 beam laser velocimeter for monitoring velocity vs time histories of fast moving surfaces, and will have a 20 beam capability soon. We conceived a method to multiplex 5 to 10 beams through a single Fabry-Perot interferometer, without losing any light that our equivalently-performing single beam system could use, and with negligible cross- talk. This saves the cost of 16 interferometers, simplifies operation and takes less space than without multiplexing. We devised special efficient light collecting probes, streak cameras that change sweep speed during the course of the record, and a new double cavity interferometer which is better, cheaper and more flexible than our previous versions. With the 10 recorders, we conceived and employ a method of using both a fast and a slow streak camera on each of 5 beams without reducing the light that is available to either camera separately. Five new galvanometrically-driven triggerable CCD streak cameras will be installed soon.
NASA Astrophysics Data System (ADS)
Liang, Xian-hua; Sun, Wei-dong
2011-06-01
Inventory checking is one of the most significant parts for grain reserves, and plays a very important role on the macro-control of food and food security. Simple, fast and accurate method to obtain internal structure information and further to estimate the volume of the grain storage is needed. Here in our developed system, a special designed multi-site laser scanning system is used to acquire the range data clouds of the internal structure of the grain storage. However, due to the seriously uneven distribution of the range data, this data should firstly be preprocessed by an adaptive re-sampling method to reduce the data redundancy as well as noise. Then the range data is segmented and useful features, such as plane and cylinder information, are extracted. With these features a coarse registration between all of these single-site range data is done, and then an Iterative Closest Point (ICP) algorithm is carried out to achieve fine registration. Taking advantage of the structure of the grain storage being well defined and the types of them are limited, a fast automatic registration method based on the priori model is proposed to register the multi-sites range data more efficiently. Then after the integration of the multi-sites range data, the grain surface is finally reconstructed by a delaunay based algorithm and the grain volume is estimated by a numerical integration method. This proposed new method has been applied to two common types of grain storage, and experimental results shown this method is more effective and accurate, and it can also avoids the cumulative effect of errors when registering the overlapped area pair-wisely.
Fast evaluation of surface sensitivity on ghost
NASA Astrophysics Data System (ADS)
Boehme, Beate
2015-09-01
Real optical systems are often suffering from false light caused by ghosts. In particular single reflections are critical in applications like reflected light illumination microscopy or confocal systems. The degradations of performance can be bright spots in the image or contrast, signal to noise or dynamic range reduction. Thus in these systems the suppression of first order reflections is important. State of the art optical design software supports ray trace based ghost image analysis. The automatic generation of reflex light paths is provided, but for systems with a large number of surfaces the analysis of all ghost light paths is time-consuming. Conventional Monte Carlo based non sequential ray trace sums up the reflections of all surfaces simultaneously. To achieve high accuracy a huge number of rays is necessary, what results in long computational time, especially if the distinction of surface influences needs multiple calculations. In this paper a fast method is proposed for the ranking of ghosts. It was developed for single reflections in centered optical systems. For each surface the ghost light path is calculated with paraxial and real ray trace. The ghost diameter and the corresponding illumination NA are calculated. Usually the distance of the reflex focus to the image is used as criterion to access the importance of a ghost. Here we use the power of the ghost ray bundle. It is compared with the signal strength and listed for all surfaces generating a ghost. So in one step a surface contribution of reflex powers as well as an estimation of total flux of reflected light is obtained. Due to the fact, that only a few rays have to be calculated, the method is rather fast. The accuracy can be estimated by comparison of paraxial and marginal ray trace. In the proposed method, some assumptions and approximations are made. They are assessed in respect to some practical examples, and by comparison with full brute force non-sequential ray trace. The usefulness of
Fast liquid transfer between two surfaces
NASA Astrophysics Data System (ADS)
Chen, Huanchen; Tang, Tian; Amirfazli, Alidad
2014-11-01
Liquid transfer process between two surfaces typically ends by breaking of a stretched liquid bridge. The amount of liquid remaining on each of the surfaces relative to total volume is usually of interest in applications (e.g. offset or electronic printing, wet adhesion systems, etc.). Literature shows that depending on stretching velocity, U, surface wettability and liquid properties, the behaviour of the liquid bridge can be categorized into: quasi-static where the surface force dominates and dynamic where contributions from viscous and inertia forces are not negligible. Through a systematic experimental study, we demonstrate for the first time that the division of liquid between surfaces in the quasi-static regime is a constant which depends on the receding contact angles. In the dynamic regime (fast transfer), liquid division takes a complicated form. An analytical-empirical model is developed and verified by experimental results that can predict splitting of the liquid between two surfaces as a function of U, surface wettability and liquid viscosity. The model also successfully predicts an even split between surfaces at extremely high velocities as it was observed by us and others.
Effects of surface wettability on fast liquid transfer
NASA Astrophysics Data System (ADS)
Chen, H.; Tang, T.; Amirfazli, A.
2015-11-01
A systematic experimental study was performed to understand the role of surface contact angles in affecting the process of fast liquid transfer. Surfaces with different wettabilities were used, and the transfer ratio (α, the amount of liquid transferred to the acceptor surface over the total amount of liquid) was measured for each pair of surfaces. A numerical model based on the volume of fluid method was developed to help understand the experimental results. The surface wettability was shown to significantly affect the boundaries between three regimes based on stretching speeds: quasi-static (surface force dominated), transition (surface/viscous/inertia forces all important) and dynamic (viscous/inertia forces dominated). Specifically, the values of the boundary speeds were found to increase with |α0 - 0.5|, where α0 is the transfer ratio in the quasi-static regime, and α0 is governed by the surface receding contact angles. Based on our results, an empirical equation to describe the transfer ratio as function of stretching speed was proposed. This equation can also be used as a prediction tool for the value of α for a fast transfer system.
Surface track potential created by fast protons at LiF surfaces
NASA Astrophysics Data System (ADS)
Arnau, A.; Gravielle, M. S.; Miraglia, J. E.; Ponce, V. H.
2003-06-01
A model based on atomic ionization of F- sites at the surface is used to calculate the surface track potential created by fast protons at LiF surfaces. For 100-keV protons at grazing incidence, we find that the track potential close to the surface plays a significant role in determining the shift to lower energies of the convoy electron peak with respect to the unperturbed cusp value.
Inversion of surface parameters using fast learning neural networks
NASA Technical Reports Server (NTRS)
Dawson, M. S.; Olvera, J.; Fung, A. K.; Manry, M. T.
1992-01-01
A neural network approach to the inversion of surface scattering parameters is presented. Simulated data sets based on a surface scattering model are used so that the data may be viewed as taken from a completely known randomly rough surface. The fast learning (FL) neural network and a multilayer perceptron (MLP) trained with backpropagation learning (BP network) are tested on the simulated backscattering data. The RMS error of training the FL network is found to be less than one half the error of the BP network while requiring one to two orders of magnitude less CPU time. When applied to inversion of parameters from a statistically rough surface, the FL method is successful at recovering the surface permittivity, the surface correlation length, and the RMS surface height in less time and with less error than the BP network. Further applications of the FL neural network to the inversion of parameters from backscatter measurements of an inhomogeneous layer above a half space are shown.
NASA Astrophysics Data System (ADS)
Hu, Hongda; Shu, Hong; Hu, Zhiyong; Xu, Jianhui
2016-04-01
Kriging interpolation provides the best linear unbiased estimation for unobserved locations, but its heavy computation limits the manageable problem size in practice. To address this issue, an efficient interpolation procedure incorporating the fast Fourier transform (FFT) was developed. Extending this efficient approach, we propose an FFT-based parallel algorithm to accelerate regression Kriging interpolation on an NVIDIA® compute unified device architecture (CUDA)-enabled graphic processing unit (GPU). A high-performance cuFFT library in the CUDA toolkit was introduced to execute computation-intensive FFTs on the GPU, and three time-consuming processes were redesigned as kernel functions and executed on the CUDA cores. A MODIS land surface temperature 8-day image tile at a resolution of 1 km was resampled to create experimental datasets at eight different output resolutions. These datasets were used as the interpolation grids with different sizes in a comparative experiment. Experimental results show that speedup of the FFT-based regression Kriging interpolation accelerated by GPU can exceed 1000 when processing datasets with large grid sizes, as compared to the traditional Kriging interpolation running on the CPU. These results demonstrate that the combination of FFT methods and GPU-based parallel computing techniques greatly improves the computational performance without loss of precision.
NASA Astrophysics Data System (ADS)
Tatrai, David; Nikov, Daniella; Zsolt Jász, Ervin; Bozóki, Zoltán; Szabó, Gábor; Weidinger, Tamás; András Gyöngyösi, Zénó; Kiss, Melinda; Józsa, János; Simó Diego, Gemma; Cuxart Rodamilans, Joan; Wrenger, Burkhart; Bottyán, Zsolt
2014-05-01
A micrometeorological field measurement campaign dedicated to study the surface energy budget and the structure of the boundary layer focusing on the transient layer forming periods during night-time was organized in the period of 10th of November to 3rd of December 2013 in the nearby of Szeged, Hungary. A temporary micrometeorological measurement station was set up at the coordinates N:46.239943; E:20.089758, approximately 1700 m far from a national meteorology station (N:46.255711; E:20.09052). In the experimental micrometeorological site different types of instruments were installed to measure numerous parameters: standard meteorological measurements (p, T, wet, wind speed and direction at three different levels, relative humidity at two levels and absolute humidity at one level) radiation budget components surface temperature and leaf wetness soil temperature, moisture and heat flux into the deeper soil layer eddy-covariance measurements (t, H, LE CO2) at 3 m level using Campbell open-path IRGA (EC150) system. At the national meteorology station (http://adatok.geo.u-szeged.hu/?lang=eng) besides their standard measurement equipment and measurement routine a SODAR was installed and continuously operated. These ground based measurements were combined with and supported by UAV, quadcopter and tethered balloon based vertical profile measurements of p, T, rh. For this measurement campaign as a modification of a previously developed airborne ready dual channel hygrometer, a fast photoacoustic spectroscopy based hygrometer was developed for absolute humidity measurements. The estimated response time of the system is faster than 15 Hz, which was achieved by the replacement of the data acquisition system and by recording the raw photoacoustic signal sampled at rate of 48 kHz for post-processing. During the campaign this new system was compared to a TDL system commercially available at Li-COR Inc. Besides the testing of the newly developed fast photoacoustic hygrometer
Fast and Efficient Approach in Surface Wave Analysis
NASA Astrophysics Data System (ADS)
Kanli, A. I.
2010-12-01
Fast and Efficient Approach in Surface Wave Analysis Ali Ismet KANLI Istanbul University, Engineering Faculty, Department of Geophysical Engineering, 34320, Avcilar Campus, Istanbul-Turkey, E-mail: kanli@istanbul.edu.tr Abstract: A two-step surface wave analysis method is proposed including both the MASW (Multi-channel Analysis of Surface Waves) and Micro-tremor based techniques. This is an integrated approach and the MASW survey data are gathered to obtain the shear wave velocity-depth information up to at least 30 meters by using a special type active seismic source called as SR-II or Kangaroo. In the second step, the microtremor data which are based on surface waves from seismic noise at each site are used to determine the shear-wave velocity-depth profiles. In the second step of the process, the multichannel analysis of surface waves data are given as constraints in the microtremor inversion process. This proposed algorithm allows us to calculate shear wave velocity-depth information with all geotechnical parameters from near surface to bedrock depths very fast and efficiently.
Structure of ultrathin oxide layers on metal surfaces from grazing scattering of fast atoms
NASA Astrophysics Data System (ADS)
Winter, H.; Seifert, J.; Blauth, D.; Busch, M.; Schüller, A.; Wethekam, S.
2009-10-01
The structure of ultrathin oxide layers grown on metal substrates is investigated by grazing scattering of fast atoms from the film surface. We present three recent experimental techniques which allow us to study the structure of ordered oxide films on metal substrates in detail. (1) A new variant of a triangulation method with fast atoms based on the detection of emitted electrons, (2) rainbow scattering under axial surface channeling conditions, and (3) fast atom diffraction (FAD) for studies on the structure of oxide films. Our examples demonstrate the attractive features of grazing fast atom scattering as a powerful analytical tool in surface physics.
Noninterferometric topography measurements of fast moving surfaces.
Pinhasi, Shirly Vinikman; Eliezer, Shalom; Glam, Benny; Appelbaum, Gabi; Bakshi, Lior
2011-08-01
The topography of moving surfaces is recovered by noninterferometric measurements. The phase reconstruction is derived by measuring the intensities of a backscattered pulsed laser light and solving the transport intensity equation (TIE). The TIE is solved by expanding the phase into a series of Zernike polynomials, leading to a set of appropriate algebraic equations. This technique, which enables us to make a direct connection between experiments and the TIE, has been successfully tested in gas gun experiments. In particular, the topographies of a moving projectile and the free surface of a shocked target were recovered. PMID:21811317
Spherical Demons: Fast Diffeomorphic Landmark-Free Surface Registration
Yeo, B.T. Thomas; Sabuncu, Mert R.; Vercauteren, Tom; Ayache, Nicholas; Fischl, Bruce; Golland, Polina
2010-01-01
We present the Spherical Demons algorithm for registering two spherical images. By exploiting spherical vector spline interpolation theory, we show that a large class of regularizors for the modified Demons objective function can be efficiently approximated on the sphere using iterative smoothing. Based on one parameter subgroups of diffeomorphisms, the resulting registration is diffeomorphic and fast. The Spherical Demons algorithm can also be modified to register a given spherical image to a probabilistic atlas. We demonstrate two variants of the algorithm corresponding to warping the atlas or warping the subject. Registration of a cortical surface mesh to an atlas mesh, both with more than 160k nodes requires less than 5 minutes when warping the atlas and less than 3 minutes when warping the subject on a Xeon 3.2GHz single processor machine. This is comparable to the fastest non-diffeomorphic landmark-free surface registration algorithms. Furthermore, the accuracy of our method compares favorably to the popular FreeSurfer registration algorithm. We validate the technique in two different applications that use registration to transfer segmentation labels onto a new image: (1) parcellation of in-vivo cortical surfaces and (2) Brodmann area localization in ex-vivo cortical surfaces. PMID:19709963
Radu, Andreea Ioana; Ryabchykov, Oleg; Bocklitz, Thomas Wilhelm; Huebner, Uwe; Weber, Karina; Cialla-May, Dana; Popp, Jürgen
2016-07-21
Carotenoids are molecules that play important roles in both plant development and in the well-being of mammalian organisms. Therefore, various studies have been performed to characterize carotenoids' properties, distribution in nature and their health benefits upon ingestion. Nevertheless, there is a gap regarding a fast detection of them at the plant phase. Within this contribution we report the results obtained regarding the application of surface enhanced Raman spectroscopy (SERS) toward the differentiation of two carotenoid molecules (namely, lycopene and β-carotene) in tomato samples. To this end, an e-beam lithography (EBL) SERS-active substrate and a 488 nm excitation source were employed, and a relevant simulated matrix was prepared (by mixing the two carotenoids in defined percentages) and measured. Next, carotenoids were extracted from tomato plants and measured as well. Finally, a combination of principal component analysis and partial least squares regression (PCA-PLSR) was applied to process the data, and the obtained results were compared with HPLC measurements of the same extracts. A good agreement was obtained between the HPLC and the SERS results for most of the tomato samples. PMID:27200439
Bao Yidong; Hu Sibo; Lang Zhikui; Hu Ping
2005-08-05
A fast simulation scheme for 3D curved binder flanging and blank shape prediction of sheet metal based on one-step inverse finite element method is proposed, in which the total plasticity theory and proportional loading assumption are used. The scheme can be actually used to simulate 3D flanging with complex curve binder shape, and suitable for simulating any type of flanging model by numerically determining the flanging height and flanging lines. Compared with other methods such as analytic algorithm and blank sheet-cut return method, the prominent advantage of the present scheme is that it can directly predict the location of the 3D flanging lines when simulating the flanging process. Therefore, the prediction time of flanging lines will be obviously decreased. Two typical 3D curve binder flanging including stretch and shrink characters are simulated in the same time by using the present scheme and incremental FE non-inverse algorithm based on incremental plasticity theory, which show the validity and high efficiency of the present scheme.
Red surface emitters: powerful and fast
NASA Astrophysics Data System (ADS)
Schweizer, Heinz; Ballmann, Tabitha; Butendeich, Rainer; Rossbach, Robert; Raabe, Bernd; Jetter, Michael; Scholz, Ferdinand
2003-12-01
Vertical cavity surface emitting lasers (VCSEL) in the GaInP/AlGaInP material system have experienced a rapid development in their short history. In general lasers from that material system are suitable for a huge number of applications beginning with TV lasers and high power lasers for edge emitters, continuing with optical data storage, medical applications as well as data communication in cars, air planes, offices and between computers as application field for VCSELs. Especially automotive applications show the highest requirements on a laser with respect to operation temperature and power. In this talk we draw out the problems of the material system AlGaInP and its implications for laser applications. We discuss the epitaxial and technological solutions to overcome at least a part of these inherent problems. We will discuss the possible power that we can expect from VCSELs emitting in the range between 650 nm to 670 nm. We got from our lasers 5 mW, CW @ RT, 670nm and 2.5mW, CW@RT, 650 nm. We emphasize the role of doping, Bragg mirror grading, suitable detuning of cavity mode and gain, and optimisation of the contact layer and control of the oxide aperture in the VCSEL structure to get improved operation characteristics at higher temperatures. From the analysis of high frequency measurements, we could evaluate modulation bandwidths between 4 GHz and 10 GHz. The application of polyimide as a dielectric isolation material shows the potential to obtain modulation bandwidths beyond 10 GHz. For the intrinsic modulation bandwidth we get a value of 25 GHz, which is near the value edge emitters show. A more detailed discussion on photon lifetimes and carrier transport times will be given in the talk. Red light emitting VCSELS driven with short current pulses showed laser emission up to + 160°C case temperature. Thus, a CW operation up to +120°C can be expected after further improvement of power generation (decrease of series resistance) and heat spreading (optimized
NASA Astrophysics Data System (ADS)
Qi, Zhipeng; Hu, Guohua; Yun, Binfeng; Zhang, Xiong; Cui, Yiping
2016-08-01
In this paper, we present a 1 × 2 thermo-optic (TO) switch based on the integration of the dielectric-loaded surface plasmon polariton (SPP) waveguides with the silicon nanowires. Liquid-curable fluorinated resin (LFR) made of perfluorinated polymer was adopted as the ridge, which has a TO coefficient twice more than that of polymethyl methacrylate, leading to a significant decrease in the power consumption. It was shown that the response time of the dielectric-loaded SPP waveguide could be improved through optimizing the dimensions of the LFR polymer ridge without loss of relative high figure of merit and large confinement factor. Performance characteristics of such a 1 × 2 TO switch operating at a telecom wavelength of 1550 nm was investigated theoretically from the analysis of both heat and optical fields. The results reveal that a switching power as low as 7 mW and an extremely short switching time (with rise time of 3 μs and fall time of 6.7 μs) could be achieved with the proposed dielectric-loaded SPP-based 1 × 2 TO switch. In addition, the crosstalk could be enhanced to at least 40 dB with the applied power of 7 mW at the wavelength of 1550 nm, and it could be retained to be above 20 dB in the wavelength spectrum of 1500-1600 nm during the on/off state.
NASA Astrophysics Data System (ADS)
Fainberg, J.; Schaefer, W.
2015-06-01
A new algorithm for heat exchange between thermally coupled diffusely radiating interfaces is presented, which can be applied for closed and half open transparent radiating cavities. Interfaces between opaque and transparent materials are automatically detected and subdivided into elementary radiation surfaces named tiles. Contrary to the classical view factor method, the fixed unit sphere area subdivision oriented along the normal tile direction is projected onto the surrounding radiation mesh and not vice versa. Then, the total incident radiating flux of the receiver is approximated as a direct sum of radiation intensities of representative “senders” with the same weight factor. A hierarchical scheme for the space angle subdivision is selected in order to minimize the total memory and the computational demands during thermal calculations. Direct visibility is tested by means of a voxel-based ray tracing method accelerated by means of the anisotropic Chebyshev distance method, which reuses the computational grid as a Chebyshev one. The ray tracing algorithm is fully parallelized using MPI and takes advantage of the balanced distribution of all available tiles among all CPU's. This approach allows tracing of each particular ray without any communication. The algorithm has been implemented in a commercial casting process simulation software. The accuracy and computational performance of the new radiation model for heat treatment, investment and ingot casting applications is illustrated using industrial examples.
NASA Astrophysics Data System (ADS)
Liuzzi, G.; Masiello, G.; Serio, C.; Blasi, M. G.; Venafra, S.
2015-09-01
This paper describes the theoretical aspects of a fast scheme for the physical retrieval of surface temperature and emissivity from SEVIRI data, their implementation and some sample results obtained. The scheme is based on a Kalman Filter approach, which effectively exploits the temporal continuity in the observations of the geostationary Meteosat Second Generation (MSG) platform, on which SEVIRI (Spinning Enhanced Visible and InfraRed Imager) operates. Such scheme embodies in its core a physical retrieval algorithm, which employs an hyper fast radiative transfer code highly customized for this retrieval task. Radiative transfer and its customizations are described in detail. Fastness, accuracy and stability of the code are fully documented for a variety of surface features, showing a peculiar application to the massive Greek forest fires in August 2007.
Dds-Based Fast Scan Spectrometer
NASA Astrophysics Data System (ADS)
Alekseev, E. A.; Motiyenko, R. A.; Margulès, L.
2010-06-01
The technique of direct digital synthesis (DDS) has two important features which enable its application in microwave spectroscopy: micro-Hz tuning resolution and extremely fast frequency switching with continuous phase. We have applied a direct digital synthesizer in a PLL-spectrometer based on backward-wave oscillator (BWO). As result we have obtained an instrument that can cover a 100 GHz bandwidth in less than one hour with high spectral resolution and high precision of frequency measurement. The application of the spectrometer to sub-millimeter wave survey spectra records of several isotopic species of astrophysical molecules (methanol, formamide, methyl formate, aziridine) will be discussed. The support of Université de Lille 1 and le Programme National de Physique Chimie du Milieu Interstellaire is gratefully acknowledged.
Surface Plasmon Based Spectrometer
NASA Astrophysics Data System (ADS)
Wig, Andrew; Passian, Ali; Boudreaux, Philip; Ferrell, Tom
2008-03-01
A spectrometer that uses surface plasmon excitation in thin metal films to separate light into its component wavelengths is described. The use of surface plasmons as a dispersive medium sets this spectrometer apart from prism, grating, and interference based variants and allows for the miniaturization of this device. Theoretical and experimental results are presented for two different operation models. In the first case surface plasmon tunneling in the near field is used to provide transmission spectra of different broad band-pass, glass filters across the visible wavelength range with high stray-light rejection at low resolution as well as absorption spectra of chlorophyll extracted from a spinach leaf. The second model looks at the far field components of surface plasmon scattering.
Fast and Slow Wetting Dynamics on nanostructured surfaces
NASA Astrophysics Data System (ADS)
Nandyala, Dhiraj; Rahmani, Amir; Cubaud, Thomas; Colosqui, Carlos
2015-11-01
This talk will present force-displacement and spontaneous drop spreading measurements on diverse nanostructured surfaces (e.g., mesoporous titania thin films, nanoscale pillared structures, on silica or glass substrates). Experimental measurements are performed for water-air and water-oil systems. The dynamics of wetting observed in these experiments can present remarkable crossovers from fast to slow or arrested dynamics. The emergence of a slow wetting regime is attributed to a multiplicity of metastable equilibrium states induced by nanoscale surface features. The crossover point can be dramatically advanced or delayed by adjusting specific physical parameters (e.g., viscosity of the wetting phases) and geometric properties of the surface nanostructure (e.g., nanopore/pillar radius and separation). Controlling the crossover point to arrested dynamics can effectively modify the degree of contact angle hysteresis and magnitude of liquid adhesion forces observed on surfaces of different materials. This work is supported by a SEED Award from The Office of Brookhaven National Laboratory Affairs at Stony Brook University.
Fast Beam-Based BPM Calibration
Bertsche, K.; Loos, H.; Nuhn, H.-D.; Peters, F.; /SLAC
2012-10-15
The Alignment Diagnostic System (ADS) of the LCLS undulator system indicates that the 33 undulator quadrupoles have extremely high position stability over many weeks. However, beam trajectory straightness and lasing efficiency degrade more quickly than this. A lengthy Beam Based Alignment (BBA) procedure must be executed every two to four weeks to re-optimize the X-ray beam parameters. The undulator system includes RF cavity Beam Position Monitors (RFBPMs), several of which are utilized by an automatic feedback system to align the incoming electron-beam trajectory to the undulator axis. The beam trajectory straightness degradation has been traced to electronic drifts of the gain and offset of the BPMs used in the beam feedback system. To quickly recover the trajectory straightness, we have developed a fast beam-based procedure to recalibrate the BPMs. This procedure takes advantage of the high-precision monitoring capability of the ADS, which allows highly repeatable positioning of undulator quadrupoles. This report describes the ADS, the position stability of the LCLS undulator quadrupoles, and some results of the new recovery procedure.
Fast SIMDized Kalman filter based track fit
NASA Astrophysics Data System (ADS)
Gorbunov, S.; Kebschull, U.; Kisel, I.; Lindenstruth, V.; Müller, W. F. J.
2008-03-01
Modern high energy physics experiments have to process terabytes of input data produced in particle collisions. The core of many data reconstruction algorithms in high energy physics is the Kalman filter. Therefore, the speed of Kalman filter based algorithms is of crucial importance in on-line data processing. This is especially true for the combinatorial track finding stage where the Kalman filter based track fit is used very intensively. Therefore, developing fast reconstruction algorithms, which use maximum available power of processors, is important, in particular for the initial selection of events which carry signals of interesting physics. One of such powerful feature supported by almost all up-to-date PC processors is a SIMD instruction set, which allows packing several data items in one register and to operate on all of them, thus achieving more operations per clock cycle. The novel Cell processor extends the parallelization further by combining a general-purpose PowerPC processor core with eight streamlined coprocessing elements which greatly accelerate vector processing applications. In the investigation described here, after a significant memory optimization and a comprehensive numerical analysis, the Kalman filter based track fitting algorithm of the CBM experiment has been vectorized using inline operator overloading. Thus the algorithm continues to be flexible with respect to any CPU family used for data reconstruction. Because of all these changes the SIMDized Kalman filter based track fitting algorithm takes 1 μs per track that is 10000 times faster than the initial version. Porting the algorithm to a Cell Blade computer gives another factor of 10 of the speedup. Finally, we compare performance of the tracking algorithm running on three different CPU architectures: Intel Xeon, AMD Opteron and Cell Broadband Engine.
Photogrammetry research for FAST eleven-meter reflector panel surface shape measurement
NASA Astrophysics Data System (ADS)
Zhou, Rongwei; Zhu, Lichun; Li, Weimin; Hu, Jingwen; Zhai, Xuebing
2010-10-01
In order to design and manufacture the Five-hundred-meter Aperture Spherical Radio Telescope (FAST) active reflector measuring equipment, measurement on each reflector panel surface shape was presented, static measurement of the whole neutral spherical network of nodes was performed, real-time dynamic measurement at the cable network dynamic deformation was undertaken. In the implementation process of the FAST, reflector panel surface shape detection was completed before eleven-meter reflector panel installation. Binocular vision system was constructed based on the method of binocular stereo vision in machine vision, eleven-meter reflector panel surface shape was measured with photogrammetry method. Cameras were calibrated with the feature points. Under the linearity camera model, the lighting spot array was used as calibration standard pattern, and the intrinsic and extrinsic parameters were acquired. The images were collected for digital image processing and analyzing with two cameras, feature points were extracted with the detection algorithm of characteristic points, and those characteristic points were matched based on epipolar constraint method. Three-dimensional reconstruction coordinates of feature points were analyzed and reflective panel surface shape structure was established by curve and surface fitting method. The error of reflector panel surface shape was calculated to realize automatic measurement on reflector panel surface shape. The results show that unit reflector panel surface inspection accuracy was 2.30mm, within the standard deviation error of 5.00mm. Compared with the requirement of reflector panel machining precision, photogrammetry has fine precision and operation feasibility on eleven-meter reflector panel surface shape measurement for FAST.
Fast ion surface energy loss and straggling in the surface wake fields.
Nandi, T; Haris, K; Hala; Singh, Gurjeet; Kumar, Pankaj; Kumar, Rajesh; Saini, S K; Khan, S A; Jhingan, Akhil; Verma, P; Tauheed, A; Mehta, D; Berry, H G
2013-04-19
We have measured the stopping powers and straggling of fast, highly ionized atoms passing through thin bilayer targets made up of metals and insulators. We were surprised to find that the energy losses as well as the straggling depend on the ordering of the target and have small but significantly different values on bilayer reversal. We ascribe this newly found difference in energy loss to the surface energy loss field effect due to the differing surface wake fields as the beam exits the target in the two cases. This finding is validated with experiments using several different projectiles, velocities, and bilayer targets. Both partners of the diatomic molecular ions also display similar results. A comparison of the energy loss results with those of previous theoretical predictions for the surface wake potential for fast ions in solids supports the existence of a self-wake. PMID:23821777
A CANDU-Based Fast Irradiation Reactor
Shatilla, Youssef
2006-07-01
A new steady-state fast neutron reactor is needed to satisfy the testing needs of Generation IV reactors, the Space Propulsion Program, and the Advanced Fuel Cycle Initiative. This paper presents a new concept for a CANDU-based fast irradiation reactor that is horizontal in orientation, with individual pressure tubes running the entire length of the scattering-medium tank (Calandria) filled with Lead-Bismuth-Eutectic (LBE). This approach for a test reactor will provide more flexibility in refueling, sample removal, and ability to completely re-configure the core to meet different users' requirements. Full core neutronic analysis of several fuel/coolant/geometry combinations showed a small hexagonal, LBE-cooled, U-Pu-10Zr fuel, with a core power of 100 MW{sub th} produced a fast flux (>0.1 MeV) of 1.5 x 10{sup 15} n/cm{sup 2} sec averaged over the whole length of six irradiation channels with a total testing volume of more than 77 liters. In-core breeding allowed the Pu-239 enrichment to be 15.3% which should result in core continuous operation for 180 effective full power days. Other coolants investigated included high pressure water steam and helium. An innovative shutdown/control system which consisted of the six outermost fuel channels was proven to be effective in shutting the core down when flooded with boric acid as a neutron absorber. The new shutdown/control system has the advantage of causing the minimum perturbation of the axial flux shape when the control channels are partially flooded with boric acid. This is because the acid is injected homogeneously along the control channel in contrast to regular control rods that are injected partially causing an axial perturbation in the core flux which in turn reduces safety analysis margins. The new shutdown/control system is not required to penetrate the core in a direction vertical to the fuel channels which allowed the freedom of changing core pitch as deemed necessary. A preliminary thermal hydraulic analysis
NASA Astrophysics Data System (ADS)
Langford, Thomas J.
The typical fast neutron detector falls into one of two categories, Bonner sphere spectrometers and liquid scintillator proton recoil detectors. These two detector types have traditionally been used to measure fast neutrons at the surface and in low background environments. The cosmogenic neutron spectrum and flux is an important parameter for a number of experimental efforts, including procurement of low background materials and the prediction of electronic device faults. Fast neutrons can also cause problems for underground low-background experiments, through material activation or signals that mimic rare events. Current detector technology is not sufficient to properly characterize these backgrounds. To this end, the University of Maryland and the National Institute of Standards and Technology designed, developed, and deployed two Fast Neutron Spectrometers (FaNS) comprised of plastic scintillator and 3He proportional counters. The detectors are based upon capture-gated spectroscopy, a technique that demands a delayed coincidence between a neutron scatter and the resulting neutron capture after thermalization. This technique provides both particle identification and knowledge that the detected neutron fully thermalized. This improves background rejection capabilities and energy resolution. Presented are the design, development, and deployment of FaNS-1 and FaNS-2. Both detectors were characterized using standard fields at NIST, including calibrated 252Cf neutron sources and two monoenergetic neutron generators. Measurements of the surface fast neutron spectrum and flux have been made with both detectors, which are compared with previous measurements by traditional detectors. Additionally, FaNS-1 was deployed at the Kimballton Underground Research Facility (KURF) in Ripplemead, VA. A measurement of the fast neutron spectrum and flux at KURF is presented as well. FaNS-2 is currently installed in a shallow underground laboratory where it is measuring the muon
A fast dynamic mode in rare earth based glasses
NASA Astrophysics Data System (ADS)
Zhao, L. Z.; Xue, R. J.; Zhu, Z. G.; Ngai, K. L.; Wang, W. H.; Bai, H. Y.
2016-05-01
Metallic glasses (MGs) usually exhibit only slow β-relaxation peak, and the signature of the fast dynamic is challenging to be observed experimentally in MGs. We report a general and unusual fast dynamic mode in a series of rare earth based MGs manifested as a distinct fast β'-relaxation peak in addition to slow β-relaxation and α-relaxation peaks. We show that the activation energy of the fast β'-relaxation is about 12RTg and is equivalent to the activation of localized flow event. The coupling of these dynamic processes as well as their relationship with glass transition and structural heterogeneity is discussed.
A fast dynamic mode in rare earth based glasses.
Zhao, L Z; Xue, R J; Zhu, Z G; Ngai, K L; Wang, W H; Bai, H Y
2016-05-28
Metallic glasses (MGs) usually exhibit only slow β-relaxation peak, and the signature of the fast dynamic is challenging to be observed experimentally in MGs. We report a general and unusual fast dynamic mode in a series of rare earth based MGs manifested as a distinct fast β'-relaxation peak in addition to slow β-relaxation and α-relaxation peaks. We show that the activation energy of the fast β'-relaxation is about 12RTg and is equivalent to the activation of localized flow event. The coupling of these dynamic processes as well as their relationship with glass transition and structural heterogeneity is discussed. PMID:27250316
Fast imaging with surface-related multiples by sparse inversion
NASA Astrophysics Data System (ADS)
Tu, Ning; Herrmann, Felix J.
2015-04-01
In marine exploration seismology, surface-related multiples are usually treated as noise mainly because subsequent processing steps, such as migration velocity analysis and imaging, require multiple-free data. Failure to remove these wavefield components from the data may lead to erroneous estimates for migration velocity or result in strong coherent artefacts that interfere with the imaged reflectors. However, multiples can carry complementary information compared to primaries, as they interact with the free surface and are therefore exposed more to the subsurface. Recent work has shown that when processed correctly multiples can improve seismic illumination. Given a sufficiently accurate background velocity model and an estimate for the source signature, we propose a new and computationally efficient linearized inversion procedure based on two-way wave equations, which produces accurate images of the subsurface from the total upgoing wavefield including surface-related multiples. Modelling of the surface-related multiples in the proposed method derives from the well-known surface-related multiple elimination method. We incur a minimal overhead from incorporating the multiples by having the wave-equation solver carry out the multiple predictions via the inclusion of an areal source instead of expensive dense matrix-matrix multiplications. By using subsampling techniques, we obtain high-quality true-amplitude least-squares migrated images at computational costs of roughly a single reverse-time migration (RTM) with all the data. These images are virtually free of coherent artefacts from multiples. Proper inversion of the multiples would be computationally infeasible without using these techniques that significantly bring down the cost. By promoting sparsity in the curvelet domain and using rerandomization, out method gains improved robustness to errors in the background velocity model, and errors incurred in the linearization of the wave equation with respect to the
A Simple and Fast Spline Filtering Algorithm for Surface Metrology
Zhang, Hao; Ott, Daniel; Song, John; Tong, Mingsi; Chu, Wei
2015-01-01
Spline filters and their corresponding robust filters are commonly used filters recommended in ISO (the International Organization for Standardization) standards for surface evaluation. Generally, these linear and non-linear spline filters, composed of symmetric, positive-definite matrices, are solved in an iterative fashion based on a Cholesky decomposition. They have been demonstrated to be relatively efficient, but complicated and inconvenient to implement. A new spline-filter algorithm is proposed by means of the discrete cosine transform or the discrete Fourier transform. The algorithm is conceptually simple and very convenient to implement. PMID:26958443
A fast method to measure the 3D surface of the human heart
NASA Astrophysics Data System (ADS)
Cao, Yiping; Su, Xianyu; Xiang, Liqun; Chen, Wenjing; Zhang, Qican
2003-12-01
Three-dimensional (3-D) automatic measurement of an object is widely used in many fields. In Biology and Medicine society, it can be applicable for surgery, orthopedics, viscera disease analysis and diagnosis etc. Here a new fast method to measure the 3D surface of human heart is proposed which can provide doctors a lot of information, such as the size of heart profile, the sizes of the left or right heart ventricle, and the curvature center and radius of heart ventricle, to fully analyze and diagnose pathobiology of human heart. The new fast method is optically and noncontacted and based upon the Phase Measurement Profilometry (PMP), which has higher measuring precision. A human heart specimen experiment has verified our method.
A New Fast Algorithm to Completely Account for Non-Lambertian Surface Reflection of The Earth
NASA Technical Reports Server (NTRS)
Qin, Wen-Han; Herman, Jay R.; Ahmad, Ziauddin; Einaudi, Franco (Technical Monitor)
2000-01-01
Surface bidirectional reflectance distribution function (BRDF) influences not only radiance just about the surface, but that emerging from the top of the atmosphere (TOA). In this study we propose a new, fast and accurate, algorithm CASBIR (correction for anisotropic surface bidirectional reflection) to account for such influences on radiance measured above TOA. This new algorithm is based on a 4-stream theory that separates the radiation field into direct and diffuse components in both upwelling and downwelling directions. This is important because the direct component accounts for a substantial portion of incident radiation under a clear sky, and the BRDF effect is strongest in the reflection of the direct radiation reaching the surface. The model is validated by comparison with a full-scale, vector radiation transfer model for the atmosphere-surface system. The result demonstrates that CASBIR performs very well (with overall relative difference of less than one percent) for all solar and viewing zenith and azimuth angles considered in wavelengths from ultraviolet to near-infrared over three typical, but very different surface types. Application of this algorithm includes both accounting for non-Lambertian surface scattering on the emergent radiation above TOA and a potential approach for surface BRDF retrieval from satellite measured radiance.
Coupled instabilities of surface crease and bulk bending during fast free swelling of hydrogels.
Takahashi, Riku; Ikura, Yumihiko; King, Daniel R; Nonoyama, Takayuki; Nakajima, Tasuku; Kurokawa, Takayuki; Kuroda, Hirotoshi; Tonegawa, Yoshihiro; Gong, Jian Ping
2016-06-21
Most studies on hydrogel swelling instability have been focused on a constrained boundary condition. In this paper, we studied the mechanical instability of a piece of disc-shaped hydrogel during free swelling. The fast swelling of the gel induces two swelling mismatches; a surface-inner layer mismatch and an annulus-disc mismatch, which lead to the formation of a surface crease pattern and a saddle-like bulk bending, respectively. For the first time, a stripe-like surface crease that is at a right angle on the two surfaces of the gel was observed. This stripe pattern is related to the mechanical coupling of surface instability and bulk bending, which is justified by investigating the swelling-induced surface pattern on thin hydrogel sheets fixed onto a saddle-shaped substrate prior to swelling. A theoretical mechanism based on an energy model was developed to show an anisotropic stripe-like surface crease pattern on a saddle-shaped surface. These results might be helpful to develop novel strategies for controlling crease patterns on soft and wet materials by changing their three-dimensional shape. PMID:27108760
Reactive scattering of H{sub 2} from metal surfaces under fast-grazing-incidence conditions
Diaz, C.; Martin, F.
2010-07-15
We have studied the interaction of molecular hydrogen with metal surfaces under fast-grazing-incidence conditions, by means of classical dynamics calculations based on density functional theory six-dimensional potential energy surfaces. We have performed calculations on two activated systems, H{sub 2}/NiAl(110) and H{sub 2}/Cu(111), and on two nonactivated systems, H{sub 2}/Pd(111) and H{sub 2}/Pd(110). We show that for rather open surfaces the computed 1-R probabilities (where R represents the reflectivity) as a function of the normal collision energy at grazing incidence (along low-Miller-index directions) mimic reasonably well the dissociative adsorption probabilities obtained at normal incidence and thermal energies from the dissociation threshold up to the saturation limit. Our results indicate that fast grazing incidence experiments could be used as complement to traditional sticking experiments at thermal energies to determine dissociative adsorption saturation limits, which are usually unreachable due to limitations in traditional molecular beam experiments
A Fast Variational Method for the Construction of Resolution Adaptive C-Smooth Molecular Surfaces.
Bajaj, Chandrajit L; Xu, Guoliang; Zhang, Qin
2009-05-01
We present a variational approach to smooth molecular (proteins, nucleic acids) surface constructions, starting from atomic coordinates, as available from the protein and nucleic-acid data banks. Molecular dynamics (MD) simulations traditionally used in understanding protein and nucleic-acid folding processes, are based on molecular force fields, and require smooth models of these molecular surfaces. To accelerate MD simulations, a popular methodology is to employ coarse grained molecular models, which represent clusters of atoms with similar physical properties by psuedo- atoms, resulting in coarser resolution molecular surfaces. We consider generation of these mixed-resolution or adaptive molecular surfaces. Our approach starts from deriving a general form second order geometric partial differential equation in the level-set formulation, by minimizing a first order energy functional which additionally includes a regularization term to minimize the occurrence of chemically infeasible molecular surface pockets or tunnel-like artifacts. To achieve even higher computational efficiency, a fast cubic B-spline C(2) interpolation algorithm is also utilized. A narrow band, tri-cubic B-spline level-set method is then used to provide C(2) smooth and resolution adaptive molecular surfaces. PMID:19802355
Sample-based surface coloring.
Bürger, Kai; Krüger, Jens; Westermann, Rüdiger
2010-01-01
In this paper, we present a sample-based approach for surface coloring, which is independent of the original surface resolution and representation. To achieve this, we introduce the Orthogonal Fragment Buffer (OFB)-an extension of the Layered Depth Cube-as a high-resolution view-independent surface representation. The OFB is a data structure that stores surface samples at a nearly uniform distribution over the surface, and it is specifically designed to support efficient random read/write access to these samples. The data access operations have a complexity that is logarithmic in the depth complexity of the surface. Thus, compared to data access operations in tree data structures like octrees, data-dependent memory access patterns are greatly reduced. Due to the particular sampling strategy that is employed to generate an OFB, it also maintains sample coherence, and thus, exhibits very good spatial access locality. Therefore, OFB-based surface coloring performs significantly faster than sample-based approaches using tree structures. In addition, since in an OFB, the surface samples are internally stored in uniform 2D grids, OFB-based surface coloring can efficiently be realized on the GPU to enable interactive coloring of high-resolution surfaces. On the OFB, we introduce novel algorithms for color painting using volumetric and surface-aligned brushes, and we present new approaches for particle-based color advection along surfaces in real time. Due to the intermediate surface representation we choose, our method can be used to color polygonal surfaces as well as any other type of surface that can be sampled. PMID:20616392
Bürger, Kai; Krüger, Jens; Westermann, Rüdiger
2011-01-01
In this paper, we present a sample-based approach for surface coloring, which is independent of the original surface resolution and representation. To achieve this, we introduce the Orthogonal Fragment Buffer (OFB)—an extension of the Layered Depth Cube—as a high-resolution view-independent surface representation. The OFB is a data structure that stores surface samples at a nearly uniform distribution over the surface, and it is specifically designed to support efficient random read/write access to these samples. The data access operations have a complexity that is logarithmic in the depth complexity of the surface. Thus, compared to data access operations in tree data structures like octrees, data-dependent memory access patterns are greatly reduced. Due to the particular sampling strategy that is employed to generate an OFB, it also maintains sample coherence, and thus, exhibits very good spatial access locality. Therefore, OFB-based surface coloring performs significantly faster than sample-based approaches using tree structures. In addition, since in an OFB, the surface samples are internally stored in uniform 2D grids, OFB-based surface coloring can efficiently be realized on the GPU to enable interactive coloring of high-resolution surfaces. On the OFB, we introduce novel algorithms for color painting using volumetric and surface-aligned brushes, and we present new approaches for particle-based color advection along surfaces in real time. Due to the intermediate surface representation we choose, our method can be used to color polygonal surfaces as well as any other type of surface that can be sampled. PMID:20616392
FAST TRACK COMMUNICATION: Graphene based quantum dots
NASA Astrophysics Data System (ADS)
Zhang, H. G.; Hu, H.; Pan, Y.; Mao, J. H.; Gao, M.; Guo, H. M.; Du, S. X.; Greber, T.; Gao, H.-J.
2010-08-01
Laterally localized electronic states are identified on a single layer of graphene on ruthenium by low temperature scanning tunneling spectroscopy (STS). The individual states are separated by 3 nm and comprise regions of about 90 carbon atoms. This constitutes a highly regular quantum dot-array with molecular precision. It is evidenced by quantum well resonances (QWRs) with energies that relate to the corrugation of the graphene layer. The dI/dV conductance spectra are modeled by a layer height dependent potential-well with a delta-function potential that describes the barrier for electron penetration into graphene. The resulting QWRs are strongest and lowest in energy on the isolated 'hill' regions with a diameter of 2 nm, where the graphene is decoupled from the surface.
Fast Algorithms for Model-Based Diagnosis
NASA Technical Reports Server (NTRS)
Fijany, Amir; Barrett, Anthony; Vatan, Farrokh; Mackey, Ryan
2005-01-01
Two improved new methods for automated diagnosis of complex engineering systems involve the use of novel algorithms that are more efficient than prior algorithms used for the same purpose. Both the recently developed algorithms and the prior algorithms in question are instances of model-based diagnosis, which is based on exploring the logical inconsistency between an observation and a description of a system to be diagnosed. As engineering systems grow more complex and increasingly autonomous in their functions, the need for automated diagnosis increases concomitantly. In model-based diagnosis, the function of each component and the interconnections among all the components of the system to be diagnosed (for example, see figure) are represented as a logical system, called the system description (SD). Hence, the expected behavior of the system is the set of logical consequences of the SD. Faulty components lead to inconsistency between the observed behaviors of the system and the SD. The task of finding the faulty components (diagnosis) reduces to finding the components, the abnormalities of which could explain all the inconsistencies. Of course, the meaningful solution should be a minimal set of faulty components (called a minimal diagnosis), because the trivial solution, in which all components are assumed to be faulty, always explains all inconsistencies. Although the prior algorithms in question implement powerful methods of diagnosis, they are not practical because they essentially require exhaustive searches among all possible combinations of faulty components and therefore entail the amounts of computation that grow exponentially with the number of components of the system.
Fast musculoskeletal registration based on shape matching.
Gilles, Benjamin; Pai, Dinesh K
2008-01-01
This paper presents a new method for computing elastic and plastic deformations in the context of discrete deformable model-based registration. Internal forces are estimated by averaging local transforms between reference and current particle positions. Our technique can accommodate large non-linear deformations, and is unconditionally stable. Moreover, it is simple to implement and versatile. We show how to tune model stiffness and computational cost, which is important for efficient registration, and demonstrate our technique in the complex problem of inter-patient musculoskeletal registration. PMID:18982681
Using dynamic interferometric synthetic aperature radar (InSAR) to image fast-moving surface waves
Vincent, Paul
2005-06-28
A new differential technique and system for imaging dynamic (fast moving) surface waves using Dynamic Interferometric Synthetic Aperture Radar (InSAR) is introduced. This differential technique and system can sample the fast-moving surface displacement waves from a plurality of moving platform positions in either a repeat-pass single-antenna or a single-pass mode having a single-antenna dual-phase receiver or having dual physically separate antennas, and reconstruct a plurality of phase differentials from a plurality of platform positions to produce a series of desired interferometric images of the fast moving waves.
Fast and accurate line scanner based on white light interferometry
NASA Astrophysics Data System (ADS)
Lambelet, Patrick; Moosburger, Rudolf
2013-04-01
White-light interferometry is a highly accurate technology for 3D measurements. The principle is widely utilized in surface metrology instruments but rarely adopted for in-line inspection systems. The main challenges for rolling out inspection systems based on white-light interferometry to the production floor are its sensitivity to environmental vibrations and relatively long measurement times: a large quantity of data needs to be acquired and processed in order to obtain a single topographic measurement. Heliotis developed a smart-pixel CMOS camera (lock-in camera) which is specially suited for white-light interferometry. The demodulation of the interference signal is treated at the level of the pixel which typically reduces the acquisition data by one orders of magnitude. Along with the high bandwidth of the dedicated lock-in camera, vertical scan-speeds of more than 40mm/s are reachable. The high scan speed allows for the realization of inspection systems that are rugged against external vibrations as present on the production floor. For many industrial applications such as the inspection of wafer-bumps, surface of mechanical parts and solar-panel, large areas need to be measured. In this case either the instrument or the sample are displaced laterally and several measurements are stitched together. The cycle time of such a system is mostly limited by the stepping time for multiple lateral displacements. A line-scanner based on white light interferometry would eliminate most of the stepping time while maintaining robustness and accuracy. A. Olszak proposed a simple geometry to realize such a lateral scanning interferometer. We demonstrate that such inclined interferometers can benefit significantly from the fast in-pixel demodulation capabilities of the lock-in camera. One drawback of an inclined observation perspective is that its application is limited to objects with scattering surfaces. We therefore propose an alternate geometry where the incident light is
Fast spatial ancestry via flexible allele frequency surfaces
Rañola, John Michael; Novembre, John; Lange, Kenneth
2014-01-01
Motivation: Unique modeling and computational challenges arise in locating the geographic origin of individuals based on their genetic backgrounds. Single-nucleotide polymorphisms (SNPs) vary widely in informativeness, allele frequencies change non-linearly with geography and reliable localization requires evidence to be integrated across a multitude of SNPs. These problems become even more acute for individuals of mixed ancestry. It is hardly surprising that matching genetic models to computational constraints has limited the development of methods for estimating geographic origins. We attack these related problems by borrowing ideas from image processing and optimization theory. Our proposed model divides the region of interest into pixels and operates SNP by SNP. We estimate allele frequencies across the landscape by maximizing a product of binomial likelihoods penalized by nearest neighbor interactions. Penalization smooths allele frequency estimates and promotes estimation at pixels with no data. Maximization is accomplished by a minorize–maximize (MM) algorithm. Once allele frequency surfaces are available, one can apply Bayes’ rule to compute the posterior probability that each pixel is the pixel of origin of a given person. Placement of admixed individuals on the landscape is more complicated and requires estimation of the fractional contribution of each pixel to a person’s genome. This estimation problem also succumbs to a penalized MM algorithm. Results: We applied the model to the Population Reference Sample (POPRES) data. The model gives better localization for both unmixed and admixed individuals than existing methods despite using just a small fraction of the available SNPs. Computing times are comparable with the best competing software. Availability and implementation: Software will be freely available as the OriGen package in R. Contact: ranolaj@uw.edu or klange@ucla.edu Supplementary information: Supplementary data are available at
GPU-based fast gamma index calculation.
Gu, Xuejun; Jia, Xun; Jiang, Steve B
2011-03-01
The γ-index dose comparison tool has been widely used to compare dose distributions in cancer radiotherapy. The accurate calculation of γ-index requires an exhaustive search of the closest Euclidean distance in the high-resolution dose-distance space. This is a computational intensive task when dealing with 3D dose distributions. In this work, we combine a geometric method (Ju et al 2008 Med. Phys. 35 879-87) with a radial pre-sorting technique (Wendling et al 2007 Med. Phys. 34 1647-54) and implement them on computer graphics processing units (GPUs). The developed GPU-based γ-index computational tool is evaluated on eight pairs of IMRT dose distributions. The γ-index calculations can be finished within a few seconds for all 3D testing cases on one single NVIDIA Tesla C1060 card, achieving 45-75× speedup compared to CPU computations conducted on an Intel Xeon 2.27 GHz processor. We further investigated the effect of various factors on both CPU and GPU computation time. The strategy of pre-sorting voxels based on their dose difference values speeds up the GPU calculation by about 2.7-5.5 times. For n-dimensional dose distributions, γ-index calculation time on CPU is proportional to the summation of γ(n) over all voxels, while that on GPU is affected by γ(n) distributions and is approximately proportional to the γ(n) summation over all voxels. We found that increasing the resolution of dose distributions leads to a quadratic increase of computation time on CPU, while less-than-quadratic increase on GPU. The values of dose difference and distance-to-agreement criteria also have an impact on γ-index calculation time. PMID:21317484
GPU-based fast gamma index calculation
NASA Astrophysics Data System (ADS)
Gu, Xuejun; Jia, Xun; Jiang, Steve B.
2011-03-01
The γ-index dose comparison tool has been widely used to compare dose distributions in cancer radiotherapy. The accurate calculation of γ-index requires an exhaustive search of the closest Euclidean distance in the high-resolution dose-distance space. This is a computational intensive task when dealing with 3D dose distributions. In this work, we combine a geometric method (Ju et al 2008 Med. Phys. 35 879-87) with a radial pre-sorting technique (Wendling et al 2007 Med. Phys. 34 1647-54) and implement them on computer graphics processing units (GPUs). The developed GPU-based γ-index computational tool is evaluated on eight pairs of IMRT dose distributions. The γ-index calculations can be finished within a few seconds for all 3D testing cases on one single NVIDIA Tesla C1060 card, achieving 45-75× speedup compared to CPU computations conducted on an Intel Xeon 2.27 GHz processor. We further investigated the effect of various factors on both CPU and GPU computation time. The strategy of pre-sorting voxels based on their dose difference values speeds up the GPU calculation by about 2.7-5.5 times. For n-dimensional dose distributions, γ-index calculation time on CPU is proportional to the summation of γn over all voxels, while that on GPU is affected by γn distributions and is approximately proportional to the γn summation over all voxels. We found that increasing the resolution of dose distributions leads to a quadratic increase of computation time on CPU, while less-than-quadratic increase on GPU. The values of dose difference and distance-to-agreement criteria also have an impact on γ-index calculation time.
Spiraling Edge: Fast Surface Reconstruction from Partially Organized Sample Points
Angel, E.; Crossno, P.
1999-01-06
Many applications produce three-dimensional points that must be further processed to generate a surface. Surface reconstruction algorithms that start with a set of unorganized points are extremely time-consuming. Often, however, points are generated such that there is additional information available to the reconstruction algorithm. We present a specialized algorithm for surface reconstruction that is three orders of magnitude faster than algorithms for the general case. In addition to sample point locations, our algorithm starts with normal information and knowledge of each point's neighbors. Our algorithm produces a localized approximation to the surface by creating a star-shaped triangulation between a point and a subset of its nearest neighbors. This surface patch is extended by locally triangulating each of the points along the edge of the patch. As each edge point is triangulated, it is removed from the edge and new edge points along the patch's edge are inserted in its place. The updated edge spirals out over the surface until the edge encounters a surface boundary and stops growing in that direction, or until the edge reduces to a small hole that fills itself in.
Spiraling Edge: Fast Surface Reconstruction from Partially Organized Sample Points
Angel, Edward; Crossno, Patricia
1999-07-12
Many applications produce three-dimensional points that must be further processed to generate a surface. Surface reconstruction algorithms that start with a set of unorganized points are extremely time-consuming. Sometimes, however, points are generated such that there is additional information available to the reconstruction algorithm. We present Spiraling Edge, a specialized algorithm for surface reconstruction that is three orders of magnitude faster than algorithms for the general case. In addition to sample point locations, our algorithm starts with normal information and knowledge of each point's neighbors. Our algorithm produces a localized approximation to the surface by creating a star-shaped triangulation between a point and a subset of its nearest neighbors. This surface patch is extended by locally triangulating each of the points along the edge of the patch. As each edge point is triangulated, it is removed from the edge and new edge points along the patch's edge are inserted in its place. The updated edge spirals out over the surface until the edge encounters a surface boundary and stops growing in that direction, or until the edge reduces to a small hole that is filled by the final triangle.
[Fast spectral modeling based on Voigt peaks].
Li, Jin-rong; Dai, Lian-kui
2012-03-01
Indirect hard modeling (IHM) is a recently introduced method for quantitative spectral analysis, which was applied to the analysis of nonlinear relation between mixture spectrum and component concentration. In addition, IHM is an effectual technology for the analysis of components of mixture with molecular interactions and strongly overlapping bands. Before the establishment of regression model, IHM needs to model the measured spectrum as a sum of Voigt peaks. The precision of the spectral model has immediate impact on the accuracy of the regression model. A spectrum often includes dozens or even hundreds of Voigt peaks, which mean that spectral modeling is a optimization problem with high dimensionality in fact. So, large operation overhead is needed and the solution would not be numerically unique due to the ill-condition of the optimization problem. An improved spectral modeling method is presented in the present paper, which reduces the dimensionality of optimization problem by determining the overlapped peaks in spectrum. Experimental results show that the spectral modeling based on the new method is more accurate and needs much shorter running time than conventional method. PMID:22582612
Interaction of fast charges with a rough metal surface
NASA Astrophysics Data System (ADS)
Lyon, Keenan; Zhang, Ying-Ying; Mišković, Z. L.; Song, Yuan-Hong; Wang, You-Nian
2015-09-01
We use the Green function formulation of a dielectric response formalism to study the dynamic polarization of a rough metal surface by a single charged particle and by a pair of charged particles that move parallel to the surface. While the surface roughness is treated nonperturbatively, the plasmon excitation of the metal electron gas is described locally. We find that the magnitudes of both the image potential and the stopping power of a single particle are increased by the increasing roughness and decreasing correlation length of the surface. On the other hand, both the long-range wake potential of a single charged particle and the interaction potential between two particles are weakly affected by the surface roughness. However, the strongest effects of the surface roughness are seen in the correlated stopping power of two charged particles, giving rise to oscillations in the dependence of the stopping ratio on their distance, both when the interparticle axis is perpendicular to their direction of motion and when the wake-related oscillations are damped by adiabatic suppression of plasmon excitations at low particle speeds.
Fast Electromechanical Switches Based on Carbon Nanotubes
NASA Technical Reports Server (NTRS)
Kaul, Anupama; Wong, Eric; Epp, Larry
2008-01-01
Electrostatically actuated nanoelectromechanical switches based on carbon nanotubes have been fabricated and tested in a continuing effort to develop high-speed switches for a variety of stationary and portable electronic equipment. As explained below, these devices offer advantages over electrostatically actuated microelectromechanical switches, which, heretofore, have represented the state of the art of rapid, highly miniaturized electromechanical switches. Potential applications for these devices include computer memories, cellular telephones, communication networks, scientific instrumentation, and general radiation-hard electronic equipment. A representative device of the present type includes a single-wall carbon nanotube suspended over a trench about 130 nm wide and 20 nm deep in an electrically insulating material. The ends of the carbon nanotube are connected to metal electrodes, denoted the source and drain electrodes. At bottom of the trench is another metal electrode, denoted the pull electrode (see figure). In the off or open switch state, no voltage is applied, and the nanotube remains out of contact with the pull electrode. When a sufficiently large electric potential (switching potential) is applied between the pull electrode and either or both of the source and drain electrodes, the resulting electrostatic attraction bends and stretches the nanotube into contact with the pull electrode, thereby putting the switch into the "on" or "closed" state, in which substantial current (typically as much as hundreds of nanoamperes) is conducted. Devices of this type for use in initial experiments were fabricated on a thermally oxidized Si wafer, onto which Nb was sputter-deposited for use as the pull-electrode layer. Nb was chosen because its refractory nature would enable it to withstand the chemical and thermal conditions to be subsequently imposed for growing carbon nanotubes. A 200- nm-thick layer of SiO2 was formed on top of the Nb layer by plasma
NASA Astrophysics Data System (ADS)
Lucas, A. A.; Sunjic, M.; Benedek, G.; Echenique, P. M.
2014-06-01
A diffraction mechanism is proposed for the capture, multiple bouncing and final escape of a fast ion (keV) impinging on the surface of a polarizable material at grazing incidence. Capture and escape are effected by elastic quantum diffraction consisting of the exchange of a parallel surface wave vector G = 2π/a between the ion parallel momentum and the surface periodic potential of period a. Diffraction-assisted capture becomes possible for glancing angles Φ smaller than a critical value given by Φ c2 ≈ 2λ/a-|V im|/E, where E is the kinetic energy of the ion, λ = h/Mv its de Broglie wavelength and V im its average electronic image potential at the distance from the surface where diffraction takes place. For Φ < Φ c, the ion can fall into a selected capture state in the quasi-continuous spectrum of its image potential and execute one or several ricochets before being released by the time reversed diffraction process. The capture, ricochet and escape are accompanied by a large, periodic energy loss of several tens of eV in the forward motion caused by the coherent emission of a giant number of quanta ħω of Fuchs-Kliewer surface phonons characteristic of the polar material. An analytical calculation of the energy loss spectrum, based on the proposed diffraction process and using a model ion-phonon coupling developed earlier (Lucas et al 2013 J. Phys.: Condens. Matter 25 355009), is presented, which fully explains the experimental spectrum of Villette et al (2000 Phys. Rev. Lett. 85 3137) for Ne+ ions ricocheting on a LiF(001) surface.
Fast-neutron multiplicity analysis based on liquid scintillation.
Li, Sufen; Qiu, Suizheng; Zhang, Quanhu; Huo, Yonggang; Lin, Hongtao
2016-04-01
In this study, according to the establishment of the classical neutron multiplicity measurement equation, a fast-neutron multiplicity analysis and measurement equation is established, considering the influence of neutron scattering cross-talk, by means of theoretical analysis and computer simulation. Moreover, the fission rate F, multiplication M, and (α, n) reaction rate α in the established equation were solved. A new measurement method of scattering cross-talk was established and the established equation was validated using Geant4 simulation. The fast-neutron multiplicity counting equation has only a smaller deviation from the fast-neutron multiplicity counting system based on liquid scintillation detector, and it has a wider application prospect. PMID:26766037
FastME 2.0: A Comprehensive, Accurate, and Fast Distance-Based Phylogeny Inference Program.
Lefort, Vincent; Desper, Richard; Gascuel, Olivier
2015-10-01
FastME provides distance algorithms to infer phylogenies. FastME is based on balanced minimum evolution, which is the very principle of Neighbor Joining (NJ). FastME improves over NJ by performing topological moves using fast, sophisticated algorithms. The first version of FastME only included Nearest Neighbor Interchange. The new 2.0 version also includes Subtree Pruning and Regrafting, while remaining as fast as NJ and providing a number of facilities: Distance estimation for DNA and proteins with various models and options, bootstrapping, and parallel computations. FastME is available using several interfaces: Command-line (to be integrated in pipelines), PHYLIP-like, and a Web server (http://www.atgc-montpellier.fr/fastme/). PMID:26130081
GEM-based detectors for thermal and fast neutrons
NASA Astrophysics Data System (ADS)
Croci, G.; Claps, G.; Cazzaniga, C.; Foggetta, L.; Muraro, A.; Valente, P.
2015-06-01
Lately the problem of 3He replacement for neutron detection stimulated an intense activity research on alternative technologies based on alternative neutron converters. This paper presents briefly the results obtained with new GEM detectors optimized for fast and thermal neutrons. For thermal neutrons, we realized a side-on GEM detector based on a series of boron-coated alumina sheets placed perpendicularly to the incident neutron beam direction. This prototype has been tested at n@BTF photo-production neutron facilty in order to test its effectiveness under a very high flux gamma background. For fast neutrons, we developed new GEM detectors (called nGEM) for the CNESM diagnostic system of the SPIDER NBI prototype for ITER (RFX-Consortium, Italy) and as beam monitor for fast neutrons lines at spallation sources. The nGEM is a Triple GEM gaseous detector equipped with a polyethylene layer used to convert fast neutrons into recoil protons through the elastic scattering process. This paper describes the results obtained by testing a medium size (30 × 25 cm2 active area) nGEM detector at the ISIS spallation source on the VESUVIO beam line.
Sensitivity Analysis of a process based erosion model using FAST
NASA Astrophysics Data System (ADS)
Gabelmann, Petra; Wienhöfer, Jan; Zehe, Erwin
2015-04-01
deposition are related to overland flow velocity using the equation of Engelund and Hansen and the sinking velocity of grain sizes, respectively. The sensitivity analysis was performed based on virtual hillslopes similar to those in the Weiherbach catchment. We applied the FAST-method (Fourier Amplitude Sensitivity Test), which provides a global sensitivity analysis with comparably few model runs. We varied model parameters in predefined and, for the Weiherbach catchment, physically meaningful parameter ranges. Those parameters included rainfall intensity, surface roughness, hillslope geometry, land use, erosion resistance, and soil hydraulic parameters. The results of this study allow guiding further modelling efforts in the Weiherbach catchment with respect to data collection and model modification.
Fast track surface mine installation on the critical path
Willison, L.R.
1986-07-01
A deep mining area, located in the rugged woodland hills of central West Virginia, was transformed into a beehive of activity as a major new mine and preparation plant was constructed on a very tight deadline. By the time the mine was on line, BethEnergy Mines had spent $40 million to develop the two million tpy (ton per year) surface coal mining complex. In early 1984 not a stick of timber had been cut. But within a very short time (coal-wise) there was a mining area; a 600-tph heavy media cyclone preparation plant, with 36,000 and 24,000 tons of raw and clean coal storage respectively; three miles of haul roads and access roads; a 64,000-ton clean coal stocking facility with a 4000-tph reclaim system that feeds a batch-weighing, floodloading, unit-train loadout facility; a 3.5-mile railroad spur and loop; and all incidental infrastructure. This feat entailed moving more than four million cu-yd of earth, building the preparation plant and loadout facility from ground to operating in six moths, and constructing a railroad spur bridging a major highway.
Fast image matching algorithm based on projection characteristics
NASA Astrophysics Data System (ADS)
Zhou, Lijuan; Yue, Xiaobo; Zhou, Lijun
2011-06-01
Based on analyzing the traditional template matching algorithm, this paper identified the key factors restricting the speed of matching and put forward a brand new fast matching algorithm based on projection. Projecting the grayscale image, this algorithm converts the two-dimensional information of the image into one-dimensional one, and then matches and identifies through one-dimensional correlation, meanwhile, because of normalization has been done, when the image brightness or signal amplitude increasing in proportion, it could also perform correct matching. Experimental results show that the projection characteristics based image registration method proposed in this article could greatly improve the matching speed, which ensuring the matching accuracy as well.
Fast wavelet based algorithms for linear evolution equations
NASA Technical Reports Server (NTRS)
Engquist, Bjorn; Osher, Stanley; Zhong, Sifen
1992-01-01
A class was devised of fast wavelet based algorithms for linear evolution equations whose coefficients are time independent. The method draws on the work of Beylkin, Coifman, and Rokhlin which they applied to general Calderon-Zygmund type integral operators. A modification of their idea is applied to linear hyperbolic and parabolic equations, with spatially varying coefficients. A significant speedup over standard methods is obtained when applied to hyperbolic equations in one space dimension and parabolic equations in multidimensions.
A Fast MEANSHIFT Algorithm-Based Target Tracking System
Sun, Jian
2012-01-01
Tracking moving targets in complex scenes using an active video camera is a challenging task. Tracking accuracy and efficiency are two key yet generally incompatible aspects of a Target Tracking System (TTS). A compromise scheme will be studied in this paper. A fast mean-shift-based Target Tracking scheme is designed and realized, which is robust to partial occlusion and changes in object appearance. The physical simulation shows that the image signal processing speed is >50 frame/s. PMID:22969397
Tsodikov, Oleg V; Record, M Thomas; Sergeev, Yuri V
2002-04-30
New computer programs, SurfRace and FastSurf, perform fast calculations of the solvent accessible and molecular (solvent excluded) surface areas of macromolecules. Program SurfRace also calculates the areas of cavities inaccessible from the outside. We introduce the definition of average curvature of molecular surface and calculate average molecular surface curvatures for each atom in a structure. All surface area and curvature calculations are analytic and therefore yield exact values of these quantities. High calculation speed of this software is achieved primarily by avoiding computationally expensive mathematical procedures wherever possible and by efficient handling of surface data structures. The programs are written initially in the language C for PCs running Windows 2000/98/NT, but their code is portable to other platforms with only minor changes in input-output procedures. The algorithm is robust and does not ignore either multiplicity or degeneracy of atomic overlaps. Fast, memory-efficient and robust execution make this software attractive for applications both in computationally expensive energy minimization algorithms, such as docking or molecular dynamics simulations, and in stand-alone surface area and curvature calculations. PMID:11939594
Effect of fast mold surface temperature evolution on iPP part morphology gradients
NASA Astrophysics Data System (ADS)
Liparoti, Sara; Sorrentino, Andrea; Guzman, Gustavo; Cakmak, Mukerrem; Titomanlio, Giuseppe
2016-03-01
The control of mold surface temperature is an important factor that affects the sample surface morphology as well as the structural gradients (orientation crystal size, and type) as well as cooling stresses. The frozen layer thickness formed during the filling stage also has a very significant effect on the flow resistance and thus on the resulting pressure drop and flow length in thin wall parts. The possibility to have a hot mold during filling and a quick cooling soon afterward is a significant process enhancement particularly for specialized applications such as micro injection molding and for the reproduction of micro structured surfaces. Up to now, several methods (electromagnetic, infrared, hot vapor fleshing etc,) were tried to achieve fast temperature evolution of the mold. Unfortunately, all these methods require a complex balance between thermal and mechanical problems, equipment cost, energy consumption, safety, molding cycle time and part quality achievable. In this work, a thin electrical resistance was designed and used to generate a fast and confined temperature variation on mold surface (by joule effect). Since the whole temperature evolution can take place in a few seconds, one can couple the advantages of a high surface temperature during filling with the advantages of a low mold temperature, fast cooling and low heating dissipation. Some experiments were performed with a commercial iPP resin. The effects of the surface temperature and of the heating time (under constant electric power) on surface finishing and on the final morphology (thickness and structure of the different layers) are explored and discussed.
Electrical studies on silver based fast ion conducting glassy materials
Rao, B. Appa Kumar, E. Ramesh Kumari, K. Rajani Bhikshamaiah, G.
2014-04-24
Among all the available fast ion conductors, silver based glasses exhibit high conductivity. Further, glasses containing silver iodide enhances fast ion conducting behavior at room temperature. Glasses of various compositions of silver based fast ion conductors in the AgI−Ag{sub 2}O−[(1−x)B{sub 2}O{sub 3}−xTeO{sub 2}] (x=0 to1 mol% in steps of 0.2) glassy system have been prepared by melt quenching method. The glassy nature of the compounds has been confirmed by X-ray diffraction. The electrical conductivity (AC) measurements have been carried out in the frequency range of 1 KHz–3MHz by Impedance Analyzer in the temperature range 303–423K. The DC conductivity measurements were also carried out in the temperature range 300–523K. From both AC and DC conductivity studies, it is found that the conductivity increases and activation energy decreases with increasing the concentration of TeO{sub 2} as well as with temperature. The conductivity of the present glass system is found to be of the order of 10{sup −2} S/cm at room temperature. The ionic transport number of these glasses is found to be 0.999 indicating that these glasses can be used as electrolyte in batteries.
Electrical studies on silver based fast ion conducting glassy materials
NASA Astrophysics Data System (ADS)
Rao, B. Appa; Kumar, E. Ramesh; Kumari, K. Rajani; Bhikshamaiah, G.
2014-04-01
Among all the available fast ion conductors, silver based glasses exhibit high conductivity. Further, glasses containing silver iodide enhances fast ion conducting behavior at room temperature. Glasses of various compositions of silver based fast ion conductors in the AgI-Ag2O-[(1-x)B2O3-xTeO2] (x=0 to1 mol% in steps of 0.2) glassy system have been prepared by melt quenching method. The glassy nature of the compounds has been confirmed by X-ray diffraction. The electrical conductivity (AC) measurements have been carried out in the frequency range of 1 KHz-3MHz by Impedance Analyzer in the temperature range 303-423K. The DC conductivity measurements were also carried out in the temperature range 300-523K. From both AC and DC conductivity studies, it is found that the conductivity increases and activation energy decreases with increasing the concentration of TeO2 as well as with temperature. The conductivity of the present glass system is found to be of the order of 10-2 S/cm at room temperature. The ionic transport number of these glasses is found to be 0.999 indicating that these glasses can be used as electrolyte in batteries.
A fast way to visualize the brain surface with volume rendering of MRI data.
Matsumoto, S; Asato, R; Konishi, J
1999-11-01
The preprocessing of 3-dimensional (3D) MRI data constitutes a bottleneck in the process of visualizing the brain surface with volume rendering. As a fast way to achieve this preprocessing, the authors propose a simple pipeline based on an algorithm of seed-growing type, for approximate segmentation of the intradural space in T1-weighted 3D MRI data. Except for the setting of a seed and four parameters, this pipeline proceeds in an unsupervised manner; no interactive intermediate step is involved. It was tested with 15 datasets from normal adults. The result was reproducible in that as long as the seed was located within the cerebral white matter, identical segmentation was achieved for each dataset. Although the pipeline ran with gross segmentation error along the floor of the cranial cavity, it performed well along the cranial vault so that subsequent volume rendering permitted the observation of the sulco-gyral pattern over cerebral convexities. Use of this pipeline followed by volume rendering is a handy approach to the visualization of the brain surface from 3D MRI data. PMID:10587913
Aili, Abulimiti; Li, Hongxia; Alhosani, Mohamed H; Zhang, TieJun
2016-08-24
Superhydrophobic nanostructured surfaces have demonstrated outstanding capability in energy and water applications by promoting dropwise condensation, where fast droplet growth and efficient condensate removal are two key parameters. However, these parameters remain contradictory. Although efficient droplet removal is easily obtained through coalescence jumping on uniform superhydrophobic surfaces, simultaneously achieving fast droplet growth is still challenging. Also, on such surfaces droplets can grow to larger sizes without restriction if there is no coalescence. In this work, we show that superhydrophobic nanostructured microporous surfaces can manipulate the droplet growth and jumping. Microporous surface morphology effectively enhances the growth of droplets in pores owing to large solid-liquid contact area. At low supersaturations, the upward growth rate (1-1.5 μm/s) of these droplets in pores is observed to be around 15-25 times that of the droplets outside the pores. Meanwhile, their top curvature radius increases relatively slowly (∼0.25 μm/s) due to pore confinement, which results in a highly stretched droplet surface. We also observed forced jumping of stretched droplets in pores either through coalescence with spherical droplets outside pores or through self-pulling without coalescence. Both experimental observation and theoretical modeling reveal that excess surface free energy stored in the stretched droplet surface and micropore confinement are responsible for this pore-scale-forced jumping. These findings reveal the insightful physics of stretched droplet dynamics and offer guidelines for the design and fabrication of novel super-repellent surfaces with microporous morphology. PMID:27486890
Multiplicative-theorem-based fast Williamson-Hadamard transforms
NASA Astrophysics Data System (ADS)
Agaian, Sos S.; Sarukhanian, Hakob; Astola, Jaakko T.
2002-05-01
Hadamard matrices have received much attention in recent years, owing to their numerous known and promising applications. The difficulties of construction of N equalsV 0(mod 4)-point Hadamard transforms are related to the existence of Hadamard matrices problem. In this paper algorithms for fast computation of N-point Williamson-Hadamard transform based on multiplicative theorems are presented. Comparative estimates revealing the efficiency of the proposed algorithms with respect to the known ones are given. The results of numerical examples are presented.
Fast Waves at the Base of the Cochlea
Recio-Spinoso, Alberto; Rhode, William S.
2015-01-01
Georg von Békésy observed that the onset times of responses to brief-duration stimuli vary as a function of distance from the stapes, with basal regions starting to move earlier than apical ones. He noticed that the speed of signal propagation along the cochlea is slow when compared with the speed of sound in water. Fast traveling waves have been recorded in the cochlea, but their existence is interpreted as the result of an experiment artifact. Accounts of the timing of vibration onsets at the base of the cochlea generally agree with Békésy’s results. Some authors, however, have argued that the measured delays are too short for consistency with Békésy’s theory. To investigate the speed of the traveling wave at the base of the cochlea, we analyzed basilar membrane (BM) responses to clicks recorded at several locations in the base of the chinchilla cochlea. The initial component of the BM response matches remarkably well the initial component of the stapes response, after a 4-μs delay of the latter. A similar conclusion is reached by analyzing onset times of time-domain gain functions, which correspond to BM click responses normalized by middle-ear input. Our results suggest that BM responses to clicks arise from a combination of fast and slow traveling waves. PMID:26062000
FFBSKAT: fast family-based sequence kernel association test.
Svishcheva, Gulnara R; Belonogova, Nadezhda M; Axenovich, Tatiana I
2014-01-01
The kernel machine-based regression is an efficient approach to region-based association analysis aimed at identification of rare genetic variants. However, this method is computationally complex. The running time of kernel-based association analysis becomes especially long for samples with genetic (sub) structures, thus increasing the need to develop new and effective methods, algorithms, and software packages. We have developed a new R-package called fast family-based sequence kernel association test (FFBSKAT) for analysis of quantitative traits in samples of related individuals. This software implements a score-based variance component test to assess the association of a given set of single nucleotide polymorphisms with a continuous phenotype. We compared the performance of our software with that of two existing software for family-based sequence kernel association testing, namely, ASKAT and famSKAT, using the Genetic Analysis Workshop 17 family sample. Results demonstrate that FFBSKAT is several times faster than other available programs. In addition, the calculations of the three-compared software were similarly accurate. With respect to the available analysis modes, we combined the advantages of both ASKAT and famSKAT and added new options to empower FFBSKAT users. The FFBSKAT package is fast, user-friendly, and provides an easy-to-use method to perform whole-exome kernel machine-based regression association analysis of quantitative traits in samples of related individuals. The FFBSKAT package, along with its manual, is available for free download at http://mga.bionet.nsc.ru/soft/FFBSKAT/. PMID:24905468
Algorithms for Accurate and Fast Plotting of Contour Surfaces in 3D Using Hexahedral Elements
NASA Astrophysics Data System (ADS)
Singh, Chandan; Saini, Jaswinder Singh
2016-07-01
In the present study, Fast and accurate algorithms for the generation of contour surfaces in 3D are described using hexahedral elements which are popular in finite element analysis. The contour surfaces are described in the form of groups of boundaries of contour segments and their interior points are derived using the contour equation. The locations of contour boundaries and the interior points on contour surfaces are as accurate as the interpolation results obtained by hexahedral elements and thus there are no discrepancies between the analysis and visualization results.
Algorithms for Accurate and Fast Plotting of Contour Surfaces in 3D Using Hexahedral Elements
NASA Astrophysics Data System (ADS)
Singh, Chandan; Saini, Jaswinder Singh
2016-05-01
In the present study, Fast and accurate algorithms for the generation of contour surfaces in 3D are described using hexahedral elements which are popular in finite element analysis. The contour surfaces are described in the form of groups of boundaries of contour segments and their interior points are derived using the contour equation. The locations of contour boundaries and the interior points on contour surfaces are as accurate as the interpolation results obtained by hexahedral elements and thus there are no discrepancies between the analysis and visualization results.
COMBINED ANALYSIS OF THORIUM AND FAST NEUTRON DATA AT THE LUNAR SURFACE
O. GASNAULT; W. FELDMAN; ET AL
2001-01-01
The global distribution of the radioactive elements (U, K, Th) at the lunar surface is an important parameter for an understanding of lunar evolution, because they have provided continuous heat over the lifetime of the Moon. Today, only the thorium distribution is available for the whole lunar surface [1]. Another key parameter that characterize the surface of the Moon is the presence of mare basalts. These basalts are concentrated on the nearside and are represented by materials with high-Fe content, sometimes associated with high-Ti. We demonstrated elsewhere that the fast neutron measurement made by Lunar Prospector is representative of the average soil atomic mass [2]. is primarily dominated by Fe and Ti in basaltic terranes, and therefore the map of the fast neutrons provides a good delineation of mare basalts. We focus here on the correlated variations of thorium abundances and fast neutron fluxes averaged over areas of 360 km in diameter, in an attempt to provide a better understanding of the thorium emplacement on the surface of the Moon.
Strong earthquakes knowledge base for calibrating fast damage assessment systems
NASA Astrophysics Data System (ADS)
Frolova, N.; Kozlov, M.; Larionov, V.; Nikolaev, A.; Suchshev, S.; Ugarov, A.
2003-04-01
At present Systems for fast damage and loss assessment due to strong earthquakes may use as input data: (1) information about event parameters (magnitude, depth and coordinates) issued by Alert Seismological Surveys; (2) wave-form data obtained by strong-motion seismograph network; (3) high resolution space images of the affected area obtained before and after the event. When data about magnidute, depth and location of event are used to simulate possible consequences, the reliability of estimations depends on completeness and reliability of databases on elements at risk (population and built environment); reliability of vulnerability functions of elements at risk; and errors in strong earthquakes' parameters determination by Alert Seismological Surveys. Some of these factors may be taken into account at the expense of the System calibration with usage of well documented past strong earthquakes. The paper is describing the structure and content of the knowledge base about well documented strong events, which occurred in last century. It contains the description of more than 1000 events. The data are distributed almost homogeneously as the losses due to earthquakes are concerned; the most events are in the magnitude range 6.5 -7.9. Software is created to accumulate and analyze the information about these events source parameters and social consequences. Created knowledge base is used for calibration the Fast Damage Assessment Tool, which is at present on duty with the framework of EDRIM Program. It is also used as additional information by experts who analyses the results of computations.
Fast dye removal from water by starch-based nanocomposites.
Gomes, Raelle F; de Azevedo, Antonio C Neto; Pereira, Antonio G B; Muniz, Edvani C; Fajardo, André R; Rodrigues, Francisco H A
2015-09-15
Robust and efficient methylene blue (MB) adsorbent was prepared based on starch/cellulose nanowhiskers hydrogel composite. Maximum MB adsorption capacity of ∼2050mgperg of dried hydrogel was obtained with the composite at 5wt.% of cellulose nanowhiskers and at pH 5. Adsorption capacity varied from 1450mg/g to 2050mg/g with increasing the initial MB concentration from 1500mg/L to 2500mg/L, respectively. For all the concentrations studied ca. 90% of MB was removed by the adsorbent. Optimal conditions were obtained at pH⩾5 due to the generation of negatively charged groups (COO(-)) in the adsorbent, which can strongly interact with the positive charges from MB. The main advantage of this system over other reported adsorbents, besides the fact of being synthesized from biodegradable polymers (starch and cellulose), is its fast adsorption kinetics that follows the pseudo-second order model, which is based on chimisorption phenomenon. Saturation condition was reached as fast as 1h of experiments owing to the formation of an adsorbed MB monolayer as suggested by the Langmuir isotherm model. Desorption experiments showed 60wt.% of MB loaded can be removed from the adsorbent by immersing it in a pH 1 solution, showing its feasibility to be reused. Therefore, starch/cellulose nanowhiskers hydrogel composite presents outstanding capacity to be employed in the remediation of MB contaminated wastewaters. PMID:26037269
Automated system for fast and accurate analysis of SF6 injected in the surface ocean.
Koo, Chul-Min; Lee, Kitack; Kim, Miok; Kim, Dae-Ok
2005-11-01
This paper describes an automated sampling and analysis system for the shipboard measurement of dissolved sulfur hexafluoride (SF6) in surface marine environments into which SF6 has been deliberately released. This underway system includes a gas chromatograph associated with an electron capture detector, a fast and highly efficient SF6-extraction device, a global positioning system, and a data acquisition system based on Visual Basic 6.0/C 6.0. This work is distinct from previous studies in that it quantifies the efficiency of the SF6-extraction device and its carryover effect and examines the effect of surfactant on the SF6-extraction efficiency. Measurements can be continuously performed on seawater samples taken from a seawater line installed onboard a research vessel. The system runs on an hourly cycle during which one set of four SF6 standards is measured and SF6 derived from the seawater stream is subsequently analyzed for the rest of each 1 h period. This state-of-art system was successfully used to trace a water mass carrying Cochlodinium polykrikoides, which causes harmful algal blooms (HAB) in the coastal waters of southern Korea. The successful application of this analysis system in tracing the HAB-infected water mass suggests that the SF6 detection method described in this paper will improve the quality of the future study of biogeochemical processes in the marine environment. PMID:16294883
Bala, Rajni; Khanna, Sushil; Pawar, Pravin K.
2013-01-01
Clobazam is a newer 1,5-benzodiazepine used for the treatment of epilepsy. It is better tolerated and less sedating than other benzodiazepines. Absorption of the drug can be impacted by oral fast dissolving dosage form; this may have implications for epilepsy in pediatrics and those having difficulty in swallowing tablets/capsules resulting in improved patient compliance. The purpose of the present investigation was to formulate and optimize clobazam oro-dissolving tablets by direct compression method using response surface methodology (RSM). Oro-dispersible tablets of clobazam were prepared by direct compression method using crospovidone (2-6%) as a superdisintegrant, microcrystalline cellulose (MCC) (20-40%) was used as diluents along with directly compressible mannitol to enhance mouth feel. A 32 full factorial design was applied to investigate the combined effect of two formulation variables: amount of crospovidone and MCC over the independent variables disintegration time, wetting time and percent drug release. Disintegration time showed by all formulations was found to be in the range of 24.3-193 s based on evaluation parameters the formulation containing 6% of crospovidone and 30% of MCC showed promising performance against all other formulations. The results demonstrated that the RSM could efficiently be applied for the formulation of clobazam oro-dispersible tablets; therefore, constitute an advance in the management of epileptic attacks. PMID:24083203
Bala, Rajni; Khanna, Sushil; Pawar, Pravin K
2013-07-01
Clobazam is a newer 1,5-benzodiazepine used for the treatment of epilepsy. It is better tolerated and less sedating than other benzodiazepines. Absorption of the drug can be impacted by oral fast dissolving dosage form; this may have implications for epilepsy in pediatrics and those having difficulty in swallowing tablets/capsules resulting in improved patient compliance. The purpose of the present investigation was to formulate and optimize clobazam oro-dissolving tablets by direct compression method using response surface methodology (RSM). Oro-dispersible tablets of clobazam were prepared by direct compression method using crospovidone (2-6%) as a superdisintegrant, microcrystalline cellulose (MCC) (20-40%) was used as diluents along with directly compressible mannitol to enhance mouth feel. A 3(2) full factorial design was applied to investigate the combined effect of two formulation variables: amount of crospovidone and MCC over the independent variables disintegration time, wetting time and percent drug release. Disintegration time showed by all formulations was found to be in the range of 24.3-193 s based on evaluation parameters the formulation containing 6% of crospovidone and 30% of MCC showed promising performance against all other formulations. The results demonstrated that the RSM could efficiently be applied for the formulation of clobazam oro-dispersible tablets; therefore, constitute an advance in the management of epileptic attacks. PMID:24083203
A fast image encryption algorithm based on chaotic map
NASA Astrophysics Data System (ADS)
Liu, Wenhao; Sun, Kehui; Zhu, Congxu
2016-09-01
Derived from Sine map and iterative chaotic map with infinite collapse (ICMIC), a new two-dimensional Sine ICMIC modulation map (2D-SIMM) is proposed based on a close-loop modulation coupling (CMC) model, and its chaotic performance is analyzed by means of phase diagram, Lyapunov exponent spectrum and complexity. It shows that this map has good ergodicity, hyperchaotic behavior, large maximum Lyapunov exponent and high complexity. Based on this map, a fast image encryption algorithm is proposed. In this algorithm, the confusion and diffusion processes are combined for one stage. Chaotic shift transform (CST) is proposed to efficiently change the image pixel positions, and the row and column substitutions are applied to scramble the pixel values simultaneously. The simulation and analysis results show that this algorithm has high security, low time complexity, and the abilities of resisting statistical analysis, differential, brute-force, known-plaintext and chosen-plaintext attacks.
Cargo inspection system based on pulsed fast neutron analysis
NASA Astrophysics Data System (ADS)
Brown, Douglas R.
1994-03-01
This paper describes an automated cargo inspection system (CIS) based on pulsed fast neutron analysis (PFNA). The system uses a pulsed beam of fast neutrons to interrogate the contents of small volume elements--voxels--of a cargo container or truck. The neutrons interact with the elemental contents of each voxel and gamma rays characteristic of the elements are collected in an array of detectors. The elemental signals and their ratios give unique signatures for drugs, explosives, and contraband. From the time of arrival of the gamma rays, the position of the voxel within the truck is determined. Full-scale physics simulation of time-dependent neutron and gamma ray interactions in various cargo materials have aided in the design of the system. These simulations have been benchmarked against laboratory measurements. A scaled model of the PFNA CIS is in operation in SAIC's PFNA facility and has been used to demonstrate the detection of drugs and other contraband concealed in a full-size cargo container with a variety of contents. A full-scale system is presently being designed and fabricated for the U.S. Government's Cargo Container Inspection Technology Testbed at Tacoma, Washington. This system is designed to scan five or more trucks per hour and is scheduled to come into operation in July 1995.
A PDE-Based Fast Local Level Set Method
NASA Astrophysics Data System (ADS)
Peng, Danping; Merriman, Barry; Osher, Stanley; Zhao, Hongkai; Kang, Myungjoo
1999-11-01
We develop a fast method to localize the level set method of Osher and Sethian (1988, J. Comput. Phys.79, 12) and address two important issues that are intrinsic to the level set method: (a) how to extend a quantity that is given only on the interface to a neighborhood of the interface; (b) how to reset the level set function to be a signed distance function to the interface efficiently without appreciably moving the interface. This fast local level set method reduces the computational effort by one order of magnitude, works in as much generality as the original one, and is conceptually simple and easy to implement. Our approach differs from previous related works in that we extract all the information needed from the level set function (or functions in multiphase flow) and do not need to find explicitly the location of the interface in the space domain. The complexity of our method to do tasks such as extension and distance reinitialization is O(N), where N is the number of points in space, not O(N log N) as in works by Sethian (1996, Proc. Nat. Acad. Sci. 93, 1591) and Helmsen and co-workers (1996, SPIE Microlithography IX, p. 253). This complexity estimation is also valid for quite general geometrically based front motion for our localized method.
Fast Field Calibration of MIMU Based on the Powell Algorithm
Ma, Lin; Chen, Wanwan; Li, Bin; You, Zheng; Chen, Zhigang
2014-01-01
The calibration of micro inertial measurement units is important in ensuring the precision of navigation systems, which are equipped with microelectromechanical system sensors that suffer from various errors. However, traditional calibration methods cannot meet the demand for fast field calibration. This paper presents a fast field calibration method based on the Powell algorithm. As the key points of this calibration, the norm of the accelerometer measurement vector is equal to the gravity magnitude, and the norm of the gyro measurement vector is equal to the rotational velocity inputs. To resolve the error parameters by judging the convergence of the nonlinear equations, the Powell algorithm is applied by establishing a mathematical error model of the novel calibration. All parameters can then be obtained in this manner. A comparison of the proposed method with the traditional calibration method through navigation tests shows the classic performance of the proposed calibration method. The proposed calibration method also saves more time compared with the traditional calibration method. PMID:25177801
NASA Astrophysics Data System (ADS)
Snowdon, K. J.; Harder, R.; Nesbitt, A.
1996-08-01
When fast ( vthermal ≪ v < vFermi) neutral or ionised atoms or molecules are scattered under glancing incidence conditions from atomically smooth metal single crystal surfaces, translational energy losses of 0.1-1 eV per femtosecond or per Å of the trajectory in the near surface region are not atypical. A large fraction of this energy appears in the electron-hole pair excitation channel. In addition, the orientation distribution of the internuclear co-ordinate of dissociatively scattered molecules is often sharply peaked about the surface normal. Such a distribution could arise if, coincident with vibrational excitation of the intra-molecular co-ordinate, the molecules were preferentially aligned about the surface normal. Alternatively, such a distribution may arise if, following dissolution of the intra-molecular bond, the difference in the surface normal momentum transfer to the two unbound atoms considerably exceeds the difference in the surface parallel momentum transfer. We investigate these two possibilities within a classical simulation of energy transfer from the translational to internal degrees of freedom of the molecule via repeated transitions between different electronic states of the molecule-surface system. These simulations suggest that in general, the observed surface-normal aligned final orientation of dissociatively scattered molecules is caused by strong vibrational excitation in the entrance channel region of the adiabatic ground state potential energy surface describing the interaction of the neutral molecule with the surface.
Xuan, Weipeng; He, Mei; Meng, Nan; He, Xingli; Wang, Wenbo; Chen, Jinkai; Shi, Tianjin; Hasan, Tawfique; Xu, Zhen; Xu, Yang; Luo, J. K.
2014-01-01
We report ZnO/glass surface acoustic wave (SAW) humidity sensors with high sensitivity and fast response using graphene oxide sensing layer. The frequency shift of the sensors is exponentially correlated to the humidity change, induced mainly by mass loading effect rather than the complex impedance change of the sensing layer. The SAW sensors show high sensitivity at a broad humidity range from 0.5%RH to 85%RH with < 1 sec rise time. The simple design and excellent stability of our GO-based SAW humidity sensors, complemented with full humidity range measurement, highlights their potential in a wide range of applications. PMID:25425458
Effect of surface modes on coupling to fast waves in the LHRF
Pinsker, R.I.; Colestock, P.L.
1990-09-16
The effect of surface modes of propagation on coupling to fast waves in the LHRF is studied theoretically and experimentally. The previously reported up-down' poloidal phasing asymmetry for coupling to a uniform plasma is shown to be due to the properties of a mode which carries energy along the plasma-conducting wall interface. Comparison of the theory with coupling experiments performed on the PLT tokamak with a phased array of twelve dielectric-loaded waveguides at 800 MHz shows that the observed dependence of the net reflection coefficient on toroidal phase angle can be explained only if the surface wave is taken into account. 43 refs., 10 figs.
NASA Astrophysics Data System (ADS)
Ishizaki, Ryota; Katoh, Ryuzi
2016-05-01
We prepared fast-response colorimetric humidity-sensing (vapochromic) films based on methylene blue adsorption onto nanoporous semiconductor (TiO2, Al2O3) films. Color changes caused by changes of humidity could be easily identified visually. A characteristic feature of the vapochromic films was their fast response to changes of humidity. We found that the response began to occur within 10 ms. The response was rapid because all the methylene blue molecules attached to the nanoporous semiconductor surface were directly exposed to the environment. We also deduced that the color changes were caused by structural changes of the methylene blue aggregates on the surface.
Fast Crystal Growth in o-Terphenyl Glasses: A Possible Role for Fracture and Surface Mobility.
Powell, C Travis; Xi, Hanmi; Sun, Ye; Gunn, Erica; Chen, Yinshan; Ediger, M D; Yu, Lian
2015-08-01
Molecular liquids can develop a fast mode of crystal growth ("GC growth") near the glass transition temperature. This phenomenon remains imperfectly understood with several explanations proposed. We report that GC growth in o-terphenyl conserves the overall volume, despite a 5% higher density of the crystal, and produces fine crystal grains with the same unit cell as normally grown crystals. These results indicate that GC growth continuously creates voids and free surfaces, possibly by fracture. This aspect of the phenomenon has not been considered by previous treatments and is a difficulty for those models that hypothesize a 5% strain without voids. Given the existence of even faster crystal growth on the free surface of molecular glasses, we consider the possibility that GC growth is facilitated by fracture and surface mobility. This notion has support from the fact that GC growth and surface growth are both highly correlated with surface diffusivity and with fast crystal growth along preformed cracks in the glass. PMID:26161577
NASA Astrophysics Data System (ADS)
Cao, Jinjia; Gong, Xueyu; Xiang, Dong; Huang, Qianhong; Yu, Jun
2016-08-01
The structure of the drift-island surface of passing fast ions (PFIs) is investigated in the presence of the resonant interaction with a magnetic island. Two overlapping regions of the drift-island surface and the magnetic island surface are found, one corresponding to local overlapping region and the other to non-local one. Here, the word "nonlocal" denotes that the resonances in the core plasma can have effects on the PFIs near the plasma boundary, while the "local" represents that the PFIs just near the resonant location are influenced. The nonlocal overlapping constructs a transport path along which the PFIs can become losses. There are three kinds of drift-island surfaces to join in forming the transport paths. A pitch angle region, which is called pitch angle gap, is found near the plasma boundary, where the drift-island surface cannot be formed and few PFIs are lost. The pitch-angle selective features of PFI losses are obtained by analyzing the three kinds of drift-island surfaces. The coupling between the crowd drift island surfaces and the collision can induce the prompt losses of PFIs and rapidly slowing down of PFI energy. The time of the prompt losses and the slowing down rate are calculated. Qualitatively, the theoretical results are in well agreement with the experimental observations in ASDEX Upgrade [M. García-Muñoz et al., Nucl. Fusion 47, L10 (2007)].
Scatterometry—fast and robust measurements of nano-textured surfaces
NASA Astrophysics Data System (ADS)
Hannibal Madsen, Morten; Hansen, Poul-Erik
2016-06-01
Scatterometry is a fast, precise and low cost way to determine the mean pitch and dimensional parameters of periodic structures with lateral resolution of a few nanometer. It is robust enough for in-line process control and precise and accurate enough for metrology measurements. Furthermore, scatterometry is a non-destructive technique capable of measuring buried structures, for example a grating covered by a thick oxide layer. As scatterometry is a non-imaging technique, mathematical modeling is needed to retrieve structural parameters that describe a surface. In this review, the three main steps of scatterometry are discussed: the data acquisition, the simulation of diffraction efficiencies and the comparison of data and simulations. First, the intensity of the diffracted light is measured with a scatterometer as a function of incoming angle, diffraction angle and/or wavelength. We discuss the evolution of the scatterometers from the earliest angular scatterometers to the new imaging scatterometers. The basic principle of measuring diffraction efficiencies in scatterometry has remained the same since the beginning, but the instrumental improvements have made scatterometry a state-of-the-art solution for fast and accurate measurements of nano-textured surfaces. The improvements include extending the wavelength range from the visible to the extreme ultra-violet range, development of Fourier optics to measure all diffraction orders simultaneously, and an imaging scatterometer to measure area of interests smaller than the spot size. Secondly, computer simulations of the diffraction efficiencies are discussed with emphasis on the rigorous coupled-wave analysis (RCWA) method. RCWA has, since the mid-1990s, been the preferred method for grating simulations due to the speed of the algorithms. In the beginning the RCWA method suffered from a very slow convergence rate, and we discuss the historical improvements to overcome this challenge, e.g. by the introduction of Li
[Fast Implementation Method of Protein Spots Detection Based on CUDA].
Xiong, Bangshu; Ye, Yijia; Ou, Qiaofeng; Zhang, Haodong
2016-02-01
In order to improve the efficiency of protein spots detection, a fast detection method based on CUDA was proposed. Firstly, the parallel algorithms of the three most time-consuming parts in the protein spots detection algorithm: image preprocessing, coarse protein point detection and overlapping point segmentation were studied. Then, according to single instruction multiple threads executive model of CUDA to adopted data space strategy of separating two-dimensional (2D) images into blocks, various optimizing measures such as shared memory and 2D texture memory are adopted in this study. The results show that the operative efficiency of this method is obviously improved compared to CPU calculation. As the image size increased, this method makes more improvement in efficiency, such as for the image with the size of 2,048 x 2,048, the method of CPU needs 52,641 ms, but the GPU needs only 4,384 ms. PMID:27382745
Fast complex memory polynomial-based adaptive digital predistorter
NASA Astrophysics Data System (ADS)
Singh Sappal, Amandeep; Singh Patterh, Manjeet; Sharma, Sanjay
2011-07-01
Today's 3G wireless systems require both high linearity and high power amplifier (PA) efficiency. The high peak-to-average ratios of the digital modulation schemes used in 3G wireless systems require that the RF PA maintain high linearity over a large range while maintaining this high efficiency; these two requirements are often at odds with each other with many of the traditional amplifier architectures. In this article, a fast and easy-to-implement adaptive digital predistorter has been presented for Wideband Code Division Multiplexed signals using complex memory polynomial work function. The proposed algorithm has been implemented to test a Motorola LDMOSFET PA. The proposed technique also takes care of the memory effects of the PA, which have been ignored in many proposed techniques in the literature. The results show that the new complex memory polynomial-based adaptive digital predistorter has better linearisation performance than conventional predistortion techniques.
Direct observation of ultrafast surface transport of laser-driven fast electrons in a solid target
Singh, Prashant Kumar; Chatterjee, Gourab; Adak, Amitava; Ahmed, Saima; Lad, Amit D.; Ravindra Kumar, G.; Cui, Y. Q.; Wang, W. M.; Sheng, Z. M.
2013-11-15
We demonstrate rapid spread of surface ionization on a glass target excited by an intense, ultrashort laser pulse at an intensity of 3 × 10{sup 17} W cm{sup −2}. Time- and space-resolved reflectivity of the target surface indicates that the initial plasma region created by the pump pulse expands at c/7. The measured quasi-static megagauss magnetic field is found to expand in a manner very similar to that of surface ionization. Two-dimensional particle-in-cell simulations reproduce measurements of surface ionization and magnetic fields. Both the experiment and simulation convincingly demonstrate the role of self-induced electric and magnetic fields in confining fast electrons along the target-vacuum interface.
Direct observation of ultrafast surface transport of laser-driven fast electrons in a solid target
NASA Astrophysics Data System (ADS)
Singh, Prashant Kumar; Cui, Y. Q.; Chatterjee, Gourab; Adak, Amitava; Wang, W. M.; Ahmed, Saima; Lad, Amit D.; Sheng, Z. M.; Ravindra Kumar, G.
2013-11-01
We demonstrate rapid spread of surface ionization on a glass target excited by an intense, ultrashort laser pulse at an intensity of 3 × 1017 W cm-2. Time- and space-resolved reflectivity of the target surface indicates that the initial plasma region created by the pump pulse expands at c/7. The measured quasi-static megagauss magnetic field is found to expand in a manner very similar to that of surface ionization. Two-dimensional particle-in-cell simulations reproduce measurements of surface ionization and magnetic fields. Both the experiment and simulation convincingly demonstrate the role of self-induced electric and magnetic fields in confining fast electrons along the target-vacuum interface.
Late, Sameer G; Banga, Ajay K
2010-12-01
The objective of this work was to apply response surface approach to investigate main and interaction effects of formulation parameters in optimizing novel fast disintegrating tablet formulation using β cyclodextrin as a diluent. The variables studied were diluent (β cyclodextrin, X (1)), superdisintegrant (Croscarmellose sodium, X (2)), and direct compression aid (Spray dried lactose, X (3)). Tablets were prepared by direct compression method on B2 rotary tablet press using flat plain-face punches and characterized for weight variation, thickness, disintegration time (Y (1)), and hardness (Y (2)). Disintegration time was strongly affected by quadratic terms of β cyclodextrin, croscarmellose sodium, and spray-dried lactose. The positive value of regression coefficient for β cyclodextrin suggested that hardness increased with increased amount of β cyclodextrin. In general, disintegration of tablets has been reported to slow down with increase in hardness. However in the present study, higher concentration of β cyclodextrin was found to improve tablet hardness without increasing the disintegration time. Thus, β cyclodextrin is proposed as a suitable diluent to achieve fast disintegrating tablets with sufficient hardness. Good correlation between the predicted values and experimental data of the optimized formulation validated prognostic ability of response surface methodology in optimizing fast disintegrating tablets using β cyclodextrin as a diluent. PMID:21086083
Reducing preoperative fasting time: A trend based on evidence
de Aguilar-Nascimento, José Eduardo; Dock-Nascimento, Diana Borges
2010-01-01
Preoperative fasting is mandatory before anesthesia to reduce the risk of aspiration. However, the prescribed 6-8 h of fasting is usually prolonged to 12-16 h for various reasons. Prolonged fasting triggers a metabolic response that precipitates gluconeogenesis and increases the organic response to trauma. Various randomized trials and meta-analyses have consistently shown that is safe to reduce the preoperative fasting time with a carbohydrate-rich drink up to 2 h before surgery. Benefits related to this shorter preoperative fasting include the reduction of postoperative gastrointestinal discomfort and insulin resistance. New formulas containing amino acids such as glutamine and other peptides are being studied and are promising candidates to be used to reduce preoperative fasting time. PMID:21160851
Measuring the Surface Motion of Fast-Moving Glaciers with Expendable, Low-Cost GPS (Invited)
NASA Astrophysics Data System (ADS)
Howat, I. M.; Behar, A. E.; Brown, A. K.
2009-12-01
The recent retreats and acceleration in flow speeds of marine-terminating glaciers around the globe have raised concern over the potential for rapid loss of ice and increased rates of sea level rise. The dynamics of these glaciers are poorly understood, partly due to the difficulty in obtaining observations of ice flow speed that can be compared to potentially important forcing variables, such as air and ocean temperatures or calving rates. The high flow speeds (often >10 m/day) and large strain rates the near the fronts of these glaciers result in extreme crevassing, making surface travel for instrument deployment impossible. Due to this impassibility, measurements of surface motion have come predominantly from optical surveying or repeat satellite or photographic imaging. Remote sensing methods are limited in spatial and temporal resolution and optical surveys require manual operation in the field and have limited range. In contrast, Global Positioning System (GPS ) receivers offer very high resolution and, once deployed, collect data autonomously. GPS has been used to measure glacier surface motion for over a decade. Dual-frequency systems can yield post-processed displacements with accuracies of 1 cm or less, with a temporal resolution of minutes. These observations have been critical for resolving the stick-slip motion of Antarctic ice streams and the controls on glacial “icequakes” in Greenland. These systems have been combined with satellite-based data telemetry systems to provide near real-time position data to any location. These systems, however, typically cost several thousands of dollars, preventing their deployment in situations with low or no probability of recovery. The few field programs that have deployed dual-frequency receivers on fast-moving glaciers retrieved the systems after only a few days to prevent loss. While some investigators may be able to absorb the cost of loss of these systems, large-scale deployments will require a more cost
Fast background subtraction for moving cameras based on nonparametric models
NASA Astrophysics Data System (ADS)
Sun, Feng; Qin, Kaihuai; Sun, Wei; Guo, Huayuan
2016-05-01
In this paper, a fast background subtraction algorithm for freely moving cameras is presented. A nonparametric sample consensus model is employed as the appearance background model. The as-similar-as-possible warping technique, which obtains multiple homographies for different regions of the frame, is introduced to robustly estimate and compensate the camera motion between the consecutive frames. Unlike previous methods, our algorithm does not need any preprocess step for computing the dense optical flow or point trajectories. Instead, a superpixel-based seeded region growing scheme is proposed to extend the motion cue based on the sparse optical flow to the entire image. Then, a superpixel-based temporal coherent Markov random field optimization framework is built on the raw segmentations from the background model and the motion cue, and the final background/foreground labels are obtained using the graph-cut algorithm. Extensive experimental evaluations show that our algorithm achieves satisfactory accuracy, while being much faster than the state-of-the-art competing methods.
Fast and Secure Chaos-Based Cryptosystem for Images
NASA Astrophysics Data System (ADS)
Farajallah, Mousa; El Assad, Safwan; Deforges, Olivier
Nonlinear dynamic cryptosystems or chaos-based cryptosystems have been attracting a large amount of research since 1990. The critical aspect of cryptography is to face the growth of communication and to achieve the design of fast and secure cryptosystems. In this paper, we introduce three versions of a chaos-based cryptosystem based on a similar structure of the Zhang and Fridrich cryptosystems. Each version is composed of two layers: a confusion layer and a diffusion layer. The confusion layer is achieved by using a modified 2-D cat map to overcome the fixed-point problem and some other weaknesses, and also to increase the dynamic key space. The 32-bit logistic map is used as a diffusion layer for the first version, which is more robust than using it in 8-bit. In the other versions, the logistic map is replaced by a modified Finite Skew Tent Map (FSTM) for three reasons: to increase the nonlinearity properties of the diffusion layer, to overcome the fixed-point problem, and to increase the dynamic key space. Finally, all versions of the proposed cryptosystem are more resistant against known attacks and faster than Zhang cryptosystems. Moreover, the dynamic key space is much larger than the one used in Zhang cryptosystems. Performance and security analysis prove that the proposed cryptosystems are suitable for securing real-time applications.
A fast image matching algorithm based on key points
NASA Astrophysics Data System (ADS)
Wang, Huilin; Wang, Ying; An, Ru; Yan, Peng
2014-05-01
Image matching is a very important technique in image processing. It has been widely used for object recognition and tracking, image retrieval, three-dimensional vision, change detection, aircraft position estimation, and multi-image registration. Based on the requirements of matching algorithm for craft navigation, such as speed, accuracy and adaptability, a fast key point image matching method is investigated and developed. The main research tasks includes: (1) Developing an improved celerity key point detection approach using self-adapting threshold of Features from Accelerated Segment Test (FAST). A method of calculating self-adapting threshold was introduced for images with different contrast. Hessian matrix was adopted to eliminate insecure edge points in order to obtain key points with higher stability. This approach in detecting key points has characteristics of small amount of computation, high positioning accuracy and strong anti-noise ability; (2) PCA-SIFT is utilized to describe key point. 128 dimensional vector are formed based on the SIFT method for the key points extracted. A low dimensional feature space was established by eigenvectors of all the key points, and each eigenvector was projected onto the feature space to form a low dimensional eigenvector. These key points were re-described by dimension-reduced eigenvectors. After reducing the dimension by the PCA, the descriptor was reduced to 20 dimensions from the original 128. This method can reduce dimensions of searching approximately near neighbors thereby increasing overall speed; (3) Distance ratio between the nearest neighbour and second nearest neighbour searching is regarded as the measurement criterion for initial matching points from which the original point pairs matched are obtained. Based on the analysis of the common methods (e.g. RANSAC (random sample consensus) and Hough transform cluster) used for elimination false matching point pairs, a heuristic local geometric restriction
Fast single image dehazing based on image fusion
NASA Astrophysics Data System (ADS)
Liu, Haibo; Yang, Jie; Wu, Zhengping; Zhang, Qingnian
2015-01-01
Images captured in foggy weather conditions often fade the colors and reduce the contrast of the observed objects. An efficient image fusion method is proposed to remove haze from a single input image. First, the initial medium transmission is estimated based on the dark channel prior. Second, the method adopts an assumption that the degradation level affected by haze of each region is the same, which is similar to the Retinex theory, and uses a simple Gaussian filter to get the coarse medium transmission. Then, pixel-level fusion is achieved between the initial medium transmission and coarse medium transmission. The proposed method can recover a high-quality haze-free image based on the physical model, and the complexity of the proposed method is only a linear function of the number of input image pixels. Experimental results demonstrate that the proposed method can allow a very fast implementation and achieve better restoration for visibility and color fidelity compared to some state-of-the-art methods.
Fast Sampling-Based Whole-Genome Haplotype Block Recognition.
Taliun, Daniel; Gamper, Johann; Leser, Ulf; Pattaro, Cristian
2016-01-01
Scaling linkage disequilibrium (LD) based haplotype block recognition to the entire human genome has always been a challenge. The best-known algorithm has quadratic runtime complexity and, even when sophisticated search space pruning is applied, still requires several days of computations. Here, we propose a novel sampling-based algorithm, called S-MIG (++), where the main idea is to estimate the area that most likely contains all haplotype blocks by sampling a very small number of SNP pairs. A subsequent refinement step computes the exact blocks by considering only the SNP pairs within the estimated area. This approach significantly reduces the number of computed LD statistics, making the recognition of haplotype blocks very fast. We theoretically and empirically prove that the area containing all haplotype blocks can be estimated with a very high degree of certainty. Through experiments on the 243,080 SNPs on chromosome 20 from the 1,000 Genomes Project, we compared our previous algorithm MIG (++) with the new S-MIG (++) and observed a runtime reduction from 2.8 weeks to 34.8 hours. In a parallelized version of the S-MIG (++) algorithm using 32 parallel processes, the runtime was further reduced to 5.1 hours. PMID:27045830
Efficient Video Stitching Based on Fast Structure Deformation.
Li, Jing; Xu, Wei; Zhang, Jianguo; Zhang, Maojun; Wang, Zhengming; Li, Xuelong
2015-12-01
In computer vision, video stitching is a very challenging problem. In this paper, we proposed an efficient and effective wide-view video stitching method based on fast structure deformation that is capable of simultaneously achieving quality stitching and computational efficiency. For a group of synchronized frames, firstly, an effective double-seam selection scheme is designed to search two distinct but structurally corresponding seams in the two original images. The seam location of the previous frame is further considered to preserve the interframe consistency. Secondly, along the double seams, 1-D feature detection and matching is performed to capture the structural relationship between the two adjacent views. Thirdly, after feature matching, we propose an efficient algorithm to linearly propagate the deformation vectors to eliminate structure misalignment. At last, image intensity misalignment is corrected by rapid gradient fusion based on the successive over relaxation iteration (SORI) solver. A principled solution to the initialization of the SORI significantly reduced the number of iterations required. We have compared favorably our method with seven state-of-the-art image and video stitching algorithms as well as traditional ones. Experimental results show that our method outperforms the existing ones compared in terms of overall stitching quality and computational efficiency. PMID:25561603
Biased Randomized Algorithm for Fast Model-Based Diagnosis
NASA Technical Reports Server (NTRS)
Williams, Colin; Vartan, Farrokh
2005-01-01
A biased randomized algorithm has been developed to enable the rapid computational solution of a propositional- satisfiability (SAT) problem equivalent to a diagnosis problem. The closest competing methods of automated diagnosis are described in the preceding article "Fast Algorithms for Model-Based Diagnosis" and "Two Methods of Efficient Solution of the Hitting-Set Problem" (NPO-30584), which appears elsewhere in this issue. It is necessary to recapitulate some of the information from the cited articles as a prerequisite to a description of the present method. As used here, "diagnosis" signifies, more precisely, a type of model-based diagnosis in which one explores any logical inconsistencies between the observed and expected behaviors of an engineering system. The function of each component and the interconnections among all the components of the engineering system are represented as a logical system. Hence, the expected behavior of the engineering system is represented as a set of logical consequences. Faulty components lead to inconsistency between the observed and expected behaviors of the system, represented by logical inconsistencies. Diagnosis - the task of finding the faulty components - reduces to finding the components, the abnormalities of which could explain all the logical inconsistencies. One seeks a minimal set of faulty components (denoted a minimal diagnosis), because the trivial solution, in which all components are deemed to be faulty, always explains all inconsistencies. In the methods of the cited articles, the minimal-diagnosis problem is treated as equivalent to a minimal-hitting-set problem, which is translated from a combinatorial to a computational problem by mapping it onto the Boolean-satisfiability and integer-programming problems. The integer-programming approach taken in one of the prior methods is complete (in the sense that it is guaranteed to find a solution if one exists) and slow and yields a lower bound on the size of the
NASA Astrophysics Data System (ADS)
Moreno Oliva, Víctor Iván; Castañeda Mendoza, Álvaro; Campos García, Manuel; Díaz Uribe, Rufino
2011-09-01
The null screen is a geometric method that allows the testing of fast aspherical surfaces, this method measured the local slope at the surface and by numerical integration the shape of the surface is measured. The usual technique for the numerical evaluation of the surface is the trapezoidal rule, is well-known fact that the truncation error increases with the second power of the spacing between spots of the integration path. Those paths are constructed following spots reflected on the surface and starting in an initial select spot. To reduce the numerical errors in this work we propose the use of the Dijkstra algorithm.1 This algorithm can find the shortest path from one spot (or vertex) to another spot in a weighted connex graph. Using a modification of the algorithm it is possible to find the minimal path from one select spot to all others ones. This automates and simplifies the integration process in the test with null screens. In this work is shown the efficient proposed evaluating a previously surface with a traditional process.
Fast inspection of bulk and surface defects of large aperture optics in high power lasers
NASA Astrophysics Data System (ADS)
Zhao, Yuan'an; Hu, Guohang; Liu, Shijie; Yi, Kui; Shao, Jianda
2015-05-01
Laser induced damage for nanosecond pulse duration is attributed to the existence of defects. The growth and polishing, as well as coating deposition, may induce versatile kinds of defects, including dig, scratch and inclusion. It is special important to get the information of the defects, such as size and location, which is the basis to know the origin of the defects and figures out effective techniques to eliminate it. It is quite easy to get the information of the defects with micron-level resolution, but it is time-consuming and is not suitable for fast inspection of the large aperture (hundreds of millimeters). In this work, on-the-fly image capture technique was employed to realize fast inspection of large aperture optics. A continuous green laser was employed as illumination source to enhance and enlarge the image of bulk defects. So it could detect the submicron-scale defects. A transmission microscopy with white light illumination was employed to detect the surface defect. Its field of view was about 2.8mm×1.6mm. The sample was raster scanned driving by a stepper motor through the stationary illumination laser and digital camera, and the speed to scan the sample was about 10mm/s. The results of large aperture optics proved the functions of this fast inspection technique.
Fast CEUS image segmentation based on self organizing maps
NASA Astrophysics Data System (ADS)
Paire, Julie; Sauvage, Vincent; Albouy-Kissi, Adelaïde; Ladam Marcus, Viviane; Marcus, Claude; Hoeffel, Christine
2014-03-01
Contrast-enhanced ultrasound (CEUS) has recently become an important technology for lesion detection and characterization. CEUS is used to investigate the perfusion kinetics in tissue over time, which relates to tissue vascularization. In this paper, we present an interactive segmentation method based on the neural networks, which enables to segment malignant tissue over CEUS sequences. We use Self-Organizing-Maps (SOM), an unsupervised neural network, to project high dimensional data to low dimensional space, named a map of neurons. The algorithm gathers the observations in clusters, respecting the topology of the observations space. This means that a notion of neighborhood between classes is defined. Adjacent observations in variables space belong to the same class or related classes after classification. Thanks to this neighborhood conservation property and associated with suitable feature extraction, this map provides user friendly segmentation tool. It will assist the expert in tumor segmentation with fast and easy intervention. We implement SOM on a Graphics Processing Unit (GPU) to accelerate treatment. This allows a greater number of iterations and the learning process to converge more precisely. We get a better quality of learning so a better classification. Our approach allows us to identify and delineate lesions accurately. Our results show that this method improves markedly the recognition of liver lesions and opens the way for future precise quantification of contrast enhancement.
Fast recognition of musical sounds based on timbre.
Agus, Trevor R; Suied, Clara; Thorpe, Simon J; Pressnitzer, Daniel
2012-05-01
Human listeners seem to have an impressive ability to recognize a wide variety of natural sounds. However, there is surprisingly little quantitative evidence to characterize this fundamental ability. Here the speed and accuracy of musical-sound recognition were measured psychophysically with a rich but acoustically balanced stimulus set. The set comprised recordings of notes from musical instruments and sung vowels. In a first experiment, reaction times were collected for three target categories: voice, percussion, and strings. In a go/no-go task, listeners reacted as quickly as possible to members of a target category while withholding responses to distractors (a diverse set of musical instruments). Results showed near-perfect accuracy and fast reaction times, particularly for voices. In a second experiment, voices were recognized among strings and vice-versa. Again, reaction times to voices were faster. In a third experiment, auditory chimeras were created to retain only spectral or temporal features of the voice. Chimeras were recognized accurately, but not as quickly as natural voices. Altogether, the data suggest rapid and accurate neural mechanisms for musical-sound recognition based on selectivity to complex spectro-temporal signatures of sound sources. PMID:22559384
[Fast discrimination of edible vegetable oil based on Raman spectroscopy].
Zhou, Xiu-Jun; Dai, Lian-Kui; Li, Sheng
2012-07-01
A novel method to fast discriminate edible vegetable oils by Raman spectroscopy is presented. The training set is composed of different edible vegetable oils with known classes. Based on their original Raman spectra, baseline correction and normalization were applied to obtain standard spectra. Two characteristic peaks describing the unsaturated degree of vegetable oil were selected as feature vectors; then the centers of all classes were calculated. For an edible vegetable oil with unknown class, the same pretreatment and feature extraction methods were used. The Euclidian distances between the feature vector of the unknown sample and the center of each class were calculated, and the class of the unknown sample was finally determined by the minimum distance. For 43 edible vegetable oil samples from seven different classes, experimental results show that the clustering effect of each class was more obvious and the class distance was much larger with the new feature extraction method compared with PCA. The above classification model can be applied to discriminate unknown edible vegetable oils rapidly and accurately. PMID:23016334
DUK - A Fast and Efficient Kmer Based Sequence Matching Tool
Li, Mingkun; Copeland, Alex; Han, James
2011-03-21
A new tool, DUK, is developed to perform matching task. Matching is to find whether a query sequence partially or totally matches given reference sequences or not. Matching is similar to alignment. Indeed many traditional analysis tasks like contaminant removal use alignment tools. But for matching, there is no need to know which bases of a query sequence matches which position of a reference sequence, it only need know whether there exists a match or not. This subtle difference can make matching task much faster than alignment. DUK is accurate, versatile, fast, and has efficient memory usage. It uses Kmer hashing method to index reference sequences and Poisson model to calculate p-value. DUK is carefully implemented in C++ in object oriented design. The resulted classes can also be used to develop other tools quickly. DUK have been widely used in JGI for a wide range of applications such as contaminant removal, organelle genome separation, and assembly refinement. Many real applications and simulated dataset demonstrate its power.
NASA Astrophysics Data System (ADS)
Wang, Zhongren; Li, Bo; Zhou, Yuebin
2014-11-01
Fast 3D reconstruction of tool wear from 2D images has great importance to 3D measuring and objective evaluating tool wear condition, determining accurate tool change and insuring machined part's quality. Extracting 3D information of tool wear zone based on monocular multi-color structured light can realize fast recovery of surface topography of tool wear, which overcomes the problems of traditional methods such as solution diversity and slow convergence when using SFS method and stereo match when using 3D reconstruction from multiple images. In this paper, a kind of new multi-color structured light illuminator was put forward. An information mapping model was established among illuminator's structure parameters, surface morphology and color images. The mathematical model to reconstruct 3D morphology based on monocular multi-color structured light was presented. Experimental results show that this method is effective and efficient to reconstruct the surface morphology of tool wear zone.
NASA Astrophysics Data System (ADS)
Yang, Fan; Dai, Yi-fan; Wan, Fei; Wang, Gui-lin
2010-10-01
High-precision optical micro-structured components are now widely used in the field of military and civilian use. Ultraprecision machining with a fast tool servo (FTS) is one of the leading methodologies for fabrication of such surfaces. The first important issue that faced in ultra-precision and high-effectively fabricating is how to properly describe the complex shapes based on the principle of FTS. In order to meet the demands of FTS machining that need for tool high-frequency response, high data throughput and huge memory space, an off-line discrete data points generation method for microstructure surfaces is presented which can avoid on-line shape calculation in fabricating process. A new analysis software package is developed to compute the speed, acceleration and spectrum over the generated data points which helps to analysis the tool tracking characteristics needed in fabricating. Also a new mechanism for FTS machining data transmission based on the huge-capacity storage device is proposed. Experiments show that the off-line surface data generation method and data transfer mechanism can effectively improve FTS fabricating efficiency, the surface analysis software can help to determine the machining ability of tool-holder and to guide and optimize the processing parameters such as spindle speed, feed rate, etc.
Nanorod-Based Fast-Response Pressure-Sensitive Paints
NASA Technical Reports Server (NTRS)
Bencic, Timothy; VanderWal, Randall
2007-01-01
A proposed program of research and development would be devoted to exploitation of nanomaterials in pressuresensitive paints (PSPs), which are used on wind-tunnel models for mapping surface pressures associated with flow fields. Heretofore, some success has been achieved in measuring steady-state pressures by use of PSPs, but success in measuring temporally varying pressures has been elusive because of the inherent slowness of the optical responses of these materials. A PSP contains a dye that luminesces in a suitable wavelength range in response to photoexcitation in a shorter wavelength range. The luminescence is quenched by oxygen at a rate proportional to the partial pressure of oxygen and thus proportional to the pressure of air. As a result, the intensity of luminescence varies inversely with the pressure of air. The major problem in developing a PSP that could be easily applied to a wind-tunnel model and could be useful for measuring rapidly varying pressure is to provide very high gas diffusivity for rapid, easy transport of oxygen to and from active dye molecules. Most PSPs include polymer-base binders, which limit the penetration of oxygen to dye molecules, thereby reducing responses to pressure fluctuations. The proposed incorporation of nanomaterials (somewhat more specifically, nanorods) would result in paints having nanostructured surfaces that, relative to conventional PSP surfaces, would afford easier and more nearly complete access of oxygen molecules to dye molecules. One measure of greater access is effective surface area: For a typical PSP as proposed applied to a given solid surface, the nanometer-scale structural features would result in an exposed surface area more than 100 times that of a conventional PSP, and the mass of proposed PSP needed to cover the surface would be less than tenth of the mass of the conventional PSP. One aspect of the proposed development would be to synthesize nanorods of Si/SiO2, in both tangle-mat and regular- array
Integrated Ray Tracing (IRT) simulation of SCOTS measurement of GMT fast steering mirror surface
NASA Astrophysics Data System (ADS)
Choi, Ji Nyeong; Ryu, Dongok; Kim, Sug-Whan; Graves, Logan; Su, Peng; Huang, Run; Kim, Dae Wook
2015-09-01
The Software Configurable Optical Testing System (SCOTS) is one of the newest testing methods for large mirror surfaces. The Integrated Ray Tracing (IRT) technique can be applicable to the SCOTS simulation by performing non-sequential ray tracing from the screen to the camera detector in the real scale. Therefore, the radiometry of distorted pattern images are numerically estimated by the IRT simulation module. In this study, we construct an IRT SCOTS simulation model for the Fast Steering Mirror Prototype (FSMP) surface of the Giant Magellan Telescope (GMT). GMT FSMP is an off-axis ellipsoidal concave mirror that is 1064 mm in diameter and has PV 3.1 mm in aspheric departure. The surface error requirement is less than 20 nm rms. The screen is modeled as an array of 1366 by 768 screen pixels of 0.227 mm in pitch size. The screen is considered as a Lambertian scattering surface. The screen and the camera are positioned around 4390 mm away from the mirror and separated by around 132 mm from each other. The light source are scanning lines and sinusoidal patterns generated by 616,050 rays per one screen pixel. Of the initially generated rays, 0.22 % are received by the camera's detector and contribute to form distorted pattern images. These images are converted to the slope and height maps of the mirror surface. The final result for the height difference between input surface and reconstructed surface was 14.14 nm rms. Additionally, the simulated mirror pattern image was compared with the real SCOTS test for the GMT FSMP. This study shows applicability of using the IRT model to SCOTS simulation with nanometer level numerical accuracy.
Fast parallel algorithm for slicing STL based on pipeline
NASA Astrophysics Data System (ADS)
Ma, Xulong; Lin, Feng; Yao, Bo
2016-04-01
In Additive Manufacturing field, the current researches of data processing mainly focus on a slicing process of large STL files or complicated CAD models. To improve the efficiency and reduce the slicing time, a parallel algorithm has great advantages. However, traditional algorithms can't make full use of multi-core CPU hardware resources. In the paper, a fast parallel algorithm is presented to speed up data processing. A pipeline mode is adopted to design the parallel algorithm. And the complexity of the pipeline algorithm is analyzed theoretically. To evaluate the performance of the new algorithm, effects of threads number and layers number are investigated by a serial of experiments. The experimental results show that the threads number and layers number are two remarkable factors to the speedup ratio. The tendency of speedup versus threads number reveals a positive relationship which greatly agrees with the Amdahl's law, and the tendency of speedup versus layers number also keeps a positive relationship agreeing with Gustafson's law. The new algorithm uses topological information to compute contours with a parallel method of speedup. Another parallel algorithm based on data parallel is used in experiments to show that pipeline parallel mode is more efficient. A case study at last shows a suspending performance of the new parallel algorithm. Compared with the serial slicing algorithm, the new pipeline parallel algorithm can make full use of the multi-core CPU hardware, accelerate the slicing process, and compared with the data parallel slicing algorithm, the new slicing algorithm in this paper adopts a pipeline parallel model, and a much higher speedup ratio and efficiency is achieved.
Characterization of a GEM-based fast neutron detector
NASA Astrophysics Data System (ADS)
Esposito, B.; Marocco, D.; Villari, R.; Murtas, F.; Rodionov, R.
2014-03-01
The neutron efficiency of a Gas Electron Multiplier (GEM)-based detector designed for fast neutron measurements in fusion devices was determined through the combined use of Monte Carlo (MCNPX) calculations and analysis of deuterium-deuterium and deuterium-tritium neutron irradiation experiments. The detector, characterized by a triple GEM structure flushed with a Ar/CO2/CF4 - 45/15/40 gas mixture, features a digital read-out system and has two sub-units for the detection of 2.5+14 MeV neutrons and 14 MeV neutrons (UDD and UDT, respectively). The pulse height spectra (PHS) determined from the curves of experimental efficiency as a function of the detector's high voltage (HV) and the MCNPX-simulated PHS were compared using a fitting routine that finds the best match between the experimental and simulated PHS by assuming a parametric model for the relation between HV (that determines the detector's gain) and the energy deposited in the gas. This led to express the experimental neutron efficiency as a function of the discrimination level set on the deposited energy (energy threshold). The detector sensitivity to γ-rays was also analyzed and the operational range in which the γ-ray contribution to the signal is not negligible was determined. It is found that this detector can reach a maximum neutron efficiency of ~1×10-3 counts/n at 2.5 MeV (UDD sub-unit) and of ~4×10-3 counts/n at 14 MeV (UDT and UDD sub-units).
Fast parallel algorithm for slicing STL based on pipeline
NASA Astrophysics Data System (ADS)
Ma, Xulong; Lin, Feng; Yao, Bo
2016-05-01
In Additive Manufacturing field, the current researches of data processing mainly focus on a slicing process of large STL files or complicated CAD models. To improve the efficiency and reduce the slicing time, a parallel algorithm has great advantages. However, traditional algorithms can't make full use of multi-core CPU hardware resources. In the paper, a fast parallel algorithm is presented to speed up data processing. A pipeline mode is adopted to design the parallel algorithm. And the complexity of the pipeline algorithm is analyzed theoretically. To evaluate the performance of the new algorithm, effects of threads number and layers number are investigated by a serial of experiments. The experimental results show that the threads number and layers number are two remarkable factors to the speedup ratio. The tendency of speedup versus threads number reveals a positive relationship which greatly agrees with the Amdahl's law, and the tendency of speedup versus layers number also keeps a positive relationship agreeing with Gustafson's law. The new algorithm uses topological information to compute contours with a parallel method of speedup. Another parallel algorithm based on data parallel is used in experiments to show that pipeline parallel mode is more efficient. A case study at last shows a suspending performance of the new parallel algorithm. Compared with the serial slicing algorithm, the new pipeline parallel algorithm can make full use of the multi-core CPU hardware, accelerate the slicing process, and compared with the data parallel slicing algorithm, the new slicing algorithm in this paper adopts a pipeline parallel model, and a much higher speedup ratio and efficiency is achieved.
Fast degradable citrate-based bone scaffold promotes spinal fusion
Tang, Jiajun; Guo, Jinshan; Li, Zhen; Yang, Cheng; Xie, Denghui; Chen, Jian; Li, Shengfa; Li, Shaolin; Kim, Gloria B.; Bai, Xiaochun; Zhang, Zhongmin; Yang, Jian
2015-01-01
It is well known that high rates of fusion failure and pseudoarthrosis development (5~35%) are concomitant in spinal fusion surgery, which was ascribed to the shortage of suitable materials for bone regeneration. Citrate was recently recognized to play an indispensable role in enhancing osteconductivity and osteoinductivity, and promoting bone formation. To address the material challenges in spinal fusion surgery, we have synthesized mechanically robust and fast degrading citrate-based polymers by incorporating N-methyldiethanolamine (MDEA) into clickable poly(1, 8-octanediol citrates) (POC-click), referred to as POC-M-click. The obtained POC-M-click were fabricated into POC-M-click-HA matchstick scaffolds by compositing with hydroxyapatite (HA) for interbody spinal fusion in a rabbit model. Spinal fusion was analyzed by radiography, manual palpation, biomechanical testing, and histological evaluation. At 4 and 8 weeks post surgery, POC-M-click-HA scaffolds presented optimal degradation rates that facilitated faster new bone formation and higher spinal fusion rates (11.2±3.7, 80±4.5 at week 4 and 8, respectively) than the poly(L-lactic acid)-HA (PLLA-HA) control group (9.3±2.4 and 71.1±4.4) (p<0.05). The POC-M-click-HA scaffold-fused vertebrates possessed a maximum load and stiffness of 880.8±14.5 N and 843.2±22.4 N/mm, respectively, which were also much higher than those of the PLLA-HA group (maximum: 712.0±37.5 N, stiffness: 622.5±28.4 N/mm, p<0.05). Overall, the results suggest that POC-M-click-HA scaffolds could potentially serve as promising bone grafts for spinal fusion applications. PMID:26213625
A Randomized Field Trial of the Fast ForWord Language Computer-Based Training Program
ERIC Educational Resources Information Center
Borman, Geoffrey D.; Benson, James G.; Overman, Laura
2009-01-01
This article describes an independent assessment of the Fast ForWord Language computer-based training program developed by Scientific Learning Corporation. Previous laboratory research involving children with language-based learning impairments showed strong effects on their abilities to recognize brief and fast sequences of nonspeech and speech…
Coupled slow and fast surface dynamics in an electrocatalytic oscillator: Model and simulations
NASA Astrophysics Data System (ADS)
Nascimento, Melke A.; Nagao, Raphael; Eiswirth, Markus; Varela, Hamilton
2014-12-01
The co-existence of disparate time scales is pervasive in many systems. In particular for surface reactions, it has been shown that the long-term evolution of the core oscillator is decisively influenced by slow surface changes, such as progressing deactivation. Here we present an in-depth numerical investigation of the coupled slow and fast surface dynamics in an electrocatalytic oscillator. The model consists of four nonlinear coupled ordinary differential equations, investigated over a wide parameter range. Besides the conventional bifurcation analysis, the system was studied by means of high-resolution period and Lyapunov diagrams. It was observed that the bifurcation diagram changes considerably as the irreversible surface poisoning evolves, and the oscillatory region shrinks. The qualitative dynamics changes accordingly and the chaotic oscillations are dramatically suppressed. Nevertheless, periodic cascades are preserved in a confined region of the resistance vs. voltage diagram. Numerical results are compared to experiments published earlier and the latter reinterpreted. Finally, the comprehensive description of the time-evolution in the period and Lyapunov diagrams suggests further experimental studies correlating the evolution of the system's dynamics with changes of the catalyst structure.
Coupled slow and fast surface dynamics in an electrocatalytic oscillator: Model and simulations
Nascimento, Melke A.; Nagao, Raphael; Eiswirth, Markus; Varela, Hamilton
2014-12-21
The co-existence of disparate time scales is pervasive in many systems. In particular for surface reactions, it has been shown that the long-term evolution of the core oscillator is decisively influenced by slow surface changes, such as progressing deactivation. Here we present an in-depth numerical investigation of the coupled slow and fast surface dynamics in an electrocatalytic oscillator. The model consists of four nonlinear coupled ordinary differential equations, investigated over a wide parameter range. Besides the conventional bifurcation analysis, the system was studied by means of high-resolution period and Lyapunov diagrams. It was observed that the bifurcation diagram changes considerably as the irreversible surface poisoning evolves, and the oscillatory region shrinks. The qualitative dynamics changes accordingly and the chaotic oscillations are dramatically suppressed. Nevertheless, periodic cascades are preserved in a confined region of the resistance vs. voltage diagram. Numerical results are compared to experiments published earlier and the latter reinterpreted. Finally, the comprehensive description of the time-evolution in the period and Lyapunov diagrams suggests further experimental studies correlating the evolution of the system's dynamics with changes of the catalyst structure.
Fast Object Motion Estimation Based on Dynamic Stixels.
Morales, Néstor; Morell, Antonio; Toledo, Jonay; Acosta, Leopoldo
2016-01-01
The stixel world is a simplification of the world in which obstacles are represented as vertical instances, called stixels, standing on a surface assumed to be planar. In this paper, previous approaches for stixel tracking are extended using a two-level scheme. In the first level, stixels are tracked by matching them between frames using a bipartite graph in which edges represent a matching cost function. Then, stixels are clustered into sets representing objects in the environment. These objects are matched based on the number of stixels paired inside them. Furthermore, a faster, but less accurate approach is proposed in which only the second level is used. Several configurations of our method are compared to an existing state-of-the-art approach to show how our methodology outperforms it in several areas, including an improvement in the quality of the depth reconstruction. PMID:27483265
A ZnO nanowire-based photo-inverter with pulse-induced fast recovery
NASA Astrophysics Data System (ADS)
Ali Raza, Syed Raza; Lee, Young Tack; Hosseini Shokouh, Seyed Hossein; Ha, Ryong; Choi, Heon-Jin; Im, Seongil
2013-10-01
We demonstrate a fast response photo-inverter comprised of one transparent gated ZnO nanowire field-effect transistor (FET) and one opaque FET respectively as the driver and load. Under ultraviolet (UV) light the transfer curve of the transparent gate FET shifts to the negative side and so does the voltage transfer curve (VTC) of the inverter. After termination of UV exposure the recovery of photo-induced current takes a long time in general. This persistent photoconductivity (PPC) is due to hole trapping on the surface of ZnO NWs. Here, we used a positive voltage short pulse after UV exposure, for the first time resolving the PPC issue in nanowire-based photo-detectors by accumulating electrons at the ZnO/dielectric interface. We found that a pulse duration as small as 200 ns was sufficient to reach a full recovery to the dark state from the UV induced state, realizing a fast UV detector with a voltage output.We demonstrate a fast response photo-inverter comprised of one transparent gated ZnO nanowire field-effect transistor (FET) and one opaque FET respectively as the driver and load. Under ultraviolet (UV) light the transfer curve of the transparent gate FET shifts to the negative side and so does the voltage transfer curve (VTC) of the inverter. After termination of UV exposure the recovery of photo-induced current takes a long time in general. This persistent photoconductivity (PPC) is due to hole trapping on the surface of ZnO NWs. Here, we used a positive voltage short pulse after UV exposure, for the first time resolving the PPC issue in nanowire-based photo-detectors by accumulating electrons at the ZnO/dielectric interface. We found that a pulse duration as small as 200 ns was sufficient to reach a full recovery to the dark state from the UV induced state, realizing a fast UV detector with a voltage output. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr03801g
Chang, Hyejin; Jeong, Sinyoung; Ko, Eunbyeol; Jeong, Dae Hong E-mail: debobkr@gmail.com; Kang, Homan; Lee, Yoon-Sik E-mail: debobkr@gmail.com; Lee, Ho-Young E-mail: debobkr@gmail.com
2015-05-15
Surface-enhanced Raman scattering techniques have been widely used for bioanalysis due to its high sensitivity and multiplex capacity. However, the point-scanning method using a micro-Raman system, which is the most common method in the literature, has a disadvantage of extremely long measurement time for on-chip immunoassay adopting a large chip area of approximately 1-mm scale and confocal beam point of ca. 1-μm size. Alternative methods such as sampled spot scan with high confocality and large-area scan method with enlarged field of view and low confocality have been utilized in order to minimize the measurement time practically. In this study, we analyzed the two methods in respect of signal-to-noise ratio and sampling-led signal fluctuations to obtain insights into a fast and reliable readout strategy. On this basis, we proposed a methodology for fast and reliable quantitative measurement of the whole chip area. The proposed method adopted a raster scan covering a full area of 100 μm × 100 μm region as a proof-of-concept experiment while accumulating signals in the CCD detector for single spectrum per frame. One single scan with 10 s over 100 μm × 100 μm area yielded much higher sensitivity compared to sampled spot scanning measurements and no signal fluctuations attributed to sampled spot scan. This readout method is able to serve as one of key technologies that will bring quantitative multiplexed detection and analysis into practice.
NASA Astrophysics Data System (ADS)
Chang, Hyejin; Kang, Homan; Jeong, Sinyoung; Ko, Eunbyeol; Lee, Yoon-Sik; Lee, Ho-Young; Jeong, Dae Hong
2015-05-01
Surface-enhanced Raman scattering techniques have been widely used for bioanalysis due to its high sensitivity and multiplex capacity. However, the point-scanning method using a micro-Raman system, which is the most common method in the literature, has a disadvantage of extremely long measurement time for on-chip immunoassay adopting a large chip area of approximately 1-mm scale and confocal beam point of ca. 1-μm size. Alternative methods such as sampled spot scan with high confocality and large-area scan method with enlarged field of view and low confocality have been utilized in order to minimize the measurement time practically. In this study, we analyzed the two methods in respect of signal-to-noise ratio and sampling-led signal fluctuations to obtain insights into a fast and reliable readout strategy. On this basis, we proposed a methodology for fast and reliable quantitative measurement of the whole chip area. The proposed method adopted a raster scan covering a full area of 100 μm × 100 μm region as a proof-of-concept experiment while accumulating signals in the CCD detector for single spectrum per frame. One single scan with 10 s over 100 μm × 100 μm area yielded much higher sensitivity compared to sampled spot scanning measurements and no signal fluctuations attributed to sampled spot scan. This readout method is able to serve as one of key technologies that will bring quantitative multiplexed detection and analysis into practice.
Fast generation model of high density surface EMG signals in a cylindrical conductor volume.
Carriou, Vincent; Boudaoud, Sofiane; Laforet, Jeremy; Ayachi, Fouaz Sofiane
2016-07-01
In the course of the last decade, fast and qualitative computing power developments have undoubtedly permitted for a better and more realistic modeling of complex physiological processes. Due to this favorable environment, a fast, generic and reliable model for high density surface electromyographic (HD-sEMG) signal generation with a multilayered cylindrical description of the volume conductor is presented in this study. Its main peculiarity lies in the generation of a high resolution potential map over the skin related to active Motor Units (MUs). Indeed, the analytical calculus is fully performed in the frequency domain. HD-sEMG signals are obtained by surfacic numerical integration of the generated high resolution potential map following a variety of electrode shapes. The suggested model is implemented using parallel computing techniques as well as by using an object-oriented approach which is comprehensive enough to be fairly quickly understood, used and potentially upgraded. To illustrate the model abilities, several simulation analyses are put forward in the results section. These simulations have been performed on the same muscle anatomy while varying the number of processes in order to show significant speed improvement. Accuracy of the numerical integration method, illustrating electrode shape diversity, is also investigated in comparison to analytical transfer functions definition. An additional section provides an insight on the volume detection of a circular electrode according to its radius. Furthermore, a large scale simulation is introduced with 300MUs in the muscle and a HD-sEMG electrode grid composed of 16×16 electrodes for three constant isometric contractions in 12s. Finally, advantages and limitations of the proposed model are discussed with a focus on perspective works. PMID:27183535
Kostov, V; Gibmeier, J; Wilde, F; Staron, P; Rössler, R; Wanner, A
2012-11-01
An in situ stress analysis by means of synchrotron x-ray diffraction was carried out during laser surface hardening of steel. A single exposure set-up that based on a special arrangement of two fast silicon strip line detectors was established, allowing for fast stress analysis according to the sin(2)ψ x-ray analysis method. For the in situ experiments a process chamber was designed and manufactured, which is described in detail. First measurements were carried out at the HZG undulator imaging beamline (IBL, beamline P05) at the synchrotron storage ring PETRA III, DESY, Hamburg (Germany). The laser processing was carried out using a 6 kW high power diode laser system. Two different laser optics were compared, a Gaussian optic with a focus spot of ø 3 mm and a homogenizing optic with a rectangular spot dimension of 8 × 8 mm(2). The laser processing was carried out using spot hardening at a heating-/cooling rate of 1000 K/s and was controlled via pyrometric temperature measurement using a control temperature of 1150 °C. The set-up being established during the measuring campaign allowed for this first realization data collection rates of 10Hz. The data evaluation procedure applied enables the separation of thermal from elastic strains and gains unprecedented insight into the laser hardening process. PMID:23206092
NASA Astrophysics Data System (ADS)
Gómez-Pedrero, José A.; Rodríguez-Ibañez, Diego; Alonso, José; Quirgoa, Juan A.
2015-09-01
With the advent of techniques devised for the mass production of optical components made with surfaces of arbitrary form (also known as free form surfaces) in the last years, a parallel development of measuring systems adapted for these new kind of surfaces constitutes a real necessity for the industry. Profilometry is one of the preferred methods for the assessment of the quality of a surface, and is widely employed in the optical fabrication industry for the quality control of its products. In this work, we present the design, development and assembly of a new profilometer with five axis of movement, specifically suited to the measurement of medium size (up to 150 mm of diameter) "free-form" optical surfaces with sub-micrometer accuracy and low measuring times. The apparatus is formed by three X, Y, Z linear motorized positioners plus and additional angular and a tilt positioner employed to locate accurately the surface to be measured and the probe which can be a mechanical or an optical one, being optical one a confocal sensor based on chromatic aberration. Both optical and mechanical probes guarantee an accuracy lower than the micrometer in the determination of the surface height, thus ensuring an accuracy in the surface curvatures of the order of 0.01 D or better. An original calibration procedure based on the measurement of a precision sphere has been developed in order to correct the perpendicularity error between the axes of the linear positioners. To reduce the measuring time of the profilometer, a custom electronics, based on an Arduino™ controller, have been designed and produced in order to synchronize the five motorized positioners and the optical and mechanical probes so that a medium size surface (around 10 cm of diameter) with a dynamic range in curvatures of around 10 D, can be measured in less than 300 seconds (using three axes) keeping the resolution in height and curvature in the figures mentioned above.
Accurate Anisotropic Fast Marching for Diffusion-Based Geodesic Tractography
Jbabdi, S.; Bellec, P.; Toro, R.; Daunizeau, J.; Pélégrini-Issac, M.; Benali, H.
2008-01-01
Using geodesics for inferring white matter fibre tracts from diffusion-weighted MR data is an attractive method for at least two reasons: (i) the method optimises a global criterion, and hence is less sensitive to local perturbations such as noise or partial volume effects, and (ii) the method is fast, allowing to infer on a large number of connexions in a reasonable computational time. Here, we propose an improved fast marching algorithm to infer on geodesic paths. Specifically, this procedure is designed to achieve accurate front propagation in an anisotropic elliptic medium, such as DTI data. We evaluate the numerical performance of this approach on simulated datasets, as well as its robustness to local perturbation induced by fiber crossing. On real data, we demonstrate the feasibility of extracting geodesics to connect an extended set of brain regions. PMID:18299703
NASA Astrophysics Data System (ADS)
Wei, Jian-Gong; Peng, Zhen; Lee, Jin-Fa
2012-10-01
The implementation details of a fast direct solver is described herein for solving dense matrix equations from the application of surface integral equation methods for electromagnetic field scatterings from non-penetrable targets. The proposed algorithm exploits the smoothness of the far field and computes a low rank decomposition of the off-diagonal coupling blocks of the matrices through a set of skeletonization processes. Moreover, an artificial surface (the Huygens' surface) is introduced for each clustering group to efficiently account for the couplings between well-separated groups. Furthermore, a recursive multilevel version of the algorithm is presented. Although asymptotically the algorithm would not alter the bleak outlook of the complexity of the worst case scenario,O(N3) for required CPU time where N denotes the number of unknowns, for electrically large electromagnetic (EM) problems; through numerical examples, we found that the proposed multilevel direct solver can scale as good as O(N1.3) in memory consumption and O(N1.8) in CPU time for moderate-sized EM problems. Note that our conclusions are drawn based on a few sample examples that we have conducted and should not be taken as a true complexity analysis for general electrodynamic applications. However, for the fixed frequency (h-refinement) scenario, where the discretization size decreases, the computational complexities observed agree well with the theoretical predictions. Namely, the algorithm exhibits O(N) and O(N1.5) complexities for memory consumption and CPU time, respectively.
Surface activation-based nanobonding and interconnection at room temperature
NASA Astrophysics Data System (ADS)
Howlader, M. M. R.; Yamauchi, A.; Suga, T.
2011-02-01
Flip chip nanobonding and interconnect system (NBIS) equipment with high precision alignment has been developed based on the surface activated bonding method for high-density interconnection and MEMS packaging. The 3σ alignment accuracy in the IR transmission system was approximately ±0.2 µm. The performance of the NBIS has been preliminarily investigated through bonding between relatively rough surfaces of copper through silicon vias (Cu-TSVs) and gold-stud bumps (Au-SBs), and smooth surfaces of silicon wafers. The Cu-TSVs of 55 µm diameter and the Au-SBs of 35 µm diameter with ~6-10 nm surface roughness (RMS) were bonded at room temperature after surface activation using an argon fast atom beam (Ar-FAB) under 0.16 N per bump. Silicon wafers of 50 mm diameter with ~0.2 nm RMS surface roughness were bonded without heating after surface activation. Void-free interfaces both in Cu-TSV/Au-SB and silicon/silicon with bonding strength equivalent to bulk fracture of Au and silicon, respectively, were achieved. A few nm thick amorphous layers were observed across the silicon/silicon interface that was fabricated by the Ar-FAB. This study in the interconnection and bonding facilitates the required three-dimensional integration on the same surface for high-density electronic and biomedical systems.
Source estimation with surface-related multiples—fast ambiguity-resolved seismic imaging
NASA Astrophysics Data System (ADS)
Tu, Ning; Aravkin, Aleksandr; van Leeuwen, Tristan; Lin, Tim; Herrmann, Felix J.
2016-06-01
We address the problem of obtaining a reliable seismic image without prior knowledge of the source wavelet, especially from data that contain strong surface-related multiples. Conventional reverse-time migration requires prior knowledge of the source wavelet, which is either technically or computationally challenging to accurately determine; inaccurate estimates of the source wavelet can result in seriously degraded reverse-time migrated images, and therefore wrong geological interpretations. To solve this problem, we present a `wavelet-free' imaging procedure that simultaneously inverts for the source wavelet and the seismic image, by tightly integrating source estimation into a fast least-squares imaging framework, namely compressive imaging, given a reasonably accurate background velocity model. However, this joint inversion problem is difficult to solve as it is plagued with local minima and the ambiguity with respect to amplitude scalings because of the multiplicative, and therefore nonlinear, appearance of the source wavelet in the otherwise linear formalism. We have found a way to solve this nonlinear joint-inversion problem using a technique called variable projection, and a way to overcome the scaling ambiguity by including surface-related multiples in our imaging procedure following recent developments in surface-related multiple prediction by sparse inversion. As a result, we obtain without prior knowledge of the source wavelet high-resolution seismic images, comparable in quality to images obtained assuming the true source wavelet is known. By leveraging the computationally efficient compressive-imaging methodology, these results are obtained at affordable computational costs compared with conventional processing work flows that include surface-related multiple removal and reverse-time migration.
Source estimation with surface-related multiples—fast ambiguity-resolved seismic imaging
NASA Astrophysics Data System (ADS)
Tu, Ning; Aravkin, Aleksandr; van Leeuwen, Tristan; Lin, Tim; Herrmann, Felix J.
2016-03-01
We address the problem of obtaining a reliable seismic image without prior knowledge of the source wavelet, especially from data that contain strong surface-related multiples. Conventional reverse-time migration requires prior knowledge of the source wavelet, which is either technically or computationally challenging to accurately determine; inaccurate estimates of the source wavelet can result in seriously degraded reverse-time migrated images, and therefore wrong geological interpretations. To solve this problem, we present a "wavelet-free" imaging procedure that simultaneously inverts for the source wavelet and the seismic image, by tightly integrating source estimation into a fast least-squares imaging framework, namely compressive imaging, given a reasonably accurate background velocity model. However, this joint inversion problem is difficult to solve as it is plagued with local minima and the ambiguity with respect to amplitude scalings, because of the multiplicative, and therefore nonlinear, appearance of the source wavelet in the otherwise linear formalism. We have found a way to solve this nonlinear joint-inversion problem using a technique called variable projection, and a way to overcome the scaling ambiguity by including surface-related multiples in our imaging procedure following recent developments in surface-related multiple prediction by sparse inversion. As a result, we obtain without prior knowledge of the source wavelet high-resolution seismic images, comparable in quality to images obtained assuming the true source wavelet is known. By leveraging the computationally efficient compressive-imaging methodology, these results are obtained at affordable computational costs compared with conventional processing work flows that include surface-related multiple removal and reverse-time migration.
Fast Dynamic Meshing Method Based on Delaunay Graph and Inverse Distance Weighting Interpolation
NASA Astrophysics Data System (ADS)
Wang, Yibin; Qin, Ning; Zhao, Ning
2016-06-01
A novel mesh deformation technique is developed based on the Delaunay graph mapping method and the inverse distance weighting (IDW) interpolation. The algorithm maintains the advantages of the efficiency of Delaunay-graph-mapping mesh deformation while possess the ability for better controlling the near surface mesh quality. The Delaunay graph is used to divide the mesh domain into a number of sub-domains. On each of the sub-domains, the inverse distance weighting interpolation is applied to build a much smaller sized translation matrix between the original mesh and the deformed mesh, resulting a similar efficiency for the mesh deformation as compared to the fast Delaunay graph mapping method. The paper will show how the near-wall mesh quality is controlled and improved by the new method while the computational time is compared with the original Delaunay graph mapping method.
Ultra-Fast Glyco-Coating of Non-Biological Surfaces.
Williams, Eleanor; Barr, Katie; Korchagina, Elena; Tuzikov, Alexander; Henry, Stephen; Bovin, Nicolai
2016-01-01
The ability to glycosylate surfaces has medical and diagnostic applications, but there is no technology currently recognized as being able to coat any surface without the need for prior chemical modification of the surface. Recently, a family of constructs called function-spacer-lipids (FSL) has been used to glycosylate cells. Because it is known that lipid-based material can adsorb onto surfaces, we explored the potential and performance of cell-labelling FSL constructs to "glycosylate" non-biological surfaces. Using blood group A antigen as an indicator, the performance of a several variations of FSL constructs to modify a large variety of non-biological surfaces was evaluated. It was found the FSL constructs when optimised could in a few seconds glycosylate almost any non-biological surface including metals, glass, plastics, rubbers and other polymers. Although the FSL glycan coating was non-covalent, and therefore temporary, it was sufficiently robust with appropriate selection of spacer and surface that it could capture anti-glycan antibodies, immobilize cells (via antibody), and withstand incubation in serum and extensive buffer washing, making it suitable for diagnostic and research applications. PMID:26784187
Ultra-Fast Glyco-Coating of Non-Biological Surfaces
Williams, Eleanor; Barr, Katie; Korchagina, Elena; Tuzikov, Alexander; Henry, Stephen; Bovin, Nicolai
2016-01-01
The ability to glycosylate surfaces has medical and diagnostic applications, but there is no technology currently recognized as being able to coat any surface without the need for prior chemical modification of the surface. Recently, a family of constructs called function-spacer-lipids (FSL) has been used to glycosylate cells. Because it is known that lipid-based material can adsorb onto surfaces, we explored the potential and performance of cell-labelling FSL constructs to “glycosylate” non-biological surfaces. Using blood group A antigen as an indicator, the performance of a several variations of FSL constructs to modify a large variety of non-biological surfaces was evaluated. It was found the FSL constructs when optimised could in a few seconds glycosylate almost any non-biological surface including metals, glass, plastics, rubbers and other polymers. Although the FSL glycan coating was non-covalent, and therefore temporary, it was sufficiently robust with appropriate selection of spacer and surface that it could capture anti-glycan antibodies, immobilize cells (via antibody), and withstand incubation in serum and extensive buffer washing, making it suitable for diagnostic and research applications. PMID:26784187
Fast spot-based multiscale simulations of granular drainage
Rycroft, Chris H.; Wong, Yee Lok; Bazant, Martin Z.
2009-05-22
We develop a multiscale simulation method for dense granular drainage, based on the recently proposed spot model, where the particle packing flows by local collective displacements in response to diffusing"spots'" of interstitial free volume. By comparing with discrete-element method (DEM) simulations of 55,000 spheres in a rectangular silo, we show that the spot simulation is able to approximately capture many features of drainage, such as packing statistics, particle mixing, and flow profiles. The spot simulation runs two to three orders of magnitude faster than DEM, making it an appropriate method for real-time control or optimization. We demonstrateextensions for modeling particle heaping and avalanching at the free surface, and for simulating the boundary layers of slower flow near walls. We show that the spot simulations are robust and flexible, by demonstrating that they can be used in both event-driven and fixed timestep approaches, and showing that the elastic relaxation step used in the model can be applied much less frequently and still create good results.
Bubici, Salvatore; Korb, Jean-Pierre; Kučerik, Jiří; Conte, Pellegrino
2016-05-01
Many soil functions depend on the interaction of water with soil. The affinity of water for soils can be altered by applying soil amendments like stone meal, manure, or biochar (a carbonaceous material obtained by pyrolysis of biomasses). In fact, the addition of hydrophobic biochar to soil may increase soil repellency, reduce water-adsorbing capacity, inhibit microbial activity, alter soil filter, buffer, storage, and transformation functions. For this reason, it is of paramount importance to monitor water affinity for biochar surface (also referred to as 'wettability') in order to better address its applications in soil systems. In this study, we propose the use of fast field cycling NMR relaxometry technique with the application of a new mathematical model for data interpretation, as a valid alternative to the traditional contact angle (CA) measurements for biochar wettability evaluation. Either NMR or CA results revealed the same wettability trend for the biochars studied here. The advantage of NMR relaxometry over CA measurements lies in the possibility to obtain at the microscopic level a variety of different information in only one shot. In fact, while CA provides only wettability evaluation, NMR relaxometry also allows achievement of the mechanisms for water molecular dynamics on biochar surface, thereby leading to the possibility to understand better, in future research, the role of biochar in increasing soil quality and plant nutrition. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27062147
Surface water mass composition changes captured by cores of Arctic land-fast sea ice
NASA Astrophysics Data System (ADS)
Smith, I. J.; Eicken, H.; Mahoney, A. R.; Van Hale, R.; Gough, A. J.; Fukamachi, Y.; Jones, J.
2016-04-01
In the Arctic, land-fast sea ice growth can be influenced by fresher water from rivers and residual summer melt. This paper examines a method to reconstruct changes in water masses using oxygen isotope measurements of sea ice cores. To determine changes in sea water isotope composition over the course of the ice growth period, the output of a sea ice thermodynamic model (driven with reanalysis data, observations of snow depth, and freeze-up dates) is used along with sea ice oxygen isotope measurements and an isotopic fractionation model. Direct measurements of sea ice growth rates are used to validate the output of the sea ice growth model. It is shown that for sea ice formed during the 2011/2012 ice growth season at Barrow, Alaska, large changes in isotopic composition of the ocean waters were captured by the sea ice isotopic composition. Salinity anomalies in the ocean were also tracked by moored instruments. These data indicate episodic advection of meteoric water, having both lower salinity and lower oxygen isotopic composition, during the winter sea ice growth season. Such advection of meteoric water during winter is surprising, as no surface meltwater and no local river discharge should be occurring at this time of year in that area. How accurately changes in water masses as indicated by oxygen isotope composition can be reconstructed using oxygen isotope analysis of sea ice cores is addressed, along with methods/strategies that could be used to further optimize the results. The method described will be useful for winter detection of meteoric water presence in Arctic fast ice regions, which is important for climate studies in a rapidly changing Arctic. Land-fast sea ice effective fractionation coefficients were derived, with a range of +1.82‰ to +2.52‰. Those derived effective fractionation coefficients will be useful for future water mass component proportion calculations. In particular, the equations given can be used to inform choices made when
Uncertainty Assessment for Fast Reactors Based on Nuclear Data Adjustment
NASA Astrophysics Data System (ADS)
Ivanova, T.; Ivanov, E.; Ecrabet, F.
2014-04-01
The paper presents IRSN's results of the OECD/NEA WPEC Subgroup 33 benchmark exercise which is focused upon combined use of differential and integral data using adjustment technique. The results are generated by BERING code using different sets of input data: integral parameters and sensitivity coefficients for fast benchmark experiments and applications computed by deterministic ERANOS code and Monte Carlo SCALE sequences, COMMARA-2.0 and JENDL-4.0 cross-section-covariance data and integral correlations provided by JAEA. The paper demonstrates results of the adjustment when using different input data and two adjustment algorithms implemented in BERING.
A portable intra-oral scanner based on sinusoidal pattern of fast phase-shifting
NASA Astrophysics Data System (ADS)
Jan, Chia-Ming; Lin, Ying-Chieh
2016-03-01
This paper presented our current research about the intra-oral scanner made by MIRDC. Utilizing the sinusoidal pattern for fast phase-shifting technique to deal with 3D digitalization of human dental surface profile, the development of pseudo-phase shifting digital projection can easily achieve one type of full-field scanning instead of the common technique of the laser line scanning. Based on traditional Moiré method, we adopt projecting fringes and retrieve phase reconstruction to forward phase unwrapping. The phase difference between the plane and object can be exactly calculated from the desired fringe images, and the surface profile of object was probably reconstructed by using the phase differences information directly. According to our algorithm of space mapping between projections and capturing orientation exchange of our intra-oral scanning configuration, the system we made certainly can be proved to achieve the required accuracy of +/-10μm to deal with intra-oral scanning on the basis of utilizing active triangulation method. The final purpose aimed to the scanning of object surface profile with its size about 10x10x10mm3.
Devices based on surface plasmon interference filters
NASA Technical Reports Server (NTRS)
Wang, Yu (Inventor)
2001-01-01
Devices based on surface plasmon filters having at least one metal-dielectric interface to support surface plasmon waves. A multi-layer-coupled surface plasmon notch filter is provided to have more than two symmetric metal-dielectric interfaces coupled with one another to produce a transmission spectral window with desired spectral profile and bandwidth. Such notch filters can form various color filtering devices for color flat panel displays.
Cargo inspection system based on pulsed fast neutron analysis
NASA Astrophysics Data System (ADS)
Brown, Douglas R.; Coates, Allison; Kuo, Stelly N.; Loveman, Robert; Pentaleri, Ed; Rynes, Joel C.
1997-02-01
The pulsed fast neutron analysis (PFNA) cargo inspection system (CIS) uses a nanosecond pulsed beam of fast neutrons to interrogate the contents of small volume elements -- voxels -- of a cargo container or truck. A color display shows the three-dimensional location of suspected contraband, such as drugs or explosives. The neutrons interact with the elemental contents of each vowel, and gamma rays characteristic of the elements are collected in an array of detectors. The elemental signals and their ratios give unique signatures for drugs and other contraband. From the time of arrival of the gamma rays, the position of the vowel within the truck is determined. The PFNA CIS is designed to scan five or more trucks per hour. The operator interface has been designed to assist in the rapid identification of drugs, explosives or other contraband. This paper describes the system and the tests for drugs and explosives that have been carried out during the past year. These tests were aimed at exploring the envelope of performance of the system.
Cargo inspection system based on pulsed fast neutron analysis
NASA Astrophysics Data System (ADS)
Brown, D. R.; Gozani, T.
1995-05-01
Pulsed Fast Neutron Analysis (PFNA) is a technique which uses a collimated pulsed beam of fast neutrons to excite the nuclei of common elements in bulk materials. Direct imaging of the elemental contents of the material is accomplished by using time-of-flight analysis to identify the position of the interactions and gamma-ray spectroscopy to identify the elemental gamma-rays. From the ratios and absolute measurements of elemental abundances the identification of the material can be deduced. The PFNA cargo inspection system uses a volume type negative ion source and a double drift bunching system to create an intense beam of nano-second bunched negative deuterium ions which, after acceleration to around 6 MeV, impinge on a deuterium gas target producing pulsed neutrons. A unique high speed data acquisition system digitizes and analyzes the time-energy data in real time. Experimental studies and computer simulations were extensively employed to characterize and optimize the design parameters of the system.
Research of Fast 3D Imaging Based on Multiple Mode
NASA Astrophysics Data System (ADS)
Chen, Shibing; Yan, Huimin; Ni, Xuxiang; Zhang, Xiuda; Wang, Yu
2016-02-01
Three-dimensional (3D) imaging has received increasingly extensive attention and has been widely used currently. Lots of efforts have been put on three-dimensional imaging method and system study, in order to meet fast and high accurate requirement. In this article, we realize a fast and high quality stereo matching algorithm on field programmable gate array (FPGA) using the combination of time-of-flight (TOF) camera and binocular camera. Images captured from the two cameras own a same spatial resolution, letting us use the depth maps taken by the TOF camera to figure initial disparity. Under the constraint of the depth map as the stereo pairs when comes to stereo matching, expected disparity of each pixel is limited within a narrow search range. In the meanwhile, using field programmable gate array (FPGA, altera cyclone IV series) concurrent computing we can configure multi core image matching system, thus doing stereo matching on embedded system. The simulation results demonstrate that it can speed up the process of stereo matching and increase matching reliability and stability, realize embedded calculation, expand application range.
Nanoparticle Based Surface-Enhanced Raman Spectroscopy
Talley, C E; Huser, T R; Hollars, C W; Jusinski, L; Laurence, T; Lane, S M
2005-01-03
Surface-enhanced Raman scattering is a powerful tool for the investigation of biological samples. Following a brief introduction to Raman and surface-enhanced Raman scattering, several examples of biophotonic applications of SERS are discussed. The concept of nanoparticle based sensors using SERS is introduced and the development of these sensors is discussed.
Recodable surfaces based on switchable hydrogen bonds.
Wedler-Jasinski, Nils; Delbosc, Nicolas; Virolleaud, Marie-Alice; Montarnal, Damien; Welle, Alexander; Barner, Leonie; Walther, Andreas; Bernard, Julien; Barner-Kowollik, Christopher
2016-07-01
We introduce recodable surfaces solely based on reversible artificial hydrogen bonding interactions. We show that a symmetrical oligoamide (SOA) attached to poly(methyl methacrylate) (PMMA) can be repeatedly immobilized and cleaved off spatially defined surface domains photochemically functionalized with asymmetric oligoamides (AOAs). The spatially resolved recodability is imaged and quantified via ToF-SIMS. PMID:27339101
NASA Astrophysics Data System (ADS)
Moazezi, Siamak; Zomorrodian, Hossein; Siahkoohi, Hamid Reza; Azmoudeh-Ardalan, Alireza; Gholami, Ali
2016-05-01
In this paper, we presented a fast unified method to compute the gravity field functionals and their directional derivatives up to arbitrary orders on nonequispaced grid points at irregular surfaces using ultrahigh-degree models. The direct spherical harmonic synthesis (SHS) for computing the gravity field functionals at arbitrary locations through the Legendre functions is a time-consuming task for high-order and -degree models. Besides, to compute the derivatives of SHS in terms of latitude, the derivatives of the Legendre functions are needed. Therefore, we used Fourier coefficients of Wigner d-functions to compute the directional derivatives of SHS up to arbitrary orders. We also showed that these functions and their derivatives up to order 2 are stable up to ultrahigh-degree 2^{14} = 16{,}384 using extended double precision (i.e., 80 bits variables). Although 2D-FFT can accelerate the computation of global SHS (GSHS), it restricts the results on equispaced grid points. Hence, we used the nonequispaced FFT (NFFT) for computing GSHS on irregular grid points on the sphere that it is the fast nonequispaced GSHS (NGSHS). For maximum degree N and computing points of O(N^2) with arbitrary locations, the direct computation methods have the complexity of O(N^4) . But the presented algorithm with and without precomputed Fourier coefficients of Wigner d-functions has the complexity of O(N^2 log ^2 N + N^2 s^2) and O(N^3 + N^2 s^2) , respectively, where s is cutoff parameter of convolution in NFFT. Using a convolution technique in frequency domain, the NGSHS on the ellipsoid was computed. For computation the gravity field functionals by the NGSHS at irregular surfaces, we defined the Taylor expansion and the Padé approximation both on the sphere and on the ellipsoid. The results showed that the constructed Padé approximation on the ellipsoid provides better accuracy. Finally, we showed that the introduced unified algorithm achieves the required accuracy and that it is
NASA Astrophysics Data System (ADS)
Wang, Haogang; Liao, Tien-Hao; Shi, Jiancheng; Yu, Zherui
2014-11-01
The forthcoming Water Cycle Observation Mission (WCOM) is to understand the water cycle system among land, atmosphere, and ocean. In both active and passive microwave remote sensing of soil moisture, the surface roughness plays an important role. Electromagnetic models of roughness provide tables of emissivities and backscattering coefficients that can be used to retrieve soil moisture. In this paper, a fast and accurate three dimensional solution of Maxwell's equations is developed and employed to solve rough soil surface scattering problem at L-band. The algorithm combines QR Pre-Ranked Multilevel UV(MLUV) factorization and Hierarchical Fast Far Field Approximation. It is implemented using OpenMP interface for fast parallel calculation. In this algorithm, 1) QR based rank predetermined algorithm is derived to further compress the UV matrix pairs obtained using coarse-coarse sampling; 2) at the finer levels, MLUV is used straightforwardly to factorize the interactions between groups, while at the coarsest level, interactions between groups in the interaction list are calculated using an elegantly derived Hierarchical Fast Far Field Approximation (HFAFFA) to accelerate the calculation of interactions between large groups while keeping the accuracy of this approximation; 3) OpenMP interface is used to parallelize this new algorithm. Numerical results including the incoherent bistatic scattering coefficients and the emissivity demonstrate the efficiency of this method.
Fast calculation of object infrared spectral scattering based on CUDA
NASA Astrophysics Data System (ADS)
Li, Liang-chao; Niu, Wu-bin; Wu, Zhen-sen
2010-11-01
Computational unified device architecture (CUDA) is used for paralleling the spectral scattering calculation from non-Lambertian object of sky and earth background irradiation. The bidirectional reflectance distribution function (BRDF) of five parameter model is utilized in object surface element scattering calculation. The calculation process is partitioned into many threads running in GPU kernel and each thread computes a visible surface element infrared spectral scattering intensity in a specific incident direction, all visible surface elements' intensity are weighted and averaged to obtain the object surface scattering intensity. The comparison of results of the CPU calculation and CUDA parallel calculation of a cylinder shows that the CUDA parallel calculation speed improves more than two hundred times in meeting the accuracy, with a high engineering value.
A fast Stokes inversion technique based on quadratic regression
NASA Astrophysics Data System (ADS)
Teng, Fei; Deng, Yuan-Yong
2016-05-01
Stokes inversion calculation is a key process in resolving polarization information on radiation from the Sun and obtaining the associated vector magnetic fields. Even in the cases of simple local thermodynamic equilibrium (LTE) and where the Milne-Eddington approximation is valid, the inversion problem may not be easy to solve. The initial values for the iterations are important in handling the case with multiple minima. In this paper, we develop a fast inversion technique without iterations. The time taken for computation is only 1/100 the time that the iterative algorithm takes. In addition, it can provide available initial values even in cases with lower spectral resolutions. This strategy is useful for a filter-type Stokes spectrograph, such as SDO/HMI and the developed two-dimensional real-time spectrograph (2DS).
Slow-fast effect and generation mechanism of brusselator based on coordinate transformation
NASA Astrophysics Data System (ADS)
Li, Xianghong; Hou, Jingyu; Shen, Yongjun
2016-08-01
The Brusselator with different time scales, which behaves in the classical slow-fast effect, is investigated, and is characterized by the coupling of the quiescent and spiking states. In order to reveal the generation mechanism by using the slow-fast analysis method, the coordinate transformation is introduced into the classical Brusselator, so that the transformed system can be divided into the fast and slow subsystems. Furthermore, the stability condition and bifurcation phenomenon of the fast subsystem are analyzed, and the attraction domains of different equilibria are presented by theoretical analysis and numerical simulation respectively. Based on the transformed system, it could be found that the generation mechanism between the quiescent and spiking states is Fold bifurcation and change of the attraction domain of the fast subsystem. The results may also be helpful to the similar system with multiple time scales.
Fast simulated annealing inversion of surface waves on pavement using phase-velocity spectra
Ryden, N.; Park, C.B.
2006-01-01
The conventional inversion of surface waves depends on modal identification of measured dispersion curves, which can be ambiguous. It is possible to avoid mode-number identification and extraction by inverting the complete phase-velocity spectrum obtained from a multichannel record. We use the fast simulated annealing (FSA) global search algorithm to minimize the difference between the measured phase-velocity spectrum and that calculated from a theoretical layer model, including the field setup geometry. Results show that this algorithm can help one avoid getting trapped in local minima while searching for the best-matching layer model. The entire procedure is demonstrated on synthetic and field data for asphalt pavement. The viscoelastic properties of the top asphalt layer are taken into account, and the inverted asphalt stiffness as a function of frequency compares well with laboratory tests on core samples. The thickness and shear-wave velocity of the deeper embedded layers are resolved within 10% deviation from those values measured separately during pavement construction. The proposed method may be equally applicable to normal soil site investigation and in the field of ultrasonic testing of materials. ?? 2006 Society of Exploration Geophysicists.
Protein Based Localized Surface Plasmon Resonance Gas Sensing
NASA Astrophysics Data System (ADS)
Meisam, Omidi; Gh., Amoabediny; Yazdian, F.; Habibi-Rezaei, M.
2015-01-01
We apply the localized surface plasmon resonance (LSPR) of gold nanoparticles (GNPs) covalently coupled with cytochrome c (cyt c) to create a nanobiosensor for detecting hydrogen sulfide (H2S) in the range of 15-100 ppb. Monolayer formation of GNPs on glass surface functionalized with 3-aminopropyltrimethoxysilane (APTMS) is performed for fabricating a chip-based format of the optical transducer. By chemical introduction of short-chain thiol derivatives on cyt c protein shell via its lysine residues, a very fast self-assembled monolayer (SAM) of cyt c is formed on the GNPs. Significant shifts in the LSPR peak (ΔλLSPR) are observed by reacting H2S with cyt c. Results show a linear relationship between ΔλLSPR and H2S concentration. Furthermore, shifts in the LSPR peak are reversible and the peak positions return to their pre-exposure values once the H2S is removed. The experimental results strongly indicate that the protein based LSPR chip can be successfully used as a simple, fast, sensitive and quantitative sensor for H2S detection.
Fast grating-based X-ray phase-contrast tomosynthesis.
Xi, Yan; Zhao, Jun
2013-01-01
As an imaging technique with low radiation dose and improved contrast, digital x-ray tomosynthesis is widely used in clinical diagnoses. Based on the superior capability of x-ray phase-contrast imaging (PCI) techniques for imaging low density materials, the combination of X-ray tomosynthesis and PCI can potentially provide higher efficiency in the detection of soft tissues. The goal of this work was to develop a fast imaging method for phase-contrast tomosynthesis, called fast grating-based phase-contrast tomosynthesis (GPC-Tomo), which integrates tomosynthesis with a grating-based PCI technique. Following the interlaced phase-stepping (PS) data collection method, which is much faster than conventional PS method, we propose a novel image reconstruction method called inner-focusing (IF) reconstruction for the fast GPC-Tomo. The proposed IF reconstruction method was validated by real experiments and the results suggested its effectiveness in achieving a fast GPC-Tomo. PMID:24110189
Nonlaser-based 3D surface imaging
Lu, Shin-yee; Johnson, R.K.; Sherwood, R.J.
1994-11-15
3D surface imaging refers to methods that generate a 3D surface representation of objects of a scene under viewing. Laser-based 3D surface imaging systems are commonly used in manufacturing, robotics and biomedical research. Although laser-based systems provide satisfactory solutions for most applications, there are situations where non laser-based approaches are preferred. The issues that make alternative methods sometimes more attractive are: (1) real-time data capturing, (2) eye-safety, (3) portability, and (4) work distance. The focus of this presentation is on generating a 3D surface from multiple 2D projected images using CCD cameras, without a laser light source. Two methods are presented: stereo vision and depth-from-focus. Their applications are described.
Pole Photogrammetry with AN Action Camera for Fast and Accurate Surface Mapping
NASA Astrophysics Data System (ADS)
Gonçalves, J. A.; Moutinho, O. F.; Rodrigues, A. C.
2016-06-01
High resolution and high accuracy terrain mapping can provide height change detection for studies of erosion, subsidence or land slip. A UAV flying at a low altitude above the ground, with a compact camera, acquires images with resolution appropriate for these change detections. However, there may be situations where different approaches may be needed, either because higher resolution is required or the operation of a drone is not possible. Pole photogrammetry, where a camera is mounted on a pole, pointing to the ground, is an alternative. This paper describes a very simple system of this kind, created for topographic change detection, based on an action camera. These cameras have high quality and very flexible image capture. Although radial distortion is normally high, it can be treated in an auto-calibration process. The system is composed by a light aluminium pole, 4 meters long, with a 12 megapixel GoPro camera. Average ground sampling distance at the image centre is 2.3 mm. The user moves along a path, taking successive photos, with a time lapse of 0.5 or 1 second, and adjusting the speed in order to have an appropriate overlap, with enough redundancy for 3D coordinate extraction. Marked ground control points are surveyed with GNSS for precise georeferencing of the DSM and orthoimage that are created by structure from motion processing software. An average vertical accuracy of 1 cm could be achieved, which is enough for many applications, for example for soil erosion. The GNSS survey in RTK mode with permanent stations is now very fast (5 seconds per point), which results, together with the image collection, in a very fast field work. If an improved accuracy is needed, since image resolution is 1/4 cm, it can be achieved using a total station for the control point survey, although the field work time increases.
A FAST ITERATIVE METHOD FOR SOLVING THE EIKONAL EQUATION ON TRIANGULATED SURFACES.
Fu, Zhisong; Jeong, Won-Ki; Pan, Yongsheng; Kirby, Robert M; Whitaker, Ross T
2011-01-01
This paper presents an efficient, fine-grained parallel algorithm for solving the Eikonal equation on triangular meshes. The Eikonal equation, and the broader class of Hamilton-Jacobi equations to which it belongs, have a wide range of applications from geometric optics and seismology to biological modeling and analysis of geometry and images. The ability to solve such equations accurately and efficiently provides new capabilities for exploring and visualizing parameter spaces and for solving inverse problems that rely on such equations in the forward model. Efficient solvers on state-of-the-art, parallel architectures require new algorithms that are not, in many cases, optimal, but are better suited to synchronous updates of the solution. In previous work [W. K. Jeong and R. T. Whitaker, SIAM J. Sci. Comput., 30 (2008), pp. 2512-2534], the authors proposed the fast iterative method (FIM) to efficiently solve the Eikonal equation on regular grids. In this paper we extend the fast iterative method to solve Eikonal equations efficiently on triangulated domains on the CPU and on parallel architectures, including graphics processors. We propose a new local update scheme that provides solutions of first-order accuracy for both architectures. We also propose a novel triangle-based update scheme and its corresponding data structure for efficient irregular data mapping to parallel single-instruction multiple-data (SIMD) processors. We provide detailed descriptions of the implementations on a single CPU, a multicore CPU with shared memory, and SIMD architectures with comparative results against state-of-the-art Eikonal solvers. PMID:22641200
(abstract) A Low-Cost Mission to 2060 Chiron Based on the Pluto Fast Flyby
NASA Technical Reports Server (NTRS)
Stern, S. A.; Salvo, C. G.; Wallace, R. A.; Weinstein, S. S.; Weissman, P. R.
1994-01-01
The Pluto Fast Flyby-based mission to Chiron described in this paper is a low cost, scientifically rewarding, focused mission in the outer solar system. The proposed mission will make a flyby of 2060 Chiron, an active 'comet' with over 10(sup 4) times the mass of Halley, and an eccentric, Saturn-crossing orbit which ranges from 8.5 to 19 AU. This mission concept achieves the flyby 4.2 years after launch on a direct trajectory from Earth, is independent of Jupiter launch windows, and fits within Discovery cost guidelines. This mission offers the scientific opportunity to examine a class of object left unsampled by the trail-blazing Mariners, Pioneers, Voyagers, and missions to Halley. Spacecraft reconnaissance of Chiron addresses unique objectives relating to cometary science, other small bodies, the structure of quasi-bound atmospheres on modest-sized bodies, and the origin of primitive bodies and the giant planets. Owing to Chiron's large size (180
Nagaoka, Kenichi; Isobe, Mitsutaka; Toi, Kazuo; Shimizu, Akihiro; Fujisawa, Akihide; Ohshima, Shunsuke; Nakano, Haruhisa; Osakabe, Masaki; Todo, Yasushi; Akiyama, Tsuyoshi; Suzuki, Chihiro; Nishimura, Shin; Yoshimura, Yasuo; Matsuoka, Keisuke; Okamura, Shoichi; Nagashima, Yoshihiko
2008-02-15
The internal behavior of fast ions interacting with magnetohydrodynamic bursts excited by energetic ions has been experimentally investigated in the compact helical system. The resonant convective oscillation of fast ions was identified inside the last closed-flux surface during an energetic-particle mode (EPM) burst. The phase difference between the fast-ion oscillation and the EPM, indicating the coupling strength between them, remains a certain value during the EPM burst and drives an anomalous transport of fast ions.
Fast gain and phase recovery of semiconductor optical amplifiers based on submonolayer quantum dots
Herzog, Bastian Owschimikow, Nina; Kaptan, Yücel; Kolarczik, Mirco; Switaiski, Thomas; Woggon, Ulrike; Schulze, Jan-Hindrik; Rosales, Ricardo; Strittmatter, André; Bimberg, Dieter; Pohl, Udo W.
2015-11-16
Submonolayer quantum dots as active medium in opto-electronic devices promise to combine the high density of states of quantum wells with the fast recovery dynamics of self-assembled quantum dots. We investigate the gain and phase recovery dynamics of a semiconductor optical amplifier based on InAs submonolayer quantum dots in the regime of linear operation by one- and two-color heterodyne pump-probe spectroscopy. We find an as fast recovery dynamics as for quantum dot-in-a-well structures, reaching 2 ps at moderate injection currents. The effective quantum well embedding the submonolayer quantum dots acts as a fast and efficient carrier reservoir.
SACRD: a data base for fast reactor safety computer codes, operational procedures
Forsberg, V.M.; Arwood, J.W.; Greene, N.M.; Raiford, G.B.
1980-09-01
SACRD (Safety Analysis Computerized Reactor Data) is a data base of nondesign-related information used in computer codes for fast reactor safety analyses. This document reports the procedures used in SACRD to help assure a reasonable level of integrity of the material contained in the data base. It also serves to document much of the computer software used with the data base.
Fast Numerically Based Modeling for Ground Penetrating Radar
NASA Astrophysics Data System (ADS)
Sassen, D. S.; Everett, M. E.
2007-05-01
There is a need for computationally fast GPR numerical modeling. This includes circumstances where real time performance is needed, for example discrimination of landmines or UXO's, and in circumstances that require a high number of successive forward problems, for example inversion or imaging. Traditional numerical techniques such as finite difference or finite element are too slow for these applications, but they provide results from general scenarios such as scattering from very complicated shapes with high contrast. Neural networks may fit in the niche between analytical techniques and traditional numerical techniques. Our concept is training a neural network to associate the model inputs of electromagnetic properties of the background and targets, and the size and shape of the targets, with the output generated by a 3-D finite difference model. Successive examples from various electromagnetic properties and targets are displayed to the neural network, until the neural network has adapted itself though optimization. The trained neural network is now used as the forward model by displaying new input parameters and the neural network then generates the appropriate output. The results from the neural network are then compared to results from finite difference models to see how well the neural networks is performing and at what point it breaks down. Areas of poor fit can be addressed through further training. The neural network GPR model can be adapted by displaying additional finite difference results to the neural network, and can also be adapted to a specific field area by actual field data examples. Because of this adaptation ability the neural network GPR model can be optimized for specific environments and applications.
FMFilter: A fast model based variant filtering tool.
Akgün, Mete; Faruk Gerdan, Ö; Görmez, Zeliha; Demirci, Hüseyin
2016-04-01
The availability of whole exome and genome sequencing has completely changed the structure of genetic disease studies. It is now possible to solve the disease causing mechanisms within shorter time and budgets. For this reason, mining out the valuable information from the huge amount of data produced by next generation techniques becomes a challenging task. Current tools analyze sequencing data in various methods. However, there is still need for fast, easy to use and efficacious tools. Considering genetic disease studies, there is a lack of publicly available tools which support compound heterozygous and de novo models. Also, existing tools either require advanced IT expertise or are inefficient for handling large variant files. In this work, we provide FMFilter, an efficient sieving tool for next generation sequencing data produced by genetic disease studies. We develop a software which allows to choose the inheritance model (recessive, dominant, compound heterozygous and de novo), the affected and control individuals. The program provides a user friendly Graphical User Interface which eliminates the requirement of advanced computer techniques. It has various filtering options which enable to eliminate the majority of the false alarms. FMFilter requires negligible memory, therefore it can easily handle very large variant files like multiple whole genomes with ordinary computers. We demonstrate the variant reduction capability and effectiveness of the proposed tool with public and in-house data for different inheritance models. We also compare FMFilter with the existing filtering software. We conclude that FMFilter provides an effective and easy to use environment for analyzing next generation sequencing data from Mendelian diseases. PMID:26925517
Helical surface reconstruction based on CMM
NASA Astrophysics Data System (ADS)
Pan, Zhikang; Zhu, Lianqing; Chen, Qingshan; Guo, Yangkuan
2010-12-01
The reconstruction of helical surface plays an important role in many engineering and scientific applications. This paper tends to establish an effective processing scheme of surface reconstruction of scatter 3D points, and make an in-depth exploration for the preprocessing technology of scatter points set and the algorithm of three-dimension model surface reconstruction. This paper has three main aspects: data acquisition, data preprocess and surface reconstruction. First, by comparing several measuring equipments, the screw parts are scanned via CMM (Coordinate Measuring Machine). Initial 3D point clouds are obtained by setting the scanning route according to the shape of the targets. Second, Using "3σ" criteria point de-noising is applied to the initial data points. Then Heap Sort is used to sort these points, being convenient for saving data and reconstructing the surface. Third, this paper presents a surface reconstruction method based on triangulation algorithm. The triangular meshes are generated based on Delaunay triangulation technique in two dimensions. And Loop Subdivision is adopted in order to get manifold meshes. Finally the surface reconstruction of an involute worm and an Archimedes worm shows that this approach is feasible.
Helical surface reconstruction based on CMM
NASA Astrophysics Data System (ADS)
Pan, Zhikang; Zhu, Lianqing; Chen, Qingshan; Guo, Yangkuan
2011-05-01
The reconstruction of helical surface plays an important role in many engineering and scientific applications. This paper tends to establish an effective processing scheme of surface reconstruction of scatter 3D points, and make an in-depth exploration for the preprocessing technology of scatter points set and the algorithm of three-dimension model surface reconstruction. This paper has three main aspects: data acquisition, data preprocess and surface reconstruction. First, by comparing several measuring equipments, the screw parts are scanned via CMM (Coordinate Measuring Machine). Initial 3D point clouds are obtained by setting the scanning route according to the shape of the targets. Second, Using "3σ" criteria point de-noising is applied to the initial data points. Then Heap Sort is used to sort these points, being convenient for saving data and reconstructing the surface. Third, this paper presents a surface reconstruction method based on triangulation algorithm. The triangular meshes are generated based on Delaunay triangulation technique in two dimensions. And Loop Subdivision is adopted in order to get manifold meshes. Finally the surface reconstruction of an involute worm and an Archimedes worm shows that this approach is feasible.
SIMPLE SURFACE PLASMON RESONANCE-BASED DOSEMETER.
Urbonavičius, Benas Gabrielis; Adlienė, Diana
2016-06-01
The interest to application of various surface plasmon resonance (SPR)-based sensors for the investigation of chemical and biological processes in thin layers deposited on the grating's surface/media is developing. Characterisation of processes as well as specimen's features might be performed analysing variations in optical properties (refraction index) of these thin layers. SPR sensors by default are characterised by high resolution and small uncertainties, and measurements might be performed in situ High-resolution, low-cost, SPR-based dosemeter concept has been proposed and realised depositing dose-sensitive nPAG gel layer onto diffraction grating's surface. The experimental set-up and method for information read out from the sensor were developed and implemented. Obtained results show a potential application of SPR-based dosemeter for dose measurements/mapping in steep gradient fields and/or large area fields. PMID:26535002
Power of surface-based DNA computation
Cai, Weiping; Condon, A.E.; Corn, R.M.
1997-12-01
A new model of DNA computation that is based on surface chemistry is studied. Such computations involve the manipulation of DNA strands that are immobilized on a surface, rather than in solution as in the work of Adleman. Surface-based chemistry has been a critical technology in many recent advances in biochemistry and offers several advantages over solution-based chemistry, including simplified handling of samples and elimination of loss of strands, which reduce error in the computation. The main contribution of this paper is in showing that in principle, surface-based DNA chemistry can efficiently support general circuit computation on many inputs in parallel. To do this, an abstract model of computation that allows parallel manipulation of binary inputs is described. It is then shown that this model can be implemented by encoding inputs as DNA strands and repeatedly modifying the strands in parallel on a surface, using the chemical processes of hybridization, exonuclease degradation, polymerase extension, and ligation. Thirdly, it is shown that the model supports efficient circuit simulation in the following sense: exactly those inputs that satisfy a circuit can be isolated and the number of parallel operations needed to do this is proportional to the size of the circuit. Finally, results are presented on the power of the model when another resource of DNA computation is limited, namely strand length. 12 refs.
A fast and accurate FPGA based QRS detection system.
Shukla, Ashish; Macchiarulo, Luca
2008-01-01
An accurate Field Programmable Gate Array (FPGA) based ECG Analysis system is described in this paper. The design, based on a popular software based QRS detection algorithm, calculates the threshold value for the next peak detection cycle, from the median of eight previously detected peaks. The hardware design has accuracy in excess of 96% in detecting the beats correctly when tested with a subset of five 30 minute data records obtained from the MIT-BIH Arrhythmia database. The design, implemented using a proprietary design tool (System Generator), is an extension of our previous work and uses 76% resources available in a small-sized FPGA device (Xilinx Spartan xc3s500), has a higher detection accuracy as compared to our previous design and takes almost half the analysis time in comparison to software based approach. PMID:19163797
Excitation of surface and volume plasmons in a metal nanosphere by fast electrons
NASA Astrophysics Data System (ADS)
Gildenburg, V. B.; Kostin, V. A.; Pavlichenko, I. A.
2016-03-01
Collective multipole oscillations (surface and volume plasmons) excited in a metal nanosphere by moving electron and corresponding inelastic scattering spectra are studied based on the hydrodynamic approach. Along with the bulk (dielectric) losses traditionally taken into account, the surface and radiative ones are also considered as the physical mechanisms responsible for the plasmon damping. The second and third mechanisms are found to be essential for the surface plasmons (at small or large cluster radii, respectively) and depend very differently on the multipole mode order. The differential equations are obtained which describe the temporal evolution of every particular mode as that one of a linear oscillator excited by the given external force, and the electron energy loss spectra are calculated. The changes in spectrum shape with the impact parameter and with the electron passage time are analyzed; the first of them is found to be in good enough agreement with the data of scanning transmission electron microscopy experiments. It is shown that, in the general case, a pronounced contribution to the formation of the loss spectrum is given by the both surface and volume plasmons with low and high multipole indices. In particular, at long electron passage time, the integral (averaged over the impact parameter) loss spectrum which is calculated for the free-electron cluster model contains two main peaks: a broad peak from merging of many high-order multipole resonances of the surface plasmons and a narrower peak of nearly the same height from merged volume plasmons excited by the electrons that travel through the central region of the cluster. Comparatively complex dependences of the calculated excitation coefficients and damping constants of various plasmons on the order of the excited multipole result in wide diversity of possible types of the loss spectrum even for the same cluster material and should be taken into account in interpretation of corresponding
NASA Astrophysics Data System (ADS)
Zhang, Lisha
We present fast and robust numerical algorithms for 3-D scattering from perfectly electrical conducting (PEC) and dielectric random rough surfaces in microwave remote sensing. The Coifman wavelets or Coiflets are employed to implement Galerkin's procedure in the method of moments (MoM). Due to the high-precision one-point quadrature, the Coiflets yield fast evaluations of the most off-diagonal entries, reducing the matrix fill effort from O(N2) to O( N). The orthogonality and Riesz basis of the Coiflets generate well conditioned impedance matrix, with rapid convergence for the conjugate gradient solver. The resulting impedance matrix is further sparsified by the matrix-formed standard fast wavelet transform (SFWT). By properly selecting multiresolution levels of the total transformation matrix, the solution precision can be enhanced while matrix sparsity and memory consumption have not been noticeably sacrificed. The unified fast scattering algorithm for dielectric random rough surfaces can asymptotically reduce to the PEC case when the loss tangent grows extremely large. Numerical results demonstrate that the reduced PEC model does not suffer from ill-posed problems. Compared with previous publications and laboratory measurements, good agreement is observed.
Near midplane scintillator-based fast ion loss detector on DIII-D
Chen, X.; Heidbrink, W. W.; Fisher, R. K.; Pace, D. C.; Chavez, J. A.; Van Zeeland, M. A.; Garcia-Munoz, M.
2012-10-15
A new scintillator-based fast-ion loss detector (FILD) installed near the outer midplane of the plasma has been commissioned on DIII-D. This detector successfully measures coherent fast ion losses produced by fast-ion driven instabilities ({<=}500 kHz). Combined with the first FILD at {approx}45 Degree-Sign below the outer midplane [R. K. Fisher, et al., Rev. Sci. Instrum. 81, 10D307 (2010)], the two-detector system measures poloidal variation of losses. The phase space sensitivity of the new detector (gyroradius r{sub L}{approx}[1.5-8] cm and pitch angle {alpha}{approx}[35 Degree-Sign -85 Degree-Sign ]) is calibrated using neutral beam first orbit loss measurements. Since fast ion losses are localized poloidally, having two FILDs at different poloidal locations allows for the study of losses over a wider range of plasma shapes and types of loss orbits.
Surface modification of polypropylene based particle foams
NASA Astrophysics Data System (ADS)
Schreier, P.; Trassl, C.; Altstädt, V.
2014-05-01
This paper deals with the modification of the surface properties of expanded polypropylene (EPP). EPP is a semi-hard to soft elastic thermoplastic foam. The characteristic surface of EPP shows process-related steam nozzle imprints and gussets. Therefore EPP does not satisfy the quality requirements for visible automotive applications. In order to meet these demands, plastic surfaces are usually enhanced with functional or decorative coatings, e.g. textiles, plastic films or paint. The coating of plastics with low surface energies such as PP often leads to adhesion problems by reason of the missing polar and functional groups. This paper gives an evaluation of activation and pre-treatment methods of EPP, with the aim to identify the most suitable pre-treatment method. For this purpose five typical surface treatment methods - flame treatment, corona, fluorination, atmospheric and low-pressure plasma - were performed on EPP samples. As a comparison criterion the maximum increase in the adhesion force between a polyurethane-based coating and the modified EPP substrate was selected. Moreover the influence of the selected pre-treatment method on the increase in the total surface energy and its polar component was investigated by the drop shape analysis method. The results showed that the contact angle measurement is a suitable method to determine the polar and disperse fractions of the surface tension of EPP. Furthermore, all performed methods increased the adhesion of EPP.
Fast Fragmentation of Networks Using Module-Based Attacks
Requião da Cunha, Bruno; González-Avella, Juan Carlos; Gonçalves, Sebastián
2015-01-01
In the multidisciplinary field of Network Science, optimization of procedures for efficiently breaking complex networks is attracting much attention from a practical point of view. In this contribution, we present a module-based method to efficiently fragment complex networks. The procedure firstly identifies topological communities through which the network can be represented using a well established heuristic algorithm of community finding. Then only the nodes that participate of inter-community links are removed in descending order of their betweenness centrality. We illustrate the method by applying it to a variety of examples in the social, infrastructure, and biological fields. It is shown that the module-based approach always outperforms targeted attacks to vertices based on node degree or betweenness centrality rankings, with gains in efficiency strongly related to the modularity of the network. Remarkably, in the US power grid case, by deleting 3% of the nodes, the proposed method breaks the original network in fragments which are twenty times smaller in size than the fragments left by betweenness-based attack. PMID:26569610
Fast Fragmentation of Networks Using Module-Based Attacks.
Requião da Cunha, Bruno; González-Avella, Juan Carlos; Gonçalves, Sebastián
2015-01-01
In the multidisciplinary field of Network Science, optimization of procedures for efficiently breaking complex networks is attracting much attention from a practical point of view. In this contribution, we present a module-based method to efficiently fragment complex networks. The procedure firstly identifies topological communities through which the network can be represented using a well established heuristic algorithm of community finding. Then only the nodes that participate of inter-community links are removed in descending order of their betweenness centrality. We illustrate the method by applying it to a variety of examples in the social, infrastructure, and biological fields. It is shown that the module-based approach always outperforms targeted attacks to vertices based on node degree or betweenness centrality rankings, with gains in efficiency strongly related to the modularity of the network. Remarkably, in the US power grid case, by deleting 3% of the nodes, the proposed method breaks the original network in fragments which are twenty times smaller in size than the fragments left by betweenness-based attack. PMID:26569610
Janson, Lucas; Schmerling, Edward; Clark, Ashley; Pavone, Marco
2015-01-01
In this paper we present a novel probabilistic sampling-based motion planning algorithm called the Fast Marching Tree algorithm (FMT*). The algorithm is specifically aimed at solving complex motion planning problems in high-dimensional configuration spaces. This algorithm is proven to be asymptotically optimal and is shown to converge to an optimal solution faster than its state-of-the-art counterparts, chiefly PRM* and RRT*. The FMT* algorithm performs a “lazy” dynamic programming recursion on a predetermined number of probabilistically-drawn samples to grow a tree of paths, which moves steadily outward in cost-to-arrive space. As such, this algorithm combines features of both single-query algorithms (chiefly RRT) and multiple-query algorithms (chiefly PRM), and is reminiscent of the Fast Marching Method for the solution of Eikonal equations. As a departure from previous analysis approaches that are based on the notion of almost sure convergence, the FMT* algorithm is analyzed under the notion of convergence in probability: the extra mathematical flexibility of this approach allows for convergence rate bounds—the first in the field of optimal sampling-based motion planning. Specifically, for a certain selection of tuning parameters and configuration spaces, we obtain a convergence rate bound of order O(n−1/d+ρ), where n is the number of sampled points, d is the dimension of the configuration space, and ρ is an arbitrarily small constant. We go on to demonstrate asymptotic optimality for a number of variations on FMT*, namely when the configuration space is sampled non-uniformly, when the cost is not arc length, and when connections are made based on the number of nearest neighbors instead of a fixed connection radius. Numerical experiments over a range of dimensions and obstacle configurations confirm our the-oretical and heuristic arguments by showing that FMT*, for a given execution time, returns substantially better solutions than either PRM* or RRT
Design and initial operation of lost fast-ion probe based on thin Faraday films in CHS
Isobe, M.; Goto, K.; Toi, K.; Nagaoka, K.; Suzuki, C.; Yoshimura, Y.; Akiyama, T.; Nishimura, S.; Shimizu, A.; Nishiura, M.; Matsuoka, K.; Okamura, S.; Darrow, D. S.; CHS Team
2006-10-15
The purpose of this work is to measure lost fast ions as an ion current so as to make quantitative argument on flux of fast-ion loss possible. We have designed and constructed a lost fast-ion probe based on combination of thin Faraday films and small rectangular apertures, called FLIP, for the Compact Helical System. The current generated by escaping fast ions has been successfully measured with the FLIP in neutral-beam-heated plasmas. The FLIP detected increased flux of escaping fast ions while fast-ion-driven magnetohydrodynamics instabilities appear.
NASA Astrophysics Data System (ADS)
Lederer, S.; Winter, H.; Winter, HP.
2007-05-01
Electron loss and electron emission for grazing impact of noble gas atoms with energies in the keV domain are investigated via time-of-flight spectra recorded in coincidence with the number of emitted electrons. The data is analyzed in terms of computer simulations concerning the interaction of the fast atoms with the electron gas in the selvedge of the Al(1 1 1) surface. The interaction is approximated by binary collisions of the fast atoms with Fermi electrons of the conduction band and differential cross sections obtained for electron scattering from free atoms. For an effective number of collisions of about 50 the energy loss spectra are fairly well reproduced by our calculations. We show that for our conditions the shift of the energy spectra for the emission of an additional electron from the surface is close to the work function of the target.
A Fast Method of Deriving the Kirchhoff Formula for Moving Surfaces
NASA Technical Reports Server (NTRS)
Farassat, F.; Posey, Joe W.
2007-01-01
The Kirchhoff formula for a moving surface is very useful in many wave propagation problems, particularly in the prediction of noise from rotating machinery. Several publications in the last two decades have presented derivations of the Kirchhoff formula for moving surfaces in both time and frequency domains. Here we present a method originally developed by Farassat and Myers in time domain that is both simple and direct. It is based on generalized function theory and the useful concept of imbedding the problem in the unbounded three-dimensional space. We derive an inhomogeneous wave equation with the source terms that involve Dirac delta functions with their supports on the moving data surface. This wave equation is then solved using the simple free space Green's function of the wave equation resulting in the Kirchhoff formula. The algebraic manipulations are minimal and simple. We do not need the Green's theorem in four dimensions and there is no ambiguity in the interpretation of any terms in the final formulas. Furthermore, this method also gives the simplest derivation of the classical Kirchhoff formula which has a fairly lengthy derivation in physics and applied mathematics books. The Farassat-Myers method can be used easily in frequency domain.
Fast vision-based catheter 3D reconstruction.
Moradi Dalvand, Mohsen; Nahavandi, Saeid; Howe, Robert D
2016-07-21
Continuum robots offer better maneuverability and inherent compliance and are well-suited for surgical applications as catheters, where gentle interaction with the environment is desired. However, sensing their shape and tip position is a challenge as traditional sensors can not be employed in the way they are in rigid robotic manipulators. In this paper, a high speed vision-based shape sensing algorithm for real-time 3D reconstruction of continuum robots based on the views of two arbitrary positioned cameras is presented. The algorithm is based on the closed-form analytical solution of the reconstruction of quadratic curves in 3D space from two arbitrary perspective projections. High-speed image processing algorithms are developed for the segmentation and feature extraction from the images. The proposed algorithms are experimentally validated for accuracy by measuring the tip position, length and bending and orientation angles for known circular and elliptical catheter shaped tubes. Sensitivity analysis is also carried out to evaluate the robustness of the algorithm. Experimental results demonstrate good accuracy (maximum errors of ±0.6 mm and ±0.5 deg), performance (200 Hz), and robustness (maximum absolute error of 1.74 mm, 3.64 deg for the added noises) of the proposed high speed algorithms. PMID:27352011
Fast dictionary-based reconstruction for diffusion spectrum imaging.
Bilgic, Berkin; Chatnuntawech, Itthi; Setsompop, Kawin; Cauley, Stephen F; Yendiki, Anastasia; Wald, Lawrence L; Adalsteinsson, Elfar
2013-11-01
Diffusion spectrum imaging reveals detailed local diffusion properties at the expense of substantially long imaging times. It is possible to accelerate acquisition by undersampling in q-space, followed by image reconstruction that exploits prior knowledge on the diffusion probability density functions (pdfs). Previously proposed methods impose this prior in the form of sparsity under wavelet and total variation transforms, or under adaptive dictionaries that are trained on example datasets to maximize the sparsity of the representation. These compressed sensing (CS) methods require full-brain processing times on the order of hours using MATLAB running on a workstation. This work presents two dictionary-based reconstruction techniques that use analytical solutions, and are two orders of magnitude faster than the previously proposed dictionary-based CS approach. The first method generates a dictionary from the training data using principal component analysis (PCA), and performs the reconstruction in the PCA space. The second proposed method applies reconstruction using pseudoinverse with Tikhonov regularization with respect to a dictionary. This dictionary can either be obtained using the K-SVD algorithm, or it can simply be the training dataset of pdfs without any training. All of the proposed methods achieve reconstruction times on the order of seconds per imaging slice, and have reconstruction quality comparable to that of dictionary-based CS algorithm. PMID:23846466
Fast vision-based catheter 3D reconstruction
NASA Astrophysics Data System (ADS)
Moradi Dalvand, Mohsen; Nahavandi, Saeid; Howe, Robert D.
2016-07-01
Continuum robots offer better maneuverability and inherent compliance and are well-suited for surgical applications as catheters, where gentle interaction with the environment is desired. However, sensing their shape and tip position is a challenge as traditional sensors can not be employed in the way they are in rigid robotic manipulators. In this paper, a high speed vision-based shape sensing algorithm for real-time 3D reconstruction of continuum robots based on the views of two arbitrary positioned cameras is presented. The algorithm is based on the closed-form analytical solution of the reconstruction of quadratic curves in 3D space from two arbitrary perspective projections. High-speed image processing algorithms are developed for the segmentation and feature extraction from the images. The proposed algorithms are experimentally validated for accuracy by measuring the tip position, length and bending and orientation angles for known circular and elliptical catheter shaped tubes. Sensitivity analysis is also carried out to evaluate the robustness of the algorithm. Experimental results demonstrate good accuracy (maximum errors of ±0.6 mm and ±0.5 deg), performance (200 Hz), and robustness (maximum absolute error of 1.74 mm, 3.64 deg for the added noises) of the proposed high speed algorithms.
Kasherininov, P. G. Tomasov, A. A.
2008-11-15
Fast optical recording media based on semiconductor nanostructures (CdTe, GaAs) for image recording and processing with a speed to 10{sup 6} cycle/s (which exceeds the speed of known recording media based on metal-insulator-semiconductor-(liquid crystal) (MIS-LC) structures by two to three orders of magnitude), a photosensitivity of 10{sup -2}V/cm{sup 2}, and a spatial resolution of 5-10 (line pairs)/mm are developed. Operating principles of nanostructures as fast optical recording media and methods for reading images recorded in such media are described. Fast optical processors for recording images in incoherent light based on CdTe crystal nanostructures are implemented. The possibility of their application to fabricate image correlators is shown.
GPGPU-based surface inspection from structured white light
NASA Astrophysics Data System (ADS)
Bordallo López, Miguel; Niemelä, Karri; Silvén, Olli
2012-03-01
Automatic surface inspection has been used in the industry to reliably detect all kinds of surface defects and to measure the overall quality of a produced piece. Structured light systems (SLS) are based on the reconstruction of the 3D information of a selected area by projecting several phase-shifted sinusoidal patterns onto a surface. Due to the high speed of production lines, surface inspection systems require extremely fast imaging methods and lots of computational power. The cost of such systems can easily become considerable. The use of standard PCs and Graphics Processing Units (GPUs) for data processing tasks facilitates the construction of cost-effective systems. We present a parallel implementation of the required algorithms written in C with CUDA extensions. In our contribution, we describe the challenges of the design on a GPU, compared with a traditional CPU implementation. We provide a qualitative evaluation of the results and a comparison of the algorithm speed performance on several platforms. The system is able to compute two megapixels height maps with 100 micrometers spatial resolution in less than 200ms on a mid-budget laptop. Our GPU implementation runs about ten times faster than our previous C code implementation.
NASA Astrophysics Data System (ADS)
Gao, Wei; Tano, Makoto; Araki, Takeshi; Kiyono, Satoshi
This paper describes a diamond turning fabrication system for a sinusoidal grid surface. The wavelength and amplitude of the sinusoidal wave in each direction are 100µm and 100nm, respectively. The fabrication system, which is based on a fast-tool-servo (FTS), has the ability to generate the angle grid surface over an area of φ 150mm. This paper focuses on the improvement of the local fabrication accuracy. The areas considered are each approximately 1 × 1mm, and can be imaged by an interference microscope. Specific fabrication errors of the manufacturing process, caused by the round nose geometry of the diamond cutting tool and the data digitization, are successfully identified by Discrete Fourier Transform of the microscope images. Compensation processes are carried out to reduce the errors. As a result, the fabrication errors in local areas of the angle grid surface are reduced by 1/10.
Fast content-based image retrieval using dynamic cluster tree
NASA Astrophysics Data System (ADS)
Chen, Jinyan; Sun, Jizhou; Wu, Rongteng; Zhang, Yaping
2008-03-01
A novel content-based image retrieval data structure is developed in present work. It can improve the searching efficiency significantly. All images are organized into a tree, in which every node is comprised of images with similar features. Images in a children node have more similarity (less variance) within themselves in relative to its parent. It means that every node is a cluster and each of its children nodes is a sub-cluster. Information contained in a node includes not only the number of images, but also the center and the variance of these images. Upon the addition of new images, the tree structure is capable of dynamically changing to ensure the minimization of total variance of the tree. Subsequently, a heuristic method has been designed to retrieve the information from this tree. Given a sample image, the probability of a tree node that contains the similar images is computed using the center of the node and its variance. If the probability is higher than a certain threshold, this node will be recursively checked to locate the similar images. So will its children nodes if their probability is also higher than that threshold. If no sufficient similar images were founded, a reduced threshold value would be adopted to initiate a new seeking from the root node. The search terminates when it found sufficient similar images or the threshold value is too low to give meaningful sense. Experiments have shown that the proposed dynamic cluster tree is able to improve the searching efficiency notably.
Fast magneto-optic switch based on nanosecond pulses
NASA Astrophysics Data System (ADS)
Weng, Zi-Hua; Ruan, Jian-Jian; Lin, Shao-Han; Chen, Zhi-Min
2011-09-01
The paper studies an all fiber high-speed magneto-optic switch which includes an optical route, a nanosecond pulse generator, and a magnetic field module in order to reduce the switching time of the optical switch in the all optical network. A compact nanosecond pulse generator can be designed based on the special character of the avalanche transistor. The output current pulse of the nanosecond pulse generator is less than 5 ns, while the pulse amplitude is more than 100 V and the pulse width is about 10 to 20 ns, which is able to drive a high-speed magnetic field. A solenoid is used as the magnetic field module, and a bismuth-substituted rare-earth iron garnet single crystal is chosen as the Faraday rotator. By changing the direction of current in the solenoid quickly, the magnetization of the magneto-optic material is reversed, and the optical beam can be rapidly switched. The experimental results indicate that the switching time of the device is about 100 to 400 ns, which can partially meet the demand of the rapid development of the all optical network.
Zarzycki, Paweł K; Slączka, Magdalena M; Włodarczyk, Elżbieta; Baran, Michał J
2013-01-01
In this work we demonstrated analytical capability of micro-planar (micro-TLC) technique comprising one and two-dimensional (2D) separation modes to generate fingerprints of environmental samples originated from sewage and ecosystems waters. We showed that elaborated separation and detection protocols are complementary to previously invented HPLC method based on temperature-dependent inclusion chromatography and UV-DAD detection. Presented 1D and 2D micro-TLC chromatograms of SPE (solid-phase extraction) extracts were optimized for fast and low-cost screening of water samples collected from lakes and rivers located in the area of Middle Pomerania in northern part of Poland. Moreover, we studied highly organic compounds loaded in the treated and untreated sewage waters obtained from municipal wastewater treatment plant "Jamno" near Koszalin City (Poland). Analyzed environmental samples contained number of substances characterized by polarity range from estetrol to progesterone as well as chlorophyll-related dyes previously isolated and pre-purified by simple SPE protocol involving C18 cartridges. Optimization of micro-TLC separation and quantification protocols of such samples were discussed from the practical point of view using simple separation efficiency criteria including total peaks number, log(product ΔhR F), signal intensity and peak asymmetry. Outcomes of the presented analytical approach, especially using detection involving direct fluorescence (UV366/Vis) and phosphomolybdic acid (PMA) visualization are compared with UV-DAD HPLC-generated data reported previously. Chemometric investigation based on principal components analysis revealed that SPE extracts separated by micro-TLC and detected under fluorescence and PMA visualization modes can be used for robust sample fingerprinting even after long-term storage of the extracts (up to 4 years) at subambient temperature (-20 °C). Such approach allows characterization of wide range of sample components that
Lelli, Moreno; Gajan, David; Lesage, Anne; Caporini, Marc A; Vitzthum, Veronika; Miéville, Pascal; Héroguel, Florent; Rascón, Fernando; Roussey, Arthur; Thieuleux, Chloé; Boualleg, Malika; Veyre, Laurent; Bodenhausen, Geoffrey; Copéret, Christophe; Emsley, Lyndon
2011-02-23
We demonstrate fast characterization of the distribution of surface bonding modes and interactions in a series of functionalized materials via surface-enhanced nuclear magnetic resonance spectroscopy using dynamic nuclear polarization (DNP). Surface-enhanced silicon-29 DNP NMR spectra were obtained by using incipient wetness impregnation of the sample with a solution containing a polarizing radical (TOTAPOL). We identify and compare the bonding topology of functional groups in materials obtained via a sol-gel process and in materials prepared by post-grafting reactions. Furthermore, the remarkable gain in time provided by surface-enhanced silicon-29 DNP NMR spectroscopy (typically on the order of a factor 400) allows the facile acquisition of two-dimensional correlation spectra. PMID:21280606
Fast fault-tolerant decoder for qubit and qudit surface codes
NASA Astrophysics Data System (ADS)
Watson, Fern H. E.; Anwar, Hussain; Browne, Dan E.
2015-09-01
The surface code is one of the most promising candidates for combating errors in large scale fault-tolerant quantum computation. A fault-tolerant decoder is a vital part of the error correction process—it is the algorithm which computes the operations needed to correct or compensate for the errors according to the measured syndrome, even when the measurement itself is error prone. Previously decoders based on minimum-weight perfect matching have been studied. However, these are not immediately generalizable from qubit to qudit codes. In this work, we develop a fault-tolerant decoder for the surface code, capable of efficient operation for qubits and qudits of any dimension, generalizing the decoder first introduced by Bravyi and Haah [Phys. Rev. Lett. 111, 200501 (2013), 10.1103/PhysRevLett.111.200501]. We study its performance when both the physical qudits and the syndromes measurements are subject to generalized uncorrelated bit-flip noise (and the higher-dimensional equivalent). We show that, with appropriate enhancements to the decoder and a high enough qudit dimension, a threshold at an error rate of more than 8 % can be achieved.
A Fast and Robust Poisson-Boltzmann Solver Based on Adaptive Cartesian Grids.
Boschitsch, Alexander H; Fenley, Marcia O
2011-05-10
An adaptive Cartesian grid (ACG) concept is presented for the fast and robust numerical solution of the 3D Poisson-Boltzmann Equation (PBE) governing the electrostatic interactions of large-scale biomolecules and highly charged multi-biomolecular assemblies such as ribosomes and viruses. The ACG offers numerous advantages over competing grid topologies such as regular 3D lattices and unstructured grids. For very large biological molecules and multi-biomolecule assemblies, the total number of grid-points is several orders of magnitude less than that required in a conventional lattice grid used in the current PBE solvers thus allowing the end user to obtain accurate and stable nonlinear PBE solutions on a desktop computer. Compared to tetrahedral-based unstructured grids, ACG offers a simpler hierarchical grid structure, which is naturally suited to multigrid, relieves indirect addressing requirements and uses fewer neighboring nodes in the finite difference stencils. Construction of the ACG and determination of the dielectric/ionic maps are straightforward, fast and require minimal user intervention. Charge singularities are eliminated by reformulating the problem to produce the reaction field potential in the molecular interior and the total electrostatic potential in the exterior ionic solvent region. This approach minimizes grid-dependency and alleviates the need for fine grid spacing near atomic charge sites. The technical portion of this paper contains three parts. First, the ACG and its construction for general biomolecular geometries are described. Next, a discrete approximation to the PBE upon this mesh is derived. Finally, the overall solution procedure and multigrid implementation are summarized. Results obtained with the ACG-based PBE solver are presented for: (i) a low dielectric spherical cavity, containing interior point charges, embedded in a high dielectric ionic solvent - analytical solutions are available for this case, thus allowing rigorous
Fast neutron mutants database and web displays at SoyBase
Technology Transfer Automated Retrieval System (TEKTRAN)
SoyBase, the USDA-ARS soybean genetics and genomics database, has been expanded to include data for the fast neutron mutants produced by Bolon, Vance, et al. In addition to the expected text and sequence homology searches and visualization of the indels in the context of the genome sequence viewer, ...
Common and Specific Factors Approaches to Home-Based Treatment: I-FAST and MST
ERIC Educational Resources Information Center
Lee, Mo Yee; Greene, Gilbert J.; Fraser, J. Scott; Edwards, Shivani G.; Grove, David; Solovey, Andrew D.; Scott, Pamela
2013-01-01
Objectives: This study examined the treatment outcomes of integrated families and systems treatment (I-FAST), a moderated common factors approach, in reference to multisystemic therapy (MST), an established specific factor approach, for treating at risk children and adolescents and their families in an intensive community-based setting. Method:…
Fast-moving target tracking system based on CMOS image sensor
NASA Astrophysics Data System (ADS)
Miao, Zhun; Jiang, Jie; Zhang, Guangjun
2008-10-01
This paper introduces a fast-moving target tracking system based on CMOS (Complementary Metal-Oxygen Semiconductor) image sensor. A pipeline parallel architecture of region segmentation and first order moment algorithms on FPGA (Field Programmable Gate Array) platform enables driving the high frame rate CMOS image sensor and processing real-time images at the same time, extracting coordinates of the bright target spots in the high-rate consecutive image frames. In the end of this paper, an experiment proved that this system performs well in tracking fast-moving target in satisfying demand of speed and accuracy.
Piekarz, H.; Hays, S.; Huang, Y.; Shiltsev, V.; /Fermilab
2008-06-01
Fast-cycling synchrotrons are key instruments for accelerator based nuclear and high-energy physics programs. We explore a possibility to construct fast-cycling synchrotrons by using super-ferric, {approx}2 Tesla B-field dipole magnets powered with a superconducting transmission line. We outline both the low temperature (LTS) and the high temperature (HTS) superconductor design options and consider dynamic power losses for an accelerator with operation cycle of 0.5 Hz. We also briefly outline possible power supply system for such accelerator, and discuss the quench protection system for the magnet string powered by a transmission line conductor.
NASA Astrophysics Data System (ADS)
Yukawa, Masahiro; Murakoshi, Noriaki; Yamada, Isao
2006-12-01
In stereophonic acoustic echo cancellation (SAEC) problem, fast and accurate tracking of echo path is strongly required for stable echo cancellation. In this paper, we propose a class of efficient fast SAEC schemes with linear computational complexity (with respect to filter length). The proposed schemes are based on pairwise optimal weight realization (POWER) technique, thus realizing a "best" strategy (in the sense of pairwise and worst-case optimization) to use multiple-state information obtained by preprocessing. Numerical examples demonstrate that the proposed schemes significantly improve the convergence behavior compared with conventional methods in terms of system mismatch as well as echo return loss enhancement (ERLE).
Ultra Fast X-ray Streak Camera for TIM Based Platforms
Marley, E; Shepherd, R; Fulkerson, E S; James, L; Emig, J; Norman, D
2012-05-02
Ultra fast x-ray streak cameras are a staple for time resolved x-ray measurements. There is a need for a ten inch manipulator (TIM) based streak camera that can be fielded in a newer large scale laser facility. The LLNL ultra fast streak camera's drive electronics have been upgraded and redesigned to fit inside a TIM tube. The camera also has a new user interface that allows for remote control and data acquisition. The system has been outfitted with a new sensor package that gives the user more operational awareness and control.
Detection of fast neutrons using detectors based on semi-insulating GaAs
NASA Astrophysics Data System (ADS)
Zat'ko, B.; Sedlačková, K.; Dubecký, F.; Boháček, P.; Sekáčová, M.; Nečas, V.
2011-12-01
Detectors with AuZn square Schottky contact of the area of 2.5 × 2.5 mm2 were fabricated. On the back side, the whole area AuGeNi eutectic ohmic contact was evaporated. The thickness of the base material (semi-insulating GaAs) was 220 μm. The connection of 4 detectors in parallel was tested to get the detection area of 25 mm2. The 239Pu-Be fast neutron source with energies between 0.5 and 12 MeV was used in experimental measurements. We have investigated the optimal thickness of HDPE (high-density polyethylene) conversion layer for fast neutron detection. The spectra of the neutrons were measured by detectors covered by HDPE converter of different thicknesses. The fast neutron detection efficiency proved experimentally was compared with results from simulations performed by MCNPX (Monte Carlo N-Particle eXtended) code.
Fast atom diffraction from a β-Ga{sub 2}O{sub 3}(100) surface
Busch, M.; Meyer, E.; Winter, H.; Irmscher, K.; Galazka, Z.; Gärtner, K.
2014-08-04
Fast H, He atoms, and H{sub 2} molecules with projectile energies ranging from 200 eV up to 3 keV were scattered under a grazing angle of incidence from a clean and flat β-Ga{sub 2}O{sub 3}(100) surface. The bulk single crystal was grown by the Czochralski method and prepared via annealing under ultra-high vacuum conditions. For scattering along low-index directions, we observed defined diffraction patterns in the angular distributions for scattered projectiles. From the analysis of diffraction patterns, we derive the surface unit cell in good accord with the parameters b and c for the lattice of the bulk crystal and derive information on the termination of the surface.
Fast and accurate circle detection using gradient-direction-based segmentation.
Wu, Jianping; Chen, Ke; Gao, Xiaohui
2013-06-01
We present what is to our knowledge the first-ever fitting-based circle detection algorithm, namely, the fast and accurate circle (FACILE) detection algorithm, based on gradient-direction-based edge clustering and direct least square fitting. Edges are segmented into sections based on gradient directions, and each section is validated separately; valid arcs are then fitted and further merged to extract more accurate circle information. We implemented the algorithm with the C++ language and compared it with four other algorithms. Testing on simulated data showed FACILE was far superior to the randomized Hough transform, standard Hough transform, and fast circle detection using gradient pair vectors with regard to processing speed and detection reliability. Testing on publicly available standard datasets showed FACILE outperformed robust and precise circular detection, a state-of-art arc detection method, by 35% with regard to recognition rate and is also a significant improvement over the latter in processing speed. PMID:24323106
NASA Technical Reports Server (NTRS)
Powers, E. J.; Kim, Y. C.; Hong, J. Y.; Roth, J. R.; Krawczonek, W. M.
1978-01-01
A diagnostic, based on fast Fourier-transform spectral analysis techniques, that provides experimental insight into the relationship between the experimentally observable spectral characteristics of the fluctuations and the fluctuation-induced plasma transport is described. The model upon which the diagnostic technique is based and its experimental implementation is discussed. Some characteristic results obtained during the course of an experimental study of fluctuation-induced transport in the electric field dominated NASA Lewis bumpy torus plasma are presented.
Fast computer simulation of reconstructed image from rainbow hologram based on GPU
NASA Astrophysics Data System (ADS)
Shuming, Jiao; Yoshikawa, Hiroshi
2015-10-01
A fast computer simulation solution for rainbow hologram reconstruction based on GPU is proposed. In the commonly used segment Fourier transform method for rainbow hologram reconstruction, the computation of 2D Fourier transform on each hologram segment is very time consuming. GPU-based parallel computing can be applied to improve the computing speed. Compared with CPU computing, simulation results indicate that our proposed GPU computing can effectively reduce the computation time by as much as eight times.
A surface ice module for wind turbine dynamic response simulation using FAST
Yu, Bingbin; Karr, Dale G.; Song, Huimin; Sirnivas, Senu
2016-06-03
It is a fact that developing offshore wind energy has become more and more serious worldwide in recent years. Many of the promising offshore wind farm locations are in cold regions that may have ice cover during wintertime. The challenge of possible ice loads on offshore wind turbines raises the demand of modeling capacity of dynamic wind turbine response under the joint action of ice, wind, wave, and current. The simulation software FAST is an open source computer-aided engineering (CAE) package maintained by the National Renewable Energy Laboratory. In this paper, a new module of FAST for assessing the dynamicmore » response of offshore wind turbines subjected to ice forcing is presented. In the ice module, several models are presented which involve both prescribed forcing and coupled response. For conditions in which the ice forcing is essentially decoupled from the structural response, ice forces are established from existing models for brittle and ductile ice failure. For conditions in which the ice failure and the structural response are coupled, such as lock-in conditions, a rate-dependent ice model is described, which is developed in conjunction with a new modularization framework for FAST. In this paper, analytical ice mechanics models are presented that incorporate ice floe forcing, deformation, and failure. For lower speeds, forces slowly build until the ice strength is reached and ice fails resulting in a quasi-static condition. For intermediate speeds, the ice failure can be coupled with the structural response and resulting in coinciding periods of the ice failure and the structural response. A third regime occurs at high speeds of encounter in which brittle fracturing of the ice feature occurs in a random pattern, which results in a random vibration excitation of the structure. An example wind turbine response is simulated under ice loading of each of the presented models. This module adds to FAST the capabilities for analyzing the response of wind
Gruslys, Audrunas; Acosta-Cabronero, Julio; Nestor, Peter J; Williams, Guy B; Ansorge, Richard E
2014-11-01
Recently inexpensive graphical processing units (GPUs) have become established as a viable alternative to traditional CPUs for many medical image processing applications. GPUs offer the potential of very significant improvements in performance at low cost and with low power consumption. One way in which GPU programs differ from traditional CPU programs is that increasingly elaborate calculations per voxel may not impact of the overall processing time because memory accesses can dominate execution time. This paper presents a new GPU based elastic image registration program named Ezys. The Ezys image registration algorithm belongs to the wide class of diffeomorphic demons but uses surface preserving image smoothing and regularization filters designed for a GPU that would be computationally expensive on a CPU. We describe the methods used in Ezys and present results from two important neuroscience applications. Firstly inter-subject registration for transfer of anatomical labels and secondly longitudinal intra-subject registration to quantify atrophy in individual subjects. Both experiments showed that Ezys registration compares favorably with other popular elastic image registration programs. We believe Ezys is a useful tool for neuroscience and other applications, and also demonstrates the value of developing of novel image processing filters specifically designed for GPUs. PMID:24968094
Fast-Response Calmodulin-Based Fluorescent Indicators Reveal Rapid Intracellular Calcium Dynamics
Helassa, Nordine; Zhang, Xiao-hua; Conte, Ianina; Scaringi, John; Esposito, Elric; Bradley, Jonathan; Carter, Thomas; Ogden, David; Morad, Martin; Török, Katalin
2015-01-01
Faithful reporting of temporal patterns of intracellular Ca2+ dynamics requires the working range of indicators to match the signals. Current genetically encoded calmodulin-based fluorescent indicators are likely to distort fast Ca2+ signals by apparent saturation and integration due to their limiting fluorescence rise and decay kinetics. A series of probes was engineered with a range of Ca2+ affinities and accelerated kinetics by weakening the Ca2+-calmodulin-peptide interactions. At 37 °C, the GCaMP3-derived probe termed GCaMP3fast is 40-fold faster than GCaMP3 with Ca2+ decay and rise times, t1/2, of 3.3 ms and 0.9 ms, respectively, making it the fastest to-date. GCaMP3fast revealed discreet transients with significantly faster Ca2+ dynamics in neonatal cardiac myocytes than GCaMP6f. With 5-fold increased two-photon fluorescence cross-section for Ca2+ at 940 nm, GCaMP3fast is suitable for deep tissue studies. The green fluorescent protein serves as a reporter providing important novel insights into the kinetic mechanism of target recognition by calmodulin. Our strategy to match the probe to the signal by tuning the affinity and hence the Ca2+ kinetics of the indicator is applicable to the emerging new generations of calmodulin-based probes. PMID:26527405
Scintillator-based diagnostic for fast ion loss measurements on DIII-D.
Fisher, R K; Pace, D C; García-Muñoz, M; Heidbrink, W W; Muscatello, C M; Van Zeeland, M A; Zhu, Y B
2010-10-01
A new scintillator-based fast ion loss detector has been installed on DIII-D with the time response (>100 kHz) needed to study energetic ion losses induced by Alfvén eigenmodes and other MHD instabilities. Based on the design used on ASDEX Upgrade, the diagnostic measures the pitch angle and gyroradius of ion losses based on the position of the ions striking the two-dimensional scintillator. For fast time response measurements, a beam splitter and fiberoptics couple a portion of the scintillator light to a photomultiplier. Reverse orbit following techniques trace the lost ions to their possible origin within the plasma. Initial DIII-D results showing prompt losses and energetic ion loss due to MHD instabilities are discussed. PMID:21033833
A Fast Na+/Ca2+-Based Action Potential in a Marine Diatom
Taylor, Alison R.
2009-01-01
Background Electrical impulses in animals play essential roles in co-ordinating an array of physiological functions including movement, secretion, environmental sensing and development. Underpinning many of these electrical signals is a fast Na+-based action potential that has been fully characterised only in cells associated with the neuromuscular systems of multicellular animals. Such rapid action potentials are thought to have evolved with the first metazoans, with cnidarians being the earliest representatives. The present study demonstrates that a unicellular protist, the marine diatom Odontella sinensis, can also generate a fast Na+/Ca2+ based action potential that has remarkably similar biophysical and pharmacological properties to invertebrates and vertebrate cardiac and skeletal muscle cells. Methodology/Principal Findings The kinetic, ionic and pharmacological properties of the rapid diatom action potential were examined using single electrode current and voltage clamp techniques. Overall, the characteristics of the fast diatom currents most closely resemble those of vertebrate and invertebrate muscle Na+/Ca2+ currents. Conclusions/Significance This is the first demonstration of voltage-activated Na+ channels and the capacity to generate fast Na+-based action potentials in a unicellular photosynthetic organism. The biophysical and pharmacological characteristics together with the presence of a voltage activated Na+/Ca2+ channel homologue in the recently sequenced genome of the diatom Thalassiosira pseudonana, provides direct evidence supporting the hypothesis that this rapid signalling mechanism arose in ancestral unicellular eukaryotes and has been retained in at least two phylogenetically distant lineages of eukaryotes; opisthokonts and the stramenopiles. The functional role of the fast animal-like action potential in diatoms remains to be elucidated but is likely involved in rapid environmental sensing of these widespread and successful marine protists
Surface Functionalization of Graphene-based Materials
NASA Astrophysics Data System (ADS)
Mathkar, Akshay
Graphene-based materials have generated tremendous interest in the past decade. Manipulating their characteristics using wet-chemistry methods holds distinctive value, as it provides a means towards scaling up, while not being limited by yield. The majority of this thesis focuses on the surface functionalization of graphene oxide (GO), which has drawn tremendous attention as a tunable precursor due to its readily chemically manipulable surface and richly functionalized basal plane. Firstly, a room-temperature based method is presented to reduce GO stepwise, with each organic moiety being removed sequentially. Characterization confirms the carbonyl group to be reduced first, while the tertiary alcohol is reduced last, as the optical gap decrease from 3.5 eV down to 1 eV. This provides greater control over GO, which is an inhomogeneous system, and is the first study to elucidate the order of removal of each functional group. In addition to organically manipulating GO, this thesis also reports a chemical methodology to inorganically functionalize GO and tune its wetting characteristics. A chemical method to covalently attach fluorine atoms in the form of tertiary alkyl fluorides is reported, and confirmed by MAS 13C NMR, as two forms of fluorinated graphene oxide (FGO) with varying C/F and C/O ratios are synthesized. Introducing C-F bonds decreases the overall surface free energy, which drastically reduces GO's wetting behavior, especially in its highly fluorinated form. Ease of solution processing leads to development of sprayable inks that are deposited on a range of porous and nonporous surfaces to impart amphiphobicity. This is the first report that tunes the wetting characteristics of GO. Lastly as a part of a collaboration with ConocoPhillips, another class of carbon nanomaterials - carbon nanotubes (CNTs), have been inorganically functionalized to repel 30 wt% MEA, a critical solvent in CO 2 recovery. In addition to improving the solution processability of CNTs
Heikkinen, J.A.; Pavlov, I.P.
1996-02-01
The fairly large poloidal directivity of a radiated fast wave spectrum related to the wave polarization relative to the ion gyration can be further enhanced by the nonperpendicular angle between the antenna current strap and the magnetic field. The latter is shown to be responsible also for the asymmetry in the parallel wavenumber spectrum of an unphased antenna, and can lead to deviations of order {le}30{percent} in the corresponding spectrum of a phased antenna array. The consequences of the observed effects to the antenna performance in the current drive applications as well as in excitation of poloidally asymmetric spectra are discussed. {copyright} {ital 1996 American Institute of Physics.}
Strmcnik, D.; Hodnik, N.; Hocevar, S. B.; van der Vliet, D.; Zorko, M.; Stamenovic, V. R.; Pihlar, B.; Markovic, N. M.; Materials Science Division; National Inst. of Chemistry; Univ. Ljubljana
2010-02-18
A carbon fiber microelectrode (CFME) was used for characterization of the nanoparticle catalysts as an alternative to the well-established rotating disk electrode (RDE) method. We found that the novel CFME method yielded comparable results to the RDE method when investigating the adsorption/desorption processes as well the specific activity for reactions such as the oxygen reduction reaction. Its major advantage over the RDE method is a fast sample preparation and rapid measurement, reducing significantly the time of a single sample characterization from 2-3 h to a favorable 5-10 min.
NASA Astrophysics Data System (ADS)
Fuchs, Alexander; Pengel, Steffen; Bergmeier, Jan; Kahrs, Lüder A.; Ortmaier, Tobias
2015-07-01
Laser surgery is an established clinical procedure in dental applications, soft tissue ablation, and ophthalmology. The presented experimental set-up for closed-loop control of laser bone ablation addresses a feedback system and enables safe ablation towards anatomical structures that usually would have high risk of damage. This study is based on combined working volumes of optical coherence tomography (OCT) and Er:YAG cutting laser. High level of automation in fast image data processing and tissue treatment enables reproducible results and shortens the time in the operating room. For registration of the two coordinate systems a cross-like incision is ablated with the Er:YAG laser and segmented with OCT in three distances. The resulting Er:YAG coordinate system is reconstructed. A parameter list defines multiple sets of laser parameters including discrete and specific ablation rates as ablation model. The control algorithm uses this model to plan corrective laser paths for each set of laser parameters and dynamically adapts the distance of the laser focus. With this iterative control cycle consisting of image processing, path planning, ablation, and moistening of tissue the target geometry and desired depth are approximated until no further corrective laser paths can be set. The achieved depth stays within the tolerances of the parameter set with the smallest ablation rate. Specimen trials with fresh porcine bone have been conducted to prove the functionality of the developed concept. Flat bottom surfaces and sharp edges of the outline without visual signs of thermal damage verify the feasibility of automated, OCT controlled laser bone ablation with minimal process time.
Hand gesture recognition based on surface electromyography.
Samadani, Ali-Akbar; Kulic, Dana
2014-01-01
Human hands are the most dexterous of human limbs and hand gestures play an important role in non-verbal communication. Underlying electromyograms associated with hand gestures provide a wealth of information based on which varying hand gestures can be recognized. This paper develops an inter-individual hand gesture recognition model based on Hidden Markov models that receives surface electromyography (sEMG) signals as inputs and predicts a corresponding hand gesture. The developed recognition model is tested with a dataset of 10 various hand gestures performed by 25 subjects in a leave-one-subject-out cross validation and an inter-individual recognition rate of 79% was achieved. The promising recognition rate demonstrates the efficacy of the proposed approach for discriminating between gesture-specific sEMG signals and could inform the design of sEMG-controlled prostheses and assistive devices. PMID:25570917
Market-based control of active surfaces
NASA Astrophysics Data System (ADS)
Berlin, Andrew A.; Hogg, Tad; Jackson, Warren B.
1998-12-01
This paper describes a market-based approach to controlling a smart matter-based object transport system, in which an array of distributed air jets applies forces to levitate and control the motion of a planar object. In the smart matter regime, the effects of spatial and temporal variation of operating parameters among a multiplicity of sensor, actuators, and controllers make it desirable for a control strategy to exhibit a minimal dependence on system models, and to be able to arbitrate among conflicting goals. A market-based strategy is introduced that aggregates the control requirements of multiple relatively simple local controllers, each of which seeks to optimize the performance of the system within a limited spatial and temporal range. These local controllers act as the market's consumers, and two sets of distributed air jets act as the producers. Experiments are performed comparing the performance of the market-based strategy to a near-optimal model-derived benchmark, as well as to a hand-tuned PD controller. Results indicate that even though the local controllers in the market are not based on a detailed model of the system dynamics, the market is able to effectively approximate the performance of the model-based benchmark. In certain specialized cases, such as tracking a step trajectory, the performance of the market surpasses the performance of the model-based benchmark by balancing the needs of conflicting control goals. A brief overview of the active surface smart matter prototype being developed at Xerox PARC that is the motivation behind this work is also presented.
Schüller, A; Winter, H
2008-03-01
Fast atoms with keV energies are scattered under a grazing angle of incidence from a clean and flat LiF(001) surface. For scattering along low index azimuthal directions within the surface plane ("axial surface channeling") we observe pronounced peak structures in the angular distributions for scattered projectiles that are attributed to "supernumerary rainbows." This phenomenon can be understood in the framework of quantum scattering only and is observed here up to projectile energies of 20 keV. We demonstrate that the interaction potential and, in particular, its corrugation for fast atomic projectiles at surfaces can be derived with a high accuracy. PMID:18352749
Localized Surface Deformation Monitoring Applications using Ground Based Interferometric Radar
NASA Astrophysics Data System (ADS)
Legarsky, J. J.; Gomez, F. G.; Rosenblad, B.; Loehr, E.; Gurnani, G.; Fallert, Z.; Gilliam, J.
2014-12-01
Ground based interferometric radar (GBIR) measurements of localized surface deformation may be sought-after in various geosciences applications. The University of Missouri (MU) GBIR system is highly portable; moreover, it can be removed and re-positioned at the same point with geodetic-grade precision for long-term and repeat surveys. Initial quick-look imagery at C-band and Ku-band may be viewed in near real-time at the study site. Polarimetric calibration, radiometric calibration, and time-series analysis may further enhance the imagery. The MU GBIR has demonstrated millimeter and better sensitivity to localized surface deformation. Using real-aperture imaging and precision rotation, the MU GBIR acquires data by deploying three antennas that may be mounted parallel to one another on a 1-meter high tower. During typical operation, images are acquired by azimuthally rotating the GBIR antennas about its vertical axis. During deployment, the fast imaging capabilities allow a data collect scan in about 20 seconds for a 180 degree field of view. During the 2013 and 2014 field seasons using the MU GBIR, several locations were studied. The study sites include a rockfall experiment in Colorado, several dams in Kansas and Missouri, and a rock glacier in southern Colorado. Study results and additional progress will be presented. These projects are sponsored by grants from the University of Missouri Research Board and the National Science Foundation.
A simple device for sub-aperture stitching of fast convex surfaces
NASA Astrophysics Data System (ADS)
Aguirre-Aguirre, D.; Izazaga-Pérez, R.; Villalobos-Mendoza, B.; Carrasco-Licea, E.; Granados-Agustin, F. S.; Percino-Zacarías, M. E.; Salazar-Morales, M. F.; Cruz-Zavala, E.
2015-10-01
In this work, we show a simple device that helps in the use of the sub-aperture stitching method for testing convex surfaces with large diameter and a small f/#. This device was designed at INAOE's Optical work shop to solve the problem that exists when a Newton Interferometer and the sub-aperture stitching method are used. It is well known that if the f/# of a surface is small, the slopes over the surface increases rapidly and this is critical for points far from the vertex. Therefore, if we use a reference master in the Newton interferometer to test a convex surface with a large diameter and an area far from the vertex, the master tends to slide causing scratches over the surface under test. To solve this problem, a device for mounting the surface under test with two freedom degrees, a rotating axis and a lever to tilt the surface, was designed. As result, the optical axis of the master can be placed in vertical position avoiding undesired movements of the master and making the sub-aperture stitching easier. We describe the proposed design and the results obtained with this device.
NASA Astrophysics Data System (ADS)
Schraknepper, H.; De Souza, R. A.
2016-02-01
Two different physical processes, (i) fast grain-boundary diffusion (FGBD) of oxygen and (ii) hindered oxygen diffusion in a surface space-charge layer, yield oxygen isotope diffusion profiles in a similar form. Two features are observed, with the short, sharp profile close to the surface being followed by a longer, shallower profile. In this study, we develop a procedure for deciding which of the two descriptions applies to experimentally measured profiles. Specifically, we solve Fick's second law, using finite-element simulations, to obtain oxygen isotope diffusion profiles for the two cases. Each set of profiles is then analysed in terms of the competing description. In this manner, we derive falsifiable conditions that allow physical processes to be assigned unambiguously to the two features of such isotope profiles. Applying these conditions to experimental profiles for SrTiO3 single crystals published in the literature, we find that FGBD is an invalid model for describing the diffusion processes.
NASA Astrophysics Data System (ADS)
Eaton, G. H.; Clarke-Gayther, M. A.; Scott, C. A.; Uden, C. N.; Williams, W. G.
1994-03-01
The ISIS pulsed muon facility at RAL has been upgraded by the inclusion of a fast E-field kicker which simultaneously divides and distributes the muon pulses at surface momentum to the three experimental areas at a repetition rate of 50 Hz. This upgraded facility has been successfully commissioned in conjunction with a new μSR spectrometer. It has been shown that this new spectrometer can operate as expected with a figure of merit for μSR experiments similar to that of the original spectrometer, in spite of receiving only half of the relative muon intensity. This twofold increase in experimental capability will be further increased in the near future by the incorporation of experimental equipment in the third beamline. Such a facility will be capable of satisfying a European wide demand for μSR research with pulsed surface muons.
NASA Astrophysics Data System (ADS)
Fu, S.
2015-12-01
There are many energetic electrons in the radiation belt of Earth. When the geomagnetic activity becomes stronger, the energy flux of energetic electrons will increase to more than ten times in the outer radiation belt, therefore it is very important to study how the energetic electrons generate and the lifetime of energetic electrons for space weather research. The acceleration of electrons in radiation belt is mainly depending on wave-particle interaction: the whistler mode chorus is the main driver for local acceleration mechanism, which could accelerate and loss energetic electrons; the geomagnetic pulsation ULF wave will cause energetic electron inward radial diffusion which will charge the electrons; recently observation results show us that the fast magnetosonic waves may also accelerate energetic electrons. For the reason that we try to study the wave-particle interaction between fast Magnetosonic and energetic electrons based on numerical simulation, in which the most important past is at the storm time the combination of highly warped Earth magnetic field and fast magnetosonic wave field will be applied for the electromagnetic environment of moving test particles. The energy, pitch angle and cross diffusion coefficients will be calculated respectively in this simulation to study how the electrons receive energy from fast magnetosonic wave. The diffusion coefficients within different dipole Earth magnetic field and non-dipole storm magnetic field are compared, while dynamics of electrons at selected initial energys are shown in our study.
Arikan and Alamouti matrices based on fast block-wise inverse Jacket transform
NASA Astrophysics Data System (ADS)
Lee, Moon Ho; Khan, Md Hashem Ali; Kim, Kyeong Jin
2013-12-01
Recently, Lee and Hou (IEEE Signal Process Lett 13: 461-464, 2006) proposed one-dimensional and two-dimensional fast algorithms for block-wise inverse Jacket transforms (BIJTs). Their BIJTs are not real inverse Jacket transforms from mathematical point of view because their inverses do not satisfy the usual condition, i.e., the multiplication of a matrix with its inverse matrix is not equal to the identity matrix. Therefore, we mathematically propose a fast block-wise inverse Jacket transform of orders N = 2 k , 3 k , 5 k , and 6 k , where k is a positive integer. Based on the Kronecker product of the successive lower order Jacket matrices and the basis matrix, the fast algorithms for realizing these transforms are obtained. Due to the simple inverse and fast algorithms of Arikan polar binary and Alamouti multiple-input multiple-output (MIMO) non-binary matrices, which are obtained from BIJTs, they can be applied in areas such as 3GPP physical layer for ultra mobile broadband permutation matrices design, first-order q-ary Reed-Muller code design, diagonal channel design, diagonal subchannel decompose for interference alignment, and 4G MIMO long-term evolution Alamouti precoding design.
NASA Astrophysics Data System (ADS)
Gu, Shu-Ying; Jin, Sheng-Peng; Gao, Xie-Feng; Mu, Jian
2016-05-01
Polylactide-based polyurethane shape memory nanocomposites (Fe3O4/PLAUs) with fast magnetic responsiveness are presented. For the purpose of fast response and homogeneous dispersion of magnetic nanoparticles, oleic acid was used to improve the dispersibility of Fe3O4 nanoparticles in a polymer matrix. A homogeneous distribution of Fe3O4 nanoparticles in the polymer matrix was obtained for nanocomposites with low Fe3O4 loading content. A small agglomeration was observed for nanocomposites with 6 wt% and 9 wt% loading content, leading to a small decline in the mechanical properties. PLAU and its nanocomposites have glass transition around 52 °C, which can be used as the triggering temperature. PLAU and its nanocomposites have shape fixity ratios above 99%, shape recovery ratios above 82% for the first cycle and shape recovery ratios above 91% for the second cycle. PLAU and its nanocomposites also exhibit a fast water bath or magnetic responsiveness. The magnetic recovery time decreases with an increase in the loading content of Fe3O4 nanoparticles due to an improvement in heating performance for increased weight percentage of fillers. The nanocomposites have fast responses in an alternating magnetic field and have potential application in biomedical areas such as intravascular stent.
Assessing cognitive processes with diffusion model analyses: a tutorial based on fast-dm-30
Voss, Andreas; Voss, Jochen; Lerche, Veronika
2015-01-01
Diffusion models can be used to infer cognitive processes involved in fast binary decision tasks. The model assumes that information is accumulated continuously until one of two thresholds is hit. In the analysis, response time distributions from numerous trials of the decision task are used to estimate a set of parameters mapping distinct cognitive processes. In recent years, diffusion model analyses have become more and more popular in different fields of psychology. This increased popularity is based on the recent development of several software solutions for the parameter estimation. Although these programs make the application of the model relatively easy, there is a shortage of knowledge about different steps of a state-of-the-art diffusion model study. In this paper, we give a concise tutorial on diffusion modeling, and we present fast-dm-30, a thoroughly revised and extended version of the fast-dm software (Voss and Voss, 2007) for diffusion model data analysis. The most important improvement of the fast-dm version is the possibility to choose between different optimization criteria (i.e., Maximum Likelihood, Chi-Square, and Kolmogorov-Smirnov), which differ in applicability for different data sets. PMID:25870575
Fast-neutron imaging spectrometer based on liquid scintillator loaded capillaries
NASA Astrophysics Data System (ADS)
Mor, I.; Vartsky, D.; Brandis, M.; Goldberg, M. B.; Bar, D.; Mardor, I.; Dangendorf, V.; Bromberger, B.
2012-04-01
A fast-neutron imaging detector based on micrometric glass capillaries loaded with high refractive index liquid scintillator has been developed Neutron energy spectrometry is based on event-by-event detection and reconstruction of neutron energy from the measurement of the knock-on proton track length and the amount of light produced in the track. In addition, the detector can provide fast-neutron imaging with position resolution of tens of microns. The detector principle of operation, simulations and experimental results obtained with a small detector prototype are described. We have demonstrated by simulation energy spectrum reconstruction for incident neutrons in the range of 4-20 MeV. The energy resolution in this energy range was 10-15%. Preliminary experimental results of detector spectroscopic capabilities are presented
FPS-RAM: Fast Prefix Search RAM-Based Hardware for Forwarding Engine
NASA Astrophysics Data System (ADS)
Zaitsu, Kazuya; Yamamoto, Koji; Kuroda, Yasuto; Inoue, Kazunari; Ata, Shingo; Oka, Ikuo
Ternary content addressable memory (TCAM) is becoming very popular for designing high-throughput forwarding engines on routers. However, TCAM has potential problems in terms of hardware and power costs, which limits its ability to deploy large amounts of capacity in IP routers. In this paper, we propose new hardware architecture for fast forwarding engines, called fast prefix search RAM-based hardware (FPS-RAM). We designed FPS-RAM hardware with the intent of maintaining the same search performance and physical user interface as TCAM because our objective is to replace the TCAM in the market. Our RAM-based hardware architecture is completely different from that of TCAM and has dramatically reduced the costs and power consumption to 62% and 52%, respectively. We implemented FPS-RAM on an FPGA to examine its lookup operation.
Fast Traffic Sign Recognition with a Rotation Invariant Binary Pattern Based Feature
Yin, Shouyi; Ouyang, Peng; Liu, Leibo; Guo, Yike; Wei, Shaojun
2015-01-01
Robust and fast traffic sign recognition is very important but difficult for safe driving assistance systems. This study addresses fast and robust traffic sign recognition to enhance driving safety. The proposed method includes three stages. First, a typical Hough transformation is adopted to implement coarse-grained location of the candidate regions of traffic signs. Second, a RIBP (Rotation Invariant Binary Pattern) based feature in the affine and Gaussian space is proposed to reduce the time of traffic sign detection and achieve robust traffic sign detection in terms of scale, rotation, and illumination. Third, the techniques of ANN (Artificial Neutral Network) based feature dimension reduction and classification are designed to reduce the traffic sign recognition time. Compared with the current work, the experimental results in the public datasets show that this work achieves robustness in traffic sign recognition with comparable recognition accuracy and faster processing speed, including training speed and recognition speed. PMID:25608217
Fast mode decision for multiview video coding based on depth maps
NASA Astrophysics Data System (ADS)
Cernigliaro, Gianluca; Jaureguizar, Fernando; Ortega, Antonio; Cabrera, Julián; García, Narciso
2009-01-01
A new fast mode decision (FMD) algorithm for multi-view video coding (MVC) is presented. One of the multiple views is encoded based on traditional methods, which provides a mode decision (MD) map, while encoding of the other views is based on the analysis of the homogeneity of the depth map. This approach reduces the burden of the rate-distortion (RD) motion analysis based on the availability of a depth map, which is assumed to be provided by the acquisition process. Although there is a slight decrease of performance in rate-distortion terms, there is a significant reduction in computational cost.
Fast object tracking based on template matching and region information fusion extraction
NASA Astrophysics Data System (ADS)
Liu, Liman; Chen, Yun; Liu, Haihua
2015-12-01
In this paper, a fast object tracking algorithm based on template matching and region information fusion extraction is proposed. In the prediction framework, the data connection task is achieved by object template and object information extraction. And then the object is tracked accurately by using the object motion information. We handle the tracking shift by using the confidence estimation strategy. The experiments show that the proposed algorithm has robust performance.
NASA Astrophysics Data System (ADS)
Vizireanu, D. N.; Halunga, S. V.
2012-04-01
A simple, fast and accurate amplitude estimation algorithm of sinusoidal signals for DSP based instrumentation is proposed. It is shown that eight samples, used in two steps, are sufficient. A practical analytical formula for amplitude estimation is obtained. Numerical results are presented. Simulations have been performed when the sampled signal is affected by white Gaussian noise and when the samples are quantized on a given number of bits.
A FastA based compilation of higher plant mitochondrial tRNA genes.
Sagliano, A; Volpicella, M; Gallerani, R; Ceci, L R
1998-01-01
A new version of the compilation of higher plant mitochondrial tRNA genes (http://www.ebi.ac.uk/service ) has been obtained by means of the FastA program for similarity searching in nucleotide sequence Databases. This approach improves the previous collection, which was based on literature data analysis. The current compilation contains 158 sequences with an increase of 43 units. In this paper, some interesting features of the new entries are briefly presented. PMID:9399821
New Fast Shower Max Detector Based on MCP as an Active Element
NASA Astrophysics Data System (ADS)
Ronzhin, A.; Los, S.; Ramberg, E.; Spiropulu, M.; Apresyan, A.; Xie, S.; Kim, H.; Zatserklyaniy, A.
2015-02-01
One possibility to make a fast and radiation resistant shower maximum (SM) detector is to use a secondary emitter as an active element. We present below test beam results, obtained with different types of photo detectors based on micro channel plates (MCP) as secondary emitter. The SM time resolution - we obtained for this new type of detector is at the level of 20-30 ps. We estimate that a significant contribution to the detector response originates from secondary emission of the MCP.
Fast robust non-sequential optical ray-tracing with implicit algebraic surfaces
NASA Astrophysics Data System (ADS)
Greynolds, Alan W.
2015-09-01
The fastest, most robust, general technique for non-sequentially ray-tracing a large class of imaging and non-imaging optical systems is by geometric modeling with algebraic (i.e. polynomial) implicit surfaces. The basic theory of these surfaces with special attention to optimizing their precise intersection with a ray (even at grazing incidence) is outlined for an admittedly limited software implementation. On a couple of "tame" examples, a 64-bit Windows 7 version is significantly faster than the fastest commercial design software (all multi-threaded). Non-sequential ray-surface interactions approaching 30M/sec are achieved on a 12-core 2.67 GHz Mac Pro desktop computer. For a more exotic example of a 6th degree Wood's horn beam dump (light trap), a 32-bit Windows single thread version traces rays nearly 4 times faster than the commercial ASAP software's implicit algebraic surface and over 13 times faster than its equivalent NURBS surface. However, implicit surfaces are foreign to most CAD systems and thus unfortunately, don't easily fit into a modern workflow.
MetaSensing's FastGBSAR: ground based radar for deformation monitoring
NASA Astrophysics Data System (ADS)
Rödelsperger, Sabine; Meta, Adriano
2014-10-01
The continuous monitoring of ground deformation and structural movement has become an important task in engineering. MetaSensing introduces a novel sensor system, the Fast Ground Based Synthetic Aperture Radar (FastGBSAR), based on innovative technologies that have already been successfully applied to airborne SAR applications. The FastGBSAR allows the remote sensing of deformations of a slope or infrastructure from up to a distance of 4 km. The FastGBSAR can be setup in two different configurations: in Real Aperture Radar (RAR) mode it is capable of accurately measuring displacements along a linear range profile, ideal for monitoring vibrations of structures like bridges and towers (displacement accuracy up to 0.01 mm). Modal parameters can be determined within half an hour. Alternatively, in Synthetic Aperture Radar (SAR) configuration it produces two-dimensional displacement images with an acquisition time of less than 5 seconds, ideal for monitoring areal structures like dams, landslides and open pit mines (displacement accuracy up to 0.1 mm). The MetaSensing FastGBSAR is the first ground based SAR instrument on the market able to produce two-dimensional deformation maps with this high acquisition rate. By that, deformation time series with a high temporal and spatial resolution can be generated, giving detailed information useful to determine the deformation mechanisms involved and eventually to predict an incoming failure. The system is fully portable and can be quickly installed on bedrock or a basement. The data acquisition and processing can be fully automated leading to a low effort in instrument operation and maintenance. Due to the short acquisition time of FastGBSAR, the coherence between two acquisitions is very high and the phase unwrapping is simplified enormously. This yields a high density of resolution cells with good quality and high reliability of the acquired deformations. The deformation maps can directly be used as input into an Early
SHU, QUAN-SHENG
2008-06-08
Applications in high energy physics accelerators and other fields require the use of thousands of superconducting RF (SRF) cavities that are made of high purity Nb material and the purity of niobium is critical for these cavities to reach the highest accelerating fields. Tantalum is the most prolific of metal inclusions, which can cause thermal breakdown and prevent the cavities from reaching their theoretical performance limits of 45-50 MV/m, and DOE Labs are searching for a technology that could detect small impurities in superconducting Nb sheets reaching the highest possible accelerating fields. The proposed innovative SQUID-based Nondestructive system can scan Niobium sheets used in the manufacturing of SRF cavities with both high speed and high resolution. A highly sensitive SQUID system with a gradiometer probe, non-magnetic dewar, data acquisition system, and a scanning system will be developed for fast detection of impurities in planar Nb sheets. In phase I, we will modify our existing SQUID-based eddy current system to detect 100 micron size Ta defects and a great effort will focus on achieving fast scanning of a large number of niobium sheets in a shorter time and with reasonable resolution. An older system operated by moving the sample 1 mm, stopping and waiting for 1-2 seconds, then activating a measurement by the SQUID after the short settle time is modified. A preliminary designed and implemented a SQUID scanning system that is fast and is capable of scanning a 30 cm x 30 cm Nb sheet in 15 minutes by continuously moving the table at speeds up to 10 mm/s while activating the SQUID at 1mm interval is modified and reached the Phase I goal of 100mm resolution. We have successfully demonstrated the feasibility that a fast speed SQUID scanner without sacrificing the resolution of detection can be done, and a data acquisition and analysis system is also preliminary developed. The SQUID based scanner will help reach the highest accelerating field in SRF
Reduced-Enrichment, Fast-Spectrum Lunar/Mars Surface Reactors
Poston, David I.; Marcille, Thomas F.; Kapernick, Richard J.; Sadasivan, Pratap; Amiri, Benjamin W.
2006-07-01
This report investigates the potential for reduced-enrichment, un-moderated surface reactors. The potential programmatic advantages of a reduced safeguards classification are discussed, along with design options that could allow a Cat III inventory surface reactor. Two potential reactor Cat III designs are presented, each with a thermal power of 100 kWt and a 5 year life: one is fueled with SS/UO{sub 2} fuel pins and the other with SS/UN fuel pins. The mass and performance parameters of these designs are compared to each other, and to a Cat III UZrH-fueled, moderated-spectrum design. (authors)
Fast calculation of bokeh image structure in camera lenses with multiple aspheric surfaces
NASA Astrophysics Data System (ADS)
Sivokon, V. P.; Thorpe, M. D.
2014-12-01
Three different approaches to calculation of internal structure of bokeh image in camera lenses with two aspheric surfaces are analyzed and compared - the transfer function approach, the beam propagation approach and direct raytracing in an optical design software. The transfer function approach is the fastest and provides accurate results when peak-to-valley of mid-spatial frequency phase modulation induced at the lens exit pupil is below λ/10. Aspheric surfaces are shown to contribute to the bokeh structure differently increasing the complexity of bokeh image especially for offaxis bokeh.
Early-branching or fast-evolving eukaryotes? An answer based on slowly evolving positions.
Philippe, H; Lopez, P; Brinkmann, H; Budin, K; Germot, A; Laurent, J; Moreira, D; Müller, M; Le Guyader, H
2000-06-22
The current paradigm of eukaryotic evolution is based primarily on comparative analysis of ribosomal RNA sequences. It shows several early-emerging lineages, mostly amitochondriate, which might be living relics of a progressive assembly of the eukaryotic cell. However, the analysis of slow-evolving positions, carried out with the newly developed slow-fast method, reveals that these lineages are, in terms of nucleotide substitution, fast-evolving ones, misplaced at the base of the tree by a long branch attraction artefact. Since the fast-evolving groups are not always the same, depending on which macromolecule is used as a marker, this explains most of the observed incongruent phylogenies. The current paradigm of eukaryotic evolution thus has to be seriously re-examined as the eukaryotic phylogeny is presently best summarized by a multifurcation. This is consistent with the Big Bang hypothesis that all extant eukaryotic lineages are the result of multiple cladogeneses within a relatively brief period, although insufficiency of data is also a possible explanation for the lack of resolution. For further resolution, rare evolutionary events such as shared insertions and/or deletions or gene fusions might be helpful. PMID:10902687
Fast entropy-based CABAC rate estimation for mode decision in HEVC.
Chen, Wei-Gang; Wang, Xun
2016-01-01
High efficiency video coding (HEVC) seeks the best code tree configuration, the best prediction unit division and the prediction mode, by evaluating the rate-distortion functional in a recursive way and using a "try all and select the best" strategy. Further, HEVC only supports context adaptive binary arithmetic coding (CABAC), which has the disadvantage of being highly sequential and having strong data dependencies, as the entropy coder. So, the development of a fast rate estimation algorithm for CABAC-based coding has a great practical significance for mode decision in HEVC. There are three elementary steps in CABAC encoding process: binarization, context modeling, and binary arithmetic coding. Typical approaches to fast CABAC rate estimation simplify or eliminate the last two steps, but leave the binarization step unchanged. To maximize the reduction of computational complexity, we propose a fast entropy-based CABAC rate estimator in this paper. It eliminates not only the modeling and the coding steps, but also the binarization step. Experimental results demonstrate that the proposed estimator is able to reduce the computational complexity of the mode decision in HEVC by 9-23 % with negligible PSNR loss and BD-rate increment, and therefore exhibits applicability to practical HEVC encoder implementation. PMID:27386240
A fast preamplifier concept for SiPM-based time-of-flight PET detectors
NASA Astrophysics Data System (ADS)
Huizenga, J.; Seifert, S.; Schreuder, F.; van Dam, H. T.; Dendooven, P.; Löhner, H.; Vinke, R.; Schaart, D. R.
2012-12-01
Silicon photomultipliers (SiPMs) offer high gain and fast response to light, making them interesting for fast timing applications such as time-of-flight (TOF) PET. To fully exploit the potential of these photosensors, dedicated preamplifiers that do not deteriorate the rise time and signal-to-noise ratio are crucial. Challenges include the high sensor capacitance, typically >300 pF for a 3 mm×3 mm SiPM sensor, as well as oscillation issues. Here we present a preamplifier concept based on low noise, high speed transistors, designed for optimum timing performance. The input stage consists of a transimpedance common-base amplifier with a very low input impedance even at high frequencies, which assures a good linearity and avoids that the high detector capacitance affects the amplifier bandwidth. The amplifier has a fast timing output as well as a 'slow' energy output optimized for determining the total charge content of the pulse. The rise time of the amplifier is about 300 ps. The measured coincidence resolving time (CRT) for 511 keV photon pairs using the amplifiers in combination with 3 mm×3 mm SiPMs (Hamamatsu MPPC-S10362-33-050C) coupled to 3 mm×3 mm×5 mm LaBr3:Ce and LYSO:Ce crystals equals 95 ps FWHM and 138 ps FWHM, respectively.
A Fast and Robust Ellipse-Detection Method Based on Sorted Merging
Ren, Guanghui; Zhao, Yaqin; Jiang, Lihui
2014-01-01
A fast and robust ellipse-detection method based on sorted merging is proposed in this paper. This method first represents the edge bitmap approximately with a set of line segments and then gradually merges the line segments into elliptical arcs and ellipses. To achieve high accuracy, a sorted merging strategy is proposed: the merging degrees of line segments/elliptical arcs are estimated, and line segments/elliptical arcs are merged in descending order of the merging degrees, which significantly improves the merging accuracy. During the merging process, multiple properties of ellipses are utilized to filter line segment/elliptical arc pairs, making the method very efficient. In addition, an ellipse-fitting method is proposed that restricts the maximum ratio of the semimajor axis and the semiminor axis, further improving the merging accuracy. Experimental results indicate that the proposed method is robust to outliers, noise, and partial occlusion and is fast enough for real-time applications. PMID:24782661
A fast multispectral light synthesiser based on LEDs and a diffraction grating
Belušič, Gregor; Ilić, Marko; Meglič, Andrej; Pirih, Primož
2016-01-01
Optical experiments often require fast-switching light sources with adjustable bandwidths and intensities. We constructed a wavelength combiner based on a reflective planar diffraction grating and light emitting diodes with emission peaks from 350 to 630 nm that were positioned at the angles corresponding to the first diffraction order of the reversed beam. The combined output beam was launched into a fibre. The spacing between 22 equally wide spectral bands was about 15 nm. The time resolution of the pulse-width modulation drivers was 1 ms. The source was validated with a fast intracellular measurement of the spectral sensitivity of blowfly photoreceptors. In hyperspectral imaging of Xenopus skin circulation, the wavelength resolution was adequate to resolve haemoglobin absorption spectra. The device contains no moving parts, has low stray light and is intrinsically capable of multi-band output. Possible applications include visual physiology, biomedical optics, microscopy and spectroscopy. PMID:27558155
A fast quaternion-based orientation optimizer via virtual rotation for human motion tracking.
Lee, Jung Keun; Park, Edward J
2009-05-01
For real-time ambulatory human motion tracking with low-cost inertial/magnetic sensors, a computationally efficient and robust algorithm for estimating orientation is critical. This paper presents a quaternion-based orientation optimizer for tracking human body motion, using triaxis rate gyro, accelerometer, and magnetometer signals. The proposed optimizer uses a Gauss-Newton (G-N) method for finding the best-fit quaternion. In order to decrease the computing time, the optimizer is formulated using a virtual rotation concept that allows very fast quaternion updates compared to the conventional G-N method. In addition, to guard against the effects of fast body motions and temporary ferromagnetic disturbances, a situational measurement vector selection procedure is adopted in conjunction with the G-N optimizer. The accuracy of orientation estimates is validated experimentally, using arm motion trials. PMID:19473934
Development of fast neutron radiography system based on portable neutron generator
NASA Astrophysics Data System (ADS)
Yi, Chia Jia; Nilsuwankosit, Sunchai
2016-01-01
Due to the high installation cost, the safety concern and the immobility of the research reactors, the neutron radiography system based on portable neutron generator is proposed. Since the neutrons generated from a portable neutron generator are mostly the fast neutrons, the system is emphasized on using the fast neutrons for the purpose of conducting the radiography. In order to suppress the influence of X-ray produced by the neutron generator, a combination of a shielding material sandwiched between two identical imaging plates is used. A binary XOR operation is then applied for combining the information from the imaging plates. The raw images obtained confirm that the X-ray really has a large effect and that XOR operation can help enhance the effect of the neutrons.
A cargo inspection system based on pulsed fast neutron analysis (PFNA).
Ipe, N E; Olsher, R; Ryge, P; Mrozack, J; Thieu, J
2005-01-01
A cargo inspection system based on pulsed fast neutron analysis (PFNA) is to be used at a border crossing to detect explosives and contraband hidden in trucks and cargo containers. Neutrons are produced by the interaction of deuterons in a deuterium target mounted on a moveable scan arm. The collimated pulsed fast neutron beam is used to determine the location and composition of objects in a cargo container. The neutrons produce secondary gamma rays that are characteristic of the object's elemental composition. The cargo inspection system building consists of an accelerator room and an inspection tunnel. The accelerator room is shielded and houses the injector, accelerator and the neutron production gas target. The inspection tunnel is partially shielded. The truck or container to be inspected will be moved through the inspection tunnel by a conveyor system. The facility and radiation source terms considered in the shielding design are described. PMID:16604657
A fast multispectral light synthesiser based on LEDs and a diffraction grating.
Belušič, Gregor; Ilić, Marko; Meglič, Andrej; Pirih, Primož
2016-01-01
Optical experiments often require fast-switching light sources with adjustable bandwidths and intensities. We constructed a wavelength combiner based on a reflective planar diffraction grating and light emitting diodes with emission peaks from 350 to 630 nm that were positioned at the angles corresponding to the first diffraction order of the reversed beam. The combined output beam was launched into a fibre. The spacing between 22 equally wide spectral bands was about 15 nm. The time resolution of the pulse-width modulation drivers was 1 ms. The source was validated with a fast intracellular measurement of the spectral sensitivity of blowfly photoreceptors. In hyperspectral imaging of Xenopus skin circulation, the wavelength resolution was adequate to resolve haemoglobin absorption spectra. The device contains no moving parts, has low stray light and is intrinsically capable of multi-band output. Possible applications include visual physiology, biomedical optics, microscopy and spectroscopy. PMID:27558155