Science.gov

Sample records for fatty acid biomarkers

  1. Associations of erythrocyte ω-3 fatty acids with biomarkers of ω-3 fatty acids and inflammation in breast tissue.

    PubMed

    Roy, Shuvro; Brasky, Theodore M; Belury, Martha A; Krishnan, Shiva; Cole, Rachel M; Marian, Catalin; Yee, Lisa D; Llanos, Adana A; Freudenheim, Jo L; Shields, Peter G

    2015-12-15

    There is increasing evidence that chronic inflammation is associated with increased breast cancer risk. Long-chain omega-3 polyunsaturated fatty acids (LCω-3PUFA) may reduce circulating biomarkers of inflammation; however associations of blood LCω-3PUFA with breast tissue LCω-3PUFA and breast tissue biomarkers of inflammation are not well understood. We conducted a cross-sectional analysis of breast tissue and blood samples from n = 85 women with no history of breast cancer, who underwent breast reduction surgery. Fatty acids of erythrocytes and undissected breast tissues were analyzed by gas chromatography; C-reactive protein (CRP), interleukin (IL)-6 and IL-8 in plasma and tissue were measured by ELISA. Multivariable-adjusted regression models were used to estimate associations between erythrocyte LCω-3PUFA and breast tissue biomarkers. Women in the highest erythrocyte LCω-3PUFA tertile had LCω-3PUFA concentrations in the breast 73% (95% CI: 31-128%; p trend < 0.0001) higher than women in the lowest tertile. Associations for each individual LCω-3PUFA were similar in magnitude. No significant association was found for the shorter ω-3 PUFA, α-linolenic acid. Although compatible with no association, women in the highest tertile of erythrocyte eicosapentaenoic acid had a nonsignificant 32% (95% CI: -23 to 62%) reduced breast tissue CRP. No correlation was observed between erythrocyte ω-3 PUFA and tissue IL-6 or IL-8 concentrations. Our findings provide evidence that erythrocyte ω-3 fatty acids are valid measures of breast tissue concentrations, and limited evidence that inverse associations from prospective epidemiologic studies of blood LCω-3PUFA and breast cancer risk may be partly explained by reductions in breast tissue inflammation; however, these findings require replication. PMID:26137879

  2. Predominance and sources of alkane and fatty acid biomarkers in the surface sediments of Chitrapuzha River (South India).

    PubMed

    Sanil Kumar, K S; Nair, S M

    2015-04-01

    Surface sediment samples were collected from Chitrapuzha (Cochin) estuarine system to identify the natural and anthropogenic origin of organic matter. The distribution and sources of organic matter were assessed with the help of fatty acid and alkane biomarkers. Fatty acids ranging from C12 to C28 were identified and C16:0 was the most abundant fatty acid, which contributed between 23.5 % and 52.4 % to total fatty acids. The low levels of polyunsaturated fatty acids indicate the effective bacterial recycling of algal fatty acids during the whole settling and depositing process. Aliphatic hydrocarbons ranging from C12 to C33 were identified and the total concentration ranged from 7876 to 43,357 ng g(-1). The presence of unresolved complex mixtures and lower pristane to phytane ratios indicates the petroleum contamination in the study area. PMID:25694163

  3. Polymethylene-interrupted fatty acids: Biomarkers for native and exotic mussels in the Laurentian Great Lakes

    USGS Publications Warehouse

    Mezek, Tadej; Sverko, Ed; Ruddy, Martina D.; Zaruk, Donna; Capretta, Alfredo; Hebert, Craig E.; Fisk, Aaron T.; McGoldrick, Daryl J.; Newton, Teresa J.; Sutton, Trent M.; Koops, Marten A.; Muir, Andrew M.; Johnson, Timothy B.; Ebener, Mark P.; Arts, Michael T.

    2011-01-01

    Freshwater organisms synthesize a wide variety of fatty acids (FAs); however, the ability to synthesize and/or subsequently modify a particular FA is not universal, making it possible to use certain FAs as biomarkers. Herein we document the occurrence of unusual FAs (polymethylene-interrupted fatty acids; PMI-FAs) in select freshwater organisms in the Laurentian Great Lakes. We did not detect PMI-FAs in: (a) natural seston from Lake Erie and Hamilton Harbor (Lake Ontario), (b) various species of laboratory-cultured algae including a green alga (Scenedesmus obliquus), two cyanobacteria (Aphanizomenon flos-aquae and Synechococystis sp.), two diatoms (Asterionella formosa, Diatoma elongatum) and a chrysophyte (Dinobryon cylindricum) or, (c) zooplankton (Daphnia spp., calanoid or cyclopoid copepods) from Lake Ontario, suggesting that PMI-FAs are not substantively incorporated into consumers at the phytoplankton–zooplankton interface. However, these unusual FAs comprised 4-6% of total fatty acids (on a dry tissue weight basis) of native fat mucket (Lampsilis siliquoidea) and plain pocketbook (L. cardium) mussels and in invasive zebra (Dreissena polymorpha) and quagga (D. bugensis) mussels. We were able to clearly partition Great Lakes' mussels into three separate groups (zebra, quagga, and native mussels) based solely on their PMI-FA profiles. We also provide evidence for the trophic transfer of PMI-FAs from mussels to various fishes in Lakes Ontario and Michigan, further underlining the potential usefulness of PMI-FAs for tracking the dietary contribution of mollusks in food web and contaminant-fate studies.

  4. Development of fatty acid biomarkers for the identification of wild and aquacultured sea cucumber ( Apostichopus japonicus)

    NASA Astrophysics Data System (ADS)

    Zadorozhnyj, P. A.; Pivnenko, T. N.; Kovalev, N. N.

    2016-02-01

    In this study, the fatty acids (FAs) of the organs and tissues of sea cucumber ( Apostichopus japonicus) were profiled in order to compare the FA composition of sea cucumber collected from natural habitat (wild) and cages (cultured). The differences in FA contents in dermomuscular tube, peripharyngeal annulus, gonad and intestine (with or without content) between the wild and the cultured were determined. The main fatty acids in all organs and tissues were 20:5n-3, 16:1n-7, 20:4n-6, 22:6n-3, 18:0, and 18:1n-7. The basically different FAs of body wall and digestive tube were 16:1n-7, 18:1n-9 and 20:1n-11. The ratio of saturated to mono- and polyunsaturated FAs in digestive tube was independent on inside content while there was a redistribution of the total amount of n-3 and n-6 fatty acids. The comparison of FA composition of the wild and the cultured sea cucumber showed that 20:5n-3, 16:1n-7 and 18:1n-7 predominated the wild while 20:4n-6 predominated the cultured. The content of branched-chain fatty acids in the wild was 3%-4% and about 9% in the cultured. The possible FAs for identifying the wild and the cultured sea cucumbers were selected. It was suggested that the indexes such as the ratio of either (n-3:n-6) to (n-7:n-6) or (n-3) + (n-7) to (n-6) may serve as the biomarkers distinguishing the wild and the cultured sea cucumber.

  5. Fatty acids - trans fatty acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The data supporting a negative effect of dietary trans fatty acids on cardiovascular disease risk is consistent. The primary dietary sources of trans fatty acids include partially hydrogenated fat and rudiment fat. The adverse effect of trans fatty acids on plasma lipoprotein profiles is consisten...

  6. Suitability of Phytosterols Alongside Fatty Acids as Chemotaxonomic Biomarkers for Phytoplankton

    PubMed Central

    Taipale, Sami J.; Hiltunen, Minna; Vuorio, Kristiina; Peltomaa, Elina

    2016-01-01

    The composition and abundance of phytoplankton is an important factor defining ecological status of marine and freshwater ecosystems. Chemotaxonomic markers (e.g., pigments and fatty acids) are needed for monitoring changes in a phytoplankton community and to know the nutritional quality of seston for herbivorous zooplankton. Here we investigated the suitability of sterols along with fatty acids as chemotaxonomic markers using multivariate statistics, by analyzing the sterol and fatty acid composition of 10 different phytoplankton classes including altogether 37 strains isolated from freshwater lakes. We were able to detect a total of 47 fatty acids and 29 sterols in our phytoplankton samples, which both differed statistically significantly between phytoplankton classes. Due to the high variation of fatty acid composition among Cyanophyceae, taxonomical differentiation increased when Cyanophyceae were excluded from statistical analysis. Sterol composition was more heterogeneous within class than fatty acids and did not improve separation of phytoplankton classes when used alongside fatty acids. However, we conclude that sterols can provide additional information on the abundance of specific genera within a class which can be generated by using fatty acids. For example, whereas high C16 ω-3 PUFA (polyunsaturated fatty acid) indicates the presence of Chlorophyceae, a simultaneous high amount of ergosterol could specify the presence of Chlamydomonas spp. (Chlorophyceae). Additionally, we found specific 4α-methyl sterols for distinct Dinophyceae genera, suggesting that 4α-methyl sterols can potentially separate freshwater dinoflagellates from each other. PMID:26973664

  7. Red Blood Cell Fatty Acids and Biomarkers of Inflammation: A Cross-sectional Study in a Community-based Cohort

    PubMed Central

    Fontes, João D.; Rahman, Faisal; Lacey, Sean; Larson, Martin G.; Vasan, Ramachandran S.; Benjamin, Emelia J.; Harris, William S.; Robins, Sander J.

    2015-01-01

    Introduction Inflammation and inflammatory biomarkers have emerged as integral components and predictors of incident cardiovascular (CV) disease. Omega-3 fatty acids, particularly eicosapentaenoic and docosahexaenoic acids (EPA and DHA) have anti-inflammatory properties, and have been variably associated with lower blood pressure, favorable blood lipid changes, and reduced CV events. Methods and Results We examined the cross-sectional association of red blood cell (RBC) fatty acids, representative of body membrane fatty acid composition, with 10 biomarkers active in multiple inflammatory pathways in 2724 participants (mean age 66±9 years, 54% women, 8% minorities) from the Framingham Offspring and minority Omni Cohorts. . After multivariable adjustment, the RBC EPA and DHA content was inversely correlated (all P≤0.001) with 8 markers of inflammation, receptors, or pathways: urinary isoprostanes (r=−0.16); and soluble interleukin-6 (r=−0.10); C-reactive protein (r=−0.08); tumor necrosis factor receptor 2 (r=−0.08); intercellular adhesion molecule-1 (r=−0.08); P-selectin (r=−0.06); lipoprotein-associated phospholipase-A2 mass (r=−0.11) and activity (r=−0.08). The correlations for monocyte chemoattractant protein-1 was −0.05, P=0.006 and osteoprotegerin (r= −0.06, P=0.002) were only nominally significant. Conclusion In our large community-based study, we observed modest inverse associations between several types of inflammatory biomarkers with RBC omega-3 fatty acid levels. Our findings are consistent with the hypothesis that omega-3 fatty acids have anti-inflammatory properties. PMID:25897795

  8. Feeding ecology of Ammothella longipes (Arthropoda: Pycnogonida) in the Mediterranean Sea: A fatty acid biomarker approach

    NASA Astrophysics Data System (ADS)

    Soler-Membrives, Anna; Rossi, Sergio; Munilla, Tomás

    2011-05-01

    Fatty acid analysis has proved valuable in determining seasonal trophic links and the feeding behavior in organisms in which these diet and trophic links cannot be inferred from stomach content analyses. Seasonal variations in total free fatty acid content (TFFA) and fatty acid composition of seston (<250 μm), the brown macroalgae Stypocaulon spp., polychaetes (Nereididae) and the pycnogonid Ammothella longipes have been used to establish their trophic links, with particular focus on seasonality and feeding ecology of A. longipes. Samples were collected in a coastal environment (NW Mediterranean Sea) at 7-10 m depth, in five different periods (August and October 2008, February, June and September 2009). Seston and Stypocaulon spp. samples did not show significant seasonal variations in TFFA content, while nereids showed a significant variation. Analysis of fatty acid profile showed high similarities of fatty acid composition between seston and Stypocaulon spp. Nereids were closer to seston and Stypocaulon spp. than A. longipes, which seemed to follow a seasonal trend. The results of this study reveal that A. longipes may change its feeding behavior depending on the season and available food. This pycnogonid species appears to be carnivore during spring and early summer but seems to feed on detritus when availability of prey diminishes during winter. Notable high amounts of odd-chain fatty acids are found in summer-autumn for this species, which may come from bacteria acquired from the detrital diet or from de novo biosynthesis from propionate. The results obtained provide new and valuable data on the understudied feeding biology of pycnogonids in general, and contribute to the understanding of their functioning of Mediterranean shallow oligotrophic systems and their trophic links.

  9. Fatty acids as biomarkers for food web structure in the eastern North Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Behrens, J.; Aluwihare, L.; Stephens, B. M.

    2015-12-01

    Resulting from a NSF funded REU program at Scripps Institution of Oceanography in 2015, this research utilized gas chromatography-mass spectrometry (GC-MS) to analyze the fatty acid composition of suspended particulate organic matter (POM) and zooplankton (ZP; primarily copepods). Samples analyzed for this study were collected simultaneously from surface waters approximately 9 miles off the coast of San Diego in June 2015. I was testing the hypothesis that essential fatty acids in ZP should reflect their diet, in particular, distinguishing contributions from a microbial versus traditional food web. Food web structure in this region of the ocean has been shown to be sensitive to climate change on inter-annual and longer timescales. Thus, a proxy that identifies restructuring of food webs would be useful for examining the response of ocean ecosystems to future climate change. Lipids were extracted from ZP and POM using a modified Bligh and Dyer method with sonication. Following saponification free fatty acids and other lipids were further purified using column chromatography. Polar functional groups in lipids were then methylated prior to GC-MS analysis. In addition, 2-dimensional GCxGC with time of flight MS was used to distinguish polyunsaturated fatty acid isomers. My poster will present initial findings of shared fatty acids of zooplankton and POM suspended material from the Northern Pacific collection site. Further research will be focused on analyzing the hydrogen isotope composition of fatty acids in zooplankton and suspended DOM obtained at the collection site to further characterize and increase certainty on the role of microbes and phytoplankton in the region's food-web to distinguish prokaryotic and eukaryotic sources.

  10. Identification of potential erythrocyte phospholipid fatty acid biomarkers of advanced lung adenocarcinoma, squamous cell lung carcinoma, and small cell lung cancer.

    PubMed

    Sánchez-Rodríguez, Patricia; Rodríguez, Marina C; Sánchez-Yagüe, Jesús

    2015-07-01

    New biomarkers for lung cancer would be valuable. Our aim was to analyze the fatty acid profiles of the main phospholipid species in erythrocytes from patients with advanced squamous cell lung carcinoma (SCC), lung adenocarcinoma (ADC), and small cell lung cancer (SCLC) and benign lung diseases (chronic obstructive pulmonary disease (COPD) and asthma) to determine the fatty acids that could be use as lung cancer markers. Twenty-eight, 18, 14, 16, and 15 patients with, respectively, SCC, ADC, SCLC, asthma, and COPD and 50 healthy subjects were enrolled in the study. Fatty acid profiles were investigated using gas chromatography/mass spectrometry followed by receiver operating characteristic (ROC) curve analysis. The fatty acid profiles changed significantly in the different pathologies analyzed. Based on the diagnostic yields and operating characteristics, the most significant fatty acids that might be used as biomarkers were as follows: ADC--arachidonic acid (20:4n6) in phosphatidylcholine and oleic acid (18:1n9) in phosphatidylethanolamine (PE); SCC--eicosapentaenoic acid (20:5n3) in PE and palmitic acid (16:0) in phosphatidylserine + phosphatidylinositol (PS+PI); SCLC--eicosadienoic acid (20:2n6) in PS+PI and lignoceric acid (24:0) in sphingomyelin. In conclusion, fatty acids from erythrocyte phospholipid species might serve as biomarkers in the diagnosis, and probably in other aspects related to clinical disease management, of ADC, SCC, and SCLC. PMID:25702090

  11. Sterols and fatty acid biomarkers as indicators of changes in soil microbial communities in a uranium mine area.

    PubMed

    Guedes, Maria J; Pereira, Ruth; Duarte, Kátia; Rocha-Santos, Teresa A P; Antunes, Sara C; Gonçalves, Fernando; Duarte, Armando C; Freitas, Ana C

    2011-01-01

    Included in the 2nd tier of a site specific risk assessment that is being carried out in an abandoned uranium mine (Cunha Baixa uranium mine, Central Portugal), fatty acids biomarkers and sterols were analyzed to assess the impact of soil contamination with metals and radionuclides in the structure of the microbial community in seven sampling sites located at different distances from the mine. Surface soil samples were collected in those sampling sites in the four different seasons of the year. Principal component analysis (PCA) was performed on fatty acid biomarkers and sterols. Subsequently PCA scores obtained for both components were used to test the effect of sites and seasons, on soil samples collected in the Cunha Baixa uranium mine, through bi-factorial ANOVAs. Through PCA analysis, two distinct groups were set apart along the first two components. One group included sites at a great distance from the mine which were negatively correlated with higher contents of iC15:0 and iC17:0, both indicators of Gram-positive bacteria, as well as with ergosterol, cholestanol and cholesterol. The second group, in turn, was composed of the sampling sites most impacted by ore exploration, in situ leaching of poor ore, and spread of sludge from the effluent treatment pond. These sites were positively correlated with higher levels of iC16:0 (Gram-positive bacteria indicator), cyC17:0 (generally common in gram negative bacteria) and C18:0 and C17:0 biomarkers of non-specific bacteria. The profile of fatty acids obtained in the sampling sites revealed variable predominance of groups of bacteria which are a clear indication of differences in the soil microbial communities that are directly related to the environmental conditions prevailing in the uranium mine area. PMID:21547821

  12. Fatty acid profiles as a potential lipidomic biomarker of exposure to brevetoxin for endangered Florida manatees (Trichechus manatus latirostris).

    PubMed

    Wetzel, Dana L; Reynolds, John E; Sprinkel, Jay M; Schwacke, Lori; Mercurio, Philip; Rommel, Sentiel A

    2010-11-15

    Fatty acid signature analysis (FASA) is an important tool by which marine mammal scientists gain insight into foraging ecology. Fatty acid profiles (resulting from FASA) represent a potential biomarker to assess exposure to natural and anthropogenic stressors. Florida manatees are well studied, and an excellent necropsy program provides a basis against which to assess this budding tool. Results using samples from 54 manatees assigned to four cause-of-death categories indicated that those animals exposed to or that died due to brevetoxin exposure (red tide, or RT samples) demonstrate a distinctive hepatic fatty acid profile. Discriminant function analysis indicated that hepatic fatty acids could be used to classify RT versus non-RT liver samples with reasonable certainty. A discriminant function was derived based on 8 fatty acids which correctly classified 100% of samples from a training dataset (10 RT and 25 non-RT) and 85% of samples in a cross-validation dataset (5 RT and 13 non-RT). Of the latter dataset, all RT samples were correctly classified, but two of thirteen non-RT samples were incorrectly classified. However, the "incorrect" samples came from manatees that died due to other causes during documented red tide outbreaks; thus although the proximal cause of death was due to watercraft collisions, exposure to brevetoxin may have affected these individuals in ways that increased their vulnerability. This use of FASA could: a) provide an additional forensic tool to help scientists and managers to understand cause of death or debilitation due to exposure to red tide in manatees; b) serve as a model that could be applied to studies to improve assessments of cause of death in other marine mammals; and c) be used, as in humans, to help diagnose metabolic disorders or disease states in manatees and other species. PMID:20880571

  13. Seasonal variation of Fatty acids and stable carbon isotopes in sponges as indicators for nutrition: biomarkers in sponges identified.

    PubMed

    Koopmans, Marieke; van Rijswijk, Pieter; Boschker, Henricus T S; Marco, Houtekamer; Martens, Dirk; Wijffels, Rene H

    2015-02-01

    To get a better understanding of sponge feeding biology and efficiencies, the fatty acid (FA) composition and (13)C natural abundance of sponges and of suspended particulate matter (SPM) from surrounding seawater was studied in different seasons at three locations. Haliclona oculata and Haliclona xena from the Oosterschelde, the Netherlands, Halichondria panicea and H. xena from Lake Veere, the Netherlands, and Aplysina aerophoba and Dysidea avara from the Mediterranean, Spain, were studied. Several FA biomarkers for different algal groups, bacteria and sponge biomass were identified in all sponges. The FA concentration variation in sponges was related to changes in fatty acid concentration in SPM. Stable carbon isotopic ratios (δ(13)C) in sponge specific FAs showed very limited seasonal variation at all sites. Algal FAs in sponges were mainly acquired from the SPM through active filtration in all seasons. At the two sites in the Netherlands only in May (spring), the sponge specific FAs had similar δ(13)C ratios as algal FAs, suggesting that sponges were mainly growing during spring and probably summer. During autumn and winter, they were still actively filtering, but the food collected during this period had little effect on sponge δ(13)C values suggesting limited incorporation of filtered material into the sponge body. The sponge A. aerophoba relied mostly on the symbiotic bacteria. In conclusion, fatty acid composition in combination with stable carbon isotope analysis can be used to analyze the food source of sponges. PMID:25107690

  14. Phospholipid fatty acid biomarkers in a freshwater periphyton community exposed to uranium: discovery by non-linear statistical learning

    SciTech Connect

    Webb-Robertson, Bobbie-Jo M.; Bunn, Amoret L.; Bailey, Vanessa L.

    2011-01-01

    Phospholipid fatty acids (PLFA) have been widely used to characterize environmental microbial communities, generating community profiles that can distinguish phylogenetic or functional groups within the community. The poor specificity of organism groups with fatty acid biomarkers in the classic PLFA-microorganism associations is a confounding factor in many of the statistical classification/clustering approaches traditionally used to interpret PLFA profiles. In this paper we demonstrate that non-linear statistical learning methods, such as a support vector machine (SVM), can more accurately find patterns related to uranyl nitrate exposure in a freshwater periphyton community than linear methods, such as partial least squares discriminant analysis. In addition, probabilistic models of exposure can be derived from the identified lipid biomarkers to demonstrate the potential model-based approach that could be used in remediation. The SVM probability model separates dose groups at accuracies of ~87.0%, ~71.4%, ~87.5%, and 100% for the four groups; Control (non-amended system), low-dose (amended at 10 µg U L-1), medium dose (amended at 100 µg U L-1), and high dose (500 µg U L-1). The SVM model achieved an overall cross-validated classification accuracy of ~87% in contrast to ~59% for the best linear classifier.

  15. Plasma Elaidic Acid Level as Biomarker of Industrial Trans Fatty Acids and Risk of Weight Change: Report from the EPIC Study

    PubMed Central

    Chajès, Véronique; Biessy, Carine; Ferrari, Pietro; Romieu, Isabelle; Freisling, Heinz; Huybrechts, Inge; Scalbert, Augustin; Bueno de Mesquita, Bas; Romaguera, Dora; Gunter, Marc J.; Vineis, Paolo; Hansen, Camilla Plambeck; Jakobsen, Marianne Uhre; Clavel-Chapelon, Françoise; Fagherazzi, Guy; Boutron-Ruault, Marie-Christine; Katzke, Verana; Neamat-Allah, Jasmine; Boeing, Heiner; Bachlechner, Ursula; Trichopoulou, Antonia; Naska, Androniki; Orfanos, Philippos; Pala, Valeria; Masala, Giovanna; Mattiello, Amalia; Skeie, Guri; Weiderpass, Elisabete; Agudo, Antonio; Huerta, Jose Maria; Ardanaz, Eva; Sánchez, Maria Jose; Dorronsoro, Miren; Quirós, Jose Ramon; Johansson, Ingegerd; Winkvist, Anna; Sonested, Emily; Key, Tim; Khaw, Kay-Tee; Wareham, Nicolas J.; Peeters, Petra H.M.; Slimani, Nadia

    2015-01-01

    Background Few epidemiological studies have examined the association between dietary trans fatty acids and weight gain, and the evidence remains inconsistent. The main objective of the study was to investigate the prospective association between biomarker of industrial trans fatty acids and change in weight within the large study European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. Methods Baseline plasma fatty acid concentrations were determined in a representative EPIC sample from the 23 participating EPIC centers. A total of 1,945 individuals were followed for a median of 4.9 years to monitor weight change. The association between elaidic acid level and percent change of weight was investigated using a multinomial logistic regression model, adjusted by length of follow-up, age, energy, alcohol, smoking status, physical activity, and region. Results In women, doubling elaidic acid was associated with a decreased risk of weight loss (odds ratio (OR) = 0.69, 95% confidence interval (CI) = 0.55-0.88, p = 0.002) and a trend was observed with an increased risk of weight gain during the 5-year follow-up (OR = 1.23, 95% CI = 0.97-1.56, p = 0.082) (p-trend<.0001). In men, a trend was observed for doubling elaidic acid level and risk of weight loss (OR = 0.82, 95% CI = 0.66-1.01, p = 0.062) while no significant association was found with risk of weight gain during the 5-year follow-up (OR = 1.08, 95% CI = 0.88-1.33, p = 0.454). No association was found for saturated and cis-monounsaturated fatty acids. Conclusions These data suggest that a high intake of industrial trans fatty acids may decrease the risk of weight loss, particularly in women. Prevention of obesity should consider limiting the consumption of highly processed foods, the main source of industrially-produced trans fatty acids. PMID:25675445

  16. Feeding strategies of four dominant copepod species in Prydz Bay, Antarctica: Insights from a combined fatty acid biomarker and stable isotopic approach

    NASA Astrophysics Data System (ADS)

    Yang, Guang; Li, Chaolun; Guilini, Katja; Peng, Quancai; Wang, Yanqing; Zhang, Ye; Zhang, Yongshan

    2016-08-01

    Using fatty acid biomarkers and stable isotopic signatures, we investigated the feeding strategies and dietary preferences of four dominant copepod species (Calanoides acutus, Calanus propinquus, Metridia gerlachei and Rhincalanus gigas) sampled during the late austral summer in Prydz Bay, Antarctica. Our results show that diatoms, dinoflagellates and ciliates dominated copepod food sources (hypothesized to be phytoplankton and particulate organic matter) in the inner bay regions more than in the oceanic regions of Prydz Bay. Regional differences in the composition and abundance of food sources were also reflected in the fatty acid biomarkers and stable isotopic values. In the inner bay region, the total fatty acid contents of these food sources were nearly twofold higher, including greater contributions from fatty acids of dinoflagellate origin; these samples also had higher δ13C and δ15N values. Fatty acid biomarkers and stable isotopic values in copepod species roughly mirrored the spatial patterns in food sources. As found in the primary producers, the concentrations of dinoflagellate fatty acids and δ13C and δ15N values were higher in copepods from the inner bay regions. Additionally, there were inter-species differences in the fatty acids and stable isotopic values of copepods. C. acutus and C. propinquus did not exhibit significant regional differences in their total fatty acid contents. In contrast, M. gerlachei from the inner bay region had higher fatty acid values. C. acutus and C. propinquus had higher compositions of the long chain fatty acids 20:1n-9, 22:1n-9 and 22:1n-1, while docosahexaenoic acid (DHA) was higher in M. gerlachei. The δ15N values indicate that C. acutus occupies a higher trophic level than the other copepod species. Similarly, higher fatty acid ratios in M. gerlachei, including DHA/EPA(eicosapntemacnioc acid) and 18:1n-9/18:1n-7, indicate that this species feeds more opportunistically and prefers a carnivorous diet. Insights from

  17. Feeding ecology of mesopelagic zooplankton of the subtropical and subarctic North Pacific Ocean determined with fatty acid biomarkers

    NASA Astrophysics Data System (ADS)

    Wilson, S. E.; Steinberg, D. K.; Chu, F.-L. E.; Bishop, J. K. B.

    2010-10-01

    Mesopelagic zooplankton may meet their nutritional and metabolic requirements in a number of ways including consumption of sinking particles, carnivory, and vertical migration. How these feeding modes change with depth or location, however, is poorly known. We analyzed fatty acid (FA) profiles to characterize zooplankton diet and large particle (>51 μm) composition in the mesopelagic zone (base of euphotic zone -1000 m) at two contrasting time-series sites in the subarctic (station K2) and subtropical (station ALOHA) Pacific Ocean. Total FA concentration was 15.5 times higher in zooplankton tissue at K2, largely due to FA storage by seasonal vertical migrators such as Neocalanus and Eucalanus. FA biomarkers specific to herbivory implied a higher plant-derived food source at mesotrophic K2 than at oligotrophic ALOHA. Zooplankton FA biomarkers specific to dinoflagellates and diatoms indicated that diatoms, and to a lesser extent, dinoflagellates were important food sources at K2. At ALOHA, dinoflagellate FAs were more prominent. Bacteria-specific FA biomarkers in zooplankton tissue were used as an indicator of particle feeding, and peaks were recorded at depths where known particle feeders were present at ALOHA (e.g., ostracods at 100-300 m). In contrast, depth profiles of bacterial FA were relatively constant with depth at K2. Diatom, dinoflagellate, and bacterial biomarkers were found in similar proportions in both zooplankton and particles with depth at both locations, providing additional evidence that mesopelagic zooplankton consume sinking particles. Carnivory indices were higher and increased significantly with depth at ALOHA, and exhibited distinct peaks at K2, representing an increase in dependence on other zooplankton for food in deep waters. Our results indicate that feeding ecology changes with depth as well as by location. These changes in zooplankton feeding ecology from the surface through the mesopelagic zone, and between contrasting environments

  18. Biomarkers of Dairy Fatty Acids and Risk of Cardiovascular Disease in the Multi‐Ethnic Study of Atherosclerosis

    PubMed Central

    de Oliveira Otto, Marcia C.; Nettleton, Jennifer A.; Lemaitre, Rozenn N.; M. Steffen, Lyn; Kromhout, Daan; Rich, Stephen S.; Y. Tsai, Michael; Jacobs, David R.; Mozaffarian, Dariush

    2013-01-01

    Background Evidence regarding the role of dairy fat intake in cardiovascular disease (CVD) has been mixed and inconclusive. Most earlier studies have used self‐reported measures of dietary intake and focused on relatively racially homogeneous populations. Circulating biomarkers of dairy fat in a multiethnic cohort provide objective measures of dairy fat intake and facilitate conclusions relevant to populations with different diets and susceptibility to CVD. Methods and Results In a multiethnic cohort of 2837 US adults aged 45 to 84 years at baseline (2000–2002), phospholipid fatty acids including 15:0, 14:0, and trans‐16:1n7 were measured using standardized methods, and the incidence of CVD prospectively adjudicated. Self‐reported whole‐fat dairy and butter intakes had strongest associations with 15:0, rather than 14:0 or trans‐16:1n7. In multivariate models including demographics and lifestyle and dietary habits, each SD‐unit of 15:0 was associated with 19% lower CVD risk (hazard ratio [95% CI] 0.81 [0.68 to 0.98]) and 26% lower coronary heart disease (CHD) risk (0.74 [0.60 to 0.92]). Associations were strengthened after mutual adjustment for 14:0 and trans‐16:1n‐7 and were similar after adjustment for potential mediators. Plasma phospholipid 14:0 and trans‐16:1n‐7 were not significantly associated with incident CVD or CHD. All findings were similar in white, black, Hispanic, and Chinese American participants. Conclusion Plasma phospholipid 15:0, a biomarker of dairy fat, was inversely associated with incident CVD and CHD, while no association was found with phospholipid 14:0 and trans‐16:1n‐7. These findings support the need for further investigation of CVD effects of dairy fat, dairy‐specific fatty acids, and dairy products in general. PMID:23868191

  19. Role of bioactive fatty acids in nonalcoholic fatty liver disease.

    PubMed

    Juárez-Hernández, Eva; Chávez-Tapia, Norberto C; Uribe, Misael; Barbero-Becerra, Varenka J

    2016-01-01

    Nonalcoholic fatty liver disease (NAFLD) is characterized by fat deposition in hepatocytes, and a strong association with nutritional factors. Dietary fatty acids are classified according to their biochemical properties, which confer their bioactive roles. Monounsaturated fatty acids have a dual role in various human and murine models. In contrast, polyunsaturated fatty acids exhibit antiobesity, anti steatosic and anti-inflammatory effects. The combination of these forms of fatty acids-according to dietary type, daily intake and the proportion of n-6 to n-3 fats-can compromise hepatic lipid metabolism. A chemosensory rather than a nutritional role makes bioactive fatty acids possible biomarkers for NAFLD. Bioactive fatty acids provide health benefits through modification of fatty acid composition and modulating the activity of liver cells during liver fibrosis. More and better evidence is necessary to elucidate the role of bioactive fatty acids in nutritional and clinical treatment strategies for patients with NAFLD. PMID:27485440

  20. Bioactive Fatty Acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oxygenated fatty acids are useful as specialty chemicals, plasticizers, and biomedicals. Microbial enzymes convert fatty acids to mono-, di-, and trihydroxy fatty acid products. Among them, Bacillus megaterium ALA2 converted n-6 and n-3 PUFAs to many new oxygenated fatty acids. Linoleic acid was ...

  1. Effects of linseed oil and palm oil on growth performance, tibia fatty acid and biomarkers of bone metabolism in broilers.

    PubMed

    Zhong, X; Gao, S; Wang, J J; Dong, L; Huang, J; Zhang, L L; Wang, T

    2014-01-01

    1. This study was conducted to determine the effects of different dietary fat sources on growth performance, tibia fatty acids and biomarkers of bone metabolism in broilers. 2. One-d-old commercial Arbor Acres broilers were fed with a maize-soya bean basal diet for 42 d, supplemented with oils according to the following 5 treatments: lard (lard group); linseed oil (linseed oil group); palm oil (palm oil group); linseed oil + palm oil (60:40 or 40:60 w/w, LP-1 group and LP-2 group, respectively). 3. No significant differences in weight gain, feed intake and gain/feed ratio were observed between the lard and linseed oil groups. Birds fed on palm oil had significantly greater weight gain and feed intake than those fed on lard or linseed oil. Growth performance in LP-1 and LP-2 was significantly greater than that of single-oil groups. 4. Tibia growth and bone characteristics were not influenced by supplementation with lard, linseed oil, or palm oil alone, but broilers fed on a mixture of fats had significantly greater tibia weight and length compared to broilers fed on linseed oil. Bone mineral density in tibia was significantly increased in LP-1 and LP-2 groups. 5. Supplementation of linseed oil alone or in combination with palm oil enhanced apparent digestibility of calcium, reduced serum calcium and increased tibia calcium concentrations. Moreover, supplementation with linseed oil alone or in combination with palm oil had a positive effect on biomarkers of bone growth. 6. The combination of linseed and palm oils was beneficial for growth performance, tibia growth and biomarkers of bone metabolism. PMID:24641587

  2. Temporal dynamics in a shallow coastal benthic food web: Insights from fatty acid biomarkers and their stable isotopes.

    PubMed

    Braeckman, Ulrike; Provoost, Pieter; Sabbe, Koen; Soetaert, Karline; Middelburg, Jack J; Vincx, Magda; Vanaverbeke, Jan

    2015-07-01

    We investigated the temporal variation of pelagic and benthic food sources in the diet of benthic taxa at a depositional site in the Southern Bight of the North Sea by means of fatty acid (FA) biomarkers and compound-specific stable isotope analysis (CSIA). The taxa were the non-selective deposit feeding nematodes (Sabatieria spp. and 'other nematodes'), and three dominant macrobenthic species: two true suspension-deposit feeders (the bivalve Abra alba and the tube dwelling polychaete Owenia fusiformis) and the suspected predatory mud-dwelling anemone Sagartia sp. These species make up on average 16% (Abra alba), 17% (Sagartia sp.) and 20% (Owenia fusiformis) of the biomass in the Abra alba-Kurtiella bidentata community in this area. Phytoplankton dynamics in the suspended particulate matter of the water column as inferred from cell counts, chlorophyll-a and organic carbon content were clearly visible in sediment and animal FA abundance as well, whereas phytodetritus dynamics in the sediment FA composition were less clear, probably due to patchy distribution or stripping of FA by macrofauna. Nematodes appeared to assimilate mainly Polyunsaturated Fatty Acids (PUFAs) from their sedimentary environment and were further non-selectively accumulating more (Sabatieria spp.) or less ('other nematodes') FA from the deposited phytodetritus. In contrast, Abra alba FA composition was consistent with a diatom-dominated diet and consumption of Phaeocystis was observed in Owenia fusiformis, whereas Sagartia sp. showed evidence of a predatory behaviour. While the total FA content in Owenia fusiformis remained constant throughout the year, Sagartia sp. doubled and Abra alba increased its FA level more than 10-fold in response to the organic matter deposition from the phytoplankton bloom. This leads to the conclusion that there is no resource partitioning between non-selective deposit feeding nematodes and the suspension-deposit feeding macrobenthic organisms, suggesting they

  3. Plant fatty acid hydroxylases

    DOEpatents

    Somerville, Chris; Broun, Pierre; van de Loo, Frank

    2001-01-01

    This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants. In addition, the use of genes encoding fatty acid hydroxylases or desaturases to alter the level of lipid fatty acid unsaturation in transgenic plants is described.

  4. Dynamics of sinking particles in northern Japan trench in the western North Pacific: biogenic chemical components and fatty acids biomarkers

    NASA Astrophysics Data System (ADS)

    Shin, K. H.; Noriki, S.; Itou, M.; Tsunogai, S.

    Biogenic opal was predominant component, and had strongly positive correlation with organic carbon in both traps. The average atomic ratios of biogenic opal and calcium carbonate (CaCO 3) were also large (7.1 and 11 in the shallow and deep trap, respectively) and the highest ratio was found in May 1995, when the biogenic opal proportion (%) to the total particle flux and C org/C inorg ratio increased concomitantly. However, transient switching of the biogenic opal and CaCO 3 ratios (0.6 and 0.8) was observed in winter 1995, which seems to be related to a warm-core ring developed in the northwestern Pacific. Downward fluxes of fatty acids as molecular markers were determined and compared with major biogenic chemical components in sinking particles. As a diatom index of fatty acids, the 16:1(n-7)/16:0 ratio is positively related to biogenic opal contribution (%) to the sinking particles in the shallow and deep traps. 20:5(n-3) proportion (%) was also correlated with opal content (%) in sinking particles in the 1-km trap. In addition, a major source of sinking fatty acids in the western North Pacific might be characterized by algal fatty acids as a diatom marker (16:1(n-7)), comparing to a zooplankton fatty acid (18:1(n-9)) in the central North Pacific and fecal pellets and coccolithophores in the eastern North Pacific, respectively. Also, PUFA index (a measure of polyunsaturated fatty acids contribution to the total fatty acids) correlated well with Chl a inventory in surface 0-50 m water. These results suggest that undegraded diatomaceous fatty acids are present in sinking particles, and the composition of fatty acids is useful to understand the origin of sinking organic particles.

  5. Fatty Acid-Binding Protein 4 (FABP4): Pathophysiological Insights and Potent Clinical Biomarker of Metabolic and Cardiovascular Diseases

    PubMed Central

    Furuhashi, Masato; Saitoh, Shigeyuki; Shimamoto, Kazuaki; Miura, Tetsuji

    2014-01-01

    Over the past decade, evidences of an integration of metabolic and inflammatory pathways, referred to as metaflammation in several aspects of metabolic syndrome, have been accumulating. Fatty acid-binding protein 4 (FABP4), also known as adipocyte FABP (A-FABP) or aP2, is mainly expressed in adipocytes and macrophages and plays an important role in the development of insulin resistance and atherosclerosis in relation to metaflammation. Despite lack of a typical secretory signal peptide, FABP4 has been shown to be released from adipocytes in a non-classical pathway associated with lipolysis, possibly acting as an adipokine. Elevation of circulating FABP4 levels is associated with obesity, insulin resistance, diabetes mellitus, hypertension, cardiac dysfunction, atherosclerosis, and cardiovascular events. Furthermore, ectopic expression and function of FABP4 in several types of cells and tissues have been recently demonstrated. Here, we discuss both the significant role of FABP4 in pathophysiological insights and its usefulness as a biomarker of metabolic and cardiovascular diseases. PMID:25674026

  6. Characterization of bacteria that suppress rhizoctonia damping-off in bark compost media by analysis of Fatty Acid biomarkers.

    PubMed

    Tunlid, A; Hoitink, H A; Low, C; White, D C

    1989-06-01

    Examination of cucumber roots (Cucumis sativus L.) grown in bark compost media and of the surrounding edaphic substrate showed profiles of polar lipid fatty acids commonly found in bacteria. The composition of fatty acids in these profiles differed significantly between roots grown in a medium naturally suppressive to Rhizoctonia damping-off and roots from a conducive medium. Cucumber roots from the suppressive medium had higher proportions of cis-vaccenic acid (18:1 omega 7c) and the iso-branched monoenoic fatty acid i17:1 omega 8 but lower proportions of several iso- and anteiso-branched fatty acids compared with roots from the conducive medium. The concentrations of the bacterial fatty acids were significantly lower in the surrounding media. However, the suppressive and conducive growth substrates had differences in the composition of the bacterial fatty acids similar to those found between the cucumber roots proper. These results suggest major differences in bacterial community composition between suppressive and conducive systems. Fatty acid analyses were also utilized to examine the effects on bacterial community composition of root colonization by Flavobacterium balustinum 299, a biocontrol agent. The concentration of the most prominent fatty acid in this bacterium, i17:1 omega 8, was increased on roots produced from inoculated seeds in a medium rendered suppressive by the treatment. This change was concomitant with a significant increase in the concentration of 18:1 omega 7c, not present in the lipids of the antagonist, indicating a shift in the microflora from a conducive to a suppressive bacterial community. PMID:16347930

  7. Foamy Monocytes Are Enriched in cis-7-Hexadecenoic Fatty Acid (16:1n-9), a Possible Biomarker for Early Detection of Cardiovascular Disease.

    PubMed

    Guijas, Carlos; Meana, Clara; Astudillo, Alma M; Balboa, María A; Balsinde, Jesús

    2016-06-23

    Human monocytes respond to arachidonic acid, a secretory product of endothelial cells, by activating the de novo pathway of fatty acid biosynthesis, resulting in the acquisition of a foamy phenotype due to accumulation of cytoplasmic lipid droplets. Recruitment of foamy monocytes to endothelium is a key step in the formation of atherosclerotic plaques. Here we describe that lipid droplets of foamy monocytes are enriched in a rather uncommon fatty acid, cis-7-hexadecenoic acid (16:1n-9), a positional isomer of palmitoleic acid. 16:1n-9 was found to possess an anti-inflammatory activity both in vitro and in vivo that is comparable with that of omega-3 fatty acids and clearly distinguishable from the effects of palmitoleic acid. Selective accumulation in neutral lipids of phagocytic cells of an uncommon fatty acid reveals an early phenotypic change that may provide a biomarker of proatherogenicity, and a potential target for intervention in the early stages of cardiovascular disease. PMID:27265749

  8. Omega-6 Fatty Acids

    MedlinePlus

    Omega-6 fatty acids are types of fats. Some types are found in vegetable oils, including corn, evening primrose seed, safflower, and soybean oils. Other types of omega-6 fatty acids are found in black currant seed, borage seed, ...

  9. Omega-6 Fatty Acids

    MedlinePlus

    ... types of fats. Some types are found in vegetable oils, including corn, evening primrose seed, safflower, and soybean ... from studying specific omega-6 fatty acids or plant oils containing omega-6 fatty acids. See the separate ...

  10. Omega-3 Fatty Acids

    MedlinePlus

    Omega-3 fatty acids are used together with lifestyle changes (diet, weight-loss, exercise) to reduce the amount ... the blood in people with very high triglycerides. Omega-3 fatty acids are in a class of medications ...

  11. Fatty acid analogs

    DOEpatents

    Elmaleh, David R.; Livni, Eli

    1985-01-01

    In one aspect, a radioactively labeled analog of a fatty acid which is capable of being taken up by mammalian tissue and which exhibits an in vivo beta-oxidation rate below that with a corresponding radioactively labeled fatty acid.

  12. Dietary polyunsaturated fatty acids and heme iron induce oxidative stress biomarkers and a cancer promoting environment in the colon of rats.

    PubMed

    Guéraud, Françoise; Taché, Sylviane; Steghens, Jean-Paul; Milkovic, Lidija; Borovic-Sunjic, Suzana; Zarkovic, Neven; Gaultier, Eric; Naud, Nathalie; Héliès-Toussaint, Cécile; Pierre, Fabrice; Priymenko, Nathalie

    2015-06-01

    The end products of polyunsaturated fatty acid (PUFA) peroxidation, such as malondialdehyde (MDA), 4-hydroxynonenal (HNE), and isoprostanes (8-iso-PGF2α), are widely used as systemic lipid oxidation/oxidative stress biomarkers. However, some of these compounds have also a dietary origin. Thus, replacing dietary saturated fat by PUFAs would improve health but could also increase the formation of such compounds, especially in the case of a pro-oxidant/antioxidant imbalanced diet. Hence, the possible impact of dietary fatty acids and pro-oxidant compounds was studied in rats given diets allowing comparison of the effects of heme iron vs. ferric citrate and of ω-6- vs. ω-3-rich oil on the level of lipid peroxidation/oxidative stress biomarkers. Rats given a heme iron-rich diet without PUFA were used as controls. The results obtained have shown that MDA and the major urinary metabolite of HNE (the mercapturic acid of dihydroxynonane, DHN-MA) were highly dependent on the dietary factors tested, while 8-iso-PGF2α was modestly but significantly affected. Intestinal inflammation and tissue fatty acid composition were checked in parallel and could only explain the differences we observed to a limited extent. Thus, the differences in biomarkers were attributed to the formation of lipid oxidation compounds in food or during digestion, their intestinal absorption, and their excretion into urine. Moreover, fecal extracts from the rats fed the heme iron or fish oil diets were highly toxic for immortalized mouse colon cells. Such toxicity can eventually lead to promotion of colorectal carcinogenesis, supporting the epidemiological findings between red meat intake and colorectal cancer risk. Therefore, the analysis of these biomarkers of lipid peroxidation/oxidative stress in urine should be used with caution when dietary factors are not well controlled, while control of their possible dietary intake is needed also because of their pro-inflammatory, toxic, and even

  13. The trans/cis ratio of unsaturated fatty acids is not applicable as biomarker for environmental stress in case of long-term contaminated habitats.

    PubMed

    Fischer, Janett; Schauer, Frieder; Heipieper, Hermann J

    2010-06-01

    Cis-trans isomerization of unsaturated fatty acids is a crucial adaptive reaction of Pseudomonas and Vibrio species to toxic organic compounds or other environmental stress factors. In order to test the long-term performance of this adaptive mechanism as well as to assess its application as biomarker for environmental contamination studies were performed in batch cultures and in continuously running sand columns, simulating long-term contamination with bisphenol A (BPA). In short-term grown batch cultures a high correlation between trans/cis ratio and added BPA concentration and toxicity was observed. In contrary, this did not occur in the case of long-term sand columns. An increase in trans/cis ratio of unsaturated fatty acids only appeared in a limited period of time. Afterwards the trans/cis ratio reached the values measured for non-stressed cultures. Cis-trans isomerization is only an urgent response mechanism that is later substituted by other adaptive mechanisms. Therefore, it can be concluded that the trans/cis ratio of unsaturated fatty acids was shown not to be an appropriate biomarker for durable stress in the environment. PMID:20352421

  14. Uptake of algal carbon and the synthesis of an "essential" fatty acid by Uvigerina ex. gr. semiornata (Foraminifera) within the Pakistan margin oxygen minimum zone: evidence from fatty acid biomarker and 13C tracer experiments

    NASA Astrophysics Data System (ADS)

    Larkin, K. E.; Gooday, A. J.; Woulds, C.; Jeffreys, R.; Schwartz, M.; Cowie, G.; Whitcraft, C.; Levin, L.; Dick, J. R.; Pond, D. W.

    2014-01-01

    Foraminifera are an important component of benthic communities in oxygen depleted settings, where they potentially play a~significant role in the processing of organic matter. We tracked the uptake of a 13C-labeled algal food source into individual fatty acids in the benthic foraminiferal species, Uvigerina ex. gr. semiornata, from the Arabian Sea oxygen minimum zone (OMZ). The tracer experiments were conducted on the Pakistan Margin during the late/post monsoon period (August-October 2003). A monoculture of the diatom Thalassiosira weisflogii was 13C-labeled and used to simulate a pulse of phytoplankton in two complementary experiments. A lander system was used for in situ incubations at 140 m and for 2.5 days duration, whilst a laboratory incubation used an oxystat system to maintain ambient dissolved oxygen concentrations. These shipboard experiments were terminated after 5 days. Uptake of diatoms was rapid, with high incorporation of diatom fatty acids into foraminifera after ~2 days in both experiments. Ingestion of the diatom food source was indicated by the increase over time in the quantity of diatom biomarker fatty acids in the foraminifera and by the high percentage of 13C in many of the fatty acids present at the endpoint of both in~situ and laboratory-based experiments. These results indicate that U. ex. gr. semiornata rapidly ingested the diatom food source and that this foraminifera will play an important role in the short-term cycling of organic matter within this OMZ environment. The experiments also suggested that U. ex. gr. semiornata consumed non-labeled bacterial food items, particularly bacteria, and synthesised the polyunsaturated fatty acid 20:4(n-6) de novo. 20:4(n-6) is often abundant in benthic fauna yet its origins and function have remained unclear. This study demonstrates that U. ex. gr. semiornata is capable of de novo synthesis of this "essential fatty acid" and is potentially a major source of this dietary nutrient in benthic food

  15. Negligible contribution from roots to soil-borne phospholipid fatty acid fungal biomarkers 18:2ω6,9 and 18:1ω9

    PubMed Central

    Kaiser, Christina; Frank, Alexander; Wild, Birgit; Koranda, Marianne; Richter, Andreas

    2010-01-01

    The phospholipid fatty acid biomarkers 18:1ω9, 18:2ω6,9 and 18:3ω3,6,9 are commonly used as fungal biomarkers in soils. They have, however, also been found to occur in plant tissues, such as roots. Thus, the use of these PLFAs as fungal biomarkers in sieved soil, which may still contain small remains of roots, has been questioned. We used data from a recent beech tree girdling experiment to calculate the contribution of roots to these biomarkers and were able to demonstrate that not more than 0.61% of 18:1ω9 and 18:2ω6,9 in sieved soil samples originated from roots (but 4% of 18:3ω3,6,9). Additionally, the abundance of the biomarker 18:2ω6,9 in the soil was found to be highly correlated to ectomycorrhizal root colonization, which further corroborates its fungal origin. PLFA biomarkers were substantially reduced in vital roots from girdled trees compared to roots of control trees (by up to 76%), indicating that the major part of PLFAs measured in roots may actually originate from ectomycorrhizal fungi growing inside the roots. We calculated, that even a near to 50% reduction in fine root biomass – as observed in the girdling treatment – accounted for only 0.8% of the measured decrease of 18:2ω6,9. Our results demonstrate that both 18:1ω9 and 18:2ω6,9 are suitable biomarkers for detecting fungal dynamics in soils and that especially 18:2ω6,9 is a reliable biomarker to study mycorrhizal dynamics in beech forests. PMID:21633516

  16. Uptake of algal carbon and the likely synthesis of an "essential" fatty acid by Uvigerina ex. gr. semiornata (Foraminifera) within the Pakistan margin oxygen minimum zone: evidence from fatty acid biomarker and 13C tracer experiments

    NASA Astrophysics Data System (ADS)

    Larkin, K. E.; Gooday, A. J.; Woulds, C.; Jeffreys, R. M.; Schwartz, M.; Cowie, G.; Whitcraft, C.; Levin, L.; Dick, J. R.; Pond, D. W.

    2014-07-01

    Foraminifera are an important component of benthic communities in oxygen-depleted settings, where they potentially play a significant role in the processing of organic matter. We tracked the uptake of a 13C-labelled algal food source into individual fatty acids in the benthic foraminiferal species Uvigerina ex. gr. semiornata from the Arabian Sea oxygen minimum zone (OMZ). The tracer experiments were conducted on the Pakistan margin during the late/post monsoon period (August-October 2003). A monoculture of the diatom Thalassiosira weisflogii was 13C-labelled and used to simulate a pulse of phytoplankton in two complementary experiments. A lander system was used for in situ incubations at 140 m water depth and for 2.5 days in duration. Shipboard laboratory incubations of cores collected at 140 m incorporated an oxystat system to maintain ambient dissolved oxygen concentrations and were terminated after 5 days. Uptake of diatoms was rapid, with a high incorporation of diatom fatty acids into foraminifera after ~ 2 days in both experiments. Ingestion of the diatom food source was indicated by the increase over time in the quantity of diatom biomarker fatty acids in the foraminifera and by the high percentage of 13C in many of the fatty acids present at the endpoint of both in situ and laboratory-based experiments. These results indicate that fatty acid" is often abundant in benthic fauna, yet

  17. New bioactive fatty acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many oxygenated fatty acids are bioactive compounds. Nocardia cholesterolicum and Flavobacterium DS5 convert oleic acid to 10 hydroxy stearic acid and linoleic acid to 10-hydroxy-12(Z)-octadecanoic acid. Pseudomonas aeruginosa PR3 converts oleic acid to the new compounds, 7,10-dihydroxy-8(E)-octad...

  18. New Bioactive Fatty Acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many oxygenated fatty acids are bioactive compounds. Nocardia cholesterolicum and Flavobacterium DS5 convert oleic acid to 10 hydroxy stearic acid and linoleic acid to 10-hydroxy-12(Z)-octadecanoic acid. Pseudomonas aeruginosa PR3 converts oleic acid to new compounds, 7,10-dihydroxy-8(E)-octadecen...

  19. Inflammation as a predictive biomarker for response to omega-3 fatty acids in major depressive disorder: a proof-of-concept study.

    PubMed

    Rapaport, M H; Nierenberg, A A; Schettler, P J; Kinkead, B; Cardoos, A; Walker, R; Mischoulon, D

    2016-01-01

    This study explores whether inflammatory biomarkers act as moderators of clinical response to omega-3 (n-3) fatty acids in subjects with major depressive disorder (MDD). One hundred fifty-five subjects with Diagnostic and Statistical Manual of Mental Disorders, 4th Edition (DSM-IV) MDD, a baseline 17-item Hamilton Depression Rating Scale (HAM-D-17) score ⩾ 15 and baseline biomarker data (interleukin (IL)-1ra, IL-6, high-sensitivity C-reactive protein (hs-CRP), leptin and adiponectin) were randomized between 18 May 2006 and 30 June 2011 to 8 weeks of double-blind treatment with eicosapentaenoic acid (EPA)-enriched n-3 1060 mg day(-1), docosahexaenoic acid (DHA)-enriched n-3 900 mg day(-1) or placebo. Outcomes were determined using mixed model repeated measures analysis for 'high' and 'low' inflammation groups based on individual and combined biomarkers. Results are presented in terms of standardized treatment effect size (ES) for change in HAM-D-17 from baseline to treatment week 8. Although overall treatment group differences were negligible (ES=-0.13 to +0.04), subjects with any 'high' inflammation improved more on EPA than placebo (ES=-0.39) or DHA (ES=-0.60) and less on DHA than placebo (ES=+0.21); furthermore, EPA-placebo separation increased with increasing numbers of markers of high inflammation. Subjects randomized to EPA with 'high' IL-1ra or hs-CRP or low adiponectin ('high' inflammation) had medium ES decreases in HAM-D-17 scores vs subjects 'low' on these biomarkers. Subjects with 'high' hs-CRP, IL-6 or leptin were less placebo-responsive than subjects with low levels of these biomarkers (medium to large ES differences). Employing multiple markers of inflammation facilitated identification of a more homogeneous cohort of subjects with MDD responding to EPA vs placebo in our cohort. Studies are needed to replicate and extend this proof-of-concept work. PMID:25802980

  20. Fats and fatty acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The absolute fat requirement of the human species is the amount of essential fatty acids needed to maintain optimal fatty acid composition of all tissues and normal eicosanoid synthesis. At most, this requirement is no more than about 5% of an adequate energy intake. However, fat accounts for appro...

  1. Omega-3 Fatty Acids

    MedlinePlus

    Omega-3 fatty acids are used together with lifestyle changes (diet, weight-loss, exercise) to reduce the amount of triglycerides (a fat-like ... people with very high triglycerides. Omega-3 fatty acids are in a class of medications called antilipemic ...

  2. Mutant fatty acid desaturase

    DOEpatents

    Shanklin, John; Cahoon, Edgar B.

    2004-02-03

    The present invention relates to a method for producing mutants of a fatty acid desaturase having a substantially increased activity towards fatty acid substrates with chains containing fewer than 18 carbons relative to an unmutagenized precursor desaturase having an 18 carbon atom chain length substrate specificity. The method involves inducing one or more mutations in the nucleic acid sequence encoding the precursor desaturase, transforming the mutated sequence into an unsaturated fatty acid auxotroph cell such as MH13 E. coli, culturing the cells in the absence of supplemental unsaturated fatty acids, thereby selecting for recipient cells which have received and which express a mutant fatty acid desaturase with an elevated specificity for fatty acid substrates having chain lengths of less than 18 carbon atoms. A variety of mutants having 16 or fewer carbon atom chain length substrate specificities are produced by this method. Mutant desaturases produced by this method can be introduced via expression vectors into prokaryotic and eukaryotic cells and can also be used in the production of transgenic plants which may be used to produce specific fatty acid products.

  3. Trans Fatty Acids

    NASA Astrophysics Data System (ADS)

    Doyle, Ellin

    1997-09-01

    Fats and their various fatty acid components seem to be a perennial concern of nutritionists and persons concerned with healthful diets. Advice on the consumption of saturated, polyunsaturated, monounsaturated, and total fat bombards us from magazines and newspapers. One of the newer players in this field is the group of trans fatty acids found predominantly in partially hydrogenated fats such as margarines and cooking fats. The controversy concerning dietary trans fatty acids was recently addressed in an American Heart Association (AHA) science advisory (1) and in a position paper from the American Society of Clinical Nutrition/American Institute of Nutrition (ASCN/AIN) (2). Both reports emphasize that the best preventive strategy for reducing risk for cardiovascular disease and some types of cancer is a reduction in total and saturated fats in the diet, but a reduction in the intake of trans fatty acids was also recommended. Although the actual health effects of trans fatty acids remain uncertain, experimental evidence indicates that consumption of trans fatty acids adversely affects serum lipid levels. Since elevated levels of serum cholesterol and triacylglycerols are associated with increased risk of cardiovascular disease, it follows that intake of trans fatty acids should be minimized.

  4. Mammalian Fatty Acid Elongases

    PubMed Central

    Jump, Donald B.

    2009-01-01

    Summary Very long chain fatty acids confer functional diversity on cells by variations in their chain length and degree of unsaturation. Microsomal fatty acid elongation represents the major pathway for determining the chain length of saturated, monounsaturated, and polyunsaturated fatty acids in cellular lipids. The overall reaction for fatty acid elongation involves four enzymes and utilizes malonyl CoA, NADPH, and fatty acyl CoA as substrates. While the fundamental pathway and its requirements have been known for many years, recent advances have revealed a family of enzymes involved in the first step of the reaction, i.e., the condensation reaction. Seven fatty acid elongase subtypes (Elovl #1–7) have been identified in the mouse, rat, and human genomes. These enzymes determine the rate of overall fatty acid elongation. Moreover, these enzymes also display differential substrate specificity, tissue distribution, and regulation, making them important regulators of cellular lipid composition as well as specific cellular functions. Herein, methods are described to measure elongase activity, analyze elongation products, and alter cellular elongase expression. PMID:19763486

  5. Impact of clinical context on acute kidney injury biomarker performances: differences between neutrophil gelatinase-associated lipocalin and L-type fatty acid-binding protein.

    PubMed

    Asada, Toshifumi; Isshiki, Rei; Hayase, Naoki; Sumida, Maki; Inokuchi, Ryota; Noiri, Eisei; Nangaku, Masaomi; Yahagi, Naoki; Doi, Kent

    2016-01-01

    Application of acute kidney injury (AKI) biomarkers with consideration of nonrenal conditions and systemic severity has not been sufficiently determined. Herein, urinary neutrophil gelatinase-associated lipocalin (NGAL), L-type fatty acid-binding protein (L-FABP) and nonrenal disorders, including inflammation, hypoperfusion and liver dysfunction, were evaluated in 249 critically ill patients treated at our intensive care unit. Distinct characteristics of NGAL and L-FABP were revealed using principal component analysis: NGAL showed linear correlations with inflammatory markers (white blood cell count and C-reactive protein), whereas L-FABP showed linear correlations with hypoperfusion and hepatic injury markers (lactate, liver transaminases and bilirubin). We thus developed a new algorithm by combining urinary NGAL and L-FABP with stratification by the Acute Physiology and Chronic Health Evaluation score, presence of sepsis and blood lactate levels to improve their AKI predictive performance, which showed a significantly better area under the receiver operating characteristic curve [AUC-ROC 0.940; 95% confidential interval (CI) 0.793-0.985] than that under NGAL alone (AUC-ROC 0.858, 95% CI 0.741-0.927, P = 0.03) or L-FABP alone (AUC-ROC 0.837, 95% CI 0.697-0.920, P = 0.007) and indicated that nonrenal conditions and systemic severity should be considered for improved AKI prediction by NGAL and L-FABP as biomarkers. PMID:27605390

  6. Impact of clinical context on acute kidney injury biomarker performances: differences between neutrophil gelatinase-associated lipocalin and L-type fatty acid-binding protein

    PubMed Central

    Asada, Toshifumi; Isshiki, Rei; Hayase, Naoki; Sumida, Maki; Inokuchi, Ryota; Noiri, Eisei; Nangaku, Masaomi; Yahagi, Naoki; Doi, Kent

    2016-01-01

    Application of acute kidney injury (AKI) biomarkers with consideration of nonrenal conditions and systemic severity has not been sufficiently determined. Herein, urinary neutrophil gelatinase-associated lipocalin (NGAL), L-type fatty acid-binding protein (L-FABP) and nonrenal disorders, including inflammation, hypoperfusion and liver dysfunction, were evaluated in 249 critically ill patients treated at our intensive care unit. Distinct characteristics of NGAL and L-FABP were revealed using principal component analysis: NGAL showed linear correlations with inflammatory markers (white blood cell count and C-reactive protein), whereas L-FABP showed linear correlations with hypoperfusion and hepatic injury markers (lactate, liver transaminases and bilirubin). We thus developed a new algorithm by combining urinary NGAL and L-FABP with stratification by the Acute Physiology and Chronic Health Evaluation score, presence of sepsis and blood lactate levels to improve their AKI predictive performance, which showed a significantly better area under the receiver operating characteristic curve [AUC-ROC 0.940; 95% confidential interval (CI) 0.793–0.985] than that under NGAL alone (AUC-ROC 0.858, 95% CI 0.741–0.927, P = 0.03) or L-FABP alone (AUC-ROC 0.837, 95% CI 0.697–0.920, P = 0.007) and indicated that nonrenal conditions and systemic severity should be considered for improved AKI prediction by NGAL and L-FABP as biomarkers. PMID:27605390

  7. Discovery of essential fatty acids

    PubMed Central

    Spector, Arthur A.; Kim, Hee-Yong

    2015-01-01

    Dietary fat was recognized as a good source of energy and fat-soluble vitamins by the first part of the 20th century, but fatty acids were not considered to be essential nutrients because they could be synthesized from dietary carbohydrate. This well-established view was challenged in 1929 by George and Mildred Burr who reported that dietary fatty acid was required to prevent a deficiency disease that occurred in rats fed a fat-free diet. They concluded that fatty acids were essential nutrients and showed that linoleic acid prevented the disease and is an essential fatty acid. The Burrs surmised that other unsaturated fatty acids were essential and subsequently demonstrated that linolenic acid, the omega-3 fatty acid analog of linoleic acid, is also an essential fatty acid. The discovery of essential fatty acids was a paradigm-changing finding, and it is now considered to be one of the landmark discoveries in lipid research. PMID:25339684

  8. From egg to hatchling: preferential retention of fatty acid biomarkers in young-of-the-year Port Jackson sharks Heterodontus portusjacksoni.

    PubMed

    Beckmann, C L; Mitchell, J G; Seuront, L; Stone, D A J; Huveneers, C

    2014-09-01

    The muscle and liver fatty acid composition of young-of-the-year (YOY) Port Jackson sharks Heterodontus portusjacksoni were investigated to determine the effects of a known dietary lipid source v. maternal input as demonstrated by egg yolk fatty acid profiles. Ten Heterodontus portusjacksoni egg yolks were collected in situ and compared with four hatched H. portusjacksoni fed a known diet in a controlled feeding experiment of 185 days. This study demonstrated that fatty acids are probably conservatively transferred from egg yolks to YOY H. portusjacksoni, while diet did not have a large effect on the fatty acid composition of the liver or muscle. PMID:25040833

  9. Soil water availability and microsite mediate fungal and bacterial phospholipid fatty acid biomarker abundances in Mojave Desert soils exposed to elevated atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Jin, V. L.; Schaeffer, S. M.; Ziegler, S. E.; Evans, R. D.

    2011-06-01

    Changes in the rates of nitrogen (N) cycling, microbial carbon (C) substrate use, and extracellular enzyme activities in a Mojave Desert ecosystem exposed to elevated atmospheric CO2 suggest shifts in the size and/or functional characteristics of microbial assemblages in two dominant soil microsites: plant interspaces and under the dominant shrub Larrea tridentata. We used ester-linked phospholipid fatty acid (PLFA) biomarkers as a proxy for microbial biomass to quantify spatial and temporal differences in soil microbial communities from February 2003 to May 2005. Further, we used the 13C signature of the fossil CO2 source for elevated CO2 plots to trace recent plant C inputs into soil organic matter (SOM) and broad microbial groups using δ13C (‰). Differences between individual δ13CPLFA and δ13CSOM for fungal biomarkers indicated active metabolism of newer C in elevated CO2 soils. Total PLFA-C was greater in shrub microsites compared to plant interspaces, and CO2 treatment differences within microsites increased under higher soil water availability. Total, fungal, and bacterial PLFA-C increased with decreasing soil volumetric water content (VWC) in both microsites, suggesting general adaptations to xeric desert conditions. Increases in fungal-to-bacterial PLFA-C ratio with decreasing VWC reflected functional group-specific responses to changing soil water availability. While temporal and spatial extremes in resource availability in desert ecosystems contribute to the difficulty in identifying common trends or mechanisms driving microbial responses in less extreme environments, we found that soil water availability and soil microsite interacted with elevated CO2 to shift fungal and bacterial biomarker abundances in Mojave Desert soils.

  10. Fatty Acids of Thiobacillus thiooxidans

    PubMed Central

    Levin, Richard A.

    1971-01-01

    Fatty acid spectra were made on Thiobacillus thiooxidans cultures both in the presence and absence of organic compounds. Small additions of glucose or acetate had no significant effect either on growth or fatty acid content. The addition of biotin had no stimulatory effect but did result in slight quantitative changes in the fatty acid spectrum. The predominant fatty acid was a C19 cyclopropane acid. PMID:4945206

  11. Omega-3 fatty acids (image)

    MedlinePlus

    Omega-3 fatty acids are a form of polyunsaturated fat that the body derives from food. Omega-3s (and omega-6s) are known as essential fatty acids (EFAs) because they are important for good health. ...

  12. (Radioiodinated free fatty acids)

    SciTech Connect

    Knapp, Jr., F. F.

    1987-12-11

    The traveler participated in the Second International Workshop on Radioiodinated Free Fatty Acids in Amsterdam, The Netherlands where he presented an invited paper describing the pioneering work at the Oak Ridge National Laboratory (ORNL) involving the design, development and testing of new radioiodinated methyl-branched fatty acids for evaluation of heart disease. He also chaired a technical session on the testing of new agents in various in vitro and in vivo systems. He also visited the Institute for Clinical and Experimental Nuclear Medicine in Bonn, West Germany, to review, discuss, plan and coordinate collaborative investigations with that institution. In addition, he visited the Cyclotron Research Center in Liege, Belgium, to discuss continuing collaborative studies with the Osmium-191/Iridium-191m radionuclide generator system, and to complete manuscripts and plan future studies.

  13. Quantification of fatty acid ethyl esters (FAEE) and ethyl glucuronide (EtG) in meconium for detection of alcohol abuse during pregnancy: Correlation study between both biomarkers.

    PubMed

    Cabarcos, Pamela; Tabernero, María Jesús; Otero, José Luís; Míguez, Martha; Bermejo, Ana María; Martello, Simona; De Giovanni, Nadia; Chiarotti, Marcello

    2014-11-01

    This article presents results from 47 meconium samples, which were analyzed for fatty acid ethyl esters (FAEE) and ethyl glucuronide (EtG) for detection of gestational alcohol consumption. A validated microwave assisted extraction (MAE) method in combination with GC-MS developed in the Institute of Forensic Science (Santiago de Compostela) was used for FAEE and the cumulative concentration of ethyl myristate, ethyl palmitate and ethyl stearate with a cut-off of 600ng/g was applied for interpretation. A simple method for identification and quantification of EtG has been evaluated by ultrasonication followed solid phase extraction (SPE). Successful validation parameters were obtained for both biochemical markers of alcohol intake. FAEE and EtG concentrations in meconium ranged between values lower than LOD and 32,892ng/g or 218ng/g respectively. We have analyzed FAEE and EtG in the same meconium aliquot, enabling comparison of the efficiency of gestational ethanol exposure detection. Certain agreement between the two biomarkers was found as they are both a very specific alcohol markers, making it a useful analysis for confirmation. PMID:25137651

  14. Heart-Type Fatty Acid Binding Protein: A Better Cardiac Biomarker than CK-MB and Myoglobin in the Early Diagnosis of Acute Myocardial Infarction

    PubMed Central

    Devaranavadagi, Basavaraj B; Sajjannar, Sanjeev L; Nikam, Shashikant V; Shannawaz, Mohd; Sudharani

    2015-01-01

    Background Early diagnosis and therapeutic intervention can improve the outcome of acute myocardial infarction (AMI). However, there are no satisfactory cardiac biomarkers for the diagnosis of AMI within 6 hours of onset of symptoms. Among novel biochemical markers of AMI, heart-type fatty acid binding protein (H-FABP) is of particular interest. Aim To compare the diagnostic value of H-FABP with that of CK-MB and myoglobin in suspected AMI patients within first 6 hours after the onset of symptoms. Settings and Design The study includes 40 AMI cases and 40 non-cardiac chest pain otherwise healthy controls. The cases and controls were further divided into 2 groups depending on the time since chest pain as those subjects within 3 hours and those between 3-6 hours of onset of chest pain. Materials and Methods In all the cases and controls, serum H-FABP, CK-MB and myoglobin concentrations were measured by Immunoturbidimetric method, immuno-inhibition method and Chemiluminescence immunoassay respectively. Statistical Analysis Data is presented as mean ± SD values. Differences between means of two groups were assessed by Student t-test. Sensitivity, Specificity, Positive predictive value, Negative predictive values were calculated and ROC curve analysis was done to assess the diagnostic validity of each study parameter. Results The sensitivity, specificity, PPV, NPV of H-FABP were greater than CK-MB and myoglobin and ROC curve analysis demonstrated highest area under curve for H-FABP followed by myoglobin and CK-MB in patients with suspected AMI both within 3 hours and 3-6 hours after the onset of chest pain. Conclusion The diagnostic efficiency of H-FABP is greater than CK-MB and myoglobin for the early diagnosis of AMI within first 6 hours of chest pain. H-FABP can be used as an additional diagnostic tool for the early diagnosis of AMI. PMID:26557510

  15. Fatty acid-producing hosts

    SciTech Connect

    Pfleger, Brian F; Lennen, Rebecca M

    2013-12-31

    Described are hosts for overproducing a fatty acid product such as a fatty acid. The hosts include an exogenous nucleic acid encoding a thioesterase and, optionally, an exogenous nucleic acid encoding an acetyl-CoA carboxylase, wherein an acyl-CoA synthetase in the hosts are functionally delected. The hosts prefereably include the nucleic acid encoding the thioesterase at an intermediate copy number. The hosts are preferably recominantly stable and growth-competent at 37.degree. C. Methods of producing a fatty acid product comprising culturing such hosts at 37.degree. C. are also described.

  16. Treatment of Fatty Acid Oxidation Disorders

    MedlinePlus

    ... of fatty acid oxidation disorders Treatment of fatty acid oxidation disorders E-mail to a friend Please ... page It's been added to your dashboard . Fatty acid oxidation disorders are rare health conditions that affect ...

  17. Label-Free LC-MS Profiling of Skeletal Muscle Reveals Heart-Type Fatty Acid Binding Protein as a Candidate Biomarker of Aerobic Capacity.

    PubMed

    Malik, Zulezwan Ab; Cobley, James N; Morton, James P; Close, Graeme L; Edwards, Ben J; Koch, Lauren G; Britton, Steven L; Burniston, Jatin G

    2013-12-01

    Two-dimensional gel electrophoresis provides robust comparative analysis of skeletal muscle, but this technique is laborious and limited by its inability to resolve all proteins. In contrast, orthogonal separation by SDS-PAGE and reverse-phase liquid chromatography (RPLC) coupled to mass spectrometry (MS) affords deep mining of the muscle proteome, but differential analysis between samples is challenging due to the greater level of fractionation and the complexities of quantifying proteins based on the abundances of their tryptic peptides. Here we report simple, semi-automated and time efficient (i.e., 3 h per sample) proteome profiling of skeletal muscle by 1-dimensional RPLC electrospray ionisation tandem MS. Solei were analysed from rats (n = 5, in each group) bred as either high- or low-capacity runners (HCR and LCR, respectively) that exhibited a 6.4-fold difference (1,625 ± 112 m vs. 252 ± 43 m, p < 0.0001) in running capacity during a standardized treadmill test. Soluble muscle proteins were extracted, digested with trypsin and individual biological replicates (50 ng of tryptic peptides) subjected to LC-MS profiling. Proteins were identified by triplicate LC-MS/MS analysis of a pooled sample of each biological replicate. Differential expression profiling was performed on relative abundances (RA) of parent ions, which spanned three orders of magnitude. In total, 207 proteins were analysed, which encompassed almost all enzymes of the major metabolic pathways in skeletal muscle. The most abundant protein detected was type I myosin heavy chain (RA = 5,843 ± 897) and the least abundant protein detected was heat shock 70 kDa protein (RA = 2 ± 0.5). Sixteen proteins were significantly (p < 0.05) more abundant in HCR muscle and hierarchal clustering of the profiling data highlighted two protein subgroups, which encompassed proteins associated with either the respiratory chain or fatty acid oxidation. Heart-type fatty acid binding protein (FABPH) was 1.54-fold (p

  18. Fatty Acid Desaturases, Polyunsaturated Fatty Acid Regulation, and Biotechnological Advances

    PubMed Central

    Lee, Je Min; Lee, Hyungjae; Kang, SeokBeom; Park, Woo Jung

    2016-01-01

    Polyunsaturated fatty acids (PUFAs) are considered to be critical nutrients to regulate human health and development, and numerous fatty acid desaturases play key roles in synthesizing PUFAs. Given the lack of delta-12 and -15 desaturases and the low levels of conversion to PUFAs, humans must consume some omega-3 and omega-6 fatty acids in their diet. Many studies on fatty acid desaturases as well as PUFAs have shown that fatty acid desaturase genes are closely related to different human physiological conditions. Since the first front-end desaturases from cyanobacteria were cloned, numerous desaturase genes have been identified and animals and plants have been genetically engineered to produce PUFAs such as eicosapentaenoic acid and docosahexaenoic acid. Recently, a biotechnological approach has been used to develop clinical treatments for human physiological conditions, including cancers and neurogenetic disorders. Thus, understanding the functions and regulation of PUFAs associated with human health and development by using biotechnology may facilitate the engineering of more advanced PUFA production and provide new insights into the complexity of fatty acid metabolism. PMID:26742061

  19. Fatty Acid Desaturases, Polyunsaturated Fatty Acid Regulation, and Biotechnological Advances.

    PubMed

    Lee, Je Min; Lee, Hyungjae; Kang, SeokBeom; Park, Woo Jung

    2016-01-01

    Polyunsaturated fatty acids (PUFAs) are considered to be critical nutrients to regulate human health and development, and numerous fatty acid desaturases play key roles in synthesizing PUFAs. Given the lack of delta-12 and -15 desaturases and the low levels of conversion to PUFAs, humans must consume some omega-3 and omega-6 fatty acids in their diet. Many studies on fatty acid desaturases as well as PUFAs have shown that fatty acid desaturase genes are closely related to different human physiological conditions. Since the first front-end desaturases from cyanobacteria were cloned, numerous desaturase genes have been identified and animals and plants have been genetically engineered to produce PUFAs such as eicosapentaenoic acid and docosahexaenoic acid. Recently, a biotechnological approach has been used to develop clinical treatments for human physiological conditions, including cancers and neurogenetic disorders. Thus, understanding the functions and regulation of PUFAs associated with human health and development by using biotechnology may facilitate the engineering of more advanced PUFA production and provide new insights into the complexity of fatty acid metabolism. PMID:26742061

  20. Oxidative Stress Biomarkers and Incidence of Postoperative Atrial Fibrillation in the Omega-3 Fatty Acids for Prevention of Postoperative Atrial Fibrillation (OPERA) Trial

    PubMed Central

    Wu, Jason H Y; Marchioli, Roberto; Silletta, Maria G; Masson, Serge; Sellke, Frank W; Libby, Peter; Milne, Ginger L; Brown, Nancy J; Lombardi, Federico; Damiano, Ralph J; Marsala, Joann; Rinaldi, Mauro; Domenech, Alberto; Simon, Caterina; Tavazzi, Luigi; Mozaffarian, Dariush

    2015-01-01

    Background Animal study results point to oxidative stress as a key mechanism triggering postoperative atrial fibrillation (PoAF), yet the extent to which specific biomarkers of oxidative stress might relate to PoAF risk in humans remains speculative. Methods and Results We assessed the association of validated, fatty acid–derived oxidative stress biomarkers (F2-isoprostanes, isofurans, and F3-isoprostanes) in plasma and urine, with incident PoAF among 551 cardiac surgery patients. Biomarkers were measured at enrollment, the end of surgery, and postoperative day 2. PoAF lasting ≥30 seconds was confirmed with rhythm strip or electrocardiography and centrally adjudicated. Outcomes were assessed until hospital discharge or postoperative day 10, whichever occurred first. Urine level of each oxidative stress biomarker rose at the end of surgery (2- to 3-fold over baseline, P<0.001) and subsequently declined to concentrations comparable to baseline by postoperative day 2. In contrast, plasma concentrations remained relatively stable throughout the perioperative course. Urine F2-isoprostanes and isofurans at the end of surgery were 20% and 50% higher in subjects who developed PoAF (P≤0.009). While baseline biomarker levels did not associate significantly with PoAF, end of surgery and postoperative day 2 isoprostanes and isofurans demonstrated relatively linear associations with PoAF. For example, the end of surgery extreme quartile multivariate adjusted OR (95% CI) for urine isofurans and F3-isoprostanes were 1.95 (1.05 to 3.62; P for trend=0.01) and 2.10 (1.04 to 2.25, P for trend=0.04), respectively. The associations of biomarkers with PoAF varied little by demographics, surgery type, and medication use (P≥0.29 for each). Conclusions These novel results add to accumulating evidence supporting the likely key pathogenic role of elevated oxidative stress in PoAF. Clinical Trial Registration URL: Clinicaltrials.gov Unique identifier: NCT00970489. PMID:25994442

  1. Abiotic synthesis of fatty acids

    NASA Technical Reports Server (NTRS)

    Leach, W. W.; Nooner, D. W.; Oro, J.

    1978-01-01

    The formation of fatty acids by Fischer-Tropsch-type synthesis was investigated with ferric oxide, ammonium carbonate, potassium carbonate, powdered Pueblito de Allende carbonaceous chondrite, and filings from the Canyon Diablo meteorite used as catalysts. Products were separated and identified by gas chromatography and mass spectrometry. Iron oxide, Pueblito de Allende chondrite, and Canyon Diablo filings in an oxidized catalyst form yielded no fatty acids. Canyon Diablo filings heated overnight at 500 C while undergoing slow purging by deuterium produced fatty acids only when potassium carbonate was admixed; potassium carbonate alone also produced these compounds. The active catalytic combinations gave relatively high yields of aliphatic and aromatic hydrocarbons; substantial amounts of n-alkenes were almost invariably observed when fatty acids were produced; the latter were in the range C6 to C18, with maximum yield in C9 or 10.

  2. Polyunsaturated Fatty Acids in Children

    PubMed Central

    2013-01-01

    Polyunsaturated fatty acids (PUFAs) are the major components of brain and retina, and are the essential fatty acids with important physiologically active functions. Thus, PUFAs should be provided to children, and are very important in the brain growth and development for fetuses, newborn infants, and children. Omega-3 fatty acids decrease coronary artery disease and improve blood flow. PUFAs have been known to have anti-inflammatory action and improved the chronic inflammation such as auto-immune diseases or degenerative neurologic diseases. PUFAs are used for metabolic syndrome related with obesity or diabetes. However, there are several considerations related with intake of PUFAs. Obsession with the intake of unsaturated fatty acids could bring about the shortage of essential fatty acids that are crucial for our body, weaken the immune system, and increase the risk of heart disease, arrhythmia, and stroke. In this review, we discuss types, physiologic mechanism of action of PUFAs, intake of PUFAs for children, recommended intake of PUFAs, and considerations for the intake of PUFAs. PMID:24224148

  3. Sources of variability in fatty acid (FA) biomarkers in the application of compound-specific stable isotopes (CSSIs) to soil and sediment fingerprinting and tracing: A review.

    PubMed

    Reiffarth, D G; Petticrew, E L; Owens, P N; Lobb, D A

    2016-09-15

    Determining soil redistribution and sediment budgets in watersheds is often challenging. One of the methods for making such determinations employs soil and sediment fingerprinting techniques, using sediment properties such as geochemistry, fallout radionuclides, and mineral magnetism. These methods greatly improve the estimation of erosion and deposition within a watershed, but are limited when determining land use-based soil and sediment movement. Recently, compound-specific stable isotopes (CSSIs), which employ fatty acids naturally occurring in the vegetative cover of soils, offer the possibility of refining fingerprinting techniques based on land use, complementing other methods that are currently in use. The CSSI method has been met with some success; however, challenges still remain with respect to scale and resolution due to a potentially large degree of biological, environmental and analytical uncertainty. By better understanding the source of tracers used in CSSI work and the inherent biochemical variability in those tracers, improvement in sample design and tracer selection is possible. Furthermore, an understanding of environmental and analytical factors affecting the CSSI signal will lead to refinement of the approach and the ability to generate more robust data. This review focuses on sources of biological, environmental and analytical variability in applying CSSI to soil and sediment fingerprinting, and presents recommendations based on past work and current research in this area for improving the CSSI technique. A recommendation, based on current information available in the literature, is to use very-long chain saturated fatty acids and to avoid the use of the ubiquitous saturated fatty acids, C16 and C18. PMID:27155260

  4. Intra-specific diet shift in manila clams (Ruditapes philippinarum) as revealed by carbon and nitrogen stable isotopes and fatty acid biomarker

    NASA Astrophysics Data System (ADS)

    Suh, Y.; Shin, K.

    2011-12-01

    Manila clams sampled in Seonjae Island, Korea with shell lengths (SL) below 19.76 mm in average showed a significantly depleted carbon and nitrogen isotope values (P<0.05) by 0.80~1.41 %. This size related variation can be caused by either altered carbon and nutrient source or by affected isotopic incorporation rates and discrimination factors. In order to examine size-related diet shift in manila clams, R. philippinarum with different sizes that were constantly fed on known mixed microalgae for several months were sampled from Incheon Fisheries Hacheries Research Institute (IFRI). These manila clams have shown a high intra-species variation in growth rate with a maximum difference of more or less 2.30 cm. The smallest size groups (3.68±0.17 mm and 6.88±0.21 mm) obtained their nutrition from both P. tricornutum and aggregated organic matter that consists of dead or decomposed microalgae or other detritus. Bigger size groups (10.92±0.34 mm and 14.81±0.25 mm) obtained most of their energy from P.tricorutum and also from other phytoplankton unlike the biggest size group (21.15±1.02 mm) that feeds mainly on fresh microalgae of all diets fed. This variation in diet reveals that smaller clams mostly inhale dead or decomposed microalgae that sinks on the bottom while the bigger clams uptake more fresh ones that are still alive. This variation in feeding behavior could have been caused by morphological constraints such as limited siphon length. The results suggest that manila clams greater than and below 19.76 mm in average have different feeding behavior and P. tricornutum and I. galbana were the two most preferred diets for manila clams cultured in IFHRI. The result of fatty acid composition of manila clams in relation to size or growth rate suggests that fast growing clams would have rapid metabolism of fatty acids not required by the animals and an accumulation of the essential fatty acids (PUFA). In addition, their higher energy requirement and more active state

  5. Dietary fatty acids and minerals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accumulating evidence in animals and humans shows that dietary fatty acids influence the absorption and utilization of certain mineral elements. Fat intake exceeding 10% of energy intake reduces calcium uptake and use by the body, and this effect is more pronounced with saturated compared to unsatu...

  6. Plant fatty acid hydroxylase

    DOEpatents

    Somerville, Chris; van de Loo, Frank

    2000-01-01

    The present invention relates to the identification of nucleic acid sequences and constructs, and methods related thereto, and the use of these sequences and constructs to produce genetically modified plants for the purpose of altering the composition of plant oils, waxes and related compounds.

  7. Nitrated fatty acids: Synthesis and measurement

    PubMed Central

    Woodcock, Steven R.; Bonacci, Gustavo; Gelhaus, Stacy L.; Schopfer, Francisco J.

    2012-01-01

    Nitrated fatty acids are the product of nitrogen dioxide reaction with unsaturated fatty acids. The discovery of peroxynitrite and peroxidase-induced nitration of biomolecules led to the initial reports of endogenous nitrated fatty acids. These species increase during ischemia reperfusion, but concentrations are often at or near the limits of detection. Here, we describe multiple methods for nitrated fatty acid synthesis, sample extraction from complex biological matrices, and a rigorous method of qualitative and quantitative detection of nitrated fatty acids by LC-MS. In addition, optimized instrument conditions and caveats regarding data interpretation are discussed. PMID:23200809

  8. The effects of n-3 long-chain polyunsaturated fatty acid supplementation on biomarkers of kidney injury in adults with diabetes: results of the GO-FISH trial.

    PubMed

    Miller, Edgar R; Juraschek, Stephen P; Anderson, Cheryl A; Guallar, Eliseo; Henoch-Ryugo, Karen; Charleston, Jeanne; Turban, Sharon; Bennett, Michael R; Appel, Lawrence J

    2013-06-01

    OBJECTIVE Long-chain n-3 polyunsaturated fatty acid (n-3 PUFA) supplements may have renoprotective effects in patients with diabetes, but previous trials have been inconsistent. We performed a randomized controlled trial of n-3 PUFA supplementation on urine albumin excretion and markers of kidney injury in adults with type 2 diabetes. RESEARCH DESIGN AND METHODS We conducted a randomized, placebo-controlled, two-period crossover trial to test the effects of 4 g/day of n-3 PUFA supplementation on markers of glomerular filtration and kidney injury in adults with adult-onset diabetes and greater than or equal to trace amounts of proteinuria. Each period lasted 6 weeks and was separated by a 2-week washout. The main outcome was urine albumin excretion and, secondarily, markers of kidney injury (kidney injury molecule-1, N-acetyl β-d-glucosaminidase [NAG], neutrophil gelatinase-associated lipocalin [NGAL], and liver fatty acid-binding protein [LFABP]), serum markers of kidney function (cystatin C, β2-microglobulin, and creatinine), and estimated glomerular filtration rate (eGFR). RESULTS Of the 31 participants, 29 finished both periods. A total of 55% were male, and 61% were African American; mean age was 67 years. At baseline, mean BMI was 31.6 kg/m(2), median eGFR was 76.9 mL/min/1.73 m(2), and median 24-h urine albumin excretion was 161 mg/day. Compared with placebo, n-3 PUFA had nonsignificant effects on urine albumin excretion (-7.2%; 95% CI -20.6 to 8.5; P = 0.35) and significant effects on urine NGAL excretion (-16% [-29.1 to -0.5%]; P = 0.04). There was no effect on serum markers of kidney function or eGFR. In subgroup analyses, there were significant decreases in 24-h urinary excretion of albumin, NGAL, LFABP, and NAG among participants taking medications that block the renin-angiotensin-aldosterone system (RAAS). CONCLUSIONS These results suggest a potential effect of n-3 PUFA supplementation on markers of kidney injury in patients with diabetes and early

  9. New radiohalogenated alkenyl tellurium fatty acids

    SciTech Connect

    Srivastava, P.C.; Knapp, F.F. Jr.; Kabalka, G.W.

    1987-01-01

    Radiolabeled long-chain fatty acids have diagnostic value as radiopharmaceutical tools in myocardial imaging. Some applications of these fatty acids are limited due to their natural metabolic degradation in vivo with subsequent washout of the radioactivity from the myocardium. The identification of structural features that will increase the myocardial residence time without decreasing the heart uptake of long-chain fatty acids is of interest. Fatty acids containing the tellurium heteroatom were the first modified fatty acids developed that show unique prolonged myocardial retention and low blood levels. Our detailed studies with radioiodinated vinyliodide substituted tellurium fatty acids demonstrate that heart uptake is a function of the tellurium position. New techniques of tellurium and organoborane chemistry have been developed for the synthesis of a variety of radioiodinated iodoalkenyl tellurium fatty acids. 9 refs., 3 figs., 2 tabs.

  10. Molten fatty acid based microemulsions.

    PubMed

    Noirjean, Cecile; Testard, Fabienne; Dejugnat, Christophe; Jestin, Jacques; Carriere, David

    2016-06-21

    We show that ternary mixtures of water (polar phase), myristic acid (MA, apolar phase) and cetyltrimethylammonium bromide (CTAB, cationic surfactant) studied above the melting point of myristic acid allow the preparation of microemulsions without adding a salt or a co-surfactant. The combination of SANS, SAXS/WAXS, DSC, and phase diagram determination allows a complete characterization of the structures and interactions between components in the molten fatty acid based microemulsions. For the different structures characterized (microemulsion, lamellar or hexagonal phases), a similar thermal behaviour is observed for all ternary MA/CTAB/water monophasic samples and for binary MA/CTAB mixtures without water: crystalline myristic acid melts at 52 °C, and a thermal transition at 70 °C is assigned to the breaking of hydrogen bounds inside the mixed myristic acid/CTAB complex (being the surfactant film in the ternary system). Water determines the film curvature, hence the structures observed at high temperature, but does not influence the thermal behaviour of the ternary system. Myristic acid is partitioned in two "species" that behave independently: pure myristic acid and myristic acid associated with CTAB to form an equimolar complex that plays the role of the surfactant film. We therefore show that myristic acid plays the role of a solvent (oil) and a co-surfactant allowing the fine tuning of the structure of oil and water mixtures. This solvosurfactant behaviour of long chain fatty acid opens the way for new formulations with a complex structure without the addition of any extra compound. PMID:27241163

  11. Fatty acid uptake in normal human myocardium

    SciTech Connect

    Vyska, K.; Meyer, W.; Stremmel, W.; Notohamiprodjo, G.; Minami, K.; Machulla, H.J.; Gleichmann, U.; Meyer, H.; Koerfer, R. )

    1991-09-01

    Fatty acid binding protein has been found in rat aortic endothelial cell membrane. It has been identified to be a 40-kDa protein that corresponds to a 40-kDa fatty acid binding protein with high affinity for a variety of long chain fatty acids isolated from rat heart myocytes. It is proposed that this endothelial membrane fatty acid binding protein might mediate the myocardial uptake of fatty acids. For evaluation of this hypothesis in vivo, influx kinetics of tracer-labeled fatty acids was examined in 15 normal subjects by scintigraphic techniques. Variation of the plasma fatty acid concentration and plasma perfusion rate has been achieved by modulation of nutrition state and exercise conditions. The clinical results suggest that the myocardial fatty acid influx rate is saturable by increasing fatty acid plasma concentration as well as by increasing plasma flow. For analysis of these data, functional relations describing fatty acid transport from plasma into myocardial tissue in the presence and absence of an unstirred layer were developed. The fitting of these relations to experimental data indicate that the free fatty acid influx into myocardial tissue reveals the criteria of a reaction on a capillary surface in the vicinity of flowing plasma but not of a reaction in extravascular space or in an unstirred layer and that the fatty acid influx into normal myocardium is a saturable process that is characterized by the quantity corresponding to the Michaelis-Menten constant, Km, and the maximal velocity, Vmax, 0.24 {plus minus} 0.024 mumol/g and 0.37 {plus minus} 0.013 mumol/g(g.min), respectively. These data are compatible with a nondiffusional uptake process mediated by the initial interaction of fatty acids with the 40-kDa membrane fatty acid binding protein of cardiac endothelial cells.

  12. Long-term fatty acid stability in human serum cholesteryl ester, triglyceride, and phospholipid fractions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fatty acid profiles of biological specimens from epidemiological/clinical studies can serve as biomarkers to assess potential relationships between diet and chronic disease risk. However, data are limited regarding fatty acid stability of archived specimens following long-term storage, a variable t...

  13. The Effects of n-3 Long-Chain Polyunsaturated Fatty Acid Supplementation on Biomarkers of Kidney Injury in Adults With Diabetes

    PubMed Central

    Miller, Edgar R.; Juraschek, Stephen P.; Anderson, Cheryl A.; Guallar, Eliseo; Henoch-Ryugo, Karen; Charleston, Jeanne; Turban, Sharon; Bennett, Michael R.; Appel, Lawrence J.

    2013-01-01

    OBJECTIVE Long-chain n-3 polyunsaturated fatty acid (n-3 PUFA) supplements may have renoprotective effects in patients with diabetes, but previous trials have been inconsistent. We performed a randomized controlled trial of n-3 PUFA supplementation on urine albumin excretion and markers of kidney injury in adults with type 2 diabetes. RESEARCH DESIGN AND METHODS We conducted a randomized, placebo-controlled, two-period crossover trial to test the effects of 4 g/day of n-3 PUFA supplementation on markers of glomerular filtration and kidney injury in adults with adult-onset diabetes and greater than or equal to trace amounts of proteinuria. Each period lasted 6 weeks and was separated by a 2-week washout. The main outcome was urine albumin excretion and, secondarily, markers of kidney injury (kidney injury molecule-1, N-acetyl β-d-glucosaminidase [NAG], neutrophil gelatinase-associated lipocalin [NGAL], and liver fatty acid–binding protein [LFABP]), serum markers of kidney function (cystatin C, β2-microglobulin, and creatinine), and estimated glomerular filtration rate (eGFR). RESULTS Of the 31 participants, 29 finished both periods. A total of 55% were male, and 61% were African American; mean age was 67 years. At baseline, mean BMI was 31.6 kg/m2, median eGFR was 76.9 mL/min/1.73 m2, and median 24-h urine albumin excretion was 161 mg/day. Compared with placebo, n-3 PUFA had nonsignificant effects on urine albumin excretion (−7.2%; 95% CI −20.6 to 8.5; P = 0.35) and significant effects on urine NGAL excretion (−16% [−29.1 to −0.5%]; P = 0.04). There was no effect on serum markers of kidney function or eGFR. In subgroup analyses, there were significant decreases in 24-h urinary excretion of albumin, NGAL, LFABP, and NAG among participants taking medications that block the renin-angiotensin-aldosterone system (RAAS). CONCLUSIONS These results suggest a potential effect of n-3 PUFA supplementation on markers of kidney injury in patients with diabetes and

  14. Fatty acid composition in serum correlates with that in the liver and non-alcoholic fatty liver disease activity scores in mice fed a high-fat diet.

    PubMed

    Wang, Xing-He; Li, Chun-Yan; Muhammad, Ishfaq; Zhang, Xiu-Ying

    2016-06-01

    In this study, we investigated the correlation between the serum fatty acid composition and hepatic steatosis, inflammation, hepatocellular ballooning scores, and liver fatty acids composition in mice fed a high-fat diet. Livers were collected for non-alcoholic fatty liver disease score analysis. Fatty acid compositions were analysed by gas chromatography. Correlations were determined by Pearson correlation coefficient. Exposed to a high-fat diet, mice developed fatty liver disease with varying severity without fibrosis. The serum fatty acid variation became more severe with prolonged exposure to a high-fat diet. This variation also correlated significantly with the variation in livers, with the types of fatty acids corresponding to liver steatosis, inflammation, and hepatocellular ballooning scores. Results of this study lead to the following hypothesis: the extent of serum fatty acid variation may be a preliminary biomarker of fatty liver disease caused by high-fat intake. PMID:27179602

  15. Untargeted fatty acid profiles based on the selected ion monitoring mode.

    PubMed

    Zhang, Liangxiao; Li, Peiwu; Sun, Xiaoman; Hu, Wei; Wang, Xiupin; Zhang, Qi; Ding, Xiaoxia

    2014-08-11

    Fatty acids are potential biomarkers of some diseases and also key markers and quality parameters of different dietary fats and related products. Thus, untargeted fatty acid profiles are important in the study of dietary fat quality and fat-related diseases, as well as in other fields such as bioenergy. In addition, accurate identification of unknown components is a technological breakthrough for the selected ion monitoring (SIM) mode for untargeted profiles. In this study, we developed untargeted fatty acid profiles based on SIM. We also investigated mass spectral characteristics and equivalent chain lengths (ECL) to eliminate the influence of non-FAMEs for identifying fatty acids in samples. As an application example, fatty acid profiles were used to classify three edible vegetable oils. The results indicated that SIM-based untargeted fatty acid profiles could yield accurate qualitative and quantitative results for more fatty acids and benefit related studies of metabolite profiles. PMID:25066717

  16. Fatty acids of Pinus elliottii tissues.

    NASA Technical Reports Server (NTRS)

    Laseter, J. L.; Lawler, G. C.; Walkinshaw, C. H.; Weete, J. D.

    1973-01-01

    The total fatty constituents of slash pine (Pinus elliottii) tissue cultures, seeds, and seedlings were examined by GLC and MS. Qualitatively, the fatty acid composition of these tissues was found to be very similar to that reported for other pine species. The fatty acid contents of the tissue cultures resembled that of the seedling tissues. The branched-chain C(sub 17) acid reported for several other Pinus species was confirmed as the anteiso isomer.

  17. Fatty acid profile of kenaf seed oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fatty acid profile of kenaf (Hibiscus cannabinus L.) seed oil has been the subject of several previous reports in the literature. These reports vary considerably regarding the presence and amounts of specific fatty acids, notably epoxyoleic acid but also cyclic (cyclopropene and cyclopropane) fa...

  18. Evaluation of New Diagnostic Biomarkers in Pediatric Sepsis: Matrix Metalloproteinase-9, Tissue Inhibitor of Metalloproteinase-1, Mid-Regional Pro-Atrial Natriuretic Peptide, and Adipocyte Fatty-Acid Binding Protein

    PubMed Central

    Alqahtani, Mashael F.; Smith, Craig M.; Weiss, Scott L.; Dawson, Susan; Ralay Ranaivo, Hantamalala; Wainwright, Mark S.

    2016-01-01

    Elevated plasma concentrations of matrix metalloproteinase-9 (MMP-9), tissue inhibitor of metalloproteinase-1 (TIMP-1), mid-regional pro-atrial natriuretic peptide (mrProANP), and adipocyte fatty-acid-binding proteins (A-FaBPs) have been investigated as biomarkers for sepsis or detection of acute neurological injuries in adults, but not children. We carried out a single-center, prospective observational study to determine if these measures could serve as biomarkers to identify children with sepsis. A secondary aim was to determine if these biomarkers could identify children with neurologic complications of sepsis. A total of 90 patients ≤ 18 years-old were included in this study. 30 with severe sepsis or septic shock were compared to 30 age-matched febrile and 30 age-matched healthy controls. Serial measurements of each biomarker were obtained, beginning on day 1 of ICU admission. In septic patients, MMP9-/TIMP-1 ratios (Median, IQR, n) were reduced on day 1 (0.024, 0.004–0.174, 13), day 2 (0.020, 0.002–0.109, 10), and day 3 (0.018, 0.003–0.058, 23) compared with febrile (0.705, 0.187–1.778, 22) and healthy (0.7, 0.4–1.2, 29) (p< 0.05) controls. A-FaBP and mrProANP (Median, IQR ng/mL, n) were elevated in septic patients compared to control groups on first 2 days after admission to the PICU (p <0.05). The area under the curve (AUC) for MMP-9/TIMP-1 ratio, mrProANP, and A-FaBP to distinguish septic patients from healthy controls were 0.96, 0.99, and 0.76, respectively. MMP-9/TIMP-1 ratio was inversely and mrProANP was directly related to PIM-2, PELOD, and ICU and hospital LOS (p<0.05). A-FaBP level was associated with PELOD, hospital and ICU length of stay (p<0.05). MMP-9/TIMP-1 ratio associated with poor Glasgow Outcome Score (p<0.05). A-FaBP levels in septic patients with neurological dysfunction (29.3, 17.2–54.6, 7) were significantly increased compared to septic patients without neurological dysfunction (14.6, 13.3–20.6, 11). MMP-9/TIMP-1 ratios

  19. 21 CFR 172.859 - Sucrose fatty acid esters.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sucrose fatty acid esters. 172.859 Section 172.859... CONSUMPTION Multipurpose Additives § 172.859 Sucrose fatty acid esters. Sucrose fatty acid esters identified...) Sucrose fatty acid esters are the mono-, di-, and tri-esters of sucrose with fatty acids and are...

  20. 21 CFR 862.1290 - Fatty acids test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Fatty acids test system. 862.1290 Section 862.1290....1290 Fatty acids test system. (a) Identification. A fatty acids test system is a device intended to measure fatty acids in plasma and serum. Measurements of fatty acids are used in the diagnosis...

  1. Desaturation of fatty acids in Trypanosoma cruzi

    SciTech Connect

    de Lema, M.G.; Aeberhard, E.E.

    1986-11-01

    Uptake and metabolism of saturated (16:0, 18:0) and unsaturated (18:1(n-9), 18:2(n-6), 18:3(n-3)) fatty acids by cultured epimastigotes of Trypanosoma cruzi were studied. Between 17.5 and 33.5% of the total radioactivity of (1-/sup 14/C)labeled fatty acids initially added to the culture medium was incorporated into the lipids of T. cruzi and mostly choline and ethanolamine phospholipids. As demonstrated by argentation thin layer chromatography, gas liquid chromatography and ozonolysis of the fatty acids synthesized, exogenous palmitic acid was elongated to stearic acid, and the latter was desaturated to oleic acid and 18:2 fatty acid. The 18:2 fatty acid was tentatively identified as linoleic acid with the first bond in the delta 9 position and the second bond toward the terminal methyl end. Exogenous stearic acid was also desaturated to oleic and 18:2 fatty acid, while oleic acid was only converted into 18:2. All of the saturated and unsaturated fatty acids investigated were also converted to a small extent (2-4%) into polyunsaturated fatty acids. No radioactive aldehyde methyl ester fragments of less than nine carbon atoms were detected after ozonolysis of any of the fatty acids studied. These results demonstrate the existence of delta 9 and either delta 12 or delta 15 desaturases, or both, in T. cruzi and suggest that delta 6 desaturase or other desaturases of the animal type are likely absent in cultured forms of this organism.

  2. Historical perspectives on fatty acid chemistry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fatty acids are basic renewable chemical building blocks that can be used as intermediates for a multitude of products. Today the global value of fatty acids exceeds 18 billion dollars and is expected to increase to nearly 26 billion over the period from 2014-2019. From it auspicious beginnings, the...

  3. Nickel Inhibits Mitochondrial Fatty Acid Oxidation

    PubMed Central

    Uppala, Radha; McKinney, Richard W.; Brant, Kelly A.; Fabisiak, James P.; Goetzman, Eric S.

    2015-01-01

    Nickel exposure is associated with changes in cellular energy metabolism which may contribute to its carcinogenic properties. Here, we demonstrate that nickel strongly represses mitochondrial fatty acid oxidation—the pathway by which fatty acids are catabolized for energy—in both primary human lung fibroblasts and mouse embryonic fibroblasts. At the concentrations used, nickel suppresses fatty acid oxidation without globally suppressing mitochondrial function as evidenced by increased glucose oxidation to CO2. Pre-treatment with L-carnitine, previously shown to prevent nickel-induced mitochondrial dysfunction in neuroblastoma cells, did not prevent the inhibition of fatty acid oxidation. The effect of nickel on fatty acid oxidation occurred only with prolonged exposure (>5 hr), suggesting that direct inhibition of the active sites of metabolic enzymes is not the mechanism of action. Nickel is a known hypoxia-mimetic that activates hypoxia inducible factor-1α (HIF1α). Nickel-induced inhibition of fatty acid oxidation was blunted in HIF1α knockout fibroblasts, implicating HIF1α as one contributor to the mechanism. Additionally, nickel down-regulated the protein levels of the key fatty acid oxidation enzyme very long-chain acyl-CoA dehydrogenase (VLCAD) in a dose-dependent fashion. In conclusion, inhibition of fatty acid oxidation by nickel, concurrent with increased glucose metabolism, represents a form of metabolic reprogramming that may contribute to nickel-induced carcinogenesis. PMID:26051273

  4. Physiological activities of hydroxyl fatty acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the search of value-added products from surplus soybean oil, we produced many new hydroxy fatty acids through microbial bioconversion. Hydroxy fatty acids are used in a wide range of industrial products, such as resins, waxes, nylons plastics, lubricants, cosmetics, and additives in coatings and...

  5. Phylogenomic reconstruction of archaeal fatty acid metabolism

    PubMed Central

    Dibrova, Daria V.; Galperin, Michael Y.; Mulkidjanian, Armen Y.

    2014-01-01

    While certain archaea appear to synthesize and/or metabolize fatty acids, the respective pathways still remain obscure. By analyzing the genomic distribution of the key lipid-related enzymes, we were able to identify the likely components of the archaeal pathway of fatty acid metabolism, namely, a combination of the enzymes of bacterial-type β-oxidation of fatty acids (acyl-CoA-dehydrogenase, enoyl-CoA hydratase, and 3-hydroxyacyl-CoA dehydrogenase) with paralogs of the archaeal acetyl-CoA C-acetyltransferase, an enzyme of the mevalonate biosynthesis pathway. These three β-oxidation enzymes working in the reverse direction could potentially catalyze biosynthesis of fatty acids, with paralogs of acetyl-CoA C-acetyltransferase performing addition of C2 fragments. The presence in archaea of the genes for energy-transducing membrane enzyme complexes, such as cytochrome bc complex, cytochrome c oxidase, and diverse rhodopsins, was found to correlate with the presence of the proposed system of fatty acid biosynthesis. We speculate that because these membrane complexes functionally depend on fatty acid chains, their genes could have been acquired via lateral gene transfer from bacteria only by those archaea that already possessed a system of fatty acid biosynthesis. The proposed pathway of archaeal fatty acid metabolism operates in extreme conditions and therefore might be of interest in the context of biofuel production and other industrial applications. PMID:24818264

  6. Polyunsaturated fatty acids and insulin resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have reviewed results from published studies regarding the effects of polyunsaturated fatty acids (PUFA) intake on insulin resistance (IR) in human subjects. Evidence has been gathered from epidemiological, cross-sectional and interventions studies. Increased intake of trans fatty acids (TFA) inc...

  7. Trans fatty acid intake and emotion regulation.

    PubMed

    Holt, Megan E; Lee, Jerry W; Morton, Kelly R; Tonstad, Serena

    2015-06-01

    We examined whether there is a relationship between trans fatty acid intakes and emotion regulation, mediated by positive or negative affect. Archival data on 1699 men and 3293 women were used to measure trans fatty acid intake at baseline, positive, and negative affects and emotion regulation at follow-up. Higher trans fatty acid intake related to subsequent difficulties with emotional awareness (p = 0.045), clarity (p = 0.012), and regulation strategies (p = 0.009). Affect mediated these relationships. Lower trans fatty acid intake associated with increased positive and decreased negative affects which, in turn, associated with improved emotion regulation. Trans fatty acid intakes may be associated with subsequent ability to regulate emotions. PMID:26032795

  8. Orthogonal Fatty Acid Biosynthetic Pathway Improves Fatty Acid Ethyl Ester Production in Saccharomyces cerevisiae.

    PubMed

    Eriksen, Dawn T; HamediRad, Mohammad; Yuan, Yongbo; Zhao, Huimin

    2015-07-17

    Fatty acid ethyl esters (FAEEs) are a form of biodiesel that can be microbially produced via a transesterification reaction of fatty acids with ethanol. The titer of microbially produced FAEEs can be greatly reduced by unbalanced metabolism and an insufficient supply of fatty acids, resulting in a commercially inviable process. Here, we report on a pathway engineering strategy in Saccharomyces cerevisiae for enhancing the titer of microbially produced FAEEs by providing the cells with an orthogonal route for fatty acid synthesis. The fatty acids generated from this heterologous pathway would supply the FAEE production, safeguarding endogenous fatty acids for cellular metabolism and growth. We investigated the heterologous expression of a Type-I fatty acid synthase (FAS) from Brevibacterium ammoniagenes coupled with WS/DGAT, the wax ester synthase/acyl-coenzyme that catalyzes the transesterification reaction with ethanol. Strains harboring the orthologous fatty acid synthesis yielded a 6.3-fold increase in FAEE titer compared to strains without the heterologous FAS. Variations in fatty acid chain length and degree of saturation can affect the quality of the biodiesel; therefore, we also investigated the diversity of the fatty acid production profile of FAS enzymes from other Actinomyces organisms. PMID:25594225

  9. Fatty acid mobilization and comparison to milk fatty acid content in northern elephant seals.

    PubMed

    Fowler, Melinda A; Debier, Cathy; Mignolet, Eric; Linard, Clementine; Crocker, Daniel E; Costa, Daniel P

    2014-01-01

    A fundamental feature of the life history of true seals, bears and baleen whales is lactation while fasting. This study examined the mobilization of fatty acids from blubber and their subsequent partitioning into maternal metabolism and milk production in northern elephant seals (Mirounga angustirostris). The fatty acid composition of blubber and milk was measured in both early and late lactation. Proportions of fatty acids in milk and blubber were found to display a high degree of similarity both early and late in lactation. Seals mobilized an enormous amount of lipid (~66 kg in 17 days), but thermoregulatory fatty acids, those that remain fluid at low temperatures, were relatively conserved in the outer blubber layer. Despite the stratification, the pattern of mobilization of specific fatty acids conforms to biochemical predictions. Long chain (>20C) monounsaturated fatty acids (MUFAs) were the least mobilized from blubber and the only class of fatty acids that showed a proportional increase in milk in late lactation. Polyunsaturated fatty acids (PUFAs) and saturated fatty acids (SFAs) were more mobilized from the blubber, but neither proportion increased in milk at late lactation. These data suggest that of the long chain MUFA mobilized, the majority is directed to milk synthesis. The mother may preferentially use PUFA and SFA for her own metabolism, decreasing the availability for deposition into milk. The potential impacts of milk fatty acid delivery on pup diving development and thermoregulation are exciting avenues for exploration. PMID:24126964

  10. Fatty acid synthesis is inhibited by inefficient utilization of unusual fatty acids for glycerolipid assembly

    PubMed Central

    Bates, Philip D.; Johnson, Sean R.; Cao, Xia; Li, Jia; Nam, Jeong-Won; Jaworski, Jan G.; Ohlrogge, John B.; Browse, John

    2014-01-01

    Degradation of unusual fatty acids through β-oxidation within transgenic plants has long been hypothesized as a major factor limiting the production of industrially useful unusual fatty acids in seed oils. Arabidopsis seeds expressing the castor fatty acid hydroxylase accumulate hydroxylated fatty acids up to 17% of total fatty acids in seed triacylglycerols; however, total seed oil is also reduced up to 50%. Investigations into the cause of the reduced oil phenotype through in vivo [14C]acetate and [3H]2O metabolic labeling of developing seeds surprisingly revealed that the rate of de novo fatty acid synthesis within the transgenic seeds was approximately half that of control seeds. RNAseq analysis indicated no changes in expression of fatty acid synthesis genes in hydroxylase-expressing plants. However, differential [14C]acetate and [14C]malonate metabolic labeling of hydroxylase-expressing seeds indicated the in vivo acetyl–CoA carboxylase activity was reduced to approximately half that of control seeds. Therefore, the reduction of oil content in the transgenic seeds is consistent with reduced de novo fatty acid synthesis in the plastid rather than fatty acid degradation. Intriguingly, the coexpression of triacylglycerol synthesis isozymes from castor along with the fatty acid hydroxylase alleviated the reduced acetyl–CoA carboxylase activity, restored the rate of fatty acid synthesis, and the accumulation of seed oil was substantially recovered. Together these results suggest a previously unidentified mechanism that detects inefficient utilization of unusual fatty acids within the endoplasmic reticulum and activates an endogenous pathway for posttranslational reduction of fatty acid synthesis within the plastid. PMID:24398521

  11. Organic biomarkers in deep-sea regions affected by bottom trawling: pigments, fatty acids, amino acids and carbohydrates in surface sediments from the La Fonera (Palamós) Canyon, NW Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Sañé, E.; Martín, J.; Puig, P.; Palanques, A.

    2012-12-01

    Deep-sea ecosystems are in general adapted to a limited variability of physical conditions, resulting in high vulnerability and slow recovery rates from anthropogenic perturbations such as bottom trawling. Commercial trawling is the most recurrent and pervasive of human impacts on the deep-sea floor, but studies on its consequences on the biogeochemistry of deep-sea sediments are still scarce. Pigments, fatty acids, amino acids and carbohydrates were analyzed in sediments from the flanks of the La Fonera (Palamós) submarine canyon (NW Mediterranean Sea), where a commercial bottom trawling fishery has been active for more than 70 yr. More specifically, we investigated how trawling-induced sediment reworking affects the quality of sedimentary organic matter which reaches the seafloor and accumulates in the sediment column, which is fundamental for the development of benthic communities. Sediment samples were collected during two oceanographic cruises in spring and autumn 2011. The sampled sites included trawl fishing grounds as well as pristine (control) areas. We report that bottom trawling in the flanks of the La Fonera Canyon has caused an alteration of the quality of the organic matter accumulated in the upper 5 cm of the seafloor. The use of a wide pool of biochemical tracers characterized by different reactivity to degradation allowed us to discriminate the long-term effects of trawled-induced sediment reworking from the natural variability caused by the seasonal cycle of production and sinking of biogenic particles. Differences between untrawled and trawled areas were evidenced by labile amino acids, while differences between spring and autumn samples were detected only by the more labile indicators chlorophyll a and mono-unsaturated fatty acids. These results suggest that changes in the biochemical composition of the sedimentary organic matter caused by bottom trawling can be more relevant than those associated with natural seasonality and pose serious

  12. Organic biomarkers in deep-sea regions affected by bottom trawling: pigments, fatty acids, amino acids and carbohydrates in surface sediments from the La Fonera (Palamós) Canyon, NW Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Sañé, E.; Martín, J.; Puig, P.; Palanques, A.

    2013-12-01

    Deep-sea ecosystems are in general adapted to a limited variability of physical conditions, resulting in high vulnerability and slow recovery rates from anthropogenic perturbations such as bottom trawling. Commercial trawling is the most recurrent and pervasive of human impacts on the deep-sea floor, but studies on its consequences on the biogeochemistry of deep-sea sediments are still scarce. Pigments, fatty acids, amino acids and carbohydrates were analysed in sediments from the flanks of the La Fonera (Palamós) submarine canyon (NW Mediterranean Sea), where a commercial bottom trawling fishery has been active for more than 70 yr. More specifically, we investigated how trawling-induced sediment reworking affects the quality of sedimentary organic matter which reaches the seafloor and accumulates in the sediment column, which is fundamental for the development of benthic communities. Sediment samples were collected during two oceanographic cruises in spring and autumn 2011. The sampled sites included trawl fishing grounds as well as pristine (control) areas. We report that bottom trawling in the flanks of the La Fonera Canyon has caused an alteration of the quality of the organic matter accumulated in the upper 5 cm of the seafloor. The use of a wide pool of biochemical tracers characterized by different reactivity to degradation allowed for us to discriminate the long-term effects of trawl-induced sediment reworking from the natural variability caused by the seasonal cycle of production and sinking of biogenic particles. Differences between untrawled and trawled areas were evidenced by labile amino acids, while differences between spring and autumn samples were detected only by the more labile indicators chlorophyll a and monounsaturated fatty acids. These results suggest that changes in the biochemical composition of the sedimentary organic matter caused by bottom trawling can be more relevant than those associated with natural seasonality and pose serious

  13. Omega-3 Fatty Acid supplementation during pregnancy.

    PubMed

    Greenberg, James A; Bell, Stacey J; Ausdal, Wendy Van

    2008-01-01

    Omega-3 fatty acids are essential and can only be obtained from the diet. The requirements during pregnancy have not been established, but likely exceed that of a nonpregnant state. Omega-3 fatty acids are critical for fetal neurodevelopment and may be important for the timing of gestation and birth weight as well. Most pregnant women likely do not get enough omega-3 fatty acids because the major dietary source, seafood, is restricted to 2 servings a week. For pregnant women to obtain adequate omega-3 fatty acids, a variety of sources should be consumed: vegetable oils, 2 low-mercury fish servings a week, and supplements (fish oil or algae-based docosahexaenoic acid). PMID:19173020

  14. A newly developed kit for the measurement of urinary liver-type fatty acid-binding protein as a biomarker for acute kidney injury in patients with critical care.

    PubMed

    Sato, Ryo; Suzuki, Yasushi; Takahashi, Gaku; Kojika, Masahiro; Inoue, Yoshihiro; Endo, Shigeatsu

    2015-03-01

    In recent years, it has been reported that the urinary level of Liver-type fatty acid-binding protein (L-FABP) serves as a useful biomarker for diagnosing acute kidney injury (AKI) or sepsis complicated by AKI. However, because the urinary level of L-FABP is currently measured by enzyme-linked immunosorbent assay (ELISA), several days may elapse before the results of the measurement become available. We have newly developed a simplified kit, the Dip-test, for measuring the urinary level of L-FABP. The Dip-test was measured at 80 measurement points (22 points in noninfectious disease, 13 points in SIRS, 20 points in infectious disease, and 25 points in sepsis) in 20 patients. The urinary L-FABP levels as determined by ELISA in relation to the results of the Dip-test were as follows: 10.10 ± 12.85 ng/ml in patients with a negative Dip-test ([-] group), 41.93 ± 50.51 ng/ml in patients with a ± test ([±] group), 70.36 ± 73.70 ng/ml in patients with a positive test ([+] group), 1048.96 ± 2117.68 ng/ml in patients with a 2 + test ([2+] group), and 23,571.55 ± 21,737.45 ng/ml in patients with a 3 + test ([3+] group). The following tendency was noted: the stronger the positive Dip-test reaction, the higher the urinary L-FABP level. Multigroup comparison revealed a significant differences in the urinary L-FABP levels between the Dip-test (-) group and each of the other groups. In this study, the usefulness of the Dip-test, our newly developed simplified kit for measuring the urinary L-FABP level, is suggested. PMID:25499195

  15. The role of essential fatty acids in development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fatty acids are aliphatic monocarboxylic acids. They are classified as saturated, monounsaturated, or polyunsaturated fatty acids depending upon the number of double bonds in the carbon chain. Saturated fatty acids have no double bonds, monounsaturated fatty acids have 1 double bond, and polyunsat...

  16. Polyunsaturated fatty acid supplementation reverses cystic fibrosis-related fatty acid abnormalities in CFTR-/- mice by suppressing fatty acid desaturases.

    PubMed

    Njoroge, Sarah W; Laposata, Michael; Boyd, Kelli L; Seegmiller, Adam C

    2015-01-01

    Cystic fibrosis patients and model systems exhibit consistent abnormalities in metabolism of polyunsaturated fatty acids that appear to play a role in disease pathophysiology. Recent in vitro studies have suggested that these changes are due to overexpression of fatty acid desaturases that can be reversed by supplementation with the long-chain polyunsaturated fatty acids docosahexaenoate and eicosapentaenoate. However, these findings have not been tested in vivo. The current study aimed to test these results in an in vivo model system, the CFTR(-/-) knockout mouse. When compared with wild-type mice, the knockout mice exhibited fatty acid abnormalities similar to those seen in cystic fibrosis patients and other model systems. The abnormalities were confined to lung, ileum and pancreas, tissues that are affected by the disease. Similar to in vitro models, these fatty acid changes correlated with increased expression of Δ5- and Δ6-desaturases and elongase 5. Dietary supplementation with high-dose free docosahexaenoate or a combination of lower-dose docosahexaenoate and eicosapentaenoate in triglyceride form corrected the fatty acid abnormalities and reduced expression of the desaturase and elongase genes in the ileum and liver of knockout mice. Only the high-dose docosahexaenoate reduced histologic evidence of disease, reducing mucus accumulation in ileal sections. These results provide in vivo support for the hypothesis that fatty acid abnormalities in cystic fibrosis result from abnormal expression and activity of metabolic enzymes in affected cell types. They further demonstrate that these changes can be reversed by dietary n-3 fatty acid supplementation, highlighting the potential therapeutic benefit for cystic fibrosis patients. PMID:25448610

  17. 21 CFR 172.860 - Fatty acids.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Fatty acids. 172.860 Section 172.860 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.860 Fatty...

  18. Serum fatty acids and breast cancer incidence.

    PubMed

    Rissanen, Harri; Knekt, Paul; Järvinen, Ritva; Salminen, Irma; Hakulinen, Timo

    2003-01-01

    Fatty acid composition of the diet may be essential to the development of breast cancer. We studied the ability of several fatty acids of serum total lipids to predict breast cancer incidence in a case-control study nested within a longitudinal population study. The proportions of fatty acids in serum total lipids were determined from stored serum samples collected at baseline for 127 incident breast cancer cases and 242 matched controls. Women with a higher proportion of total polyunsaturated fatty acids (PUFAs) in serum had a reduced risk of breast cancer. The odds ratio (OR) between the highest and lowest tertiles of serum PUFA was 0.31 (95% confidence interval, CI = 0.12-0.77). This association was mainly due to n-6 PUFAs and especially to linoleic acid. The ORs were 0.35 (CI = 0.14-0.84) and 0.29 (CI = 0.12-0.73), respectively. Of the monounsaturated fatty acids (MUFAs), higher trans-11-18:1 levels were related to an increased breast cancer risk (OR = 3.69, CI = 1.35-10.06). The association was stronger in postmenopausal than in premenopausal women. The present study suggests that higher serum proportions of the n-6 PUFA linoleic acid and lower proportions of the MUFA trans-11-18:1 fatty acid predict a reduced incidence of breast cancer. PMID:12881010

  19. Splanchnic free fatty acid kinetics.

    PubMed

    Jensen, Michael D; Cardin, Sylvain; Edgerton, Dale; Cherrington, Alan

    2003-06-01

    These studies were conducted to assess the relationship between visceral adipose tissue free fatty acid (FFA) release and splanchnic FFA release. Steady-state splanchnic bed palmitate ([9,10-(3)H]palmitate) kinetics were determined from 14 sampling intervals from eight dogs with chronic indwelling arterial, portal vein, and hepatic vein catheters. We tested a model designed to predict the proportion of FFAs delivered to the liver from visceral fat by use of hepatic vein data. The model predicted that 15 +/- 2% of hepatic palmitate delivery originated from visceral lipolysis, which was greater (P = 0.004) than the 11 +/- 2% actually observed. There was a good relationship (r(2) = 0.63) between the predicted and observed hepatic palmitate delivery values, but the model overestimated visceral FFA release more at lower than at higher palmitate concentrations. The discrepancy could be due to differential uptake of FFAs arriving from the arterial vs. the portal vein or to release of FFAs in the hepatic circulatory bed. Splanchnic FFA release measured using hepatic vein samples was strongly related to visceral adipose tissue FFA release into the portal vein. This finding suggests that splanchnic FFA release is a good indicator of visceral adipose tissue lipolysis. PMID:12736157

  20. Omega-3 fatty acids for breast cancer prevention and survivorship.

    PubMed

    Fabian, Carol J; Kimler, Bruce F; Hursting, Stephen D

    2015-01-01

    Women with evidence of high intake ratios of the marine omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) relative to the omega-6 arachidonic acid have been found to have a reduced risk of breast cancer compared with those with low ratios in some but not all case-control and cohort studies. If increasing EPA and DHA relative to arachidonic acid is effective in reducing breast cancer risk, likely mechanisms include reduction in proinflammatory lipid derivatives, inhibition of nuclear factor-κB-induced cytokine production, and decreased growth factor receptor signaling as a result of alteration in membrane lipid rafts. Primary prevention trials with either risk biomarkers or cancer incidence as endpoints are underway but final results of these trials are currently unavailable. EPA and DHA supplementation is also being explored in an effort to help prevent or alleviate common problems after a breast cancer diagnosis, including cardiac and cognitive dysfunction and chemotherapy-induced peripheral neuropathy. The insulin-sensitizing and anabolic properties of EPA and DHA also suggest supplementation studies to determine whether these omega-3 fatty acids might reduce chemotherapy-associated loss of muscle mass and weight gain. We will briefly review relevant omega-3 fatty acid metabolism, and early investigations in breast cancer prevention and survivorship. PMID:25936773

  1. Plasma fatty acid profile and alternative nutrition.

    PubMed

    Krajcovicová-Kudlácková, M; Simoncic, R; Béderová, A; Klvanová, J

    1997-01-01

    Plasma profile of fatty acids was examined in a group of children consisting of 7 vegans, 15 lactoovovegetarians and 10 semivegetarians. The children were 11-15 years old and the average period of alternative nutrition was 3.4 years. The results were compared with a group of 19 omnivores that constituted an average sample with respect to biochemical and hematological parameters from a larger study of health and nutritional status of children in Slovakia. Alternative nutrition groups had significantly lower values of saturated fatty acids. The content of oleic acid was identical to omnivores. A significant increase was observed for linoleic and alpha-linolenic (n-3) acids. The dihomo-gamma-linolenic (n-6) acid and arachidonic (n-6) acid values were comparable to omnivores for all alternative nutrition groups. Values of n-3 polyunsaturated fatty acids in lactoovovegetarians were identical to those of omnivores whereas they were significantly increased in semivegetarians consuming fish twice a week. Due to the total exclusion of animal fats from the diet, vegans had significantly reduced values of palmitoleic acid as well as eicosapentaenoic (n-3) acid and docosahexaenoic (n-3) acid resulting in an increased n-6/n-3 ratio. Values of plasma fatty acids found in alternative nutrition groups can be explained by the higher intake of common vegetable oils (high content of linoleic acid), oils rich in alpha-linolenic acid (cereal germs, soybean oil, walnuts), as well as in n-3 polyunsaturated fatty acids (fish). The results of fatty acids (except n-3 in vegans) and other lipid parameters confirm the beneficial effect of vegetarian nutrition in the prevention of cardiovascular diseases. PMID:9491192

  2. Evaluation of fatty acid content of some Iranian fast foods with emphasis on trans fatty acids.

    PubMed

    Asgary, Seddigheh; Nazari, Bahar; Sarrafzadegan, Nizal; Parkhideh, Sahar; Saberi, Salbali; Esmaillzadeh, Ahmad; Azadbakht, Leila

    2009-01-01

    Although the disadvantages of trans fatty acids (TFAs) are widely mentioned, limited data are available on the TFAs contents of Iranian foods, including fast foods. The aim of this study was to quantify the amounts of common fatty acids in several fast foods in Iran, with specific focus on TFAs. The most commonly consumed fast foods in Iran: sausage, calbas, hamburgers and pizzas, were randomly selected seven times from products available in supermarkets and restaurants. Each time a 10 g sample was drawn and prepared for fatty acid analysis. Total and individual fatty acids were quantified according to standard methods by gas chromatography with 60 meter capillary column and flame ionization detector. The most common saturated fatty acids in Iranian fast foods is stearic acid (C18:0) which ranged from 14.0% to 20.9%. Saturated fatty acid content in calbas was significantly higher than that found in other groups. Trans fatty acids constitute almost 23.6% to 30.6% of total fatty acids of these products. The most common TFA in these fast foods was elaidic acid (C18:1 9t). Total cis unsaturated fatty acid content of tested fast foods varied from 25.3%(in sausage) to 46.8(in calbas) with oleic acid (C18:1 9c) followed by linoleic acid (C18:2) being the most common fatty acids in these products. This study showed higher TFAs contents in commercially available fast foods compared to the amounts recommended by dietary guidelines in Iran. Further studies must assess the effects of these fatty acids on human health. PMID:19713177

  3. Oxygenases for aliphatic hydrocarbons and fatty acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oxygenases catalyzing the insertion of oxygen into either aliphatic hydrocarbons or fatty acids have great similarity. There are two classes of oxygenases: monooxygenases and dioxygenases. Dioxygenase inserts both atoms of molecular oxygen into a substrate, whereas monooxygenase incorporates one a...

  4. Fatty acids in serum and diet--a canonical correlation analysis among toddlers.

    PubMed

    Uusitalo, Liisa; Nevalainen, Jaakko; Salminen, Irma; Ovaskainen, Marja-Leena; Kronberg-Kippilä, Carina; Ahonen, Suvi; Niinistö, Sari; Alfthan, Georg; Simell, Olli; Ilonen, Jorma; Veijola, Riitta; Knip, Mikael; Virtanen, Suvi M

    2013-07-01

    Fatty acid concentrations in blood are potential biomarkers of dietary fat intake, but methodological studies among children are scarce. The large number of fatty acids and their complex interrelationships pose a special challenge in research on fatty acids. Our target was to assess the interrelationships between the total fatty acid profiles in diet and serum of young children. The study subjects were healthy control children from the birth cohort of the Type 1 Diabetes Prediction and Prevention Study. A 3-day food record and a frozen serum sample were available from 135 children at the age of 1 year, from 133 at 2 years, and from 92 at 3 years. The relationship between dietary and serum fatty acid profiles was analysed using canonical correlation analysis. The consumption of fatty milk correlated positively with serum fatty acids, pentadecanoic acid, palmitic acid and conjugated linoleic acid (CLA) at all ages. Correlations between dietary and serum eicosapentaenoic and/or docosahexaenoic acid were observed at 2 and 3 years of age. Serum linoleic acid was positively associated with the consumption of infant formula at the age of 1 year, and with the consumption of vegetable margarine at 2 and 3 years. The results indicate a high quality of the 3-day food records kept by parents and other caretakers of the children, and suitability of non-fasting, un-fractioned serum samples for total fatty acid analyses. The correlation between intake of milk fat and serum proportion of CLA is a novel finding. PMID:22066932

  5. Acculturation and plasma fatty acid concentrations in Hispanic and Chinese-American adults: The Multi-Ethnic Study of Atherosclerosis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Acculturation to the U.S. is associated with increased risk of cardiovascular disease, but the etiologic pathways are not fully understood. Plasma fatty acid levels exhibit ethnic differences and are emerging as biomarkers and predictors of cardiovascular disease risk. Thus, plasma fatty acids may...

  6. Polyhydroxy Fatty Acids Derived from Sophorolipids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Starting from 17-hydroxyoleic acid, which is readily available from acid alcoholysis of sophorolipids, several new polyhydroxy fatty acids have been synthesized. These compounds contain from 2 to 5 hydroxy groups, in some instances combined with other functional groups. The added hydroxy groups ca...

  7. Dietary omega-3 fatty acids for women.

    PubMed

    Bourre, Jean-Marie

    2007-01-01

    This review details the specific needs of women for omega-3 fatty acids, including alpha linoleic acid (ALA) and the very long chain fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Omega-3 fatty acid (dietary or in capsules) ensures that a woman's adipose tissue contains a reserve of these fatty acids for the developing fetus and the breast-fed newborn infant. This ensures the optimal cerebral and cognitive development of the infant. The presence of large quantities of EPA and DHA in the diet slightly lengthens pregnancy, and improves its quality. Human milk contains both ALA and DHA, unlike that of other mammals. Conditions such as diabetes can alter the fatty acid profile of mother's milk, while certain diets, like those of vegetarians, vegans, or even macrobiotic diets, can have the same effect, if they do not include seafood. ALA, DHA and EPA, are important for preventing ischemic cardiovascular disease in women of all ages. Omega-3 fatty acids can help to prevent the development of certain cancers, particularly those of the breast and colon, and possibly of the uterus and the skin, and are likely to reduce the risk of postpartum depression, manic-depressive psychosis, dementias (Alzheimer's disease and others), hypertension, toxemia, diabetes and, to a certain extend, age-related macular degeneration. Omega-3 fatty acids could play a positive role in the prevention of menstrual syndrome and postmenopausal hot flushes. The normal western diet contains little ALA (less than 50% of the RDA). The only adequate sources are rapeseed oil (canola), walnuts and so-called "omega-3" eggs (similar to wild-type or Cretan eggs). The amounts of EPA and DHA in the diet vary greatly from person to person. The only good sources are fish and seafood, together with "omega-3" eggs. PMID:17254747

  8. Nutritional properties of trans fatty acids.

    PubMed

    Sambaiah, K; Lokesh, B R

    1999-08-01

    The role of trans fatty acids (TFA) present in partially hydrogenated fats widely consumed in food and their link with coronary heart disease has been examined in this review. Most of the studies carried out have been on the effects of TFA on blood-lipid profile. The perceived effects of TFA intake depend on the fat or oil with which they are compared and appears to be in between that of dietary saturated fats and monounsaturated fatty acids. When compared to saturated fat, TFA intake shows lower levels of total and LDL-cholesterol in blood. But when both TFA and saturated fatty acids are compared with cis fatty acids or native unhydrogenated oil, increase in total and LDL-cholesterol are noted. The effects of TFA on HDL-cholesterol and Lp(a) are not clearly established. The undesirable effects of TFA can be overcome by inclusion of essential fatty acids at a minimum of 2 energy per cent level in the diet. The link between trans fatty acid intake and coronary heart disease (CHD) are not unequivocally established. PMID:10650721

  9. Fatty acid oxidation and ketogenesis in astrocytes

    SciTech Connect

    Auestad, N.

    1988-01-01

    Astrocytes were derived from cortex of two-day-old rat brain and grown in primary culture to confluence. The metabolism of the fatty acids, octanoate and palmitate, to CO{sub 2} in oxidative respiration and to the formation of ketone bodies was examined by radiolabeled tracer methodology. The net production of acetoacetate was also determined by measurement of its mass. The enzymes in the ketogenic pathway were examined by measuring enzymic activity and/or by immunoblot analyses. Labeled CO{sub 2} and labeled ketone bodies were produced from the oxidation of fatty acids labeled at carboxy- and {omega}-terminal carbons, indicating that fatty acids were oxidized by {beta}-oxidation. The results from the radiolabeled tracer studies also indicated that a substantial proportion of the {omega}-terminal 4-carbon unit of the fatty acids bypassed the {beta}-ketothiolase step of the {beta}-oxidation pathway. The ({sup 14}C)acetoacetate formed from the (1-{sup 14}C)labeled fatty acids, obligated to pass through the acetyl-CoA pool, contained 50% of the label at carbon 3 and 50% at carbon 1. In contrast, the ({sup 14}C)acetoacetate formed from the ({omega}-1)labeled fatty acids contained 90% of the label at carbon 3 and 10% at carbon 1.

  10. 21 CFR 172.848 - Lactylic esters of fatty acids.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... are prepared from lactic acid and fatty acids meeting the requirements of § 172.860(b) and/or oleic acid derived from tall oil fatty acids meeting the requirements of § 172.862. (b) They are used...

  11. 21 CFR 172.848 - Lactylic esters of fatty acids.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... accordance with the following prescribed conditions: (a) They are prepared from lactic acid and fatty acids meeting the requirements of § 172.860(b) and/or oleic acid derived from tall oil fatty acids meeting...

  12. 21 CFR 172.848 - Lactylic esters of fatty acids.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... are prepared from lactic acid and fatty acids meeting the requirements of § 172.860(b) and/or oleic acid derived from tall oil fatty acids meeting the requirements of § 172.862. (b) They are used...

  13. 21 CFR 172.848 - Lactylic esters of fatty acids.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... are prepared from lactic acid and fatty acids meeting the requirements of § 172.860(b) and/or oleic acid derived from tall oil fatty acids meeting the requirements of § 172.862. (b) They are used...

  14. Expression of fatty acid synthase in nonalcoholic fatty liver disease

    PubMed Central

    Dorn, Christoph; Riener, Marc-Oliver; Kirovski, Georgi; Saugspier, Michael; Steib, Kathrin; Weiss, Thomas S; Gäbele, Erwin; Kristiansen, Glen; Hartmann, Arndt; Hellerbrand, Claus

    2010-01-01

    Nonalcoholic fatty liver disease (NAFLD) is characterized by hepatic lipid accumulation which starts with simple hepatic steatosis and may progress toward inflammation (nonalcoholic steatohepatitis [NASH]). Fatty acid synthase (FASN) catalyzes the last step in fatty acid biosynthesis, and thus, it is believed to be a major determinant of the maximal hepatic capacity to generate fatty acids by de novo lipogenesis. The aim of this study was to analyze the correlation between hepatic steatosis and inflammation with FASN expression. In vitro incubation of primary human hepatocytes with fatty acids dose-dependently induced cellular lipid-accumulation and FASN expression, while stimulation with TNF did not affect FASN levels. Further, hepatic FASN expression was significantly increased in vivo in a murine model of hepatic steatosis without significant inflammation but not in a murine NASH model as compared to control mice. Also, FASN expression was not increased in mice subjected to bile duct ligation, an experimental model characterized by severe hepatocellular damage and inflammation. Furthermore, FASN expression was analyzed in 102 human control or NAFLD livers applying tissue micro array technology and immunohistochemistry, and correlated significantly with the degree of hepatic steatosis, but not with inflammation or ballooning of hepatocytes. Quantification of FASN mRNA expression in human liver samples confirmed significantly higher FASN levels in hepatic steatosis but not in NASH, and expression of SREBP1, which is the main transcriptional regulator of FASN, paralleled FASN expression levels in human and experimental NAFLD. In conclusion, the transcriptional induction of FASN expression in hepatic steatosis is impaired in NASH, while hepatic inflammation in the absence of steatosis does not affect FASN expression, suggesting that FASN may serve as a new diagnostic marker or therapeutic target for the progression of NAFLD. PMID:20606731

  15. Expression of fatty acid synthase in nonalcoholic fatty liver disease.

    PubMed

    Dorn, Christoph; Riener, Marc-Oliver; Kirovski, Georgi; Saugspier, Michael; Steib, Kathrin; Weiss, Thomas S; Gäbele, Erwin; Kristiansen, Glen; Hartmann, Arndt; Hellerbrand, Claus

    2010-01-01

    Nonalcoholic fatty liver disease (NAFLD) is characterized by hepatic lipid accumulation which starts with simple hepatic steatosis and may progress toward inflammation (nonalcoholic steatohepatitis [NASH]). Fatty acid synthase (FASN) catalyzes the last step in fatty acid biosynthesis, and thus, it is believed to be a major determinant of the maximal hepatic capacity to generate fatty acids by de novo lipogenesis. The aim of this study was to analyze the correlation between hepatic steatosis and inflammation with FASN expression. In vitro incubation of primary human hepatocytes with fatty acids dose-dependently induced cellular lipid-accumulation and FASN expression, while stimulation with TNF did not affect FASN levels. Further, hepatic FASN expression was significantly increased in vivo in a murine model of hepatic steatosis without significant inflammation but not in a murine NASH model as compared to control mice. Also, FASN expression was not increased in mice subjected to bile duct ligation, an experimental model characterized by severe hepatocellular damage and inflammation. Furthermore, FASN expression was analyzed in 102 human control or NAFLD livers applying tissue micro array technology and immunohistochemistry, and correlated significantly with the degree of hepatic steatosis, but not with inflammation or ballooning of hepatocytes. Quantification of FASN mRNA expression in human liver samples confirmed significantly higher FASN levels in hepatic steatosis but not in NASH, and expression of SREBP1, which is the main transcriptional regulator of FASN, paralleled FASN expression levels in human and experimental NAFLD. In conclusion, the transcriptional induction of FASN expression in hepatic steatosis is impaired in NASH, while hepatic inflammation in the absence of steatosis does not affect FASN expression, suggesting that FASN may serve as a new diagnostic marker or therapeutic target for the progression of NAFLD. PMID:20606731

  16. Biomarkers of myeloperoxidase-derived hypochlorous acid.

    PubMed

    Winterbourn, C C; Kettle, A J

    2000-09-01

    Hypochlorous acid is the major strong oxidant generated by neutrophils. The heme enzyme myeloperoxidase catalyzes the production of hypochlorous acid from hydrogen peroxide and chloride. Although myeloperoxidase has been implicated in the tissue damage that occurs in numerous diseases that involve inflammatory cells, it has proven difficult to categorically demonstrate that it plays a crucial role in any pathology. This situation should soon be rectified with the advent of sensitive biomarkers for hypochlorous acid. In this review, we outline the advantages and limitations of chlorinated tyrosines, chlorohydrins, 5-chlorocytosine, protein carbonyls, antibodies that recognize HOCl-treated proteins, and glutathione sulfonamide as potential biomarkers of hypochlorous acid. Levels of 3-chlorotyrosine and 3,5-dichlorotyrosine are increased in proteins after exposure to low concentrations of hypochlorous acid and we conclude that their analysis by gas chromatography and mass spectrometry is currently the best method available for probing the involvement of oxidation by myeloperoxidase in the pathology of particular diseases. The appropriate use of other biomarkers should provide complementary information.Keywords-Free radicals, Myeloperoxidase, Neutrophil oxidant, Hypochlorous acid, Chlorotyrosine, Chlorohydrin, Oxidant biomarker PMID:11020661

  17. 21 CFR 172.863 - Salts of fatty acids.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Salts of fatty acids. 172.863 Section 172.863 Food... of fatty acids. The food additive salts of fatty acids may be safely used in food and in the... salts of the fatty acids conforming with § 172.860 and/or oleic acid derived from tall oil fatty...

  18. 21 CFR 172.860 - Fatty acids.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... food additive consists of one or any mixture of the following straight-chain monobasic carboxylic acids... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Fatty acids. 172.860 Section 172.860 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR...

  19. 21 CFR 172.860 - Fatty acids.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... food additive consists of one or any mixture of the following straight-chain monobasic carboxylic acids... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Fatty acids. 172.860 Section 172.860 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR...

  20. 21 CFR 172.860 - Fatty acids.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... food additive consists of one or any mixture of the following straight-chain monobasic carboxylic acids... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Fatty acids. 172.860 Section 172.860 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR...

  1. 21 CFR 172.860 - Fatty acids.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... food additive consists of one or any mixture of the following straight-chain monobasic carboxylic acids... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Fatty acids. 172.860 Section 172.860 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR...

  2. Production of hydroxylated fatty acids in genetically modified plants

    DOEpatents

    Somerville, Chris; Broun, Pierre; van de Loo, Frank; Boddupalli, Sekhar S.

    2005-08-30

    This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants. In addition, the use of genes encoding fatty acid hydroxylases or desaturases to alter the level of lipid fatty acid unsaturation in transgenic plants is described.

  3. Production of hydroxylated fatty acids in genetically modified plants

    DOEpatents

    Somerville, Chris; Broun, Pierre; van de Loo, Frank; Boddupalli, Sekhar S.

    2011-08-23

    This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants. In addition, the use of genes encoding fatty acid hydroxylases or desaturases to alter the level of lipid fatty acid unsaturation in transgenic plants is described.

  4. Molar extinction coefficients of some fatty acids

    NASA Astrophysics Data System (ADS)

    Sandhu, G. K.; Singh, Kulwant; Lark, B. S.; Gerward, L.

    2002-10-01

    The attenuation of gamma rays in some fatty acids, viz. formic acid (CH 2O 2), acetic acid (C 2H 4O 2), propionic acid (C 3H 6O 2), butyric acid (C 4H 8O 2), n-hexanoic acid (C 6H 12O 2), n-caprylic acid (C 8H 16O 2), lauric acid (C 12H 24O 2), myristic acid (C 14H 28O 2), palmitic acid (C 16H 32O 2), oleic acid (C 18H 34O 2) and stearic acid (C 18H 36O 2), has been measured at the photon energies 81, 356, 511, 662, 1173 and 1332 keV. Experimental values for the molar extinction coefficient, the effective atomic number and the electron density have been derived and compared with theoretical calculations. There is good agreement between experiment and theory.

  5. Serum paraoxonase-1 as biomarker for improved diagnosis of fatty liver in dairy cows

    PubMed Central

    2013-01-01

    Background Fatty liver is a major metabolic disorder in dairy cows and is believed to result in major economic losses in dairy farming due to decreased health status, reproductive performance and fertility. Currently, the definitive means for diagnosing fatty liver is determining the fat content of hepatic tissue by liver biopsy, which is an invasive and costly procedure, making it poorly suited to dairy farms. Therefore, the key aim of this study was to investigate the measurement of serum paraoxonase-1 (PON1), an enzyme exclusively synthesized by the liver, as a sensitive noninvasive biomarker for diagnosis of fatty liver in dairy cows. Results A comparative cohort study using serum specimens from Holstein–Friesian dairy cows (46 healthy and 46 fatty liver cases) was conducted. Serum PON1 (paraoxonase, lactonase and arylesterase) activity and other biochemical and hematological parameters were measured. We found that serum PON1 activity was lower (P<0.001) in cows suffering from fatty liver. The area under the receiver operating characteristic curve (AUC-ROC) of PON1 activity for diagnosis of fatty liver was 0.973–0.989 [95% confidence interval (CI) 0.941, 1.000] which was higher than the AUC-ROC of aspartate aminotransferase (AST), lecithin-cholesterol acyltransferase (LCAT), alkaline phosphatase (ALP), non-esterified fatty acids (NEFA), beta-hydroxybutyrate (BHBA), total cholesterol, high-density lipoprotein (HDL) and low-density lipoprotein (LDL). We found that adding serum PON1 measurement to different batteries of serum diagnostic panels showed a combination of high sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), positive likelihood ratio (+LR), negative likelihood ratio (−LR), diagnostic odd ratio (DOR) and overall diagnostic accuracy in diagnosing fatty liver. Conclusions The present results indicate that addition of serum PON1 activity measurement to the biochemical profile could improve the diagnosis of

  6. Essential fatty acid consumption and risk of breast cancer.

    PubMed

    Godley, P A

    1995-07-01

    Animal and ecological studies of essential fatty acids suggest that omega-3 fatty acids found in fish oils and omega-6 fatty acids found in vegetable oils may be playing a role in the etiology of breast cancer. Essential fatty acids may modulate breast cancer risk by interacting with prostaglandins, which have immunosuppressive and platelet aggregative capabilities. The fatty acid composition of adipose tissue reflects the dietary consumption of essential fatty acids over a period of years. Biochemical techniques have been used in epidemiological studies to accurately estimate fatty acid consumption. However, analytical epidemiology studies that have used biochemical measurements of adipose tissue fatty acid composition, have not supported a relationship between consumption of these essential fatty acids and breast cancer risk. PMID:7612909

  7. Effect of fatty acids on phase behavior of hydrated dipalmitoylphosphatidylcholine bilayer: saturated versus unsaturated fatty acids.

    PubMed

    Inoue, T; Yanagihara, S; Misono, Y; Suzuki, M

    2001-02-01

    The effect of some fatty acids on the phase behavior of hydrated dipalmitoylphosphatidylcholine (DPPC) bilayer was investigated with special interest in possible difference between saturated and unsaturated fatty acids. The phase behavior of hydrated DPPC bilayer was followed by a differential scanning calorimetry and a Fourier transform infrared spectroscopy. The addition of palmitic acid (PA) increased the bilayer phase transition temperature with the increase of the PA content in the mixture. In addition, DPPC molecules in gel phase bilayer became more rigid in the presence of PA compared with those in the absence of PA. This effect of PA on the phase behavior of hydrated DPPC bilayer is common to other saturated fatty acids, stearic acid, myristic acid, and also to unsaturated fatty acid with trans double bond, elaidic acid. Contrary to these fatty acids, oleic acid (OA), the unsaturated fatty acid with cis double bond in the acyl chain, exhibited quite different behavior. The effect of OA on the bilayer phase transition temperature was rather small, although a slight decrease in the temperature was appreciable. Furthermore, the IR spectral results demonstrated that the perturbing effect of OA on the gel phase bilayer of DPPC was quite small. These results mean that OA does not disturb the hydrated DPPC bilayer significantly. PMID:11269932

  8. Probing fatty acid metabolism in bacteria, cyanobacteria, green microalgae and diatoms with natural and unnatural fatty acids.

    PubMed

    Beld, Joris; Abbriano, Raffaela; Finzel, Kara; Hildebrand, Mark; Burkart, Michael D

    2016-04-22

    In both eukaryotes and prokaryotes, fatty acid synthases are responsible for the biosynthesis of fatty acids in an iterative process, extending the fatty acid by two carbon units every cycle. Thus, odd numbered fatty acids are rarely found in nature. We tested whether representatives of diverse microbial phyla have the ability to incorporate odd-chain fatty acids as substrates for their fatty acid synthases and their downstream enzymes. We fed various odd and short chain fatty acids to the bacterium Escherichia coli, cyanobacterium Synechocystis sp. PCC 6803, green microalga Chlamydomonas reinhardtii and diatom Thalassiosira pseudonana. Major differences were observed, specifically in the ability among species to incorporate and elongate short chain fatty acids. We demonstrate that E. coli, C. reinhardtii, and T. pseudonana can produce longer fatty acid products from short chain precursors (C3 and C5), while Synechocystis sp. PCC 6803 lacks this ability. However, Synechocystis can incorporate and elongate longer chain fatty acids due to acyl-acyl carrier protein synthetase (AasS) activity, and knockout of this protein eliminates the ability to incorporate these fatty acids. In addition, expression of a characterized AasS from Vibrio harveyii confers a similar capability to E. coli. The ability to desaturate exogenously added fatty acids was only observed in Synechocystis and C. reinhardtii. We further probed fatty acid metabolism of these organisms by feeding desaturase inhibitors to test the specificity of long-chain fatty acid desaturases. In particular, supplementation with thia fatty acids can alter fatty acid profiles based on the location of the sulfur in the chain. We show that coupling sensitive gas chromatography mass spectrometry to supplementation of unnatural fatty acids can reveal major differences between fatty acid metabolism in various organisms. Often unnatural fatty acids have antibacterial or even therapeutic properties. Feeding of short

  9. Bioluminescent determination of free fatty acids.

    PubMed

    Kather, H; Wieland, E

    1984-08-01

    A simple, highly specific, and sensitive bioluminescent method for determination of free fatty acids in unextracted plasma or serum has been developed. The method is based on the activation of free fatty acids by acyl-CoA synthetase (EC 6.2.1.3). The pyrophosphate formed is used to phosphorylate fructose 6-phosphate in a reaction catalyzed by the enzyme pyrophosphate-fructose-6-phosphate phosphotransferase (EC 4.1.2.13). The triosephosphates produced from fructose 1,6-bisphosphate by aldolase are oxidized by NAD in the presence of arsenate to 3-phosphoglycerate. The NADH is detected via the bacterial NADH-linked luciferase system. Excellent agreement has been obtained by comparison with accepted methods. In addition, for the determination of serum free fatty acids, the method is particularly applicable for following lipolysis of isolated adipocytes. PMID:6486422

  10. Fatty acid production in genetically modified cyanobacteria

    PubMed Central

    Liu, Xinyao; Sheng, Jie; Curtiss III, Roy

    2011-01-01

    To avoid costly biomass recovery in photosynthetic microbial biofuel production, we genetically modified cyanobacteria to produce and secrete fatty acids. Starting with introducing an acyl–acyl carrier protein thioesterase gene, we made six successive generations of genetic modifications of cyanobacterium Synechocystis sp. PCC6803 wild type (SD100). The fatty acid secretion yield was increased to 197 ± 14 mg/L of culture in one improved strain at a cell density of 1.0 × 109 cells/mL by adding codon-optimized thioesterase genes and weakening polar cell wall layers. Although these strains exhibited damaged cell membranes at low cell densities, they grew more rapidly at high cell densities in late exponential and stationary phase and exhibited less cell damage than cells in wild-type cultures. Our results suggest that fatty acid secreting cyanobacteria are a promising technology for renewable biofuel production. PMID:21482809

  11. Fatty acid induced remodeling within the human liver fatty acid-binding protein.

    PubMed

    Sharma, Ashwani; Sharma, Amit

    2011-09-01

    We crystallized human liver fatty acid-binding protein (LFABP) in apo, holo, and intermediate states of palmitic acid engagement. Structural snapshots of fatty acid recognition, entry, and docking within LFABP support a heads-in mechanism for ligand entry. Apo-LFABP undergoes structural remodeling, where the first palmitate ingress creates the atomic environment for placement of the second palmitate. These new mechanistic insights will facilitate development of pharmacological agents against LFABP. PMID:21757748

  12. Fatty acid composition of Swedish bakery products, with emphasis on trans-fatty acids.

    PubMed

    Trattner, Sofia; Becker, Wulf; Wretling, Sören; Öhrvik, Veronica; Mattisson, Irene

    2015-05-15

    Trans-fatty acids (TFA) have been associated with increased risk of coronary heart disease, by affecting blood lipids and inflammation factors. Current nutrition recommendations emphasise a limitation of dietary TFA intake. The aim of this study was to investigate fatty acid composition in sweet bakery products, with emphasis on TFA, on the Swedish market and compare fatty acid composition over time. Products were sampled in 2001, 2006 and 2007 and analysed for fatty acid composition by using GC. Mean TFA levels were 0.7% in 2007 and 5.9% in 2001 of total fatty acids. In 1995-97, mean TFA level was 14.3%. In 2007, 3 of 41 products had TFA levels above 2% of total fatty acids. TFA content had decreased in this product category, while the proportion of saturated (SFA) and polyunsaturated (PUFA) fatty acids had increased, mostly through increased levels of 16:0 and 18:2 n-6, respectively. The total fat content remained largely unchanged. PMID:25577101

  13. The science of fatty acids and inflammation.

    PubMed

    Fritsche, Kevin L

    2015-05-01

    Inflammation is believed to play a central role in many of the chronic diseases that characterize modern society. In the past decade, our understanding of how dietary fats affect our immune system and subsequently our inflammatory status has grown considerably. There are compelling data showing that high-fat meals promote endotoxin [e.g., lipopolysaccharide (LPS)] translocation into the bloodstream, stimulating innate immune cells and leading to a transient postprandial inflammatory response. The nature of this effect is influenced by the amount and type of fat consumed. The role of various dietary constituents, including fats, on gut microflora and subsequent health outcomes in the host is another exciting and novel area of inquiry. The impact of specific fatty acids on inflammation may be central to how dietary fats affect health. Three key fatty acid-inflammation interactions are briefly described. First, the evidence suggests that saturated fatty acids induce inflammation in part by mimicking the actions of LPS. Second, the often-repeated claim that dietary linoleic acid promotes inflammation was not supported in a recent systematic review of the evidence. Third, an explanation is offered for why omega-3 (n-3) polyunsaturated fatty acids are so much less anti-inflammatory in humans than in mice. The article closes with a cautionary tale from the genomic literature that illustrates why extrapolating the results from inflammation studies in mice to humans is problematic. PMID:25979502

  14. Impact of methods used to express levels of circulating fatty acids on the degree and direction of associations with blood lipids in humans.

    PubMed

    Sergeant, Susan; Ruczinski, Ingo; Ivester, Priscilla; Lee, Tammy C; Morgan, Timothy M; Nicklas, Barbara J; Mathias, Rasika A; Chilton, Floyd H

    2016-01-28

    Numerous studies have examined relationships between disease biomarkers (such as blood lipids) and levels of circulating or cellular fatty acids. In such association studies, fatty acids have typically been expressed as the percentage of a particular fatty acid relative to the total fatty acids in a sample. Using two human cohorts, this study examined relationships between blood lipids (TAG, and LDL, HDL or total cholesterol) and circulating fatty acids expressed either as a percentage of total or as concentration in serum. The direction of the correlation between stearic acid, linoleic acid, dihomo-γ-linolenic acid, arachidonic acid and DHA and circulating TAG reversed when fatty acids were expressed as concentrations v. a percentage of total. Similar reversals were observed for these fatty acids when examining their associations with the ratio of total cholesterol:HDL-cholesterol. This reversal pattern was replicated in serum samples from both human cohorts. The correlations between blood lipids and fatty acids expressed as a percentage of total could be mathematically modelled from the concentration data. These data reveal that the different methods of expressing fatty acids lead to dissimilar correlations between blood lipids and certain fatty acids. This study raises important questions about how such reversals in association patterns impact the interpretation of numerous association studies evaluating fatty acids and their relationships with disease biomarkers or risk. PMID:26615716

  15. Technological Aspects of Chemoenzymatic Epoxidation of Fatty Acids, Fatty Acid Esters and Vegetable Oils: A Review.

    PubMed

    Milchert, Eugeniusz; Malarczyk, Kornelia; Kłos, Marlena

    2015-01-01

    The general subject of the review is analysis of the effect of technological parameters on the chemoenzymatic epoxidation processes of vegetable oils, fatty acids and alkyl esters of fatty acids. The technological parameters considered include temperature, concentration, amount of hydrogen peroxide relative to the number of unsaturated bonds, the amounts of enzyme catalysts, presence of solvent and amount of free fatty acids. Also chemical reactions accompanying the technological processes are discussed together with different technological options and significance of the products obtained. PMID:26633342

  16. Fatty Acids as Surfactants on Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Tervahattu, H.; Juhanoja, J.; Niemi, J.

    2003-12-01

    Fatty acids (n-alcanoic acids) are common compounds in numerous anthropogenic and natural emissions. According to Rogge et al. (1993), catalyst-equipped automobiles emitted more than 600 μg km-1 of fatty acids which was over 50% of all identified organics in fine aerosol emissions. Coal burning produces fatty acids ranging from about 1700 mg kg-1 for bituminous coal to over 10000 mg kg-1 for lignite (Oros and Simoneit, 2000). Similarly, biomass burning is an important source for aerosol fatty acids. They are the major identified compound group in deciduous tree smoke, their total emission factor being measured as 1589 mg kg-1 which was 56% of all identified organic compounds (Oros and Simoneit, 2001a). Large amounts of fatty acid are also emitted from burning of conifer trees and grass (Oros and Simoneit, 2001a; Simoneit, 2002). Fatty acids have been reported to be major constituents of marine aerosols in many investigations (Barger and Garrett, 1976; Gagosian et. al, 1981; Sicre et al., 1990; Stephanou, 1992). It has been suggested that as the marine aerosol particles form, they acquire a coating of organic surfactants (Blanchard, 1964; Gill et al., 1983; Middlebrook et al., 1998; Ellison et al., 1999). Amphiphilic molecules, including lipids, can be assembled as monomolecular layers at air/water interfaces as well as transported to a solid support. Recently, we could show by time-of-flight secondary ion mass spectrometry that fatty acids are important ingredients of the outermost surface layer of the sea-salt aerosol particles (Tervahattu et al., 2002). In their TOF-SIMS studies on the surface composition of atmospheric aerosols, Peterson and Tyler (2002) found fatty acids on the surface of Montana forest fire particles. In this work we have studied by TOF-SIMS the surface chemical composition of aerosol particles emitted from field fires in the Baltic and other East European countries and transported to Finland as well as aerosol particles transported from

  17. Odd-chain polyunsaturated fatty acids in thraustochytrids.

    PubMed

    Chang, Kim Jye Lee; Mansour, Maged P; Dunstan, Graeme A; Blackburn, Susan I; Koutoulis, Anthony; Nichols, Peter D

    2011-08-01

    A series of unusual odd-chain fatty acids (OC-FA) were identified in two thraustochytrid strains, TC 01 and TC 04, isolated from waters off the south east coast of Tasmania, Australia. FA compositions were determined by capillary GC and GC-MS, with confirmation of polyunsaturated fatty acids (PUFA) structure performed by analysis of 4,4-dimethyloxazoline derivatives. PUFA constituted 68-74% of the total FA, with the essential PUFA; eicosapentaenoic acid (20:5ω3, EPA), arachidonic acid (20:4ω6, AA) and docosahexaenoic acid (22:6ω3, DHA), accounting for 42-44% of the total FA. High proportions of the saturated OC-FA 15:0 (7.1% in TC 01) and 17:0 (6.2% in TC 04) were detected. The OC-FA 17:1ω8 was present at 2.8% in TC 01. Of particular interest, the C₂₁ PUFA 21:5ω5 and 21:4ω7 were detected at 3.5% and 4.1%, respectively, in TC 04. A proposed biosynthesis pathway for these OC-PUFA is presented. It is possible that the unsaturated OC-PUFA found previously in a number of marine animals were derived from dietary thraustochytrids and they could be useful biomarkers in environmental and food web studies. PMID:21546043

  18. Hydroxyl Fatty Acids and Hydroxyl Oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean oil is produced domestically in large supply, averaging over 20 billion pounds per year with an annual carryover of more than one billion pounds. It is important to find new uses for this surplus soybean oil. Hydroxyl fatty acids and hydroxyl oils are platform materials for specialty chemi...

  19. Fatty acid biosynthesis in pea root plastids

    SciTech Connect

    Stahl, R.J.; Sparace, S.A. )

    1989-04-01

    Fatty acid biosynthesis from (1-{sup 14}C)acetate was optimized in plastids isolated from primary root tips of 7-day-old germinating pea seeds. Fatty acid synthesis was maximum at approximately 80 nmoles/hr/mg protein in the presence of 200 {mu}M acetate, 0.5 mM each of NADH, NADPH and CoA, 6 mM each of ATP and MgCl{sub 2}, 1 mM each of the MnCl{sub 2} and glycerol-3-phosphate, 15 mM KHCO{sub 3}, and 0.1M Bis-tris-propane, pH 8.0 incubated at 35C. At the standard incubation temperature of 25C, fatty acid synthesis was linear from up to 6 hours with 80 to 100 {mu}g/mL plastid protein. ATP and CoA were absolute requirements, whereas KHCO{sub 3}, divalent cations and reduced nucleotides all improved activity by 80 to 85%. Mg{sup 2+} and NADH were the preferred cation and nucleotide, respectively. Dithiothreitol and detergents were generally inhibitory. The radioactive products of fatty acid biosynthesis were approximately 33% 16:0, 10% 18:0 and 56% 18:1 and generally did not vary with increasing concentrations of each cofactor.

  20. n-3 Fatty acids and asthma.

    PubMed

    Kumar, Aishwarya; Mastana, Sarabjit S; Lindley, Martin R

    2016-06-01

    Asthma is one of the most common and prevalent problems worldwide affecting over 300 million individuals. There is some evidence from observational and intervention studies to suggest a beneficial effect of n-3 PUFA in inflammatory diseases, specifically asthma. Marine-based n-3 PUFA have therefore been proposed as a possible complementary/alternative therapy for asthma. The proposed anti-inflammatory effects of n-3 fatty acids may be linked to a change in cell membrane composition. This altered membrane composition following n-3 fatty acid supplementation (primarily EPA and DHA) can modify lipid mediator generation via the production of eicosanoids with a reduced inflammatory potential/impact. A recently identified group of lipid mediators derived from EPA including E-series resolvins are proposed to be important in the resolution of inflammation. Reduced inflammation attenuates the severity of asthma including symptoms (dyspnoea) and exerts a bronchodilatory effect. There have been no major health side effects reported with the dietary supplementation of n-3 fatty acids or their mediators; consequently supplementing with n-3 fatty acids is an attractive non-pharmacological intervention which may benefit asthma. PMID:26809946

  1. Polyunsaturated fatty acids and gene expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Purpose of review. This review focuses on the effect(s) of n-3 polyunsaturated fatty acids (PUFA) on gene transcription as determined from data generated using cDNA microarrays. Introduced within the past decade, this methodology allows detection of the expression of thousands of genes simultaneo...

  2. Fatty acids of Beef Longissimus Muscle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to compare the fatty acid (FA) composition of the intramuscular (i.m. fat of the longissimus muscle (LM) from three divergent breeds of cattle: Angus (AN, n=9), Brahman (BR, n=7), and Romosinuano (RM, n=11). Cattle were blocked by breed and finished within an average ...

  3. Lipid and Fatty Acid Requirements of Tilapia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dietary lipids are an important source of highly digestible energy and are the only source of essential fatty acids required for normal growth and development. They are also carriers and assist in the absorption of fat-soluble nutrients, such as sterols and fat-soluble vitamins, serve as a source of...

  4. Lipid and fatty acid requirements of tilapias

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tilapia have been shown to have a dietary requirement for linoleic (n-6) series fatty acids (18:2n-6 or 20:4n-6). The optimum dietary levels of n-6 reported were 0.5 and 1% for redbelly tilapia (Tilapia zillii) and Nile tilapia (Oreochromis niloticus), respectively. Tilapia have been suggested to al...

  5. PLANT FATTY ACID (ETHANOL) AMIDE HYDROLASES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fatty acid amide hydrolase (FAAH) plays a central role in modulating endogenous N-acylethanolamine (NAE) levels in vertebrates, and, in part, constitutes an “endocannabinoid” signaling pathway that regulates diverse physiological and behavioral processes in animals. Recently, an Arabidopsis FAAH hom...

  6. Methods of refining and producing isomerized fatty acid esters and fatty acids from natural oil feedstocks

    DOEpatents

    Snead, Thomas E.; Cohen, Steven A.; Gildon, Demond L.; Beltran, Leslie V.; Kunz, Linda A.; Pals, Tessa M.; Quinn, Jordan R; Behrends, Jr., Raymond T.; Bernhardt, Randal J.

    2016-07-05

    Methods are provided for refining natural oil feedstocks and producing isomerized esters and acids. The methods comprise providing a C4-C18 unsaturated fatty ester or acid, and isomerizing the fatty acid ester or acid in the presence of heat or an isomerization catalyst to form an isomerized fatty ester or acid. In some embodiments, the methods comprise forming a dibasic ester or dibasic acid prior to the isomerizing step. In certain embodiments, the methods further comprise hydrolyzing the dibasic ester to form a dibasic acid. In certain embodiments, the olefin is formed by reacting the feedstock in the presence of a metathesis catalyst under conditions sufficient to form a metathesized product comprising olefins and esters, separating the olefins from the esters in the metathesized product, and transesterifying the esters in the presence of an alcohol to form a transesterified product having unsaturated esters.

  7. Opposite regulation of CD36 ubiquitination by fatty acids and insulin: effects on fatty acid uptake.

    PubMed

    Smith, Jill; Su, Xiong; El-Maghrabi, Raafat; Stahl, Philip D; Abumrad, Nada A

    2008-05-16

    FAT/CD36 is a membrane scavenger receptor that facilitates long chain fatty acid uptake by muscle. Acute increases in membrane CD36 and fatty acid uptake have been reported in response to insulin and contraction. In this study we have explored protein ubiquitination as one potential mechanism for the regulation of CD36 level. CD36 expressed in Chinese hamster ovary (CHO) or HEK 293 cells was found to be polyubiquitinated via a process involving both lysines 48 and 63 of ubiquitin. Using CHO cells expressing the insulin receptor (CHO/hIR) and CD36, it is shown that addition of insulin (100 nm, 10 and 30 min) significantly reduced CD36 ubiquitination. In contrast, ubiquitination was strongly enhanced by fatty acids (200 microm palmitate or oleate, 2 h). Similarly, endogenous CD36 in C2C12 myotubes was ubiquitinated, and this was enhanced by oleic acid treatment, which also reduced total CD36 protein in cell lysates. Insulin reduced CD36 ubiquitination, increased CD36 protein, and inhibited the opposite effects of fatty acids on both parameters. These changes were paralleled by changes in fatty acid uptake, which could be blocked by the CD36 inhibitor sulfosuccinimidyl oleate. Mutation of the two lysine residues in the carboxyl-terminal tail of CD36 markedly attenuated ubiquitination of the protein expressed in CHO cells and was associated with increased CD36 level and enhanced oleate uptake and incorporation into triglycerides. In conclusion, fatty acids and insulin induce opposite alterations in CD36 ubiquitination, modulating CD36 level and fatty acid uptake. Altered CD36 turnover may contribute to abnormal fatty acid uptake in the insulin-resistant muscle. PMID:18353783

  8. Fatty Acid Biosynthesis Revisited: Structure Elucidation and Metabolic Engineering

    PubMed Central

    Beld, Joris; Lee, D. John

    2014-01-01

    Fatty acids are primary metabolites synthesized by complex, elegant, and essential biosynthetic machinery. Fatty acid synthases resemble an iterative assembly line, with an acyl carrier protein conveying the growing fatty acid to necessary enzymatic domains for modification. Each catalytic domain is a unique enzyme spanning a wide range of folds and structures. Although they harbor the same enzymatic activities, two different types of fatty acid synthase architectures are observed in nature. During recent years, strained petroleum supplies have driven interest in engineering organisms to either produce more fatty acids or specific high value products. Such efforts require a fundamental understanding of the enzymatic activities and regulation of fatty acid synthases. Despite more than one hundred years of research, we continue to learn new lessons about fatty acid synthases’ many intricate structural and regulatory elements. In this review, we summarize each enzymatic domain and discuss efforts to engineer fatty acid synthases, providing some clues to important challenges and opportunities in the field. PMID:25360565

  9. Fatty acid biosynthesis revisited: structure elucidation and metabolic engineering.

    PubMed

    Beld, Joris; Lee, D John; Burkart, Michael D

    2015-01-01

    Fatty acids are primary metabolites synthesized by complex, elegant, and essential biosynthetic machinery. Fatty acid synthases resemble an iterative assembly line, with an acyl carrier protein conveying the growing fatty acid to necessary enzymatic domains for modification. Each catalytic domain is a unique enzyme spanning a wide range of folds and structures. Although they harbor the same enzymatic activities, two different types of fatty acid synthase architectures are observed in nature. During recent years, strained petroleum supplies have driven interest in engineering organisms to either produce more fatty acids or specific high value products. Such efforts require a fundamental understanding of the enzymatic activities and regulation of fatty acid synthases. Despite more than one hundred years of research, we continue to learn new lessons about fatty acid synthases' many intricate structural and regulatory elements. In this review, we summarize each enzymatic domain and discuss efforts to engineer fatty acid synthases, providing some clues to important challenges and opportunities in the field. PMID:25360565

  10. Who's afraid of n-6 polyunsaturated fatty acids? Methodological considerations for assessing whether they are harmful.

    PubMed

    Berry, E M

    2001-06-01

    N-6 fatty acids are essential for normal growth, development and health, and so extreme care is necessary before deciding that they are harmful. Theoretical and epidemiological evidence suggests the involvement of n-6 polyunsaturated fatty acids (PUFAs) in disease progression or prevention; however, n-6 function cannot be considered in isolation but needs to be seen as part of the complex of nutrient interactions with n-3 fatty acids (which compete for the same enzymatic pathways) and antioxidants. Insulin sensitivity might be the common factor relating disease to fatty acid metabolism both within and between the fatty acid pathways. High linoleate to arachidonate concentrations have been observed in insulin resistance, diabetic complications and some tumours, but these are multifactorial processes that include many lifestyle determinants and it is therefore wrong to condemn only n-6 fatty acids in their etiology. The results based on the criteria for assessing diet and disease are still insufficient to declare n-6 fatty acids a serious health risk; at most, the verdict should be "not proven". The question may never be conclusively answered not only because prospective dietary intervention trials (unlike those with n-3 fish oil capsules) are fraught with dosage and compliance problems, but also because of high background linoleate consumption. Tissue fatty acid composition may be a suitable biomarker for PUFA intake but there are many theoretical and methodological problems concerning other suitable markers because of the multiplicity of their biological effects. Before making evidence-based dietary recommendations, future research should consider: 1) how n-3 and n-6 dietary PUFAs affect the physiological balance (dose-response) of their derivatives such as eicosanoids and the newly-discovered fatty acid amides; 2) the metabolic interactions between n-6 and n-3 fatty acid pathways (including gene-nutrient effects); 3) the need for antioxidant cover (quantity and

  11. Phospholipids and fatty acids of Neisseria gonorrhoeae.

    PubMed Central

    Sud, I J; Feingold, D S

    1975-01-01

    The phospholipids and fatty acids of two strains of Neisseria gonorrhoeae of different penicillin susceptibilities were examined. The phospholipids, which comprise about 8% of the dry weight of the cells, consisted of phosphatidylethanolamine (70%) and phosphatidylglycerol (20%); small amounts of phosphatidylcholine and traces of cardiolipin were also present. Growing and stationary-phase cells were similar in content and composition of phospholipids except for phosphatidylcholine, which increased two- to fivefold in the stationary-phase cells. The fatty acids of the phospholipids were characterized by two major acids, palmitic and a C16:1, with myristic and a C18:1 acid present in smaller amounts. The fatty acids present in purified phospholipid fractions varied considerably in relative proportions from fraction to fraction. No significant difference in the composition of phospholipids from the two strains was evident. Large amounts of beta-hydroxy lauric acid were detected only after saponification of the organisms. Differences in the lipid composition between the gonococcus and other gram-negative bacteria are discussed. PMID:810478

  12. 21 CFR 172.863 - Salts of fatty acids.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Salts of fatty acids. 172.863 Section 172.863 Food... Multipurpose Additives § 172.863 Salts of fatty acids. The food additive salts of fatty acids may be safely..., magnesium, potassium, and sodium salts of the fatty acids conforming with § 172.860 and/or oleic...

  13. 21 CFR 172.863 - Salts of fatty acids.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Salts of fatty acids. 172.863 Section 172.863 Food... Multipurpose Additives § 172.863 Salts of fatty acids. The food additive salts of fatty acids may be safely..., magnesium, potassium, and sodium salts of the fatty acids conforming with § 172.860 and/or oleic...

  14. 21 CFR 172.863 - Salts of fatty acids.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Salts of fatty acids. 172.863 Section 172.863 Food... Multipurpose Additives § 172.863 Salts of fatty acids. The food additive salts of fatty acids may be safely..., magnesium, potassium, and sodium salts of the fatty acids conforming with § 172.860 and/or oleic...

  15. Naturally occurring fatty acids: source, chemistry and uses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Natural occurring fatty acids are a large and complex class of compounds found in plants and animals. Fatty acids are abundant and of interest because of their renewability, biodegradability, biocompatibility, low cost, and fascinating chemistry. Of the many fatty acids, only 20-25 of them are widel...

  16. Bioconverted Products of Essential Fatty Acids as Potential Antimicrobial Agents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This review deals with the recent findings on the microbial conversion of essential fatty acids (EFAs) through Pseudomonas aeruginosa PR3 NRRL-B-18602, and the antimicrobial properties of bioconverted essential fatty acids, with particular emphasis on n-3 or n-6 fatty acids. The first section deals...

  17. 21 CFR 172.863 - Salts of fatty acids.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Multipurpose Additives § 172.863 Salts of fatty acids. The food additive salts of fatty acids may be safely... conditions: (a) The additive consists of one or any mixture of two or more of the aluminum, calcium... derived from tall oil fatty acids conforming with § 172.862. (b) The food additive is used or intended...

  18. 40 CFR 721.3710 - Polyether modified fatty acids (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polyether modified fatty acids... Specific Chemical Substances § 721.3710 Polyether modified fatty acids (generic). (a) Chemical substance... Polyether modified fatty acids (PMN P-99-0435) is subject to reporting under this section for...

  19. 40 CFR 721.3710 - Polyether modified fatty acids (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Polyether modified fatty acids... Specific Chemical Substances § 721.3710 Polyether modified fatty acids (generic). (a) Chemical substance... Polyether modified fatty acids (PMN P-99-0435) is subject to reporting under this section for...

  20. 40 CFR 721.10320 - Fatty acid amide (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Fatty acid amide (generic). 721.10320... Substances § 721.10320 Fatty acid amide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as fatty acid amide (PMN P-03-186) is...

  1. 40 CFR 721.10463 - Fatty acid amides (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Fatty acid amides (generic). 721.10463... Substances § 721.10463 Fatty acid amides (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as fatty acid amides (PMN...

  2. Fatty acid-amino acid conjugates diversification in Lepidopteran caterpillars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fatty acid amino acid conjugates (FACs) have been found in Noctuid as well as Sphingid caterpillar oral secretions and especially volicitin [N-(17-hydroxylinolenoyl)-L-Glutamine] and its biochemical precursor, N-linolenoyl-L-glutamine, are known elicitors of induced volatile emissions in corn plants...

  3. Strategies, models and biomarkers in experimental non-alcoholic fatty liver disease research

    PubMed Central

    Willebrords, Joost; Pereira, Isabel Veloso Alves; Maes, Michaël; Yanguas, Sara Crespo; Colle, Isabelle; Van Den Bossche, Bert; Da silva, Tereza Cristina; Oliveira, Cláudia P; Andraus, Wellington; Alves, Venâncio Avancini Ferreira; Cogliati, Bruno; Vinken, Mathieu

    2015-01-01

    Non-alcoholic fatty liver disease encompasses a spectrum of liver diseases, including simple steatosis, steatohepatitis, liver fibrosis and cirrhosis and hepatocellular carcinoma. Non-alcoholic fatty liver disease is currently the most dominant chronic liver disease in Western countries due to the fact that hepatic steatosis is associated with insulin resistance, type 2 diabetes mellitus, obesity, metabolic syndrome and drug-induced injury. A variety of chemicals, mainly drugs, and diets is known to cause hepatic steatosis in humans and rodents. Experimental non-alcoholic fatty liver disease models rely on the application of a diet or the administration of drugs to laboratory animals or the exposure of hepatic cell lines to these drugs. More recently, genetically modified rodents or zebrafish have been introduced as non-alcoholic fatty liver disease models. Considerable interest now lies in the discovery and development of novel non-invasive biomarkers of non-alcoholic fatty liver disease, with specific focus on hepatic steatosis. Experimental diagnostic biomarkers of non-alcoholic fatty liver disease, such as (epi)genetic parameters and ‘-omics’-based read-outs are still in their infancy, but show great promise. . In this paper, the array of tools and models for the study of liver steatosis is discussed. Furthermore, the current state-of-art regarding experimental biomarkers such as epigenetic, genetic, transcriptomic, proteomic and metabonomic biomarkers will be reviewed. PMID:26073454

  4. Lipase-catalyzed synthesis of fatty acid amide (erucamide) using fatty acid and urea.

    PubMed

    Awasthi, Neeraj Praphulla; Singh, R P

    2007-01-01

    Ammonolysis of fatty acids to the corresponding fatty acid amides is efficiently catalysed by Candida antartica lipase (Novozym 435). In the present paper lipase-catalysed synthesis of erucamide by ammonolysis of erucic acid and urea in organic solvent medium was studied and optimal conditions for fatty amides synthesis were established. In this process erucic acid gave 88.74 % pure erucamide after 48 hour and 250 rpm at 60 degrees C with 1:4 molar ratio of erucic acid and urea, the organic solvent media is 50 ml tert-butyl alcohol (2-methyl-2-propanol). This process for synthesis is economical as we used urea in place of ammonia or other amidation reactant at atmospheric pressure. The amount of catalyst used is 3 %. PMID:17898456

  5. 40 CFR 721.10629 - Fatty acids, tall-oil, reaction products with modified fatty acids and polyalkanolamines (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Fatty acids, tall-oil, reaction... NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10629 Fatty acids, tall-oil, reaction products with modified fatty acids and polyalkanolamines (generic)....

  6. 40 CFR 721.10629 - Fatty acids, tall-oil, reaction products with modified fatty acids and polyalkanolamines (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Fatty acids, tall-oil, reaction... NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10629 Fatty acids, tall-oil, reaction products with modified fatty acids and polyalkanolamines (generic)....

  7. Properties and biosynthesis of cyclopropane fatty acids in Escherichia coli.

    PubMed Central

    Cronan, J E; Reed, R; Taylor, F R; Jackson, M B

    1979-01-01

    The lipid phase transition of Escherichia coli phospholipids containing cyclopropane fatty acids was compared with the otherwise homologous phospholipids lacking cyclopropane fatty acids. The phase transitions (determined by scanning calorimetry) of the two preparations were essentially identical. Infection of E. coli with phage T3 inhibited cyclopropane fatty acid formation over 98%, whereas infection with mutants which lack the phage coded S-adenosylmethionine cleavage enzyme had no effect on cyclopropane fatty acid synthesis. These data indicate that S-adenosylmethionine is the methylene in cyclopropane fatty acid synthesis. PMID:374358

  8. Fatty acids, eicosanoids and PPAR gamma.

    PubMed

    Marion-Letellier, Rachel; Savoye, Guillaume; Ghosh, Subrata

    2016-08-15

    Peroxisome proliferator-activated receptor γ (PPARγ) belongs to the family of nuclear nuclear receptors and is mainly expressed in adipose tissue, hematopoietic cells and the large intestine. Contrary to other nuclear receptors that mainly bind a single specific ligand, there are numerous natural PPARγ ligands, in particular fatty acids or their derivatives called eicosanoids. PPARγ have pleiotropic functions: (i) glucose and lipid metabolism regulation, (ii) anti-inflammatory properties, (iii) oxidative stress inhibition, (iv) improvement of endothelial function. Its role has been mainly studied by the use synthetic agonists. In this review, we will focus on the effects of PPARγ mediated through fatty acids and how these have beneficial health properties. PMID:26632493

  9. Imaging of myocardial fatty acid oxidation.

    PubMed

    Mather, Kieren J; DeGrado, Timothy R

    2016-10-01

    Myocardial fuel selection is a key feature of the health and function of the heart, with clear links between myocardial function and fuel selection and important impacts of fuel selection on ischemia tolerance. Radiopharmaceuticals provide uniquely valuable tools for in vivo, non-invasive assessment of these aspects of cardiac function and metabolism. Here we review the landscape of imaging probes developed to provide non-invasive assessment of myocardial fatty acid oxidation (MFAO). Also, we review the state of current knowledge that myocardial fatty acid imaging has helped establish of static and dynamic fuel selection that characterizes cardiac and cardiometabolic disease and the interplay between fuel selection and various aspects of cardiac function. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk. PMID:26923433

  10. Polyunsaturated fatty acid saturation by gut lactic acid bacteria affecting host lipid composition

    PubMed Central

    Kishino, Shigenobu; Takeuchi, Michiki; Park, Si-Bum; Hirata, Akiko; Kitamura, Nahoko; Kunisawa, Jun; Kiyono, Hiroshi; Iwamoto, Ryo; Isobe, Yosuke; Arita, Makoto; Arai, Hiroyuki; Ueda, Kazumitsu; Shima, Jun; Takahashi, Satomi; Yokozeki, Kenzo; Shimizu, Sakayu; Ogawa, Jun

    2013-01-01

    In the representative gut bacterium Lactobacillus plantarum, we identified genes encoding the enzymes involved in a saturation metabolism of polyunsaturated fatty acids and revealed in detail the metabolic pathway that generates hydroxy fatty acids, oxo fatty acids, conjugated fatty acids, and partially saturated trans-fatty acids as intermediates. Furthermore, we observed these intermediates, especially hydroxy fatty acids, in host organs. Levels of hydroxy fatty acids were much higher in specific pathogen-free mice than in germ-free mice, indicating that these fatty acids are generated through polyunsaturated fatty acids metabolism of gastrointestinal microorganisms. These findings suggested that lipid metabolism by gastrointestinal microbes affects the health of the host by modifying fatty acid composition. PMID:24127592

  11. Anorexia nervosa, seasonality, and polyunsaturated fatty acids.

    PubMed

    Scolnick, Barbara; Mostofsky, David I

    2015-09-01

    Anorexia nervosa is a serious neurobehavioral disorder marked by semistarvation, extreme fear of weight gain, frequently hyperactivity, and low body temperature. The etiology remains unknown. We present a speculation that a primary causative factor is that polyunsaturated fatty acids are skewed to prevent oxidative damage in phospholipid membranes. This causes a change in the trade off of oxidation protection vs homeoviscous adaptation to lower temperatures, which sets off a metabolic cascade that leads to the rogue state of anorexia nervosa. PMID:25981875

  12. Cellular fatty acid composition of Haemophilus equigenitalis.

    PubMed Central

    Sugimoto, C; Miyagawa, E; Mitani, K; Nakazawa, M; Isayama, Y

    1982-01-01

    The cellular fatty acid composition of eight Haemophilus equigenitalis strains was determined by gas-liquid chromatography. All strains showed a grossly similar pattern characterized by large amounts of 18:1 and 16:0. The amounts of 16:1, 18:2, 18:0, 3-OH 14:0, 3-OH 16:0, and 3-OH 18:1 were relatively small. PMID:7096556

  13. Lipidomics of oxidized polyunsaturated fatty acids

    PubMed Central

    Massey, Karen A.; Nicolaou, Anna

    2013-01-01

    Lipid mediators are produced from the oxidation of polyunsaturated fatty acids through enzymatic and free radical-mediated reactions. When subject to oxygenation via cyclooxygenases, lipoxygenases, and cytochrome P450 monooxygenases, polyunsaturated fatty acids give rise to an array of metabolites including eicosanoids, docosanoids, and octadecanoids. These potent bioactive lipids are involved in many biochemical and signaling pathways, with inflammation being of particular importance. Moreover, because they are produced by more than one pathway and substrate, and are present in a variety of biological milieus, their analysis is not always possible with conventional assays. Liquid chromatography coupled to electrospray mass spectrometry offers a versatile and sensitive approach for the analysis of bioactive lipids, allowing specific and accurate quantitation of multiple species present in the same sample. Here we explain the principles of this approach to mediator lipidomics and present detailed protocols for the assay of enzymatically produced oxygenated metabolites of polyunsaturated fatty acids that can be tailored to answer biological questions or facilitate assessment of nutritional and pharmacological interventions. PMID:22940496

  14. Intraspecific Variation of Unusual Phospholipids from Corynebacterium spp. Containing a Novel Fatty Acid

    PubMed Central

    Niepel, Tanja; Meyer, Holger; Wray, Victor; Abraham, Wolf-Rainer

    1998-01-01

    The novel fatty acid trans-9-methyl-10-octadecenoic acid was isolated from the coryneform bacterial strain LMG 3820 (previously misidentified as Arthrobacter globiformis) and identified by spectroscopic methods and chemical derivatization. This fatty acid is attached to the unusual lipid acyl phosphatidylglycerol. Five different species of this lipid type were identified; their structures were elucidated by tandem mass spectrometry and are reported here for the first time. Additionally, we identified three different cardiolipins, two bearing the novel fatty acid. The characteristic 10-methyl-octadecanoic acid was present only in phosphatidylinositol. Because of the unusual fatty acid pattern of strain LMG 3820, the 16S rDNA sequence was determined and showed regions of identity to sequences of Corynebacterium variabilis DSM 20132T and DSM 20536. All three strains possessed the novel fatty acid, identifying trans-9-methyl-10-octadecenoic acid as a potential biomarker characteristic for this taxon. Surprisingly, the fatty acid and relative abundances of phospholipids of Corynebacterium sp. strain LMG 3820 were similar to those of the type strain but different from those of Corynebacterium variabilis DSM 20536, although all three strains possessed identical 16S rDNA sequences and strains DSM 20132T and DSM 20536 have 90.5% DNA-DNA homology. This is one of the rare cases wherein different organisms with identical 16S rDNA sequences have been observed to present recognizably different fatty acid and lipid compositions. Since methylation of a fatty acid considerably lowers the transition temperature of the corresponding lipid resulting in a more flexible cell membrane, the intraspecific variation in the lipid composition, coinciding with the morphological and Gram stain reaction variability of this species, probably offers an advantage for this species to inhabit different environmental niches. PMID:9721308

  15. 21 CFR 172.862 - Oleic acid derived from tall oil fatty acids.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Oleic acid derived from tall oil fatty acids. 172... FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.862 Oleic acid derived from tall oil fatty acids. The food additive oleic acid derived from tall oil fatty acids may be safely used in food and...

  16. 21 CFR 172.862 - Oleic acid derived from tall oil fatty acids.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Oleic acid derived from tall oil fatty acids. 172... FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.862 Oleic acid derived from tall oil fatty acids. The food additive oleic acid derived from tall oil fatty acids may be safely used in food and...

  17. 21 CFR 172.862 - Oleic acid derived from tall oil fatty acids.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Oleic acid derived from tall oil fatty acids. 172... FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.862 Oleic acid derived from tall oil fatty acids. The food additive oleic acid derived from tall oil fatty acids may be safely used in food and...

  18. 21 CFR 172.862 - Oleic acid derived from tall oil fatty acids.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Oleic acid derived from tall oil fatty acids. 172... FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.862 Oleic acid derived from tall oil fatty acids. The food additive oleic acid derived from tall oil fatty acids may be safely used in food and...

  19. 40 CFR 721.10512 - Fatty acid maleic acid amides (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Fatty acid maleic acid amides (generic... Specific Chemical Substances § 721.10512 Fatty acid maleic acid amides (generic). (a) Chemical substance... fatty acid maleic acid amides (PMNs P-07-563 and P-07-564) are subject to reporting under this...

  20. 40 CFR 721.10512 - Fatty acid maleic acid amides (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Fatty acid maleic acid amides (generic... Specific Chemical Substances § 721.10512 Fatty acid maleic acid amides (generic). (a) Chemical substance... fatty acid maleic acid amides (PMNs P-07-563 and P-07-564) are subject to reporting under this...

  1. Fatty acids of Thespesia populnea: Mass spectrometry of picolinyl esters of cyclopropene fatty acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thespesia populnea belongs to the plant family of Malvaceae which contain cyclopropane and cyclopropene fatty acids. However, previous literature reports vary regarding the content of these compounds in Thespesia populnea seed oil. In this work, the content of malvalic acid (8,9-methylene-9-heptade...

  2. Fatty acid patterns in Chlamydomonas sp. as a marker for nutritional regimes and temperature under extremely acidic conditions.

    PubMed

    Poerschmann, J; Spijkerman, E; Langer, U

    2004-07-01

    Fatty acid profiles were used to characterize nutritional pathways in Chlamydomonas sp. isolated from an acidic mining lake (pH 2.7). Surprisingly, profiles of Chlamydomonas sp. grown in the lab under photoautotrophic, mixotrophic, and heterotrophic conditions at in situ deep strata lake water temperatures (8 degrees C) were very similar, polyunsaturated fatty acids including alpha-linolenic acid (18:3omega3) and 16:4omega3 along with palmitic acid (16:0) being most abundant. Therefore, heterotrophic growth of Chlamydomonas sp. at low temperatures can result in high concentrations of polyunsaturated fatty acids, as previously only described for some psychrophilic bacteria. By contrast, the cultivation of isolated Chlamydomonas sp. at 20 degrees C, reflecting surface water temperatures, provided fatty acid patterns characteristic of the nutrition strategy applied: the concentration of polyunsaturated fatty acids decreased when the growth pathway changed from photoautotrophic via mixotrophic to heterotrophic. Total fatty acid concentration also diminished in this order. Principal component analysis confirmed the significance of FA profiling to mirror nutritional pathways. Lake-water analysis revealed low concentrations of dissolved organic carbon, mainly consisting of polymeric fulvic acids that are unable to support heterotrophic growth of Chlamydomonas sp. Polymeric fulvic acids present in the deeper strata of the lake turned out to be formed in situ on the basis of organic monomers including reduced sulfur-containing ones, as revealed by thermochemolysis and pyrolysis. Growth of Chlamydomonas sp. in the deep chlorophyll maximum is therefore assumed to mainly result from photosynthesis, despite very low photon densities. Phytol-including metabolites proved to be significant biomarkers to indicate the nutritional pathway of Chlamydomonas sp. alpha, omega-Dicarboxylic acids-light-induced degradation products of unsaturated fatty acids-appeared to be good indicators

  3. Fatty acid transport and activation and the expression patterns of genes involved in fatty acid trafficking.

    PubMed

    Sandoval, Angel; Fraisl, Peter; Arias-Barrau, Elsa; Dirusso, Concetta C; Singer, Diane; Sealls, Whitney; Black, Paul N

    2008-09-15

    These studies defined the expression patterns of genes involved in fatty acid transport, activation and trafficking using quantitative PCR (qPCR) and established the kinetic constants of fatty acid transport in an effort to define whether vectorial acylation represents a common mechanism in different cell types (3T3-L1 fibroblasts and adipocytes, Caco-2 and HepG2 cells and three endothelial cell lines (b-END3, HAEC, and HMEC)). As expected, fatty acid transport protein (FATP)1 and long-chain acyl CoA synthetase (Acsl)1 were the predominant isoforms expressed in adipocytes consistent with their roles in the transport and activation of exogenous fatty acids destined for storage in the form of triglycerides. In cells involved in fatty acid processing including Caco-2 (intestinal-like) and HepG2 (liver-like), FATP2 was the predominant isoform. The patterns of Acsl expression were distinct between these two cell types with Acsl3 and Acsl5 being predominant in Caco-2 cells and Acsl4 in HepG2 cells. In the endothelial lines, FATP1 and FATP4 were the most highly expressed isoforms; the expression patterns for the different Acsl isoforms were highly variable between the different endothelial cell lines. The transport of the fluorescent long-chain fatty acid C(1)-BODIPY-C(12) in 3T3-L1 fibroblasts and 3T3-L1 adipocytes followed typical Michaelis-Menten kinetics; the apparent efficiency (k(cat)/K(T)) of this process increases over 2-fold (2.1 x 10(6)-4.5 x 10(6)s(-1)M(-1)) upon adipocyte differentiation. The V(max) values for fatty acid transport in Caco-2 and HepG2 cells were essentially the same, yet the efficiency was 55% higher in Caco-2 cells (2.3 x 10(6)s(-1)M(-1) versus 1.5 x 10(6)s(-1)M(-1)). The kinetic parameters for fatty acid transport in three endothelial cell types demonstrated they were the least efficient cell types for this process giving V(max) values that were nearly 4-fold lower than those defined form 3T3-L1 adipocytes, Caco-2 cells and HepG2 cells. The

  4. Fatty acid profiles of some Fabaceae seed oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fatty acid profiles of six seed oils of the Fabaceae (Leguminosae) family are reported and discussed. These are the seed oils of Centrosema pubescens, Clitoria ternatea, Crotalaria mucronata, Macroptilium lathyroides, Pachyrhizus erosus, and Senna alata. The most common fatty acid in the fatty a...

  5. 40 CFR 721.3627 - Branched synthetic fatty acid.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Branched synthetic fatty acid. 721... Substances § 721.3627 Branched synthetic fatty acid. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a branched synthetic fatty...

  6. 40 CFR 721.3627 - Branched synthetic fatty acid.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Branched synthetic fatty acid. 721... Substances § 721.3627 Branched synthetic fatty acid. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a branched synthetic fatty...

  7. 40 CFR 721.3627 - Branched synthetic fatty acid.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Branched synthetic fatty acid. 721... Substances § 721.3627 Branched synthetic fatty acid. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a branched synthetic fatty...

  8. Production of hydroxylated fatty acids in genetically modified plants

    DOEpatents

    Somerville, Chris; Broun, Pierre; van de Loo, Frank

    2001-01-01

    This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants.

  9. Dietary essential fatty acids change the fatty acid profile of rat neural mitochondria over time.

    PubMed

    Dyer, J R; Greenwood, C E

    1991-10-01

    This experiment examined the time course over which the amount of dietary essential fatty acids (EFA) affects brain mitochondrial fatty acids. Weanling rats were fed 20% (wt/wt) fat diets that contained either 4 or 15% (wt/wt of diet) EFA for 1, 2, 3 or 6 wk or a 10% EFA diet for 3 or 6 wk. The EFA ratio [18:2(n-6)/18:3(n-3)] of all diets was approximately 30. Fatty acid analysis of brain mitochondrial phosphatidylethanolamine, phosphatidylcholine and cardiolipin revealed that the largest dietary effect was on 18:2(n-6), which was 30% higher in rats fed the 15 vs. 4% EFA diets after 1 wk. This difference increased to twofold by 3 wk and was still twofold after 6 wk. These results demonstrate several facts: 1) the response of 18:2(n-6) in cardiolipin to dietary EFA is very fast and large, relative to changes in other quantitatively major fatty acids observed in weanling rats; 2) the 18:2(n-6) level in neural cardiolipin stabilizes after 3 wk of feeding at a level dependent upon the amount of dietary EFA; and 3) at least one neural fatty acid, 18:2(n-6), is very sensitive to amounts of dietary EFA that are well above the animal's EFA requirement. PMID:1765818

  10. Temperature Affects Fatty Acids In Methylococcus Capsulatus

    NASA Technical Reports Server (NTRS)

    Jahnke, Linda L.

    1993-01-01

    According to report, temperature of growth of thermotolerant, methane-oxidizing bacterium Methylococcus capsulatus (Bath) affects both proportion of monounsaturated fatty acids and cis/trans ratio of these acids in cell membrane. Because suboptimum growth temperature is potential stress factor, it may be possible to use such cis/trans ratios as indices of stresses upon methane-oxidizing microbial communities. Research in microbiology of methanotrophs increasing because of possible commercial exploitation of these organisms as biocatalysts or as sources of useful polymers; knowledge of effect of temperature on ability of methanotrophs to utilize methane useful in optimization of conditions of growth.

  11. Composition, assimilation and degradation of Phaeocystis globosa-derived fatty acids in the North Sea

    NASA Astrophysics Data System (ADS)

    Hamm, Christian E.; Rousseau, Veronique

    2003-12-01

    The fate of a Phaeocystis globosa bloom in the southern North Sea off Belgium, the Netherlands and Germany in May 1995 was investigated during a cruise with RV 'Belgica'. We used fatty acids as biomarkers to follow the fate of Phaeocystis-derived biomass of a Phaeocystis-dominated spring bloom. The bloom, in which up to >99% of the biomass was contributed by Phaeocystis, showed a fatty acid composition with a characteristically high abundance of polyunsaturated C 18-fatty acids, which increased in concentration with number of double bonds up to 18:5 (n-3), and high concentrations of 20:5 (n-3) and 22:6 (n-3). In contrast to most previous studies, fatty acid analysis of the mesozooplankton community (mainly calanoid copepods) and meroplankton ( Carcinus maenas megalope) indicated that P. globosa was a major component (ca. 70% and 50%, respectively) in the diet of these organisms. Massive accumulations of amorphous grey aggregates, in which Phaeocystis colonies were major components, were dominated by saturated fatty acids and contained only few of the polyunsaturated C 18-fatty acids. A hydrophobic surface slick that covered the water surface during the bloom showed very similar patterns. Foam patches contained few Phaeocystis-typical fatty acids, but increased amounts of diatom-typical compounds such as 16:1 (n-7) and 20:5 (n-3), and 38% fatty alcohols, indicating that wax esters dominated the lipid fraction in the foam with ca. 76% (w/w). The fatty acid compositions of surface sediment showed that no sedimentation of fresh Phaeocystis occurred during the study. The results indicate that Phaeocystis-derived organic matter degraded while floating or in suspension, and had not reached the sediment in substantial amounts.

  12. Engineered Production of Short Chain Fatty Acid in Escherichia coli Using Fatty Acid Synthesis Pathway

    PubMed Central

    Jawed, Kamran; Mattam, Anu Jose; Fatma, Zia; Wajid, Saima; Abdin, Malik Z.; Yazdani, Syed Shams

    2016-01-01

    Short-chain fatty acids (SCFAs), such as butyric acid, have a broad range of applications in chemical and fuel industries. Worldwide demand of sustainable fuels and chemicals has encouraged researchers for microbial synthesis of SCFAs. In this study we compared three thioesterases, i.e., TesAT from Anaerococcus tetradius, TesBF from Bryantella formatexigens and TesBT from Bacteroides thetaiotaomicron, for production of SCFAs in Escherichia coli utilizing native fatty acid synthesis (FASII) pathway and modulated the genetic and bioprocess parameters to improve its yield and productivity. E. coli strain expressing tesBT gene yielded maximum butyric acid titer at 1.46 g L-1, followed by tesBF at 0.85 g L-1 and tesAT at 0.12 g L-1. The titer of butyric acid varied significantly depending upon the plasmid copy number and strain genotype. The modulation of genetic factors that are known to influence long chain fatty acid production, such as deletion of the fadD and fadE that initiates the fatty acid degradation cycle and overexpression of fadR that is a global transcriptional activator of fatty acid biosynthesis and repressor of degradation cycle, did not improve the butyric acid titer significantly. Use of chemical inhibitor cerulenin, which restricts the fatty acid elongation cycle, increased the butyric acid titer by 1.7-fold in case of TesBF, while it had adverse impact in case of TesBT. In vitro enzyme assay indicated that cerulenin also inhibited short chain specific thioesterase, though inhibitory concentration varied according to the type of thioesterase used. Further process optimization followed by fed-batch cultivation under phosphorous limited condition led to production of 14.3 g L-1 butyric acid and 17.5 g L-1 total free fatty acid at 28% of theoretical yield. This study expands our understanding of SCFAs production in E. coli through FASII pathway and highlights role of genetic and process optimization to enhance the desired product. PMID:27466817

  13. Engineered Production of Short Chain Fatty Acid in Escherichia coli Using Fatty Acid Synthesis Pathway.

    PubMed

    Jawed, Kamran; Mattam, Anu Jose; Fatma, Zia; Wajid, Saima; Abdin, Malik Z; Yazdani, Syed Shams

    2016-01-01

    Short-chain fatty acids (SCFAs), such as butyric acid, have a broad range of applications in chemical and fuel industries. Worldwide demand of sustainable fuels and chemicals has encouraged researchers for microbial synthesis of SCFAs. In this study we compared three thioesterases, i.e., TesAT from Anaerococcus tetradius, TesBF from Bryantella formatexigens and TesBT from Bacteroides thetaiotaomicron, for production of SCFAs in Escherichia coli utilizing native fatty acid synthesis (FASII) pathway and modulated the genetic and bioprocess parameters to improve its yield and productivity. E. coli strain expressing tesBT gene yielded maximum butyric acid titer at 1.46 g L-1, followed by tesBF at 0.85 g L-1 and tesAT at 0.12 g L-1. The titer of butyric acid varied significantly depending upon the plasmid copy number and strain genotype. The modulation of genetic factors that are known to influence long chain fatty acid production, such as deletion of the fadD and fadE that initiates the fatty acid degradation cycle and overexpression of fadR that is a global transcriptional activator of fatty acid biosynthesis and repressor of degradation cycle, did not improve the butyric acid titer significantly. Use of chemical inhibitor cerulenin, which restricts the fatty acid elongation cycle, increased the butyric acid titer by 1.7-fold in case of TesBF, while it had adverse impact in case of TesBT. In vitro enzyme assay indicated that cerulenin also inhibited short chain specific thioesterase, though inhibitory concentration varied according to the type of thioesterase used. Further process optimization followed by fed-batch cultivation under phosphorous limited condition led to production of 14.3 g L-1 butyric acid and 17.5 g L-1 total free fatty acid at 28% of theoretical yield. This study expands our understanding of SCFAs production in E. coli through FASII pathway and highlights role of genetic and process optimization to enhance the desired product. PMID:27466817

  14. Dietary fatty acids affect semen quality: a review.

    PubMed

    Esmaeili, V; Shahverdi, A H; Moghadasian, M H; Alizadeh, A R

    2015-05-01

    Mammalian spermatozoa are characterized by a high proportion of polyunsaturated fatty acids (PUFA) which play a crucial role in fertilization. This review focuses on analysis of sperm fatty acid profiles and the effects of omega-3, saturated and trans dietary and sperm fatty acids on sperm parameters. Two major points have been pivotal points of investigation in the field of sperm fatty acid profiles: first, the comparison between fatty acid profiles of fertile and infertile men and second, the effect of dietary fatty acids on sperm fatty acid profiles as well as sperm quality and quantity. Docosahexaenoic acid (DHA, C22:6n-3), and palmitic acid (C16:0) are the predominant PUFA and saturated fatty acids, respectively, in human sperm cells. Higher levels of DHA are concentrated on the sperm's head or tail varying among different species. However, the human sperm head contains a higher concentration of DHA. Dietary fatty acids influence on sperm fatty acid profiles and it seems that sperm fatty acid profiles are most sensitive to dietary omega-3 PUFA. Although improvements in sperm parameters are a response to omega-3 sources after more than 4 weeks of supplementation in the male diet, time-dependent and dose-dependent responses may explain the failure in some experiments. In human spermatozoa, elevated saturated or trans fatty acid concentration and a low DHA level is a concern. The regulations of the sperm fatty acid mean melting point as well as expression regulation of peroxisome proliferator-activated receptor gamma (PPARG) alongside with spermatozoon assembly, anti-apoptosis effects, eicosanoid formation, and hormone activity are the putative key factors that induce a response by inclusion of omega-3 PUFA. PMID:25951427

  15. Plasma long-chain free fatty acids predict mammalian longevity

    PubMed Central

    Jové, Mariona; Naudí, Alba; Aledo, Juan Carlos; Cabré, Rosanna; Ayala, Victoria; Portero-Otin, Manuel; Barja, Gustavo; Pamplona, Reinald

    2013-01-01

    Membrane lipid composition is an important correlate of the rate of aging of animals and, therefore, the determination of their longevity. In the present work, the use of high-throughput technologies allowed us to determine the plasma lipidomic profile of 11 mammalian species ranging in maximum longevity from 3.5 to 120 years. The non-targeted approach revealed a specie-specific lipidomic profile that accurately predicts the animal longevity. The regression analysis between lipid species and longevity demonstrated that the longer the longevity of a species, the lower is its plasma long-chain free fatty acid (LC-FFA) concentrations, peroxidizability index, and lipid peroxidation-derived products content. The inverse association between longevity and LC-FFA persisted after correction for body mass and phylogenetic interdependence. These results indicate that the lipidomic signature is an optimized feature associated with animal longevity, emerging LC-FFA as a potential biomarker of longevity. PMID:24284984

  16. Use of tocopherol with polyunsaturated fatty acids in poultry feeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tocopherol can inhibit the oxidative degradation of polyunsaturated fatty acids by stabilizing lipid radicals that form at elevated temperatures or pro-oxidant conditions. This is particularly relevant for feeds formulated with fatty acids such as docosahexaenoic acid (DHA) or linolenic acid (ALA) T...

  17. Reduction of hydrogen peroxide stress derived from fatty acid beta-oxidation improves fatty acid utilization in Escherichia coli.

    PubMed

    Doi, Hidetaka; Hoshino, Yasushi; Nakase, Kentaro; Usuda, Yoshihiro

    2014-01-01

    Fatty acids are a promising raw material for substance production because of their highly reduced and anhydrous nature, which can provide higher fermentation yields than sugars. However, they are insoluble in water and are poorly utilized by microbes in industrial fermentation production. We used fatty acids as raw materials for L-lysine fermentation by emulsification and improved the limited fatty acid-utilization ability of Escherichia coli. We obtained a fatty acid-utilizing mutant strain by laboratory evolution and demonstrated that it expressed lower levels of an oxidative-stress marker than wild type. The intracellular hydrogen peroxide (H₂O₂) concentration of a fatty acid-utilizing wild-type E. coli strain was higher than that of a glucose-utilizing wild-type E. coli strain. The novel mutation rpsA(D210Y) identified in our fatty acid-utilizing mutant strain enabled us to promote cell growth, fatty-acid utilization, and L-lysine production from fatty acid. Introduction of this rpsA(D210Y) mutation into a wild-type strain resulted in lower H₂O₂ concentrations. The overexpression of superoxide dismutase (sodA) increased intracellular H₂O₂ concentrations and inhibited E. coli fatty-acid utilization, whereas overexpression of an oxidative-stress regulator (oxyS) decreased intracellular H₂O₂ concentrations and promoted E. coli fatty acid utilization and L-lysine production. Addition of the reactive oxygen species (ROS) scavenger thiourea promoted L-lysine production from fatty acids and decreased intracellular H₂O₂ concentrations. Among the ROS generated by fatty-acid β-oxidation, H₂O₂ critically affected E. coli growth and L-lysine production. This indicates that the regression of ROS stress promotes fatty acid utilization, which is beneficial for fatty acids used as raw materials in industrial production. PMID:24169950

  18. Enrichment of decanoic acid in cuphea fatty acids via distillation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The introduction of a new crop often requires the development of new products and purification techniques of either the oil or fatty acids. Most new crops enter the cosmetic market first due to their high rates of returns. However, the cosmetic market often demands high purity and colorless materi...

  19. Analysis of fatty acid content and composition in microalgae.

    PubMed

    Breuer, Guido; Evers, Wendy A C; de Vree, Jeroen H; Kleinegris, Dorinde M M; Martens, Dirk E; Wijffels, René H; Lamers, Packo P

    2013-01-01

    A method to determine the content and composition of total fatty acids present in microalgae is described. Fatty acids are a major constituent of microalgal biomass. These fatty acids can be present in different acyl-lipid classes. Especially the fatty acids present in triacylglycerol (TAG) are of commercial interest, because they can be used for production of transportation fuels, bulk chemicals, nutraceuticals (ω-3 fatty acids), and food commodities. To develop commercial applications, reliable analytical methods for quantification of fatty acid content and composition are needed. Microalgae are single cells surrounded by a rigid cell wall. A fatty acid analysis method should provide sufficient cell disruption to liberate all acyl lipids and the extraction procedure used should be able to extract all acyl lipid classes. With the method presented here all fatty acids present in microalgae can be accurately and reproducibly identified and quantified using small amounts of sample (5 mg) independent of their chain length, degree of unsaturation, or the lipid class they are part of. This method does not provide information about the relative abundance of different lipid classes, but can be extended to separate lipid classes from each other. The method is based on a sequence of mechanical cell disruption, solvent based lipid extraction, transesterification of fatty acids to fatty acid methyl esters (FAMEs), and quantification and identification of FAMEs using gas chromatography (GC-FID). A TAG internal standard (tripentadecanoin) is added prior to the analytical procedure to correct for losses during extraction and incomplete transesterification. PMID:24121679

  20. Analysis of Fatty Acid Content and Composition in Microalgae

    PubMed Central

    Breuer, Guido; Evers, Wendy A. C.; de Vree, Jeroen H.; Kleinegris, Dorinde M. M.; Martens, Dirk E.; Wijffels, René H.; Lamers, Packo P.

    2013-01-01

    A method to determine the content and composition of total fatty acids present in microalgae is described. Fatty acids are a major constituent of microalgal biomass. These fatty acids can be present in different acyl-lipid classes. Especially the fatty acids present in triacylglycerol (TAG) are of commercial interest, because they can be used for production of transportation fuels, bulk chemicals, nutraceuticals (ω-3 fatty acids), and food commodities. To develop commercial applications, reliable analytical methods for quantification of fatty acid content and composition are needed. Microalgae are single cells surrounded by a rigid cell wall. A fatty acid analysis method should provide sufficient cell disruption to liberate all acyl lipids and the extraction procedure used should be able to extract all acyl lipid classes. With the method presented here all fatty acids present in microalgae can be accurately and reproducibly identified and quantified using small amounts of sample (5 mg) independent of their chain length, degree of unsaturation, or the lipid class they are part of. This method does not provide information about the relative abundance of different lipid classes, but can be extended to separate lipid classes from each other. The method is based on a sequence of mechanical cell disruption, solvent based lipid extraction, transesterification of fatty acids to fatty acid methyl esters (FAMEs), and quantification and identification of FAMEs using gas chromatography (GC-FID). A TAG internal standard (tripentadecanoin) is added prior to the analytical procedure to correct for losses during extraction and incomplete transesterification. PMID:24121679

  1. Fatty acid alcohol ester-synthesizing activity of lipoprotein lipase.

    PubMed

    Tsujita, T; Sumiyoshi, M; Okuda, H

    1999-12-01

    The fatty acid alcohol ester-synthesizing activity of lipoprotein lipase (LPL) was characterized using bovine milk LPL. Synthesizing activities were determined in an aqueous medium using oleic acid or trioleylglycerol as the acyl donor and equimolar amounts of long-chain alcohols as the acyl acceptor. When oleic acid and hexadecanol emulsified with gum arabic were incubated with LPL, palmityl oleate was synthesized, in a time- and dose-dependent manner. Apo-very low density lipoprotein (apoVLDL) stimulated LPL-catalyzed palmityl oleate synthesis. The apparent equilibrium ratio of fatty acid alcohol ester/oleic acid was estimated using a high concentration of LPL and a long (20 h) incubation period. The equilibrium ratio was affected by the incubation pH and the alcohol chain length. When the incubation pH was below pH 7.0 and long chain fatty acyl alcohols were used as substrates, the fatty acid alcohol ester/free fatty acid equilibrium ratio favored ester formation, with an apparent equilibrium ratio of fatty acid alcohol ester/fatty acid of about 0.9/0.1. The equilibrium ratio decreased sharply at alkaline pH (above pH 8.0). The ratio also decreased when fatty alcohols with acyl chains shorter than dodecanol were used. When a trioleoylglycerol/fatty acyl alcohol emulsion was incubated with LPL, fatty acid alcohol esters were synthesized in a dose- and time-dependent fashion. Fatty acid alcohol esters were easily synthesized from trioleoylglycerol when fatty alcohols with acyl chains longer than dodecanol were used, but synthesis was decreased with fatty alcohols with acyl chain lengths shorter than decanol, and little synthesizing activity was detected with shorter-chain fatty alcohols such as butanol or ethanol. PMID:10578059

  2. Four Trypanosoma brucei fatty acyl-CoA synthetases: fatty acid specificity of the recombinant proteins.

    PubMed Central

    Jiang, D W; Englund, P T

    2001-01-01

    As part of our investigation of fatty acid metabolism in Trypanosoma brucei, we have expressed four acyl-CoA synthetase (TbACS) genes in Esherichia coli. The recombinant proteins, with His-tags on their C-termini, were purified to near homogeneity using nickel-chelate affinity chromatography. Although these enzymes are highly homologous, they have distinct specificities for fatty acid chain length. TbACS1 prefers saturated fatty acids in the range C(11:0) to C(14:0) and TbACS2 prefers shorter fatty acids, mainly C(10:0). TbACS3 and 4, which have 95% sequence identity, have similar specificities, favouring fatty acids between C(14:0) and C(17:0). In addition, TbACS1, 3 and 4 function well with a variety of unsaturated fatty acids. PMID:11535136

  3. Contribution of allochthonous organic carbon across the Serrano River Basin and the adjacent fjord system in Southern Chilean Patagonia: Insights from the combined use of stable isotope and fatty acid biomarkers

    NASA Astrophysics Data System (ADS)

    Lafon, Alejandra; Silva, Nelson; Vargas, Cristian A.

    2014-12-01

    Chilean Patagonia is characterized by an irregular geography involving many islands, peninsulas, channels, sounds and fjords, that prevent direct interaction between oceanic water masses and freshwater river discharges at the head of the continental fjords. In this paper, we evaluate the potential sources and composition of organic matter along the Serrano River basin and the adjacent channels and fjords in Southern Chilean Patagonia (51-52°S), as well as their importance for marine planktonic organisms. In spring of 2009, evidence of C:N ratio, δ13C, δ15N and fatty acids composition in particulate organic carbon (POC), surface sediment, soil, plankton, and vegetal tissue, as well some physical and chemical characteristics (i.e. salinity, dissolved oxygen, NO3-, NH4+, PO4-3, Si(OH)4), were measured in samples collected during the CIMAR 14 Fiordos oceanographic cruise. Significant differences in δ13C-POC were found between the terrestrial and marine environments but not within fjord stations. Along the fjord region, the high C:N ratio and depleted δ13C values in POC samples suggest that particulate organic matter (POM) in the upper level of the water column (0-10 m depth) is supported by different sources. Terrestrial organic carbon exported by rivers may constitute a significant subsidy, up to 70% based on two end-member mixing model, to the fjord ecosystem. Furthermore, terrestrial carbon might account for a significant percentage of the zooplankton body carbon, estimated both by using isotopic (∼24-61%) and fatty acid analysis (∼14-61%). Isotopic analyses in marine sediment samples suggest that POC seems to be decoupled from terrestrial-influenced surface sources at the fjord stations, and the contribution of surrounding vegetation seemingly unimportant for carbon export to the benthos. Local hydrographic and geomorphological characteristics might determine the presence of oceanographic frontal zones, which in turn might explain differences in carbon

  4. Free fatty-acid uptake by isolated rat hepatocytes.

    PubMed

    Renaud, G; Bouma, M E; Foliot, A; Infante, R

    1985-11-01

    In isolated rat hepatocytes, the rate of palmitic acid binding and uptake is directly related to the concentration of free fatty acid (FFA) in the medium. After their entry into the cell, FFA are immediately incorporated into cellular phospholipids and triglycerides and no accumulation of free fatty acids can be demonstrated inside the cell. The rate of free fatty-acid uptake remains unchanged after incubation in a 2 mM KCN containing medium, indicating that in the range of fatty-acid concentrations used in this study, this phenomenon does not require energy. PMID:2421669

  5. Abundance and distribution of fatty acids in sediments of the South Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Huang, Xin; Zeng, Zhigang; Chen, Shuai; Yin, Xuebo; Wang, Xiaoyuan; Ma, Yao; Yang, Baoju; Rong, Kunbo; Shu, Yunchao; Jiang, Tao

    2015-04-01

    Sediment samples obtained from the South Mid-Atlantic Ridge were studies by gas chromatography-mass spectrometer (GC-MS) for the abundance and distributions of total fatty acids (TFAs). Approximately 34 fatty acids were identified, with the chain-lengths ranging from C12 to C30. The total concentrations of TFAs (ΣTFA) ranged from 7.15 to 30.09 μg g-1 dry sediment, and ΣTFA was weakly correlated with bitumen content ( R 2 = 0.69). The ΣTFA of samples around hydrothermal areas were significantly higher than that of samples away from hydrothermal areas, indicating intense primary production and large biomass in the hydrothermal areas, and suggesting a close relationship between hydrothermal activity and ΣTFA of samples. The characteristics of the TFA composition in the present study are rich in monounsaturated fatty acids and lacking in polyunsaturated fatty acids, and the ratios between the concentrations of monounsaturated fatty acids and ΣTFAs in samples close to the hydrothermal areas, are about 0.8, but for samples far from the hydrothermal areas, they are only about 0.5. Several fatty acids ( e.g., a/iC15:0 and C16:1ω7), which are signature biomarkers for sulfur-metabolizing bacteria, show the same distribution trend as ΣTFA of samples, further highlighting the close relationship between fatty acid content and hydrothermal activity and/or hydrothermal communities. The metabolic activities of hydrothermal communities, especially those of microorganisms, are likely the main source of fatty acids in samples.

  6. 21 CFR 172.854 - Polyglycerol esters of fatty acids.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... acids are used as a cloud inhibitor in vegetable and salad oils when use is not precluded by standards... to perform its cloud-inhibiting effect. Oleic acid derived from tall oil fatty acids conforming...

  7. 21 CFR 172.854 - Polyglycerol esters of fatty acids.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... acids are used as a cloud inhibitor in vegetable and salad oils when use is not precluded by standards... to perform its cloud-inhibiting effect. Oleic acid derived from tall oil fatty acids conforming...

  8. 21 CFR 172.854 - Polyglycerol esters of fatty acids.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... acids are used as a cloud inhibitor in vegetable and salad oils when use is not precluded by standards... to perform its cloud-inhibiting effect. Oleic acid derived from tall oil fatty acids conforming...

  9. 21 CFR 172.854 - Polyglycerol esters of fatty acids.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... acids are used as a cloud inhibitor in vegetable and salad oils when use is not precluded by standards... to perform its cloud-inhibiting effect. Oleic acid derived from tall oil fatty acids conforming...

  10. Identification of Characteristic Fatty Acids to Quantify Triacylglycerols in Microalgae

    PubMed Central

    Shen, Pei-Li; Wang, Hai-Tao; Pan, Yan-Fei; Meng, Ying-Ying; Wu, Pei-Chun; Xue, Song

    2016-01-01

    The fatty acid profiles of lipids from microalgae are unique. Polyunsaturated fatty acids are generally enriched in polar lipids, whereas saturated and monounsaturated fatty acids constitute the majority of fatty acids in triacylglycerols (TAG). Each species has characteristic fatty acids, and their content is positively or negatively correlated with TAGs. The marine oleaginous diatom Phaeodactylum tricornutum was used as the paradigm to determine the quantitative relationship between TAG and characteristic fatty acid content. Fatty acid profiles and TAG content of Phaeodactylum tricornutum were determined in a time course. C16:0/C16:1 and eicosapentaenoic acid (EPA, C20:5n3) were identified as characteristic fatty acids in TAGs and polar lipids, respectively. The percentage of those characteristic fatty acids in total fatty acids had a significant linear relationship with TAG content, and thus, the correlation coefficient presenting r2 were 0.96, 0.94, and 0.97, respectively. The fatty acid-based method for TAG quantification could also be applied to other microalgae such as Nannochloropsis oceanica in which the r2 of C16:0 and EPA were 0.94 and 0.97, respectively, and in Chlorella pyrenoidosa r2-values for C18:1 and C18:3 with TAG content were 0.91 and 0.99, repectively. This characteristic fatty acid-based method provided a distinct way to quantify TAGs in microalgae, by which TAGs could be measured precisely by immediate transesterification from wet biomass rather than using conventional methods. This procedure simplified the operation and required smaller samples than conventional methods. PMID:26941747

  11. Identification of Characteristic Fatty Acids to Quantify Triacylglycerols in Microalgae.

    PubMed

    Shen, Pei-Li; Wang, Hai-Tao; Pan, Yan-Fei; Meng, Ying-Ying; Wu, Pei-Chun; Xue, Song

    2016-01-01

    The fatty acid profiles of lipids from microalgae are unique. Polyunsaturated fatty acids are generally enriched in polar lipids, whereas saturated and monounsaturated fatty acids constitute the majority of fatty acids in triacylglycerols (TAG). Each species has characteristic fatty acids, and their content is positively or negatively correlated with TAGs. The marine oleaginous diatom Phaeodactylum tricornutum was used as the paradigm to determine the quantitative relationship between TAG and characteristic fatty acid content. Fatty acid profiles and TAG content of Phaeodactylum tricornutum were determined in a time course. C16:0/C16:1 and eicosapentaenoic acid (EPA, C20:5n3) were identified as characteristic fatty acids in TAGs and polar lipids, respectively. The percentage of those characteristic fatty acids in total fatty acids had a significant linear relationship with TAG content, and thus, the correlation coefficient presenting r (2) were 0.96, 0.94, and 0.97, respectively. The fatty acid-based method for TAG quantification could also be applied to other microalgae such as Nannochloropsis oceanica in which the r (2) of C16:0 and EPA were 0.94 and 0.97, respectively, and in Chlorella pyrenoidosa r (2)-values for C18:1 and C18:3 with TAG content were 0.91 and 0.99, repectively. This characteristic fatty acid-based method provided a distinct way to quantify TAGs in microalgae, by which TAGs could be measured precisely by immediate transesterification from wet biomass rather than using conventional methods. This procedure simplified the operation and required smaller samples than conventional methods. PMID:26941747

  12. Enhancement of neutrophil-mediated killing of Plasmodium falciparum asexual blood forms by fatty acids: importance of fatty acid structure.

    PubMed Central

    Kumaratilake, L M; Ferrante, A; Robinson, B S; Jaeger, T; Poulos, A

    1997-01-01

    Effects of fatty acids on human neutrophil-mediated killing of Plasmodium falciparum asexual blood forms were investigated by using a quantitative radiometric assay. The results showed that the antiparasitic activity of neutrophils can be greatly increased (>threefold) by short-term treatment with fatty acids with 20 to 24 carbon atoms and at least three double bonds. In particular, the n-3 polyenoic fatty acids, eicosapentaenoic and docosahexaenoic acids, and the n-6 fatty acid, arachidonic acid, significantly enhanced neutrophil antiparasitic activity. This effect was >1.5-fold higher than that induced by an optical concentration of the known agonist cytokine tumor necrosis factor alpha (TNF-alpha). At suboptimal concentrations, the combination of arachidonic acid and TNF-alpha caused a synergistic increase in neutrophil-mediated parasite killing. The fatty acid-induced effect was independent of the availability of serum opsonins but dependent on the structure of the fatty acids. The length of the carbon chain, degree of unsaturation, and availability of a free carboxyl group were important determinants of fatty acid activity. The fatty acids which increased neutrophil-mediated killing primed the enhanced superoxide radical generation of neutrophils in response to P. falciparum as detected by chemiluminescence. Scavengers of oxygen radicals significantly reduced the fatty acid-enhanced parasite killing, but cyclooxygenase and lipoxygenase inhibitors had no effect. These findings have identified a new class of immunoenhancers that could be exploited to increase resistance against Plasmodium species. PMID:9317021

  13. Fatty acid and sterol composition of three phytomonas species.

    PubMed

    Nakamura, C V; Waldow, L; Pelegrinello, S R; Ueda-Nakamura, T; Filho, B A; Filho, B P

    1999-01-01

    Fatty acid and sterol analysis were performed on Phytomonas serpens and Phytomonas sp. grown in chemically defined and complex medium, and P. françai cultivated in complex medium. The three species of the genus Phytomonas had qualitatively identical fatty acid patterns. Oleic, linoleic, and linolenic were the major unsaturated fatty acids. Miristic and stearic were the major saturated fatty acids. Ergosterol was the only sterol isolated from Phytmonas sp. and P. serpens grown in a sterol-free medium, indicating that it was synthesized de novo. When P. françai that does not grow in defined medium was cultivated in a complex medium, cholesterol was the only sterol detected. The fatty acids and sterol isolated from Phytomonas sp. and P. serpens grown in a chemically defined lipid-free medium indicated that they were able to biosynthesize fatty acids and ergosterol from acetate or from acetate precursors such as glucose or threonine. PMID:10446013

  14. Metabolism of fatty acids in rat brain in microsomal membranes

    SciTech Connect

    Aeberhard, E.E.; Gan-Elepano, M.; Mead, J.F.

    1980-01-01

    Using a technique in which substrate fatty acids are incorporated into microsomal membranes followd by comparison of their rates of desaturation or elongation with those of exogenous added fatty acids it has been found that the desaturation rate is more rapid for the membrane-bound substrate than for the added fatty acid. Moreover, the product of the membrane-bound substrate is incorporated into membrane phospholipid whereas the product of the exogenous substrate is found in di- and triacyl glycerols and in free fatty acids as well. These and other findings point to a normal sequence of reaction of membrane liqids with membrane-bound substrates involving transfer of fatty acid from phospholipid to the coupled enzyme systems without ready equilibration with the free fatty acid pool.

  15. Effect of fatty acids on energy coupling processes in mitochondria.

    PubMed

    Wojtczak, L; Schönfeld, P

    1993-11-01

    Long-chain fatty acids are natural uncouplers of oxidative phosphorylation in mitochondria. The protonophoric mechanism of this action is due to transbilayer movement of undissociated fatty acid in one direction and the passage of its anion in the opposite direction. The transfer of the dissociated form of fatty acid can be, at least in some kinds of mitochondrion, facilitated by adenine nucleotide translocase. Apart from dissipating the electrochemical proton gradient, long-chain fatty acids decrease the activity of the respiratory chain by mechanism(s) not fully understood. In intact cells and tissues fatty acids operate mostly as excellent respiratory substrates, providing electrons to the respiratory chain. This function masks their potential uncoupling effect which becomes apparent only under special physiological or pathological conditions characterized by unusual fatty acid accumulation. Short- and medium-chain fatty acids do not have protonophoric properties. Nevertheless, they contribute to energy dissipation because of slow intramitochondrial hydrolysis of their activation products, acyl-AMP and acyl-CoA. Long-chain fatty acids increase permeability of mitochondrial membranes to alkali metal cations. This is due to their ionophoric mechanism of action. Regulatory function of fatty acids with respect to specific cation channels has been postulated for the plasma membrane of muscle cells, but not demonstrated in mitochondria. Under cold stress, cold acclimation and arousal from hibernation the uncoupling effect of fatty acids may contribute to increased thermogenesis, especially in the muscle tissue. In brown adipose tissue, the special thermogenic organ of mammals, long-chain fatty acids promote operation of the unique natural uncoupling protein, thermogenin. As anionic amphiphiles, long-chain fatty acids increase the negative surface charge of biomembranes, thus interfering in their enzymic and transporting functions. PMID:8399375

  16. Production of Lipase and Oxygenated Fatty Acids from Vegetable Oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetable oils such as soybean oil and corn oil are cheap raw materials. Various value-added oxygenated fatty acids have been produced from unsaturated fatty acids such as oleic and linoleic acid by biotransformation. Lipase from the non-pathogenic yeast Candida cylindracea is another important va...

  17. 21 CFR 573.914 - Salts of volatile fatty acids.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Salts of volatile fatty acids. 573.914 Section 573... Food Additive Listing § 573.914 Salts of volatile fatty acids. (a) Identity. The food additive is a blend containing the ammonium or calcium salt of isobutyric acid and the ammonium or calcium salts of...

  18. 21 CFR 573.914 - Salts of volatile fatty acids.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Salts of volatile fatty acids. 573.914 Section 573... Food Additive Listing § 573.914 Salts of volatile fatty acids. (a) Identity. The food additive is a blend containing the ammonium or calcium salt of isobutyric acid and the ammonium or calcium salts of...

  19. [Fatty acid and lipid peroxidation in human atherosclerosis].

    PubMed

    Loeper, J; Goy, J; Emerit, J; Rozensztajn, L; Jeny, C; Bedu, O

    1983-06-01

    Plasma fatty acids and lipid peroxidation were studied in human atherosclerosis. Analysis of fatty acids in 16 controls and 32 hyperlipidemic patients showed, in the latter, a decrease in saturated fatty acids, especially palmitic and stearic acids, and an increase in unsaturated fatty acids, especially arachidonic acid. Compared to hyperlipidemic patients without arterial injury, patients with arterial injury exhibit a significant increase in malonaldehyde (MDA). In the former, MDA concentrations are significantly increased compared to controls. Therefore, peroxidation of unsaturated fatty acids may have a deleterious effect on arteries in atheroma, through the release of toxic endoperoxydes and the metabolization of arachidonic acid into thromboxane, which is a platelet aggregator. Lipid peroxidation can also be demonstrated in other diseases: we found very high MDA concentration in 11 alcoholic patients (alcoholic hepatitis, cirrhosis) and 6 patients with inflammatory conditions such as Crohn disease. PMID:6308785

  20. Genotypic variation in fatty acid content of blackcurrant seeds.

    PubMed

    Ruiz del Castillo, M L; Dobson, G; Brennan, R; Gordon, S

    2002-01-16

    The fatty acid composition and total fatty acid content of seeds from 36 blackcurrant genotypes developed at the Scottish Crop Research Institute were examined. A rapid small-scale procedure, involving homogenization of seeds in toluene followed by sodium methoxide transesterification and gas chromatography, was used. There was considerable variation between genotypes. The gamma-linolenic acid content generally varied from 11 to 19% of the total fatty acids, but three genotypes had higher values of 22-24%, levels previously not reported for blackcurrant seed and similar to those for borage seed. Other nutritionally important fatty acids, stearidonic acid and alpha-linolenic acid, varied from 2 to 4% and 10-19%, respectively. The mean total fatty acid contents ranged from 14 to 23% of the seed, but repeatability was poor. The results are discussed. Blackcurrant seeds are mainly byproducts from juice production, and the study shows the potential for developing blackcurrant genotypes with optimal added value. PMID:11782203

  1. Echinococcus granulosus fatty acid binding proteins subcellular localization.

    PubMed

    Alvite, Gabriela; Esteves, Adriana

    2016-05-01

    Two fatty acid binding proteins, EgFABP1 and EgFABP2, were isolated from the parasitic platyhelminth Echinococcus granulosus. These proteins bind fatty acids and have particular relevance in flatworms since de novo fatty acids synthesis is absent. Therefore platyhelminthes depend on the capture and intracellular distribution of host's lipids and fatty acid binding proteins could participate in lipid distribution. To elucidate EgFABP's roles, we investigated their intracellular distribution in the larval stage by a proteomic approach. Our results demonstrated the presence of EgFABP1 isoforms in cytosolic, nuclear, mitochondrial and microsomal fractions, suggesting that these molecules could be involved in several cellular processes. PMID:26873273

  2. Quantitation of myocardial fatty acid metabolism using PET

    SciTech Connect

    Bergmann, S.R.; Weinheimer, C.J.; Markham, J.; Herrero, P.

    1996-10-01

    Abnormalities of fatty acid metabolism in the heart presage contractile dysfunction and arrhythmias. This study was performed to determine whether myocardial fatty acid metabolism could be quantified noninvasively using PET and 1-{sup 11}C-palmitate. Anesthetized dogs were studied during control conditions; during administration of dobutamine; after oxfenicine; and during infusion of glucose. Dynamic PET data after administration of 1-{sup 11}C-palmitate were fitted to a four-compartment mathematical model. Modeled rates of palmitate utilization correlated closely with directly measured myocardial palmitate and total long-chain fatty acid utilization (r = 0.93 and 0.96, respectively, p < 0.001 for each) over a wide range of arterial fatty acid levels and altered patterns of myocardial substrate use (fatty acid extraction fraction ranging from 1% to 56%, glucose extraction fraction from 1% to 16% and myocardial fatty acid utilization from 1 to 484 nmole/g/min). The percent of fatty acid undergoing oxidation could also be measured. The results demonstrate the ability to quantify myocardial fatty acid utilization with PET. The approach is readily applicable for the determination of fatty acid metabolism noninvasively in patients. 37 refs., 5 figs., 4 tabs.

  3. Long-chain polyunsaturated fatty acids stimulate cellular fatty acid uptake in human placental choriocarcinoma (BeWo) cells.

    PubMed

    Johnsen, G M; Weedon-Fekjaer, M S; Tobin, K A R; Staff, A C; Duttaroy, A K

    2009-12-01

    Supplementation of long-chain polyunsaturated fatty acids (LCPUFAs) is advocated during pregnancy in some countries although very little information is available on their effects on placental ability to take up these fatty acids for fetal supply to which the fetal growth and development are critically dependent. To identify the roles of LCPUFAs on placental fatty acid transport function, we examined the effects of LCPUFAs on the uptake of fatty acids and expression of fatty acid transport/metabolic genes using placental trophoblast cells (BeWo). Following 24 h incubation of these cells with 100 microM of LCPUFAs (arachidonic acid, 20:4n-6, eicosapentaenoic acid, 20:5n-3, or docosahexaenoic acid, 22:6n-3), the cellular uptake of [(14)C] fatty acids was increased by 20-50%, and accumulated fatty acids were preferentially incorporated into phospholipid fractions. Oleic acid (OA, 18:1n-9), on the other hand, could not stimulate fatty acid uptake. LCPUFAs and OA increased the gene expression of ADRP whilst decreased the expression of ASCL3, ACSL4, ACSL6, LPIN1, and FABP3 in these cells. However, LCPUFAs but not OA increased expression of ACSL1 and ACSL5. Since acyl-CoA synthetases are involved in cellular uptake of fatty acids via activation for their channelling to lipid metabolism and/or for storage, the increased expression of ACSL1 and ACLS5 by LCPUFAs may be responsible for the increased fatty acid uptake. These findings demonstrate that LCPUFA may function as an important regulator of general fatty acid uptake in trophoblast cells and may thus have impact on fetal growth and development. PMID:19880178

  4. Essential Fatty Acids as Transdermal Penetration Enhancers.

    PubMed

    van Zyl, Lindi; du Preez, Jan; Gerber, Minja; du Plessis, Jeanetta; Viljoen, Joe

    2016-01-01

    The aim of this study was to investigate the effect of different penetration enhancers, containing essential fatty acids (EFAs), on the transdermal delivery of flurbiprofen. Evening primrose oil (EPO), vitamin F, and Pheroid technology all contain fatty acids and were compared using a cream-based formulation. This selection was to ascertain whether EFAs solely, or EFAs in a Pheroid delivery system, would have a significant increase in the transdermal delivery of a compound. Membrane release studies were performed, and the results indicated the following rank order for flurbiprofen release from the different formulations: vitamin F > control > EPO > Pheroid. Topical skin delivery results indicated that flurbiprofen was present in the stratum corneum-epidermis and the epidermis-dermis. The average percentage flurbiprofen diffused to the receptor phase (representing human blood) indicated that the EPO formulation showed the highest average percentage diffused. The Pheroid formulation delivered the lowest concentration with a statistical significant difference (p < 0.05) compared with the control formulation (containing 1% flurbiprofen and no penetration enhancers). The control formulation presented the highest average flux, with the EPO formulation following the closest. It could, thus, be concluded that EPO is the most favorable chemical penetration enhancer when used in this formulation. PMID:26852854

  5. Acetylenes and fatty acids from Codonopsis pilosula

    PubMed Central

    Jiang, Yueping; Liu, Yufeng; Guo, Qinglan; Jiang, Zhibo; Xu, Chengbo; Zhu, Chenggen; Yang, Yongchun; Lin, Sheng; Shi, Jiangong

    2015-01-01

    Four new acetylenes (1–4) and one new unsaturated ω-hydroxy fatty acid (5), together with 5 known analogues, were isolated from an aqueous extract of Codonopsis pilosula roots. Their structures were determined by spectroscopic and chemical methods. The new acetylenes are categorized as an unusual cyclotetradecatrienynone (1), tetradecenynetriol (2), and rare octenynoic acids (3 and 4), respectively, and 3 and 4 are possibly derived from oxidative metabolic degradation of 1 and/or 2. The absolute configuration of 1 was assigned by comparison of the experimental circular dichroism (CD) spectrum with the calculated electronic circular dichroism (ECD) spectra of stereoisomers based on the quantum-mechanical time-dependent density functional theory, while the configuration of 2 was assigned by using modified Mosher׳s method based on the MPA determination rule of ΔδRS values for diols. PMID:26579449

  6. Effects of fatty acid activation on photosynthetic production of fatty acid-based biofuels in Synechocystis sp. PCC6803

    PubMed Central

    2012-01-01

    Background Direct conversion of solar energy and carbon dioxide to drop in fuel molecules in a single biological system can be achieved from fatty acid-based biofuels such as fatty alcohols and alkanes. These molecules have similar properties to fossil fuels but can be produced by photosynthetic cyanobacteria. Results Synechocystis sp. PCC6803 mutant strains containing either overexpression or deletion of the slr1609 gene, which encodes an acyl-ACP synthetase (AAS), have been constructed. The complete segregation and deletion in all mutant strains was confirmed by PCR analysis. Blocking fatty acid activation by deleting slr1609 gene in wild-type Synechocystis sp. PCC6803 led to a doubling of the amount of free fatty acids and a decrease of alkane production by up to 90 percent. Overexpression of slr1609 gene in the wild-type Synechocystis sp. PCC6803 had no effect on the production of either free fatty acids or alkanes. Overexpression or deletion of slr1609 gene in the Synechocystis sp. PCC6803 mutant strain with the capability of making fatty alcohols by genetically introducing fatty acyl-CoA reductase respectively enhanced or reduced fatty alcohol production by 60 percent. Conclusions Fatty acid activation functionalized by the slr1609 gene is metabolically crucial for biosynthesis of fatty acid derivatives in Synechocystis sp. PCC6803. It is necessary but not sufficient for efficient production of alkanes. Fatty alcohol production can be significantly improved by the overexpression of slr1609 gene. PMID:22433663

  7. 40 CFR 721.10297 - Tin, C16-18 and C18-unsatd. fatty acids castor-oil fatty acids complexes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... acids castor-oil fatty acids complexes. 721.10297 Section 721.10297 Protection of Environment.... fatty acids castor-oil fatty acids complexes. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified as tin, C16-18 and C18-unsatd. fatty acids...

  8. 40 CFR 721.10297 - Tin, C16-18 and C18-unsatd. fatty acids castor-oil fatty acids complexes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... acids castor-oil fatty acids complexes. 721.10297 Section 721.10297 Protection of Environment.... fatty acids castor-oil fatty acids complexes. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified as tin, C16-18 and C18-unsatd. fatty acids...

  9. 40 CFR 721.10297 - Tin, C16-18 and C18-unsatd. fatty acids castor-oil fatty acids complexes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... acids castor-oil fatty acids complexes. 721.10297 Section 721.10297 Protection of Environment.... fatty acids castor-oil fatty acids complexes. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified as tin, C16-18 and C18-unsatd. fatty acids...

  10. Fatty Acids Synthesized from Hexadecane by Pseudomonas aeruginosa

    PubMed Central

    Romero, Ethel M.; Brenner, Rodolfo R.

    1966-01-01

    Romero, Ethel M. (Universidad Nacional de la Plata, La Plata, Argentina), and Rodolfo M. Brenner. Fatty acids synthesized from hexadecane by Pseudomonas aeruginosa. J. Bacteriol. 91:183–188. 1966.—The lipids extracted from Pseudomonas aeruginosa incubated with hexadecane in a mineral medium were separated into a nonpolar and three polar fractions by thin-layer chromatography. The fatty acid composition of the four cellular fractions and that of the lipids excreted into the medium was studied by gas-liquid chromatography. Saturated fatty acids with 14 to 22 carbons were recognized, together with monoenoic, dienoic, and hydroxylated acids. Hydroxylated fatty acids were principally found in two polar fractions containing rhamnose and glucose; the other polar fraction, containing serine, alanine, ethanolamine, and leucine, was richer in monoenoic fatty acids. Octadecadienoic acid was found in the neutral fraction. PMID:4955247

  11. Effect of liver fatty acid binding protein on fatty acid movement between liposomes and rat liver microsomes.

    PubMed Central

    McCormack, M; Brecher, P

    1987-01-01

    Although movement of fatty acids between bilayers can occur spontaneously, it has been postulated that intracellular movement is facilitated by a class of proteins named fatty acid binding proteins (FABP). In this study we have incorporated long chain fatty acids into multilamellar liposomes made of phosphatidylcholine, incubated them with rat liver microsomes containing an active acyl-CoA synthetase, and measured formation of acyl-CoA in the absence or presence of FABP purified from rat liver. FABP increased about 2-fold the accumulation of acyl-CoA when liposomes were the fatty acid donor. Using fatty acid incorporated into liposomes made either of egg yolk lecithin or of dipalmitoylphosphatidylcholine, it was found that the temperature dependence of acyl-CoA accumulation in the presence of FABP correlated with both the physical state of phospholipid molecules in the liposomes and the binding of fatty acid to FABP, suggesting that fatty acid must first desorb from the liposomes before FABP can have an effect. An FABP-fatty acid complex incubated with microsomes, in the absence of liposomes, resulted in greater acyl-CoA formation than when liposomes were present, suggesting that desorption of fatty acid from the membrane is rate-limiting in the accumulation of acyl-CoA by this system. Finally, an equilibrium dialysis cell separating liposomes from microsomes on opposite sides of a Nuclepore filter was used to show that liver FABP was required for the movement and activation of fatty acid between the compartments. These studies show that liver FABP interacts with fatty acid that desorbs from phospholipid bilayers, and promotes movement to a membrane-bound enzyme, suggesting that FABP may act intracellularly by increasing net desorption of fatty acid from cell membranes. PMID:3446187

  12. Nucleic acid-based tissue biomarkers of urologic malignancies.

    PubMed

    Dietrich, Dimo; Meller, Sebastian; Uhl, Barbara; Ralla, Bernhard; Stephan, Carsten; Jung, Klaus; Ellinger, Jörg; Kristiansen, Glen

    2014-08-01

    Molecular biomarkers play an important role in the clinical management of cancer patients. Biomarkers allow estimation of the risk of developing cancer; help to diagnose a tumor, ideally at an early stage when cure is still possible; and aid in monitoring disease progression. Furthermore, they hold the potential to predict the outcome of the disease (prognostic biomarkers) and the response to therapy (predictive biomarkers). Altogether, biomarkers will help to avoid tumor-related deaths and reduce overtreatment, and will contribute to increased survival and quality of life in cancer patients due to personalized treatments. It is well established that the process of carcinogenesis is a complex interplay between genomic predisposition, acquired somatic mutations, epigenetic changes and genomic aberrations. Within this complex interplay, nucleic acids, i.e. RNA and DNA, play a fundamental role and therefore represent ideal candidates for biomarkers. They are particularly promising candidates because sequence-specific hybridization and amplification technologies allow highly accurate and sensitive assessment of these biomarker levels over a broad dynamic range. This article provides an overview of nucleic acid-based biomarkers in tissues for the management of urologic malignancies, i.e. tumors of the prostate, testis, kidney, penis, urinary bladder, renal pelvis, ureter and other urinary organs. Special emphasis is put on genomic, transcriptomic and epigenomic biomarkers (SNPs, mutations [genomic and mitochondrial], microsatellite instabilities, viral and bacterial DNA, DNA methylation and hydroxymethylation, mRNA expression, and non-coding RNAs [lncRNA, miRNA, siRNA, piRNA, snRNA, snoRNA]). Due to the multitude of published biomarker candidates, special focus is given to the general applicability of different molecular classes as biomarkers and some particularly promising nucleic acid biomarkers. Furthermore, specific challenges regarding the development and clinical

  13. Synthesis of fatty acids in the perused mouse liver.

    PubMed

    Salmon, D M; Bowen, N L; Hems, D A

    1974-09-01

    1. Fatty acid synthesis de novo was measured in the perfused liver of fed mice. 2. The total rate, measured by the incorporation into fatty acid of (3)H from (3)H(2)O (1-7mumol of fatty acid/h per g of fresh liver), resembled the rate found in the liver of intact mice. 3. Perfusions with l-[U-(14)C]lactic acid and [U-(14)C]glucose showed that circulating glucose at concentrations less than about 17mm was not a major carbon source for newly synthesized fatty acid, whereas lactate (10mm) markedly stimulated fatty acid synthesis, and contributed extensive carbon to lipogenesis. 4. The identification of 50% of the carbon converted into newly synthesized fatty acid lends further credibility to the use of (3)H(2)O to measure hepatic fatty acid synthesis. 5. The total rate of fatty acid synthesis, and the contribution of glucose carbon to lipogenesis, were directly proportional to the initial hepatic glycogen concentration. 6. The proportion of total newly synthesized lipid that was released into the perfusion medium was 12-16%. 7. The major products of lipogenesis were saturated fatty acids in triglyceride and phospholipid. 8. The rate of cholesterol synthesis, also measured with (3)H(2)O, expressed as acetyl residues consumed, was about one-fourth of the basal rate of fatty acid synthesis. 9. These results are discussed in terms of the carbon sources of hepatic newly synthesized fatty acids, and the effect of glucose, glycogen and lactate in stimulating lipogenesis, independently of their role as precursors. PMID:4464843

  14. Acculturation and Plasma Fatty Acid Concentrations in Hispanic and Chinese-American Adults: The Multi-Ethnic Study of Atherosclerosis

    PubMed Central

    Diep, Cassandra S.; Lemaitre, Rozenn N.; Chen, Tzu-An; Baranowski, Tom; Lutsey, Pamela L.; Manichaikul, Ani W.; Rich, Stephen S.; St-Jules, David E.; Steffen, Brian T.; Tsai, Michael Y.; Siscovick, David S.; Frazier-Wood, Alexis C.

    2016-01-01

    Background Acculturation to the U.S. is associated with increased risk of cardiovascular disease, but the etiologic pathways are not fully understood. Plasma fatty acid levels exhibit ethnic differences and are emerging as biomarkers and predictors of cardiovascular disease risk. Thus, plasma fatty acids may represent one pathway underlying the association between acculturation and cardiovascular disease. We investigated the cross-sectional relationship between acculturation and plasma phospholipid fatty acids in a diverse sample of Hispanic- and Chinese-American adults. Methods and Findings Participants included 377 Mexican, 320 non-Mexican Hispanic, and 712 Chinese adults from the Multi-Ethnic Study of Atherosclerosis, who had full plasma phospholipid assays and acculturation information. Acculturation was determined from three proxy measures: nativity, language spoken at home, and years in the U.S., with possible scores ranging from 0 (least acculturated) to 5 (most acculturated) points. α-Linolenic acid, linoleic acid, eicosapentaenoic acid, docosahexaenoic acid, and arachidonic acid were measured in fasting plasma. Linear regression models were conducted in race/ethnicity-stratified analyses, with acculturation as the predictor and plasma phospholipid fatty acids as the outcome variables. We ran secondary analyses to examine associations between acculturation and dietary fatty acids for comparison. Covariates included age, gender, education, and income. Contrary to our hypothesis, no statistically significant associations were detected between acculturation and plasma phospholipid fatty acids for Chinese, non-Mexican Hispanic, or Mexican participants. However, acculturation was related to dietary total n-6 fatty acids and dietary n-3/n-6 ratios in expected directions for Mexican, non-Mexican Hispanic, and combined Hispanic participants. In Chinese individuals, acculturation was unexpectedly associated with lower arachidonic acid intake. Conclusion Absence of

  15. Pseudo catalytic transformation of volatile fatty acids into fatty acid methyl esters.

    PubMed

    Jung, Jong-Min; Cho, Jinwoo; Kim, Ki-Hyun; Kwon, Eilhann E

    2016-03-01

    Instead of anaerobic digestion of biodegradable wastes for producing methane, this work introduced the transformation of acidogenesis products (VFAs) into fatty acid methyl esters (FAMEs) to validate the feasible production of short-chained fatty alcohols via hydrogenation of FAMEs. In particular, among VFAs, this work mainly described the mechanistic explanations for transforming butyric acid into butyric acid methyl ester as a case study. Unlike the conventional esterification process (conversion efficiency of ∼94%), the newly introduced esterification under the presence of porous materials via the thermo-chemical process reached up to ∼99.5%. Furthermore, the newly introduced esterification via the thermo-chemical pathway in this work showed extremely high tolerance of impurities: the conversion efficiency under the presence of impurities reached up to ∼99±0.3%; thus, the inhibition behaviors attributed from the impurities used for the experimental work were negligible. PMID:26720136

  16. Jussara (Euterpe edulis Mart.) Supplementation during Pregnancy and Lactation Modulates the Gene and Protein Expression of Inflammation Biomarkers Induced by trans-Fatty Acids in the Colon of Offspring

    PubMed Central

    Almeida Morais, Carina; Oyama, Lila Missae; de Oliveira, Juliana Lopez; Carvalho Garcia, Márcia; de Rosso, Veridiana Vera; Sousa Mendes Amigo, Laís; do Nascimento, Claudia Maria Oller; Pisani, Luciana Pellegrini

    2014-01-01

    Maternal intake of trans-fatty acids (TFAs) in the perinatal period triggers a proinflammatory state in offspring. Anthocyanins contained in fruit are promising modulators of inflammation. This study investigated the effect of Jussara supplementation in the maternal diet on the proinflammatory state of the colon in offspring exposed to perinatal TFAs. On the first day of pregnancy rats were divided into four groups: control diet (C), control diet with 0.5% Jussara supplementation (CJ), diet enriched with hydrogenated vegetable fat, rich in TFAs (T), or T diet supplemented with 0.5% Jussara (TJ) during pregnancy and lactation. We showed that Jussara supplementation in maternal diet (CJ and TJ groups) reduced carcass lipid/protein ratios, serum lipids, glucose, IL-6, TNF-α, gene expression of IL-6R, TNF-αR (P < 0.05), TLR-4 (P < 0.01), and increase Lactobacillus spp. (P < 0.05) in the colon of offspring compared to the T group. The IL-10 (P = 0.035) and IL-10/TNF-α ratio (P < 0.01) was higher in the CJ group than in the T group. The 0.5% Jussara supplementation reverses the adverse effects of perinatal TFAs, improving lipid profiles, glucose levels, body composition, and gut microbiota and reducing low-grade inflammation in the colon of 21-day-old offspring, and could contribute to reducing chronic disease development. PMID:25276060

  17. Effect of propionic acid on fatty acid oxidation and ureagenesis.

    PubMed

    Glasgow, A M; Chase, H P

    1976-07-01

    Propionic acid significantly inhibited 14CO2 production from [1-14C] palmitate at a concentration of 10 muM in control fibroblasts and 100 muM in methylmalonic fibroblasts. This inhibition was similar to that produced by 4-pentenoic acid. Methylmalonic acid also inhibited 14CO2 production from [1-14C] palmitate, but only at a concentration of 1 mM in control cells and 5 mM in methylmalonic cells. Propionic acid (5 mM) also inhibited ureagenesis in rat liver slices when ammonia was the substrate but not with aspartate and citrulline as substrates. Propionic acid had no direct effect on either carbamyl phosphate synthetase or ornithine transcarbamylase. These findings may explain the fatty degeneration of the liver and the hyperammonemia in propionic and methylmalonic acidemia. PMID:934734

  18. Effect of environmental conditions on the fatty acid fingerprint of microbial communities

    NASA Astrophysics Data System (ADS)

    Biryukov, Mikhail; Dippold, Michaela; Kuzyakov, Yakov

    2014-05-01

    Lipid biomarkers, especially phospholipids, are routinely used to characterize microbial community structure in environmental samples. Interpretations of these fingerprints mainly depend on rare results of pure cultures which were cultivated under standardized batch conditions. However, membrane lipids (e.g. phopholipid biomarker) build up the interface between microorganisms and their environment and consequently are prone to be adapted according to the environmental conditions. We cultivated several bacteria, isolated from soil (gram-positive and gram-negative) under various conditions e.g. C supply and temperature regimes. Effect of growth conditions on phospholipids fatty acid (PLFA) as well as neutral lipid fatty acids (NLFA) and glycolipid fatty acids (GLFA) was investigated by conventional method of extraction and derivatization, followed by assessments with gas chromatography mass spectrometry (GC-MS). In addition, phospholipids were measured as intact molecules by ultra high performance liquid chromatography - quadrupole - time of flight mass spectrometer (UHPLC-Q-ToF) to further assess the composition of headgroups with fatty acids residues and their response on changing environmental conditions. PLFA fingerprints revealed a strong effect of growth stage, C supply and temperature e.g. decrease of temperature increased the amount of branched and/or unsaturated fatty acids to maintain the membrane fluidity. This strongly changes the ratio of specific to unspecific fatty acids depending on environmental conditions. Therefore, amounts of specific fatty acids cannot be used to assess biomass of a functional microbial group in soil. Intracellular neutral lipids depended less on environmental conditions reflecting a more stable biomarker group but also showed less specific fatty acids then PLFA. Therefore, combination of several lipid classes is suggested as more powerful tool to assess amounts and functionality of environmental microbial communities. Further

  19. Fatty acid composition of the edible sea cucumber Athyonidium chilensis.

    PubMed

    Careaga, Valeria P; Muniain, Claudia; Maier, Martas S

    2013-04-01

    The edible sea cucumber Athyonidium chilensis is a fishery resource of high commercial value in Chile, but no information on its lipid and fatty acid composition has been previously reported. Phospholipids were the major lipid contents of the ethanolic extracts of tubules, internal organs and body wall of A. chilensis. Saturated fatty acids predominated in tubule phospholipids (40.69%), while in internal organs and body wall phospholipids, the monounsaturated fatty acids were in higher amounts (41.99% and 37.94%, respectively). The main polyunsaturated fatty acids in phospholipids were C20 : 2ω-6, arachidonic (C20 : 4ω-6) and eicosapentaenoic (C20 : 5ω-3) acids. These results demonstrate for the first time that A. chilensis is a valuable food for human consumption in terms of fatty acids. PMID:22583008

  20. Fatty acids from VLDL lipolysis products induce lipid droplet accumulation in human monocytes

    PubMed Central

    den Hartigh, Laura J; Connolly-Rohrbach, Jaime E; Fore, Samantha; Huser, Thomas R; Rutledge, John C

    2010-01-01

    One mechanism by which monocytes become activated postprandially is by exposure to triglyceride (TG)-rich lipoproteins such as very low-density lipoproteins (VLDL). VLDL are hydrolyzed by lipoprotein lipase (LpL) at the blood-endothelial cell interface, releasing free fatty acids. In this study, we examined postprandial monocyte activation in more detail, and found that lipolysis products generated from postprandial VLDL induce the formation of lipid-filled droplets within cultured THP-1 monocytes, characterized by coherent anti-stokes Raman spectroscopy. Organelle-specific stains revealed an association of lipid droplets with the endoplasmic reticulum, confirmed by electron microscopy. Lipid droplet formation was reduced when LpL-released fatty acids were bound by bovine serum albumin, which also reduced cellular inflammation. Furthermore, saturated fatty acids induced more lipid droplet formation in monocytes compared to mono- and polyunsaturated fatty acids. Monocytes treated with postprandial VLDL lipolysis products contained lipid droplets with more intense saturated Raman spectroscopic signals than monocytes treated with fasting VLDL lipolysis products. In addition, we found that human monocytes isolated during the peak postprandial period contain more lipid droplets compared to those from the fasting state, signifying that their development is not limited to cultured cells but also occurs in vivo. In summary, circulating free fatty acids can mediate lipid droplet formation in monocytes and potentially be used as a biomarker to assess an individual’s risk of developing atherosclerotic cardiovascular disease. PMID:20208007

  1. Sources and Bioactive Properties of Conjugated Dietary Fatty Acids.

    PubMed

    Hennessy, Alan A; Ross, Paul R; Fitzgerald, Gerald F; Stanton, Catherine

    2016-04-01

    The group of conjugated fatty acids known as conjugated linoleic acid (CLA) isomers have been extensively studied with regard to their bioactive potential in treating some of the most prominent human health malignancies. However, CLA isomers are not the only group of potentially bioactive conjugated fatty acids currently undergoing study. In this regard, isomers of conjugated α-linolenic acid, conjugated nonadecadienoic acid and conjugated eicosapentaenoic acid, to name but a few, have undergone experimental assessment. These studies have indicated many of these conjugated fatty acid isomers commonly possess anti-carcinogenic, anti-adipogenic, anti-inflammatory and immune modulating properties, a number of which will be discussed in this review. The mechanisms through which these bioactivities are mediated have not yet been fully elucidated. However, existing evidence indicates that these fatty acids may play a role in modulating the expression of several oncogenes, cell cycle regulators, and genes associated with energy metabolism. Despite such bioactive potential, interest in these conjugated fatty acids has remained low relative to the CLA isomers. This may be partly attributed to the relatively recent emergence of these fatty acids as bioactives, but also due to a lack of awareness regarding sources from which they can be produced. In this review, we will also highlight the common sources of these conjugated fatty acids, including plants, algae, microbes and chemosynthesis. PMID:26968402

  2. 21 CFR 172.852 - Glyceryl-lacto esters of fatty acids.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... § 172.852 Glyceryl-lacto esters of fatty acids. Glyceryl-lacto esters of fatty acids (the lactic acid... conditions: (a) They are manufactured from glycerin, lactic acid, and fatty acids conforming with § 172.860 and/or oleic acid derived from tall oil fatty acids conforming with § 172.862 and/or edible fats...

  3. 21 CFR 573.914 - Salts of volatile fatty acids.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.914 Salts of volatile fatty acids. (a) Identity. The food additive is a... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Salts of volatile fatty acids. 573.914 Section...

  4. 21 CFR 573.914 - Salts of volatile fatty acids.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.914 Salts of volatile fatty acids. (a) Identity. The food additive is a... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Salts of volatile fatty acids. 573.914 Section...

  5. Fatty acid composition of Tilia spp. seed oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As part of a study of the seed oil fatty acid composition of Malvaceae plants, seeds of seven Tilia species (limes or linden trees) were evaluated for their fatty acid profiles. Seeds were obtained from the Germplasm Research Information Network and from various commercial sources. After extractio...

  6. 2-monoacylglycerol acyl migration: Affect of fatty acid desaturation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    2-Monoacylglycerols (2-MAG) are key synthetic intermediates used for the synthesis of ABA-type triacylglycerols where B is a highly unsaturated fatty acid at the glycerol sn-2 position and A are medium-chain saturated fatty acids at the glycerol sn-1,3 position. ABA-type structured lipids are an in...

  7. Fatty acid amides from freshwater green alga Rhizoclonium hieroglyphicum.

    PubMed

    Dembitsky, V M; Shkrob, I; Rozentsvet, O A

    2000-08-01

    Freshwater green algae Rhizoclonium hieroglyphicum growing in the Ural Mountains were examined for their fatty acid amides using capillary gas chromatography-mass spectrometry (GC-MS). Eight fatty acid amides were identified by GC-MS. (Z)-9-octadecenamide was found to be the major component (2.26%). PMID:11014298

  8. Distillation of natural fatty acids and their chemical derivatives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Well over 1,000 different fatty acids are known which are natural components of fats, oils (triacylglycerols), and other related compounds. These fatty acids can have different alkyl chain lengths, 0-6 carbon-carbon double bonds possessing cis- or trans-geometry, and can contain a variety of functio...

  9. EFFECTS OF ETHYLENE CHLOROHYDRIN ON FATTY ACID SYNTHESIS

    EPA Science Inventory

    Male chicks weighing 700 to 900 g. received an acute or eight doses IG of 60 or 40 mg/kg ethylene chlorohydrin (ECH) respectively and were sacrificed eighteen hours after the last dose. Mitochondrial elongation of fatty acids was decreased significantly while fatty acid synthetas...

  10. Fatty acid profile of 25 alternative lipid feedstocks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study reports the fatty acid profiles of 25 alternative lipid feedstocks for the production of bio-based fuels and chemicals. Lipids were extracted using hexane from oil-bearing seeds using a standard Soxhlet apparatus. Fatty acid profiles were measured using gas chromatography-flame ionization...