Science.gov

Sample records for fatter the asymmetric effects

  1. Why even active people get fatter--the asymmetric effects ofincreasing and decreasing exercise

    SciTech Connect

    Williams, Paul T.

    2006-01-06

    Background: Public health policies for preventing obesityneed guidelines for active individuals who are at risk due to exerciserecidivism. Methods: Changes in adiposity were compared to the runningdistances at baseline and follow-up in men and women whose reportedexercise increased (N=4,632 and 1,953, respectively) or decreased (17,280and 5,970, respectively) during 7.7 years of follow-up. Results: PerDelta km/wk, decreases in running distance caused over four-fold greaterweight gain between 0-8 km/wk (slope+-SE, males: -0.068+ -0.005 kg/m2,females: -0.080+-0.01 kg/m2) than between 32-48 km/wk (-0.017+-0.002 and-0.010+-0.005 kg/m2, respectively). In contrast, increases in runningdistance produced the smallest weight losses between 0-8 km/wk andstatistically significant weight loss only above 16 km/wk in males and 32km/wk in females. Above 32 km/wk (30 kcal/kg) in men and 16 km/wk (15kcal/kg) in women, weight loss from increasing exercise was equal to orgreater than weight gained with decreasing exercise, otherwise weightgain exceeded weight loss. Substantial weight gain occurred in runnerswho quit running, which would be mostly retained with resumed activity.Conclusion: Public health recommendations should warn against the risksof irreversible weight gain with exercise cessation. Weight gained due toreductions in exercise below 30 kcal/kg in men and 15 kcal/kg in womenmay not be reversed by resuming prior activity. Current IOM guidelines(i.e., maintain total energy expenditure at 160 percent of basal) agreewith the men s exercise threshold for symmetric weight change withchanging exercise levels.

  2. Effect of spray-chilling on quality of beef from lean and fatter carcasses.

    PubMed

    Hippe, C L; Field, R A; Ray, B; Russell, W C

    1991-01-01

    Carcasses from five trim cows and five choice steers were used to study the effects of spray-chilling on cooler shrink, chill rate, purge loss from vacuum-packaged cuts, cook loss, shear values and bacterial growth. Spray-chilling reduced cooler shrink but had no effect on chill rate, purge loss from vacuum-packaged cuts, cook loss or shear values. Aerobes, facultative anaerobes, aerobic psychrotrophs, facultative anaerobic psychrotrophs and lactic acid bacteria all tended to be higher on rounds from spray-chilled sides. Leaner (and lighter) cow carcasses chilled faster and had lost a higher percentage of their weight at 24 h than fatter and heavier steer carcasses. The leaner carcasses had higher bacterial counts initially and throughout storage. This difference may have been due to differences in the level of initial contamination during dressing and not due to the carcasses' leanness. Purge-weight loss for each carcass increased and cooking weight loss decreased with increased storage times, making the total weight loss from meat aged 5 vs 10 wk similar. PMID:2005011

  3. Applying the Helmholtz illusion to fashion: horizontal stripes won't make you look fatter.

    PubMed

    Thompson, Peter; Mikellidou, Kyriaki

    2011-01-01

    A square composed of horizontal lines appears taller and narrower than an identical square made up of vertical lines. Reporting this illusion, Hermann von Helmholtz noted that such illusions, in which filled space seems to be larger than unfilled space, were common in everyday life, adding the observation that ladies' frocks with horizontal stripes make the figure look taller. As this assertion runs counter to modern popular belief, we have investigated whether vertical or horizontal stripes on clothing should make the wearer appear taller or fatter. We find that a rectangle of vertical stripes needs to be extended by 7.1% vertically to match the height of a square of horizontal stripes and that a rectangle of horizontal stripes must be made 4.5% wider than a square of vertical stripes to match its perceived width. This illusion holds when the horizontal or vertical lines are on the dress of a line drawing of a woman. We have examined the claim that these effects apply only for 2-dimensional figures in an experiment with 3-D cylinders and find no support for the notion that horizontal lines would be 'fattening' on clothes. Significantly, the illusion persists when the horizontal or vertical lines are on pictures of a real half-body mannequin viewed stereoscopically. All the evidence supports Helmholtz's original assertion. PMID:23145226

  4. Heart Attacks Striking Younger, Fatter Americans

    MedlinePlus

    ... nlm.nih.gov/medlineplus/news/fullstory_157946.html Heart Attacks Striking Younger, Fatter Americans: Study Doctors, patients need ... 24, 2016 THURSDAY, March 24, 2016 (HealthDay News) -- Heart attack victims in the United States are becoming younger ...

  5. The Marriage of Rigorous Academics and Technical Instruction with State-of-the-Art Technology: A Success Story of the William T. McFatter Technical High School

    ERIC Educational Resources Information Center

    Blasik, Katherine; Williams, Richard G.; Johnson, Jeanette; Boegli, D. Robert

    2004-01-01

    The search for high school reform leads to William T. McFatter Technical High School in Broward County Public Schools, Florida. The purpose of this article is to highlight key information about the school and to demonstrate the success of its rigorous academic and technical instruction with state-of-the-art technology. By sharing this…

  6. How dieting makes the lean fatter: from a perspective of body composition autoregulation through adipostats and proteinstats awaiting discovery.

    PubMed

    Dulloo, A G; Jacquet, J; Montani, J-P; Schutz, Y

    2015-02-01

    Whether dieting makes people fatter has been a subject of considerable controversy over the past 30 years. More recent analysis of several prospective studies suggest, however, that it is dieting to lose weight in people who are in the healthy normal range of body weight, rather than in those who are overweight or obese, that most strongly and consistently predict future weight gain. This paper analyses the ongoing arguments in the debate about whether repeated dieting to lose weight in normal-weight people represents unsuccessful attempts to counter genetic and familial predispositions to obesity, a psychosocial reaction to the fear of fatness or that dieting per se confers risks for fatness and hence a contributing factor to the obesity epidemic. In addressing the biological plausibility that dieting predisposes the lean (rather than the overweight or obese) to regaining more body fat than what had been lost (i.e. fat overshooting), it integrates the results derived from the re-analysis of body composition data on fat mass and fat-free mass (FFM) losses and recoveries from human studies of experimental energy restriction and refeeding. These suggest that feedback signals from the depletion of both fat mass (i.e. adipostats) and FFM (i.e. proteinstats) contribute to weight regain through the modulation of energy intake and adaptive thermogenesis, and that a faster rate of fat recovery relative to FFM recovery (i.e. preferential catch-up fat) is a central outcome of body composition autoregulation in lean individuals. Such a temporal desynchronization in the restoration of the body's fat vs. FFM results in a state of hyperphagia that persists beyond complete recovery of fat mass and interestingly until FFM is fully recovered. However, as this completion of FFM recovery is also accompanied by fat deposition, excess fat accumulates. In other words, fat overshooting is a prerequisite to allow complete recovery of FFM. This confers biological plausibility for post

  7. The future liver of the Asia pacific: fatter and firmer from more fructose and fortune?

    PubMed

    Mahady, Suzanne E; George, Jacob

    2013-06-01

    The Asia Pacific region is the most diverse and the most populous region in the world. Recent socioeconomic changes have resulted in an emerging epidemic of non-communicable diseases such as type 2 diabetes and nonalcoholic fatty liver disease. The prevalence of nonalcoholic fatty liver disease in Asian Pacific countries now approximates that seen in Western countries. This increase is fueled by rising obesity, partly due to adoption of Western style diets and exposure to compounds such as high fructose corn syrup that are not included in traditional diets. Furthermore, South Asian populations may be more genetically susceptible via the inheritance of polymorphisms in apolipoprotein 3 that increase insulin resistance and nonalcoholic fatty liver disease. Importantly, there remains a substantial lack of data on the incidence and natural history of nonalcoholic steatohepatitis and subsequent complications such as hepatocellular carcinoma in Asian Pacific populations. This information gap prevents estimation of current and future disease burden and impedes efforts to lobby health policymakers to improve public health measures, as given the size of Asian Pacific populations, prevention rather than treatment of non-communicable diseases remains key. This review article addresses these issues and highlights research priorities for nonalcoholic fatty liver disease within the Asia Pacific region. PMID:25755484

  8. The Future Liver of the Asia Pacific: Fatter and Firmer from More Fructose and Fortune?

    PubMed Central

    Mahady, Suzanne E.; George, Jacob

    2012-01-01

    The Asia Pacific region is the most diverse and the most populous region in the world. Recent socioeconomic changes have resulted in an emerging epidemic of non-communicable diseases such as type 2 diabetes and nonalcoholic fatty liver disease. The prevalence of nonalcoholic fatty liver disease in Asian Pacific countries now approximates that seen in Western countries. This increase is fueled by rising obesity, partly due to adoption of Western style diets and exposure to compounds such as high fructose corn syrup that are not included in traditional diets. Furthermore, South Asian populations may be more genetically susceptible via the inheritance of polymorphisms in apolipoprotein 3 that increase insulin resistance and nonalcoholic fatty liver disease. Importantly, there remains a substantial lack of data on the incidence and natural history of nonalcoholic steatohepatitis and subsequent complications such as hepatocellular carcinoma in Asian Pacific populations. This information gap prevents estimation of current and future disease burden and impedes efforts to lobby health policymakers to improve public health measures, as given the size of Asian Pacific populations, prevention rather than treatment of non-communicable diseases remains key. This review article addresses these issues and highlights research priorities for nonalcoholic fatty liver disease within the Asia Pacific region. PMID:25755484

  9. Asymmetric nonlinear response of the quantized Hall effect

    NASA Astrophysics Data System (ADS)

    Siddiki, A.; Horas, J.; Kupidura, D.; Wegscheider, W.; Ludwig, S.

    2010-11-01

    An asymmetric breakdown of the integer quantized Hall effect (IQHE) is investigated. This rectification effect is observed as a function of the current value and its direction in conjunction with an asymmetric lateral confinement potential defining the Hall bar. Our electrostatic definition of the Hall bar via Schottky gates allows a systematic control of the steepness of the confinement potential at the edges of the Hall bar. A softer edge (flatter confinement potential) results in more stable Hall plateaus, i.e. a breakdown at a larger current density. For one soft and one hard edge, the breakdown current depends on its direction, resembling rectification. This nonlinear magneto-transport effect confirms the predictions of an emerging screening theory of the IQHE.

  10. Attention modulation by proportion congruency: the asymmetrical list shifting effect.

    PubMed

    Abrahamse, Elger L; Duthoo, Wout; Notebaert, Wim; Risko, Evan F

    2013-09-01

    Proportion congruency effects represent hallmark phenomena in current theorizing about cognitive control. This is based on the notion that proportion congruency determines the relative levels of attention to relevant and irrelevant information in conflict tasks. However, little empirical evidence exists that uniquely supports such an attention modulation account; moreover, a rivaling account was recently proposed that attributes the effect of proportion congruency to mere contingency learning. In the present study, the influences of shifts in list-wide (Experiment 1) or item-specific (Experiment 2) proportion congruency were investigated. As predicted by attention modulation but not by contingency learning, strong asymmetries were observed in such shifting: An increase in the proportion of congruent trials had only limited impact on the size of the congruency effect when participants were initially trained with a mostly incongruent list, but the impact was substantial for an equivalent increase of incongruent trials when participants were initially trained with a mostly congruent list. This asymmetrical list shifting effect directly supports attention modulation by proportion congruency manipulations and as such provides a novel tool for exploring cognitive control. Implications of our findings for existing theories of cognitive control are discussed. PMID:23565794

  11. The effects of stretching exercise for upper trapezius on the asymmetric rate of bite force

    PubMed Central

    Lee, Bomjin; Lee, Joongsook; Yang, Jeongok; Heo, Kwangjin; Hwang, Hojin; Kim, Boyoung; Han, Dongwook

    2015-01-01

    [Purpose] The purpose of this study was to observe the effects of stretching the upper trapezius muscle on the asymmetric rate of bite force. [Subjects] Forty-seven female university students who had all their original teeth, had no disorders in the temporomandibular joints, and had never worn braces; participated in this study. [Methods] An occlusometer was used to measure biting forces. Subsequently, stretching exercises of the upper trapezius were performed. The subjects were divided into 3 groups at the start of the testing: the asymmetric rate of the first group was less than 10%; the asymmetric rate of the second group was between 10% and 20%; and the asymmetric rate of the third group was more than 20%. The stretching exercises were done on the dominant side of the upper trapezius. [Results] After the stretching exercises of the upper trapezius, the results showed that for the first group, whose asymmetric rate of biting force was less than 10%, there was a significant increase in asymmetric rate (from 5.1% to 10.3%). For the second group, whose asymmetric rate of biting force was measured to be between 10% and 20%, the asymmetric rate decreased from 14.7% to 14.3%, but the change was not statistically significant. For the third group, whose asymmetric rate of biting force was more than 20%, there was a significant decrease in asymmetric rate (from 27.8% to 12.6%). [Conclusion] We concluded that stretching exercises of the upper trapezius muscle had a direct effect on the asymmetric rate of biting force. PMID:26311945

  12. The effect of asymmetric payoff mechanism on evolutionary networked prisoner’s dilemma game

    NASA Astrophysics Data System (ADS)

    Du, Wen-Bo; Cao, Xian-Bin; Hu, Mao-Bin

    2009-12-01

    In social and biological systems, there are obvious individual divergence and asymmetric payoff phenomenon due to the strength, power and influence differences. In this paper, we introduce an asymmetric payoff mechanism to evolutionary Prisoner’s Dilemma Game (PDG) on scale-free networks. The co-effects of individual diversity and asymmetric payoff mechanism on the evolution of cooperation and the wealth distribution under different updating rules are investigated. Numerical results show that the cooperation is highly promoted when the hub nodes are favored in the payoff matrix, which seems to harm the interest of the majority. But the inequality of social wealth distribution grows with the unbalanced payoff rule. However, when the node difference is eliminated in the learning strategy, the asymmetric payoff rule will not affect the cooperation level. Our work may sharpen the understanding of the cooperative behavior and wealth inequality in the society.

  13. Isospin effects on fragmentation in the asymmetric reactions induced by neutron-rich targets

    NASA Astrophysics Data System (ADS)

    Sharma, Arun

    2016-05-01

    To understand the isospin effects in terms of fragment's yield in the asymmetric reactions induced by neutron-rich targets, we perform a theoretical study using isospin-dependent quantum molecular dynamics (IQMD) model. Simulations are carried out for reactions of 16O+Br80,84,92 and 16O+Ag108,113,122. We envision that fragments's yield in the asymmetric collisions induced by neutron-rich targets is better candidate to study isospin effects via symmetry energy and nucleon-nucleon (nn) cross-sections. Also, pronounced effects of symmetry energy and cross-sections can be found at lower and higher beam energies, respectively.

  14. Asymmetric Acoustic Propagation of Wave Packets Via the Self-Demodulation Effect.

    PubMed

    Devaux, Thibaut; Tournat, Vincent; Richoux, Olivier; Pagneux, Vincent

    2015-12-01

    This Letter presents the experimental characterization of nonreciprocal elastic wave transmission in a single-mode elastic waveguide. This asymmetric system is obtained by coupling a selection layer with a conversion layer: the selection component is provided by a phononic crystal, while the conversion is achieved by a nonlinear self-demodulation effect in a 3D unconsolidated granular medium. A quantitative experimental study of this acoustic rectifier indicates a high rectifying ratio, up to 10^{6}, with wide band (10 kHz) and an audible effect. Moreover, this system allows for wave-packet rectification and extends the future applications of asymmetric systems. PMID:26684119

  15. Asymmetric Acoustic Propagation of Wave Packets Via the Self-Demodulation Effect

    NASA Astrophysics Data System (ADS)

    Devaux, Thibaut; Tournat, Vincent; Richoux, Olivier; Pagneux, Vincent

    2015-12-01

    This Letter presents the experimental characterization of nonreciprocal elastic wave transmission in a single-mode elastic waveguide. This asymmetric system is obtained by coupling a selection layer with a conversion layer: the selection component is provided by a phononic crystal, while the conversion is achieved by a nonlinear self-demodulation effect in a 3D unconsolidated granular medium. A quantitative experimental study of this acoustic rectifier indicates a high rectifying ratio, up to 1 06, with wide band (10 kHz) and an audible effect. Moreover, this system allows for wave-packet rectification and extends the future applications of asymmetric systems.

  16. The Cyclopentadienyl Radical Revisited: the Effects of Asymmetric Deuteration of Jahn-Teller Molecules

    NASA Astrophysics Data System (ADS)

    Strom, Samantha; Liu, Jinjun

    2012-06-01

    Asymmetric deuteration of Jahn-Teller active molecules partially lifts the vibronic degeneracy and hence provides a unique approach to understanding the Jahn-Teller effect. Previously, a spectroscopic model was proposed and used to simulate the spectra of the asymmetrically deuterated isotopomers of the methoxy radical. The same model has been implemented and successfully simulated the previously reported high-resolution laser-induced fluorescence (LIF) spectra of the asymmetrically deuterated cyclopentadienyl radical (C_5H_4D and C_5HD_4). A joint fitting of the transitions from both of the zero-point levels of the tilde X ^2E''_1 ground electronic state, split by the asymmetric deuteration, to the tilde A ^2A''_2 state yields one set of molecular constants for both levels, which, when combined with molecular constants of C_5H_5 and C_5D_5, can be used to determine the molecular geometry and magnitude of the Jahn-Teller distortion. The main goal of this new investigation is to resolve the discrepancy between the experimentally determined and the ab initio calculated Jahn-Teller distortion. In addition, a theoretic model is proposed to quantitatively reproduce the splitting of the zero-point level due to the asymmetric deuteration and zero-point energies for the Jahn-Teller distorted structures around the conical intersection. D. G. Melnik, J. Liu, R. F. Curl, and T. A. Miller, Mol. Phys. 105, 529 (2007). D. G. Melnik, J. Liu, M.-W. Chen, T. A. Miller, and R. F. Curl, J. Chem. Phys. 135, 094310 (2011) L. Yu, D.W. Cullin, J.M. Williamson, and T.A. Miller, J. Chem. Phys. 98, 2682 (1993). M. J. Bearpark, M. A. Robb, and N. Yamamoto, Spectrochim. Acta Part A 55, 639 (1999).

  17. The Effect of Asymmetrical Signal Degradation on Binaural Speech Recognition in Children and Adults.

    ERIC Educational Resources Information Center

    Rothpletz, Ann M.; Tharpe, Anne Marie; Grantham, D. Wesley

    2004-01-01

    To determine the effect of asymmetrical signal degradation on binaural speech recognition, 28 children and 14 adults were administered a sentence recognition task amidst multitalker babble. There were 3 listening conditions: (a) monaural, with mild degradation in 1 ear; (b) binaural, with mild degradation in both ears (symmetric degradation); and…

  18. Asymmetric effects of luminance and chrominance in the watercolor illusion.

    PubMed

    Coia, Andrew J; Crognale, Michael A

    2014-01-01

    When bounded by a line of sufficient contrast, the desaturated hue of a colored line will spread over an enclosed area, an effect known as the watercolor illusion. The contrast of the two lines can be in luminance, chromaticity, or a combination of both. The effect is most salient when the enclosing line has greater contrast with the background than the line that induces the spreading color. In most prior experiments with watercolor spreading, the luminance of both lines has been lower than the background. An achromatic version of the illusion exists where a dark line will spread while being bounded by either a darker or brighter line. In a previous study we measured the strength of the watercolor effect in which the colored inducing line was isoluminant to the background, and found an illusion for both brighter and darker achromatic outer contours. We also found the strength of spreading is stronger for bluish (+S cone input) colors compared to yellowish (-S cone input) ones, when bounded by a dark line. The current study set out to measure the hue dependence of the watercolor illusion when inducing colors are flanked with brighter (increment) as opposed to darker outer lines. The asymmetry in the watercolor effect with S cone input was enhanced when the inducing contrast was an increment rather than a decrement. Further experiments explored the relationship between the perceived contrast of these chromatic lines when paired with luminance increments and decrements and revealed that the perceived contrast of luminance increments and decrements is dependent on which isoluminant color they are paired with. In addition to known hue asymmetries in the watercolor illusion there are asymmetries between luminance increments and decrements that are also hue dependent. These latter asymmetries may be related to the perceived contrast of the hue/luminance parings. PMID:25309396

  19. Asymmetric effects of luminance and chrominance in the watercolor illusion

    PubMed Central

    Coia, Andrew J.; Crognale, Michael A.

    2014-01-01

    When bounded by a line of sufficient contrast, the desaturated hue of a colored line will spread over an enclosed area, an effect known as the watercolor illusion. The contrast of the two lines can be in luminance, chromaticity, or a combination of both. The effect is most salient when the enclosing line has greater contrast with the background than the line that induces the spreading color. In most prior experiments with watercolor spreading, the luminance of both lines has been lower than the background. An achromatic version of the illusion exists where a dark line will spread while being bounded by either a darker or brighter line. In a previous study we measured the strength of the watercolor effect in which the colored inducing line was isoluminant to the background, and found an illusion for both brighter and darker achromatic outer contours. We also found the strength of spreading is stronger for bluish (+S cone input) colors compared to yellowish (−S cone input) ones, when bounded by a dark line. The current study set out to measure the hue dependence of the watercolor illusion when inducing colors are flanked with brighter (increment) as opposed to darker outer lines. The asymmetry in the watercolor effect with S cone input was enhanced when the inducing contrast was an increment rather than a decrement. Further experiments explored the relationship between the perceived contrast of these chromatic lines when paired with luminance increments and decrements and revealed that the perceived contrast of luminance increments and decrements is dependent on which isoluminant color they are paired with. In addition to known hue asymmetries in the watercolor illusion there are asymmetries between luminance increments and decrements that are also hue dependent. These latter asymmetries may be related to the perceived contrast of the hue/luminance parings. PMID:25309396

  20. Attention Modulation by Proportion Congruency: The Asymmetrical List Shifting Effect

    ERIC Educational Resources Information Center

    Abrahamse, Elger L.; Duthoo, Wout; Notebaert, Wim; Risko, Evan F.

    2013-01-01

    Proportion congruency effects represent hallmark phenomena in current theorizing about cognitive control. This is based on the notion that proportion congruency determines the relative levels of attention to relevant and irrelevant information in conflict tasks. However, little empirical evidence exists that uniquely supports such an attention…

  1. The effect of transverse crack upon parametric instability of a rotor-bearing system with an asymmetric disk

    NASA Astrophysics Data System (ADS)

    Han, Qinkai; Chu, Fulei

    2012-12-01

    It is well known that either the asymmetric disk or transverse crack brings parametric inertia (or stiffness) excitation to the rotor-bearing system. When both of them appear in a rotor system, the parametric instability behaviors have not gained sufficient attentions. Thus, the effect of transverse crack upon parametric instability of a rotor-bearing system with an asymmetric disk is studied. First, the finite element equations of motion are established for the asymmetric rotor system. Both the open and breathing transverse cracks are taken into account in the model. Then, the discrete state transition matrix (DSTM) method is introduced for numerically acquiring the instability regions. Based upon these, some computations for a practical asymmetric rotor system with open or breathing transverse crack are conducted, respectively. Variations of the primary and combination instability regions induced by the asymmetric disk with the crack depth are observed, and the effect of the orientation angle between the crack and asymmetric disk on various instability regions are discussed in detail. It is shown that for the asymmetric angle around 0, the existence of transverse (either open or breathing) crack has attenuation effect upon the instability regions. Under certain crack depth, the instability regions could be vanished by the transverse crack. When the asymmetric angle is around π/2, increasing the crack depth would enhance the instability regions.

  2. Temperature and impurity effects of the polaron in an asymmetric quantum dot

    NASA Astrophysics Data System (ADS)

    Shan, Shu-Ping; Liu, Ya-Min; Xiao, Jin-Lin

    2013-07-01

    Temperature and impurity effects of the ground state energy and the ground state binding energy in an asymmetric quantum dot are studied here by using the linear combination operator method. It is found that the ground state energy and the ground state binding energy increase with increasing temperature. The ground state energy is a decreasing function of the Coulomb bound potential, whereas the ground state binding energy is an increasing one.

  3. Unveiling the photonic spin Hall effect with asymmetric spin-dependent splitting.

    PubMed

    Zhou, Xinxing; Ling, Xiaohui

    2016-02-01

    The photonic spin Hall effect (SHE) manifests itself as the spin-dependent splitting of light beam. Usually, it shows a symmetric spin-dependent splitting, i.e., the left- and right-handed circularly polarized components are equally separated in position and intensity for linear polarization incidence. In this paper, we theoretically propose an asymmetric spin-dependent splitting at an air-glass interface under the illumination of elliptical polarization beam and experimentally demonstrate it with the weak measurement method. The left- and right-handed circularly polarized components show expectedly unequal intensity distributions and unexpectedly different spin-dependent shifts. Remarkably, the asymmetric spin-dependent splitting can be modulated by adjusting the handedness of incident polarization. The inherent physics behind this interesting phenomenon is attributed to the additional spatial Imbert-Fedorov shift. These findings offer us potential methods for developing new spin-based nanophotonic applications. PMID:26906868

  4. The effect of symmetrical and asymmetrical hearing impairment on music quality perception.

    PubMed

    Cai, Yuexin; Zhao, Fei; Chen, Yuebo; Liang, Maojin; Chen, Ling; Yang, Haidi; Xiong, Hao; Zhang, Xueyuan; Zheng, Yiqing

    2016-09-01

    The purpose of this study was to investigate the effect of symmetrical, asymmetrical and unilateral hearing impairment on music quality perception. Six validated music pieces in the categories of classical music, folk music and pop music were used to assess music quality in terms of its 'pleasantness', 'naturalness', 'fullness', 'roughness' and 'sharpness'. 58 participants with sensorineural hearing loss [20 with unilateral hearing loss (UHL), 20 with bilateral symmetrical hearing loss (BSHL) and 18 with bilateral asymmetrical hearing loss (BAHL)] and 29 normal hearing (NH) subjects participated in the present study. Hearing impaired (HI) participants had greater difficulty in overall music quality perception than NH participants. Participants with BSHL rated music pleasantness and naturalness to be higher than participants with BAHL. Moreover, the hearing thresholds of the better ears from BSHL and BAHL participants as well as the hearing thresholds of the worse ears from BSHL participants were negatively correlated to the pleasantness and naturalness perception. HI participants rated the familiar music pieces higher than unfamiliar music pieces in the three music categories. Music quality perception in participants with hearing impairment appeared to be affected by symmetry of hearing loss, degree of hearing loss and music familiarity when they were assessed using the music quality rating test (MQRT). This indicates that binaural symmetrical hearing is important to achieve a high level of music quality perception in HI listeners. This emphasizes the importance of provision of bilateral hearing assistive devices for people with asymmetrical hearing impairment. PMID:26611684

  5. Effects of surface perturbations on the asymmetric vortex flow over a slender body

    NASA Technical Reports Server (NTRS)

    Moskovitz, Cary A.; Dejarnette, Fred R.; Hall, Robert M.

    1988-01-01

    An experimental investigation of the effects of surface perturbations on the asymmetric flow past a slender body has been conducted for laminar flow conditions. Beads with diameters ranging from 3/32 to 12/32 in. were attached near the apex of a cone/cylinder model having a base diameter of 3.5 in. and a cone semiapex angle of 9 deg at an angle of attack of 40 deg in an attempt to alter the sense of the asymmetric vortex flow pattern. Circumferential position as well as longitudinal location were varied to determine the most effective bead position. Whether or not the beads were effective in controlling the magnitude and direction of the vortex asymmetries was determined by 3 circumferential rows of pressure taps and by a helium-bubble flow visualization technique. The most effective circumferential position was found to be approximately 140 deg from the windward ray. While holding this circumferential position constant, the effect of bead size at three stations further along the body was also investigated. It was found that the size of the bead necessary to reverse the asymmetry increased more rapidly than the growth in cylinder radius. In general, these results indicate that discrete geometric imperfections on a body's surface can force asymmetry in a given direction if they are sufficiently large relative to the local radius.

  6. The effects of asymmetric competition on the life history of Trinidadian guppies.

    PubMed

    Bassar, Ronald D; Childs, Dylan Z; Rees, Mark; Tuljapurkar, Shripad; Reznick, David N; Coulson, Tim

    2016-03-01

    The effects of asymmetric interactions on population dynamics has been widely investigated, but there has been little work aimed at understanding how life history parameters like generation time, life expectancy and the variance in lifetime reproductive success are impacted by different types of competition. We develop a new framework for incorporating trait-mediated density-dependence into size-structured models and use Trinidadian guppies to show how different types of competitive interactions impact life history parameters. Our results show the degree of symmetry in competitive interactions can have dramatic effects on the speed of the life history. For some vital rates, shifting the competitive superiority from small to large individuals resulted in a doubling of the generation time. Such large influences of competitive symmetry on the timescale of demographic processes, and hence evolution, highlights the interwoven nature of ecological and evolutionary processes and the importance of density-dependence in understanding eco-evolutionary dynamics. PMID:26843397

  7. A global analysis of the asymmetric effect of ENSO on extreme precipitation

    NASA Astrophysics Data System (ADS)

    Sun, Xun; Renard, Benjamin; Thyer, Mark; Westra, Seth; Lang, Michel

    2015-11-01

    The global and regional influence of the El Niño-Southern Oscillation (ENSO) phenomenon on extreme precipitation was analyzed using a global database comprising over 7000 high quality observation sites. To better quantify possible changes in relatively rare design-relevant precipitation quantiles (e.g. the 1 in 10 year event), a Bayesian regional extreme value model was used, which employed the Southern Oscillation Index (SOI) - a measure of ENSO - as a covariate. Regions found to be influenced by ENSO include parts of North and South America, southern and eastern Asia, South Africa, Australia and Europe. The season experiencing the greatest ENSO effect varies regionally, but in most of the ENSO-affected regions the strongest effect happens in boreal winter, during which time the 10-year precipitation for |SOI| = 20 (corresponding to either a strong El Niño or La Niña episode) can be up to 50% higher or lower than for SOI = 0 (a neutral phase). Importantly, the effect of ENSO on extreme precipitation is asymmetric, with most parts of the world experiencing a significant effect only for a single ENSO phase. This finding has important implications on the current understanding of how ENSO influences extreme precipitation, and will enable a more rigorous theoretical foundation for providing quantitative extreme precipitation intensity predictions at seasonal timescales. We anticipate that incorporating asymmetric impacts of ENSO on extreme precipitation will help lead to better-informed climate-adaptive design of flood-sensitive infrastructure.

  8. Postural effects of symmetrical and asymmetrical loads on the spines of schoolchildren.

    PubMed

    Negrini, Stefano; Negrini, Alberto

    2007-01-01

    The school backpack constitutes a daily load for schoolchildren: we set out to analyse the postural effects of this load, considering trunk rotation, shoulder asymmetry, thoracic kyphosis, lumbar lordosis, and sagittal and frontal decompensation from the plumbline. A group of 43 subjects (mean age = 12.5 +/- 0.5 years) were considered: average backpack loads and average time spent getting to/from home/school (7 min) had been determined in a previous study conducted on this population. Children were evaluated by means of an optoelectronic device in different conditions corresponding to their usual everyday school backpack activities: without load; bearing 12 (week maximum) and 8 (week average) kg symmetrical loads; bearing an 8 kg asymmetrical load; after fatigue due to backpack carrying (a 7-minute treadmill walking session bearing an 8 kg symmetrical load). Both types of load induce changes in posture: the symmetrical one in the sagittal plane, without statistical significant differences between 8 and 12 kg, and the asymmetrical one in all anatomical planes. Usual fatigue accentuates sagittal effects, but recovery of all parameters (except lumbar lordosis) follows removal of the load. The backpack load effect on schoolchildren posture should be more carefully evaluated in the future, even if we must bear in mind that laws protect workers to carry heavy loads but not children, and results in the literature support the hypothesis that back pain in youngsters is correlated with back pain in adulthood. PMID:17620121

  9. The Asymmetric Piers Hydrosilylation.

    PubMed

    Süsse, Lars; Hermeke, Julia; Oestreich, Martin

    2016-06-01

    An axially chiral, cyclic borane decorated with just one C6F5 group at the boron atom promotes the highly enantioselective hydrosilylation of acetophenone derivatives without assistance of an additional Lewis base (up to 99% ee). The reaction is an unprecedented asymmetric variant of Piers' B(C6F5)3-catalyzed carbonyl hydrosilylation. The steric congestion imparted by the 3,3'-disubstituted binaphthyl backbone of the borane catalyst as well as the use of reactive trihydrosilanes as reducing agents are keys to success. PMID:27212565

  10. Effect of asymmetric force on the condylar cartilage, subchondral bone and collagens in the temporomandibular joints.

    PubMed

    Zhang, Caixia; Xu, Yue; Cheng, Yangxi; Wu, Tuojiang; Li, Huang

    2015-04-01

    This study aimed to define the effects of asymmetric force on rat temporomandibular joints (TMJs). A total of 232 10-week-old rats were used in the experiment. Their left TMJs were kept forward and upward with 40g or 120g. The histological and osteogenic changes, as well as the expression of type I, II and III collagens were observed. Our results showed that the curve of the cartilage thickness changes in the anterior part of the treated side in the heavy force group (HS) decreased first and increased later during the strength and the recovery periods, while the reverse changes were shown in the middle and posterior parts. The cartilage thickness change on the other side in the heavy force group (HO) was the opposite. Additionally, the cartilage thickness change on the treated side and the other side of the light force group (LS and LO) were similar to but not as significantly changed as HS and HO. There were significant differences among the experimental groups. The subchondral bone trabecula also decreased after the pressure loading and removing, then recovered, without significant differences among these groups. Furthermore, more pathological changes such as fractures, bone cysts, the degradation of type II collagen and the increased expression of type III collagen were observed on the treated sides following the application of heavy force. In contrast, more osteogenesis and more active changes were found in the light force group. In conclusion, our study demonstrated that asymmetric force exerted different effects on the cartilage, subchondral bone and collagens of TMJs. Greater changes occurred in the heavy force group, and light force provided more benefits for TMJs remodelling. PMID:25703817

  11. Effects of asymmetric nanostructures on the extinction difference properties of actin biomolecules and filaments

    PubMed Central

    Khoo, E. H.; Leong, Eunice S. P.; Wu, S. J.; Phua, W. K.; Hor, Y. L.; Liu, Y. J.

    2016-01-01

    In this paper, symmetric and asymmetric tapering on the arms of the gammadion nanostructure is proposed to enhance both local field distribution and extinction difference (ED). The asymmetric tapered gammadion with tapering fraction (TF) of 0.67 is seen to have the largest ED and spatial local field distribution, producing a large wavelength shift of more than 50 percent as compared to the untapered gammadion nanostructures when immersed in a solution of actin molecules and filaments. The optical chirality, ζ shows that the larger local field amplitudes produced by the asymmetric designs increases the rate of chiral molecules excitation. This enhanced field is strongly rotating and highly sensitive to single molecules and larger filaments. Here, we show that the ED, optical chirality, sensitivity and rate of chiral molecules excitation can be improved by incorporating asymmetric designs into chiral gammadion nanostructures through tapering. PMID:26792371

  12. Effects of asymmetric nanostructures on the extinction difference properties of actin biomolecules and filaments

    NASA Astrophysics Data System (ADS)

    Khoo, E. H.; Leong, Eunice S. P.; Wu, S. J.; Phua, W. K.; Hor, Y. L.; Liu, Y. J.

    2016-01-01

    In this paper, symmetric and asymmetric tapering on the arms of the gammadion nanostructure is proposed to enhance both local field distribution and extinction difference (ED). The asymmetric tapered gammadion with tapering fraction (TF) of 0.67 is seen to have the largest ED and spatial local field distribution, producing a large wavelength shift of more than 50 percent as compared to the untapered gammadion nanostructures when immersed in a solution of actin molecules and filaments. The optical chirality, ζ shows that the larger local field amplitudes produced by the asymmetric designs increases the rate of chiral molecules excitation. This enhanced field is strongly rotating and highly sensitive to single molecules and larger filaments. Here, we show that the ED, optical chirality, sensitivity and rate of chiral molecules excitation can be improved by incorporating asymmetric designs into chiral gammadion nanostructures through tapering.

  13. Finite gyroradius effects in the electron outflow of asymmetric magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Norgren, C.; Graham, D. B.; Khotyaintsev, Yu. V.; André, M.; Vaivads, A.; Chen, L.-J.; Lindqvist, P.-A.; Marklund, G. T.; Ergun, R. E.; Magnes, W.; Strangeway, R. J.; Russell, C. T.; Torbert, R. B.; Paterson, W. R.; Gershman, D. J.; Dorelli, J. C.; Avanov, L. A.; Lavraud, B.; Saito, Y.; Giles, B. L.; Pollock, C. J.; Burch, J. L.

    2016-07-01

    We present observations of asymmetric magnetic reconnection showing evidence of electron demagnetization in the electron outflow. The observations were made at the magnetopause by the four Magnetospheric Multiscale (MMS) spacecraft, separated by ˜15 km. The reconnecting current sheet has negligible guide field, and all four spacecraft likely pass close to the electron diffusion region just south of the X line. In the electron outflow near the X line, all four spacecraft observe highly structured electron distributions in a region comparable to a few electron gyroradii. The distributions consist of a core with T∥>T⊥ and a nongyrotropic crescent perpendicular to the magnetic field. The crescents are associated with finite gyroradius effects of partly demagnetized electrons. These observations clearly demonstrate the manifestation of finite gyroradius effects in an electron-scale reconnection current sheet.

  14. The development of the asymmetrically dominated decoy effect in young children

    PubMed Central

    Zhen, Shanshan; Yu, Rongjun

    2016-01-01

    One classic example of context-independent violations is the asymmetrically dominated decoy effect, in which adding a decoy option (inferior option) to a set of original options often increases the individual’s preference for one option over the other original option. Despite the prevalence of this effect, little is known about its developmental origins. Moreover, it remains contentious whether the decoy effect is a result of biological evolution or is learned from social experience. Here, we investigated the decoy effect in 3- to 7-year-old children (n = 175) and young adults (n = 52) using a simple perceptual task. Results showed that older children (5-year-olds and 7-year-olds), but not younger children (3-year-olds), exhibited a decoy effect. Nevertheless, children as young as age 5 exhibited a decoy effect that was not significantly different from that shown by young adults. These findings suggest that humans start to appreciate the relative values of options at around age 5. PMID:26935899

  15. Effects of asymmetric sitting on spinal balance

    PubMed Central

    Woo, Hee Soon; Oh, Jong Chi; Won, Sung Yoon

    2016-01-01

    [Purpose] To investigate the effects of two common asymmetric sitting positions on spinal balance. [Subjects and Methods] Thirty-seven healthy subjects in their twenties were enrolled and randomly divided into two groups. Asymmetric positions of resting the chin on a hand and crossing the legs were performed by each group for 1 hour. After 1 hour, the subjects lay in the supine position again and spinal imbalance was measured using a device. [Results] After 1 hour of resting with the chin on a hand, sagittal imbalance, coronal imbalance, pelvic obliquity and lordosis angle presented spinal imbalance worsening of 1 hour of crossing legs, sagittal imbalance, pelvic torsion showed in mainly learned spinal imbalance living. [Conclusion] Good posture could be an innate ability, however it through habits. So this study is meaningful from the perspective of the importance of good posture. PMID:27065291

  16. Analysis of the effects of asymmetric faults in three-phase superconducting inductive fault current limiters

    NASA Astrophysics Data System (ADS)

    Ferreira, R.; Pina, J. M.; Vilhena, N.; Arsénio, P.; Pronto, A. G.; Martins, J.

    2014-05-01

    Inductive fault current limiters of magnetic shielding type can be described in terms of the excursion in the plane defined by flux linked with primary and line current, and this methodology has been previously applied to single-phase devices. Practical applications, however, require three-phase limiters, which, for the sake of compactness, may be built by three legged cores, instead of three single phase units. This has the advantage of using well established methods of power transformers industry, but the performance of the devices depends on the type of fault, e.g. phase to ground or phase to phase. For instance, in a three legged core, a phase to ground fault affects healthy phases, and these are the most frequent faults in distribution grids, where such systems are envisaged. The effects of asymmetric faults are analysed in this paper, by means of measured excursions in the linked flux-current plane.

  17. Flapping flight: effect of asymmetric kinematics

    NASA Astrophysics Data System (ADS)

    Pande, Nakul; Krithivasan, Siddharth; K. R., Sreenivas

    2014-11-01

    Flapping flight has received considerable attention in the past with its relevance in the design of micro-air vehicles. In this regard, asymmetric flapping of wings offers simple kinematics. Nevertheless, it leads to symmetry-breaking in the flow field and generation of sustained lift. It has been observed previously with flow visualization experiments and Discrete Vortex Method (DVM) simulations that if the down-stroke time period is lesser than the up-stroke time, there is a net downward momentum imparted to the fluid. This is seen as a switching the flow field from a four-jet (symmetric) to a two-jet (asymmetric) configuration when the stroke-time ratio is progressively varied. This symmetry breaking has been studied experimentally using Particle Image Velocimetry (PIV) across a range of Reynolds Numbers and asymmetry ratios. Results are also corroborated with results from 3-D numerical simulations. Study helps in shedding light on the effectiveness of asymmetric kinematics as a lift generation mechanism.

  18. The asymmetric effect of stress in the morphological instability of a growing thin film

    NASA Astrophysics Data System (ADS)

    Yu, Hong-Hui

    2005-09-01

    Many experiments have shown that films growing under tensile stress and compressive stress have different morphological instability behaviours. Departing from earlier theoretical works, which treated surface diffusion as the only kinetic process for bringing out the morphology change and assumed uniform growth rate along the surface, this paper studies the coupling between the deposition process and surface diffusion, to offer another possible mechanism for the asymmetric effect of stress. A nonlinear kinetic law, in which the activation energy of growth process is modified by local stress, is adopted. Linear stability analysis shows that if the growth rate is enhanced by tensile stress while being slowed by compressive stress, the surface instability, for a growing film under tension, could either be fully suppressed for perturbations of any wavelength, or occurs only when the wavelength is within an intermediate range; if the film is under compressive stress, the instability behaviour is similar to that obtained from considering surface diffusion alone, but with different amplitude on growth rate. Two characteristic lengths, one characterizing the competition between surface energy increase and strain energy reduction and the other representing the competition between surface diffusion and growth process, are identified. The thin film instability behaviour is largely determined by the ratio of these two lengths.

  19. The Effect of Asymmetrical Sample Training on Retention Functions for Hedonic Samples in Rats

    ERIC Educational Resources Information Center

    Simmons, Sabrina; Santi, Angelo

    2012-01-01

    Rats were trained in a symbolic delayed matching-to-sample task to discriminate sample stimuli that consisted of the presence of food or the absence of food. Asymmetrical sample training was provided in which one group was initially trained with only the food sample and the other group was initially trained with only the no-food sample. In…

  20. A new approach to extracting the RF parameters of asymmetric DG MOSFETs with the NQS effect

    NASA Astrophysics Data System (ADS)

    Pati, Sudhansu Kumar; Koley, Kalyan; Dutta, Arka; Mohankumar, N.; Sarkar, Chandan Kumar

    2013-11-01

    In analog circuit design an important parameter, from the perspective of superior device performance, is linearity. The DG MOSFET in asymmetric mode operation has been found to present a better linearity. In addition to that it provides, at the discretion of analog circuit designer, an additional degree of freedom, by providing independent bias control for the front and the back gates. Here a non-quasi-static (NQS) small signal model for DGMOSFET with asymmetric gate bias is proposed for extracting the parameters of the device using TCAD simulations. The parameters extracted here for analysis are the intrinsic front and back gate to drain capacitance, Cgd1 and Cgd2, the intrinsic front and back distributed channel resistance, Rgd1 and Rgd2 respectively, the transport delay, τm, and the inductance, Lsd. The parameter extraction model for an asymmetric DG MOSFET is validated with pre-established extracted parameter data, for symmetric DG MOSFET devices, from the available literature. The device simulation is performed with respect to frequency up to 100 GHz.

  1. The cosmology of asymmetric brane modified gravity

    SciTech Connect

    O'Callaghan, Eimear; Gregory, Ruth; Pourtsidou, Alkistis E-mail: ppxap1@nottingham.ac.uk

    2009-09-01

    We consider the asymmetric branes model of modified gravity, which can produce late time acceleration of the universe and compare the cosmology of this model to the standard ΛCDM model and to the DGP braneworld model. We show how the asymmetric cosmology at relevant physical scales can be regarded as a one-parameter extension of the DGP model, and investigate the effect of this additional parameter on the expansion history of the universe.

  2. Asymmetric dark matter and effective number of neutrinos

    NASA Astrophysics Data System (ADS)

    Kitabayashi, Teruyuki; Kurosawa, Yoshihiro

    2016-02-01

    We study the effect of the MeV-scale asymmetric dark matter annihilation on the effective number of neutrinos Neff at the epoch of the big bang nucleosynthesis. If the asymmetric dark matter χ couples more strongly to the neutrinos ν than to the photons γ and electrons e-, Γχ γ ,χ e≪Γχ ν , or Γχ γ ,χ e≫Γχ ν, the lower mass limit on the asymmetric dark matter is about 18 MeV for Neff≃3.0 .

  3. Ferroelectricity and tunneling electroresistance effect in asymmetric ferroelectric tunnel junctions

    NASA Astrophysics Data System (ADS)

    Tao, L. L.; Wang, J.

    2016-06-01

    We report the investigation on the ferroelectricity and tunneling electroresistance (TER) effect in PbTiO3 (PTO)-based ferroelectric tunnel junctions (FTJs) using first-principles calculations. For symmetric FTJs, we have calculated the average polarizations of PTO film and effective screening lengths of different metal electrodes for a number of FTJs, which is useful for experimental research. For asymmetric FTJs, significant asymmetric ferroelectric displacements in PTO film are observed, which is attributed to the intrinsic field generated by the two dissimilar electrodes. Moreover, by performing quantum transport calculations on those asymmetric FTJs, a sizable TER effect is observed. It is found that the asymmetry of ferroelectric displacements in PTO barrier, which is determined by the difference of work functions of the electrodes, controls the observed TER effect. Our results will help unravel the TER mechanism of asymmetric FTJs in most experiments and will be useful for the designing of FTJ-based devices.

  4. The effect of temperature on the asymmetrical charge movement in squid giant axons.

    PubMed Central

    Kimura, J E; Meves, H

    1979-01-01

    1. Asymmetrical displacement currents ('gating currents') have been recorded in intracellularly perfused squid giant axons by averaging the currents associated with depolarizing and hyperpolarizing voltage pulses. The effect of temperature on 'gating currents' was studied and compared with the effect of temperature on Na currents. 2. Increasing the temperature in seven steps from 0 to 15 degrees C increased the area under the on- and off-response (Qon, Qoff). The average Q10 values for Qon and Qoff (measured with depolarizing pulses to 0 to 20 mV) were 1.41 and 1.62, respectively. 3. The on- and the off-response were described mathematically by the sum of two exponentials. The first component of the on-response, Qon 1, represented 80% or more of the total charge movement associated with 2.5 msec pulses; the Q10 of Qon 1 was similar to that of total Qon. The first component of the off-response, Qoff 1, represented 50--70% of total Qoff; its Q10 was smaller than that of total Qoff. 4. The temperature dependence of the rate constants (tauon 1)-1 and (tauoff 1)-1 was stronger at temperatures below 6--8 degrees C (Q10 = 3.1--6.4) than at higher temperatures (Q10 = 2.0--3.3). In an Arrhenius plot two lines of different slope were required to fit the data. 5. The effect of increasing the temperature on the Q vs. V curve can be described as an increase of Qmax or, alternatively, as a shift of the curve to more negative potentials. 6. Increasing the temperature from 0 to 15 degrees C increased the peak of the Na current (recorded in sea water with a fifth of the normal Na concentration), increased the rate constants taum-1 and tauh-1 and shifted the m3infinity and hinfinity curves to more positive potentials. 7. The Q10 of the rate constant taum-1 varied between 2.04 and 2.61 and was independent of temperature. In an Arrhenius plot the values for taum-1 could be fitted by a single line. 8. The results support the view that 'gating current' does not simply reflect changes of

  5. Effect of coagulant bath on the gas permeation properties of cellulose acetate asymmetric membrane

    NASA Astrophysics Data System (ADS)

    Mohamed, F.; Hasbullah, H.; Jami'an, W. N. R.; Salleh, W. N. H. W.; Ibrahim, N.; Ali, R. R.

    2016-06-01

    Membrane based gas separation process technology has been recognized as one of the most efficient and advanced unit operation for gas separation. One of the problems in membrane gas separation is membrane performance. This paper explores the application of cellulose acetate (CA) membrane for natural gas purification and separation by improving its permeability and selectivity. The main interest in this research is to study the effect of quench medium on the gas separation performance towards its physical characteristics and gas separation performance of CA membrane. Cellulose acetate polymer was dissolved in n- methyl-2-pyrrolidone solvent and casted onto a glass plate using a pneumatically controlled casting system with fixed shear rate and solvent evaporation times. The parameter varied was the non-solvent used as quench medium during membrane post treatment that were methanol and n-hexane. The different quench media as post treatment affected the O2 and N2 gas permeation and O2/N2 selectivity as well as the tensile strength of the flat sheet asymmetric membrane. Combination of methanol and n-hexane as quench media gave the best result than the other steps. This solvent exchange step influenced the morphology by producing thin skin layer and thus gives better gas separation performance than other steps

  6. Asymmetric airflow and vibration induced by the Coanda effect in a symmetric model of the vocal folds.

    PubMed

    Tao, Chao; Zhang, Yu; Hottinger, Daniel G; Jiang, Jack J

    2007-10-01

    A model constructed from Navier-Stokes equations and a two-mass vocal fold description is proposed in this study. The composite model not only has the capability to describe the aerodynamics in a vibratory glottis but also can be used to study the vocal fold vibration under the driving of the complex airflow in the glottis. Numerical simulations show that this model can predict self-oscillations of the coupled glottal aerodynamics and vocal fold system. The Coanda effect could occur in the vibratory glottis even though the vocal folds have left-right symmetric prephonatory shape and tissue properties. The Coanda effect causes the asymmetric flow in the glottis and the difference in the driving force on the left and right vocal folds. The different pressures applied to the left and right vocal folds induce their displacement asymmetry. By using various lung pressures (0.6-2.0 kPa) to drive the composite model, it was found that the asymmetry of the vocal fold displacement is increased from 1.87% to 11.2%. These simulation results provide numerical evidence for the presence of asymmetric flow in the vibratory glottis; moreover, they indicate that glottal aerodynamics is an important factor in inducing the asymmetric vibration of the vocal folds. PMID:17902863

  7. Examining the asymmetrical effects of goal faultlines in groups: a categorization-elaboration approach.

    PubMed

    Ellis, Aleksander P J; Mai, Ke Michael; Christian, Jessica Siegel

    2013-11-01

    The purpose of this study was to use the categorization-elaboration model (CEM) to examine the asymmetrical effects of goal faultlines in groups, which are present when hypothetical dividing lines are created on the basis of different performance goals, splitting the group into subgroups. On the basis of the CEM, we expected groups with goal faultlines to exhibit higher levels of creative task performance than (a) groups with specific, difficult goals and (b) groups with do-your-best goals. We expected the benefits of goal faultlines to be due to increases in reflective reframing, which occurs when group members build on each other's ideas by shifting to alternate frames. However, we expected groups with goal faultlines to exhibit lower levels of routine task performance than (a) groups with do-your-best goals and (b) groups with specific, difficult goals, due to increased perceptions of loafing. Results from 87 groups generally supported our hypothesized model. Implications are discussed as well as possible limitations and directions for future research. PMID:23855916

  8. How dieting makes some fatter: from a perspective of human body composition autoregulation.

    PubMed

    Dulloo, Abdul G; Jacquet, Jean; Montani, Jean-Pierre

    2012-08-01

    Dieting makes you fat - the title of a book published in 1983 - embodies the notion that dieting to control body weight predisposes the individual to acquire even more body fat. While this notion is controversial, its debate underscores the large gap that exists in our understanding of basic physiological laws that govern the regulation of human body composition. A striking example is the key role attributed to adipokines as feedback signals between adipose tissue depletion and compensatory increases in food intake. Yet, the relative importance of fat depletion per se as a determinant of post-dieting hyperphagia is unknown. On the other hand, the question of whether the depletion of lean tissues can provide feedback signals on the hunger-appetite drive is rarely invoked, despite evidence that food intake during growth is dominated by the impetus for lean tissue deposition, amidst proposals for the existence of protein-static mechanisms for the regulation of growth and maintenance of lean body mass. In fact, a feedback loop between fat depletion and food intake cannot explain why human subjects recovering from starvation continue to overeat well after body fat has been restored to pre-starvation values, thereby contributing to 'fat overshooting'. In addressing the plausibility and mechanistic basis by which dieting may predispose to increased fatness, this paper integrates the results derived from re-analysis of classic longitudinal studies of human starvation and refeeding. These suggest that feedback signals from both fat and lean tissues contribute to recovering body weight through effects on energy intake and thermogenesis, and that a faster rate of fat recovery relative to lean tissue recovery is a central outcome of body composition autoregulation that drives fat overshooting. A main implication of these findings is that the risk of becoming fatter in response to dieting is greater in lean than in obese individuals. PMID:22475574

  9. Gibbs-Tolman approach to the curved interface effects in asymmetric nuclei

    NASA Astrophysics Data System (ADS)

    Kolomietz, V. M.; Sanzhur, A. I.

    2013-10-01

    We redefine the surface tension coefficient and the surface symmetry energy for an asymmetric nuclear Fermi-liquid drop with a finite diffuse layer. Considering a two-component charged Fermi-liquid drop and following the Gibbs-Tolman concept, we introduce the equimolar radius Re of a sharp-surface droplet at which the surface tension is applied and the radius of the tension surface Rs (Laplace radius) which provides the minimum of the surface tension coefficient σ. We have shown that the nuclear Tolman length ξ is negative and the modulus of ξ grows quadratically with the asymmetry parameter X=(N-Z)/(N+Z).

  10. Ion size effects on the osmotic pressure and electrocapillarity in a nanoslit: Symmetric and asymmetric ion sizes

    NASA Astrophysics Data System (ADS)

    Rajni; Oh, J. M.; Kang, I. S.

    2016-06-01

    We analyze the effect of asymmetric finite ion size in nanoconfinement in the view of osmotic pressure and electrocapillarity. When the confinement width becomes comparable with the Debye length, the overlapped electric double layer is significantly deformed by the steric effects. We derive the osmotic pressure from the modified Poisson-Boltzmann equation in a nanoslit to examine the deviation from the ideal osmotic pressure and the repulsive force on the wall considering the asymmetry of ion sizes. Then the electrocapillarity due to the steric effect is investigated under constant potential condition with the flat interface assumption. Later, the deformation by the electrocapillarity is also considered in the first order approximation.

  11. Ion size effects on the osmotic pressure and electrocapillarity in a nanoslit: Symmetric and asymmetric ion sizes.

    PubMed

    Rajni; Oh, J M; Kang, I S

    2016-06-01

    We analyze the effect of asymmetric finite ion size in nanoconfinement in the view of osmotic pressure and electrocapillarity. When the confinement width becomes comparable with the Debye length, the overlapped electric double layer is significantly deformed by the steric effects. We derive the osmotic pressure from the modified Poisson-Boltzmann equation in a nanoslit to examine the deviation from the ideal osmotic pressure and the repulsive force on the wall considering the asymmetry of ion sizes. Then the electrocapillarity due to the steric effect is investigated under constant potential condition with the flat interface assumption. Later, the deformation by the electrocapillarity is also considered in the first order approximation. PMID:27415363

  12. Improving the field-effect performance of Bi2S3 single nanowires by an asymmetric device fabrication.

    PubMed

    Lu, Fangyuan; Li, Renxiong; Li, Yan; Huo, Nengjie; Yang, Juehan; Li, Yongtao; Li, Bo; Yang, Shengxue; Wei, Zhongming; Li, Jingbo

    2015-01-12

    High-quality Bi2 S3 nanowires are synthesized by chemical vapor deposition and their intrinsic photoresponsive and field-effect characteristics are explored in detail. Among the studied Au-Au, Ag-Ag, and Au-Ag electrode pairs, the device with stepwise band alignment of asymmetric Au-Ag electrodes has the highest mobility. Furthermore, it is shown that light can cause a sevenfold decrease of the on/off ratio. This can be explained by the photoexcited charge carriers that are more beneficial to the increase of Ioff than Ion . The photoresponsive properties of the asymmetric Au-Ag electrode devices were also explored, and the results show a photoconductive gain of seven with a rise time of 2.9 s and a decay time of 1.6 s. PMID:25294685

  13. Exploring the effects of seated whole body vibration exposure on repetitive asymmetric lifting tasks.

    PubMed

    Mehta, Jay P; Lavender, Steven A; Jagacinski, Richard J; Sommerich, Carolyn M

    2015-01-01

    This study investigated changes in the physiological and behavioral responses to repetitive asymmetric lifting activity after exposure to whole body vibrations. Seventeen healthy volunteers repeatedly lifted a box (15% of lifter's capacity) positioned in front of them at ankle level to a location on their left side at waist level at the rate of 10 lifts/min for a period of 60 minutes. Prior to lifting, participants were seated on a vibrating platform for 60 minutes; in one of the two sessions the platform did not vibrate. Overall, the physiological responses assessed using near-infrared spectroscopy signals for the erector spinae muscles decreased significantly over time during the seating and the lifting tasks (p < 0.001). During repetitive asymmetric lifting, behavioral changes included increases in peak forward bending motion, twisting movement, and three-dimensional movement velocities of the spine. The lateral bending movement of the spine and the duration of each lift decreased significantly over the 60 minutes of repetitive lifting. With exposure to whole body vibration, participants twisted farther (p = 0.046) and twisted faster (p = 0.025). These behavioral changes would suggest an increase in back injury risk when repetitive lifting tasks are preceded by whole body vibration exposure. PMID:25264920

  14. Effects of asymmetric cultural experiences on the auditory pathway: evidence from music.

    PubMed

    Wong, Patrick C M; Perrachione, Tyler K; Margulis, Elizabeth Hellmuth

    2009-07-01

    Cultural experiences come in many different forms, such as immersion in a particular linguistic community, exposure to faces of people with different racial backgrounds, or repeated encounters with music of a particular tradition. In most circumstances, these cultural experiences are asymmetric, meaning one type of experience occurs more frequently than other types (e.g., a person raised in India will likely encounter the Indian todi scale more so than a Westerner). In this paper, we will discuss recent findings from our laboratories that reveal the impact of short- and long-term asymmetric musical experiences on how the nervous system responds to complex sounds. We will discuss experiments examining how musical experience may facilitate the learning of a tone language, how musicians develop neural circuitries that are sensitive to musical melodies played on their instrument of expertise, and how even everyday listeners who have little formal training are particularly sensitive to music of their own culture(s). An understanding of these cultural asymmetries is useful in formulating a more comprehensive model of auditory perceptual expertise that considers how experiences shape auditory skill levels. Such a model has the potential to aid in the development of rehabilitation programs for the efficacious treatment of neurologic impairments. PMID:19673772

  15. Effects of nose bluntness, roughness, and surface perturbations on the asymmetric flow past slender bodies at large angles of attack

    NASA Technical Reports Server (NTRS)

    Moskovitz, Cary A.; Dejarnette, F. R.; Hall, Robert M.

    1989-01-01

    The effects of such geometric perturbations as variations of model-tip sharpness and roughness, as well as discrete surface perturbations, on the asymmetric flow past slender bodies is experimentally investigated for the cases of a cone/cylinder model having a 10-deg semiapex angle and a 3.0-caliber tangent ogive model. Both models have base diameters of 3.5 inches, and were tested in laminar flow conditions at angles-of-attack in the 30-60 deg range. Single, discrete roughness elements were represented by beads; bead effectiveness was judged on the basis of the extent to which they affected the flowfield in various conditions.

  16. The Effect of Asymmetric Mechanical and Thermal Loading on Membrane Wrinkling

    NASA Technical Reports Server (NTRS)

    Blandino, Joseph R.; Johnston, John D.; Miles, Jonathan J.; Dharamsi, Urmil K.; Brodeur, Stephen J. (Technical Monitor)

    2002-01-01

    Large, tensioned membranes are being considered for future gossamer spacecraft systems. Examples include sunshields, solar sails, and membrane optics. In many. cases a relatively flat membrane with minimal wrinkling is desired. Developing methods to predict and measure membrane wrinkling is important to the future development of gossamer spacecraft. Numerical and experimental data are presented for a 0.5 m square, tensioned membrane. The membrane is subjected to symmetric and asymmetric mechanical loading. Data are also presented for a symmetrically loaded membrane subjected to spot heating in the center. The numerical model shows good agreement with the experiment for wrinkle angle data. There is. also reasonable agreement for the wrinkled area for both isothermal and elevated temperature tests.

  17. Asymmetric effect of automatic deviant detection: The effect of familiarity in visual mismatch negativity.

    PubMed

    Sulykos, István; Kecskés-Kovács, Krisztina; Czigler, István

    2015-11-11

    The visual mismatch negativity (vMMN) component is regarded as a prediction error signal elicited by events violating the sequential regularities of environmental stimulation. The aim of the study was to investigate the effect of familiarity on the vMMN. Stimuli were patterns comprised of familiar (N) or unfamiliar (И) letters. In a passive oddball paradigm, letters (N and И) were presented as either standard or deviant in separate conditions. VMMNs emerged in both conditions; peak latency of vMMN was shorter to the И deviant compared to the vMMN elicited by the N deviant. To test the orientation-specific effect of the oblique lines on the vMMN, we introduced a control experiment. In the control experiment, the patterns were constructed solely from oblique lines, identical to the oblique lines of the N and И stimuli. Contrary to the first experiment, there was no significant difference between the vMNNs elicited by the two orientations. Therefore, the differences in vMMNs to И and N deviants are not attributable to the physical difference between the И and N stimuli. Consequently, the vMMN is sensitive to the familiarity of the stimuli. This article is part of a Special Issue entitled SI: Prediction and Attention. PMID:25724142

  18. The effect of asymmetric heating on flow stability and heat transfer for flow in a vertical tube

    SciTech Connect

    Tappan, C.H.

    1987-11-01

    This study presents experimental results of combined free and forced convection heat transfer in a vertical tube with a circumferentially nonuniform constant wall heat flux. The effect of an asymmetric wall heat flux on flow stability and on the rate of heat transfer for water flowing downward in a vertical tube was investigated. Experimental results were used to develop two stability maps which identify various flow regimes, corresponding to different thermal and hydraulic conditions. Heat transfer coefficients were also determined. Experimental results in the present investigation were compared to those with uniform heating in horizontal and vertical tube flow situations discussed in the literature. 23 refs., 12 figs., 1 tab.

  19. Diverse interface effects on ferroelectricity and magnetoelectric coupling in asymmetric multiferroic tunnel junctions: the role of the interfacial bonding structure.

    PubMed

    Liu, X T; Chen, W J; Jiang, G L; Wang, B; Zheng, Yue

    2016-01-28

    Interface and size effects on electric/magnetic orders and magnetoelectric coupling are vital in the modern application of quantum-size functional devices based on multiferroic tunnel junctions. In order to give a comprehensive study of the interface and size effects, the properties of a typical asymmetric multiferroic tunnel junction, i.e., Fe/BaTiO3/Co, have been calculated using the first-principles simulations. Most importantly, all of the eight possible structures with four combinations of electrode/ferroelectric interfaces (i.e., Fe/BaO, Fe/TiO2, Co/BaO and Co/TiO2) and a series of barrier thicknesses have been taken into account. In this work, the equilibrium configurations, polarization, charge density, spin density and magnetic moments, etc., have been completely simulated and comprehensively analyzed. It is found that the ferroelectric stability is determined as a competition outcome of the strength of short-range chemical bondings and long-range depolarization/built-in fields. M/BaO (M = magnetic metal) terminations show an extraordinary enhancement of local polarization near the interface and increase the critical thickness of ferroelectricity. The bistability of polarization is well kept at the M/TiO2 interface. At the same time, the induced magnetic moment on atoms at the interfaces is rather localized and dominated by the local interfacial configuration. Reversing electric polarization can switch the induced magnetic moments, wherein atoms in M-O-Ti and M-Ti-O chains show preference for being magnetized. In addition, the difference between the sum of the interfacial magnetic moments is also enlarged with the increase of the barrier thickness. Our study provides a comprehensive and detailed reference to the manipulation and utilization of the interface, size and magnetoelectric effects in asymmetric multiferroic tunnel junctions. PMID:26732894

  20. Exploring perception-action relations in music production: The asymmetric effect of tonal class.

    PubMed

    Jebb, Andrew T; Pfordresher, Peter Q

    2016-05-01

    When playing musical passages, performers integrate the pitch content of auditory feedback with current action plans. However, this process depends on the degree to which the musical structure of the feedback melody is perceived as similar to the structure of what is planned. Four experiments reported here explored the relationship between the tonal class of planned melodies (tonal or atonal) and the sequence of events formed by auditory feedback. Participants produced short melodies from memory that were either tonal (Experiments 1 and 3) or atonal (Experiments 2 and 4). Auditory feedback matched the planned melody with respect to contour but could vary in tonal class. The results showed that when participants planned a tonal melody, atonal feedback was treated as unrelated to the planned sequence. However, when planning an atonal melody, tonal feedback was still treated as similar to the planned sequence. This asymmetric similarity mirrors findings found within the music perception literature and implies that schematic musical knowledge is highly active in determining perception-action relations during music performance. PMID:26594878

  1. The effects of moist convection on the tropospheric response to tropical and subtropical zonally-asymmetric torques

    NASA Astrophysics Data System (ADS)

    Boos, W. R.; Shaw, T. A.

    2011-12-01

    Tropospheric winds can be altered by vertical transfers of momentum caused by orographic gravity waves and convection, both of which tend to be highly localized in space. We showed in separate work that such zonally-asymmetric torques produce a characteristic response in dry models, with a pattern of tropical ascent that is qualitatively well-described by linear dynamics and a meridional shift of the eddy-driven mid-latitude jet. Here we use several idealized models to examine the effects of moisture on the tropospheric response to zonally-asymmetric torques. While the dynamical response to an upper-tropospheric toque in moist models can have a spatial structure that is qualitatively similar to that in dry models, moisture introduces several important modifications. One of the most dramatic of these is an amplification of the vertical velocity by nearly an order of magnitude in moist models. This occurs in a general circulation model with parameterized moist convection and an entirely oceanic lower boundary, and also in a quasi-linear model of the troposphere's first-baroclinic mode. The amplification is shown to result from the reduced effective static stability of a moist atmosphere, and can thus be rectified by the distribution of precipitation in the basic state. Given this amplification of the irrotational part of the response, we show how the vorticity budget necessitates changes in the horizontal structure of the nondivergent flow. The intensity and horizontal structure of the response in moist models can also be greatly altered by wind-induced surface heat exchange (WISHE), with enhanced zonal winds increasing ocean evaporation and convectively-coupled ascent. We briefly discuss some possible implications of these results for the effect of vertical momentum transfers on regional precipitation.

  2. Effects of benzo-annelation of asymmetric phthalocyanine on the photovoltaic performance of dye-sensitized solar cells.

    PubMed

    Yu, Lijuan; Shi, Wenye; Lin, Li; Liu, Yuwen; Li, Renjie; Peng, Tianyou; Li, Xingguo

    2014-06-14

    Novel highly asymmetric zinc tetraazaporphyrin (TAP) derivatives (Zn-tri-TAPNc and Zn-tri-PcNc) with one carboxyl and three tert-butyl peripheral substituent groups were synthesized. A highly asymmetric zinc phthalocyanine (ZnPc) derivative (Zn-tri-PcNc) has a benzo-annelated ring which contains tribenzonaphtho-condensed tetraazaporphyrin with the same peripheral substituents as Zn-tri-TAPNc. As a sensitizer for the TiO2-based dye-sensitized solar cell, Zn-tri-PcNc derived from the benzo-annelation of the TAP macrocycle showed improved light harvesting and electron injection efficiency, which can retard the charge recombination, resulting in a great improvement in the incident photon-to-current conversion efficiency (IPCE). The Zn-tri-PcNc-sensitized solar cell exhibited a higher conversion efficiency (2.89%) than the Zn-tri-TAPNc-sensitized one (1.20%) under AM 1.5G solar irradiation. The present results on the TAP macrocycle's benzo-annelation demonstrate that optimization of molecular structure via changing the peripheral substituent group's "push-pull" effect and enlarging the conjugated π-system is an effective approach to improve the performance of the tetraazaporphyrin-based dye-sensitized solar cell. PMID:24740460

  3. Intense laser effects on the optical properties of asymmetric GaAs double quantum dots under applied electric field

    NASA Astrophysics Data System (ADS)

    Bejan, Doina; Niculescu, Ecaterina Cornelia

    2016-06-01

    We investigated the combined effects of a non-resonant intense laser field and a static electric field on the electronic structure and the nonlinear optical properties (absorption, optical rectification) of a GaAs asymmetric double quantum dot under a strong probe field excitation. The calculations were performed within the compact density-matrix formalism under steady state conditions using the effective mass approximation. Our results show that: (i) the electronic structure and optical properties are sensitive to the dressed potential; (ii) under applied electric fields, an increase of the laser intensity induces a redshift of the optical absorption and rectification spectra; (iii) the augment of the electric field strength leads to a blueshift of the spectra; (iv) for high electric fields the optical spectra show a shoulder-like feature, related with the occurrence of an anti-crossing between the two first excited levels.

  4. Effect of thienyl groups on the photoisomerization and rotamerism of symmetric and asymmetric diaryl-ethenes and diaryl-butadienes.

    PubMed

    Bartocci, Giampiero; Galiazzo, Guido; Ginocchietti, Gabriella; Mazzucato, Ugo; Spalletti, Anna

    2004-09-01

    Five symmetric (bis-substituted) and asymmetric (mono-substituted) analogues of E-stilbene and EE-1,4-diphenylbutadiene, where one or both the side aryls are 2'-thienyl or 3'-thienyl groups, have been studied by stationary and pulsed fluorimetric techniques, laser flash photolysis, conventional photochemical methods and theoretical calculations. The results obtained for these compounds and the comparison with those previously reported for three other compounds of the same series, allowed the effects of the position of the heteroatom and of the extension of the olefin chain on the excited state relaxation properties to be understood. The presence of one or two thienyl groups and their positional isomerism affect the spectral behaviour, the relaxation properties (radiative/reactive competition), the photoisomerization mechanism (singlet/triplet) and the ground state rotamerism. For the dienes containing the 3'-thienyl substituent(s), two rotamers were evidenced whose radiative and photochemical properties were obtained by selective excitation. PMID:15346189

  5. Carrier envelope phase effect on the spatial distribution of high-order harmonic generation in asymmetric molecule

    NASA Astrophysics Data System (ADS)

    Jun, Zhang; Hai-Feng, Liu; Xue-Fei, Pan; Hui, Du; Jing, Guo; Xue-Shen, Liu

    2016-05-01

    The spatial distribution in high-order harmonic generation (HHG) from the asymmetric diatomic molecule HeH2+ is investigated by numerically solving the non-Born–Oppenheimer time-dependent Schrödinger equation (TDSE). The spatial distribution of the HHG spectra shows that there is little contribution in HHG around the geometric center of two nuclei (z = 1.17 a.u.) and the equilibrium internuclear position of the H nucleus (z = 3.11 a.u.). We demonstrate the carrier envelope phase (CEP) effect on the spatial distribution of HHG in a few-cycle laser pulse. The HHG process is investigated by the time evolution of the electronic density distribution. The time–frequency analysis of HHG from two nuclei in HeH2+ is presented to further explain the underlying physical mechanism. Project supported by the National Natural Science Foundation of China (Grant Nos. 11271158, 11574117, and 61575077).

  6. Mini-ISES identifies promising carbafructopyranose-based salens for asymmetric catalysis: Tuning ligand shape via the anomeric effect

    PubMed Central

    Karukurichi, Kannan R.; Fei, Xiang; Swyka, Robert A.; Broussy, Sylvain; Shen, Weijun; Dey, Sangeeta; Roy, Sandip K.; Berkowitz, David B.

    2015-01-01

    This study introduces new methods of screening for and tuning chiral space and in so doing identifies a promising set of chiral ligands for asymmetric synthesis. The carbafructopyranosyl-1,2-diamine(s) and salens constructed therefrom are particularly compelling. It is shown that by removing the native anomeric effect in this ligand family, one can tune chiral ligand shape and improve chiral bias. This concept is demonstrated by a combination of (i) x-ray crystallographic structure determination, (ii) assessment of catalytic performance, and (iii) consideration of the anomeric effect and its underlying dipolar basis. The title ligands were identified by a new mini version of the in situ enzymatic screening (ISES) procedure through which catalyst-ligand combinations are screened in parallel, and information on relative rate and enantioselectivity is obtained in real time, without the need to quench reactions or draw aliquots. Mini-ISES brings the technique into the nanomole regime (200 to 350 nmol catalyst/20 μl organic volume) commensurate with emerging trends in reaction development/process chemistry. The best-performing β-d-carbafructopyranosyl-1,2-diamine–derived salen ligand discovered here outperforms the best known organometallic and enzymatic catalysts for the hydrolytic kinetic resolution of 3-phenylpropylene oxide, one of several substrates examined for which the ligand is “matched.” This ligand scaffold defines a new swath of chiral space, and anomeric effect tunability defines a new concept in shaping that chiral space. Both this ligand set and the anomeric shape-tuning concept are expected to find broad application, given the value of chiral 1,2-diamines and salens constructed from these in asymmetric catalysis. PMID:26501130

  7. Asymmetric drag in oscillatory motion: ratchet effect without an asymmetric potential.

    PubMed

    Fomin, Vladimir M; Smith, Elliot J; Karnaushenko, Dmitriy D; Makarov, Denys; Schmidt, Oliver G

    2013-05-01

    Asymmetry of magnetic objects in a fluid under an oscillating magnetic field leads to a wealth of nonequilibrium dynamics phenomena including a novel ratchet effect without an asymmetric substrate. These nonlinear dynamics are explained in the framework of the Stokes' model by a drag coefficient, which depends on the direction of motion. This approach is general and is independent of the physical mechanism responsible for this directional dependence of the drag coefficient as well as the size of the object. The theoretical model is experimentally verified for two systems, a nonrigid magnetic microcoil and a chiral magnetic macroobject immersed in a bounded fluid. PMID:23767502

  8. On the Interactive-beating-modes Model: Generation of Asymmetric Multiplet Structures and Explanation of the Blazhko Effect

    NASA Astrophysics Data System (ADS)

    Bryant, Paul H.

    2016-02-01

    This paper considers a nonlinear coupling between a radial and a nonradial mode of nearly the same frequency. The results may be of general interest, but in particular have application to the “beating-modes model” of the Blazhko effect which was recently shown to accurately reproduce the light curve of RR Lyr. For weak coupling, the two modes do not phase-lock and they retain separate frequencies, but the coupling nevertheless has important consequences. Upon increasing the coupling strength from zero, an additional side-peak emerges in the spectrum forming an asymmetric triplet centered on the fundamental. As the coupling is further increased, the amplitude of this side-peak increases and the three peaks are also pulled toward each other, decreasing the Blazhko frequency. Beyond a critical coupling strength, phase-locking occurs between the modes. With appropriate choice of coupling strength, this “interactive beating-modes model” can match the side-peak amplitude ratio of any star. The effects of nonlinear damping are also explored and found to generate additional side-peaks of odd order. Consistent with this, the odd side-peaks are found to be favored in V808 Cyg. It is also shown that the Blazhko effect generates a fluctuating “environment” that can have a modulatory effect on other excited modes of the star. An example is found in V808 Cyg where the modulation is at double the Blazhko frequency. An explanation is found for this mysterious doubling, providing additional evidence in favor of the model.

  9. A Guided Wave Sensor Based on the Inverse Magnetostrictive Effect for Distinguishing Symmetric from Asymmetric Features in Pipes

    PubMed Central

    Xu, Jiang; Wu, Xinjun; Kong, Dongying; Sun, Pengfei

    2015-01-01

    The magnetostrictive guided wave sensor with a single induced winding cannot distinguish axially symmetric from non-axially symmetric features in a pipe, because it is impossible for the sensor to detect the non-axially symmetric mode waves. When we study the effect of the change of the magnetic field in the air zone for receiving the longitudinal guided wave mode, we find that the change of the magnetic flux in the air zone is almost equivalent to the change of the flux in the pipe wall, but in opposite directions. Based on this phenomenon, we present a sensor that can detect the flexural-mode waves in pipes based on the inverse magnetostrictive effect. The sensor is composed of several coils that are arranged evenly on the outside of pipes. The coils induce a change in magnetic flux in the air to detect the flexural-mode waves. The waves can be determined by adding a phase delay to the induced signals. The symmetric and asymmetric features of a pipe can be distinguished using the sensor. A prototype sensor that can detect F(1,3) and F(2,3) mode waves is presented. The function of the sensor is verified by experiments. PMID:25738769

  10. The Effect of Suppression of Vortex Generator Jets with Asymmetric Orifices on Flow Separation

    NASA Astrophysics Data System (ADS)

    Hasegawa, Hiroaki; Hayashi, Naoki

    In vortex generator jets (VGJs), the beneficial effect of separation control is obtained only if the jets are pitched to the lower wall and skewed with respect to the freestream direction. In particular, in the case of VGJs with circular orifices, the jets are pitched at an angle of 45 deg or less to the wall to achieve effective suppression, due to the generation of strong dominant vortices. On the other hand, it was confirmed that the vortices for the VGJs with the rectangular orifices are stronger and appear to provide more effective momentum transfer across the wall boundary layer, in contrast to the vortices for the VGJs with circular orifices in the previous study. In the present study, the suppression effect is investigated for VGJs with T-shaped orifices combined into two rectangular orifices in the case of a large pitch angle (60 deg). The VGJs with T-shaped orifices were practically applied to the flow separation control of a two-dimensional diffuser, and the suppression effect for the T-shaped orifices was compared to that for the circular orifices. The behavior and the decay of longitudinal vortices in the downstream direction are also described. The T-shaped orifices produce a counter-rotating vortex pair that has different strengths between positive and negative vortices, and longitudinal vortices exist near the lower wall. Therefore, the VGJs with T-shaped orifices provide more effective momentum transfer to the boundary layer and make the separation control effective, in contrast to the VGJs with circular orifices. The formation and behavior of the counter-rotating vortex pair produced by the interaction of the jets and the freestream in the downstream direction were strongly affected by the jet orifice shape.

  11. Asymmetric impact of the physiological effect of carbon dioxide on hydrological responses to instantaneous negative and positive CO2 forcing

    NASA Astrophysics Data System (ADS)

    Abe, Manabu; Shiogama, Hideo; Yokohata, Tokuta; Emori, Seita; Nozawa, Toru

    2015-10-01

    We conducted sensitivity experiments using a coupled atmosphere-ocean general circulation model to examine the asymmetry between the hydrological responses to instantaneous positive and negative CO2 forcing and the impact of the CO2 physiological effects (CDPEs) on these responses. This study focuses on the fast response occurring on time scales shorter than 1 year after imposing CO2 forcing. Experiments investigating the CO2 physiological effect show that the fast response of precipitation to positive CO2 forcing is a decrease in the global and annual mean, whereas that of negative forcing is an increase the global and annual mean precipitation. The fast global precipitation response to negative forcing is stronger than the response to positive forcing. In contrast, the experiments without the CDPE reveal similar magnitudes of the fast global precipitation responses to negative and positive CO2 forcing. Significant differences in the magnitudes of the fast precipitation response due to the CDPE are found in tropical regions such as the Amazon Basin, the Maritime Continents, and tropical Africa, where C3-type plants are common. The stomatal conductance of plant leaves is decreased by both positive and negative CO2 forcing, which suppress the transpiration from the leaves. Consequently, the CDPE enhances the asymmetry of the fast precipitation responses to positive and negative CO2 forcing. The asymmetric impact of CDPE requires a careful evaluation of future hydrological changes which is constrained by paleoclimate evidence.

  12. Effects of Ground Equalization on the Electrical Performance of Asymmetric CPW Shunt Stubs

    NASA Technical Reports Server (NTRS)

    Dib, Nihad; Gupta, Minoo; Ponchak, George; Katehi, Linda

    1993-01-01

    A hybrid technique is used to study the effects of ground equalization on the electrical performance of CPW shunt stubs. Extensive experiments have been performed and the results are in good agreement with theoretical data. The advantages of using air-bridges in CPW circuits as opposed to bond-wires are also discussed.

  13. Asymmetric effect on single-file dense pedestrian flow

    NASA Astrophysics Data System (ADS)

    Kuang, Hua; Cai, Mei-Jing; Li, Xing-Li; Song, Tao

    2015-11-01

    In this paper, an extended optimal velocity model is proposed to simulate single-file dense pedestrian flow by considering asymmetric interaction (i.e. attractive force and repulsive force), which depends on the different distances between pedestrians. The stability condition of this model is obtained by using the linear stability theory. The phase diagram comparison and analysis show that asymmetric effect plays an important role in strengthening the stabilization of system. The modified Korteweg-de Vries (mKdV) equation near the critical point is derived by applying the reductive perturbation method. The pedestrian jam could be described by the kink-antikink soliton solution for the mKdV equation. From the simulation of space-time evolution of the pedestrians distance, it can be found that the asymmetric interaction is more efficient compared to the symmetric interaction in suppressing the pedestrian jam. Furthermore, the simulation results are consistent with the theoretical analysis as well as reproduce experimental phenomena better.

  14. Asymmetric effects on the optical properties of double-quantum well systems

    NASA Astrophysics Data System (ADS)

    Silotia, Poonam; Batra, Kriti; Prasad, Vinod

    2014-02-01

    Linear, nonlinear, and total absorption coefficient and refractive index changes of double-quantum well (DQW) systems are studied theoretically in the presence of external static electric field applied along the growth direction. The analytical expression for the linear and nonlinear optical properties is obtained using density matrix method. Emphasis is laid on the effect of asymmetry in the shapes of DQW system on optical properties. Some interesting results are obtained and explained.

  15. Effects of Noise on Asymmetric Bidirectional Controlled Teleportation

    NASA Astrophysics Data System (ADS)

    Nie, Yi-you; Sang, Ming-huang

    2016-07-01

    We present a scheme for asymmetric bidirectional controlled teleportation via a six-qubit cluster state in noisy environments, which includes the phase-damping and amplitude-damping channels. We analytically derive the fidelities of the asymmetric bidirectional controlled teleportation process in these two noise channels. We show that the fidelities only depend on the initial state and the noisy rate.

  16. The electrical asymmetry effect in geometrically asymmetric capacitive radio frequency plasmas

    NASA Astrophysics Data System (ADS)

    Schüngel, E.; Eremin, D.; Schulze, J.; Mussenbrock, T.; Czarnetzki, U.

    2012-09-01

    The electrical asymmetry effect (EAE) allows an almost ideal separate control of the mean ion energy, , and flux, Γi, at the electrodes in capacitive radio frequency discharges with identical electrode areas driven at two consecutive harmonics with adjustable phase shift, θ. In such geometrically symmetric discharges, a DC self bias is generated as a function of θ. Consequently, can be controlled separately from Γi by adjusting the phase shift. Here, we systematically study the EAE in low pressure dual-frequency discharges with different electrode areas operated in argon at 13.56 MHz and 27.12 MHz by experiments, kinetic simulations, and analytical modeling. We find that the functional dependence of the DC self bias on θ is similar, but its absolute value is strongly affected by the electrode area ratio. Consequently, the ion energy distributions change and can be controlled by adjusting θ, but its control range is different at both electrodes and determined by the area ratio. Under distinct conditions, the geometric asymmetry can be compensated electrically. In contrast to geometrically symmetric discharges, we find the ratio of the maximum sheath voltages to remain constant as a function of θ at low pressures and Γi to depend on θ at the smaller electrode. These observations are understood by the model. Finally, we study the self-excitation of non-linear plasma series resonance oscillations and its effect on the electron heating.

  17. The electrical asymmetry effect in geometrically asymmetric capacitive radio frequency plasmas

    SciTech Connect

    Schuengel, E.; Schulze, J.; Czarnetzki, U.; Eremin, D.; Mussenbrock, T.

    2012-09-01

    The electrical asymmetry effect (EAE) allows an almost ideal separate control of the mean ion energy, , and flux, {Gamma}{sub i}, at the electrodes in capacitive radio frequency discharges with identical electrode areas driven at two consecutive harmonics with adjustable phase shift, {theta}. In such geometrically symmetric discharges, a DC self bias is generated as a function of {theta}. Consequently, can be controlled separately from {Gamma}{sub i} by adjusting the phase shift. Here, we systematically study the EAE in low pressure dual-frequency discharges with different electrode areas operated in argon at 13.56 MHz and 27.12 MHz by experiments, kinetic simulations, and analytical modeling. We find that the functional dependence of the DC self bias on {theta} is similar, but its absolute value is strongly affected by the electrode area ratio. Consequently, the ion energy distributions change and can be controlled by adjusting {theta}, but its control range is different at both electrodes and determined by the area ratio. Under distinct conditions, the geometric asymmetry can be compensated electrically. In contrast to geometrically symmetric discharges, we find the ratio of the maximum sheath voltages to remain constant as a function of {theta} at low pressures and {Gamma}{sub i} to depend on {theta} at the smaller electrode. These observations are understood by the model. Finally, we study the self-excitation of non-linear plasma series resonance oscillations and its effect on the electron heating.

  18. Effect of asymmetric auxin application on Helianthus hypocotyl curvature

    NASA Technical Reports Server (NTRS)

    Migliaccio, F.; Rayle, D. L.

    1989-01-01

    Indole-3-acetic acid was applied asymmetrically to the hypocotyls of sunflower (Helianthus annuus L.) seedlings. After 5 hours on a clinostat, auxin gradients as small as 1 to 1.3 produced substantial (more than 60 degrees) hypocotyl curvature. This result suggests the asymmetric growth underlying hypocotyl gravitropism can be explained by lateral auxin redistribution.

  19. Asymmetric inhibitory treatment effects in multilingual aphasia

    PubMed Central

    Goral, Mira; Naghibolhosseini, Maryam; Conner, Peggy

    2014-01-01

    Findings from recent psycholinguistic studies of bilingual processing support the hypothesis that both languages of a bilingual are always active and that bilinguals continually engage in processes of language selection. This view aligns with the convergence hypothesis of bilingual language representation (Abutalebi & Green, 2008). Furthermore, it is hypothesized that when bilinguals perform a task in one language they need to inhibit their other, non-target language(s) (e.g., Costa, Miozzo, & Caramazza, 1999) and that stronger inhibition is required when the task is performed in the weaker language than in the stronger one (e.g., Costa & Santesteban, 2004). The study of multilingual individuals who acquire aphasia resulting from a focal brain lesion offers a unique opportunity to test the convergence hypothesis and the inhibition asymmetry. We report on a trilingual person with chronic non-fluent aphasia who at the time of testing demonstrated greater impairment in her first acquired language (Persian) than in her third, later-learned language (English). She received treatment in English followed by treatment in Persian. An examination of her connected language production revealed improvement in her grammatical skills in each language following intervention in that language, but decreased grammatical accuracy in English following treatment in Persian. The increased error rate was evident in structures that are not shared by the two languages (e.g., use of auxiliary verbs). The results support the prediction that greater inhibition is applied to the stronger language than to the weaker language, regardless of their age of acquisition. We interpret the findings as consistent with convergence theories that posit overlapping neuronal representation and simultaneous activation of multiple languages, and with proficiency-dependent asymmetric inhibition in multilinguals. PMID:24499302

  20. Effects on Calculated Half-Widths and Shifts from the Line Coupling for Asymmetric-Top Molecules

    NASA Technical Reports Server (NTRS)

    Ma, Q.; Boulet, C.; Tipping, R. H.

    2014-01-01

    The refinement of the Robert-Bonamy formalism by considering the line coupling for linear molecules developed in our previous studies [Q. Ma, C. Boulet, and R. H. Tipping, J. Chem. Phys. 139, 034305 (2013); 140, 104304 (2014)] have been extended to asymmetric-top molecules. For H2O immersed in N2 bath, the line coupling selection rules applicable for the pure rotational band to determine whether two specified lines are coupled or not are established. Meanwhile, because the coupling strengths are determined by relative importance of off-diagonal matrix elements versus diagonal elements of the operator -iS1 -S2, quantitative tools are developed with which one is able to remove weakly coupled lines from consideration. By applying these tools, we have found that within reasonable tolerances, most of the H2O lines in the pure rotational band are not coupled. This reflects the fact that differences of energy levels of the H2O states are pretty large. But, there are several dozen strongly coupled lines and they can be categorized into different groups such that the line couplings occur only within the same groups. In practice, to identify those strongly coupled lines and to confine them into sub-linespaces are crucial steps in considering the line coupling. We have calculated half-widths and shifts for some groups, including the line coupling. Based on these calculations, one can conclude that for most of the H2O lines, it is unnecessary to consider the line coupling. However, for several dozens of lines, effects on the calculated half-widths from the line coupling are small, but remain noticeable and reductions of calculated half-widths due to including the line coupling could reach to 5%. Meanwhile, effects on the calculated shifts are very significant and variations of calculated shifts could be as large as 25%.

  1. Effects on calculated half-widths and shifts from the line coupling for asymmetric-top molecules

    SciTech Connect

    Ma, Q.; Tipping, R. H.

    2014-06-28

    The refinement of the Robert-Bonamy formalism by considering the line coupling for linear molecules developed in our previous studies [Q. Ma, C. Boulet, and R. H. Tipping, J. Chem. Phys. 139, 034305 (2013); 140, 104304 (2014)] have been extended to asymmetric-top molecules. For H{sub 2}O immersed in N{sub 2} bath, the line coupling selection rules applicable for the pure rotational band to determine whether two specified lines are coupled or not are established. Meanwhile, because the coupling strengths are determined by relative importance of off-diagonal matrix elements versus diagonal elements of the operator −iS{sub 1} − S{sub 2}, quantitative tools are developed with which one is able to remove weakly coupled lines from consideration. By applying these tools, we have found that within reasonable tolerances, most of the H{sub 2}O lines in the pure rotational band are not coupled. This reflects the fact that differences of energy levels of the H{sub 2}O states are pretty large. But, there are several dozen strongly coupled lines and they can be categorized into different groups such that the line couplings occur only within the same groups. In practice, to identify those strongly coupled lines and to confine them into sub-linespaces are crucial steps in considering the line coupling. We have calculated half-widths and shifts for some groups, including the line coupling. Based on these calculations, one can conclude that for most of the H{sub 2}O lines, it is unnecessary to consider the line coupling. However, for several dozens of lines, effects on the calculated half-widths from the line coupling are small, but remain noticeable and reductions of calculated half-widths due to including the line coupling could reach to 5%. Meanwhile, effects on the calculated shifts are very significant and variations of calculated shifts could be as large as 25%.

  2. Strong enhancement of Penning ionization for asymmetric atom pairs in cold Rydberg gases: the Tom and Jerry effect

    NASA Astrophysics Data System (ADS)

    Efimov, D. K.; Miculis, K.; Bezuglov, N. N.; Ekers, A.

    2016-06-01

    We consider Penning ionization of Rydberg atom pairs as an Auger-type process induced by the dipole–dipole interaction and employ semiclassical formulae for dipole transitions to calculate the autoionization width as a function of the principal quantum numbers, n d , n i , of both atoms. While for symmetric atom pairs with {n}d={n}i={n}0 the well-known increase of the autoionization width with increasing n 0 is obtained, the result for asymmetric pairs is counterintuitive—for a fixed n i of the ionizing atom of the pair, the autoionization width strongly increases with decreasing n d of the de-excited atom. For H Rydberg atoms this increase reaches two orders of magnitude at the maximum of the n d dependence, and the same type of counterintuitive behavior is exhibited also by Na, Rb and Cs atoms. This is a purely quantum-mechanical effect, which points towards existence of optimal (we call them ‘Tom’ and ‘Jerry’ for ‘big’ and ‘small’) pairs of Rydberg atoms with respect to autoionization efficiency. Building on the model of population redistribution in cold Rydberg gases proposed in [1], we demonstrate that population evolution following the initial laser excitation of Rydberg atoms in state n 0 would eventually lead to the formation of such Tom–Jerry pairs with {n}i\\gt {n}0\\gt {n}d which feature autoionization widths that are enhanced by several orders of magnitude compared to that of two atoms in the initial laser-excited state n 0. We also show that in the high-density regime of cold Rydberg gas experiments the ionization rate of Tom–Jerry pairs can be substantially larger than the blackbody radiation-induced photoionization rate.

  3. Dual task effects for asymmetric stepping on a split-belt treadmill.

    PubMed

    McFadyen, Bradford J; Hegeman, Judith; Duysens, Jacques

    2009-10-01

    Bilaterally asymmetric stepping during walking is common to a number of pathological gaits (e.g., hemiplegia, limping). In the present work, the attention level of asymmetric stepping was studied by having subjects walk on a split-belt treadmill with symmetric (2 km/h) and asymmetric (2 km/h vs 4 km/h and 2 km/h vs 6 km/h) belt speeds both with and without a dual auditory Stroop task. There was no significant change in response reaction times across walking conditions or between walking and standing. The proportion of stance phase was unchanged by the dual task during symmetric walking. Stance phase proportions, however, significantly increased during dual tasking for the limb on the faster belt for both asymmetric conditions, while they decreased for the limb on the slower belt for the most asymmetric condition. There were also small modifications to double support proportions and a main effect of dual tasking to double support proportion variability. Observed dual task changes showed interference by the cognitive task with asymmetric gait performance, suggesting that asymmetric stepping, such as seen in limping gaits, requires more attention than symmetric walking. Such attention may, in part, be due to the dynamic balance required in asymmetric limb loading and unloading. PMID:19595592

  4. The effect of asymmetric vortex wake characteristics on a slender delta wing undergoing wing rock motion

    NASA Technical Reports Server (NTRS)

    Arena, A. S., Jr.; Nelson, R. C.

    1989-01-01

    An experimental investigation into the fluid mechanisms responsible for wing rock on a slender delta wing with 80 deg leading edge sweep has been conducted. Time history and flow visualization data are presented for a wide angle-of-attack range. The use of an air bearing spindle has allowed the motion of the wing to be free from bearing friction or mechanical hysteresis. A bistable static condition has been found in vortex breakdown at an angle of attack of 40 deg which causes an overshoot of the steady state rocking amplitude. Flow visualization experiments also reveal a difference in static and dynamic breakdown locations on the wing. A hysteresis loop in dynamic breakdown location similar to that seen on pitching delta wings was observed as the wing was undergoing the limit cycle oscillation.

  5. Exploring the Effect of Asymmetric Mitochondrial DNA Introgression on Estimating Niche Divergence in Morphologically Cryptic Species

    PubMed Central

    Wielstra, Ben; Arntzen, Jan W.

    2014-01-01

    If potential morphologically cryptic species, identified based on differentiated mitochondrial DNA, express ecological divergence, this increases support for their treatment as distinct species. However, mitochondrial DNA introgression hampers the correct estimation of ecological divergence. We test the hypothesis that estimated niche divergence differs when considering nuclear DNA composition or mitochondrial DNA type as representing the true species range. We use empirical data of two crested newt species (Amphibia: Triturus) which possess introgressed mitochondrial DNA from a third species in part of their ranges. We analyze the data in environmental space by determining Fisher distances in a principal component analysis and in geographical space by determining geographical overlap of species distribution models. We find that under mtDNA guidance in one of the two study cases niche divergence is overestimated, whereas in the other it is underestimated. In the light of our results we discuss the role of estimated niche divergence in species delineation. PMID:24743746

  6. Electrolyte and composition effects on the performances of asymmetric supercapacitors constructed with Mn3O4 nanoparticles-graphene nanocomposites

    NASA Astrophysics Data System (ADS)

    Xiao, Yuanhua; Cao, Yongbo; Gong, Yuyin; Zhang, Aiqin; Zhao, Jihong; Fang, Shaoming; Jia, Dianzeng; Li, Feng

    2014-01-01

    Nanocomposites of Mn3O4 nanoparticles and graphene (GR) nanosheets - Mn3O4@GR can be made by growing Mn3O4 nanoparticles directly on the surfaces of GR in solvothermal reactions. The asymmetric supercapacitors constructed with Mn3O4@GR as positive and activated carbon (AC) as negative electrodes, respectively, show highly enhanced performances in energy storage. It was found that the electrolytes employed in constructing electrodes of the devices can influence the performances of Mn3O4@GR supercapacitors dramatically. Compared to their energy density in KOH electrolyte, the devices exhibit improved charge storage performances in Na2SO4 electrolyte. Furthermore, the charge storage abilities of the devices are closely related to the amount of Mn3O4 nanoparticles loaded onto the surface of GR nanosheets. The performances of Mn3O4@GR//AC asymmetric supercapacitors can be optimized by carefully tailoring the composition of electrode materials and adjusting the electrolytes for making the devices.

  7. EFFECTS OF ASYMMETRIC FLOWS IN SOLAR CONVECTION ON OSCILLATION MODES

    SciTech Connect

    Baldner, Charles S.; Schou, Jesper

    2012-11-20

    Many helioseismic measurements suffer from substantial systematic errors. A particularly frustrating one is that time-distance measurements suffer from a large center to limb effect which looks very similar to the finite light travel time, except that the magnitude depends on the observable used and can have the opposite sign. This has frustrated attempts to determine the deep meridional flow in the solar convection zone, with Zhao et al. applying an ad hoc correction with little physical basis to correct the data. In this Letter, we propose that part of this effect can be explained by the highly asymmetrical nature of the solar granulation which results in what appears to the oscillation modes as a net radial flow, thereby imparting a phase shift on the modes as a function of observing height and thus heliocentric angle.

  8. Photovoltaic effect in individual asymmetrically contacted lead sulfide nanosheets.

    PubMed

    Dogan, Sedat; Bielewicz, Thomas; Lebedeva, Vera; Klinke, Christian

    2015-03-21

    Solution-processable, two-dimensional semiconductors are promising optoelectronic materials which could find application in low-cost solar cells. Lead sulfide nanocrystals raised attention since the effective band gap can be adapted over a wide range by electronic confinement and observed multi-exciton generation promises higher efficiencies. We report on the influence of the contact metal work function on the properties of transistors based on individual two-dimensional lead sulfide nanosheets. Using palladium we observed mobilities of up to 31 cm(2) V(-1) s(-1). Furthermore, we demonstrate that asymmetrically contacted nanosheets show photovoltaic effect and that the nanosheets' height has a decisive impact on the device performance. Nanosheets with a thickness of 5.4 nm contacted with platinum and titanium show a power conversion efficiency of up to 0.94% (EQE 75.70%). The results underline the high hopes put on such materials. PMID:25673356

  9. Photovoltaic effect in individual asymmetrically contacted lead sulfide nanosheets

    NASA Astrophysics Data System (ADS)

    Dogan, Sedat; Bielewicz, Thomas; Lebedeva, Vera; Klinke, Christian

    2015-03-01

    Solution-processable, two-dimensional semiconductors are promising optoelectronic materials which could find application in low-cost solar cells. Lead sulfide nanocrystals raised attention since the effective band gap can be adapted over a wide range by electronic confinement and observed multi-exciton generation promises higher efficiencies. We report on the influence of the contact metal work function on the properties of transistors based on individual two-dimensional lead sulfide nanosheets. Using palladium we observed mobilities of up to 31 cm2 V-1 s-1. Furthermore, we demonstrate that asymmetrically contacted nanosheets show photovoltaic effect and that the nanosheets' height has a decisive impact on the device performance. Nanosheets with a thickness of 5.4 nm contacted with platinum and titanium show a power conversion efficiency of up to 0.94% (EQE 75.70%). The results underline the high hopes put on such materials.Solution-processable, two-dimensional semiconductors are promising optoelectronic materials which could find application in low-cost solar cells. Lead sulfide nanocrystals raised attention since the effective band gap can be adapted over a wide range by electronic confinement and observed multi-exciton generation promises higher efficiencies. We report on the influence of the contact metal work function on the properties of transistors based on individual two-dimensional lead sulfide nanosheets. Using palladium we observed mobilities of up to 31 cm2 V-1 s-1. Furthermore, we demonstrate that asymmetrically contacted nanosheets show photovoltaic effect and that the nanosheets' height has a decisive impact on the device performance. Nanosheets with a thickness of 5.4 nm contacted with platinum and titanium show a power conversion efficiency of up to 0.94% (EQE 75.70%). The results underline the high hopes put on such materials. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr06957a

  10. Cell-sized asymmetric lipid vesicles facilitate the investigation of asymmetric membranes.

    PubMed

    Kamiya, Koki; Kawano, Ryuji; Osaki, Toshihisa; Akiyoshi, Kazunari; Takeuchi, Shoji

    2016-09-01

    Asymmetric lipid giant vesicles have been used to model the biochemical reactions in cell membranes. However, methods for producing asymmetric giant vesicles lead to the inclusion of an organic solvent layer that affects the mechanical and physical characteristics of the membrane. Here we describe the formation of asymmetric giant vesicles that include little organic solvent, and use them to investigate the dynamic responses of lipid molecules in the vesicle membrane. We formed the giant vesicles via the inhomogeneous break-up of a lipid microtube generated by applying a jet flow to an asymmetric planar lipid bilayer. The asymmetric giant vesicles showed a lipid flip-flop behaviour in the membrane, superficially similar to the lipid flip-flop activity observed in apoptotic cells. In vitro synthesis of membrane proteins into the asymmetric giant vesicles revealed that the lipid asymmetry in bilayer membranes improves the reconstitution ratio of membrane proteins. Our asymmetric giant vesicles will be useful in elucidating lipid-lipid and lipid-membrane protein interactions involved in the regulation of cellular functions. PMID:27554415

  11. Effect of asymmetrical eddy currents on magnetic diagnosis signals for equilibrium reconstruction in the Sino-UNIted Spherical Tokamak.

    PubMed

    Jiang, Y Z; Tan, Y; Gao, Z; Wang, L

    2014-11-01

    The vacuum vessel of Sino-UNIted Spherical Tokamak was split into two insulated hemispheres, both of which were insulated from the central cylinder. The eddy currents flowing in the vacuum vessel would become asymmetrical due to discontinuity. A 3D finite elements model was applied in order to study the eddy currents. The modeling results indicated that when the Poloidal Field (PF) was applied, the induced eddy currents would flow in the toroidal direction in the center of the hemispheres and would be forced to turn to the poloidal and radial directions due to the insulated slit. Since the eddy currents converged on the top and bottom of the vessel, the current densities there tended to be much higher than those in the equatorial plane were. Moreover, the eddy currents on the top and bottom of vacuum vessel had the same direction when the current flowed in the PF coils. These features resulted in the leading phases of signals on the top and bottom flux loops when compared with the PF waveforms. PMID:25430380

  12. Effect of asymmetrical eddy currents on magnetic diagnosis signals for equilibrium reconstruction in the Sino-UNIted Spherical Tokamaka)

    NASA Astrophysics Data System (ADS)

    Jiang, Y. Z.; Tan, Y.; Gao, Z.; Wang, L.

    2014-11-01

    The vacuum vessel of Sino-UNIted Spherical Tokamak was split into two insulated hemispheres, both of which were insulated from the central cylinder. The eddy currents flowing in the vacuum vessel would become asymmetrical due to discontinuity. A 3D finite elements model was applied in order to study the eddy currents. The modeling results indicated that when the Poloidal Field (PF) was applied, the induced eddy currents would flow in the toroidal direction in the center of the hemispheres and would be forced to turn to the poloidal and radial directions due to the insulated slit. Since the eddy currents converged on the top and bottom of the vessel, the current densities there tended to be much higher than those in the equatorial plane were. Moreover, the eddy currents on the top and bottom of vacuum vessel had the same direction when the current flowed in the PF coils. These features resulted in the leading phases of signals on the top and bottom flux loops when compared with the PF waveforms.

  13. Triazolium based ionic liquid crystals: Effect of asymmetric substitution

    SciTech Connect

    Stappert, K.; Mudring, A. -V.

    2015-01-27

    A new series of ten different asymmetrical 1-dodecyl-3-alkyl-triazolium bromides, [C12CnTr][Br], has been synthesized and their mesomorphic behavior studied by DSC (differential scanning calorimetry), POM (polarizing optical microscopy) and SAXS (small angle X-ray scattering). The influence of the chain length of the triazolium salts is investigated to explore the effect of asymmetric substitution on the phase behaviour of these compounds. For that reason, the length of one alkyl chain was varied from 14 to 1 carbon atoms (n = 14, 12, 10, 8–4, 2, 1) while the other alkyl chain was kept at 12 carbon. Single crystal X-ray structure analysis of compounds [C12C12Tr][Br] and [C12C5Tr][Br] reveal that the cations adopt a U-shaped conformation with head-to-head arranged triazolium cores. In contrast, for [C12C1Tr][Br], a rod like shape of the cation with interdigitated alkyl chains is found. All investigated compounds are thermotropic liquid crystals. Higher ordered smectic phases, smectic C as well as smectic A phases were found depending on the chain length of the cation. Moreover, the clearing point temperature decreases with decreasing chain length with exception for the n-dodecyl-3-alkyltrizoliumbromides with the two shortest alkyl chains, [C12C2Tr][Br] and [C12C1Tr][Br], which present higher clearing temperatures (86 and 156 °C) and are structurally distinctly different.

  14. Triazolium based ionic liquid crystals: Effect of asymmetric substitution

    DOE PAGESBeta

    Stappert, K.; Mudring, A. -V.

    2015-01-27

    A new series of ten different asymmetrical 1-dodecyl-3-alkyl-triazolium bromides, [C12CnTr][Br], has been synthesized and their mesomorphic behavior studied by DSC (differential scanning calorimetry), POM (polarizing optical microscopy) and SAXS (small angle X-ray scattering). The influence of the chain length of the triazolium salts is investigated to explore the effect of asymmetric substitution on the phase behaviour of these compounds. For that reason, the length of one alkyl chain was varied from 14 to 1 carbon atoms (n = 14, 12, 10, 8–4, 2, 1) while the other alkyl chain was kept at 12 carbon. Single crystal X-ray structure analysis ofmore » compounds [C12C12Tr][Br] and [C12C5Tr][Br] reveal that the cations adopt a U-shaped conformation with head-to-head arranged triazolium cores. In contrast, for [C12C1Tr][Br], a rod like shape of the cation with interdigitated alkyl chains is found. All investigated compounds are thermotropic liquid crystals. Higher ordered smectic phases, smectic C as well as smectic A phases were found depending on the chain length of the cation. Moreover, the clearing point temperature decreases with decreasing chain length with exception for the n-dodecyl-3-alkyltrizoliumbromides with the two shortest alkyl chains, [C12C2Tr][Br] and [C12C1Tr][Br], which present higher clearing temperatures (86 and 156 °C) and are structurally distinctly different.« less

  15. The effects of asymmetric hearing on bilateral brainstem function: findings in children with bimodal (electric and acoustic) hearing.

    PubMed

    Polonenko, Melissa J; Papsin, Blake C; Gordon, Karen A

    2015-01-01

    As implantation criteria are broadening to include children with asymmetric hearing loss, it is important to determine the degree of residual hearing needed to protect the bilateral auditory pathways for binaural hearing and whether there is a sensitive period in development for implantation in these children. We have been studying these questions in a growing cohort of children. In the present study, auditory brainstem responses were recorded in 21 children who had 2.2 ± 2.2 years of bimodal hearing. Responses were evoked by 11-Hz acoustic clicks presented to the non-implanted ear and with biphasic electric pulses presented to the implanted ear. Twelve of these children also completed a behavioural task in which they were asked to which side of their heads bilaterally presented clicks/pulses that varied in interaural level or timing lateralized. All children experienced a delay in the non-implanted ear that resulted in 2.0 ± 0.35 ms longer peak latencies. These were further prolonged in 7 children as measured by longer interwave latencies from this ear than from the implanted ear. Despite large asymmetries in timing of brainstem activity between the two ears, all children perceived changes in interaural level differences. They were unable to detect differences in interaural timing cues. Symmetric brainstem function suggests bilateral development was preserved in some children. Future work will explore whether these children have better potential for developing binaural hearing using bimodal input. PMID:25998954

  16. Dynamic JUNQ inclusion bodies are asymmetrically inherited in mammalian cell lines through the asymmetric partitioning of vimentin

    PubMed Central

    Ogrodnik, Mikołaj; Salmonowicz, Hanna; Brown, Rachel; Turkowska, Joanna; Średniawa, Władysław; Pattabiraman, Sundararaghavan; Amen, Triana; Abraham, Ayelet-chen; Eichler, Noam; Lyakhovetsky, Roman; Kaganovich, Daniel

    2014-01-01

    Aging is associated with the accumulation of several types of damage: in particular, damage to the proteome. Recent work points to a conserved replicative rejuvenation mechanism that works by preventing the inheritance of damaged and misfolded proteins by specific cells during division. Asymmetric inheritance of misfolded and aggregated proteins has been shown in bacteria and yeast, but relatively little evidence exists for a similar mechanism in mammalian cells. Here, we demonstrate, using long-term 4D imaging, that the vimentin intermediate filament establishes mitotic polarity in mammalian cell lines and mediates the asymmetric partitioning of damaged proteins. We show that mammalian JUNQ inclusion bodies containing soluble misfolded proteins are inherited asymmetrically, similarly to JUNQ quality-control inclusions observed in yeast. Mammalian IPOD-like inclusion bodies, meanwhile, are not always inherited by the same cell as the JUNQ. Our study suggests that the mammalian cytoskeleton and intermediate filaments provide the physical scaffold for asymmetric inheritance of dynamic quality-control JUNQ inclusions. Mammalian IPOD inclusions containing amyloidogenic proteins are not partitioned as effectively during mitosis as their counterparts in yeast. These findings provide a valuable mechanistic basis for studying the process of asymmetric inheritance in mammalian cells, including cells potentially undergoing polar divisions, such as differentiating stem cells and cancer cells. PMID:24843142

  17. Comparison of the effects of symmetric and asymmetric temperature elevation and CO2 enrichment on yield and evapotranspiration of winter wheat (Triticum aestivum L.)

    PubMed Central

    Qiao, Yunzhou; Liu, Huiling; Kellomäki, Seppo; Peltola, Heli; Liu, Yueyan; Dong, Baodi; Shi, Changhai; Zhang, Huizhen; Zhang, Chao; Gong, Jinnan; Si, Fuyan; Li, Dongxiao; Zheng, Xin; Liu, Mengyu

    2014-01-01

    Under the changing climate, asymmetric warming pattern would be more likely during day and night time, instead of symmetric one. Concurrently, the growth responses and water use of plants may be different compared with those estimated based on symmetric warming. In this work, it was compared with the effects of symmetric (ETs) and asymmetric (ETa) elevation of temperature alone, and in interaction with elevated carbon dioxide concentration (EC), on the grain yield (GY) and evapotranspiration in winter wheat (Triticum aestivum L.) based on pot experiment in the North China Plain (NCP). The experiment was carried out in six enclosed-top chambers with following climate treatments: (1) ambient temperature and ambient CO2 (CON), (2) ambient temperature and elevated CO2 (EC), (3) elevated temperature and ambient CO2 (ETs; ETa), and (4) elevated temperature and elevated CO2 (ECETs, ECETa). In symmetric warming, temperature was increased by 3°C and in asymmetric one by 3.5°C during night and 2.5°C during daytime, respectively. As a result, GY was in ETa and ETs 15.6 (P < 0.05) and 10.3% (P < 0.05) lower than that in CON. In ECETs and ECETa treatments, GY was 14.9 (P < 0.05) and 9.1% (P < 0.05) higher than that in CON. Opposite to GY, evapotranspiration was 7.8 (P < 0.05) and 17.9% (P < 0.05) higher in ETa and ETs treatments and 7.2 (P < 0.05) and 2.1% (P > 0.05) lower in ECETs and ECETa treatments compared with CON. Thus, GY of wheat could be expected to increase under the changing climate with concurrent elevation of CO2 and temperature as a result of increased WUE under the elevated CO2. However, the gain would be lower under ETa than that estimated based on ETs due to higher evapotranspiration. PMID:24963392

  18. Nonequilibrium ionization effects in asymmetrically heated loops. [in solar corona

    NASA Technical Reports Server (NTRS)

    Spadaro, D.; Antiochos, Spiro K.; Mariska, J. T.

    1991-01-01

    The effects of nonequilibrium ionization on magnetic loop models with a steady siphon flow that is driven by a nonuniform heating rate are investigated. The model developed by Mariska (1988) to explain the observed redshifts of transition region emission lines is examined, and the number densities of the ions of carbon and oxygen along the loop are computed, with and without the approximation of ionization equilibrium. Considerable deviations from equilibrium were found. In order to determine the consequences of these nonequilibrium effects on the characteristics of the EUV emission from the loop plasma, the profiles and wavelength positions of all the important emission lines due to carbon and oxygen were calculated. The calculations are in broad agreement with Mariska's conclusions, although they show a significant diminution of the Doppler shifts, as well as modifications to the line widths. It is concluded that the inclusion of nonequilibrium effects make it more difficult to reproduce the observed characteristics of the solar transition region by means of the asymmetric-heating models.

  19. Why are children living in poverty getting fatter?

    PubMed

    Pagani, Linda S; Huot, Céline

    2007-10-01

    In recent decades, there has been a dramatic increase in unhealthy weight for both children and adults. The Canadian standard of living has changed in favour of more easily prepared, calorie-dense foods and sedentary practices. Many family characteristics have also changed over the past 50 years. More Canadian families are living in disadvantaged situations, forecasting a host of unhealthy behaviours and attitudes in adults. The poor are not only getting poorer, they are also becoming heavier. Children from disadvantaged families seem to be leading the trend in increasing prevalence of unhealthy weight. Because they live in neighbourhoods that are perceived as unsafe, these children are likely spending more time indoors. This is associated with watching more television, which not only displaces other forms of educational and active entertainment but also places them at risk of learning inaccurate information about proper eating. Social science research helps identify factors contributing most to the rise in excess weight within this population, thus providing essential clues for effective approaches to its eradication. PMID:19030449

  20. Effects of applied electric and magnetic fields on the nonlinear optical properties of asymmetric GaAs /Ga1-xAlx As double inverse parabolic quantum well

    NASA Astrophysics Data System (ADS)

    Al, E. B.; Ungan, F.; Yesilgul, U.; Kasapoglu, E.; Sari, H.; Sökmen, I.

    2015-09-01

    The combined effects of electric and magnetic fields on the optical absorption coefficients and refractive index changes related to the intersubband transitions within the conduction band of asymmetric GaAs /Ga1-xAlxAs double inverse parabolic quantum wells are studied using the effective-mass approximation and the compact density-matrix approach. The results are presented as a function of the incident photon energy for the different values of the electromagnetic fields and the structure parameters such as quantum well width and the Al concentration at the well center. It is found that the optical absorption coefficients and the refractive index changes are strongly affected not only by the magnitudes of the electric and magnetic fields but also by the structure parameters of the system.

  1. Exchange bias effect modified asymmetric magnetization reversal in Ni/YMnO3 multiferroic bilayers

    NASA Astrophysics Data System (ADS)

    Gong, Junlu; Zheng, Dongxing; Li, Dong; Jin, Chao; Li, Peng; Feng, Liefeng; Bai, Haili

    2016-04-01

    Exchange bias (EB) effect modified asymmetric magnetization reversal in Ni/YMnO3 multiferroic bilayers was investigated by combining anisotropic magnetoresistance (AMR) with free energy methods. The promotion and inhibition effects of EB field on magnetization rotation result in the asymmetry of magnetization reversal. The AMR curves exhibit shape transition from arc-like to sin2θH-dependence with increasing external fields due to the competition between Zeeman energy and interfacial coupling energy. The phase shift and asymmetric behaviors become weak as the EB field decreases. Our work suggests that controlling the EB effect can be an alternative way to manipulate the magnetization reversal in exchange biased systems.

  2. Effects of asymmetric nuclear introgression, introgressive mitochondrial sweep, and purifying selection on phylogenetic reconstruction and divergence estimates in the Pacific clade of Locustella warblers.

    PubMed

    Drovetski, Sergei V; Semenov, Georgy; Red'kin, Yaroslav A; Sotnikov, Vladimir N; Fadeev, Igor V; Koblik, Evgeniy A

    2015-01-01

    When isolated but reproductively compatible populations expand geographically and meet, simulations predict asymmetric introgression of neutral loci from a local to invading taxon. Genetic introgression may affect phylogenetic reconstruction by obscuring topology and divergence estimates. We combined phylogenetic analysis of sequences from one mtDNA and 12 nuDNA loci with analysis of gene flow among 5 species of Pacific Locustella warblers to test for presence of genetic introgression and its effects on tree topology and divergence estimates. Our data showed that nuDNA introgression was substantial and asymmetrical among all members of superspecies groups whereas mtDNA showed no introgression except a single species pair where the invader's mtDNA was swept by mtDNA of the local species. This introgressive sweep of mtDNA had the opposite direction of the nuDNA introgression and resulted in the paraphyly of the local species' mtDNA haplotypes with respect to those of the invader. Тhe multilocus nuDNA species tree resolved all inter- and intraspecific relationships despite substantial introgression. However, the node ages on the species tree may be underestimated as suggested by the differences in node age estimates based on non-introgressing mtDNA and introgressing nuDNA. In turn, the introgressive sweep and strong purifying selection appear to elongate internal branches in the mtDNA gene tree. PMID:25849039

  3. Many-body Effects and the Role of Indirect Excitons in Asymmetric InGaAs/GaAs Double Quantum Wells

    NASA Astrophysics Data System (ADS)

    Smallwood, Christopher; Suzuki, Takeshi; Singh, Rohan; Autry, Travis; Day, Matthew; Jabeen, Fauzia; Cundiff, Steven

    In semiconductor research, a fundamental question is how excitons in nearby but distinct spatial locations interact and exchange energy. In quantum well heterostructures, these interactions can be conveniently probed via optical coherent multidimensional spectroscopy (CMDS). Recently, it has been shown using CMDS that reducing the GaAs barrier from 30 nm to 10 nm between two asymmetric InGaAs quantum wells results in interactions driven by many-body effects. Here, we use the technique to show that for narrower barrier thicknesses, the interactions are accompanied by an emergence of spatially indirect excitons. Quantitative measurements of the effects are presented, which will be useful in tailoring GaAs heterostructure devices, and may also inform the role that excitonic interactions play in more complicated systems like microcavity polariton structures and/or photosynthetic light harvesting complexes.

  4. New ligands for the asymmetric dihydroxylation

    SciTech Connect

    Becker, H.; King, S.B.; Richardson, P.

    1995-12-31

    The asymmetric dibydroxylation of olefins in the presence of cinchona alkaloid derivatives (the AD reaction) has proven to be a reliable method in organic syntheses. For most olefins, the enantioselectivities using the {open_quotes}standard{close_quotes} phathalazine ligands are excellent; however, facial selectivity is still moderate for some olefins. 2,3-Diphenyl pyrazinopyridazine (DPP) and anthraquinone (AQN) as spacers for the {open_quotes}pseudo enantiomeric{close_quotes} alkaloids dihydroquinidine (DHQD) or dihydroquinine (DHQ) give superior enantioselectivities for almost all olefins.

  5. Effect of the active region thickness on characteristics of semiconductor lasers based on asymmetric AlGaAs/GaAs/InGaAs heterostructures with broadened waveguide

    SciTech Connect

    Vinokurov, D. A. Vasilyeva, V. V.; Kapitonov, V. A.; Lyutetskiy, A. V.; Nikolaev, D. N.; Pikhtin, N. A.; Slipchenko, S. O.; Stankevich, A. L.; Shamakhov, V. V.; Fetisova, N. V.; Tarasov, I. S.

    2010-02-15

    The effect of the active region thickness on the basic characteristics of high-power semiconductor lasers based on AlGaAs/GaAs/InGaAs asymmetric separate-confinement heterostructures grown by MOCVD epitaxy has been studied. It is shown that the threshold current, temperature sensitivity of the threshold current density, internal quantum efficiency of stimulated emission, and differential quantum efficiency are improved as the active region thickness increases. It is demonstrated that the maximum attainable optical emission power of a semiconductor laser and the internal quantum efficiency of photoluminescence are the most sensitive to defect formation in the heterostructure and become lower as the critical thickness of the strained In{sub x}Ga{sub 1-x} As layer in the active region is exceeded.

  6. Turning symmetric an asymmetric hydrogen bond with the inclusion of nuclear quantum effects: the case of the [CN···H···NC]- complex.

    PubMed

    Moreno, Diego V; González, Sergio A; Reyes, Andrés

    2011-01-14

    Nuclear quantum effects (NQE) on the geometry, energy, and electronic structure of the [CN·L·NC](-) complex (L = H, D, T) are investigated with the recently developed APMO/MP2 code. This code implements the nuclear molecular orbital approach (NMO) at the Hartree-Fock (HF) and MP2 levels of theory for electrons and quantum nuclei. In a first study, we examined the H/D/T isotope effects on the geometry and electronic structure of the CNH molecule at NMO/HF and NMO/MP2 levels of theory. We found that when increasing the hydrogen nuclear mass there is a reduction of the R(N-H) bond distance and an increase of the electronic population on the hydrogen atom. Our calculated bond distances are in good agreement with experimental and other theoretical results. In a second investigation, we explored the hydrogen NQE on the geometry of [CNHNC](-) complex at the NMO/HF and NMO/MP2 levels of theory. We discovered that while a NMO/HF calculation presented an asymmetric hydrogen bond, the NMO/MP2 calculation revealed a symmetric H-bond. We also examined the H/D/T isotope effects on the geometry and stabilization energy of the [CNHNC](-) complex. We noted that gradual increases in hydrogen mass led to reductions of the R(NN) distance and destabilization of the hydrogen bond (H-bond). A discussion of these results is given in terms of the hydrogen nuclear delocalization effects on the electronic structure and energy components. To the best of our knowledge, this is the first ab initio NMO study that reveals the importance of including nuclear quantum effects in conventional electronic structure calculations for an enhanced description of strong-low-barrier H-bonded systems. PMID:21241088

  7. Reflection-Asymmetric Nuclear Deformations within the Density Functional Theory

    SciTech Connect

    Olsen, E; Erler, J; Nazarewicz, W.; Stoitsov, M

    2012-01-01

    Within the nuclear density functional theory (DFT) we study the effect of reflection- asymmetric shapes on ground-state binding energies and binding energy differences. To this end, we developed the new DFT solver axialhfb that uses an approximate second-order gradient to solve the Hartree-Fock-Bogoliubov equations of superconducting DFT with the quasi-local Skyrme energy density functionals. Illustrative calculations are carried out for even- even isotopes of radium and thorium.

  8. Asymmetric Reconnection in the Terrestrial Reconnection EXperiment

    NASA Astrophysics Data System (ADS)

    Olson, Joseph; Egedal, Jan; Forest, Cary; Wallace, John; TREX Team; MPDX Team

    2014-10-01

    The Terrestrial Reconnection EXperiment (TREX) is a new and versatile addition to the Wisconsin Plasma Astrophysics Laboratory (WiPAL) at the University of Wisconsin-Madison. TREX is optimized for the study of kinetic reconnection in various regimes and to provide the first laboratory evidence in support of a new model describing the dynamics of trapped electrons and correlating pressure anisotropy. The initial configuration implemented in TREX is specially designed to study asymmetric reconnection scenarios. These are particularly relevant to the dayside magnetopause in which the plasma beta of the solar wind and of the magnetosphere can differ by factors of 100-1000. The configuration utilizes the Helmholtz coils to produce a static, uniform magnetic field up to 275 G through the 3 m spherical vacuum vessel. Plasma is produced on a 10 s rep rate while two internal coils are pulsed, creating an opposing magnetic field to induce reconnection with asymmetric high and low beta inflows. A Langmuir and Bdot probe array is swept in between pulses to build up the magnetic profiles in the reconnection region. Preliminary data from these initial runs will be presented.

  9. Evolutionary Stability in the Asymmetric Volunteer's Dilemma

    PubMed Central

    Li, Yao-Tang

    2014-01-01

    It is often assumed that in public goods games, contributors are either strong or weak players and each individual has an equal probability of exhibiting cooperation. It is difficult to explain why the public good is produced by strong individuals in some cooperation systems, and by weak individuals in others. Viewing the asymmetric volunteer's dilemma game as an evolutionary game, we find that whether the strong or the weak players produce the public good depends on the initial condition (i.e., phenotype or initial strategy of individuals). These different evolutionarily stable strategies (ESS) associated with different initial conditions, can be interpreted as the production modes of public goods of different cooperation systems. A further analysis revealed that the strong player adopts a pure strategy but mixed strategies for the weak players to produce the public good, and that the probability of volunteering by weak players decreases with increasing group size or decreasing cost-benefit ratio. Our model shows that the defection probability of a “strong” player is greater than the “weak” players in the model of Diekmann (1993). This contradicts Selten's (1980) model that public goods can only be produced by a strong player, is not an evolutionarily stable strategy, and will therefore disappear over evolutionary time. Our public good model with ESS has thus extended previous interpretations that the public good can only be produced by strong players in an asymmetric game. PMID:25111781

  10. Ab initio study on the size effect of symmetric and asymmetric ferroelectric tunnel junctions: A comprehensive picture with regard to the details of electrode/ferroelectric interfaces

    NASA Astrophysics Data System (ADS)

    Chen, W. J.; Zheng, Yue; Luo, X.; Wang, B.; Woo, C. H.

    2013-08-01

    Ferroelectric size effect of BaTiO3 (BTO) tunnel junctions with metal Pt and/or oxide SrRuO3 (SRO) electrodes has been comprehensively investigated by the first-principle calculations. A vacuum layer is included in the supercell calculations, so that full-relaxation is achieved without artificial constraint on the supercell strains. We have constructed all of ten possible types of tunnel junctions with either symmetric or asymmetric geometries to systematically explore the influence of electrode/ferroelectric interfaces. The characteristics of atomic structure, polarization, charge density, and electrostatic potential for different geometries and sizes are revealed. It is found that the ferroelectric stability of a tunnel junction depends significantly on the details of the two electrode/ferroelectric interfaces, which present specific short- and long-range properties, e.g., local bonding environment, electronic screening, built-in field, etc. Result shows that Pt/BTO interfaces have strong coupling with ferroelectric distortion and thus play more dominant roles than the SRO/BTO interfaces in affecting the ferroelectric stability of the tunnel junctions. Particularly, it is found that Pt2/TiO2 interface can induce collective ferroelectric distortion in the initially non-distorted barrier. With a full-relaxation of the strains, an abnormal enhancement of ferroelectricity by Pt2/BaO interface due to Pt-O bonding effect is demonstrated, where a strong interfacial-bonding-related polarizing field is verified. Also importantly, polarization stability of asymmetric tunnel junctions is found dependent on direction, manifested with the appearing of a new critical thickness, below which the tunnel junction loses polarization bistability. Furthermore, it shows that the local features of a specific electrode/ferroelectric interface (e.g., the interfacial atomic structure, local polarization, charge transfer, and potential step) are well kept in different types of tunnel

  11. Asymmetrical Inheritance of Plasmids Depends on Dynamic Cellular Geometry and Volume Exclusion Effects

    PubMed Central

    Marquez-Lago, Tatiana T.

    2015-01-01

    The asymmetrical inheritance of plasmid DNA, as well as other cellular components, has been shown to be involved in replicative aging. In Saccharomyces cerevisiae, there is an ongoing debate regarding the mechanisms underlying this important asymmetry. Currently proposed models suggest it is established via diffusion, but differ on whether a diffusion barrier is necessary or not. However, no study so far incorporated key aspects to segregation, such as dynamic morphology changes throughout anaphase or plasmids size. Here, we determine the distinct effects and contributions of individual cellular variability, plasmid volume and moving boundaries in the asymmetric segregation of plasmids. We do this by measuring cellular nuclear geometries and plasmid diffusion rates with confocal microscopy, subsequently incorporating this data into a growing domain stochastic spatial simulator. Our modelling and simulations confirms that plasmid asymmetrical inheritance does not require an active barrier to diffusion, and provides a full analysis on plasmid size effects. PMID:26468952

  12. Asymmetrical Inheritance of Plasmids Depends on Dynamic Cellular Geometry and Volume Exclusion Effects.

    PubMed

    Denton, Jai A; Ghosh, Atiyo; Marquez-Lago, Tatiana T

    2015-01-01

    The asymmetrical inheritance of plasmid DNA, as well as other cellular components, has been shown to be involved in replicative aging. In Saccharomyces cerevisiae, there is an ongoing debate regarding the mechanisms underlying this important asymmetry. Currently proposed models suggest it is established via diffusion, but differ on whether a diffusion barrier is necessary or not. However, no study so far incorporated key aspects to segregation, such as dynamic morphology changes throughout anaphase or plasmids size. Here, we determine the distinct effects and contributions of individual cellular variability, plasmid volume and moving boundaries in the asymmetric segregation of plasmids. We do this by measuring cellular nuclear geometries and plasmid diffusion rates with confocal microscopy, subsequently incorporating this data into a growing domain stochastic spatial simulator. Our modelling and simulations confirms that plasmid asymmetrical inheritance does not require an active barrier to diffusion, and provides a full analysis on plasmid size effects. PMID:26468952

  13. Probing the "additive effect" in the proline and proline hydroxamic acid catalyzed asymmetric addition of nitroalkanes to cyclic enones.

    PubMed

    Hanessian, Stephen; Govindan, Subramaniyan; Warrier, Jayakumar S

    2005-11-01

    The effect of chirality and steric bulk of 2,5-disubstituted piperazines as additives in the conjugate addition of 2-nitropropane to cyclohexenone, catalyzed by l-proline, was investigated. Neither chirality nor steric bulk affects the enantioselectivity of addition, which gives 86-93% ee in the presence of achiral and chiral nonracemic 2,5-disubstituted piperazines. Proline hydroxamic acid is shown for the first time to be an effective organocatalyst in the same Michael reaction. PMID:16189834

  14. Limit laws for the asymmetric inclusion process.

    PubMed

    Reuveni, Shlomi; Eliazar, Iddo; Yechiali, Uri

    2012-12-01

    The Asymmetric Inclusion Process (ASIP) is a unidirectional lattice-gas flow model which was recently introduced as an exactly solvable 'Bosonic' counterpart of the 'Fermionic' asymmetric exclusion process. An iterative algorithm that allows the computation of the probability generating function (PGF) of the ASIP's steady state exists but practical considerations limit its applicability to small ASIP lattices. Large lattices, on the other hand, have been studied primarily via Monte Carlo simulations and were shown to display a wide spectrum of intriguing statistical phenomena. In this paper we bypass the need for direct computation of the PGF and explore the ASIP's asymptotic statistical behavior. We consider three different limiting regimes: heavy-traffic regime, large-system regime, and balanced-system regime. In each of these regimes we obtain-analytically and in closed form-stochastic limit laws for five key ASIP observables: traversal time, overall load, busy period, first occupied site, and draining time. The results obtained yield a detailed limit-laws perspective of the ASIP, numerical simulations demonstrate the applicability of these laws as useful approximations. PMID:23367919

  15. Asymmetric catalysis on the nanoscale: the organocatalytic approach to helicenes.

    PubMed

    Kötzner, Lisa; Webber, Matthew J; Martínez, Alberto; De Fusco, Claudia; List, Benjamin

    2014-05-12

    The first asymmetric organocatalytic synthesis of helicenes is reported. A novel SPINOL-derived phosphoric acid, bearing extended π-substituents, catalyzes the asymmetric synthesis of helicenes through an enantioselective Fischer indole reaction. A variety of azahelicenes and diazahelicenes could be obtained with good to excellent yields and enantioselectivities. PMID:24737692

  16. Effect of Geometric Azimuthal Asymmetrics of PPM Stack on Electron Beam Characteristics

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.

    2000-01-01

    A three-dimensional (3D) beam optics model has been developed using the electromagnetic particle-in-cell (PIC) code MAFIA. The model includes an electron beam with initial transverse velocity distribution focused by a periodic permanent magnet (PPM) stack. All components of the model are simulated in three dimensions allowing several azimuthally asymmetric traveling wave tube (TWT) characteristics to be investigated for the first time. These include C-magnets, shunts and magnet misalignment and their effects on electron beam behavior. The development of the model is presented and 3D TWT electron beam characteristics are compared in the absence of and under the influence of the azimuthally asymmetric characteristics described.

  17. Asymmetric morphology of the propagating jet

    NASA Astrophysics Data System (ADS)

    Hardee, Philip E.; Norman, Michael L.

    1990-12-01

    Simulations of slab jets propagating in constant atmospheres are reported for a range of jet velocities and Mach numbers. At early times, the jet maintains approximate axisymmetry within a backflowing cocoon. When the jet has penetrated farther into the external medium, the symmetry is broken by sideways oscillation and the leading edge of the jet moves about within a growing lobe. The oscillation results from nonlinear resonant amplification of the initial perturbation by the Kelvin-Helmholtz instability. Finally, the jet flaps chaotically within the growing lobe. The flapping is driven by turbulent vortices in the lobe. The basic picture of Scheuer's (1982) 'dentist's drill' model of the physical processes underlying asymmetric morphologies in radio galaxies is confirmed. The fluid motions in the lobe are found to govern the location of the drill bit. The morphology is time-dependent on relatively short time scales.

  18. Activation of the prefrontal cortex by unilateral transcranial direct current stimulation leads to an asymmetrical effect on risk preference in frames of gain and loss.

    PubMed

    Ye, Hang; Huang, Daqiang; Wang, Siqi; Zheng, Haoli; Luo, Jun; Chen, Shu

    2016-10-01

    Previous brain imaging and brain stimulation studies have suggested that the dorsolateral prefrontal cortex may be critical in regulating risk-taking behavior, although its specific causal effect on people's risk preference remains controversial. This paper studied the independent modulation of the activity of the right and left dorsolateral prefrontal cortex using various configurations of transcranial direct current stimulation. We designed a risk-measurement table and adopted a within-subject design to compare the same participant's risk preference before and after unilateral stimulation when presented with different frames of gain and loss. The results confirmed a hemispheric asymmetry and indicated that the right dorsolateral prefrontal cortex has an asymmetric effect on risk preference regarding frames of gain and loss. Enhancing the activity of the right dorsolateral prefrontal cortex significantly decreased the participants' degree of risk aversion in the gain frame, whereas it increased the participants' degree of risk aversion in the loss frame. Our findings provide important information regarding the impact of transcranial direct current stimulation on the risk preference of healthy participants. The effects observed in our experiment compared with those of previous studies provide further evidence of the effects of hemispheric and frame-dependent asymmetry. These findings may be helpful in understanding the neural basis of risk preference in humans, especially when faced with decisions involving possible gain or loss relative to the status quo. PMID:27507423

  19. Aerodynamic cause of the asymmetric wing deformation of insect wings

    NASA Astrophysics Data System (ADS)

    Luo, Haoxiang; Tian, Fangbao; Song, Jialei; Lu, Xi-Yun

    2012-11-01

    Insect wings typically exhibit significant asymmetric deformation patterns, where the magnitude of deflection during upstroke is greater than during downstroke. Such a feature is beneficial for the aerodynamics since it reduces the projected wing area during upstroke and leads to less negative lift. Previously, this asymmetry has been mainly attributed to the directional bending stiffness in the wing structure, e.g., one-way hinge, or a pre-existing camber in the wing surface. In the present study, we demonstrate that the asymmetric pattern can also be caused by the asymmetric force due to the flow, while the wing structure and kinematics are symmetric. A two-dimensional translating/pitching wing in a free stream is used as the model, and the wing is represented by an elastic sheet with large displacement. The result shows that, interestingly, the wing experiences larger deformation during upstroke even though the aerodynamic force is greater during downstroke. The physical mechanism of the phenomenon can be explained by the modulating effect of the aerodynamic force on the timing of storage/release of the elastic energy in the wing. Supported by NSF (No. CBET-0954381).

  20. Asymmetric pneumatization of the petrous apex.

    PubMed

    Roland, P S; Meyerhoff, W L; Judge, L O; Mickey, B E

    1990-07-01

    Three patients with high-intensity MR signals from one petrous apex, but nonpathologic fine-cut computed tomography are reported. In two of the three patients, normal bone marrow within the petrous apex on one side is believed to have generated the high-intensity signal. In one of the three patients, the etiology of the MR image remains obscure, but may represent the earliest stages of petrous cholesterol granuloma or mucocele. We have reviewed 500 head CT scans performed for non-otologic reasons, in an attempt to establish the frequency of this finding. The literature on MR and CT imaging of the petrous apex and asymmetric pneumatization of the petrous apex is reviewed. PMID:2117735

  1. Asymmetric multifractal scaling behavior in the Chinese stock market: Based on asymmetric MF-DFA

    NASA Astrophysics Data System (ADS)

    Cao, Guangxi; Cao, Jie; Xu, Longbing

    2013-02-01

    We utilized asymmetric multifractal detrended fluctuation analysis in this study to examine the asymmetric multifractal scaling behavior of Chinese stock markets with uptrends or downtrends. Results show that the multifractality degree of Chinese stock markets with uptrends is stronger than that of Chinese stock markets with downtrends. Correlation asymmetries are more evident in large fluctuations than in small fluctuations. By discussing the source of asymmetric multifractality, we find that multifractality is related to long-range correlations when the market is going up, whereas it is related to fat-tailed distribution when the market is going down. The main source of asymmetric scaling behavior in the Shanghai stock market are long-range correlations, whereas that in the Shenzhen stock market is fat-tailed distribution. An analysis of the time-varying feature of scaling asymmetries shows that the evolution trends of these scaling asymmetries are similar in the two Chinese stock markets. Major financial and economical events may enhance scaling asymmetries.

  2. Origin of Asymmetric Solvation Effects for Ions in Water and Organic Solvents Investigated Using Molecular Dynamics Simulations: The Swain Acity-Basity Scale Revisited.

    PubMed

    Reif, Maria M; Hünenberger, Philippe H

    2016-08-25

    The asymmetric solvation of ions can be defined as the tendency of a solvent to preferentially solvate anions over cations or cations over anions, at identical ionic charge magnitudes and effective sizes. Taking water as a reference, these effects are quantified experimentally for many solvents by the relative acity (A) and basity (B) parameters of the Swain scale. The goal of the present study is to investigate the asymmetric solvation of ions using molecular dynamics simulations, and to connect the results to this empirical scale. To this purpose, the charging free energies of alkali and halide ions, and of their hypothetical oppositely charged counterparts, are calculated in a variety of solvents. In a first set of calculations, artificial solvent models are considered that present either a charge or a shape asymmetry at the molecular level. The solvation asymmetry, probed by the difference in charging free energy between the two oppositely charged ions, is found to encompass a term quadratic in the ion charge, related to the different solvation structures around the anion and cation, and a term linear in the ion charge, related to the solvation structure around the uncharged ion-sized cavity. For these simple solvent models, the two terms are systematically counteracting each other, and it is argued that only the quadratic term should be retained when comparing the results of simulations involving physical solvents to experimental data. In a second set of calculations, 16 physical solvents are considered. The theoretical estimates for the acity A are found to correlate very well with the Swain parameters, whereas the correlation for B is very poor. Based on this observation, the Swain scale is reformulated into a new scale involving an asymmetry parameter Σ, positive for acitic solvents and negative for basitic ones, and a polarity parameter Π. This revised scale has the same predictive power as the original scale, but it characterizes asymmetry in an

  3. Asymmetrical Capacitors for Propulsion and the ISR Asymmetrical Capacitator Thruster, Experimental Results and Improved Designs

    NASA Technical Reports Server (NTRS)

    Canning, Francis; Winet, Ed; Ice, Bob; Melcher, Cory; Pesavento, Phil; Holmes, Alan; Butler, Carey; Cole, John; Campbell, Jonathan

    2004-01-01

    The outline of this viewgraph presentation on asymmetrical capacitor thruster development includes: 1) Test apparatus; 2) Devices tested; 3) Circuits used; 4) Data collected (Time averaged, Time resolved); 5) Patterns observed; 6) Force calculation; 7) Electrostatic modeling; 8) Understand it all.

  4. Rawal's catalyst as an effective stimulant for the highly asymmetric Michael addition of β-keto esters to functionally rich nitro-olefins.

    PubMed

    Suresh Kumar, A; Prabhakar Reddy, T; Madhavachary, R; Ramachary, Dhevalapally B

    2016-06-15

    A general approach to asymmetric synthesis of highly substituted dihydroquinolines was achieved through neighboring ortho-amino group engaged sequential Michael/amination/dehydration reactions on (E)-2-(2-nitrovinyl)anilines with cyclic and acyclic β-keto esters in the presence of a catalytic amount of Rawal's quinidine-NH-benzyl squaramide followed by TFA. PMID:26611712

  5. Error induced by the estimation of the corneal power and the effective lens position with a rotationally asymmetric refractive multifocal intraocular lens

    PubMed Central

    Piñero, David P.; Camps, Vicente J.; Ramón, María L.; Mateo, Verónica; Pérez-Cambrodí, Rafael J.

    2015-01-01

    AIM To evaluate the prediction error in intraocular lens (IOL) power calculation for a rotationally asymmetric refractive multifocal IOL and the impact on this error of the optimization of the keratometric estimation of the corneal power and the prediction of the effective lens position (ELP). METHODS Retrospective study including a total of 25 eyes of 13 patients (age, 50 to 83y) with previous cataract surgery with implantation of the Lentis Mplus LS-312 IOL (Oculentis GmbH, Germany). In all cases, an adjusted IOL power (PIOLadj) was calculated based on Gaussian optics using a variable keratometric index value (nkadj) for the estimation of the corneal power (Pkadj) and on a new value for ELP (ELPadj) obtained by multiple regression analysis. This PIOLadj was compared with the IOL power implanted (PIOLReal) and the value proposed by three conventional formulas (Haigis, Hoffer Q and Holladay I). RESULTS PIOLReal was not significantly different than PIOLadj and Holladay IOL power (P>0.05). In the Bland and Altman analysis, PIOLadj showed lower mean difference (-0.07 D) and limits of agreement (of 1.47 and -1.61 D) when compared to PIOLReal than the IOL power value obtained with the Holladay formula. Furthermore, ELPadj was significantly lower than ELP calculated with other conventional formulas (P<0.01) and was found to be dependent on axial length, anterior chamber depth and Pkadj. CONCLUSION Refractive outcomes after cataract surgery with implantation of the multifocal IOL Lentis Mplus LS-312 can be optimized by minimizing the keratometric error and by estimating ELP using a mathematical expression dependent on anatomical factors. PMID:26085998

  6. Edge-Channel Photo-Effect In Asymmetric Two-Dimensional Systems

    SciTech Connect

    Vasilyev, Yu. B.; Meltser, B. Ya.; Ivanov, S. V.; Kop'ev, P. S.; Stellmach, C.; Gouider, F.; Nachtwei, G.

    2011-12-23

    We report on the photo-effect in an asymmetric two dimensional electron system where edge currents are induced by homogeneous terahertz (THz) radiation in tilted magnetic field without any external bias. We discuss the features of the observed effect and its mechanism taking into account properties of edge states in magnetic fields. The process is understood as the quantum Hall effect associated with electron-hole pairs generated in Landau levels by THz radiation under CR conditions.

  7. Probing the effect of dopants (donors) within InAs/InGaAs/InAlAs Asymmetric Heterostructure wafer by magneto-THz spectroscopy

    NASA Astrophysics Data System (ADS)

    Pakmehr, Mehdi; Heyn, Christian; Hansen, Wolfgang

    Probing the effect of impurities within semiconductor structures have been the topic of interest both from applied and scientific point of views. We studied the effect of dopants (donors) within InAs/InGaAs/InAlAs asymmetric heterostructure wafer by means of THz magneto-transmission (TR) spectroscopy, in conjunction with THz magneto-photoresponse (PR) spectroscopy. The sample wafer has been immersed in pumped liquid Helium at 1.6 K, while being exposed to sweeping magnetic field up to 10 Tesla, with THz laser beam (1.4 THz) being focused on sample by off-axis parabolic mirror. The transmitted beam was detected by silicon composite bolometer. Two broad absorption features other than sharp Cyclotron resonance (CR) absorption dip within magneto-TR signal attributed to 1s -->2P transition within donors of doped layer (InAlAs) in heterostructure. We plan to discuss the analysis of magneto-TR signal, in conjunction with Magneto-PR signals from Hall bar samples made from same type of wafer at same frequency to clarify how dopants could possibly alter these signals.

  8. Effects of medium-induced {rho}-{omega} meson mixing on the equation of state in isospin-asymmetric nuclear matter

    SciTech Connect

    Jiang Weizhou; Li Baoan

    2009-10-15

    We reexamine effects of the {rho}-{omega} meson mixing mediated by nucleon polarizations on the symmetry energy in isospin-asymmetric nuclear matter. Taking into account the rearrangement term neglected in previous studies by others, we evaluate the {rho}-{omega} mixing angle in a novel way within the relativistic mean-field models with and without chiral limits. It is found that the symmetry energy is significantly softened at high densities contrary to the finding in earlier studies. As the first step of going beyond the lowest-order calculations, we also solve the Dyson equation for the {rho}-{omega} mixing. In this case, it is found that the symmetry energy is not only significantly softened by the {rho}-{omega}mixing at suprasaturation densities, similar to the lowest-order {rho}-{omega} mixing, but interestingly also softened at subsaturation densities. In addition, the softening of the symmetry energy at subsaturation densities can be partly suppressed by the nonlinear self-interaction of the {sigma} meson.

  9. Effect of asymmetrical street aspect ratios on microclimates in hot, humid regions

    NASA Astrophysics Data System (ADS)

    Qaid, Adeb; Ossen, Dilshan R.

    2015-06-01

    Asymmetrical street aspect ratios, i.e. different height-to-width (H1/W-H2/W) ratios, have not received much attention in the study of urban climates. Putrajaya Boulevard (northeast to southwest orientation) in Malaysia was selected to study the influence of six asymmetrical aspect ratio scenarios on the street microclimate using the Envi-met three-dimensional microclimate model (V3.1 Beta). Putrajaya Boulevard suffers from high surface and air temperature during the day due to the orientation, the low aspect ratio and the wide sky view factor. These issues are a common dilemma in many boulevards. Further, low and high symmetrical streets are incompatible with tropical regions as they offer conflicting properties during the day and at night. These scenarios are examined, therefore, to find asymmetrical streets which are able to reduce the impact of the day microclimate on boulevards, and as an alternative strategy fulfilling tropical day and night climatic conditions. Asymmetrical streets are better than low symmetrical streets in enhancing wind flow and blocking solar radiation, when tall buildings confront winds direction or solar altitudes. Therefore, mitigating heat islands or improving microclimates in asymmetrical streets based on tall buildings position which captures wind or caste shades. In northeast to southwest direction, aspect ratios of 0.8-2 reduce the morning microclimate and night heat islands yet the negative effects during the day are greater than the positive effects in the night. An aspect ratio of 2-0.8 reduces the temperature of surfaces by 10 to 14 °C and the air by 4.7 °C, recommended for enhancing boulevard microclimates and mitigating tropical heat islands.

  10. Effect of asymmetrical street aspect ratios on microclimates in hot, humid regions.

    PubMed

    Qaid, Adeb; Ossen, Dilshan R

    2015-06-01

    Asymmetrical street aspect ratios, i.e. different height-to-width (H1/W-H2/W) ratios, have not received much attention in the study of urban climates. Putrajaya Boulevard (northeast to southwest orientation) in Malaysia was selected to study the influence of six asymmetrical aspect ratio scenarios on the street microclimate using the Envi-met three-dimensional microclimate model (V3.1 Beta). Putrajaya Boulevard suffers from high surface and air temperature during the day due to the orientation, the low aspect ratio and the wide sky view factor. These issues are a common dilemma in many boulevards. Further, low and high symmetrical streets are incompatible with tropical regions as they offer conflicting properties during the day and at night. These scenarios are examined, therefore, to find asymmetrical streets which are able to reduce the impact of the day microclimate on boulevards, and as an alternative strategy fulfilling tropical day and night climatic conditions. Asymmetrical streets are better than low symmetrical streets in enhancing wind flow and blocking solar radiation, when tall buildings confront winds direction or solar altitudes. Therefore, mitigating heat islands or improving microclimates in asymmetrical streets based on tall buildings position which captures wind or caste shades. In northeast to southwest direction, aspect ratios of 0.8-2 reduce the morning microclimate and night heat islands yet the negative effects during the day are greater than the positive effects in the night. An aspect ratio of 2-0.8 reduces the temperature of surfaces by 10 to 14 °C and the air by 4.7 °C, recommended for enhancing boulevard microclimates and mitigating tropical heat islands. PMID:25108376

  11. Synergistic Effect between Ultra-Small Nickel Hydroxide Nanoparticles and Reduced Graphene Oxide sheets for the Application in High-Performance Asymmetric Supercapacitor

    PubMed Central

    Liu, Yonghuan; Wang, Rutao; Yan, Xingbin

    2015-01-01

    Nanoscale electrode materials including metal oxide nanoparticles and two-dimensional graphene have been employed for designing supercapacitors. However, inevitable agglomeration of nanoparticles and layers stacking of graphene largely hamper their practical applications. Here we demonstrate an efficient co-ordination and synergistic effect between ultra-small Ni(OH)2 nanoparticles and reduced graphene oxide (RGO) sheets for synthesizing ideal electrode materials. On one hand, to make the ultra-small Ni(OH)2 nanoparticles work at full capacity as an ideal pseudocapacitive material, RGO sheets are employed as an suitable substrate to anchor these nanoparticles against agglomeration. As a consequence, an ultrahigh specific capacitance of 1717 F g−1 at 0.5 A g−1 is achieved. On the other hand, to further facilitate ion transfer within RGO sheets as an ideal electrical double layer capacitor material, the ultra-small Ni(OH)2 nanoparticles are introduced among RGO sheets as the recyclable sacrificial spacer to prevent the stacking. The resulting RGO sheets exhibit superior rate capability with a high capacitance of 182 F g−1 at 100 A g−1. On this basis, an asymmetric supercapacitor is assembled using the two materials, delivering a superior energy density of 75 Wh kg−1 and an ultrahigh power density of 40 000 W kg−1. PMID:26053847

  12. Synergistic Effect between Ultra-Small Nickel Hydroxide Nanoparticles and Reduced Graphene Oxide sheets for the Application in High-Performance Asymmetric Supercapacitor

    NASA Astrophysics Data System (ADS)

    Liu, Yonghuan; Wang, Rutao; Yan, Xingbin

    2015-06-01

    Nanoscale electrode materials including metal oxide nanoparticles and two-dimensional graphene have been employed for designing supercapacitors. However, inevitable agglomeration of nanoparticles and layers stacking of graphene largely hamper their practical applications. Here we demonstrate an efficient co-ordination and synergistic effect between ultra-small Ni(OH)2 nanoparticles and reduced graphene oxide (RGO) sheets for synthesizing ideal electrode materials. On one hand, to make the ultra-small Ni(OH)2 nanoparticles work at full capacity as an ideal pseudocapacitive material, RGO sheets are employed as an suitable substrate to anchor these nanoparticles against agglomeration. As a consequence, an ultrahigh specific capacitance of 1717 F g-1 at 0.5 A g-1 is achieved. On the other hand, to further facilitate ion transfer within RGO sheets as an ideal electrical double layer capacitor material, the ultra-small Ni(OH)2 nanoparticles are introduced among RGO sheets as the recyclable sacrificial spacer to prevent the stacking. The resulting RGO sheets exhibit superior rate capability with a high capacitance of 182 F g-1 at 100 A g-1. On this basis, an asymmetric supercapacitor is assembled using the two materials, delivering a superior energy density of 75 Wh kg-1 and an ultrahigh power density of 40 000 W kg-1.

  13. Synergistic Effect between Ultra-Small Nickel Hydroxide Nanoparticles and Reduced Graphene Oxide sheets for the Application in High-Performance Asymmetric Supercapacitor.

    PubMed

    Liu, Yonghuan; Wang, Rutao; Yan, Xingbin

    2015-01-01

    Nanoscale electrode materials including metal oxide nanoparticles and two-dimensional graphene have been employed for designing supercapacitors. However, inevitable agglomeration of nanoparticles and layers stacking of graphene largely hamper their practical applications. Here we demonstrate an efficient co-ordination and synergistic effect between ultra-small Ni(OH)2 nanoparticles and reduced graphene oxide (RGO) sheets for synthesizing ideal electrode materials. On one hand, to make the ultra-small Ni(OH)2 nanoparticles work at full capacity as an ideal pseudocapacitive material, RGO sheets are employed as an suitable substrate to anchor these nanoparticles against agglomeration. As a consequence, an ultrahigh specific capacitance of 1717 F g(-1) at 0.5 A g(-1) is achieved. On the other hand, to further facilitate ion transfer within RGO sheets as an ideal electrical double layer capacitor material, the ultra-small Ni(OH)2 nanoparticles are introduced among RGO sheets as the recyclable sacrificial spacer to prevent the stacking. The resulting RGO sheets exhibit superior rate capability with a high capacitance of 182 F g(-1) at 100 A g(-1). On this basis, an asymmetric supercapacitor is assembled using the two materials, delivering a superior energy density of 75 Wh kg(-1) and an ultrahigh power density of 40 000 W kg(-1). PMID:26053847

  14. The Inhibitory Effect of Quercetin on Asymmetric Dimethylarginine-Induced Apoptosis Is Mediated by the Endoplasmic Reticulum Stress Pathway in Glomerular Endothelial Cells

    PubMed Central

    Guo, Weikang; Ding, Jiaxiang; Zhang, Aihua; Dai, Wendi; Liu, Sha; Diao, Zongli; Wang, Liyan; Han, Xue; Liu, Wenhu

    2014-01-01

    Asymmetric dimethylarginine (ADMA) is considered an independent mortality and cardiovascular risk factor in chronic kidney disease (CKD) patients, and contributes to the development of renal fibrosis. Quercetin (QC), a natural component of foods, protects against renal injury. Here, we explored the possible mechanisms that are responsible for ADMA-induced renal fibrosis and the protective effect of QC. We found that ADMA treatment activated the endoplasmic reticulum (ER) stress sensor proteins phosphorylated protein kinase RNA-activated-like ER kinase (PERK) and inositol requiring-1α (IRE1), which correspondingly induced C/EBP homologous protein (CHOP) expression and phosphorylated c-Jun N-terminal kinase (JNK) phosphorylation in glomerular endothelial cells (GEnCs). Following this, ADMA promoted ER stress-induced apoptosis and resulted in transforming growth factor β (TGF-β) expression in GEnCs. SP600125, an inhibitor of JNK, and CHOP siRNA protected against ADMA-induced cell apoptosis and TGF-β expression. QC prevented ADMA-induced PERK and IRE1 apoptotic ER stress pathway activation. Also, ADMA-induced GEnCs apoptosis and TGF-β expression was reduced by QC. Overexpression of CHOP blocked QC-mediated protection from apoptosis in ER stressed cells. Overall, these observations indicate that ADMA may induce GEnCs apoptosis and TGF-β expression by targeting the PERK-CHOP and IRE1-JNK pathway. In addition, drugs such as QC targeting ER stress may hold great promise for the development of novel therapies against ADMA-induced renal fibrosis. PMID:24451129

  15. Asymmetric Planetary Nebulae VI: the conference summary

    NASA Astrophysics Data System (ADS)

    De Marco, O.

    2014-04-01

    The Asymmetric Planetary Nebulae conference series, now in its sixth edition, aims to resolve the shaping mechanism of PN. Eighty percent of PN have non spherical shapes and during this conference the last nails in the coffin of single stars models for non spherical PN have been put. Binary theories abound but observational tests are lagging. The highlight of APN6 has been the arrival of ALMA which allowed us to measure magnetic fields on AGB stars systematically. AGB star halos, with their spiral patterns are now connected to PPN and PN halos. New models give us hope that binary parameters may be decoded from these images. In the post-AGB and pre-PN evolutionary phase the naked post-AGB stars present us with an increasingly curious puzzle as complexity is added to the phenomenologies of objects in transition between the AGB and the central star regimes. Binary central stars continue to be detected, including the first detection of longer period binaries, however a binary fraction is still at large. Hydro models of binary interactions still fail to give us results, if we make an exception for the wider types of binary interactions. More promise is shown by analytical considerations and models driven by simpler, 1D simulations such as those carried out with the code MESA. Large community efforts have given us more homogeneous datasets which will yield results for years to come. Examples are the ChanPlaN and HerPlaNe collaborations that have been working with the Chandra and Herschel space telescopes, respectively. Finally, the new kid in town is the intermediate-luminosity optical transient, a new class of events that may have contributed to forming several peculiar PN and pre-PN.

  16. Asymmetric field-aligned currents in the conjugate hemispheres

    NASA Astrophysics Data System (ADS)

    Reistad, J. P.; Ostgaard, N.; Oksavik, K.; Laundal, K. M.

    2012-12-01

    Earlier studies using simultaneous imaging from space of the Aurora Borealis (Northern Hemisphere) and Aurora Australis (Southern Hemisphere) have revealed that the aurora can experience a high degree of asymmetry between the two hemispheres. Using 19 hours of simultaneous global imaging from both hemispheres (IMAGE satellite in north and Polar satellite in south) in conjunction with the entire IMAGE WIC database, we investigate the importance of various mechanisms thought to generate the asymmetries seen in global imaging. In terms of asymmetric or interhemispheric field-aligned currents, three candidate mechanisms have been suggested: 1) Hemispheric differences in solar wind dynamo efficiency mainly controlled by IMF Bx leading to asymmetric region 1 currents; 2) conductivity differences in conjugate areas; and 3) penetration of IMF By into the closed magnetosphere possibly generating a pair of oppositely directed interhemispheric currents. From the 19 hour conjugate dataset we find that the solar wind dynamo is likely to be the most important controlling mechanism for asymmetric bright aurora in the polar part of the nightside oval. Here we present statistical analyses of candidates 1) and 3). Using the entire IMAGE WIC database, a statistical analysis of the auroral brightness distribution along and across the Northern Hemisphere oval is carried out. For each candidate, two extreme cases (+/- IMF Bx for 1) and +/- IMF By for 3)) are compared during times non-favorable for the other two mechanisms. Our results indicate that solar wind dynamo induced currents play an important role for the nightside auroral brightness in an average sense. Also, signatures of interhemispheric currents due to IMF By penetration are seen in our statistics, although this effect is somehow weaker.

  17. The Asymmetrical "Sticking" Behavior of Two Balls on an Incline.

    ERIC Educational Resources Information Center

    Mallinckrodt, A. John

    1999-01-01

    Offers a relatively simple analysis of the asymmetrical "sticking" and rolling behavior of two balls, one steel and one rubber, on an incline. Describes an Interactive Physics (TM) simulation designed to study the problem and gives rough experimental results. (WRM)

  18. Effect of biological/physical stimulation on guided bone regeneration through asymmetrically porous membrane.

    PubMed

    Kim, Tae Ho; Oh, Se Heang; Na, Seung Yeon; Chun, So Young; Lee, Jin Ho

    2012-06-01

    Asymmetrically porous polycaprolactone (PCL)/Pluronic F127 guided bone regeneration (GBR) membranes were fabricated. The top surface of the membrane had nanosize pores (∼10 nm) which can effectively prevent invasion by fibrous connective tissue but permeate nutrients, whereas the bottom surface had microsize pores (∼200 μm) which can enhance the adhesiveness with bone tissue. Ultrasound was applied to a bone morphogenetic protein (BMP-2)-immobilized PCL/F127 GBR membrane to investigate the feasibility of using dual biological (BMP-2) and physical (ultrasound) stimulation for enhancing bone regeneration through the membrane. In an animal study using SD rats (cranial defect model), the bone regeneration behavior that occurred when using BMP-2-loaded GBR membranes with ultrasound treatment (GBR/BMP-2/US) was much faster than when the same GBR membrane was used without the ultrasound treatment (GBR/BMP-2), as well as when GBR membranes were used without stimulations (GBR). The enhanced bone regeneration of the GBR/BMP-2/US group can be interpreted as resulting from the synergistic or additive effect of the asymmetrically porous PCL/F127 membrane with unique properties (selective permeability, hydrophilicity, and osteoconductivity) and the stimulatory effects of BMP-2 and ultrasound (osteoinductivity). The asymmetrically porous GBR membrane with dual BMP-2 and ultrasound stimulation may be promising for the clinical treatment of delayed and insufficient bone healing. PMID:22408081

  19. Asymmetric statistical features of the Chinese domestic and international gold price fluctuation

    NASA Astrophysics Data System (ADS)

    Cao, Guangxi; Zhao, Yingchao; Han, Yan

    2015-05-01

    Analyzing the statistical features of fluctuation is remarkably significant for financial risk identification and measurement. In this study, the asymmetric detrended fluctuation analysis (A-DFA) method was applied to evaluate asymmetric multifractal scaling behaviors in the Shanghai and New York gold markets. Our findings showed that the multifractal features of the Chinese and international gold spot markets were asymmetric. The gold return series persisted longer in an increasing trend than in a decreasing trend. Moreover, the asymmetric degree of multifractals in the Chinese and international gold markets decreased with the increase in fluctuation range. In addition, the empirical analysis using sliding window technology indicated that multifractal asymmetry in the Chinese and international gold markets was characterized by its time-varying feature. However, the Shanghai and international gold markets basically shared a similar asymmetric degree evolution pattern. The American subprime mortgage crisis (2008) and the European debt crisis (2010) enhanced the asymmetric degree of the multifractal features of the Chinese and international gold markets. Furthermore, we also make statistical tests for the results of multifractatity and asymmetry, and discuss the origin of them. Finally, results of the empirical analysis using the threshold autoregressive conditional heteroskedasticity (TARCH) and exponential generalized autoregressive conditional heteroskedasticity (EGARCH) models exhibited that good news had a more significant effect on the cyclical fluctuation of the gold market than bad news. Moreover, good news exerted a more significant effect on the Chinese gold market than on the international gold market.

  20. The effects of asymmetric vs. symmetric probability of targets following probe and irrelevant stimuli in the complex trial protocol for detection of concealed information with P300.

    PubMed

    Rosenfeld, J Peter; Tang, Monica; Meixner, John; Winograd, Michael; Labkovsky, Elena

    2009-08-01

    The complex trial protocol (CTP, [J.P. Rosenfeld, E. Labkovsky, M. Winograd, M.A. Lui, C. Vandenboom & E. Chedid (2008), The complex trial protocol (CTP): a new, countermeasure-resistant, accurate P300-based method for detection of concealed information. Psychophysiology, 45, 906-919.]) is a sensitive, new, countermeasure-resistant, P300-based concealed information protocol in which a first stimulus (Probe or Irrelevant) is followed after about 1.4-1.8 s by a Target or Non-Target second stimulus within one trial. It has been previously run with a potentially confounding asymmetric conditional probability of Targets following Probes vs. Irrelevants. This present study compared asymmetric vs. symmetric conditional probability groups and found no significant differences in detection rates or Probe-minus-Irrelevant P300 differences between groups. Group differences were seen in error rates and reaction times (RT) to second stimuli. These differences were, however, not diagnostic for deception vs. truth-telling, and were attributable to response perseveration. PMID:19374912

  1. Asymmetric and Negative Differential Thermal Spin Effect at Magnetic Interfaces: Towards Spin Seebeck Diodes and Transistors

    NASA Astrophysics Data System (ADS)

    Ren, Jie; Zhu, Jian-Xin

    2014-03-01

    We study the nonequilibrium thermal-spin transport across metal-magnetic insulator interfaces. The transport is assisted by the exchange interaction between conduction electrons in the metal and localized spins in the magnetic insulator. We predict the rectification and negative differential spin Seebeck effect (SSE), that is, reversing the temperature bias is able to give asymmetric spin currents and increasing temperature bias could give an anomalously decreasing spin current. We resolve their microscopic mechanism as a consequence of the energy-dependent electronic DOS in the metal. The rectification of spin Peltier effect is also discussed. We then study the asymmetric and negative differential magnon tunneling driven by temperature bias. We show that the many-body magnon interaction that makes the magnonic spectrum temperature-dependent is the crucial factor for the emergence of rectification and negative differential SSEs in magnon tunneling junctions. We show that these asymmetric and negative differential SSEs are relevant for building magnon and spin Seebeck diodes and transistors, which could play important roles in controlling information and energy in functional devices. Supported by the National Nuclear Security Administration of the US DOE at LANL under Contract No. DE-AC52-06NA25396.

  2. Coupled effects of market impact and asymmetric sensitivity in financial markets

    NASA Astrophysics Data System (ADS)

    Zhong, Li-Xin; Xu, Wen-Juan; Ren, Fei; Shi, Yong-Dong

    2013-05-01

    By incorporating market impact and asymmetric sensitivity into the evolutionary minority game, we study the coevolutionary dynamics of stock prices and investment strategies in financial markets. Both the stock price movement and the investors’ global behavior are found to be closely related to the phase region they fall into. Within the region where the market impact is small, investors’ asymmetric response to gains and losses leads to the occurrence of herd behavior, when all the investors are prone to behave similarly in an extreme way and large price fluctuations occur. A linear relation between the standard deviation of stock price changes and the mean value of strategies is found. With full market impact, the investors tend to self-segregate into opposing groups and the introduction of asymmetric sensitivity leads to the disappearance of dominant strategies. Compared with the situations in the stock market with little market impact, the stock price fluctuations are suppressed and an efficient market occurs. Theoretical analyses indicate that the mechanism of phase transition from clustering to self-segregation in the present model is similar to that in the majority-minority game and the occurrence and disappearance of efficient markets are related to the competition between the trend-following and the trend-aversion forces. The clustering of the strategies in the present model results from the majority-wins effect and the wealth-driven mechanism makes the market become predictable.

  3. Modeling the Overalternating Bias with an Asymmetric Entropy Measure.

    PubMed

    Gronchi, Giorgio; Raglianti, Marco; Noventa, Stefano; Lazzeri, Alessandro; Guazzini, Andrea

    2016-01-01

    Psychological research has found that human perception of randomness is biased. In particular, people consistently show the overalternating bias: they rate binary sequences of symbols (such as Heads and Tails in coin flipping) with an excess of alternation as more random than prescribed by the normative criteria of Shannon's entropy. Within data mining for medical applications, Marcellin proposed an asymmetric measure of entropy that can be ideal to account for such bias and to quantify subjective randomness. We fitted Marcellin's entropy and Renyi's entropy (a generalized form of uncertainty measure comprising many different kinds of entropies) to experimental data found in the literature with the Differential Evolution algorithm. We observed a better fit for Marcellin's entropy compared to Renyi's entropy. The fitted asymmetric entropy measure also showed good predictive properties when applied to different datasets of randomness-related tasks. We concluded that Marcellin's entropy can be a parsimonious and effective measure of subjective randomness that can be useful in psychological research about randomness perception. PMID:27458418

  4. Modeling the Overalternating Bias with an Asymmetric Entropy Measure

    PubMed Central

    Gronchi, Giorgio; Raglianti, Marco; Noventa, Stefano; Lazzeri, Alessandro; Guazzini, Andrea

    2016-01-01

    Psychological research has found that human perception of randomness is biased. In particular, people consistently show the overalternating bias: they rate binary sequences of symbols (such as Heads and Tails in coin flipping) with an excess of alternation as more random than prescribed by the normative criteria of Shannon's entropy. Within data mining for medical applications, Marcellin proposed an asymmetric measure of entropy that can be ideal to account for such bias and to quantify subjective randomness. We fitted Marcellin's entropy and Renyi's entropy (a generalized form of uncertainty measure comprising many different kinds of entropies) to experimental data found in the literature with the Differential Evolution algorithm. We observed a better fit for Marcellin's entropy compared to Renyi's entropy. The fitted asymmetric entropy measure also showed good predictive properties when applied to different datasets of randomness-related tasks. We concluded that Marcellin's entropy can be a parsimonious and effective measure of subjective randomness that can be useful in psychological research about randomness perception. PMID:27458418

  5. Asymmetric distribution of a fluorescent sterol in synaptic plasma membranes: effects of chronic ethanol consumption.

    PubMed

    Wood, W G; Schroeder, F; Hogy, L; Rao, A M; Nemecz, G

    1990-06-27

    Ethanol-induced structural changes in membranes have in some studies been attributed to an increase in total membrane cholesterol. Consistent changes in cholesterol content, however, have not been observed in membranes of ethanol consuming animals and alcoholic patients. This study examined the hypotheses that cholesterol was asymmetrically distributed in synaptic plasma membranes (SPM) and that chronic ethanol consumption alters the transbilayer distribution of cholesterol. Dehydroergosterol, a fluorescent cholesterol analogue was used to examine sterol distribution and exchange in chronic ethanol-treated and pair-fed control groups. The cytofacial leaflet was found to have significantly more dehydroergosterol as compared to the exofacial leaflet. This asymmetric distribution was significantly reduced by chronic ethanol consumption as was sterol transport. Total cholesterol content did not differ between the two groups. Chronic ethanol consumption appeared to alter transbilayer sterol distribution as determined by the incorporation and distribution of dehydroergosterol in SPM. The changes in transbilayer sterol distribution are consistent with recent reports on the asymmetric effects of ethanol in vitro ((1988) Biochim. Biophys. Acta 946, 85-94) and in vivo ((1989) J. Neurochem. 52, 1925-1930) on membrane leaflet structure. The results of this study also underscore the importance of examining membrane lipid domains in addition to the total content of different lipids. PMID:2364080

  6. The Sharpless Asymmetric Dihydroxylation in the Organic Chemistry Majors Laboratory

    ERIC Educational Resources Information Center

    Nicholas, Christopher J.; Taylor, Melissa R.

    2005-01-01

    Sharpless asymmetric dihydroxylation is developed that focuses on the varying enantiomeric excess of the product diols based on the structures of the alkenes being oxidized. The experimental sequence enables investigation of this reaction in terms of the different chiral ligands being used.

  7. Suppression of the asymmetric modes for experimentally achieving gigawatt-level radiation from a Ku-band Cerenkov type oscillator.

    PubMed

    Zhang, Hua; Shu, Ting; Ju, Jinchuan; Wu, Dapeng; Bai, Zhen

    2014-08-01

    We present the analysis and suppression of asymmetric modes in a Ku-band Cerenkov-type oscillator numerically and experimentally. The asymmetric modes generated in the initial experiments were identified to be HE11, HE21, and HE31 modes, respectively, by analyzing of the dispersion relationships, the simulation results and the experiment phenomenon. The factors, such as the cathode emission uniformity, the diode voltage, guiding magnetic field, and the concentricity play key roles in the excitation and suppression of these asymmetric modes. In the improved experiments, the asymmetric modes were suppressed effectively. In the improved experiments the asymmetric modes are suppressed effectively, and the designed TM01 mode microwave is generated at a frequency of 13.76 GHz with a power of 1.1 GW, which is in good agreement with numerically predications. PMID:25173289

  8. Graphene field effect transistors with niobium contacts and asymmetric transfer characteristics.

    PubMed

    Bartolomeo, Antonio Di; Giubileo, Filippo; Romeo, Francesco; Sabatino, Paolo; Carapella, Giovanni; Iemmo, Laura; Schroeder, Thomas; Lupina, Grzegorz

    2015-11-27

    We fabricate back-gated field effect transistors using niobium electrodes on mechanically exfoliated monolayer graphene and perform electrical characterization in the pressure range from atmospheric down to 10(-4) mbar. We study the effect of room temperature vacuum degassing and report asymmetric transfer characteristics with a resistance plateau in the n-branch. We show that weakly chemisorbed Nb acts as p-dopant on graphene and explain the transistor characteristics by Nb/graphene interaction with unpinned Fermi level at the interface. PMID:26535591

  9. The Influence of the Asymmetric Ionosphere on the Schumann Resonances

    NASA Astrophysics Data System (ADS)

    Yu, H.; Williams, E. R.

    2015-12-01

    The asymmetric ionosphere is known to affect the behavior of the Earth's Schumann resonances (SR). Several studies have addressed the day-night asymmetry with observation or simulation and showed the contrast in SR amplitude between day and night (Satori et.al 2007, Pechony and Price 2007, Yang et.al., 2006). And distinct perturbations in the ionosphere caused by solar proton events, x-ray emission and earthquake coupling will also produce variations in SRs (Roldugin et.al., 2004, De et al., 2010; Satori et.al., 2015). Considering all these possible variations produced by changes in ionospheric asymmetry, we simulate the SR propagation in an asymmetric cavity including the day-night contribution and the more general perturbation asymmetry using a TDTE (Two Dimensional Telegraph Equation) approach. The change of source position in the asymmetric ionosphere and the size of the perturbation will also affect the SR parameters such as amplitude and modal frequency. The central location of the source in either the daytime or nighttime zone will produce a larger amplitude than other locations in the cavity. For example, the amplitude from a source in the zone with lower electric height (like the daytime region) is larger than the situation with source in region of larger electric height (like nighttime region). The asymmetry(difference on EM amplitude between two regions) will be more distinct when the source is on the terminator between two region than on other position. And when the size of the asymmetric construction is changed, the amplitude and modal frequency will also be changed. The increased size of the zone with lower electric height will produce larger SR amplitudes and decreased modal frequency.

  10. Continuous Flavor Symmetries and the Stability of Asymmetric Dark Matter

    SciTech Connect

    Bishara, Fady; Zupan, Jure

    2015-01-19

    Generically, the asymmetric interactions in asymmetric dark matter (ADM) models could lead to decaying DM. We show that, for ADM that carries nonzero baryon number, continuous flavor symmetries that generate the flavor structure in the quark sector also imply a looser lower bound on the mass scale of the asymmetric mediators between the dark and visible sectors. Furthermore, the mediators for B = 2 ADM that can produce a signal in the future indirect dark matter searches can thus also be searched for at the LHC. For two examples of the mediator models, with either the MFV or Froggatt-Nielsen flavor breaking pattern, we derive the FCNC constraints and discuss the search strategies at the LHC.

  11. Continuous Flavor Symmetries and the Stability of Asymmetric Dark Matter

    DOE PAGESBeta

    Bishara, Fady; Zupan, Jure

    2015-01-19

    Generically, the asymmetric interactions in asymmetric dark matter (ADM) models could lead to decaying DM. We show that, for ADM that carries nonzero baryon number, continuous flavor symmetries that generate the flavor structure in the quark sector also imply a looser lower bound on the mass scale of the asymmetric mediators between the dark and visible sectors. Furthermore, the mediators for B = 2 ADM that can produce a signal in the future indirect dark matter searches can thus also be searched for at the LHC. For two examples of the mediator models, with either the MFV or Froggatt-Nielsen flavormore » breaking pattern, we derive the FCNC constraints and discuss the search strategies at the LHC.« less

  12. Probing asymmetric structures in the outskirts of galaxies

    SciTech Connect

    Wen, Zhang Zheng; Zheng, Xian Zhong; An, Fang Xia E-mail: xzzheng@pmo.ac.cn

    2014-06-01

    Upcoming large imaging surveys will allow detailed studies of the structure and morphology of galaxies aimed at addressing how galaxies form and evolve. Computational approaches are needed to characterize their morphologies over large samples. We introduce an automatic method to quantify the outer structure of galaxies. The key to our approach is the division of a galaxy image into two sections delineated by the isophote, which encloses half the total brightness of the galaxy. We call the central section the inner half-flux region (IHR) and the outer section the outer half-flux region (OHR). From this division, we derive two parameters: A {sub o}, which measures the asymmetry of the OHR, and D {sub o}, which measures the deviation of the intensity weighted centroid of the OHR from that of the IHR relative to the effective radius. We derive the two parameters from HST/ACS z {sub 850}-band images for a sample of 764 galaxies with z {sub 850} < 22 mag and 0.35 < z < 0.9 selected from the GEMS and GOODS-South surveys. We show that the sample galaxies having strong asymmetric structures, particularly tidal tails, are well-separated from those with regular morphologies in the A {sub o}-D {sub o} space. Meanwhile, the widely used CAS and Gini-M {sub 20} methods turn out to be insensitive to such morphological features. We stress that the A {sub o}-D {sub o} method is an efficient way to select galaxies with significant asymmetric features like tidal tails and study galaxy mergers in the dynamical phase traced by these delicate features.

  13. Paramagnetic Meissner effect and finite spin susceptibility in an asymmetric superconductor

    SciTech Connect

    He Lianyi; Jin Meng; Zhuang Pengfei

    2006-01-01

    A general analysis of Meissner effect and spin susceptibility of a uniform superconductor in an asymmetric two-component fermion system is presented in nonrelativistic field theory approach. We found that the pairing mechanism dominates the magnetization property of superconductivity and the asymmetry enhances the paramagnetism of the system. At the turning point from BCS to breached pairing superconductivity, the Meissner mass squared and spin susceptibility are divergent at zero temperature. In the breached pairing state induced by chemical potential difference and mass difference between the two kinds of fermions, the system goes from paramagnetism to diamagnetism, when the mass ratio of the two species increases.

  14. Strongly asymmetric discrete Painlevé equations: The multiplicative case

    NASA Astrophysics Data System (ADS)

    Grammaticos, B.; Ramani, A.; Tamizhmani, K. M.; Tamizhmani, T.; Satsuma, J.

    2016-04-01

    We examine a class of multiplicative discrete Painlevé equations which may possess a strongly asymmetric form. When the latter occurs, the equation is written as a system of two equations the right hand sides of which have different functional forms. The present investigation focuses upon two canonical families of the Quispel-Roberts-Thompson classification which contain equations associated with the affine Weyl groups D5 ( 1 ) and E6 ( 1 ) (or groups appearing lower in the degeneration cascade of these two). Many new discrete Painlevé equations with strongly asymmetric forms are obtained.

  15. Preliminary investigation of the effects of lower hybrid power on asymmetric behaviors in the scrape-off layer in experimental advanced superconducting tokamak

    SciTech Connect

    Zhang, L.; Ding, B. J. Li, M. H.; Liu, F. K.; Shan, J. F.; Wei, W.; Li, Y. C.; Yang, J. H.; Wu, Z. G.; Liu, L.; Wang, M.; Zhao, L. M.; Ma, W. D.; Xiu, H. D.; Wang, X. J.; Jia, H.; Yang, Y.; Cheng, M.; Wu, D. J.; Xu, L.; and others

    2014-02-15

    The striations in front of the lower hybrid (LH) launcher have been observed during LH injection by a visible video camera in the Experimental Advanced Superconducting Tokamak. Edge density at the top of the LH launcher tends to be much larger in reversed magnetic field (B{sub t}) than that in the normal B{sub t}. To study the mechanisms of the observations, the diffusive-convective model is employed. Simulations show that the LH power makes the density in scrape-off layer asymmetric in poloidal direction with five density peaks. The locations of the striations are approximately in agreement with the locations of the density peaks in different directions of B{sub t}. Higher LH power strengths the asymmetry of the density and leads to a bad coupling which is in conflict with the experimental results showing a good coupling with a higher power. Furthermore, an ionization term is introduced into this model and the increase of edge density with LH power can be qualitatively explained. The simulations also show that the density peaks in front of the waveguides become clearer when taking into account gas puffing.

  16. The Mediastinal Waltz--A Representation of Asymmetrical Mediastinal Anatomy

    ERIC Educational Resources Information Center

    Chan, Lap Ki

    2011-01-01

    Many structures in the mediastinum have asymmetrical relationships. For example, the pulmonary artery is superior to the main bronchus on the left side but is anterior on the right side. The pulmonary trunk is not in the midline, but to the left of the midline, and bifurcates anterior to the left main bronchus. Students often find these…

  17. Strong Asymmetric Coupling of Two Parallel Exclusion Processes: Effect of Unequal Injection Rates

    NASA Astrophysics Data System (ADS)

    Xiao, Song; Dong, Peng; Zhang, Yingjie; Liu, Yanna

    2016-03-01

    In this letter, strong asymmetric coupling of two parallel exclusion processes: effect of unequal injection rates will be investigated. It is a generalization of the work of Xiao et al. (Phys. Lett. A 8, 374 (2009)), in which the particles only move on two lanes with rate 1 toward right. We can obtain the diverse phase diagram and density profiles of the system. The vertical cluster mean-field approach and extensively Monte Carlo simulations are used to study the system, and theoretical predictions are in excellent agreement with simulation results.

  18. Model-size reduction for the analysis of symmetric structures with asymmetric boundary conditions

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Whitworth, Sandra L.

    1987-01-01

    A simple computational procedure is presented for reducing the size of the analysis model for a symmetric structure with asymmetric boundary conditions to that of the corresponding structure with symmetric boundary conditions. The procedure is based on approximating the asymmetric response of the structure by a linear combination of symmetric and antisymmetric global approximation vectors (or modes). The key elements of the procedure are (1) restructuring the governing finite-element equations to delineate the contributions to the symmetric and antisymmetric components of the asymmetric response, (2) successive application of the finite element method and the classical Rayleigh-Ritz technique. The finite-element method is first used to generate a few global approximation vectors (or modes). Then the amplitudes of these modes are computed by using the Rayleigh-Ritz technique. The effectiveness of the computational procedure is demonstrated by means of numerical examples of linear static problems of shells, and its potential for solving nonlinear problems is discussed.

  19. Reconstruction of the Asymmetric Magnetic Reconnection Region at the Magnetopause

    NASA Astrophysics Data System (ADS)

    Guo, R.; Pu, Z.; Xie, L.; Fu, S.

    2015-12-01

    Magnetic reconnection at the magnetopause is a key process coupling the earth's magnetosphere with interplanetary space. Multiple spacecraft measurement makes it possible to study observationally the structure of the reconnection region. In this paper we improve the fitting-reconstructing method developed by He et al. [2008] and use it to investigate the asymmetric reconnection event observed by Cluster on Apr. 06, 2004. The reconnection site was encountered when the constellation traversed the dayside magnetopause at z~5.3Re, with spacecraft separations less than 400km. The reconstructing results clearly revealed the asymmetric geometry of the reconnection region. The orientation of the X-line, which was reproduced as the separator linking a pair of magnetic null points, was shown to be ~60° away from the M-direction in the local LMN coordinate. Bipolar and unipolar Hall fields were both seen by different spacecraft, implying that the reconnection regime was 3D in nature, and the difference in Hall fields could be related to the existence of two null points which restricted the length of the separator. In addition, electromagnetic lower hybrid waves are found to be enhanced on the magnetospheric side of the reconnection region. The reconstructing results are helpful for providing a 3D picture of the asymmetric reconnection region, and the improved reconstructing method can be applied to analyze the data from MMS which is deployed with small separations of satellites.

  20. The impact of asymmetric flows on pathological speech

    NASA Astrophysics Data System (ADS)

    Erath, Byron D.; Peterson, Sean D.; Plesniak, Michael W.

    2010-11-01

    In voiced speech the vocal folds form a divergent glottal passage during the closing phases of the phonatory cycle. Due to the adverse pressure gradient, asymmetric flow develops within the glottis causing the glottal jet to separate from one vocal fold wall, and fully-attach to the opposing wall. The asymmetric pressures that arise from this flow configuration directly influence the vocal fold energy exchange process, and are expected to have the greatest influence on vocal fold motion when pathologies that affect the vocal fold musculature are present. A theoretical flow solution that produces the pressure distributions arising from asymmetric glottal flows is implemented into a two-mass model of speech. The impact of flow asymmetries on pathological vocal fold motion is investigated by modifying the tissue parameters of the speech model to represent unilateral paralysis. The influence of asymmetric flow behavior on pathological vocal fold motion is quantified and compared to the commonly-reported simplified case involving symmetric flow behavior.

  1. Asymmetric gravitational spreading - Analogue experiments on the Svecofennian orogen

    NASA Astrophysics Data System (ADS)

    Nikkilä, Kaisa; Korja, Annakaisa; Koyi, Hemin; Eklund, Olav

    2015-04-01

    Over-thickened orogenic crust may suffer from rheological, gravitational and topographical unbalancing resulting in discharging via gravitational spreading. If the thickened orogen is also hot, then increased temperature may reduce the viscosity of the crust that may induce large-scale horizontal flow. The effect of flow on the crustal architecture has previously been modeled with symmetric two-way spreading or asymmetric one- or two-way spreading (like channel flow) experiments. Most models do not take into account of the contrasting mechanical properties of the juxtaposed terranes. We have made analogue experiments to study gravitational one-way spreading and the interplay between two crustal blocks with contrasting rheological properties. The models are 3 cm thick replicas of 60 km thick crust. They have three horizontal layers representing strong lower, weak middle and brittle upper crust. The models have cuts to study the effect of inherited crustal-scale weakness zones. The experiments have been conducted within a large centrifuge in the Hans Ramberg Tectonic Laboratory at Uppsala University. The analogue models propose that asymmetric, unilateral flow has different effect on the contrasting crustal units, in both horizontal and vertical directions. The laterally heterogeneous crust flows towards the direction of extension, and it rotates and extends the pre-existing weakness zones. The weakness zones facilitate exhumation and they increase strain rate. The weakness zones split the crust into subblocks, which stretch individually and which may show signatures of compression or rotation. The changes in thickness of the model reflect changes in the layers, which may thin or thicken depending on the mechanical properties of crustal layers. A consequence of this the total amount of flattening is less than the model extension. The results are compared to geophysical and geological data from Precambrian Svecofennian orogen in Fennoscandia. The comparison suggest

  2. Asymmetric synthesis of pyrazoles and pyrazolones employing the reactivity of pyrazolin-5-one derivatives.

    PubMed

    Chauhan, Pankaj; Mahajan, Suruchi; Enders, Dieter

    2015-08-21

    Due to the frequent occurrence of the pyrazole core in many important naturally occurring and synthetic molecules, tremendous efforts have been made for their synthesis. The pyrazolin-5-one derivatives have emerged as the most effective substrates for the synthesis of useful pyrazoles and their corresponding pyrazolone derivatives. Recently, the reactivity of pyrazolin-5-ones has been used for the asymmetric synthesis of highly functionalised pyrazole and pyrazolone derivatives by employing organo- and metal-catalysts. This feature article focuses on the progress in the catalytic asymmetric synthesis of pyrazoles and pyrazolones using pyrazolin-5-one derivatives. PMID:26178319

  3. On the Complexity of the Asymmetric VPN Problem

    NASA Astrophysics Data System (ADS)

    Rothvoß, Thomas; Sanità, Laura

    We give the first constant factor approximation algorithm for the asymmetric Virtual Private Network (textsc{Vpn}) problem with arbitrary concave costs. We even show the stronger result, that there is always a tree solution of cost at most 2·OPT and that a tree solution of (expected) cost at most 49.84·OPT can be determined in polynomial time.

  4. An Organocatalytic Biomimetic Strategy Paves the Way for the Asymmetric Umpolung of Imines.

    PubMed

    Waser, Mario; Novacek, Johanna

    2015-11-23

    Just like Nature: A recently developed enantioselective organocatalytic biomimetic transamination provides an elegant approach towards chiral amines. In the presence of an asymmetric phase-transfer catalyst, the intermediate anionic species undergoes an asymmetric C-C bond-forming reaction in a powerful and broadly applicable asymmetric umpolung strategy. PMID:26461174

  5. Response of the intertropical convergence zone to zonally asymmetric subtropical surface forcings

    NASA Astrophysics Data System (ADS)

    Shaw, Tiffany A.; Voigt, Aiko; Kang, Sarah M.; Seo, Jeongbin

    2015-11-01

    The energetic framework predicts no shift of the zonal mean Intertropical Convergence Zone (ITCZ) in response to zonally asymmetric forcings (zonal warming and cooling regions with zero zonal mean) assuming radiative feedbacks are linear. Here we show the ITCZ shifts southward in response to a zonally asymmetric forcing in the Northern Hemisphere subtropics in a slab ocean aquaplanet model. The southward shift is consistent with decreased zonal mean energy input to the atmosphere due to cloud radiative effect changes in the cooling region. When cloud-radiative feedbacks are disabled the ITCZ shifts northward consistent with changes in the warming region where increased energy input via surface heat fluxes and stationary Rossby-wave transport dominate. Competition between cooling and warming regions leads to changes in gross moist stability. Our results show rectification of zonally asymmetric forcings play an important role in zonal mean ITCZ dynamics and highlight the importance of assessing the momentum budget when interpreting ITCZ shifts.

  6. Effect of delta tabs on mixing and axis switching in jets from asymmetric nozzles

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.

    1994-01-01

    The effect of delta tabs on mixing and the phenomenon of axis switching in free air jets from various asymmetric nozzles was studied experimentally. Flow visualization and Pitot probe surveys were carried out with a set of small nozzles (D = 1.47 cm) at a jet Mach number, Mj = 1.63. Hot wire measurements for streamwise vorticity were carried out with larger nozzles (D = 6.35 cm) at Mj = 0.31. Jet mixing with the asymmetric nozzles, as indicated by the mass fluxes downstream, was found to be higher than that produced by a circular nozzle. The circular nozzle with four delta tabs, however, produced fluxes much higher than that produced by a asymmetric nozzles themselves or by most of the tab configurations tried with them. Even higher fluxes could be obtained with only a few cases, e.g., with 3:1 rectangular nozzle with two large delta tabs placed on the narrow edges. In this case, the jet 'fanned out' at a large angle after going through one axis switch. The axis switching could be either stopped or augmented with suitable choice of the tab configurations. Two mechanisms are identified governing the phenomenon. One, as described in Ref. 12 and referred to here as the omega(sub Theta)-induced dynamics, is due to differential induced velocities of different segments of a rolled up azimuthal vortical structure. The other is the omega(sub x)-induced dynamics due to the induced velocities of streamwise vortex pairs in the flow. While the former dynamics are responsible for rapid axis switching in periodically forced jets, the effect of the tabs is governed mainly by the latter. It is inferred that both dynamics are active in a natural asymmetric jet issuing from a nozzle having an upstream contraction. The tendency for axis switching caused by the omega(sub Theta)-induced dynamics is resisted by the omega(sub x)-induced dynamics, leading to a delayed or no switch over in that case. In jets from orifices and in screeching jets, the omega(sub Theta)-induced dynamics

  7. Effect of asymmetric concentration profile on thermal conductivity in Ge/SiGe superlattices

    NASA Astrophysics Data System (ADS)

    Hahn, Konstanze R.; Cecchi, Stefano; Colombo, Luciano

    2016-05-01

    The effect of the chemical composition in Si/Ge-based superlattices on their thermal conductivity has been investigated using molecular dynamics simulations. Simulation cells of Ge/SiGe superlattices have been generated with different concentration profiles such that the Si concentration follows a step-like, a tooth-saw, a Gaussian, and a gamma-type function in direction of the heat flux. The step-like and tooth-saw profiles mimic ideally sharp interfaces, whereas Gaussian and gamma-type profiles are smooth functions imitating atomic diffusion at the interface as obtained experimentally. Symmetry effects have been investigated comparing the symmetric profiles of the step-like and the Gaussian function to the asymmetric profiles of the tooth-saw and the gamma-type function. At longer sample length and similar degree of interdiffusion, the thermal conductivity is found to be lower in asymmetric profiles. Furthermore, it is found that with smooth concentration profiles where atomic diffusion at the interface takes place the thermal conductivity is higher compared to systems with atomically sharp concentration profiles.

  8. Effect of residual attractive interactions in size asymmetric colloidal mixtures: Theoretical analysis and predictions.

    PubMed

    Germain, Ph

    2010-07-28

    We analyze the influence of residual attractions on the static and some dynamic properties of size asymmetric mixtures of "hard-sphere-like" colloids. These attractions, usually neglected in the theoretical analysis, are characterized by a very short range and a moderate strength reflecting the underlying microscopic structure of the colloidal particles. Their effect on the potentials of mean force is analyzed from analytical expressions obtained from low density expansions. The effective potential of the big particle fluid is next considered. An analytical expression is proposed for estimating the deviation with respect to the hard sphere depletion potential. This case is compared to that of mixtures with noninteracting depletants. The important consequences on the binodals and the glass transition lines of the effective fluid are discussed in both cases. This study is next extended to other properties-the specific heat and the low shear viscosity-which incorporate contributions from the two components of the binary mixture. PMID:20687684

  9. Effect of residual attractive interactions in size asymmetric colloidal mixtures: Theoretical analysis and predictions

    NASA Astrophysics Data System (ADS)

    Germain, Ph.

    2010-07-01

    We analyze the influence of residual attractions on the static and some dynamic properties of size asymmetric mixtures of "hard-sphere-like" colloids. These attractions, usually neglected in the theoretical analysis, are characterized by a very short range and a moderate strength reflecting the underlying microscopic structure of the colloidal particles. Their effect on the potentials of mean force is analyzed from analytical expressions obtained from low density expansions. The effective potential of the big particle fluid is next considered. An analytical expression is proposed for estimating the deviation with respect to the hard sphere depletion potential. This case is compared to that of mixtures with noninteracting depletants. The important consequences on the binodals and the glass transition lines of the effective fluid are discussed in both cases. This study is next extended to other properties—the specific heat and the low shear viscosity—which incorporate contributions from the two components of the binary mixture.

  10. The asymmetric segregation of damaged proteins is stem cell-type dependent.

    PubMed

    Bufalino, Mary Rose; DeVeale, Brian; van der Kooy, Derek

    2013-05-13

    Asymmetric segregation of damaged proteins (DPs) during mitosis has been linked in yeast and bacteria to the protection of one cell from aging. Recent evidence suggests that stem cells may use a similar mechanism; however, to date there is no in vivo evidence demonstrating this effect in healthy adult stem cells. We report that stem cells in larval (neuroblast) and adult (female germline and intestinal stem cell) Drosophila melanogaster asymmetrically segregate DPs, such as proteins with the difficult-to-degrade and age-associated 2,4-hydroxynonenal (HNE) modification. Surprisingly, of the cells analyzed only the intestinal stem cell protects itself by segregating HNE to differentiating progeny, whereas the neuroblast and germline stem cells retain HNE during division. This led us to suggest that chronological life span, and not cell type, determines the amount of DPs a cell receives during division. Furthermore, we reveal a role for both niche-dependent and -independent mechanisms of asymmetric DP division. PMID:23649805

  11. Effect of breathing pattern on gas mixing in a model with asymmetrical alveolar ducts.

    PubMed

    Bowes, C L; Richardson, J D; Cumming, G; Horsfield, K

    1985-01-01

    A model of the pulmonary airways was used to study three single-breath indices of gas mixing, dead space (VD), slope of the alveolar plateau, and alveolar mixing inefficiency (AMI). In the model, discrete elements of airway volume were represented by nodes. Using a finite difference technique the differential equation for simultaneous convection and diffusion was solved for the nodal network. Conducting airways and respiratory bronchioles were modeled symmetrically, but alveolar ducts asymmetrically, permitting interaction between convection and diffusion. VD, alveolar slope, and AMI increased with increasing flow. Similar trends were seen with inspired volume, although slope decreased at high inspired volumes with constant flow. VD was affected most by inspiratory flow and AMI and alveolar slope by expiratory time. VD fell approximately exponentially with time of breath holding. Eight different breathing patterns were compared. They had a small effect on alveolar slope and AMI and a greater effect on VD. The model shows how series and parallel inhomogeneity occur together and interact in asymmetrical systems: the old argument as to which is the more important should be abandoned. PMID:3968008

  12. Symmetrical and Asymmetrical Scaffolding of L2 Collocations in the Context of Concordancing

    ERIC Educational Resources Information Center

    Rezaee, Abbas Ali; Marefat, Hamideh; Saeedakhtar, Afsaneh

    2015-01-01

    Collocational competence is recognized to be integral to native-like L2 performance, and concordancing can be of assistance in gaining this competence. This study reports on an investigation into the effect of symmetrical and asymmetrical scaffolding on the collocational competence of Iranian intermediate learners of English in the context of…

  13. Suppression of the asymmetric competition mode in the relativistic Ku-band coaxial transit-time oscillator

    SciTech Connect

    Ling, Junpu; He, Juntao; Zhang, Jiande; Jiang, Tao; Wang, Lei

    2014-10-15

    A relativistic Ku-band coaxial transit-time oscillator has been proposed in our previous work. In the experiments, we find that the asymmetric competition mode in the device limits the microwave power with the increase of the input electric power. For solving such a problem, the methods for analysis and suppression of the asymmetric competition mode in the device are investigated theoretically and experimentally. It is shown that the structure and the material of the collector, the concentricity, and the electron emission uniformity play an important part in the suppression of the asymmetric competition mode in the relativistic Ku-band transit-time oscillator. In the subsequent experiments, the asymmetric mode was suppressed effectively. At a low guiding magnetic field of 0.7 T, a microwave pulse with power of 1 GW, frequency of 14.3 GHz close to the simulation one, and efficiency of 20% was generated.

  14. Magnus-induced ratchet effects for skyrmions interacting with asymmetric substrates

    NASA Astrophysics Data System (ADS)

    Reichhardt, C.; Ray, D.; Olson Reichhardt, C. J.

    2015-07-01

    We show using numerical simulations that pronounced ratchet effects can occur for ac driven skyrmions moving over asymmetric quasi-one-dimensional substrates. We find a new type of ratchet effect called a Magnus-induced transverse ratchet that arises when the ac driving force is applied perpendicular rather than parallel to the asymmetry direction of the substrate. This transverse ratchet effect only occurs when the Magnus term is finite, and the threshold ac amplitude needed to induce it decreases as the Magnus term becomes more prominent. Ratcheting skyrmions follow ordered orbits in which the net displacement parallel to the substrate asymmetry direction is quantized. Skyrmion ratchets represent a new ac current-based method for controlling skyrmion positions and motion for spintronic applications.

  15. Asymmetric-shell ignition capsule design to tune the low-mode asymmetry during the peak drive

    NASA Astrophysics Data System (ADS)

    Gu, Jianfa; Dai, Zhensheng; Song, Peng; Zou, Shiyang; Ye, Wenhua; Zheng, Wudi; Gu, Peijun; Wang, Jianguo; Zhu, Shaoping

    2016-08-01

    The low-mode radiation flux asymmetry in the hohlraum is a main source of performance degradation in the National Ignition Facility (NIF) implosion experiments. To counteract the deleterious effects of the large positive P2 flux asymmetry during the peak drive, this paper develops a new tuning method called asymmetric-shell ignition capsule design which adopts the intentionally asymmetric CH ablator layer or deuterium-tritium (DT) ice layer. A series of two-dimensional implosion simulations have been performed, and the results show that the intentionally asymmetric DT ice layer can significantly improve the fuel ρR symmetry, hot spot shape, hot spot internal energy, and the final neutron yield compared to the spherical capsule. This indicates that the DT asymmetric-shell capsule design is an effective tuning method, while the CH ablator asymmetric-shell capsule could not correct the fuel ρR asymmetry, and it is not as effective as the DT asymmetric-shell capsule design.

  16. Global existence and large time behavior of the asymmetric fluids

    NASA Astrophysics Data System (ADS)

    Tan, Zhong; Tong, Leilei

    2016-06-01

    In this paper, we consider the asymptotic stability of the steady state with the constant equilibrium state. Under the assumptions that the {H^3} norm of the initial data is small, but its higher-order derivatives could be large, we prove the global existence to the Cauchy problem for the asymmetric fluids in {{R}^3}. Moreover, we obtain the time decay rates of the solutions and their higher-order spatial derivatives by introducing the negative Sobolev and Besov spaces.

  17. Left-Right Asymmetric Morphogenesis in the Xenopus Digestive System

    USGS Publications Warehouse

    Muller, Jennifer K.; Prather, D.R.; Nascone-Yoder, N. M.

    2003-01-01

    The morphogenetic mechanisms by which developing organs become left-right asymmetric entities are unknown. To investigate this issue, we compared the roles of the left and right sides of the Xenopus embryo during the development of anatomic asymmetries in the digestive system. Although both sides contribute equivalently to each of the individual digestive organs, during the initial looping of the primitive gut tube, the left side assumes concave topologies where the right side becomes convex. Of interest, the concave surfaces of the gut tube correlate with expression of the LR gene, Pitx2, and ectopic Pitx2 mRNA induces ectopic concavities in a localized manner. A morphometric comparison of the prospective concave and convex surfaces of the gut tube reveals striking disparities in their rate of elongation but no significant differences in cell proliferation. These results provide insight into the nature of symmetry-breaking morphogenetic events during left-right asymmetric organ development. ?? 2003 Wiley-Liss, Inc.

  18. Asymmetric visual interactions across the boundary of awareness.

    PubMed

    Meital-Kfir, Noya; Bonneh, Yoram S; Sagi, Dov

    2016-08-01

    A salient visual object can disappear from conscious perception when surrounded by a moving texture, a phenomenon known as MIB, Motion-Induced Blindness (Bonneh, Cooperman, & Sagi, 2001). Here we tested the information available in the brain from such stimuli that do not access awareness by examining interactions across the boundary of awareness between stimuli that reach awareness and those that do not. Observers performed the MIB task in which a "Cue" was presented next to the "Target" after observers reported the perceptual disappearance of the target (Kawabe, Yamada, & Miura, 2007). Oriented Gabor patches were used as targets and cues; observers reported the target's reappearance. The results indicated an interaction between the target and the cue, depending on the orientation difference (∼30° bandwidth) and distance (∼1° range), indicating preserved properties of features in the absence of awareness. Object-based representation (binding) of unseen stimuli was tested by examining the interaction between a compound stimulus and its composing features. Here we used vertical and horizontal Gabor patches and their combinations (plaids) as targets and cues. Results indicated asymmetric relations between aware and unaware object representations; a plaid cue was not effective with a component target, but a plaid target efficiently reappeared by its component cues. This result suggests that the unseen, but not the seen plaid, is decomposed into its features. Plaid targets also reappeared with plaid cues, supporting binding without awareness. Our findings suggest preconscious representations of objects and their features, with conscious perception confined to object representations. PMID:27494546

  19. Social evolution in the shadow of asymmetrical relatedness

    PubMed Central

    Krupp, D. B.; Taylor, Peter D.

    2015-01-01

    The persistence of altruism and spite remains an enduring problem of social evolution. It is well known that selection for these actions depends on the structure of the population—that is, on actors' genetic relationships to recipients and to the ‘neighbourhood’ upon which the effects of their actions redound. Less appreciated, however, is that population structure can cause genetic asymmetries between partners whereby the relatedness (defined relative to the neighbourhood) of an individual i to a partner j will differ from the relatedness of j to i. Here, we introduce a widespread mechanism of kin recognition to a model of dispersal in subdivided populations. In so doing, we uncover three remarkable consequences of asymmetrical relatedness. First, altruism directed at phenotypically similar partners evolves more easily among migrant than native actors. Second, spite directed at dissimilar partners evolves more easily among native than migrant actors. Third, unlike migrants, natives can evolve to pay costs that far outstrip those they spitefully impose on others. We find that the frequency of natives relative to migrants amplifies the asymmetries between them. Taken together, our results reveal differentiated patterns of ‘phenocentrism’ that readily arise from asymmetries of relatedness. PMID:25925099

  20. Asymmetric dark matter models and the LHC diphoton excess

    NASA Astrophysics Data System (ADS)

    Frandsen, Mads T.; Shoemaker, Ian M.

    2016-05-01

    The existence of dark matter (DM) and the origin of the baryon asymmetry are persistent indications that the SM is incomplete. More recently, the ATLAS and CMS experiments have observed an excess of diphoton events with invariant mass of about 750 GeV. One interpretation of this excess is decays of a new spin-0 particle with a sizable diphoton partial width, e.g. induced by new heavy weakly charged particles. These are also key ingredients in models cogenerating asymmetric DM and baryons via sphaleron interactions and an initial particle asymmetry. We explore what consequences the new scalar may have for models of asymmetric DM that attempt to account for the similarity of the dark and visible matter abundances.

  1. Asymmetrical directional mutation pressure in the mitochondrial genome of mammals.

    PubMed

    Reyes, A; Gissi, C; Pesole, G; Saccone, C

    1998-08-01

    The base composition of 25 complete mammalian mitochondrial (mt) genomes has been analyzed taking into account all three codon positions (P1230 and fourfold degenerate sites (P4FD) of H-strand genes. In the nontranscribed L strand, G is the less represented base and A is the most represented one in all cases, while C and T differ among species. H-strand protein-coding genes show an asymmetric distribution of the four bases between the two strands. The asymmetry indexes AT and GC skews on P4FD are much higher than those on P123, suggesting the existence of asymmetrical directional mutation pressure. Relationships between the compositional features and transcription of replication processes have been investigated in order to find a possible mechanism that could explain the origin of this asymmetry. AT and GC skews, the base composition in fourfold degenerate sites, and the number of variable sites for each gene are significantly correlated with the duration of single-stranded state of the H-stranded genes during replication. We tested different replication-related hypotheses, such as the existence of biased dNTP pools, gamma DNA polymerase mispairing, and the asymmetric replication itself. Most of them failed to explain the observed results, hydrolytic deaminations being the only one in agreement with our data. Thus, we hypothesize that one of the crucial processes for the origin of asymmetric and biased base composition of mammalian mitochondrial genomes is the spontaneous deamination of C and A in the H strand during replication. PMID:9718723

  2. Baseline Testing of the Club Car Carryall With Asymmetric Ultracapacitors

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.

    2003-01-01

    The NASA John H. Glenn Research Center initiated baseline testing of the Club Car Carryall with asymmetric ultracapacitors as a way to reduce pollution in industrial settings, reduce fossil fuel consumption, and reduce operating costs for transportation systems. The Club Car Carryall provides an inexpensive approach to advance the state of the art in electric vehicle technology in a practical application. The project transfers space technology to terrestrial use via non-traditional partners, and provides power system data valuable for future space applications. The work was done under the Hybrid Power Management (HPM) Program, which includes the Hybrid Electric Transit Bus (HETB). The Carryall is a state of the art, ground up, electric utility vehicle. A unique aspect of the project was the use of a state of the art, long life ultracapacitor energy storage system. Innovative features, such as regenerative braking through ultracapacitor energy storage, are planned. Regenerative braking recovers much of the kinetic energy of the vehicle during deceleration. The Carryall was tested with the standard lead acid battery energy storage system, as well as with an asymmetric ultracapacitor energy storage system. The report concludes that the Carryall provides excellent performance, and that the implementation of asymmetric ultracapacitors in the power system can provide significant performance improvements.

  3. Experimental investigation of the asymmetric body vortex wake

    NASA Technical Reports Server (NTRS)

    Oberkampf, W. L.; Shivananda, T. P.; Owen, F. K.

    1980-01-01

    An experimental investigation of the asymmetric body vortex wake of a circular cylinder in high subsonic flow is presented. Laser velocimeter, force and moment, and surface hot wire measurements were obtained for a freestream Mach number of 0.6 and Reynolds number (based on body diameter) of 0.62 x 10 to the 6th. Two component laser velocimeter measurements were made at three body cross-flow planes, x/d = 4, 8, and 12, and angles of attack of 25, 35, and 45 deg. Laser vapor screen photographs were also obtained at these body stations and angles of attack. Surface hot wire measurements were used to determine if any vortex switching occurred at various angles of attack of the body. The laser velocimeter measurements are related to the vapor screen photographs and side force measurements. These results show that more than one asymmetric body vortex wake configuration can exist for the same angle of attack and body roll angle.

  4. Underwater asymmetric acoustic transmission structure using the medium with gradient change of impedance

    NASA Astrophysics Data System (ADS)

    Bo, Hu; Jie, Shi; Sheng-Guo, Shi; Yu, Sun; Zhong-Rui, Zhu

    2016-02-01

    We propose an underwater asymmetric acoustic transmission structure comprised of two media each with a gradient change of acoustic impedance. By gradually increasing the acoustic impedances of the media, the propagating direction of the acoustic wave can be continuously bent, resulting in allowing the acoustic wave to pass through along the positive direction and blocking acoustic waves from the negative one. The main advantages of this structure are that the asymmetric transmission effect of this structure can be realized and enhanced more easily in water. We investigate both numerically and experimentally the asymmetric transmission effect. The experimental results show that a highly efficient asymmetric acoustic transmission can be yielded within a remarkable broadband frequency range, which agrees well with the numerical prediction. It is of potential practical significance for various underwater applications such as reducing vibration and noise. Project supported by the National Natural Science Foundation of China (Grant Nos. 11204049 and 11204050), the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (Grant No. IRT1228), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant Nos. 20122304120023 and 20122304120011).

  5. Effect of adiabatic square ribs on natural convection in an asymmetrically heated channel

    NASA Astrophysics Data System (ADS)

    Abidi-Saad, Aissa; Kadja, Mahfoud; Popa, Catalin; Polidori, Guillaume

    2016-06-01

    A 2-D numerical simulation is carried out to investigate the effect of two adiabatic square ribs on laminar flow and heat transfer in an asymmetrically heated channel. The two ribs are symmetrically located on each wall, exactly above the heating zone. The computational procedure is made by solving the unsteady bi-dimensional continuity, momentum and energy equations with the finite volume method. The investigations focused more specifically on the influence of ribs sizes on the flow structure and heat transfer enhancement. The results showed that the variation of ribs sizes significantly alters the heat transfer and fluid flow distribution along the channel, especially in the vicinity of protrusions. Also, the results show that streamlines, isotherms, and the number, sizes and formation of vortex structures inside the channel strongly depend on the size of protrusions. The changes in heat transfer parameters have also been presented.

  6. Effective Hamiltonian for a half-filled asymmetric ionic Hubbard chain with alternating on-site interaction

    NASA Astrophysics Data System (ADS)

    Grusha, I.; Menteshashvili, M.; Japaridze, G. I.

    2016-01-01

    We derive an effective spin Hamiltonian for the one-dimensional half-filled asymmetric ionic Hubbard model (IHM) with alternating on-site interaction in the limit of strong repulsion. It is shown that the effective Hamiltonian is that of a spin S = 1/2 anisotropic XXZ Heisenberg chain with alternating next-nearest-neighbor (NNN) and three-spin couplings in the presence of a uniform and a staggered magnetic field.

  7. Effects of curvature on asymmetric steady states in catalyst particles

    SciTech Connect

    Lucier, B J

    1981-02-01

    The effects of curvature on steady states of chemical catalytic reactions are investigated by studying the cases of the catalytic particle being a spherical or cylindrical shell. Existence and stability of solutions are studied. It is shown that the solutions converge to the solutions for the catalytic slab when the curvature goes to 0 in each case.

  8. Recovery of the Aharonov-Bohm oscillations in asymmetrical quantum rings

    NASA Astrophysics Data System (ADS)

    Voskoboynikov, O.

    2016-07-01

    We theoretically investigate suppression and recovery of the Aharonov-Bohm oscillations of the diamagnetic response of electrons (holes) confined in self-assembled IncGa1-cAs/GaAs semiconductor reflection asymmetrical quantum rings. Based on the mapping method and gauge-origin-independent definition for the magnetic vector potential we simulate the energies and wave functions of the electron (hole) under external magnetic and electric fields. We examine the transformation of the ground state wave function of the electron (hole) in reflection asymmetrical rings from localized in one of the potential valleys (dotlike shape of the wave function) to distributed over all volume of the ring (ringlike shape) under an appropriate lateral electric field. This transformation greatly recovers the electron (hole) diamagnetic coefficient and Aharonov-Bohm oscillations of the diamagnetic response of the ring. However, the recovering electric field for the first Aharonov-Bohm diamagnetic oscillation of the electron is a suppressing one for the hole (and vice versa). This can block the recovery of the optical Aharonow-Bohm effect in IncGa1-cAs/GaAs asymmetrically wobbled rings. However, the recovery of the Aharonov-Bohm oscillations for the independent electron (hole) by the external electric field remains interesting and feasible objective for the asymmetric rings.

  9. Polarization effect in (e, 2e) reaction process for Ar (3s) in coplanar asymmetric geometry

    NASA Astrophysics Data System (ADS)

    Zhou, Li-Xia; Wang, Dian-Sheng; Yan, You-Guo; Wang, Cai-Ling

    2014-11-01

    The (e, 2e) triple differential cross sections (TDCSs) of Ar (3s) are calculated by using distorted-wave Born approximation under coplanar asymmetric geometry. The incident electron energy is 113.5 eV, and the scattering electron angle θ1 is -15°. The ejected electron energy is set at 10 eV, 7.5 eV, 5 eV, and 2 eV, respectively. The polarization effects have been discussed and the polarization potential Vpol changing from a second-order to a fourth-order term has been analyzed. Our calculated TDCSs have been compared with reported experimental and theoretical results, and the calculated TDCSs of polarization potential up to the fourth order could give a good fit with experimental results in the binary region, but fail to predict the correct recoil-to-binary ratio in most cases.

  10. OBSERVATIONS OF THE CRAB NEBULA'S ASYMMETRICAL DEVELOPMENT

    SciTech Connect

    Loll, A. M.; Desch, S. J.; Scowen, P. A.; Foy, J. P.

    2013-03-10

    We present the first Hubble Space Telescope Wide Field Planetary Camera-2 imaging survey of the entire Crab Nebula, in the filters F502N ([O III] emission), F673N ([S II]), F631N ([O I]), and F547M (continuum). We use our mosaics to characterize the pulsar wind nebula (PWN) and its three-dimensional structure, the ionizational structure in the filaments forming at its periphery, the speed of the shock driven by the PWN into surrounding ejecta (by inferring the cooling rates behind the shock), and the morphology and ionizational structure of the Rayleigh-Taylor (R-T) fingers. We quantify a number of asymmetries between the northwest (NW) and southeast (SE) quadrants of the Crab Nebula. The lack of observed filaments in the NW, and our observations of the spatial extent of [O III] emission lead us to conclude that cooling rates are slower, and therefore the shock speeds are greater, in the NW quadrant of the nebula, compared with the SE. We conclude that R-T fingers are longer, more ionizationally stratified, and apparently more massive in the NW than in the SE, and the R-T instability appears more fully developed in the NW.

  11. The Asymmetric Wind in M82

    NASA Astrophysics Data System (ADS)

    Shopbell, P. L.; Bland-Hawthorn, J.

    1998-01-01

    We have obtained detailed Fabry-Perot imaging observations of the nearby galaxy M82 in order to understand the physical association between the high-velocity outflow and the starburst nucleus. The high spatial and kinematic resolution of our observations has allowed us to perform photometric analyses of Hα, [N II], and [O III] spectral lines at roughly 100,000 positions across the extent of the galaxy. The observed velocities of the emitting gas in M82 reveal a bipolar outflow of material, originating from the bright starburst regions in the galaxy's inner disk but misaligned with respect to the galaxy spin axis. The deprojected outflow velocity indicated by the optical filaments increases with radius from 525 to 655 km s-1. All three spectral lines show double components in the centers of the outflowing lobes, with the Hα line split by ~300 km s-1 over a region almost 1 kpc in size. The filamentary lobes lie along an axis tilted by 15° with respect to the spin axis, a finding confirmed by the regions of line splitting and by the ionization pattern over the outflow. The filaments are not simple surfaces of revolution, nor is the emission distributed evenly over the surfaces. We model these lobes as a composite of cylindrical and conical structures, collimated in the inner ~500 pc but expanding at a larger opening angle of ~25° beyond that radius. We compare our kinematic model with simulations of starburst-driven winds in which disk material surrounding the source is entrained by the wind. There is some evidence for rotation of the wind filaments about the outflow axis in support of entrainment, and we find strong similarities between the observed and predicted structures. The data reveal a remarkably low [N II]/Hα ratio in the region of the outflow, indicating that photoionization by the nuclear starburst may play a significant role in the excitation of the optical filament gas, particularly near the nucleus. An increase in the [O III]/Hα ratio along the

  12. How the IMF By induces a By component in the closed magnetosphere and how it leads to asymmetric currents and convection patterns in the two hemispheres

    NASA Astrophysics Data System (ADS)

    Tenfjord, P.; Østgaard, N.; Snekvik, K.; Laundal, K. M.; Reistad, J. P.; Haaland, S.; Milan, S. E.

    2015-11-01

    We used the Lyon-Fedder-Mobarry global magnetohydrodynamics model to study the effects of the interplanetary magnetic field (IMF) By component on the coupling between the solar wind and magnetosphere-ionosphere system. When the IMF reconnects with the terrestrial magnetic field with IMF By≠0, flux transport is asymmetrically distributed between the two hemispheres. We describe how By is induced in the closed magnetosphere on both the dayside and nightside and present the governing equations. The magnetosphere imposes asymmetric forces on the ionosphere, and the effects on the ionospheric flow are characterized by distorted convection cell patterns, often referred to as "banana" and "orange" cell patterns. The flux asymmetrically added to the lobes results in a nonuniform induced By in the closed magnetosphere. By including the dynamics of the system, we introduce a mechanism that predicts asymmetric Birkeland currents at conjugate foot points. Asymmetric Birkeland currents are created as a consequence of y directed tension contained in the return flow. Associated with these currents, we expect fast localized ionospheric azimuthal flows present in one hemisphere but not necessarily in the other. We also present current density measurements from Active Magnetosphere and Planetary Electrodynamics Response Experiment that are consistent with this picture. We argue that the induced By produces asymmetrical Birkeland currents as a consequence of asymmetric stress balance between the hemispheres. Such an asymmetry will also lead to asymmetrical foot points and asymmetries in the azimuthal flow in the ionosphere. These phenomena should therefore be treated in a unified way.

  13. Photovoltaic Effect and Evidence of Carrier Multiplication in Graphene Vertical Homojunctions with Asymmetrical Metal Contacts.

    PubMed

    Chen, Jing-Jing; Wang, Qinsheng; Meng, Jie; Ke, Xiaoxing; Van Tendeloo, Gustaaf; Bie, Ya-Qing; Liu, Junku; Liu, Kaihui; Liao, Zhi-Min; Sun, Dong; Yu, Dapeng

    2015-09-22

    Graphene exhibits exciting potentials for high-speed wideband photodetection and high quantum efficiency solar energy harvest because of its broad spectral absorption, fast photoelectric response, and potential carrier multiplication. Although photocurrent can be generated near a metal-graphene interface in lateral devices, the photoactive area is usually limited to a tiny one-dimensional line-like interface region. Here, we report photoelectric devices based on vertical graphene two-dimensional homojunction, which is fabricated via vertically stacking four graphene monolayers with asymmetric metal contacts. The devices show excellent photovoltaic output with excitation wavelength ranging from visible light to mid-infrared. The wavelength dependence of the internal quantum efficiency gives direct evidence of the carrier multiplication effect in graphene. The simple fabrication process, easy scale-up, large photoresponsive active area, and broadband response of the vertical graphene device are very promising for practical applications in optoelectronics and photovoltaics. PMID:26279456

  14. Proportion congruency and practice: A contingency learning account of asymmetric list shifting effects.

    PubMed

    Schmidt, James R

    2016-09-01

    Performance is impaired when a distracting stimulus is incongruent with the target stimulus (e.g., "green" printed in red). This congruency effect is decreased when the proportion of incongruent trials is increased, termed the proportion congruent effect. This effect is typically interpreted in terms of the adaptation of attention in response to conflict. In contrast, the contingency account argues that the effect is driven by the learning of predictive relationships between words and responses. In a recent report, Abrahamse, Duthoo, Notebaert, and Risko (2013) demonstrated larger changes in the magnitude of the proportion congruent effect when switching from a mostly congruent list to a mostly incongruent list, relative to the reverse order. They argued that this asymmetric list shifting effect fits only with the conflict adaptation perspective. However, the current paper presents reanalyses of this data and an adaptation of the Parallel Episodic Processing model that together demonstrate how the contingency account can explain these findings equally well when considering the generally accepted notion that performance improves with practice. The contingency account may still be the most parsimonious view. (PsycINFO Database Record PMID:27585071

  15. Asymmetrical intersection between the middle cerebral artery and rhinal vein suggests asymmetrical gustatory cortex location in rodent hemispheres.

    PubMed

    Kida, Ikuhiro; Enmi, Jun-Ichiro; Iida, Hidehiro; Yoshioka, Yoshichika

    2015-03-01

    The rodent gustatory cortex is located in the anterior part of the insular cortex, which is near the dorsal part of the rhinal vein (RHV) and the intersection of the anterior and posterior regions of the middle cerebral artery (MCA). Thus, the intersection between the RHV and MCA is used as a landmark for the rodent gustatory cortex. In our previous study, we employed functional magnetic resonance imaging (MRI) to demonstrate that tastants evoked bilateral responses in the rodent insular cortices, but that these representations were asymmetrical between the hemispheres. In the present study, to clarify the observed asymmetrical responses, we performed magnetic resonance angiography in a 7.0-Tesla MRI scanner to determine the anatomical position of the rodent gustatory cortex, which was identified using the intersection of the MCA and RHV. We successfully observed the intersection while administering carbogen as an inhaled gas and found that the intersection in the left hemisphere is more anterior compared to that in the right hemisphere. Taken together with the previous functional MRI results, this result indicates that the gustatory representation in relation to the intersection may be identically conserved in the insular cortex of both hemispheres; therefore, the rodent gustatory cortex may be asymmetrically located between the left and right hemispheres. The result also suggests that this landmark location needs to be verified when investigating gustatory representations and responses. PMID:25578950

  16. The plasmoid instability during asymmetric inflow magnetic reconnection

    SciTech Connect

    Murphy, Nicholas A.; Young, Aleida K.; Shen, Chengcai; Lin, Jun; Ni, Lei

    2013-06-15

    Theoretical studies of the plasmoid instability generally assume that the reconnecting magnetic fields are symmetric. We relax this assumption by performing two-dimensional resistive magnetohydrodynamic simulations of the plasmoid instability during asymmetric inflow magnetic reconnection. Magnetic asymmetry modifies the onset, scaling, and dynamics of this instability. Magnetic islands develop preferentially into the weak magnetic field upstream region. Outflow jets from individual X-points impact plasmoids obliquely rather than directly as in the symmetric case. Consequently, deposition of momentum by the outflow jets into the plasmoids is less efficient, the plasmoids develop net vorticity, and shear flow slows down secondary merging between islands. Secondary merging events have asymmetry along both the inflow and outflow directions. Downstream plasma is more turbulent in cases with magnetic asymmetry because islands are able to roll around each other after exiting the current sheet. As in the symmetric case, plasmoid formation facilitates faster reconnection for at least small and moderate magnetic asymmetries. However, when the upstream magnetic field strengths differ by a factor of 4, the reconnection rate plateaus at a lower value than expected from scaling the symmetric results. We perform a parameter study to investigate the onset of the plasmoid instability as a function of magnetic asymmetry and domain size. There exist domain sizes for which symmetric simulations are stable but asymmetric simulations are unstable, suggesting that moderate magnetic asymmetry is somewhat destabilizing. We discuss the implications for plasmoid and flux rope formation in solar eruptions, laboratory reconnection experiments, and space plasmas. The differences between symmetric and asymmetric simulations provide some hints regarding the nature of the three-dimensional plasmoid instability.

  17. The plasmoid instability during asymmetric inflow magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Murphy, Nicholas A.; Young, Aleida K.; Shen, Chengcai; Lin, Jun; Ni, Lei

    2013-06-01

    Theoretical studies of the plasmoid instability generally assume that the reconnecting magnetic fields are symmetric. We relax this assumption by performing two-dimensional resistive magnetohydrodynamic simulations of the plasmoid instability during asymmetric inflow magnetic reconnection. Magnetic asymmetry modifies the onset, scaling, and dynamics of this instability. Magnetic islands develop preferentially into the weak magnetic field upstream region. Outflow jets from individual X-points impact plasmoids obliquely rather than directly as in the symmetric case. Consequently, deposition of momentum by the outflow jets into the plasmoids is less efficient, the plasmoids develop net vorticity, and shear flow slows down secondary merging between islands. Secondary merging events have asymmetry along both the inflow and outflow directions. Downstream plasma is more turbulent in cases with magnetic asymmetry because islands are able to roll around each other after exiting the current sheet. As in the symmetric case, plasmoid formation facilitates faster reconnection for at least small and moderate magnetic asymmetries. However, when the upstream magnetic field strengths differ by a factor of 4, the reconnection rate plateaus at a lower value than expected from scaling the symmetric results. We perform a parameter study to investigate the onset of the plasmoid instability as a function of magnetic asymmetry and domain size. There exist domain sizes for which symmetric simulations are stable but asymmetric simulations are unstable, suggesting that moderate magnetic asymmetry is somewhat destabilizing. We discuss the implications for plasmoid and flux rope formation in solar eruptions, laboratory reconnection experiments, and space plasmas. The differences between symmetric and asymmetric simulations provide some hints regarding the nature of the three-dimensional plasmoid instability.

  18. The deal with diel: Temperature fluctuations, asymmetrical warming, and ubiquitous metals contaminants.

    PubMed

    Hallman, Tyler A; Brooks, Marjorie L

    2015-11-01

    Climate projections over the next century include disproportionately warmer nighttime temperatures ("asymmetrical warming"). Cool nighttime temperatures lower metabolic rates of aquatic ectotherms. In contaminated waters, areas with cool nights may provide thermal refugia from high rates of daytime contaminant uptake. We exposed Cope's gray tree frogs (Hyla chrysoscelis), southern leopard frogs (Lithobates sphenocephalus), and spotted salamanders (Ambystoma maculatum) to five concentrations of a mixture of cadmium, copper, and lead under three to four temperature regimes, representing asymmetrical warming. At concentrations with intermediate toxicosis at test termination (96 h), temperature effects on acute toxicity or escape distance were evident in all study species. Asymmetrical warming (day:night, 22:20 °C; 22:22 °C) doubled or tripled mortality relative to overall cooler temperatures (20:20 °C) or cool nights (22:18 °C). Escape distances were 40-70% shorter under asymmetrical warming. Results suggest potentially grave ecological impacts from unexpected toxicosis under climate change. PMID:26142755

  19. Aneutronic fusion on the base of asymmetrical centrifugal trap

    NASA Astrophysics Data System (ADS)

    Volosov, V. I.

    2006-08-01

    A physical design of a device that can be a base for a direct-conversion nuclear electric power station is considered. The project considers the aneutronic reaction P-11B in the asymmetric centrifugal trap. Kinetic energy of nuclear particles (alpha particles) is converted into electrical energy inside this device; no thermal cycle is used. Heating and recuperation of energy of protons and boron ions take place in the plasma space. The presented scheme differs significantly from the conventional thermonuclear fusion. 'Fast' protons, which are the main energy component of plasma, have an almost monoenergetic spectrum. This makes it possible to realize the 'resonance' fusion.

  20. Asymmetric Organocatalysis at the Service of Medicinal Chemistry

    PubMed Central

    2014-01-01

    The application of the most representative and up-to-date examples of homogeneous asymmetric organocatalysis to the synthesis of molecules of interest in medicinal chemistry is reported. The use of different types of organocatalysts operative via noncovalent and covalent interactions is critically reviewed and the possibility of running some of these reactions on large or industrial scale is described. A comparison between the organo- and metal-catalysed methodologies is offered in several cases, thus highlighting the merits and drawbacks of these two complementary approaches to the obtainment of very popular on market drugs or of related key scaffolds. PMID:24971178

  1. The role of biocatalysis in the asymmetric synthesis of alkaloids

    PubMed Central

    2013-01-01

    Alkaloids are not only one of the most intensively studied classes of natural products, their wide spectrum of pharmacological activities also makes them indispensable drug ingredients in both traditional and modern medicine. Among the methods for their production, biotechnological approaches are gaining importance, and biocatalysis has emerged as an essential tool in this context. A number of chemo-enzymatic strategies for alkaloid synthesis have been developed over the years, in which the biotransformations nowadays take an increasingly ‘central’ role. This review summarises different applications of biocatalysis in the asymmetric synthesis of alkaloids and discusses how recent developments and novel enzymes render innovative and efficient chemo-enzymatic production routes possible. PMID:25580241

  2. Antibacterial phototoxic effects of synthetic asymmetric and glycosylated curcuminoids in aqueous formulations: studies on curcumin and curcuminoids. LIV.

    PubMed

    Tovsen, Marianne Lilletvedt; Bruzell, Ellen; Ferrari, Erika; Saladini, Monica; Gaware, Vivek S; Másson, Már; Kristensen, Solveig; Tønnesen, Hanne Hjorth

    2014-11-01

    The aim of this study was to evaluate the in vitro phototoxic potential of synthetic asymmetric and glycosylated curcuminoids on planktonic model bacteria by counting the colony forming units. The Gram-positive Enterococcus faecalis and the Gram-negative Escherichia coli were exposed to aqueous solutions of the curcuminoids (⩽2.5 μM) in the presence or absence of selected pharmaceutical excipients (Pluronic F127, PEG 400 and HPγCD) in combination with a low irradiation dose (5 J/cm(2); λmax: 450 nm) of constant irradiance and time. All the asymmetric curcuminoids, but only one of the glycosylated curcuminoids demonstrated substantial phototoxic effect on E.faecalis (⩾4.7 log reduction). Only two of the asymmetric curcuminoids showed a moderate to low phototoxic effect on the more persistent E.coli. This study emphasized that aromatic hydroxyl substituents in the para-position are important to maintain the phototoxic potential of curcuminoids independent of molecular symmetry. Glycosylation of the aromatic substituents resulted in a substantial loss in phototoxicity towards planktonic bacteria, an apparent change in the non-radiative S₁-decay process and a weaker interaction with Pluronic F127 compared to the non-glycosylated curcuminoids. The selected excipients Pluronic F127, PEG 400 and HPγCD strongly influenced the phototoxic potential of the unsymmetrical, non-glycosylated compounds. PMID:25129700

  3. Development of asymmetric inhibition underlying direction selectivity in the retina

    PubMed Central

    Wei, Wei; Hamby, Aaron M.; Zhou, Kaili; Feller, Marla B.

    2014-01-01

    Establishing precise synaptic connections is crucial to the development of functional neural circuits. The direction-selective circuit in the retina relies upon highly selective wiring of inhibitory inputs from starburst amacrine cells1 (SACs) onto four subtypes of on–off direction-selective ganglion cell (DSGC), each preferring motion in one of four cardinal directions2. It has been reported in rabbit that the SACs on the ‘null’ sides of DSGCs form functional GABA (γ-aminobutyric acid)-mediated synapses, whereas those on the preferred sides do not3. However, it is not known how the asymmetric wiring between SACs and DSGCs is established during development. Here we report that in transgenic mice with cell-type-specific labelling, the synaptic connections from SACs to DSGCs were of equal strength during the first postnatal week, regardless of whether the SAC was located on the preferred or null side of the DSGC. However, by the end of the second postnatal week, the strength of the synapses made from SACs on the null side of a DSGC significantly increased whereas those made from SACs located on the preferred side remained constant. Blocking retinal activity by intraocular injections of muscimol or gabazine during this period did not alter the development of direction selectivity. Hence, the asymmetric inhibition between the SACs and DSGCs is achieved by a developmental program that specifically strengthens the GABA-mediated inputs from SACs located on the null side, in a manner not dependent on neural activity. PMID:21131947

  4. Influence of the dissipation mechanism on collisionless magnetic reconnection in symmetric and asymmetric current layers

    SciTech Connect

    Aunai, Nicolas; Hesse, Michael; Black, Carrie; Evans, Rebekah; Kuznetsova, Maria

    2013-04-15

    Numerical studies implementing different versions of the collisionless Ohm's law have shown a reconnection rate insensitive to the nature of the non-ideal mechanism occurring at the X line, as soon as the Hall effect is operating. Consequently, the dissipation mechanism occurring in the vicinity of the reconnection site in collisionless systems is usually thought not to have a dynamical role beyond the violation of the frozen-in condition. The interpretation of recent studies has, however, led to the opposite conclusion that the electron scale dissipative processes play an important dynamical role in preventing an elongation of the electron layer from throttling the reconnection rate. This work re-visits this topic with a new approach. Instead of focusing on the extensively studied symmetric configuration, we aim to investigate whether the macroscopic properties of collisionless reconnection are affected by the dissipation physics in asymmetric configurations, for which the effect of the Hall physics is substantially modified. Because it includes all the physical scales a priori important for collisionless reconnection (Hall and ion kinetic physics) and also because it allows one to change the nature of the non-ideal electron scale physics, we use a (two dimensional) hybrid model. The effects of numerical, resistive, and hyper-resistive dissipation are studied. In a first part, we perform simulations of symmetric reconnection with different non-ideal electron physics. We show that the model captures the already known properties of collisionless reconnection. In a second part, we focus on an asymmetric configuration where the magnetic field strength and the density are both asymmetric. Our results show that contrary to symmetric reconnection, the asymmetric model evolution strongly depends on the nature of the mechanism which breaks the field line connectivity. The dissipation occurring at the X line plays an important role in preventing the electron current layer

  5. The Asymmetrical Effects of Divided Attention on Encoding and Retrieval Processes: A Different View Based on an Interference with the Episodic Register

    PubMed Central

    Guez, Jonathan; Naveh-Benjamin, Moshe

    2013-01-01

    In this study, we evaluate the conceptualization of encoding and retrieval processes established in previous studies that used a divided attention (DA) paradigm. These studies indicated that there were considerable detrimental effects of DA at encoding on later memory performance, but only minimal effects, if any, on divided attention at retrieval. We suggest that this asymmetry in the effects of DA on memory can be due, at least partially, to a confound between the memory phase (encoding and retrieval) and the memory requirements of the task (memory “for” encoded information versus memory “at” test). To control for this confound, we tested memory for encoded information and for retrieved information by introducing a second test that assessed memory for the retrieved information from the first test. We report the results of four experiments that use measures of memory performance, retrieval latency, and performance on the concurrent task, all of which consistently show that DA at retrieval strongly disrupts later memory for the retrieved episode, similarly to the effects of DA at encoding. We suggest that these symmetrical disruptive effects of DA at encoding and retrieval on later retrieval reflect a disruption of an episodic buffer (EB) or episodic register component (ER), rather than a failure of encoding or retrieval operations per se. PMID:24040249

  6. Analytical study of the origin and behavior of asymmetric vortices

    NASA Technical Reports Server (NTRS)

    Tobak, Murray; Degani, David; Zilliac, Gregory G.

    1990-01-01

    An hypothesis advanced originally to explain computational observations is supported by theoretical considerations: The asymmetric mean flow observed on bodies of revolution at moderate to high angles of attack is the result of a convective instability of an originally symmetric flow to a time-invariant space-fixed disturbance. Additionally, the time-dependent fluctuations characteristic of the flow at higher angles of attack (up to 90 deg) are the result of an absolute instability of an originally steady flow to a small temporal disturbance of finite duration. Within a common domain, the instability mechanisms may coexist. The experimentally confirmed existence of bistable states, wherein the side-force variation with nose roll angle approaches a square-wave distribution, is attributed to the dominant influence of a pair of trailing vortices from the ogival forebody. Their existence is made possible by the appearance of foci of separation in the skin-friction line pattern beyond a critical angle of attack. The extreme sensitivity of the asymmetric flow orientation to nose geometry, demonstrated experimentally, is attributed to the presence of an indeterminate phase in the family of possible solutions for the three-dimensional wave system.

  7. Optimization of backward giant circle technique on the asymmetric bars.

    PubMed

    Hiley, Michael J; Yeadon, Maurice R

    2007-11-01

    The release window for a given dismount from the asymmetric bars is the period of time within which release results in a successful dismount. Larger release windows are likely to be associated with more consistent performance because they allow a greater margin for error in timing the release. A computer simulation model was used to investigate optimum technique for maximizing release windows in asymmetric bars dismounts. The model comprised four rigid segments with the elastic properties of the gymnast and bar modeled using damped linear springs. Model parameters were optimized to obtain a close match between simulated and actual performances of three gymnasts in terms of rotation angle (1.5 degrees ), bar displacement (0.014 m), and release velocities (<1%). Three optimizations to maximize the release window were carried out for each gymnast involving no perturbations, 10-ms perturbations, and 20-ms perturbations in the timing of the shoulder and hip joint movements preceding release. It was found that the optimizations robust to 20-ms perturbations produced release windows similar to those of the actual performances whereas the windows for the unperturbed optimizations were up to twice as large. It is concluded that robustness considerations must be included in optimization studies in order to obtain realistic results and that elite performances are likely to be robust to timing perturbations of the order of 20 ms. PMID:18089928

  8. Orientation of the X-line in asymmetric magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Aunai, N.; Hesse, M.; Lavraud, B.; Dargent, J.; Smets, R.

    2016-08-01

    > Magnetic reconnection can occur in current sheets separating magnetic fields sheared by any angle and of arbitrarily different amplitudes. In such asymmetric and non-coplanar systems, it is not yet understood what the orientation of the X-line will be. Studying how this orientation is determined locally by the reconnection process is important to understand systems such as the Earth magnetopause, where reconnection occurs in regions with large differences in upstream plasma and field properties. This study aims at determining what the local X-line orientation is for different upstream magnetic shear angles in an asymmetric set-up relevant to the Earth's magnetopause. We use two-dimensional hybrid simulations and vary the simulation plane orientation with regard to the fixed magnetic field profile and search for the plane maximizing the reconnection rate. We find that the plane defined by the bisector of upstream fields maximizes the reconnection rate and this appears not to depend on the magnetic shear angle, domain size or upstream plasma and asymmetries.

  9. Asymmetric dark matter

    SciTech Connect

    Kumar, Jason

    2014-06-24

    We review the theoretical framework underlying models of asymmetric dark matter, describe astrophysical constraints which arise from observations of neutron stars, and discuss the prospects for detecting asymmetric dark matter.

  10. Asymmetric dynamics and critical behavior in the Bak-Sneppen model

    NASA Astrophysics Data System (ADS)

    Garcia, Guilherme J. M.; Dickman, Ronald

    2004-11-01

    We investigate, using mean-field theory and simulation, the effect of asymmetry on the critical behavior and probability density of Bak-Sneppen models. Two kinds of anisotropy are investigated: (i) different numbers of sites to the left and right of the central (minimum) site are updated and (ii) sites to the left and right of the central site are renewed in different ways. Of particular interest is the crossover from symmetric to asymmetric scaling for weakly asymmetric dynamics, and the collapse of data with different numbers of updated sites but the same degree of asymmetry. All non-symmetric rules studied fall, independent of the degree of asymmetry, in the same universality class. Conversely, symmetric variants reproduce the exponents of the original model. Our results confirm the existence of two symmetry-based universality classes for extremal dynamics.

  11. Linearisation of asymmetrical Doherty amplifier by the even-order non-linear signals

    NASA Astrophysics Data System (ADS)

    Maleš-Ilić, Nataša; Atanasković, Aleksandar; Blau, Kurt; Hein, Matthias

    2016-08-01

    This paper considers the linearisation of an asymmetrical two-way Doherty amplifier by the method that uses the second harmonics and fourth-order non-linear signals for linearisation. These even-order signals for linearisation are extracted at the output of the peaking amplifier, adjusted in amplitude and phase and injected at the input and output of the carrier amplifier transistor in the Doherty configuration. The effect of linearisation has been experimentally confirmed on a fabricated asymmetrical Doherty amplifier with the additional circuit for linearisation. The suppression of the third-order intermodulation products has been carried out for two-tone test, 64QAM and WCDMA digitally modulated signals in a range of signal power.

  12. Influence of an asymmetric ring on the modeling of an orthogonally stiffened cylindrical shell

    NASA Technical Reports Server (NTRS)

    Rastogi, Naveen; Johnson, Eric R.

    1994-01-01

    Structural models are examined for the influence of a ring with an asymmetrical cross section on the linear elastic response of an orthogonally stiffened cylindrical shell subjected to internal pressure. The first structural model employs classical theory for the shell and stiffeners. The second model employs transverse shear deformation theories for the shell and stringer and classical theory for the ring. Closed-end pressure vessel effects are included. Interacting line load intensities are computed in the stiffener-to-skin joints for an example problem having the dimensions of the fuselage of a large transport aircraft. Classical structural theory is found to exaggerate the asymmetric response compared to the transverse shear deformation theory.

  13. 0114 + 074 - A very asymmetric galaxy in the field of an intermediate-redshift QSO

    SciTech Connect

    Akujor, C.E. Max-Planck-Institut fuer Radioastronomie, Bonn )

    1989-10-01

    New radio-continuum observations of 0114 + 074 (4C 07.4) are presented. It is shown that this radio source consists of two distinct objects: a point source identified with an 18.0 mag QSO and a highly asymmetric 18.5 mag galaxy. The patently asymmetric structure of the galaxy is most plausibly due to intrinsically asymmetric energy funding of the lobes by the central machine or nucleus, rather than external influences. 41 refs.

  14. Experimental and theoretical study of the weak and asymmetrical thermal lens effect of Nd:YLF crystal for σ and π polarizations

    NASA Astrophysics Data System (ADS)

    Zhang, Zilong; Liu, Qiang; Nie, Mingming; Ji, Encai; Gong, Mali

    2015-09-01

    The thermal lens effect of Nd:YLF crystal for different polarized beams is experimentally and theoretically studied in this paper. In the experiment, the different thermal lens effects of Nd:YLF crystal along a and c axes for π- and σ-polarized probe beams are observed, and the values of the focal lengths are measured. The theoretical analysis is made to explain the extremely weak thermal lens effect along the c axis, as well as that for the σ-polarized beam. And it is corroborated that the complementation among the thermo-optical coefficient, the thermal end bulging and the photoelastic effects contributes to the weak and asymmetry thermal lens effect of Nd:YLF crystal.

  15. Overcoming asymmetric goals in teams: the interactive roles of team learning orientation and team identification.

    PubMed

    Pearsall, Matthew J; Venkataramani, Vijaya

    2015-05-01

    Although members of teams share a common, ultimate objective, they often have asymmetric or conflicting individual goals that shape the way they contribute to, and pursue, the shared goal of the team. Compounding this problem, they are frequently unaware of the nature of these goal asymmetries or even the fact that such differences exist. Drawing on, and integrating, social interdependence and representational gaps theories, we identify 2 emergent states that combine interactively to enable teams to overcome asymmetric goals: team identification and team learning orientation. Using data from long-term, real-life teams that engaged in a computer simulation designed to create both asymmetric goals and representational gaps about those goals, we found that teams were most effective when they had a high learning orientation coupled with high team identification and that this effect was mediated by teams' ability to form more accurate team goal mental models and engage in effective planning processes. Implications for theory and practice are discussed. PMID:25384202

  16. Visual attention modulates the asymmetric influence of each cerebral hemisphere on spatial perception.

    PubMed

    Wang, Meijian; Wang, Xiuhai; Xue, Lingyan; Huang, Dan; Chen, Yao

    2016-01-01

    Although the allocation of brain functions across the two cerebral hemispheres has aroused public interest over the past century, asymmetric interhemispheric cooperation under attentional modulation has been scarcely investigated. An example of interhemispheric cooperation is visual spatial perception. During this process, visual information from each hemisphere is integrated because each half of the visual field predominantly projects to the contralateral visual cortex. Both egocentric and allocentric coordinates can be employed for visual spatial representation, but they activate different areas in primate cerebral hemispheres. Recent studies have determined that egocentric representation affects the reaction time of allocentric perception; furthermore, this influence is asymmetric between the two visual hemifields. The egocentric-allocentric incompatibility effect and its asymmetry between the two hemispheres can produce this phenomenon. Using an allocentric position judgment task, we found that this incompatibility effect was reduced, and its asymmetry was eliminated on an attentional task rather than a neutral task. Visual attention might activate cortical areas that process conflicting information, such as the anterior cingulate cortex, and balance the asymmetry between the two hemispheres. Attention may enhance and balance this interhemispheric cooperation because this imbalance may also be caused by the asymmetric cooperation of each hemisphere in spatial perception. PMID:26758349

  17. Visual attention modulates the asymmetric influence of each cerebral hemisphere on spatial perception

    PubMed Central

    Wang, Meijian; Wang, Xiuhai; Xue, Lingyan; Huang, Dan; Chen, Yao

    2016-01-01

    Although the allocation of brain functions across the two cerebral hemispheres has aroused public interest over the past century, asymmetric interhemispheric cooperation under attentional modulation has been scarcely investigated. An example of interhemispheric cooperation is visual spatial perception. During this process, visual information from each hemisphere is integrated because each half of the visual field predominantly projects to the contralateral visual cortex. Both egocentric and allocentric coordinates can be employed for visual spatial representation, but they activate different areas in primate cerebral hemispheres. Recent studies have determined that egocentric representation affects the reaction time of allocentric perception; furthermore, this influence is asymmetric between the two visual hemifields. The egocentric-allocentric incompatibility effect and its asymmetry between the two hemispheres can produce this phenomenon. Using an allocentric position judgment task, we found that this incompatibility effect was reduced, and its asymmetry was eliminated on an attentional task rather than a neutral task. Visual attention might activate cortical areas that process conflicting information, such as the anterior cingulate cortex, and balance the asymmetry between the two hemispheres. Attention may enhance and balance this interhemispheric cooperation because this imbalance may also be caused by the asymmetric cooperation of each hemisphere in spatial perception. PMID:26758349

  18. Projection of two-dimensional diffusion in narrow asymmetric channels onto the longitudinal direction

    SciTech Connect

    Pineda, Inti; Dagdug, Leonardo

    2014-01-14

    Diffusive transport of particles is a ubiquitous feature of physical, chemical and biological systems. Typical structures like pores, tubes or fibers, are quasi one-dimensional, such that we need to solve 2+1 or 3+1 dimensional differential equations to describe correctly transport along them. The so-called Fick-Jacobs approach dramatically simplifies the problem if one assumes that a solute distribution in any cross-section of the channel is uniform at equilibrium. That study focuses on the mapping of the diffusion equation in a two-dimensional narrow asymmetric channel of varying cross section onto the longitudinal coordinate. We present a generalization to the case of an asymmetric channel using the projection method introduced earlier by Kalinay and Percus. We derive an expansion of the effective diffusion coefficient, which represents corrections to the Fick-Jacobs equation and contains the well-known previous results as special cases. Finally, we study numerically some specific two-dimensional asymmetric channel configurations to test and show the broader applicability of this effective diffusion coefficient formula.

  19. Asymmetric variations of the coronal green line intensity

    NASA Astrophysics Data System (ADS)

    Tritakis, V. P.; Petropoulos, B.; Mavromichalaki, H.

    1988-09-01

    The analysis of the daily measurements of the coronal green line intensity, which have been extensively tested for homogeneity and freedom of trends observed at the Pic-du-Midi observatory during the period 1944 - 1974, has revealed some characteristic asymmetric variations. The NW solar-quarter appears to be the most active of all in the 22-yr cycle 1949 - 1971, while in the periods 1944 - 1948 and 1972 - 1974 the SW quarter is the most active. The green line intensity distribution shows that the maximum values of the asymmetries occur in heliocentric sectors ±10° - 20° far from the solar equator on both sides of the central meridian. Physical mechanisms like different starting time of an 11-yr solar cycle in the two solar hemispheres, the motion of the Sun towards the Apex, and short-lived "active" solar longitudes formed by temporal clustering of solar active centers, have been discussed.

  20. From generalized directed animals to the asymmetric simple exclusion process

    NASA Astrophysics Data System (ADS)

    Haug, N.; Nechaev, S.; Tamm, M.

    2014-10-01

    Using the generalized normally ordered form of words in a locally-free group of n generators, we show that in the limit n → ∞, the partition function of weighted directed lattice animals on a semi-infinite strip coincides with the partition function of stationary configurations of the asymmetric simple exclusion process (ASEP) with arbitrary entry/escape rates through open boundaries. We relate the features of the ASEP in the different regimes of the phase diagram to the geometric features of the associated generalized directed animals by showing the results of numerical simulations. In particular, we show how the presence of shocks at the first order transition line translates into the directed animal picture. Using the evolution equation for generalized, weighted Lukasiewicz paths, we also provide a straightforward calculation of the known ASEP generating function.

  1. Effects of Multiple Nozzles on Asymmetric Ejector Performance

    NASA Technical Reports Server (NTRS)

    Lineberry, D.; Landrum, B.

    2005-01-01

    This paper presents a comparison of a single nozzle and a dual nozzle strut based ejector. The results are focused on the fluid properties in the ejector duct. The research focused on choking mechanisms, mass flow entrainment, and mixing duct pressure distributions. The two ejectors were tests at equivalent primary mass flow rates. This corresponds to chamber pressures ranging from 100 psi to 900 psi in the single nozzle strut and 50 psi to 450 psi in the dual nozzle strut. Secondary flow was drawn from the lab at atmospheric pressure, and was not controlled. The secondary flow was found to choke at a value of 2.3 lb/s for a primary mass flow rate at approximately 2.1 lb/s for both ejectors. This choke was believed to be a mass addition choke rather than a traditional aerodynamic choke. The mixing duct pressure distribution exhibited two distinct trends at "low pressure" trend and at "high pressure" trend. For the low pressure trend, the mixing length for the ejectors remained fixed around 20 inches, regardless of the chamber pressure. For the higher pressure trend, the mixing length was considerably longer and increased with increasing chamber pressure. At high chamber pressures (high mass flow rates), a supersonic core flow was present at the exit of the duct. For these cases, the two streams did not have time to mix by the end of the duct.

  2. Finite-Time Fluctuations for the Totally Asymmetric Exclusion Process

    NASA Astrophysics Data System (ADS)

    Prolhac, Sylvain

    2016-03-01

    The one-dimensional totally asymmetric simple exclusion process, a Markov process describing classical hard-core particles hopping in the same direction, is considered on a periodic lattice of L sites. The relaxation to the nonequilibrium steady state, which occurs on the time scale t ˜L3 /2 for large L , is studied for the half-filled system with N =L /2 particles. Using large L asymptotics of Bethe ansatz formulas for the eigenstates, exact expressions depending explicitly on the rescaled time t /L3 /2 are obtained for the average and two-point function of the local density, and for the current fluctuations for simple (stationary, flat and step) initial conditions, relating previous results for the infinite system to stationary large deviations. The final formulas have a nice interpretation in terms of a functional integral with the action of a scalar field in a linear potential.

  3. Finite-Time Fluctuations for the Totally Asymmetric Exclusion Process.

    PubMed

    Prolhac, Sylvain

    2016-03-01

    The one-dimensional totally asymmetric simple exclusion process, a Markov process describing classical hard-core particles hopping in the same direction, is considered on a periodic lattice of L sites. The relaxation to the nonequilibrium steady state, which occurs on the time scale t∼L^{3/2} for large L, is studied for the half-filled system with N=L/2 particles. Using large L asymptotics of Bethe ansatz formulas for the eigenstates, exact expressions depending explicitly on the rescaled time t/L^{3/2} are obtained for the average and two-point function of the local density, and for the current fluctuations for simple (stationary, flat and step) initial conditions, relating previous results for the infinite system to stationary large deviations. The final formulas have a nice interpretation in terms of a functional integral with the action of a scalar field in a linear potential. PMID:26991165

  4. The particle distributions of asymmetric kinetic electrostatic structures

    SciTech Connect

    Nocera, L.; Palumbo, L. J.

    2011-03-15

    We give the energy distributions of electrons and ions supporting a steady state electrostatic structure in a collisionless plasma. The electric potential of the structure is skew asymmetrically distributed in space. We show that the jump discontinuous, logarithmically singular electron and ion distributions may be reduced to elliptic integrals. We give the coefficients of the logarithmic terms and the jumps at the discontinuities and we show that they are reciprocally proportional. We calculate bounds for the potential skew asymmetry and show that these bounds are regulated by the boundary conditions of the particle distributions. Despite singularities, our treatment reproduces a smooth space distribution of the potential amplitude and electron and ion distributions that are smooth at one of the boundaries of the electrostatic structure.

  5. Primarily nonlinear effects observed in a driven asymmetrical vibrating wire

    NASA Astrophysics Data System (ADS)

    Hanson, Roger J.; Macomber, H. Kent; Morrison, Andrew C.; Boucher, Matthew A.

    2005-01-01

    The purpose of the work reported here is to further experimentally explore the wide variety of behaviors exhibited by driven vibrating wires, primarily in the nonlinear regime. When the wire is driven near a resonant frequency, it is found that most such behaviors are significantly affected by the splitting of the resonant frequency and by the existence of a ``characteristic'' axis associated with each split frequency. It is shown that frequency splitting decreases with increasing wire tension and can be altered by twisting. Two methods are described for determining the orientation of characteristic axes. Evidence is provided, with a possible explanation, that each axis has the same orientation everywhere along the wire. Frequency response data exhibiting nonlinear generation of transverse motion perpendicular to the driving direction, hysteresis, linear generation of perpendicular motion (sometimes tubular), and generation of motion at harmonics of the driving frequency are exhibited and discussed. Also reported under seemingly unchanging conditions are abrupt large changes in the harmonic content of the motion that sometimes involve large subharmonics and harmonics thereof. Slow transitions from one stable state of vibration to another and quasiperiodic motions are also exhibited. Possible musical significance is discussed. .

  6. Service quality and asymmetric information in the regulation of monopolies: The Chilean electricity distribution industry

    NASA Astrophysics Data System (ADS)

    Melo, Oscar Alfredo

    This study is an enquiry about the role that service quality, asymmetric information, scope of regulation and regulator's preferences play in the regulation of monopolies, with an application to the case of the Chilean electricity distribution industry. In Chapter 1, I present the problem of regulating a monopolist and introduce the special conditions that the electricity sector has. Later I discuss the main characteristics of the electricity system that operates in Chile. The literature on regulation is reviewed in Chapter 2. A special emphasis is given to the problems of quality and information, and the lack of its proper joint treatment. In Chapter 3, I develop four theoretical models of regulation that explicitly consider the regulation of price and quality versus price-only regulation, and a symmetric versus asymmetric information structure where only the regulator knows its true costs. In these models, I also consider the effect of a regulator that may have a preference between consumers and the regulated monopolistic firms. I conclude that with symmetric information and independent of the scope of regulation, having a regulator that prefers consumers or producers does not affect the efficiency of the outcome. I also show that the regulator's inability to set quality, thus regulating only price, leads to an inefficient outcome, away from the first best solution that can be achieved by regulating both price and quality, even with asymmetric information, as long as the regulator does not have a "biased" preference for consumers or the monopolistic producers. If the regulator has a "bias," then the equilibrium will be inefficient with asymmetric information. But the effect on equilibrium price and quality depends on the direction of the effect of quality on the marginal effect of price in demand. More importantly, no closed-form solution can be derived unless drastic simplifications are made. To further investigate the outcome of the models, I use numerical

  7. The asymptotic asymmetric-top rotational partition function

    NASA Astrophysics Data System (ADS)

    Watson, James K. G.

    The high-temperature asymptotic expansion of the rotational partition function of a rigid asymmetric-top molecule can be written in the form where g is the mean nuclear statistical weight and gζ is a nuclear statistical weight factor associated with the principal axis ζ. The asymptotic expansion of Q', which is calculated by two different methods, is expressed in the formulation of McDowell as where tMPH1377_images Here, α, β and γ are the dimensionless temperature-reduced rotational constants hcA/kT, hcB/kT and hcC/kT, and each sum is over the three cyclic permutations of (α, β, γ). For the Q'ζ, the principal asymptotic approximations tMPH1377_images are obtained, confirming results in the 1955 dissertation of Woolley.

  8. On the wake flow of asymmetrically beveled trailing edges

    NASA Astrophysics Data System (ADS)

    Guan, Yaoyi; Pröbsting, Stefan; Stephens, David; Gupta, Abhineet; Morris, Scott C.

    2016-05-01

    Trailing edge and wake flows are of interest for a wide range of applications. Small changes in the design of asymmetrically beveled or semi-rounded trailing edges can result in significant difference in flow features which are relevant for the aerodynamic performance, flow-induced structural vibration and aerodynamically generated sound. The present study describes in detail the flow field characteristics around a family of asymmetrically beveled trailing edges with an enclosed trailing-edge angle of 25° and variable radius of curvature R. The flow fields over the beveled trailing edges are described using data obtained by particle image velocimetry (PIV) experiments. The flow topology for different trailing edges was found to be strongly dependent on the radius of curvature R, with flow separation occurring further downstream as R increases. This variation in the location of flow separation influences the aerodynamic force coefficients, which were evaluated from the PIV data using a control volume approach. Two-point correlations of the in-plane velocity components are considered to assess the structure in the flow field. The analysis shows large-scale coherent motions in the far wake, which are associated with vortex shedding. The wake thickness parameter yf is confirmed as an appropriate length scale to characterize this large-scale roll-up motion in the wake. The development in the very near wake was found to be critically dependent on R. In addition, high-speed PIV measurements provide insight into the spectral characteristics of the turbulent fluctuations. Based on the time-resolved flow field data, the frequency range associated with the shedding of coherent vortex pairs in the wake is identified. By means of time-correlation of the velocity components, turbulent structures are found to convect from the attached or separated shear layers without distinct separation point into the wake.

  9. Recent Observations of Human-induced Asymmetric Effects on Climate in Very High-Altitude Area

    PubMed Central

    Lu, Heli; Liu, Guifang

    2014-01-01

    Like urban heat islands (UHI), human-induced land degradation (HLD) is a phenomenon attributed to human activities, but this phenomenon occurs in non-urban areas. Although a large body of work has demonstrated that land-cover change influences local climate systems, little work has been done on separating the impact of HLD from naturally-occurring fluctuations in very high-altitude areas. We developed an innovative NDVI-difference method in order to evaluate HLD effects upon the climate system in the central Tibet Plateau. The results show that the minimum temperature increased at a significantly faster pace than the maximum temperature in the growing season at HLD meteorological stations, but this was reversed at stations with natural forces only. Further analysis revealed that abrupt changes of minimum temperature occurred five years earlier and amplitudes of these changes were 1.4 times larger than at stations with natural forces only. Therefore, our results complement other evidence that points to the fact that local effects from UHI contribute to climatic asymmetry observed between minimum and maximum temperature trends. Accordingly, we stress the need for consideration of non-urban factors from anthropogenic activities, such as human-induced land degradation, in understanding these asymmetric diurnal changes. PMID:24489643

  10. Recent observations of human-induced asymmetric effects on climate in very high-altitude area.

    PubMed

    Lu, Heli; Liu, Guifang

    2014-01-01

    Like urban heat islands (UHI), human-induced land degradation (HLD) is a phenomenon attributed to human activities, but this phenomenon occurs in non-urban areas. Although a large body of work has demonstrated that land-cover change influences local climate systems, little work has been done on separating the impact of HLD from naturally-occurring fluctuations in very high-altitude areas. We developed an innovative NDVI-difference method in order to evaluate HLD effects upon the climate system in the central Tibet Plateau. The results show that the minimum temperature increased at a significantly faster pace than the maximum temperature in the growing season at HLD meteorological stations, but this was reversed at stations with natural forces only. Further analysis revealed that abrupt changes of minimum temperature occurred five years earlier and amplitudes of these changes were 1.4 times larger than at stations with natural forces only. Therefore, our results complement other evidence that points to the fact that local effects from UHI contribute to climatic asymmetry observed between minimum and maximum temperature trends. Accordingly, we stress the need for consideration of non-urban factors from anthropogenic activities, such as human-induced land degradation, in understanding these asymmetric diurnal changes. PMID:24489643

  11. Bilaterally asymmetric effects of quantitative trait loci (QTLs): QTLs that affect laxity in the right versus left coxofemoral (hip) joints of the dog (Canis familiaris).

    PubMed

    Chase, Kevin; Lawler, Dennis F; Adler, Fred R; Ostrander, Elaine A; Lark, Karl G

    2004-01-30

    In dogs hip joint laxity that can lead to degenerative joint disease (DJD) is frequent and heritable, providing a genetic model for some aspects of the human disease. We have used Portuguese water dogs (PWDs) to identify Quantitative trait loci (QTLs) that regulate laxity in the hip joint. A population of 286 PWDs, each characterized by ca. 500 molecular genetic markers, was analyzed for subluxation of the hip joint as measured by the Norberg angle, a quantitative radiographic measure of laxity. A significant directed asymmetry was observed, such that greater laxity was observed in the left than the right hip. This asymmetry was not heritable. However, the average Norberg angle was highly heritable as were the Norberg angles of either the right or left hips. After correction for pedigree effects, two QTLs were identified using the metrics of the left and right hips as separate data sets. Both are on canine chromosome 1 (CFA1), separated by about 95 Mb. One QTL, associated with the SSR marker FH2524 was significant for the left, but not the right hip. The other, associated with FH2598, was significant for the right but not the left hip. For both QTLs, some extreme phenotypes were best explained by specific interactions between haplotypes. PMID:14708095

  12. Bilaterally Asymmetric Effects of Quantitative Trait Loci (QTLs): QTLs That Affect Laxity in the Right Versus Left Coxofemoral (Hip) Joints of the Dog (Canis familiaris)

    PubMed Central

    Chase, Kevin; Lawler, Dennis F.; Adler, Fred R.; Ostrander, Elaine A.; Lark, Karl G.

    2009-01-01

    In dogs hip joint laxity that can lead to degenerative joint disease (DJD) is frequent and heritable, providing a genetic model for some aspects of the human disease. We have used Portuguese water dogs (PWDs) to identify Quantitative trait loci (QTLs) that regulate laxity in the hip joint.A population of 286 PWDs, each characterized by ca. 500 molecular genetic markers, was analyzed for subluxation of the hip joint as measured by the Norberg angle, a quantitative radiographic measure of laxity. A significant directed asymmetry was observed, such that greater laxity was observed in the left than the right hip. This asymmetry was not heritable. However, the average Norberg angle was highly heritable as were the Norberg angles of either the right or left hips. After correction for pedigree effects, two QTLs were identified using the metrics of the left and right hips as separate data sets. Both are on canine chromosome 1 (CFA1), separated by about 95 Mb. One QTL, associated with the SSR marker FH2524 was significant for the left, but not the right hip. The other, associated with FH2598, was significant for the right but not the left hip. For both QTLs, some extreme phenotypes were best explained by specific interactions between haplotypes. PMID:14708095

  13. Asymmetrical Effects of Introduced Bullfrogs (Rana catesbeiana) on Native Ranid Frogs in Oregon

    USGS Publications Warehouse

    Pearl, C.A.; Adams, M.J.; Bury, R.B.; McCreary, B.

    2004-01-01

    Introduced American Bullfrogs (Rana catesbeiana) have become widely established in the Pacific Northwest over the last century and are thought to be an important predator of native amphibians throughout the western United States. The Northern Red-Legged Frog (Rana aurora aurora) and Oregon Spotted Frog (Rana pretiosa) historically coexisted in portions of the Pacific Northwest now invaded by R. catesbeiana, but R. pretiosa has declined more severely than R. a. aurora. We investigated whether microhabitat and behavioral differences that facilitate sympatric coexistence of the natives predict which species is more susceptible to predation by introduced R. catesbeiana. Our laboratory experiments demonstrate that R. catesbeiana adults prefer aquatic microhabitats, that R. pretiosa juveniles are more aquatic than R. a. aurora, and that adult R. catesbeiana consume more R. pretiosa than R. a. aurora juveniles. Mean and maximum jump distances of R. pretiosa were shorter than equally sized R. a. aurora, and the difference between these two species increased with larger frog sizes. Our examination of field survey data indicates that R. pretiosa coexist with R. catesbeiana less frequently than R. a. aurora. We conclude that R. catesbeiana is a greater threat to survival of R. pretiosa than to R. a. aurora and suggest that microhabitat use and escape abilities of native ranid frogs may be linked to this asymmetrical effect. Analysis of behavioral and microhabitat differences among related native species may be a useful tool in predicting the effects of introduced predators on amphibians and can assist in developing conservation priorities for these species.

  14. Asymmetrical effects of introduced Rana catesbeiana on native ranid frogs in Oregon, USA

    USGS Publications Warehouse

    Pearl, Christopher A.; Adams, Michael J.; Bury, R. Bruce; McCreary, B.

    2004-01-01

    Introduced American Bullfrogs (Rana catesbeiana) have become widely established in the Pacific Northwest over the last century and are thought to be an important predator of native amphibians throughout the western United States. The Northern Red-Legged Frog (Rana aurora aurora) and Oregon Spotted Frog (Rana pretiosa) historically coexisted in portions of the Pacific Northwest now invaded by R. catesbeiana, but R. pretiosa has declined more severely than R. a. aurora. We investigated whether microhabitat and behavioral differences that facilitate sympatric coexistence of the natives predict which species is more susceptible to predation by introduced R. catesbeiana. Our laboratory experiments demonstrate that R. catesbeiana adults prefer aquatic microhabitats, that R. pretiosa juveniles are more aquatic than R. a. aurora, and that adult R. catesbeiana consume more R. pretiosa than R. a. aurora juveniles. Mean and maximum jump distances of R. pretiosa were shorter than equally sized R. a. aurora, and the difference between these two species increased with larger frog sizes. Our examination of field survey data indicates that R. pretiosa coexist with R. catesbeiana less frequently than R. a. aurora. We conclude that R. catesbeiana is a greater threat to survival of R. pretiosa than to R. a. aurora and suggest that microhabitat use and escape abilities of native ranid frogs may be linked to this asymmetrical effect. Analysis of behavioral and microhabitat differences among related native species may be a useful tool in predicting the effects of introduced predators on amphibians and can assist in developing conservation priorities for these species.

  15. Measuring Website Quality: Asymmetric Effect of User Satisfaction

    ERIC Educational Resources Information Center

    Kincl, Tomas; Strach, Pavel

    2012-01-01

    Website quality measurement tools have been largely static and have struggled to determine relevant attributes of user satisfaction. This study compares and contrasts attributes of user satisfaction based on usability guidelines seeking to identify practical easy-to-administer measurement tools. The website users assessed business school homepages…

  16. The Nuclear Matrix Protein Megator Regulates Stem Cell Asymmetric Division through the Mitotic Checkpoint Complex in Drosophila Testes.

    PubMed

    Liu, Ying; Singh, Shree Ram; Zeng, Xiankun; Zhao, Jiangsha; Hou, Steven X

    2015-12-01

    In adult Drosophila testis, asymmetric division of germline stem cells (GSCs) is specified by an oriented spindle and cortically localized adenomatous coli tumor suppressor homolog 2 (Apc2). However, the molecular mechanism underlying these events remains unclear. Here we identified Megator (Mtor), a nuclear matrix protein, which regulates GSC maintenance and asymmetric division through the spindle assembly checkpoint (SAC) complex. Loss of Mtor function results in Apc2 mis-localization, incorrect centrosome orientation, defective mitotic spindle formation, and abnormal chromosome segregation that lead to the eventual GSC loss. Expression of mitotic arrest-deficient-2 (Mad2) and monopolar spindle 1 (Mps1) of the SAC complex effectively rescued the GSC loss phenotype associated with loss of Mtor function. Collectively our results define a new role of the nuclear matrix-SAC axis in regulating stem cell maintenance and asymmetric division. PMID:26714316

  17. The Nuclear Matrix Protein Megator Regulates Stem Cell Asymmetric Division through the Mitotic Checkpoint Complex in Drosophila Testes

    PubMed Central

    Zeng, Xiankun; Zhao, Jiangsha; Hou, Steven X.

    2015-01-01

    In adult Drosophila testis, asymmetric division of germline stem cells (GSCs) is specified by an oriented spindle and cortically localized adenomatous coli tumor suppressor homolog 2 (Apc2). However, the molecular mechanism underlying these events remains unclear. Here we identified Megator (Mtor), a nuclear matrix protein, which regulates GSC maintenance and asymmetric division through the spindle assembly checkpoint (SAC) complex. Loss of Mtor function results in Apc2 mis-localization, incorrect centrosome orientation, defective mitotic spindle formation, and abnormal chromosome segregation that lead to the eventual GSC loss. Expression of mitotic arrest-deficient-2 (Mad2) and monopolar spindle 1 (Mps1) of the SAC complex effectively rescued the GSC loss phenotype associated with loss of Mtor function. Collectively our results define a new role of the nuclear matrix-SAC axis in regulating stem cell maintenance and asymmetric division. PMID:26714316

  18. On the absence of asymmetric wakes for periodically plunging finite wings

    NASA Astrophysics Data System (ADS)

    Calderon, D. E.; Cleaver, D. J.; Gursul, I.; Wang, Z.

    2014-07-01

    It has previously been shown that, at high Strouhal numbers, oscillating airfoils can produce deflected jets that can create very high lift-coefficients for otherwise symmetric scenarios. These deflected jets form through pairing of the trailing-edge vortices to create asymmetric vortex couples that self-propel at an angle to the freestream, resulting in an asymmetric flow field and non-zero lift. In this paper results are presented that indicate these high-lift deflected jets cannot form for finite wings. Instead of the straight vortex tubes that pair and convect at an angle to the freestream observed for effectively infinite wings, finite wings exhibit vortex tubes that break into two branches near the tip forming double helix structures. One branch connects with the last vortex; one branch connects with the next vortex. This creates a long "daisy chain" of interconnected trailing edge vortices forming a long series of vortex loops. These symmetric flow fields are shown to persist for finite wings even to Strouhal numbers more than twice those required to produce asymmetric wakes on plunging airfoils. Two contributing reasons are discussed for why deflected jets are not observed. First the tip vortex creates three-dimensionality that discourages vortex coupling. Second, the symmetry of the circulation of the interconnected vortex loops, which has been confirmed by the experiments, is a natural consequence of the vortex topology. Therefore, the asymmetry in trailing edge vortex strength previously observed as characteristic of deflected jets cannot be supported for finite wings.

  19. Numerical solution of the asymmetric water impact of a wedge in three degrees of freedom

    NASA Astrophysics Data System (ADS)

    Ghazizade-Ahsaee, H.; Nikseresht, A. H.

    2013-06-01

    Impact problems associated with water entry have important applications in various aspects of naval architecture and ocean engineering. Estimation of hydrodynamic impact forces especially during the first instances after the impact is very important and is of interest. Since the estimation of hydrodynamic impact load plays an important role in safe design and also in evaluation of structural weight and costs, it is better to use a reliable and accurate prediction method instead of a simple estimation resulted by analyzing methods. In landing of flying boats, some phenomena such as weather conditions and strong winds can cause asymmetric instead of symmetric descent. In this paper, a numerical simulation of the asymmetric impact of a wedge, as the step of a flying boat, considering dynamic equations in two-phase flow is taken into account. The dynamic motion of the wedge in two-phase flow is solved based on finite volume method with volume of fluid (VOF) scheme considering dynamic equations. Then the effects of different angles of impact and water depth on the velocity change and slamming forces in an asymmetric impact are investigated. The comparison between the simulation results and experimental data verifies the accuracy of the method applied in the present study.

  20. Photodissociation dynamics of tryptophan and the implication of asymmetric photolysis

    SciTech Connect

    Tseng, Chien-Ming; Dyakov, Yuri A.; Huang, Huai Ching; Huang, Kuan Yu; Lee, Yuan T.; Ni, Chi-Kung; Chiang, Su-Yu

    2010-08-21

    Photodissociation of amino acid tryptophan in a molecular beam at wavelengths of 212.8 and 193 nm, corresponding to excitation to the second and third absorption bands, was investigated using multimass ion imaging techniques. The respective wavelengths also represent excitation to the edge of a positive circular dichroism band and the center of a negative circular dichroism band of L-tryptophan. Only one dissociation channel was observed at both photolysis wavelengths: C{sub 8}NH{sub 6}CH{sub 2}CHNH{sub 2}COOH{yields}C{sub 8}NH{sub 6}CH{sub 2}+CHNH{sub 2}COOH. Dissociation rates were found to be 1.3x10{sup 6} and 5x10{sup 6} s{sup -1} at the respective wavelengths. Comparison to theoretical calculation indicates that dissociation occurs on the ground state after internal conversion. Implication of asymmetric photolysis is discussed.

  1. The role of upper lateral cartilage in dorsal reconstruction after hump excision: section 1. Spreader flap modification with asymmetric mattress suture and extension of the spreading effect by cartilage graft.

    PubMed

    Manavbaşı, Y Ilker; Başaran, Ihsan

    2011-08-01

    A spreader flap, or autospreader flap, is a flap used for dorsal reconstruction in primary rhinoplasty after cartilage dorsum excision. Despite its significant advantages, the spreader flap also has distinct shortcomings. The most common problem encountered in using a spreader flap is the technique's inability to provide adequate dorsal width compared with spreader grafts. Additionally, the use of a spreader flap has not been described for special cases such as crooked noses, cases with minimal dorsal humps, and secondary cases. This report presents the authors' modification of the spreader flap technique to expand its indications and extend the spreader effect down to the entire dorsum. This modification positions and fixes the medial borders of the upper lateral cartilages (ULCs) on both sides of the septum by asymmetric mattress sutures. Using the ULCs without folding affords the opportunity to restore a dorsum with sufficient width. Different entry and exit points of the suture help to maintain the cartilage substance horizontally rather than folded as in the conventional spreader flap technique. Another drawback of the spreader flap technique is its inability to address the lower third of the dorsum when ULCs do not extend down to the anterior septal angle (ASA). In these cases, attempts were made to extend the spreader effect by placing two small cartilage grafts on both sides of the ASA. Over a period of 2 years, the authors operated on 169 patients. For 81 of these patients, the modified spreader flap alone was used, and for the remaining 88 patients, both the modified spreader flap technique and ASA grafting (combined modification) were used. During a mean follow-up period of 17 months, no narrowing in the middle nasal dorsum and no inner valve deficiencies were seen in any of the cases. PMID:21298515

  2. The role of asymmetric transfer in the evaluation of voice generation and recognition systems

    NASA Astrophysics Data System (ADS)

    Damos, D. L.

    1987-02-01

    The results of five experiments examining the effect of voice generation and recognition systems on dual task performance are presented. The extent to which asymmetric transfer biased the data in three of these experiments is determined by using statistical techniques and by comparing the data to the results of between subjects experiments. Generally, subjects performed task combinations better when stimuli for one of the tasks was presented auditorily using a voice generation system rather than visually on a display screen. In contrast, the use of a voice recognition system did not result in better dual task performance than the use of more conventional input devices.

  3. Investigation of an Asymmetric B Factory in the PEP Tunnel

    SciTech Connect

    Chattapadhyay, A.; Hitlin, D.; Porter, F.; Chin, Y.H.; Dell'Orco, D.; Forest, E.; Furman, M.; Garren, A.A.; Hearty, C.; Jacob, A.; Kennedy, K.; Kim, K.; Lambertson, G.; Oddone, P.; Ronan, M.; Sessler, A.; Taylor, C.; Voelker, F.; Zisman, M.; Barletta, W.; Allen, M.; Bane, K.; Bloom, E.; Brenkus, F.; Brown, K.; Corbett, J.; Cornacchia, M.; Coupal, D.; Davies-White, W.; DeStaebler, H.; Donald, M.; Dorfan, J.; Hsu, I.; Hutton, A.; Jenkins, T.; Kozanecki, W.; Lisin, A.; Loew, G.; Miller, R.; Morton, P.; Pellegrin, J.-L.; Raubenheimer, T.; Rees, J.; Ritson, D.; Ruth, R.; Saab, A.; Savage, W.; Schwarz, H.; Seeman, J.; Thompson, K.; Weidner, H.; Wilson, P.; Sullivan, M.; Jackson, G.; Hertzbach, S.; Tennyson, J.; Zholents, A.; Fitze, H.

    1990-03-01

    This report addresses the feasibility of designing and constructing an asymmetric B-factory based on the PEP storage ring at SLAC that can begin operation at a luminosity of 3 X 10{sup 33} cm{sup -2}s{sup -1} and could ultimately reach even higher luminosity. Such a facility, operating at the {gamma}(4S) resonance, could be used to study mixing, rare decays, and CP violation in the B{bar B} system, and could also study tau and charm physics. The essential accelerator physics, engineering and technology issues that must be addressed to successfully build this exciting and challenging facility are identified, and possible solutions, or R and D activities that will reasonable lead to such solutions, are described.

  4. The basic mechanics of bipedal walking lead to asymmetric behavior.

    PubMed

    Gregg, Robert D; Degani, Amir; Dhaher, Yasin; Lynch, Kevin M

    2011-01-01

    This paper computationally investigates whether gait asymmetries can be attributed in part to basic bipedal mechanics independent of motor control. Using a symmetrical rigid-body model known as the compass-gait biped, we show that changes in environmental or physiological parameters can facilitate asymmetry in gait kinetics at fast walking speeds. In the environmental case, the asymmetric family of high-speed gaits is in fact more stable than the symmetric family of low-speed gaits. These simulations suggest that lower extremity mechanics might play a direct role in functional and pathological asymmetries reported in human walking, where velocity may be a common variable in the emergence and growth of asymmetry. PMID:22275657

  5. Imperfect asymmetry: The mechanism governing asymmetric partitioning of damaged cellular components during mitosis

    PubMed Central

    Pattabiraman, Sundararaghavan; Kaganovich, Daniel

    2014-01-01

    Aging is universally associated with organism-wide dysfunction and a decline in cellular fitness. From early development onwards, the efficiency of self-repair, energy production, and homeostasis all decrease. Due to the multiplicity of systems that undergo agingrelated decline, the mechanistic basis of organismal aging has been difficult to pinpoint. At the cellular level, however, recent work has provided important insight. Cellular aging is associated with the accumulation of several types of damage, in particular damage to the proteome and organelles. Groundbreaking studies have shown that replicative aging is the result of a rejuvenation mechanism that prevents the inheritance of damaged components during division, thereby confining the effects of aging to specific cells, while removing damage from others. Asymmetric inheritance of misfolded and aggregated proteins, as well as reduced mitochondria, has been shown in yeast. Until recently, however, it was not clear whether a similar mechanism operates in mammalian cells, which were thought to mostly divide symmetrically. Our group has recently shown that vimentin establishes mitotic polarity in immortalized mammalian cells, and mediates asymmetric partitioning of multiple factors through direct interaction. These findings prompt a provocative hypothesis: that intermediate filaments serve as asymmetric partitioning modules or “sponges” that, when expressed prior to mitosis, can “clean” emerging cells of the damage they have accumulated. PMID:25941938

  6. Asymmetric dispersal structures a riverine metapopulation of the freshwater pearl mussel Margaritifera laevis

    PubMed Central

    Terui, Akira; Miyazaki, Yusuke; Yoshioka, Akira; Kaifu, Kenzo; Matsuzaki, Shin-ichiro S; Washitani, Izumi

    2014-01-01

    Unidirectional water flow results in the downstream-biased, asymmetric dispersal of many riverine organisms. However, little is known of how asymmetric dispersal influences riverine population structure and dynamics, limiting our ability to properly manage riverine organisms. A metapopulation of the freshwater pearl mussel Margaritifera laevis may be sensitive to river currents because mussels are repeatedly exposed to downstream drift during floods—a parasitic life stage is the only, limited period (∼40 days) during which larvae (glochidia) can move upstream with the aid of host fish. We hypothesized that water-mediated dispersal would overwhelm upstream dispersal via host fish, and therefore, that upstream subpopulations play a critical role as immigrant sources. To test this hypothesis, we examined the effects of both up- and downstream immigrant sources on the size of target subpopulations in the Shubuto River system, Hokkaido, Japan. We found that target subpopulation size was dependent on the upstream distribution range of reproductive subpopulations and the number of upstream tributaries, which are proxies for the number of potential immigrants moving downstream. In contrast, little influence was observed of downstream immigrant sources (proximity to downstream reproductive subpopulations). These results were consistent even after accounting for local environments and stream size. Our finding suggests that upstream subpopulations can be disproportionately important as immigrant sources when dispersal is strongly asymmetric. PMID:25247058

  7. Asymmetric intergroup bullying: The enactment and maintenance of societal inequality at work

    PubMed Central

    Soylu, Soydan; Sheehy-Skeffington, Jennifer

    2015-01-01

    What does inequality mean for dysfunctional organizational behaviours, such as workplace bullying? This article argues that workplace bullying can be understood as a manifestation of intergroup dynamics originating beyond the organization. We introduce the construct of asymmetric intergroup bullying: the disproportionate mistreatment of members of low status groups, with the intended effect of enhancing the subordination of that group in society at large. Analysis of data from 38 interviews with public and private sector workers in Turkey depicts a pattern of asymmetric intergroup bullying, undertaken to achieve organizational and broader sociopolitical goals. Respondents reported bullying acts used to get rid of unwanted personnel, with the goal of avoiding severance pay, or of removing supporters of the former government from positions of political and economic influence. Bullying was also described as working towards the dominance of the sociocultural worldview of one political group over another. We discuss asymmetric intergroup bullying as one mechanism through which acute intergroup hierarchy in the broader society corrupts management practice and employee interactions, in turn exacerbating economic inequality along group lines. PMID:26819482

  8. Effect of asymmetrical flow field-flow fractionation channel geometry on separation efficiency.

    PubMed

    Ahn, Ji Yeon; Kim, Ki Hun; Lee, Ju Yong; Williams, P Stephen; Moon, Myeong Hee

    2010-06-11

    The separation efficiencies of three different asymmetrical flow field-flow fractionation (AF4) channel designs were evaluated using polystyrene latex standards. Channel breadth was held constant for one channel (rectangular profile), and was reduced either linearly (trapezoidal profile) or exponentially (exponential profile) along the length for the other two. The effective void volumes of the three channel types were designed to be equivalent. Theoretically, under certain flow conditions, the mean channel flow velocity of the exponential channel could be arranged to remain constant along the channel length, thereby improving separation in AF4. Particle separation obtained with the exponential channel was compared with particle separation obtained with the trapezoidal and rectangular channels. We demonstrated that at a certain flow rate condition (outflow/inflow rate=0.2), the exponential channel design indeed provided better performance with respect to the separation of polystyrene nanoparticles in terms of reducing band broadening. While the trapezoidal channel exhibited a little poorer performance than the exponential, the strongly decreasing mean flow velocity in the rectangular channel resulted in serious band broadening, a delay in retention time, and even failure of larger particles to elute. PMID:20439106

  9. Asymmetric Hearing During Development: The Aural Preference Syndrome and Treatment Options.

    PubMed

    Gordon, Karen; Henkin, Yael; Kral, Andrej

    2015-07-01

    Deafness affects ∼2 in 1000 children and is one of the most common congenital impairments. Permanent hearing loss can be treated by fitting hearing aids. More severe to profound deafness is an indication for cochlear implantation. Although newborn hearing screening programs have increased the identification of asymmetric hearing loss, parents and caregivers of children with single-sided deafness are often hesitant to pursue therapy for the deaf ear. Delayed intervention has consequences for recovery of hearing. It has long been reported that asymmetric hearing loss/single-sided deafness compromises speech and language development and educational outcomes in children. Recent studies in animal models of deafness and in children consistently show evidence of an "aural preference syndrome" in which single-sided deafness in early childhood reorganizes the developing auditory pathways toward the hearing ear, with weaker central representation of the deaf ear. Delayed therapy consequently compromises benefit for the deaf ear, with slow rates of improvement measured over time. Therefore, asymmetric hearing needs early identification and intervention. Providing early effective stimulation in both ears through appropriate fitting of auditory prostheses, including hearing aids and cochlear implants, within a sensitive period in development has a cardinal role for securing the function of the impaired ear and for restoring binaural/spatial hearing. The impacts of asymmetric hearing loss on the developing auditory system and on spoken language development have often been underestimated. Thus, the traditional minimalist approach to clinical management aimed at 1 functional ear should be modified on the basis of current evidence. PMID:26055845

  10. The neural dynamic mechanisms of asymmetric switch costs in a combined Stroop-task-switching paradigm.

    PubMed

    Wu, Shanshan; Hitchman, Glenn; Tan, Jinfeng; Zhao, Yuanfang; Tang, Dandan; Wang, Lijun; Chen, Antao

    2015-01-01

    Switch costs have been constantly found asymmetrical when switching between two tasks of unequal dominance. We used a combined Stroop-task-switching paradigm and recorded electroencephalographic (EEG) signals to explore the neural mechanism underlying the phenomenon of asymmetrical switch costs. The results revealed that a fronto-central N2 component demonstrated greater negativity in word switch (cW) trials relative to word repeat (wW) trials, and both First P3 and P3b components over the parieto-central region exhibited greater positivity in color switch (wC) trials relative to color repeat (cC) trials, whereas a contrasting switch-related fronto-central SP effect was found to have an opposite pattern for each task. Moreover, the time-frequency analysis showed a right-frontal lower alpha band (9-11 Hz) modulation in the word task, whereas a fronto-central upper alpha band (11-13 Hz) modulation was exclusively found in the color task. These results provide evidence for dissociable neural processes, which are related to inhibitory control and endogenous control, contributing to the generation of asymmetrical switch costs. PMID:25989933

  11. Reversible Ratchet Effects and Structural Ordering for Self-Propelled Disks on Quasi-One Dimemsional Asymmetric Substrates

    NASA Astrophysics Data System (ADS)

    McDermott, Danielle; Reichhardt, Cynthia; Reichhardt, Charles

    When a particle is placed in an asymmetric periodic potential and an ac driving force is applied, it is possible to produce a net dc flow through a ratchet effect. When the particles are active, a net dc particle flow can arise even in the absence of external driving, creating an active ratchet effect as has been observed for bacteria in funnel geometries. Here we examine a 2D assembly of self-propelled disks interacting with an asymmetric 1D substrate. We find that at low density, with few particle collisions, this system exhibits a robust ratchet effect in which the particles undergo a net drift in the easy direction of the substrate asymmetry. At higher densities where particle-particle interactions become important, a reversed ratchet effect can arise with the net flow of particles in the hard direction. These reversals occur due to the formation of commensurate chain-like structures of disks. When there are two or more chains of particles in a one substrate well, the effective substrate potential is inverted. This reversible active ratchet effect could be used to separate different species of particles, cause the shepherding of passive particles, or control the migration of micro-organisms, and should be general to a wide class of self driven interacting particle systems.

  12. Effect of Asymmetric Rolling on Plastic Anisotropy of Low Carbon Steels during Simple Shear Tests

    SciTech Connect

    Gracio, J. J.; Vincze, G.; Panigrahi, B. B.; Kim, H. J.; Barlat, F.; Rauch, E. F.; Yoon, J. W.

    2010-06-15

    Simple shear tests are performed on low carbon steel pre-deformed in conventional, asymmetric and orthogonal-asymmetric rolling. The simple-shear tests were carried out at 0 deg. , 45 deg. and 135 deg. with respect to the previous rolling direction. For a reduction ratio of 15%, a transient stagnation in the hardening rate is observed at reloading for all changes in strain path. The shear stress level, the hardening rate and extent of the plateau appear to be insensitive to the preliminary applied rolling conditions. After a reduction ratio of 50%, plastic instability was detected at reloading for all the changes of strain path and rolling conditions studied. A specific heat treatment was then designed allowing the material to become ductile after rolling while retaining the fine microstructure and therefore the high strength. Promising results were obtained essentially for 45 deg. shear tests.

  13. Electron transport in asymmetric biphenyl molecular junctions: effects of conformation and molecule-electrode distance

    NASA Astrophysics Data System (ADS)

    Parashar, Sweta; Srivastava, Pankaj; Pattanaik, Manisha; Jain, Sandeep Kumar

    2014-09-01

    On the basis of ab-initio calculations, we predict the effect of conformation and molecule-electrode distance on transport properties of asymmetric molecular junctions for different electrode materials M (M = Au, Ag, Cu, and Pt). The asymmetry in these junctions is created by connecting one end of the biphenyl molecule to conjugated double thiol (model A) and single thiol (model B) groups, while the other end to Cu atom. A variety of phenomena viz. rectification, negative differential resistance (NDR), switching has been observed that can be controlled by tailoring the interface state properties through molecular conformation and molecule-electrode distance for various M. These properties are further analyzed by calculating transmission spectra, molecular orbitals, and orbital energy. It is found that Cu electrode shows significantly enhanced rectifying performance with change in torsion angles, as well as with increase in molecule-electrode distances than Au and Ag electrodes. Moreover, Pt electrode manifests distinctive multifunctional behavior combining switch, diode, and NDR. Thus, the Pt electrode is suggested to be a good potential candidate for a novel multifunctional electronic device. Our findings are compared with available experimental and theoretical results. Supplementary material in the form of one pdf file available from the Journal web page at http://http//dx.doi.org/10.1140/epjb/e2014-50133-2

  14. Reynolds number effects on supersonic asymmetrical flows over a cone at high angle of attack

    NASA Technical Reports Server (NTRS)

    Thomas, J. L.

    1991-01-01

    The supersonic viscous flow over a 5-degree half-angle cone at an angle of attack of four times the cone half-angle is studied computationally using both the conical and the three-dimensional Navier-Stokes equations. The numerical solutions were obtained with an implicit, upwind-biased algorithm. Asymmetrical flowfields of the absolute-instability type are found using the conical-flow equations which agree with published results. However, the absolute instabilities of the originally symmetric flow found with the conical equations do not occur in the three-dimensional simulations, although spurious asymmetric three-dimensional flows for symmetric bodies arise if the grid resolution is insufficient in the nose region. The asymmetric flows computed with the three-dimensional equations are convective instabilities and are possible if the local Reynolds number exceeds a critical value and a fixed geometric asymmetry is imposed. A continuous range of asymmetries can be developed, depending on the size of the disturbance and the Reynolds number. As the Reynolds number is increased, the asymmetries demonstrate a bistable behavior at levels of side force consistent with those predicted using the conical equations. Below a certain critical Reynolds number, any flow asymmetries arising from a geometrical asymmetry are damped with increasing distance downstream from the geometrical asymmetry.

  15. Bashful ballerina: The asymmetric Sun viewed from the heliosphere

    NASA Astrophysics Data System (ADS)

    Mursula, K.

    Long-term observations of the heliospheric magnetic field (HMF) at 1 AU have depicted interesting systematic hemispheric and longitudinal asymmetries that have far-reaching implications for the understanding of solar magnetism. It has recently been found that the HMF sector that is prevalent in the northern solar hemisphere dominates the observed HMF sector occurrence for a few years in the late declining to minimum phase of the solar cycle. This leads to a persistent southward shift or coning of the heliospheric current sheet (HCS) at these times, which has been described by the concept of the bashful ballerina. This result was later verified by direct measurements of the solar magnetic field which showed that the average field intensity was smaller and the corresponding area larger in the northern (heliographic) hemisphere than in the southern hemisphere during roughly 3 years in the late declining to minimum phase of the cycle. During these years when the HCS was shifted southwards, the solar quadrupole moment was found to be systematically non-zero and oppositely oriented with respect to the dipole moment. Long-term observations of the geomagnetic field can yield information on the HMF sector structure in the pre-satellite era, showing that the ballerina was bashful since 1930s. In addition to the hemispheric asymmetries, the Sun is systematically asymmetric in longitude. It has been shown that the global HMF has persistent active longitudes whose dominance depicts an oscillation with a period of about 3.2 years. Accordingly, the bashful ballerina takes three such steps per activity cycle, thus dancing in waltz tempo. Stellar observations show that this is a general pattern for sun-like cool stars. We describe these phenomena and discuss their implications.

  16. Asymmetric ratchet effect for directional transport of fog drops on static and dynamic butterfly wings.

    PubMed

    Liu, Chengcheng; Ju, Jie; Zheng, Yongmei; Jiang, Lei

    2014-02-25

    Inspired by novel creatures, researchers have developed varieties of fog drop transport systems and made significant contributions to the fields of heat transferring, water collecting, antifogging, and so on. Up to now, most of the efforts in directional fog drop transport have been focused on static surfaces. Considering it is not practical to keep surfaces still all the time in reality, conducting investigations on surfaces that can transport fog drops in both static and dynamic states has become more and more important. Here we report the wings of Morpho deidamia butterflies can directionally transport fog drops in both static and dynamic states. This directional drop transport ability results from the micro/nano ratchet-like structure of butterfly wings: the surface of butterfly wings is composed of overlapped scales, and the scales are covered with porous asymmetric ridges. Influenced by this special structure, fog drops on static wings are transported directionally as a result of the fog drops' asymmetric growth and coalescence. Fog drops on vibrating wings are propelled directionally due to the fog drops' asymmetric dewetting from the wings. PMID:24397580

  17. Highly asymmetric bromocyclization of tryptophol: unexpected accelerating effect of DABCO-derived bromine complex.

    PubMed

    Liu, Huan; Jiang, Guangde; Pan, Xixian; Wan, Xiaolong; Lai, Yisheng; Ma, Dawei; Xie, Weiqing

    2014-04-01

    Highly asymmetric bromocyclization of tryptophol by using chiral anionic phase-transfer catalyst and DABCO-derived brominating reagent is described. Optimization of the reaction conditions revealed that the reaction rate was accelerated together with improvement of enantioselectivity by addition of catalytic DABCO-derived brominating reagent. From tryptophol, 3-bromofuroindoline could be directly obtained in excellent enantioselectivities by employing this novel methodology. PMID:24666363

  18. A valid Margules formulation for an asymmetric ternary solution - Revision of the olivine-ilmenite thermometer, with applications

    NASA Technical Reports Server (NTRS)

    Andersen, D. J.; Lindsley, D. H.

    1981-01-01

    A derivation of a valid asymmetric ternary Margules expression for the excess free energy is presented, and the olivine-ilmenite thermometer is revised accordingly. Although the effect on the thermometer is relatively small, the revision results in improved precision. Estimated temperatures of equilibration are presented for olivine and ilmenite from lunar and terrestrial rocks.

  19. Asymmetric dee-voltage compensation of beam off-centering in the milan superconducting cyclotron

    SciTech Connect

    Milinkovic, Lj.; Fabrici, E.; Ostojic, R.

    1985-10-01

    An analysis of the effects of orbit off-centering on the beam extraction in the Milan superconducting cyclotron is made, and the sensitivity of axial beam loss and radial phase space distortions to beam off-centering determined for various acceleration conditions. We conclude that the first field harmonic compensation of beam off-centering is ineffective in the region of the operating diagram where the Walkinshaw resonance precedes the ..nu.. /SUB r/ =1 resonance. Asymmetric dee-voltage compensation is considered in these cases, and the domain of validity of the method determined. A semi-empirical relation for dee-voltage distribution is deduced, and the extraction efficiency discussed.

  20. Asymmetric impacts of global risk appetite on the risk premium for an emerging market

    NASA Astrophysics Data System (ADS)

    Kanlı, İbrahim Burak

    2008-05-01

    This paper analyzes the impact of global risk appetite on the risk premium utilizing high-frequency data. Taking the Turkish economy as our laboratory, we find that the risk premium volatility responds only to a worsening in the risk appetite for the Turkish economy, which is a result that we do not observe for the other emerging markets. Then, we investigate the role of current account dynamics on this asymmetric effect, by focusing also on an economy with similar current account performance. The empirical results find supporting evidence for the role of current account dynamics on the estimated asymmetry.

  1. Predicting the asymmetric response of a genetic switch to noise.

    PubMed

    Ochab-Marcinek, Anna

    2008-09-01

    We present a simple analytical tool which gives an approximate insight into the stationary behavior of nonlinear systems undergoing the influence of a weak and rapid noise from one dominating source, e.g. the kinetic equations describing a genetic switch with the concentration of one substrate fluctuating around a constant mean. The proposed method allows for predicting the asymmetric response of the genetic switch to noise, arising from the noise-induced shift of stationary states. The method has been tested on an example model of the lac operon regulatory network: a reduced Yildirim-Mackey model with fluctuating extracellular lactose concentration. We calculate analytically the shift of the system's stationary states in the presence of noise. The results of the analytical calculation are in excellent agreement with the results of numerical simulation of the noisy system. The simulation results suggest that the structure of the kinetics of the underlying biochemical reactions protects the bistability of the lactose utilization mechanism from environmental fluctuations. We show that, in the consequence of the noise-induced shift of stationary states, the presence of fluctuations stabilizes the behavior of the system in a selective way: Although the extrinsic noise facilitates, to some extent, switching off the lactose metabolism, the same noise prevents it from switching on. PMID:18554612

  2. Effect of body fatness and glucogenic supplement on lipid and protein mobilization and plasma leptin in dairy cows.

    PubMed

    Kokkonen, T; Taponen, J; Anttila, T; Syrjälä-Qvist, L; Delavaud, C; Chilliard, Y; Tuori, M; Tesfa, A T

    2005-03-01

    Twenty-four multiparous Ayrshire cows were used in an experiment to test the effect of body fatness and glucogenic supplement, fed during the transition period, on lipid and protein mobilization and plasma hormone concentrations. Eight weeks before their expected calving date, the cows were divided into blocks of 4. Two cows with the highest body condition score within each block were then allocated to a test (T) group and the other 2 cows to a control (C) group. To scale up the differences between fatter and thinner cows, the estimated energy allowance was 40% higher in group T than in group C between d 56 and 21 prepartum. For the final 3 wk before calving, all the cows were fed according to energy recommendations for pregnant cows. Within C and T groups and blocks, cows were randomly assigned into groups with (G1) or without (G0) glucogenic supplement. Division to G0 and G1 groups was made 2 wk before the expected calving and continued for 56 d postpartum. After calving, all the cows received grass silage ad libitum and a common daily concentrate allowance. No significant differences were detected in feed intake and milk yield between C and T. The T groups showed an earlier rise of nonesterified fatty acids as calving approached and had higher plasma nonesterified fatty acids during the final week of pregnancy and lactation wk 1 to 3. At the same time, adipose tissue samples from fatter cows tended to show higher in vitro lipolytic responses to added norepinephrine, as monitored by glycerol release. Protein mobilization was elevated during the final week of pregnancy and tended to be more increased in fatter cows. Glucogenic supplement did not decrease lipid or protein mobilization. Fatter cows had higher plasma leptin concentration prepartum, showed a more pronounced decrease in leptin concentration near calving, and had higher plasma leptin concentration after calving. In conclusion, fatter cows initiated more extensive mobilization of body fat before calving

  3. Distinct characteristics of asymmetric magnetic reconnections: Observational results from the exhaust region at the dayside magnetopause.

    PubMed

    Zhang, Y C

    2016-01-01

    Magnetic reconnection plays a key role in the conversion of magnetic energy into the thermal and kinetic energy of plasma. On either side of the diffusion region in space plasma, the conditions for the occurrence of reconnections are usually not symmetric. Previous theoretical studies have predicted that reconnections under asymmetric conditions will bear different features compared with those of symmetric reconnections, and numerical simulations have verified these distinct features. However, to date, the features of asymmetric reconnections have not been thoroughly investigated using in situ observations; thus, some results from theoretical studies and simulations have not been tested with observations sufficiently well. Here, spacecraft observations are used in a statistical investigation of asymmetric magnetic reconnection exhaust at the dayside magnetopause. The resulting observational features are consistent with the theoretical predictions. The results presented here advance our understanding of the development of reconnections under asymmetric conditions. PMID:27270685

  4. Distinct characteristics of asymmetric magnetic reconnections: Observational results from the exhaust region at the dayside magnetopause

    PubMed Central

    Zhang, Y. C.

    2016-01-01

    Magnetic reconnection plays a key role in the conversion of magnetic energy into the thermal and kinetic energy of plasma. On either side of the diffusion region in space plasma, the conditions for the occurrence of reconnections are usually not symmetric. Previous theoretical studies have predicted that reconnections under asymmetric conditions will bear different features compared with those of symmetric reconnections, and numerical simulations have verified these distinct features. However, to date, the features of asymmetric reconnections have not been thoroughly investigated using in situ observations; thus, some results from theoretical studies and simulations have not been tested with observations sufficiently well. Here, spacecraft observations are used in a statistical investigation of asymmetric magnetic reconnection exhaust at the dayside magnetopause. The resulting observational features are consistent with the theoretical predictions. The results presented here advance our understanding of the development of reconnections under asymmetric conditions. PMID:27270685

  5. Distinct characteristics of asymmetric magnetic reconnections: Observational results from the exhaust region at the dayside magnetopause

    NASA Astrophysics Data System (ADS)

    Zhang, Y. C.

    2016-06-01

    Magnetic reconnection plays a key role in the conversion of magnetic energy into the thermal and kinetic energy of plasma. On either side of the diffusion region in space plasma, the conditions for the occurrence of reconnections are usually not symmetric. Previous theoretical studies have predicted that reconnections under asymmetric conditions will bear different features compared with those of symmetric reconnections, and numerical simulations have verified these distinct features. However, to date, the features of asymmetric reconnections have not been thoroughly investigated using in situ observations; thus, some results from theoretical studies and simulations have not been tested with observations sufficiently well. Here, spacecraft observations are used in a statistical investigation of asymmetric magnetic reconnection exhaust at the dayside magnetopause. The resulting observational features are consistent with the theoretical predictions. The results presented here advance our understanding of the development of reconnections under asymmetric conditions.

  6. Evidence for asymmetric inertial instability in the FIRE satellite dataset

    NASA Technical Reports Server (NTRS)

    Stevens, Duane E.; Ciesielski, Paul E.

    1990-01-01

    One of the main goals of the First ISCCP Regional Experiment (FIRE) is obtaining the basic knowledge to better interpret satellite image of clouds on regional and smaller scales. An analysis of a mesoscale circulation phenomenon as observed in hourly FIRE satellite images is presented. Specifically, the phenomenon of interest appeared on satellite images as a group of propagating cloud wavelets located on the edge of a cirrus canopy on the anticylonic side of a strong, upper-level subtropical jet. These wavelets, which were observed between 1300 and 2200 GMT on 25 February 1987, are seen most distinctly in the GOES-West infrared satellite picture at 1800 GMT. The purpose is to document that these wavelets were a manifestation of asymmetric inertial instability. During their lifetime, the wavelets were located over the North American synoptic sounding network, so that the meteorological conditions surrounding their occurrence could be examined. A particular emphasis of the analysis is on the jet streak in which the wavelets were imbedded. The characteristics of the wavelets are examined using hourly satellite imagery. The hypothesis that inertial instability is the dynamical mechanism responsible for generating the observed cloud wavelets was examined. To further substantiate this contention, the observed characteristics of the wavelets are compared to, and found to be consistent with, a theoretical model of inertia instability by Stevens and Ciesielski.

  7. The ISR Asymmetrical Capacitor Thruster: Experimental Results and Improved Designs

    NASA Technical Reports Server (NTRS)

    Canning, Francis X.; Cole, John; Campbell, Jonathan; Winet, Edwin

    2004-01-01

    A variety of Asymmetrical Capacitor Thrusters has been built and tested at the Institute for Scientific Research (ISR). The thrust produced for various voltages has been measured, along with the current flowing, both between the plates and to ground through the air (or other gas). VHF radiation due to Trichel pulses has been measured and correlated over short time scales to the current flowing through the capacitor. A series of designs were tested, which were increasingly efficient. Sharp features on the leading capacitor surface (e.g., a disk) were found to increase the thrust. Surprisingly, combining that with sharp wires on the trailing edge of the device produced the largest thrust. Tests were performed for both polarizations of the applied voltage, and for grounding one or the other capacitor plate. In general (but not always) it was found that the direction of the thrust depended on the asymmetry of the capacitor rather than on the polarization of the voltage. While no force was measured in a vacuum, some suggested design changes are given for operation in reduced pressures.

  8. Asymmetric Reconnection With a Guide Field: the Saga Continues

    NASA Astrophysics Data System (ADS)

    Hesse, M.; Aunai, N.; Liu, Y. H.; Kuznetsova, M. M.; Birn, J.

    2014-12-01

    Magnetic reconnection at the Earth's magnetopause facilitates the transfer of mass, energy, and momentum from the solar wind into the Earth's magnetosphere. Owing to the variability of the solar wind plasma and magnetic field, the reconnection process typically involves different conditions on both inflow sides, but occasionally more symmetric conditions are encountered as well. Based on prior research we now know that the structure of the reconnection diffusion region depends substantially on the symmetry (or lack thereof) of the inflowing plasmas and magnetic fields. It is therefore of considerable interest to investigate the transition of one scenario to the other - in particular for the purpose of understanding the role of plasma mixing, heating, and of features such as pressure nongyrotropies. This presentation will involve recent theory and modeling results pertaining to these topics, and it will illuminate the means by which these kinetic processes play a role in determining the reconnection rate. Specific emphasis will be on the structure of the reconnection region, when both inflow regions are asymmetric and reconnection occurs at shear angles other than 180 degrees.

  9. The use of asymmetric distributions in average bioequivalence.

    PubMed

    de Souza, Roberto Molina; Achcar, Jorge Alberto; Martinez, Edson Zangiacomi; Mazucheli, Josmar

    2016-07-10

    Generic drugs have been commercialized in numerous countries. Most of these countries approve the commercialization of a generic drug when there is evidence of bioequivalence between the generic drug and the reference drug. Generally, the pharmaceutical industry is responsible for the bioequivalence test under the supervision of a regulatory agency. This procedure is concluded after a statistical data analysis. Several agencies adopt a standard statistical analysis based on procedures that were previously established. In practice, we face situations in which this standard model does not fit to some sets of bioequivalence data. In this study, we propose an evaluation of bioequivalence using univariate and bivariate models based on an extended generalized gamma distribution and a skew-t distribution, under a Bayesian perspective. We introduce a study of the empirical power of hypothesis tests for univariate models, showing advantages in the use of an extended generalized gamma distribution. Three sets of bioequivalence data were analyzed under these new procedures and compared with the standard model proposed by the majority of regulatory agencies. In order to verify that the asymmetrical distributions are usually better fitted for the data, when compared with the standard model, model discrimination methods were used, such as the Deviance Information Criterion (DIC) and quantile-quantile plots. The research concluded that, in general, the use of the extended generalized gamma distribution may be more appropriate to model bioequivalence data in the original scale. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26840012

  10. Asymmetric capture of Dirac dark matter by the Sun

    SciTech Connect

    Blennow, Mattias; Clementz, Stefan

    2015-08-18

    Current problems with the solar model may be alleviated if a significant amount of dark matter from the galactic halo is captured in the Sun. We discuss the capture process in the case where the dark matter is a Dirac fermion and the background halo consists of equal amounts of dark matter and anti-dark matter. By considering the case where dark matter and anti-dark matter have different cross sections on solar nuclei as well as the case where the capture process is considered to be a Poisson process, we find that a significant asymmetry between the captured dark particles and anti-particles is possible even for an annihilation cross section in the range expected for thermal relic dark matter. Since the captured number of particles are competitive with asymmetric dark matter models in a large range of parameter space, one may expect solar physics to be altered by the capture of Dirac dark matter. It is thus possible that solutions to the solar composition problem may be searched for in these type of models.

  11. A permanent, asymmetric dust cloud around the Moon

    NASA Astrophysics Data System (ADS)

    Horányi, M.; Szalay, J. R.; Kempf, S.; Schmidt, J.; Grün, E.; Srama, R.; Sternovsky, Z.

    2015-06-01

    Interplanetary dust particles hit the surfaces of airless bodies in the Solar System, generating charged and neutral gas clouds, as well as secondary ejecta dust particles. Gravitationally bound ejecta clouds that form dust exospheres were recognized by in situ dust instruments around the icy moons of Jupiter and Saturn, but have hitherto not been observed near bodies with refractory regolith surfaces. High-altitude Apollo 15 and 17 observations of a `horizon glow' indicated a putative population of high-density small dust particles near the lunar terminators, although later orbital observations yielded upper limits on the abundance of such particles that were a factor of about 104 lower than that necessary to produce the Apollo results. Here we report observations of a permanent, asymmetric dust cloud around the Moon, caused by impacts of high-speed cometary dust particles on eccentric orbits, as opposed to particles of asteroidal origin following near-circular paths striking the Moon at lower speeds. The density of the lunar ejecta cloud increases during the annual meteor showers, especially the Geminids, because the lunar surface is exposed to the same stream of interplanetary dust particles. We expect all airless planetary objects to be immersed in similar tenuous clouds of dust.

  12. A permanent, asymmetric dust cloud around the Moon.

    PubMed

    Horányi, M; Szalay, J R; Kempf, S; Schmidt, J; Grün, E; Srama, R; Sternovsky, Z

    2015-06-18

    Interplanetary dust particles hit the surfaces of airless bodies in the Solar System, generating charged and neutral gas clouds, as well as secondary ejecta dust particles. Gravitationally bound ejecta clouds that form dust exospheres were recognized by in situ dust instruments around the icy moons of Jupiter and Saturn, but have hitherto not been observed near bodies with refractory regolith surfaces. High-altitude Apollo 15 and 17 observations of a 'horizon glow' indicated a putative population of high-density small dust particles near the lunar terminators, although later orbital observations yielded upper limits on the abundance of such particles that were a factor of about 10(4) lower than that necessary to produce the Apollo results. Here we report observations of a permanent, asymmetric dust cloud around the Moon, caused by impacts of high-speed cometary dust particles on eccentric orbits, as opposed to particles of asteroidal origin following near-circular paths striking the Moon at lower speeds. The density of the lunar ejecta cloud increases during the annual meteor showers, especially the Geminids, because the lunar surface is exposed to the same stream of interplanetary dust particles. We expect all airless planetary objects to be immersed in similar tenuous clouds of dust. PMID:26085272

  13. The asymmetric impact of natural disasters on China's bilateral trade

    NASA Astrophysics Data System (ADS)

    Meng, Y.; Shi, P.; Yang, S.; Jeager, C. C.

    2015-03-01

    Globalization and technological revolutions are making the world more interconnected. International trade is one of the major approaches linking the world. Since the 2011 Tohoku earthquake and tsunami in Japan shocked the global supply chain, more attention has been paid to the global impact of large-scale disasters. China is the second largest trader in the world and faces the most frequent natural disasters. Therefore, this study proposes a gravity model for China's bilateral trade tailored to national circumstances, and estimates the impact of natural disasters in China and trading partner countries on Chinese imports and exports. We analyzed Chinese and trading partner statistical data from 1980 to 2012. Study results show that: (1) China's natural disasters have a positive impact on imports, but have no significant impact on exports, (2) trading partner countries' natural disasters reduce Chinese imports and exports, (3) both development level and land area of the partners are important in determining the intensity of natural disaster impacts on China's bilateral trade. The above findings suggest that the impact of natural disasters on trade is asymmetric and significantly affected by other factors, which demand further study.

  14. The asymmetric impact of natural disasters on China's bilateral trade

    NASA Astrophysics Data System (ADS)

    Meng, Y.; Yang, S.; Shi, P.; Jeager, C. C.

    2015-10-01

    Globalization and technological revolutions are making the world more interconnected. International trade is an important approach linking the world. Since the 2011 Tohoku earthquake and tsunami in Japan shocked the global supply chain, more attention has been paid to the global impact of large-scale disasters. China is the second largest trader in the world and faces frequent natural disasters. Therefore, this study proposes a gravity model for China's bilateral trade tailored to national circumstances and estimates the impact of natural disasters in China and trading partner countries on Chinese imports and exports. We analyzed Chinese and trading partner statistical data from 1980 to 2012. Study results show the following: (1) China's natural disasters have a positive impact on exports but have no significant impact on imports; (2) trading partner countries' natural disasters reduce Chinese imports and exports; (3) both development level and land area of the partners are important in determining the intensity of natural disaster impacts on China's bilateral trade. The above findings suggest that the impact of natural disasters on trade is asymmetric and significantly affected by other factors, which demand further study.

  15. Continental faunal exchange and the asymmetrical radiation of carnivores.

    PubMed

    Pires, Mathias M; Silvestro, Daniele; Quental, Tiago B

    2015-10-22

    Lineages arriving on islands may undergo explosive evolutionary radiations owing to the wealth of ecological opportunities. Although studies on insular taxa have improved our understanding of macroevolutionary phenomena, we know little about the macroevolutionary dynamics of continental exchanges. Here we study the evolution of eight Carnivora families that have migrated across the Northern Hemisphere to investigate if continental invasions also result in explosive diversification dynamics. We used a Bayesian approach to estimate speciation and extinction rates from a substantial dataset of fossil occurrences while accounting for the incompleteness of the fossil record. Our analyses revealed a strongly asymmetrical pattern in which North American lineages invading Eurasia underwent explosive radiations, whereas lineages invading North America maintained uniform diversification dynamics. These invasions into Eurasia were characterized by high rates of speciation and extinction. The radiation of the arriving lineages in Eurasia coincide with the decline of established lineages or phases of climate change, suggesting differences in the ecological settings between the continents may be responsible for the disparity in diversification dynamics. These results reveal long-term outcomes of biological invasions and show that the importance of explosive radiations in shaping diversity extends beyond insular systems and have significant impact at continental scales. PMID:26490792

  16. Is the HD 15115 circumstellar disk really asymmetrical?

    NASA Astrophysics Data System (ADS)

    Mazoyer, J.; Boccaletti, A.; Augereau, J.-C.; Lagrange, A.-M.; Galicher, R.; Baudoz, P.

    2014-09-01

    Similarly to beta Pictoris, HD 15115 is a young and nearby (45.2 pc) star that hosts a debris disk. This debris disk was first imaged in 2007 (Kalas et al., 2007) in visible using HST and in H band using the Keck observatory. The disk appeared edge-on and showed an asymmetry between its west and east parts. This detection was later observed in J band using HST / Nicmos data (Debes et al., 2008) and in Ks and L' using LBT (Rodigas et al. 2012). These observations confirmed the asymmetric nature of HD 15115 debris disk. We present here the results of the analysis of data from the Gemini / NICI archival system from 2009 and 2011 in H and K bands. We use newly developed differential treatment algorithms on these data (ADI, LOCI, KLIP) to subtract the light of the star and image the disk up to 1 arc second (30 AU). From this analysis, we find an inclination of 86 (confirming previous conclusions about HD 15115). We derive the disk position angle and spine and photometry and only find a brightness asymmetry in these elements. We also present evidence of an ring at 2 arc seconds (60 AU), with a rather sharp inner edge, and no sign of an asymmetry. With this radius and inclination, we create disk models (Augereau et al. 1999) and put constraints on the disk parameters, using either the position angle, spine and photometry or forward modeling.

  17. Measuring the bending of asymmetric planar EAP structures

    NASA Astrophysics Data System (ADS)

    Weiss, Florian M.; Zhao, Xue; Thalmann, Peter; Deyhle, Hans; Urwyler, Prabitha; Kovacs, Gabor; Müller, Bert

    2013-04-01

    The geometric characterization of low-voltage dielectric electro-active polymer (EAP) structures, comprised of nanometer thickness but areas of square centimeters, for applications such as artificial sphincters requires methods with nanometer precision. Direct optical detection is usually restricted to sub-micrometer resolution because of the wavelength of the light applied. Therefore, we propose to take advantage of the cantilever bending system with optical readout revealing a sub-micrometer resolution at the deflection of the free end. It is demonstrated that this approach allows us to detect bending of rather conventional planar asymmetric, dielectric EAP-structures applying voltages well below 10 V. For this purpose, we built 100 μm-thin silicone films between 50 nm-thin silver layers on a 25 μm-thin polyetheretherketone (PEEK) substrate. The increase of the applied voltage in steps of 50 V until 1 kV resulted in a cantilever bending that exhibits only in restricted ranges the expected square dependence. The mean laser beam displacement on the detector corresponded to 6 nm per volt. The apparatus will therefore become a powerful mean to analyze and thereby improve low-voltage dielectric EAP-structures to realize nanometer-thin layers for stack actuators to be incorporated into artificial sphincter systems for treating severe urinary and fecal incontinence.

  18. Exploring the decomposition pathways of iron asymmetric transfer hydrogenation catalysts.

    PubMed

    Lagaditis, Paraskevi O; Sues, Peter E; Lough, Alan J; Morris, Robert H

    2015-07-21

    Our group has developed a series of iron-based asymmetric transfer hydrogenation (ATH) catalysts for the reduction of polar double bonds. The activation of the precatalysts as well as the catalytic mechanism have been thoroughly investigated, but the decomposition pathways of these systems are poorly understood. Herein, we report a study of the deactivation pathways for an iron ATH catalyst under catalytically relevant conditions. The decomposition pathways were examined using experimental techniques and density functional theory (DFT) calculations. The major decomposition products that formed, Fe(CO)((Et)2PCH2CH2CHCHNCH2CH2P(Et)2) (3a) and Fe(CO)((Et)2PCH2CH2C(Ph)C(Ph)NCH2CH2P(Et)2) (3b), had two amido donors as well as a C=C bond on the diamine backbone of the tetradentate ligand. These species were identified by NMR studies and one was isolated as a bimetallic complex with Ru(II)Cp*. Two minor iron hydride species also formed concurrently with 3a, as determined by NMR studies, one of which was isolated and contained a fully saturated ligand as well as a hydride ligand. None of the compounds that were isolated were found to be active ATH catalysts. PMID:25373607

  19. Effector proteins support the asymmetric apportioning of Salmonella during cytokinesis.

    PubMed

    Zhao, Yaya; Gorvel, Jean-Pierre; Méresse, Stéphane

    2016-08-17

    Salmonella-infected cells are characterized by the presence of intra-cellular membranous tubules that emerge from bacterial vacuoles and extend along microtubules. The formation of Salmonella-induced tubules depends on the Salmonella pathogenicity island 2-encoded type III secretion system (T3SS-2) that translocates bacterial effector proteins inside host cells. Effector proteins have enzymatic activities or allow for hijacking of cellular functions. The role of Salmonella-induced tubules in virulence remains unclear but their absence is correlated with virulence defects. This study describes the presence of inter-cellular tubules that arise between daughter cells during cytokinesis. Inter-cellular tubules connect bacterial vacuoles originally present in the parent cell and that have been apportioned between daughters. Their formation requires a functional T3SS-2 and effector proteins. Our data establish a correlation between the formation of inter-cellular tubules and the asymmetric distribution of bacterial vacuoles in daughters. Thus, by manipulating the distribution of bacteria in cytokinetic cells, Salmonella T3SS-2 effector proteins may increase bacterial spreading and the systemic character of the infection. PMID:27046257

  20. Effector proteins support the asymmetric apportioning of Salmonella during cytokinesis

    PubMed Central

    Zhao, Yaya; Gorvel, Jean-Pierre; Méresse, Stéphane

    2016-01-01

    ABSTRACT Salmonella-infected cells are characterized by the presence of intra-cellular membranous tubules that emerge from bacterial vacuoles and extend along microtubules. The formation of Salmonella-induced tubules depends on the Salmonella pathogenicity island 2-encoded type III secretion system (T3SS-2) that translocates bacterial effector proteins inside host cells. Effector proteins have enzymatic activities or allow for hijacking of cellular functions. The role of Salmonella-induced tubules in virulence remains unclear but their absence is correlated with virulence defects. This study describes the presence of inter-cellular tubules that arise between daughter cells during cytokinesis. Inter-cellular tubules connect bacterial vacuoles originally present in the parent cell and that have been apportioned between daughters. Their formation requires a functional T3SS-2 and effector proteins. Our data establish a correlation between the formation of inter-cellular tubules and the asymmetric distribution of bacterial vacuoles in daughters. Thus, by manipulating the distribution of bacteria in cytokinetic cells, Salmonella T3SS-2 effector proteins may increase bacterial spreading and the systemic character of the infection. PMID:27046257

  1. A Comparison of Symmetric and Asymmetric Warming Regimes on the Soil Carbon and Nitrogen Dynamics of Grassland Ecosystems

    NASA Astrophysics Data System (ADS)

    Wig, J.; Lajtha, K.; Gregg, J. W.

    2010-12-01

    Global mean temperatures have increased 0.10 to 0.16°C per decade over the last 50 years, and continued increases in atmospheric greenhouse gas concentrations are expected to cause temperatures to increase by more than 3°C by the middle of the 21st century. While many warming experiments have been performed, most have determined impacts of equal increases in day and night temperatures on production, diversity, or ecosystem carbon dynamics. However, there have been faster increases in daily minimum temperature (Tmin) than daily maximum temperature (Tmax), a phenomenon commonly referred to as asymmetric warming. Photosynthesis and respiration are differentially affected by altered day and night temperatures, and thus the ecological effects of alterations in Tmin could differ from alterations in Tmax. Therefore, it is imperative that we expand our understanding of potential impacts of global warming to include the effects of asymmetrically elevated temperature profiles. To examine the affects of asymmetric vs. symmetric warming, we used Terracosm chambers with planted grassland communities native to Oregon’s Willamette Valley. The warmed chambers are subjected to an average increase of +3.5°C/day, with asymmetrically warmed chambers having an increase of dawn Tmin of +5°C, and an increase of midday Tmax of +2°C; and with symmetrically warmed chambers having a constant increase of +3.5°C. The goals of this project are to assess (1) whether patterns of increased NPP, changes in species composition and altered C, H2O and nutrient cycles shown for symmetric warming are similar in the asymmetric profiles, or whether entirely different patterns emerge unique to the asymmetrically elevated temperature treatments, and (2) whether the impacts of asymmetric and symmetric warming differ for soil C stabilization and destabilization processes. Our data indicate that whole ecosystem carbon balance was negative, with higher respiration than photosynthesis, for both symmetric

  2. The unified ballooning theory with weak up-down asymmetric mode structure and the numerical studies

    NASA Astrophysics Data System (ADS)

    Xie, T.; Qin, H.; Zhang, Y. Z.; Mahajan, S. M.

    2016-04-01

    A unified ballooning theory, constructed on the basis of two special theories [Zhang et al., Phys. Fluids B 4, 2729 (1992); Y. Z. Zhang and T. Xie, Nucl. Fusion Plasma Phys. 33, 193 (2013)], shows that a weak up-down asymmetric mode structure is normally formed in an up-down symmetric equilibrium; the weak up-down asymmetry in mode structure is the manifestation of non-trivial higher order effects beyond the standard ballooning equation. It is shown that the asymmetric mode may have even higher growth rate than symmetric modes. The salient features of the theory are illustrated by investigating a fluid model for the ion temperature gradient (ITG) mode. The two dimensional (2D) analytical form of the ITG mode, solved in ballooning representation, is then converted into the radial-poloidal space to provide the natural boundary condition for solving the 2D mathematical local eigenmode problem. We find that the analytical expression of the mode structure is in a good agreement with finite difference solution. This sets a reliable framework for quasi-linear computation.

  3. Tunable asymmetric mode conversion using the dark-mode of three-mode waveguide system.

    PubMed

    Kim, Joonsoo; Lee, Seung-Yeol; Lee, Yohan; Kim, Hwi; Lee, Byoungho

    2014-11-17

    A design scheme for low-reflection asymmetric mode conversion structure in three-mode waveguide system is proposed. By using a dark-mode of three-mode system, which can be interpreted in terms of destructive interference of transition amplitudes, the transmission characteristics for forward and backward directions can be designed separately. After explanation of the proposed design scheme, we demonstrate an example of asymmetric mode converter that consists of two gratings. The proposed scheme may be useful for the design of tunable asymmetric transmission devices due to its design flexibility and efficient design process. PMID:25402109

  4. In-medium effects via nuclear stopping in asymmetric colliding nuclei

    NASA Astrophysics Data System (ADS)

    Kaur, Mandeep

    2016-05-01

    The nuclear stopping is studied using isospin-dependent quantum molecular dynamics (IQMD) model in asymmetric colliding nuclei by varying mass asymmetry. The calculations have been done at incident energies varying between 50 and 400 MeV/nucleon for different impact parameters. We investigate the relative role of constant scaled and density-dependent scaled cross-sections. Our study reveals that nuclear stopping depends on the mass asymmetry, incident energy and impact parameter, however, it is independent of the way of scaling the cross-section.

  5. Asymmetric perfectly matched layer for the absorption of waves

    SciTech Connect

    Vay, Jean-Luc

    2002-02-10

    The Perfectly Matched Layer (PML) has become a standard for comparison in the techniques that have been developed to close the system of Maxwell equations (more generally wave equations) when simulating an open system. The original Berenger PML formulation relies on a split version of Maxwell equations with numerical electric and magnetic conductivities. They present here an extension of this formulation which introduces counterparts of the electric and magnetic conductivities affecting the term which is spatially differentiated in the equations. they phase velocity along each direction is also multiplied by an additional coefficient. They show that, under certain constraints on the additional numerical coefficients, this ''medium'' does not generate any reflection at any angle and any frequency and is then a Perfectly Matched Layer. Technically it is a super-set of Berenger's PML to which it reduces for a specific set of parameters and like it, it is anisotropic. However, unlike the PML, it introduces some asymmetry in the absorption rate and is therefore labeled an APML for Asymmetric Perfectly Matched Layer. They present here the numerical considerations that have led them to introduce such a medium as well as its theory. Several finite-different numerical implementations are derived (in one, two and three dimensions) and the performance of the APML is contrasted with that of the PML in one and two dimensions. Using plane wave analysis, they show that the APML implementations lead to higher absorption rates than the considered PML implementations. Although they have considered in this paper the finite-different discretization of Maxwell-like equations only, the APML system of equations may be used with other discretization schemes, such as finite-elements, and may be applied to other equations, for applications beyond electromagnetics.

  6. Nation's Research Universities Are Offered Hope of Fatter Budgets--At a Price

    ERIC Educational Resources Information Center

    Basken, Paul

    2012-01-01

    A two-year Congressionally mandated assessment of financial threats to the nation's research universities ended on Thursday with the offer of a grand bargain: Cut costs and form more partnerships with communities and industry, and expect increased revenues and fewer regulations. A report on the study, coordinated by the National Research Council…

  7. The Asymmetric Vascular Stent: Efficacy in a rabbit aneurysm model

    PubMed Central

    Ionita, Ciprian N; Paciorek, Ann M; Dohatcu, Andreea; Hoffmann, Kenneth R; Bednarek, Daniel R; Kolega, John; Levy, Elad I; Hopkins, L. Nelson; Rudin, Stephen; Mocco, J.

    2009-01-01

    Background and Purpose Development of hemodynamic modifying devices to treat intracranial aneurysms (IAs) is an active area of research. The asymmetric vascular stent (AVS), a stent containing a low porosity patch, is such device. We evaluate AVS efficacy in an in vivo IA model. Methods We created twenty-four elastase rabbit model aneurysms: thirteen treated with the AVS, five treated with standard coronary stents, and six untreated controls. Four weeks following treatment, aneurysms underwent follow-up angiography, cone-beam micro-CT, histologic evaluation, and selective electron microscopy scanning. Results Four rabbits died early in the study: three during AVS treatment and one control (secondary to intra-procedural vessel injury and an unrelated tumor, respectively). AVS-treated aneurysms exhibited very weak or no aneurysm flow immediately after treatment and no flow in all aneurysms at follow-up. Stent-treated aneurysms showed flow both after treatment (5/5) and at follow-up (3/5). All control aneurysms remained patent during the study. Micro-CT scans showed: 9/9 of scanned AVS aneurysms were occluded, (6/9) AVSs were ideally placed and (3/9) the low porosity region partially covered the aneurysm neck; stent-treated aneurysms were 1/5 occluded, 2/5 patent, and 2/5 partially-patent. Histology results demonstrated: for AVS-treated aneurysms, advanced thrombus organization in the (9/9); for stent-treated aneurysms (1/4) no thrombus, (2/4) partially-thrombosed and (1/4) fully-thrombosed; for control aneurysms (4/4) no thrombus. Conclusion The use of AVSs shows promise as a viable new therapeutic in intracranial aneurysm treatment. These data encourage further investigation and provide substantial support to the AVS concept. PMID:19131663

  8. Plasma flow reversals at the dayside magnetopause and the origin of asymmetric polar cap convection

    NASA Technical Reports Server (NTRS)

    Gosling, J. T.; Thomsen, M. F.; Bame, S. J.; Elphic, R. C.; Russell, C. T.

    1990-01-01

    Events observed in a fast plasma experiment, where the y-component of the plasma flow within the low latitude boundary layer and magnetopause current layer was oppositely directed to that in the adjacent magnetosheath, are examined. The observations are shown to be qualitatively and quantitatively consistent with previous observations of accelerated flows at the magnetopause and with models of magnetic reconnection, with reconnection occurring at low latitudes near the GSE XY plane, independently of the magnitude or the sign of the y-component ot the local magnetosheath magnetic field. Local magnetic shears at the magnetopause for these events (in 60-180 deg range) and the fact that these events occur at low latitudes do not support the antiparallel merging hypothesis. The observations of B(y)-dependent flow reversals demonstrate how the asymmetric polar cap convection and related phenomena, such as the Svalgaard-Mansurov effect, originate in magnetic reconnection at the dayside magnetopause.

  9. Asymmetric cell division of stem cells in the lung and other systems

    PubMed Central

    Berika, Mohamed; Elgayyar, Marwa E.; El-Hashash, Ahmed H. K.

    2014-01-01

    New insights have been added to identification, behavior and cellular properties of embryonic and tissue-specific stem cells over the last few years. The modes of stem cell division, asymmetric vs. symmetric, are tightly regulated during development and regeneration. The proper choice of a stem cell to divide asymmetrically or symmetrically has great consequences for development and disease because inappropriate asymmetric division disrupts organ morphogenesis, whereas uncontrolled symmetric division induces tumorigenesis. Therefore, understanding the behavior of lung stem cells could identify innovative solutions for restoring normal morphogenesis and/or regeneration of different organs. In this concise review, we describe recent studies in our laboratory about the mode of division of lung epithelial stem cells. We also compare asymmetric cell division (ACD) in the lung stem cells with other tissues in different organisms. PMID:25364740

  10. Synergistic Kinetic Resolution and Asymmetric Propargyl Claisen Rearrangement for the Synthesis of Chiral Allenes.

    PubMed

    Liu, Yangbin; Liu, Xiaohua; Hu, Haipeng; Guo, Jing; Xia, Yong; Lin, Lili; Feng, Xiaoming

    2016-03-14

    The asymmetric propargyl Claisen rearrangement provides a convenient entry to chiral allene motifs. Herein, we describe the development of a kinetic resolution and asymmetric rearrangement of racemic propargyl vinyl ethers. This transformation afforded chiral allene products along with the enantiomerically enriched substrate in good yields with excellent diastereo- and enantioselectivity. The complete chirality transfer and facially selective rearrangement enabled the simultaneous construction of an axially chiral allenic unit and a quaternary carbon stereocenter. PMID:26889758

  11. Spin polarized asymmetric nuclear matter and neutron star matter within the lowest order constrained variational method

    SciTech Connect

    Bordbar, G. H.; Bigdeli, M.

    2008-01-15

    In this paper, we calculate properties of the spin polarized asymmetrical nuclear matter and neutron star matter, using the lowest order constrained variational (LOCV) method with the AV{sub 18}, Reid93, UV{sub 14}, and AV{sub 14} potentials. According to our results, the spontaneous phase transition to a ferromagnetic state in the asymmetrical nuclear matter as well as neutron star matter do not occur.

  12. BIPOLAR JETS LAUNCHED FROM ACCRETION DISKS. II. THE FORMATION OF ASYMMETRIC JETS AND COUNTER JETS

    SciTech Connect

    Fendt, Christian; Sheikhnezami, Somayeh E-mail: nezami@mpia.de

    2013-09-01

    We investigate the jet launching from accretion disks, in particular the formation of intrinsically asymmetric jet/counter jet systems. We perform axisymmetric MHD simulations of the disk-jet structure on a bipolar computational domain covering both hemispheres. We apply various models such as asymmetric disks with (initially) different scale heights in each hemisphere, symmetric disks into which a local disturbance is injected, and jets launched into an asymmetric disk corona. We consider both a standard global magnetic diffusivity distribution and a novel local diffusivity model. Typical disk evolution first shows substantial disk warping and then results in asymmetric outflows with a 10%-30% mass flux difference. We find that the magnetic diffusivity profile is essential for establishing a long-term outflow asymmetry. We conclude that bipolar asymmetry in protostellar and extragalactic jets can indeed be generated intrinsically and maintained over a long time by disk asymmetries and the standard jet launching mechanism.

  13. Synthesis and asymmetric reactivity of enantiomerically pure cyclopentadienylmetal complexes derived from the chiral pool

    SciTech Connect

    Halterman, R.L.; Vollhardt, K.P.C.

    1988-04-01

    Starting from pulegone, camphor, and tartrate, three chiral cyclopentadienes were prepared efficiently. Metalation with Co/sub 2/(CO)/sub 8/ and TiCl/sub 3/ resulted in new chiral and enantiomerically pure substituted cyclopentadienyldicarbonylcobalt and -titanocene complexes. The latter were used in the quantitative catalytic asymmetric hydrogenation of 2-phenyl-1-butene in up to 34% optical yield. The former allowed the first asymmetric (2 + 2 + 2) cycloadditions promoted by chiral cyclopentadienylcobalt complexes to be observed.

  14. The design of an asymmetric bionic branching channel for electronic chips cooling

    NASA Astrophysics Data System (ADS)

    Xu, Shanglong; Qin, Jie; Guo, Wei; Fang, Kuang

    2013-06-01

    Inspired by the wing vein of Lepidoptera, a designment of asymmetric bionic branching channel for electronic chips cooling is developed. Lepidoptera vein D was chosen to measure the angle of first and second branch level. Based on these regular patterns, an asymmetric bionic branching channel is designed in a 35 mm × 35 mm chip. Comparing with fractal-like branching channel, it provides a stronger heat transfer capability, lower pressure drop and lower flow resistance in the experiment.

  15. Monaural Beamforming in Bimodal Cochlear Implant Users: Effect of (A)symmetric Directivity and Noise Type

    PubMed Central

    Janssen, A. Miranda L.; Chalupper, Josef; Stokroos, Robert J.; George, Erwin L. J.

    2016-01-01

    Objective To evaluate monaural beamforming in bimodally aided cochlear implant (CI) users. Design The study enrolled twelve adult bimodal listeners with at least six months of CI-experience and using a contralateral hearing aid (HA) most of the daytime. Participants were uniformly fitted with the same CI speech processor and HA, giving access to an identical monaural beamformer in both ears. A within-subject repeated measures design evaluated three directional configurations [omnidirectional, asymmetric directivity (in CI alone) and symmetric directivity (in both CI and HA)] in two noise types [stationary and fluctuating]. Bimodal speech reception thresholds (SRT) as well as listening effort ratings were assessed in a diffuse noise field. Results Symmetric monaural beamforming provided a significant SRT improvement of 2.6 dB SNR, compared to 1.6 dB SNR for asymmetric monaural beamforming. Directional benefits were similarly observed in stationary and fluctuating noise. Directivity did not contribute to less listening effort in addition to improvement in speech intelligibility. Bimodal performance was about 7 dB SNR worse in fluctuating than in stationary noise. Conclusions Monaural beamforming provided substantial benefit for speech intelligibility in noise for bimodal listeners. The greatest benefit occurred when monaural beamforming was activated symmetrically in both CI and HA. Monaural beamforming does not bridge the gap between bimodal and normal hearing performance, especially in fluctuating noise. Results advocate further bimodal co-operation. Trial Registration This trial was registered in www.trialregister.nl under number NTR4901. PMID:27537075

  16. Asymmetrical Capacitors for Propulsion

    NASA Technical Reports Server (NTRS)

    Canning, Francis X.; Melcher, Cory; Winet, Edwin

    2004-01-01

    Asymmetrical Capacitor Thrusters have been proposed as a source of propulsion. For over eighty years, it has been known that a thrust results when a high voltage is placed across an asymmetrical capacitor, when that voltage causes a leakage current to flow. However, there is surprisingly little experimental or theoretical data explaining this effect. This paper reports on the results of tests of several Asymmetrical Capacitor Thrusters (ACTs). The thrust they produce has been measured for various voltages, polarities, and ground configurations and their radiation in the VHF range has been recorded. These tests were performed at atmospheric pressure and at various reduced pressures. A simple model for the thrust was developed. The model assumed the thrust was due to electrostatic forces on the leakage current flowing across the capacitor. It was further assumed that this current involves charged ions which undergo multiple collisions with air. These collisions transfer momentum. All of the measured data was consistent with this model. Many configurations were tested, and the results suggest general design principles for ACTs to be used for a variety of purposes.

  17. Optical amplification of the cutoff mode in planar asymmetric polymer waveguides

    NASA Astrophysics Data System (ADS)

    Pauchard, M.; Vehse, M.; Swensen, J.; Moses, D.; Heeger, A. J.; Perzon, E.; Andersson, M. R.

    2003-12-01

    Modes with low threshold for optical gain were observed at wavelengths close to the cutoff in experiments probing the amplified spontaneous emission of light-emitting polymer thin films. The polymer was the semiconductor layer in a multilayer semiconductor-insulator-metal structure that simulates the one-dimensional waveguide characteristics in the channel of a field-effect transistor. The "cutoff" mode propagates at the polymer/gate-insulator interface, has an optical gain threshold of approximately 10 kW/cm2, and is not influenced by absorption of the gate electrode. The wavelength of the amplified emission tracks the cutoff wavelength of the asymmetric double-waveguide structure and the cutoff mode is, therefore, tunable in wavelength. Our results suggest that the light-emitting field-effect transistor architecture is a promising route for the construction of an injection laser.

  18. The Transmission Interfaces Contribute Asymmetrically to the Assembly and Activity of Human P-glycoprotein*

    PubMed Central

    Loo, Tip W.; Clarke, David M.

    2015-01-01

    P-glycoprotein (P-gp; ABCB1) is an ABC drug pump that protects us from toxic compounds. It is clinically important because it confers multidrug resistance. The homologous halves of P-gp each contain a transmembrane (TM) domain (TMD) with 6 TM segments followed by a nucleotide-binding domain (NBD). The drug- and ATP-binding sites reside at the interface between the TMDs and NBDs, respectively. Each NBD is connected to the TMDs by a transmission interface involving a pair of intracellular loops (ICLs) that form ball-and-socket joints. P-gp is different from CFTR (ABCC7) in that deleting NBD2 causes misprocessing of only P-gp. Therefore, NBD2 might be critical for stabilizing ICLs 2 and 3 that form a tetrahelix bundle at the NBD2 interface. Here we report that the NBD1 and NBD2 transmission interfaces in P-gp are asymmetric. Point mutations to 25 of 60 ICL2/ICL3 residues at the NBD2 transmission interface severely reduced P-gp assembly while changes to the equivalent residues in ICL1/ICL4 at the NBD1 interface had little effect. The hydrophobic nature at the transmission interfaces was also different. Mutation of Phe-1086 or Tyr-1087 to arginine at the NBD2 socket blocked activity or assembly while the equivalent mutations at the NBD1 socket had only modest effects. The results suggest that the NBD transmission interfaces are asymmetric. In contrast to the ICL2/3-NBD2 interface, the ICL1/4-NBD1 transmission interface is more hydrophilic and insensitive to mutations. Therefore the ICL2/3-NBD2 transmission interface forms a precise hydrophobic connection that acts as a linchpin for assembly and trafficking of P-gp. PMID:25987565

  19. Asymmetric cell division of granule neuron progenitors in the external granule layer of the mouse cerebellum

    PubMed Central

    Haldipur, Parthiv; Sivaprakasam, Iswariya; Periasamy, Vinod; Govindan, Subashika; Mani, Shyamala

    2015-01-01

    ABSTRACT The plane of division of granule neuron progenitors (GNPs) was analysed with respect to the pial surface in P0 to P14 cerebellum and the results showed that there was a significant bias towards the plane of cell division being parallel to pial surface across this developmental window. In addition, the distribution of β-Catenin in anaphase cells was analysed, which showed that there was a significant asymmetry in the distribution of β-Catenin in dividing GNPs. Further, inhibition of Sonic Hedgehog (Shh) signalling had an effect on plane of cell division. Asymmetric distribution of β-Catenin was shown to occur towards the source of a localized extracellular cue. PMID:25979710

  20. Asymmetric Evolutionary Games

    PubMed Central

    McAvoy, Alex; Hauert, Christoph

    2015-01-01

    Evolutionary game theory is a powerful framework for studying evolution in populations of interacting individuals. A common assumption in evolutionary game theory is that interactions are symmetric, which means that the players are distinguished by only their strategies. In nature, however, the microscopic interactions between players are nearly always asymmetric due to environmental effects, differing baseline characteristics, and other possible sources of heterogeneity. To model these phenomena, we introduce into evolutionary game theory two broad classes of asymmetric interactions: ecological and genotypic. Ecological asymmetry results from variation in the environments of the players, while genotypic asymmetry is a consequence of the players having differing baseline genotypes. We develop a theory of these forms of asymmetry for games in structured populations and use the classical social dilemmas, the Prisoner’s Dilemma and the Snowdrift Game, for illustrations. Interestingly, asymmetric games reveal essential differences between models of genetic evolution based on reproduction and models of cultural evolution based on imitation that are not apparent in symmetric games. PMID:26308326

  1. The origin of asymmetric behavior of money flow in the business firm network

    NASA Astrophysics Data System (ADS)

    Miura, W.; Takayasu, H.; Takayasu, M.

    2012-09-01

    In the business firm network, the number of in-degrees and out-degrees show the same scale-free property, however, the distribution of authorities and hubs show asymmetric behavior. Here we show the result of an analysis of the two-link structure of the network to find the origin of this asymmetric behavior. We find the tendency for big construction firms intermediating small subcontracting firms to have higher hub degrees. By measuring the strength of preferential attachment rate of new companies, we also find a abnormally strong preferential attachment for which the exponent is 1.4 with respect to out-degree when a new company forms a business partnership with a construction company. We propose a new model that reproduces the asymmetric behavior of the degrees of authorities and hubs by changing the preferential attachment rate between the in-degree and the out-degree in the business firm network.

  2. Oscillating asymmetric dark matter

    SciTech Connect

    Tulin, Sean; Yu, Hai-Bo; Zurek, Kathryn M. E-mail: haiboyu@umich.edu

    2012-05-01

    We study the dynamics of dark matter (DM) particle-antiparticle oscillations within the context of asymmetric DM. Oscillations arise due to small DM number-violating Majorana-type mass terms, and can lead to recoupling of annihilation after freeze-out and washout of the DM density. Asymmetric DM oscillations 'interpolate' between symmetric and asymmetric DM freeze-out scenarios, and allow for a larger DM model-building parameter space. We derive the density matrix equations for DM oscillations and freeze-out from first principles using nonequilibrium field theory, and our results are qualitatively different than in previous studies. DM dynamics exhibits particle-vs-antiparticle 'flavor' effects, depending on the interaction type, analogous to neutrino oscillations in a medium. 'Flavor-sensitive' DM interactions include scattering or annihilation through a new vector boson, while 'flavor-blind' interactions include scattering or s-channel annihilation through a new scalar boson. In particular, we find that flavor-sensitive annihilation does not recouple when coherent oscillations begin, and that flavor-blind scattering does not lead to decoherence.

  3. On the Electron Diffusion Region in Asymmetric Reconnection with a Guide Magnetic Field

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Liu, Yi-Hsin; Chen, Li-Jen; Bessho, Naoki; Kuznetsova, Masha; Birn, Joachim; Burch, James L.

    2016-01-01

    Particle-in-cell simulations in a 2.5-D geometry and analytical theory are employed to study the electron diffusion region in asymmetric reconnection with a guide magnetic field. The analysis presented here demonstrates that similar to the case without guide field, in-plane flow stagnation and null of the in-plane magnetic field are well separated. In addition, it is shown that the electric field at the local magnetic X point is again dominated by inertial effects, whereas it remains dominated by nongyrotropic pressure effects at the in-plane flow stagnation point. A comparison between local electron Larmor radii and the magnetic gradient scale lengths predicts that distribution should become nongyrotropic in a region enveloping both field reversal and flow stagnation points. This prediction is verified by an analysis of modeled electron distributions, which show clear evidence of mixing in the critical region.

  4. Essays in applied macroeconomics: Asymmetric price adjustment, exchange rate and treatment effect

    NASA Astrophysics Data System (ADS)

    Gu, Jingping

    This dissertation consists of three essays. Chapter II examines the possible asymmetric response of gasoline prices to crude oil price changes using an error correction model with GARCH errors. Recent papers have looked at this issue. Some of these papers estimate a form of error correction model, but none of them accounts for autoregressive heteroskedasticity in estimation and testing for asymmetry and none of them takes the response of crude oil price into consideration. We find that time-varying volatility of gasoline price disturbances is an important feature of the data, and when we allow for asymmetric GARCH errors and investigate the system wide impulse response function, we find evidence of asymmetric adjustment to crude oil price changes in weekly retail gasoline prices. Chapter III discusses the relationship between fiscal deficit and exchange rate. Economic theory predicts that fiscal deficits can significantly affect real exchange rate movements, but existing empirical evidence reports only a weak impact of fiscal deficits on exchange rates. Based on US dollar-based real exchange rates in G5 countries and a flexible varying coefficient model, we show that the previously documented weak relationship between fiscal deficits and exchange rates may be the result of additive specifications, and that the relationship is stronger if we allow fiscal deficits to impact real exchange rates non-additively as well as nonlinearly. We find that the speed of exchange rate adjustment toward equilibrium depends on the state of the fiscal deficit; a fiscal contraction in the US can lead to less persistence in the deviation of exchange rates from fundamentals, and faster mean reversion to the equilibrium. Chapter IV proposes a kernel method to deal with the nonparametric regression model with only discrete covariates as regressors. This new approach is based on recently developed least squares cross-validation kernel smoothing method. It can not only automatically smooth

  5. Transition State Models for Understanding the Origin of Chiral Induction in Asymmetric Catalysis.

    PubMed

    Sunoj, Raghavan B

    2016-05-17

    In asymmetric catalysis, a chiral catalyst bearing chiral center(s) is employed to impart chirality to developing stereogenic center(s). A rich and diverse set of chiral catalysts is now available in the repertoire of synthetic organic chemistry. The most recent trends point to the emergence of axially chiral catalysts based on binaphthyl motifs, in particular, BINOL-derived phosphoric acids and phosphoramidites. More fascinating ideas took shape in the form of cooperative multicatalysis wherein organo- and transition-metal catalysts are made to work in concert. At the heart of all such manifestations of asymmetric catalysis, classical or contemporary, is the stereodetermining transition state, which holds a perennial control over the stereochemical outcome of the catalytic process. Delving one step deeper, one would find that the origin of the stereoselectivity is delicately dependent on the relative stabilization of one transition state, responsible for the formation of the predominant stereoisomer, over the other transition state for the minor stereoisomer. The most frequently used working hypothesis to rationalize the experimentally observed stereoselectivity places an undue emphasis on steric factors and tends to regard the same as the origin of facial discrimination between the prochiral faces of the reacting partners. In light of the increasing number of asymmetric catalysts that rely on hydrogen bonding as well as other weak non-covalent interactions, it is important to take cognizance of the involvement of such interactions in the sterocontrolling transition states. Modern density functional theories offer a pragmatic and effective way to capture non-covalent interactions in transition states. Aided by the availability of such improved computational tools, it is quite timely that the molecular origin of stereoselectivity is subjected to more intelligible analysis. In this Account, we describe interesting molecular insights into the stereocontrolling

  6. A homochiral metal-organic framework as an effective asymmetric catalyst for cyanohydrin synthesis.

    PubMed

    Mo, Ke; Yang, Yuhua; Cui, Yong

    2014-02-01

    A homochiral metal-organic framework (MOF) of an enantiopure 2,2'-dihydroxy-1,1'-biphenyl ligand was constructed. After exchanging one proton of the dihydroxyl group for Li(I) ions, the framework is shown to be a highly efficient and recyclable heterogeneous catalyst for asymmetric cyanation of aldehydes with up to >99% ee. Compared with the homogeneous counterpart, the MOF catalyst exhibits significantly enhanced catalytic activity and enantioselectivity, especially at a low catalyst/substrate ratio, due to that the rigid framework could stabilize the catalytically active monolithium salt of biphenol against its free transformation to catalytically inactive and/or less active assemblies in reactions. The synthetic utility of the cyanation was demonstrated in the synthesis of (S)-bufuralol (a nonselective β-adrenoceptor blocking agent) with 98% ee. PMID:24447241

  7. Regenerating a symmetry in asymmetric dark matter.

    PubMed

    Buckley, Matthew R; Profumo, Stefano

    2012-01-01

    Asymmetric dark matter theories generically allow for mass terms that lead to particle-antiparticle mixing. Over the age of the Universe, dark matter can thus oscillate from a purely asymmetric configuration into a symmetric mix of particles and antiparticles, allowing for pair-annihilation processes. Additionally, requiring efficient depletion of the primordial thermal (symmetric) component generically entails large annihilation rates. We show that unless some symmetry completely forbids dark matter particle-antiparticle mixing, asymmetric dark matter is effectively ruled out for a large range of masses, for almost any oscillation time scale shorter than the age of the Universe. PMID:22304253

  8. Coarse-grained molecular dynamics studies of the translocation mechanism of polyarginines across asymmetric membrane under tension

    PubMed Central

    He, XiaoCong; Lin, Min; Sha, BaoYong; Feng, ShangSheng; Shi, XingHua; Qu, ZhiGuo; Xu, Feng

    2015-01-01

    Understanding interactions between cell-penetrating peptides and biomembrane under tension can help improve drug delivery and elucidate mechanisms underlying fundamental cellular events. As far as the effect of membrane tension on translocation, it is generally thought that tension should disorder the membrane structure and weaken its strength, thereby facilitating penetration. However, our coarse-grained molecular dynamics simulation results showed that membrane tension can restrain polyarginine translocation across the asymmetric membrane and that this effect increases with increasing membrane tension. We also analyzed the structural properties and lipid topology of the tensed membrane to explain the phenomena. Simulation results provide important molecular information on the potential translocation mechanism of peptides across the asymmetric membrane under tension as well as new insights in drug and gene delivery. PMID:26235300

  9. Bipolar spin-filtering effect in B- or N-doped zigzag graphene nanoribbons with asymmetric edge hydrogenation

    NASA Astrophysics Data System (ADS)

    Wang, Li-hua; Zhang, Zi-zhen; Zhao, Jian-Guo; Ding, Bing-jun; Guo, Yong; Jin, Chun

    2015-11-01

    The spin transport properties of zigzag graphene nanoribbon (ZGNR) hetero-junctions, in which ZGNR electrodes are doped with B or N atoms, are investigated based on spin-polarized density functional theory and non-equilibrium Green's function. ZGNRs are C-H2 bonded at one edge and C-H bonded at the other edge to form asymmetric edge hydrogenation. The spin-polarized currents of ZGNR-based nano-devices with an odd or even number of the zigzag-shaped chains show a perfect bipolar spin-filtering effect on parallel and anti-parallel magnetic configurations. This study provides insights into the design of high-performance graphene-based spin filters.

  10. Assembling long heteroduplexes by asymmetric polymerase chain reaction and annealing the resulting single-stranded DNAs.

    PubMed

    Wang, Mugui; Wei, Chuchu; Ye, Xiufen; Liu, Jianping; Zhang, Cuicui; Chen, Hao; Zhang, Xiaobo; Tu, Jumin

    2015-04-15

    We developed an effective protocol for generating high-purity heteroduplexes via annealing single-stranded DNAs (ssDNAs) derived from plasmid DNA by asymmetric polymerase chain reaction (A-PCR). With the addition of dimethyl sulfoxide, a one-step A-PCR procedure can generate ssDNAs stably at a range of reaction temperatures. Several annealing buffers can anneal two ssDNAs into heteroduplexes effectively. We further developed a simple strategy to create d(GATC) hemimethylated heteroduplexes by annealing fully methylated homoduplexes in the presence of excessive unmethylated ssDNAs. The constructed heteroduplexes have been well tested as substrates for mismatch repair in Escherichia coli and, thus, can be used in various biotechnology applications. PMID:25575760

  11. Irradiated asymmetric Friedmann branes

    NASA Astrophysics Data System (ADS)

    Gergely, László Á.; Keresztes, Zoltán

    2006-01-01

    We consider a Friedmann brane moving in a bulk impregnated with radiation. The set-up is strongly asymmetric, with only one black hole in the bulk. The radiation emitted by this left bulk black hole can be reflected, absorbed or transmitted through the brane. Radiation pressure accelerates the brane, behaving as dark energy. Absorption however generates a competing effect: the brane becomes heavier and gravitational attraction increases. We analyse the model numerically, assuming a total absorption on the brane for k = 1. We conclude that due to the two competing effects, in this asymmetric scenario the Hawking radiation from the bulk black hole is not able to change the recollapsing fate of this brane-world universe. We show that for light branes and early times the radiation pressure is the dominant effect. In contrast, for heavy branes the self-gravity of the absorbed radiation is a much stronger effect. We find the critical value of the initial energy density for which these two effects roughly cancel each other.

  12. Biasing a coin after the toss: asymmetric delayed choice quantum eraser via Bragg regime cavity QED

    NASA Astrophysics Data System (ADS)

    Rameez-ul-Islam; Abbas, Tasawar; Ikram, Manzoor

    2015-01-01

    Quantum eraser (QE), on the one hand, is treated as the most intriguing phenomenon that puts a conception of the time in classical and quantum physics in contrast whereas, on the other hand, the same phenomenon is considered fallacious and based on the wrong arguments. Here, we propose an asymmetric delayed choice QE based on a Mach-Zandher-Bragg (MZB) atom interferometer that marks the intriguing effects more explicitly through delayed choice, tunable manipulation of the de Broglie matter wave interference. We also plot distinguishability D and fringe visibility V as a function of the atom-field interaction time utilized for the delayed choice eraser to highlight the counter-intuitive nature of the phenomenon. The interferometric scheme is based on Bragg diffraction of neutral two-level atoms through cavity fields. It is shown that the proposal is deterministic in nature and can be demonstrated experimentally with overall good fidelity utilizing the available technical resources.

  13. Effect of asymmetric hot rolling on texture, microstructure and magnetic properties in a non-grain oriented electrical steel

    NASA Astrophysics Data System (ADS)

    Chen, S.; Butler, J.; Melzer, S.

    2014-11-01

    In this study, both asymmetric hot rolling (AHR) and conventional hot rolling (CHR) were carried out to study the effect of the hot rolling conditions on the evolution of the texture and microstructure in a non-grain oriented (NGO) steel. The microstructure and texture in the subsequent processing stages were characterised and related to the final magnetic properties. The results show that AHR, compared with CHR, tends to homogenise texture through thickness of the hot band strips. AHR results in a higher fraction of the θ-fibre ({0 0 1}) and a lower fraction of the γ-fibre ({1 1 1}) in the hot band strips, which are favourable features in relation to the magnetic properties of the strip. However, the favourable features observed in hot rolled AHR strips are eliminated after cold rolling and annealing. Contrarily, the required θ-fibre is decreased and the unwanted γ-fibre is intensified in the AHR sheet after cold rolling and their strength is maintained in the subsequent process steps. On the other hand, AHR does not produce a discernible change in the grain size in the hot band annealed strip and in the final annealed sheet, except that the magnetic anisotropy in the AHR is improved after skin pass and extra annealing as the result of the redistribution of the texture components within the θ-fibre, no significant improvement of the magnetic properties as a direct consequence of the application of asymmetric hot rolling has been observed under the current AHR experimental conditions.

  14. Howthe IMF By induces a By component in the closed magnetosphere and how it leads to asymmetric currents and convection patterns in the two hemispheres

    NASA Astrophysics Data System (ADS)

    Tenfjord, Paul; Østgaard, Nikolai; Snekvik, Kristian; Reistad, Jone; Magnus Laundal, Karl; Haaland, Stein; Milan, Steve

    2016-04-01

    We describe the effects of the interplanetary magnetic field (IMF) By component on the coupling between the solar wind and magnetosphere-ionosphere system using AMPERE observations and MHD simulations. We show how By is induced on closed magnetospheric field lines on both the dayside and nightside. The magnetosphere imposes asymmetric forces on the ionosphere, and the effects on the ionospheric flow are characterized by distorted convection cell patterns, often referred to as "banana" and "orange" cell patterns. The flux asymmetrically added to the lobes results in a nonuniform induced By in the closed magnetosphere. We present a mechanism that predicts asymmetric Birkeland currents at conjugate foot points. Asymmetric Birkeland currents are created as a consequence of y directed tension contained in the return flow. Associated with these currents, we expect aurora and fast localized ionospheric azimuthal flows present in one hemisphere but not necessarily in the other. We present a statistical study where we show that these processes should occur on timescales of about 30 minutes after the IMF By has arrived at the magnetopause. We also present an event with simultaneous global imaging of the aurora and SuperDARN measurements from both hemisphere. The event is interpreted as an example of the of the proposed asymmetric current mechanism.

  15. Oscillations in the current-voltage characteristic of an asymmetric ballistic junction

    NASA Astrophysics Data System (ADS)

    Gence, L.; Hackens, B.; Faniel, S.; Gustin, C.; Bayot, V.; Wallart, X.; Bollaert, S.; Cappy, A.

    2004-03-01

    Nonlinear effects in three- and four-terminal ballistic devices have attracted growing interest in the last few years. We fabricated a four-terminal asymmetric junction from a two-dimensional electron system confined in an InGaAs quantum well. Two contacts are available at each branch of the junction, allowing for four-contacts measurements of the resistances of each branch. Measurements are performed at low temperature, in the ballistic regime of transport. We apply a (longitudinal) current between opposite branches of the junction and measure the resulting transverse voltage between the two other contacts, as well as the change of longitudinal resistance. When the longitudinal current grows, we observe changes of slope and even oscillations in the transverse voltage, coinciding with abrupt changes of the longitudinal resistance. We discuss our results in light of Landauer-Büttikker simulations of the device (H.Q. Xu, Appl. Phys. Lett., 78, 2064 (2001)).

  16. Controlling the betatron oscillations of a wakefield-accelerated electron beam by temporally asymmetric laser pulses

    SciTech Connect

    Nam, Inhyuk; Hur, Min Sup; Uhm, Han Sup; Hafz, Nasr A. M.; Suk, Hyyong

    2011-04-15

    Based on two-dimensional particle-in-cell simulations, we investigated the electron beam's transverse oscillations by temporally asymmetric laser pulses in laser wakefield acceleration. Of particular interest in this article are the effects of ultrashort laser pulses having sharp rising and slow falling time scales. In this situation, the accelerated electron beam interacts directly with the laser field and undergoes transverse oscillations due to a phase-slip with the laser field. This oscillation can be matched with the betatron oscillation due to the focusing force of the ions, which can lead to a large transverse oscillation amplitude due to the resonance between them. Furthermore, in this case, the electron beam can be microbunched at the laser wavelength, which may provide the possibility for generation of a coherent synchrotron radiation.

  17. A mean-field theory on the differential capacitance of asymmetric ionic liquid electrolytes

    NASA Astrophysics Data System (ADS)

    Han, Yining; Huang, Shanghui; Yan, Tianying

    2014-07-01

    The size of ions significantly influences the electric double layer structure of room temperature ionic liquid (IL) electrolytes and their differential capacitance (Cd). In this study, we extended the mean-field theory (MFT) developed independently by Kornyshev (2007J. Phys. Chem. B 111 5545-57) and Kilic, Bazant, and Ajdari (2007 Phys. Rev. E 75 021502) (the KKBA MFT) to take into account the asymmetric 1:1 IL electrolytes by introducing an additional parameter ξ for the anion/cation volume ratio, besides the ionic compressibility γ in the KKBA MFT. The MFT of asymmetric ions becomes KKBA MFT upon ξ = 1, and further reduces to Gouy-Chapman theory in the γ → 0 limit. The result of the extended MFT demonstrates that the asymmetric ILs give rise to an asymmetric Cd, with the higher peak in Cd occurring at positive polarization for the smaller anionic size. At high potential, Cd decays asymptotically toward KKBA MFT characterized by γ for the negative polarization, and characterized by ξγ for the positive polarization, with inverse-square-root behavior. At low potential, around the potential of zero charge, the asymmetric ions cause a higher Cd, which exceeds that of Gouy-Chapman theory.

  18. A mean-field theory on the differential capacitance of asymmetric ionic liquid electrolytes.

    PubMed

    Han, Yining; Huang, Shanghui; Yan, Tianying

    2014-07-16

    The size of ions significantly influences the electric double layer structure of room temperature ionic liquid (IL) electrolytes and their differential capacitance (Cd). In this study, we extended the mean-field theory (MFT) developed independently by Kornyshev (2007J. Phys. Chem. B 111 5545-57) and Kilic, Bazant, and Ajdari (2007 Phys. Rev. E 75 021502) (the KKBA MFT) to take into account the asymmetric 1:1 IL electrolytes by introducing an additional parameter ξ for the anion/cation volume ratio, besides the ionic compressibility γ in the KKBA MFT. The MFT of asymmetric ions becomes KKBA MFT upon ξ = 1, and further reduces to Gouy-Chapman theory in the γ → 0 limit. The result of the extended MFT demonstrates that the asymmetric ILs give rise to an asymmetric Cd, with the higher peak in Cd occurring at positive polarization for the smaller anionic size. At high potential, Cd decays asymptotically toward KKBA MFT characterized by γ for the negative polarization, and characterized by ξγ for the positive polarization, with inverse-square-root behavior. At low potential, around the potential of zero charge, the asymmetric ions cause a higher Cd, which exceeds that of Gouy-Chapman theory. PMID:24920102

  19. Prenatal programming in an obese swine model: sex-related effects of maternal energy restriction on morphology, metabolism and hypothalamic gene expression.

    PubMed

    Óvilo, Cristina; González-Bulnes, Antonio; Benítez, Rita; Ayuso, Miriam; Barbero, Alicia; Pérez-Solana, Maria L; Barragán, Carmen; Astiz, Susana; Fernández, Almudena; López-Bote, Clemente

    2014-02-01

    Maternal energy restriction during pregnancy predisposes to metabolic alterations in the offspring. The present study was designed to evaluate phenotypic and metabolic consequences following maternal undernutrition in an obese pig model and to define the potential role of hypothalamic gene expression in programming effects. Iberian sows were fed a control or a 50 % restricted diet for the last two-thirds of gestation. Newborns were assessed for body and organ weights, hormonal and metabolic status, and hypothalamic expression of genes implicated in energy homeostasis, glucocorticoid function and methylation. Weight and adiposity were measured in adult littermates. Newborns of the restricted sows were lighter (P <0·01), but brain growth was spared. The plasma concentration of TAG was lower in the restricted newborns than in the control newborns of both the sexes (P <0·01), while the concentration of cortisol was higher in females born to the restricted sows (P <0·04), reflecting a situation of metabolic stress by nutrient insufficiency. A lower hypothalamic expression of anorexigenic peptides (LEPR and POMC, P <0·01 and P <0·04, respectively) was observed in females born to the restricted sows, but no effect was observed in the males. The expression of HSD11B1 gene was down-regulated in the restricted animals (P <0·05), suggesting an adaptive mechanism for reducing the harmful effects of elevated concentrations of cortisol. At 4 and 7 months of age, the restricted females were heavier and fatter than the controls (P< 0·01). Maternal feed restriction induces asymmetrical growth retardation and metabolic alterations in the offspring. Differences in gene expression at birth and higher growth and adiposity in adulthood suggest a female-specific programming effect for a positive energy balance, possibly due to overexposure to endogenous stress-induced glucocorticoids. PMID:24528940

  20. Molecular replacement with a large number of molecules in the asymmetric unit

    PubMed Central

    Jobichen, Chacko; Swaminathan, Kunchithapadam

    2014-01-01

    The exponential increase in protein structures deposited in the Protein Data Bank (PDB) has resulted in the elucidation of most, if not all, protein folds, thus making molecular replacement (MR) the most frequently used method for structure determination. A survey of the PDB shows that most of the structures determined by molecular replacement contain less than ten molecules in the asymmetric unit and that it is predominantly virus and ribosome structures that contain more than 20 molecules in the asymmetric unit. While the success of the MR method depends on several factors, such as the homology and the size of an input model, it is also a well known fact that this method can become significantly difficult in cases with a large number of molecules in the asymmetric unit, higher crystallographic symmetry and tight packing. In this paper, five representative structures containing 16–18 homomeric molecules in the asymmetric unit and the strategies that have been used to solve these structures are described. The difficulties faced and the lessons learned from these structure-determination efforts will be useful for selected and similar future situations with a large number of molecules in the asymmetric unit. PMID:25195913

  1. Electron Energization and Structure of the Diffusion Region During Asymmetric Reconnection

    NASA Technical Reports Server (NTRS)

    Chen, Li-Jen; Hesse, Michael; Wang, Shan; Bessho, Naoki; Daughton, William

    2016-01-01

    Results from particle-in-cell simulations of reconnection with asymmetric upstream conditions are reported to elucidate electron energization and structure of the electron diffusion region (EDR). Acceleration of unmagnetized electrons results in discrete structures in the distribution functions and supports the intense current and perpendicular heating in the EDR. The accelerated electrons are cyclotron turned by the reconnected magnetic field to produce the outflow jets, and as such, the acceleration by the reconnection electric field is limited, leading to resistivity without particle-particle or particle-wave collisions. A map of electron distributions is constructed, and its spatial evolution is compared with quantities previously proposed to be EDR identifiers to enable effective identifications of the EDR in terrestrial magnetopause reconnection.

  2. The mechanism by which an asymmetric distribution of plant growth hormone is attained

    NASA Astrophysics Data System (ADS)

    Bandurski, Robert S.; Schulze, Aga; Jensen, Philip; Desrosiers, Mark; Epel, Bernard; Kowalczyk, Stanley

    Zea mays (sweet corn) seedlings attain an asymmetric distribution of the growth hormone indole-3-acetic acid (IAA) within 3 minutes following a gravity stimulus. Both free and esterified IAA (that is total IAA) accumulate to a greater extent in the lower half of the mesocotyl cortex of a horizontally placed seedling than in the upper half. Thus, changes in the ratio of free IAA to ester IAA cannot account for the asymmetric distribution. Our studies demonstrate there is no de novo synthesis of IAA in young seedlings. We conclude that asymmetric IAA distribution is attained by a gravity-induced, potential-regulated gating of the movement of IAA from kernel to shoot and from stele to cortex. As a working theory, which we call the Potential Gating Theory, we propose that perturbation of the plant's bioelectric field, induced by gravity, causes opening and closing of transport channels in the plasmodesmata connecting the vascular stele to the surrounding cortical tissues. This results in asymmetric growth hormone distribution which results in the asymmetric growth characteristic of the gravitropic response.

  3. Defect-induced phase transition in the asymmetric simple exclusion process

    NASA Astrophysics Data System (ADS)

    Schmidt, Johannes; Popkov, Vladislav; Schadschneider, Andreas

    2015-04-01

    We reconsider the long-standing question of the critical defect hopping rate r c in the one-dimensional totally asymmetric exclusion process (TASEP) with a slow bond (defect). For r < r c a phase-separated state is observed due to queuing at the defect site, whereas for r≥ rc the defect site, has only local effects on the stationary state of the homogeneous system. Mean-field theory predicts r_c=1 (when hopping rates outside the defect bond are equal to 1) but numerical investigations seem to indicate rc ≈ 0.80 (2) . Here we improve the numerics to show that r c > 0.99 and give strong evidence that indeed r_c=1 as predicted by mean-field theory, and anticipated by recent theoretical findings.

  4. Asymmetrical Damage Partitioning in Bacteria: A Model for the Evolution of Stochasticity, Determinism, and Genetic Assimilation

    PubMed Central

    Chao, Lin; Rang, Camilla Ulla; Proenca, Audrey Menegaz; Chao, Jasper Ubirajara

    2016-01-01

    Non-genetic phenotypic variation is common in biological organisms. The variation is potentially beneficial if the environment is changing. If the benefit is large, selection can favor the evolution of genetic assimilation, the process by which the expression of a trait is transferred from environmental to genetic control. Genetic assimilation is an important evolutionary transition, but it is poorly understood because the fitness costs and benefits of variation are often unknown. Here we show that the partitioning of damage by a mother bacterium to its two daughters can evolve through genetic assimilation. Bacterial phenotypes are also highly variable. Because gene-regulating elements can have low copy numbers, the variation is attributed to stochastic sampling. Extant Escherichia coli partition asymmetrically and deterministically more damage to the old daughter, the one receiving the mother’s old pole. By modeling in silico damage partitioning in a population, we show that deterministic asymmetry is advantageous because it increases fitness variance and hence the efficiency of natural selection. However, we find that symmetrical but stochastic partitioning can be similarly beneficial. To examine why bacteria evolved deterministic asymmetry, we modeled the effect of damage anchored to the mother’s old pole. While anchored damage strengthens selection for asymmetry by creating additional fitness variance, it has the opposite effect on symmetry. The difference results because anchored damage reinforces the polarization of partitioning in asymmetric bacteria. In symmetric bacteria, it dilutes the polarization. Thus, stochasticity alone may have protected early bacteria from damage, but deterministic asymmetry has evolved to be equally important in extant bacteria. We estimate that 47% of damage partitioning is deterministic in E. coli. We suggest that the evolution of deterministic asymmetry from stochasticity offers an example of Waddington’s genetic

  5. Asymmetrical Damage Partitioning in Bacteria: A Model for the Evolution of Stochasticity, Determinism, and Genetic Assimilation.

    PubMed

    Chao, Lin; Rang, Camilla Ulla; Proenca, Audrey Menegaz; Chao, Jasper Ubirajara

    2016-01-01

    Non-genetic phenotypic variation is common in biological organisms. The variation is potentially beneficial if the environment is changing. If the benefit is large, selection can favor the evolution of genetic assimilation, the process by which the expression of a trait is transferred from environmental to genetic control. Genetic assimilation is an important evolutionary transition, but it is poorly understood because the fitness costs and benefits of variation are often unknown. Here we show that the partitioning of damage by a mother bacterium to its two daughters can evolve through genetic assimilation. Bacterial phenotypes are also highly variable. Because gene-regulating elements can have low copy numbers, the variation is attributed to stochastic sampling. Extant Escherichia coli partition asymmetrically and deterministically more damage to the old daughter, the one receiving the mother's old pole. By modeling in silico damage partitioning in a population, we show that deterministic asymmetry is advantageous because it increases fitness variance and hence the efficiency of natural selection. However, we find that symmetrical but stochastic partitioning can be similarly beneficial. To examine why bacteria evolved deterministic asymmetry, we modeled the effect of damage anchored to the mother's old pole. While anchored damage strengthens selection for asymmetry by creating additional fitness variance, it has the opposite effect on symmetry. The difference results because anchored damage reinforces the polarization of partitioning in asymmetric bacteria. In symmetric bacteria, it dilutes the polarization. Thus, stochasticity alone may have protected early bacteria from damage, but deterministic asymmetry has evolved to be equally important in extant bacteria. We estimate that 47% of damage partitioning is deterministic in E. coli. We suggest that the evolution of deterministic asymmetry from stochasticity offers an example of Waddington's genetic assimilation

  6. The Reception of J. H. van't Hoff's Theory of the Asymmetric Carbon Atom

    ERIC Educational Resources Information Center

    Snelders, H. A. M.

    1974-01-01

    Discusses Jacobus Henricus van't Hoff's revolutionary theory of the asymmetric carbon atom and its early reception among his contemporaries in the Netherlands. Indicates that the extension of the new idea to practical problems gives the impetus to the development of stereochemistry. (CC)

  7. On the interaction of surface heating anomalies with zonally symmetric and asymmetric atmospheric flows

    NASA Technical Reports Server (NTRS)

    Phillips, T. J.

    1982-01-01

    Models of intermediate complexity have been used to study some aspects of the climatic effects of anomalous heating, but many aspects of the problem have yet to be explored thoroughly. The present study represents a preliminary investigated of the gaps in scientific understanding of the interaction of heating and atmospheric dynamics. The principle research tool is a model of intermediate complexity, including a time-dependent, nonlinear-two-layer quasi-geostrophic model of relatively high horizontal resolution which incorporates simple heating parameterizations. The model is used to examine systematically the interaction of heating arising from anomalies in surface temperature with zonally symmetric and zonally asymmetric flows characterized by different values of static stability and mean vertical wind shear.

  8. The analytics of the limitation of collimating ability for asymmetric bi-convex lenses

    NASA Astrophysics Data System (ADS)

    Shi, Yong; Shao, Zhongxing

    2005-01-01

    Laser diode (LD) are playing more and more important role in a number of technical areas. However, due to LD's bad beam divergence, researchers have to use sophisticate optical systems to collimate or focus LD into other appliance. It is necessary to collimate laser diode. Whereas if the object is not ideal but with a limited dimension, no matter how to correct the radius, some aberrations may always remain. That is the collimation has a limitation. In this paper, we investigate the limitation for the asymmetric bi-convex lenses by ray tracing method with the help of Femat theory. And obtain the equations which analyze the limitation of the asymmetric bi-convex lenses. By programming the equations, we calculated and the limitation as a function of LD's beam dimension, index and the two radii of curvature of the asymmetric bi-convex lenses respectively. Keeping other conditions invariably and changing LD's beam dimension from 5mm to 150mm with a step of 5mm, we find that the limitation increases approximatively linearly with the increase of the beam dimension. Basing on the results of the calculation, we analyzed and plotted the limitation as a function of index and radii of curvature of the asymmetric bi-convex lenses in detail.

  9. Asymmetric Bilateral Hip Dislocations: A Case Report and Historical Review of the Literature

    PubMed Central

    Buckwalter, Joseph; Westerlind, Brian; Karam, Matthew

    2015-01-01

    Background Asymmetric bilateral hip dislocations are a rare injury pattern in which one hip dislocates posteriorly, and the contralateral hip dislocates anteriorly. We report a case of bilateral asymmetric hip dislocations and provide a comprehensive review of all available reports, identifying 104 total cases, which is 70 more than previously reported. Purpose To review and evaluate the total body of literature regarding bilateral asymmetric hip dislocations. Methods Comprehensive literature review and analysis of all reports of bilateral asymmetric hip dislocations with concurrent case report. Results and Conclusions Bilateral, asymmetric represent approximately 0.01%–0.02% of all joint dislocations. There has been a substantial increase in the number of case reports in the literature in the last 10 years. Males are more likely than females to incur this injury pattern and the most common mode of injury is motor vehicle accident Urgent closed reduction should be attempted in an efficient and safe manner to avoid potential complications, and open reduction should be considered in irreducible dislocations. Post reduction management should include stability assessment and CT to assess for associated injuries and intraarticular fragments; although no clear guidelines for post-reduction treatment emerged. Common complications include: nerve palsies, AVN and heterotopic ossification. PMID:26361448

  10. The synthesis and characterization of new iron coordination complexes utilizing an asymmetric coordinating chelate ligand

    SciTech Connect

    Watkins, B.E.; Satcher, J.H.

    1995-07-01

    A binuclear, unsymmetric coordinating ligand that is an effective metal chelator has been designed and synthesized. The new ligand has been shown to react readily with iron(II)/(III) forming a variety of coordination complexes. The binuclear complexes are of significant interest since they represent proof-of-principle for the development of coordinatively asymmetric, binuclear metal chelate compounds. Although this structural type of chelator now appears to be common in biological systems, it has not been previously described for inorganic coordination chemistry. The isolation of oxidation products will be helpful in establishing reaction mechanism(s) of these complexes with molecular oxygen. It is expected that this ligand and derivatives of it will play an important role in the development of bioinorganic complexes that aim to mimic enzyme active sites that function by substrate interaction at only one metal site of a multimetal active site.

  11. The BASL Polarity Protein Controls a MAPK Signaling Feedback Loop in Asymmetric Cell Division

    PubMed Central

    Zhang, Ying; Wang, Pengcheng; Shao, Wanchen; Zhu, Jian-Kang; Dong, Juan

    2015-01-01

    SUMMARY Cell polarization is linked to fate determination during asymmetric division of plant stem cells, but the underlying molecular mechanisms remain unknown. In Arabidopsis, BREAKING OF ASYMMETRY IN THE STOMATAL LINEAGE (BASL) is polarized to control stomatal asymmetric division. A MITOGEN-ACTIVATED PROTEIN KINASE (MAPK) cascade determines terminal stomatal fate by promoting the degradation of the lineage determinant SPEECHLESS (SPCH). Here we demonstrate that a positive feedback loop between BASL and the MAPK pathway constitutes a polarity module at the cortex. Cortical localization of BASL requires phosphorylation mediated by MPK3/6. Phosphorylated BASL functions as a scaffold and recruits the MAPKKK YODA and MPK3/6 to spatially concentrate signaling at the cortex. Activated MPK3/6 reinforces the feedback loop by phosphorylating BASL, and inhibits stomatal fate by phosphorylating SPCH. Polarization of the BASL-MAPK signaling feedback module represents a mechanism connecting cell polarity to fate differentiation during asymmetric stem cell division in plants. PMID:25843888

  12. Numerical investigation of the impact of asymmetric fuel injection on shock train characteristics

    NASA Astrophysics Data System (ADS)

    Qin, Bin; Chang, Juntao; Jiao, Xiaoliang; Bao, Wen; Yu, Daren

    2014-12-01

    Numerical simulations are carried out to investigate the impact of asymmetric fuel injection on shock train characteristics using the commercial-code FLUENT. The asymmetry of fuel injection is examined by changing the fuel flow rates of the upper and lower wall fuel injectors. The numerical approach solves the two-dimensional Reynolds-averaged Navier-Stokes (RANS) equations, supplemented with a k-ω model of turbulence. As a result, different ways of fuel injections will always lead to shock train transitions, with the variations of shock train structure, strength and leading edge position. For symmetric fuel injection, the flowfield of the isolator is quite asymmetric with the boundary layer of the upper wall side developing much stronger than that of the lower wall, which is due to the heterogeneity of the incoming flow. Regarding to asymmetric fuel injection with more of lower wall side, though the pressures in the combustor are nearly the same, the first shock of the shock train converts between 'Distinct symmetric X type shock' and 'Obscure and weaker asymmetric shock' and the shock train leading edge moves upstream with the increase of the asymmetry level. With regard to asymmetric fuel injection with more of upper wall side, 'incomplete asymmetric X type shock' occurs and the shock train structures keep nearly the same with low level of fuel injection asymmetry. Unexpected results like unstart will happen when increasing the level of fuel injection asymmetry. And the isolator will come back to normal state by decreasing the differential of upper and lower wall sides fuel injections.

  13. Intracellular microRNA profiles form in the Xenopus laevis oocyte that may contribute to asymmetric cell division.

    PubMed

    Sidova, Monika; Sindelka, Radek; Castoldi, Mirco; Benes, Vladimir; Kubista, Mikael

    2015-01-01

    Asymmetric distribution of fate determinants within cells is an essential biological strategy to prepare them for asymmetric division. In this work we measure the intracellular distribution of 12 maternal microRNAs (miRNA) along the animal-vegetal axis of the Xenopus laevis oocyte using qPCR tomography. We find the miRNAs have distinct intracellular profiles that resemble two out of the three profiles we previously observed for mRNAs. Our results suggest that miRNAs in addition to proteins and mRNAs may have asymmetric distribution within the oocyte and may contribute to asymmetric cell division as cell fate determinants. PMID:26059897

  14. Intracellular microRNA profiles form in the Xenopus laevis oocyte that may contribute to asymmetric cell division

    PubMed Central

    Sidova, Monika; Sindelka, Radek; Castoldi, Mirco; Benes, Vladimir; Kubista, Mikael

    2015-01-01

    Asymmetric distribution of fate determinants within cells is an essential biological strategy to prepare them for asymmetric division. In this work we measure the intracellular distribution of 12 maternal microRNAs (miRNA) along the animal-vegetal axis of the Xenopus laevis oocyte using qPCR tomography. We find the miRNAs have distinct intracellular profiles that resemble two out of the three profiles we previously observed for mRNAs. Our results suggest that miRNAs in addition to proteins and mRNAs may have asymmetric distribution within the oocyte and may contribute to asymmetric cell division as cell fate determinants. PMID:26059897

  15. ATIRS package: A program suite for the rovibrational analysis of infrared spectra of asymmetric top molecules

    NASA Astrophysics Data System (ADS)

    Tasinato, N.; Pietropolli Charmet, A.; Stoppa, P.

    2007-06-01

    Nowadays high-resolution infrared spectra can be recorded quite easily and therefore it has become important to assist the rovibrational analysis, especially the assignment step, that is still fraught with many problems in the presence of perturbation effects. In this article we provide a description of ATIRS, a complete software suite developed for assisting in the rotational investigation of vibrational bands of asymmetric top molecules. This package uses the Pickett's CALPGM suite for fitting transitions and predicting line positions and is composed by three stand-alone applications: (1) Visual Loomis-Wood for the assignment of spectral lines based on Loomis-Wood type diagrams; (2) Visual CALPGM, a new graphical interface to Pickett's programs SPFIT and SPCAT; (3) Visual Spectra Simulator for the simulation of spectra. The graphical interface to the CALPGM suite is developed for asymmetric rotors. The main feature of this application is to avoid the use of the parameter codes that are here replaced employing the well known parameter names or symbols. Highlighting the regular transition sequences, Visual Loomis-Wood assists in the assignment of the spectral lines. It visualizes the description of a transition and the assignment can be simply done by mouse-clicking on the diagram; moreover its display mode feature lets to check the experimental spectrum in which all the assigned lines together with their description are reported. Visual Spectra Simulator provides a simple and functionally application that, using the calculated frequencies and intensities given by SPCAT, simulates the high-resolution infrared spectrum and compare it to the experimental one. ATIRS, freely available to the spectroscopic community, is designed to be easy to use and presents a standard graphical interface; being based on the CALPGM package it can handle forbidden transitions and perturbations among many states.

  16. Asymmetric Catalysis with CO2 : The Direct α-Allylation of Ketones.

    PubMed

    Pupo, Gabriele; Properzi, Roberta; List, Benjamin

    2016-05-10

    Quaternary stereocenters are found in numerous bioactive molecules. The Tsuji-Trost reaction has proven to be a powerful C-C bond forming process, and, at least in principle, should be well suited to access quaternary stereocenters via the α-allylation of ketones. However, while indirect approaches are known, the direct, catalytic asymmetric α-allylation of branched ketones has been elusive until today. By combining "enol catalysis" with the use of CO2 as a formal catalyst for asymmetric catalysis, we have now developed a solution to this problem: we report a direct, highly enantioselective and highly atom-economic Tsuji-Trost allylation of branched ketones with allylic alcohol. Our reaction delivers products bearing quaternary stereocenters with high enantioselectivity and water as the sole by-product. We expect our methodology to be of utility in asymmetric catalysis and inspire the design of other highly atom-economic transformations. PMID:27071633

  17. The diophantine equation hard problem (DEHP) as an asymmetric primitive - Is it possible?

    NASA Astrophysics Data System (ADS)

    Kamel Ariffin, Muhammad Rezal

    2013-09-01

    We put forward a probable hard problem based on a Diophantine equation that has characteristics to become an asymmetric primitive. Motivated by rearranging the equation representing the RSA modulus, N together with its Euler-phi function, φ(N) we define the Diophantine Equation Hard Problem (DEHP) on a definitive setting. Relation between the RSA factorization problem, RSA's e-th root problem and the DEHP is also discussed. A proposed asymmetric cryptosystem that manipulates DEHP together with the difficulty of factoring a product of strong primes is presented.

  18. Mechanisms of hemispheric lateralization: Asymmetric interhemispheric recruitment in the face perception network.

    PubMed

    Frässle, Stefan; Paulus, Frieder Michel; Krach, Sören; Schweinberger, Stefan Robert; Stephan, Klaas Enno; Jansen, Andreas

    2016-01-01

    Perceiving human faces constitutes a fundamental ability of the human mind, integrating a wealth of information essential for social interactions in everyday life. Neuroimaging studies have unveiled a distributed neural network consisting of multiple brain regions in both hemispheres. Whereas the individual regions in the face perception network and the right-hemispheric dominance for face processing have been subject to intensive research, the functional integration among these regions and hemispheres has received considerably less attention. Using dynamic causal modeling (DCM) for fMRI, we analyzed the effective connectivity between the core regions in the face perception network of healthy humans to unveil the mechanisms underlying both intra- and interhemispheric integration. Our results suggest that the right-hemispheric lateralization of the network is due to an asymmetric face-specific interhemispheric recruitment at an early processing stage - that is, at the level of the occipital face area (OFA) but not the fusiform face area (FFA). As a structural correlate, we found that OFA gray matter volume was correlated with this asymmetric interhemispheric recruitment. Furthermore, exploratory analyses revealed that interhemispheric connection asymmetries were correlated with the strength of pupil constriction in response to faces, a measure with potential sensitivity to holistic (as opposed to feature-based) processing of faces. Overall, our findings thus provide a mechanistic description for lateralized processes in the core face perception network, point to a decisive role of interhemispheric integration at an early stage of face processing among bilateral OFA, and tentatively indicate a relation to individual variability in processing strategies for faces. These findings provide a promising avenue for systematic investigations of the potential role of interhemispheric integration in future studies. PMID:26439515

  19. Asymmetric Palladium-Catalyzed Alkene Carboamination Reactions for the Synthesis of Cyclic Sulfamides.

    PubMed

    Garlets, Zachary J; Parenti, Kaia R; Wolfe, John P

    2016-04-18

    The synthesis of cyclic sulfamides by enantioselective Pd-catalyzed alkene carboamination reactions between N-allylsulfamides and aryl or alkenyl bromides is described. High levels of asymmetric induction (up to 95:5 e.r.) are achieved using a catalyst composed of [Pd2 (dba)3 ] and (S)-Siphos-PE. Deuterium-labelling studies indicate the reactions proceed through syn-aminopalladation of the alkene and suggest that the control of syn- versus anti-aminopalladation pathways is important for asymmetric induction. PMID:26968748

  20. Effects of flowfield turbulence on asymmetric vortices over a slender body

    NASA Astrophysics Data System (ADS)

    Pinaire, James A., Jr.

    1989-12-01

    The flowfield about a vertically-launched surface-to-air missile model at an angle of attack of 50 degrees and a Reynolds number 110000 was investigated in a low-speed wind tunnel at the Naval Postgraduate School. The location and intensity of the asymmetric vortices in the wake of the missile model were determined and the vortices were displayed using planar velocity vector, total pressure coefficient, and vorticity plots. The model configuration tested was a body-only configuration (wings, strakes, and tails removed). Two flowfield conditions were treated: the nominal ambient wind tunnel condition and grid-generated turbulence condition. Flow visualization was conducted and video-taped for both the body-only and winged configurations. The following conclusions were reached: (1) the addition of turbulence decreased the vorticity but did not significantly change the patterns of the plots; (2) the addition of turbulence reduced the vorticity more at eleven body diameters than at six diameters; (3) compared to the body-only case, the vorticity is reduced for the x case but not for the plus case for the turbulence condition; and (4) flow visualization verified vortices movement away from the missiles as the tested point was moved aft along the missile body.

  1. Exploiting metal-ligand bifunctional reactions in the design of iron asymmetric hydrogenation catalysts.

    PubMed

    Morris, Robert H

    2015-05-19

    This is an Account of our development of iron-based catalysts for the asymmetric transfer hydrogenation (ATH) and asymmetric pressure hydrogenation (AH) of ketones and imines. These chemical processes provide enantiopure alcohols and amines for use in the pharmaceutical, agrochemical, fragrance, and other fine chemical industries. Fundamental principles of bifunctional reactivity obtained by studies of ruthenium catalysts by Noyori's group and our own with tetradentate ligands with tertiary phosphine and secondary amine donor groups were applied to improve the performance of these first iron(II) catalysts. In particular the correct positioning of a bifunctional H-Fe-NH unit in an iron hydride amine complex leads to exceptional catalyst activity because of the low energy barrier of dihydrogen transfer to the polar bond of the substrate. In addition the ligand structure with this NH group along with an asymmetric array of aryl groups orients the incoming substrate by hydrogen-bonding, and steric interactions provide the hydrogenated product in high enantioselectivity for several classes of substrates. Enantiomerically pure diamines or diphenylphosphino-amine compounds are used as the source of the asymmetry in the tetradentate ligands formed by the condensation of the amines with dialkyl- or diaryl-phosphinoaldehydes, a synthesis that is templated by Fe(II). The commercially available ortho-diphenylphosphinobenzaldehyde was used in the initial studies, but then diaryl-phosphinoacetaldehydes were found to produce much more effective ligands for iron(II). Once the mechanism of catalysis became clearer, the iron-templated synthesis of (S,S)-PAr2CH2CH2NHCHPhCHPhNH2 ligand precursors was developed to specifically introduce a secondary amine in the precatalyst structures. The reaction of a precatalyst with strong base yields a key iron-amido complex that reacts with isopropanol (in ATH) or dihydrogen (in AH) to generate an iron hydride with the Fe-H bond parallel to the

  2. Calculation of a mirror asymmetric effect in electron scattering from chiral targets. [in optically active medium

    NASA Technical Reports Server (NTRS)

    Rich, A.; Van House, J.; Hegstrom, R. A.

    1982-01-01

    A dynamical calculation is presented of the helicity induced in an initially unpolarized electron beam after elastic scattering from an optically active medium, a process analogous to the circular polarization induced in unpolarized light following Rayleigh scattering from chiral targets. The calculation is based on the bound helical electron model of a chiral molecule, according to which the major contribution to the helicity is provided by the perturbation of the electron bound state by the spin-orbit interaction of the bound electrons moving in the electric field of the molecular core. The net helicity acquired is found to depend directly on a molecular asymmetry factor and the square of the atomic number of the heaviest atom in an asymmetric environment. For the case of carbon, the induced helicity is on the order of 0.00001, which would account for its lack of observation in a recent experiment. Results may have implications for the origin of optical activity in biological molecules by the differential ionization of D and L isomers by beta-decay electrons.

  3. Controlling optical properties and function of BODIPY by using asymmetric substitution effects.

    PubMed

    Bañuelos-Prieto, Jorge; Agarrabeitia, Antonia R; Garcia-Moreno, Inmaculada; Lopez-Arbeloa, Iñigo; Costela, Angel; Infantes, Lourdes; Perez-Ojeda, M Eugenia; Palacios-Cuesta, Marta; Ortiz, María J

    2010-12-17

    Asymmetrically substituted BODIPY analogues of the dye PM567 have been synthesised from 2-acylpyrroles and pyrroles that bear indene, fluorene or difluorene units. The type of linkage between the fluorene and the BODIPY core plays an important role in the photophysics of the BODIPY chromophore. Indeed, an aliphatic bridge gives rise to an energy-transfer process between the chromophores, whereas a vinyl spacer allows an electronic interaction between them, leading to a large red shift of the spectral bands. The laser action of the new dyes has been analysed under transversal pumping at 10 Hz repetition rate, in both liquid phase and incorporated into solid polymeric matrices. Lasing efficiencies of up to 40% were reached with high photostabilities with the laser output remaining at the initial level after 1×10(5) pump pulses in the same position of the sample. The laser action of the new dyes outperforms the laser behaviour of commercial dyes that emit in the same spectral region. The replacement of fluorene by indene quenches the fluorescence and laser emission, but allows the development of an iron cation fluorescent sensor. PMID:20960443

  4. Asymmetrical effects of mesophyll conductance on fundamental photosynthetic parameters and their relationships estimated from leaf gas exchange measurements.

    PubMed

    Sun, Ying; Gu, Lianhong; Dickinson, Robert E; Pallardy, Stephen G; Baker, John; Cao, Yonghui; DaMatta, Fábio Murilo; Dong, Xuejun; Ellsworth, David; Van Goethem, Davina; Jensen, Anna M; Law, Beverly E; Loos, Rodolfo; Martins, Samuel C Vitor; Norby, Richard J; Warren, Jeffrey; Weston, David; Winter, Klaus

    2014-04-01

    Worldwide measurements of nearly 130 C3 species covering all major plant functional types are analysed in conjunction with model simulations to determine the effects of mesophyll conductance (g(m)) on photosynthetic parameters and their relationships estimated from A/Ci curves. We find that an assumption of infinite g(m) results in up to 75% underestimation for maximum carboxylation rate V(cmax), 60% for maximum electron transport rate J(max), and 40% for triose phosphate utilization rate T(u) . V(cmax) is most sensitive, J(max) is less sensitive, and T(u) has the least sensitivity to the variation of g(m). Because of this asymmetrical effect of g(m), the ratios of J(max) to V(cmax), T(u) to V(cmax) and T(u) to J(max) are all overestimated. An infinite g(m) assumption also limits the freedom of variation of estimated parameters and artificially constrains parameter relationships to stronger shapes. These findings suggest the importance of quantifying g(m) for understanding in situ photosynthetic machinery functioning. We show that a nonzero resistance to CO2 movement in chloroplasts has small effects on estimated parameters. A non-linear function with gm as input is developed to convert the parameters estimated under an assumption of infinite gm to proper values. This function will facilitate gm representation in global carbon cycle models. PMID:24117476

  5. Asymmetrical effects of mesophyll conductance on fundamental photosynthetic parameters and their relationships estimated from leaf gas exchange measurements

    SciTech Connect

    Sun, Ying; Gu, Lianhong

    2013-01-01

    Worldwide measurements of nearly 130 C3 species covering all major plant functional types are analyzed in conjunction with model simulations to determine the effects of mesophyll conductance (gm) on photosynthetic parameters and their relationships estimated from A/Ci curves. We find that an assumption of infinite gm results in up to 75% underestimation for maximum carboxylation rate Vcmax, 60% for maximum electron transport rate Jmax, and 40% for triose phosphate utilization rate Tu. Vcmax is most sensitive, Jmax is less sensitive, and Tu has the least sensitivity to the variation of gm. Due to this asymmetrical effect of gm, the ratios of Jmax to Vcmax, Tu to Vcmax, and Tu to Jmax are all overestimated. An infinite gm assumption also limits the freedom of variation of estimated parameters and artificially constrains parameter relationships to stronger shapes. These findings suggest the importance of quantifying gm for understanding in-situ photosynthetic machinery functioning. We show that a nonzero resistance to CO2 movement in chloroplasts has small effects on estimated parameters. A nonlinear function with gm as input is developed to convert the parameters estimated under an assumption of infinite gm to proper values. This function will facilitate gm representation in global carbon cycle models.

  6. Consistent assignment of the vibrations of symmetric and asymmetric para-disubstituted benzene molecules

    NASA Astrophysics Data System (ADS)

    Andrejeva, Anna; Gardner, Adrian M.; Tuttle, William D.; Wright, Timothy G.

    2016-03-01

    We give a description of the phenyl-ring-localized vibrational modes of the ground states of the para-disubstituted benzene molecules including both symmetric and asymmetric cases. In line with others, we quickly conclude that the use of Wilson mode labels is misleading and ambiguous; we conclude the same regarding the related ones of Varsányi. Instead we label the modes consistently based upon the Mulliken (Herzberg) method for the modes of para-difluorobenzene (pDFB). Since we wish the labelling scheme to cover both symmetrically- and asymmetrically-substituted molecules, we apply the Mulliken labelling under C2v symmetry. By studying the variation of the vibrational wavenumbers with mass of the substituent, we are able to identify the corresponding modes across a wide range of molecules and hence provide consistent assignments. Particularly interesting are pairs of vibrations that evolve from in- and out-of-phase motions in pDFB to more localized modes in asymmetric molecules. We consider the para isomers of the following: the symmetric dihalobenzenes, xylene, hydroquinone, the asymmetric dihalobenzenes, halotoluenes, halophenols and cresol.

  7. Assembly of the Isoindolinone Core of Muironolide A by Asymmetric Intramolecular Diels-Alder Cycloaddition

    PubMed Central

    Flores, Beatris; Molinski, Tadeusz F.

    2011-01-01

    The hexahydro-1H-isoindolin-1-one core of muironolide A was prepared by asymmetric intramolecular Diels Alder cycloaddition using a variant of the MacMillan organocatalyst which sets the C4,C5 and C11 stereocenters. PMID:21751773

  8. Critical behavior near the Mott transition in the half-filled asymmetric Hubbard model

    NASA Astrophysics Data System (ADS)

    Hoang, Anh-Tuan; Le, Duc-Anh

    2016-03-01

    We study the half-filled asymmetric Hubbard model within the two-site dynamical mean field theory. At zero temperature, explicit expressions of the critical interaction Uc for the Mott transition and the local self-energy are analytically derived. Critical behavior of the quasiparticle weights and the double occupancy are obtained analytically as functions of the on-site interaction U and the hopping asymmetry r. Our results are in good agreement with the ones obtained by much more sophisticated theory.

  9. Correlation between the Selectivity and the Structure of an Asymmetric Catalyst Built on a Chirally Amplified Supramolecular Helical Scaffold.

    PubMed

    Desmarchelier, Alaric; Caumes, Xavier; Raynal, Matthieu; Vidal-Ferran, Anton; van Leeuwen, Piet W N M; Bouteiller, Laurent

    2016-04-13

    For the first time, supramolecular helical rods composed of an achiral metal complex and a complementary enantiopure monomer provided a good level of enantioinduction in asymmetric catalysis. Mixtures containing an achiral ligand monomer (BTA(PPh2), 2 mol %) and an enantiopure ligand-free comonomer (ester BTA, 2.5 mol %), both possessing a complementary benzene-1,3,5-tricarboxamide (BTA) central unit, were investigated in combination with [Rh(cod)2]BArF (1 mol %) in the asymmetric hydrogenation of dimethyl itaconate. Notably, efficient chirality transfer occurs within the hydrogen-bonded coassemblies formed by BTA Ile and the intrinsically achiral catalytic rhodium catalyst, providing the hydrogenation product with up to 85% ee. The effect of the relative content of BTA Ile as compared to the ligand was investigated. The amount of chiral comonomer can be decreased down to one-fourth of that of the ligand without deteriorating the enantioselectivity of the reaction, while the enantioselectivity decreases for mixtures containing high amounts of BTA Ile. The nonlinear relationship between the amount of chiral comonomer and the enantioselectivity indicates that chirality amplification effects are at work in this catalytic system. Also, right-handed helical rods are formed upon co-assembly of the achiral rhodium complex of BTA(PPh2) and the enantiopure comonomer BTA Ile as confirmed by various spectroscopic and scattering techniques. Remarkably, the major enantiomer and the selectivity of the catalytic reaction are related to the handedness and the net helicity of the coassemblies, respectively. Further development of this class of catalysts built on chirally amplified helical scaffolds should contribute to the design of asymmetric catalysts operating with low amounts of chiral entities. PMID:26998637

  10. Electrophysiological effects of non-invasive Radio Electric Asymmetric Conveyor (REAC) on thalamocortical neural activities and perturbed experimental conditions.

    PubMed

    Zippo, Antonio G; Rinaldi, Salvatore; Pellegata, Giulio; Caramenti, Gian Carlo; Valente, Maurizio; Fontani, Vania; Biella, Gabriele E M

    2015-01-01

    The microwave emitting Radio Electric Asymmetric Conveyor (REAC) is a technology able to interact with biological tissues at low emission intensity (2 mW at the emitter and 2.4 or 5.8 GHz) by inducing radiofrequency generated microcurrents. It shows remarkable biological effects at many scales from gene modulations up to functional global remodeling even in human subjects. Previous REAC experiments by functional Magnetic Resonance Imaging (fMRI) on healthy human subjects have shown deep modulations of cortical BOLD signals. In this paper we studied the effects of REAC application on spontaneous and evoked neuronal activities simultaneously recorded by microelectrode matrices from the somatosensory thalamo-cortical axis in control and chronic pain experimental animal models. We analyzed the spontaneous spiking activity and the Local Field Potentials (LFPs) before and after REAC applied with a different protocol. The single neuron spiking activities, the neuronal responses to peripheral light mechanical stimuli, the population discharge synchronies as well as the correlations and the network dynamic connectivity characteristics have been analyzed. Modulations of the neuronal frequency associated with changes of functional correlations and significant LFP temporal realignments have been diffusely observed. Analyses by topological methods have shown changes in functional connectivity with significant modifications of the network features. PMID:26658170

  11. Electrophysiological effects of non-invasive Radio Electric Asymmetric Conveyor (REAC) on thalamocortical neural activities and perturbed experimental conditions

    PubMed Central

    Zippo, Antonio G.; Rinaldi, Salvatore; Pellegata, Giulio; Caramenti, Gian Carlo; Valente, Maurizio; Fontani, Vania; Biella, Gabriele E. M.

    2015-01-01

    The microwave emitting Radio Electric Asymmetric Conveyor (REAC) is a technology able to interact with biological tissues at low emission intensity (2 mW at the emitter and 2.4 or 5.8 GHz) by inducing radiofrequency generated microcurrents. It shows remarkable biological effects at many scales from gene modulations up to functional global remodeling even in human subjects. Previous REAC experiments by functional Magnetic Resonance Imaging (fMRI) on healthy human subjects have shown deep modulations of cortical BOLD signals. In this paper we studied the effects of REAC application on spontaneous and evoked neuronal activities simultaneously recorded by microelectrode matrices from the somatosensory thalamo-cortical axis in control and chronic pain experimental animal models. We analyzed the spontaneous spiking activity and the Local Field Potentials (LFPs) before and after REAC applied with a different protocol. The single neuron spiking activities, the neuronal responses to peripheral light mechanical stimuli, the population discharge synchronies as well as the correlations and the network dynamic connectivity characteristics have been analyzed. Modulations of the neuronal frequency associated with changes of functional correlations and significant LFP temporal realignments have been diffusely observed. Analyses by topological methods have shown changes in functional connectivity with significant modifications of the network features. PMID:26658170

  12. Impact of the Nanoscale Gap Morphology on the Plasmon Coupling in Asymmetric Nanoparticle Dimer Antennas.

    PubMed

    Popp, Paul S; Herrmann, Janning F; Fritz, Eva-Corinna; Ravoo, Bart Jan; Höppener, Christiane

    2016-03-23

    Coupling of plasmon resonances in metallic gap antennas is of interest for a wide range of applications due to the highly localized strong electric fields supported by these structures, and their high sensitivity to alterations of their structure, geometry, and environment. Morphological alterations of asymmetric nanoparticle dimer antennas with (sub)-nanometer size gaps are assigned to changes of their optical response in correlative dark-field spectroscopy and high-resolution transmission electron microscopy (HR-TEM) investigations. This multimodal approach to investigate individual dimer structures clearly demonstrates that the coupling of the plasmon modes, in addition to well-known parameters such as the particle geometry and the gap size, is also affected by the relative alignment of both nanoparticles. The investigations corroborate that the alignment of the gap forming facets, and with that the gap area, is crucial for their scattering properties. The impact of a flat versus a rounded gap structure on the optical properties of equivalent dimers becomes stronger with decreasing gap size. These results hint at a higher confinement of the electric field in the gap and possibly a different onset of quantum transport effects for flat and rounded gap antennas in corresponding structures for very narrow gaps. PMID:26849412

  13. Shear melting at the crystal-liquid interface: Erosion and the asymmetric suppression of interface fluctuations

    NASA Astrophysics Data System (ADS)

    Ramsay, Malcolm; Harrowell, Peter

    2016-04-01

    The influence of an applied shear on the planar crystal-melt interface is modeled by a nonlinear stochastic partial differential equation of the interface fluctuations. A feature of this theory is the asymmetric destruction of interface fluctuations due to advection of the crystal protrusions on the liquid side of the interface only. We show that this model is able to qualitatively reproduce the nonequilibrium coexistence line found in simulations. The impact of shear on spherical clusters is also addressed.

  14. Development of Lexical and Syntactic Representations: The Acquisition of Symmetrical and Asymmetrical Verbs

    ERIC Educational Resources Information Center

    Gurcanli, Ozge

    2013-01-01

    This dissertation concerns the acquisition of the interaction between lexicosemantic properties of verbs and syntax, focusing on symmetrical and asymmetrical verbs in different syntactic structures. Based on linguistic evidence, it is shown that two conceptual categories, Mutuality and Number, interact to give rise to four event-types: Single…

  15. Catalyst-controlled switch of regioselectivity in the asymmetric allylic alkylation of oxazolones with MBHCs.

    PubMed

    Zhu, Gongming; Yang, Junxian; Bao, Guangjun; Zhang, Ming; Li, Jing; Li, Yiping; Sun, Wangsheng; Hong, Liang; Wang, Rui

    2016-06-14

    A catalyst-controlled switch of regioselectivity in asymmetric allylic alkylation of oxazolones with MBHCs was described. The SN2'-SN2' reaction catalysed by a quinine-derived base produced γ-selective secondary allylic oxazolone derivatives, whereas the addition-elimination reaction catalysed by an amino acid-derived bifunctional urea catalyst provided β-selective primary adducts. PMID:27250517

  16. Large-scale asymmetric synthesis of the bioprotective agent JP4-039 and analogs

    PubMed Central

    Frantz, Marie-Céline; Pierce, Joshua G.; Pierce, Joan M.; Kangying, Li; Qingwei, Wan; Johnson, Matthew; Wipf, Peter

    2011-01-01

    JP4-039 is a novel nitroxide conjugate capable of crossing lipid bilayer membranes and scavenging reactive oxygen species (ROS). An efficient and scalable one-pot hydrozirconation-transmetalation-imine addition methodology has been developed for its asymmetric preparation. Furthermore, this versatile methodology allows for the synthesis of cyclopropyl and fluorinated analogs of the parent lead structure. PMID:21452836

  17. Design and performance of the asymmetrical coupler of plastic optical fibers

    NASA Astrophysics Data System (ADS)

    Kruszewski, Jerzy; Borecki, Michal; Beblowska, Maria

    2004-09-01

    Presented work concerns designing and making the asymmetric couplers. Three-dimensional fiber space modeling of light propagation have been used in the project. Couplers were made using two different technologies of gluing. Design results are confirmed by experiments and elements have expected parameters.

  18. Asymmetric aurora in the conjugate hemispheres during the magnetic storm on August 17, 2001

    NASA Astrophysics Data System (ADS)

    Ostgaard, Nikolai; Reistad, Jone P.; Ternfjord, Paul; Laundal, Karl M.; Rexer, Theresa; Haaaland, Stein; Snekvik, Kristian; Milan, Steve

    2016-04-01

    On August 17, 2001 a strong magnetic storm caused significant compression and reconfiguration of the Earth's magnetosphere as well as highly asymmetric aurora in the conjugate hemispheres. During this event, the Polar VIS Earth camera and the IMAGE FUV system provided about 2 hours of imaging data from the conjugate hemispheres. During this time interval the entire auroral ovals were imaged in both hemispheres. By analyzing all three imaging channels from IMAGE, the WIC, SI12 and SI13, as well as the one VIS Earth channel, we identify what are symmetric and what are asymmetric features. Combined with supporting data from other satellites, such as DMSP and NOAA, as well as ground based networks as SuperDARN and SuperMAG, we try to understand the dynamical behavior of the interaction between solar wind, magnetosphere and the two polar regions of the ionosphere.

  19. A diagnostic study of the asymmetric distribution of rainfall during the landfall of typhoon Haitang (2005)

    NASA Astrophysics Data System (ADS)

    Yue, Caijun; Gao, Shouting; Liu, Lu; Li, Xiaofan

    2015-10-01

    The precipitation during landfall of typhoon Haitang (2005) showed asymmetric structures (left side/right side of the track). Analysis of Weather Research and Forecasting model simulation data showed that rainfall on the right side was more than 15 times stronger than on the left side. The causes were analyzed by focusing on comparing the water vapor flux, stability and upward motion between the two sides. The major results were as follows: (1) Relative humidity on both sides was over 80%, whereas the convergence of water vapor flux in the lower troposphere was about 10 times larger on the right side than on the left side. (2) Both sides featured conditional symmetric instability [MPV (moist potential vorticity) <0], but the right side was more unstable than the left side. (3) Strong (weak) upward motion occurred throughout the troposphere on the right (left) side. The Q vector diagnosis suggested that large-scale and mesoscale forcing accounted for the difference in vertical velocity. Orographic lift and surface friction forced the development of the asymmetric precipitation pattern. On the right side, strong upward motion from the forcing of different scale weather systems and topography caused a substantial release of unstable energy and the transportation of water vapor from the lower to the upper troposphere, which produced torrential rainfall. However, the above conditions on the left side were all much weaker, which led to weaker rainfall. This may have been the cause of the asymmetric distribution of rainfall during the landfall of typhoon Haitang.

  20. Mammalian Par3 regulates progenitor cell asymmetric division via Notch signaling in the developing neocortex

    PubMed Central

    Bultje, Ronald S.; Castaneda-Castellanos, David R.; Jan, Lily Yeh; Jan, Yuh-Nung; Kriegstein, Arnold R.; Shi, Song-Hai

    2009-01-01

    Asymmetric cell division of radial glial progenitors produces neurons while allowing self-renewal; however, little is known about the mechanism that generates asymmetry in daughter cell fate specification. Here we found that mammalian partition defective protein 3 (mPar3), a key cell polarity determinant, exhibits dynamic distribution in radial glial progenitors. While it is enriched at the lateral membrane domain in the ventricular endfeet during interphase, mPar3 becomes dispersed and shows asymmetric localization as cell cycle progresses. Either removal or ectopic expression of mPar3 prevents radial glial progenitors from dividing asymmetrically yet generates different outcomes in daughter cell fate specification. Furthermore, the expression level of mPar3 affects Notch signaling, and manipulations of Notch signaling or Numb expression suppress mPar3 regulation of radial glial cell division and daughter cell fate specification. These results reveal a critical molecular pathway underlying asymmetric cell division of radial glial progenitors in the mammalian neocortex. PMID:19640478

  1. Behavioral profiles displayed by rats in an elevated asymmetric plus-maze: effects of diazepam.

    PubMed

    Ruarte, M B; Alvarez, E O

    1999-01-01

    When rats are exposed to unknown environments where novelty and fear-inducing characteristics are present (conflictive environments), some specific behaviors are induced and exploration is apparently modulated by fear. In our laboratory, a new type of plus-maze was designed as a model of conflictive exploration. The maze is composed of four arms with different geometrical characteristics, differing from each other by the presence or absence of walls. The degree of asymmetry was as follows: NW, no wall arm; SW, a single high wall present; HL, a low and a high wall present, and HH, two high walls present. The four arms were arranged at 90 degrees angles and the apparatus was called the elevated asymmetric plus-maze (APM). The purpose of the present study was to assess the behavioral profile of rats exposed for a single time to the APM with or without treatment with benzodiazepine. Increasing doses of diazepam were injected intraperitoneally in several groups of male, 90-day-old Holtzman rats. Distilled water was injected in control animals. Thirty minutes after treatment all rats were exposed singly to a 5-min test in the APM. Diazepam induced a biphasic modification of exploration in the NW and SW arms. The increase in the exploration score was evident at low doses of diazepam (0.25-1.0 mg/kg body weight) and the decrease in exploration was found with the higher doses of diazepam (2.0-3.0 mg/kg body weight). Non-exploratory behaviors (permanency) were not affected by benzodiazepine treatment. In the HL arm, exploration was not modified but permanency was increased in a dose-dependent manner. In the HH arm, exploration and permanency were not affected. Results are compatible with the idea that exploration-processing mechanisms in conflictive environments are modulated by fear-processing mechanisms of the brain. PMID:10347776

  2. Asymmetric large-mode-area photonic crystal fiber structure with effective single-mode operation: design and analysis.

    PubMed

    Saini, Than Singh; Kumar, Ajeet; Sinha, Ravindra Kumar

    2016-03-20

    The asymmetrical structure of photonic crystal fiber has been reported for a large mode area with the single-mode operation. The design works on the principle of bend-induced mode filtering. The proposed structure can be designed (i) by introducing down-doped material rods in place of nine air holes of the inner ring near the core of the structure and (ii) by increasing the diameter of the rest of the three air holes of the same ring in the direction of bending. These three air holes together with nine down-doped material rods control the mode field inside the core region and hence the bending losses of the modes. The single-mode operation is ensured by introducing high bend loss for the first higher order mode and very low bend loss for the fundamental mode. The finite-element-method-based anisotropic perfectly matched layer boundary condition has been applied for accurate analysis of bend loss of the structure. Numerical results show that effective single-mode operation can be ensured with a mode area as large as 1530  μm2 at bend state with a bend radius of 30 cm. The proposed photonic crystal optical fiber with such a large mode area can have potential applications in compact high-power delivery devices such as high-power fiber lasers and amplifiers. PMID:27140567

  3. Axi-asymmetric development of buoyant diapirs in analogue and numerical experiments: the role of source-layer tilts

    NASA Astrophysics Data System (ADS)

    Dutta, Urmi; Baruah, Amiya; Mandal, Nibir

    2016-04-01

    Diapiric structure owing to gravity instabilities, triggered by density inversion in the rock sequences, is a unique geodynamic manifestation. High-density layers that rest upon low-density layers tend to sink, forcing the latter to squeeze up in the form of domal shapes, called buoyant diapirs. Using two-layer viscous model experiments, we investigated the effects of source-layer tilt (β) in controlling the ascent behaviour of buoyant diapirs initiated by a Rayleigh-Taylor instability. Results from our laboratory experiments, performed with a buoyant viscous layer (PDMS; density: 965.0 kg/m3) underlying a denser fluid (water; density: 998.2 kg/m3) suggest that the diapir shape is highly sensitive to β. The results suggest that diapirs growing from a tilted source layer ascend with contrasting lateral spreading rates in the up and down slope directions, resulting in axi-asymmetric geometry. Conversely, diapirs initiated from a horizontal source layer always maintain axi- symmetric shape as they grow. Interestingly, diapir heads retain a circular outline on the horizontal top surface irrespective of their degree of symmetry. However, for the axi-asymmetric cases, the upwelling axis is shifted more in the up-slope direction, i.e. away from the centre of this circular geometry. We show a spectrum of the axi-symmetric to -asymmetric geometrical transitions as a function of the source-layer tilt (β). For large β (> 4o), the diapirs become unstable, and their stems undergo a continuous drift in the upslope direction during their vertical growth. Whilst, several studies have shown the development of axi-asymmetric diapirs, the underlain flow kinematics in the viscous layers as a function of source layer tilt leading to such shape transition remains unclear. With this objective we ran computational fluid dynamic (CFD) simulations, by employing the volume of fluid (VOF) method, to investigate the role of underlying dynamics for axi-asymmetric diapiric growth. This study

  4. Effect of Epilayer Tilt on Dynamical X-ray Diffraction from Uniform Heterostructures with Asymmetric Dislocation Densities

    NASA Astrophysics Data System (ADS)

    Rago, P. B.; Jain, F. C.; Ayers, J. E.

    2013-11-01

    In this work we extend the dynamical theory of Bragg x-ray diffraction to account for a tilted, asymmetrically defected, uniform-composition epitaxial layer atop a (001) substrate. In a zincblende semiconductor there are eight active slip systems, within which two distinct types of dislocations exist. These two types are distinguished by their misfit segments, which are oriented along either the [110] or direction. The two threading dislocation densities can be measured by observing the variation of the x-ray rocking curve width with the incident beam azimuth. However, the tilting of the epilayer also has a measurable and potentially conflicting effect on the rocking curve as a function of azimuth. First, the peak position varies by (nominally) twice the layer's absolute tilt within a full azimuthal rotation. Second, the tilting of the layer affects the epilayer rocking curve width. Through use of the modified dynamical diffraction theory, we show that the peak width's azimuthal dependence on tilt is of only second order, so that the layer misorientation with respect to the substrate need not be considered for the purpose of determining the two dislocation populations by x-ray diffraction. Dynamical simulations were performed and compared with experimental measurements for a ZnSe/GaAs(001) structure grown by photoassisted metalorganic vapor-phase epitaxy, and in this way the two dislocation density populations were found to be D A = 1.6 × 108 cm-2 and D B = 2.0 × 108 cm-2.

  5. The endocytic protein alpha-Adaptin is required for numb-mediated asymmetric cell division in Drosophila.

    PubMed

    Berdnik, Daniela; Török, Tibor; González-Gaitán, Marcos; Knoblich, Juergen A

    2002-08-01

    During asymmetric cell division in Drosophila sensory organ precursor cells, the Numb protein localizes asymmetrically and segregates into one daughter cell, where it influences cell fate by repressing signal transduction via the Notch receptor. We show here that Numb acts by polarizing the distribution of alpha-Adaptin, a protein involved in receptor-mediated endocytosis. alpha-Adaptin binds to Numb and localizes asymmetrically in a Numb-dependent fashion. Mutant forms of alpha-Adaptin that no longer bind to Numb fail to localize asymmetrically and cause numb-like defects in asymmetric cell division. Our results suggest a model in which Numb influences cell fate by downregulating Notch through polarized receptor-mediated endocytosis, since Numb also binds to the intracellular domain of Notch. PMID:12194853

  6. Analysis of the Asymmetric Synergy in the Adsorption of Zwitterionic-Ionic Surfactant Mixtures at the Air-Water Interface below and above the Critical Micelle Concentration.

    PubMed

    Li, Peixun; Ma, Kun; Thomas, Robert K; Penfold, Jeffrey

    2016-04-21

    Surface tension (ST) and neutron reflection (NR) measurements have been made on a series of mixtures of two ionic surfactants, one anionic (SDS) and one cationic (C12TAB), with the two zwitterionic surfactants dodecyldimethylammonium propanesulfonate (C12SB) and dodecyldimethylammonium acetate C12CB. The anionic surfactant SDS interacts equally strongly with both zwitterionics and the C12TAB less strongly. For the SDS-C12SB mixtures simultaneous fitting of ST and NR data made it possible to use the pseudophase approximation with an expansion of the excess free energy, GE, up to and including the quartic term. GE is asymmetric for the adsorbed layer and the minimum occurs at a surface mole fraction, xSDS, of 0.38 with a depth of -2.8RT. NR was also used to follow the adsorption above the CMC, and the changes showed that the intramicellar interaction is more asymmetric, but weaker than the surface interaction with a depth of GE of -2.2RT at the minimum of xSDS = 0.23. A strong synergy in the total surface excess was observed above the mixed CMC with an enhancement over the adsorption of the pure components of about 45%, which appears to result from a sharp variation of the packing with surface composition coupled with the effects of the strongly asymmetric micellization. NR data on SDS-C12CB showed that GE for both surface and micelles was similarly asymmetric to those for SDS-C12SB, but there is no strong synergy in adsorption. This is attributed to the more rigid headgroup. C12TAB-C12SB has an asymmetric GE for both surface and micelle similar to those for SDS-C12SB but the depths are smaller at -0.6RT and -0.5RT, respectively, and there is no synergy in the total adsorption. PMID:27029532

  7. CONSTRAINTS FROM ASYMMETRIC HEATING: INVESTIGATING THE EPSILON AURIGAE DISK

    SciTech Connect

    Pearson, Richard L. III; Stencel, Robert E. E-mail: robert.stencel@du.edu

    2015-01-01

    Epsilon Aurigae is a long-period eclipsing binary that likely contains an F0Ia star and a circumstellar disk enshrouding a hidden companion, assumed to be a main-sequence B star. High uncertainty in its parallax has kept the evolutionary status of the system in question and, hence, the true nature of each component. This unknown, as well as the absence of solid state spectral features in the infrared, requires an investigation of a wide parameter space by means of both analytic and Monte Carlo radiative transfer (MCRT) methods. The first MCRT models of epsilon Aurigae that include all three system components are presented here. We seek additional system parameter constraints by melding analytic approximations with MCRT outputs (e.g., dust temperatures) on a first-order level. The MCRT models investigate the effects of various parameters on the disk-edge temperatures; these include two distances, three particle size distributions, three compositions, and two disk masses, resulting in 36 independent models. Specifically, the MCRT temperatures permit analytic calculations of effective heating and cooling curves along the disk edge. These are used to calculate representative observed fluxes and corresponding temperatures. This novel application of thermal properties provides the basis for utilization of other binary systems containing disks. We find degeneracies in the model fits for the various parameter sets. However, the results show a preference for a carbon disk with particle size distributions ≥10 μm. Additionally, a linear correlation between the MCRT noon and basal temperatures serves as a tool for effectively eliminating portions of the parameter space.

  8. Constraints from Asymmetric Heating: Investigating the Epsilon Aurigae Disk

    NASA Astrophysics Data System (ADS)

    Pearson, Richard L., III; Stencel, Robert E.

    2015-01-01

    Epsilon Aurigae is a long-period eclipsing binary that likely contains an F0Ia star and a circumstellar disk enshrouding a hidden companion, assumed to be a main-sequence B star. High uncertainty in its parallax has kept the evolutionary status of the system in question and, hence, the true nature of each component. This unknown, as well as the absence of solid state spectral features in the infrared, requires an investigation of a wide parameter space by means of both analytic and Monte Carlo radiative transfer (MCRT) methods. The first MCRT models of epsilon Aurigae that include all three system components are presented here. We seek additional system parameter constraints by melding analytic approximations with MCRT outputs (e.g., dust temperatures) on a first-order level. The MCRT models investigate the effects of various parameters on the disk-edge temperatures; these include two distances, three particle size distributions, three compositions, and two disk masses, resulting in 36 independent models. Specifically, the MCRT temperatures permit analytic calculations of effective heating and cooling curves along the disk edge. These are used to calculate representative observed fluxes and corresponding temperatures. This novel application of thermal properties provides the basis for utilization of other binary systems containing disks. We find degeneracies in the model fits for the various parameter sets. However, the results show a preference for a carbon disk with particle size distributions >=10 μm. Additionally, a linear correlation between the MCRT noon and basal temperatures serves as a tool for effectively eliminating portions of the parameter space.

  9. [Asymmetric dimethylarginine: predictor of cardiovascular diseases?].

    PubMed

    Németh, Balázs; Kustán, Péter; Németh, Ádám; Lenkey, Zsófia; Cziráki, Attila; Kiss, István; Sulyok, Endre; Ajtay, Zénó

    2016-03-27

    Cardiovascular diseases are the most common diseases worldwide. They are responsible for one third of global deaths and they are the leading cause of disability, too. The usage of different levels of prevention in combination with effective risk assessment improved these statistical data. Risk assessment based on classic risk factors has recently been supported with several new markers, such as asymmetric dimethylarginine, which is an endogenous competitive inhibitor of nitric oxide synthase. Elevated levels of asymmetric dimethylarginine have been reported in obese, smoker, hypercholesterolemic, hypertensive and diabetic patients. According to previous studies, asymmetric dimethylarginine is a suitable indicator of endothelial dysfunction, which is held to be the preceding condition before atherosclerosis. Several researches found positive correlation between higher levels of asymmetric dimethylarginine and coronary artery disease onset, or progression of existing coronary disease. According to a study involving 3000 patients, asymmetric dimethylarginine is an independent risk factor of cardiovascular mortality in patients with coronary artery disease. This article summarizes the role of asymmetric dimethylarginine in prediction of cardiovascular diseases, and underlines its importance in cardiovascular prevention. PMID:26996894

  10. The Arf GAP CNT-2 regulates the apoptotic fate in C. elegans asymmetric neuroblast divisions

    PubMed Central

    Singhvi, Aakanksha; Teuliere, Jerome; Talavera, Karla; Cordes, Shaun; Ou, Guangshuo; Vale, Ronald D.; Prasad, Brinda C.; Clark, Scott G.; Garriga, Gian

    2011-01-01

    Summary During development, all cells make the decision to live or die. While the molecular mechanisms that execute the apoptotic program are well defined, less is known about how cells decide whether to live or die. In C. elegans, this decision is linked to how cells divide asymmetrically [1, 2]. Several classes of molecules are known to regulate asymmetric cell divisions in metazoans, yet these molecules do not appear to control C. elegans divisions that produce apoptotic cells [3]. We identified CNT-2, an Arf GAP protein of the AGAP family, as a novel regulator of this type of neuroblast division. Loss of CNT-2 altered daughter cell size and caused the apoptotic cell to adopt the fate of its sister cell, resulting in extra neurons. CNT-2’s Arf GAP activity was essential for its function in these divisions. The N-terminus of CNT-2, which contains a GTPase-like domain that defines the AGAP class of Arf GAPs, negatively regulates CNT-2’s function. We provide evidence that CNT-2 regulates receptor-mediated endocytosis and consider the implications of its role in asymmetric cell divisions. PMID:21596567

  11. Asymmetric auroral intensities in the Earth's Northern and Southern hemispheres

    NASA Astrophysics Data System (ADS)

    Laundal, K. M.; Østgaard, N.

    2009-07-01

    It is commonly assumed that the aurora borealis (Northern Hemisphere) and aurora australis (Southern Hemisphere) are mirror images of each other because the charged particles causing the aurora follow the magnetic field lines connecting the two hemispheres. The particles are believed to be evenly distributed between the two hemispheres, from the source region in the equatorial plane of the magnetosphere. Although it has been shown that similar auroral features in the opposite hemispheres can be displaced tens of degree in longitude and that seasonal effects can cause differences in global intensity, the overall auroral patterns were still similar. Here we report observations that clearly contradict the common assumption about symmetric aurora: intense spots are seen at dawn in the Northern summer Hemisphere, and at dusk in the Southern winter Hemisphere. The asymmetry is interpreted in terms of inter-hemispheric currents related to seasons, which have been predicted but hitherto had not been seen.

  12. The asymmetric profile of the H76 alpha line emission from MWC349

    NASA Technical Reports Server (NTRS)

    Rodriquez, L. F.; Canto, J.; Escalante, V.; Moran, J. M.

    1986-01-01

    MWC349 is an emission-line star found by Merrill, Humason and Burwell (1932). Braes, Habing and Schoenmaker (1972) discovered that it is a strong radio source. The radio emission originates in a massive ionized wind that is expanding with a velocity of about 50 km s(-1). Its continuum spectrum fits well a nu(0.6) power law from the cm wavelengths to the far-IR. Radio recombination line emission from the envelope of MWC349 was first detected by Altenhoff, Strittmatter and Wendker (1981). We have obtained good signal-to-noise ratio, Very Large Array observations of the H76 alpha radio recombination line from the ionized wind of MWC349. Our data reveal that the profile is markedly asymmetric, with a steep rise on the blue side. This asymmetry could be due to non-LTE effects in the formation and transfer of the line or to intrinsic asymmetries in the envelope. Our analysis suggests that most probably the peculiar profile is caused by a non-LTE enhancement of the line emission from the side of the envelope nearer to the observer. This asymmetry has the opposite sense than that observed in optical and IR recombination lines, where a different effect (absorption of the stellar continuum by the gas in the wind between the star and the observer) is known to be dominant, leading to the classic P Cygni profile. We propose that the profiles of the radio recombination lines from ionized stellar winds will have this characteristic shape, while optical and IR recombination lines are characterized by P Cygni-like profiles. Unfortunately, at present the detection of radio recombination lines from ionized stellar winds is only feasible for MWC349 and a few other objects.

  13. Exciton-related nonlinear optical properties in cylindrical quantum dots with asymmetric axial potential: combined effects of hydrostatic pressure, intense laser field, and applied electric field.

    PubMed

    Zapata, Alejandro; Acosta, Ruben E; Mora-Ramos, Miguel E; Duque, Carlos A

    2012-01-01

    : The exciton binding energy of an asymmetrical GaAs-Ga1-xAlxAs cylindrical quantum dot is studied with the use of the effective mass approximation and a variational calculation procedure. The influence on this quantity of the application of a direct-current electric field along the growth direction of the cylinder, together with that of an intense laser field, is particularly considered. The resulting states are used to calculate the exciton-related nonlinear optical absorption and optical rectification, whose corresponding resonant peaks are reported as functions of the external probes, the quantum dot dimensions, and the aluminum molar fraction in the potential barrier regions. PMID:22971418

  14. Asymmetric abstraction and allocation: the Israeli-Palestinian water pumping record.

    PubMed

    Zeitoun, Mark; Messerschmid, Clemens; Attili, Shaddad

    2009-01-01

    The increased attention given to international transboundary aquifers may be nowhere more pressing than on the western bank of the Jordan River. Hydropolitical analysis of six decades of Israeli and Palestinian pumping records reveals how ground water abstraction rates are as asymmetrical as are water allocations. The particular hydrogeology of the region, notably the variability in depth to ground water, variations in ground water quality, and the vulnerability of the aquifer, also affect the outcome. The records confirm previously drawn conclusions of the influence of the agricultural lobby in maintaining a supply-side water management paradigm. Comparison of water consumption rates divulges that water consumed by all sectors of the farming-based Palestinian economy is less than half of Israeli domestic consumption. The overwhelming majority of "reserve" flows from wet years are sold at subsidized rates to the Israeli agricultural sector, while very minor amounts are sold at normal rates to the Palestinian side for drinking water. An apparent coevolution of water resource variability and politics serves to explain increased Israeli pumping prior to negotiations in the early 1990s. The abstraction record from the Western Aquifer Basin discloses that the effective limit set by the terms of the 1995 Oslo II Agreement is regularly violated by the Israeli side, thereby putting the aquifer at risk. The picture that emerges is one of a transboundary water regime that is much more exploitative than cooperative and that risks spoiling the resource as it poisons international relations. PMID:18754797

  15. Generation of energy bands in the electron beam with an asymmetric chicane-type emittance exchange beamline

    NASA Astrophysics Data System (ADS)

    Jiang, Bo-Cheng; Zhao, Zhen-tang; Feng, Chao

    2014-11-01

    An asymmetric chicane-type transverse to longitudinal emittance exchange beam line is investigated and presented in this paper. This design is more feasible for existing machines due to its coaxial arrangement of the components and dispense of symmetric requirement of two doglegs compared to two-dogleg type one. By inserting quadrupoles between the dogleg and deflecting cavity, the dispersion can be amplified and hence the bending angle of the chicane is reduced with the same deflecting cavity parameters which will reduce the coherent synchrotron radiation effect.

  16. Asymmetric crack propagation near waterfall cliff and its influence on the waterfall lip shape

    NASA Astrophysics Data System (ADS)

    Vastola, G.

    2011-11-01

    By means of Finite Element Method (FEM) calculations and fatigue fracture mechanics analysis, we show that crack propagation in bedrocks close to the waterfall cliff is preferential towards the cliff face rather than upstream the river. Based on this effect, we derive the corresponding expression for the velocity of recession vr of the waterfall lip, and find that vr has a quadratic dependence on the hydrostatic pressure. Quantitatively, this erosion mechanism generates recession rates of the order of ~cm-dm/y, consistent with the recession rates of well-known waterfalls. We enclose our expression for vr into a growth model to investigate the time evolution of a waterfall lip subject to this erosional mechanism. Because of the dependence on hydrostatic pressure, the shape of the waterfall is influenced by the transverse profile of the river that generates the waterfall. If the river has a transverse concavity, the waterfall evolves a curved shape. Evolution for the case of meanders with asymmetric transverse profile is also given.

  17. Asymmetrically warped spacetimes

    SciTech Connect

    Csaki, C.

    2001-01-01

    We investigate spacetimes in which the speed of light along flat 4D sections varies over the extra dimensions due to different warp factors for the space and the time coordinates ('asymmetrically warped' spacetimes). The main property of such spaces is that while the induced metric is flat, implying Lorentz invariant particle physics on a brane, bulk gravitational effects will cause apparent violations of Lorentz invariance and of causality from the brane observer's point of view. An important experimentally verifiable consequence of this is that gravitational waves may travel with a speed different from the speed of light on the brane, and possibly even faster. We find the most general spacetimes of this sort, which are given by certain types of black hole spacetimes characterized by the m a s and the charge of the black hole. We show how to satisfy the junction conditions and analyze the properties of these space-times.

  18. Dynamic Kinetic Resolution Approach for the Asymmetric Synthesis of Tetrahydrobenzodiazepines Using Transfer Hydrogenation by Chiral Phosphoric Acid.

    PubMed

    Horiguchi, Kosaku; Yamamoto, Eri; Saito, Kodai; Yamanaka, Masahiro; Akiyama, Takahiko

    2016-06-01

    Asymmetric synthesis of tetrahydrobenzodiazepines was achieved by transfer hydrogenation of dihydrobenzodiazepines with benzothiazoline having a hydrogen-bonding donor substituent by means of a newly synthesized chiral phosphoric acid. This method was applicable to various racemic dihydrobenzodiazepines to give the corresponding products in good yields with excellent diastereoselectivities and enantioselectivities taking advantage of the dynamic kinetic resolution. Furthermore, the effect of bulky substituent at 3,3'-position on the catalyst and hydrogen-bonding donor substituent on benzothiazoline was fully elucidated by the theoretical study. PMID:27150449

  19. The interaction of an asymmetrical localised synthetic jet on a side-supported sphere

    NASA Astrophysics Data System (ADS)

    Findanis, N.; Ahmed, N. A.

    2008-10-01

    A localised synthetic jet offers promise of an optimum and cost-effective practical method of delaying separation and promoting reattachment in fluids with solid body interactions. The asymmetric flow that may result from its use may also be beneficial in improving the aerodynamic performance of a lifting body. There are insufficient studies of synthetic jets, particularly on three-dimensional bluff bodies that are more representative of complex flows in real situations. A comprehensive study on an 80 mm diameter sphere designed with localised synthetic jet orifices was, therefore, conducted in an 18 in×18 in open circuit closed test-section wind tunnel at a Reynolds number of 5×104. The coefficient of pressure distribution was measured by continuously varying the location of the synthetic jet and compared with the no synthetic jet condition. The three-dimensional effects on the flow over the sphere body are particularly made apparent through the growth and the effects of the boundary layer and the deviation from potential flow. Overall, the synthetic jet had the effect of delaying the separation point and extending it further downstream on the sphere surface concomitantly producing a significant reduction in drag, providing solid support to the viability of strategically located synthetic jet when higher lift or lower drag is desired. A surprising discovery was the ability of the synthetic jet to improve the flow at the junction of the sting support and sphere. This has promising implications in devising methods to reduce interference drag that are common in many practical applications such as near junctions between wing and the fuselage.

  20. Single-drop impingement onto a wavy liquid film and description of the asymmetrical cavity dynamics.

    PubMed

    van Hinsberg, Nils Paul; Charbonneau-Grandmaison, Marie

    2015-07-01

    The present paper is devoted to an experimental investigation of the cavity formed upon a single-drop impingement onto a traveling solitary surface wave on a deep pool of the same liquid. The dynamics of the cavity throughout its complete expansion and receding phase are analyzed using high-speed shadowgraphy and compared to the outcomes of drop impingements onto steady liquid surface films having equal thickness. The effects of the surface wave velocity, amplitude and phase, drop impingement velocity, and liquid viscosity on the cavity's diameter and depth evolution are accurately characterized at various time instants. The wave velocity induces a distinct and in time increasing inclination of the cavity in the wave propagation direction. In particular for strong waves an asymmetrical distribution of the radial expansion and retraction velocity along the cavity's circumference is observed. A linear dependency between the absolute Weber number and the typical length and time scales associated with the cavity's maximum depth and maximum diameter is reported. PMID:26274267

  1. Single-drop impingement onto a wavy liquid film and description of the asymmetrical cavity dynamics

    NASA Astrophysics Data System (ADS)

    van Hinsberg, Nils Paul; Charbonneau-Grandmaison, Marie

    2015-07-01

    The present paper is devoted to an experimental investigation of the cavity formed upon a single-drop impingement onto a traveling solitary surface wave on a deep pool of the same liquid. The dynamics of the cavity throughout its complete expansion and receding phase are analyzed using high-speed shadowgraphy and compared to the outcomes of drop impingements onto steady liquid surface films having equal thickness. The effects of the surface wave velocity, amplitude and phase, drop impingement velocity, and liquid viscosity on the cavity's diameter and depth evolution are accurately characterized at various time instants. The wave velocity induces a distinct and in time increasing inclination of the cavity in the wave propagation direction. In particular for strong waves an asymmetrical distribution of the radial expansion and retraction velocity along the cavity's circumference is observed. A linear dependency between the absolute Weber number and the typical length and time scales associated with the cavity's maximum depth and maximum diameter is reported.

  2. Tunable nanoplasmonic sensor based on the asymmetric degree of Fano resonance in MDM waveguide

    NASA Astrophysics Data System (ADS)

    Zhan, Shiping; Peng, Yongyi; He, Zhihui; Li, Boxun; Chen, Zhiquan; Xu, Hui; Li, Hongjian

    2016-03-01

    We first report a simple nanoplasmonic sensor for both universal and slow-light sensing in a Fano resonance-based waveguide system. A theoretical model based on the coupling of resonant modes is provided for the inside physics mechanism, which is supported by the numerical FDTD results. The revealed evolution of the sensing property shows that the Fano asymmetric factor p plays an important role in adjusting the FOM of sensor, and a maximum of ~4800 is obtained when p = 1. Finally, the slow-light sensing in such nanoplasmonic sensor is also investigated. It is found that the contradiction between the sensing width with slow-light (SWS) and the relevant sensitivity can be resolved by tuning the Fano asymmetric factor p and the quality factor of the superradiant mode. The presented theoretical model and the pronounced features of this simple nanoplasmonic sensor, such as the tunable sensing and convenient integration, have significant applications in integrated plasmonic devices.

  3. Finite-temperature calculations for spin-polarized asymmetric nuclear matter with the lowest order constrained variational method

    SciTech Connect

    Bigdeli, M.; Bordbar, G. H.; Poostforush, A.

    2010-09-15

    The lowest order constrained variational technique has been used to investigate some of the thermodynamic properties of spin-polarized hot asymmetric nuclear matter, such as the free energy, symmetry energy, susceptibility, and equation of state. We have shown that the symmetry energy of the nuclear matter is substantially sensitive to the value of spin polarization. Our calculations show that the equation of state of the polarized hot asymmetric nuclear matter is stiffer for higher values of the polarization as well as the isospin asymmetry parameter. Our results for the free energy and susceptibility show that spontaneous ferromagnetic phase transition cannot occur for hot asymmetric matter.

  4. Energy dependence of the probability for asymmetric fission of /sup 213/At

    SciTech Connect

    Gruzintsev, E.N.; Itkis, M.G.; Okolovich, V.N.; Rusanov, A.Y.; Smirenkin, G.N.; Tolstikov, V.N.

    1982-10-20

    The mass distribution of the fragments of the fission of /sup 213/At in the reaction /sup 209/Bi(..cap alpha.., f) has been measured for ..cap alpha.. energies in the range 34.7--50 MeV. Over the entire energy range studied, the asymmetric mode is an improbable, slightly energy-dependent mode for the /sup 213/At fission. This property of the /sup 213/At fission represents a qualitative distinction from the fission of heavy nuclei.

  5. Asymmetric Transfer Hydrogenation of Imines using Alcohol: Efficiency and Selectivity are Influenced by the Hydrogen Donor.

    PubMed

    Pan, Hui-Jie; Zhang, Yao; Shan, Chunhui; Yu, Zhaoyuan; Lan, Yu; Zhao, Yu

    2016-08-01

    The influence of the alcohol, as the hydrogen donor, on the efficiency and selectivity of the asymmetric transfer hydrogenation (ATH) of imines is reported for the first time. This discovery not only leads to a highly enantioselective access to N-aryl and N-alkyl amines, but also provides new insight into the mechanism of the ATH of imines. Both experimental and computational studies provide support for the reaction pathway involving an iridium alkoxide as the reducing species. PMID:27374880

  6. Effects of surface residual species in SBA-16 on encapsulated chiral (1S,2S)-DPEN-RuCl2(TPP)2 in asymmetric hydrogenation of acetophenone

    NASA Astrophysics Data System (ADS)

    Shi, Xiufeng; Xing, Bin; Fan, Binbin; Xue, Zhaoteng; Li, Ruifeng

    2016-03-01

    The SBA-16 obtained by different routes of elimination of organic templates were used as the hosts for encapsulation of chiral Ru complex (1S,2S)-DPEN-RuCl2(TPP)2 ( 1) (DPEN = 1,2-diphenylethylene-diamine, TPP = triphenyl phosphine). The methods for removing templates had distinct effects on the amount of residual template in SBA-16, which made the SBA-16 with different surface and structure properties. 1 encapsulated in SBA-16 extracted with the mixture of pyridine and ethanol showed higher activity and enantioselectivity for acetophenone asymmetric hydrogenation.

  7. Asymmetric cortical extension shifts cleavage furrow position in Drosophila neuroblasts

    PubMed Central

    Connell, Marisa; Cabernard, Clemens; Ricketson, Derek; Doe, Chris Q.; Prehoda, Kenneth E.

    2011-01-01

    The cytokinetic cleavage furrow is typically positioned symmetrically relative to the cortical cell boundaries, but it can also be asymmetric. The mechanisms that control furrow site specification have been intensively studied, but how polar cortex movements influence ultimate furrow position remains poorly understood. We measured the position of the apical and the basal cortex in asymmetrically dividing Drosophila neuroblasts and observed preferential displacement of the apical cortex that becomes the larger daughter cell during anaphase, effectively shifting the cleavage furrow toward the smaller daughter cell. Asymmetric cortical extension is correlated with the presence of cortical myosin II, which is polarized in neuroblasts. Loss of myosin II asymmetry by perturbing heterotrimeric G-protein signaling results in symmetric extension and equal-sized daughter cells. We propose a model in which contraction-driven asymmetric polar extension of the neuroblast cortex during anaphase contributes to asymmetric furrow position and daughter cell size. PMID:21937716

  8. An asymmetrical sensing scheme for 1T1C FRAM to increase the sense margin

    NASA Astrophysics Data System (ADS)

    Ze, Jia; Zhongren, Zou; Tianling, Ren; Hongyi, Chen

    2010-11-01

    A novel asymmetrical current-based sensing scheme for 1T1C FRAM is proposed, in which the two input transistors are not the same size and a feedback NMOS is added at the reference side of the sense amplifier. Compared with the conventional symmetrical scheme in Ref [8], the proposed scheme increases the sense margin of the readout current by 53.9% and decreases the sensing power consumption by 14.1%, at the cost of an additional 7.89% area of the sensing scheme. An experimental FRAM prototype utilizing the proposed asymmetrical scheme is implemented in a 0.35 μm three metal process, in which the function of the prototype is verified.

  9. An IST Model of the Formation of Magnetic Depressions from Rotationally Asymmetric Fields

    NASA Astrophysics Data System (ADS)

    Hamilton, R.; Jovanovich, P.

    2014-12-01

    Magnetic holes have been observed in the solar wind from 0.3 AU to 17 AU, in the magnetosheath of comet Halley, in the heliosheath and also at high heliocentric latitudes. It has been reported that only about 30% of magnetic holes have a small change in the direction of the magnetic field across them. This case had previously been modeled [DOI: 10.1029/2008JA013582] using the 1D-DNLS equation including the effects of dissipation which showed that any profile with a nonlinear component will inevitably lead to the formation of a train of so-called one-parameter dark solitons with a corresponding decrease in field strength. We report on an extension of this earlier work to the rotationally asymmetric case. The magnetic field structure for 'solitons' in this case has not been developed in the literature, but we have found that the direct scattering problem shows the same dynamics as the symmetric case. Connections between these results and magnetic decreases observed in our numerical simulations will be presented.

  10. Impact of electrode preparation on the bending of asymmetric planar electro-active polymer microstructures

    NASA Astrophysics Data System (ADS)

    Weiss, Florian M.; Töpper, Tino; Osmani, Bekim; Winterhalter, Carla; Müller, Bert

    2014-03-01

    Compliant electrodes of microstructures have been a research topic for many years because of the increasing interest in consumer electronics, robotics, and medical applications. This interest includes electrically activated polymers (EAP), mainly applied in robotics, lens systems, haptics and foreseen in a variety of medical devices. Here, the electrodes consist of metals such as gold, graphite, conductive polymers or certain composites. The common metal electrodes have been magnetron sputtered, thermally evaporated or prepared using ion implantation. In order to compare the functionality of planar metal electrodes in EAP microstructures, we have investigated the mechanical properties of magnetron sputtered and thermally evaporated electrodes taking advantage of cantilever bending of the asymmetric, rectangular microstructures. We demonstrate that the deflection of the sputtered electrodes is up to 39 % larger than that of thermally evaporated nanometer-thin film on a single silicone film. This difference has even more impact on nanometer-thin, multi-stack, low-voltage EAP actuators. The stiffening effect of many metallic electrode layers is expected to be one of the greatest drawbacks in the multi-stack approaches, which will be even more pronounced if the elastomer layer thickness will be in the sub-micrometer range. Additionally, an improvement in voltage and strain resolution is presented, which is as low as 2 V or 5 × 10-5 above 10 V applied.

  11. On the electron dynamics during island coalescence in asymmetric magnetic reconnection

    SciTech Connect

    Cazzola, E. Innocenti, M. E. Lapenta, G.; Markidis, S.; Goldman, M. V. Newman, D. L.

    2015-09-15

    We present an analysis of the electron dynamics during rapid island merging in asymmetric magnetic reconnection. We consider a doubly periodic system with two asymmetric transitions. The upper layer is an asymmetric Harris sheet of finite width perturbed initially to promote a single reconnection site. The lower layer is a tangential discontinuity that promotes the formation of many X-points, separated by rapidly merging islands. Across both layers, the magnetic field and the density have a strong jump, but the pressure is held constant. Our analysis focuses on the consequences of electron energization during island coalescence. We focus first on the parallel and perpendicular components of the electron temperature to establish the presence of possible anisotropies and non-gyrotropies. Thanks to the direct comparison between the two different layers simulated, we can distinguish three main types of behavior characteristic of three different regions of interest. The first type represents the regions where traditional asymmetric reconnections take place without involving island merging. The second type of regions instead shows reconnection events between two merging islands. Finally, the third regions identify the regions between two diverging island and where typical signature of reconnection is not observed. Electrons in these latter regions additionally show a flat-top distribution resulting from the saturation of a two-stream instability generated by the two interacting electron beams from the two nearest reconnection points. Finally, the analysis of agyrotropy shows the presence of a distinct double structure laying all over the lower side facing the higher magnetic field region. This structure becomes quadrupolar in the proximity of the regions of the third type. The distinguishing features found for the three types of regions investigated provide clear indicators to the recently launched Magnetospheric Multiscale NASA mission for investigating magnetopause

  12. Asymmetric functionalization as a promising route to open the band gap of silicene: A theoretical prediction

    NASA Astrophysics Data System (ADS)

    Wang, Nan; Guo, Hao; Liu, Yue-jie; Zhao, Jing-xiang; Cai, Qing-hai; Wang, Xuan-zhang

    2015-09-01

    Recent studies have suggested that chemical functionalization is a promising avenue to tailor the band gap of silicene, which plays an important role on widening its application. Here, we propose a new route to functionalize silicene, that is asymmetrically modification of silicene (Janus silicene or X-silicene-Y), which is produced by co-grafting of two different groups (X and Y) on both sides of silicene. By performing density functional theory (DFT) calculations, we demonstrate the stability and electronic properties of X-silicene-Y sheets. The results indicate that chemical functionalization on one side can greatly enhance the chemical reactivity of the opposite side, suggesting the communication between the two adsorbed groups and enhancing the stability of the hybrids. Compared to the pristine silicene with a zero band gap, X-silicene-Y sheets exhibit semiconducting nature with a non-zero band gap, which is dependent on the coverage of X/Y. Our results provide a novel and effective method to engineer the band gap of silicene, which would be useful to design novel silicene-based devices with multiple functions.

  13. New Evidence about the Spontaneous Symmetry Breaking: Action of an Asymmetric Weak Heat Source.

    PubMed

    Mineo, Placido; Villari, Valentina; Scamporrino, Emilio; Micali, Norberto

    2015-09-17

    In the present study, we show how, in a stagnant water solution of uncharged aggregated achiral porphyrin-based molecules, a mirror-symmetry breaking (SB) can be induced and controlled by means of a weak asymmetric thermal gradient. In particular, it is shown that the optical activity of the aggregate porphyrin solution can be generated and reversed, in sign, only acting on the thermal ramp direction (heating or cooling). In order to avoid data misinterpretation, the aggregate structure modifications with the temperature change and the linear dichroism contribution to circular dichroism spectra were evaluated. A model simulation, using a finite element analysis approach describing the thermal flows, shows that small thermal gradients are able to give rise to asymmetric heat flow. The results reported here can be considered new evidence about the spontaneous symmetry breaking phenomenon induced by very weak forces having an important role in the natural chiral selective processes. PMID:26315854

  14. Asymmetric profiles and prewetting lines in the filling of planar slits with Ne.

    PubMed

    Sartarelli, Salvador A; Szybisz, Leszek

    2013-05-23

    The filling of slits with identical planar walls is investigated in the frame of the density functional theory. For this kind of slit, the confining potential is symmetric with respect to its central plane. Closed and open systems are studied by applying, respectively, the canonical and grand canonical ensembles (CE and GCE). Results obtained for the confinement of fluid Ne by alkaline surfaces are reported. The behavior of these systems is analyzed by varying the strength of the Ne-substrate attraction, the temperature T, and the coverage Γ(l). It is assumed that the one-body density of the fluid, ρ(r), is uniform along the (x, y) planes parallel to the walls, becoming a function of the coordinate z perpendicular to those planes. Two sorts of solutions are found for the density profile: (i) symmetric ones that follow the left-right symmetry of the potential exerted by the walls and (ii) asymmetric ones that break the symmetry of the slit. The pores are wide enough for determining prewetting (PW) lines and wetting and critical PW temperatures, i.e., T(w) and T(cpw), from the analysis of symmetric solutions provided by both the CE and GCE schemes. Asymmetric species are examined in detail for T > T(w). It is shown that for a given Ne-substrate pair at a fixed T both the CE and GCE frames yield only one asymmetric 2-fold degenerate stable profile (formed by a "thin" wetting film at one wall and a "thick" wetting film at the other) coexisting with two symmetric profiles (formed by "thin" or "thick" wetting films at the two walls), while the remaining asymmetric states are at best metastable. This feature occurs along PW lines and disappears at T(cpw). PMID:23617543

  15. Asymmetrical F-18 Flurorodeoxyglucose uptake in the breasts: A dilemma solved by patient history

    PubMed Central

    Gupta, Ravi Kant; Tripathi, Madhavi; Sahoo, Manas Kumar; Nazar, Aftab Hasan; Agarwal, Krishankant; Kumar, Kunal; Damle, Nishikant; Bal, Chandrasekhar

    2016-01-01

    The present case highlights the importance of history taking in solving the dilemmas of variant F-18 FDG uptake on PET/CT. Asymmetrically increased, abnormal looking, FDG uptake in the right breast of our patient was related to her breast feeding practice. Because of personal preference the patient suckled her child from the right breast only. This resulted in asymmetry of size, increase in glandular breast parenchyma and FDG uptake in the breast that was suckled. PMID:26917909

  16. Asymmetric Yield Function Based on the Stress Invariants for Pressure Sensitive Metals

    SciTech Connect

    Jeong Wahn Yoon; Yanshan Lou; Jong Hun Yoon; Michael V. Glazoff

    2014-05-01

    A general asymmetric yield function is proposed with dependence on the stress invariants for pressure sensitive metals. The pressure sensitivity of the proposed yield function is consistent with the experimental result of Spitzig and Richmond (1984) for steel and aluminum alloys while the asymmetry of the third invariant is preserved to model strength differential (SD) effect of pressure insensitive materials. The proposed yield function is transformed in the space of the stress triaxaility, the von Mises stress and the normalized invariant to theoretically investigate the possible reason of the SD effect. The proposed plasticity model is further extended to characterize the anisotropic behavior of metals both in tension and compression. The extension of the yield function is realized by introducing two distinct fourth-order linear transformation tensors of the stress tensor for the second and third invariants, respectively. The extended yield function reasonably models the evolution of yield surfaces for a zirconium clock-rolled plate during in-plane and through-thickness compression reported by Plunkett et al. (2007). The extended yield function is also applied to describe the orthotropic behavior of a face-centered cubic metal of AA 2008-T4 and two hexagonal close-packed metals of high-purity-titanium and AZ31 magnesium alloy. The orthotropic behavior predicted by the generalized model is compared with experimental results of these metals. The comparison validates that the proposed yield function provides sufficient predictability on SD effect and anisotropic behavior both in tension and compression. When it is necessary to consider r-value anisotropy, the proposed function is efficient to be used with nonassociated flow plasticity by introducing a separate plastic potential for the consideration of r-values as shown in Stoughton & Yoon (2004, 2009).

  17. The Molecular Clock of Neutral Evolution Can Be Accelerated or Slowed by Asymmetric Spatial Structure

    PubMed Central

    Allen, Benjamin; Sample, Christine; Dementieva, Yulia; Medeiros, Ruben C.; Paoletti, Christopher; Nowak, Martin A.

    2015-01-01

    Over time, a population acquires neutral genetic substitutions as a consequence of random drift. A famous result in population genetics asserts that the rate, K, at which these substitutions accumulate in the population coincides with the mutation rate, u, at which they arise in individuals: K = u. This identity enables genetic sequence data to be used as a “molecular clock” to estimate the timing of evolutionary events. While the molecular clock is known to be perturbed by selection, it is thought that K = u holds very generally for neutral evolution. Here we show that asymmetric spatial population structure can alter the molecular clock rate for neutral mutations, leading to either Ku. Our results apply to a general class of haploid, asexually reproducing, spatially structured populations. Deviations from K = u occur because mutations arise unequally at different sites and have different probabilities of fixation depending on where they arise. If birth rates are uniform across sites, then K ≤ u. In general, K can take any value between 0 and Nu. Our model can be applied to a variety of population structures. In one example, we investigate the accumulation of genetic mutations in the small intestine. In another application, we analyze over 900 Twitter networks to study the effect of network topology on the fixation of neutral innovations in social evolution. PMID:25719560

  18. Further Studies on the Origins of Asymmetric Charge Partitioning in Protein Homodimers

    PubMed Central

    Jurchen, John C.; Garcia, David E.; Williams, Evan R.

    2005-01-01

    Dissociation of gas-phase protonated protein dimers into their constituent monomers can result in either symmetric or asymmetric charge partitioning. Dissociation of α-lactalbumin homodimers with 15+ charges results in a symmetric, but broad, distribution of protein monomers with charge states centered around 8+/7+. In contrast, dissociation of the 15+ heterodimer consisting of one molecule in the oxidized form and one in the reduced form results in highly asymmetric charge partitioning in which the reduced species carries away predominantly 11+ charges, and the oxidized molecule carries away 4+ charges. This result cannot be adequately explained by differential charging occurring either in solution or in the electrospray process, but appears to be best explained by the reduced species unfolding upon activation in the gas phase with subsequent separation and proton transfer to the unfolding species in the dissociation complex to minimize Coulomb repulsion. For dimers of cytochrome c formed directly from solution, the 17+ charge state undergoes symmetric charge partitioning whereas dissociation of the 13+ is asymmetric. Reduction of the charge state of dimers with 17+ charges to 13+ via gas-phase proton transfer and subsequent dissociation of the mass selected 13+ ions results in a symmetric charge partitioning. This result clearly shows that the structure of the dimer ions with 13+ charges depends on the method of ion formation and that the structural difference is responsible for the symmetric versus asymmetric charge partitioning observed. This indicates that the asymmetry observed when these ions are formed directly from solution must come about due either to differences in the monomer conformations in the dimer that exist in solution or that occur during the electrospray ionization process. These results provide additional evidence for the origin of charge asymmetry that occurs in the dissociation of multiply charged protein complexes and indicate that some

  19. Symmetry Energy and Surface Clustering in Nuclei; Probing the Asymmetric Nuclear Matter

    NASA Astrophysics Data System (ADS)

    Abdullah, Nooraihan; Nasir Usmani, Qamar; Anwar, Khairul; Sauli, Zaliman

    We investigate the properties of asymmetric nuclear matter (ANM) which is consistent with clustering at low densities of nuclear matter. Due to clustering, the equation of state of asymmetric nuclear matter demonstrates peculiar properties. It is shown that the ground of ANM has two separate phases of normal nuclear matter and neutron matter for N > Z. This situation is at variance with the conventional picture of uniform distribution of neutrons and protons for ANM. Thus, this leads to an excellent understanding of the symmetry energy data of Wada et al. [1] in the density range of 0.048-0.032 fm-3. It is shown that inclusion of clustering at the nuclear surface is essential to explain about nuclei near the neutron drip line. The research incorporates 2149 nuclei [2] with N,Z ≥ 8.

  20. Going vertical: functional role and working principles of the protein Inscuteable in asymmetric cell divisions.

    PubMed

    Culurgioni, Simone; Mapelli, Marina

    2013-11-01

    Coordinating mitotic spindle dynamics with cortical polarity is essential for stem cell asymmetric divisions. Over the years, the protein Inscuteable (Insc) has emerged as a key element determining the spindle orientation in asymmetric mitoses. Its overexpression increases differentiative divisions in systems as diverse as mouse keratinocytes and radial glial cells. To date, the molecular explanation to account for this phenotype envisioned Insc as an adaptor molecule bridging between the polarity proteins Par3:Par6:aPKC and the spindle pulling machines assembled on NuMA:LGN:Gαi. However, recent biochemical and structural data revealed that Insc and NuMA are competitive interactors of LGN, challenging the simplistic idea of a single apical macromolecular complex, and demanding a revision of the actual working principles of Insc. PMID:23516018

  1. A general strategy for the chemoenzymatic synthesis of asymmetrically branched N-glycans.

    PubMed

    Wang, Zhen; Chinoy, Zoeisha S; Ambre, Shailesh G; Peng, Wenjie; McBride, Ryan; de Vries, Robert P; Glushka, John; Paulson, James C; Boons, Geert-Jan

    2013-07-26

    A systematic, efficient means of producing diverse libraries of asymmetrically branched N-glycans is needed to investigate the specificities and biology of glycan-binding proteins. To that end, we describe a core pentasaccharide that at potential branching positions is modified by orthogonal protecting groups to allow selective attachment of specific saccharide moieties by chemical glycosylation. The appendages were selected so that the antenna of the resulting deprotected compounds could be selectively extended by glycosyltransferases to give libraries of asymmetrical multi-antennary glycans. The power of the methodology was demonstrated by the preparation of a series of complex oligosaccharides that were printed as microarrays and screened for binding to lectins and influenza-virus hemagglutinins, which showed that recognition is modulated by presentation of minimal epitopes in the context of complex N-glycans. PMID:23888036

  2. Asymmetric spatiotemporal chaos induced by a polypoid mass in the excised larynx

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Jiang, Jack J.

    2008-12-01

    In this paper, asymmetric spatiotemporal chaos induced by a polypoid mass simulating the laryngeal pathology of a vocal polyp is experimentally observed using high-speed imaging in an excised larynx. Spatiotemporal analysis reveals that the normal vocal folds show spatiotemporal correlation and symmetry. Normal vocal fold vibrations are dominated mainly by the first vibratory eigenmode. However, pathological vocal folds with a polypoid mass show broken symmetry and spatiotemporal irregularity. The spatial correlation is decreased. The pathological vocal folds spread vibratory energy across a large number of eigenmodes and induce asymmetric spatiotemporal chaos. High-order eigenmodes show complicated dynamics. Spatiotemporal analysis provides a valuable biomedical application for investigating the spatiotemporal chaotic dynamics of pathological vocal fold systems with a polypoid mass and may represent a valuable clinical tool for the detection of laryngeal mass lesion using high-speed imaging.

  3. Asymmetric spatiotemporal chaos induced by a polypoid mass in the excised larynx

    PubMed Central

    Zhang, Yu; Jiang, Jack J.

    2008-01-01

    In this paper, asymmetric spatiotemporal chaos induced by a polypoid mass simulating the laryngeal pathology of a vocal polyp is experimentally observed using high-speed imaging in an excised larynx. Spatiotemporal analysis reveals that the normal vocal folds show spatiotemporal correlation and symmetry. Normal vocal fold vibrations are dominated mainly by the first vibratory eigenmode. However, pathological vocal folds with a polypoid mass show broken symmetry and spatiotemporal irregularity. The spatial correlation is decreased. The pathological vocal folds spread vibratory energy across a large number of eigenmodes and induce asymmetric spatiotemporal chaos. High-order eigenmodes show complicated dynamics. Spatiotemporal analysis provides a valuable biomedical application for investigating the spatiotemporal chaotic dynamics of pathological vocal fold systems with a polypoid mass and may represent a valuable clinical tool for the detection of laryngeal mass lesion using high-speed imaging. PMID:19123612

  4. Recent Developments in the Catalytic, Asymmetric Construction of Pyrroloindolines Bearing All-Carbon Quaternary Stereocenters

    PubMed Central

    Repka, Lindsay M.; Reisman, Sarah E.

    2014-01-01

    Pyrroloindoline alkaloids constitute a large family of natural products that has inspired the development of an impressive array of new reactions to prepare the key heterocyclic motif. This synopsis will address catalytic, asymmetric reactions developed to synthesize pyrroloindolines bearing C3a all-carbon quaternary stereocenters. The methods described herein include both transition metal-catalyzed and organocatalyzed reactions that have been demonstrated suitable for the synthesis of the pyrroloindoline framework. PMID:24295135

  5. Asymmetric Ashes

    NASA Astrophysics Data System (ADS)

    2006-11-01

    that oscillate in certain directions. Reflection or scattering of light favours certain orientations of the electric and magnetic fields over others. This is why polarising sunglasses can filter out the glint of sunlight reflected off a pond. When light scatters through the expanding debris of a supernova, it retains information about the orientation of the scattering layers. If the supernova is spherically symmetric, all orientations will be present equally and will average out, so there will be no net polarisation. If, however, the gas shell is not round, a slight net polarisation will be imprinted on the light. This is what broad-band polarimetry can accomplish. If additional spectral information is available ('spectro-polarimetry'), one can determine whether the asymmetry is in the continuum light or in some spectral lines. In the case of the Type Ia supernovae, the astronomers found that the continuum polarisation is very small so that the overall shape of the explosion is crudely spherical. But the much larger polarization in strongly blue-shifted spectral lines evidences the presence, in the outer regions, of fast moving clumps with peculiar chemical composition. "Our study reveals that explosions of Type Ia supernovae are really three-dimensional phenomena," says Dietrich Baade. "The outer regions of the blast cloud is asymmetric, with different materials found in 'clumps', while the inner regions are smooth." "This study was possible because polarimetry could unfold its full strength thanks to the light-collecting power of the Very Large Telescope and the very precise calibration of the FORS instrument," he adds. The research team first spotted this asymmetry in 2003, as part of the same observational campaign (ESO PR 23/03 and ESO PR Photo 26/05). The new, more extensive results show that the degree of polarisation and, hence, the asphericity, correlates with the intrinsic brightness of the explosion. The brighter the supernova, the smoother, or less clumpy

  6. Asymmetrical field emitter

    DOEpatents

    Fleming, J.G.; Smith, B.K.

    1995-10-10

    A method is disclosed for providing a field emitter with an asymmetrical emitter structure having a very sharp tip in close proximity to its gate. One preferred embodiment of the present invention includes an asymmetrical emitter and a gate. The emitter having a tip and a side is coupled to a substrate. The gate is connected to a step in the substrate. The step has a top surface and a side wall that is substantially parallel to the side of the emitter. The tip of the emitter is in close proximity to the gate. The emitter is at an emitter potential, and the gate is at a gate potential such that with the two potentials at appropriate values, electrons are emitted from the emitter. In one embodiment, the gate is separated from the emitter by an oxide layer, and the emitter is etched anisotropically to form its tip and its asymmetrical structure. 17 figs.

  7. Development of the titanium–TADDOLate-catalyzed asymmetric fluorination of β-ketoesters

    PubMed Central

    Hintermann, Lukas; Perseghini, Mauro

    2011-01-01

    Summary Titanium-based Lewis acids catalyze the α-fluorination of β-ketoesters by electrophilic N–F-fluorinating reagents. Asymmetric catalysis with TADDOLato–titanium(IV) dichloride (TADDOL = α,α,α',α'-tetraaryl-(1,3-dioxolane-4,5-diyl)-dimethanol) Lewis acids produces enantiomerically enriched α-fluorinated β-ketoesters in up to 91% enantiomeric excess, with either F–TEDA (1-chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane bis(tetrafluoroborate)) in acetonitrile solution or NFSI (N-fluorobenzenesulfonimide) in dichloromethane solution as fluorinating reagents. The effects of various reaction parameters and of the TADDOL ligand structure on the catalytic activity and enantioselectivity were investigated. The absolute configuration of several fluorination products was assigned through correlation. Evidence for ionization of the catalyst complex by chloride dissociation, followed by generation of titanium β-ketoenolates as key reaction intermediates, was obtained. Based on the experimental findings, a general mechanistic sketch and a steric model of induction are proposed. PMID:22043253

  8. The first asymmetric synthesis of marliolide from readily accessible carbohydrate as chiral template.

    PubMed

    Mailar, Karabasappa; Choi, Won Jun

    2016-09-01

    A simple and efficient strategy for the first asymmetric total synthesis of marliolide was accomplished by using stereoselective alkylation of the dianion of the β-hydroxy lactone enolate with myristyl aldehyde as a key step. The key intermediate, β-hydroxyl γ-methyl butyrolactone was prepared by transformation of L-lyxonolactone starting from D-ribose, a naturally abundant chiral carbohydrate. PMID:27356234

  9. Total Synthesis of (+)-Minfiensine: Construction of the Tetracyclic Core Structure by an Asymmetric Cascade Cyclization.

    PubMed

    Zhang, Ze-Xin; Chen, Si-Cong; Jiao, Lei

    2016-07-01

    A new method for one-step construction of the tetracyclic core structure of the indole alkaloid (+)-minfiensine was developed utilizing a palladium-catalyzed asymmetric indole dearomatization/iminium cyclization cascade. An efficient total synthesis of (+)-minfiensine was realized using this strategy. The present method enables access to the common core structure of a series of monoterpene indole alkaloids, such as vincorine, echitamine, and aspidosphylline A. PMID:27172972

  10. A new asymmetric diamide from the seed cake of Jatropha curcas L.

    PubMed

    Yao, Licheng; Han, Changri; Chen, Guangying; Song, Xiaoping; Chang, Yonghui; Zang, Wenxia

    2012-12-01

    A new asymmetric diamide (E)-N-(3-acetamidopropyl)-cinnamamide named curcamide (1) has been isolated from the ethanol extract of the seed cake of Jatropha curcas L. along with 7 known compounds identified as isoamericanin (2), isoprincepin (3), caffeoylaldehyde (4), isoferulaldehyde (5), glycerol monooleate (6), syringaldehyde (7), and β-ethyl-d-glucopyranoside (8). The synthesis and antibacterial activity of the new compound have been also studied. PMID:22516541

  11. Research on the noise induced by cavitation under the asymmetric cavitation condition in a centrifugal pump

    NASA Astrophysics Data System (ADS)

    Lu, J. X.; Yuan, S. Q.; Yuan, J. P.; Ren, X. D.; Pei, J.; Si, Q. R.

    2015-12-01

    An experimental investigation has been carried out to research the noise induced by cavitation under the asymmetric cavitation (AC) condition in a centrifugal pump. The acoustic pressure signals at the pump inlet and outlet were measured respectively during the development of cavitation in a closed hydraulic test rig. It could be found that both the pump inlet and outlet acoustic pressures changed obviously with the development of cavitation. The time domain and the power spectrum density of the pump inlet and outlet acoustic pressure pulsations were analyzed. The broadband pulses of the acoustic pressure pulsations were found and the reasons for the phenomenon were given.

  12. Asymmetric Magnon Excitation by Spontaneous Toroidal Ordering

    NASA Astrophysics Data System (ADS)

    Hayami, Satoru; Kusunose, Hiroaki; Motome, Yukitoshi

    2016-05-01

    The effects of spontaneous toroidal ordering on magnetic excitation are theoretically investigated for a localized spin model that includes a staggered Dzyaloshinsky-Moriya interaction and anisotropic exchange interactions, which arise from the antisymmetric spin-orbit coupling and the multiorbital correlation effect. We show that the model exhibits a Néel-type antiferromagnetic order, which simultaneously accompanies a ferroic toroidal order. We find that the occurrence of toroidal order modulates the magnon dispersion in an asymmetric way with respect to the wave number: a toroidal dipole order on the zigzag chain leads to a band-bottom shift, while a toroidal octupole order on the honeycomb lattice gives rise to a valley splitting. These asymmetric magnon excitations could be a source of unusual magnetic responses, such as nonreciprocal magnon transport. A variety of modulations are discussed while changing the lattice and magnetic symmetries. The implications regarding candidate materials for asymmetric magnon excitations are presented.

  13. Asymmetric counteranion-directed Lewis acid organocatalysis for the scalable cyanosilylation of aldehydes

    PubMed Central

    Zhang, Zhipeng; Bae, Han Yong; Guin, Joyram; Rabalakos, Constantinos; van Gemmeren, Manuel; Leutzsch, Markus; Klussmann, Martin; List, Benjamin

    2016-01-01

    Due to the high versatility of chiral cyanohydrins, the catalytic asymmetric cyanation reaction of carbonyl compounds has attracted widespread interest. However, efficient protocols that function at a preparative scale with low catalyst loading are still rare. Here, asymmetric counteranion-directed Lewis acid organocatalysis proves to be remarkably successful in addressing this problem and enabled a molar-scale cyanosilylation in quantitative yield and with excellent enantioselectivity. Also, the catalyst loading could be lowered to a part-per-million level (50 ppm: 0.005 mol%). A readily accessible chiral disulfonimide was used, which in combination with trimethylsilyl cyanide, turned into the active silylium Lewis acid organocatalyst. The nature of a peculiar phenomenon referred to as a “dormant period”, which is mainly induced by water, was systematically investigated by means of in situ Fourier transform infrared analysis. PMID:27530470

  14. On the Origin of the Asymmetric Helicity Injection in Emerging Active Regions

    NASA Astrophysics Data System (ADS)

    Fan, Y.; Alexander, D.; Tian, L.

    2009-12-01

    To explore the possible causes of the observed asymmetric helicity flux in emerging active regions between the leading and following polarities reported in a recent study by Tian & Alexander, we examine the subsurface evolution of buoyantly rising Ω-shaped flux tubes using three-dimensional, spherical-shell anelastic MHD simulations. We find that due to the asymmetric stretching of the Ω-shaped tube by the Coriolis force, the leading side of the emerging tube has a greater field strength, is more buoyant, and remains more cohesive compared to the following side. As a result, the magnetic field lines in the leading leg show more coherent values of local twist α ≡ (∇ × B) · B/B 2, whereas the values in the following leg show large fluctuations and are of mixed sign. On average, however, the field lines in the leading leg do not show a systematically greater mean twist compared to the following leg. Due to the higher rise velocity of the leading leg, the upward helicity flux through a horizontal cross section at each depth in the upper half of the convection zone is significantly greater in the leading polarity region than that in the following leg. This may contribute to the observed asymmetric helicity flux in emerging active regions. Furthermore, based on a simplified model of active region flux emergence into the corona by Longcope & Welsch, we show that a stronger field strength in the leading tube can result in a faster rotation of the leading polarity sunspot driven by torsional Alfvén waves during flux emergence into the corona, contributing to a greater helicity injection rate in the leading polarity of an emerging active region.

  15. ON THE ORIGIN OF THE ASYMMETRIC HELICITY INJECTION IN EMERGING ACTIVE REGIONS

    SciTech Connect

    Fan, Y.; Alexander, D.; Tian, L.

    2009-12-10

    To explore the possible causes of the observed asymmetric helicity flux in emerging active regions between the leading and following polarities reported in a recent study by Tian and Alexander, we examine the subsurface evolution of buoyantly rising OMEGA-shaped flux tubes using three-dimensional, spherical-shell anelastic MHD simulations. We find that due to the asymmetric stretching of the OMEGA-shaped tube by the Coriolis force, the leading side of the emerging tube has a greater field strength, is more buoyant, and remains more cohesive compared to the following side. As a result, the magnetic field lines in the leading leg show more coherent values of local twist alpha ident to (nabla x B) centre dot B/B {sup 2}, whereas the values in the following leg show large fluctuations and are of mixed sign. On average, however, the field lines in the leading leg do not show a systematically greater mean twist compared to the following leg. Due to the higher rise velocity of the leading leg, the upward helicity flux through a horizontal cross section at each depth in the upper half of the convection zone is significantly greater in the leading polarity region than that in the following leg. This may contribute to the observed asymmetric helicity flux in emerging active regions. Furthermore, based on a simplified model of active region flux emergence into the corona by Longcope and Welsch, we show that a stronger field strength in the leading tube can result in a faster rotation of the leading polarity sunspot driven by torsional Alfven waves during flux emergence into the corona, contributing to a greater helicity injection rate in the leading polarity of an emerging active region.

  16. Aging Stem Cells Lose the Capability to Distribute Damaged Proteins Asymmetrically.

    PubMed

    Mendelsohn, Andrew R; Larrick, James W

    2015-12-01

    Understanding the interplay between reversible epigenetic changes and potentially more difficult to reverse accumulation of damaged macromolecules is a central challenge in developing treatments for aging-associated dysfunction. One hypothesis is that epigenetic drift leads to subtle losses of homeostatic maintenance mechanisms, that in turn, lead to the accumulation of damaged macromolecules, which then further degrade homeostasis. A key mechanism of maintaining optimal cell function is asymmetrical division, whereby cellular damage is segregated away from cells that need to undergo further proliferation, such as stem cells. Such asymmetrical distribution of damaged macromolecules has been observed during cell division in many organisms, from yeast to human embryonic stem cells, and depends on diffusion barriers (DBs) in the membrane of the endoplasmic reticulum (ER). In a recent study, these results have been extended to neural stem cells (NSCs), in which the ability of the ER DB to promote asymmetrical distribution of damaged proteins deteriorates with age. NSC function declines with age as proliferative capacity is reduced. The loss of asymmetric protein distribution correlates with the loss of NSC proliferative capacity. Ectopic expression of progerin, an altered form of lamin A, is associated with the premature aging disorder, Hutchinson-Gilford progeria syndrome (HGPS). Progerin's expression also increases with normal aging due to mis-splicing, weakening the ER DB. Recent work suggests that many cell signaling pathway changes associated with HGPS are replicated during normal aging in cultured cells. Moreover, the detrimental changes associated with progerin expression in HGPS are partially reversible experimentally after treatment with statins, a farnesyltransferase inhibitor, a isoprenylcysteine carboxyl methyltransferase inhibitor, or sulforaphane. It will be of great interest if these compounds can also reverse the aging-associated permeability of the ER

  17. Asymmetric hybridization and introgression between pink salmon and chinook salmon in the Laurentian Great Lakes

    USGS Publications Warehouse

    Rosenfield, Jonathan A.; Todd, Thomas; Greil, Roger

    2000-01-01

    Among Pacific salmon collected in the St. Marys River, five natural hybrids of pink salmon Oncorhynchus gorbuscha and chinook salmon Oncorhynchus tshawytscha and one suspected backcross have been detected using morphologic, meristic, and color evidence. One allozyme (LDH, l-lactate dehydrogenase from muscle) and one nuclear DNA locus (growth hormone) for which species-specific fixed differences exist were analyzed to detect additional hybrids and to determine if introgression had occurred. Restriction fragment length polymorphism of mitochondrial DNA (mtDNA) was used to identify the maternal parent of each hybrid. Evidence of introgression was found among the five previously identified hybrids. All hybrid specimens had chinook salmon mtDNA, indicating that hybridization between chinook salmon and pink salmon in the St. Marys River is asymmetric and perhaps unidirectional. Ecological, physiological, and sexual selection forces may contribute to this asymmetric hybridization. Introgression between these highly differentiated species has implications for management, systematics, and conservation of Pacific salmon.

  18. Abruptness improvement of the interfaces of AlGaN/GaN superlattice by cancelling asymmetric diffusion

    NASA Astrophysics Data System (ADS)

    Cai, Duanjun; Chen, Xiaohong; Lin, Na; Xu, Fuchun; Chen, Hangyang; Chen, Shanshan

    2012-02-01

    Interface abruptness has been an important issue in the construction of quantum wells as active layer in optoelectronic devices, which is extremely crucial in achieving stronger quantum confinement and consequently higher emission efficiency. The interfacial sharpness is highly associated with the crystal structure as well as the elemental transition. However, few studies have been done focusing on the elemental diffusion effect at the interface. In this work, the accurate determination was approached to the elemental inter-diffusion depth across the GaN/Al0.5Ga0.5N interfaces by using transmission electron microscopy, Auger electron microscopy, and X-ray diffraction. The GaN/Al0.5Ga0.5N superlattice was grown by metalorganic chemical vapor deposition (MOCVD) at high growth temperature (1070 ^oC). The results showed that the Al diffusion at the upper and lower interfaces of Al0.5Ga0.5N barrier appears an asymmetric behavior, which is 0.62 and 0.99 nm, respectively. Such will lead to the gradient interfacial region and asymmetric quantum well, affecting the carrier quantum confinement. To improve the abruptness of the interface and to modify the asymmetric diffusion, self-compensation pair technique was proposed and introduced to the growth of the lower Al0.5Ga0.5N/GaN interface, blocking the Al downward diffusion. Fist-principles simulations also showed that the structural relaxation at the strained heterointerface influences the electronic structure as well as elemental diffusion.

  19. Investigation of the Torsion Rotation Energy Levels of the Carbon-Hydrogen Asymmetric Stretches in Methanol

    NASA Astrophysics Data System (ADS)

    Bignall, Orville Newton

    The CH asymmetric stretching region of the methanol spectrum has been measured from 2900 to 3200 cm ^{-1} using the newly constructed Fourier transform spectrometer (FTS). The nominal resolution, the reciprocal of twice the maximum optical path difference, is 0.004 cm^{-1}. The objectives of this investigation were to identify, assign, and analyze the torsion-rovibrational transitions of the CH_3 asymmetric stretching fundamentals v_2 and v_9 . The theory used in the investigation is principally that used by Lees and Baker with the modifications described by Y. Y. Kwan. It is here assumed that this model is suitable for fundamentals other than the torsion rotation. A total of 13 P branch and 11 R branch series were assigned (13 series representing 6 excited states belonging to the v_2 fundamental and 11 series representing 5 excited states belonging to the v_9 fundamental). A partial nonlinear least squares analysis of the series origins yields a band center of 2999.44 cm^{ -1}, a barrier height of 405.62 cm ^{-1}, and a value of 5.29 cm ^{-1} for the moment of inertia of the methyl group about the symmetry axis for the v _2 fundamental. The corresponding values for the v_9 fundamental are 2970.18 cm^{-1}, 529.71 cm ^{-1}, and 5.34 cm^ {-1} respectively. These parameters give a quality of fit with rms deviations of 1.15 cm ^{-1} and 1.26 cm^ {-1} for the v_2 and v_9 bands respectively. A criterion was used to divide the assignments between two separate bands. A comparison between the asymmetric stretch data of methyl fluoride, the OH and CO stretch data of methanol indicates that our assignments are reasonable. Tentative assignments of several series observed in the spectra based on calculations, using the fitted parameters and normal state parallel combination differences, are also given.

  20. Reflection Asymmetric Shapes in the Neutron-Rich 140,143Ba Isotopes

    NASA Astrophysics Data System (ADS)

    Zhu Sheng-jiang (S, J. Zhu; Wang, Mu-ge; J, H. Hamilton; A, V. Ramayya; B, R. S. Babu; W, C. Ma; Long, Gui-lu; Deng, Jing-kang; Zhu, Ling-yan; Li, Ming; T, N. Ginter; J, Komicki; J, D. Cole; R, Aryaeinejad; Y, K. Dardenne; M, W. Drigert; J, O. Rasmussen; Ts, Yu Oganessian; M, A. Stoyer; S, Y. Chu; K, E. Gregorich; M, F. Mohar; S, G. Prussin; I, Y. Lee; N, R. Johnson; F, K. McGowan

    1997-08-01

    Level schemes for the neutron-rich 140,143Ba nuclei have been determined by study of prompt γ-rays in spontaneous fission of 252Cf. The level pattern and enhanced E1 transitions between π = + and π = - bands show reflection asymmetric shapes with simplex quantum number s = +1 in 140Ba and s = ±i in 143Ba, respectively. The octupole deformation stability with spin variation has been discussed.

  1. Photochirogenesis: Photochemical models on the absolute asymmetric formation of amino acids in interstellar space

    NASA Astrophysics Data System (ADS)

    Meinert, Cornelia; de Marcellus, Pierre; Le Sergeant D'Hendecourt, Louis; Nahon, Laurent; Jones, Nykola C.; Hoffmann, Søren V.; Bredehöft, Jan Hendrik; Meierhenrich, Uwe J.

    2011-10-01

    Proteins of all living organisms including plants, animals, and humans are made up of amino acid monomers that show identical stereochemical L-configuration. Hypotheses for the origin of this symmetry breaking in biomolecules include the absolute asymmetric photochemistry model by which interstellar ultraviolet (UV) circularly polarized light (CPL) induces an enantiomeric excess in chiral organic molecules in the interstellar/circumstellar media. This scenario is supported by a) the detection of amino acids in the organic residues of UV-photo-processed interstellar ice analogues, b) the occurrence of L-enantiomer-enriched amino acids in carbonaceous meteorites, and c) the observation of CPL of the same helicity over large distance scales in the massive star-forming region of Orion. These topics are of high importance in topical biophysical research and will be discussed in this review. Further evidence that amino acids and other molecules of prebiotic interest are asymmetrically formed in space comes from studies on the enantioselective photolysis of amino acids by UV-CPL. Also, experiments have been performed on the absolute asymmetric photochemical synthesis of enantiomer-enriched amino acids from mixtures of astrophysically relevant achiral precursor molecules using UV-circularly polarized photons. Both approaches are based on circular dichroic transitions of amino acids that will be highlighted here as well. These results have strong implications on our current understanding of how life's precursor molecules were possibly built and how life selected the left-handed form of proteinogenic amino acids.

  2. Cortical dynein and asymmetric membrane elongation coordinately position the spindle in anaphase

    PubMed Central

    Kiyomitsu, Tomomi; Cheeseman, Iain M.

    2014-01-01

    SUMMARY Mitotic spindle position defines the cell cleavage site during cytokinesis. However, the mechanisms that control spindle positioning to generate equal-sized daughter cells remain poorly understood. Here, we demonstrate that two mechanisms act coordinately to center the spindle during anaphase in symmetrically dividing human cells. First, the spindle is positioned directly by the microtubule-based motor dynein, which we demonstrate is targeted to the cell cortex by two distinct pathways: a Gαi/LGN/NuMA-dependent pathway, and a 4.1G/R and NuMA-dependent anaphase-specific pathway. Second, we find that asymmetric plasma membrane elongation occurs in response to spindle mis-positioning to alter the cellular boundaries relative to the spindle. Asymmetric membrane elongation is promoted by chromosome-derived Ran-GTP signals that locally reduce Anillin at the growing cell cortex. In asymmetrically elongating cells, dynein-dependent spindle anchoring at the stationary cell cortex ensures proper spindle positioning. Our results reveal the anaphase-specific spindle centering systems that achieve equal-sized cell division. PMID:23870127

  3. Asymmetric forceps increase fighting success among males of similar size in the maritime earwig

    PubMed Central

    Munoz, Nicole E.; Zink, Andrew G.

    2012-01-01

    Extreme asymmetric morphologies are hypothesized to serve an adaptive function that counteracts sexual selection for symmetry. However direct tests of function for asymmetries are lacking, particularly in the context of animal weapons. The weapon of the maritime earwig, Anisolabis maritima, exhibits sizeable variation in the extent of directional asymmetry within and across body sizes, making it an ideal candidate for investigating the function of asymmetry. In this study, we characterized the extent of weapon asymmetry, characterized the manner in which asymmetric weapons are used in contests, staged dyadic contests between males of different size classes and analyzed the correlates of fighting success. In contests between large males, larger individuals won more fights and emerged as the dominant male. In contests between small males, however, weapon asymmetry was more influential in predicting overall fighting success than body size. This result reveals an advantage of asymmetric weaponry among males that are below the mean size in the population. A forceps manipulation experiment suggests that asymmetry may be an indirect, correlate of a morphologically independent factor that affects fighting ability. PMID:22984320

  4. The structural basis of Miranda-mediated Staufen localization during Drosophila neuroblast asymmetric division.

    PubMed

    Jia, Min; Shan, Zelin; Yang, Ying; Liu, Chunhua; Li, Jianchao; Luo, Zhen-Ge; Zhang, Mingjie; Cai, Yu; Wen, Wenyu; Wang, Wenning

    2015-01-01

    During the asymmetric division of Drosophila neuroblasts (NBs), the scaffold Miranda (Mira) coordinates the subcellular distribution of cell-fate determinants including Staufen (Stau) and segregates them into the ganglion mother cells (GMCs). Here we show the fifth double-stranded RNA (dsRNA)-binding domain (dsRBD5) of Stau is necessary and sufficient for binding to a coiled-coil region of Mira cargo-binding domain (CBD). The crystal structure of Mira514-595/Stau dsRBD5 complex illustrates that Mira forms an elongated parallel coiled-coil dimer, and two dsRBD5 symmetrically bind to the Mira dimer through their exposed β-sheet faces, revealing a previously unrecognized protein interaction mode for dsRBDs. We further demonstrate that the Mira-Stau dsRBD5 interaction is responsible for the asymmetric localization of Stau during Drosophila NB asymmetric divisions. Finally, we find the CBD-mediated dimer assembly is likely a common requirement for Mira to recognize and translocate other cargos including brain tumour (Brat). PMID:26423004

  5. The structural basis of Miranda-mediated Staufen localization during Drosophila neuroblast asymmetric division

    PubMed Central

    Jia, Min; Shan, Zelin; Yang, Ying; Liu, Chunhua; Li, Jianchao; Luo, Zhen-Ge; Zhang, Mingjie; Cai, Yu; Wen, Wenyu; Wang, Wenning

    2015-01-01

    During the asymmetric division of Drosophila neuroblasts (NBs), the scaffold Miranda (Mira) coordinates the subcellular distribution of cell-fate determinants including Staufen (Stau) and segregates them into the ganglion mother cells (GMCs). Here we show the fifth double-stranded RNA (dsRNA)-binding domain (dsRBD5) of Stau is necessary and sufficient for binding to a coiled-coil region of Mira cargo-binding domain (CBD). The crystal structure of Mira514–595/Stau dsRBD5 complex illustrates that Mira forms an elongated parallel coiled-coil dimer, and two dsRBD5 symmetrically bind to the Mira dimer through their exposed β-sheet faces, revealing a previously unrecognized protein interaction mode for dsRBDs. We further demonstrate that the Mira–Stau dsRBD5 interaction is responsible for the asymmetric localization of Stau during Drosophila NB asymmetric divisions. Finally, we find the CBD-mediated dimer assembly is likely a common requirement for Mira to recognize and translocate other cargos including brain tumour (Brat). PMID:26423004

  6. Mechanistic interrogation of the asymmetric lithiation-trapping of N-thiopivaloyl azetidine and pyrrolidine.

    PubMed

    Rayner, Peter J; Smith, Joshua C; Denneval, Charline; O'Brien, Peter; Clarke, Paul A; Horan, Richard A J

    2016-01-25

    A fundamental mechanistic study of the s-BuLi/chiral diamine-mediated lithiation-trapping of N-thiopivaloyl azetidine and pyrrolidine is reported. We show that lithiated thiopivalamides are configurationally unstable at -78 °C. Reaction then proceeds via a dynamic resolution of diastereomeric lithiated intermediates and this accounts for the variable sense and degree of asymmetric induction observed compared to N-Boc heterocycles. PMID:26620913

  7. Stereodivergent Organocatalytic Intramolecular Michael Addition/Lactonization for the Asymmetric Synthesis of Substituted Dihydrobenzofurans and Tetrahydrofurans

    PubMed Central

    Belmessieri, Dorine; de la Houpliere, Alix; Calder, Ewen D D; Taylor, James E; Smith, Andrew D

    2014-01-01

    A stereodivergent asymmetric Lewis base catalyzed Michael addition/lactonization of enone acids into substituted dihydrobenzofuran and tetrahydrofuran derivatives is reported. Commercially available (S)-(−)-tetramisole hydrochloride gives products with high syn diastereoselectivity in excellent enantioselectivity (up to 99:1 d.r.syn/anti, 99 % eesyn), whereas using a cinchona alkaloid derived catalyst gives the corresponding anti-diastereoisomers as the major product (up to 10:90 d.r.syn/anti, 99 % eeanti). PMID:24989672

  8. Asymmetric ion trap

    DOEpatents

    Barlow, Stephan E.; Alexander, Michael L.; Follansbee, James C.

    1997-01-01

    An ion trap having two end cap electrodes disposed asymmetrically about a center of a ring electrode. The inner surface of the end cap electrodes are conformed to an asymmetric pair of equipotential lines of the harmonic formed by the application of voltages to the electrodes. The asymmetry of the end cap electrodes allows ejection of charged species through the closer of the two electrodes which in turn allows for simultaneously detecting anions and cations expelled from the ion trap through the use of two detectors charged with opposite polarity.

  9. On the East-West Longitudinally Asymmetric Distribution of Solar Proton Events

    NASA Astrophysics Data System (ADS)

    He, H.-Q.; Wan, W.

    2016-09-01

    A large data set of 78 solar proton events observed near the Earth's orbit during 1996-2011 is investigated. An East-West longitudinal (azimuthal) asymmetry is found to exist in the distribution of flare sources of solar proton events. With the same longitudinal separation between the flare sources and the magnetic field line footpoint of observer, the number of the solar proton events originating from solar sources located on the eastern side of the nominal magnetic footpoint of observer is larger than the number of the solar proton events from solar sources located on the western side. We emphasize the importance of this statistical investigation in two aspects. On the one hand, this statistical finding confirms our previous simulation results obtained by numerically solving five-dimensional Fokker-Planck equation of solar energetic particle (SEP) transport. On the other hand, the East-West longitudinally (azimuthally) asymmetric distribution of solar proton events accumulated over a long time period provides an observational evidence for the effects of perpendicular diffusion on the SEP propagation in the heliosphere. We further point out that, in the sense of perpendicular diffusion, our numerical simulations and statistical results of SEP events confirm each other. We discuss in detail the important effects of perpendicular diffusion on the formation of the East-West azimuthal (longitudinal) asymmetry of SEP distribution in two physical scenarios, i.e., "multiple SEP events with one spacecraft" and "one SEP event with multiple spacecraft". A functional relation Imax(r) = kr-1.7 quantifying the radial dependence of SEP peak intensities is obtained and utilized in the analysis of physical mechanism. The relationship between our results and those of Dresing et al. (2014, Astronomy & Astrophysics, 567, A27) is also discussed.

  10. Multipotent Hematopoietic Progenitors Divide Asymmetrically to Create Progenitors of the Lymphomyeloid and Erythromyeloid Lineages

    PubMed Central

    Görgens, André; Ludwig, Anna-Kristin; Möllmann, Michael; Krawczyk, Adalbert; Dürig, Jan; Hanenberg, Helmut; Horn, Peter A.; Giebel, Bernd

    2014-01-01

    Summary Hematopoietic stem and progenitor cells (HSPCs) can self-renew and create committed progenitors, a process supposed to involve asymmetric cell divisions (ACDs). Previously, we had linked the kinetics of CD133 expression with ACDs but failed to detect asymmetric segregation of classical CD133 epitopes on fixed, mitotic HSPCs. Now, by using a novel anti-CD133 antibody (HC7), we confirmed the occurrence of asymmetric CD133 segregation on paraformaldehyde-fixed and living HSPCs. After showing that HC7 binding does not recognizably affect biological features of human HSPCs, we studied ACDs in different HSPC subtypes and determined the developmental potential of arising daughter cells at the single-cell level. Approximately 70% of the HSPCs of the multipotent progenitor (MPP) fraction studied performed ACDs, and about 25% generated lymphoid-primed multipotent progenitor (LMPP) as wells as erythromyeloid progenitor (EMP) daughter cells. Since MPPs hardly created daughter cells maintaining MPP characteristics, our data suggest that under conventional culture conditions, ACDs are lineage instructive rather than self-renewing. PMID:25448068

  11. Modified transfer matrix method for asymmetric rotor-bearing systems

    NASA Astrophysics Data System (ADS)

    Kang, Yuan; Lee, An-Chen; Shih, Yuan-Pin

    1994-07-01

    A modified transfer matrix method (MTMM) is developed to analyze rotor-bearing systems with an asymmetric shaft and asymmetric disks. The rotating shaft is modeled by a Rayleigh-Euler beam considering the effects of the rotary inertia and gyroscopic moments. Specifically, a transfer matrix of the asymmetric shaft segments is derived in a continuous-system sense to give accurate solutions. The harmonic balance method is incorporated in the transfer matrix equations, so that steady-state responses of synchronous and superharmonic whirls can be determined. A numerical example is presented to demonstrate the effectiveness of this approach.

  12. Driving toroidally asymmetric current through the tokamak scrape-off layer, Part I: Potential for ELM suppression

    SciTech Connect

    Joseph, I; Cohen, R H; Ryutov, D D

    2009-03-31

    A potential technique for suppressing edge localized magnetohydrodynamic instabilities (ELMs) is theoretically analyzed. Recent experiments have shown that externally generated resonant magnetic perturbations (RMPs) can stabilize ELMs by modifying the density profile [T. E. Evans, et al., Nature Phys. 2, 419 (2006); Y. Liang, et al., Phys. Rev. Lett. 98, 265004 (2007)]. Driving toroidally asymmetric current internally, through the scrape-off layer (SOL) plasma itself, can also generate RMPs that are close to the required threshold for ELM control. The limiting ion saturation current densities can be achieved by producing potential differences on the order of the electron temperature. Although the threshold is uncertain in future devices, if driven coherently though the SOL, the upper limit for the resulting field would exceed the present experimental threshold. This analysis provides the tools required for estimating the magnitude of the coherent SOL current and RMP generated via toroidally asymmetric biasing of the target. Flux expansion increases the RMP near the X-point, while phase interference due to the shearing of field lines near the X-point reduces the amplitude of the effective SOL perturbation and makes the result sensitive to both toroidal mode number n and the radial coherence width of the biasing region. If the limiting current density decays rapidly enough radially, both the width and the amplitude of the current density drawn from the target will be reduced. The RMP can still exceed the present threshold at low n if the radial location and width of the biasing region are optimally chosen.

  13. Development of Non-C2-symmetric ProPhenol Ligands. The Asymmetric Vinylation of N-Boc Imines.

    PubMed

    Trost, Barry M; Hung, Chao-I Joey; Koester, Dennis C; Miller, Yan

    2015-08-01

    The development and application of a new generation of non-C2-symmetric ProPhenol ligands is reported herein. Rational design of the ProPhenol ligand paved the way to the first catalytic and asymmetric vinylation of N-Boc imines via hydrozirconation giving rise to valuable allylic amines in excellent yields and enantioselectivities. The utility of this method was demonstrated by developing the shortest reported asymmetric synthesis of the selective serotonine reuptake inhibitor (SSRI) (-)-dapoxetine. PMID:26200769

  14. Perspective: maternal kin groups and the origins of asymmetric genetic systems-genomic imprinting, haplodiploidy, and parthenogenesis.

    PubMed

    Normark, Benjamin B

    2006-04-01

    The genetic systems of animals and plants are typically eumendelian. That is, an equal complement of autosomes is inherited from each of two parents, and at each locus, each parent's allele is equally likely to be expressed and equally likely to be transmitted. Genetic systems that violate any of these eumendelian symmetries are termed asymmetric and include parent-specific gene expression (PSGE), haplodiploidy, thelytoky, and related systems. Asymmetric genetic systems typically arise in lineages with close associations between kin (gregarious siblings, brooding, or viviparity). To date, different explanatory frameworks have been proposed to account for each of the different asymmetric genetic systems. Haig's kinship theory of genomic imprinting argues that PSGE arises when kinship asymmetries between interacting kin create conflicts between maternally and paternally derived alleles. Greater maternal than paternal relatedness within groups selects for more "abstemious" expression of maternally derived alleles and more "greedy" expression of paternally derived alleles. Here, I argue that this process may also underlie origins of haplodiploidy and many origins of thelytoky. The tendency for paternal alleles to be more "greedy" in maternal kin groups means that maternal-paternal conflict is not a zero-sum game: the maternal optimum will more closely correspond to the optimum for family groups and demes and for associated entities such as symbionts. Often in these circumstances, partial or complete suppression of paternal gene expression will evolve (haplodiploidy, thelytoky), or other features of the life cycle will evolve to minimize the conflict (monogamy, inbreeding). Maternally transmitted cytoplasmic elements and maternally imprinted nuclear alleles have a shared interest in minimizing agonistic interactions between female siblings and may cooperate to exclude the paternal genome. Eusociality is the most dramatic expression of the conflict-reducing effects of

  15. High pressures and asymmetrical stresses in the scoliotic disc in the absence of muscle loading

    PubMed Central

    Meir, Adam R; Fairbank, Jeremy CT; Jones, Deborah A; McNally, Donal S; Urban, Jill PG

    2007-01-01

    Background Loads acting on scoliotic spines are thought to be asymmetric and involved in progression of the scoliotic deformity; abnormal loading patterns lead to changes in bone and disc cell activity and hence to vertebral body and disc wedging. At present however there are no direct measurements of intradiscal stresses or pressures in scoliotic spines. The aim of this study was to obtain quantitative measurements of the intradiscal stress environment in scoliotic intervertebral discs and to determine if loads acting across the scoliotic spine are asymmetric. We performed in vivo measurements of stresses across the intervertebral disc in patients with scoliosis, both parallel (termed horizontal) and perpendicular (termed vertical) to the end plate, using a side mounted pressure transducer (stress profilometry) Methods Stress profilometry was used to measure horizontal and vertical stresses at 5 mm intervals across 25 intervertebral discs of 7 scoliotic patients during anterior reconstructive surgery. A state of hydrostatic pressure was defined by identical horizontal and vertical stresses for at least two consecutive readings. Results were compared with similar stress profiles measured during surgery across 10 discs of 4 spines with no lateral curvature and with data from the literature. Results Profiles across scoliotic discs were very different from those of normal, young, healthy discs of equivalent age previously presented in the literature. Hydrostatic pressure regions were only seen in 14/25 discs, extended only over a short distance. Non-scoliotic discs of equivalent age would be expected to show large centrally placed hydrostatic nuclear regions in all discs. Mean pressures were significantly greater (0.25 MPa) than those measured in other anaesthetised patients (<0.07 MPa). A stress peak was seen in the concave annulus in 13/25 discs. Stresses in the concave annulus were greater than in the convex annulus indicating asymmetric loading in these

  16. Asymmetric catalytic transformations in supercritical carbon dioxide

    SciTech Connect

    Feng, Shaoguang; Tumas, W.; Gross, M.F.; Burk, M.J.

    1996-12-31

    Supercritical carbon dioxide can be a useful environmentally benign solvent for a wide range of catalytic reactions. We have been exploring the utility of supercritical carbon dioxide as a reaction medium for catalytic asymmetric transformations. We will present results on the asymmetric hydrogenation of prochiral olefins, ketones, and unsaturated acids by Rh and Ru catalysts containing chiral phosphine ligands using hydrogen or hydrogen transfer agents. We have found that asymmetric catalytic hydrogenation reactions of enamide esters work as well or better in CO{sub 2} than in conventional solvents. We have been able to effect high conversions and ee`s using hydrogen transfer systems such as HCOOH/NEt{sub 3}, We will discuss temperature, pressure and solvent density effects on selectivity and reactivity. Kinetic studies will also be presented in order to understand the enhanced enantioselectivity that we observed in SC CO{sub 2}.

  17. The Asymmetric Polar Field Reversal - Long Term Observations from WSO

    NASA Astrophysics Data System (ADS)

    Hoeksema, J. T.

    2012-12-01

    The Sun's polar field above 55 degrees in the northern hemisphere is reversing and the southern field may be beginning to weaken. This asymmetry is not unusual and is related to the poleward transport of flux that emerged in the active region bands earlier in the cycle. In the declining phase of Cycle 23 the poles were fairly equal, but the northern field began to decay in early 2009. Prior cycles have behaved differently, as observed by the Wilcox Solar Observatory and elsewhere.

  18. Asymmetric criticality of the osmotic compressibility in binary mixtures

    NASA Astrophysics Data System (ADS)

    Yin, Tianxiang; Liu, Shixia; Xie, Jingjing; Shen, Weiguo

    2013-01-01

    Heat capacities in the critical and the non-critical regions for {benzonitrile + tridecane} and {benzonitrile + pentadecane}, and light scattering for {benzonitrile + undecane}, {benzonitrile + dodecane}, {benzonitrile + tridecane}, {benzonitrile + tetradecane}, {benzonitrile + pentadecane}, and {benzonitrile + hexadecane} in the critical two-phase region were measured. Light scattering measurements confirmed the existence of the asymmetry for the osmotic compressibility while no such asymmetry was observed for the correlation length. An analysis of the osmotic compressibility asymmetry suggested the dominance of the singular term | {Δ hat T} |^β, which supports the complete scaling theory. The consistency of the complete scaling theory in descriptions of different asymmetry behaviors was also discussed. Moreover, it was found that the contribution of the heat capacity-related term is also important in describing the asymmetry of the osmotic compressibility as it was observed in studies of the diameters of the coexistence curves.

  19. Asymmetric growth of root epidermal cells is related to the differentiation of root hair cells in Hordeum vulgare (L.)

    PubMed Central

    Marzec, Marek

    2013-01-01

    The root epidermis of most vascular plants harbours two cell types, namely trichoblasts (capable of producing a root hair) and atrichoblasts. Here, in vivo analysis, confocal laser-scanning microscopy, transmission electron microscopy, histological analysis, and three-dimensional reconstruction were used to characterize the cell types present in the barley root epidermis and their distribution in the tissue. Both trichoblasts and atrichoblasts were present in the wild-type cultivars and could be distinguished from one another at an early stage. Trichoblast/atrichoblast differentiation depended on asymmetric cell expansion after a period of symmetrical cell division. After asymmetric growth, only the shorter epidermal cells could produce root hairs, whereas the longer cells became atrichoblasts. Moreover, the root epidermis did not develop root hairs at all if the epidermal cells did not differentiate into two asymmetric cell types. The root hairless phenotype of bald root barley (brb) and root hairless 1.b (rhl1.b) mutants was caused by a mutation in a gene related to the asymmetric expansion of the root epidermal cells. Additionally, the results showed that the mechanism of trichoblast/atrichoblast differentiation is not evolutionally conserved across the subfamilies of the Poaceae; in the Pooideae subfamily, both asymmetric division and asymmetric cell expansion have been observed. PMID:24043851

  20. Asymmetric magnetoimpedance effect in CoFeSiB amorphous ribbons by combination of field and current annealing for sensor applications

    NASA Astrophysics Data System (ADS)

    Hajiali, Mohammadreza; Mohseni, S. Majid; Roozmeh, S. Ehsan; Moradi, Mehrdad

    2016-08-01

    The roles of applied magnetic field during the current annealing of Co68.15Fe4.35Si12.5B15 soft magnetic amorphous ribbons are studied. Samples heat treated by Joule heating effect in open air and simultaneously in the present of longitudinal external magnetic field showed asymmetric magnetoimpedance (AMI) behavior. The AMI profile can be related to the exchange bias interaction between the soft magnetic amorphous material and a harder magnetic crystalline phase formed on the surface of the ribbon. This effect stems from thermal effect, the transverse Oe field generated from the annealing current which is thickness dependent and the longitudinal external field. The single peak AMI with the field sensitivity of 101%/Oe for DC annealing current is achieved. Our results could address a simple way to achieve the AMI response toward developing high sensitive magnetic field sensors.

  1. Evaluating the phase diagram of superconductors with asymmetric spin populations

    SciTech Connect

    Mannarelli, Massimo; Nardulli, Giuseppe; Ruggieri, Marco

    2006-09-15

    The phase diagram of a nonrelativistic fermionic system with imbalanced state populations interacting via a short-range S-wave attractive interaction is analyzed in the mean-field approximation. We determine the energetically favored state for different values of the mismatch between the two Fermi spheres in the weak- and strong-coupling regimes considering both homogeneous and nonhomogeneous superconductive states. We find that the homogeneous superconductive phase persists for values of the population imbalance that increase with increasing coupling strength. In the strong-coupling regime and for large population differences the energetically stable homogeneous phase is characterized by one gapless mode. We also find that the inhomogeneous superconductive phase characterized by the condensate {delta}(x){approx}{delta} exp(iq{center_dot}x) is energetically favored in a range of values of the chemical-potential mismatch that shrinks to zero in the strong-coupling regime.

  2. On the Asymmetric Longitudinal Oscillations of a Pikelner's Model Prominence

    NASA Astrophysics Data System (ADS)

    Kraśkiewicz, J.; Murawski, K.; Solov'ev, A.; Srivastava, A. K.

    2016-02-01

    We present analytical and numerical models of a normal-polarity quiescent prominence that are based on the model of Pikelner (Solar Phys. 17, 44, 1971). We derive the general analytical expressions for the two-dimensional (2D) equilibrium plasma quantities such as the mass density and gas pressure, and we specify magnetic-field components for the prominence, which corresponds to a dense and cold plasma residing in the dip of curved magnetic-field lines. Adapting of these expressions, we numerically solve the 2D, nonlinear, ideal MHD equations for the Pikelner model of a prominence that is initially perturbed by reducing the gas pressure at the dip of magnetic-field lines. Our findings reveal that as a result of pressure perturbations, the prominence plasma starts evolving in time. This leads to antisymmetric magnetoacoustic-gravity oscillations and to the mass-density growth at the magnetic dip, and the magnetic-field lines subside there. This growth depends on the depth of the magnetic dip. For a shallower dip, less plasma is condensed, and vice versa. We conjecture that the observed long-period magnetoacoustic-gravity oscillations in various prominence systems are in general the consequence of the internal-pressure perturbations of the plasma residing in equilibrium at the prominence dip.

  3. Photochemical Isomerization and Topochemical Polymerization of the Programmed Asymmetric Amphiphiles.

    PubMed

    Kim, Dae-Yoon; Lee, Sang-A; Jung, Daseal; Jeong, Kwang-Un

    2016-01-01

    For the advancement in multi-stimuli responsive optical devices, we report the elaborate molecular engineering of the dual photo-functionalized amphiphile (abbreviated as AZ1DA) containing both a photo-isomerizable azobenzene and a photo-polymerizable diacetylene. To achieve the efficient photochemical reactions in thin solid films, the self-assembly of AZ1DA molecules into the ordered phases should be precisely controlled and efficiently utilized. First, the remote-controllable light shutter is successfully demonstrated based on the reversible trans-cis photo-isomerization of azobenzene group in the smectic A mesophase. Second, the self-organized monoclinic crystal phase allows us to validate the photo-polymerization of diacetylene moiety for the photo-patterned thin films and the thermo-responsible color switches. From the demonstrations of optically tunable thin films, it is realized that the construction of strong relationships between chemical structures, molecular packing structures and physical properties of the programmed molecules is the core research for the development of smart and multifunctional soft materials. PMID:27339163

  4. Rotationally Asymmetric Magnetic Holes in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Reynolds, M. A.; Wheeler, H. R., IV

    2015-12-01

    Most magnetic holes that have been observed in the solar wind are not "linear." That is, the direction of the background magnetic field changes direction across the magnetic depression. We present the results of a search of the Ulysses database for these types of magnetic structures, and a comparison is made with previous searches for magnetic holes. The magnetic structures are analyzed to determine their soliton content (see doi:10.1002/2014JA020770). In addition, we numerically integrate these profiles using the derivative nonlinear Schrödinger (DNLS) equation to investigate their stability and soliton nature.

  5. Photochemical Isomerization and Topochemical Polymerization of the Programmed Asymmetric Amphiphiles

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Yoon; Lee, Sang-A.; Jung, Daseal; Jeong, Kwang-Un

    2016-06-01

    For the advancement in multi-stimuli responsive optical devices, we report the elaborate molecular engineering of the dual photo-functionalized amphiphile (abbreviated as AZ1DA) containing both a photo-isomerizable azobenzene and a photo-polymerizable diacetylene. To achieve the efficient photochemical reactions in thin solid films, the self-assembly of AZ1DA molecules into the ordered phases should be precisely controlled and efficiently utilized. First, the remote-controllable light shutter is successfully demonstrated based on the reversible trans-cis photo-isomerization of azobenzene group in the smectic A mesophase. Second, the self-organized monoclinic crystal phase allows us to validate the photo-polymerization of diacetylene moiety for the photo-patterned thin films and the thermo-responsible color switches. From the demonstrations of optically tunable thin films, it is realized that the construction of strong relationships between chemical structures, molecular packing structures and physical properties of the programmed molecules is the core research for the development of smart and multifunctional soft materials.

  6. Photochemical Isomerization and Topochemical Polymerization of the Programmed Asymmetric Amphiphiles

    PubMed Central

    Kim, Dae-Yoon; Lee, Sang-A; Jung, Daseal; Jeong, Kwang-Un

    2016-01-01

    For the advancement in multi-stimuli responsive optical devices, we report the elaborate molecular engineering of the dual photo-functionalized amphiphile (abbreviated as AZ1DA) containing both a photo-isomerizable azobenzene and a photo-polymerizable diacetylene. To achieve the efficient photochemical reactions in thin solid films, the self-assembly of AZ1DA molecules into the ordered phases should be precisely controlled and efficiently utilized. First, the remote-controllable light shutter is successfully demonstrated based on the reversible trans-cis photo-isomerization of azobenzene group in the smectic A mesophase. Second, the self-organized monoclinic crystal phase allows us to validate the photo-polymerization of diacetylene moiety for the photo-patterned thin films and the thermo-responsible color switches. From the demonstrations of optically tunable thin films, it is realized that the construction of strong relationships between chemical structures, molecular packing structures and physical properties of the programmed molecules is the core research for the development of smart and multifunctional soft materials. PMID:27339163

  7. Asymmetric resonant exchange qubit under the influence of electrical noise

    NASA Astrophysics Data System (ADS)

    Russ, Maximilian; Burkard, Guido

    2015-06-01

    We investigate the influence of electrical charge noise on a resonant exchange (RX) qubit in a triple quantum dot. This RX qubit is a variation of the exchange-only spin qubit which responds to a narrow-band resonant frequency. Our noise model includes uncorrelated charge noise in each quantum dot giving rise to two independent (noisy) bias parameters ɛ and Δ . We calculate the energy splitting of the two qubit states as a function of these two bias detuning parameters to find "sweet spots," where the qubit is least susceptible to noise. Our investigation shows that such sweet spots exist within the low-bias regime, in which the bias detuning parameters have the same magnitude as the hopping parameters. The location of the sweet spots in the (ɛ ,Δ ) plane depends on the hopping strength and asymmetry between the quantum dots. In the regime of weak charge noise, we identify a new favorable operating regime for the RX qubit based on these sweet spots.

  8. Symmetric and asymmetric planetary nebulae and the time variation of the radial abundance gradients

    NASA Astrophysics Data System (ADS)

    Maciel, W.; Costa, R. D. D.

    2014-04-01

    Planetary nebulae (PN) are excellent laboratories to study the chemical evolution of their host galaxies, especially concerning the radial abundance gradients and their time and spatial variations. Current chemical evolution models predict either some steepening or flattening of the abundance gradients with time, and PN can be useful in order to provide observational constraints on this issue. It is generally believed that asymmetrical nebulae, especially bipolars, are formed by younger, more massive progenitor stars, while symmetrical nebulae, such as the round and elliptical objects, are formed by older, less massive stars. As a consequence, if the abundance gradients change with time, some differences are expected between the gradients measured in symmetrical and asymmetrical nebulae. We have considered a large sample of well-studied galactic PN for which accurate abundances of O, S, Ne, and Ar are known, and for which a reliable morphological classification can be made. Average abundances and radial gradients of the ratios O/H, S/H, Ne/H and Ar/H were then determined for the main morphological classes, comprising B, E, R, and P nebulae. It is found that the average abundances of the younger objects are larger than those of the older nebulae, as expected on chemical evolution grounds, but the derived gradients are essentially the same within the uncertainties. It can then be concluded that the radial abundance gradients have not changed appreciably since the older progenitor stars were born, approximately 4 to 5 Gyr ago.

  9. Condensation and transport in the totally asymmetric inclusion process (TASIP)

    NASA Astrophysics Data System (ADS)

    Knebel, Johannes; Weber, Markus F.; Krueger, Torben; Frey, Erwin

    Transport phenomena are often modeled by the hopping of particles on regular lattices or networks. Such models describe, e.g., the exclusive movement of molecular motors along microtubules: no two motors may occupy the same site. In our work, we study inclusion processes that are the bosonic analogues of the fermionic exclusion processes. In inclusion processes, many particles may occupy a single site and hopping rates depend linearly on the occupation of departure and arrival sites. Particles thus attract other particles to their own site. Condensation occurs when particles collectively cluster in one or multiple sites, whereas other sites become depleted.We showed that inclusion processes describe both the selection of strategies in evolutionary zero-sum games and the condensation of non-interacting bosons into multiple quantum states in driven-dissipative systems. The condensation is captured by the antisymmetric Lotka-Volterra equation (ALVE), which constitutes a nonlinearly coupled dynamical system. We derived an algebraic method to analyze the ALVE and to determine the condensates. Our approach allows for the design of networks that result in condensates with oscillating occupations, and yields insight into the interplay between network topology and transport properties. Deutsche Forschungsgemeinschaft (SFB-TR12), German Excellence Initiative (Nanosystems Initiative Munich), Center for NanoScience Munich.

  10. Interferometry of ɛ Aurigae: Characterization of the Asymmetric Eclipsing Disk

    NASA Astrophysics Data System (ADS)

    Kloppenborg, B. K.; Stencel, R. E.; Monnier, J. D.; Schaefer, G. H.; Baron, F.; Tycner, C.; Zavala, R. T.; Hutter, D.; Zhao, M.; Che, X.; ten Brummelaar, T. A.; Farrington, C. D.; Parks, R.; McAlister, H. A.; Sturmann, J.; Sturmann, L.; Sallave-Goldfinger, P. J.; Turner, N.; Pedretti, E.; Thureau, N.

    2015-09-01

    We report on a total of 106 nights of optical interferometric observations of the ɛ Aurigae system taken during the last 14 years by four beam combiners at three different interferometric facilities. This long sequence of data provides an ideal assessment of the system prior to, during, and after the recent 2009-2011 eclipse. We have reconstructed model-independent images from the 10 in-eclipse epochs which show that a disk-like object is indeed responsible for the eclipse. Using new three-dimensional, time-dependent modeling software, we derive the properties of the F-star (diameter, limb darkening), determine previously unknown orbital elements (Ω, i), and access the global structures of the optically thick portion of the eclipsing disk using both geometric models and approximations of astrophysically relevant density distributions. These models may be useful in future hydrodynamical modeling of the system. Finally, we address several outstanding research questions including mid-eclipse brightening, possible shrinking of the F-type primary, and any warps or sub-features within the disk.

  11. Neurotransmitter map of the asymmetric dorsal habenular nuclei of zebrafish

    PubMed Central

    deCarvalho, Tagide N.; Subedi, Abhignya; Rock, Jason; Harfe, Brian D.; Thisse, Christine; Thisse, Bernard; Halpern, Marnie E.; Hong, Elim

    2014-01-01

    The role of the habenular nuclei in modulating fear and reward pathways has sparked a renewed interest in this conserved forebrain region. The bilaterally paired habenular nuclei, each consisting of a medial/dorsal and lateral/ventral nucleus, can be further divided into discrete subdomains whose neuronal populations, precise connectivity and specific functions are not well understood. An added complexity is that the left and right habenulae show pronounced morphological differences in many non-mammalian species. Notably, the dorsal habenulae of larval zebrafish provide a vertebrate genetic model to probe the development and functional significance of brain asymmetry. Previous reports have described a number of genes that are expressed in the zebrafish habenulae, either in bilaterally symmetric patterns or more extensively on one side of the brain than the other. The goal of our study was to generate a comprehensive map of the zebrafish dorsal habenular nuclei, by delineating the relationship between gene expression domains, comparing the extent of left-right asymmetry at larval and adult stages, and identifying potentially functional subnuclear regions as defined by neurotransmitter phenotype. While many aspects of habenular organization appear conserved with rodents, the zebrafish habenulae also possess unique properties that may underlie lateralization of their functions. PMID:24753112

  12. The properties of an ion selective enzymatic asymmetric synthetic membrane.

    NASA Technical Reports Server (NTRS)

    Mitz, M. A.

    1971-01-01

    With the aid of a simple model membrane system, the properties of cellulose enzymes and of membrane selectivity and pump-like action are considered. The model is based on materials possibly present on a primitive earth, as well as on a membrane able to sort or concentrate these materials. An overview of the model membrane system is presented in terms of how it is constructed, what its properties are, and what to expect in performance characteristics. The model system is shown to be useful for studying the selective and in some cases accelerated transfer of nutrients and metabolites.

  13. MAPPING THE ASYMMETRIC THICK DISK. I. A SEARCH FOR TRIAXIALITY

    SciTech Connect

    Larsen, Jeffrey A.; Haviland, Aaron P.; Cabanela, Juan E.; Humphreys, Roberta M. E-mail: cabanela@mnstate.edu

    2010-02-15

    A significant asymmetry in the distribution of faint blue stars in the inner Galaxy, Quadrant 1 (l = 20 deg. - 45 deg.) compared to Quadrant 4 was first reported by Larsen and Humphreys in 1996. Parker et al. greatly expanded the survey to determine its spatial extent and shape and the kinematics of the affected stars. This excess in the star counts was subsequently confirmed by Juric et al. using Sloan Digital Sky Survey data. Possible explanations for the asymmetry include a merger remnant, a triaxial thick disk, and a possible interaction with the bar in the disk. In this paper, we describe our program of wide field photometry to map the asymmetry to fainter magnitudes and therefore larger distances. To search for the signature of triaxiality, we extended our survey to higher Galactic longitudes. We find no evidence for an excess of faint blue stars at l {>=}55 deg. including the faintest magnitude interval. The asymmetry and star count excess in Quadrant 1 is thus not due to a triaxial thick disk.

  14. Adapting military field water supplies to the asymmetric battlefield.

    PubMed

    Lundquist, Arthur H; White, George H; Bonilla, Alejandro; Richards, Todd E; Richards, Stephen C

    2011-01-01

    Army transformation to a brigade-centric force has created a distributed battlefield, challenging the surveillance and logistical supply of field water. The daily requirement of up to 15 gal of potable water per person per day from bulk water supplies has been achievable for many years using currently fielded ROWPUs. However, the need to reduce the transport of water and move towards a sustainable force has created a gap in materiel capable of producing safe water at the individual and unit level. While materiel development is slow, the PM community, tasked with doctrine development and battlefield oversight of field water, is beginning to address the requirements of field water on the changed battlefield. In addition to materiel gaps, the transformed battlefield has created a lack of trained personnel for water production and oversight. Without trained operators and PM oversight, to what level of health risk are consumers of this water exposing themselves? Currently PM is unable to answer this question but is working diligently with the RDT&E community to develop materiel solutions, and with the medical community to provide interim guidance to reduce the potential health risks to using such equipment. PMID:21805456

  15. The origin of life: self-replicating asymmetrical frozen probability.

    PubMed

    Glassman, M L; Hochberg, A

    1998-01-01

    Within each of us, as within each living or extinct creature, is a broad piece from the story of life and creation. Both the evolution of the universe and the emergence of life on Earth can be considered as being the result of critical events, such as phase transitions, that occur with a certain probability and are characterized by a sudden breakage of prior symmetry. These in turn result in self-perpetuating conditions that are responsible for what we know and perceive today. PMID:9488186

  16. The asymmetrical contributions of pleasure and pain to animal welfare.

    PubMed

    Shriver, Adam J

    2014-04-01

    Recent results from the neurosciences demonstrate that pleasure and pain are not two symmetrical poles of a single scale of experience but in fact two different types of experiences altogether, with dramatically different contributions to well-being. These differences between pleasure and pain and the general finding that "the bad is stronger than the good" have important implications for our treatment of nonhuman animals. In particular