Science.gov

Sample records for fecal coliform bacteria

  1. The Interaction between Heterotrophic Bacteria and Coliform, Fecal Coliform, Fecal Streptococci Bacteria in the Water Supply Networks

    PubMed Central

    AMANIDAZ, Nazak; ZAFARZADEH, Ali; MAHVI, Amir Hossein

    2015-01-01

    Background: This study investigated the interaction between heterotrophic bacteria and coliform, fecal coliforms, fecal streptococci bacteria in water supply networks. Methods: This study was conducted during 2013 on water supply distribution network in Aq Qala City, Golestan Province, Northern Iran and standard methods were applied for microbiological analysis. The surface method was applied to test the heterotrophic bacteria and MPN method was used for coliform, fecal coliform and fecal streptococci bacteria measurements. Results: In 114 samples, heterotrophic bacteria count were over 500 CFU/ml, which the amount of fecal coliform, coliform, and fecal streptococci were 8, 32, and 20 CFU/100 ml, respectively. However, in the other 242 samples, with heterotrophic bacteria count being less than 500 CFU/ml, the amount of fecal coliform, coliform, and fecal streptococci was 7, 23, and 11 CFU/100ml, respectively. The relationship between heterotrophic bacteria, coliforms and fecal streptococci was highly significant (P<0.05). We observed the concentration of coliforms, fecal streptococci bacteria being high, whenever the concentration of heterotrophic bacteria in the water network systems was high. Conclusion: Interaction between heterotrophic bacteria and coliform, fecal coliforms, fecal streptococci bacteria in the Aq Qala City water supply networks was not notable. It can be due to high concentrations of organic carbon, bio-films and nutrients, which are necessary for growth, and survival of all microorganisms. PMID:26811820

  2. Fecal-coliform bacteria in extended-aeration plant sludge

    SciTech Connect

    Anderson, M.; Kester, G.; Arant, S.

    1998-07-01

    The concentration of fecal-coliform bacteria in sludge from extended-aeration plants was analyzed for compliance with new state and federal land application requirements. This study was initiated to determine if additional digestion would be necessary for plants to meet the new pathogen standards of less than 2 million CFU per gm of solids. Sludge was found to contain less than 2 million fecal coliform bacteria/gm of sludge as a result of a combination or aerobic digestion and/or long term storage.

  3. Simulating fecal coliform bacteria loading from an urbanizing watershed.

    PubMed

    Im, Sangjun; Brannan, Kevin M; Mostaghimi, Saied; Cho, Jaepil

    2004-01-01

    The fate and transport of fecal coliform bacteria in the urbanizing Polecat Creek watershed, located in Virginia, was simulated using the Hydrological Simulation Program-FORTRAN (HSPF). Both point and nonpoint sources of fecal coliform were included in the simulation. Hydrologic and water quality parameters of HSPF were calibrated and validated using observed data collected from October 1994 to June 2000 at three monitoring stations. The percent errors in total runoff volumes between observed and simulated values ranged from 0.4 to 4.2% for the calibration period, and 0.4 to 6.7% for the validation period. The geometric mean of simulated fecal coliform concentrations at the outlet of the watershed was 10% lower than that of observed values for the calibration period. HSPF moderately under-predicted the geometric mean concentration by 16.4% for one sub-watershed and slightly over-predicted by 7.3% for another. Observed fecal coliform concentrations were compared with the range defined by the minimum and maximum simulated concentrations occurring within a 3-day window centered on the day the water sample was collected. Over 42% of grab sample data collected at the three monitoring sites in the watershed fell within the max min range of simulated concentrations over the 3-days window for the calibration period. For all monitoring sites, 39.5% of the total samples taken during the validation period fell in the range of simulated concentrations over the 3-day window period. Results presented in this study demonstrate that HSPF reasonably represents the hydrology and water quality of an urbanizin watershed and that it could be utilized as a planning tool for future assessment of land use impacts on fecal coliform on in-stream concentrations. PMID:15055933

  4. Evaluating spatial and temporal variability of fecal coliform bacteria loads at Pelahatchie Watershed in Mississippi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial contaminations of surface waters are an increasing concern for scientists because pathogenic bacteria can cause adverse effects on human health. This research was performed to investigate spatial and seasonal variability of fecal coliform bacteria (FCB) concentrations from the Pelahatchie ...

  5. Concentrations of fecal coliform bacteria in creeks, Anchorage, Alaska, August and September 1998

    USGS Publications Warehouse

    Dorava, Joseph M.; Love, Andra

    1999-01-01

    Water samples were collected from five creeks in undeveloped, semi-developed, and developed areas of Anchorage, Alaska, during August and September 1998 to determine concentrations of fecal coliform bacteria. In undeveloped areas of Ship, Chester, and Campbell Creeks, and the semi-developed area of Rabbit Creek, concentrations of fecal coliform bacteria ranged from less than 1 to 16 colonies per 100 milliliters of water. In the semi-developed area of Little Rabbit Creek, concentrations ranged from 30 to 860 colonies per 100 milliliters of water. In developed areas of the creeks, concentrations of fecal coliform bacteria ranged from 6 to 80 colonies per 100 milliliters of water.

  6. Occurrence of fecal coliform bacteria in selected streams in Wyoming, 1990-99

    USGS Publications Warehouse

    Clark, Melanie L.; Norris, Jodi R.

    2000-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Wyoming Department of Environmental Quality (WDEQ), is collecting water samples for analysis of fecal coliform bacteria at 18 stream sites as part of a statewide network. Contamination by bacteria of fecal origin in streams where contact recreation is a designated water use is a concern because of potential public-health risk from the presence of enteric pathogens. Fecal coliform concentrations are temporally and spatially variable in Wyoming streams-concentrations ranged from less than 1 to 45,000 colonies per 100 milliliters of water during 1990-99. Fecal coliform concentrations were less than the water-quality criterion of 400 colonies per 100 milliliters in 83 percent of the samples, indicating fecal coliform contamination is not a widespread problem in these Wyoming streams. However, 14 of the 18 monitoring sites had at least one sample in which the fecal coliform concentration exceeded 400 colonies per 100 milliliters at some time during the 10-year period. Fecal coliform concentrations generally are higher during April through September than during October through March. The higher concentrations coincide with the time period when the public-health risk is higher because summer months are when contact recreation use is more likely occurring. Fecal coliform concentrations were positively correlated with discharge and stream temperature and generally were negatively correlated with pH, specific conductance, and dissolved oxygen.

  7. Patterns and sources of fecal coliform bacteria in three streams in Virginia, 1999-2000

    USGS Publications Warehouse

    Hyer, Kenneth; Moyer, Douglas

    2003-01-01

    Surface-water impairment by fecal coliform bacteria is a water-quality issue of national scope and importance. In Virginia, more than 175 stream segments are on the Commonwealth's 1998 303(d) list of impaired waters because of elevated concentrations of fecal coliform bacteria. These fecal coliform-impaired stream segments require the development of total maximum daily load (TMDL) and associated implementation plans, but accurate information on the sources contributing these bacteria usually is lacking. The development of defendable fecal coliform TMDLs and management plans can benefit from reliable information on the bacteria sources that are responsible for the impairment. Bacterial source tracking (BST) recently has emerged as a powerful tool for identifying the sources of fecal coliform bacteria that impair surface waters. In a demonstration of BST technology, three watersheds on Virginia's 1998 303(d) list with diverse land-use practices (and potentially diverse bacteria sources) were studied. Accotink Creek is dominated by urban land uses, Christians Creek by agricultural land uses, and Blacks Run is affected by both urban and agricultural land uses. During the 20-month field study (March 1999?October 2000), water samples were collected from each stream during a range of flow conditions and seasons. For each sample, specific conductance, dissolved oxygen concentration, pH, turbidity, flow, and water temperature were measured. Fecal coliform concentrations of each water sample were determined using the membrane filtration technique. Next, Escherichia coli (E. coli) were isolated from the fecal coliform bacteria and their sources were identified using ribotyping (a method of 'genetic fingerprinting'). Study results provide enhanced understanding of the concentrations and sources of fecal coliform bacteria in these three watersheds. Continuum sampling (sampling along the length of the streams) indicated that elevated concentrations of fecal coliform bacteria

  8. Interaction of ambient conditions and fecal coliform bacteria in southern Lake Michigan beach waters: Monitoring program implications

    USGS Publications Warehouse

    Whitman, Richard L.; Nevers, Meredith Becker; Gerovac, Paul J.

    1999-01-01

    Excessive fecal coliform bacteria in public swimming waters can potentially threaten visitor health. Fecal coliform bacteria (1984-1989) and Escherichia coli (1990-1995) density were monitored weekly at the Indiana Dunes National Lakeshore beaches for 12 summers, and park officials closed swimming areas when fecal coliform density exceeded the state water quality criteria (400 CFU fecal coliforms/ 100 ml; 235 CFU E. coli/100 ml water). Due to a 24-hour incubation in the fecal coliform and E. coli assays, beaches were closed the day after collection of high fecal coliform. Our analysis suggests that it is not possible to predict one day's fecal coliform count based on the previous day's results in waters taken from southern Lake Michigan beaches. Dispersal and deposition of bacteria were not uniform among sites or across time apparently due to interactions among environmental variables including rainfall, wind direction, water temperature, and bacteria source. Rainfall combined with northwest winds increased bacteria concentrations. Escherichia coli followed a seasonal trend with similar fluctuations in density among beaches. We suggest that the current beach monitoring protocol is inadequate for predicting fecal coliform density at the time of beach closure, and, subsequently, its use for ensuring visitor safety remains questionable.

  9. Historical trends and concentrations of fecal coliform bacteria in the Brandywine Creek basin, Chester County, Pennsylvania

    USGS Publications Warehouse

    Town, D.A.

    2001-01-01

    The Brandywine Creek in Chester County is used for recreation and as an important source of drinking water. For this study, 40 sites were established for collection of water samples for analysis of fecal coliform and Escherichia coli bacteria in 1998-99. Samples were collected during base-flow conditions and during five storms in which rainfall exceeded 0.5 inch. During base- flow conditions, the median concentrations of fecal coliform bacteria exceeded 200 col/100 mL at 26 of the 40 sites (65 percent). During stormflow conditions, the median concentration of fecal coliform bacteria exceeded the Pennsylvania Department of Environmental Protection (PaDEP) criterion of 200 col/100 mL at 30 of 33 sites sampled (91 percent). Trends in fecal coliform bacteria concentrations were downward for the period 1973-99 at three long-term water-quality monitor stations, the result of upgrades in wastewater treatment plants, decreases in point-source discharges, and a decrease in agricultural land. A positive relation exists between streamflow and concentrations of fecal coliform bacteria at two of the long-term stations, but concentrations are elevated in base flow and stormflow at all three stations. Factors affecting bacteria concentrations in the Brandywine Creek Basin include nonpoint-source contaminants, reservoirs, seasonality, and stormflow. Nonpoint sources of bacterial contamination in the basin include, but are not limited to, land-surface runoff, urbanization, agricultural processes, groundwater contamination, and wildlife. Bacteria concentrations in streams that flow directly from the reservoirs are much lower than the concentrations in the streams flowing into the reservoirs. During March, April, May, October, and November, the Brandywine Creek tends to have lower water temperatures and bacteria concentrations than during June, July, August, and September. The 10-year median concentrations of bacteria at West Branch Brandywine Creek at Modena and East Branch

  10. A study of trends in dissolved oxygen and fecal coliform bacteria at NASQAN stations

    USGS Publications Warehouse

    Smith, Richard A.; Alexander, Richard B.

    1982-01-01

    Most stations in the U.S. Geological Survey's National Stream Quality Accounting Network show no significant trend in either dissolved oxygen concentration or fecal coliform bacteria population for the period October 1974. through October 1981. Of the stations which do show trends, however, most show improved water quality: thirty-one of a total of 276 stations show rising dissolved oxygen concentrations, while only 17 show decreasing concentrations. Decreases in fecal coliform populations have occurred at 21 stations while increases have occurred at only 12 stations. Approximately half of the stations showing improving trends in dissolved oxygen and fecal coliform bacteria are in the Missouri-Mississippi-Ohio River system. Decreases in dissolved oxygen have occurred at scattered locations in the Western and South-Central States. Rising bacterial populations occur most frequently in the Eastern and Central States Trends in dissolved oxygen concentration resulting from temperature changes occurring during the study period can be separated from trends caused by chemical or biological processes by analyzing computed values of dissolved oxygen deficit. About half of the observed trends in dissolved oxygen appear to be the result of changes in water temperature.

  11. Escherichia coli and fecal-coliform bacteria as indicators of recreational water quality

    USGS Publications Warehouse

    Francy, D.S.; Myers, D.N.; Metzker, K.D.

    1993-01-01

    In 1986, the U.S. Environmental Protection Agency (USEPA) recommended that Escherichia coli (E. coli) be used in place of fecal-coliform bacteria in State recreational water-quality standards as an indicator of fecal contamination. This announcement followed an epidemiological study in which E. coli concentration was shown to be a better predictor of swimming-associated gastrointestinal illness than fecal-coliform concentration. Water-resource managers from Ohio have decided to collect information specific to their waters and decide whether to use E. coli or fecal-coliform bacteria as the basis for State recreational water-quality standards. If one indicator is a better predictor of recreational water quality than the other and if the relation between the two indicators is variable, then the indicator providing the most accurate measure of recreational water quality should be used in water-quality standards. Water-quality studies of the variability of concentrations of E. coli to fecal-coliform bacteria have shown that (1) concentrations of the two indicators are positively correlated, (2) E. coli to fecal-coliform ratios differ considerably from site to site, and (3) the E. coli criteria recommended by USEPA may be more difficult to meet than current (1992) fecal-coliform standards. In this study, a statistical analysis was done on concentrations of E. coli and fecal-coliform bacteria in water samples collected by two government agencies in Ohio-- the U.S. Geological Survey (USGS) and the Ohio River Valley Water Sanitation Commission (ORSANCO). Data were organized initially into five data sets for statistical analysis: (1) Cuyahoga River, (2) Olentangy River, (3) Scioto River, (4) Ohio River at Anderson Ferry, and (5) Ohio River at Cincinnati Water Works and Tanners Creek. The USGS collected the data in sets 1, 2, and 3, whereas ORSANCO collected the data in sets 4 and 5. The relation of E. coli to fecal-coliform concentration was investigated by use of linear

  12. Effects of two diesel fuel mixtures on fecal coliform bacteria densities

    SciTech Connect

    Marcus, J.M.; Scott, G.I.

    1989-03-01

    One of the major potential environmental impacts from synthetic fuel production plants and conventional petroleum refinement operations is the spillage of the refined product into natural waters. Impacts upon aquatic ecosystems resulting from spills of synthetic fuel would likely be different from those associated with conventional petroleum since products extracted from coal or shale are generally richer in phenolics, aromatic amines and other soluble organic compounds. Also, synfuels have higher water solubilities than equivalent petroleum products giving the potential for higher water concentrations of hydrocarbons. This study tested the effects of the water soluble fractions (WSFs) of a shale diesel fuel mixture (SDFM) and a petroleum diesel fuel mixture (PDFM) on the growth of fecal coliform bacteria, the group used almost universally as an indicator of bacteriological water quality. The WSF was tested instead of whole oil because acute toxicity results primarily from this fraction. A wild group of fecal coliform bacteria was used since the objective was to observe effects upon this indicator group encountered in the environment instead of pure laboratory cultures by the routine ambient monitoring and measurement technique of membrane filter colony counts as employed by most water quality management agencies.

  13. Bacteria holding times for fecal coliform by mFC agar method and total coliform and Escherichia coli by Colilert®-18 Quanti-Tray® method

    USGS Publications Warehouse

    Aulenbach, Brent T.

    2010-01-01

    Bacteria holding-time experiments of up to 62 h were performed on five surface-water samples from four urban stream sites in the vicinity of Atlanta, GA, USA that had relatively high densities of coliform bacteria (Escherichia coli densities were all well above the US Environmental Protection Agency criterion of 126 colonies (100 ml) − 1 for recreational waters). Holding-time experiments were done for fecal coliform using the membrane filtration modified fecal coliform (mFC) agar method and for total coliform and E. coli using the Colilert®-18 Quanti-Tray® method. The precisions of these analytical methods were quantified. Precisions determined for fecal coliform indicated that the upper bound of the ideal range of counts could reasonably be extended upward and would improve precision. For the Colilert®-18 method, analytical precisions were similar to the theoretical precisions for this method. Fecal and total coliform densities did not change significantly with holding times up to about 27 h. Limited information indicated that fecal coliform densities might be stable for holding times of up to 62 h, whereas total coliform densities might not be stable for holding times greater than about 27 h. E. coli densities were stable for holding times of up to 18 h—a shorter period than indicated from a previous studies. These results should be applicable to non-regulatory monitoring sampling designs for similar urban surface-water sample types.

  14. Modeling Fate and Transport of Fecal Coliform Bacteria Using SWAT 2005 (Case Study: Jajrood River Watershed, Iran)

    NASA Astrophysics Data System (ADS)

    Maghrebi, M.; Tajrishy, M.

    2010-12-01

    Jajrood River watershed is one of the main drinking water resources of the capital city of Tehran, Iran. In addition it has been available as many recreational usages especially in the warm months. As a result of being located near one of the crowded cities of the world, a variety of microbial pollutions is commonly perceived in the Jajrood River. Among them, there are strong concerns about fecal coliform bacteria concentration. This article aimed to model fate and transport of fecal coliform bacteria in Jajrood River watershed using Soil and Water Assessment Tool (SWAT) model version 2005. Potential pollutant sources in the study area were detected and quantified for modeling purposes. In spite of being lack of knowledge about bacteria die-off rate in small river bodies, as well as in other watershed-based forms, fecal coliform bacteria die-off rates were estimated using both laboratory and field data investigations with some simplifications. The SWAT model was calibrated over an extended time period (1997-2002) for this watershed. The river flow calibrated using SUFI-2 software and resulted in a very good outputs (R2=0.82, E=0.81). Furthermore SWAT model was validated over January 2003 to September 2005 in the study area and has resulted in good outputs (R2=0.61, E=0.57). This research illustrates SWAT 2005 capability to model fecal coliform bacteria in a populated watershed, and deals with most of watershed microbial pollution sources that are usually observed in developing countries. Fecal coliform concentration simulation results were mostly in the same order in comparison with real data. However, Differences were judged to be related to lack of input data. In this article different aspects of SWAT capabilities for modeling of fecal coliform bacteria concentration will be reviewed and it will present new insights in bacteria modeling procedures especially for mountainous, high populated and small sized watersheds.

  15. Fecal coliform and Escherichia coli bacteria in the St. Croix National Scenic Riverway, Summer 1999

    USGS Publications Warehouse

    Kroening, Sharon E.

    1999-01-01

    Fecal coliform and Escherichia coli (E. coli) concentrations were determined in the St. Croix National Scenic Riverway to assess whether pathogenic organisms pose a potential problem for recreational use. Samples were collected from May through September 1999 at 22 locations on the St. Croix and Namekagon Rivers. No concentrations exceeded water-quality criteria or standards set by the U.S. Environmental Protection Agency or the states of Minnesota and Wisconsin. Maximum fecal coliform and E. coli concentrations were measured in the St. Croix River at St. Croix Falls, Wisconsin. Median fecal coliform and E. coli concentrations were greater in the St. Croix River near Woodland Corner, Wisconsin, and at Marine on St. Croix, Minnesota than at other locations sampled. There were no consistent short-term variations in fecal coliform or E. coli concentrations during the summer period or any significant relations between concentrations and stream discharge, based on these results.

  16. Fecal coliform bacteria disappearance rates in a north-central Gulf of Mexico estuary

    NASA Astrophysics Data System (ADS)

    Chigbu, P.; Gordon, S.; Strange, T. R.

    2005-10-01

    Fecal coliform levels in surface waters often peak after a major rain event. Thereafter, they decrease or disappear from water with time and can concentrate in sediments at high densities. Their dynamics in coastal waters is a function of bacterial loading from inflowing streams and rivers, mass transport, and losses due to death and sedimentation. We used water quality data collected from Mississippi Sound before, during and after 12 rainfall events to assess the effects of rainfall on fecal coliform levels, estimate fecal coliform disappearance rates, and evaluate the influence of season on fecal coliform loss rates. Fecal coliforms typically peaked within 48 h after a rain event, and then decreased precipitously, whereas the Pearl River (a major inflow into the western Mississippi Sound) stage often peaked within 96 h. Fecal coliform disappearance rates per day varied from -0.214 to -0.743 (mean = -0.428). Loss rates were higher in November/December (-0.64 ± 0.06SE) than in January (-0.45 ± 0.03SE) or February/March (-0.35 ± 0.03SE), perhaps due to seasonal differences in water temperature and/or intensities of solar radiation. It took an average of 6 days (range: 0.3-12.9 days) for the geometric mean FC levels to fall to 14 MPN per 100 ml. These data are useful for managing shellfish harvesting areas in Mississippi Sound and other river-influenced estuaries.

  17. Water quality and sources of fecal coliform bacteria in the Meduxnekeag River, Houlton, Maine

    USGS Publications Warehouse

    Culbertson, Charles W.; Huntington, Thomas G.; Stoeckel, Donald M.; Caldwell, James M.; O'Donnell, Cara

    2014-01-01

    In response to bacterial contamination in the Meduxnekeag River and the desire to manage the watershed to reduce contaminant sources, the Houlton Band of Maliseet Indians (HBMI) and the U.S. Geological Survey began a cooperative effort to establish a baseline of water-quality data that can be used in future studies and to indicate potential sources of nutrient and bacterial contamination. This study was conducted during the summer of 2005 in the Meduxnekeag River Basin near Houlton, Maine. Continuously recorded specific conductance can be a good indicator for water quality. Specific conductance increased downstream from the town of Houlton, between runoff events, and decreased sharply following major runoff events. Collections of discrete samples during the summer of 2005 indicated seasonal positive concentration-discharge relations for total phosphorus and total nitrogen; these results indicate that storm runoff may mobilize and transport these nutrients from the terrestrial environment to the river. Data collected by the HBMI on fecal coliform bacteria indicated that bacterial contamination enters the Meduxnekeag River from multiple paths including tributaries and surface drains (ditches) in developed areas in Houlton, Maine. The Houlton wastewater treatment discharge was not an important source of bacterial contamination. Bacteroidales-based tests for general fecal contamination (Bac32 marker) were predominantly positive in samples that had excessive fecal contamination as indicated by Enterococci density greater than 104 colony-forming units per 100 millilters. Of the 22 samples tested for Bacteroidales-based markers of human-associated fecal contamination (HF134 and HF183), 8 were positive. Of the 22 samples tested for Bacteroidales-based markers of ruminant-associated fecal contamination (CF128 and CF193), 7 were positive. Human fecal contamination was detected consistently at two sites (surface drains in urban areas in the town of Houlton) and occasionally

  18. Comparison and continuous estimates of fecal coliform and Escherichia coli bacteria in selected Kansas streams, May 1999 through April 2002

    USGS Publications Warehouse

    Rasmussen, Patrick P.; Ziegler, Andrew C.

    2003-01-01

    The sanitary quality of water and its use as a public-water supply and for recreational activities, such as swimming, wading, boating, and fishing, can be evaluated on the basis of fecal coliform and Escherichia coli (E. coli) bacteria densities. This report describes the overall sanitary quality of surface water in selected Kansas streams, the relation between fecal coliform and E. coli, the relation between turbidity and bacteria densities, and how continuous bacteria estimates can be used to evaluate the water-quality conditions in selected Kansas streams. Samples for fecal coliform and E. coli were collected at 28 surface-water sites in Kansas. Of the 318 samples collected, 18 percent exceeded the current Kansas Department of Health and Environment (KDHE) secondary contact recreational, single-sample criterion for fecal coliform (2,000 colonies per 100 milliliters of water). Of the 219 samples collected during the recreation months (April 1 through October 31), 21 percent exceeded the current (2003) KDHE single-sample fecal coliform criterion for secondary contact rec-reation (2,000 colonies per 100 milliliters of water) and 36 percent exceeded the U.S. Environmental Protection Agency (USEPA) recommended single-sample primary contact recreational criterion for E. coli (576 colonies per 100 milliliters of water). Comparisons of fecal coliform and E. coli criteria indicated that more than one-half of the streams sampled could exceed USEPA recommended E. coli criteria more frequently than the current KDHE fecal coliform criteria. In addition, the ratios of E. coli to fecal coliform (EC/FC) were smallest for sites with slightly saline water (specific conductance greater than 1,000 microsiemens per centimeter at 25 degrees Celsius), indicating that E. coli may not be a good indicator of sanitary quality for those streams. Enterococci bacteria may provide a more accurate assessment of the potential for swimming-related illnesses in these streams. Ratios of EC/FC and

  19. Efficacy of Vegetated Buffers in Preventing Transport of Fecal Coliform Bacteria from Pasturelands

    NASA Astrophysics Data System (ADS)

    Sullivan, Timothy J.; Moore, James A.; Thomas, David R.; Mallery, Eric; Snyder, Kai U.; Wustenberg, Mark; Wustenberg, Judith; Mackey, Sam D.; Moore, Deian L.

    2007-12-01

    An experimental study was conducted in Tillamook, Oregon, USA, to quantify the effectiveness of edge-of-field vegetated buffers for reducing transport of fecal coliform bacteria (FCB) from agricultural fields amended with dairy cow manure. Installation of vegetated buffers on loamy soils dramatically reduced the bacterial contamination of runoff water from manure-treated pasturelands, but the size of the vegetated buffer was not an important determinant of bacterial removal efficiency. Only 10% of the runoff samples collected from treatment cells having vegetated buffers exhibited FCB concentrations >200 colony forming units (cfu)/100 mL (a common water quality standard value), and the median concentration for all cells containing vegetated buffers was only 6 cfu/100 mL. The presence of a vegetated buffer of any size, from 1 to 25 m, generally reduced the median FCB concentration in runoff by more than 99%. Results for FCB load calculations were similar. Our results suggest that where substantial FCB contamination of runoff occurs from manure-treated pasturelands, it might be disproportionately associated with specific field or management conditions, such as the presence of soils that exhibit low water infiltration and generate larger volumes of runoff or the absence of a vegetated buffer. Buffer size regulations that do not consider such differences might not be efficient or effective in reducing bacterial contamination of runoff.

  20. FECAL COLIFORM INCREASE AFTER CENTRIFUGATION

    EPA Science Inventory

    The Water Environment Research Foundation (WERF) recently published a report titled Examination of Reactivation and Regrowth of Fecal Coliforms in Anaerobically Digested Sludges. Seven full-scale publicly owned treatment facilities were sampled several times to determine if bacte...

  1. Interaction of fecal coliforms with soil aggregates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land-applied manures may contain various contaminants that cause water pollution and concomitant health problems. Some of these pollutants are bacteria, and fecal coliforms (FC) have been widely used as an indicator of bacterial contamination. Experiments on bacteria attachment to soil are tradition...

  2. The seasonality of fecal coliform bacteria pollution and its influence on closures of shellfish harvesting areas in Mississippi Sound.

    PubMed

    Chigbu, Paulinus; Gordon, Scott; Tchounwou, Paul B

    2005-08-01

    Runoff from agricultural lands and farm animal feedlots is one of the major sources of fecal coliforms in surface waters, and fecal coliform (FC) bacteria concentrations tend to vary with season because of seasonal variations in climatic factors. However, El Niño--Southern Oscillation (ENSO) events may affect the extent and patterns of seasonality in FC levels in coastal waters. Water quality monitoring data for shellfish management collected during El Niño (1990, 1992, 1997), and La Niña (1999, 2000) years were analyzed to evaluate the extent to which these events influenced Pearl River stage, and bacterial levels, water temperature, and salinity in the western part of Mississippi Sound. Models to predict FC levels in relation to various environmental factors were also developed. In 1990, 1992 and 1997, FC geometric mean counts peaked in late winter (January/February) reaching 120 MPN (February 1990), 165 MPN (January 1992), and 86 MPN (January 1997), and then decreased considerably during spring and summer (1.2 - 19 MPN). Thereafter, FC abundance increased slightly in fall and early winter (1.9 - 24 MPN). Fecal coliform abundance during the 2000 La Niña year was much lower (1.0 -10.3 MPN) than in 1992 (1.2 - 165 MPN), and showed no seasonal pattern from January to August, perhaps due to the relative scarcity of rainfall in 2000. In 1995 (ENSO neutral year), peak geometric mean FC count (46 MPN) was lower than during El Niño years and occurred in early spring (March). The seasonal and between year variations in FC levels determined the number of days during which the conditionally approved shellfish growing area was opened for harvesting shellfish. For example, from January to April 1997, the area was not opened for shellfish harvesting, whereas in 2000, the number of days during which the area was opened ranged from 6 - 27 (January to April) to 24 - 26 (October to December). ENSO events thus influenced the extent and timing of the peak levels of fecal

  3. Optimum Membrane Structures for Growth of Coliform and Fecal Coliform Organisms

    PubMed Central

    Sladek, K. J.; Suslavich, R. V.; Sohn, B. I.; Dawson, F. W.

    1975-01-01

    The purpose of this study was to determine the optimum membrane filter structure and characteristics for recovery of coliform organisms. Additionally, other factors such as sterilization method and membrane composition were examined. Fecal coliform growth tests with varied samples indicated that the most critical factor in recovery was surface pore morphology and not other factors previously suspected. Fecal coliform counts showed a dramatic increase, with increasing surface opening sizes. Membrane structures with surface openings large enough to surround the entrapped bacteria are required for optimum growth of fecal coliform organisms. Maximum fecal coliform recoveries are obtained using membranes composed of mixed esters of cellulose exhibiting a surface opening diameter of 2.4 μm and a retention pore size of 0.7 μm. Images PMID:1103734

  4. Fecal coliform analyses. Method evaluation for stressed organisms

    SciTech Connect

    Smith, L B; Winston, H G

    1986-01-01

    No significant difference was found between two tests for fecal coliform densities using water samples from the treated sanitary waste outfalls at the Savannah River Plant, a nuclear materials production site located near Aiken, SC. These two methods of concern were the most probable number index (MPN) and the membrane filtration procedure (MF). The MPN method is the accepted method for determining fecal coliform densities in chlorinated effluents, but requires more than the MF procedure. Per Microbiological Methods for Monitoring the Environment (1978) by EPA, any decision to use the MF test for stressed organisms requires parallel testing with the MPN test. The MPN index is the number of fecal coliform bacteria that, more probably than any other number, would give the results shown by laboratory examination. It is not an actual count of coliform bacteria. The MF procedure is a direct plating method and the colonies are directly counted.

  5. Performance evaluation of a Marshland Upwelling System for the removal of fecal coliform bacteria from domestic wastewater.

    PubMed

    Watson, R E; Rusch, K A

    2001-01-01

    The Marshland Upwelling System (MUS), a potential alternative wastewater treatment strategy for coastal dwellings, was examined to assess its ability to remove fecal coliforms (FC) from domestic wastewater as a step towards total treatment. Wastewater was intermittently injected down a 4.6-m injection well into the surrounding salt marsh. Optimal performance was achieved at an injection flowrate of 1.9 L/min and injection frequency of 30 minutes every 3 hours. Average influent concentrations of 930,000+/-650,000 colonies/100 mL, were reduced to effluent counts of 4.6 colonies/100 mL. Coliform removal followed exponential decay versus vector distance traveled with predicted surface concentrations less than or equal to 0.1 colony/100 mL. Hydraulic performance was acceptable with no significant reductions in permeability observed. Increasing flows to 3.8 L/min produced localized hydraulic dysfunction as indicated by sudden increases in effluent bacterial counts and injection pressures. Although fecal coliform removal typically decreased with increasing injection flowrates and isolated instances of abnormally high effluent counts were observed the MUS never experienced a catastrophic failure during the 13-month evaluation period. PMID:11561594

  6. FECAL COLIFORM INCREASE AFTER CENTRIFUGATION: EPA PERSPECTIVE

    EPA Science Inventory

    The Water Environment Research Foundation (WERF) recently published a report titled Examination of Reactivation and Regrowth of Fecal Coliforms in Anaerobically Digested Sludges. Seven full-scale publicly owned treatment facilities were sampled several times to determine if bacte...

  7. Fecal Coliform Removal by River Networks

    NASA Astrophysics Data System (ADS)

    Huang, T.; Wollheim, W. M.; Stewart, R. J.

    2015-12-01

    Bacterial pathogens are a major cause of water quality impairment in the United States. Freshwater ecosystems provide the ecosystem service of reducing pathogen levels by diluting and removing pathogens as water flows from source areas through the river network. However, the integration of field-scale monitoring data and watershed-scale hydrologic models to estimate pathogen loads and removal in varied aquatic ecosystems is still limited. In this study we applied a biogeochemical river network model (the Framework for Aquatic Modeling in the Earth System or FrAMES) and utilized available field data the Oyster R. watershed, a small (51.7 km2) draining coastal New Hampshire (NH, USA), to quantify pathogen removal at the river network scale, using fecal coliform as an indicator. The Oyster R. Watershed is comprised of various land use types, and has had its water quality monitored for fecal coliform, dissolved oxygen, and turbidity since 2001. Water samples were also collected during storm events to account for storm responses. FrAMES was updated to incorporate the dominant processes controlling fecal coliform concentrations in aquatic ecosystems: spatially distributed terrestrial loading, in-stream removal, dilution, and downstream transport. We applied an empirical loading function to estimate the terrestrial loading of fecal coliform across flow conditions. Data was collected from various land use types across a range of hydrologic conditions. The loading relationship includes total daily precipitation, antecedent 24-hour rainfall, air temperature, and catchment impervious surface percentage. Attenuation is due to bacterial "die-off" and dilution processes. Results show that fecal coliform input loads varied among different land use types. At low flow, fecal coliform concentrations were similar among watersheds. However, at high flow the concentrations were significantly higher in urbanized watersheds than forested watersheds. The mainstem had lower fecal coliform

  8. Fecal coliform loadings and stocks in buttermilk bay, Massachusetts, USA, and management implications

    NASA Astrophysics Data System (ADS)

    Valiela, Ivan; Alber, Merryl; Lamontagne, Michael

    1991-09-01

    Abundance of fecal caliform bacteria is a weak index of the presence of human pathogens in wastewater entering coastal waters. In spite of this, use of fecal caliform indices for management purposes is widespread. To gain insight into interpretation of fecal coliform data, we evaluated size of stocks of fecal coliforms in water, sediments, and sea wrack, in Buttermilk Bay, a coastal embayment in Massachusetts. Sediments contained most of the fecal coliforms. Fecal coliforms in sediments were as much as one order of magnitude more abundant than in the water column or in sea wrack. The fecal coliforms in sediments of Buttermilk Bay were so abundant that resuspension of fecal coliforms from just the top 2 cm of muddy sediments could add sufficient cells to the water column to have the whole bay exceed the federal limit of fecal coliforms for shellfishing. The major sources of fecal coliforms to the bay were water-fowls, surface runoff, groundwater, and streams. Waterfowl were the largest source of fecal coliforms during cold months; surface runoff, streams, and groundwater were most important during warm months. Redirection of surface runoff pipes is unlikely to be a very successful management action since contributions via this source are insufficient to account for the measured increases in concentrations of fecal coliforms in water. Removal of waterfowl is also unlikely to be useful, since fecal coliform concentrations leading to closures of shellfish beds and swimming areas are most frequent during warm months when waterfowl are rarest. Rates of loss of fecal caliform cells from the water column by death and tidal exchange were high. Mortality of cells was about an order of magnitude larger than losses by tidal exchange. The amounts of fecal coliforms brought into the bay by waterfowl, surface runoff, groundwater, and streams are an order of magnitude smaller than the losses by mortality and tidal removal. This implies that there is an additional source of fecal

  9. Fecal-coliform bacteria concentrations in streams of the Chattahoochee River National Recreation Area, Metropolitan Atlanta, Georgia, May-October 1994 and 1995

    USGS Publications Warehouse

    Gregory, M. Brian; Frick, Elizabeth A.

    2000-01-01

    Introduction: The Metropolitan Atlanta area has been undergoing a period of rapid growth and development. The population in the 10-county metropolitan area almost doubled from about 1.5 million people in 1970 to 2.9 million people in 1995 (Atlanta Regional Commission, written commun., 2000). Residential, commercial, and other urban land uses more than tripled during the same period (Frick and others, 1998). The Chattahoochee River is the most utilized water resource in Georgia. The rapid growth of Metropolitan Atlanta and its location downstream of the headwaters of the drainage basin make the Chattahoochee River a vital resource for drinking-water supplies, recreational opportunities, and wastewater assimilation. In 1978, the U.S. Congress declared the natural, scenic, recreation, and other values of 48 miles of the Chattahoochee River from Buford Dam to Peachtree Creek to be of special national significance. To preserve this reach of the Chattahoochee River, the U.S. Congress created the Chattahoochee River National Recreational Area (CRNRA), which includes the Chattahoochee River downstream from Buford Dam to the mouth of Peachtree Creek and a series of park areas adjacent to the river in northern Metropolitan Atlanta Even with this protection, waters of the Chattahoochee River and many of its tributaries in Metropolitan Atlanta did not meet water-quality standards set for designated uses during 1994 and 1995 (fig. 1 and table 1). Much of the degradation of water quality has been associated with areas undergoing rapid urban growth and sprawling suburban development. The resulting conversion of mostly forested land to urban land has multiple adverse effects on water quality. Degradation of water quality may be caused by a number of factors including an increase in nutrient concentrations, sediment and sedimentbound contaminant concentrations (e.g., metals and pesticides) (Frick and others, 1998), and fecal-coliform bacteria concentrations (Center for Watershed

  10. What do fecal coliforms indicate in tropical waters

    SciTech Connect

    Hazen, T.C.

    1988-01-01

    High densities of total and fecal coliform bacteria have been detected in pristine streams and in ground water samples collected from many tropical parts of the world, even in epiphytic vegetation 10 m above ground in the rain forest of Puerto Rico. Nucleic acid (DNA) analyses of Escherichia coli from pristine tropical environs has indicated that they are identical to clinical isolates of E. coli. Many tropical source waters have been shown to have enteric pathogens in the complete absence of coliforms. Diffusion chamber studies with E. coli at several tropical sites reveal that this bacterium can survive indefinitely in most freshwaters in Puerto Rico. An evaluation of methods for the enumeration of fecal coliforms showed that currently used media have poor reliability as a result of large numbers of false positive and false negative results when applied to tropical water samples. Total and fecal coliform bacteria are not reliable indicators of recent biological contamination of waters in tropical areas. Fecal streptococci and coliphages in tropical waters, violate the same under lying assumptions of indicator assays as the coliforms. Anaerobic bacteria like Bifidobacterium spp. and Clostridium perfringens show some promise in terms of survival but not in ease of enumeration and media specificity. The best course at present lies in using current techniques for direct enumeration of pathogens by fluorescent staining and nucleic acid analysis and developing tropical maximum containmant levels for certain resistant pathogens in tropical waters. 66 refs.

  11. Three-dimensional modeling of fecal coliform in the Tidal Basin and Washington Channel, Washington, DC.

    PubMed

    Bai, Sen; Lung, Wu-Seng

    2006-01-01

    Fecal coliform are widely used as bacterial indicator in the United States and around the world. Fecal coliform impaired water is highly possible to be polluted by pathogenic bacteria. The Tidal Basin and Washington Channel in Washington, DC are on the Total Maximum Daily Load (TMDL) list due to the high fecal coliform level. To support TMDL development, a three-dimensional numerical model of fecal coliform was developed using the EFDC framework. The model calculates the transport of fecal coliform under the influences of flap gate operations and tidal elevation. The original EFDC code was modified to calculate the die-off of fecal coliform under the impact of temperature and solar radiation intensity. The watershed contribution is expressed as storm water inflow and the load carried by the runoff. Model results show that fecal coliform vary strongly in space in both the Tidal Basin and Washington Channel. The storm water only impacts a small area around the storm water outfall in the Tidal Basin and the impacts are negligible in the Washington Channel due to dilution. The water from the Potomac River may affect the fecal coliform level in the area close to the flap gate in the Tidal Basin. The fecal coliform level in the Washington Channel is mainly controlled by the fecal coliform level in the Anacostia River, which is located at the open boundary of the Washington Channel. The potential sediment layer storage of fecal coliform was analyzed and it was found that the sediment layer fecal coliform level could be much higher than the water column fecal coliform level and becomes a secondary source under high bottom shear stress condition. The developed model built solid connection of fecal coliform source and concentration in the water column and has been used to develop TMDL. PMID:16854806

  12. Microbiological Quality of Ready-to-Eat Vegetables Collected in Mexico City: Occurrence of Aerobic-Mesophilic Bacteria, Fecal Coliforms, and Potentially Pathogenic Nontuberculous Mycobacteria

    PubMed Central

    Cerna-Cortes, Jorge Francisco; Leon-Montes, Nancy; Cortes-Cueto, Ana Laura; Salas-Rangel, Laura P.; Helguera-Repetto, Addy Cecilia; Lopez-Hernandez, Daniel; Rivera-Gutierrez, Sandra; Fernandez-Rendon, Elizabeth; Gonzalez-y-Merchand, Jorge Alberto

    2015-01-01

    The aims of this study were to evaluate the microbiological quality and the occurrence of nontuberculous mycobacteria (NTM) in a variety of salads and sprouts from supermarkets and street vendors in Mexico City. Aerobic-mesophilic bacteria (AMB) were present in 100% of RTE-salads samples; 59% of samples were outside guidelines range (>5.17 log10 CFU per g). Although fecal coliforms (FC) were present in 32% of samples, only 8% of them exceeded the permissible limit (100 MPN/g). Regarding the 100 RTE-sprouts, all samples were also positive for AMB and total coliforms (TC) and 69% for FC. Seven NTM species were recovered from 7 salad samples; they included three M. fortuitum, two M. chelonae, one M. mucogenicum, and one M. sp. Twelve RTE-sprouts samples harbored NTM, which were identified as M. porcinum (five), M. abscessus (two), M. gordonae (two), M. mucogenicum (two), and M. avium complex (one). Most RTE-salads and RTE-sprouts had unsatisfactory microbiological quality and some harbored NTM associated with illness. No correlation between the presence of coliforms and NTM was found. Overall, these results suggest that RTE-salads and RTE-sprouts might function as vehicles for NTM transmission in humans; hence, proper handling and treatment before consumption of such products might be recommendable. PMID:25918721

  13. Intermittent filtration of wastewater--removal of fecal coliforms and fecal streptococci.

    PubMed

    Ausland, G; Stevik, T K; Hanssen, J F; Køhler, J C; Jenssen, P D

    2002-08-01

    Removal of fecal coliforms and fecal streptococci was monitored over a period of 13 months in 14 buried pilot scale filters, treating septic tank effluent. The effects of grain size, hydraulic dosing rate and distribution method were investigated. Two different natural sands (sorted sand and unsorted sand) and three different types of light weight aggregates (LWA 0-4 mm, LWA 2-4 mm and crushed LWA 0-3 mm) were used. Intermittent dosing rates from 20 to 80 mm/day in 12 doses per day were applied to the filters by uniform pressure distribution or point application by gravity dosing. Removal of fecal coliforms was more than three orders of magnitude higher in the media with the finest grain sizes (unsorted sand) as compared to the coarsest media (LWA 0-4 mm and LWA 2-4 mm) operated under same conditions. Fecal streptococci were determined only in effluent from filters with LWA 0-4 mm and LWA 2-4 mm. Higher removal of fecal coliforms was observed in pressure dosed filters compared to gravity dosed filters. A lower removal was observed by increasing the hydraulic dosing rate. Minimum retention time was found to be a key parameter for predicting removal of bacteria in unsaturated, aerobic filters. At minimum retention times lower than about 50 h, there was a correlation of 0.96 between retention time and removal of fecal coliforms. Retention times longer than 50 h gave almost complete removal of fecal coliforms. PMID:12230196

  14. Enhancing fecal coliform total maximum daily load models through bacterial source tracking

    USGS Publications Warehouse

    Hyer, K.E.; Moyer, D.L.

    2004-01-01

    Surface water impairment by fecal coliform bacteria is a water quality issue of national scope and importance. In Virginia, more than 400 stream and river segments are on the Commonwealth's 2002 303(d) list because of fecal coliform impairment. Total maximum daily loads (TMDLs) will be developed for most of these listed streams and rivers. Information regarding the major fecal coliform sources that impair surface water quality would enhance the development of effective watershed models and improve TMDLs. Bacterial source tracking (BST) is a recently developed technology for identifying the sources of fecal coliform bacteria and it may be helpful in generating improved TMDLs. Bacterial source tracking was performed, watershed models were developed, and TMDLs were prepared for three streams (Accotink Creek, Christians Creek, and Blacks Run) on Virginia's 303(d) list of impaired waters. Quality assurance of the BST work suggests that these data adequately describe the bacteria sources that are impairing these streams. Initial comparison of simulated bacterial sources with the observed BST data indicated that the fecal coliform sources were represented inaccurately in the initial model simulation. Revised model simulations (based on BST data) appeared to provide a better representation of the sources of fecal coliform bacteria in these three streams. The coupled approach of incorporating BST data into the fecal coliform transport model appears to reduce model uncertainty and should result in an improved TMDL.

  15. The modified SWAT model for predicting fecal coliform in the Wachusett Reservoir Watershed, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fecal contamination has been an issue for water quality because fecal coliform bacteria are used as an indicator organism to detect pathogens in water. In order to assess fecal contamination in the Wachusett Reservoir Watershed in Massachusetts, USA, the Soil and Water Assessment Tool (SWAT), a comm...

  16. COMPARISON OF ESCHERICHIA COLI, TOTAL COLIFORM, AND FECAL COLIFORM POPULATIONS AS INDICATORS OF WASTEWATER TREATMENT EFFICIENCY

    EPA Science Inventory

    Escherichia coli, total coliform, and fecal coliform data were collected from two wastewater treatment facilities, a subsurface constructed wetlands, and the receiving stream. Results are presented from individual wastewater treatment process streams, final effluent and river sit...

  17. Identification of the sources of fecal coliforms in an urban watershed using antibiotic resistance analysis.

    PubMed

    Whitlock, John E; Jones, David T; Harwood, Valerie J

    2002-10-01

    Bacteria such as fecal coliforms are used as indicators of fecal pollution in natural waters. These bacteria are found in the feces of most wild and domestic animals and thus provide no information as to the source of fecal contamination, yet identification of indicator bacteria sources allows improved risk assessment, remediation, and total daily maximum load (TDML) assessment of environmental waters. This bacterial source tracking study was initiated in order to identify the dominant source(s) of fecal contamination in the urban watershed of Stevenson Creek in Clearwater, Florida. Five sites that represent areas where routine monitoring has previously shown high levels of fecal coliforms were sampled over 7 months. Fecal coliforms were enumerated by membrane filtration, and antibiotic resistance analysis was used to "fingerprint" a subset of randomly selected isolates and statistically match them to fingerprints of fecal coliforms from known sources (the library). A field test of the classification accuracy of the library was carried out by isolating fecal coliforms from the soil and waters surrounding a failing onsite wastewater treatment and disposal system (OSTDS). The vast majority of the isolates were classified into the human category. The major sources of fecal pollution in Stevenson Creek over the course of the study were wild animal, human, and, to a lesser extent, dog. Overall, wild animal feces were identified as the dominant source when fecal coliform levels were high, but when fecal coliform levels were low, the dominant source was identified as human. The results of this study demonstrate that the sources of fecal indicator bacteria within one urban watershed can vary substantially over temporal and spatial distances. PMID:12420932

  18. Occurrence of dissolved solids, nutrients, atrazine, and fecal coliform bacteria during low flow in the Cheney Reservoir watershed, south-central Kansas, 1996

    USGS Publications Warehouse

    Christensen, V.G.; Pope, L.M.

    1997-01-01

    A network of 34 stream sampling sites was established in the 1,005-square-mile Cheney Reservoir watershed, south-central Kansas, to evaluate spatial variability in concentrations of selected water-quality constituents during low flow. Land use in the Cheney Reservoir watershed is almost entirely agricultural, consisting of pasture and cropland. Cheney Reservoir provides 40 to 60 percent of the water needs for the city of Wichita, Kansas. Sampling sites were selected to determine the relative contribution of point and nonpoint sources of water-quality constituents to streams in the watershed and to identify areas of potential water-quality concern. Water-quality constituents of interest included dissolved solids and major ions, nitrogen and phosphorus nutrients, atrazine, and fecal coliform bacteria. Water from the 34 sampling sites was sampled once in June and once in September 1996 during Phase I of a two-phase study to evaluate water-quality constituent concentrations and loading characteristics in selected subbasins within the watershed and into and out of Cheney Reservoir. Information summarized in this report pertains to Phase I and was used in the selection of six long-term monitoring sites for Phase II of the study. The average low-flow constituent concentrations in water collected during Phase I from all sampling sites was 671 milligrams per liter for dissolved solids, 0.09 milligram per liter for dissolved ammonia as nitrogen, 0.85 milligram per liter for dissolved nitrite plus nitrate as nitrogen, 0.19 milligram per liter for total phosphorus, 0.20 microgram per liter for dissolved atrazine, and 543 colonies per 100 milliliters of water for fecal coliform bacteria. Generally, these constituents were of nonpoint-source origin and, with the exception of dissolved solids, probably were related to agricultural activities. Dissolved solids probably occur naturally as the result of the dissolution of rocks and ancient marine sediments containing large salt

  19. Escherichia coli and fecal coliforms in freshwater and estuarine sediments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It has been known for some time that substantial populations of fecal coliforms and E. coli are harbored in freshwater bottom sediments, bank soils, and beach sands. However, the relative importance of sediments as bacterial habitats and as a source of water-borne fecal coliforms and E. coli has not...

  20. THERMOTOLERANT NON-FECAL SOURCE 'KLEBSIELLA PNEUMONIAE': VALIDITY OF THE FECAL COLIFORM TEST IN RECREATIONAL WATERS

    EPA Science Inventory

    Wisconsin pulp and paper mill processing plants were evaluated for fecal coliform and total Klebsiella (i.e., thermotolerant and thermointolerant) bacterial concentrations. Using the standard fecal coliform test, up to 90 per cent of non-fecal source thermo-tolerant K. pneumoniae...

  1. Alternative methods for fecal coliform load reductions in South Georgia watersheds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Of the 11,285 miles of streams and rivers assessed in the state of Georgia, roughly 57% have been classified as impaired. Of the impaired water bodies, impairments due to fecal coliform (FC) bacteria are the most prevalent form of pollutant. FC bacteria are found in both urban and rural settings a...

  2. Comparison of two rapid test procedures with the standard EC test recovery of fecal coliform bacteria from shellfish-growing waters.

    PubMed

    Hunt, D A; Springer, J

    1978-11-01

    A study was conducted to compare recovery and enumeration capability of two 24-hr multitube fermentation tests with the standard EC test for fecal coliform levels in shellfish-growing waters. The 2 tests were the A-1 test developed by Andrews and Presnell, specifying 24-hr incubation in A-1 medium at 44.5 degree C; and a modification of the A-1 test requiring a 3-hr resuscitation of 35 degree C before incubation at 44.5 degree C for 21 hr. Fifteen State, Federal, and Provincial laboratories examined 10 routine shellfish-growing area samples per month in parallel by the 3 methods for 1 year. IMViC tests (indole, methyl red, Voges-Proskauer, and citrate) were conducted on all gas-positive tubes. The modified A-1 test recovered higher levels of fecal coliforms than the A-1 test. Although there were seasonal and geographic variations in recovery and enumeration by the modified A-1 test, overall there was good correlation of the modified A-1 test with the EC test. Both the A-1 and modified A-1 tests were more specific for Escherichia coli than the EC test. Results of the study indicate that the 24-hr modified A-1 test can be used as an alterantive test for the standard 72-hr EC test as an adjunct to the sanitary survey for the classification and control of shellfish-growing areas waters. PMID:365853

  3. GULF OF MEXICO PROGRAM/BAY OF ST. LOUIS WATER QUALITY STUDY -- DEVELOPMENT OF TOTAL MAXIMUM DAILY LOAD FOR FECAL COLIFORM BACTERIA (TMDL) IN HANCOCK, HARRISON AND PEARL RIVER COUNTIES, MS

    EPA Science Inventory

    The purpose of this project is to determine the various sources of fecal coliforms to determine the loading contributed by the various sources; and to determine the numbers of fecal coliforms that can be assimilated by the waters of the Bay without exceeding the standards for wat...

  4. An Environmental Health Assessment: Fecal Coliform Contamination in San Francisco Waterbodies

    NASA Astrophysics Data System (ADS)

    Devillier, K. N.; Devine, M.; Negrete, R.; Rawley, A. L.; Neiss, J.

    2007-12-01

    Fecal coliform is a group of bacteria that exists in the digestive system and excrement of warm-blooded animals. It enters aquatic environments through fecal contamination of water. In the urban environment, contamination can occur not only by direct input from warm-blooded animals but also from storm water run-off and municipal sewer overflow. Fecal coliform itself does not cause disease but it is an indicator of the presence of pathogens that exist in the wastes of humans and animals that are a hazard to human health. We examined 12 locations in San Francisco for fecal coliform and recorded the types of human contact with water at each location. We found low levels of coliform in areas open to the San Francisco Bay and Pacific Ocean and high levels of coliform in inland lakes and ponds. Using Environmental Protection Agency guidelines for fecal coliform concentrations, we found all sites at acceptable levels for the recreational and human activities we observed.

  5. A MECHANISTIC MODEL OF RUNOFF-ASSOCIATED FECAL COLIFORM FATE AND TRANSPORT THROUGH A COASTAL LAGOON. (R828676C003)

    EPA Science Inventory

    Fecal coliform (FC) contamination in coastal waters is an ongoing public health problem worldwide. Coastal wetlands and lagoons are typically expected to protect coastal waters by attenuating watershed pollutants including FC bacteria. However, new evidence suggests that coast...

  6. Effect of Manure on Fecal Coliform Attachment to Soil and Soil Particles of Different Sizes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It has been recognized that bacteria transport in runoff can be different for free cells, cells attached to soil particles, and cells attached to manure particles. Objectives of this work were to compare attachment of fecal coliforms (FC) to different soils and soil fractions, and to assess effect o...

  7. DETECTION OF FECAL COLIFORMS IN WATER USING 14C-MANNITOL

    EPA Science Inventory

    Interest in rapid bacterial detection methods for sanitary indicator bacteria in water prompted a study of the use of 14C-mannitol (UL) to detect fecal coliforms (FC). implemethod was developed using m-FC broth, membrane filtration, and two-temperature incubation (35oC for 2 h, f...

  8. The fecal bacteria

    USGS Publications Warehouse

    Sadowsky, Michael J., (Edited By); Whitman, Richard L.

    2011-01-01

    The Fecal Bacteria offers a balanced, integrated discussion of fecal bacteria and their presence and ecology in the intestinal tract of mammals, in the environment, and in the food supply. This volume covers their use in examining and assessing water quality in order to offer protection from illnesses related to swimming in or ingesting contaminated water, in addition to discussing their use in engineering considerations of water quality, modeling, monitoring, and regulations. Fecal bacteria are additionally used as indicators of contamination of ready-to-eat foods and fresh produce. The intestinal environment, the microbial community structure of the gut microbiota, and the physiology and genomics of this broad group of microorganisms are explored in the book. With contributions from an internationally recognized group of experts, the book integrates medicine, public health, environmental, and microbiological topics in order to provide a unique, holistic understanding of fecal bacteria. Moreover, it shows how the latest basic science and applied research findings are helping to solve problems and develop effective management strategies. For example, readers will discover how the latest tools and molecular approaches have led to our current understanding of fecal bacteria and enabled us to improve human health and water quality. The Fecal Bacteria is recommended for microbiologists, clinicians, animal scientists, engineers, environmental scientists, food safety experts, water quality managers, and students. It will help them better understand fecal bacteria and use their knowledge to protect human and environmental health. They can also apply many of the techniques and molecular tools discussed in this book to the study of a broad range of microorganisms in a variety of habitats.

  9. Modeling seasonal variability of fecal coliform in natural surface waters using the modified SWAT

    NASA Astrophysics Data System (ADS)

    Cho, Kyung Hwa; Pachepsky, Yakov A.; Kim, Minjeong; Pyo, JongCheol; Park, Mi-Hyun; Kim, Young Mo; Kim, Jung-Woo; Kim, Joon Ha

    2016-04-01

    Fecal coliforms are indicators of pathogens and thereby, understanding of their fate and transport in surface waters is important to protect drinking water sources and public health. We compiled fecal coliform observations from four different sites in the USA and Korea and found a seasonal variability with a significant connection to temperature levels. In all observations, fecal coliform concentrations were relatively higher in summer and lower during the winter season. This could be explained by the seasonal dominance of growth or die-off of bacteria in soil and in-stream. Existing hydrologic models, however, have limitations in simulating the seasonal variability of fecal coliform. Soil and in-stream bacterial modules of the Soil and Water Assessment Tool (SWAT) model are oversimplified in that they exclude simulations of alternating bacterial growth. This study develops a new bacteria subroutine for the SWAT in an attempt to improve its prediction accuracy. We introduced critical temperatures as a parameter to simulate the onset of bacterial growth/die-off and to reproduce the seasonal variability of bacteria. The module developed in this study will improve modeling for environmental management schemes.

  10. Fecal bacteria source characterization and sensitivity analysis of SWAT 2005

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil and Water Assessment Tool (SWAT) version 2005 includes a microbial sub-model to simulate fecal bacteria transport at the watershed scale. The objectives of this study were to demonstrate methods to characterize fecal coliform bacteria (FCB) source loads and to assess the model sensitivity t...

  11. Delayed-Incubation Membrane-Filter Test for Fecal Coliforms

    PubMed Central

    Taylor, Raymond H.; Bordner, Robert H.; Scarpino, Pasquale V.

    1973-01-01

    A delayed-incubation membrane-filter technique for fecal coliforms was developed and compared with the immediate fecal coliform test described in Standard Methods for the Examination of Water and Wastewater (13th ed., 1971). Laboratory and field evaluations demonstrated that the delayed-incubation test, with the use of the proposed vitamin-free Casitone holding medium, produces fecal coliform counts which very closely approximate those from the immediate test, regardless of the source or type of fresh-water sample. Limited testing indicated that the method is not as effective when used with saline waters. The delayed-incubation membrane-filter test will be especially useful in survey monitoring or emergency situations when the standard immediate fecal coliform test cannot be performed at or near the sample site or when time and temperature limitations for water sample storage cannot be met. The procedure can also be used for analyzing the bacterial quality of water or waste discharges by a standardized procedure in a central examining laboratory remote from the sample source. PMID:4572892

  12. Fecal Coliform Determinations. Training Module 5.115.3.77.

    ERIC Educational Resources Information Center

    Kirkwood Community Coll., Cedar Rapids, IA.

    This document is an instructional module package prepared in objective form for use by an instructor familiar with multiple tube and membrane filter techniques for determining fecal coliform concentrations in a wastewater sample. Included are objectives, instructor guides, student handouts and transparency masters. This module considers proper…

  13. Estimation and modeling of direct rapid sand filtration for total fecal coliform removal from secondary clarifier effluents.

    PubMed

    Li, Yi; Yu, Jingjing; Liu, Zhigang; Ma, Tian

    2012-01-01

    The filtration of fecal coliform from a secondary clarifier effluent was investigated using direct rapid sand filters as tertiary wastewater treatment on a pilot scale. The effect of the flocculation dose, flow loading rate, and grain size on fecal coliform removal was determined. Direct rapid sand filters can remove 0.6-1.5 log-units of fecal coliform, depending on the loading rate and grain size distribution. Meanwhile, the flocculation dose has little effect on coliform removal, and increasing the loading rate and/or grain size decreases the bacteria removal efficiency. A model was then developed for the removal process. Bacteria elimination and inactivation both in the water phase and the sand bed can be described by first-order kinetics. Removal was successfully simulated at different loading rates and grain size distributions and compared with the data obtained using pilot-scale filters. PMID:22508124

  14. Survival of fecal coliforms in dry-composting toilets.

    PubMed

    Redlinger, T; Graham, J; Corella-Barud, V; Avitia, R

    2001-09-01

    The dry-composting toilet, which uses neither water nor sewage infrastructure, is a practical solution in areas with inadequate sewage disposal and where water is limited. These systems are becoming increasingly popular and are promoted to sanitize human excreta and to recycle them into fertilizer for nonedible plants, yet there are few data on the safety of this technology. This study analyzed fecal coliform reduction in approximately 90 prefabricated, dry-composting toilets (Sistema Integral de Reciclamiento de Desechos Orgánicos [SIRDOs]) that were installed on the U.S.-Mexico border in Ciudad Juárez, Chihuahua, Mexico. The purpose of this study was to determine fecal coliform reduction over time and the most probable method of this reduction. Biosolid waste samples were collected and analyzed at approximately 3 and 6 months and were classified based on U.S. Environmental Protection Agency standards. Results showed that class A compost (high grade) was present in only 35.8% of SIRDOs after 6 months. The primary mechanism for fecal coliform reduction was found to be desiccation rather than biodegradation. There was a significant correlation (P = 0.008) between classification rating and percent moisture categories of the biosolid samples: drier samples had a greater proportion of class A samples. Solar exposure was critical for maximal class A biosolid end products (P = 0.001). This study only addressed fecal coliforms as an indicator organism, and further research is necessary to determine the safety of composting toilets with respect to other pathogenic microorganisms, some of which are more resistant to desiccation. PMID:11526002

  15. Distribution of total and fecal coliform organisms from septic effluent in selected coastal plain soils.

    PubMed Central

    Reneau, R B; Pettry, D E; Shanholtz, M I; Graham, S A; Weston, C W

    1977-01-01

    Distribution of total and fecal coliform bacteria in three Atlantic coastal plain soils in Virginia were monitored in situ over a 3-year period. The soils studied were Varina, Goldsboro, and Beltsville sandy loams. These and similar soils are found extensively along the populous Atlantic seaboard of the United States. They are considered only marginally suitable for septic tank installation because the restricting soil layers result in the subsequent development of seasonal perched water tables. To determine both horizontal and vertical movement of indicator organisms, samples were collected from piezometers placed at selected distances and depths from the drainfields in the direction of the ground water flow. Large reductions in total and fecal coliform bacteria were noted in the perched ground waters above the restricting layers as distance from the drainfield increased. These restricting soil layers appear to be effective barriers to the vertical movement of indicator organisms. The reduction in the density of the coliform bacteria above the restricting soil layers can probably be attributed to dilution, filtration, and dieoff as the bacteria move through the natural soil systems. PMID:325589

  16. Use of the Hydrological Simulation Program-FORTRAN and bacterial source tracking for development of the fecal coliform total maximum daily load (TMDL) for Blacks Run, Rockingham County, Virginia

    USGS Publications Warehouse

    Moyer, Douglas; Hyer, Kenneth

    2003-01-01

    Impairment of surface waters by fecal coliform bacteria is a water-quality issue of national scope and importance. Section 303(d) of the Clean Water Act requires that each State identify surface waters that do not meet applicable water-quality standards. In Virginia, more than 175 stream segments are on the 1998 Section 303(d) list of impaired waters because of violations of the water-quality standard for fecal coliform bacteria. A total maximum daily load (TMDL) will need to be developed by 2006 for each of these impaired streams and rivers by the Virginia Departments of Environmental Quality and Conservation and Recreation. A TMDL is a quantitative representation of the maximum load of a given water-quality constituent, from all point and nonpoint sources, that a stream can assimilate without violating the designated water-quality standard. Blacks Run, in Rockingham County, Virginia, is one of the stream segments listed by the State of Virginia as impaired by fecal coliform bacteria. Watershed modeling and bacterial source tracking were used to develop the technical components of the fecal coliform bacteria TMDL for Accotink Creek. The Hydrological Simulation Program?FORTRAN (HSPF) was used to simulate streamflow, fecal coliform concentrations, and source-specific fecal coliform loading in Blacks Run. Ribotyping, a bacterial source tracking technique, was used to identify the dominant sources of fecal coliform bacteria in the Blacks Run watershed. Ribotyping also was used to determine the relative contributions of specific sources to the observed fecal coliform load in Blacks Run. Data from the ribotyping analysis were incorporated into the calibration of the fecal coliform model. Study results provide information regarding the calibration of the streamflow and fecal coliform bacteria models and also identify the reductions in fecal coliform loads required to meet the TMDL for Blacks Run. The calibrated streamflow model simulated observed streamflow

  17. Use of the Hydrological Simulation Program-FORTRAN and Bacterial Source Tracking for Development of the fecal coliform Total Maximum Daily Load (TMDL) for Accotink Creek, Fairfax County, Virginia

    USGS Publications Warehouse

    Moyer, Douglas; Hyer, Kenneth

    2003-01-01

    Impairment of surface waters by fecal coliform bacteria is a water-quality issue of national scope and importance. Section 303(d) of the Clean Water Act requires that each State identify surface waters that do not meet applicable water-quality standards. In Virginia, more than 175 stream segments are on the 1998 Section 303(d) list of impaired waters because of violations of the water-quality standard for fecal coliform bacteria. A total maximum daily load (TMDL) will need to be developed by 2006 for each of these impaired streams and rivers by the Virginia Departments of Environmental Quality and Conservation and Recreation. A TMDL is a quantitative representation of the maximum load of a given water-quality constituent, from all point and nonpoint sources, that a stream can assimilate without violating the designated water-quality standard. Accotink Creek, in Fairfax County, Virginia, is one of the stream segments listed by the State of Virginia as impaired by fecal coliform bacteria. Watershed modeling and bacterial source tracking were used to develop the technical components of the fecal coliform bacteria TMDL for Accotink Creek. The Hydrological Simulation Program?FORTRAN (HSPF) was used to simulate streamflow, fecal coliform concentrations, and source-specific fecal coliform loading in Accotink Creek. Ribotyping, a bacterial source tracking technique, was used to identify the dominant sources of fecal coliform bacteria in the Accotink Creek watershed. Ribotyping also was used to determine the relative contributions of specific sources to the observed fecal coliform load in Accotink Creek. Data from the ribotyping analysis were incorporated into the calibration of the fecal coliform model. Study results provide information regarding the calibration of the streamflow and fecal coliform bacteria models and also identify the reductions in fecal coliform loads required to meet the TMDL for Accotink Creek. The calibrated streamflow model simulated observed

  18. Assessment of the climate change impacts on fecal coliform contamination in a tidal estuarine system.

    PubMed

    Liu, Wen-Cheng; Chan, Wen-Ting

    2015-12-01

    Climate change is one of the key factors affecting the future microbiological water quality in rivers and tidal estuaries. A coupled 3D hydrodynamic and fecal coliform transport model was developed and applied to the Danshuei River estuarine system for predicting the influences of climate change on microbiological water quality. The hydrodynamic and fecal coliform model was validated using observational salinity and fecal coliform distributions. According to the analyses of the statistical error, predictions of the salinity and the fecal coliform concentration from the model simulation quantitatively agreed with the observed data. The validated model was then applied to predict the fecal coliform contamination as a result of climate change, including the change of freshwater discharge and the sea level rise. We found that the reduction of freshwater discharge under climate change scenarios resulted in an increase in the fecal coliform concentration. The sea level rise would decrease fecal coliform distributions because both the water level and the water volume increased. A reduction in freshwater discharge has a negative impact on the fecal coliform concentration, whereas a rising sea level has a positive influence on the fecal coliform contamination. An appropriate strategy for the effective microbiological management in tidal estuaries is required to reveal the persistent trends of climate in the future. PMID:26545372

  19. Isolation of fecal coliforms from pristine sites in a tropical rain forest.

    PubMed

    Rivera, S C; Hazen, T C; Toranzos, G A

    1988-02-01

    Samples collected from water accumulated in leaf axilae of bromeliads (epiphytic flora) in a tropical rain forest were found to harbor fecal coliforms. Random identification of fecal coliform-positive isolates demonstrated the presence of Escherichia coli. This bacterium was also isolated from bromeliad leaf surfaces. These data indicate that E. coli may be part of the phyllosphere microflora and not simply a transient bacterium of this habitat. The isolation of fecal coliforms from these sites was unexpected and raises questions as to the validity of using fecal coliforms as indicators of biological water quality in the tropics. PMID:3281583

  20. Fecal coliforms, caffeine and carbamazepine in stormwater collection systems in a large urban area.

    PubMed

    Sauvé, Sébastien; Aboulfadl, Khadija; Dorner, Sarah; Payment, Pierre; Deschamps, Guy; Prévost, Michèle

    2012-01-01

    Water samples from streams, brooks and storm sewer outfall pipes that collect storm waters across the Island of Montréal were analyzed for caffeine, carbamazepine and fecal coliforms. All samples contained various concentrations of these tracers, indicating a widespread sanitary contamination in urban environments. Fecal coliforms and caffeine levels ranged over several orders of magnitude with a modest correlation between caffeine and fecal coliforms (R(2) value of 0.558). An arbitrary threshold of 400 ng caffeine L(-1) allows us to identify samples with an elevated fecal contamination, as defined by more than 200 colony-forming units per 100 mL (cfu 100 mL(-1)) of fecal coliforms. Low caffeine levels were sporadically related to high fecal coliform counts. Lower levels of caffeine and fecal coliforms were observed in the brooks while the larger streams and storm water discharge points contained over ten times more. The carbamazepine data showed little or no apparent correlation to caffeine. These data suggest that this storm water collection system, located in a highly urbanized urban environment, is widely contaminated by domestic sewers as indicated by the ubiquitous presence of fecal contaminants as well as caffeine and carbamazepine. Caffeine concentrations were relatively well correlated to fecal coliforms, and could potentially be used as a chemical indicator of the level of contamination by sanitary sources. The carbamazepine data was not significantly correlated to fecal coliforms and of little use in this dataset. PMID:22075053

  1. Land cover impacts on stream nutrients and fecal coliform in the lower Piedmont of West Georgia

    NASA Astrophysics Data System (ADS)

    Schoonover, Jon E.; Lockaby, B. Graeme

    2006-12-01

    SummaryAs urbanization infiltrates into rural areas, stream water quality is expected to decline as a result from increased impervious surface and greater sources for pollutants. Consequently, West Georgia's water quality is threatened by extensive development as well as other land uses such as livestock grazing and silvicultural activity. Maintenance of stream water quality, as land development occurs, is critical for the protection of drinking water and biotic integrity. A 2-phase, watershed-scale study was established to develop relationships among land cover and water quality within western Georgia. During phase 1, nutrient and fecal coliform data were collected within 18 mixed land use watersheds, ranging in size from 500 to 2500 ha. Regression models were developed that related land cover to stream water nutrient and fecal coliform concentrations. Nutrient and fecal coliform concentrations within watersheds having >24% impervious surface (IS) were often higher than those in nonurban watersheds (i.e., <5% IS) during both base flow (N: 1.64 mg/L versus 0.61 mg/L, and FC: 430 versus 120 MPN/100 ml) and storm flow (N: 1.93 mg/L versus 0.36 mg/L, and FC: 1600 versus 167 MPN/100 ml). Fecal coliform bacteria in urbanized areas consistently exceeded the US EPA's review criterion for recreational waters during both base flow and to a greater extent storm flow. During phase 2, regression models were tested based on data from six newly chosen watersheds with similar land use/cover patterns. Lastly, theoretical watersheds, based on land use percentages, were created to illustrate trends in water quality impairment as land development occurs. The models developed from this research could be used to forecast water quality changes under various land use scenarios in the developing Piedmont region of the US.

  2. Variability in the characterization of total coliforms, fecal coliforms, and escherichia coli in recreational water supplies of North Mississippi, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fecal coliform, Escherichia coli, is a historical organism for the detection of fecal pollution in water supplies. The presence of E. coli indicates a potential contamination of the water supply by other more hazardous human pathogens. In order to accurately determine the presence and degree o...

  3. Modeling seasonal variability of fecal coliform in natural surface waters using the modified SWAT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fecal coliforms are indicators of pathogens and thereby, understanding of their fate and transport in surface waters is important to protect drinking water sources and public health. We compiled fecal coliform observations from four different sites in the USA and Korea and found a seasonal variabili...

  4. Assessing climate variability impact on thermotolerant coliform bacteria in surface water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study investigated the impacts of climate variability on fecal coliform bacteria (FCB) transport in the Upper Pearl River Watershed (UPRW) in Mississippi. The Soil and Water Assessment Tool (SWAT) was applied to the UPRW using observed flow and FCB concentrations. The SWAT hydrologic model was ...

  5. Modeling fecal coliform contamination in a tidal Danshuei River estuarine system.

    PubMed

    Liu, Wen-Cheng; Chan, Wen-Ting; Young, Chih-Chieh

    2015-01-01

    A three-dimensional fecal coliform transport model was developed and incorporated into a hydrodynamic model to obtain a better understanding of local microbiological water quality in the tidal Danshuei River estuarine system of northern Taiwan. The model was firstly validated with the salinity and fecal coliform data measured in 2010. The concentration comparison showed quantitatively good agreement between the simulation and measurement results. Further, the model was applied to investigate the effects of upstream freshwater discharge variation and fecal coliform loading reduction on the contamination distributions in the tidal estuarine system. The qualitative and quantitative analyses clearly revealed that low freshwater discharge resulted in higher fecal coliform concentration. The fecal coliform loading reduction considerably decreased the contamination along the Danshuei River-Tahan Stream, the Hsintien Stream, and the Keelung River. PMID:25302451

  6. The ecology of "fecal indicator" bacteria commonly found in pulp and paper mill water systems.

    PubMed

    Gauthier, F; Archibald, F

    2001-06-01

    Coliform bacteria have long been used to indicate fecal contamination of water and thus a health hazard. In this study, the in-mill water and external effluent treatment systems of seven typical Canadian pulp and paper mills were all shown to support the growth of numerous coliforms, especially Klebsiella Spp., Escherichia coli. Enterobacter spp., and Citrobacter spp. In all mills and most sampled locations, klebsiellas were the predominant coliforms. Although all but one of the mills had no sewage input and most disinfected their feed (input) water, all contained the most typical fecal indicator bacterium, E. coli. Many of the mill coliforms were classified as fecal coliforms by standard "MPN" and metabolic tests, but this was shown to be due to their thermotolerance, not their origin. Mill coliforms were shown not to be just simple transients from feedwater or furnish (wood), but to be continuously growing, especially in some of the primary clarifiers. Isolated mill coliforms grew very well on a sterilized raw combined mill effluent. The fecal streptococci (enterococci), alternative indicators of fecal health hazards, were common in all mills in the absence of sewage. Ten strains of E. coli isolated from four mills were all shown to be non-toxigenic strains of harmless serotypes. No salmonellas were found. Therefore, the use of total coliform, fecal coliform, enterococci, or E. coli counts as indicators of fecal contamination, and thus of health hazard in pulp and paper mill effluents or biosolids (sludges) known to be free of fecal input is invalid. PMID:11358300

  7. Microplate fecal coliform method to monitor stream water pollution.

    PubMed Central

    Maul, A; Block, J C

    1983-01-01

    A study has been carried out on the Moselle River by means of a microtechnique based on the most-probable-number method for fecal coliform enumeration. This microtechnique, in which each serial dilution of a sample is inoculated into all 96 wells of a microplate, was compared with the standard membrane filter method. It showed a marked overestimation of about 14% due, probably, to the lack of absolute specificity of the method. The high precision of the microtechnique (13%, in terms of the coefficient of variation for log most probable number) and its relative independence from the influence of bacterial density allowed the use of analysis of variance to investigate the effects of spatial and temporal bacterial heterogeneity on the estimation of coliforms. Variability among replicate samples, subsamples, handling, and analytical errors were considered as the major sources of variation in bacterial titration. Variances associated with individual components of the sampling procedure were isolated, and optimal replications of each step were determined. Temporal variation was shown to be more influential than the other three components (most probable number, subsample, sample to sample), which were approximately equal in effect. However, the incidence of sample-to-sample variability (16%, in terms of the coefficient of variation for log most probable number) caused by spatial heterogeneity of bacterial populations in the Moselle River is shown and emphasized. Consequently, we recommend that replicate samples be taken on each occasion when conducting a sampling program for a stream pollution survey. PMID:6360044

  8. Fresh steam-flaked corn in cattle feedlots is an important site for fecal coliform contamination by house flies.

    PubMed

    Ghosh, Anuradha; Zurek, Ludek

    2015-03-01

    House flies are a common pest at food animal facilities, including cattle feedlots. Previously, house flies were shown to play an important role in the ecology of Escherichia coli O157:H7; house flies in cattle feedlots carried this zoonotic pathogen and were able to contaminate cattle through direct contact and/or by contamination of drinking water and feed. Because house flies aggregate in large numbers on fresh ( # 6 h) steam-flaked corn (FSFC) used in cattle feed, the aim of this study was to assess FSFC in a cattle feedlot as a potentially important site of fecal coliform contamination by house flies. House flies and FSFC samples were collected, homogenized, and processed for culturing of fecal coliforms on membrane fecal coliform agar. Selected isolates were identified by 16S rRNA gene sequencing, and representative isolates from each phylogenetic group were genotyped by pulsed-field gel electrophoresis. Fecal coliforms were undetectable in FSFC shortly (0 h) after flaking; however, in summer, after 4 to 6 h, the concentrations of fecal coliforms ranged from 1.9 × 10(3) to 3.7 × 10(4) CFU/g FSFC (mean, 1.1 ± 3.0 × 10(4) CFU/g). House flies from FSFC carried between 7.6 × 10(2) and 4.1 × 10(6) CFU of fecal coliforms per fly (mean, 6.0 ± 2.3 × 10(5) CFU per fly). Fecal coliforms were represented by E. coli (85.1%), Klebsiella spp. (10.6%), and Citrobacter spp. (4.3%). Pulsed-field gel electrophoresis demonstrated clonal matches of E. coli and Klebsiella spp. between house flies and FSFC. In contrast, in winter and in the absence of house flies, the contamination of corn by fecal coliforms was significantly (∼10-fold) lower. These results indicate that FSFC is an important site for bacterial contamination by flies and possible exchange of E. coli and other bacteria among house flies. Further research is needed to evaluate the potential use of screens or blowers to limit the access of house flies to FSFC and therefore their effectiveness in preventing

  9. Assessing fecal coliform fate and transport in a coastal watershed using HSPF.

    PubMed

    Rolle, Kenya; Gitau, Margaret W; Chen, Gang; Chauhan, Ashvini

    2012-01-01

    There is increasing concern regarding spread and proliferation of pathogenic microorganisms in watersheds and their impacts on water quality. In agricultural and rural watersheds fecal coliform occurrence, an indicator of pathogenic contamination, is often thought to be a result of land applications of animal waste. This study used the Hydrologic Simulation Program Fortran (HSPF) along with the Bacterial Indicator Tool to model fecal coliform transport in a coastal watershed with a view to identifying contaminant sources and key contributing areas. Results indicated that the highest levels of fecal coliform contamination (often exceeding the 400 counts/100 ml standard for the area) emanated from areas with and without livestock operations, and from largely forested areas, indicating that livestock operations were not the determining source of fecal coliform as suggested in previous studies. This study found HSPF to be an effective tool for identifying key coliform contributing areas in coastal watersheds. PMID:22797240

  10. Fecal coliform modeling under two flow scenarios in St. Louis Bay of Mississippi.

    PubMed

    Liu, Zhijun; Hashim, Noor B; Kingery, William L; Huddleston, David H

    2010-01-01

    St. Louis Bay, along with its two major tributaries, Wolf River and Jourdan River, are included in the Mississippi 1998 Section 303(d) List for violation of the designated water use of recreation and shellfish harvesting. Fecal coliform was identified as one of the pollutants that caused the water quality impairment. In order to facilitate the total maximum daily loads (TMDL) development, the fecal coliform dynamics was investigated under 2 flow scenarios with a calibrated and validated modeling framework by integration of Environmental Fluid Dynamic Code (EFDC) and Hydrological Simulation Program Fortran (HSPF). EFDC was used to model the hydrodymics and fecal coliform transportation in the Bay and the tributaries, whereas HSPF was applied to compute the flow and fecal coliform loadings from the watersheds. The total amount of precipitation in the dry year simulation corresponds to a 50-year return period of low flow condition, and a 10-year return period of high flow condition for wet weather simulation. For EFDC modeling, the fecal coliform sources considered were the contributions from the 2 upper watersheds (no tidal influence), the 28 small surrounding watershed, and 12 municipal, industrial, and domestic point sources. When simulating the fecal coliform loadings from the 2 upper watersheds using HSPF, the simulated non-point source loadings of fecal coliform included wildlife, land application of hog and cattle manure, land application of poultry litter, and grazing animals. The EFDC modeling results indicated that the wet weather exerted greater stress on fecal coliform water quality conditions. The number of exceedance of fecal coliform water quality standard in wet year simulation is much higher than that in dry year simulation. The impact of the upper rural watersheds loads on fecal coliform levels in the St. Louis Bay is much less significant than that from the surrounding urban runoff. Fecal coliform TMDL development should be based on high flow

  11. Method of Detecting Coliform Bacteria from Reflected Light

    NASA Technical Reports Server (NTRS)

    Vincent, Robert K. (Inventor)

    2014-01-01

    The present invention relates to a method of detecting coliform bacteria in water from reflected light, and also includes devices for the measurement, calculation and transmission of data relating to that method.

  12. Removal of fecal coliforms by thermophilic anaerobic digestion processes.

    PubMed

    De León, C; Jenkins, D

    2002-01-01

    Recent U.S. EPA regulations (40 CFR Section 503) specify maximum concentrations of pathogens and metals for Class A wastewater treatment plant sludges. The most common sludge process is mesophilic (35 degrees C) digestion which stabilizes the solids, produces a combustible gas but does not create an effluent that meets the 503 Class A pathogen requirements. This investigation was conducted to determine whether anaerobic digestion processes incorporating a thermophilic stage could achieve 503 Class A pathogen levels. The research reported here was a bench-scale screening study meant to identify the most promising process alternatives for further investigation. Fecal Coliform (FC) concentrations were used to assess disinfection efficiency. Digesters were 30 L capacity fed semi-continuously in draw-fill mode. Digester startup was rapid to produce true thermophiles. Temperature staging and pH were assessed in 3 sets of experiments: Set 1 were one stage ("acid phase"), Set 2 were one stage ("acid + methane phases") and Set 3 were two stage ("acid phase" then "methanogenic phase"). Feed was a 1:1 mixture of Thickened Waste Activated Sludge and Primary Sludge. The following anaerobic digestion configurations and operating parameters allowed the production of digested sludge with a mean FC concentration statistically less than 10(3) (the regulatory value for Class A sludge): thermophilic single stage acid phase at 52 and 62 degrees C; thermophilic single stage acid + methane phase at 48 degrees C, 52 degrees C and 62 degrees C; two-stage mesophilic acid phase followed by mesophilic methane phase; two stage mesophilic acid phase followed by thermophilic methane phase at 48 degrees C, 52 degrees C and 62 degrees C. If the maximum digested FC concentration must be below 10(3) MPN/g TS then the following digester configurations and operating conditions will be compliant: two stage mesophilic acid phase followed by thermophilic methane phase at 52 degrees C and 62 degrees C

  13. Use of the Hydrological Simulation Program-FORTRAN and bacterial source tracking for development of the fecal coliform total maximum daily load (TMDL) for Christians Creek, Augusta County, Virginia

    USGS Publications Warehouse

    Moyer, Douglas; Hyer, Kenneth

    2003-01-01

    Impairment of surface waters by fecal coliform bacteria is a water-quality issue of national scope and importance. Section 303(d) of the Clean Water Act requires that each State identify surface waters that do not meet applicable water-quality standards. In Virginia, more than 175 stream segments are on the 1998 Section 303(d) list of impaired waters because of violations of the water-quality standard for fecal coliform bacteria. A total maximum daily load (TMDL) will need to be developed by 2006 for each of these impaired streams and rivers by the Virginia Departments of Environmental Quality and Conservation and Recreation. A TMDL is a quantitative representation of the maximum load of a given water-quality constituent, from all point and nonpoint sources, that a stream can assimilate without violating the designated water-quality standard. Christians Creek, in Augusta County, Virginia, is one of the stream segments listed by the State of Virginia as impaired by fecal coliform bacteria. Watershed modeling and bacterial source tracking were used to develop the technical components of the fecal coliform bacteria TMDL for Christians Creek. The Hydrological Simulation Program?FORTRAN (HSPF) was used to simulate streamflow, fecal coliform concentrations, and source-specific fecal coliform loading in Christians Creek. Ribotyping, a bacterial source tracking technique, was used to identify the dominant sources of fecal coliform bacteria in the Christians Creek watershed. Ribotyping also was used to determine the relative contributions of specific sources to the observed fecal coliform load in Christians Creek. Data from the ribotyping analysis were incorporated into the calibration of the fecal coliform model. Study results provide information regarding the calibration of the streamflow and fecal coliform bacteria models and also identify the reductions in fecal coliform loads required to meet the TMDL for Christians Creek. The calibrated streamflow model simulated

  14. Coliform Bacteria Monitoring in Fish Systems: Current Practices in Public Aquaria.

    PubMed

    Culpepper, Erin E; Clayton, Leigh A; Hadfield, Catherine A; Arnold, Jill E; Bourbon, Holly M

    2016-06-01

    Public aquaria evaluate coliform indicator bacteria levels in fish systems, but the purpose of testing, testing methods, and management responses are not standardized, unlike with the coliform bacteria testing for marine mammal enclosures required by the U.S. Department of Agriculture. An online survey was sent to selected aquaria to document current testing and management practices in fish systems without marine mammals. The information collected included indicator bacteria species, the size and type of systems monitored, the primary purpose of testing, sampling frequency, test methods, the criteria for interpreting results, corrective actions, and management changes to limit human exposure. Of the 25 institutions to which surveys were sent, 19 (76%) responded. Fourteen reported testing for fecal indicator bacteria in fish systems. The most commonly tested indicator species were total (86%) and fecal (79%) coliform bacteria, which were detected by means of the membrane filtration method (64%). Multiple types and sizes of systems were tested, and the guidelines for testing and corrective actions were highly variable. Only three institutions performed additional tests to confirm the identification of indicator organisms. The results from this study can be used to compare bacterial monitoring practices and protocols in fish systems, as an aid to discussions relating to the accuracy and reliability of test results, and to help implement appropriate management responses. Received August 23, 2015; accepted December 29, 2015. PMID:27168340

  15. Antibiotic resistance and R-factors in the fecal coliform flora of urban and rural dogs.

    PubMed

    Monaghan, C; Tierney, U; Colleran, E

    1981-02-01

    The incidence of antibiotic-resistant fecal coliforms in the rectal flora of 106 healthy dogs in the Galway area was investigated. As far as could be determined, none of the dogs had received antimicrobial drugs. Half of the dogs sampled were from homes within the city boundaries, whereas the remainder were from farms within a 40-mile (24.8-km) radius of the city. Of the dogs sampled, 47 had a highly susceptible fecal coliform flora, with less than 1% of the coliform population resistant to any of the four test antibiotics. Fecal coliforms resistant to one or more of the test drugs comprised between 40 and 100% of the total fecal coliform population of 36% of the rural dogs and 13% of the urban dogs sampled. Of the 473 resistant Escherichia coli isolates studied, the highest number of associated resistance determinants encountered was 5, with a medium number of 2.5. Of the E. coli isolates from rural dogs, 52% were resistant to three or more antibiotics compared with 37% of the isolates from urban dogs. A total of 64% of the isolates were shown to transfer some or all of their resistance determinants by conjugation. The transferability of ampicillin (77%) and chloramphenicol (70%) resistance determinants was higher than that of streptomycin (40%) or tetracycline (44%). PMID:6751217

  16. Influence of pH, Oxygen, and Humic Substances on Ability of Sunlight To Damage Fecal Coliforms in Waste Stabilization Pond Water

    PubMed Central

    Curtis, Thomas P.; Mara, D. Duncan; Silva, Salomao A.

    1992-01-01

    Simple beaker experiments established that light damages fecal coliforms in waste stabilization ponds by an oxygen-mediated exogenous photosensitization. Wavelengths of up to 700 nm were able to damage bacteria. The ability of wavelengths of >425 nm to damage fecal coliforms was dependent on the presence of dissolved sensitizers. The sensitizers were ubiquitous in raw sewage, unaffected by sewage treatment, not derivatives of bacteriochlorophyll or chlorophyll, absorbed well in UV light, and had a slight yellowish color; they are therefore believed to be humic substances. The ability of light to damage fecal coliforms was highly sensitive to, and completely dependent on, oxygen. Scavengers of H2O2 and singlet oxygen could protect the bacteria from the effects of sunlight, but scavengers of hydroxyl radicals and superoxides could not. Light-mediated damage of fecal coliforms was highly sensitive to elevated pH values, which also enabled light with wavelengths of >425 nm (in the presence of the sensitizer) to damage the bacteria. We conclude that humic substances, pH, and dissolved oxygen are important variables in the process by which light damages microorganisms in this and other environments and that these variables should be considered in future research on, and models of, the effects of light. PMID:16348698

  17. Assessing the sources of high fecal coliform levels at an urban tropical beach

    PubMed Central

    Davino, Aline Mendonça Cavalcante; de Melo, Milena Bandeira; Caffaro, Roberto Augusto

    2015-01-01

    Recreational water quality is commonly assessed by microbial indicators such as fecal coliforms. Maceió is the capital of Alagoas state, located in tropical northeastern Brazil. Its beaches are considered as the most beautiful urban beaches in the country. Jatiúca Beach in Maceió was found to be unsuitable for bathing continuously during the year of 2011. The same level of contamination was not observed in surrounding beaches. The aim of this study was to initiate the search for the sources of these high coliform levels, so that contamination can be eventually mitigated. We performed a retrospective analysis of historical results of fecal coliform concentrations from 2006 to 2012 at five monitoring stations located in the study region. Results showed that Jatiúca Beach consistently presented the worst quality among the studied beaches. A field survey was conducted to identify existing point and non-point sources of pollution in the area. Monitoring in the vicinity of Jatiúca was spatially intensified. Fecal coliform concentrations were categorized according to tide range and tide stage. A storm drain located in northern Jatiúca was identified as the main point source of the contamination. However, fecal coliform concentrations at Jatiúca were high during high tides and spring tides even when this point source was inactive (no rainfall). We hypothesize that high fecal coliform levels in Jatiúca Beach may also be caused by aquifer contamination or, more likely, from tide washing of contaminated sand. Both of these hypotheses will be further investigated. PMID:26691459

  18. Assessing the sources of high fecal coliform levels at an urban tropical beach.

    PubMed

    Davino, Aline Mendonça Cavalcante; de Melo, Milena Bandeira; Caffaro Filho, Roberto Augusto

    2015-01-01

    Recreational water quality is commonly assessed by microbial indicators such as fecal coliforms. Maceió is the capital of Alagoas state, located in tropical northeastern Brazil. Its beaches are considered as the most beautiful urban beaches in the country. Jatiúca Beach in Maceió was found to be unsuitable for bathing continuously during the year of 2011. The same level of contamination was not observed in surrounding beaches. The aim of this study was to initiate the search for the sources of these high coliform levels, so that contamination can be eventually mitigated. We performed a retrospective analysis of historical results of fecal coliform concentrations from 2006 to 2012 at five monitoring stations located in the study region. Results showed that Jatiúca Beach consistently presented the worst quality among the studied beaches. A field survey was conducted to identify existing point and non-point sources of pollution in the area. Monitoring in the vicinity of Jatiúca was spatially intensified. Fecal coliform concentrations were categorized according to tide range and tide stage. A storm drain located in northern Jatiúca was identified as the main point source of the contamination. However, fecal coliform concentrations at Jatiúca were high during high tides and spring tides even when this point source was inactive (no rainfall). We hypothesize that high fecal coliform levels in Jatiúca Beach may also be caused by aquifer contamination or, more likely, from tide washing of contaminated sand. Both of these hypotheses will be further investigated. PMID:26691459

  19. Rapid enumeration of Fecal Coliforms in water by a colorimetric beta-galactosidase assay.

    PubMed Central

    Warren, L S; Benoit, R E; Jessee, J A

    1978-01-01

    The colorimetric beta-galactosidase assay is based upon the enzymatic hydrolysis of the substrate o-nitrophenyl-beta-D-galactoside (ONPG) by fecal coliforms. This technique provides an estimate of the fecal coliform concentration within 8 to 20 h. A 100-ml portion of test sample was passed through a 0.45 micrometer membrane filter. This filter was then incubated at 37 degrees C for 1 h in EC medium followed by the addition of filter-sterilized ONPG. The incubation was continued at 44.5 degrees C until a half-maximum absorbance (at 420 nm) was reached. The time between the start of incubation and the half-maximum absorbance was proportional to the concentration of fecal coliforms present. Escherichia coli (K-12) was used to measure the kinetics of substrate hydrolysis and the response time of different cell concentrations. High cell densities produced an immediate response, whereas 1 cell/ml will produce a response in less than 20 h. In field studies in which samples were taken from a range of grossly polluted streams to relatively clean lake water, a linear correlation between ONPG hydrolysis times and fecal coliform most-probable-number values was established. A total of 302 isolates randomly selected from positive ONPG-EC media, which were derived from 11 different habitats, were identified as E. coli (96.69 percent), Enterobacter cloacae (2.32 percent), Klebsiella pneumoniae (0.66 percent), and Citrobacter freundii (0.33 percent). PMID:414659

  20. Fecal Coliform Interaction with Soil Aggregates: Effect of Water Content and Bovine Manure Application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aims: To test the hypothesis that fecal coliform (FC) interaction with soil aggregates is affected by aggregate size, water content and bovine manure application. Methods and Results: Tyler loam soil aggregates were separated into fractions of 3.35-4.75 mm, 4.75-7.93 mm and 7.93-9.5 mm. Air-dry an...

  1. 33 CFR 159.319 - Fecal coliform and total suspended solids standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... suspended solids standards. 159.319 Section 159.319 Navigation and Navigable Waters COAST GUARD, DEPARTMENT... Certain Alaskan Waters by Cruise Vessel Operations § 159.319 Fecal coliform and total suspended solids... solids greater than 150 mg/l. (b) Graywater effluent discharges....

  2. 33 CFR 159.319 - Fecal coliform and total suspended solids standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... suspended solids standards. 159.319 Section 159.319 Navigation and Navigable Waters COAST GUARD, DEPARTMENT... Certain Alaskan Waters by Cruise Vessel Operations § 159.319 Fecal coliform and total suspended solids... solids greater than 150 mg/l. (b) Graywater effluent discharges....

  3. 33 CFR 159.319 - Fecal coliform and total suspended solids standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... suspended solids standards. 159.319 Section 159.319 Navigation and Navigable Waters COAST GUARD, DEPARTMENT... Certain Alaskan Waters by Cruise Vessel Operations § 159.319 Fecal coliform and total suspended solids... solids greater than 150 mg/l. (b) Graywater effluent discharges....

  4. 33 CFR 159.319 - Fecal coliform and total suspended solids standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... suspended solids standards. 159.319 Section 159.319 Navigation and Navigable Waters COAST GUARD, DEPARTMENT... Certain Alaskan Waters by Cruise Vessel Operations § 159.319 Fecal coliform and total suspended solids... solids greater than 150 mg/l. (b) Graywater effluent discharges....

  5. PSEUDOMONAS AERUGINOSA-FECAL COLIFORM RELATIONSHIPS IN ESTUARINE AND FRESH RECREATIONAL WATERS

    EPA Science Inventory

    This study has shown that Pseudomonas aeruginosa cannot be used as the basis of water standards for the prevention of enteric disease during the recreational use of surface waters. However, P. aeruginosa determinations, when used in conjunction with the assay of fecal coliforms o...

  6. Coliform bacteria in New Jersey domestic wells: influence of geology, laboratory, and method.

    PubMed

    Atherholt, Thomas B; Bousenberry, Raymond T; Carter, Gail P; Korn, Leo R; Louis, Judith B; Serfes, Michael E; Waller, Debra A

    2013-01-01

    Following passage of the New Jersey Private Well Testing Act, 50,800 domestic wells were tested between 2002 and 2007 for the presence of total coliform (TC) bacteria. Wells containing TC bacteria were further tested for either fecal coliform or Escherichia coli (FC/E. coli) bacteria. Analysis of the data, generated by 39 laboratories, revealed that the rate of coliform detections in groundwater (GW) was influenced by the laboratory and the method used, and also by geology. Based on one sample per well, TC and FC/E. coli were detected in wells located in bedrock 3 and 3.7 times more frequently, respectively, than in wells located in the unconsolidated strata of the Coastal Plain. In bedrock, detection rates were higher in sedimentary rock than in igneous or metamorphic rock. Ice-age glaciers also influenced detection rates, most likely by removing material in some areas and depositing thick layers of unconsolidated material in other areas. In bedrock, coliform bacteria were detected more often in wells with a pH of 3 to 6 than in wells with a pH of 7 to 10 whereas the reverse was true in the Coastal Plain. TC and FC/E. coli bacteria were detected in 33 and 9.5%, respectively, of sedimentary rock wells with pH 3 to 6. Conversely, for Coastal Plain wells with pH 3 to 6, detection rates were 4.4% for TC and 0.6% for FC/E. coli. PMID:23025712

  7. A mechanistic model of runoff-associated fecal coliform fate and transport through a coastal lagoon.

    PubMed

    Steets, B M; Holden, P A

    2003-02-01

    Fecal coliform (FC) contamination in coastal waters is an ongoing public health problem worldwide. Coastal wetlands and lagoons are typically expected to protect coastal waters by attenuating watershed pollutants including FC bacteria. However, new evidence suggests that coastal lagoons or marshes can also be a source of high indicator organism concentrations in coastal waters. We asked for a Mediterranean-type climate, what is the fate of runoff-associated FC through a coastal lagoon? To address this question, we developed a mass balance-based, mechanistic model of FC concentration through a coastal lagoon and simulated, for summer and winter conditions, FC within the lagoon water column, lagoon sediments, and in the ocean water just downstream of the lagoon mouth. Our model accounts for advective flow and dispersion, decay and sedimentation and resuspension of FC-laden sediments during high flow, erosional conditions. Under low flow conditions that occur in the summer, net FC decay and FC storage in lagoon sediments are predicted. Under high flow conditions that occur in the winter, FC-laden sediments are predicted to erode, resuspend and flow out of the lagoon where they elevate FC concentrations in the coastal ocean. For both seasonal conditions, the predicted water column FC concentrations were within an order of magnitude of field measurements for a reference site in southern California. Our results suggest that there are seasonally varying roles for coastal lagoons in mediating FC contamination to coastal waters. PMID:12688694

  8. Influence of seasonal environmental variables on the distribution of presumptive fecal Coliforms around an Antarctic research station.

    PubMed

    Hughes, Kevin A

    2003-08-01

    Factors affecting fecal microorganism survival and distribution in the Antarctic marine environment include solar radiation, water salinity, temperature, sea ice conditions, and fecal input by humans and local wildlife populations. This study assessed the influence of these factors on the distribution of presumptive fecal coliforms around Rothera Point, Adelaide Island, Antarctic Peninsula during the austral summer and winter of February 1999 to September 1999. Each factor had a different degree of influence depending on the time of year. In summer (February), although the station population was high, presumptive fecal coliform concentrations were low, probably due to the biologically damaging effects of solar radiation. However, summer algal blooms reduced penetration of solar radiation into the water column. By early winter (April), fecal coliform concentrations were high, due to increased fecal input by migrant wildlife, while solar radiation doses were low. By late winter (September), fecal coliform concentrations were high near the station sewage outfall, as sea ice formation limited solar radiation penetration into the sea and prevented wind-driven water circulation near the outfall. During this study, environmental factors masked the effect of station population numbers on sewage plume size. If sewage production increases throughout the Antarctic, environmental factors may become less significant and effective sewage waste management will become increasingly important. These findings highlight the need for year-round monitoring of fecal coliform distribution in Antarctic waters near research stations to produce realistic evaluations of sewage pollution persistence and dispersal. PMID:12902283

  9. Rapid, single-step most-probable-number method for enumerating fecal coliforms in effluents from sewage treatment plants

    NASA Technical Reports Server (NTRS)

    Munoz, E. F.; Silverman, M. P.

    1979-01-01

    A single-step most-probable-number method for determining the number of fecal coliform bacteria present in sewage treatment plant effluents is discussed. A single growth medium based on that of Reasoner et al. (1976) and consisting of 5.0 gr. proteose peptone, 3.0 gr. yeast extract, 10.0 gr. lactose, 7.5 gr. NaCl, 0.2 gr. sodium lauryl sulfate, and 0.1 gr. sodium desoxycholate per liter is used. The pH is adjusted to 6.5, and samples are incubated at 44.5 deg C. Bacterial growth is detected either by measuring the increase with time in the electrical impedance ratio between the innoculated sample vial and an uninnoculated reference vial or by visual examination for turbidity. Results obtained by the single-step method for chlorinated and unchlorinated effluent samples are in excellent agreement with those obtained by the standard method. It is suggested that in automated treatment plants impedance ratio data could be automatically matched by computer programs with the appropriate dilution factors and most probable number tables already in the computer memory, with the corresponding result displayed as fecal coliforms per 100 ml of effluent.

  10. Classification of Antibiotic Resistance Patterns of Indicator Bacteria by Discriminant Analysis: Use in Predicting the Source of Fecal Contamination in Subtropical Waters

    PubMed Central

    Harwood, Valerie J.; Whitlock, John; Withington, Victoria

    2000-01-01

    The antibiotic resistance patterns of fecal streptococci and fecal coliforms isolated from domestic wastewater and animal feces were determined using a battery of antibiotics (amoxicillin, ampicillin, cephalothin, chlortetracycline, oxytetracycline, tetracycline, erythromycin, streptomycin, and vancomycin) at four concentrations each. The sources of animal feces included wild birds, cattle, chickens, dogs, pigs, and raccoons. Antibiotic resistance patterns of fecal streptococci and fecal coliforms from known sources were grouped into two separate databases, and discriminant analysis of these patterns was used to establish the relationship between the antibiotic resistance patterns and the bacterial source. The fecal streptococcus and fecal coliform databases classified isolates from known sources with similar accuracies. The average rate of correct classification for the fecal streptococcus database was 62.3%, and that for the fecal coliform database was 63.9%. The sources of fecal streptococci and fecal coliforms isolated from surface waters were identified by discriminant analysis of their antibiotic resistance patterns. Both databases identified the source of indicator bacteria isolated from surface waters directly impacted by septic tank discharges as human. At sample sites selected for relatively low anthropogenic impact, the dominant sources of indicator bacteria were identified as various animals. The antibiotic resistance analysis technique promises to be a useful tool in assessing sources of fecal contamination in subtropical waters, such as those in Florida. PMID:10966379

  11. Detection of coliform bacteria in water by polymerase chain reaction and gene probes.

    PubMed Central

    Bej, A K; Steffan, R J; DiCesare, J; Haff, L; Atlas, R M

    1990-01-01

    Polymerase chain reaction (PCR) amplification and gene probe detection of regions of two genes, lacZ and lamB, were tested for their abilities to detect coliform bacteria. Amplification of a segment of the coding region of Escherichia coli lacZ by using a PCR primer annealing temperature of 50 degrees C detected E. coli and other coliform bacteria (including Shigella spp.) but not Salmonella spp. and noncoliform bacteria. Amplification of a region of E. coli lamB by using a primer annealing temperature of 50 degrees C selectively detected E. coli and Salmonella and Shigella spp. PCR amplification and radiolabeled gene probes detected as little as 1 to 10 fg of genomic E. coli DNA and as a few as 1 to 5 viable E. coli cells in 100 ml of water. PCR amplification of lacZ and lamB provides a basis for a method to detect indicators of fecal contamination of water, and amplification of lamB in particular permits detection of E. coli and enteric pathogens (Salmonella and Shigella spp.) with the necessary specificity and sensitivity for monitoring the bacteriological quality of water so as to ensure the safety of water supplies. Images PMID:2306085

  12. Method of Detecting Coliform Bacteria and Escherichia Coli Bacteria from Reflected Light

    NASA Technical Reports Server (NTRS)

    Vincent, Robert (Inventor)

    2013-01-01

    The present invention relates to a method of detecting coliform bacteria in water from reflected light and a method of detecting Eschericha Coli bacteria in water from reflected light, and also includes devices for the measurement, calculation and transmission of data relating to that method.

  13. Effects of oral orbifloxacin on fecal coliforms in healthy cats: a pilot study

    PubMed Central

    HARADA, Kazuki; SASAKI, Atsushi; SHIMIZU, Takae

    2015-01-01

    The study objective was to determine the effect of oral orbifloxacin (ORB) on antimicrobial susceptibility and composition of fecal coliforms in cats. Nine cats were randomized to two groups administered a daily oral dose of 2.5 and 5.0 mg ORB/kg for 7 days and a control group (three cats per group). Coliforms were isolated from stool samples and were tested for susceptibilities to ORB and 5 other drugs. ORB concentration in feces was measured using high-performance liquid chromatography (HPLC). The coliforms were undetectable after 2 days of ORB administration, and their number increased in most cats after termination of the administration. Furthermore, only isolates of Escherichia coli were detected in all cats before administration, and those of Citrobacter freundii were detected after termination of the administration. E. coli isolates exhibited high ORB susceptibility [Minimum inhibitory concentration (MIC), ≤0.125 µg/ml] or relatively low susceptibility (MIC, 1−2 µg/ml) with a single gyrA mutation. C. freundii isolates largely exhibited intermediate ORB susceptibility (MIC, 4 µg/ml), in addition to resistance to ampicillin and cefazolin, and harbored qnrB, but not a gyrA mutation. HPLC revealed that the peaks of mean concentration were 61.3 and 141.0 µg/g in groups receiving 2.5 and 5.0 mg/kg, respectively. Our findings suggest that oral ORB may alter the total counts and composition of fecal coliform, but is unlikely to yield highly fluoroquinolone-resistant mutants of E. coli and C. freundii in cats, possibly because of the high drug concentration in feces. PMID:26311787

  14. Effects of oral orbifloxacin on fecal coliforms in healthy cats: a pilot study.

    PubMed

    Harada, Kazuki; Sasaki, Atsushi; Shimizu, Takae

    2016-01-01

    The study objective was to determine the effect of oral orbifloxacin (ORB) on antimicrobial susceptibility and composition of fecal coliforms in cats. Nine cats were randomized to two groups administered a daily oral dose of 2.5 and 5.0 mg ORB/kg for 7 days and a control group (three cats per group). Coliforms were isolated from stool samples and were tested for susceptibilities to ORB and 5 other drugs. ORB concentration in feces was measured using high-performance liquid chromatography (HPLC). The coliforms were undetectable after 2 days of ORB administration, and their number increased in most cats after termination of the administration. Furthermore, only isolates of Escherichia coli were detected in all cats before administration, and those of Citrobacter freundii were detected after termination of the administration. E. coli isolates exhibited high ORB susceptibility [Minimum inhibitory concentration (MIC), ≤0.125 µg/ml] or relatively low susceptibility (MIC, 1-2 µg/ml) with a single gyrA mutation. C. freundii isolates largely exhibited intermediate ORB susceptibility (MIC, 4 µg/ml), in addition to resistance to ampicillin and cefazolin, and harbored qnrB, but not a gyrA mutation. HPLC revealed that the peaks of mean concentration were 61.3 and 141.0 µg/g in groups receiving 2.5 and 5.0 mg/kg, respectively. Our findings suggest that oral ORB may alter the total counts and composition of fecal coliform, but is unlikely to yield highly fluoroquinolone-resistant mutants of E. coli and C. freundii in cats, possibly because of the high drug concentration in feces. PMID:26311787

  15. Fecal coliform and Enterococci relationships to rainfall and runoff in a rural watershed reveal intrinsic differences between these fecal pollution indicators

    NASA Astrophysics Data System (ADS)

    Albritton, H. L.; Schulz, C. J.; Childers, G. W.

    2009-12-01

    Fecal coliforms and Enterococci, the two most commonly used fecal pollution indicators, were enumerated on a weekly basis for eight years at a USGS real time water station located on the Tangipahoa River in southeast Louisiana. This river provides drainage for 520 sq. mi. and receives both domestic and agricultural runoff. The fecal pollution data set was used to construct a nonparametric multiplicative regression hydrologic model that was able to forecast fecal coliform concentrations (cross-validated R2 = 0.57); however, Enterococci forecasting was unsuccessful. This result was surprising as it was expected that both fecal pollution indicators would have similar routes of entry in receiving waters. It was also found that Enterococci exceeded recreational water quality standards (33cfu / 100ml) in 91% of samples and fecal coliforms exceeded water quality standards (200cfu / 100ml) 46% of the time. The differing conclusions that could be reached depending upon the fecal pollution indicator used pose a dilemma from a public health perspective and the underlying causes of these discrepancies were investigated. The role of measurement uncertainty stemming from sampling error (spatial and temporal) and lab error (operator and systematic error) in both fecal coliform and Enterococci hydrologic modeling was examined. Measurement error between the two indicator species did not account for differences between hydrologic modeling results. Alternative possibilities for the observations included differential survival and environmental reservoirs (growth/regrowth) of each indicator organism. Time series analysis demonstrated distinct trends for each indicator organism. Fecal coliforms had peak densities in the winter months, corresponding to higher rainfall, runoff, and lower temperatures. Enterococci had relatively stable densities, with a slight increase in density in the summer months. These trends also show that Enterococci to fecal coliform ratios are relatively greater

  16. Evaluation of surfactant modified zeolite (SMZ) as a filter for removal of E. coli and fecal coliforms from drinking water wells in Malawi

    NASA Astrophysics Data System (ADS)

    Herzog, S. P.; Mtethiwa, A.; Ghambi, C.; Lusangasi, B.

    2012-12-01

    Unsafe drinking water is a problem faced by millions of people in sub-Saharan Africa and in developing nations around the world. While effective water treatments exist, their generally high costs preclude their use by the low-income populations that need them most. Surfactant modified zeolite (SMZ) is a low-cost filter medium that has previously been demonstrated to efficiently remove bacteria and viruses in laboratory settings. The first known field test of SMZ as a drinking water filter was conducted in rural villages near Lilongwe, Malawi. Water was drawn from hand-dug wells and filtered through SMZ packs constructed from local materials. This filtration step was repeated over a period of several weeks to determine the effective lifetime of the filters. Pre-filtration and post-filtration samples were analyzed for E. coli and fecal coliforms by culturing and colorimetric presence/absence tests. All unfiltered water samples were contaminated with E. coli and fecal coliforms. The aforementioned pathogens were not detected in any of the initial filtered samples. After filtering an average of approximately 40 liters, E. coli and fecal coliforms were found to be present in the filtered water, presumably indicating that the filters had become saturated with the pathogens. The results demonstrate that SMZ could serve as an effective, affordable filter medium for treatment of drinking water in rural settings and developing countries. It is anticipated that the design of the filters could be further enhanced, leading to an increase in their effective lifespan.

  17. Environmental sources of fecal bacteria

    USGS Publications Warehouse

    Byappanahalli, Muruleedhara N.; Ishii, Satoshi

    2011-01-01

    This chapter provides a review of the research on environmental occurrences of faecal indicator bacteria in a variety of terrestrial and aquatic habitats under different geographic and climatic conditions, and discusses how these external sources may affect surface water quality.

  18. Coliform bacteria and nitrate contamination of wells in major soils of Frederick, Maryland

    SciTech Connect

    Tuthill, A.; Meikle, D.B.; Alavanja, M.C.R.

    1998-04-01

    An investigation was conducted on the hypothesis that inadequate septic system construction or placement may cause contamination of wells with coliform bacteria and/or nitrates. Specifically, two predictions were tested: (1) A negative correlation between lot size and coliform bacteria and nitrate contamination will exist in unsewered areas. (2) Coliform bacteria and nitrate contamination will decrease with increasing casing length. The relationship of coliform bacteria and nitrate levels to lot size and casing length was tested for all wells in unsewered areas (n = 832) and for wells in 10 soil groups in Frederick County, Maryland, to determine if septic system construction or placement contributed to well contamination. Coliform bacteria and nitrate contamination were negatively correlated with lot size. In addition, coliform bacteria levels were negatively correlated with casing length, and there was a trend toward nitrate levels being associated with casing length. The results suggest that septic systems may be a source of coliform bacteria and nitrate contamination of wells. The casing length required in well construction should be increased in areas where wells may be prone to coliform bacteria contamination if the minimum amount of casing is used.

  19. Improved membrane filtration method incorporating catalase and sodium pyruvate for detection of chlorine-stressed coliform bacteria.

    PubMed Central

    Calabrese, J P; Bissonnette, G K

    1990-01-01

    In vitro pure culture studies were conducted on three different strains of Escherichia coli (K-12, EPA 00244, and SWEI) to determine the effect of chlorination on catalase activity. In each case, stationary-phase cells exhibited significant (P less than 0.001) reductions in enzyme activity following exposure to chlorine. Mean differences in activity between control and chlorine-stressed cells ranged from 8.8 to 20.3 U/mg of protein for E. coli SWEI and EPA 00244, respectively. Following initial enzyme studies, resuscitation experiments utilizing the membrane filtration technique were conducted on chlorinated sewage effluent. Five different amendments, including catalase (1,000 U per plate), heat-inactivated catalase (1,000-U per plate), sodium pyruvate (0.05%), a catalase-sodium pyruvate combination (1,500 U/0.01%), and acetic acid (0.05%), were tested for the ability to enhance detection of chlorine-stressed cells on M-fecal coliform (M-FC), mT7, M-Endo, and tryptone-glucose-yeast extract (TGY) media. Significant (P less than 0.001) increases in recovery of fecal coliforms on M-FC, total coliforms on mT7 and M-Endo, and total heterotrophs on TGY were obtained on plates containing catalase, pyruvate, or the combination of these compounds. Supplementation with heat-inactivated catalase and acetic acid did not improve recovery of chlorine-stressed cells compared with recovery on nonamended media. Subsequent analysis of colonies from plates containing compounds which enhanced recovery indicated coliform verification percentages of greater than 80% on M-FC, greater than 90% on mT7, and greater than 94% on M-Endo media. These data suggest that the addition of peroxide-degrading compounds to various standard recovery media may improve detection of both coliform and heterotrophic bacteria in chlorinated waters. PMID:2268162

  20. [Experiences with the detection of E. coli and coliform bacteria with reference to the drinking water regulation of 1986].

    PubMed

    Hübner, I; Knoll, C; Obst, U

    1989-02-01

    After the introduction of a limiting value for coliform bacteria in the German Drinking Water Regulation from May 22, 1986 the detection of coliform bacteria has become as important as that of E. coli to indicate pathogenic Enterobacteriaceae and fecal contamination. 130 water samples from different steps of drinking water treatment and distribution have been investigated for Enterobacteriaceae, even when typical indicating marks for such as acid- and gas-formation in the enrichment media were absent. We found the total of 46 isolates of Enterobacteriaceae, among which E. coli was the most frequent one. Whereas in 7 samples with acid- and gas-formation in the enrichment media Enterobacteriaceae could not be isolated, coliform bacteria and other enterobacteriaceae were found in 6 samples without these characteristics. As our experiences have show, those 'false positive' results can be avoided by a careful identification procedure of isolated microorganisms. The hygienically much more important 'false negative' results would not be recognized in routine control of drinking water following the prescribed methods. PMID:2494815

  1. Fecal-indicator bacteria in streams alonga gradient of residential development

    USGS Publications Warehouse

    Frenzel, S.A.; Couvillion, C.S.

    2002-01-01

    Fecal-indicator bacteria were sampled at 14 stream sites in Anchorage, Alaska, USA, as part of a study to determine the effects of urbanization on water quality. Population density in the subbasins sampled ranged from zero to 1,750 persons per square kilometer. Higher concentrations of fecal-coliform, E. coli, and enterococci bacteria were measured at the most urbanized sites. Although fecal-indicator bacteria concentrations were higher in summer than in winter, seasonal differences in bacteria concentrations generally were not significant. Areas served by sewer systems had significantly higher fecal-indicator bacteria concentrations than did areas served by septic systems. The areas served by sewer systems also had storm drains that discharged directly to the streams, whereas storm sewers were not present in the areas served by septic systems. Fecal-indicator bacteria concentrations were highly variable over a two-day period of stable streamflow, which may have implications for testing of compliance to water-quality standards.

  2. Vegetable Contamination by the Fecal Bacteria of Poultry Manure: Case Study of Gardening Sites in Southern Benin

    PubMed Central

    Atidégla, Séraphin C.; Huat, Joël; Agbossou, Euloge K.; Saint-Macary, Hervé; Glèlè Kakai, Romain

    2016-01-01

    A study was conducted in southern Benin to assess the contamination of vegetables by fecal coliforms, Escherichia coli, and fecal streptococci as one consequence of the intensification of vegetable cropping through fertilization with poultry manure. For this purpose, on-farm trials were conducted in 2009 and 2010 at Yodo-Condji and Ayi-Guinnou with three replications and four fertilization treatments including poultry manure and three vegetable crops (leafy eggplant, tomato, and carrot). Sampling, laboratory analyses, and counts of fecal bacteria in the samples were performed in different cropping seasons. Whatever the fertilization treatment, the logs of mean fecal bacteria count per g of fresh vegetables were variable but higher than AFNOR criteria. The counts ranged from 8 to 10 fecal coliforms, from 5 to 8 fecal streptococci, and from 2 to 6 Escherichia coli, whereas AFNOR criteria are, respectively, 0, 1, and 0. The long traditional use of poultry manure and its use during the study helped obtain this high population of fecal pathogens. Results confirmed that the contamination of vegetables by fecal bacteria is mainly due to the use of poultry manure. The use of properly composted poultry manure with innovative cropping techniques should help reduce the number and incidence of pathogens. PMID:27069914

  3. Vegetable Contamination by the Fecal Bacteria of Poultry Manure: Case Study of Gardening Sites in Southern Benin.

    PubMed

    Atidégla, Séraphin C; Huat, Joël; Agbossou, Euloge K; Saint-Macary, Hervé; Glèlè Kakai, Romain

    2016-01-01

    A study was conducted in southern Benin to assess the contamination of vegetables by fecal coliforms, Escherichia coli, and fecal streptococci as one consequence of the intensification of vegetable cropping through fertilization with poultry manure. For this purpose, on-farm trials were conducted in 2009 and 2010 at Yodo-Condji and Ayi-Guinnou with three replications and four fertilization treatments including poultry manure and three vegetable crops (leafy eggplant, tomato, and carrot). Sampling, laboratory analyses, and counts of fecal bacteria in the samples were performed in different cropping seasons. Whatever the fertilization treatment, the logs of mean fecal bacteria count per g of fresh vegetables were variable but higher than AFNOR criteria. The counts ranged from 8 to 10 fecal coliforms, from 5 to 8 fecal streptococci, and from 2 to 6 Escherichia coli, whereas AFNOR criteria are, respectively, 0, 1, and 0. The long traditional use of poultry manure and its use during the study helped obtain this high population of fecal pathogens. Results confirmed that the contamination of vegetables by fecal bacteria is mainly due to the use of poultry manure. The use of properly composted poultry manure with innovative cropping techniques should help reduce the number and incidence of pathogens. PMID:27069914

  4. Impacts of sanitation upgrading to the decrease of fecal coliforms entering into the environment in China.

    PubMed

    Tong, Yindong; Yao, Ruihua; He, Wei; Zhou, Feng; Chen, Cen; Liu, Xianhua; Lu, Yiren; Zhang, Wei; Wang, Xuejun; Lin, Yan; Zhou, Min

    2016-08-01

    Identifying the sanitation efficacy of reducing fecal contaminations in the environment is important for evaluating health risks of the public and developing future management strategies to improve sanitation conditions. In this study, we estimated the fecal coliforms (FC) entering into the environment in 31 provinces in China under three sanitation scenarios. Our calculation results indicated that, the current FC release is disparate among regions, and the human releases in the rural regions were dominant, accounting for over 90% of the total human releases. Compared with the human release, the FC release from the livestock was of similar magnitude, but has a quite different spatial distribution. In China Women's Development Program, the Chinese government set the target to make over 85% of the population in the rural access to the toilets in 2020. If the target set by the Chinese government is achieved, a decrease of 34% (12-54%) in the FC releases would be anticipated. In the future, the improvement in sanitation and accesses to the safe drinking water in the less developed regions, such as Tibet, Qinghai, and Ningxia, should be considered as a priority. PMID:27179203

  5. Survival of Manure-borne and Fecal Coliforms in Soil: Temperature Dependence as Affected by Site-Specific Factors.

    PubMed

    Park, Yongeun; Pachepsky, Yakov; Shelton, Daniel; Jeong, Jaehak; Whelan, Gene

    2016-05-01

    Understanding pathogenic and indicator bacteria survival in soils is essential for assessing the potential of microbial contamination of water and produce. The objective of this work was to evaluate the effects of soil properties, animal source, experimental conditions, and the application method on temperature dependencies of manure-borne generic , O157:H7, and fecal coliforms survival in soils. A literature search yielded 151 survival datasets from 70 publications. Either one-stage or two-stage kinetics was observed in the survival datasets. We used duration and rate of the logarithm of concentration change as parameters of the first stage in the two-stage kinetics data. The second stage of the two-stage kinetics and the one-stage kinetics were simulated with the model to find the dependence of the inactivation rate on temperature. Classification and regression trees and linear regressions were applied to parameterize the kinetics. Presence or absence of two-stage kinetics was controlled by temperature, soil texture, soil water content, and for fine-textured soils by setting experiments in the field or in the laboratory. The duration of the first stage was predominantly affected by soil water content and temperature. In the model dependencies of inactivation rates on temperature, parameter estimates were significantly affected by the laboratory versus field conditions and by the application method, whereas inactivation rates at 20°C were significantly affected by all survival and management factors. Results of this work can provide estimates of coliform survival parameters for models of microbial water quality. PMID:27136162

  6. Mortality of fecal bacteria in seawater

    SciTech Connect

    Garcia-Lara, J.; Menon, P.; Servais, P.; Billen, G. )

    1991-03-01

    The authors propose a method for determining the mortality rate for allochthonous bacteria released in aquatic environments without interference due to the loss of culturability in specific culture media. This method consists of following the disappearance of radioactivity from the trichloracetic acid-insoluble fraction in water samples to which ({sup 3}H)thymidine-prelabeled allochthonous bacteria have been added. In coastal seawater, they found that the actual rate of disappearance of fecal bacteria was 1 order of magnitude lower than the rate of loss of culturability on specific media. Minor adaptation of the procedure may facilitate assessment of the effect of protozoan grazing and bacteriophage lysis on the overall bacterial mortality rate.

  7. EFFECT OF WASTEWATER DISINFECTANTS ON SURVIVAL OF R-FACTOR COLIFORM BACTERIA

    EPA Science Inventory

    The objectives of the study were to determine the incidence of antibiotic resistance among coliform bacteria in a secondary waste-water treatment facility and to determine whether various alternative disinfection procedures would select for or against antibiotic resistant colifor...

  8. Environmental monitoring of bacterial contamination and antibiotic resistance patterns of the fecal coliforms isolated from Cauvery River, a major drinking water source in Karnataka, India.

    PubMed

    Skariyachan, Sinosh; Mahajanakatti, Arpitha Badarinath; Grandhi, Nisha Jayaprakash; Prasanna, Akshatha; Sen, Ballari; Sharma, Narasimha; Vasist, Kiran S; Narayanappa, Rajeswari

    2015-05-01

    The present study focuses prudent elucidation of microbial pollution and antibiotic sensitivity profiling of the fecal coliforms isolated from River Cauvery, a major drinking water source in Karnataka, India. Water samples were collected from ten hotspots during the year 2011-2012. The physiochemical characteristics and microbial count of water samples collected from most of the hotspots exhibited greater biological oxygen demand and bacterial count especially coliforms in comparison with control samples (p ≤ 0.01). The antibiotic sensitivity testing was performed using 48 antibiotics against the bacterial isolates by disk-diffusion assay. The current study showed that out of 848 bacterial isolates, 93.51% (n = 793) of the isolates were found to be multidrug-resistant to most of the current generation antibiotics. Among the major isolates, 96.46% (n = 273) of the isolates were found to be multidrug-resistant to 30 antibiotics and they were identified to be Escherichia coli by 16S rDNA gene sequencing. Similarly, 93.85% (n = 107), 94.49% (n = 103), and 90.22% (n = 157) of the isolates exhibited multiple drug resistance to 32, 40, and 37 antibiotics, and they were identified to be Enterobacter cloacae, Pseudomonas trivialis, and Shigella sonnei, respectively. The molecular studies suggested the prevalence of bla TEM genes in all the four isolates and dhfr gene in Escherichia coli and Sh. sonnei. Analogously, most of the other Gram-negative bacteria were found to be multidrug-resistant and the Gram-positive bacteria, Staphylococcus spp. isolated from the water samples were found to be methicillin and vancomycin-resistant Staphylococcus aureus. This is probably the first study elucidating the bacterial pollution and antibiotic sensitivity profiling of fecal coliforms isolated from River Cauvery, Karnataka, India. PMID:25896199

  9. Distribution and variability of fecal-indicator bacteria in Scioto and Olentangy rivers in the Columbus, Ohio, area

    USGS Publications Warehouse

    Myers, D.N.

    1992-01-01

    This report presents the results of a study by the U.S. Geological Survey, in cooperation with the City of Columbus, Ohio, to determine the distribution and variability of fecal-indicator bacteria in Scioto and Olentangy Rivers. Fecal-indicator bacteria are among the contaminants of concern to recreational users of these rivers in the Columbus area. Samples were collected to be analyzed for fecal-coliform and Escherichia coli (E. coli) bacteria and selected water-quality constituents and physical properties at 10 sites-- 4 on the Olentangy River and 6 on the Scioto River during the recreational seasons in 1987, 1988, and 1989. Measurements of streamflow also were made at these sites at various frequencies during base flow and runoff. The concentrations of fecal-coliform and E. coli bacteria in the Scioto and Olentangy Rivers spanned a range of five orders of magnitude, from less than 20 to greater than 2,000,000 col/100 mL (colonies per 100 milliliters). In addition, the concentrations of fecal coliform and E. coli bacteria are well correlated (r=0.97) in the study area. At times, relatively high concentrations, for fecal-indicator bacteria (concentrations greater than 51,000 col/100 mL for fecal-coliform and E. coli ) were found in Olentangy River at Woody Hayes Drive and at Goodale Street, and in Scioto River at Greenlawn Avenue and at Columbus. Intermediate concentrations of fecal-indicator bacteria (from 5,100 to 50,000 col/100 mL for fecal coliform and (from 510 to 50,000 col/100 mL for E. coli ) were found in Scioto River at Town Street and below O'Shaughnessy Dam near Dublin, Ohio, and in Olentangy River at Henderson Road. The lowest (median) concentrations of fecal-indicator bacteria (from 20 to 5,000 col/100 mL for fecal coliform and from 20 to 500 col/100 mL for E. coli ) were found at Olentangy River near Worthington, Ohio, Scioto River at Dublin Road Water Treatment Plant and below Griggs Reservoir. Fecal-coliform concentrations exceeded the geometric

  10. Fecal coliform concentrations in runoff from a grazed, reclaimed surface mine

    SciTech Connect

    Boyer, D.G.; Perry, H.D.

    1987-10-01

    The relatively scarcity of flat or moderately sloping land in Central Appalachia make reclaimed surface mined lands attractive for agricultural uses. A reclaimed surface coal mine in southern West Virginia was placed under grazing management during the 1984 and 1985 grown seasons. Discharge was collected from summer-grazed watersheds of about 2.8 ha and 8.9 ha and analyzed, by the membrane-filtration method, for fecal coliforms (FC). Prior to grazing in 1984, FC counts were < 200/100 ml. During the grazing season, FC ranged from < 0/100 ml to > 1000/100 ml in 1984 and from 0/100 ml to > 2500/100 ml in 1985. FC counts remained high during warm periods for several months after grazing ceased. It was concluded that the bacteriological quality of receiving streams was impacted by grazing the reclaimed area and recommended standards for point sources were often exceeded; however, the FC counts did not appear to be any greater than what would have been expected from grazed, undisturbed areas. Reclaimed surface mines areas in Appalachia have the potential to be a valuable flat land resource and grazing appears to be an alternative post mine land use that affects bacteriological water quality in a similar manner as natural pastures. However, good management practices may be necessary to avoid bacterial contamination of adjacent bodies of water.

  11. Application of the Pearl model to analyze fecal coliform data from conditionally approved shellfish harvest areas in seven Texas bays.

    PubMed

    Conte, F S; Ahmadi, A

    2014-09-01

    The U.S. National Shellfish Sanitation Program (NSSP) 14/43 standard states that conditionally approved shellfish growing areas must be closed for harvest when the geometric mean of fecal coliform concentration exceeds the NSSP limit of 14 most probable number (MPN)/100 mL, or the estimated 90th percentile of fecal coliform concentrations exceeds 43 MPN/100 mL for a five-tube test. The authors hypothesized that the NSSP 14/43 standard is not sufficient to protect the public from risks from consumption of biologically contaminated shellfish and the standard should be modified to 8/26 MPN/100 mL. To verify this hypothesis, the authors analyzed fecal coliform data from conditionally approved shellfish harvest areas of seven Texas bays using the Pearl sanitation model. Results showed that the shellfish closure rules mandated by the Texas Department of State Health Services actually enforced the "Pearl" limits of 8/26 MPN/100 mL, and not the NSSP limit of 14/43 MPN/100 mL. PMID:25226781

  12. RNA-Based Methods Increase the Detection of Fecal Bacteria and Fecal Identifiers in Environmental Waters

    EPA Science Inventory

    We evaluated the use of qPCR RNA-based methods in the detection of fecal bacteria in environmental waters. We showed that RNA methods can increase the detection of fecal bacteria in multiple water matrices. The data suggest that this is a viable alternative for the detection of a...

  13. Detection of the coliform bacteria Escherichia coli and Salmonella sp. in water by a sensitive and rapid immunomagnetic electrochemiluminescence (ECL) technique

    NASA Astrophysics Data System (ADS)

    Yu, H.; Bruno, J.

    1995-10-01

    Hemorrhagic Escherichia coli O157:H7 and other fecal coliform bacteria, such as species of Salmonella, could pose a serious health threat in contaminated water resources. Traditional bacterial culture methods and ELISA based assays for identification of fecal coliforms are relatively slow and ambiguous. Polymerase chain reaction of extracted DNA from such bacteria and immunomagnetic separation (IMS) methods appear promising for this application. Although PCR can be a definitive identification technique, it is relatively time consuming when compared to IMS. In this work, the IMS technique has been coupled with an electrochemiluminescence (ECL) technology to separate specific bacteria from their media and quantitatively detect the bacteria within one hour. The sensitivity of the IMS-ECL assay for E.coli O157 strain and Salmonella sp. is as low as 10 - 100 cells/mL in water samples. In addition, IMS was accomplished in dense washings of food and environmental samples followed by ECL assay. These results suggest strongly use of the IMS-ECL methodology for rapid and facile screening of various bacterial contaminations in water resources or other environmental samples for the low level presence of pathogenic coliforms.

  14. A Synoptic Study of Fecal-Indicator Bacteria in the Wind River, Bighorn River, and Goose Creek Basins, Wyoming, June-July 2000

    USGS Publications Warehouse

    Clark, Melanie L.; Gamper, Merry E.

    2003-01-01

    A synoptic study of fecal-indicator bacteria was conducted during June and July 2000 in the Wind River, Bighorn River, and Goose Creek Basins in Wyoming as part of the U.S. Geological Survey's National Water-Quality Assessment Program for the Yellowstone River Basin. Fecal-coliform concentrations ranged from 2 to 3,000 col/100 mL (colonies per 100 milliliters) for 100 samples, and Escherichia coli concentrations ranged from 1 to 2,800 col/100 mL for 97 samples. Fecal-coliform concentrations exceeded the U.S. Environmental Protection Agency's recommended limit for a single sample for recreational contact with water in 37.0 percent of the samples. Escherichia coli concentrations exceeded the U.S. Environmental Protection Agency's recommended limit for a single sample for moderate use, full-body recreational contact with water in 38.1 percent of the samples and the recommended limit for infrequent use, full-body recreational contact with water in 24.7 percent of the samples. Fecal-indicator-bacteria concentrations varied by basin. Samples from the Bighorn River Basin had the highest median concentrations for fecal coliform of 340 col/100 mL and for Escherichia coli of 300 col/100 mL. Samples from the Wind River Basin had the lowest median concentrations for fecal coliform of 50 col/100 mL and for Escherichia coli of 62 col/100 mL. Fecal-indicator-bacteria concentrations varied by land cover. Samples from sites with an urban land cover had the highest median concentrations for fecal coliform of 540 col/100 mL and for Escherichia coli of 420 col/100 mL. Maximum concentrations for fecal coliform of 3,000 col/100 mL and for Escherichia coli of 2,800 col/100 mL were in samples from sites with an agricultural land cover. The lowest median concentrations for fecal coliform of 130 col/100 mL and for Escherichia coli of 67 col/100 mL were for samples from sites with a forested land cover. A strong and positive relation existed between fecal coliform and Escherichia coli

  15. Association of coliform bacteria with wastewater particles: impact of operational parameters of the activated sludge process.

    PubMed

    Loge, Frank J; Emerick, Robert W; Ginn, Tim R; Darby, Jeannie L

    2002-01-01

    The fraction of particles with associated coliform bacteria (PAC) in the activated sludge process was evaluated using a 16S rRNA oligonucleotide probe specific to the family Enterobacteriaceae. The PAC was found to decline exponentially with increasing mean cell residence times (MCRTs). The factors influencing the formation of PAC, identified with simplified mass balance relationships. are the concentration of particles, the concentration of dispersed (non-particle associated) coliform bacteria, and the MCRT. The concentration of dispersed coliform bacteria was found to decline with increasing MCRTs. The rate of decline was greater than the typical half-life attributed to endogenous decay, suggesting that other factors (e.g., predation by protozoa) influence the concentration of dispersed coliform bacteria, and subsequently the formation of PAC. Given that the association of targeted organisms with particles adversely impacts the performance of a disinfection system, studies targeted at the fate of organisms other than coliform bacteria in the activated sludge process are of paramount importance in assessing the health risks of post-disinfected effluents. PMID:11766816

  16. FECAL INDICATOR BACTERIA PERSISTENCE UNDER NATURAL CONDITIONS IN AN ICE-COVERED RIVER

    EPA Science Inventory

    Total coliform (TC), fecal coliform (FC), and fecal streptococcus (FS) survival characteristics, under natural conditions at 0C in an ice-covered river, were examined during February and March 1975. The membrane filter (MF) technique was used throughout the study, and the multipl...

  17. IDENTIFICATION OF FECAL INDICATOR BACTERIA ISOLATES FROM AN ICE-COVERED RIVER

    EPA Science Inventory

    The membrane filter technique was used to enumerate the total coliform (TC), fecal coliform (FC), and fecal streptococcus (FS) populations at seven sample stations on an ice-covered river downstream from a major source of domestic pollution. From each membrane filter population (...

  18. Temporal and spatial variability of fecal indicator bacteria in the surf zone off Huntington Beach, CA

    USGS Publications Warehouse

    Rosenfeld, L.K.; McGee, C.D.; Robertson, G.L.; Noble, M.A.; Jones, B.H.

    2006-01-01

    Fecal indicator bacteria concentrations measured in the surf zone off Huntington Beach, CA from July 1998-December 2001 were analyzed with respect to their spatial patterns along 23 km of beach, and temporal variability on time scales from hourly to fortnightly. The majority of samples had bacterial concentrations less than, or equal to, the minimum detection limit, but a small percentage exceeded the California recreational water standards. Areas where coliform bacteria exceeded standards were more prevalent north of the Santa Ana River, whereas enterococci exceedances covered a broad area both north and south of the river. Higher concentrations of bacteria were associated with spring tides. No temporal correspondence was found between these bacterial events and either the timing of cold water pulses near shore due to internal tides, or the presence of southerly swell in the surface wave field. All three fecal indicator bacteria exhibited a diel cycle, but enterococci rebounded to high nighttime values almost as soon as the sun went down, whereas coliform levels were highest near the nighttime low tide, which was also the lower low tide. ?? 2006 Elsevier Ltd. All rights reserved.

  19. Temporal and spatial variability of fecal indicator bacteria in the surf zone off Huntington Beach, CA.

    PubMed

    Rosenfeld, L K; McGee, C D; Robertson, G L; Noble, M A; Jones, B H

    2006-06-01

    Fecal indicator bacteria concentrations measured in the surf zone off Huntington Beach, CA from July 1998-December 2001 were analyzed with respect to their spatial patterns along 23 km of beach, and temporal variability on time scales from hourly to fortnightly. The majority of samples had bacterial concentrations less than, or equal to, the minimum detection limit, but a small percentage exceeded the California recreational water standards. Areas where coliform bacteria exceeded standards were more prevalent north of the Santa Ana River, whereas enterococci exceedances covered a broad area both north and south of the river. Higher concentrations of bacteria were associated with spring tides. No temporal correspondence was found between these bacterial events and either the timing of cold water pulses near shore due to internal tides, or the presence of southerly swell in the surface wave field. All three fecal indicator bacteria exhibited a diel cycle, but enterococci rebounded to high nighttime values almost as soon as the sun went down, whereas coliform levels were highest near the nighttime low tide, which was also the lower low tide. PMID:16616361

  20. Fecal-indicator bacteria concentrations in the Illinois River between Hennepin and Peoria, Illinois: 2007-08

    USGS Publications Warehouse

    Dupre, David H.; Hortness, Jon E.; Terrio, Paul J.; Sharpe, Jennifer B.

    2012-01-01

    The Illinois Environmental Protection Agency has designated portions of the Illinois River in Peoria, Woodford, and Tazewell Counties, Illinois, as impaired owing to the presence of fecal coliform bacteria. The U.S. Geological Survey, in cooperation with the Tri-County Regional Planning Commission, examined the water quality in the Illinois River and major tributaries within a 47-mile reach between Peoria and Hennepin, Ill., during water year 2008 (October 2007–September 2008). Investigations included synoptic (snapshot) sampling at multiple locations in a 1-day period: once in October 2007 during lower streamflow conditions, and again in June 2008 during higher streamflow conditions. Five locations in the study area were monitored for the entire year at monthly or more frequent intervals. Two indicator bacteria were analyzed in each water sample: fecal coliform and Escherichia coli (E. coli). Streamflow information from previously established monitoring locations in the study area was used in the analysis. Correlation analyses were used to characterize the relation between the two fecal-indicator bacteria and the relation of either indicator to streamflow. Concentrations of the two measured fecal-indicator bacteria correlated well for all samples analyzed (r = 0.94, p E. coli: rho = -0.43, p = 0.0157). The correlation between fecal indicators and streamflow in tributaries or in the Illinois River at Hennepin was found to be statistically significant, yet moderate in strength with coefficient values ranging from r = 0.4 to 0.6. Indirect observations from the June 2008 higher flow synoptic event may indicate continued effects from combined storm and sanitary sewers in the vicinity of the Illinois River near Peoria, Ill., contributing to observed single-sample exceedance of the State criterion for fecal coliform.

  1. Modeling coliform-bacteria concentrations and pH in the salt-wedge reach of the Duwamish River Estuary, King County, Washington

    USGS Publications Warehouse

    Haushild, W.L.; Prych, Edmund A.

    1976-01-01

    Total- and fecal-coliform bacteria, plus pH, alkalinity, and dissolved inorganic carbon are water-quality parameters that have been added to an existing numerical model of water quality in the salt-wedge reach of the Duwamish River estuary in Washington. The coliform bacteria are modeled using a first-order decay (death) rate, which is a function of the local salinity, temperature, and daily solar radiation. The pH is computed by solving a set of chemical-equilibrium equations for carbonate-bicarbonate buffered aqueous solutions. Concentrations of total- and fecal-coliform bacteria computed by the model for the Duwamish River estuary during June-September 1971 generally agreed with observed concentrations within about 40 and 60 percent, respectively. The computed pH generally agreed with observed pH within about a 0.2 pH unit; however, for one 3-week period the computed pH was about a 0.4 unit lower than the observed pH. (Woodard-USGS)

  2. Distribution and occurrence of total coliform bacteria in Floridan aquifer wells, western Lake County, Florida

    USGS Publications Warehouse

    Taylor, G.F.

    1984-01-01

    Total coliform bacteria data for Floridan aquifer wells in western Lake County, central Florida, are presented. Included are data collected from 1966 to 1979 by the Florida Department of Environmental Regulation for 98 public-supply wells, and data collected during 1982 by the U.S. Geological Survey for 29 wells. The data for the 98 public supplies indicate that 85 percent have a record of total coliform occurrence in the raw water. Data from the 29 wells sampled by the Geological Survey indicate that 55 percent have a record total coliform occurrence. Further comparison of the two data sets indicates that the Geological Survey data generally indicate a lower percentage of sites with coliform occurrence and, in some cases, a different pattern of occurrence than did the Department of Environmental Regulation data. (USGS)

  3. 33 CFR 159.127 - Safety coliform count: Recirculating devices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... recirculating device must have less than 240 fecal coliform bacteria per 100 milliliters. These samples must be collected in accordance with § 159.123(b) and tested in accordance with 40 CFR Part 136....

  4. 33 CFR 159.127 - Safety coliform count: Recirculating devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... recirculating device must have less than 240 fecal coliform bacteria per 100 milliliters. These samples must be collected in accordance with § 159.123(b) and tested in accordance with 40 CFR part 136....

  5. 33 CFR 159.126 - Coliform test: Type II devices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... when tested in accordance with 40 CFR Part 136. (b) The 40 samples must be taken from the device as...: Type II devices. (a) The arithmetic mean of the fecal coliform bacteria in 38 of 40 samples of...

  6. 33 CFR 159.126 - Coliform test: Type II devices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... when tested in accordance with 40 CFR Part 136. (b) The 40 samples must be taken from the device as...: Type II devices. (a) The arithmetic mean of the fecal coliform bacteria in 38 of 40 samples of...

  7. 33 CFR 159.126 - Coliform test: Type II devices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... when tested in accordance with 40 CFR Part 136. (b) The 40 samples must be taken from the device as...: Type II devices. (a) The arithmetic mean of the fecal coliform bacteria in 38 of 40 samples of...

  8. 33 CFR 159.126 - Coliform test: Type II devices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... when tested in accordance with 40 CFR Part 136. (b) The 40 samples must be taken from the device as...: Type II devices. (a) The arithmetic mean of the fecal coliform bacteria in 38 of 40 samples of...

  9. 33 CFR 159.123 - Coliform test: Type I devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... milliliters when tested in accordance with 40 CFR part 136. (b) The 40 samples must be taken from the device...: Type I devices. (a) The arithmetic mean of the fecal coliform bacteria in 38 of 40 samples of...

  10. 33 CFR 159.123 - Coliform test: Type I devices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... milliliters when tested in accordance with 40 CFR Part 136. (b) The 40 samples must be taken from the device...: Type I devices. (a) The arithmetic mean of the fecal coliform bacteria in 38 of 40 samples of...

  11. 33 CFR 159.126 - Coliform test: Type II devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... when tested in accordance with 40 CFR part 136. (b) The 40 samples must be taken from the device as...: Type II devices. (a) The arithmetic mean of the fecal coliform bacteria in 38 of 40 samples of...

  12. 33 CFR 159.127 - Safety coliform count: Recirculating devices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... recirculating device must have less than 240 fecal coliform bacteria per 100 milliliters. These samples must be collected in accordance with § 159.123(b) and tested in accordance with 40 CFR Part 136....

  13. 33 CFR 159.123 - Coliform test: Type I devices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... milliliters when tested in accordance with 40 CFR Part 136. (b) The 40 samples must be taken from the device...: Type I devices. (a) The arithmetic mean of the fecal coliform bacteria in 38 of 40 samples of...

  14. 33 CFR 159.123 - Coliform test: Type I devices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... milliliters when tested in accordance with 40 CFR Part 136. (b) The 40 samples must be taken from the device...: Type I devices. (a) The arithmetic mean of the fecal coliform bacteria in 38 of 40 samples of...

  15. 33 CFR 159.123 - Coliform test: Type I devices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... milliliters when tested in accordance with 40 CFR Part 136. (b) The 40 samples must be taken from the device...: Type I devices. (a) The arithmetic mean of the fecal coliform bacteria in 38 of 40 samples of...

  16. 33 CFR 159.127 - Safety coliform count: Recirculating devices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... recirculating device must have less than 240 fecal coliform bacteria per 100 milliliters. These samples must be collected in accordance with § 159.123(b) and tested in accordance with 40 CFR Part 136....

  17. 33 CFR 159.127 - Safety coliform count: Recirculating devices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... recirculating device must have less than 240 fecal coliform bacteria per 100 milliliters. These samples must be collected in accordance with § 159.123(b) and tested in accordance with 40 CFR Part 136....

  18. Influence of seasonal and inter-annual hydro-meteorological variability on surface water fecal coliform concentration under varying land-use composition.

    PubMed

    St Laurent, Jacques; Mazumder, Asit

    2014-01-01

    Quantifying the influence of hydro-meteorological variability on surface source water fecal contamination is critical to the maintenance of safe drinking water. Historically, this has not been possible due to the scarcity of data on fecal indicator bacteria (FIB). We examined the relationship between hydro-meteorological variability and the most commonly measured FIB, fecal coliform (FC), concentration for 43 surface water sites within the hydro-climatologically complex region of British Columbia. The strength of relationship was highly variable among sites, but tended to be stronger in catchments with nival (snowmelt-dominated) hydro-meteorological regimes and greater land-use impacts. We observed positive relationships between inter-annual FC concentration and hydro-meteorological variability for around 50% of the 19 sites examined. These sites are likely to experience increased fecal contamination due to the projected intensification of the hydrological cycle. Seasonal FC concentration variability appeared to be driven by snowmelt and rainfall-induced runoff for around 30% of the 43 sites examined. Earlier snowmelt in nival catchments may advance the timing of peak contamination, and the projected decrease in annual snow-to-precipitation ratio is likely to increase fecal contamination levels during summer, fall, and winter among these sites. Safeguarding drinking water quality in the face of such impacts will require increased monitoring of FIB and waterborne pathogens, especially during periods of high hydro-meteorological variability. This data can then be used to develop predictive models, inform source water protection measures, and improve drinking water treatment. PMID:24095594

  19. Fecal-Indicator Bacteria in the Allegheny, Monongahela, and Ohio Rivers and Selected Tributaries, Allegheny County, Pennsylvania, 2001-2005

    USGS Publications Warehouse

    Buckwalter, Theodore F.; Zimmerman, Tammy M.; Fulton, John W.

    2006-01-01

    Concentrations of fecal-indicator bacteria were determined in 1,027 water-quality samples collected from July 2001 through August 2005 during dry- (72-hour dry antecedent period) and wet-weather (48-hour dry antecedent period and at least 0.3 inch of rain in a 24-hour period) conditions in the Allegheny, Monongahela, and Ohio Rivers (locally referred to as the Three Rivers) and selected tributaries in Allegheny County. Samples were collected at five sampling sites on the Three Rivers and at eight sites on four tributaries to the Three Rivers having combined sewer overflows. Water samples were analyzed for three fecal-indicator organisms fecal coliform, Escherichia coli (E. coli), and enterococci bacteria. Left-bank and right-bank surface-water samples were collected in addition to a cross-section composite sample at each site. Concentrations of fecal coliform, E. coli, and enterococci were detected in 98.6, 98.5, and 87.7 percent of all samples, respectively. The maximum fecal-indicator bacteria concentrations were collected from Sawmill Run, a tributary to the Ohio River; Sawmill Run at Duquesne Heights had concentrations of fecal coliform, E. coli, and enterococci of 410,000, 510,000, and 180,000 col/100 mL, respectively, following a large storm. The samples collected in the Three Rivers and selected tributaries frequently exceeded established recreational standards and criteria for bacteria. Concentrations of fecal coliform exceeded the Pennsylvania water-quality standard (200 col/100 mL) in approximately 63 percent of the samples. Sample concentrations of E. coli and enterococci exceeded the U.S. Environmental Protection Agency (USEPA) water-quality criteria (235 and 61 col/100 mL, respectively) in about 53 and 47 percent, respectively, of the samples. Fecal-indicator bacteria were most strongly correlated with streamflow, specific conductance, and turbidity. These correlations most frequently were observed in samples collected from tributary sites. Fecal

  20. Fecal Indicator Bacteria and Environmental Observations: Validation of Virtual Beach

    EPA Science Inventory

    Contamination of recreational waters by fecal material is often assessed using indicator bacteria such as enterococci. Enumeration based on culturing methods can take up to 48 hours to complete, limiting the accuracy of water quality evaluations. Molecular microbial techniques em...

  1. Fast detection of coliform bacteria by means of gas chromatography-differential mobility spectrometry.

    PubMed

    Saptalena, Lena Ganda; Kuklya, Andriy; Telgheder, Ursula

    2016-05-01

    In this study, we demonstrate that the combination of an enzymatic method (based on Colilert-18 medium) and gas chromatography-differential mobility spectrometry (GC-DMS) can reduce the time required for detection of coliform bacteria (including Escherichia coli) from 18 to 2.5 h. The presented method includes the incubation (~2.5 h) of the sample containing coliform bacteria in Colilert-18 medium. The incubation time of 2.5 h is required for the activation of the β-galactosidase enzyme. Produced during the incubation biomarker o-nitrophenol (ONP) can be detected by means of GC-DMS within just 200 s. The detection limit for ONP was 45 ng (on-column). The method developed in this work provides significantly shorter analysis time compared with standard methods, and can be potentially adapted to the field conditions. Therefore, this method is a promising tool for an early detection of coliform bacteria (including E. coli). Graphical Abstract Fast detection of coliform bacteria by means of GC-DMS. PMID:27002609

  2. Comparison of fecal indicators with pathogenic bacteria and rotavirus in groundwater

    PubMed Central

    Ferguson, Andrew S.; Layton, Alice C.; Mailloux, Brian J; Culligan, Patricia J.; Williams, Daniel E.; Smartt, Abby E.; Sayler, Gary S.; Feighery, John; McKay, Larry; Knappett, Peter S.K.; Alexandrova, Ekaterina; Arbit, Talia; Emch, Michael; Escamilla, Veronica; Ahmed, Kazi Matin; Alam, Md. Jahangir; Streatfield, P. Kim; Yunus, Mohammad; van Geen, Alexander

    2012-01-01

    Groundwater is routinely analyzed for fecal indicators but direct comparisons of fecal indicators to the presence of bacterial and viral pathogens are rare. This study was conducted in rural Bangladesh where the human population density is high, sanitation is poor, and groundwater pumped from shallow tubewells is often contaminated with fecal bacteria. Five indicator microorganisms (E. coli, total coliform, F+RNA coliphage, Bacteroides and human-associated Bacteroides) and various environmental parameters were compared to the direct detection of waterborne pathogens by quantitative PCR in groundwater pumped from 50 tubewells. Rotavirus was detected in groundwater filtrate from the largest proportion of tubewells (40%), followed by Shigella (10%), Vibrio (10%), and pathogenic E. coli (8%). Spearman rank correlations and sensitivity-specificity calculations indicate that some, but not all, combinations of indicators and environmental parameters can predict the presence of pathogens. Culture-dependent fecal indicator bacteria measured on a single date did not predict total bacterial pathogens, but annually averaged monthly measurements of culturable E. coli did improve prediction for total bacterial pathogens. A qPCR-based E. coli assay was the best indicator for the bacterial pathogens. F+RNA coliphage were neither correlated nor sufficiently sensitive towards rotavirus, but were predictive of bacterial pathogens. Since groundwater cannot be excluded as a significant source of diarrheal disease in Bangladesh and neighboring countries with similar characteristics, the need to develop more effective methods for screening tubewells with respect to microbial contamination is necessary. PMID:22705866

  3. Assessment of the characteristic of nutrients, total metals, and fecal coliform in Sibu Laut River, Sarawak, Malaysia

    NASA Astrophysics Data System (ADS)

    Soo, Chen-Lin; Ling, Teck-Yee; Lee, Nyanti; Apun, Kasing

    2016-03-01

    The concentrations of nutrients (nitrogen and phosphorus), total metals, and fecal coliform (FC) coupling with chlorophyll- a (chl- a), 5-day biochemical oxygen demand (BOD5) and other general environmental parameters were evaluated at the sub-surface and near-bottom water columns of 13 stations in the Sibu Laut River during low and high slack waters. The results indicated that inorganic nitrogen (mainly nitrate) was the primary form of nitrogen whereas organic phosphorus was the major form of phosphorus. The abundance of total heavy metals in Sibu Laut River and its tributaries was in the order of Pb < Cu < Zn < Cd. Fecal coliform concentration was relatively low along Sibu Laut River. The shrimp farm effluents contributed a substantial amount of chl- a, BOD5, nutrients, and FC to the receiving creek except for total metals. Nevertheless, the influence was merely noticeable in the intake creek and amended rapidly along Selang Sibu River and brought minimal effects on the Sibu Laut River. Besides, the domestic sewage effluents from villages nearby also contributed a substantial amount of pollutants.

  4. Analysis of fecal coliform levels at selected storm water monitoring points at the Oak Ridge Y-12 Plant

    SciTech Connect

    Skaggs, B.E.

    1995-07-01

    The Environmental Protection Agency staff published the final storm water regulation on November 16, 1990. The storm water regulation is included in the National Pollutant Discharge Elimination System (NPDES) regulations. It specifies the permit application requirements for certain storm water discharges such as industrial activity or municipal separate storm sewers serving populations of 100,000 or greater. Storm water discharge associated with industrial activity is discharge from any conveyance used for collecting and conveying storm water that is directly related to manufacturing, processing, or raw material storage areas at an industrial plant. Quantitative testing data is required for these discharges. An individual storm water permit application was completed and submitted to Tennessee Department of Environment and Conservation (TDEC) personnel in October 1992. After reviewing this data in the permit application, TDEC personnel expressed concern with the fecal coliform levels at many of the outfalls. The 1995 NPDES Permit (Part 111-N, page 44) requires that an investigation be conducted to determine the validity of this data. If the fecal coliform data is valid, the permit requires that a report be submitted indicating possible causes and proposed corrective actions.

  5. Evaluating spatial-temporal variations and correlation between fecal indicator bacteria (FIB) in marine bathing beaches.

    PubMed

    Fan, Jingfeng; Ming, Hongxia; Li, Lili; Su, Jie

    2015-12-01

    The horizontal distribution and temporal variation of bacterial indicators (total coliforms (TC), fecal coliforms (FC), enterococcus (EC) and Escherichia coli (E. coli)) were investigated to identify the proper bacterial indicators for a marine bathing beach in China. Two different sampling efforts were conducted during dry weather and two large rain events at Xinghai Bathing Beach in Dalian, China. Samples were collected from three different water depths and analyzed for the four indicator bacteria. The results indicated that all four bacterial indicators exceeded the single sample standards at different levels. Specifically, the water quality exceeded the standard for TC, FC, EC and E. coli in 7%, 28%, 38% and 10% of the samples, respectively. Comparison of the rate of the indicators before and after rainfall revealed a significant increasing post-rainfall. The concentrations of bacteria differed significantly with distance from the shoreline, with knee-depth near the shore exceeding the standard most frequently. This was primarily due to contamination by excessive sewage discharge and rainfall. Based upon the concentration of indicators and exceedance rates, as well as the correlation between indicators, both EC and FC should be evaluated at the same time as fecal pollution bacterial indicators in marine bathing beaches in China. PMID:26608764

  6. Fecal-indicator bacteria in the Newfound Creek watershed, western North Carolina, during a high and low streamflow condition, 2003

    USGS Publications Warehouse

    Giddings, Elise M.; Oblinger, Carolyn J.

    2004-01-01

    Water quality in the Newfound Creek watershed has been shown to be affected by bacteria, sediment, and nutrients. In this study, Escherichia coli (E. coli) bacteria were sampled at five sites in Newfound Creek and five tributary sites during low flow on May 28, 2003, and high flow on November 19, 2003. In addition, a subset of five sites was sampled for fecal coliform bacteria, E. coli bacteria in streambed sediments (low flow only), and coliphage virus for serotyping. Coliphage virus serotyping has been used to identify human and animal sources of bacterial contamination. A streamflow gage was installed and operated to support ongoing water-quality studies in the watershed. Fecal coliform densities ranged from 92 to 27,000 colony-forming units per 100 milliliters of water for E. coli and 140 to an estimated 29,000 colony-forming units per 100 milliliters of water for fecal coliform during the two sampling visits. Ninety percent of the E. coli and fecal coliform samples exceeded corresponding U.S. Environmental Protection Agency or North Carolina water-quality criteria for recreational and ambient waters. During low flow, the middle part of the Newfound Creek watershed and the Dix Creek tributary had the highest densities of E. coli bacteria. During the high-flow sampling, all tributaries contained high densities of E. coli bacteria, although Dix Creek and Round Hill Branch were the largest contributors of these bacteria to Newfound Creek. Coliphage virus serotyping results were inconclusive because most samples did not contain the male-specific RNA coliphage needed for serotyping. Positive results indicated, however, that during low flow, non-human sources of bacteria were present in Sluder Branch, and during high flow, human sources of bacteria were present in Round Hill Branch. Sampling of bacteria in streambed sediments during low flow indicated that sediments do not appear to be a substantial source of bacteria relative to the water column, with the exception

  7. Identification and characterization of psychrotolerant coliform bacteria isolated from pasteurized fluid milk.

    PubMed

    Masiello, S N; Martin, N H; Trmčić, A; Wiedmann, M; Boor, K J

    2016-01-01

    The presence of coliform bacteria in pasteurized fluid milk typically indicates that product contamination occurred downstream of the pasteurizer, but it may also indicate pasteurization failure. Although coliform detection is frequently used as a hygiene indicator for dairy products, our understanding of the taxonomic and phenotypic coliform diversity associated with dairy products is surprisingly limited. Therefore, using Petrifilm Coliform Count plates (3M, St. Paul, MN), we isolated coliforms from high-temperature, short-time (HTST)-pasteurized fluid milk samples from 21 fluid milk processing plants in the northeast United States. Based on source information and initial characterization using partial 16S rDNA sequencing, 240 nonredundant isolates were obtained. The majority of these isolates were identified as belonging to the genera Enterobacter (42% of isolates), Hafnia (13%), Citrobacter (12%), Serratia (10%), and Raoultella (9%); additional isolates were classified into the genera Buttiauxella, Cedecea, Kluyvera, Leclercia, Pantoea, and Rahnella. A subset of 104 representative isolates was subsequently characterized phenotypically. Cold growth analysis in skim milk broth showed that all isolates displayed at least a 2-log increase over 10 d at 6°C; the majority of isolates (n=74) displayed more than a 5-log increase. In total, 43% of the representative isolates displayed lipolysis when incubated on spirit blue agar at 6°C for 14 d, whereas 71% of isolates displayed proteolysis when incubated on skim milk agar at 6°C for 14 d. Our data indicate that a considerable diversity of coliforms is found in HTST-pasteurized fluid milk and that a considerable proportion of these coliforms have phenotypic characteristics that will allow them to cause fluid milk spoilage. PMID:26547640

  8. Simulation of Streamflow and Water Quality to Determine Fecal Coliform and Nitrate Concentrations and Loads in the Mad River Basin, Ohio

    USGS Publications Warehouse

    Reutter, David C.; Puskas, Barry M.; Jagucki, Martha L.

    2006-01-01

    The Hydrological Simulation Program Fortran (HSPF) was used to simulate the concentrations and loads of fecal coliform and nitrate for streams in the Mad River Basin in west-central Ohio during the period 1999 through 2003. The Mad River Basin was divided into subbasins that were defined either by the 14-digit Hydrologic Unit (HU) boundaries or by streamflow-gaging-station locations used in the model. Model calibration and simulation processes required the formation of nine meteorologic zones to input meteorologic time-series data and water-quality data. Sources of fecal coliform and nitrate from wastewater-treatment discharges and combined sewer overflow discharges (CSOs) within the City of Springfield were point sources simulated in the model. Failing septic systems and cattle with direct access to streams were nonpoint sources included in the study but treated in the model as point sources. Other nonpoint sources were addressed by adjusting interflow and ground-water concentrations in the subsurface and maximum storage capacities and accumulation rates of the simulated constituents on the land surface for each meteorologic zone. Simulation results from the calibrated model show that several HUs exceeded the water-quality standard of 1,000 colony-forming units per 100 mL for fecal coliform based on the maximum 30-day geometric mean. Most HUs with high fecal coliform counts were within or downstream from the City of Springfield. No water-quality standard has been set for instream nitrate concentrations; however, the Ohio Environmental Protection Agency (Ohio EPA) considered a concentration of 5 mg/L or greater to be of concern. Simulation results indicate that several HUs in the agricultural areas of the basin exceeded this level. The calibrated model was modified to create scenarios that simulated loads of fecal coliform and nitrate that were either reduced or eliminated from selected sources. The revised models included the elimination of failing septic systems

  9. Comparing wastewater chemicals, indicator bacteria concentrations, and bacterial pathogen genes as fecal pollution indicators

    USGS Publications Warehouse

    Haack, S.K.; Duris, J.W.; Fogarty, L.R.; Kolpin, D.W.; Focazio, M.J.; Furlong, E.T.; Meyer, M.T.

    2009-01-01

    The objective of this study was to compare fecal indicator bacteria (FIB) (fecal coliforms, Escherichia coli [EC], and enterococci [ENT]) concentrations with a wide array of typical organic wastewater chemicals and selected bacterial genes as indicators of fecal pollution in water samples collected at or near 18 surface water drinking water intakes. Genes tested included esp (indicating human-pathogenic ENT) and nine genes associated with various animal sources of shiga-toxin-producing EC (STEC). Fecal pollution was indicated by genes and/or chemicals for 14 of the 18 tested samples, with little relation to FIB standards. Of 13 samples with <50 EC 100 mL-1, human pharmaceuticals or chemical indicators of wastewater treatment plant effluent occurred in six, veterinary antibiotics were detected in three, and stx1 or stx2 genes (indicating varying animal sources of STEC) were detected in eight. Only the EC eaeA gene was positively correlated with FIB concentrations. Human-source fecal pollution was indicated by the esp gene and the human pharmaceutical carbamazepine in one of the nine samples that met all FIB recreational water quality standards. Escherichia coli rfbO157 and stx2c genes, which are typically associated with cattle sources and are of potential human health significance, were detected in one sample in the absence of tested chemicals. Chemical and gene-based indicators of fecal contamination may be present even when FIB standards are met, and some may, unlike FIB, indicate potential sources. Application of multiple water quality indicators with variable environmental persistence and fate may yield greater confidence in fecal pollution assessment and may inform remediation decisions. Copyright ?? 2009 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  10. Chapter A7. Section 7.1. Fecal Indicator Bacteria

    USGS Publications Warehouse

    Myers, Donna N.; Sylvester, Marc A.

    1997-01-01

    Fecal indicator bacteria are used to assess the microbiological quality of water because, although not typically disease causing, they are correlated with the presence of several waterborne disease-causing organisms. The concentration of indicator bacteria is a measure of water safety for body-contact recreation or for consumption. This report provides information on the equipment, sampling protocols, and identification, enumeration, and calculation procedures that are in standard use by U.S. Geological Survey (USGS) personnel for the collection of data on fecal indicator bacteria.

  11. Effect of age and housing location on antibiotic resistance of fecal coliforms from pigs in a non-antibiotic-exposed herd.

    PubMed Central

    Langlois, B E; Dawson, K A; Leak, I; Aaron, D K

    1988-01-01

    The relationship of age and housing location to single antibiotic resistance, multiple antibiotic resistance, and resistance patterns of fecal coliforms obtained during a 20-month period from pigs in a herd that was not exposed to antibiotics for 126 months was determined. Bacteria resistant to single and multiple antibiotics were isolated more frequently (P less than 0.01) from pigs under 7 months of age. A greater proportion of isolates from pigs over 6 months of age was sensitive to the 13 antimicrobial agents tested (P less than 0.01), while a smaller proportion showed resistance to single (P less than 0.05) and multiple (P less than 0.01) antibiotics. More than 80% of the resistant isolates were resistant to tetracycline, streptomycin, or sulfisoxazole. Resistance was greater (P less than 0.01) for pigs in the finishing unit than for those on pasture. Resistance to ampicillin, carbenicillin, and tetracycline was greater (P less than 0.05) for pigs in the finishing unit than for those in the farrowing house. More isolates from pigs on pasture were sensitive to all antimicrobial agents tested (P less than 0.01). A greater proportion of isolates from pigs in the finishing unit showed resistance to a single antibiotic (P less than 0.01). The data from this study suggest that exposure to antibiotics is not the only factor that influences the prevalence of bacteria that are resistant to single and multiple antibiotics in the feces of domestic animals and that considerable research is needed to define the factors influencing antibiotic resistance in fecal bacteria. PMID:2970822

  12. Inactivation of Escherichia coli and coliform bacteria in traditional brass and earthernware water storage vessels.

    PubMed

    Tandon, Puja; Chhibber, Sanjay; Reed, Robert H

    2005-07-01

    The detection and enumeration of indicator bacteria such as Escherichia coli is used to assess the extent of faecal contamination of drinking water. On the basis of this approach, the effectiveness of storing water contaminated with faecal indicator bacteria in brass or earthern vessels (mutkas) of the type used in rural India have been investigated. Suspensions of bacteria in sterile distilled water were maintained for up to 48 h in each vessel and enumerated by surface plate counts on nutrient agar (non-selective) and several selective coliform media at 37 degrees C either under standard aerobic conditions, or under conditions designed to neutralise reactive oxygen species (ROS), e.g. using an anaerobic cabinet to prepare plates of pre-reduced growth medium or by inclusion of sodium pyruvate in the growth medium, with incubation of aerobically-prepared plates in an anaerobic jar. The counts obtained for E. coli decreased on short-term storage in a brass mutka; counts for selective media were lower than for equivalent counts for non-selective medium, with ROS-neutralised conditions giving consistently higher counts than aerobic incubation. However, after 48 h, no bacteria were cultivable under any conditions. Similar results were obtained using water from environmental sources in the Panjab, and from rural households where brass and earthern mutkas are used for storage of drinking water, with enumeration on selective coliform media (presumptive total coliforms). In all cases results indicated that, while storage of water in a brass mutka can inactivate E. coli and coliforms over a 48 h period, standard aerobic plate counting using selective media may not be fully effective in enumerating sub-lethally damaged bacteria. PMID:15928975

  13. Asellus aquaticus as a Potential Carrier of Escherichia coli and Other Coliform Bacteria into Drinking Water Distribution Systems

    PubMed Central

    Christensen, Sarah C. B.; Arvin, Erik; Nissen, Erling; Albrechtsen, Hans-Jørgen

    2013-01-01

    Individuals of the water louse, Asellus aquaticus, enter drinking water distribution systems in temperate parts of the world, where they establish breeding populations. We analysed populations of surface water A. aquaticus from two ponds for associated faecal indicator bacteria and assessed the risk of A. aquaticus transporting bacteria into distribution systems. Concentrations of up to two E. coli and five total coliforms·mL−1 were measured in the water and 200 E. coli and >240 total coliforms·mL−1 in the sediments of the investigated ponds. Concentrations of A. aquaticus associated bacteria never exceeded three E. coli and six total coliforms·A. aquaticus−1. During exposure to high concentrations of coliforms, concentrations reached 350 coliforms·A. aquaticus−1. A. aquaticus associated E. coli were only detected as long as E. coli were present in the water and sediment. The calculated probability of exceeding drinking water guideline values in non-disinfected systems by intrusion of A. aquaticus was low. Only in scenarios with narrow pipes and low flows, did total coliforms exceed guideline values, implying that the probability of detection by routine monitoring is also low. The study expands the knowledge base for evaluating incidents with presence of coliform indicators in drinking water by showing that intruding A. aquaticus were not important carriers of E. coli or other coliform bacteria even when emerging from faecally contaminated waters. PMID:23455399

  14. Occurrence of fecal-indicator bacteria and protocols for identification of fecal-contamination sources in selected reaches of the West Branch Brandywine Creek, Chester County, Pennsylvania

    USGS Publications Warehouse

    Cinotto, Peter J.

    2005-01-01

    bacteria samplers, and the use of optical brighteners. For the purposes of this report, sources of bacteria were defined as geographic locations where elevated concentrations of bacteria are observed within, or expected to enter, the main branch of the West Branch Brandywine Creek. Biologic sources (for example, waterfowl) were noted where applicable; however, no specific study of biologic sources (such as bacterial source tracking) was conducted. Data indicated that specific bacterial populations within fluvial sediments could be related to specific particle-size ranges. This relation is likely the result of the reduced porosity and permeability associated with finer sediments and the ability of specific bacteria to tolerate particular environments. Escherichia coli (E. coli) showed a higher median concentration (2,160 colonies per gram of saturated sediment) in the 0.125 to 0.5-millimeter size range of natural sediments than in other ranges, and enterococcus bacteria showed a higher median concentration (61,830 colonies per gram of saturated sediment) in the 0.062 to 0.25-millimeter size range of natural sediments than in other ranges. There were insufficient data to assess the particle-size relation to fecal coliform bacteria and (or) fecal streptococcus bacteria. Climatic conditions were shown to affect bacteria concentrations in both the water column and fluvial sediments. Drought conditions in 2002 resulted in lower overall bacteria concentrations than the more typically wet year of 2003. E. coli concentrations in fluvial sediment along the Coatesville study reach in 2002 had a median concentration of 92 colonies per gram of saturated sediment; in 2003, the median concentration had risen to 4,752 colonies per gram of saturated sediment. Symbiotic relations between bacteria and aquatic growth were likely responsible for increased bacteria concentrations observed within an impoundment area on the Coatesville study reach. This reach showed evidence of

  15. Fecal-indicator bacteria in the Allegheny, Monongahela, and Ohio Rivers, near Pittsburgh, Pennsylvania, July-September 2001

    USGS Publications Warehouse

    Fulton, John W.; Buckwalter, Theodore F.

    2004-01-01

    This report presents the results of a study by the Allegheny County Health Department (ACHD) and the U.S. Geological Survey (USGS) to determine the concentrations of fecal-indicator bacteria in the Allegheny, Monongahela, and Ohio Rivers (Three Rivers) in Allegheny County, Pittsburgh, Pa. Water-quality samples and river-discharge measurements were collected from July to September 2001 during dry- (72-hour dry antecedent period), mixed-, and wet-weather (48-hour dry antecedent period and at least 0.3 inch of rain in a 6-hour period) conditions at five sampling sites on the Three Rivers in Allegheny County. Water samples were collected weekly to establish baseline conditions and during successive days after three wet-weather events. Water samples were analyzed for fecal-indicator organisms including fecal-coliform (FC) bacteria, Escherichia coli (E. coli), and enterococci bacteria. Water samples were collected by the USGS and analyzed by the ACHD Laboratory. At each site, left-bank and right-bank surface-water samples were collected in addition to a composite sample (discharge-weighted sample representative of the channel cross section as a whole) at each site. Fecal-indicator bacteria reported in bank and composite samples were used to evaluate the distribution and mixing of bacteria-source streams in receiving waters such as the Three Rivers. Single-event concentrations of enterococci, E. coli, and FC during dry-weather events were greater than State and Federal water-quality standards (WQS) in 11, 28, and 28 percent of the samples, respectively; during mixed-weather events, concentrations of fecal-indicator bacteria were greater than WQS in 28, 37, and 43 percent of the samples, respectively; and during wet-weather events, concentrations of fecal-indicator bacteria were greater than WQS in 56, 71, and 81 percent of samples, respectively. Single-event, wet-weather concentrations exceeded those during dry-weather events for all sites except the Allegheny River at

  16. Associations between fecal indicator bacteria prevalence and demographic data in private water supplies in Virginia.

    PubMed

    Smith, Tamara; Krometis, Leigh-Anne H; Hagedorn, Charles; Lawrence, Annie H; Benham, Brian; Ling, Erin; Ziegler, Peter; Marmagas, Susan West

    2014-12-01

    Over 1.7 million Virginians rely on private water sources to provide household water. The heaviest reliance on these systems occurs in rural areas, which are often underserved with respect to available financial resources and access to environmental health education. This study aimed to identify potential associations between concentrations of fecal indicator bacteria (FIB) (coliforms, Escherichia coli) in over 800 samples collected at the point-of-use from homes with private water supply systems and homeowner-provided demographic data (household income and education). Of the 828 samples tested, 349 (42%) of samples tested positive for total coliform and 55 (6.6%) tested positive for E. coli. Source tracking efforts targeting optical brightener concentrations via fluorometry and the presence of a human-specific Bacteroides marker via quantitative real-time polymerase chain reaction (qPCR) suggest possible contamination from human septage in over 20 samples. Statistical methods implied that household income has an association with the proportion of samples positive for total coliform, though the relationship between education level and FIB is less clear. Further exploration of links between demographic data and private water quality will be helpful in building effective strategies to improve rural drinking water quality. PMID:25473992

  17. Phenotypic and Phylogenetic Identification of Coliform Bacteria Obtained Using 12 Coliform Methods Approved by the U.S. Environmental Protection Agency

    PubMed Central

    Zhang, Ya; Hong, Pei-Ying; LeChevallier, Mark W.

    2015-01-01

    The current definition of coliform bacteria is method dependent, and when different culture-based methods are used, discrepancies in results can occur and affect the accuracy of identification of true coliforms. This study used an alternative approach to the identification of true coliforms by combining the phenotypic traits of the coliform isolates and the phylogenetic affiliation of 16S rRNA gene sequences with the use of lacZ and uidA genes. A collection of 1,404 isolates detected by 12 U.S. Environmental Protection Agency-approved coliform-testing methods were characterized based on their phylogenetic affiliations and responses to their original isolation media and lauryl tryptose broth, m-Endo, and MI agar media. Isolates were phylogenetically classified into 32 true-coliform, or targeted Enterobacteriaceae (TE), groups and 14 noncoliform, or nontargeted Enterobacteriaceae (NTE), groups. It was shown statistically that detecting true-positive (TP) events is more challenging than detecting true-negative (TN) events. Furthermore, most false-negative (FN) events were associated with four TE groups (i.e., Serratia group I and the Providencia, Proteus, and Morganella groups) and most false-positive (FP) events with two NTE groups, the Aeromonas and Plesiomonas groups. In Escherichia coli testing, 18 out of 145 E. coli isolates identified by enzymatic methods were validated as FN. The reasons behind the FP and FN reactions could be explained through analysis of the lacZ and uidA genes. Overall, combining the analyses of the 16S rRNA, lacZ, and uidA genes with the growth responses of TE and NTE on culture-based media is an effective way to evaluate the performance of coliform detection methods. PMID:26116679

  18. Phenotypic and Phylogenetic Identification of Coliform Bacteria Obtained Using 12 Coliform Methods Approved by the U.S. Environmental Protection Agency.

    PubMed

    Zhang, Ya; Hong, Pei-Ying; LeChevallier, Mark W; Liu, Wen-Tso

    2015-09-01

    The current definition of coliform bacteria is method dependent, and when different culture-based methods are used, discrepancies in results can occur and affect the accuracy of identification of true coliforms. This study used an alternative approach to the identification of true coliforms by combining the phenotypic traits of the coliform isolates and the phylogenetic affiliation of 16S rRNA gene sequences with the use of lacZ and uidA genes. A collection of 1,404 isolates detected by 12 U.S. Environmental Protection Agency-approved coliform-testing methods were characterized based on their phylogenetic affiliations and responses to their original isolation media and lauryl tryptose broth, m-Endo, and MI agar media. Isolates were phylogenetically classified into 32 true-coliform, or targeted Enterobacteriaceae (TE), groups and 14 noncoliform, or nontargeted Enterobacteriaceae (NTE), groups. It was shown statistically that detecting true-positive (TP) events is more challenging than detecting true-negative (TN) events. Furthermore, most false-negative (FN) events were associated with four TE groups (i.e., Serratia group I and the Providencia, Proteus, and Morganella groups) and most false-positive (FP) events with two NTE groups, the Aeromonas and Plesiomonas groups. In Escherichia coli testing, 18 out of 145 E. coli isolates identified by enzymatic methods were validated as FN. The reasons behind the FP and FN reactions could be explained through analysis of the lacZ and uidA genes. Overall, combining the analyses of the 16S rRNA, lacZ, and uidA genes with the growth responses of TE and NTE on culture-based media is an effective way to evaluate the performance of coliform detection methods. PMID:26116679

  19. Survival of coliform bacteria in static compost piles of dairy waste solids intended for freestall bedding.

    PubMed

    Mote, C R; Emerton, B L; Allison, J S; Dowlen, H H; Oliver, S P

    1988-06-01

    Dairy waste solids separated from a slurry by a centrifugal separator were composted in 12 static piles. Seven of the compost piles were naturally aerated, and five were aerated by a fan that forced air through the piles of solids. The natural aeration process aged the manure solids in an unconfined pile. The fan in the forced aeration process forced air into a perforated plenum beneath the compost piles. Dairy waste solids in each compost pile were heated into the thermophilic temperature range and generally composted well. At most sampling points, coliform bacteria declined to low or undetectable numbers early in the composting period. However, as the composting process proceeded, bacterial numbers increased to approximately those present in raw dairy waste solids. Findings of this study suggest that composting offers little benefit toward net reduction in coliform bacterial numbers in dairy waste solids. PMID:3403762

  20. Occurrence and distribution of fecal indicator bacteria and gene markers of pathogenic bacteria in Great Lakes tributaries, March-October 2011

    USGS Publications Warehouse

    Brennan, Angela K.; Johnson, Heather E.; Totten, Alexander R.; Duris, Joseph W.

    2015-01-01

    Water samples were analyzed for the presence of FIB concentrations (FIB; fecal coliform bacteria, Escherichia coli [E. coli], and enterococci) by using membrane filtration and serial dilution methods. The resulting enrichments from standard culturing of the samples were then analyzed by using polymerase chain reaction (PCR) to determine the occurrence of pathogen gene markers for Shigella species, Campylobacter jejuni and coli, Salmonellaspecies, and pathogenic E. coli, including Shiga toxin-producing E. coli (STEC).

  1. Fecal-borne bacteria in stormwater and treatment systems in coastal New Hampshire

    NASA Astrophysics Data System (ADS)

    Jones, S. H.

    2005-05-01

    Bacterial contamination is the most common use limitation in New Hampshire's coastal waters. Past studies have shown consistently elevated levels of fecal-borne bacteria in surface waters occur during and following runoff events. Follow-up investigations have shown many stormwater conduits in urban areas that discharge directly into tidal rivers to contain high levels of bacteria, even during dry weather conditions. One of the results of these conditions is the need to close shellfishing waters throughout coastal New Hampshire, especially in Hampton Harbor, following rainfall events. Several recent studies have involved investigation of stormwater treatment system impacts on bacterial pollutants. Influent and effluent water samples from parking lot and storm drain treatment systems, runoff from urban streets, effluent from urban storm drains and receiving water samples were collected during different stages of stormwater runoff and analyzed for fecal coliforms, Escherichia coli and enterococci. E. coli isolates from one storm drain system were also ribotyped to identify source species. The stormwater treatment systems showed different capabilities for removing bacteria. Most were inconsistent at removing bacteria while others showed evidence of possible re-growth of bacteria between storms, especially during warmer weather. Re-growth or illicit connections appear to impact effluent bacterial levels in many urban storm drains. The source species identified for E. coli isolates in one storm drain changed between different stages of a storm event, reflecting runoff dynamics and human behavior patterns. Further work is focused on identifying the most significant sources of bacterial contaminants in receiving waters to help focus ongoing pollution abatement measures.

  2. Comparison of methods of sampling for Toxocara species and fecal coliforms in an outdoor day care environment

    PubMed Central

    Carabin, Hélène; Gyorkos, Theresa W; Kokoskin, Evelyne; Payment, Pierre; Joseph, Lawrence; Soto, Julio

    1998-01-01

    OBJECTIVE: To compare three sampling methods and to pretest methods for the determination of fecal coliform (FC) counts and Toxocara species from sand in the day care outdoor environment. DESIGN: The sand samples were obtained from the play area and the sandbox of a day care centre and examined for the presence of FC and Toxocara species, the common roundworm of dogs and cats. The sampling methods included random selection and two types of judgement methods. The latter included one method where domestic animals were judged to be likely to defecate and the other where children would be likely to be playing. In addition, to obtain a global estimate of contamination, the entire areas of both the sandbox and the play area were sampled on the last day. SETTING: Outdoor day care environment. MAIN RESULTS: The most representative levels of bacterial contamination and Toxocara species originated from the combined sample of the entire surface areas rather than from any separate random or judgement method of sampling. FCs were found in all sampled areas of the sandbox (median 910 FCs/g of sand) and of the play area (median 350 FCs/g of sand). Toxocara species were recovered from a number of areas in both the sandbox and the play area. CONCLUSIONS: Research on environmental microbial contamination of outdoor day care settings would benefit from the application of standardized and validated sampling and laboratory methods. PMID:22346537

  3. Linking Near Real-Time Water Quality Measurements to Fecal Coliforms and Trace Organic Pollutants in Urban Streams

    NASA Astrophysics Data System (ADS)

    Henjum, M.; Wennen, C.; Hondzo, M.; Hozalski, R. M.; Novak, P. J.; Arnold, W. A.

    2009-05-01

    Anthropogenic pollutants, including pesticides, herbicides, pharmaceuticals, and estrogens are detected in urban water bodies. Effective examination of dilute organic and microbial pollutant loading rates within surface waters is currently prohibitively expensive and labor intensive. Effort is being placed on the development of improved monitoring methodologies to more accurately assess surface water quality and evaluate the effectiveness of water quality management practices. Throughout the summer and fall of 2008 a "real-time" wireless network equipped with high frequency fundamental water quality parameter sensors measured turbidity, conductivity, pH, depth, temperature, dissolved oxygen and nitrate above and below stormwater inputs at two urban stream locations. At each location one liter grab samples were concurrently collected by ISCO automatic samplers at two hour intervals for 24 hour durations during three dry periods and five rain events. Grab samples were analyzed for fecal coliforms, atrazine (agricultural herbicide), prometon (residential herbicide) and caffeine (wastewater indicator). Surrogate relationships between easy-to-measure water quality parameters and difficult-to-measure pollutants were developed, subsequently facilitating monitoring of these pollutants without the development of new, and likely costly, technologies. Additionally, comparisons were made between traditional grab sampling techniques and the "real-time" monitoring to assess the accuracy of Total Maximum Daily Load (TMDL) calculations.

  4. Fecal indicator bacteria persistence under natural conditions in an ice-covered river.

    PubMed

    Davenport, C V; Sparrow, E B; Gordon, R C

    1976-10-01

    Total coliform (TC), fecal coliform (FC), and fecal streptococcus (FS) survival characteristics, under natural conditions at 0 degrees C in an ice-covered river, were examined during February and March 1975. The membrane filter (MF) technique was used throughout the study, and the multiple-tube (MPN) method was used in parallel on three preselected days for comparative recovery of these bacteria. Survival was studied at seven sample stations downstream from all domestic pollution sources in a 317-km reach of the river having 7.1 days mean flow time (range of 6.0 to 9.1 days). The mean indicator bacteria densities decreased continuously at successive stations in this reach and, after adjustment for dilution, the most rapid die-off was found to occur during the first 1.9 days, followed by a slower decrease. After 7.1 days, the relative survival was TC less than FC less than FS, with 8.4%, 15.7%, and 32.8% of the initial populations remaining viable, respectively. These rates are higher than previously reported and suggest that the highest survival rates for these bacteria in receiving streams can be expected at 0 degree C under ice cover. Additionally, the FC-FS ratio was greater than 5 at all stations, indicating that this ratio may be useable for determining the source of fecal pollution in receiving streams for greater than 7 days flow time at low water temperatures. The MPN and MF methods gave comparable results for the TC and FS at all seven sample stations, with both the direct and verified MF counts within the 95% confidence limits of the respective MPNs in most samples, but generally lower than the MPN index. Although FC recovery on membrane filters was comparable results at stations near the pollution source. However, the results became more comparable with increasing flow time. The results of this study indicate that heat shock is a major factor in suppression of the FC counts on the membrane filters at 44.5 degree C. Heat shock may be minimized by extended

  5. Event-based Modeling of Fecal Coliform Concentrations in Runoff from Manured Fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quantitative evaluation of the effect of field manure application on bacterial concentrations in creeks adjacent to the field requires developing microbial transport models. Reliable testing of such models with bacteria monitoring data requires a better understanding and estimation of the uncertaint...

  6. Development of the fecal coliform total maximum daily load using Loading Simulation Program C++ and tidal prism model in estuarine shellfish growing areas: a case study in the Nassawadox coastal embayment, Virginia.

    PubMed

    Shen, Jian; Sun, Shucun; Wang, Taiping

    2005-01-01

    In this study, a linked model system including the Loading Simulation Program C++ (LSPC) and the tidal prism water quality model (TPWQM) was proposed as an alternative tool for total maximum daily load (TMDL) studies. The feasibility of the model system was tested by a case study in the Nassawadox Creek, a Virginia tidal water shellfish growing area. The watershed model, driven by hourly precipitation, simulates hydrology and fecal coliform accumulation and transport processes in the watershed. The simulated surface runoff and subsurface flow as well as fecal coliform loads from the watershed are discharged to the tidal creek. The tidal prism model simulates fecal coliform transport in the Creek. The model results demonstrate the effectiveness in simulating hydrology and fecal coliform concentration in the watershed and its embayment. A series of sensitivity runs was conducted to estimate the load reduction necessary for fecal coliform concentration to meet the water quality standards. The model application to the Nassawadox Creek indicates that the model system is useful in developing fecal coliform TMDLs for estuarine shellfish growing areas. PMID:16134369

  7. Fecal Indicator Bacteria Contamination of Fomites and Household Demand for Surface Disinfection Products: A Case Study from Peru

    PubMed Central

    Julian, Timothy R.; MacDonald, Luke H.; Guo, Yayi; Marks, Sara J.; Kosek, Margaret; Yori, Pablo P.; Pinedo, Silvia Rengifo; Schwab, Kellogg J.

    2013-01-01

    Surface-mediated disease transmission is understudied in developing countries, particularly in light of the evidence that surface concentrations of fecal bacteria typically exceed concentrations in developed countries by 10- to 100-fold. In this study, we examined fecal indicator bacterial contamination of dinner plates at 21 households in four peri-urban communities in the Peruvian Amazon. We also used surveys to estimate household use of and demand for surface disinfectants at 280 households. Despite detecting total coliform, enterococci, and Escherichia coli on 86%, 43%, and 24% of plates sampled, respectively, less than one-third of households were regularly using bleach to disinfect surfaces. Among non-users of bleach, only 3.2% of respondents reported a new demand for bleach, defined as a high likelihood of using bleach within the next year. This study highlights the potential for marketing approaches to increase use of and demand for surface disinfectants to improve domestic hygiene. PMID:24019431

  8. Fecal-indicator bacteria in the Yakima River Basin, Washington-An examination of 1999 and 2000 synoptic-sampling data and their relation to historical data

    USGS Publications Warehouse

    Morace, Jennifer L.; McKenzie, Stuart W.

    2002-01-01

    Looking forward relative to future monitoring goals, research needs, and best management practice development, four hypotheses that deal with processes and sources of bacteria were identified: (1) overland runoff transports bacteria from land surfaces to streams, (2) bacteria in the water column tend to associate with suspended matter, (3) with increasing densities of warm-blooded animals, the likelihood of fecal-coliform contamination in streams also increases, and (4) identifi- cation of bacterial sources is difficult, but must be attempted for remediation to be possi

  9. Lactic acid bacteria affect serum cholesterol levels, harmful fecal enzyme activity, and fecal water content

    PubMed Central

    Lee, Do Kyung; Jang, Seok; Baek, Eun Hye; Kim, Mi Jin; Lee, Kyung Soon; Shin, Hea Soon; Chung, Myung Jun; Kim, Jin Eung; Lee, Kang Oh; Ha, Nam Joo

    2009-01-01

    Background Lactic acid bacteria (LAB) are beneficial probiotic organisms that contribute to improved nutrition, microbial balance, and immuno-enhancement of the intestinal tract, as well as lower cholesterol. Although present in many foods, most trials have been in spreads or dairy products. Here we tested whether Bifidobacteria isolates could lower cholesterol, inhibit harmful enzyme activities, and control fecal water content. Methods In vitro culture experiments were performed to evaluate the ability of Bifidobacterium spp. isolated from healthy Koreans (20~30 years old) to reduce cholesterol-levels in MRS broth containing polyoxyethanylcholesterol sebacate. Animal experiments were performed to investigate the effects on lowering cholesterol, inhibiting harmful enzyme activities, and controlling fecal water content. For animal studies, 0.2 ml of the selected strain cultures (108~109 CFU/ml) were orally administered to SD rats (fed a high-cholesterol diet) every day for 2 weeks. Results B. longum SPM1207 reduced serum total cholesterol and LDL levels significantly (p < 0.05), and slightly increased serum HDL. B. longum SPM1207 also increased fecal LAB levels and fecal water content, and reduced body weight and harmful intestinal enzyme activities. Conclusion Daily consumption of B. longum SPM1207 can help in managing mild to moderate hypercholesterolemia, with potential to improve human health by helping to prevent colon cancer and constipation. PMID:19515264

  10. Bacteria associated with false-positive most-probable-number coliform test results for shellfish and estuaries.

    PubMed Central

    Hussong, D; Damaré, J M; Weiner, R M; Colwell, R R

    1981-01-01

    Aerobic and facultatively anaerobic bacteria isolated from false-positive, presumptive, total coliform, most-probable-number tests of Chesapeake Bay oyster, water, and sediment samples were characterized and then classified by numerical taxonomy. A total of 538 bacterial strains clustered into 17 phena, the predominant groups of which were Enterobacteriaceae (including Escherichia coli), Aeromonas spp., and Bacillus spp. Bacillus spp. were recovered most frequently from sediment samples. Gas-producing strains which were not members of the Enterobacteriaceae were not isolated during this study. However, disproportionately large numbers of atypical and anaerogenic lactose-fermenting strains were encountered. We concluded that no single, specific bacterial group can be identified as being responsible for the false-positive reaction in the presumptive coliform test. Instead, the false-positive reaction is a result of complex interactions among various genera, representing predominantly bacteria other than coliforms. PMID:7013700

  11. Fecal Indicator Bacteria Entrainment from Streambed to Water Column: Transport by Unsteady Flow over a Sand Bed.

    PubMed

    Surbeck, Cristiane Q; Douglas Shields, F; Cooper, Alexandra M

    2016-05-01

    Storms cause a substantial increase in the fecal indicator bacteria (FIB) concentrations in stream water as a result of FIB-laden runoff and the release of FIB from stream sediments. Previous work has emphasized the association between FIB and bed sediments finer than sand. The objectives of this work were to elucidate the effect of various velocities on the entrainment of bed-dwelling coliforms in sand-bed streams and to refine methodologies for quantifying sandy streambeds as sources of FIB. Pump-induced hydrographs were created using a stainless steel nonrecirculating flume. Experiments consisted of simulating four storm hydrographs and collecting water samples upstream and downstream of a sand bed at selected intervals. Bed sediment samples were collected before and after each event. The highest concentrations of total coliform and suspended sediments generally occurred in the downstream samples during the rising limb of the hydrographs as a result of entrainment of coliforms and sand from the bed to the water column. There was a first flush effect in the system, as the upper layer of sand was influenced by a rapidly increasing velocity at ∼0.2 m s. Coliforms downstream of the sand bed increased rapidly as velocity exceeded this threshold but then declined even as velocity and discharge continued to increase. This likely reflects the depletion of coliforms as the more densely populated sediment layer was flushed out. There is evidence that streams with sand beds harbor enough FIB that development of total maximum daily loads (TMDLs) should include consideration of them as a source. PMID:27136173

  12. Effect of oral administration of Bacillus coagulans B37 and Bacillus pumilus B9 strains on fecal coliforms, Lactobacillus and Bacillus spp. in rat animal model

    PubMed Central

    Haldar, Lopamudra; Gandhi, D. N.

    2016-01-01

    Aim: To investigate the effect of oral administration of two Bacillus strains on fecal coliforms, Lactobacillus and Bacillus spp. in rat animal model. Materials and Methods: An in vivo experiment was conducted for 49-day period on 36 adult male albino Wister rats divided equally into to four groups. After 7-day adaptation period, one group (T1) was fed on sterile skim milk along with basal diet for the next 28 days. Second (T2) and (T3) groups received spore biomass of Bacillus coagulans B37 and Bacillus pumilus B9, respectively, suspended in sterilized skim milk at 8-9 log colony-forming units/ml plus basal diet for 28 days, while control group (T4) was supplied with clean water along with basal diet. There was a 14-day post-treatment period. A total of 288 fecal samples (8 fecal collections per rat) were collected at every 7-day interval starting from 0 to 49 days and subjected to the enumeration of the counts of coliforms and lactobacilli and Bacillus spores using respective agar media. In vitro acid and bile tolerance tests on both the strains were performed. Results: The rats those (T2 and T3) received either B. coagulans B37 or B. pumilus B9 spore along with non-fermented skim milk showed decrease (p<0.01) in fecal coliform counts and increase (p<0.05) in both fecal lactobacilli and Bacillus spore counts as compared to the control group (T4) and the group fed only skim milk (T1). In vitro study indicated that both the strains were found to survive at pH 2.0 and 3.0 even up to 3 h and tolerate bile up to 2.0% concentration even after 12 h of exposure. Conclusions: This study revealed that oral administration of either B. coagulans B37 or B. pumilus B9 strains might be useful in reducing coliform counts accompanied by concurrent increase in lactobacilli counts in the intestinal flora in rats. PMID:27536040

  13. EFFECT OF OZONATED WATER ON THE ASSIMILABLE ORGANIC CARBON AND COLIFORM GROWTH RESPONSE VALUES AND ON PATHOGENIC BACTERIA SURVIVAL

    EPA Science Inventory

    The assimilable organic carbon (AOC) and coliform growth response (CGR) are bioassays used to determine water quality. AOC and CGR are better indexes in determining whether water can support the growth of bacteria than biological oxygen demand (BOD). The AOC value of reconditione...

  14. Interactions of slope and canopy of herbage of three herbage species on transport of faecal indicator bacteria by rain splash

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The movement of fecal pathogens from land to surface and ground water are of great interest because of the public health implications. Sequential downhill movement of fecal coliform bacteria by repeated rain splash could transport fecal coliforms directly to water bodies or areas of saturation exce...

  15. Climate change and land use drivers of fecal bacteria in tropical hawaiian rivers.

    PubMed

    Strauch, Ayron M; Mackenzie, Richard A; Bruland, Gregory L; Tingley, Ralph; Giardina, Christian P

    2014-07-01

    Potential shifts in rainfall driven by climate change are anticipated to affect watershed processes (e.g., soil moisture, runoff, stream flow), yet few model systems exist in the tropics to test hypotheses about how these processes may respond to these shifts. We used a sequence of nine watersheds on Hawaii Island spanning 3000 mm (7500-4500 mm) of mean annual rainfall (MAR) to investigate the effects of short-term (24-h) and long-term (MAR) rainfall on three fecal indicator bacteria (FIB) (enterococci, total coliforms, and ). All sample sites were in native Ohia dominated forest above 600 m in elevation. Additional samples were collected just above sea level where the predominant land cover is pasture and agriculture, permitting the additional study of interactions between land use across the MAR gradient. We found that declines in MAR significantly amplified concentrations of all three FIB and that FIB yield increased more rapidly with 24-h rainfall in low-MAR watersheds than in high-MAR watersheds. Because storm frequency decreases with declining MAR, the rate of change in water potential affects microbial growth, whereas increased rainfall intensity dislodges more soil and bacteria as runoff compared with water-logged soils of high-MAR watersheds. As expected, declines in % forest cover and increased urbanization increased FIB. Taken together, shifts in rainfall may alter bacterial inputs to tropical streams, with land use change also affecting water quality in streams and near-shore environments. PMID:25603095

  16. A short review of fecal indicator bacteria in tropical aquatic ecosystems: knowledge gaps and future directions

    PubMed Central

    Rochelle-Newall, Emma; Nguyen, Thi Mai Huong; Le, Thi Phuong Quynh; Sengtaheuanghoung, Oloth; Ribolzi, Olivier

    2015-01-01

    Given the high numbers of deaths and the debilitating nature of diseases caused by the use of unclean water it is imperative that we have an understanding of the factors that control the dispersion of water borne pathogens and their respective indicators. This is all the more important in developing countries where significant proportions of the population often have little or no access to clean drinking water supplies. Moreover, and notwithstanding the importance of these bacteria in terms of public health, at present little work exists on the persistence, transfer and proliferation of these pathogens and their respective indicator organisms, e.g., fecal indicator bacteria (FIB) such as Escherichia coli and fecal coliforms in humid tropical systems, such as are found in South East Asia or in the tropical regions of Africa. Both FIB and the waterborne pathogens they are supposed to indicate are particularly susceptible to shifts in water flow and quality and the predicted increases in rainfall and floods due to climate change will only exacerbate the problems of contamination. This will be furthermore compounded by the increasing urbanization and agricultural intensification that developing regions are experiencing. Therefore, recognizing and understanding the link between human activities, natural process and microbial functioning and their ultimate impacts on human health are prerequisites for reducing the risks to the exposed populations. Most of the existing work in tropical systems has been based on the application of temperate indicator organisms, models and mechanisms regardless of their applicability or appropriateness for tropical environments. Here, we present a short review on the factors that control FIB dynamics in temperate systems and discuss their applicability to tropical environments. We then highlight some of the knowledge gaps in order to stimulate future research in this field in the tropics. PMID:25941519

  17. A short review of fecal indicator bacteria in tropical aquatic ecosystems: knowledge gaps and future directions.

    PubMed

    Rochelle-Newall, Emma; Nguyen, Thi Mai Huong; Le, Thi Phuong Quynh; Sengtaheuanghoung, Oloth; Ribolzi, Olivier

    2015-01-01

    Given the high numbers of deaths and the debilitating nature of diseases caused by the use of unclean water it is imperative that we have an understanding of the factors that control the dispersion of water borne pathogens and their respective indicators. This is all the more important in developing countries where significant proportions of the population often have little or no access to clean drinking water supplies. Moreover, and notwithstanding the importance of these bacteria in terms of public health, at present little work exists on the persistence, transfer and proliferation of these pathogens and their respective indicator organisms, e.g., fecal indicator bacteria (FIB) such as Escherichia coli and fecal coliforms in humid tropical systems, such as are found in South East Asia or in the tropical regions of Africa. Both FIB and the waterborne pathogens they are supposed to indicate are particularly susceptible to shifts in water flow and quality and the predicted increases in rainfall and floods due to climate change will only exacerbate the problems of contamination. This will be furthermore compounded by the increasing urbanization and agricultural intensification that developing regions are experiencing. Therefore, recognizing and understanding the link between human activities, natural process and microbial functioning and their ultimate impacts on human health are prerequisites for reducing the risks to the exposed populations. Most of the existing work in tropical systems has been based on the application of temperate indicator organisms, models and mechanisms regardless of their applicability or appropriateness for tropical environments. Here, we present a short review on the factors that control FIB dynamics in temperate systems and discuss their applicability to tropical environments. We then highlight some of the knowledge gaps in order to stimulate future research in this field in the tropics. PMID:25941519

  18. Addressing uncertainty in fecal indicator bacteria dark inactivation rates.

    PubMed

    Gronewold, Andrew D; Myers, Luke; Swall, Jenise L; Noble, Rachel T

    2011-01-01

    Assessing the potential threat of fecal contamination in surface water often depends on model forecasts which assume that fecal indicator bacteria (FIB, a proxy for the concentration of pathogens found in fecal contamination from warm-blooded animals) are lost or removed from the water column at a certain rate (often referred to as an "inactivation" rate). In efforts to reduce human health risks in these water bodies, regulators enforce limits on easily-measured FIB concentrations, commonly reported as most probable number (MPN) and colony forming unit (CFU) values. Accurate assessment of the potential threat of fecal contamination, therefore, depends on propagating uncertainty surrounding "true" FIB concentrations into MPN and CFU values, inactivation rates, model forecasts, and management decisions. Here, we explore how empirical relationships between FIB inactivation rates and extrinsic factors might vary depending on how uncertainty in MPN values is expressed. Using water samples collected from the Neuse River Estuary (NRE) in eastern North Carolina, we compare Escherichia coli (EC) and Enterococcus (ENT) dark inactivation rates derived from two statistical models of first-order loss; a conventional model employing ordinary least-squares (OLS) regression with MPN values, and a novel Bayesian model utilizing the pattern of positive wells in an IDEXX Quanti-Tray®/2000 test. While our results suggest that EC dark inactivation rates tend to decrease as initial EC concentrations decrease and that ENT dark inactivation rates are relatively consistent across different ENT concentrations, we find these relationships depend upon model selection and model calibration procedures. We also find that our proposed Bayesian model provides a more defensible approach to quantifying uncertainty in microbiological assessments of water quality than the conventional MPN-based model, and that our proposed model represents a new strategy for developing robust relationships between

  19. Comparison of two methods for detection of fecal indicator bacteria used in water quality monitoring of the Three Gorges Reservoir.

    PubMed

    Wang, Zhaodan; Xiao, Guosheng; Zhou, Nong; Qi, Wenhua; Han, Lin; Ruan, Yu; Guo, Dongqin; Zhou, Hong

    2015-12-01

    Scientifically sound methods to rapidly measure fecal indicator bacteria are important to ensure safe water for drinking and recreational purposes. A total of 200 water samples obtained from the Three Gorges Reservoir during three successive one-year study periods (October 2009 to September 2012) were analyzed using multiple-tube fermentation (MTF) and most probable numbers combined with polymerase chain reaction (MPN-PCR). The MPN-PCR method was found to be significantly more sensitive than the MTF method for detecting Escherichia coli and Enterococcus spp., and of equal sensitivity for detecting total coliforms when all surface water samples were grouped together. The two analytical methods had a strong, significant relationship, but MPN-PCR took only 12-18hr, compared with the 3-8days needed using the MTF method. Bacterial concentrations varied per sampling site but were significantly lower in the mainstream of the Yangtze River than those in the backwater areas of tributaries. The water quality of 85.8% of water samples from the mainstream was suitable for use as a centralized potable water source, while the water quality of 52.5% of water samples from the backwater areas was unsuitable for recreational activities. Relationships between fecal indicator bacteria showed significant correlation (r=0.636-0.909, p<0.01, n=200), while a weak but significant correlation was found between fecal indicators and water turbidity, water temperature, daily inflow, and total dissolved solids (r=0.237-0.532, p<0.05, n=200). The study indicated that MPN-PCR is a rapid and easily performed deoxyribonucleic acid (DNA)-based method for quantitative detection of viable total coliforms, E. coli, and Enterococcus spp. in surface water. PMID:26702967

  20. Antibiotic resistance in triclosan tolerant fecal coliforms isolated from surface waters near wastewater treatment plant outflows (Morris County, NJ, USA).

    PubMed

    Middleton, June H; Salierno, James D

    2013-02-01

    Triclosan (TCS) is a common antimicrobial agent that has been detected in wastewater treatment plant (WWTP) effluent outflows. A link between TCS exposure and increased antibiotic resistance in microbes has been postulated. The purpose of this study was to evaluate whether fecal coliforms (FC) isolated from surface waters located near (WWTP) outflows display TCS resistance and, if so, whether such organisms exhibit increased resistance to antibiotics. Water samples were collected at two streams in Morris County, NJ that receive WWTP effluent: Loantaka Brook and the Whippany River. Water samples were collected at three sites within each location near the WWTP effluent outflow. Abiotic river parameters were measured and FCs were enumerated for each sample. River parameters were analyzed to determine if TCS or antibiotic resistance was correlated to water quality. Triclosan resistance levels were determined for individual isolates, and isolates were screened against seven classes of antibiotics at clinically relevant levels to assess cross-resistance. At Loantaka Brook, 78.8% of FC isolates were resistant to TCS with an average minimum inhibitory concentration (MIC) of 43.2 μg ml(-1). In addition, 89.6% of isolates were resistant to four classes of antibiotics and all were identified as Citrobacter freundii. There was a significant effect of stream location on mean TCS MIC values in the Loantaka Brook, with effluent isolates maintaining significantly higher MIC values compared to upstream isolates. At Whippany River sites, TCS resistant isolates were detected on 94% of sampling dates with a significant relationship between TCS resistance and multiple antibiotic resistances (≥ three antibiotic classes, p<0.001). TCS resistant isolates were significantly more resistant to chloramphenicol (p=0.007) and to nitrofurantoin (p=0.037) when compared to TCS sensitive isolates. Environmental FC isolates resistant to high level TCS included species of Escherichia, Enterobacter

  1. Effects of hydrologic, biological, and environmental processes on sources and concentrations of fecal bacteria in the Cuyahoga River, with implications for management of recreational waters in Summit and Cuyahoga Counties, Ohio

    USGS Publications Warehouse

    Myers, D.N.; Koltun, G.F.; Francy, D.S.

    1998-01-01

    Discharges of fecal bacteria (fecal coliform bacteria and Escherichia coli ) to the middle main stem of the Cuyahoga River from storm water, combined sewers, and incompletely disinfected wastewater have resulted in frequent exceedances of bacteriological water-quality standards in a 23-mile reach of the river that flows through the Cuyahoga Valley National Recreation Area. Contamination of the middle main stem of the Cuyahoga River by bacteria of fecal origin and subsequent transport to downstream areas where water-contact recreation is an important use of the river are a concern because of the potential public-health risk from the presence of enteric pathogens. Independent field investigations of bacterial decay, dilution, dispersion, transport, and sources, and bacterial contamination of streambed sediments, were completed in 1991-93 during periods of rainfall and runoff. The highest concentration of fecal coliform bacteria observed in the middle main stem during three transport studies exceeded the single-sample fecal coliform standard applicable to primary-contact recreation by a factor of approximately 1,300 and exceeded the Escherichia coli standard by a factor of approximately 8,000. The geometric-mean concentrations of fecal bacteria in the middle main stem were 6.7 to 12.3 times higher than geometric-mean concentrations in the monitored tributaries, and 1.8 to 7.0 times larger than the geometric-mean concentrations discharged from the Akron Water Pollution Control Station. Decay rates of fecal bacteria measured in field studies in 1992 ranged from 0.0018 per hour to 0.0372 per hour for fecal coliform bacteria and from 0.0022 per hour to 0.0407 per hour for Escherichia coli. Most of the decay rates measured in June and August were significantly higher than decay rates measured in April and October. Results of field studies demonstrated that concentrations of fecal coliform bacteria were 1.2 to 58 times higher in streambed sediments than in the overlying

  2. Discrimination Efficacy of Fecal Pollution Detection in Different Aquatic Habitats of a High-Altitude Tropical Country, Using Presumptive Coliforms, Escherichia coli, and Clostridium perfringens Spores

    PubMed Central

    Byamukama, Denis; Mach, Robert L.; Kansiime, Frank; Manafi, Mohamad; Farnleitner, Andreas H.

    2005-01-01

    The performance of rapid and practicable techniques that presumptively identify total coliforms (TC), fecal coliforms (FC), Escherichia coli, and Clostridium perfringens spores (CP) by testing them on a pollution gradient in differing aquatic habitats in a high-altitude tropical country was evaluated during a 12-month period. Site selection was based on high and low anthropogenic influence criteria of paired sites including six spring, six stream, and four lakeshore sites spread over central and eastern parts of Uganda. Unlike the chemophysical water quality, which was water source type dependent (i.e., spring, lake, or stream), fecal indicators were associated with the anthropogenic influence status of the respective sites. A total of 79% of the total variability, including all the determined four bacteriological and five chemophysical parameters, could be assigned to either a pollution, a habitat, or a metabolic activity component by principal-component analysis. Bacteriological indicators revealed significant correlations to the pollution component, reflecting that anthropogenic contamination gradients were followed. Discrimination sensitivity analysis revealed high ability of E. coli to differentiate between high and low levels of anthropogenic influence. CP also showed a reasonable level of discrimination, although FC and TC were found to have worse discrimination efficacy. Nonpoint influence by soil erosion could not be detected during the study period by correlation analysis, although a theoretical contamination potential existed, as investigated soils in the immediate surroundings often contained relevant concentrations of fecal indicators. The outcome of this study indicates that rapid techniques for presumptive E. coli and CP determination may be reliable for fecal pollution monitoring in high-altitude tropical developing countries such as those of Eastern Africa. PMID:15640171

  3. Modeling the dry-weather tidal cycling of fecal indicator bacteria in surface waters of an intertidal wetland.

    PubMed

    Sanders, Brett F; Arega, Feleke; Sutula, Martha

    2005-09-01

    Recreational water quality at beaches in California and elsewhere is often poor near the outlets of rivers, estuaries, and lagoons. This condition has prompted interest in the role of wetlands in modulating surface water concentrations of fecal indicator bacteria (FIB), the basis of water quality standards internationally. A model was developed and applied to predict the dry-weather tidal cycling of FIB in Talbert Marsh, an estuarine, intertidal wetland in Huntington Beach, California, in response to loads from urban runoff, bird feces, and resuspended sediments. The model predicts the advection, dispersion and die-off of total coliform, Escherichia coli, and enterococci using a depth-integrated formulation. We find that urban runoff and resuspension of contaminated wetland sediments are responsible for surface water concentrations of FIB in the wetland. Model predictions show that urban runoff controls surface water concentrations at inland sites and sediment resuspension controls surface water concentrations near the mouth. Direct wash-off of bird feces into the surface water is not a significant contributor, although bird feces can contribute to the sediment bacteria load. The key parameters needed to accurately predict FIB concentrations, using a validated hydrodynamic model, are: the load due to urban runoff, sediment erodibility parameters, and sediment concentrations and surface water die-off rates of enteric bacteria. In the present study, literature values for sediment erodibility and water column die-off rates are used and average concentrations of FIB are predicted within 1/2 log unit of measurements. Total coliform are predicted more accurately than E. coli or enterococci, both in terms of magnitude and tidal variability. Since wetland-dependent animals are natural sources of FIB, and FIB survive for long periods of time and may multiply in wetland sediments, these results highlight limitations of FIB as indicators of human fecal pollution in and near

  4. EVIDENCE FOR THE ROLE OF COPPER IN THE INJURY PROCESS OF COLIFORM BACTERIA IN DRINKING WATER

    EPA Science Inventory

    Low levels of copper in chlorine-free distribution water caused injury of coliform populations. Monitoring of 44 drinking water samples indicated that 64% of the coliform population was injured. Physical and chemical parameters were measured, including three heavy metals (Cu, Cd,...

  5. Analysis of sample preparation procedures for enumerating fecal coliforms in coarse southwestern U.S. bottom sediments by the most-probable-number method.

    PubMed

    Doyle, J D; Tunnicliff, B; Kramer, R E; Brickler, S K

    1984-10-01

    The determination of bacterial densities in aquatic sediments generally requires that a dilution-mixing treatment be used before enumeration of organisms by the most-probable-number fermentation tube method can be done. Differential sediment and organism settling rates may, however, influence the distribution of the microbial population after the dilution-mixing process, resulting in biased bacterial density estimates. For standardization of sample preparation procedures, the influence of settling by suspended sediments on the fecal coliform distribution in a mixing vessel was examined. This was accomplished with both inoculated (Escherichia coli) and raw, uninoculated freshwater sediments from Saguaro Lake, Ariz. Both test sediments were coarse (greater than 90% gravel and sand). Coarse sediments are typical of southwestern U.S. lakes. The distribution of fecal coliforms, as determined by the most-probable-number method, was not significantly influenced by sediment settling and remained homogenous over a 16-min postmix period. The technique developed for coarse sediments may be useful for standardizing sample preparation techniques for other sediment types. PMID:6391380

  6. Estimates of Nitrogen, Phosphorus, Biochemical Oxygen Demand, and Fecal Coliforms Entering the Environment Due to Inadequate Sanitation Treatment Technologies in 108 Low and Middle Income Countries.

    PubMed

    Fuhrmeister, Erica R; Schwab, Kellogg J; Julian, Timothy R

    2015-10-01

    Understanding the excretion and treatment of human waste (feces and urine) in low and middle income countries (LMICs) is necessary to design appropriate waste management strategies. However, excretion and treatment are often difficult to quantify due to decentralization of excreta management. We address this gap by developing a mechanistic, stochastic model to characterize phosphorus, nitrogen, biochemical oxygen demand (BOD), and fecal coliform pollution from human excreta for 108 LMICs. The model estimates excretion and treatment given three scenarios: (1) use of existing sanitation systems, (2) use of World Health Organization-defined "improved sanitation", and (3) use of best available technologies. Our model estimates that more than 10(9) kg/yr each of phosphorus, nitrogen and BOD are produced. Of this, 22(19-27)%, 11(7-15)%, 17(10-23)%, and 35 (23-47)% (mean and 95% range) BOD, nitrogen, phosphorus, and fecal coliforms, respectively, are removed by existing sanitation systems. Our model estimates that upgrading to "improved sanitation" increases mean removal slightly to between 17 and 53%. Under the best available technology scenario, only approximately 60-80% of pollutants are treated. To reduce impact of nutrient and microbial pollution on human and environmental health, improvements in both access to adequate sanitation and sanitation treatment efficiency are needed. PMID:26320879

  7. Spatio-Temporal Variability in Fecal Indicator Bacteria Concentrations at Huntington Beach: Connections to Physical Forcing

    NASA Astrophysics Data System (ADS)

    Rippy, M. A.; Feddersen, F.; Leichter, J.; Omand, M.; Moore, D. F.; McGee, C.; Franks, P. J.

    2007-05-01

    Two major factors determine the spatial and temporal distributions of fecal indicator bacteria (FIB) at a given beach: local circulation & mixing patterns, and bacterial inactivation rates. High frequency and spatial resolution bacterial sampling combined with measurements of physical processes can be used to infer inactivation rates, enabling differentiation between dilution & mortality as factors driving variability in nearshore FIB abundance. A FIB sampling experiment (HB06) took place on 16 October 2006, at Huntington State Beach, a site selected due to its persistent problems with FIB pollution. Water samples were taken at 20-minute intervals (from 6:50am to 11:50am) at ten locations; four in an alongshore transect spanning 1 km at the shoreline, and the remainder in a 300-m long cross-shore transect. All samples were analyzed for FIB concentration (Total Coliforms, E. coli & Enterococci) and, for a subset, species level Enterococcus composition was determined. As part of the HB06 experiment, currents, temperature, waves, and chlorophyll fluorescence were measured simultaneously in the cross-shore direction with rapid CTD casts 300 m offshore. Results indicate that E. coli and Enterococcus concentrations exhibit exponential decreases with time, with smaller decay rates associated with depth and with sites in the Talbert Marsh and Santa Ana River. FIB concentrations are also noticeably lower farther offshore (300 m). Spatio-temporal patterns in FIB concentration will be presented in conjunction with the nearshore physical data allowing the relationship between physical dynamics and biological variability to be addressed.

  8. Sources and seasonal variation of coliform bacteria abundance in groundwater around the slopes of Mount Meru, Arusha, Tanzania.

    PubMed

    Elisante, Eliapenda; Muzuka, Alfred N N

    2016-07-01

    The quality of the groundwater along the slopes of Mount Meru, Tanzania, is poorly understood. Water access and sanitation practices may pose health risks to communities. This study was undertaken to assess the sources, abundance and seasonal variation of coliform bacteria in groundwater and factors contributing to such variations along slopes of Mount Meru, Tanzania. Water samples collected from 67 randomly selected water sources (springs, shallow wells which ranged from 4 to 35 m deep and Boreholes above 40 m deep) during dry and wet seasons were analysed for total coliform (TC), faecal coliform (FC), Escherichia coli (E. coli) and faecal streptococci (FS), using the membrane filtration method. The fraction of springs and shallow wells contaminated was generally higher compared to the fraction of boreholes. The highest TC, FC, E. coli and FS counts were significantly higher (p < 0.05) during the wet than the dry season owing to rising of water table and leaching during rainy season. Water sources that were located within 10 m of pit latrines had the highest coliform counts relative to those located beyond 10 m. Similarly, the highest coliform counts were observed in all shallow wells that (i) had low well head above the ground, (ii) were not covered, (iii) had casing materials which were not concrete and (iv) utilised traditional pumping (bucket/pulley) systems. This was due to contaminated storm water access, inoculation of microbes by exposed buckets and inefficiency of the casing material. Furthermore, the counts decreased with depths of boreholes and shallow wells during the two seasons probably due to retention and die-off. It is recommended that groundwater in this area be treated against coliform contamination prior to utilisation as portable water. PMID:27270483

  9. Presence of antimicrobial resistance in coliform bacteria from hatching broiler eggs with emphasis on ESBL/AmpC-producing bacteria.

    PubMed

    Mezhoud, H; Chantziaras, I; Iguer-Ouada, M; Moula, N; Garmyn, A; Martel, A; Touati, A; Smet, A; Haesebrouck, F; Boyen, F

    2016-08-01

    Antimicrobial resistance is recognized as one of the most important global health challenges. Broilers are an important reservoir of antimicrobial resistant bacteria in general and, more particularly, extended-spectrum β-lactamases (ESBL)/AmpC-producing Enterobacteriaceae. Since contamination of 1-day-old chicks is a potential risk factor for the introduction of antimicrobial resistant Enterobacteriaceae in the broiler production chain, the presence of antimicrobial resistant coliform bacteria in broiler hatching eggs was explored in the present study. Samples from 186 hatching eggs, collected from 11 broiler breeder farms, were inoculated on MacConkey agar with or without ceftiofur and investigated for the presence of antimicrobial resistant lactose-positive Enterobacteriaceae, particularly, ESBL/AmpC-producers. Escherichia coli and Enterobacter cloacae were obtained from the eggshells in 10 out of 11 (10/11) sampled farms. The majority of the isolates were recovered from crushed eggshells after external decontamination suggesting that these bacteria are concealed from the disinfectants in the egg shell pores. Antimicrobial resistance testing revealed that approximately 30% of the isolates showed resistance to ampicillin, tetracycline, trimethoprim and sulphonamides, while the majority of isolates were susceptible to amoxicillin-clavulanic acid, nitrofurantoin, aminoglycosides, florfenicol, neomycin and apramycin. Resistance to extended-spectrum cephalosporins was detected in eight Enterobacteriaceae isolates from five different broiler breeder farms. The ESBL phenotype was confirmed by the double disk synergy test and blaSHV-12, blaTEM-52 and blaACT-39 resistance genes were detected by PCR. This report is the first to present broiler hatching eggs as carriers and a potential source of ESBL/AmpC-producing Enterobacteriaceae for broiler chicks. PMID:27011291

  10. Description and field test of an in situ coliform monitoring system

    NASA Technical Reports Server (NTRS)

    Grana, D. C.; Wilkins, J. R.

    1979-01-01

    A prototype in situ system for monitoring the levels of fecal coliforms in shallow water bodies was developed and evaluated. This system was based on the known relationship between the concentration of the coliform bacteria and the amount of hydrogen they produce during growth in a complex organic media. The prototype system consists of a sampler platform, which sits on the bottom; a surface buoy, which transmits sampler-generated data; and a shore station, which receives, displays the data, and controls the sampler. The concept of remote monitoring of fecal coliform concentrations by utilizing a system based on the electrochemical method was verified during the evaluation of the prototype.

  11. Fecal-Indicator Bacteria and Escherichia coli Pathogen Data Collected Near a Novel Sub-Irrigation Water-Treatment System in Lenawee County, Michigan, June-November 2007

    USGS Publications Warehouse

    Duris, Joseph W.; Beeler, Stephanie

    2008-01-01

    The U.S. Geological Survey, in cooperation with the Lenawee County Conservation District in Lenawee County, Mich., conducted a sampling effort over a single growing season (June to November 2007) to evaluate the microbiological water quality around a novel livestock reservoir wetland sub-irrigation system. Samples were collected and analyzed for fecal coliform bacteria, Escherichia coli (E. coli) bacteria, and six genes from pathogenic strains of E. coli. A total of 73 water-quality samples were collected on nine occasions from June to November 2007. These samples were collected within the surface water, shallow ground water, and the manure-treatment system near Bakerlads Farm near Clayton in Lenawee County, Mich. Fecal coliform bacteria concentrations ranged from 10 to 1.26 million colony forming units per 100 milliliters (CFU/100 mL). E. coli bacteria concentrations ranged from 8 to 540,000 CFU/100 mL. Data from the E. coli pathogen analysis showed that 73 percent of samples contained the eaeA gene, 1 percent of samples contained the stx2 gene, 37 percent of samples contained the stx1 gene, 21 percent of samples contained the rfbO157 gene, and 64 percent of samples contained the LTIIa gene.

  12. Addressing Uncertainty in Fecal Indicator Bacteria Dark Inactivation Rates

    EPA Science Inventory

    Fecal contamination is a leading cause of surface water quality degradation. Roughly 20% of all total maximum daily load assessments approved by the United States Environmental Protection Agency since 1995, for example, address water bodies with unacceptably high fecal indicator...

  13. Transport and variability of fecal bacteria in carbonate conglomerate aquifers.

    PubMed

    Goeppert, Nadine; Goldscheider, Nico

    2011-01-01

    Clastic sedimentary rocks are generally considered non-karstifiable and thus less vulnerable to pathogen contamination than karst aquifers. However, dissolution phenomena have been observed in clastic carbonate conglomerates of the Subalpine Molasse zone of the northern Alps and other regions of Europe, indicating karstification and high vulnerability, which is currently not considered for source protection zoning. Therefore, a research program was established at the Hochgrat site (Austria/Germany), as a demonstration that karst-like characteristics, flow behavior, and high vulnerability to microbial contamination are possible in this type of aquifer. The study included geomorphologic mapping, comparative multi-tracer tests with fluorescent dyes and bacteria-sized fluorescent microspheres, and analyses of fecal indicator bacteria (FIB) in spring waters during different seasons. Results demonstrate that (1) flow velocities in carbonate conglomerates are similar as in typical karst aquifers, often exceeding 100 m/h; (2) microbial contaminants are rapidly transported toward springs; and (3) the magnitude and seasonal pattern of FIB variability depends on the land use in the spring catchment and its altitude. Different groundwater protection strategies that currently applied are consequently required in regions formed by karstified carbonatic clastic rocks, taking into account their high degree of heterogeneity and vulnerability. PMID:20678141

  14. Survival, transport, and sources of fecal bacteria in streams and survival in land-applied poultry litter in the upper Shoal Creek basin, southwestern Missouri, 2001-2002

    USGS Publications Warehouse

    Schumacher, John G.

    2003-01-01

    Densities of fecal coliform bacteria along a 5.7-mi (mile) reach of Shoal Creek extending upstream from State Highway 97 (site 3) to State Highway W (site 2) and in two tributaries along this reach exceeded the Missouri Department of Natural Resources (MDNR) standard of 200 col/100 mL (colonies per 100 milliliters) for whole-body contact recreation. A combination of techniques was used in this report to provide information on the source, transport, and survival of fecal bacteria along this reach of Shoal Creek. Results of water-quality samples collected during dye-trace and seepage studies indicated that at summer low base-flow conditions, pastured cattle likely were a substantial source of fecal bacteria in Shoal Creek at the MDNR monitoring site (site 3) at State Highway 97. Using repeat element Polymerase Chain Reaction (rep-PCR), cattle were the presumptive source of about 50 percent of the Escherichia coli (E. coli) isolates in water samples from site 3. Cattle, horses, and humans were the most common presumptive source of E. coli isolates at sites further upstream. Poultry was identified by rep-PCR as a major source of E. coli in Pogue Creek, a tributary in the upper part of the study area. Results of the rep-PCR were in general agreement with the detection and distribution of trace concentrations of organic compounds commonly associated with human wastewater, such as caffeine, the antimicrobial agent triclosan, and the pharmaceutical compounds acetaminophen and thiabendazole (a common cattle anthelmintic). Significant inputs of fecal bacteria to Shoal Creek occurred along a 1.6-mi reach of Shoal Creek immediately upstream from site 3. During a 36-hour period in July 2001, average densities of fecal coliform and E. coli bacteria increased from less than or equal to 500 col/100 mL upstream from this stream reach (sample site 2c) to 2,100 and 1,400 col/100 mL, respectively, at the MDNR sampling site. Fecal bacteria densities exhibited diurnal variability at all

  15. Spatial and temporal variability of fecal indicator bacteria in an urban stream under different meteorological regimes.

    PubMed

    Cha, Sung Min; Lee, Seung Won; Park, Yong Eun; Cho, Kyung Hwa; Lee, Seungyoon; Kim, Joon Ha

    2010-01-01

    As a representative urban stream in Korea, the Gwangju (GJ) stream suffers from chronic fecal contamination. In this study, to characterize levels of fecal pollution in the GJ stream, the monthly monitoring data for seven years (from 2001 to 2007) and the hourly monitoring data from two field experiments were examined with respect to seasonal/daily variations and spatial distribution under wet and dry weather conditions. This research revealed that concentrations of fecal indicator bacteria strongly varied depending on the prevalent meteorological conditions. That is, during the dry daytime, fecal indicator bacteria concentrations decreased due to inactivation from solar irradiation, but rapidly increased in the absence of sunlight, suggesting external source inputs. In addition, bacterial concentrations substantially increased during rainfall events, due probably to a major contribution from combined sewer overflow. The observations in this study can be useful for implementing fecal pollution management strategies and for predicting fecal contamination as a function of meteorological conditions. PMID:20555206

  16. Distribution of Fecal Indicator Bacteria along the Malibu, California, Coastline

    USGS Publications Warehouse

    Izbicki, John

    2011-01-01

    Each year, over 550 million people visit California's public beaches. To protect beach-goers from exposure to waterborne disease, California state law requires water-quality monitoring for fecal indicator bacteria (FIB), such as enterococci and Escherichia coli (E. coli), at beaches having more than 50,000 yearly visitors. FIB are used to assess the microbiological quality of water because, although not typically disease causing, they are correlated with the occurrence of certain waterborne diseases. Tests show that FIB concentrations occasionally exceed U.S. Environmental Protection Agency (USEPA) public health standards for recreational water in Malibu Lagoon and at several Malibu beaches (Regional Water Quality Control Board, 2009). Scientists from the U.S. Geological Survey's (USGS) California Water Science Center are doing a study to identify the distribution and sources of FIB in coastal Malibu waters (fig. 1). The study methods were similar to those used in a study of FIB contamination on beaches in the Santa Barbara, California, area (Izbicki and others, 2009). This report describes the study approach and presents preliminary results used to evaluate the distribution and source of FIB in the Malibu area. Results of this study will help decision-makers address human health issues associated with FIB contamination in Malibu, and the methods used in this study can be used in other coastal areas affected by FIB contamination.

  17. NEW MEDIUM FOR IMPROVED RECOVERY OF COLIFORM BACTERIA FROM DRINKING WATER

    EPA Science Inventory

    A new membrane filter medium was developed for the improved recovery of injured coliforms from drinking water. The new medium, termed m-T7, consists of 5.0 g of Difco Proteose Peptone no. 3,20 g of lactose, 3.0 g of yeast extract, 0.4 ml of Tergitol 7 (25% solution), 5.0 g of pol...

  18. ELECTROLYTIC DISINFECTION OF ESCHERICHIA COLI AND COLIFORM BACTERIA IN A BATCH CELL WITH DSA ELECTRODES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Electrolytic treatment of dairy manure lagoon water using DSA electrodes is shown to produce a progressive disinfection of native coliforms and introduced E. coli. The disinfectant effect continues post-treatment for several minutes. To further examine the process, flow cytometry was employed to st...

  19. Preliminary survey of antibiotic-resistant fecal indicator bacteria and pathogenic escherichia coli from river-water samples collected in Oakland County, Michigan, 2003

    USGS Publications Warehouse

    Fogarty, Lisa R.; Duris, Joseph W.; Aichele, Stephen S.

    2005-01-01

    A preliminary study was done in Oakland County, Michigan, to determine the concentration of fecal indicator bacteria (fecal coliform bacteria and enterococci), antibiotic resistance patterns of these two groups, and the presence of potentially pathogenic Escherichia coli (E. coli). For selected sites, specific members of these groups [E. coli, Enterococcus faecium (E. faecium) and Enterococcus faecalis (E. faecalis)] were isolated and tested for levels of resistance to specific antibiotics used to treat human infections by pathogens in these groups and for their potential to transfer these resistances. In addition, water samples from all sites were tested for indicators of potentially pathogenic E. coli by three assays: a growth-based assay for sorbitol-negative E. coli, an immunological assay for E. coli O157, and a molecular assay for three virulence and two serotype genes. Samples were also collected from two non-urbanized sites outside of Oakland County. Results from the urbanized Oakland County area were compared to those from these two non-urbanized sites. Fecal indicator bacteria concentrations exceeded State of Michigan recreational water-quality standards and (or) recommended U.S. Environmental Protection Agency (USEPA) standards in samples from all but two Oakland County sites. Multiple-antibiotic-resistant fecal coliform bacteria were found at all sites, including two reference sites from outside the county. Two sites (Stony Creek and Paint Creek) yielded fecal coliform isolates resistant to all tested antibiotics. Patterns indicative of extended-spectrum- -lactamase (ESBL)-producing fecal coliform bacteria were found at eight sites in Oakland County and E. coli resistant to clinically significant antibiotics were recovered from the River Rouge, Clinton River, and Paint Creek. Vancomycin-resistant presumptive enterococci were found at six sites in Oakland County and were not found at the reference sites. Evidence of acquired antibiotic resistances was

  20. Narrowing the Search for Sources of Fecal Indicator Bacteria with a Simple Salinity Mixing Model

    NASA Astrophysics Data System (ADS)

    McLaughlin, K.; Ahn, J.; Litton, R.; Grant, S. B.

    2006-12-01

    Newport Bay, the second largest estuarine embayment in Southern California, provides critical natural habitat for terrestrial and aquatic species and is a regionally important recreational area. Unfortunately, the beneficial uses of Newport Bay are threatened by numerous sources of pollutant loading, either through direct discharge into the bay or through its tributaries. Fecal indicator bacteria (FIB) are associated with human pathogens and are present in high concentrations in sewage and urban runoff. Standardized and inexpensive assays used for the detection of FIB have allowed their concentrations to be used as a common test of water quality. In order to assess FIB impairment in Newport Bay, weekly transects of FIB concentrations were conducted, specifically Total Coliform, Escherichia coli and Enterococci spp., as well as salinity, temperature, and transmissivity, from the upper reaches of the estuary to an offshore control site. Using salinity as a conservative tracer for water mass mixing and determining the end-member values of FIB and transmissivity in both the creek sites and the offshore control site, we created a simple, two end-member mixing model of FIB and transmissivity within Newport Bay. Deviations from the mixing model would suggest either an additional source of FIB to the bay (e.g. bird feces) or regrowth of FIB within the bay. Our results indicate that, with a few notable exceptions, salinity is a good tracer for FIB concentrations along the transect, but is not particularly effective for transmissivity. This suggests that the largest contributor of FIB loading to Newport Bay comes from the discharge of creeks into the upper reaches of the estuary.

  1. Sediment and Fecal Indicator Bacteria Loading in a Mixed Land Use Watershed: Contributions from Suspended and Bed Load Transport

    EPA Science Inventory

    Water quality studies that quantify sediment and fecal bacteria loading commonly focus on suspended contaminants transported during high flows. Fecal contaminants in bed sediments are typically ignored and need to be considered because of their potential to increase pathogen load...

  2. COMPARATIVE DIVERSITY OF FECAL BACTERIA IN AGRICULTURALLY SIGNIFICANT ANIMALS TO IDENTIFY ALTERNATIVE TARGETS FOR MICROBIAL SOURCE TRACKING

    EPA Science Inventory

    Animals of agricultural significance contribute a large percentage of fecal pollution to waterways via runoff contamination. The premise of microbial source tracking is to utilize fecal bacteria to identify target populations which are directly correlated to specific animal feces...

  3. COMPETITION POTENTIALS OF ENVIRONMENTALLY APPLIED BACTERIA WITH HUMAN FECAL MICROBIOTA

    EPA Science Inventory

    One of the potential human health effects associated with the environmental release. his of genetically engineered microorganisms is colonization of the intestinal tract study uses serial transfer techniques to monitor the in vitro survival and competition with human fecal microb...

  4. Matrix Extension Study: Validation of the Compact Dry CF Method for Enumeration of Total Coliform Bacteria in Selected Foods.

    PubMed

    Mizuochi, Shingo; Nelson, Maria; Baylis, Chris; Green, Becky; Jewell, Keith; Monadjemi, Farinaz; Chen, Yi; Salfinger, Yvonne; Fernandez, Maria Cristina

    2016-01-01

    The Compact Dry "Nissui" CF method, Performance Tested Method(SM) 110401, was originally certified for enumeration of coliform bacteria by the AOAC Research Institute Performance Tested Methods(SM) program for raw meat products. Compact Dry CF is a ready-to-use dry media sheet, containing a cold-soluble gelling agent, a chromogenic medium, and selective agents, which are rehydrated by adding 1 mL of diluted sample. Coliform bacteria produce blue/blue-green colonies on the Compact Dry CF, allowing a coliform colony count to be determined in the sample after 24 ± 2 h incubation. A validation study was organized by Campden BRI (formerly Campden and Chorleywood Food Research Association Technology, Ltd), Chipping Campden, United Kingdom, to extend the method's claim to include cooked chicken, fresh bagged prewashed shredded iceberg lettuce, frozen fish, milk powder, and pasteurized 2% milk. Campden BRI collected single-laboratory data for cooked chicken, lettuce, frozen fish, and milk powder, whereas a multilaboratory study was conducted on pasteurized milk. Thirteen laboratories participated in the interlaboratory study. The Compact Dry CF method was compared to ISO 4832:2006 "Microbiology of food and animal feeding stuffs-Horizontal method for the enumeration of coliforms-Colony-count technique," the current version at the time this study was conducted. Each matrix was evaluated at either four or five contamination levels of coliform bacteria (including an uncontaminated level). After logarithmic transformation of counts at each level, the data for pasteurized whole milk were analyzed for sr, sR, RSDr, and RSDR. Regression analysis was also performed and r(2) was reported. Mean difference between methods with 95% confidence interval (CI) was calculated. A log10 range of -0.5 to 0.5 for the CI was used as the acceptance criterion to establish significant statistical difference between methods. In the single-laboratory evaluation (for cooked chicken, lettuce, frozen

  5. Survival of manure-borne and fecal coliforms in soil: temperature dependence as affected by site-specific factors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding pathogenic and indicator bacteria survival in soils is essential for assessing the potential of microbial contamination of water and produce, and making appropriate management decisions. The objective of this work was to evaluate effects of soil and management factors on temperature de...

  6. Relation of bacteria in limestone aquifers to septic systems in Berkeley County, West Virginia

    USGS Publications Warehouse

    Mathes, M.V.

    2000-01-01

    Water samples collected from 50 wells in Berkeley County, West Virginia, during June 2000 were analyzed for indicator bacteria. Of the 50 wells sampled, 62 percent (31 wells) contained total coliform bacteria, 32 percent (16 wells) contained Escherichia coli, and 30 percent (15 wells) contained fecal coliform bacteria. Although bacteria were present in many wells regardless of the number of septic systems in a 5-acre circular area around each well, no apparent correlation was detected between septic-system density and concentrations of bacteria colonies. There was also little difference in the frequency of total coliform bacteria detection between shallow and deep wells; however, the highest concentrations of E. coli and fecal coliform bacteria were found in the shallowest wells. At least one of the three bacteria types was found in samples of untreated water in 32 of the 50 wells. At 21 of the 32 wells with bacteria present, there was no treatment of the ground water to remove bacteria.

  7. Rapid Determination of the Presence of Enteric Bacteria in Water

    PubMed Central

    Kenard, R. P.; Valentine, R. S.

    1974-01-01

    A rapid and sensitive method is described for the detection of bacteria in water and various other natural substrates by the isolation of specific bacteriophage. By the addition of large numbers of the organism in question to the sample, the presence of virulent bacteriophage can be demonstrated in as little as 6 to 8 h. Fecal coliform, total coliform, and total coliphage counts were determined for over 150 water samples from several geographical areas over a period of 2 years. Computer analysis of the data shows a high degree of correlation between fecal coliforms and the coliphage present in the samples. With a high correlation coefficient between fecal coliform and coliphage counts, predictions of the fecal coliforms may be made by enumeration of the phage. PMID:4596384

  8. Quantitative role of shrimp fecal bacteria in organic matter fluxes in a recirculating shrimp aquaculture system.

    PubMed

    Beardsley, Christine; Moss, Shaun; Malfatti, Francesca; Azam, Farooq

    2011-07-01

    Microorganisms play integral roles in the cycling of carbon (C) and nitrogen (N) in recirculating aquaculture systems (RAS) for fish and shellfish production. We quantified the pathways of shrimp fecal bacterial activities and their role in C- and N-flux partitioning relevant to culturing Pacific white shrimp, Penaeus (Litopenaeus) vannamei, in RAS. Freshly produced feces from P. vannamei contained 0.6-7 × 10(10) bacteria g(-1) dry wt belonging to Bacteroidetes (7%), Alphaproteobacteria (4%), and, within the Gammaproteobacteria, almost exclusively to the genus Vibrio (61%). Because of partial disintegration of the feces (up to 27% within 12 h), the experimental seawater became inoculated with fecal bacteria. Bacteria grew rapidly in the feces and in the seawater, and exhibited high levels of aminopeptidase, chitinase, chitobiase, alkaline phosphatase, α- and β-glucosidase, and lipase activities. Moreover, fecal bacteria enriched the protein content of the feces within 12 h, potentially enriching the feces for the coprophagous shrimp. The bacterial turnover time was much faster in feces (1-10 h) than in mature RAS water (350 h). Thus, shrimp fecal bacteria not only inoculate RAS water but also contribute to bacterial abundance and productivity, and regulate system processes important for shrimp health. PMID:21426366

  9. Microbial quality of tilapia reared in fecal-contaminated ponds.

    PubMed

    El-Shafai, Saber A; Gijzen, Huub J; Nasr, Fayza A; El-Gohary, Fatma A

    2004-06-01

    The microbial quality of tilapia reared in four fecal-contaminated fishponds was investigated. One of the fishponds (TDP) received treated sewage with an average fecal coliform count of 4 x 10(3)cfu/100mL, and feed of fresh duckweed grown on treated sewage was used. The number of fecal coliform bacteria attached to duckweed biomass ranged between 4.1 x 10(2) and 1.6 x 10(4)cfu/g fresh weight. The second fishpond (TWP) received treated sewage, and the feed used was wheat bran. The third fishpond (FDP) received freshwater, and the feed used was the same duckweed. Pond 4 (SSP) received only settled sewage with an average fecal coliform count of 2.1 x 10(8)/100mL. The average counts in the fishponds were 2.2 x 10(3), 1.7 x 10(3), 1.7 x 10(2), and 9.4 x 10(3)cfu/100mL in TDP, TWP, FDP, and SSP, respectively. FDP had a significantly (P < 0.05) lower fecal coliform count than the treated sewage-fed ponds and SSP. The microbial quality of the tilapia indicated that all tissue samples except muscle tissues were contaminated with fecal coliform. Ranking of the fecal coliform contamination levels showed a decrease in the order intestine>gills>skin>liver. Poor water quality (ammonia and nitrite) in SSP resulted in statistically higher fecal coliform numbers in fish organs of about 1 log(10) than in treatments with good water quality. Pretreatment of sewage is therefore recommended. PMID:15147929

  10. Monitoring of human enteric viruses and coliform bacteria in waters after urban flood in Jakarta, Indonesia.

    PubMed

    Phanuwan, C; Takizawa, S; Oguma, K; Katayama, H; Yunika, A; Ohgaki, S

    2006-01-01

    Floodwaters in Kampung Melayu village, Jakarta, Indonesia, as well as river water and consumable water (including groundwater and tap water) samples in flooded and non-flooded areas, were quantitatively analysed to assess occurrence of viruses and total coliforms and E. coli as bacterial indicators after flooding event. High numbers of enterovirus, hepatitis A virus, norovirus (G1, G2) and adenovirus were detected at high concentration in floodwaters and waters sampled from Ciliwung River which runs across metropolitan Jakarta and is used widely for agriculture and domestic purposes by poor residents. One out of three groundwater wells in the flooded area was contaminated with all viruses tested while no viruses were found in groundwater samples in non-flooded areas and tap water samples. The results revealed that human enteric viruses, especially hepatitis A virus and adenovirus, were prevalent in Jakarta, Indonesia. This study suggested that flooding posed a higher risk of viral infection to the people through contamination of drinking water sources or direct contact with floodwaters. PMID:17037154

  11. Sources and growth dynamics of fecal indicator bacteria in a coastal wetland system and potential impacts to adjacent waters.

    PubMed

    Evanson, Melissa; Ambrose, Richard F

    2006-02-01

    Coastal wetlands are receiving increased attention as a putative source of fecal indicator bacteria (FIB) in Southern California coastal waters. We examined temporal trends of water and sediment-associated FIB after rain events along with spatial sediment characteristics at two sites within the Santa Ana River wetlands and made comparisons to FIB levels observed in adjacent surf zone waters. During the first two rain events, total coliforms (TC), Escherichia coli (EC) and enterococci (ENT) in wetland water and sediment samples peaked either on the same day or within several days of the rain event, while the third resulted in elevated wetlands sediment TC levels only. TC in adjacent coastal waters consistently peaked on the same day as the rain event and decreased quickly thereafter (within 1 day). The TC/EC ratios of surf zone samples consistently fell below 10, indicating an increased probability of human fecal contamination whereas wetland TC/EC ratios were higher, averaging approximately 60 and 14 at each site. These results suggest sediment-associated FIB populations may be distinct from those found in the water samples, or at least have internal dynamics independent of water-borne populations. Increases in sediment-associated FIB may be due to in situ population growth and/or increased survival due to changes in environmental parameters (salinity, moisture and nutrient input) resulting from the rain events. Spatial differences in between the two sites may be due to sediment differences such as organic content and finer grain size and/or discrete sources of FIB. PMID:16386284

  12. Natural soil reservoirs for human pathogenic and fecal indicator bacteria

    USGS Publications Warehouse

    Boschiroli, Maria L; Falkinham, Joseph; Favre-Bonte, Sabine; Nazaret, Sylvie; Piveteau, Pascal; Sadowsky, Michael J.; Byappanahalli, Muruleedhara; Delaquis, Pascal; Hartmann, Alain

    2016-01-01

    Soils receive inputs of human pathogenic and indicator bacteria through land application of animal manures or sewage sludge, and inputs by wildlife. Soil is an extremely heterogeneous substrate and contains meso- and macrofauna that may be reservoirs for bacteria of human health concern. The ability to detect and quantify bacteria of human health concern is important in risk assessments and in evaluating the efficacy of agricultural soil management practices that are protective of crop quality and protective of adjacent water resources. The present chapter describes the distribution of selected Gram-positive and Gram-negative bacteria in soils. Methods for detecting and quantifying soilborne bacteria including extraction, enrichment using immunomagnetic capture, culturing, molecular detection and deep sequencing of metagenomic DNA to detect pathogens are overviewed. Methods for strain phenotypic and genotypic characterization are presented, as well as how comparison with clinical isolates can inform the potential for human health risk.

  13. Temporal Synchronization Analysis for Improving Regression Modeling of Fecal Indicator Bacteria Levels

    EPA Science Inventory

    Multiple linear regression models are often used to predict levels of fecal indicator bacteria (FIB) in recreational swimming waters based on independent variables (IVs) such as meteorologic, hydrodynamic, and water-quality measures. The IVs used for these analyses are traditiona...

  14. DNA analysis of fecal bacteria to augment an epikarst dye trace study at Crump's Cave, Kentucky

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A rainfall simulation experiment was performed to investigate the transport behavior of fecal-derived bacteria through shallow karst soils and through the epikarst. The experiment was conducted at Cave Springs Cavern located just south of Mammoth Cave National Park on the Sinkhole Plain of South Cen...

  15. PCR detection and quantitation of predominant anaerobic bacteria in human and animal fecal samples

    SciTech Connect

    Wang, Rong-Fu; Cao, Wei-Wen; Cerniglia, C.E.

    1996-04-01

    PCR procedures based on 16S rRNA genen sequence specific for 12 anaerobic bacteria that predominate in the human intestinal tract were developed and used for quantitative detection of these species in human feces and animal feces. The reported PCR procedure including the fecal sample preparation method is simplified and rapid and eliminates the DNA isolation steps.

  16. Quantitative Real-Time PCR Analysis of Total Propidium Monazide -Resistant Fecal Indicator Bacteria in Wastewater

    EPA Science Inventory

    A real-time quantitative PCR (qPCR) method and a modification of this method incorporating pretreatment of samples with propidium monoazide (PMA) were evaluated for respective analyses of total and presumptively viable Enterococcus and Bacteroidales fecal indicator bacteria. Thes...

  17. INTERNAL AMPLIFICATION CONTROL FOR USE IN QUANTITATIVE POLYMERASE CHAIN REACTION FECAL INDICATOR BACTERIA ASSAYS

    EPA Science Inventory

    Quantitative polymerase chain reaction (QPCR) can be used as a rapid method for detecting fecal indicator bacteria. Because false negative results can be caused by PCR inhibitors that co-extract with the DNA samples, an internal amplification control (IAC) should be run with eac...

  18. Decay of Fecal Indicator Bacteria and Microbial Source Tracking Markers in Cattle Feces

    EPA Science Inventory

    The survival of fecal indicator bacteria (FIB) and microbial source tracking (MST) markers in water microcosms and manure amended soils has been well documented; however, little is known about the survival of MST markers in bovine feces deposited on pastures. We conducted a study...

  19. Interlaboratory Comparison of Real-time PCR Protocols for Quantification of General Fecal Indicator Bacteria

    EPA Science Inventory

    The application of quantitative real-time PCR (qPCR) technologies for the rapid identification of fecal bacteria in environmental waters is being considered for use as a national water quality metric in the United States. The transition from research tool to a standardized proto...

  20. Lack of Direct Effects of Agrochemicals on Zoonotic Pathogens and Fecal Indicator Bacteria

    PubMed Central

    Staley, Zachery R.; Senkbeil, Jacob K.; Rohr, Jason R.

    2012-01-01

    Agrochemicals, fecal indicator bacteria (FIB), and pathogens frequently contaminate water simultaneously. No significant direct effects of fertilizer, atrazine, malathion, and chlorothalonil on the survival of Escherichia coli, Enterococcus faecalis, Salmonella enterica, human polyomaviruses, and adenovirus were detected, supporting the assertion that previously observed effects of agrochemicals on FIB were indirect. PMID:22961900

  1. Comparison of FecalSwab and ESwab Devices for Storage and Transportation of Diarrheagenic Bacteria

    PubMed Central

    Kaukoranta, Suvi-Sirkku

    2014-01-01

    Using a collection (n = 12) of ATCC and known stock isolates, as well as 328 clinical stool specimens, we evaluated the ESwab and the new FecalSwab liquid-based microbiology (LBM) devices for storing and transporting diarrheagenic bacteria. The stock isolates were stored in these swab devices up to 48 h at refrigeration (4°C) or room (∼25°C) temperature and up to 3 months at −20°C or −70°C. With the clinical stool specimens, the performances of the ESwab and FecalSwab were compared to those of routinely used transport systems (Amies gel swabs and dry containers). At a refrigeration temperature, all isolates survived in FecalSwab up to 48 h, while in ESwab, only 10 isolates (83.3%) out of 12 survived. At −70°C, all isolates in FecalSwab were recovered after 3 months of storage, whereas in ESwab, none of the isolates were recovered. At −20°C, neither of the swab devices preserved the viability of stock isolates after 2 weeks of storage, and at room temperature, 7 (58.3%) of the stock isolates were recovered in both transport devices after 48 h. Of the 328 fecal specimens, 44 (13.4%) were positive for one of the common diarrheagenic bacterial species with all transport systems used. Thus, the suitability of the ESwab and FecalSwab devices for culturing fresh stools was at least equal to those of the Amies gel swabs and dry containers. Although the ESwab was shown to be an option for collecting and transporting fecal specimens, the FecalSwab device had clearly better preserving properties under different storage conditions. PMID:24740083

  2. Occurrence of fecal indicator bacteria in surface waters and the subsurface aquifer in Key Largo, Florida.

    PubMed

    Paul, J H; Rose, J B; Jiang, S; Kellogg, C; Shinn, E A

    1995-06-01

    Sewage waste disposal facilities in the Florida Keys include septic tanks and individual package plants in place of municipal collection facilities in most locations. In Key Largo, both facilities discharge into the extremely porous Key Largo limestone. To determine whether there was potential contamination of the subsurface aquifer and nearby coastal surface waters by such waste disposal practices, we examined the presence of microbial indicators commonly found in sewage (fecal coliforms, Clostridium perfringens, and enterococci) and aquatic microbial parameters (viral direct counts, bacterial direct counts, chlorophyll a, and marine vibriophage) in injection well effluent, monitoring wells that followed a transect from onshore to offshore, and surface waters above these wells in two separate locations in Key Largo in August 1993 and March 1994. Effluent and waters from onshore shallow monitoring wells (1.8- to 3.7-m depth) contained two or all three of the fecal indicators in all three samples taken, whereas deeper wells (10.7- to 12.2-m depth) at these same sites contained few or none. The presence of fecal indicators was found in two of five nearshore wells (i.e., those that were < or = 1.8 miles [< or = 2.9 km] from shore), whereas offshore wells (> or = 2.1 to 5.7 miles [< or = 3.4 to 9.2 km] from shore) showed little sign of contamination. Indicators were also found in surface waters in a canal in Key Largo and in offshore surface waters in March but not in August. Collectively, these results suggest that fecal contamination of the shallow onshore aquifer, parts of the nearshore aquifer, and certain surface waters has occurred.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7793943

  3. Age-related changes in select fecal bacteria in foals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adult horses depend on the microbial community in the hindgut to produce VFAs that are utilized for energy. Microbial colonization in the gastrointestinal tract of foals is essential to develop a healthy symbiotic relationship and prevent proliferation of pathogenic bacteria. However, colonization i...

  4. Sources of fecal indicator bacteria to groundwater, Malibu Lagoon and the near-shore ocean, Malibu, California, USA

    USGS Publications Warehouse

    Izbicki, John A.; Swarzenski, Peter W.; Burton, Carmen A.; Van De Werfhorst, Laurie; Holden, Patricia A.; Dubinsky, Eric A.

    2012-01-01

    Onsite wastewater treatment systems (OWTS) used to treat residential and commercial sewage near Malibu, California have been implicated as a possible source of fecal indicator bacteria (FIB) to Malibu Lagoon and the near-shore ocean. For this to occur, treated wastewater must first move through groundwater before discharging to the Lagoon or ocean. In July 2009 and April 2010, δ18O and δD data showed that some samples from water-table wells contained as much as 70% wastewater; at that time FIB concentrations in those samples were generally less than the detection limit of 1 Most Probable Number (MPN) per 100 milliliters (mL). In contrast, Malibu Lagoon had total coliform, Escherichia coli, and enterococci concentrations as high as 650,000, 130,000, and 5,500 MPN per 100 mL, respectively, and as many as 12% of samples from nearby ocean beaches exceeded the U.S. Environmental Protection Agency single sample enterococci standard for marine recreational water of 104 MPN per 100 mL. Human-associated Bacteroidales, an indicator of human-fecal contamination, were not detected in water from wells, Malibu Lagoon, or the near-shore ocean. Similarly, microarray (PhyloChip) data show Bacteroidales and Fimicutes Operational Taxanomic Units (OTUs) present in OWTS were largely absent in groundwater; in contrast, 50% of Bacteroidales and Fimicutes OTUs present in the near-shore ocean were also present in gull feces. Terminal-Restriction Length Fragment Polymorphism (T-RFLP) and phospholipid fatty acid (PLFA) data showed that microbial communities in groundwater were different and less abundant than communities in OWTS, Malibu Lagoon, or the near-shore ocean. However, organic compounds indicative of wastewater (such as fecal sterols, bisphenol-A and cosmetics) were present in groundwater having a high percentage of wastewater and were present in groundwater discharging to the ocean. FIB in the near-shore ocean varied with tides, ocean swells, and waves. Movement of water from

  5. Development of a field enhanced photocatalytic device for biocide of coliform bacteria.

    PubMed

    Huber, Jeff M; Carlson, Krista L; Conroy-Ben, Otakuye; Misra, Mano; Mohanty, Swomitra K

    2016-06-01

    A field enhanced flow reactor using bias assisted photocatalysis was developed for bacterial disinfection in lab-synthesized and natural waters. The reactor provided complete inactivation of contaminated waters with flow rates of 50mL/min. The device consisted of titanium dioxide nanotube arrays, with an externally applied bias of up to 6V. Light intensity, applied voltage, background electrolytes and bacteria concentration were all found to impact the device performance. Complete inactivation of Escherichia coli W3110 (~8×10(3)CFU/mL) occurred in 15sec in the reactor irradiated at 25mW/cm(2) with an applied voltage of 4V in a 100ppm NaCl solution. Real world testing was conducted using source water from Emigration Creek in Salt Lake City, Utah. Disinfection of natural creek water proved more challenging, providing complete bacterial inactivation after 25sec at 6V. A reduction in bactericidal efficacy was attributed to the presence of inorganic and organic species, as well as the increase in robustness of natural bacteria. PMID:27266300

  6. Multivariate Logistic Regression for Predicting Total Culturable Virus Presence at the Intake of a Potable-Water Treatment Plant: Novel Application of the Atypical Coliform/Total Coliform Ratio▿

    PubMed Central

    Black, L. E.; Brion, G. M.; Freitas, S. J.

    2007-01-01

    Predicting the presence of enteric viruses in surface waters is a complex modeling problem. Multiple water quality parameters that indicate the presence of human fecal material, the load of fecal material, and the amount of time fecal material has been in the environment are needed. This paper presents the results of a multiyear study of raw-water quality at the inlet of a potable-water plant that related 17 physical, chemical, and biological indices to the presence of enteric viruses as indicated by cytopathic changes in cell cultures. It was found that several simple, multivariate logistic regression models that could reliably identify observations of the presence or absence of total culturable virus could be fitted. The best models developed combined a fecal age indicator (the atypical coliform [AC]/total coliform [TC] ratio), the detectable presence of a human-associated sterol (epicoprostanol) to indicate the fecal source, and one of several fecal load indicators (the levels of Giardia species cysts, coliform bacteria, and coprostanol). The best fit to the data was found when the AC/TC ratio, the presence of epicoprostanol, and the density of fecal coliform bacteria were input into a simple, multivariate logistic regression equation, resulting in 84.5% and 78.6% accuracies for the identification of the presence and absence of total culturable virus, respectively. The AC/TC ratio was the most influential input variable in all of the models generated, but producing the best prediction required additional input related to the fecal source and the fecal load. The potential for replacing microbial indicators of fecal load with levels of coprostanol was proposed and evaluated by multivariate logistic regression modeling for the presence and absence of virus. PMID:17468270

  7. ENHANCED RECOVERY OF COLIFORMS BY ANAEROBIC INCUBATION

    EPA Science Inventory

    A total of 529 well and distribution potable water samples were analyzed for total coliforms by the most probable number (MPN) and membrane filter (MF) techniques. Standard plate count (SPC) bacteria and MF non-coliform bacteria were also enumerated. Frequency of coliform detecti...

  8. Enzyme Characteristics of β-d-Galactosidase- and β-d-Glucuronidase-Positive Bacteria and Their Interference in Rapid Methods for Detection of Waterborne Coliforms and Escherichia coli

    PubMed Central

    Tryland, I.; Fiksdal, L.

    1998-01-01

    Bacteria which were β-d-galactosidase and β-d-glucuronidase positive or expressed only one of these enzymes were isolated from environmental water samples. The enzymatic activity of these bacteria was measured in 25-min assays by using the fluorogenic substrates 4-methylumbelliferyl-β-d-galactoside and 4-methylumbelliferyl-β-d-glucuronide. The enzyme activity, enzyme induction, and enzyme temperature characteristics of target and nontarget bacteria in assays aimed at detecting coliform bacteria and Escherichia coli were investigated. The potential interference of false-positive bacteria was evaluated. Several of the β-d-galactosidase-positive nontarget bacteria but none of the β-d-glucuronidase-positive nontarget bacteria contained unstable enzyme at 44.5°C. The activity of target bacteria was highly inducible. Nontarget bacteria were induced much less or were not induced by the inducers used. The results revealed large variations in the enzyme levels of different β-d-galactosidase- and β-d-glucuronidase-positive bacteria. The induced and noninduced β-d-glucuronidase activities of Bacillus spp. and Aerococcus viridans were approximately the same as the activities of induced E. coli. Except for some isolates identified as Aeromonas spp., all of the induced and noninduced β-d-galactosidase-positive, noncoliform isolates exhibited at least 2 log units less mean β-d-galactosidase activity than induced E. coli. The noncoliform bacteria must be present in correspondingly higher concentrations than those of target bacteria to interfere in the rapid assay for detection of coliform bacteria. PMID:9501441

  9. Coliform Contamination of Peri-urban Grown Vegetables and Potential Public Health Risks: Evidence from Kumasi, Ghana.

    PubMed

    Abass, Kabila; Ganle, John Kuumuori; Adaborna, Eric

    2016-04-01

    Peri-urban vegetable farming in Ghana is an important livelihood activity for an increasing number of people. However, increasing quality and public health concerns have been raised, partly because freshwater availability for irrigation purposes is a major constraint. This paper investigated on-farm vegetable contamination and potential health risks using samples of lettuce, spring onions and cabbage randomly selected from 18 vegetable farms in peri-urban Kumasi, Ghana. Vegetable samples were tested for total coliform, fecal coliform, Escherichia coli and Salmonella spp. bacteria contamination using the Most Probable Number method. Results show high contamination levels of total and fecal coliforms, and Escherichia coli bacteria in all 18 vegetable samples. The mean total coliform/100 ml concentration for spring onions, lettuce and cabbage were 9.15 × 10(9), 4.7 × 10(7) and 8.3 × 10(7) respectively. The mean fecal coliform concentration for spring onions, lettuce and cabbage were also 1.5 × 10(8), 4.15 × 10(7) and 2.15 × 10(7) respectively, while the mean Escherichia coli bacteria contamination for spring onions, lettuce and cabbage were 1.4 × 10(8), 2.2 × 10(7) and 3.2 × 10(7) respectively. The level of total coliform, fecal coliform and Escherichia coli bacteria contamination in all the vegetable samples however declined as the distance between the main water source (Wiwi River) and farms increases. Nonetheless, all contamination levels were well above acceptable standards, and could therefore pose serious public health risks to consumers. Increased education and supervision of farmers, as well as public health and food hygiene education of consumers, are critical to reducing on-farm vegetable contamination and the health risks associated with consumption of such vegetables. PMID:26512013

  10. Effect of Environmental Factors on the Relationship between Concentrations of Coprostanol and Fecal Indicator Bacteria in Tropical (Mekong Delta) and Temperate (Tokyo) Freshwaters

    PubMed Central

    Isobe, Kei O.; Tarao, Mitsunori; Chiem, Nguyen H.; Minh, Le Y.; Takada, Hideshige

    2004-01-01

    A reliable assessment of microbial indicators of fecal pollution (total coliform, Escherichia coli, and fecal streptococcus) is critical in tropical environments. Therefore, we investigated the relationship between concentrations of indicator bacteria and a chemical indicator, coprostanol (5β-cholestan-3β-ol), in tropical and temperate regions. Water samples were collected from the Mekong Delta, Vietnam, during wet and dry seasons, and from Tokyo, Japan, during summer, the aftermath of a typhoon, and winter. During the wet season in the Mekong Delta, higher bacterial densities were observed in rivers, probably due to the higher bacterial inputs from soil particles with runoff. In Tokyo, higher bacterial densities were usually observed during summer, followed by those in the typhoon aftermath and winter. A strong logarithmic correlation between the concentrations of E. coli and coprostanol was demonstrated in all surveys. Distinctive seasonal fluctuations were observed, as concentrations of coprostanol corresponding to 1,000 CFU of E. coli/100 ml were at their lowest during the wet season in the Mekong Delta and the typhoon aftermath in Tokyo (30 ng/liter), followed by the dry season in the Mekong Delta and the summer in Tokyo (100 ng/liter), and they were much higher during the winter in Tokyo (400 ng/liter). These results suggested that E. coli is a specific indicator of fecal contamination in both tropical and temperate regions but that the densities are affected by elevated water temperature and input from runoff of soil particles. The concurrent determination of E. coli and coprostanol concentrations could provide a possible approach to assessing the reliability of fecal pollution monitoring data. PMID:14766559

  11. The association between bedding material and the bacterial counts of Staphylococcus aureus, Streptococcus uberis and coliform bacteria on teat skin and in teat canals in lactating dairy cattle.

    PubMed

    Paduch, Jan-Hendrik; Mohr, Elmar; Krömker, Volker

    2013-05-01

    Several mastitis-causing pathogens are able to colonize the bovine teat canal. The objective of this study was to investigate the association between the treatment of sawdust bedding with a commercial alkaline conditioner and the bacterial counts on teat skin and in the teat canal. The study used a crossover design. Ten lactating Holstein cows that were free of udder infections and mastitis were included in the study. The animals were bedded on either untreated sawdust or sawdust that had been treated with a hydrated lime-based conditioner. Once a day, fresh bedding material was added. After 3 weeks, the bedding material was removed from the cubicles, fresh bedding material was provided, and the cows were rotated between the two bedding material groups. Teat skin and teat canals were sampled using the wet and dry swab technique after weeks 1, 2, 3, 4, 5 and 6. Staphylococcus aureus, Streptococcus uberis, Escherichia coli and other coliform bacteria were detected in the resulting agar plate cultures. The treatment of the bedding material was associated with the teat skin bacterial counts of Str. uberis, Esch. coli and other coliform bacteria. An association was also found between the bedding material and the teat canal bacterial counts of coliform bacteria other than Esch. coli. For Staph. aureus, no associations with the bedding material were found. In general, the addition of a hydrated lime-based conditioner to sawdust reduces the population sizes of environmental pathogens on teat skin and in teat canals. PMID:23445624

  12. Development and validation of a FISH-based method for the detection and quantification of E. coli and coliform bacteria in water samples.

    PubMed

    Hügler, Michael; Böckle, Karin; Eberhagen, Ingrid; Thelen, Karin; Beimfohr, Claudia; Hambsch, Beate

    2011-01-01

    Monitoring of microbiological contaminants in water supplies requires fast and sensitive methods for the specific detection of indicator organisms or pathogens. We developed a protocol for the simultaneous detection of E. coli and coliform bacteria based on the Fluorescence in situ Hybridization (FISH) technology. This protocol consists of two approaches. The first allows the direct detection of single E. coli and coliform bacterial cells on the filter membranes. The second approach includes incubation of the filter membranes on a nutrient agar plate and subsequent detection of the grown micro-colonies. Both approaches were validated using drinking water samples spiked with pure cultures and naturally contaminated water samples. The effects of heat, chlorine and UV disinfection were also investigated. The micro-colony approach yielded very good results for all samples and conditions tested, and thus can be thoroughly recommended for usage as an alternative method to detect E. coli and coliform bacteria in water samples. However, during this study, some limitations became visible for the single cell approach. The method cannot be applied for water samples which have been disinfected by UV irradiation. In addition, our results indicated that green fluorescent dyes are not suitable to be used with chlorine disinfected samples. PMID:22179640

  13. Evaluation of fecal indicator and pathogenic bacteria originating from swine manure applied to agricultural lands using culture-based and quantitative real-time PCR methods.

    EPA Science Inventory

    Fecal bacteria, including those originating from concentrated animal feeding operations, are a leading contributor to water quality impairments in agricultural areas. Rapid and reliable methods are needed that can accurately characterize fecal pollution in agricultural settings....

  14. Evaluation of Fecal Indicator and Pathogenic Bacteria Originating from Swine Manure Applied to Agricultural Lands Using Culture-Based and Quantitative Real-Time PCR Methods

    EPA Science Inventory

    Fecal bacteria, including those originating from concentrated animal feeding operations, are a leading contributor to water quality impairments in agricultural areas. Rapid and reliable methods are needed that can accurately characterize fecal pollution in agricultural settings....

  15. COASTAL COMMUNITY COLIFORM AND NUTRIENT CONTROL STUDY

    EPA Science Inventory

    Recent water sampling conducted by the Suwannee River Water Management District has shown that coliform counts in waters adjacent to several coastal communities exceed the water quality standards for surface waters with respect to fecal and total coliform counts. Also, sampling c...

  16. Impact of fertilizing with raw or anaerobically digested sewage sludge on the abundance of antibiotic-resistant coliforms, antibiotic resistance genes, and pathogenic bacteria in soil and on vegetables at harvest.

    PubMed

    Rahube, Teddie O; Marti, Romain; Scott, Andrew; Tien, Yuan-Ching; Murray, Roger; Sabourin, Lyne; Zhang, Yun; Duenk, Peter; Lapen, David R; Topp, Edward

    2014-11-01

    The consumption of crops fertilized with human waste represents a potential route of exposure to antibiotic-resistant fecal bacteria. The present study evaluated the abundance of bacteria and antibiotic resistance genes by using both culture-dependent and molecular methods. Various vegetables (lettuce, carrots, radish, and tomatoes) were sown into field plots fertilized inorganically or with class B biosolids or untreated municipal sewage sludge and harvested when of marketable quality. Analysis of viable pathogenic bacteria or antibiotic-resistant coliform bacteria by plate counts did not reveal significant treatment effects of fertilization with class B biosolids or untreated sewage sludge on the vegetables. Numerous targeted genes associated with antibiotic resistance and mobile genetic elements were detected by PCR in soil and on vegetables at harvest from plots that received no organic amendment. However, in the season of application, vegetables harvested from plots treated with either material carried gene targets not detected in the absence of amendment. Several gene targets evaluated by using quantitative PCR (qPCR) were considerably more abundant on vegetables harvested from sewage sludge-treated plots than on vegetables from control plots in the season of application, whereas vegetables harvested the following year revealed no treatment effect. Overall, the results of the present study suggest that producing vegetable crops in ground fertilized with human waste without appropriate delay or pretreatment will result in an additional burden of antibiotic resistance genes on harvested crops. Managing human exposure to antibiotic resistance genes carried in human waste must be undertaken through judicious agricultural practice. PMID:25172864

  17. Impact of Fertilizing with Raw or Anaerobically Digested Sewage Sludge on the Abundance of Antibiotic-Resistant Coliforms, Antibiotic Resistance Genes, and Pathogenic Bacteria in Soil and on Vegetables at Harvest

    PubMed Central

    Rahube, Teddie O.; Marti, Romain; Scott, Andrew; Tien, Yuan-Ching; Murray, Roger; Sabourin, Lyne; Zhang, Yun; Duenk, Peter; Lapen, David R.

    2014-01-01

    The consumption of crops fertilized with human waste represents a potential route of exposure to antibiotic-resistant fecal bacteria. The present study evaluated the abundance of bacteria and antibiotic resistance genes by using both culture-dependent and molecular methods. Various vegetables (lettuce, carrots, radish, and tomatoes) were sown into field plots fertilized inorganically or with class B biosolids or untreated municipal sewage sludge and harvested when of marketable quality. Analysis of viable pathogenic bacteria or antibiotic-resistant coliform bacteria by plate counts did not reveal significant treatment effects of fertilization with class B biosolids or untreated sewage sludge on the vegetables. Numerous targeted genes associated with antibiotic resistance and mobile genetic elements were detected by PCR in soil and on vegetables at harvest from plots that received no organic amendment. However, in the season of application, vegetables harvested from plots treated with either material carried gene targets not detected in the absence of amendment. Several gene targets evaluated by using quantitative PCR (qPCR) were considerably more abundant on vegetables harvested from sewage sludge-treated plots than on vegetables from control plots in the season of application, whereas vegetables harvested the following year revealed no treatment effect. Overall, the results of the present study suggest that producing vegetable crops in ground fertilized with human waste without appropriate delay or pretreatment will result in an additional burden of antibiotic resistance genes on harvested crops. Managing human exposure to antibiotic resistance genes carried in human waste must be undertaken through judicious agricultural practice. PMID:25172864

  18. Long-Term Survival of Fecal Indicator Bacteria in Estuarine Sediment

    NASA Astrophysics Data System (ADS)

    Ferguson, A. S.; Layton, A.; Culligan, P. J.; Kenna, T. C.; Mailloux, B. J.

    2010-12-01

    Fecal contamination of marine and freshwater environments can negatively impact water quality, leading to contaminated drinking water as well as the closure of recreational beaches and waterways. Fecal contamination is routinely assessed using fecal indicator bacteria (FIB), and even though the potential for their long-term survival or proliferation in sediments exist, information linking deposition of FIB with sediment age is scarce. We evaluate sediments as a reservoir for culturable FIB, by examining dated sediments from the lower Hudson River estuary for Escherichia coli (E. coli), enterococcus, and Bacteroides. Sediment cores were collected from in the vicinity of the George Washington (GWB) and Tappan Zee (TZB) Bridges NY. Sediment deposition ages were constrained using gamma emitting radionuclides and pollution chronology. Culturable E. coli and enterococcus were quantified using a culture-based most probable number method (ColilertTM, Idexx Laboratories). Molecular based methods were used to quantify E. coli and Bacteroides. In the GWB core, viable enterococcus or E. coli were consistently detected in sediment younger than the 1960s with maximum concentrations of 39 and 171 cells/g, respectively. In the TZB core, only enterococcus was sporadically detected in sediment younger than 1950 with a maximum concentration of 79 cells/g. Molecular Bacteroides and E. coli were detected in all core samples with a geometric mean of 4.2x104 and 1.2x105 copies/g, respectively. Results indicate that fecal bacteria can survive within estuarine sediments for decades, suggesting that sediments could be a significant and persistent source of bacterial pollution.

  19. Comparison of m-Endo LES, MacConkey, and Teepol media for membrane filtration counting of total coliform bacteria in water.

    PubMed Central

    Grabow, W O; du Preez, M

    1979-01-01

    Total coliform counts obtained by means of standard membrane filtration techniques, using MacConkey agar, m-Endo LES agar, Teepol agar, and pads saturated with Teepol broth as growth media, were compared. Various combinations of these media were used in tests on 490 samples of river water and city wastewater after different stages of conventional purification and reclamation processes including lime treatment, and filtration, active carbon treatment, ozonation, and chlorination. Endo agar yielded the highest average counts for all these samples. Teepol agar generally had higher counts then Teepol broth, whereas MacConkey agar had the lowest average counts. Identification of 871 positive isolates showed that Aeromonas hydrophila was the species most commonly detected. Species of Escherichia, Citrobacter, Klebsiella, and Enterobacter represented 55% of isolates which conformed to the definition of total coliforms on Endo agar, 54% on Teepol agar, and 45% on MacConkey agar. Selection for species on the media differed considerably. Evaluation of these data and literature on alternative tests, including most probable number methods, indicated that the technique of choice for routine analysis of total coliform bacteria in drinking water is membrane filtration using m-Endo LES agar as growth medium without enrichment procedures or a cytochrome oxidase restriction. PMID:394678

  20. Climate relationships to fecal bacterial densities in Maryland shellfish harvest waters.

    PubMed

    Leight, A K; Hood, R; Wood, R; Brohawn, K

    2016-02-01

    Coastal states of the United States (US) routinely monitor shellfish harvest waters for types of bacteria that indicate the potential presence of fecal pollution. The densities of these indicator bacteria in natural waters may be related to climate in several ways, including through runoff from precipitation and survival related to water temperatures. The relationship between interannual precipitation and air temperature patterns and the densities of fecal indicator bacteria in shellfish harvest waters in Maryland's portion of the Chesapeake Bay was quantified using 34 years of data (1979-2013). Annual and seasonal precipitation totals had a strong positive relationship with average fecal coliform levels (R(2) = 0.69) and the proportion of samples with bacterial densities above the FDA regulatory criteria (R(2) = 0.77). Fecal coliform levels were also significantly and negatively related to average annual air temperature (R(2) = -0.43) and the average air temperature of the warmest month (R(2) = -0.57), while average seasonal air temperature was only significantly related to fecal coliform levels in the summer. River and regional fecal coliform levels displayed a wide range of relationships with precipitation and air temperature patterns, with stronger relationships in rural areas and mainstem Bay stations. Fecal coliform levels tended to be higher in years when the bulk of precipitation occurred throughout the summer and/or fall (August to September). Fecal coliform levels often peaked in late fall and winter, with precipitation peaking in summer and early fall. Continental-scale sea level pressure (SLP) analysis revealed an association between atmospheric patterns that influence both extratropical and tropical storm tracks and very high fecal coliform years, while regional precipitation was found to be significantly correlated with the Atlantic Multidecadal Oscillation and the Pacific North American Pattern. These findings indicate that management of

  1. Distribution of genetic marker concentrations for fecal indicator bacteria in sewage and animal feces.

    PubMed

    Kelty, Catherine A; Varma, Manju; Sivaganesan, Mano; Haugland, Richard A; Shanks, Orin C

    2012-06-01

    Very little is known about the density and distribution of fecal indicator bacteria (FIB) genetic markers measured by quantitative real-time PCR (qPCR) in fecal pollution sources. Before qPCR-based FIB technologies can be applied to waste management and public health risk applications, it is vital to characterize the concentrations of these genetic markers in pollution sources (i.e., untreated wastewater and animal feces). We report the distribution of rRNA genetic markers for several general FIB groups, including Clostridium spp., Escherichia coli, enterococci, and Bacteroidales, as determined by qPCR on reference collections consisting of 54 primary influent sewage samples collected from treatment facilities across the United States and fecal samples representing 20 different animal species. Based on raw sewage sample collection data, individual FIB genetic markers exhibited a remarkable similarity in concentration estimates from locations across the United States ranging from Hawaii to Florida. However, there was no significant correlation between genetic markers for most FIB combinations (P > 0.05). In addition, large differences (up to 5 log(10) copies) in the abundance of FIB genetic markers were observed between animal species, emphasizing the importance of indicator microorganism selection and animal source contribution for future FIB applications. PMID:22504809

  2. Distribution of Genetic Marker Concentrations for Fecal Indicator Bacteria in Sewage and Animal Feces

    PubMed Central

    Kelty, Catherine A.; Varma, Manju; Sivaganesan, Mano; Haugland, Richard A.

    2012-01-01

    Very little is known about the density and distribution of fecal indicator bacteria (FIB) genetic markers measured by quantitative real-time PCR (qPCR) in fecal pollution sources. Before qPCR-based FIB technologies can be applied to waste management and public health risk applications, it is vital to characterize the concentrations of these genetic markers in pollution sources (i.e., untreated wastewater and animal feces). We report the distribution of rRNA genetic markers for several general FIB groups, including Clostridium spp., Escherichia coli, enterococci, and Bacteroidales, as determined by qPCR on reference collections consisting of 54 primary influent sewage samples collected from treatment facilities across the United States and fecal samples representing 20 different animal species. Based on raw sewage sample collection data, individual FIB genetic markers exhibited a remarkable similarity in concentration estimates from locations across the United States ranging from Hawaii to Florida. However, there was no significant correlation between genetic markers for most FIB combinations (P > 0.05). In addition, large differences (up to 5 log10 copies) in the abundance of FIB genetic markers were observed between animal species, emphasizing the importance of indicator microorganism selection and animal source contribution for future FIB applications. PMID:22504809

  3. Sediment/Aqueous Partitioning of Fecal Indicator Bacteria in Spring Meltwater

    NASA Astrophysics Data System (ADS)

    Schnabel, W.; Mutter, E.; Myerchin, G.

    2009-12-01

    This study was designed to elucidate the partitioning behavior of fecal indicator bacteria Enterococcus and E. coli in spring snowmelt. Two snowmelt lysimeters were constructed and inoculated with agriculturally-derived manure prior to the first snowfall. After approximately six months, the lysimeter runoff was collected daily and transported to the lab for analysis. Particle-attached and disassociated bacteria were separated via centrifugation, and quantified via the most probable number technique. Results revealed significant differences between the behaviors of Enterococcus compared to E. coli. First, Enterococcus exhibited a significantly higher survival rate over the winter months compared to E. coli. Second, Enterococcus partitioned almost exclusively with the sediment in the meltwater, whereas E. coli partitioned variably between the aqueous and particulate phases. These results demonstrated that water quality managers must understand the specific partitioning behavior of the indicator organisms tested in order to effectively interpret water quality monitoring results.

  4. Method for detecting coliform organisms

    NASA Technical Reports Server (NTRS)

    Nishioka, K.; Nibley, D. A.; Jeffers, E. L.; Brooks, R. L. (Inventor)

    1983-01-01

    A method and apparatus are disclosed for determining the concentration of coliform bacteria in a sample. The sample containing the coliform bacteria is cultured in a liquid growth medium. The cultured bacteria produce hydrogen and the hydrogen is vented to a second cell containing a buffer solution in which the hydrogen dissolves. By measuring the potential change in the buffer solution caused by the hydrogen, as a function of time, the initial concentration of bacteria in the sample is determined. Alternatively, the potential change in the buffer solution can be compared with the potential change in the liquid growth medium to verify that the potential change in the liquid growth medium is produced primarily by the hydrogen gas produced by the coliform bacteria.

  5. Nutrient and Fecal Indicator Bacteria Inputs from Submarine Groundwater Discharge on the North Shore of Kauai

    NASA Astrophysics Data System (ADS)

    Knee, K.; Boehm, A.; Paytan, A.

    2006-12-01

    Submarine groundwater discharge (SGD) is a potentially important source of freshwater, nutrients, and pollution to the coastal ocean, yet it has not been well quantified for most locations. This poster investigates the impacts of SGD in Hanalei Bay, Ha'ena, and Princeville, three locations on the north shore of Kaua'i, Hawai'i, during two sampling trips conducted in March 2005 and August 2006. The short-lived isotopes of radium, 223Ra and 224Ra, were used to calculate the flux of groundwater into the coastal ocean in these areas. Nutrient concentrations and levels of total coliform bacteria, E. coli, and Enterococcus were measured in groundwater, the nearshore ocean, rivers, and streams. Fluxes of nutrients and bacteria associated with groundwater discharge were estimated. The results indicate that nutrient subsidies to the nearshore ocean from SGD may be comparable to those from rivers and streams, and that FIB subsidies may also be significant in some areas. More sampling is necessary to assess seasonal variability, which may be significant.

  6. Coliform contamination of a coastal embayment: Sources and transport pathways

    USGS Publications Warehouse

    Weiskel, P.K.; Howes, B.L.; Heufelder, G.R.

    1996-01-01

    Fecal bacterial contamination of nearshore waters has direct economic impacts to coastal communities through the loss of shellfisheries and restrictions of recreational uses. We conducted seasonal measurements of fecal coliform (FC) sources and transport pathways contributing to FC contamination of Buttermilk Bay, a shallow embayment adjacent to Buzzards Bay, MA. Typical of most coastal embayments, there were no direct sewage discharges (i.e., outfalls), and fecal bacteria from human, domestic animal, and wildlife pools entered open waters primarily through direct deposition or after transport through surface waters or groundwaters. Direct fecal coliform inputs to bay waters occurred primarily in winter (December-March) from waterfowl, ~33 x 1012 FC yr-1 or ~67% of the total annual loading. Effects of waterfowl inputs on bay FC densities were mitigated by their seasonality, wide distribution across the bay surface, and the apparent limited dispersal from fecal pellets. On-site disposal of sewage by septic systems was the single largest FC source in the watershed-embayment system, 460 x 1012 FC yr-1, but due to attenuation during subsurface transport only a minute fraction, < 0.006 x 1012 FC yr-1, reached bay waters (<0.01% of annual input to bay). Instead, surface water flows, via storm drains and natural streams under both wet- and dry-weather conditions, contributed the major terrestrial input, 12 x 1012 FC yr-1 (24% of annual input), all from animal sources. Since most of the surface water FC inputs were associated with periodic, short-duration rain events with discharge concentrated in nearshore zones, wet-weather flows were found to have a disproportionately high impact on nearshore FC levels. Elution of FC from shoreline deposits of decaying vegetation (wrack) comprised an additional coliform source. Both laboratory and field experiments suggest significant elution of bacteria from wrack, ~3 x 1012 FC yr-1 on a bay-wide basis (6% of annual input), primarily

  7. Caffeine as an indicator of human fecal contamination in the Sinos River: a preliminary study.

    PubMed

    Linden, R; Antunes, M V; Heinzelmann, L S; Fleck, J D; Staggemeier, R; Fabres, R B; Vecchia, A D; Nascimento, C A; Spilki, F R

    2015-05-01

    The preservation of hydric resources is directly related to fecal contamination monitoring, in order to allow the development of strategies for the management of polluting sources. In the present study, twenty-five water samples from six water public supply collection sites were used for the evaluation of the presence of caffeine, total and fecal coliforms. Caffeine was detected in all samples, with concentrations ranging from 0.15 ng mL-1 to 16.72 ng mL-1. Total coliforms were detected in all samples, with concentrations in the range of 52 NMP/100 mL to higher than 24196 NMP/100 mL, whether the concentration range for fecal coliforms was in the range of below 1 NMP/100 mL to 7800 NMP/100 mL. No significant correlation was found between total coliforms and caffeine concentrations (rs = 0.35, p = 0.09). However, a moderate correlation between fecal coliforms and caffeine concentrations was found (rs = 0.412, p <0.05), probably indicating a human source for these bacteria. Caffeine determination in water may be a useful strategy to evaluate water contamination by human fecal waste. PMID:26270218

  8. Continuous, low-dose oral exposure to sodium chlorate reduces fecal Enterobacteriaceae coliforms in sheep feces without inducing subclinical chlorate toxicosis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our objectives were to determine a minimal daily dose of sodium chlorate, to be included in the drinking water for 5 days, that is safe yet maintains efficacy in reducing fecal shedding of Escherichia coli in mature ewes. In a complete randomized experimental design, 25 Targhee ewes (age = 18- to 20...

  9. Quicker die-off of fecal indicator bacteria than E. coli 0157:H7 in a pond impacted by animal agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background The USEPA uses concentrations of fecal indicator bacteria, Escherichia coli and fecal enterococci, in surface waters to indicate the potential presence of pathogens such as E. coli O157:H7. The connection between concentrations of indicator bacteria and actual bacterial pathogens in surfa...

  10. Fecal Bacteria, Bacteriophage, and Nutrient Reductions in a Full-Scale Denitrifying Woodchip Bioreactor.

    PubMed

    Rambags, Femke; Tanner, Chris C; Stott, Rebecca; Schipper, Louis A

    2016-05-01

    Denitrifying bioreactors using woodchips or other slow-release carbon sources can be an effective method for removing nitrate (NO) from wastewater and tile drainage. However, the ability of these systems to remove fecal microbes from wastewater has been largely uninvestigated. In this study, reductions in fecal indicator bacteria () and viruses (F-specific RNA bacteriophage [FRNA phage]) were analyzed by monthly sampling along a longitudinal transect within a full-scale denitrifying woodchip bioreactor receiving secondary-treated septic tank effluent. Nitrogen, phosphorus, 5-d carbonaceous biochemical oxygen demand (CBOD), and total suspended solids (TSS) reduction were also assessed. The bioreactor demonstrated consistent and substantial reduction of (2.9 log reduction) and FRNA phage (3.9 log reduction) despite receiving highly fluctuating inflow concentrations [up to 3.5 × 10 MPN (100 mL) and 1.1 × 10 plaque-forming units (100 mL) , respectively]. Most of the removal of fecal microbial contaminants occurred within the first meter of the system (1.4 log reduction for ; 1.8 log reduction for FRNA phage). The system was also efficient at removing NO (>99.9% reduction) and TSS (89% reduction). There was no evidence of consistent removal of ammonium, organic nitrogen, or phosphorus. Leaching of CBOD occurred during initial operation but decreased and stabilized at lower values (14 g O m) after 9 mo. We present strong evidence for reliable microbial contaminant removal in denitrifying bioreactors, demonstrating their broader versatility for wastewater treatment. Research on the removal mechanisms of microbial contaminants in these systems, together with the assessment of longevity of removal, is warranted. PMID:27136150