Science.gov

Sample records for feeding uncouples circadian

  1. Circadian clocks, feeding time, and metabolic homeostasis

    PubMed Central

    Paschos, Georgios K.

    2015-01-01

    Metabolic processes exhibit diurnal variation from cyanobacteria to humans. The circadian clock is thought to have evolved as a time keeping system for the cell to optimize the timing of metabolic events according to physiological needs and environmental conditions. Circadian rhythms temporally separate incompatible cellular processes and optimize cellular and organismal fitness. A modern 24 h lifestyle can run at odds with the circadian rhythm dictated by our molecular clocks and create desynchrony between internal and external timing. It has been suggested that this desynchrony compromises metabolic homeostasis and may promote the development of obesity (Morris et al., 2012). Here we review the evidence supporting the association between circadian misalignment and metabolic homeostasis and discuss the role of feeding time. PMID:26082718

  2. Adult-specific electrical silencing of pacemaker neurons uncouples the molecular oscillator from circadian outputs

    PubMed Central

    Depetris-Chauvin, Ana; Berni, Jimena; Aranovich, Ezequiel J.; Muraro, Nara I.; Beckwith, Esteban J.; Ceriani, María Fernanda

    2011-01-01

    Summary Background Circadian rhythms regulate physiology and behavior through transcriptional feedback loops of clock genes running within specific pacemaker cells. In Drosophila, molecular oscillations in the small ventral Lateral Neurons (sLNvs) command rhythmic behavior under free-running conditions releasing the neuropeptide PIGMENT DISPERSING FACTOR (PDF) in a circadian fashion. Electrical activity in the sLNvs is also required for behavioral rhythmicity. Yet, how temporal information is transduced into behavior remains unclear. Results Here we developed a new tool for temporal control of gene expression to obtain adult-restricted electrical silencing of the PDF circuit, which led to reversible behavioral arrhythmicity. Remarkably, PER oscillations during the silenced phase remained unaltered, indicating that arrhythmicity is a direct consequence of the silenced activity. Accordingly, circadian axonal remodeling and PDF accumulation were severely affected during the silenced phase. Conclusions Although electrical activity of the sLNvs is not a clock component it coordinates circuit outputs leading to rhythmic behavior. PMID:22018542

  3. Renal electrolyte circadian rhythms - Independence from feeding and activity patterns

    NASA Technical Reports Server (NTRS)

    Moore-Ede, M. C.; Herd, J. A.

    1977-01-01

    Experiments were conducted on six unanesthetized chair-acclimatized adult male squirrel monkeys (Saimiri sciureus) weighing 600-900 g to determine whether internal synchronization is the result of simple passive dependence of renal excretory rhythms on endogenous rhythms of those variable that influence electrolyte excretion such as dietary intake and muscular activity. Independence of the urinary rhythms from diurnal variations in feeding, drinking, and activity was secured by depriving the animals of food, water, and training them to perform a two-hourly schedule of feeding, drinking, and activity throughout day and night. Results indicate that the internal synchronization which is normally observed between the behavioral and urinary rhythms cannot be explained by any direct dependence of renal function on behavioral patterns. The most probable mechanism for circadian internal synchronization is that the various behavioral and renal rhythms are controlled by potentially independent separate oscillators which are normally kept in synchrony with one another.

  4. Ultrasonic vocalizations in rats anticipating circadian feeding schedules.

    PubMed

    Opiol, Hanna; Pavlovski, Ilya; Michalik, Mateusz; Mistlberger, Ralph E

    2015-05-01

    Rats readily learn to anticipate a reward signaled by an external stimulus. Anticipatory behaviors evoked by conditioned stimuli include 50 kHz ultrasonic vocalizations (USVs), a proposed behavioral correlate of positive affect and activation of midbrain dopamine pathways. Rats can also anticipate a reward, such as food, provided once daily, without external cueing. Anticipation of a daily reward exhibits formal properties of a circadian rhythm. The neural circuits that regulate the timing and amplitude of these rhythms remain an open question, but evidence suggests a role for dopamine. To gain further insight into the neural and affective correlates of circadian food anticipatory rhythms, we made 2h and 24h USV recordings in rats fed 2h/day in the light period, a procedure that induces robust anticipation 2-3h before mealtime. Potential interactions between internal and external time cues in USV production were evaluated by inclusion of a 3 kHz tone 15 min before mealtime. Prior to scheduled feeding, spontaneous 50 kHz USVs were rare during the light period. During scheduled feeding, flat and frequency modulated (FM) 50kHz USVs occurred prior to and during mealtime. FM USVs were more closely related to anticipation, while flat USVs were more dependent on food access. USVs also occurred during spontaneous waking at other times of day. The tone did not evoke USVs but did modulate activity. Behavioral anticipation of a daily meal is accompanied by USVs consistent with a positive affective state and elevated dopamine transmission. PMID:25677650

  5. Effect of CART in the hypothalamic paraventricular nucleus on feeding and uncoupling protein gene expression.

    PubMed

    Wang, C; Billington, C J; Levine, A S; Kotz, C M

    2000-09-28

    Cocaine and amphetamine regulated transcript (CART) decreases feeding and body weight after ventricular injection. CART mRNA and peptide are found in the paraventricular nucleus of the hypothalamus (PVN). The purpose of the present study was to determine effects of PVN-injected CART on feeding and thermogenic capacity. PVN-injected CART (55-102, 100 pmol) significantly decreased NPY-induced feeding at 1, 2 and 4 h, but did not significantly affect deprivation-induced feeding. CART induced gene expression of uncoupling protein 1 (UCP1), UCP2, and UCP3 in brown and white adipose tissue and biceps femoris muscle respectively. These results indicate the PVN as a specific site of CART action, and suggest that CART in the PVN may have an important influence on energy metabolism. PMID:11043558

  6. Modelling and Analysis of the Feeding Regimen Induced Entrainment of Hepatocyte Circadian Oscillators Using Petri Nets

    PubMed Central

    Tareen, Samar Hayat Khan; Ahmad, Jamil

    2015-01-01

    Circadian rhythms are certain periodic behaviours exhibited by living organism at different levels, including cellular and system-wide scales. Recent studies have found that the circadian rhythms of several peripheral organs in mammals, such as the liver, are able to entrain their clocks to received signals independent of other system level clocks, in particular when responding to signals generated during feeding. These studies have found SIRT1, PARP1, and HSF1 proteins to be the major influencers of the core CLOCKBMAL1:PER-CRY circadian clock. These entities, along with abstracted feeding induced signals were modelled collectively in this study using Petri Nets. The properties of the model show that the circadian system itself is strongly robust, and is able to continually evolve. The modelled feeding regimens suggest that the usual 3 meals/day and 2 meals/day feeding regimens are beneficial with any more or less meals/day negatively affecting the system. PMID:25789928

  7. Effects of restricted feeding schedules on circadian organization in squirrel monkeys

    NASA Technical Reports Server (NTRS)

    Boulos, Z.; Frim, D. M.; Dewey, L. K.; Moore-Ede, M. C.

    1989-01-01

    Free running circadian rhythms of motor activity, food-motivated lever-pressing, and either drinking (N = 7) or body temperature (N = 3) were recorded from 10 squirrel monkeys maintained in constant illumination with unlimited access to food. Food availability was then restricted to a single unsignaled 3-hour interval each day. The feeding schedule failed to entrain the activity rhythms of 8 monkeys, which continued to free-run. Drinking was almost completely synchronized by the schedule, while body temperature showed a feeding-induced rise superimposed on a free-running rhythm. Nonreinforced lever-pressing showed both a free-running component and a 24-hour component that anticipated the time of feeding. At the termination of the schedule, all recorded variables showed free-running rhythms, but in 3 animals the initial phase of the postschedule rhythms was advanced by several hours, suggesting relative coordination. Of the remaining 2 animals, one exhibited stable entrainment of all 3 recorded rhythms, while the other appeared to entrain temporarily to the feeding schedule. These results indicate that restricted feeding schedules are only a weak zeitgeber for the circadian pacemaker generating free-running rhythms in the squirrel monkey. Such schedules, however, may entrain a separate circadian system responsible for the timing of food-anticipatory changes in behavior and physiology.

  8. Circadian and feeding rhythms differentially affect rhythmic mRNA transcription and translation in mouse liver

    PubMed Central

    Atger, Florian; Gobet, Cédric; Marquis, Julien; Martin, Eva; Wang, Jingkui; Weger, Benjamin; Lefebvre, Grégory; Descombes, Patrick; Naef, Felix; Gachon, Frédéric

    2015-01-01

    Diurnal oscillations of gene expression are a hallmark of rhythmic physiology across most living organisms. Such oscillations are controlled by the interplay between the circadian clock and feeding rhythms. Although rhythmic mRNA accumulation has been extensively studied, comparatively less is known about their transcription and translation. Here, we quantified simultaneously temporal transcription, accumulation, and translation of mouse liver mRNAs under physiological light–dark conditions and ad libitum or night-restricted feeding in WT and brain and muscle Arnt-like 1 (Bmal1)-deficient animals. We found that rhythmic transcription predominantly drives rhythmic mRNA accumulation and translation for a majority of genes. Comparison of wild-type and Bmal1 KO mice shows that circadian clock and feeding rhythms have broad impact on rhythmic gene expression, Bmal1 deletion affecting surprisingly both transcriptional and posttranscriptional levels. Translation efficiency is differentially regulated during the diurnal cycle for genes with 5′-Terminal Oligo Pyrimidine tract (5′-TOP) sequences and for genes involved in mitochondrial activity, many harboring a Translation Initiator of Short 5′-UTR (TISU) motif. The increased translation efficiency of 5′-TOP and TISU genes is mainly driven by feeding rhythms but Bmal1 deletion also affects amplitude and phase of translation, including TISU genes. Together this study emphasizes the complex interconnections between circadian and feeding rhythms at several steps ultimately determining rhythmic gene expression and translation. PMID:26554015

  9. Effects of diurnal variation of gut microbes and high-fat feeding on host circadian clock function and metabolism.

    PubMed

    Leone, Vanessa; Gibbons, Sean M; Martinez, Kristina; Hutchison, Alan L; Huang, Edmond Y; Cham, Candace M; Pierre, Joseph F; Heneghan, Aaron F; Nadimpalli, Anuradha; Hubert, Nathaniel; Zale, Elizabeth; Wang, Yunwei; Huang, Yong; Theriault, Betty; Dinner, Aaron R; Musch, Mark W; Kudsk, Kenneth A; Prendergast, Brian J; Gilbert, Jack A; Chang, Eugene B

    2015-05-13

    Circadian clocks and metabolism are inextricably intertwined, where central and hepatic circadian clocks coordinate metabolic events in response to light-dark and sleep-wake cycles. We reveal an additional key element involved in maintaining host circadian rhythms, the gut microbiome. Despite persistence of light-dark signals, germ-free mice fed low or high-fat diets exhibit markedly impaired central and hepatic circadian clock gene expression and do not gain weight compared to conventionally raised counterparts. Examination of gut microbiota in conventionally raised mice showed differential diurnal variation in microbial structure and function dependent upon dietary composition. Additionally, specific microbial metabolites induced under low- or high-fat feeding, particularly short-chain fatty acids, but not hydrogen sulfide, directly modulate circadian clock gene expression within hepatocytes. These results underscore the ability of microbially derived metabolites to regulate or modify central and hepatic circadian rhythm and host metabolic function, the latter following intake of a Westernized diet. PMID:25891358

  10. Central and peripheral regulation of feeding and nutrition by the mammalian circadian clock: implications for nutrition during manned space flight

    NASA Technical Reports Server (NTRS)

    Cassone, Vincent M.; Stephan, Friedrich K.

    2002-01-01

    Circadian clocks have evolved to predict and coordinate physiologic processes with the rhythmic environment on Earth. Space studies in non-human primates and humans have suggested that this clock persists in its rhythmicity in space but that its function is altered significantly in long-term space flight. Under normal circumstances, the clock is synchronized by the light-dark cycle via the retinohypothalamic tract and the suprachiasmatic nucleus. It is also entrained by restricted feeding regimes via a suprachiasmatic nucleus-independent circadian oscillator. The site of this suboscillator (or oscillators) is not known, but new evidence has suggested that peripheral tissues in the liver and viscera may express circadian clock function when forced to do so by restricted feeding schedules or other homeostatic disruptions. New research on the role of the circadian clock in the control of feeding on Earth and in space is warranted.

  11. Altered feeding differentially regulates circadian rhythms and energy metabolism in liver and muscle of rats.

    PubMed

    Reznick, Jane; Preston, Elaine; Wilks, Donna L; Beale, Susan M; Turner, Nigel; Cooney, Gregory J

    2013-01-01

    Energy metabolism follows a diurnal pattern responding to the light/dark cycle and food availability. This study investigated the impact of restricting feeding to the daylight hours and feeding a high fat diet on circadian clock (bmal1, dbp, tef and e4bp4) and metabolic (pepck, fas, ucp3, pdk4) gene expression and markers of energy metabolism in muscle and liver of rats. The results show that in chow-fed rats switched to daylight feeding, the peak diurnal expression of genes in liver was shifted by 6-12h while expression of these genes in muscle remained in a similar phase to rats feeding ad libitum. High fat feeding during the daylight hours had limited effect on clock gene expression in liver or muscle but shifted the peak expression of metabolic genes (pepck, fas) in liver by 6-12h. The differential effects of daylight feeding on gene and protein expression in muscle and liver were accompanied by an 8% reduction in whole body energy expenditure, a 20-30% increased glycogen content during the light phase in muscle of day-fed rats and increased adipose tissue deposition per gram food consumed. These data demonstrate that a mismatch of feeding and light/dark cycle disrupts tissue metabolism in muscle with significant consequences for whole body energy homeostasis. PMID:22952003

  12. Effect of feeding and temperature on the circadian rhythms of cortisol, thyroxine and triiodothyronine in pigs

    SciTech Connect

    Becker, B.A.; Nienaber, J.A.; Ford, J.J.; Hahn, G.L.

    1986-03-05

    An experiment was conducted to evaluate the circadian rhythms of cortisol, thyroxine (T/sub 4/) and triiodothyronine (T/sub 3/) in pigs under two temperature and feeding regimes. Twenty-eight barrows were randomly assigned to one of the following: 1) ad-libitum fed at 5/sup 0/C(AL-5); 2) ad-libitum fed at 20/sup 0/C(AL-20); 3) meal fed at 5/sup 0/C(M-5); and 4) meal fed at 20/sup 0/C(M-20). M-5 and M-20 animals were fed at 0730 and 1400 hrs. Lights were on from 0600 to 2000 hrs. After 5 wks, blood samples were collected for 27 hrs. Serum cortisol, T/sub 4/ and T/sub 3/ concentrations were determined by RIA. No significant differences were found in the mesors, amplitudes or acrophases for cortisol. The mesors for T/sub 4/ (p<.01) were 60.6 +/- 5.6, 40.2 +/- 5.6, 61.2 +/- 5.6 and 49.1 +/- 5.0 ng/ml for AL-5, AL-20, M-5, and M-20, respectively. The mesors for T/sub 3/ (p<.01) were .85 +/- .06, .69 +/- .06, .92 +/- .06 and .66 +/- .05 ng/ml for AL-5, AL-20, M-5, and M-20 respectively. No differences in the amplitudes or acrophases for T/sub 3/ or T/sub 4/ were found. These data show that temperature and feeding regimes do not entrain the circadian rhythm of cortisol in pigs. The circadian rhythms of T/sub 4/ and T/sub 3/ are also not altered by feeding regimes but are affected by temperature.

  13. Shift of Circadian Feeding Pattern by High-Fat Diets Is Coincident with Reward Deficits in Obese Mice

    PubMed Central

    Valladolid-Acebes, Ismael; Fole, Alberto; Cano, Victoria; Merino, Beatriz; Stucchi, Paula; Ruggieri, Daniela; López, Laura; Alguacil, Luis Fernando; Ruiz-Gayo, Mariano

    2012-01-01

    Recent studies provide evidence that high-fat diets (HF) trigger both i) a deficit of reward responses linked to a decrease of mesolimbic dopaminergic activity, and ii) a disorganization of circadian feeding behavior that switch from a structured meal-based schedule to a continuous snacking, even during periods normally devoted to rest. This feeding pattern has been shown to be a cause of HF-induced overweight and obesity. Our hypothesis deals with the eventual link between the rewarding properties of food and the circadian distribution of meals. We have investigated the effect of circadian feeding pattern on reward circuits by means of the conditioned-place preference (CPP) paradigm and we have characterized the rewarding properties of natural (food) and artificial (cocaine) reinforcers both in free-feeding ad libitum HF mice and in HF animals submitted to a re-organized feeding schedule based on the standard feeding behavior displayed by mice feeding normal chow (“forced synchronization”). We demonstrate that i) ad libitum HF diet attenuates cocaine and food reward in the CPP protocol, and ii) forced synchronization of feeding prevents this reward deficit. Our study provides further evidence that the rewarding impact of food with low palatability is diminished in mice exposed to a high-fat diet and strongly suggest that the decreased sensitivity to chow as a positive reinforcer triggers a disorganized feeding pattern which might account for metabolic disorders leading to obesity. PMID:22570696

  14. Scheduled Feeding Alters the Timing of the Suprachiasmatic Nucleus Circadian Clock in Dexras 1-Deficient Mice

    PubMed Central

    Bouchard-Cannon, Pascale; Cheng, Hai-Ying M.

    2013-01-01

    Restricted feeding (RF) schedules are potent zeitgebers capable of entraining metabolic and hormonal rhythms in peripheral oscillators in anticipation of food. Behaviorally, this manifests in the form of food anticipatory activity (FAA) in the hours preceding food availability. Circadian rhythms of FAA are thought to be controlled by a food-entrainable oscillator (FEO) outside of the suprachiasmatic nucleus (SCN), the central circadian pacemaker in mammals. Although evidence suggests that the FEO and the SCN are capable of interacting functionally under RF conditions, the genetic basis of these interactions remains to be defined. In this study, using dexras1-deficient (dexras1−/−) mice, the authors examined whether Dexras1, a modulator of multiple inputs to the SCN, plays a role in regulating the effects of RF on activity rhythms and gene expression in the SCN. Daytime RF under 12L:12D or constant darkness (DD) resulted in potentiated (but less stable) FAA expression in dexras1−/− mice compared with wild-type (WT) controls. Under these conditions, the magnitude and phase of the SCN-driven activity component were greatly perturbed in the mutants. Restoration to ad libitum (AL) feeding revealed a stable phase displacement of the SCN-driven activity component of dexras1−/− mice by ~2 h in advance of the expected time. RF in the late night/early morning induced a long-lasting increase in the period of the SCN-driven activity component in the mutants but not the WT. At the molecular level, daytime RF advanced the rhythm of PER1, PER2, and pERK expression in the mutant SCN without having any effect in the WT. Collectively, these results indicate that the absence of Dexras1 sensitizes the SCN to perturbations resulting from restricted feeding. PMID:22928915

  15. The Comparison between Circadian Oscillators in Mouse Liver and Pituitary Gland Reveals Different Integration of Feeding and Light Schedules

    PubMed Central

    Bur, Isabelle M.; Zouaoui, Sonia; Fontanaud, Pierre; Coutry, Nathalie; Molino, François; Martin, Agnès O.; Mollard, Patrice; Bonnefont, Xavier

    2010-01-01

    The mammalian circadian system is composed of multiple peripheral clocks that are synchronized by a central pacemaker in the suprachiasmatic nuclei of the hypothalamus. This system keeps track of the external world rhythms through entrainment by various time cues, such as the light-dark cycle and the feeding schedule. Alterations of photoperiod and meal time modulate the phase coupling between central and peripheral oscillators. In this study, we used real-time quantitative PCR to assess circadian clock gene expression in the liver and pituitary gland from mice raised under various photoperiods, or under a temporal restricted feeding protocol. Our results revealed unexpected differences between both organs. Whereas the liver oscillator always tracked meal time, the pituitary circadian clockwork showed an intermediate response, in between entrainment by the light regimen and the feeding-fasting rhythm. The same composite response was also observed in the pituitary gland from adrenalectomized mice under daytime restricted feeding, suggesting that circulating glucocorticoids do not inhibit full entrainment of the pituitary clockwork by meal time. Altogether our results reveal further aspects in the complexity of phase entrainment in the circadian system, and suggest that the pituitary may host oscillators able to integrate multiple time cues. PMID:21179516

  16. Constant light induces alterations in melatonin levels, food intake, feed efficiency, visceral adiposity, and circadian rhythms in rats.

    PubMed

    Wideman, Cyrilla H; Murphy, Helen M

    2009-10-01

    Melatonin levels, metabolic parameters, circadian rhythm activity patterns, and behavior were observed in rats subjected to a 12-h/12-h light/dark cycle (LD) compared to animals exposed to continuous dark (DD) or continuous light (LL). LD and DD animals were similar in melatonin levels, food intake, relative food intake, feed efficiency, water intake, circadian activity levels, and behavior. LL animals had lower melatonin levels in the subjective dark compared to LD and DD animals. Food intake, relative food intake, and water intake values were lower and feed efficiency was more positive in LL animals compared to LD and DD animals. In addition, LL animals exhibited greater visceral adiposity than the other two groups. The circadian rhythmicity of activity became free-running in LL animals and there was a decrease in overall activity. Notable behavioral changes in LL animals were an increase in irritability and excitability. Results indicate that a decrease in melatonin levels and concomitant changes in metabolism, circadian rhythms, and behavior are consequences of exposure to constant light. PMID:19761654

  17. Differential effects of light and feeding on circadian organization of peripheral clocks in a forebrain Bmal1 mutant

    PubMed Central

    Izumo, Mariko; Pejchal, Martina; Schook, Andrew C; Lange, Ryan P; Walisser, Jacqueline A; Sato, Takashi R; Wang, Xiaozhong; Bradfield, Christopher A; Takahashi, Joseph S

    2014-01-01

    In order to assess the contribution of a central clock in the hypothalamic suprachiasmatic nucleus (SCN) to circadian behavior and the organization of peripheral clocks, we generated forebrain/SCN-specific Bmal1 knockout mice by using floxed Bmal1 and pan-neuronal Cre lines. The forebrain knockout mice showed >90% deletion of BMAL1 in the SCN and exhibited an immediate and complete loss of circadian behavior in constant conditions. Circadian rhythms in peripheral tissues persisted but became desynchronized and damped in constant darkness. The loss of synchrony was rescued by light/dark cycles and partially by restricted feeding (only in the liver and kidney but not in the other tissues) in a distinct manner. These results suggest that the forebrain/SCN is essential for internal temporal order of robust circadian programs in peripheral clocks, and that individual peripheral clocks are affected differently by light and feeding in the absence of a functional oscillator in the forebrain. DOI: http://dx.doi.org/10.7554/eLife.04617.001 PMID:25525750

  18. Impact of nutrients on circadian rhythmicity

    PubMed Central

    Oosterman, Johanneke E.; Kalsbeek, Andries; la Fleur, Susanne E.

    2014-01-01

    The suprachiasmatic nucleus (SCN) in the mammalian hypothalamus functions as an endogenous pacemaker that generates and maintains circadian rhythms throughout the body. Next to this central clock, peripheral oscillators exist in almost all mammalian tissues. Whereas the SCN is mainly entrained to the environment by light, peripheral clocks are entrained by various factors, of which feeding/fasting is the most important. Desynchronization between the central and peripheral clocks by, for instance, altered timing of food intake can lead to uncoupling of peripheral clocks from the central pacemaker and is, in humans, related to the development of metabolic disorders, including obesity and Type 2 diabetes. Diets high in fat or sugar have been shown to alter circadian clock function. This review discusses the recent findings concerning the influence of nutrients, in particular fatty acids and glucose, on behavioral and molecular circadian rhythms and will summarize critical studies describing putative mechanisms by which these nutrients are able to alter normal circadian rhythmicity, in the SCN, in non-SCN brain areas, as well as in peripheral organs. As the effects of fat and sugar on the clock could be through alterations in energy status, the role of specific nutrient sensors will be outlined, as well as the molecular studies linking these components to metabolism. Understanding the impact of specific macronutrients on the circadian clock will allow for guidance toward the composition and timing of meals optimal for physiological health, as well as putative therapeutic targets to regulate the molecular clock. PMID:25519730

  19. Effects of short-term feed deprivation and melatonin implants on circadian patterns of leptin in the horse.

    PubMed

    Buff, P R; Morrison, C D; Ganjam, V K; Keisler, D H

    2005-05-01

    Leptin is a protein hormone produced by adipose tissue that influences hypothalamic mechanisms regulating appetite and energy balance. In species tested thus far, including horses, concentrations of leptin increase as animal fat mass increases. The variables and mechanisms that influence the secretion of leptin are not well known, nor is it known in equine species how the secretion of leptin is influenced by acute alterations in energy balance, circadian patterns, and/or reproductive competence. Our objectives were to determine in horses: 1) whether plasma concentrations of leptin are secreted in a circadian and/or a pulsatile pattern; 2) whether a 48-h period of feed restriction would alter plasma concentrations of leptin, growth hormone, or insulin; and 3) whether ovariectomy and/or a melatonin implant would affect leptin. In Exp. 1, mares exposed to ambient photoperiod of visible light (11 h, 33 min to 11 h, 38 min), received treatments consisting of a 48-h feed restriction (RES) or 48 h of alfalfa hay fed ad libitum (FED). Mares were maintained in a dry lot before sampling and were tethered to a rail during sampling. Analyses revealed that leptin was not secreted in a pulsatile manner, and that mean leptin concentrations were greater (P < 0.001) in FED vs. RES mares (17.20 +/- 0.41 vs. 7.29 +/- 0.41 ng/mL). Plasma growth hormone was pulsatile, and mean concentrations were greater in RES than FED mares (2.15 +/- 0.31 vs. 1.08 +/- 0.31 ng/mL; P = 0.05). Circadian patterns of leptin secretion were observed, but only in FED mares (15.39 +/- 0.58 ng/mL for morning vs. 19.00 +/- 0.58 ng/mL for evening; P < 0.001). In Exp. 2, mares that were ovariectomized or intact received either a s.c. melatonin implant or a sham implant. Thereafter, blood was sampled at weekly intervals at 1000 and 1700. Concentrations of leptin in samples collected at 1700 were greater (P < 0.001) than in those collected at 1000 (28.24 +/- 1.7 vs. 22.07 +/- 1.7 ng/mL). Neither ovariectomy nor

  20. Circadian feeding entrains anticipatory metabolic activity in piriform cortex and olfactory tubercle, but not in suprachiasmatic nucleus.

    PubMed

    Olivo, Diana; Caba, Mario; Gonzalez-Lima, F; Vázquez, Araceli; Corona-Morales, Aleph

    2014-12-10

    Animals maintained under conditions of food-availability restricted to a specific period of the day show molecular and physiological circadian rhythms and increase their locomotor activity 2-3h prior to the next scheduled feeding, called food anticipatory activity (FAA). Although the anatomical substrates and underlying mechanisms of the food-entrainable oscillator are not well understood, experimental evidence indicates that it involves multiple structures and systems. Using rabbit pups entrained to circadian nursing as a natural model of food restriction, we hypothesized that the anterior piriform cortex (APCx) and the olfactory tubercle (OTu) are activated during nursing-associated FAA. Two groups of litters were entrained to one of two different nursing times. At postnatal day 7, when litters showed clear FAA, pups from each litter were euthanized at nursing time, or 1, 2, 4, 8, 12, 16 or 20h later. Neural metabolic activities of the APCx, OTu, olfactory bulb (OB) and suprachiasmatic nucleus (SCN) were assessed by cytochrome oxidase histochemistry. Additionally, two fasted groups were nurse-deprived for two cycles before being euthanized at postnatal day 9. In nursed pups, metabolic activity of APCx, OTu and OB increased during FAA and after feeding, independently of the geographical time. Metabolic activity in SCN was not affected by nursing schedule. Given that APCx and OTu are in a key network position to integrate temporal odor signals with body energetic state, brain arousal and reward mechanisms, we suggest that these structures could be an important part of the conditioned oscillatory mechanism that leads to food entrainment. PMID:25281805

  1. A Circadian Clock in the Olfactory Bulb Anticipates Feeding during Food Anticipatory Activity

    PubMed Central

    Nolasco, Nahum; Juárez, Claudia; Morgado, Elvira; Meza, Enrique; Caba, Mario

    2012-01-01

    Rabbit pups ingest food, in this case milk, once a day with circadian periodicity and are a natural model of food anticipatory activity. During nursing, several sensory systems receive information about properties of the food, one of them being the olfactory system, which has received little attention in relation to synchronization by food. In addition, the olfactory bulb has a circadian pacemaker that exhibits rhythms independently of the suprachiasmatic nucleus, but the biological functions of these rhythms are largely unknown. In the present contribution, we hypothesized that circadian suckling of milk synchronizes rhythms in the olfactory bulb. To this aim we explored by immunohistochemistry, rhythms of FOS and PER1 proteins, as indicators of activation and reporter of oscillations, respectively, through a complete 24-h cycle in periglomerular, mitral and granular cell layers of both the main and the accessory olfactory bulb. Subjects were 7-day-old rabbit pups scheduled to nurse during the night (02∶00 h) or day (10∶00 h), and also fasted subjects, to explore the possible persistence of oscillations. In the three layers of the main olfactory bulb, FOS was high at time of nursing, then further increased 1.5 h afterward, and then decreased to increase again in advance of the next nursing bout. This pattern persisted, without the postprandial increase, in fasted subjects with a shift in subjects nursed at 02∶00. PER1 was increased 2–8 h after nursing and this increase persisted in most cell layers, with a shift, in fasted subjects. In the accessory olfactory bulb we only observed a consistent pattern of FOS expression in the mitral cell layer of nursed subjects, similar to that of the main olfactory bulb. We conclude that the main olfactory bulb is synchronized during milk ingestion, but during fasting its oscillations perhaps are modulated by the suprachiasmatic nucleus, as proposed for rodents. PMID:23094084

  2. Transcriptional repressor E4-binding protein 4 (E4BP4) regulates metabolic hormone fibroblast growth factor 21 (FGF21) during circadian cycles and feeding.

    PubMed

    Tong, Xin; Muchnik, Marina; Chen, Zheng; Patel, Manish; Wu, Nan; Joshi, Shree; Rui, Liangyou; Lazar, Mitchell A; Yin, Lei

    2010-11-19

    Fibroblast growth factor 21 (FGF21) is a potent antidiabetic and triglyceride-lowering hormone whose hepatic expression is highly responsive to food intake. FGF21 induction in the adaptive response to fasting has been well studied, but the molecular mechanism responsible for feeding-induced repression remains unknown. In this study, we demonstrate a novel link between FGF21 and a key circadian output protein, E4BP4. Expression of Fgf21 displays a circadian rhythm, which peaks during the fasting phase and is anti-phase to E4bp4, which is elevated during feeding periods. E4BP4 strongly suppresses Fgf21 transcription by binding to a D-box element in the distal promoter region. Depletion of E4BP4 in synchronized Hepa1c1c-7 liver cells augments the amplitude of Fgf21 expression, and overexpression of E4BP4 represses FGF21 secretion from primary mouse hepatocytes. Mimicking feeding effects, insulin significantly increases E4BP4 expression and binding to the Fgf21 promoter through AKT activation. Thus, E4BP4 is a novel insulin-responsive repressor of FGF21 expression during circadian cycles and feeding. PMID:20851878

  3. Entrainment of mouse peripheral circadian clocks to <24 h feeding/fasting cycles under 24 h light/dark conditions

    PubMed Central

    Hamaguchi, Yutaro; Tahara, Yu; Kuroda, Hiroaki; Haraguchi, Atsushi; Shibata, Shigenobu

    2015-01-01

    The circadian clock system in peripheral tissues can endogenously oscillate and is entrained by the light-dark and fasting-feeding cycles in mammals. Although the system’s range of entrainment to light-dark cycles with a non-24 h (<24 h) interval has been studied, the range of entrainment to fasting-feeding cycles with shorter periods (<24 h) has not been investigated in peripheral molecular clocks. In the present study, we measured this range by monitoring the mouse peripheral PER2::LUCIFERASE rhythm in vivo at different periods under each feeding cycle (Tau (T) = 15–24 h) under normal light-dark conditions. Peripheral clocks could be entrained to the feeding cycle with T = 22–24 h, but not to that with T = 15–21 h. Under the feeding cycle with T = 15–18 h, the peripheral clocks oscillated at near the 24-h period, suggesting that they were entrained to the light-dark cycle. Thus, for the first time, we demonstrated the range of entrainment to the non-24 h feeding cycle, and that the circadian range (T = 22–24 h) of feeding stimulus is necessary for peripheral molecular clock entrainment under light-dark cycles. PMID:26395309

  4. Restricted daytime feeding attenuates reentrainment of the circadian melatonin rhythm after an 8-h phase advance of the light-dark cycle.

    PubMed

    Kalsbeek, A; Barassin, S; van Heerikhuize, J J; van der Vliet, J; Buijs, R M

    2000-02-01

    It is well established that in the absence of photic cues, the circadian rhythms of rodents can be readily phase-shifted and entrained by various nonphotic stimuli that induce increased levels of locomotor activity (i.e., benzodiazepines, a new running wheel, and limited food access). In the presence of an entraining light-dark (LD) cycle, however, the entraining effects of nonphotic stimuli on (parts of) the circadian oscillator are far less clear. Yet, an interesting finding is that appropriately timed exercise after a phase shift can accelerate the entrainment of circadian rhythms to the new LD cycle in both rodents and humans. The present study investigated whether restricted daytime feeding (RF) (1) induces a phase shift of the melatonin rhythm under entrained LD conditions and (2) accelerates resynchronization of circadian rhythms after an 8-h phase advance. Animals were adapted to RF with 2-h food access at the projected time of the new dark onset. Before and at several time points after the 8-h phase advance, nocturnal melatonin profiles were measured in RF animals and animals on ad libitum feeding (AL). In LD-entrained conditions, RF did not cause any significant changes in the nocturnal melatonin profile as compared to AL. Unexpectedly, after the 8-h phase advance, RF animals resynchronized more slowly to the new LD cycle than AL animals. These results indicate that prior entrainment to a nonphotic stimulus such as RF may "phase lock" the circadian oscillator and in that way hinder resynchronization after a phase shift. PMID:10677017

  5. Circadian serum concentrations of tylosin in broilers after feed or water medication.

    PubMed

    Lilia, G; Aguilera, R; Cortés-Cuevas, A; Rosario, C; Sumano, H

    2008-09-01

    1. Because tylosin is a time-dependent antibacterial agent, and because feeding and drinking of broilers decreases in late afternoon and ceases in the dark, it was hypothesised that serum concentrations of this drug are greatly reduced during the dark period. 2. The trial was carried out in a commercial poultry house, under standard broiler husbandry conditions, with food and water withdrawn from 22:00 until 07:00 h next morning and exposed to a natural light cycle of 13L:11D. 3. Broilers were given tylosin tartrate, in either feed or water, for 5 d as follows: 100, 200 and 300 ppm in feed, equivalent to 12.6, 25.2 and 37.8 mg/kg/d, respectively; and 200 and 400 mg/l in drinking water, equivalent to 51 to 102 mg/kg/d, respectively. 4. At 07:00 h on d 4, and for the next 40 h, hourly serum samples were obtained and analysed for tylosin by means of a microbiological assay. 5. Day vs night concentrations of tylosin expressed as area under the curve (AUC) in all groups revealed greater values during the day. The highest AUC and AUC(24)/minimal inhibitory concentration (MIC) ratio were obtained in the group medicated with 400 mg/l and the corresponding lowest values were found in the group medicated with 100 ppm in feed. 6. In conclusion, tylosin did not reach therapeutic serum concentrations during the dark period, at all dose rates tested when administered in feed or water. A sustained release form of this drug is needed to solve this inadequacy of tylosin medication in broilers. PMID:18836909

  6. Synchronization to light and mealtime of the circadian rhythms of self-feeding behavior and locomotor activity of white shrimps (Litopenaeus vannamei).

    PubMed

    Santos, Aline Dos Anjos; López-Olmeda, José Fernando; Sánchez-Vázquez, Francisco Javier; Fortes-Silva, Rodrigo

    2016-09-01

    The role of light and feeding cycles in synchronizing self-feeding and locomotor activity rhythms was studied in white shrimps using a new self-feeding system activated by photocell trigger. In experiment 1, shrimps maintained under a 12:12h light/dark (LD) photoperiod were allowed to self-feed using feeders connected to a photoelectric cell, while locomotor activity was recorded with a second photocell. On day 30, animals were subjected to constant darkness (DD) for 12days to check the existence of endogenous circadian rhythms. In the experiment 2, shrimps were exposed to both a 12:12h LD photoperiod and a fixed meal schedule in the middle of the dark period (MD, 01:00h). On day 20, shrimps were exposed to DD conditions and the same fixed feeding. On day 30, they were maintained under DD and fasted for 7days. The results revealed that under LD, shrimps showed a clear nocturnal feeding pattern and locomotor activity (81.9% and 67.7% of total daily food-demands and locomotor activity, respectively, at nighttime). Both feeding and locomotor rhythms were endogenously driven and persisted under DD with an average period length (τ) close to 24h (circadian) (τ=24.18±0.13 and 23.87±0.14h for locomotor and feeding, respectively). Moreover, Shrimp showed a daily food intake under LD condition (1.1±0.2gday(-1) in the night phase vs. 0.2±0.1gday(-1) in the light phase). Our findings might be relevant for some important shrimp aquaculture aspects, such as developing suitable feeding management on shrimp farms. PMID:27155052

  7. Increased neuropeptide Y concentrations in the lateral hypothalamic area of the rat after the onset of darkness: Possible relevance to the circadian periodicity of feeding behavior

    SciTech Connect

    McKibbin, P.E.; Robers, P.; Williams, G. )

    1991-01-01

    Neuropeptide Y (NPY) is a major hypothalamic peptide which powerfully stimulates feeding when injected into the hypothalamus and is implicated in circadian rhythmicity. To investigate whether NPY is involved in the increased feeding that follows the onset of darkness in rats, NPY levels were measured in discrete hypothalamic areas before and after darkness. Four groups of eight adult female Wistar rats were habituated to a 12:12 hour light:dark cycle, with food presented at the onset of darkness (19.00 hours). Seven hypothalamic regions were microdissected from slices of fresh brain and acid-extracted for radioimmunoassay of NPY. NPY levels ((fmol/{mu}g) protein) were significantly higher in the lateral hypothalamic area (LHA) of the dark-phase group in both studies. In the other six regions, NPY levels did not differ between light and dark phases. The LHA regulates the circadian rhythmicity of feeding and NPY injection here stimulates feeding. Alterations in NPY in the LHA around the onset of darkness may be related to the initiation of dark-phase feeding.

  8. Synchronizing an aging brain: can entraining circadian clocks by food slow Alzheimer’s disease?

    PubMed Central

    Kent, Brianne A.

    2014-01-01

    Alzheimer’s disease (AD) is a global epidemic. Unfortunately, we are still without effective treatments or a cure for this disease, which is having devastating consequences for patients, their families, and societies around the world. Until effective treatments are developed, promoting overall health may hold potential for delaying the onset or preventing neurodegenerative diseases such as AD. In particular, chronobiological concepts may provide a useful framework for identifying the earliest signs of age-related disease as well as inexpensive and noninvasive methods for promoting health. It is well reported that AD is associated with disrupted circadian functioning to a greater extent than normal aging. However, it is unclear if the central circadian clock (i.e., the suprachiasmatic nucleus) is dysfunctioning, or whether the synchrony between the central and peripheral clocks that control behavior and metabolic processes are becoming uncoupled. Desynchrony of rhythms can negatively affect health, increasing morbidity and mortality in both animal models and humans. If the uncoupling of rhythms is contributing to AD progression or exacerbating symptoms, then it may be possible to draw from the food-entrainment literature to identify mechanisms for re-synchronizing rhythms to improve overall health and reduce the severity of symptoms. The following review will briefly summarize the circadian system, its potential role in AD, and propose using a feeding-related neuropeptide, such as ghrelin, to synchronize uncoupled rhythms. Synchronizing rhythms may be an inexpensive way to promote healthy aging and delay the onset of neurodegenerative disease such as AD. PMID:25225484

  9. Synchronizing an aging brain: can entraining circadian clocks by food slow Alzheimer's disease?

    PubMed

    Kent, Brianne A

    2014-01-01

    Alzheimer's disease (AD) is a global epidemic. Unfortunately, we are still without effective treatments or a cure for this disease, which is having devastating consequences for patients, their families, and societies around the world. Until effective treatments are developed, promoting overall health may hold potential for delaying the onset or preventing neurodegenerative diseases such as AD. In particular, chronobiological concepts may provide a useful framework for identifying the earliest signs of age-related disease as well as inexpensive and noninvasive methods for promoting health. It is well reported that AD is associated with disrupted circadian functioning to a greater extent than normal aging. However, it is unclear if the central circadian clock (i.e., the suprachiasmatic nucleus) is dysfunctioning, or whether the synchrony between the central and peripheral clocks that control behavior and metabolic processes are becoming uncoupled. Desynchrony of rhythms can negatively affect health, increasing morbidity and mortality in both animal models and humans. If the uncoupling of rhythms is contributing to AD progression or exacerbating symptoms, then it may be possible to draw from the food-entrainment literature to identify mechanisms for re-synchronizing rhythms to improve overall health and reduce the severity of symptoms. The following review will briefly summarize the circadian system, its potential role in AD, and propose using a feeding-related neuropeptide, such as ghrelin, to synchronize uncoupled rhythms. Synchronizing rhythms may be an inexpensive way to promote healthy aging and delay the onset of neurodegenerative disease such as AD. PMID:25225484

  10. Fasting, Circadian Rhythms, and Time-Restricted Feeding in Healthy Lifespan.

    PubMed

    Longo, Valter D; Panda, Satchidananda

    2016-06-14

    Most animals alternate periods of feeding with periods of fasting often coinciding with sleep. Upon >24 hr of fasting, humans, rodents, and other mammals enter alternative metabolic phases, which rely less on glucose and more on ketone body-like carbon sources. Both intermittent and periodic fasting result in benefits ranging from the prevention to the enhanced treatment of diseases. Similarly, time-restricted feeding (TRF), in which food consumption is restricted to certain hours of the day, allows the daily fasting period to last >12 hr, thus imparting pleiotropic benefits. Understanding the mechanistic link between nutrients and the fasting benefits is leading to the identification of fasting-mimicking diets (FMDs) that achieve changes similar to those caused by fasting. Given the pleiotropic and sustained benefits of TRF and FMDs, both basic science and translational research are warranted to develop fasting-associated interventions into feasible, effective, and inexpensive treatments with the potential to improve healthspan. PMID:27304506

  11. Circadian Rhythms

    MedlinePlus

    ... chronobiology. Are circadian rhythms the same thing as biological clocks? No, but they are related. Our biological clocks drive our circadian rhythms. What are biological clocks? The biological clocks that control circadian rhythms ...

  12. Uncouplers of oxidative phosphorylation.

    PubMed

    Terada, H

    1990-07-01

    Uncouplers of oxidative phosphorylation in mitochondria inhibit the coupling between the electron transport and phosphorylation reactions and thus inhibit ATP synthesis without affecting the respiratory chain and ATP synthase (H(+)-ATPase). Miscellaneous compounds are known to be uncouplers, but weakly acidic uncouplers are representative because they show very potent activities. The most potent uncouplers discovered so far are the hindered phenol SF 6847, and hydrophobic salicylanilide S-13, which are active in vitro at concentrations in the 10 nM range. For induction of uncoupling, an acid dissociable group, bulky hydrophobic moiety and strong electron-withdrawing group are required. Weakly acidic uncouplers are considered to produce uncoupling by their protonophoric action in the H(+)-impermeable mitochondrial membrane. For exerting these effects, the stability of the respective uncoupler anions in the hydrophobic membrane is very important. High stability is achieved by delocalization of the polar ionic charge through uncoupler (chemical)-specific mechanisms. Such an action of weakly acidic uncouplers is characteristic of the highly efficient membrane targeting action of a nonsite-specific type of bioactive compound. PMID:2176586

  13. Bacterial resistance to uncouplers.

    PubMed

    Lewis, K; Naroditskaya, V; Ferrante, A; Fokina, I

    1994-12-01

    Uncoupler resistance presents a potential challenge to the conventional chemiosmotic coupling mechanism. In E. coli, an adaptive response to uncouplers was found in cell growing under conditions requiring oxidative phosphorylation. It is suggested that uncoupler-resistant mutants described in the earlier literature might represent a constitutive state of expression of this "low energy shock" adaptive response. In the environment, bacteria are confronted by nonclassical uncoupling factors such as organic solvents, heat, and extremes of pH. It is suggested that the low energy shock response will aid the cell in coping with the effects of natural uncoupling factors. The genetic analysis of uncoupler resistance has only recently began, and is yielding interesting and largely unexpected results. In Bacillus subtilis, a mutation in fatty acid desaturase causes an increased content of saturated fatty acids in the membrane and increased uncoupler resistance. The protonophoric efficiency of uncouplers remains unchanged in the mutants, inviting nonorthodox interpretations of the mechanism of resistance. In E. coli, two loci conferring resistance to CCCP and TSA were cloned and were found to encode multidrug resistance pumps. Resistance to one of the uncouplers, TTFB, remained unchanged in strains mutated for the MDRs, suggesting a resistance mechanism different from uncoupler extrusion. PMID:7721726

  14. Uncouplers of oxidative phosphorylation.

    PubMed Central

    Terada, H

    1990-01-01

    Uncouplers of oxidative phosphorylation in mitochondria inhibit the coupling between the electron transport and phosphorylation reactions and thus inhibit ATP synthesis without affecting the respiratory chain and ATP synthase (H(+)-ATPase). Miscellaneous compounds are known to be uncouplers, but weakly acidic uncouplers are representative because they show very potent activities. The most potent uncouplers discovered so far are the hindered phenol SF 6847, and hydrophobic salicylanilide S-13, which are active in vitro at concentrations in the 10 nM range. For induction of uncoupling, an acid dissociable group, bulky hydrophobic moiety and strong electron-withdrawing group are required. Weakly acidic uncouplers are considered to produce uncoupling by their protonophoric action in the H(+)-impermeable mitochondrial membrane. For exerting these effects, the stability of the respective uncoupler anions in the hydrophobic membrane is very important. High stability is achieved by delocalization of the polar ionic charge through uncoupler (chemical)-specific mechanisms. Such an action of weakly acidic uncouplers is characteristic of the highly efficient membrane targeting action of a nonsite-specific type of bioactive compound. PMID:2176586

  15. Shifting the feeding of mice to the rest phase creates metabolic alterations, which, on their own, shift the peripheral circadian clocks by 12 hours

    PubMed Central

    Mukherji, Atish; Kobiita, Ahmad; Chambon, Pierre

    2015-01-01

    The molecular mechanisms underlying the events through which alterations in diurnal activities impinge on peripheral circadian clocks (PCCs), and reciprocally how the PCCs affect metabolism, thereby generating pathologies, are still poorly understood. Here, we deciphered how switching the diurnal feeding from the active to the rest phase, i.e., restricted feeding (RF), immediately creates a hypoinsulinemia during the active phase, which initiates a metabolic reprogramming by increasing FFA and glucagon levels. In turn, peroxisome proliferator-activated receptor alpha (PPARα) activation by free fatty acid (FFA), and cAMP response element-binding protein (CREB) activation by glucagon, lead to further metabolic alterations during the circadian active phase, as well as to aberrant activation of expression of the PCC components nuclear receptor subfamily 1, group D, member 1 (Nr1d1/RevErbα), Period (Per1 and Per2). Moreover, hypoinsulinemia leads to an increase in glycogen synthase kinase 3β (GSK3β) activity that, through phosphorylation, stabilizes and increases the level of the RevErbα protein during the active phase. This increase then leads to an untimely repression of expression of the genes containing a RORE DNA binding sequence (DBS), including the Bmal1 gene, thereby initiating in RF mice a 12-h PCC shift to which the CREB-mediated activation of Per1, Per2 by glucagon modestly contributes. We also show that the reported corticosterone extraproduction during the RF active phase reflects an adrenal aberrant activation of CREB signaling, which selectively delays the activation of the PPARα–RevErbα axis in muscle and heart and accounts for the retarded shift of their PCCs. PMID:26627259

  16. The relationship between feed efficiency and the circadian profile of blood plasma analytes measured in beef heifers at different physiological stages.

    PubMed

    Gonano, C V; Montanholi, Y R; Schenkel, F S; Smith, B A; Cant, J P; Miller, S P

    2014-10-01

    The characterization of blood metabolite concentrations over the circadian period and across physiological stages is important for understanding the biological basis of feed efficiency, and may culminate in indirect methods for assessing feed efficiency. Hematological analyses for albumin, urea, creatine kinase, glutamate dehydrogenase, aspartate aminotransferase, carbon dioxide, and acetate were carried out in growing and gestating heifers. These measures were carried out in a sample of 36 Bos taurus crossed beef heifers held under the same husbandry conditions. Hourly blood samples were collected over a 24-h period on three separate sampling occasions, corresponding approximately to the yearling (and open), early-gestation and late-gestation stages. This design was used to determine variation throughout the day, effects due to physiological status and any associations with feed efficiency, as measured by residual feed intake. Blood analyte levels varied with time of day, with the most variation occurring between 0800 and 1600 h. There were also considerable differences in analyte levels across the three physiological stages; for example, creatine kinase was higher (P<0.05) in open heifers, followed by early- and late-gestation heifers. Feed efficiency was also associated with analyte abundance. In more feed-efficient open heifers, there were higher activities of creatine kinase (P<0.05) and aspartate aminotransferase (P<0.05), and lower concentrations of carbon dioxide (P<0.05). Furthermore, in late gestation, more efficient heifers had lower urea concentrations (P<0.05) and lower creatine kinase levels (P<0.05). Over the whole experimental period, carbon dioxide concentrations were numerically lower in more feed efficient heifers (P=0.079). Differences were also observed across physiological stages. For instance, open heifers had increased levels (P<0.05) of creatine kinase, aspartate aminotransferase, carbon dioxide than early and late pregnancy heifers. In

  17. Effect of acetic acid feeding on the circadian changes in glycogen and metabolites of glucose and lipid in liver and skeletal muscle of rats.

    PubMed

    Fushimi, Takashi; Sato, Yuzo

    2005-11-01

    The aim of the present study is to investigate the effect of acetic acid feeding on the circadian changes in glycogen concentration in liver and skeletal muscle. Rats were provided meal once daily (09.00-13.00 hours) for 10 d. On the 11th day, they were either killed immediately or given 9 g diet containing either 0 (control) or 0.7 g/kg-diet acetic acid beginning at 09.00 hours for 4 h, as in the previous regimen. Rats in the fed group were killed at 4, 8 or 24 h after the start of feeding. At 4 h after the start of feeding, the acetic acid group had significantly greater liver and gastrocnemius muscle glycogen concentrations (P<0.05). Also, at this same point, liver xylulose-5-phosphate, a key stimulator of glycolysis, the ratio of fructose-1,6-bisphosphate to fructose-6-phosphate in skeletal muscle, which reflects phosphofructokinase-1 activity, and liver malonyl-CoA, an allosteric inhibitor of carnitine palmitoyl-transferase, were significantly lower in the acetic acid group than in the control group (P<0.05). In addition, the acetic acid group had a significantly lower serum lactate concentration and lower ratio of insulin to glucagon than the control group at the same point (P<0.05). We conclude that a diet containing acetic acid may enhance glycogen repletion but not induce supercompensation, a large increase in the glycogen level that is beneficial in improving performance, in liver and skeletal muscle by transitory inhibition of glycolysis. Further, we indicate the possibility of a transient enhancement of fatty acid oxidation in liver by acetic acid feeding. PMID:16277773

  18. Nutrition and the circadian system.

    PubMed

    Potter, Gregory D M; Cade, Janet E; Grant, Peter J; Hardie, Laura J

    2016-08-01

    The human circadian system anticipates and adapts to daily environmental changes to optimise behaviour according to time of day and temporally partitions incompatible physiological processes. At the helm of this system is a master clock in the suprachiasmatic nuclei (SCN) of the anterior hypothalamus. The SCN are primarily synchronised to the 24-h day by the light/dark cycle; however, feeding/fasting cycles are the primary time cues for clocks in peripheral tissues. Aligning feeding/fasting cycles with clock-regulated metabolic changes optimises metabolism, and studies of other animals suggest that feeding at inappropriate times disrupts circadian system organisation, and thereby contributes to adverse metabolic consequences and chronic disease development. 'High-fat diets' (HFD) produce particularly deleterious effects on circadian system organisation in rodents by blunting feeding/fasting cycles. Time-of-day-restricted feeding, where food availability is restricted to a period of several hours, offsets many adverse consequences of HFD in these animals; however, further evidence is required to assess whether the same is true in humans. Several nutritional compounds have robust effects on the circadian system. Caffeine, for example, can speed synchronisation to new time zones after jetlag. An appreciation of the circadian system has many implications for nutritional science and may ultimately help reduce the burden of chronic diseases. PMID:27221157

  19. Nutrition and the Circadian System

    PubMed Central

    Potter, Gregory D M; Cade, Janet E; Grant, Peter J; Hardie, Laura J

    2016-01-01

    The human circadian system anticipates and adapts to daily environmental changes to optimise behaviour according to time of day and temporally partition incompatible physiological processes. At the helm of this system is a master clock in the suprachiasmatic nuclei (SCN) of the anterior hypothalamus. The SCN are primarily synchronised to the 24 hour day by the light/dark cycle; however, feeding/fasting cycles are the primary time cues for clocks in peripheral tissues. Aligning feeding/fasting cycles with clock-regulated metabolic changes optimises metabolism, and studies of other animals suggest that feeding at inappropriate times disrupts circadian system organisation and thereby contributes to adverse metabolic consequences and chronic disease development. ‘High-fat diets’ (HFDs) produce particularly deleterious effects on circadian system organisation in rodents by blunting feeding/fasting cycles. Time-of-day-restricted feeding, where food availability is restricted to a period of several hours, offsets many adverse consequences of HFDs in these animals; however, further evidence is required to assess whether the same is true in humans. Several nutritional compounds have robust effects on the circadian system. Caffeine, for example, can speed synchronisation to new time zones after jetlag. An appreciation of the circadian system has many implications for nutritional science and may ultimately help reduce the burden of chronic diseases. PMID:27221157

  20. Phenotyping Circadian Rhythms in Mice.

    PubMed

    Eckel-Mahan, Kristin; Sassone-Corsi, Paolo

    2015-01-01

    Circadian rhythms take place with a periodicity of 24 hr, temporally following the rotation of the earth around its axis. Examples of circadian rhythms are the sleep/wake cycle, feeding, and hormone secretion. Light powerfully entrains the mammalian clock and assists in keeping animals synchronized to the 24-hour cycle of the earth by activating specific neurons in the "central pacemaker" of the brain, the suprachiasmatic nucleus. Absolute periodicity of an animal can deviate slightly from 24 hr as manifest when an animal is placed into constant dark or "free-running" conditions. Simple measurements of an organism's activity in free-running conditions reveal its intrinsic circadian period. Mice are a particularly useful model for studying circadian rhythmicity due to the ease of genetic manipulation, thus identifying molecular contributors to rhythmicity. Furthermore, their small size allows for monitoring locomotion or activity in their homecage environment with relative ease. Several tasks commonly used to analyze circadian periodicity and plasticity in mice are presented here including the process of entrainment, determination of tau (period length) in free-running conditions, determination of circadian periodicity in response to light disruption (e.g., jet lag studies), and evaluation of clock plasticity in non-24-hour conditions (T-cycles). Studying the properties of circadian periods such as their phase, amplitude, and length in response to photic perturbation, can be particularly useful in understanding how humans respond to jet lag, night shifts, rotating shifts, or other transient or chronic disruption of environmental surroundings. PMID:26331760

  1. Transient Uncoupling Induces Synchronization.

    PubMed

    Schröder, Malte; Mannattil, Manu; Dutta, Debabrata; Chakraborty, Sagar; Timme, Marc

    2015-07-31

    Finding conditions that support synchronization is a fertile and active area of research with applications across multiple disciplines. Here we present and analyze a scheme for synchronizing chaotic dynamical systems by transiently uncoupling them. Specifically, systems coupled only in a fraction of their state space may synchronize even if fully coupled they do not. While for many standard systems coupling strengths need to be bounded to ensure synchrony, transient uncoupling removes this bound and thus enables synchronization in an infinite range of effective coupling strengths. The presented coupling scheme therefore opens up the possibility to induce synchrony in (biological or technical) systems whose parameters are fixed and cannot be modified continuously. PMID:26274420

  2. Transient Uncoupling Induces Synchronization

    NASA Astrophysics Data System (ADS)

    Schröder, Malte; Mannattil, Manu; Dutta, Debabrata; Chakraborty, Sagar; Timme, Marc

    2015-07-01

    Finding conditions that support synchronization is a fertile and active area of research with applications across multiple disciplines. Here we present and analyze a scheme for synchronizing chaotic dynamical systems by transiently uncoupling them. Specifically, systems coupled only in a fraction of their state space may synchronize even if fully coupled they do not. While for many standard systems coupling strengths need to be bounded to ensure synchrony, transient uncoupling removes this bound and thus enables synchronization in an infinite range of effective coupling strengths. The presented coupling scheme therefore opens up the possibility to induce synchrony in (biological or technical) systems whose parameters are fixed and cannot be modified continuously.

  3. Uncouplers and the molecular mechanism of uncoupling in mitochondria.

    PubMed Central

    Kessler, R J; Vande Zande, H; Tyson, C A; Blondin, G A; Fairfield, J; Glasser, P; Green, D E

    1977-01-01

    Uncouplers are molecules with protonophoric and ionophoric capabilities that mediate coupled cyclical transport of cations--a transport that takes precedence over all other coupled processes. Uncouplers form cation-containing complexes with electrogenic ionophores that potentiate cyclical transport of cations. The molecular mechanism of uncoupling sheds strong light on the mechanism of coupling. PMID:142250

  4. CIRCADIAN REGULATION OF METABOLISM

    PubMed Central

    Bailey, Shannon M.; Udoh, Uduak S.; Young, Martin E.

    2014-01-01

    In association with sleep/wake and fasting/feeding cycles, organisms experience dramatic oscillations in energetic demands and nutrient supply. It is therefore not surprising that various metabolic parameters, ranging from the activity status of molecular energy sensors to circulating nutrient levels, oscillate in time-of-day-dependent manners. It has become increasingly clear that rhythms in metabolic processes are not simply in response to daily environmental/behavioral influences, but are driven in part by cell autonomous circadian clocks. By synchronizing the cell with its environment, clocks modulate a host of metabolic processes in a temporally appropriate manner. The purpose of this article is to review current understanding of the interplay between circadian clocks and metabolism, in addition to the pathophysiologic consequences of disruption of this molecular mechanism, in terms of cardiometabolic disease development. PMID:24928941

  5. Ablation of the Id2 Gene Results in Altered Circadian Feeding Behavior, and Sex-Specific Enhancement of Insulin Sensitivity and Elevated Glucose Uptake in Skeletal Muscle and Brown Adipose Tissue

    PubMed Central

    Mathew, Deepa; Zhou, Peng; Pywell, Cameron M.; van der Veen, Daan R.; Shao, Jinping; Xi, Yang; Bonar, Nicolle A.; Hummel, Alyssa D.; Chapman, Sarah; Leevy, W. Matthew; Duffield, Giles E.

    2013-01-01

    Inhibitor of DNA binding 2 (ID2) is a helix-loop-helix transcriptional repressor rhythmically expressed in many adult tissues. Our earlier studies have demonstrated a role for ID2 in the input pathway, core clock function and output pathways of the mouse circadian system. We have also reported that Id2 null (Id2−/−) mice are lean with low gonadal white adipose tissue deposits and lower lipid content in the liver. These results coincided with altered or disrupted circadian expression profiles of liver genes including those involved in lipid metabolism. In the present phenotypic study we intended to decipher, on a sex-specific basis, the role of ID2 in glucose metabolism and in the circadian regulation of activity, important components of energy balance. We find that Id2−/− mice exhibited altered daily and circadian rhythms of feeding and locomotor activity; activity profiles extended further into the late night/dark phase of the 24-hr cycle, despite mice showing reduced total locomotor activity. Also, male Id2−/− mice consumed a greater amount of food relative to body mass, and displayed less weight gain. Id2−/− females had smaller adipocytes, suggesting sexual-dimorphic programing of adipogenesis. We observed increased glucose tolerance and insulin sensitivity in male Id2−/− mice, which was exacerbated in older animals. FDG-PET analysis revealed increased glucose uptake by skeletal muscle and brown adipose tissue of male Id2−/− mice, suggesting increased glucose metabolism and thermogenesis in these tissues. Reductions in intramuscular triacylglycerol and diacylglycerol were detected in male Id2−/− mice, highlighting its possible mechanistic role in enhanced insulin sensitivity in these mice. Our findings indicate a role for ID2 as a regulator of glucose and lipid metabolism, and in the circadian control of feeding/locomotor behavior; and contribute to the understanding of the development of obesity and diabetes, particularly in shift

  6. Central and peripheral circadian clocks in mammals.

    PubMed

    Mohawk, Jennifer A; Green, Carla B; Takahashi, Joseph S

    2012-01-01

    The circadian system of mammals is composed of a hierarchy of oscillators that function at the cellular, tissue, and systems levels. A common molecular mechanism underlies the cell-autonomous circadian oscillator throughout the body, yet this clock system is adapted to different functional contexts. In the central suprachiasmatic nucleus (SCN) of the hypothalamus, a coupled population of neuronal circadian oscillators acts as a master pacemaker for the organism to drive rhythms in activity and rest, feeding, body temperature, and hormones. Coupling within the SCN network confers robustness to the SCN pacemaker, which in turn provides stability to the overall temporal architecture of the organism. Throughout the majority of the cells in the body, cell-autonomous circadian clocks are intimately enmeshed within metabolic pathways. Thus, an emerging view for the adaptive significance of circadian clocks is their fundamental role in orchestrating metabolism. PMID:22483041

  7. Phenotyping Circadian Rhythms in Mice

    PubMed Central

    Eckel-Mahan, Kristin; Sassone-Corsi, Paolo

    2015-01-01

    Circadian rhythms take place with a periodicity of twenty-four hours, temporally following the rotation of the earth around its axis. Examples of circadian rhythms are the sleep/wake cycle, feeding, and hormone secretion. Light powerfully entrains the mammalian clock and assists in keeping animals synchronized to the 24-hour cycle of the earth by activating specific neurons in the “central pacemaker” of the brain, the suprachiasmatic nucleus. Absolute periodicity of an animal can deviate slightly from 24 hours as manifest when an animal is placed into constant dark- or “free running”- conditions. Simple measurements of an organism's activity in free running conditions reveal its intrinsic circadian period. Mice are a particularly useful model for studying circadian rhythmicity due to the ease of genetic manipulation, thus identifying molecular contributors to rhythmicity. Furthermore, their small size allows for monitoring locomotion or activity in their home cage environment with relative ease. Several tasks commonly used to analyze circadian periodicity and plasticity in mice are outlined here including the process of entrainment, determination of tau (period length) in free running conditions, determination of circadian periodicity in response to light disruption (i.e. jet lag studies), and evaluation of clock plasticity in non-twenty-four hour conditions (T-cycles). Studying the properties of circadian periods such as their phase, amplitude, and length in response to photic perturbation, can be particularly useful in understanding how humans respond to jet lag, night shifts, rotating shifts, or other transient or chronic disruption of one's environmental surroundings. PMID:26331760

  8. Circadian regulation of renal function.

    PubMed

    Firsov, Dmitri; Bonny, Olivier

    2010-10-01

    Urinary excretion of water and all major electrolytes exhibit robust circadian oscillations. The 24-h periodicity has been well documented for several important determinants of urine formation, including renal blood flow, glomerular filtration, tubular reabsorption, and tubular secretion. Disturbance of the renal circadian rhythms is increasingly recognized as a risk factor for hypertension, polyuria, and other diseases and may contribute to renal fibrosis. The origin of these rhythms has been attributed to the reactive response of the kidney to circadian changes in volume and/or in the composition of extracellular fluids that are entrained by rest/activity and feeding/fasting cycles. However, numerous studies have shown that most of the renal excretory rhythms persist for long periods of time, even in the absence of periodic environmental cues. These observations led to the hypothesis of the existence of a self-sustained mechanism, enabling the kidney to anticipate various predictable circadian challenges to homeostasis. The molecular basis of this mechanism remained unknown until the recent discovery of the mammalian circadian clock made of a system of autoregulatory transcriptional/translational feedback loops, which have been found in all tissues studied, including the kidney. Here, we present a review of the growing evidence showing the involvement of the molecular clock in the generation of renal excretory rhythms. PMID:20664559

  9. Endogenous circadian system and circadian misalignment impact glucose tolerance via separate mechanisms in humans.

    PubMed

    Morris, Christopher J; Yang, Jessica N; Garcia, Joanna I; Myers, Samantha; Bozzi, Isadora; Wang, Wei; Buxton, Orfeu M; Shea, Steven A; Scheer, Frank A J L

    2015-04-28

    Glucose tolerance is lower in the evening and at night than in the morning. However, the relative contribution of the circadian system vs. the behavioral cycle (including the sleep/wake and fasting/feeding cycles) is unclear. Furthermore, although shift work is a diabetes risk factor, the separate impact on glucose tolerance of the behavioral cycle, circadian phase, and circadian disruption (i.e., misalignment between the central circadian pacemaker and the behavioral cycle) has not been systematically studied. Here we show--by using two 8-d laboratory protocols--in healthy adults that the circadian system and circadian misalignment have distinct influences on glucose tolerance, both separate from the behavioral cycle. First, postprandial glucose was 17% higher (i.e., lower glucose tolerance) in the biological evening (8:00 PM) than morning (8:00 AM; i.e., a circadian phase effect), independent of the behavioral cycle effect. Second, circadian misalignment itself (12-h behavioral cycle inversion) increased postprandial glucose by 6%. Third, these variations in glucose tolerance appeared to be explained, at least in part, by different mechanisms: during the biological evening by decreased pancreatic β-cell function (27% lower early-phase insulin) and during circadian misalignment presumably by decreased insulin sensitivity (elevated postprandial glucose despite 14% higher late-phase insulin) without change in early-phase insulin. We explored possible contributing factors, including changes in polysomnographic sleep and 24-h hormonal profiles. We demonstrate that the circadian system importantly contributes to the reduced glucose tolerance observed in the evening compared with the morning. Separately, circadian misalignment reduces glucose tolerance, providing a mechanism to help explain the increased diabetes risk in shift workers. PMID:25870289

  10. Circadian rhythms, alcohol and gut interactions

    PubMed Central

    Forsyth, Christopher B.; Voigt, Rbin M.; Burgess, Helen J.; Swanson, Garth R.; Keshavarzian, Ali

    2015-01-01

    The circadian clock establishes rhythms throughout the body with an approximately 24 hour period that affect expression of hundreds of genes. Epidemiological data reveal chronic circadian misalignment, common in our society, significantly increases the risk for a myriad of diseases, including cardiovascular disease, diabetes, cancer, infertility and gastrointestinal disease. Disruption of intestinal barrier function, also known as gut leakiness, is especially important in alcoholic liver disease (ALD). Several studies have shown that alcohol causes ALD in only a 20–30% subset of alcoholics. Thus, a better understanding is needed of why only a subset of alcoholics develops ALD. Compelling evidence shows that increased gut leakiness to microbial products and especially LPS play a critical role in the pathogenesis of ALD. Clock and other circadian clock genes have been shown to regulate lipid transport, motility and other gut functions. We hypothesized that one possible mechanism for alcohol-induced intestinal hyper-permeability is through disruption of central or peripheral (intestinal) circadian regulation. In support of this hypothesis, our recent data shows that disruption of circadian rhythms makes the gut more susceptible to injury. Our in vitro data show that alcohol stimulates increased Clock and Per2 circadian clock proteins and that siRNA knockdown of these proteins prevents alcohol-induced permeability. We also show that intestinal Cyp2e1-mediated oxidative stress is required for alcohol-induced upregulation of Clock and Per2 and intestinal hyperpermeability. Our mouse model of chronic alcohol feeding shows that circadian disruption through genetics (in ClockΔ19 mice) or environmental disruption by weekly 12h phase shifting results in gut leakiness alone and exacerbates alcohol-induced gut leakiness and liver pathology. Our data in human alcoholics show they exhibit abnormal melatonin profiles characteristic of circadian disruption. Taken together our

  11. Achromatic and Uncoupled Medical Gantry

    NASA Astrophysics Data System (ADS)

    Tsoupas, N.; Kayran, D.; Litvinenko, V.

    One of the functions of a medical gantry is to irradiate a tumor from different angles to reduce the dose received by the healthy tissue which surrounds the tumor. The rotation of the gantry rotates also its quadrupoles that focus the beam, as a result the beam is "coupled" in the sense that the horizontal motion of the beam particles is affected by the vertical motion and vice-versa therefore the beam spot size at the tumor may vary with the angular orientation of the gantry. Although such a beam-coupling is inevitable in a rotated gantry in which the horizontal plane is not the symmetry plane of the quadrupoles, it is possible to find a solution that the optics of the gantry"appears uncoupled" at any angular orientation of the gantry. As we show in the paper, the condition of an uncoupled gantry is equivalent to an uncoupled linear-beam-transport-matrix which is independent of the angular orientation of the gantry, therefore the beam spot size at the location of the tumor is independent of the orientation of the gantry. In this paper we present the theoretical basis to generate the beam optics for a gantry which is constrained to provide uncoupled and also achromatic beamtransport to the location of the tumor. In addition we present the layout of the magnetic elements and the optics of a medical gantrywhich satisfies the achromaticity and uncoupled conditions.

  12. [The kidney and circadian rhythms: a whole new world?].

    PubMed

    Manfredini, Roberto; Sasso, Ferdinando Carlo; Pala, Marco; De Giorgi, Alfredo; Fabbian, Fabio

    2013-01-01

    Chronobiology is a branch of biomedical sciences devoted to the study of biological rhythms. Biological rhythms exist at any level of living organisms and, according to their cycle length, may be divided into three main types: circadian, ultradian, and infradian rhythms. Circadian rhythms are the most commonly and widely studied. The principal circadian clock is located in the suprachiasmatic nucleus of the hypothalamus, and is supposed to regulate peripheral clocks via neurohumoral modulation. Circadian clocks have been identified within almost all mammalian cell types, and circadian clock genes seem to be essential for cardiovascular health. Disturbance of the renal circadian rhythms is increasingly recognized as a risk factor for hypertension, polyuria, and other diseases and may contribute to renal fibrosis. The origin of these rhythms has been attributed to the reactive response of the kidney to circadian changes in volume and/or in the composition of extracellular fluids regulated by rest/activity and feeding/fasting cycles. However, most of the renal excretory rhythms persist for long periods of time, even in the absence of periodic environmental cues. These observations led to the hypothesis of the existence of a self-sustained mechanism, enabling the kidney to anticipate various predictable circadian challenges to homeostasis. The molecular basis of this mechanism remained unknown until the recent discovery of the mammalian circadian clock, comprising a system of autoregulatory transcriptional/translational feedback loops, which have also been found in the kidney. PMID:24403200

  13. Uncoupling Mitochondrial Respiration for Diabesity.

    PubMed

    Larrick, James W; Larrick, Jasmine W; Mendelsohn, Andrew R

    2016-08-01

    Until recently, the mechanism of adaptive thermogenesis was ascribed to the expression of uncoupling protein 1 (UCP1) in brown and beige adipocytes. UCP1 is known to catalyze a proton leak of the inner mitochondrial membrane, resulting in uncoupled oxidative metabolism with no production of adenosine triphosphate and increased energy expenditure. Thus increasing brown and beige adipose tissue with augmented UCP1 expression is a viable target for obesity-related disorders. Recent work demonstrates an UCP1-independent pathway to uncouple mitochondrial respiration. A secreted enzyme, PM20D1, enriched in UCP1+ adipocytes, exhibits catalytic and hydrolytic activity to reversibly form N-acyl amino acids. N-acyl amino acids act as endogenous uncouplers of mitochondrial respiration at physiological concentrations. Administration of PM20D1 or its products, N-acyl amino acids, to diet-induced obese mice improves glucose tolerance by increasing energy expenditure. In short-term studies, treated animals exhibit no toxicity while experiencing 10% weight loss primarily of adipose tissue. Further study of this metabolic pathway may identify novel therapies for diabesity, the disease state associated with diabetes and obesity. PMID:27378359

  14. Circadian rhythms of clock gene expression in Nile tilapia (Oreochromis niloticus) central and peripheral tissues: influence of different lighting and feeding conditions.

    PubMed

    Costa, Leandro S; Serrano, Ignacio; Sánchez-Vázquez, Francisco J; López-Olmeda, Jose F

    2016-08-01

    The present research aimed to investigate the existence of clock gene expression rhythms in tilapia, their endogenous origin, and how light and feeding cycles synchronize these rhythms. In the first experiment, two groups of fish were kept under an LD cycle and fed at two different time points: in the middle of the light (ML) or in the middle of the dark (MD) phase. In the second experiment, fish fed at ML was fasted and kept under constant lighting (LL) conditions for 1 day. In both experiments, the samples from central (optic tectum and hypothalamus) and peripheral (liver) tissues were collected every 3 h throughout a 24 h cycle. The expression levels of clock genes bmal1a, clock1, per1b, cry2a, and cry5 were analyzed by quantitative PCR. All the clock genes analyzed in brain regions showed daily rhythms: clock1, bmal1a, and cry2a showed the acrophase approximately at the end of the light phase (ZT 8:43-11:22 h), whereas per1b and cry5 did so between the end of the dark phase and the beginning of the light phase, respectively (ZT 21:16-4:00 h). These rhythms persisted under constant conditions. No effect of the feeding time was observed in the brain. In the liver, however, the rhythms of clock1 and cry5 were influenced by feeding, and a shift was observed in the MD fish group (ZT 3:58 h for clock1 and 11:20 h for cry5). This study provides the first insights into the molecular clock of tilapia, a very important fish species for aquaculture. It also reveals the endogenous origin of clock gene rhythms and the ability of feeding time to shift the phase in some clock genes in the peripheral, but not the central, oscillator. PMID:27085855

  15. Synchronizing noisy nonidentical oscillators by transient uncoupling

    NASA Astrophysics Data System (ADS)

    Tandon, Aditya; Schröder, Malte; Mannattil, Manu; Timme, Marc; Chakraborty, Sagar

    2016-09-01

    Synchronization is the process of achieving identical dynamics among coupled identical units. If the units are different from each other, their dynamics cannot become identical; yet, after transients, there may emerge a functional relationship between them—a phenomenon termed "generalized synchronization." Here, we show that the concept of transient uncoupling, recently introduced for synchronizing identical units, also supports generalized synchronization among nonidentical chaotic units. Generalized synchronization can be achieved by transient uncoupling even when it is impossible by regular coupling. We furthermore demonstrate that transient uncoupling stabilizes synchronization in the presence of common noise. Transient uncoupling works best if the units stay uncoupled whenever the driven orbit visits regions that are locally diverging in its phase space. Thus, to select a favorable uncoupling region, we propose an intuitive method that measures the local divergence at the phase points of the driven unit's trajectory by linearizing the flow and subsequently suppresses the divergence by uncoupling.

  16. Molecular components of the circadian clock in mammals.

    PubMed

    Takahashi, J S

    2015-09-01

    The circadian clock mechanism in animals involves a transcriptional feedback loop in which the bHLH-PAS proteins CLOCK and BMAL1 form a transcriptional activator complex to activate the transcription of the Period and Cryptochrome genes, which in turn feed back to repress their own transcription. In the mouse liver, CLOCK and BMAL1 interact with the regulatory regions of thousands of genes, which are both cyclically and constitutively expressed. The circadian transcription in the liver is clustered in phase and this is accompanied by circadian occupancy of RNA polymerase II recruitment and initiation. These changes also lead to circadian fluctuations in histone H3 lysine4 trimethylation (H3K4me3) as well as H3 lysine9 acetylation (H3K9ac) and H3 lysine27 acetylation (H3K27ac). Thus, the circadian clock regulates global transcriptional poise and chromatin state by regulation of RNA polymerase II. PMID:26332962

  17. Nutrient Sensing and the Circadian Clock

    PubMed Central

    Peek, Clara B.; Ramsey, Kathryn M.; Marcheva, Biliana; Bass, Joseph

    2012-01-01

    The circadian system synchronizes behavioral and physiologic processes with daily changes in the external light-dark cycle, optimizing energetic cycles with the rising and setting of the sun. Molecular clocks are organized hierarchically, with neural clocks orchestrating the daily switch between periods of feeding and fasting, and peripheral clocks generating 24hr oscillations of energy storage and utilization. Recent studies indicate that clocks respond to nutrient signals, and that high-fat diet influences the period of locomotor activity under free-running conditions, a core property of the clock. A major goal is to identify the molecular basis for the reciprocal relationship between metabolic and circadian pathways. Here, we highlight the role of peptidergic hormones and macromolecules as nutrient signals integrating circadian and metabolic systems. PMID:22424658

  18. Klf15 orchestrates circadian nitrogen homeostasis

    PubMed Central

    Jeyaraj, Darwin; Scheer, Frank A.J.L.; Ripperger, Jürgen A.; Haldar, Saptarsi M.; Lu, Yuan; Prosdocimo, Domenick A.; Eapen, Sam J.; Eapen, Betty L.; Cui, Yingjie; Mahabeleshwar, Ganapathi H.; Lee, Hyoung-gon; Smith, Mark A.; Casadesus, Gemma; Mintz, Eric M.; Sun, Haipeng; Wang, Yibin; Ramsey, Kathryn M.; Bass, Joseph; Shea, Steven A.; Albrecht, Urs; Jain, Mukesh K.

    2012-01-01

    SUMMARY Diurnal variation in nitrogen homeostasis is observed across phylogeny. But whether these are endogenous rhythms, and if so, molecular mechanisms that link nitrogen homeostasis to the circadian clock remain unknown. Here, we provide evidence that a clock-dependent peripheral oscillator, Krüppel-like factor15 transcriptionally coordinates rhythmic expression of multiple enzymes involved in mammalian nitrogen homeostasis. In particular, Krüppel-like factor15-deficient mice exhibit no discernable amino acid rhythm, and the rhythmicity of ammonia to urea detoxification is impaired. Of the external cues, feeding plays a dominant role in modulating Krüppel-like factor15 rhythm and nitrogen homeostasis. Further, when all behavioral, environmental and dietary cues were controlled in humans, nitrogen homeostasis still expressed endogenous circadian rhythmicity. Thus, in mammals, nitrogen homeostasis exhibits circadian rhythmicity, and is orchestrated by Krüppel-like factor15. PMID:22405069

  19. Circadian Clocks and Metabolism

    PubMed Central

    Marcheva, Biliana; Ramsey, Kathryn M.; Peek, Clara B.; Affinati, Alison; Maury, Eleonore; Bass, Joseph

    2014-01-01

    Circadian clocks maintain periodicity in internal cycles of behavior, physiology, and metabolism, enabling organisms to anticipate the 24-h rotation of the Earth. In mammals, circadian integration of metabolic systems optimizes energy harvesting and utilization across the light/dark cycle. Disruption of clock genes has recently been linked to sleep disorders and to the development of cardiometabolic disease. Conversely, aberrant nutrient signaling affects circadian rhythms of behavior. This chapter reviews the emerging relationship between the molecular clock and metabolic systems and examines evidence that circadian disruption exerts deleterious consequences on human health. PMID:23604478

  20. Achromatic and uncoupled medical gantry

    DOEpatents

    Tsoupas, Nicholaos; Kayran, Dmitry; Litvinenko, Vladimir; MacKay, William W.

    2011-11-22

    A medical gantry that focus the beam from the beginning of the gantry to the exit of the gantry independent of the rotation angle of the gantry by keeping the beam achromatic and uncoupled, thus, avoiding the use of collimators or rotators, or additional equipment to control the beam divergence, which may cause beam intensity loss or additional time in irradiation of the patient, or disadvantageously increase the overall gantry size inapplicable for the use in the medical treatment facility.

  1. Lactating performance, water and feed consumption of rabbit does reared under a Mediterranean summer circadian cycle of temperature v. comfort temperature conditions.

    PubMed

    Bakr, M H; Tusell, L; Rafel, O; Terré, M; Sánchez, J P; Piles, M

    2015-07-01

    The general aim of this research was to study the effect of high ambient temperature on the performance of does during lactation, specifically the following factors: average daily feed (ADFI) and water (ADWI) intakes, daily milk yield (DMY); milk composition: dry matter (DM), CP and gross energy (GE); doe BW (DW); individual kit weaning weight (IWW) and litter survival rate during lactation (SR). The study was undertaken comparing the performance of two groups of contemporary does reared under the same management, feeding regime and environmental conditions, except the environmental temperature and humidity. A total of 80 females were randomly allocated, at 60 days of age, into two identical and continuous rooms. In one room, the temperature was maintained permanently within the thermo-neutral zone (between 18°C to 22°C); thus, environmental conditions in this room were considered as comfort conditions. In the second room, the environmental temperature pattern simulated the daily temperature cycles that were characteristic of the summer in Mediterranean countries (24°C at 0800 h, increasing up to 29°C until 1100 h; maintenance at 29°C to 31°C for 4 h and decreasing to about 24°C to 26°C around 1700 h until 0800 h of the following day), which were considered as thermal stress conditions. Females followed a semi-intensive reproductive rhythm, first artificial insemination at 4.5 months of age, with subsequent 42-day reproductive cycles. Traits were recorded from a total of 138 lactations. Does were controlled up to the 5th lactation. Data were analyzed using linear and linear mixed models. High ambient temperature led to a lower ADFI (-9.4%), DW (-6.2%) and IWW (-8%), but it did not affect ADWI. No significant difference was found either for DMY, milk composition (DM, CP and GE) and SR during the lactation period. Heat stress was moderate, and does were able to adapt to it behaviorally by decreasing feed intake (to reduce heat production), but also live

  2. Circadian Disruption Leads to Loss of Homeostasis and Disease

    PubMed Central

    Escobar, Carolina; Salgado-Delgado, Roberto; Gonzalez-Guerra, Eduardo; Tapia Osorio, Araceli; Angeles-Castellanos, Manuel; Buijs, Ruud M.

    2011-01-01

    The relevance of a synchronized temporal order for adaptation and homeostasis is discussed in this review. We present evidence suggesting that an altered temporal order between the biological clock and external temporal signals leads to disease. Evidence mainly based on a rodent model of “night work” using forced activity during the sleep phase suggests that altered activity and feeding schedules, out of phase from the light/dark cycle, may be the main cause for the loss of circadian synchrony and disease. It is proposed that by avoiding food intake during sleep hours the circadian misalignment and adverse consequences can be prevented. This review does not attempt to present a thorough revision of the literature, but instead it aims to highlight the association between circadian disruption and disease with special emphasis on the contribution of feeding schedules in circadian synchrony. PMID:23471148

  3. Circadian Clock NAD+ Cycle Drives Mitochondrial Oxidative Metabolism in Mice

    PubMed Central

    Peek, Clara Bien; Affinati, Alison H.; Ramsey, Kathryn Moynihan; Kuo, Hsin-Yu; Yu, Wei; Sena, Laura A.; Ilkayeva, Olga; Marcheva, Biliana; Kobayashi, Yumiko; Omura, Chiaki; Levine, Daniel C.; Bacsik, David J.; Gius, David; Newgard, Christopher B.; Goetzman, Eric; Chandel, Navdeep S.; Denu, John M.; Mrksich, Milan; Bass, Joseph

    2014-01-01

    Circadian clocks are self-sustained cellular oscillators that synchronize oxidative and reductive cycles in anticipation of the solar cycle. We found that the clock transcription feedback loop produces cycles of nicotinamide adenine dinucleotide (NAD+) biosynthesis, adenosine triphosphate production, and mitochondrial respiration through modulation of mitochondrial protein acetylation to synchronize oxidative metabolic pathways with the 24-hour fasting and feeding cycle. Circadian control of the activity of the NAD+-dependent deacetylase sirtuin 3 (SIRT3) generated rhythms in the acetylation and activity of oxidative enzymes and respiration in isolated mitochondria, and NAD+ supplementation restored protein deacetylation and enhanced oxygen consumption in circadian mutant mice. Thus, circadian control of NAD+ bioavailability modulates mitochondrial oxidative function and organismal metabolism across the daily cycles of fasting and feeding. PMID:24051248

  4. Metabolic Effects of Bariatric Surgery in Mouse Models of Circadian Disruption

    PubMed Central

    Arble, Deanna M.; Sandoval, Darleen A.; Turek, Fred W.; Woods, Stephen C.; Seeley, Randy J.

    2015-01-01

    Background/Objectives Mounting evidence supports a link between circadian disruption and metabolic disease. Humans with circadian disruption (e.g., night-shift workers) have an increased risk of obesity and cardiometabolic diseases compared to the non-disrupted population. However, it is unclear if the obesity and obesity-related disorders associated with circadian disruption respond to therapeutic treatments as well as individuals with other types of obesity. Subjects/Methods Here, we test the effectiveness of the commonly used bariatric surgical procedure, Vertical Sleeve Gastrectomy (VSG) in mouse models of genetic and environmental circadian disruption. Results VSG led to a reduction in body weight and fat mass in both ClockΔ19 mutant and constant-light mouse models (P < .05), resulting in an overall metabolic improvement independent of circadian disruption. Interestingly, the decrease in body weight occurred without altering diurnal feeding or activity patterns (P > .05). Within circadian-disrupted models, VSG also led to improved glucose tolerance and lipid handling (P < .05). Conclusions Together these data demonstrate that VSG is an effective treatment for the obesity associated with circadian disruption, and that the potent effects of bariatric surgery are orthogonal to circadian biology. However, since the effects of bariatric surgery are independent of circadian disruption, VSG cannot be considered a cure for circadian disruption. These data have important implications for circadian-disrupted obese patients. Moreover, these results reveal new information about the metabolic pathways governing the effects of bariatric surgery as well as of circadian disruption. PMID:25869599

  5. Mitochondrial uncouplers with an extraordinary dynamic range.

    PubMed

    Lou, Phing-How; Hansen, Birgit S; Olsen, Preben H; Tullin, Søren; Murphy, Michael P; Brand, Martin D

    2007-10-01

    We have discovered that some weak uncouplers (typified by butylated hydroxytoluene) have a dynamic range of more than 10(6) in vitro: the concentration giving measurable uncoupling is less than one millionth of the concentration causing full uncoupling. They achieve this through a high-affinity interaction with the mitochondrial adenine nucleotide translocase that causes significant but limited uncoupling at extremely low uncoupler concentrations, together with more conventional uncoupling at much higher concentrations. Uncoupling at the translocase is not by a conventional weak acid/anion cycling mechanism since it is also caused by substituted triphenylphosphonium molecules, which are not anionic and cannot protonate. Covalent attachment of the uncoupler to a mitochondrially targeted hydrophobic cation sensitizes it to membrane potential, giving a small additional effect. The wide dynamic range of these uncouplers in isolated mitochondria and intact cells reveals a novel allosteric activation of proton transport through the adenine nucleotide translocase and provides a promising starting point for designing safer uncouplers for obesity therapy. PMID:17608618

  6. Mitochondrial uncouplers with an extraordinary dynamic range

    PubMed Central

    Lou, Phing-How; Hansen, Birgit S.; Olsen, Preben H.; Tullin, Søren; Murphy, Michael P.; Brand, Martin D.

    2007-01-01

    We have discovered that some weak uncouplers (typified by butylated hydroxytoluene) have a dynamic range of more than 106 in vitro: the concentration giving measurable uncoupling is less than one millionth of the concentration causing full uncoupling. They achieve this through a high-affinity interaction with the mitochondrial adenine nucleotide translocase that causes significant but limited uncoupling at extremely low uncoupler concentrations, together with more conventional uncoupling at much higher concentrations. Uncoupling at the translocase is not by a conventional weak acid/anion cycling mechanism since it is also caused by substituted triphenylphosphonium molecules, which are not anionic and cannot protonate. Covalent attachment of the uncoupler to a mitochondrially targeted hydrophobic cation sensitizes it to membrane potential, giving a small additional effect. The wide dynamic range of these uncouplers in isolated mitochondria and intact cells reveals a novel allosteric activation of proton transport through the adenine nucleotide translocase and provides a promising starting point for designing safer uncouplers for obesity therapy. PMID:17608618

  7. Characterization of peripheral circadian clocks in adipose tissues.

    PubMed

    Zvonic, Sanjin; Ptitsyn, Andrey A; Conrad, Steven A; Scott, L Keith; Floyd, Z Elizabeth; Kilroy, Gail; Wu, Xiying; Goh, Brian C; Mynatt, Randall L; Gimble, Jeffrey M

    2006-04-01

    First described in the suprachiasmatic nucleus, circadian clocks have since been found in several peripheral tissues. Although obesity has been associated with dysregulated circadian expression profiles of leptin, adiponectin, and other fat-derived cytokines, there have been no comprehensive analyses of the circadian clock machinery in adipose depots. In this study, we show robust and coordinated expression of circadian oscillator genes (Npas2, Bmal1, Per1-3, and Cry1-2) and clock-controlled downstream genes (Rev-erb alpha, Rev-erb beta, Dbp, E4bp4, Stra13, and Id2) in murine brown, inguinal, and epididymal (BAT, iWAT, and eWAT) adipose tissues. These results correlated with respective gene expression in liver and the serum markers of circadian function. Through Affymetrix microarray analysis, we identified 650 genes that shared circadian expression profiles in BAT, iWAT, and liver. Furthermore, we have demonstrated that temporally restricted feeding causes a coordinated phase-shift in circadian expression of the major oscillator genes and their downstream targets in adipose tissues. The presence of circadian oscillator genes in fat has significant metabolic implications, and their characterization may have potential therapeutic relevance with respect to the pathogenesis and treatment of diseases such as obesity, type 2 diabetes, and the metabolic syndrome. PMID:16567517

  8. Circadian rhythms of gastrointestinal function are regulated by both central and peripheral oscillators

    PubMed Central

    Malloy, Jaclyn N.; Paulose, Jiffin K.; Li, Ye

    2012-01-01

    Circadian clocks are responsible for daily rhythms in a wide array of processes, including gastrointestinal (GI) function. These are vital for normal digestive rhythms and overall health. Previous studies demonstrated circadian clocks within the cells of GI tissue. The present study examines the roles played by the suprachiasmatic nuclei (SCN), master circadian pacemaker for overt circadian rhythms, and the sympathetic nervous system in regulation of circadian GI rhythms in the mouse Mus musculus. Surgical ablation of the SCN abolishes circadian locomotor, feeding, and stool output rhythms when animals are presented with food ad libitum, while restricted feeding reestablishes these rhythms temporarily. In intact mice, chemical sympathectomy with 6-hydroxydopamine has no effect on feeding and locomotor rhythmicity in light-dark cycles or constant darkness but attenuates stool weight and stool number rhythms. Again, however, restricted feeding reestablishes rhythms in locomotor activity, feeding, and stool output rhythms. Ex vivo, intestinal tissue from PER2::LUC transgenic mice expresses circadian rhythms of luciferase bioluminescence. Chemical sympathectomy has little effect on these rhythms, but timed administration of the β-adrenergic agonist isoproterenol causes a phase-dependent shift in PERIOD2 expression rhythms. Collectively, the data suggest that the SCN are required to maintain feeding, locomotor, and stool output rhythms during ad libitum conditions, acting at least in part through daily activation of sympathetic activity. Even so, this input is not necessary for entrainment to timed feeding, which may be the province of oscillators within the intestines themselves or other components of the GI system. PMID:22723262

  9. The Arabidopsis Circadian System

    PubMed Central

    McClung, C. Robertson; Salomé, Patrice A.; Michael, Todd P.

    2002-01-01

    Rhythms with periods of approximately 24 hr are widespread in nature. Those that persist in constant conditions are termed circadian rhythms and reflect the activity of an endogenous biological clock. Plants, including Arabidopsis, are richly rhythmic. Expression analysis, most recently on a genomic scale, indicates that the Arabidopsis circadian clock regulates a number of key metabolic pathways and stress responses. A number of sensitive and high-throughput assays have been developed to monitor the Arabidopsis clock. These assays have facilitated the identification of components of plant circadian systems through genetic and molecular biological studies. Although much remains to be learned, the framework of the Arabidopsis circadian system is coming into focus. Dedication This review is dedicated to the memory of DeLill Nasser, a wonderful mentor and an unwavering advocate of both Arabidopsis and circadian rhythms research. PMID:22303209

  10. Mechanism of uncoupling in mitochondria: uncouplers as ionophores for cycling cations and protons.

    PubMed Central

    Kessler, R J; Tyson, C A; Green, D E

    1976-01-01

    Classical uncouplers such as 2,4-dinitrophenol have been shown to be ionophores with the capability for transporting monovalent or divalent cations with equal efficiency. The conditions appropriate for the maximal expression of this ionophoric capability have been explored. Two critical factors are the polarity of the organic phase and the pH of the aqueous phase that is equilibrated with the organic phase. The demonstrated cationic ionophoric capability of uncouplers, taken in conjunction with the known ability of uncouplers to cycle protons across a membrane phase, provides the experimental basis for the thesis that uncoupling of electron flow from ATP synthesis via classical uncouplers involves the substitution of one coupled process by another. Uncoupling thus reduces to the replacement of one driven reaction (ATP synthesis) by the driven reaction (cyclical transport) mediated by the uncoupler. PMID:9641

  11. Oxyntomodulin regulates resetting of the liver circadian clock by food.

    PubMed

    Landgraf, Dominic; Tsang, Anthony H; Leliavski, Alexei; Koch, Christiane E; Barclay, Johanna L; Drucker, Daniel J; Oster, Henrik

    2015-01-01

    Circadian clocks coordinate 24-hr rhythms of behavior and physiology. In mammals, a master clock residing in the suprachiasmatic nucleus (SCN) is reset by the light-dark cycle, while timed food intake is a potent synchronizer of peripheral clocks such as the liver. Alterations in food intake rhythms can uncouple peripheral clocks from the SCN, resulting in internal desynchrony, which promotes obesity and metabolic disorders. Pancreas-derived hormones such as insulin and glucagon have been implicated in signaling mealtime to peripheral clocks. In this study, we identify a novel, more direct pathway of food-driven liver clock resetting involving oxyntomodulin (OXM). In mice, food intake stimulates OXM secretion from the gut, which resets liver transcription rhythms via induction of the core clock genes Per1 and 2. Inhibition of OXM signaling blocks food-mediated resetting of hepatocyte clocks. These data reveal a direct link between gastric filling with food and circadian rhythm phasing in metabolic tissues. PMID:25821984

  12. Biophotonics: Circadian photonics

    NASA Astrophysics Data System (ADS)

    Rea, Mark S.

    2011-05-01

    A growing body of medical evidence suggests that disrupting the body's biological clock can have adverse effects on health. Researchers are now creating the photonic tools to monitor, predict and influence the circadian rhythm.

  13. Nuclear receptors linking circadian rhythms and cardiometabolic control

    PubMed Central

    Duez, Hélène; Staels, Bart

    2010-01-01

    Many behavioral and physiological processes, including locomotor activity, blood pressure, body temperature, sleep(fasting)/wake(feeding) cycles as well as metabolic regulation display diurnal rhythms. The biological clock ensures proper metabolic alignment of energy substrate availability and processing. Studies in animals and humans highlight a strong link between circadian disorders and altered metabolic responses and cardiovascular events. Shiftwork, for instance, increases the risk to develop metabolic abnormalities resembling the Metabolic Syndrome. Nuclear receptors have long been known as metabolic regulators. Several of them (ie. Rev-erbα, RORα, PPARs) are subjected to circadian variations and are integral components of the molecular clock machinery. In turn, these nuclear receptors regulate downstream target genes in a circadian manner, acting to properly gate metabolic events to the appropriate circadian time window. PMID:20631353

  14. Physiology of circadian entrainment.

    PubMed

    Golombek, Diego A; Rosenstein, Ruth E

    2010-07-01

    Mammalian circadian rhythms are controlled by endogenous biological oscillators, including a master clock located in the hypothalamic suprachiasmatic nuclei (SCN). Since the period of this oscillation is of approximately 24 h, to keep synchrony with the environment, circadian rhythms need to be entrained daily by means of Zeitgeber ("time giver") signals, such as the light-dark cycle. Recent advances in the neurophysiology and molecular biology of circadian rhythmicity allow a better understanding of synchronization. In this review we cover several aspects of the mechanisms for photic entrainment of mammalian circadian rhythms, including retinal sensitivity to light by means of novel photopigments as well as circadian variations in the retina that contribute to the regulation of retinal physiology. Downstream from the retina, we examine retinohypothalamic communication through neurotransmitter (glutamate, aspartate, pituitary adenylate cyclase-activating polypeptide) interaction with SCN receptors and the resulting signal transduction pathways in suprachiasmatic neurons, as well as putative neuron-glia interactions. Finally, we describe and analyze clock gene expression and its importance in entrainment mechanisms, as well as circadian disorders or retinal diseases related to entrainment deficits, including experimental and clinical treatments. PMID:20664079

  15. Circadian clocks and breast cancer.

    PubMed

    Blakeman, Victoria; Williams, Jack L; Meng, Qing-Jun; Streuli, Charles H

    2016-01-01

    Circadian clocks respond to environmental time cues to coordinate 24-hour oscillations in almost every tissue of the body. In the breast, circadian clocks regulate the rhythmic expression of numerous genes. Disrupted expression of circadian genes can alter breast biology and may promote cancer. Here we overview circadian mechanisms, and the connection between the molecular clock and breast biology. We describe how disruption of circadian genes contributes to cancer via multiple mechanisms, and link this to increased tumour risk in women who work irregular shift patterns. Understanding the influence of circadian rhythms on breast cancer could lead to more efficacious therapies, reformed public health policy and improved patient outcome. PMID:27590298

  16. Trifluoromethanesulfonamide anthelmintics. Protonophoric uncouplers of oxidative phosphorylation.

    PubMed

    McCracken, R O; Carr, A W; Stillwell, W H; Lipkowitz, K B; Boisvenue, R; O'Doherty, G O; Wickiser, D I

    1993-05-01

    A series of trifluoromethanesulfonamides (TFMS) was synthesized and tested for uncoupling activity in rat liver mitochondria. With succinate as the mitochondrial substrate, and the respiratory control index (RCI) as an indicator of their uncoupling ability, we found that all of the TFMS tested were uncouplers of oxidative phosphorylation; the effective concentration (RCI I50) ranged from less than 1 microM to greater than 1000 microM. Correlation techniques were used to assess the strength of the relationship between the ability of a TFMS to uncouple oxidative phosphorylation and its ability to lower the electrical resistance of planar bimolecular lipid membranes. There was a highly significant (P < 0.001) positive linear relationship (r = 0.97) between the ability of a TFMS to uncouple oxidative phosphorylation and its ability to lower electrical resistance. These findings are consistent with the view that the TFMS are lipophilic protonophoric uncouplers of mitochondrial oxidative phosphorylation. Quantitative structure-activity relationship studies using experiment and semiempirical molecular orbital theory revealed that the hydrophobicity of a TFMS and its molecular dipole moment were the principal determinants of mitochondrial uncoupling activity within the pKa range examined. PMID:8388210

  17. Rhythmicity of the intestinal microbiota is regulated by gender and the host circadian clock

    PubMed Central

    Liang, Xue; Bushman, Frederic D.; FitzGerald, Garret A.

    2015-01-01

    In mammals, multiple physiological, metabolic, and behavioral processes are subject to circadian rhythms, adapting to changing light in the environment. Here we analyzed circadian rhythms in the fecal microbiota of mice using deep sequencing, and found that the absolute amount of fecal bacteria and the abundance of Bacteroidetes exhibited circadian rhythmicity, which was more pronounced in female mice. Disruption of the host circadian clock by deletion of Bmal1, a gene encoding a core molecular clock component, abolished rhythmicity in the fecal microbiota composition in both genders. Bmal1 deletion also induced alterations in bacterial abundances in feces, with differential effects based on sex. Thus, although host behavior, such as time of feeding, is of recognized importance, here we show that sex interacts with the host circadian clock, and they collectively shape the circadian rhythmicity and composition of the fecal microbiota in mice. PMID:26240359

  18. Circadian Rhythms in Cyanobacteria.

    PubMed

    Cohen, Susan E; Golden, Susan S

    2015-12-01

    Life on earth is subject to daily and predictable fluctuations in light intensity, temperature, and humidity created by rotation of the earth. Circadian rhythms, generated by a circadian clock, control temporal programs of cellular physiology to facilitate adaptation to daily environmental changes. Circadian rhythms are nearly ubiquitous and are found in both prokaryotic and eukaryotic organisms. Here we introduce the molecular mechanism of the circadian clock in the model cyanobacterium Synechococcus elongatus PCC 7942. We review the current understanding of the cyanobacterial clock, emphasizing recent work that has generated a more comprehensive understanding of how the circadian oscillator becomes synchronized with the external environment and how information from the oscillator is transmitted to generate rhythms of biological activity. These results have changed how we think about the clock, shifting away from a linear model to one in which the clock is viewed as an interactive network of multifunctional components that are integrated into the context of the cell in order to pace and reset the oscillator. We conclude with a discussion of how this basic timekeeping mechanism differs in other cyanobacterial species and how information gleaned from work in cyanobacteria can be translated to understanding rhythmic phenomena in other prokaryotic systems. PMID:26335718

  19. Socially synchronized circadian oscillators

    PubMed Central

    Bloch, Guy; Herzog, Erik D.; Levine, Joel D.; Schwartz, William J.

    2013-01-01

    Daily rhythms of physiology and behaviour are governed by an endogenous timekeeping mechanism (a circadian ‘clock’). The alternation of environmental light and darkness synchronizes (entrains) these rhythms to the natural day–night cycle, and underlying mechanisms have been investigated using singly housed animals in the laboratory. But, most species ordinarily would not live out their lives in such seclusion; in their natural habitats, they interact with other individuals, and some live in colonies with highly developed social structures requiring temporal synchronization. Social cues may thus be critical to the adaptive function of the circadian system, but elucidating their role and the responsible mechanisms has proven elusive. Here, we highlight three model systems that are now being applied to understanding the biology of socially synchronized circadian oscillators: the fruitfly, with its powerful array of molecular genetic tools; the honeybee, with its complex natural society and clear division of labour; and, at a different level of biological organization, the rodent suprachiasmatic nucleus, site of the brain's circadian clock, with its network of mutually coupled single-cell oscillators. Analyses at the ‘group’ level of circadian organization will likely generate a more complex, but ultimately more comprehensive, view of clocks and rhythms and their contribution to fitness in nature. PMID:23825203

  20. Circadian Rhythm Sleep Disorders

    PubMed Central

    Kim, Min Ju; Lee, Jung Hie; Duffy, Jeanne F.

    2014-01-01

    Objective To review circadian rhythm sleep disorders, including underlying causes, diagnostic considerations, and typical treatments. Methods Literature review and discussion of specific cases. Results Survey studies 1,2 suggest that up to 3% of the adult population suffers from a circadian rhythm sleep disorder (CRSD). However, these sleep disorders are often confused with insomnia, and an estimated 10% of adult and 16% of adolescent sleep disorders patients may have a CRSD 3-6. While some CRSD (such as jet lag) can be self-limiting, others when untreated can lead to adverse medical, psychological, and social consequences. The International Classification of Sleep Disorders classifies CRSD as dyssomnias, with six subtypes: Advanced Sleep Phase Type, Delayed Sleep Phase Type, Irregular Sleep Wake Type, Free Running Type, Jet Lag Type, and Shift Work Type. The primary clinical characteristic of all CRSD is an inability to fall asleep and wake at the desired time. It is believed that CRSD arise from a problem with the internal biological clock (circadian timing system) and/or misalignment between the circadian timing system and the external 24-hour environment. This misalignment can be the result of biological and/or behavioral factors. CRSD can be confused with other sleep or medical disorders. Conclusions Circadian rhythm sleep disorders are a distinct class of sleep disorders characterized by a mismatch between the desired timing of sleep and the ability to fall asleep and remain asleep. If untreated, CRSD can lead to insomnia and excessive daytime sleepiness, with negative medical, psychological, and social consequences. It is important for physicians to recognize potential circadian rhythm sleep disorders so that appropriate diagnosis, treatment, and referral can be made. PMID:25368503

  1. Circadian Disruption in Psychiatric Disorders.

    PubMed

    Jones, Stephanie G; Benca, Ruth M

    2015-12-01

    Evidence suggests that abnormalities in circadian rhythms might prove causally or pathophysiologically significant in psychiatric illness. The circadian regulation of hormonal and behavioral timekeeping processes is often altered in patients with major depression, bipolar disorder, and schizophrenia, and a susceptibility to rhythm instability may contribute to the functional impairment. For some patients, interventions that stabilize or resynchronize circadian rhythms prove therapeutically effective. Circadian disruption in the clinical profiles of most psychiatric illnesses and the treatment efficacy of chronobiological interventions suggest that attention to circadian phenotypes in a range of psychiatric disorders may help to uncover shared pathophysiologic mechanisms. PMID:26568124

  2. Circadian Clocks, Stress, and Immunity

    PubMed Central

    Dumbell, Rebecca; Matveeva, Olga; Oster, Henrik

    2016-01-01

    In mammals, molecular circadian clocks are present in most cells of the body, and this circadian network plays an important role in synchronizing physiological processes and behaviors to the appropriate time of day. The hypothalamic–pituitary–adrenal endocrine axis regulates the response to acute and chronic stress, acting through its final effectors – glucocorticoids – released from the adrenal cortex. Glucocorticoid secretion, characterized by its circadian rhythm, has an important role in synchronizing peripheral clocks and rhythms downstream of the master circadian pacemaker in the suprachiasmatic nucleus. Finally, glucocorticoids are powerfully anti-inflammatory, and recent work has implicated the circadian clock in various aspects and cells of the immune system, suggesting a tight interplay of stress and circadian systems in the regulation of immunity. This mini-review summarizes our current understanding of the role of the circadian clock network in both the HPA axis and the immune system, and discusses their interactions. PMID:27199894

  3. Mitochondrial uncouplers inhibit hepatic stellate cell activation

    PubMed Central

    2012-01-01

    Background Mitochondrial dysfunction participates in the progression of several pathologies. Although there is increasing evidence for a mitochondrial role in liver disease, little is known about its contribution to hepatic stellate cell (HSC) activation. In this study we investigated the role of mitochondrial activity through mild uncoupling during in vitro activation of HSCs. Methods Cultured primary human and mouse HSCs were treated with the chemical uncouplers FCCP and Valinomycin. ATP levels were measured by luciferase assay and production of reactive oxygen species was determined using the fluorescent probe DCFH-DA. Possible cytotoxicity by uncoupler treatment was evaluated by caspase 3/7 activity and cytoplasmic protease leakage. Activation of HSCs and their response to the pro-fibrogenic cytokine TGF-β was evaluated by gene expression of activation markers and signal mediators using RT-qPCR. Proliferation was measured by incorporation of EdU and protein expression of α-smooth muscle actin was analyzed by immunocytochemistry and western blot. Results FCCP and Valinomycin treatment mildly decreased ATP and reactive oxygen species levels. Both uncouplers increased the expression of mitochondrial genes such as Tfam and COXIV while inducing morphological features of quiescent mouse HSCs and abrogating TGF-β signal transduction. Mild uncoupling reduced HSC proliferation and expression of pro-fibrogenic markers of mouse and human HSCs. Conclusions Mild mitochondrial uncoupling inhibits culture-induced HSC activation and their response to pro-fibrogenic cytokines like TGF-β. These results therefore suggest mitochondrial uncoupling of HSCs as a strategy to reduce progression of liver fibrosis. PMID:22686625

  4. Biological Clocks & Circadian Rhythms

    ERIC Educational Resources Information Center

    Robertson, Laura; Jones, M. Gail

    2009-01-01

    The study of biological clocks and circadian rhythms is an excellent way to address the inquiry strand in the National Science Education Standards (NSES) (NRC 1996). Students can study these everyday phenomena by designing experiments, gathering and analyzing data, and generating new experiments. As students explore biological clocks and circadian…

  5. The systemic control of circadian gene expression.

    PubMed

    Gerber, A; Saini, C; Curie, T; Emmenegger, Y; Rando, G; Gosselin, P; Gotic, I; Gos, P; Franken, P; Schibler, U

    2015-09-01

    The mammalian circadian timing system consists of a central pacemaker in the brain's suprachiasmatic nucleus (SCN) and subsidiary oscillators in nearly all body cells. The SCN clock, which is adjusted to geophysical time by the photoperiod, synchronizes peripheral clocks through a wide variety of systemic cues. The latter include signals depending on feeding cycles, glucocorticoid hormones, rhythmic blood-borne signals eliciting daily changes in actin dynamics and serum response factor (SRF) activity, and sensors of body temperature rhythms, such as heat shock transcription factors and the cold-inducible RNA-binding protein CIRP. To study these systemic signalling pathways, we designed and engineered a novel, highly photosensitive apparatus, dubbed RT-Biolumicorder. This device enables us to record circadian luciferase reporter gene expression in the liver and other organs of freely moving mice over months in real time. Owing to the multitude of systemic signalling pathway involved in the phase resetting of peripheral clocks the disruption of any particular one has only minor effects on the steady state phase of circadian gene expression in organs such as the liver. Nonetheless, the implication of specific pathways in the synchronization of clock gene expression can readily be assessed by monitoring the phase-shifting kinetics using the RT-Biolumicorder. PMID:26332965

  6. Circadian Clock Control of Endocrine Factors

    PubMed Central

    Gamble, Karen L.; Berry, Ryan; Frank, Stuart J.; Young, Martin E.

    2015-01-01

    Organisms experience dramatic fluctuations in demands/stresses over the course of the day. In order to maintain biological processes within physiologic boundaries, it is imperative that mechanisms have evolved for anticipation of, and adaptation to, these daily fluctuations. Endocrine factors undoubtedly play an integral role in homeostasis. Not only do circulating levels of various endocrine factors oscillate over the 24 period, but so too does responsiveness of target tissues to these signals/stimuli. Emerging evidence suggests that these daily oscillations do not occur solely in response to behavioral fluctuations associated with sleep/wake and feeding/fasting cycles, but are orchestrated in part by an intrinsic timekeeping mechanism known as the circadian clock. Disruption of circadian clocks, through genetic and/or environmental means, appears to precipitate numerous common disorders, including cardiometabolic diseases and cancer. Collectively, these observations, which are reviewed within the current article, have led to suggestion that strategies designed to realign normal circadian rhythmicities hold a therapeutic potential for the treatment of various endocrine-related disorders. PMID:24863387

  7. Circadian clocks and cell division

    PubMed Central

    2010-01-01

    Evolution has selected a system of two intertwined cell cycles: the cell division cycle (CDC) and the daily (circadian) biological clock. The circadian clock keeps track of solar time and programs biological processes to occur at environmentally appropriate times. One of these processes is the CDC, which is often gated by the circadian clock. The intermeshing of these two cell cycles is probably responsible for the observation that disruption of the circadian system enhances susceptibility to some kinds of cancer. The core mechanism underlying the circadian clockwork has been thought to be a transcription and translation feedback loop (TTFL), but recent evidence from studies with cyanobacteria, synthetic oscillators and immortalized cell lines suggests that the core circadian pacemaking mechanism that gates cell division in mammalian cells could be a post-translational oscillator (PTO). PMID:20890114

  8. A mitochondrial uncoupling artifact can be caused by expression of uncoupling protein 1 in yeast.

    PubMed Central

    Stuart, J A; Harper, J A; Brindle, K M; Jekabsons, M B; Brand, M D

    2001-01-01

    Uncoupling protein 1 (UCP1) from mouse was expressed in yeast and the specific (GDP-inhibitable) and artifactual (GDP-insensitive) effects on mitochondrial uncoupling were assessed. UCP1 provides a GDP-inhibitable model system to help interpret the uncoupling effects of high expression in yeast of other members of the mitochondrial carrier protein family, such as the UCP1 homologues UCP2 and UCP3. Yeast expressing UCP1 at modest levels (approx. 1 microg/mg of mitochondrial protein) showed no growth defect, normal rates of chemically uncoupled respiration and an increased non-phosphorylating proton conductance that was completely GDP-sensitive. The catalytic-centre activity of UCP1 in these yeast mitochondria was similar to that in mammalian brown-adipose-tissue mitochondria. However, yeast expressing UCP1 at higher levels (approx. 11 microg/mg of mitochondrial protein) showed a growth defect. Their mitochondria had depressed chemically uncoupled respiration rates and an increased proton conductance that was partly GDP-insensitive. Thus, although UCP1 shows native behaviour at modest levels of expression in yeast, higher levels (or rates) of expression can lead to an uncoupling that is not a physiological property of the native protein and is therefore artifactual. This observation might be important in the interpretation of results from experiments in which the functions of UCP1 homologues are verified by their ability to uncouple yeast mitochondria. PMID:11389685

  9. Role of Uncoupling Proteins in Cancer

    PubMed Central

    Valle, Adamo; Oliver, Jordi; Roca, Pilar

    2010-01-01

    Uncoupling proteins (UCPs) are a family of inner mitochondrial membrane proteins whose function is to allow the re-entry of protons to the mitochondrial matrix, by dissipating the proton gradient and, subsequently, decreasing membrane potential and production of reactive oxygen species (ROS). Due to their pivotal role in the intersection between energy efficiency and oxidative stress, UCPs are being investigated for a potential role in cancer. In this review we compile the latest evidence showing a link between uncoupling and the carcinogenic process, paying special attention to their involvement in cancer initiation, progression and drug chemoresistance. PMID:24281083

  10. Inositols affect the mating circadian rhythm of Drosophila melanogaster

    PubMed Central

    Sakata, Kazuki; Kawasaki, Haruhisa; Suzuki, Takahiro; Ito, Kumpei; Negishi, Osamu; Tsuno, Takuo; Tsuno, Hiromi; Yamazaki, Youta; Ishida, Norio

    2015-01-01

    Accumulating evidence indicates that the molecular circadian clock underlies the mating behavior of Drosophila melanogaster. However, information about which food components affect circadian mating behavior is scant. The ice plant, Mesembryanthemum crystallinum has recently become a popular functional food. Here, we showed that the close-proximity (CP) rhythm of D. melanogaster courtship behavior was damped under low-nutrient conditions, but significantly enhanced by feeding the flies with powdered ice plant. Among various components of ice plants, we found that myo-inositol increased the amplitude and slightly shortened the period of the CP rhythm. Real-time reporter assays showed that myo-inositol and D-pinitol shortened the period of the circadian reporter gene Per2-luc in NIH 3T3 cells. These data suggest that the ice plant is a useful functional food and that the ability of inositols to shorten rhythms is a general phenomenon in insects as well as mammals. PMID:26097456

  11. Aging signaling pathways and circadian clock-dependent metabolic derangements

    PubMed Central

    Tevy, Maria Florencia; Giebultowicz, Jadwiga; Pincus, Zachary; Mazzoccoli, Gianluigi; Vinciguerra, Manlio

    2013-01-01

    The circadian clock machinery orchestrates organism metabolism in order to ensure that development, survival and reproduction are attuned to diurnal environmental variations. For unknown reasons, there is a decline in circadian rhythms with age, concomitant with declines in the overall metabolic tissues homeostasis and changes in the feeding behavior of aged organisms. This disruption of the relationship between the clock and the nutrient sensing networks might underlie age-related diseases; overall, greater knowledge of the molecular mediators of and variations in clock networks during lifespan may shed light on the aging process and how it may be delayed. In this review we address the complex links between the circadian clock, metabolic (dys)functions and aging in different model organisms. PMID:23299029

  12. Circadian Regulation of Synaptic Plasticity.

    PubMed

    Frank, Marcos G

    2016-01-01

    Circadian rhythms refer to oscillations in biological processes with a period of approximately 24 h. In addition to the sleep/wake cycle, there are circadian rhythms in metabolism, body temperature, hormone output, organ function and gene expression. There is also evidence of circadian rhythms in synaptic plasticity, in some cases driven by a master central clock and in other cases by peripheral clocks. In this article, I review the evidence for circadian influences on synaptic plasticity. I also discuss ways to disentangle the effects of brain state and rhythms on synaptic plasticity. PMID:27420105

  13. Sleep and circadian rhythms

    NASA Technical Reports Server (NTRS)

    Monk, Timothy H.

    1991-01-01

    Three interacting processes are involved in the preservation of circadian rhythms: (1) endogenous rhythm generation mechanisms, (2) entrainment mechanisms to keep these rhythms 'on track', and (3) exogenous masking processes stemming from changes in environment and bahavior. These processes, particularly the latter two, can be dramatically affected in individuals of advanced age and in space travelers, with a consequent disruption in sleep and daytime functioning. This paper presents results of a phase-shift experiment investigating the age-related effects of the exogeneous component of circadian rhythms in various physiological and psychological functions by comparing these functions in middle aged and old subjects. Dramatic differences were found between the two age groups in measures of sleep, mood, activation, and performance efficiency.

  14. Postoperative circadian disturbances.

    PubMed

    Gögenur, Ismail

    2010-12-01

    An increasing number of studies have shown that circadian variation in the excretion of hormones, the sleep wake circle, the core body temperature rhythm, the tone of the autonomic nervous system and the activity rhythm are important both in health and in disease processes. An increasing attention has also been directed towards the circadian variation in endogenous rhythms in relation to surgery. The attention has been directed to the question whether the circadian variation in endogenous rhythms can affect postoperative recovery, morbidity and mortality. Based on the lack of studies where these endogenous rhythms have been investigated in relation to surgery we performed a series of studies exploring different endogenous rhythms and factors affecting these rhythms. We also wanted to examine whether the disturbances in the postoperative circadian rhythms could be correlated to postoperative recovery parameters, and if pharmacological administration of chronobiotics could improve postoperative recovery. Circadian rhythm disturbances were found in all the examined endogenous rhythms. A delay was found in the endogenous rhythm of plasma melatonin and excretion of the metabolite of melatonin (AMT6s) in urine the first night after both minor and major surgery. This delay after major surgery was correlated to the duration of surgery. The amplitude in the melatonin rhythm was unchanged the first night but increased in the second night after major surgery. The amplitude in AMT6s was reduced the first night after minimally invasive surgery. The core body temperature rhythm was disturbed after both major and minor surgery. There was a change in the sleep wake cycle with a significantly increased duration of REM-sleep in the day and evening time after major surgery compared with preoperatively. There was also a shift in the autonomic nervous balance after major surgery with a significantly increased number of myocardial ischaemic episodes during the nighttime period. The

  15. Natural selection against a circadian clock gene mutation in mice

    PubMed Central

    Spoelstra, Kamiel; Wikelski, Martin; Daan, Serge; Loudon, Andrew S. I.; Hau, Michaela

    2016-01-01

    Circadian rhythms with an endogenous period close to or equal to the natural light–dark cycle are considered evolutionarily adaptive (“circadian resonance hypothesis”). Despite remarkable insight into the molecular mechanisms driving circadian cycles, this hypothesis has not been tested under natural conditions for any eukaryotic organism. We tested this hypothesis in mice bearing a short-period mutation in the enzyme casein kinase 1ε (tau mutation), which accelerates free-running circadian cycles. We compared daily activity (feeding) rhythms, survivorship, and reproduction in six replicate populations in outdoor experimental enclosures, established with wild-type, heterozygous, and homozygous mice in a Mendelian ratio. In the release cohort, survival was reduced in the homozygote mutant mice, revealing strong selection against short-period genotypes. Over the course of 14 mo, the relative frequency of the tau allele dropped from initial parity to 20%. Adult survival and recruitment of juveniles into the population contributed approximately equally to the selection for wild-type alleles. The expression of activity during daytime varied throughout the experiment and was significantly increased by the tau mutation. The strong selection against the short-period tau allele observed here contrasts with earlier studies showing absence of selection against a Period 2 (Per2) mutation, which disrupts internal clock function, but does not change period length. These findings are consistent with, and predicted by the theory that resonance of the circadian system plays an important role in individual fitness. PMID:26715747

  16. Natural selection against a circadian clock gene mutation in mice.

    PubMed

    Spoelstra, Kamiel; Wikelski, Martin; Daan, Serge; Loudon, Andrew S I; Hau, Michaela

    2016-01-19

    Circadian rhythms with an endogenous period close to or equal to the natural light-dark cycle are considered evolutionarily adaptive ("circadian resonance hypothesis"). Despite remarkable insight into the molecular mechanisms driving circadian cycles, this hypothesis has not been tested under natural conditions for any eukaryotic organism. We tested this hypothesis in mice bearing a short-period mutation in the enzyme casein kinase 1ε (tau mutation), which accelerates free-running circadian cycles. We compared daily activity (feeding) rhythms, survivorship, and reproduction in six replicate populations in outdoor experimental enclosures, established with wild-type, heterozygous, and homozygous mice in a Mendelian ratio. In the release cohort, survival was reduced in the homozygote mutant mice, revealing strong selection against short-period genotypes. Over the course of 14 mo, the relative frequency of the tau allele dropped from initial parity to 20%. Adult survival and recruitment of juveniles into the population contributed approximately equally to the selection for wild-type alleles. The expression of activity during daytime varied throughout the experiment and was significantly increased by the tau mutation. The strong selection against the short-period tau allele observed here contrasts with earlier studies showing absence of selection against a Period 2 (Per2) mutation, which disrupts internal clock function, but does not change period length. These findings are consistent with, and predicted by the theory that resonance of the circadian system plays an important role in individual fitness. PMID:26715747

  17. Metabolism as an Integral Cog in the Mammalian Circadian Clockwork

    PubMed Central

    Gamble, Karen L.; Young, Martin E.

    2013-01-01

    Circadian rhythms are an integral part of life. These rhythms are apparent in virtually all biological processes studies to date, ranging from the individual cell (e.g., DNA synthesis) to the whole organism (e.g., behaviors such as physical activity). Oscillations in metabolism have been characterized extensively in various organisms, including mammals. These metabolic rhythms often parallel behaviors such as sleep/wake and fasting/feeding cycles that occur on a daily basis. What has become increasingly clear over the past several decades is that many metabolic oscillations are driven by cell autonomous circadian clocks, which orchestrate metabolic processes in a temporally appropriate manner. During the process of identifying the mechanisms by which clocks influence metabolism, molecular-based studies have revealed that metabolism should be considered an integral circadian clock component. The implications of such an interrelationship include the establishment of a vicious cycle during cardiometabolic disease states, wherein metabolism-induced perturbations in the circadian clock exacerbate metabolic dysfunction. The purpose of this review is therefore to highlight recent insights gained regarding links between cell autonomous circadian clocks and metabolism, and the implications of clock dysfunction in the pathogenesis of cardiometabolic diseases. PMID:23594144

  18. Emerging Models for the Molecular Basis of Mammalian Circadian Timing

    PubMed Central

    2015-01-01

    Mammalian circadian timekeeping arises from a transcription-based feedback loop driven by a set of dedicated clock proteins. At its core, the heterodimeric transcription factor CLOCK:BMAL1 activates expression of Period, Cryptochrome, and Rev-Erb genes, which feed back to repress transcription and create oscillations in gene expression that confer circadian timing cues to cellular processes. The formation of different clock protein complexes throughout this transcriptional cycle helps to establish the intrinsic ∼24 h periodicity of the clock; however, current models of circadian timekeeping lack the explanatory power to fully describe this process. Recent studies confirm the presence of at least three distinct regulatory complexes: a transcriptionally active state comprising the CLOCK:BMAL1 heterodimer with its coactivator CBP/p300, an early repressive state containing PER:CRY complexes, and a late repressive state marked by a poised but inactive, DNA-bound CLOCK:BMAL1:CRY1 complex. In this review, we analyze high-resolution structures of core circadian transcriptional regulators and integrate biochemical data to suggest how remodeling of clock protein complexes may be achieved throughout the 24 h cycle. Defining these detailed mechanisms will provide a foundation for understanding the molecular basis of circadian timing and help to establish new platforms for the discovery of therapeutics to manipulate the clock. PMID:25303119

  19. 30 CFR 56.14215 - Coupling or uncoupling cars.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Coupling or uncoupling cars. 56.14215 Section... Equipment Safety Practices and Operational Procedures § 56.14215 Coupling or uncoupling cars. Prior to coupling or uncoupling cars manually, trains shall be brought to a complete stop, and then moved at...

  20. 30 CFR 56.14215 - Coupling or uncoupling cars.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Coupling or uncoupling cars. 56.14215 Section... Equipment Safety Practices and Operational Procedures § 56.14215 Coupling or uncoupling cars. Prior to coupling or uncoupling cars manually, trains shall be brought to a complete stop, and then moved at...

  1. 30 CFR 56.14215 - Coupling or uncoupling cars.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Coupling or uncoupling cars. 56.14215 Section... Equipment Safety Practices and Operational Procedures § 56.14215 Coupling or uncoupling cars. Prior to coupling or uncoupling cars manually, trains shall be brought to a complete stop, and then moved at...

  2. 30 CFR 56.14215 - Coupling or uncoupling cars.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Coupling or uncoupling cars. 56.14215 Section... Equipment Safety Practices and Operational Procedures § 56.14215 Coupling or uncoupling cars. Prior to coupling or uncoupling cars manually, trains shall be brought to a complete stop, and then moved at...

  3. 49 CFR 215.125 - Defective uncoupling device.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Defective uncoupling device. 215.125 Section 215... System § 215.125 Defective uncoupling device. A railroad may not place or continue in service a car, if the car has an uncoupling device without sufficient vertical and lateral clearance to prevent—...

  4. 30 CFR 56.14215 - Coupling or uncoupling cars.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Coupling or uncoupling cars. 56.14215 Section... Equipment Safety Practices and Operational Procedures § 56.14215 Coupling or uncoupling cars. Prior to coupling or uncoupling cars manually, trains shall be brought to a complete stop, and then moved at...

  5. Mitochondrial uncoupling proteins in mammals and plants.

    PubMed

    Borecký, J; Maia, I G; Arruda, P

    2001-04-01

    Uncoupling proteins (UCPs) belong to a distinct cluster of the mitochondrial anion carrier family. Up to five different uncoupling protein types were found in mitochondria of mammals and plants, and recently in fishes, fungi and protozoa. They exhibit a significantly conserved structure with several motifs specific to either the whole cluster or protein type. Uncoupling proteins, as well as the whole mitochondrial anion carrier gene family, probably emerged in evolution before the separation of animal, fungi, and plant kingdoms and originate from an anion/nucleotide or anion/anion transporter ancestor. Mammalian UCP1, UCP2, UCP3, and plant uncoupling proteins pUCP1 and pUCP2 are similar and seem to form one subgroup, whereas UCP4 and BMCP1 belong to a different group. Molecular, biochemical, and phylogenic data suggest that UCP2 could be considered as an UCP-prototype. UCP1 plays its biological role mainly in the non-shivering thermogenesis while the role of the other types is unknown. However, hypotheses have suggested that they are involved in the general balance of basic energy expenditure, protection from reactive oxygen species, and, in plants, in fruit ripening and seed ontogeny. PMID:11725869

  6. Circadian rhythms of temperature and activity in obese and lean Zucker rats

    NASA Technical Reports Server (NTRS)

    Murakami, D. M.; Horwitz, B. A.; Fuller, C. A.

    1995-01-01

    The circadian timing system is important in the regulation of feeding and metabolism, both of which are aberrant in the obese Zucker rat. This study tested the hypothesis that these abnormalities involve a deficit in circadian regulation by examining the circadian rhythms of body temperature and activity in lean and obese Zucker rats exposed to normal light-dark cycles, constant light, and constant dark. Significant deficits in both daily mean and circadian amplitude of temperature and activity were found in obese Zucker female rats relative to lean controls in all lighting conditions. However, the circadian period of obese Zucker rats did not exhibit differences relative to lean controls in either of the constant lighting conditions. These results indicate that although the circadian regulation of temperature and activity in obese Zucker female rats is in fact depressed, obese rats do exhibit normal entrainment and pacemaker functions in the circadian timing system. The results suggest a deficit in the process that generates the amplitude of the circadian rhythm.

  7. A novel circadianly expressed Drosophila melanogaster gene dependent on the period gene for its rhythmic expression.

    PubMed Central

    Van Gelder, R N; Krasnow, M A

    1996-01-01

    The Drosophila melanogaster period (per) gene is required for expression of endogenous circadian rhythms of locomotion and eclosion. per mRNA is expressed with a circadian rhythm that is dependent on Per protein; this feedback loop has been proposed to be essential to the central circadian pacemaker. This model would suggest the Per protein also controls the circadian expression of other genetic loci to generate circadian behavior and physiology. In this paper we describe Dreg-5, a gene whose mRNA is expressed in fly heads with a circadian rhythm nearly identical to that of the per gene. Dreg-5 mRNA continues to cycle in phase with that of per mRNA in conditions of total darkness and also when the daily feeding time is altered. Like per mRNA, Dreg-5 mRNA is not expressed rhythmically in per null mutant flies. Dreg-5 encodes a novel 298 residue protein and Dreg-5 protein isoforms also oscillate in abundance with a circadian rhythm. The phase of Dreg-5 protein oscillation, however, is different from that of Per protein expression, suggesting that Dreg-5 and per have common translational but different post-translational control mechanisms. These results demonstrate that the per gene is capable of modulating the rhythmic expression of other genes; this activity may form the basis of the output of circadian rhythmicity in Drosophila. Images PMID:8612586

  8. Circadian gene variants in cancer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Humans as diurnal beings are active during the day and rest at night. This daily oscillation of behavior and physiology is driven by an endogenous circadian clock not environmental cues. In modern societies, changes in lifestyle have led to a frequent disruption of the endogenous circadian homeostas...

  9. Circadian Disorganization Alters Intestinal Microbiota

    PubMed Central

    Voigt, Robin M.; Forsyth, Christopher B.; Green, Stefan J.; Mutlu, Ece; Engen, Phillip; Vitaterna, Martha H.; Turek, Fred W.; Keshavarzian, Ali

    2014-01-01

    Intestinal dysbiosis and circadian rhythm disruption are associated with similar diseases including obesity, metabolic syndrome, and inflammatory bowel disease. Despite the overlap, the potential relationship between circadian disorganization and dysbiosis is unknown; thus, in the present study, a model of chronic circadian disruption was used to determine the impact on the intestinal microbiome. Male C57BL/6J mice underwent once weekly phase reversals of the light:dark cycle (i.e., circadian rhythm disrupted mice) to determine the impact of circadian rhythm disruption on the intestinal microbiome and were fed either standard chow or a high-fat, high-sugar diet to determine how diet influences circadian disruption-induced effects on the microbiome. Weekly phase reversals of the light:dark (LD) cycle did not alter the microbiome in mice fed standard chow; however, mice fed a high-fat, high-sugar diet in conjunction with phase shifts in the light:dark cycle had significantly altered microbiota. While it is yet to be established if some of the adverse effects associated with circadian disorganization in humans (e.g., shift workers, travelers moving across time zones, and in individuals with social jet lag) are mediated by dysbiosis, the current study demonstrates that circadian disorganization can impact the intestinal microbiota which may have implications for inflammatory diseases. PMID:24848969

  10. Circadian rhythms in the short-tailed shrew, Blarina brevicauda.

    PubMed

    Antipas, A J; Madison, D M; Ferraro, J S

    1990-08-01

    Circadian rhythms of wheel running and feeding were measured in the short-tailed shrew. Shrews were strongly nocturnal, and their activity rhythms entrained to both long-day (LD 16:8) and short-day (LD 6:18) photocycles. Under conditions of continuous light (LL) or darkness (DD), the activity rhythms free-ran with average periodicities of 25.1 hours and 24.1 hours, respectively. In LL the level of activity was depressed, and in some cases wheel running was completely inhibited. No significant sex differences were observed in the period or amplitude of the monitored circadian rhythms. All shrews fed throughout the day and night; however, unlike in previous reports, ultradian periods of feeding behavior were not found. The results are related to Aschoff's four observations for the effect of light on activity rhythms in nocturnal rodents. PMID:2255728

  11. Thermoregulatory uncoupling in heart muscle mitochondria: involvement of the ATP/ADP antiporter and uncoupling protein.

    PubMed

    Simonyan, R A; Skulachev, V P

    1998-09-25

    Possible involvement of the ATP/ADP antiporter and uncoupling protein (UCP) in thermoregulatory uncoupling of oxidative phosphorylation in heart muscle has been studied. To this end, effects of carboxyatractylate (cAtr) and GDP, specific inhibitors of the antiporter and UCP, on the membrane potential of the oligomycin-treated mitochondria from cold-exposed (6 degrees C, 48 h) and control rats have been measured. It is found that cAtr increases the membrane potential level in both cold-exposed and non-exposed groups, the effect being strongly enhanced by cooling. As for GDP, it is effective only in mitochondria from the cold-exposed rats. In these mitochondria, the coupling effect of GDP is smaller than that of cAtr. CDP, which does not interact with UCP, is without any influence on membrane potential. The cold exposure is found to increase the uncoupling efficiency of added natural (palmitate) or artificial (SF6847) uncouplers, the increase being cAtr- and GDP-sensitive in the case of palmitate. The fatty acid-free bovine serum albumin enhances delta psi in both cold-exposed and control groups, the effect being much larger in the former case. It is concluded that in heart muscle mitochondria the ATP/ADP antiporter is responsible for the 'mild uncoupling' under normal conditions and for major portion of the thermoregulatory uncoupling in the cold whereas the rest of thermoregulatory uncoupling is served by UCP (presumably by UCP2 since the UCP2 mRNA level is shown to strongly increase in rat heart muscle under the cold exposure conditions used). PMID:9771898

  12. Circadian gene variants in cancer

    PubMed Central

    Kettner, Nicole M.; Katchy, Chinenye A.; Fu, Loning

    2014-01-01

    Humans as diurnal beings are active during the day and rest at night. This daily oscillation of behavior and physiology is driven by an endogenous circadian clock not environmental cues. In modern societies, changes in lifestyle have led to a frequent disruption of the endogenous circadian homeostasis leading to increased risk of various diseases including cancer. The clock is operated by the feedback loops of circadian genes and controls daily physiology by coupling cell proliferation and metabolism, DNA damage repair, and apoptosis in peripheral tissues with physical activity, energy homeostasis, immune and neuroendocrine functions at the organismal level. Recent studies have revealed that defects in circadian genes due to targeted gene ablation in animal models or single nucleotide polymorphism, deletion, deregulation and/or epigenetic silencing in humans are closely associated with increased risk of cancer. In addition, disruption of circadian rhythm can disrupt the molecular clock in peripheral tissues in the absence of circadian gene mutations. Circadian disruption has recently been recognized as an independent cancer risk factor. Further study of the mechanism of clock-controlled tumor suppression will have a significant impact on human health by improving the efficiencies of cancer prevention and treatment. PMID:24901356

  13. Circadian rhythms, the molecular clock, and skeletal muscle.

    PubMed

    Harfmann, Brianna D; Schroder, Elizabeth A; Esser, Karyn A

    2015-04-01

    Circadian rhythms are the approximate 24-h biological cycles that function to prepare an organism for daily environmental changes. They are driven by the molecular clock, a transcriptional:translational feedback mechanism that in mammals involves the core clock genes Bmal1, Clock, Per1/2, and Cry1/2. The molecular clock is present in virtually all cells of an organism. The central clock in the suprachiasmatic nucleus (SCN) has been well studied, but the clocks in the peripheral tissues, such as heart and skeletal muscle, have just begun to be investigated. Skeletal muscle is one of the largest organs in the body, comprising approximately 45% of total body mass. More than 2300 genes in skeletal muscle are expressed in a circadian pattern, and these genes participate in a wide range of functions, including myogenesis, transcription, and metabolism. The circadian rhythms of skeletal muscle can be entrained both indirectly through light input to the SCN and directly through time of feeding and activity. It is critical for the skeletal muscle molecular clock not only to be entrained to the environment but also to be in synchrony with rhythms of other tissues. When circadian rhythms are disrupted, the observed effects on skeletal muscle include fiber-type shifts, altered sarcomeric structure, reduced mitochondrial respiration, and impaired muscle function. Furthermore, there are detrimental effects on metabolic health, including impaired glucose tolerance and insulin sensitivity, which skeletal muscle likely contributes to considering it is a key metabolic tissue. These data indicate a critical role for skeletal muscle circadian rhythms for both muscle and systems health. Future research is needed to determine the mechanisms of molecular clock function in skeletal muscle, identify the means by which skeletal muscle entrainment occurs, and provide a stringent comparison of circadian gene expression across the diverse tissue system of skeletal muscle. PMID:25512305

  14. A New Uncoupled Viscoplastic Constitutive Model

    NASA Technical Reports Server (NTRS)

    Bradley, W. L.; Yuen, S.

    1983-01-01

    A new uncoupled viscoplastic model has been proposed along with experiments and analysis to define the various material constraints. Distinguishing between rate sensitive and rate insensitive strain allows the rate sensitive strain to be modelled over a wide range of temperatures with very little variation in the stress component 'n'. Furthermore, it allows the rounded corners on stress-strain hysteresis loops to be achieved very naturally.

  15. Endocrine Effects of Circadian Disruption.

    PubMed

    Bedrosian, Tracy A; Fonken, Laura K; Nelson, Randy J

    2016-01-01

    Disruption of circadian rhythms, provoked by artificial lighting at night, inconsistent sleep-wake schedules, and transmeridian air travel, is increasingly prevalent in modern society. Desynchrony of biological rhythms from environmental light cycles has dramatic consequences for human health. In particular, disrupting homeostatic oscillations in endocrine tissues and the hormones that these tissues regulate can have cascading effects on physiology and behavior. Accumulating evidence suggests that chronic disruption of circadian organization of endocrine function may lead to metabolic, reproductive, sleep, and mood disorders. This review discusses circadian control of endocrine systems and the consequences of distorting rhythmicity of these systems. PMID:26208951

  16. Nocturia: The circadian voiding disorder

    PubMed Central

    Moon, Young Tae; Kim, Kyung Do

    2016-01-01

    Nocturia is a prevalent condition of waking to void during the night. The concept of nocturia has evolved from being a symptomatic aspect of disease associated with the prostate or bladder to a form of lower urinary tract disorder. However, recent advances in circadian biology and sleep science suggest that it might be important to consider nocturia as a form of circadian dysfunction. In the current review, nocturia is reexamined with an introduction to sleep disorders and recent findings in circadian biology in an attempt to highlight the importance of rediscovering nocturia as a problem of chronobiology. PMID:27195315

  17. Neurobiology of Circadian Rhythm Regulation.

    PubMed

    Rosenwasser, Alan M; Turek, Fred W

    2015-12-01

    Over the past few decades, multilevel research has elucidated the basic neuroanatomy, neurochemistry, and molecular neurobiology of the master circadian pacemaker located in the hypothalamic suprachiasmatic nucleus (SCN). The circadian timing system is composed of a large number of cellular oscillators located in the SCN, in non-SCN brain structures, and throughout the body. Cellular-level oscillations are generated by a molecular feedback loop in which circadian clock genes rhythmically regulate their own transcription, as well as that of hundreds of clock-controlled genes. The maintenance of proper coordination within this network of cellular- and tissue-level clocks is essential for health and well-being. PMID:26568118

  18. Nocturia: The circadian voiding disorder.

    PubMed

    Kim, Jin Wook; Moon, Young Tae; Kim, Kyung Do

    2016-05-01

    Nocturia is a prevalent condition of waking to void during the night. The concept of nocturia has evolved from being a symptomatic aspect of disease associated with the prostate or bladder to a form of lower urinary tract disorder. However, recent advances in circadian biology and sleep science suggest that it might be important to consider nocturia as a form of circadian dysfunction. In the current review, nocturia is reexamined with an introduction to sleep disorders and recent findings in circadian biology in an attempt to highlight the importance of rediscovering nocturia as a problem of chronobiology. PMID:27195315

  19. Role of cardiomyocyte circadian clock in myocardial metabolic adaptation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Marked circadian rhythmicities in cardiovascular physiology and pathophysiology exist. The cardiomyocyte circadian clock has recently been linked to circadian rhythms in myocardial gene expression, metabolism, and contractile function. For instance, the cardiomyocyte circadian clock is essential f...

  20. Redox regulation and pro-oxidant reactions in the physiology of circadian systems.

    PubMed

    Méndez, Isabel; Vázquez-Martínez, Olivia; Hernández-Muñoz, Rolando; Valente-Godínez, Héctor; Díaz-Muñoz, Mauricio

    2016-05-01

    Rhythms of approximately 24 h are pervasive in most organisms and are known as circadian. There is a molecular circadian clock in each cell sustained by a feedback system of interconnected "clock" genes and transcription factors. In mammals, the timing system is formed by a central pacemaker, the suprachiasmatic nucleus, in coordination with a collection of peripheral oscillators. Recently, an extensive interconnection has been recognized between the molecular circadian clock and the set of biochemical pathways that underlie the bioenergetics of the cell. A principle regulator of metabolic networks is the flow of electrons between electron donors and acceptors. The concomitant reduction and oxidation (redox) reactions directly influence the balance between anabolic and catabolic processes. This review summarizes and discusses recent findings concerning the mutual and dynamic interactions between the molecular circadian clock, redox reactions, and redox signaling. The scope includes the regulatory role played by redox coenzymes (NAD(P)+/NAD(P)H, GSH/GSSG), reactive oxygen species (superoxide anion, hydrogen peroxide), antioxidants (melatonin), and physiological events that modulate the redox state (feeding condition, circadian rhythms) in determining the timing capacity of the molecular circadian clock. In addition, we discuss a purely metabolic circadian clock, which is based on the redox enzymes known as peroxiredoxins and is present in mammalian red blood cells and in other biological systems. Both the timing system and the metabolic network are key to a better understanding of widespread pathological conditions such as the metabolic syndrome, obesity, and diabetes. PMID:25926044

  1. Effects of exercise on circadian rhythms and mobility in aging Drosophila melanogaster.

    PubMed

    Rakshit, Kuntol; Wambua, Rebecca; Giebultowicz, Tomasz M; Giebultowicz, Jadwiga M

    2013-11-01

    Daily life functions such as sleep and feeding oscillate with circa 24 h period due to endogenous circadian rhythms generated by circadian clocks. Genetic or environmental disruption of circadian rhythms is associated with various aging-related phenotypes. Circadian rhythms decay during normal aging, and there is a need to explore strategies that could avert age-related changes in the circadian system. Exercise was reported to delay aging in mammals. Here, we investigated whether daily exercise via stimulation of upward climbing movement could improve circadian rest/activity rhythms in aging Drosophila melanogaster. We found that repeated exercise regimen did not strengthen circadian locomotor activity rhythms in aging flies and had no effect on their lifespan. We also tested the effects of exercise on mobility and determined that regular exercise lowered age-specific climbing ability in both wild type and clock mutant flies. Interestingly, the climbing ability was most significantly reduced in flies carrying a null mutation in the core clock gene period, while rescue of this gene significantly improved climbing to wild type levels. Our work highlights the importance of period in sustaining endurance in aging flies exposed to physical challenge. PMID:23916842

  2. Circadian Control of Global Transcription

    PubMed Central

    Li, Shujing; Zhang, Luoying

    2015-01-01

    Circadian rhythms exist in most if not all organisms on the Earth and manifest in various aspects of physiology and behavior. These rhythmic processes are believed to be driven by endogenous molecular clocks that regulate rhythmic expression of clock-controlled genes (CCGs). CCGs consist of a significant portion of the genome and are involved in diverse biological pathways. The transcription of CCGs is tuned by rhythmic actions of transcription factors and circadian alterations in chromatin. Here, we review the circadian control of CCG transcription in five model organisms that are widely used, including cyanobacterium, fungus, plant, fruit fly, and mouse. Comparing the similarity and differences in the five organisms could help us better understand the function of the circadian clock, as well as its output mechanisms adapted to meet the demands of diverse environmental conditions. PMID:26682214

  3. Endocrine regulation of circadian physiology.

    PubMed

    Tsang, Anthony H; Astiz, Mariana; Friedrichs, Maureen; Oster, Henrik

    2016-07-01

    Endogenous circadian clocks regulate 24-h rhythms of behavior and physiology to align with external time. The endocrine system serves as a major clock output to regulate various biological processes. Recent findings suggest that some of the rhythmic hormones can also provide feedback to the circadian system at various levels, thus contributing to maintaining the robustness of endogenous rhythmicity. This delicate balance of clock-hormone interaction is vulnerable to modern lifestyle factors such as shiftwork or high-calorie diets, altering physiological set points. In this review, we summarize the current knowledge on the communication between the circadian timing and endocrine systems, with a focus on adrenal glucocorticoids and metabolic peptide hormones. We explore the potential role of hormones as systemic feedback signals to adjust clock function and their relevance for the maintenance of physiological and metabolic circadian homeostasis. PMID:27106109

  4. Misaligned feeding impairs memories

    PubMed Central

    Loh, Dawn H; Jami, Shekib A; Flores, Richard E; Truong, Danny; Ghiani, Cristina A; O’Dell, Thomas J; Colwell, Christopher S

    2015-01-01

    Robust sleep/wake rhythms are important for health and cognitive function. Unfortunately, many people are living in an environment where their circadian system is challenged by inappropriate meal- or work-times. Here we scheduled food access to the sleep time and examined the impact on learning and memory in mice. Under these conditions, we demonstrate that the molecular clock in the master pacemaker, the suprachiasmatic nucleus (SCN), is unaltered while the molecular clock in the hippocampus is synchronized by the timing of food availability. This chronic circadian misalignment causes reduced hippocampal long term potentiation and total CREB expression. Importantly this mis-timed feeding resulted in dramatic deficits in hippocampal-dependent learning and memory. Our findings suggest that the timing of meals have far-reaching effects on hippocampal physiology and learned behaviour. DOI: http://dx.doi.org/10.7554/eLife.09460.001 PMID:26652002

  5. The Impact of Sleep and Circadian Disturbance on Hormones and Metabolism

    PubMed Central

    Kim, Tae Won; Jeong, Jong-Hyun; Hong, Seung-Chul

    2015-01-01

    The levels of several hormones fluctuate according to the light and dark cycle and are also affected by sleep, feeding, and general behavior. The regulation and metabolism of several hormones are influenced by interactions between the effects of sleep and the intrinsic circadian system; growth hormone, melatonin, cortisol, leptin, and ghrelin levels are highly correlated with sleep and circadian rhythmicity. There are also endogenous circadian mechanisms that serve to regulate glucose metabolism and similar rhythms pertaining to lipid metabolism, regulated through the actions of various clock genes. Sleep disturbance, which negatively impacts hormonal rhythms and metabolism, is also associated with obesity, insulin insensitivity, diabetes, hormonal imbalance, and appetite dysregulation. Circadian disruption, typically induced by shift work, may negatively impact health due to impaired glucose and lipid homeostasis, reversed melatonin and cortisol rhythms, and loss of clock gene rhythmicity. PMID:25861266

  6. Circadian organization is governed by extra-SCN pacemakers.

    PubMed

    Pezuk, Pinar; Mohawk, Jennifer A; Yoshikawa, Tomoko; Sellix, Michael T; Menaker, Michael

    2010-12-01

    In mammals, a pacemaker in the suprachiasmatic nucleus (SCN) is thought to be required for behavioral, physiological, and molecular circadian rhythms. However, there is considerable evidence that temporal food restriction (restricted feedisng [RF]) and chronic methamphetamine (MA) can drive circadian rhythms of locomotor activity, body temperature, and endocrine function in the absence of SCN. This indicates the existence of extra-SCN pacemakers: the Food Entrainable Oscillator (FEO) and Methamphetamine Sensitive Circadian Oscillator (MASCO). Here, we show that these extra-SCN pacemakers control the phases of peripheral oscillators in intact as well as in SCN-ablated PER2::LUC mice. MA administration shifted the phases of SCN, cornea, pineal, pituitary, kidney, and salivary glands in intact animals. When the SCN was ablated, disrupted phase relationships among peripheral oscillators were reinstated by MA treatment. When intact animals were subjected to restricted feeding, the phases of cornea, pineal, kidney, salivary gland, lung, and liver were shifted. In SCN-lesioned restricted-fed mice, phases of all of the tissues shifted such that they aligned with the time of the meal. Taken together, these data show that FEO and MASCO are strong circadian pacemakers able to regulate the phases of peripheral oscillators. PMID:21135159

  7. Time-restricted feeding of a high-fat diet reduces adiposity and inflammatory cytokine production in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Disruption of the circadian rhythms contributes to obesity. Restricting feeding to particular times of the day may reset the circadian rhythms and reduce obesity and resulting complications. The present study investigated the effects of time-restricted feeding (TRF) of a high-fat diet on adiposity...

  8. The regulation and turnover of mitochondrial uncoupling proteins

    PubMed Central

    Azzu, Vian; Jastroch, Martin; Divakaruni, Ajit S; Brand, Martin D

    2010-01-01

    Uncoupling proteins (UCP1, UCP2 and UCP3) are important in regulating cellular fuel metabolism and as attenuators of reactive oxygen species production, through strong or mild uncoupling. The generic function and broad tissue distribution of the uncoupling protein family means that they are increasingly implicated in a range of pathophysiological processes including obesity, insulin resistance and diabetes mellitus, neurodegeneration, cardiovascular disease, immunity and cancer. The significant recent progress describing the turnover of novel uncoupling proteins, as well as current views on the physiological roles and regulation of UCPs, is outlined. PMID:20211596

  9. Uncoupling proteins of invertebrates: A review.

    PubMed

    Slocinska, Malgorzata; Barylski, Jakub; Jarmuszkiewicz, Wieslawa

    2016-09-01

    Uncoupling proteins (UCPs) mediate inducible proton conductance in the mitochondrial inner membrane. Herein, we summarize our knowledge regarding UCPs in invertebrates. Since 2001, the presence of UCPs has been demonstrated in nematodes, mollusks, amphioxi, and insects. We discuss the following important issues concerning invertebrate UCPs: their evolutionary relationships, molecular and functional properties, and physiological impact. Evolutionary analysis indicates that the branch of vertebrate and invertebrate UCP4-5 diverged early in the evolutionary process prior to the divergence of the animal groups. Several proposed physiological roles of invertebrate UCPs are energy control, metabolic balance, and preventive action against oxidative stress. © 2016 IUBMB Life, 68(9):691-699, 2016. PMID:27385510

  10. Effect of hypergravity on the circadian rhythms of white rats.

    NASA Technical Reports Server (NTRS)

    Lafferty, J. F.

    1972-01-01

    The effects of artificial gravity on the circadian rhythm of white rats was observed by comparing feeding activity at 1.0 and 1.75 g. The feeding cycle data were obtained by observing the number of feeding switch responses, as well as the amount of food obtained, as a function of time. One of the three subjects clearly established a free-running cycle with a period of 24.742 hr. During a 40-day exposure to the 1.75 g environment, the subjects maintained the same feeding cycle period which was established at 1.0 g. While the results of this study indicate that the activity rhythms of rats are insensitive to gravity levels between 1.0 and 1.75 g, the effects of gravity levels below 1.0 g are yet to be determined.

  11. Small Heterodimer Partner (NR0B2) Coordinates Nutrient Signaling and the Circadian Clock in Mice.

    PubMed

    Wu, Nan; Kim, Kang Ho; Zhou, Ying; Lee, Jae Man; Kettner, Nicole M; Mamrosh, Jennifer L; Choi, Sungwoo; Fu, Loning; Moore, David D

    2016-09-01

    Circadian rhythm regulates multiple metabolic processes and in turn is readily entrained by feeding-fasting cycles. However, the molecular mechanisms by which the peripheral clock senses nutrition availability remain largely unknown. Bile acids are under circadian control and also increase postprandially, serving as regulators of the fed state in the liver. Here, we show that nuclear receptor Small Heterodimer Partner (SHP), a regulator of bile acid metabolism, impacts the endogenous peripheral clock by directly regulating Bmal1. Bmal1-dependent gene expression is altered in Shp knockout mice, and liver clock adaptation is delayed in Shp knockout mice upon restricted feeding. These results identify SHP as a potential mediator connecting nutrient signaling with the circadian clock. PMID:27427832

  12. Circadian Rhythms, the Molecular Clock, and Skeletal Muscle

    PubMed Central

    Lefta, Mellani; Wolff, Gretchen; Esser, Karyn A.

    2015-01-01

    Almost all organisms ranging from single cell bacteria to humans exhibit a variety of behavioral, physiological, and biochemical rhythms. In mammals, circadian rhythms control the timing of many physiological processes over a 24-h period, including sleep-wake cycles, body temperature, feeding, and hormone production. This body of research has led to defined characteristics of circadian rhythms based on period length, phase, and amplitude. Underlying circadian behaviors is a molecular clock mechanism found in most, if not all, cell types including skeletal muscle. The mammalian molecular clock is a complex of multiple oscillating networks that are regulated through transcriptional mechanisms, timed protein turnover, and input from small molecules. At this time, very little is known about circadian aspects of skeletal muscle function/metabolism but some progress has been made on understanding the molecular clock in skeletal muscle. The goal of this chapter is to provide the basic terminology and concepts of circadian rhythms with a more detailed review of the current state of knowledge of the molecular clock, with reference to what is known in skeletal muscle. Research has demonstrated that the molecular clock is active in skeletal muscles and that the muscle-specific transcription factor, MyoD, is a direct target of the molecular clock. Skeletal muscle of clock-compromised mice, Bmal1−/− and ClockΔ19 mice, are weak and exhibit significant disruptions in expression of many genes required for adult muscle structure and metabolism. We suggest that the interaction between the molecular clock, MyoD, and metabolic factors, such as PGC-1, provide a potential system of feedback loops that may be critical for both maintenance and adaptation of skeletal muscle. PMID:21621073

  13. Analysis of Circadian Leaf Movements.

    PubMed

    Müller, Niels A; Jiménez-Gómez, José M

    2016-01-01

    The circadian clock is a molecular timekeeper that controls a wide variety of biological processes. In plants, clock outputs range from the molecular level, with rhythmic gene expression and metabolite content, to physiological processes such as stomatal conductance or leaf movements. Any of these outputs can be used as markers to monitor the state of the circadian clock. In the model plant Arabidopsis thaliana, much of the current knowledge about the clock has been gained from time course experiments profiling expression of endogenous genes or reporter constructs regulated by the circadian clock. Since these methods require labor-intensive sample preparation or transformation, monitoring leaf movements is an interesting alternative, especially in non-model species and for natural variation studies. Technological improvements both in digital photography and image analysis allow cheap and easy monitoring of circadian leaf movements. In this chapter we present a protocol that uses an autonomous point and shoot camera and free software to monitor circadian leaf movements in tomato. PMID:26867616

  14. Circadian regulation of metabolic homeostasis: causes and consequences

    PubMed Central

    McGinnis, Graham R; Young, Martin E

    2016-01-01

    Robust circadian rhythms in metabolic processes have been described in both humans and animal models, at the whole body, individual organ, and even cellular level. Classically, these time-of-day-dependent rhythms have been considered secondary to fluctuations in energy/nutrient supply/demand associated with feeding/fasting and wake/sleep cycles. Renewed interest in this field has been fueled by studies revealing that these rhythms are driven, at least in part, by intrinsic mechanisms and that disruption of metabolic synchrony invariably increases the risk of cardiometabolic disease. The objectives of this paper are to provide a comprehensive review regarding rhythms in glucose, lipid, and protein/amino acid metabolism, the relative influence of extrinsic (eg, neurohumoral factors) versus intrinsic (eg, cell autonomous circadian clocks) mediators, the physiologic roles of these rhythms in terms of daily fluctuations in nutrient availability and activity status, as well as the pathologic consequences of dyssynchrony. PMID:27313482

  15. Glucocorticosteroid injection is a circadian zeitgeber in the laboratory rat

    SciTech Connect

    Horseman, N.D.; Ehret, C.F.

    1982-09-01

    Intraperitoneal temperatures were monitored by radiotelemetry to observe the thermoregulatory rhythm of male laboratory rats (Rattus norvegicus albinus). Rats received single injections of dexamethasone (as dexamethasone sodium phosphate) during constant darkness (0.1 lx) with food freely available or no food available. No phase shifts occurred following saline injection or dexamethasone at 1 mg/kg body wt. Depending on the phase of injection relative to the circadian cycle, dexamethasone at 10 mg/kg caused thermoregulatory peaks to be either delayed or advanced on the 4th and 5th days after injection. There was an insensitive interval which corresponded to subjective day. Phase shifts induced by dexamethasone during ad libitum feeding were of less magnitude than those induced during starvation. The determination of phase-shifting parameters (i.e., a phase-response curve) for hormonal substances represents a rigorous and broadly applicable technique for determining endogenous mechanisms for circadian phase control and entrainment.

  16. Circadian Transcription from Beta Cell Function to Diabetes Pathophysiology.

    PubMed

    Perelis, Mark; Ramsey, Kathryn Moynihan; Marcheva, Biliana; Bass, Joseph

    2016-08-01

    The mammalian circadian clock plays a central role in the temporal coordination of physiology across the 24-h light-dark cycle. A major function of the clock is to maintain energy constancy in anticipation of alternating periods of fasting and feeding that correspond with sleep and wakefulness. While it has long been recognized that humans exhibit robust variation in glucose tolerance and insulin sensitivity across the sleep-wake cycle, experimental genetic analysis has now revealed that the clock transcription cycle plays an essential role in insulin secretion and metabolic function within pancreatic beta cells. This review addresses how studies of the beta cell clock may elucidate the etiology of subtypes of diabetes associated with circadian and sleep cycle disruption, in addition to more general forms of the disease. PMID:27440914

  17. 49 CFR 215.125 - Defective uncoupling device.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD FREIGHT CAR SAFETY STANDARDS Freight Car Components Draft System § 215.125 Defective uncoupling device. A railroad may not place or continue in service a car, if the car has an uncoupling device without sufficient vertical and lateral clearance to prevent—...

  18. 49 CFR 215.125 - Defective uncoupling device.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD FREIGHT CAR SAFETY STANDARDS Freight Car Components Draft System § 215.125 Defective uncoupling device. A railroad may not place or continue in service a car, if the car has an uncoupling device without sufficient vertical and lateral clearance to prevent—...

  19. 49 CFR 215.125 - Defective uncoupling device.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD FREIGHT CAR SAFETY STANDARDS Freight Car Components Draft System § 215.125 Defective uncoupling device. A railroad may not place or continue in service a car, if the car has an uncoupling device without sufficient vertical and lateral clearance to prevent—...

  20. 49 CFR 215.125 - Defective uncoupling device.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD FREIGHT CAR SAFETY STANDARDS Freight Car Components Draft System § 215.125 Defective uncoupling device. A railroad may not place or continue in service a car, if the car has an uncoupling device without sufficient vertical and lateral clearance to prevent—...

  1. QSAR studies of hydrazone uncouplers of oxidative phosphorylation.

    PubMed

    Winkler, D A; Holan, G; Smith, D R; Middleton, E J; Hart, N K; Rihs, K; Smith, K W

    1988-07-01

    Semiempirical molecular orbital calculations have been performed on a series of hydrazone uncouplers of mitochondrial oxidative phosphorylation which show insecticidal activity. Regression analysis yielded significant correlations between uncoupling activity, insecticidal potency and such physicochemical or theoretically-derived parameters as lipophilicity, pKa and atom charges. PMID:3255329

  2. Smith-Magenis Syndrome Results in Disruption of CLOCK Gene Transcription and Reveals an Integral Role for RAI1 in the Maintenance of Circadian Rhythmicity

    PubMed Central

    Williams, Stephen R.; Zies, Deborah; Mullegama, Sureni V.; Grotewiel, Michael S.; Elsea, Sarah H.

    2012-01-01

    Haploinsufficiency of RAI1 results in Smith-Magenis syndrome (SMS), a disorder characterized by intellectual disability, multiple congenital anomalies, obesity, neurobehavioral abnormalities, and a disrupted circadian sleep-wake pattern. An inverted melatonin rhythm (i.e., melatonin peaks during the day instead of at night) and associated sleep-phase disturbances in individuals with SMS, as well as a short-period circadian rhythm in mice with a chromosomal deletion of Rai1, support SMS as a circadian-rhythm-dysfunction disorder. However, the molecular cause of the circadian defect in SMS has not been described. The circadian oscillator temporally orchestrates metabolism, physiology, and behavior largely through transcriptional modulation. Data support RAI1 as a transcriptional regulator, but the genes it might regulate are largely unknown. Investigation into the role that RAI1 plays in the regulation of gene transcription and circadian maintenance revealed that RAI1 regulates the transcription of circadian locomotor output cycles kaput (CLOCK), a key component of the mammalian circadian oscillator that transcriptionally regulates many critical circadian genes. Data further show that haploinsufficiency of RAI1 and Rai1 in SMS fibroblasts and the mouse hypothalamus, respectively, results in the transcriptional dysregulation of the circadian clock and causes altered expression and regulation of multiple circadian genes, including PER2, PER3, CRY1, BMAL1, and others. These data suggest that heterozygous mutation of RAI1 and Rai1 leads to a disrupted circadian rhythm and thus results in an abnormal sleep-wake cycle, which can contribute to an abnormal feeding pattern and dependent cognitive performance. Finally, we conclude that RAI1 is a positive transcriptional regulator of CLOCK, pinpointing a novel and important role for this gene in the circadian oscillator. PMID:22578325

  3. Augmenting energy expenditure by mitochondrial uncoupling: a role of AMP-activated protein kinase.

    PubMed

    Klaus, Susanne; Keipert, Susanne; Rossmeisl, Martin; Kopecky, Jan

    2012-07-01

    Strategies to prevent and treat obesity aim to decrease energy intake and/or increase energy expenditure. Regarding the increase of energy expenditure, two key intracellular targets may be considered (1) mitochondrial oxidative phosphorylation, the major site of ATP production, and (2) AMP-activated protein kinase (AMPK), the master regulator of cellular energy homeostasis. Experiments performed mainly in transgenic mice revealed a possibility to ameliorate obesity and associated disorders by mitochondrial uncoupling in metabolically relevant tissues, especially in white adipose tissue (WAT), skeletal muscle (SM), and liver. Thus, ectopic expression of brown fat-specific mitochondrial uncoupling protein 1 (UCP1) elicited major metabolic effects both at the cellular/tissue level and at the whole-body level. In addition to expected increases in energy expenditure, surprisingly complex phenotypic effects were detected. The consequences of mitochondrial uncoupling in WAT and SM are not identical, showing robust and stable obesity resistance accompanied by improvement of lipid metabolism in the case of ectopic UCP1 in WAT, while preservation of insulin sensitivity in the context of high-fat feeding represents the major outcome of muscle UCP1 expression. These complex responses could be largely explained by tissue-specific activation of AMPK, triggered by a depression of cellular energy charge. Experimental data support the idea that (1) while being always activated in response to mitochondrial uncoupling and compromised intracellular energy status in general, AMPK could augment energy expenditure and mediate local as well as whole-body effects; and (2) activation of AMPK alone does not lead to induction of energy expenditure and weight reduction. PMID:22139637

  4. Circadian Clock, Cancer, and Chemotherapy

    PubMed Central

    2015-01-01

    The circadian clock is a global regulatory system that interfaces with most other regulatory systems and pathways in mammalian organisms. Investigations of the circadian clock–DNA damage response connections have revealed that nucleotide excision repair, DNA damage checkpoints, and apoptosis are appreciably influenced by the clock. Although several epidemiological studies in humans and a limited number of genetic studies in mouse model systems have indicated that clock disruption may predispose mammals to cancer, well-controlled genetic studies in mice have not supported the commonly held view that circadian clock disruption is a cancer risk factor. In fact, in the appropriate genetic background, clock disruption may instead aid in cancer regression by promoting intrinsic and extrinsic apoptosis. Finally, the clock may affect the efficacy of cancer treatment (chronochemotherapy) by modulating the pharmacokinetics and pharmacodynamics of chemotherapeutic drugs as well as the activity of the DNA repair enzymes that repair the DNA damage caused by anticancer drugs. PMID:25302769

  5. Circadian Insights into Motivated Behavior.

    PubMed

    Antle, Michael C; Silver, Rae

    2016-01-01

    For an organism to be successful in an evolutionary sense, it and its offspring must survive. Such survival depends on satisfying a number of needs that are driven by motivated behaviors, such as eating, sleeping, and mating. An individual can usually only pursue one motivated behavior at a time. The circadian system provides temporal structure to the organism's 24 hour day, partitioning specific behaviors to particular times of the day. The circadian system also allows anticipation of opportunities to engage in motivated behaviors that occur at predictable times of the day. Such anticipation enhances fitness by ensuring that the organism is physiologically ready to make use of a time-limited resource as soon as it becomes available. This could include activation of the sympathetic nervous system to transition from sleep to wake, or to engage in mating, or to activate of the parasympathetic nervous system to facilitate transitions to sleep, or to prepare the body to digest a meal. In addition to enabling temporal partitioning of motivated behaviors, the circadian system may also regulate the amplitude of the drive state motivating the behavior. For example, the circadian clock modulates not only when it is time to eat, but also how hungry we are. In this chapter we explore the physiology of our circadian clock and its involvement in a number of motivated behaviors such as sleeping, eating, exercise, sexual behavior, and maternal behavior. We also examine ways in which dysfunction of circadian timing can contribute to disease states, particularly in psychiatric conditions that include adherent motivational states. PMID:26419240

  6. Circadian Clocks in the Cnidaria: Environmental Entrainment, Molecular Regulation, and Organismal Outputs

    PubMed Central

    Reitzel, Adam M.; Tarrant, Ann M.; Levy, Oren

    2013-01-01

    The circadian clock is a molecular network that translates predictable environmental signals, such as light levels, into organismal responses, including behavior and physiology. Regular oscillations of the molecular components of the clock enable individuals to anticipate regularly fluctuating environmental conditions. Cnidarians play important roles in benthic and pelagic marine environments and also occupy a key evolutionary position as the likely sister group to the bilaterians. Together, these attributes make members of this phylum attractive as models for testing hypotheses on roles for circadian clocks in regulating behavior, physiology, and reproduction as well as those regarding the deep evolutionary conservation of circadian regulatory pathways in animal evolution. Here, we review and synthesize the field of cnidarian circadian biology by discussing the diverse effects of daily light cycles on cnidarians, summarizing the molecular evidence for the conservation of a bilaterian-like circadian clock in anthozoan cnidarians, and presenting new empirical data supporting the presence of a conserved feed-forward loop in the starlet sea anemone, Nematostella vectensis. Furthermore, we discuss critical gaps in our current knowledge about the cnidarian clock, including the functions directly regulated by the clock and the precise molecular interactions that drive the oscillating gene-expression patterns. We conclude that the field of cnidarian circadian biology is moving rapidly toward linking molecular mechanisms with physiology and behavior. PMID:23620252

  7. In vitro circadian rhythms: imaging and electrophysiology.

    PubMed

    Beaulé, Christian; Granados-Fuentes, Daniel; Marpegan, Luciano; Herzog, Erik D

    2011-06-30

    In vitro assays have localized circadian pacemakers to individual cells, revealed genetic determinants of rhythm generation, identified molecular players in cell-cell synchronization and determined physiological events regulated by circadian clocks. Although they allow strict control of experimental conditions and reduce the number of variables compared with in vivo studies, they also lack many of the conditions in which cellular circadian oscillators normally function. The present review highlights methods to study circadian timing in cultured mammalian cells and how they have shaped the hypothesis that all cells are capable of circadian rhythmicity. PMID:21819387

  8. In vitro circadian rhythms: imaging and electrophysiology

    PubMed Central

    Beaulé, Christian; Granados-Fuentes, Daniel; Marpegan, Luciano; Herzog, Erik D.

    2013-01-01

    In vitro assays have localized circadian pacemakers to individual cells, revealed genetic determinants of rhythm generation, identified molecular players in cell-cell synchronization and determined physiological events regulated by circadian clocks. Although they allow strict control of experimental conditions and reduce the number of variables compared with in vivo studies, they also lack many of the conditions in which cellular circadian oscillators normally function. The present review highlights methods to study circadian timing in cultured mammalian cells and how they have shaped the hypothesis that all cells are capable of circadian rhythmicity. PMID:21819387

  9. Uncoupling Protein 1 of Brown Adipocytes, the Only Uncoupler: A Historical Perspective

    PubMed Central

    Ricquier, Daniel

    2011-01-01

    Uncoupling protein 1 (UCP1), is a unique mitochondrial membranous protein devoted to adaptive thermogenesis, a specialized function performed by brown adipocytes. Whereas the family of mitochondrial metabolite carriers comprises ∼40 members, UCP1 is the only memberable to translocate protons through the inner membrane of brown adipocyte mitochondria. By this process, UCP1 uncouples respiration from ATP synthesis and therefore provokes energy dissipation in the form of heat while, also stimulating high levels of fatty acid oxidation. UCP1 homologs were identified but they are biochemically and physiologically different from UCP1. Thirty five years after its identification, UCP1 still appears as a fascinating component. The recent renewal of the interest in human brown adipose tissue makes UCP1 as a potential target for strategies of treatment of metabolic disorders. PMID:22649389

  10. Seismic coupling and uncoupling at subduction zones

    NASA Technical Reports Server (NTRS)

    Ruff, L.; Kanamori, H.

    1983-01-01

    Some of the correlations concerning the properties of subduction zones are reviewed. A quantitative global comparison of many subduction zones reveals that the largest earthquakes occur in zones with young lithosphere and fast convergence rates. Maximum earthquake size is directly related to the asperity distribution on the fault plane. This observation can be translated into a simple model of seismic coupling where the horizontal compressive stress between two plates is proportional to the ratio of the summed asperity area to the total area of the contact surface. Plate age and rate can control asperity distribution directly through the horizontal compressive stress associated with the vertical and horizontal velocities of subducting slabs. The basalt to eclogite phase change in the down-going oceanic crust may be largely responsible for the uncoupling of subduction zones below a depth of about 40 km.

  11. Uncoupled achromatic tilted S-bend

    SciTech Connect

    Tsoupas,N.; Kayran, D.; Litvinenko, V.; MacKay, W.W.

    2008-06-23

    A particular section of the electron beam transport line, to be used in the e-cooling project [l] of the Relativistic Heavy Ion Collider (RHIC), is constrained to displace the trajectory with both horizontal and vertical offsets so that the outgoing beamline is parallel to the incoming beamline. We also require that section be achromatic in both planes. This mixed horizontal and vertical achromatic Sbend is accomplished by rotating the two dipoles and the quadrupoles of the line, about the longitudinal axis of the incoming beam. However such a rotation of the magnetic elements may couple the transported beam through the first order beam transfer matrix (linear coupling). In this paper we study a sufficient condition, that the first order transport matrix (R-matrix) can satisfy, so that this section of beam transfer line is both achromatic and linearly uncoupled. We provide a complete solution for the beam optics which satisfies both conditions.

  12. Circadian rhythm and its role in malignancy

    PubMed Central

    2010-01-01

    Circadian rhythms are daily oscillations of multiple biological processes directed by endogenous clocks. The circadian timing system comprises peripheral oscillators located in most tissues of the body and a central pacemaker located in the suprachiasmatic nucleus (SCN) of the hypothalamus. Circadian genes and the proteins produced by these genes constitute the molecular components of the circadian oscillator which form positive/negative feedback loops and generate circadian rhythms. The circadian regulation extends beyond clock genes to involve various clock-controlled genes (CCGs) including various cell cycle genes. Aberrant expression of circadian clock genes could have important consequences on the transactivation of downstream targets that control the cell cycle and on the ability of cells to undergo apoptosis. This may lead to genomic instability and accelerated cellular proliferation potentially promoting carcinogenesis. Different lines of evidence in mice and humans suggest that cancer may be a circadian-related disorder. The genetic or functional disruption of the molecular circadian clock has been found in various cancers including breast, ovarian, endometrial, prostate and hematological cancers. The acquisition of current data in circadian clock mechanism may help chronotherapy, which takes into consideration the biological time to improve treatments by devising new therapeutic approaches for treating circadian-related disorders, especially cancer. PMID:20353609

  13. Circadian Rhythm Disruption Promotes Lung Tumorigenesis.

    PubMed

    Papagiannakopoulos, Thales; Bauer, Matthew R; Davidson, Shawn M; Heimann, Megan; Subbaraj, Lakshmipriya; Bhutkar, Arjun; Bartlebaugh, Jordan; Vander Heiden, Matthew G; Jacks, Tyler

    2016-08-01

    Circadian rhythms are 24-hr oscillations that control a variety of biological processes in living systems, including two hallmarks of cancer, cell division and metabolism. Circadian rhythm disruption by shift work is associated with greater risk for cancer development and poor prognosis, suggesting a putative tumor-suppressive role for circadian rhythm homeostasis. Using a genetically engineered mouse model of lung adenocarcinoma, we have characterized the effects of circadian rhythm disruption on lung tumorigenesis. We demonstrate that both physiologic perturbation (jet lag) and genetic mutation of the central circadian clock components decreased survival and promoted lung tumor growth and progression. The core circadian genes Per2 and Bmal1 were shown to have cell-autonomous tumor-suppressive roles in transformation and lung tumor progression. Loss of the central clock components led to increased c-Myc expression, enhanced proliferation, and metabolic dysregulation. Our findings demonstrate that both systemic and somatic disruption of circadian rhythms contribute to cancer progression. PMID:27476975

  14. Circadian rhythms: basic neurobiology and clinical applications.

    PubMed

    Moore, R Y

    1997-01-01

    Circadian rhythms are major features of adaptation to our environment. In mammals, circadian rhythms are generated and regulated by a circadian timing system. This system consists of entertainment pathways, pacemakers, and pace-maker output to effector systems that are under circadian control. The primary entertainment pathway is the retinohypothalamic tract, which terminates in the circadian pacemakers, the suprachiasmatic nuclei of the hypothalamus. The output of the suprachiasmatic nuclei is principally to the hypothalamus, the midline thalamus, and the basal forebrain. This provides a temporal organization to the sleep-wake cycle, to many physiological and endocrine functions, and to psychomotor performance functions. Disorders of circadian timing primarily affect entertainment and pacemaker functions. The pineal hormone, melatonin, appears to be promising agent for therapy of some circadian timing disorders. PMID:9046960

  15. Prokineticin 2 and circadian clock output

    PubMed Central

    Zhou, Qun-Yong; Cheng, Michelle Y.

    2009-01-01

    Circadian timing from the suprachiasmatic nucleus (SCN) is a critical component of sleep regulation. Animal lesion and genetic studies have indicated an essential interaction between the circadian signals and the homeostatic processes that regulate sleep. Here we summarize the biological functions of prokineticins, a pair of newly discovered regulatory proteins, with focus on the circadian function of prokineticin 2 (PK2) and its potential role in sleep-wake regulation. PK2 has been shown as a candidate SCN output molecule that regulates circadian locomotor behavior. The PK2 molecular rhythm in the SCN is predominantly controlled by the circadian transcriptional/translational loops, but also regulated directly by light. The receptor for PK2 is expressed in the primary SCN output targets that regulate circadian behavior including sleep-wake. The depolarizing effect of PK2 on neurons that express PK2 receptor may represent a possible mechanism for the regulatory role of PK2 in circadian rhythms. PMID:16279936

  16. Metabolism and the Circadian Clock Converge

    PubMed Central

    Eckel-Mahan, Kristin

    2013-01-01

    Circadian rhythms occur in almost all species and control vital aspects of our physiology, from sleeping and waking to neurotransmitter secretion and cellular metabolism. Epidemiological studies from recent decades have supported a unique role for circadian rhythm in metabolism. As evidenced by individuals working night or rotating shifts, but also by rodent models of circadian arrhythmia, disruption of the circadian cycle is strongly associated with metabolic imbalance. Some genetically engineered mouse models of circadian rhythmicity are obese and show hallmark signs of the metabolic syndrome. Whether these phenotypes are due to the loss of distinct circadian clock genes within a specific tissue versus the disruption of rhythmic physiological activities (such as eating and sleeping) remains a cynosure within the fields of chronobiology and metabolism. Becoming more apparent is that from metabolites to transcription factors, the circadian clock interfaces with metabolism in numerous ways that are essential for maintaining metabolic homeostasis. PMID:23303907

  17. Escherichia coli mutants resistant to uncouplers of oxidative phosphorylation.

    PubMed

    Jones, M R; Beechey, R B

    1987-10-01

    Two mutant strains of Escherichia coli K 12 Doc-S resistant to the uncoupling agents 4,5,6,7-tetrachloro-2-trifluoromethyl benzimidazole and carbonyl cyanide m-chlorophenylhydrazone were isolated. These strains, designated TUV and CUV, were capable of (a) growth, (b) the transport of succinate and L-proline and (c) electron-transport-linked oxidative synthesis of ATP in the presence of titres of uncoupler which inhibited these processes in strain Doc-S. The inhibition of transport of L-proline by a fixed titre of uncoupler was sharply pH dependent in strain Doc-S: uptake was unaffected at pH 7.6 but completely inhibited at pH 5.6. This pH dependence was not shown by the resistant strains. We believe that uncouplers were equally accessible to their site(s) of action in the energy-conserving membrane of the sensitive and resistant strains. We conclude that uncoupler resistance in these strains of E. coli has arisen as a consequence of mutations which directly affect a specific site of uncoupler action within the cytoplasmic membrane, rather than as a consequence of a decrease in the permeability of cells to uncoupler. PMID:3329677

  18. Circadian influences on myocardial infarction.

    PubMed

    Virag, Jitka A I; Lust, Robert M

    2014-01-01

    Components of circadian rhythm maintenance, or "clock genes," are endogenous entrainable oscillations of about 24 h that regulate biological processes and are found in the suprachaismatic nucleus (SCN) and many peripheral tissues, including the heart. They are influenced by external cues, or Zeitgebers, such as light and heat, and can influence such diverse phenomena as cytokine expression immune cells, metabolic activity of cardiac myocytes, and vasodilator regulation by vascular endothelial cells. While it is known that the central master clock in the SCN synchronizes peripheral physiologic rhythms, the mechanisms by which the information is transmitted are complex and may include hormonal, metabolic, and neuronal inputs. Whether circadian patterns are causally related to the observed periodicity of events, or whether they are simply epi-phenomena is not well established, but a few studies suggest that the circadian effects likely are real in their impact on myocardial infarct incidence. Cycle disturbances may be harbingers of predisposition and subsequent response to acute and chronic cardiac injury, and identifying the complex interactions of circadian rhythms and myocardial infarction may provide insights into possible preventative and therapeutic strategies for susceptible populations. PMID:25400588

  19. Circadian influences on myocardial infarction

    PubMed Central

    Virag, Jitka A. I.; Lust, Robert M.

    2014-01-01

    Components of circadian rhythm maintenance, or “clock genes,” are endogenous entrainable oscillations of about 24 h that regulate biological processes and are found in the suprachaismatic nucleus (SCN) and many peripheral tissues, including the heart. They are influenced by external cues, or Zeitgebers, such as light and heat, and can influence such diverse phenomena as cytokine expression immune cells, metabolic activity of cardiac myocytes, and vasodilator regulation by vascular endothelial cells. While it is known that the central master clock in the SCN synchronizes peripheral physiologic rhythms, the mechanisms by which the information is transmitted are complex and may include hormonal, metabolic, and neuronal inputs. Whether circadian patterns are causally related to the observed periodicity of events, or whether they are simply epi-phenomena is not well established, but a few studies suggest that the circadian effects likely are real in their impact on myocardial infarct incidence. Cycle disturbances may be harbingers of predisposition and subsequent response to acute and chronic cardiac injury, and identifying the complex interactions of circadian rhythms and myocardial infarction may provide insights into possible preventative and therapeutic strategies for susceptible populations. PMID:25400588

  20. Interdependence of nutrient metabolism and the circadian clock system: Importance for metabolic health

    PubMed Central

    Ribas-Latre, Aleix; Eckel-Mahan, Kristin

    2016-01-01

    Background While additional research is needed, a number of large epidemiological studies show an association between circadian disruption and metabolic disorders. Specifically, obesity, insulin resistance, cardiovascular disease, and other signs of metabolic syndrome all have been linked to circadian disruption in humans. Studies in other species support this association and generally reveal that feeding that is not in phase with the external light/dark cycle, as often occurs with night or rotating shift workers, is disadvantageous in terms of energy balance. As food is a strong driver of circadian rhythms in the periphery, understanding how nutrient metabolism drives clocks across the body is important for dissecting out why circadian misalignment may produce such metabolic effects. A number of circadian clock proteins as well as their accessory proteins (such as nuclear receptors) are highly sensitive to nutrient metabolism. Macronutrients and micronutrients can function as zeitgebers for the clock in a tissue-specific way and can thus impair synchrony between clocks across the body, or potentially restore synchrony in the case of circadian misalignment. Circadian nuclear receptors are particularly sensitive to nutrient metabolism and can alter tissue-specific rhythms in response to changes in the diet. Finally, SNPs in human clock genes appear to be correlated with diet-specific responses and along with chronotype eventually may provide valuable information from a clinical perspective on how to use diet and nutrition to treat metabolic disorders. Scope of review This article presents a background of the circadian clock components and their interrelated metabolic and transcriptional feedback loops, followed by a review of some recent studies in humans and rodents that address the effects of nutrient metabolism on the circadian clock and vice versa. We focus on studies in which results suggest that nutrients provide an opportunity to restore or, alternatively

  1. Glucocorticoids as entraining signals for peripheral circadian oscillators.

    PubMed

    Pezük, Pinar; Mohawk, Jennifer A; Wang, Laura A; Menaker, Michael

    2012-10-01

    Mammalian circadian organization is governed by pacemaker neurons in the brain that communicate with oscillators in peripheral tissues. Adrenal glucocorticoids are important time-giving signals to peripheral circadian oscillators. We investigated the rhythm of Per1-luc expression in pineal, pituitary, salivary glands, liver, lung, kidney, cornea as well as suprachiasmatic nucleus from adrenalectomized and sham-operated rats kept under light-dark cycles, or exposed to single 6-h phase delays or advances of their light cycles. Adrenalectomy shifted the phases of Per1-luc in liver, kidney, and cornea and caused phase desynchrony and significant dampening in the rhythmicity of cornea. Treatment with hydrocortisone shifted the phases of Per1-luc in most of the tissues examined, even those that were not affected by adrenalectomy. The rhythm in cornea recovered in animals given hydrocortisone in vivo or when corneas were treated with dexamethasone in vitro. Adrenalectomy increased the rate of reentrainment after phase shifts in liver, kidney, cornea, pineal, lung, and suprachiasmatic nucleus but not in pituitary and salivary glands. Our data show that glucocorticoids act as strong entraining signals for peripheral circadian oscillators and may feed back on central oscillators as well. PMID:22893723

  2. Class IIa Histone Deacetylases Are Conserved Regulators of Circadian Function*

    PubMed Central

    Fogg, Paul C. M.; O'Neill, John S.; Dobrzycki, Tomasz; Calvert, Shaun; Lord, Emma C.; McIntosh, Rebecca L. L.; Elliott, Christopher J. H.; Sweeney, Sean T.; Hastings, Michael H.; Chawla, Sangeeta

    2014-01-01

    Class IIa histone deacetylases (HDACs) regulate the activity of many transcription factors to influence liver gluconeogenesis and the development of specialized cells, including muscle, neurons, and lymphocytes. Here, we describe a conserved role for class IIa HDACs in sustaining robust circadian behavioral rhythms in Drosophila and cellular rhythms in mammalian cells. In mouse fibroblasts, overexpression of HDAC5 severely disrupts transcriptional rhythms of core clock genes. HDAC5 overexpression decreases BMAL1 acetylation on Lys-537 and pharmacological inhibition of class IIa HDACs increases BMAL1 acetylation. Furthermore, we observe cyclical nucleocytoplasmic shuttling of HDAC5 in mouse fibroblasts that is characteristically circadian. Mutation of the Drosophila homolog HDAC4 impairs locomotor activity rhythms of flies and decreases period mRNA levels. RNAi-mediated knockdown of HDAC4 in Drosophila clock cells also dampens circadian function. Given that the localization of class IIa HDACs is signal-regulated and influenced by Ca2+ and cAMP signals, our findings offer a mechanism by which extracellular stimuli that generate these signals can feed into the molecular clock machinery. PMID:25271152

  3. 30 CFR 57.14215 - Coupling or uncoupling cars.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Machinery... uncoupling shall not be attempted from the inside of curves unless the railroad and cars are designed...

  4. 30 CFR 57.14215 - Coupling or uncoupling cars.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Machinery... uncoupling shall not be attempted from the inside of curves unless the railroad and cars are designed...

  5. 30 CFR 57.14215 - Coupling or uncoupling cars.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Machinery... uncoupling shall not be attempted from the inside of curves unless the railroad and cars are designed...

  6. 30 CFR 57.14215 - Coupling or uncoupling cars.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Machinery... uncoupling shall not be attempted from the inside of curves unless the railroad and cars are designed...

  7. 30 CFR 57.14215 - Coupling or uncoupling cars.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Machinery... uncoupling shall not be attempted from the inside of curves unless the railroad and cars are designed...

  8. Neurovestibular modulation of circadian and homeostatic regulation: vestibulohypothalamic connection?

    NASA Technical Reports Server (NTRS)

    Fuller, Patrick M.; Jones, Timothy A.; Jones, Sherri M.; Fuller, Charles A.

    2002-01-01

    Chronic exposure to increased force environments (+G) has pronounced effects on the circadian and homeostatic regulation of body temperature (T(b)), ambulatory activity (Act), heart rate, feeding, and adiposity. By using the Brn 3.1 knockout mouse, which lacks vestibular hair cells, we recently described a major role of the vestibular system in mediating some of these adaptive responses. The present study used the C57BL6JEi-het mouse strain (het), which lacks macular otoconia, to elucidate the contribution of specific vestibular receptors. In this study, eight het and eight WT mice were exposed to 2G for 8 weeks by means of chronic centrifugation. In addition, eight het and eight WT mice were maintained as 1G controls in similar conditions. Upon 2G exposure, the WT exhibited a decrease in T(b) and an attenuated T(b) circadian rhythm. Act means and rhythms also were attenuated. Body mass and food intake were significantly lower than the 1G controls. After 8 weeks, percent body fat was significantly lower in the WT mice (P < 0.0001). In contrast, the het mice did not exhibit a decrease in mean T(b) and only a slight decrease in T(b) circadian amplitude. het Act levels were attenuated similarly to the WT mice. Body mass and food intake were only slightly attenuated in the het mice, and percent body fat, after 8 weeks, was not different in the 2G het group. These results link the vestibular macular receptors with specific alterations in homeostatic and circadian regulation.

  9. Circadian Cycles of Gene Expression in the Coral, Acropora millepora

    PubMed Central

    Brady, Aisling K.; Snyder, Kevin A.; Vize, Peter D.

    2011-01-01

    Background Circadian rhythms regulate many physiological, behavioral and reproductive processes. These rhythms are often controlled by light, and daily cycles of solar illumination entrain many clock regulated processes. In scleractinian corals a number of different processes and behaviors are associated with specific periods of solar illumination or non-illumination—for example, skeletal deposition, feeding and both brooding and broadcast spawning. Methodology/Principal Findings We have undertaken an analysis of diurnal expression of the whole transcriptome and more focused studies on a number of candidate circadian genes in the coral Acropora millepora using deep RNA sequencing and quantitative PCR. Many examples of diurnal cycles of RNA abundance were identified, some of which are light responsive and damped quickly under constant darkness, for example, cryptochrome 1 and timeless, but others that continue to cycle in a robust manner when kept in constant darkness, for example, clock, cryptochrome 2, cycle and eyes absent, indicating that their transcription is regulated by an endogenous clock entrained to the light-dark cycle. Many other biological processes that varied between day and night were also identified by a clustering analysis of gene ontology annotations. Conclusions/Significance Corals exhibit diurnal patterns of gene expression that may participate in the regulation of circadian biological processes. Rhythmic cycles of gene expression occur under constant darkness in both populations of coral larvae that lack zooxanthellae and in individual adult tissue containing zooxanthellae, indicating that transcription is under the control of a biological clock. In addition to genes potentially involved in regulating circadian processes, many other pathways were found to display diel cycles of transcription. PMID:21949855

  10. Dexamethasone, tetrahydrobiopterin and uncoupling of endothelial nitric oxide synthase

    PubMed Central

    Tobias, Silke; Habermeier, Alice; Siuda, Daniel; Reifenberg, Gisela; Xia, Ning; Closs, Ellen I; Förstermann, Ulrich; Li, Huige

    2015-01-01

    Objective To find out whether dexamethasone induces an uncoupling of the endothelial nitric oxide synthase (eNOS). Methods & Results A major cause of eNOS uncoupling is a deficiency of its cofactor tetrahydrobiopterin (BH4). Treatment of human EA.hy 926 endothelial cells with dexamethasone decreased mRNA and protein expression of both BH4-synthesizing enzymes: GTP cyclohydrolase I and dihydrofolate reductase. Consistently, a concentration- and time-dependent reduction of BH4, dihydrobiopterin (BH2) as well as BH4: BH2 ratio was observed in dexamethasone-treated cells. Surprisingly, no evidence for eNOS uncoupling was found. We then analyzed the expression and phosphorylation of the eNOS enzyme. Dexamethasone treatment led to a down-regulation of eNOS protein and a reduction of eNOS phosphorylation at serine 1177. A reduction of eNOS expression may lead to a relatively normal BH4: eNOS molar ratio in dexamethasone-treated cells. Because the BH4-eNOS stoichiometry rather than the absolute BH4 amount is the key determinant of eNOS functionality (i.e., coupled or uncoupled), the down-regulation of eNOS may represent an explanation for the absence of eNOS uncoupling. Phosphorylation of eNOS at serine 1177 is needed for both the NO-producing activity of the coupled eNOS and the superoxide-producing activity of the uncoupled eNOS. Thus, a reduction of serine 1177 phosphorylation may render a potentially uncoupled eNOS hardly detectable. Conclusions Although dexamethasone reduces BH4 levels in endothelial cells, eNOS uncoupling is not evident. The reduction of NO production in dexamethasone-treated endothelial cells is mainly attributable to reduced eNOS expression and decreased eNOS phosphorylation at serine 1177. PMID:26512245

  11. Inhibition of photosynthetic oxygen evolution by protonophoric uncouplers.

    PubMed

    Samuilov, V D; Renger, G; Paschenko, V Z; Oleskin, A V; Gusev, M V; Gubanova, O N; Vasil'ev, S S; Barsky, E L

    1995-01-01

    The protonophoric uncouplers carbonyl cyanide m-chlorophenylhydrazone (CCCP), 2,3,4,5,6-pentachlorophenol (PCP) and 4,5,6,7-tetrachloro-2-trifluoromethylbenzimidazole (TTFB) inhibited the Hill reaction with K3[Fe(CN)6] (but not with SiMo) in chloroplast and cyanobacterial membranes (the I50 values were approx. 1-2, 4-6 and 0.04-0.10 μM, respectively). The inhibition is due to oxidation of the uncouplers on the Photosystem II donor side (ADRY effect) and their subsequent reduction on the acceptor side, ie. to the formation of a cyclic electron transfer chain around Photosystem II involving the uncouplers as redox carriers. The relative amplitude of nanosecond chlorophyll fluorescence in chloroplasts was increased by DCMU or HQNO and did not change upon addition of uncouplers, DBMIB or DNP-INT; the HQNO effect was not removed by the uncouplers. The uncouplers did not inhibit the electron transfer from reduced TMPD or duroquinol to methylviologen which is driven by Photosystem I. These data show that CCCP, PCP and TTFB oxidized on the Photosystem II donor side are reduced by the membrane pool of plastoquinone (Qp) which is also the electron donor for K3 [Fe(CN)6] in the Hill reaction as deduced from the data obtained in the presence of inhibitors. Inhibition of the Hill reaction by the uncouplers was maximum at the pH values corresponding to the pK of these compounds. It is suggested that the tested uncouplers serve as proton donors, and not merely as electron donors on the oxidizing side of Photosystem II. PMID:24301640

  12. CIRCADIAN RHYTHM REPROGRAMMING DURING LUNG INFLAMMATION

    PubMed Central

    Haspel, Jeffrey A.; Chettimada, Sukrutha; Shaik, Rahamthulla S.; Chu, Jen-Hwa; Raby, Benjamin A.; Cernadas, Manuela; Carey, Vincent; Process, Vanessa; Hunninghake, G. Matthew; Ifedigbo, Emeka; Lederer, James A.; Englert, Joshua; Pelton, Ashley; Coronata, Anna; Fredenburgh, Laura E.; Choi, Augustine M. K.

    2014-01-01

    Circadian rhythms are known to regulate immune responses in healthy animals, but it is unclear whether they persist during acute illnesses where clock gene expression is disrupted by systemic inflammation. Here, we use a genome-wide approach to investigate circadian gene and metabolite expression in the lungs of endotoxemic mice and find that novel cellular and molecular circadian rhythms are elicited in this setting. The endotoxin-specific circadian program exhibits unique features, including a divergent group of rhythmic genes and metabolites compared to the basal state and a distinct periodicity and phase distribution. At the cellular level endotoxin treatment also alters circadian rhythms of leukocyte counts within the lung in a bmal1-dependent manner, such that granulocytes rather than lymphocytes become the dominant oscillating cell type. Our results show that inflammation produces a complex reorganization of cellular and molecular circadian rhythms that are relevant to early events in lung injury. PMID:25208554

  13. Mechanism of the circadian clock in physiology

    PubMed Central

    Richards, Jacob

    2013-01-01

    It has been well established that the circadian clock plays a crucial role in the regulation of almost every physiological process. It also plays a critical role in pathophysiological states including those of obesity and diabetes. Recent evidence has highlighted the potential for targeting the circadian clock as a potential drug target. New studies have also demonstrated the existence of “clock-independent effects” of the circadian proteins, leading to exciting new avenues of research in the circadian clock field in physiology. The goal of this review is to provide an introduction to and overview of the circadian clock in physiology, including mechanisms, targets, and role in disease states. The role of the circadian clocks in the regulation of the cardiovascular system, renal function, metabolism, the endocrine system, immune, and reproductive systems will be discussed. PMID:23576606

  14. Role of Circadian Rhythms in Potassium Homeostasis

    PubMed Central

    Gumz, Michelle L.; Rabinowitz, Lawrence

    2013-01-01

    It has been known for decades that urinary potassium excretion varies with a circadian pattern. In this review, we consider the historical evidence for this phenomenon and present an overview of recent developments in the field. Extensive evidence from the latter part of the last century clearly demonstrates that circadian potassium excretion does not depend on endogenous aldosterone. Of note is the recent discovery that the expression of several renal potassium transporters varies with a circadian pattern that appears to be consistent with substantial clinical data regarding daily fluctuations in urinary potassium levels. We propose the circadian clock mechanism as a key regulator of renal potassium transporters, and consequently renal potassium excretion. Further investigation into the mechanism of regulation of renal potassium transport by the circadian clock is warranted in order to increase our understanding of the clinical relevance of circadian rhythms to potassium homeostasis. PMID:23953800

  15. Metabolic and Nontranscriptional Circadian Clocks: Eukaryotes

    PubMed Central

    Reddy, Akhilesh B.; Rey, Guillaume

    2016-01-01

    Circadian clocks are cellular timekeeping mechanisms that coordinate behavior and physiology around the 24-h day in most living organisms. Misalignment of an organism’s clock with its environment is associated with long-term adverse fitness consequences, as exemplified by the link between circadian disruption and various age-related diseases in humans. Current eukaryotic models of the circadian oscillator rely on transcription/translation feedback loop mechanisms, supplemented with accessory cytosolic loops that connect them to cellular physiology. However, there is mounting evidence questioning the absolute necessity of transcription-based oscillators for circadian rhythmicity, supported by the recent discovery of oxidation-reduction cycles of peroxiredoxin proteins, which persist even in the absence of transcription. A more fundamental mechanism based on metabolic cycles could thus underlie circadian transcriptional and cytosolic rhythms, thereby promoting circadian oscillations to integral properties of cellular metabolism. PMID:24606143

  16. Molecular studies of the uncoupling protein

    SciTech Connect

    Ricquier, D.; Casteilla, L.; Bouillaud, F. )

    1991-06-01

    The uncoupling protein (UCP) is a proton/anion transporter found in the inner mitochondrial membrane of brown adipocyte. Although UCP has nor been detected in mitochondria from any other tissue, it shares structural and catalytic properties with several other mitochondrial carrier proteins. Although UCP was discovered only recently it is one of the most extensively studied mitochondrial carrier proteins.More recently, the mouse, rat, and human genes encoding for UCP have been isolated and sequenced. The availability of these various tools has led to several significant observations. UCP gene expression is strongly controlled at the level of transcription by signals that are activated after the stimulation of brown adipocytes by norepinephrine. The comparison of UCP gene with the genes encoding the adenine nucleotide translocator revealed the existence of structural and evolutionary homologies. Moreover, in humans the UCP gene and one form of adenine nucleotide translocator gene are located on the same chromosome. Recently, the expression of functional UCp in various heterologous systems was achieved (Xenopus oocytes, CHO cells, yeasts). These data will facilitate studies of the structure/function relationship in UCP (identification of residues involved in H{sup +} transport, Cl{sup {minus}} transport, nucleotide binding, mitochondrial targeting). Another aspect of the present research on UCP is the understanding of mechanisms that control UCP gene and the differentiated commitment of adipose precursor cells to thermogenic brown adipocytes.

  17. Properties of substituted 2-trifluoromethylbenzimidazoles as uncouplers of oxidative phosphorylation

    PubMed Central

    Jones, O. T. G.; Watson, W. A.

    1967-01-01

    1. The activity of 25 substituted 2-trifluoromethylbenzimidazoles in uncoupling oxidative phosphorylation by rat-liver mitochondria has been compared. 2. For halogen- or mixed-halogen- and alkyl-substituted analogues, uncoupling activity was proportional to the acidity of the imidazole −NH group. Tetrachloro-2-trifluoromethylbenzimidazole was the most active (50% uncoupling of oxidative phosphorylation at 7·9×10−8m, pK5·04). Nitro-substituted analogues were less active than predicted from pK considerations or from partition-coefficient measurements. 3. Introduction of an −NH2 or −CO2H substitutent caused a loss of uncoupling activity, as did alkylation at position 1 of the imidazole ring. 4. Benzimidazoles active as uncouplers stimulated mitochondrial adenosine triphosphatase but not all stimulated the oxidation of succinate in the absence of a phosphate acceptor. 5. 4,5-Dichloro-2-trifluoromethylbenzimidazole inhibited the succinate-oxidase system at about the same concentration required for uncoupling (0·52μm for 50% inhibition of both activities) and the site of this inhibition appears to lie between succinate dehydrogenase and cytochrome b. PMID:4291494

  18. Properties of substituted 2-trifluoromethylbenzimidazoles as uncouplers of oxidative phosphorylation.

    PubMed

    Jones, O T; Watson, W A

    1967-02-01

    1. The activity of 25 substituted 2-trifluoromethylbenzimidazoles in uncoupling oxidative phosphorylation by rat-liver mitochondria has been compared. 2. For halogen- or mixed-halogen- and alkyl-substituted analogues, uncoupling activity was proportional to the acidity of the imidazole -NH group. Tetrachloro-2-trifluoromethylbenzimidazole was the most active (50% uncoupling of oxidative phosphorylation at 7.9x10(-8)m, pK5.04). Nitro-substituted analogues were less active than predicted from pK considerations or from partition-coefficient measurements. 3. Introduction of an -NH(2) or -CO(2)H substitutent caused a loss of uncoupling activity, as did alkylation at position 1 of the imidazole ring. 4. Benzimidazoles active as uncouplers stimulated mitochondrial adenosine triphosphatase but not all stimulated the oxidation of succinate in the absence of a phosphate acceptor. 5. 4,5-Dichloro-2-trifluoromethylbenzimidazole inhibited the succinate-oxidase system at about the same concentration required for uncoupling (0.52mum for 50% inhibition of both activities) and the site of this inhibition appears to lie between succinate dehydrogenase and cytochrome b. PMID:4291494

  19. Effect of Circadian Rhythm on Clinical and Pathophysiological Conditions and Inflammation.

    PubMed

    Kizaki, Takako; Sato, Shogo; Shirato, Ken; Sakurai, Takuya; Ogasawara, Junetsu; Izawa, Tetsuya; Ohira, Yoshinobu; Suzuki, Kenji; Ohno, Hideki

    2015-01-01

    Circadian rhythms have long been known to regulate numerous physiological processes that vary across the diurnal cycle. The circadian clock system also controls various parameters of the immune system and its biological defense functions, allowing an organism to anticipate daily changes in activity and feeding and the associated risk of infection. Inflammation is an immune response triggered in living organisms in response to external stimuli. The risk of sepsis, an excessive inflammatory response, has been shown to have a diurnal variation. On the other hand, inflammatory responses are emerging to be induced by endogenous factors. Recent studies have suggested that chronic inflammation causes chronic diseases including rheumatoid arthritis, allergies, and aging-related diseases and that proteins encoded by clock genes affect the development of such chronic inflammatory diseases or increase the severity of their symptoms. Therefore, detailed understanding of circadian rhythm effects on inflammatory responses is expected to lead to new strategies for prevention or treatment of inflammatory diseases. PMID:26757391

  20. Circadian clocks: lessons from fish.

    PubMed

    Idda, M Laura; Bertolucci, Cristiano; Vallone, Daniela; Gothilf, Yoav; Sánchez-Vázquez, Francisco Javier; Foulkes, Nicholas S

    2012-01-01

    Our understanding of the molecular and cellular organization of the circadian timing system in vertebrates has increased enormously over the past decade. In large part, progress has been based on genetic studies in the mouse as well as on fundamental similarities between vertebrate and Drosophila clocks. The zebrafish was initially considered as a potentially attractive genetic model for identifying vertebrate clock genes. However, instead, fish have ultimately proven to be valuable complementary models for studying various aspects of clock biology. For example, many fish can shift from diurnal to nocturnal activity implying specific flexibility in their clock function. We have learned much about the function of light input pathways, and the ontogeny and function of the pineal organ, the fish central pacemaker. Finally, blind cavefish have also provided new insight into the evolution of the circadian clock under extreme environmental conditions. PMID:22877658

  1. Circadian Rhythm Control: Neurophysiological Investigations

    NASA Technical Reports Server (NTRS)

    Glotzbach, S. F.

    1985-01-01

    The suprachiasmatic nucleus (SCN) was implicated as a primary component in central nervous system mechanisms governing circadian rhythms. Disruption of the normal synchronization of temperature, activity, and other rhythms is detrimental to health. Sleep wake disorders, decreases in vigilance and performance, and certain affective disorders may result from or be exacerbated by such desynchronization. To study the basic neurophysiological mechanisms involved in entrainment of circadian systems by the environment, Parylene-coated, etched microwire electrode bundles were used to record extracellular action potentials from the small somata of the SCN and neighboring hypothalamic nuclei in unanesthetized, behaving animals. Male Wistar rats were anesthetized and chronically prepared with EEG ane EMG electrodes in addition to a moveable microdrive assembly. The majority of cells had firing rates 10 Hz and distinct populations of cells which had either the highest firing rate or lowest firing rate during sleep were seen.

  2. Circadian rhythmometry of mammalian radiosensitivity

    NASA Technical Reports Server (NTRS)

    Haus, E.; Halberg, F.; Loken, M. K.; Kim, Y. S.

    1974-01-01

    In the case of human bone marrow, the largest number of mitoses is seen in the evening in diurnally active men, mitotic activity being at a minimum in the morning. The opposite pattern is observed for nocturnal animals such as rats and mice on a regimen of light during the daytime alternating with darkness during the night hours. The entirety of these rhythms plays an important role in the organism's responses to environmental stimuli, including its resistance to potentially harmful agents. Conditions under which circadian rhythms can be observed and validated by inferential statistical means are discussed while emphasizing how artifacts of the laboratory environment can be shown to obscure circadian periodic variations in radiosensitivity.

  3. Circadian rhythms: glucocorticoids and arthritis.

    PubMed

    Cutolo, Maurizio; Sulli, Alberto; Pizzorni, Carmen; Secchi, Maria Elena; Soldano, Stefano; Seriolo, Bruno; Straub, Rainer H; Otsa, Kati; Maestroni, Georges J

    2006-06-01

    Circadian rhythms are driven by biological clocks and are endogenous in origin. Therefore, circadian changes in the metabolism or secretion of endogenous glucocorticoids are certainly responsible in part for the time-dependent changes observed in the inflammatory response and arthritis. More recently, melatonin (MLT), another circadian hormone that is the secretory product of the pineal gland, has been found implicated in the time-dependent inflammatory reaction with effects opposite those of cortisol. Interestingly, cortisol and MLT show an opposite response to the light. The light conditions in the early morning have a strong impact on the morning cortisol peak, whereas MLT is synthesized in a strictly nocturnal pattern. Recently, a diurnal rhythmicity in healthy humans between cellular (Th1 type) or humoral (Th2 type) immune responses has been found and related to immunomodulatory actions of cortisol and MLT. The interferon (IFN)-gamma/interleukin (IL)-10 ratio peaked during the early morning and correlated negatively with plasma cortisol and positively with plasma MLT. Accordingly, the intensity of the arthritic pain varies consistently as a function of the hour of the day: pain is greater after waking up in the morning than in the afternoon or evening. The reduced cortisol and adrenal androgen secretion, observed during testing in rheumatoid arthritis (RA) patients not treated with glucocoticoids, should be clearly considered as a "relative adrenal insufficiency" in the presence of a sustained inflammatory process, and allows Th1 type cytokines to be produced in higher amounts during the late night. In conclusion, the right timing (early morning) for the glucocorticoid therapy in arthritis is fundamental and well justified by the circadian rhythms of the inflammatory mechanisms. PMID:16855156

  4. Circadian rhythms and cancer chemotherapy.

    PubMed

    Wood, P A; Hrushesky, W J

    1996-01-01

    Temporal coordination of biologic processes with an approximately 24-h cycle (circadian) is common throughout the animal and plant kingdom and even in some prokaryotic organisms. In all organisms studied, the capability to keep biologic time is an inherited characteristic located intracellularly. These biological clocks anticipate and get the organism ready for regular environmental changes. This indicates both the ubiquity and the weight of the selective environmental pressure to keep time accurately. Several molecular strategies for biologic time keeping have apparently arisen independently several times throughout evolution. The anatomic, biochemical, and molecular mechanisms of the clock are in the process of being defined. This temporal organization at the cellular, organ, and organismic levels results in predictable differences in the capacity of plants, animals, and human beings to respond to therapeutic interventions administered at different times throughout important biologic cycles (e.g., circadian timed therapy). In the treatment of the cancer bearing host, circadian timing of surgery, anticancer drugs, radiation therapy, and biologic agents can result in improved toxicity profiles, enhanced tumor control, and improved host survival. The routine clinical application of such principles is facilitated by the availability of programmable drug delivery devices. Rhythm frequency ranges other than 24-h (e.g., low frequency: menstrual; high frequency: 10 to 120 min) may also be important to understanding health and disease and to designing successful therapy in diseases as diverse as cancer, infertility, and diabetes. PMID:8959371

  5. Uncoupling of bone turnover following hip replacement.

    PubMed

    Whitson, H; DeMarco, D; Reilly, D; Murphy, S; Yett, H S; Mattingly, D; Greenspan, S L

    2002-07-01

    Studies using total hip replacement surgery as a model for acute hip injury have shown that bone mineral density of the proximal femur decreases 6-18% in the 6 months following surgery. To examine the acute biochemical mechanism associated with bone loss, we measured two indicators of bone formation [serum osteocalcin (OC), serum bone-specific alkaline phosphatase (BSAP)], as well as two markers for bone resorption [urine and serum N-telopeptide cross-linked collagen type 1 (NTx)], in 20 patients (10 men, 10 women, mean age 59.4 years) prior to hip replacement and 1-2 days postsurgery. The average OC value (ng/ml) decreased by 57.3% following surgery (7.5 +/- 4.3 to 3.2 +/- 1.1, P <0.001), and the average BSAP level (U/L) decreased by 27.6% (19.9 +/- 5.6 to 14.4 +/- 3.7, P <0.001). In contrast, levels of urine NTx (nmol BCE/mmol Cr) did not change significantly after the surgery (73.9 +/- 47.2 to 70.1 +/- 29.7). In addition, there was no change in serum NTx (nmol BCE) after surgery (11.8 +/- 2.3 to 11.8 +/- 3.0). Six months after surgery, bone mass had not changed significantly from baseline. These findings suggest that there is an uncoupling of bone turnover following hip replacement surgery which is characterized by significant reductions in bone formation without compensatory decreases in bone resorption, potentially leading to bone loss. Longer periods of follow-up are needed to assess long-term bone mass changes. PMID:12200656

  6. Uncoupled thermoelasticity solutions applied on beam dumps

    NASA Astrophysics Data System (ADS)

    Ouzia, A.; Antonakakis, T.

    2016-06-01

    In particle accelerators the process of beam absorption is vital. At CERN particle beams are accelerated at energies of the order of TeV. In the event of a system failure or following collisions, the beam needs to be safely absorbed by dedicated protecting blocks. The thermal shock caused by the rapid energy deposition within the absorbing block causes thermal stresses that may rise above critical levels. The present paper provides a convenient expression of such stresses under hypotheses described hereafter. The temperature field caused by the beam energy deposition is assumed to be Gaussian. Such a field models a non-diffusive heat deposition. These effects are described as thermoelastic as long as the stresses remain below the proportional limit and can be analytically modeled by the coupled equations of thermoelasticity. The analytical solution to the uncoupled thermoelastic problem in an infinite domain is presented herein and matched with a finite unit radius sphere. The assumption of zero diffusion as well as the validity of the match with a finite geometry is quantified such that the obtained solutions can be rigorously applied to real problems. Furthermore, truncated series solutions, which are not novel, are used for comparison purposes. All quantities are nondimensional and the problem reduces to a dependence of five dimensionless parameters. The equations of elasticity are presented in the potential formulation where the shear potential is assumed to be nil due to the source being a gradient and the absence of boundaries. Nevertheless equivalent three-dimensional stresses are computed using the compressive potential and optimized using standard analytical optimization methods. An alternative algorithm for finding the critical points of the three-dimensional stress function is presented. Finally, a case study concerning the proton synchrotron booster dump is presented where the aforementioned analytical solutions are used and the preceding assumptions

  7. Molecular Mechanisms of Circadian Regulation During Spaceflight

    NASA Technical Reports Server (NTRS)

    Zanello, S. B.; Boyle, R.

    2012-01-01

    The physiology of both vertebrates and invertebrates follows internal rhythms coordinated in phase with the 24-hour daily light cycle. This circadian clock is governed by a central pacemaker, the suprachiasmatic nucleus (SCN) in the brain. However, peripheral circadian clocks or oscillators have been identified in most tissues. How the central and peripheral oscillators are synchronized is still being elucidated. Light is the main environmental cue that entrains the circadian clock. Under the absence of a light stimulus, the clock continues its oscillation in a free-running condition. In general, three functional compartments of the circadian clock are defined. The vertebrate retina contains endogenous clocks that control many aspects of retinal physiology, including retinal sensitivity to light, neurohormone synthesis (melatonin and dopamine), rod disk shedding, signalling pathways and gene expression. Neurons with putative local circadian rhythm generation are found among all the major neuron populations in the mammalian retina. In the mouse, clock genes and function are more localized to the inner retinal and ganglion cell layers. The photoreceptor, however, secrete melatonin which may still serve a an important circadian signal. The reception and transmission of the non-visual photic stimulus resides in a small subpopulation (1-3%) or retinal ganglion cells (RGC) that express the pigment melanopsin (Opn4) and are called intrisically photoreceptive RGC (ipRGC). Melanopsin peak absorption is at 420 nm and all the axons of the ipRGC reach the SCN. A common countermeasure for circadian re-entrainment utilizes blue-green light to entrain the circadian clock and mitigate the risk of fatigue and health and performance decrement due to circadian rhythm disruption. However, an effective countermeasure targeting the photoreceptor system requires that the basic circadian molecular machinery remains intact during spaceflight. We hypothesize that spaceflight may affect ip

  8. Circadian dysregulation disrupts bile acid homeostasis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bile acids are potentially toxic compounds and their levels of hepatic production, uptake, and export are tightly regulated by many inputs, including circadian rhythm. We tested the impact of disrupting the peripheral circadian clock on integral steps of bile acid homeostasis. Both restricted feedi...

  9. Circadian dysfunction induces leptin resistance in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Circadian disruption is associated with obesity, implicating the central clock in body weight control. Our comprehensive screen of wild-type and three circadian mutant mouse models, with or without chronic jet lag, shows that distinct genetic and physiologic interventions differentially disrupt over...

  10. A colorful model of the circadian clock.

    PubMed

    Reppert, Steven M

    2006-01-27

    The migration of the colorful monarch butterfly provides biologists with a unique model system with which to study the cellular and molecular mechanisms underlying a sophisticated circadian clock. The monarch circadian clock is involved in the induction of the migratory state and navigation over long distances, using the sun as a compass. PMID:16439193

  11. Identifying Novel Transcriptional Regulators with Circadian Expression

    PubMed Central

    Schick, Sandra; Thakurela, Sudhir; Fournier, David; Hampel, Mareike Hildegard

    2015-01-01

    Organisms adapt their physiology and behavior to the 24-h day-night cycle to which they are exposed. On a cellular level, this is regulated by intrinsic transcriptional-translational feedback loops that are important for maintaining the circadian rhythm. These loops are organized by members of the core clock network, which further regulate transcription of downstream genes, resulting in their circadian expression. Despite progress in understanding circadian gene expression, only a few players involved in circadian transcriptional regulation, including transcription factors, epigenetic regulators, and long noncoding RNAs, are known. Aiming to discover such genes, we performed a high-coverage transcriptome analysis of a circadian time course in murine fibroblast cells. In combination with a newly developed algorithm, we identified many transcription factors, epigenetic regulators, and long intergenic noncoding RNAs that are cyclically expressed. In addition, a number of these genes also showed circadian expression in mouse tissues. Furthermore, the knockdown of one such factor, Zfp28, influenced the core clock network. Mathematical modeling was able to predict putative regulator-effector interactions between the identified circadian genes and may help for investigations into the gene regulatory networks underlying circadian rhythms. PMID:26644408

  12. INTRINSIC CIRCADIAN RHYTHMS IN THE CARDIOMYOCYTE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The cardiomyocyte possesses a fully functional circadian clock. Circadian clocks are a set of proteins that generate self-sustained transcriptional positive and negative feedback loops with a free-running period of 24 hours. These intracellular molecular mechanisms confer the selective advantage of ...

  13. Circadian regulation of ATP release in astrocytes.

    PubMed

    Marpegan, Luciano; Swanstrom, Adrienne E; Chung, Kevin; Simon, Tatiana; Haydon, Philip G; Khan, Sanjoy K; Liu, Andrew C; Herzog, Erik D; Beaulé, Christian

    2011-06-01

    Circadian clocks sustain daily oscillations in gene expression, physiology, and behavior, relying on transcription-translation feedback loops of clock genes for rhythm generation. Cultured astrocytes display daily oscillations of extracellular ATP, suggesting that ATP release is a circadian output. We hypothesized that the circadian clock modulates ATP release via mechanisms that regulate acute ATP release from glia. To test the molecular basis for circadian ATP release, we developed methods to measure in real-time ATP release and Bmal1::dLuc circadian reporter expression in cortical astrocyte cultures from mice of different genotypes. Daily rhythms of gene expression required functional Clock and Bmal1, both Per1 and Per2, and both Cry1 and Cry2 genes. Similarly, high-level, circadian ATP release also required a functional clock mechanism. Whereas blocking IP(3) signaling significantly disrupted ATP rhythms with no effect on Bmal1::dLuc cycling, blocking vesicular release did not alter circadian ATP release or gene expression. We conclude that astrocytes depend on circadian clock genes and IP(3) signaling to express daily rhythms in ATP release. PMID:21653839

  14. Circadian regulation of ATP release in astrocytes

    PubMed Central

    Marpegan, Luciano; Swanstrom, Adrienne E.; Chung, Kevin; Simon, Tatiana; Haydon, Philip G.; Khan, Sanjoy K.; Liu, Andrew C.; Herzog, Erik D.; Beaulé, Christian

    2011-01-01

    Circadian clocks sustain daily oscillations in gene expression, physiology and behavior, relying on transcription-translation feedback loops of clock genes for rhythm generation. Cultured astrocytes display daily oscillations of extracellular ATP, suggesting that ATP release is a circadian output. We hypothesized that the circadian clock modulates ATP release via mechanisms that regulate acute ATP release from glia. To test the molecular basis for circadian ATP release, we developed methods to measure in real-time ATP release and Bmal1::dLuc circadian reporter expression in cortical astrocyte cultures from mice of different genotypes. Daily rhythms of gene expression required functional Clock and Bmal1, both Per1 and Per2, and both Cry1 and Cry2 genes. Similarly, high level, circadian ATP release also required a functional clock mechanism. Whereas blocking IP3 signaling significantly disrupted ATP rhythms with no effect on Bmal1::dLuc cycling, blocking vesicular release did not alter circadian ATP release or gene expression. We conclude that astrocytes depend on circadian clock genes and IP3 signaling to express daily rhythms in ATP release. PMID:21653839

  15. The Circadian Clock and Human Health.

    PubMed

    Roenneberg, Till; Merrow, Martha

    2016-05-23

    Epidemiological studies provided the first evidence suggesting a connection between the circadian clock and human health. Mutant mice convincingly demonstrate the principle that dysregulation of the circadian system leads to a multitude of pathologies. Chrono-medicine is one of the most important upcoming themes in the field of circadian biology. Although treatments counteracting circadian dysregulation are already being applied (e.g., prescribing strong and regular zeitgebers), we need to comprehend entrainment throughout the body's entire circadian network before understanding the mechanisms that tie circadian dysregulation to pathology. Here, we attempt to provide a systematic approach to understanding the connection between the circadian clock and health. This taxonomy of (mis)alignments on one hand exposes how little we know about entrainment within any organism and which 'eigen-zeitgeber' signals are used for entrainment by the different cells and tissues. On the other hand, it provides focus for experimental approaches and tools that will logically map out how circadian systems contribute to disease as well as how we can treat and prevent them. PMID:27218855

  16. Circadian rhythms in myocardial metabolism and function

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Circadian rhythms in myocardial function and dysfunction are firmly established in both animal models and humans. For example, the incidence of arrhythmias and sudden cardiac death increases when organisms awaken. Such observations have classically been explained by circadian rhythms in neurohumoral...

  17. THE INTRINSIC CIRCADIAN CLOCK WITHIN THE CARDIOMYOCYTE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Circadian clocks are intracellular molecular mechanisms that allow the cell to anticipate the time of day. We have previously reported that the intact rat heart expresses the major components of the circadian clock, of which its rhythmic expression in vivo is consistent with the operation of a fully...

  18. Circadian regulation of insect olfactory learning.

    PubMed

    Decker, Susan; McConnaughey, Shannon; Page, Terry L

    2007-10-01

    Olfactory learning in insects has been used extensively for studies on the neurobiology, genetics, and molecular biology of learning and memory. We show here that the ability of the cockroach Leucophaea maderae to acquire olfactory memories is regulated by the circadian system. We investigated the effect of training and testing at different circadian phases on performance in an odor-discrimination test administered 30 min after training (short-term memory) or 48 h after training (long-term memory). When odor preference was tested by allowing animals to choose between two odors (peppermint and vanilla), untrained cockroaches showed a clear preference for vanilla at all circadian phases, indicating that there was no circadian modulation of initial odor preference or ability to discriminate between odors. After differential conditioning, in which peppermint odor was associated with a positive unconditioned stimulus of sucrose solution and vanilla odor was associated with a negative unconditioned stimulus of saline solution, cockroaches conditioned in the early subjective night showed a strong preference for peppermint and retained the memory for at least 2 days. Animals trained and tested at other circadian phases showed significant deficits in performance for both short- and long-term memory. Performance depended on the circadian time (CT) of training, not the CT of testing, and results indicate that memory acquisition rather than retention or recall is modulated by the circadian system. The data suggest that the circadian system can have profound effects on olfactory learning in insects. PMID:17893338

  19. [Circadian rhythm sleep disorders in psychiatric diseases].

    PubMed

    Bromundt, Vivien

    2014-11-01

    Circadian rhythm sleep disorders are prevalent among psychiatric patients. This is most probable due to a close relationship between functional disturbances of the internal clock, sleep regulation and mental health. Mechanisms on molecular level of the circadian clock and neurotransmitter signalling are involved in the development of both disorders. Moreover, circadian disorders and psychiatric diseases favour each other by accessory symptoms such as stress or social isolation. Actimetry to objectively quantify the rest-activity cycle and salivary melatonin profiles as marker for the circadian phase help to diagnose circadian rhythm sleep disorders in psychiatric patients. Chronotherapeutics such as bright light therapy, dark therapy, melatonin administration, and wake therapy are used to synchronise and consolidate circadian rhythms and help in the treatment of depression and other psychiatric disorders, but are still neglected in medicine. More molecular to behavioural research is needed for the understanding of the development of circadian disorders and their relationship to psychiatric illnesses. This will help to boost the awareness and treatment of circadian rhythm sleep disorders in psychiatry. PMID:25377290

  20. eNOS-uncoupling in age-related erectile dysfunction

    PubMed Central

    Johnson, JM; Bivalacqua, TJ; Lagoda, GA; Burnett, AL; Musicki, B

    2011-01-01

    Aging is associated with ED. Although age-related ED is attributed largely to increased oxidative stress and endothelial dysfunction in the penis, the molecular mechanisms underlying this effect are not fully defined. We evaluated whether endothelial nitric oxide synthase (eNOS) uncoupling in the aged rat penis is a contributing mechanism. Correlatively, we evaluated the effect of replacement with eNOS cofactor tetrahydrobiopterin (BH4) on erectile function in the aged rats. Male Fischer 344 ‘young’ (4-month-old) and ‘aged’ (19-month-old) rats were treated with a BH4 precursor sepiapterin (10 mg/kg intraperitoneally) or vehicle for 4 days. After 1-day washout, erectile function was assessed in response to electrical stimulation of the cavernous nerve. Endothelial dysfunction (eNOS uncoupling) and oxidative stress (thiobarbituric acid reactive substances, TBARS) were measured by conducting western blot in penes samples. Erectile response was significantly reduced in aged rats, whereas eNOS uncoupling and TBARS production were significantly increased in the aged rat penis compared with young rats. Sepiapterin significantly improved erectile response in aged rats and prevented increase in TBARS production, but did not affect eNOS uncoupling in the penis of aged rats. These findings suggest that aging induces eNOS uncoupling in the penis, resulting in increased oxidative stress and ED. PMID:21289638

  1. Circadian regulation of human cortical excitability.

    PubMed

    Ly, Julien Q M; Gaggioni, Giulia; Chellappa, Sarah L; Papachilleos, Soterios; Brzozowski, Alexandre; Borsu, Chloé; Rosanova, Mario; Sarasso, Simone; Middleton, Benita; Luxen, André; Archer, Simon N; Phillips, Christophe; Dijk, Derk-Jan; Maquet, Pierre; Massimini, Marcello; Vandewalle, Gilles

    2016-01-01

    Prolonged wakefulness alters cortical excitability, which is essential for proper brain function and cognition. However, besides prior wakefulness, brain function and cognition are also affected by circadian rhythmicity. Whether the regulation of cognition involves a circadian impact on cortical excitability is unknown. Here, we assessed cortical excitability from scalp electroencephalography (EEG) responses to transcranial magnetic stimulation in 22 participants during 29 h of wakefulness under constant conditions. Data reveal robust circadian dynamics of cortical excitability that are strongest in those individuals with highest endocrine markers of circadian amplitude. In addition, the time course of cortical excitability correlates with changes in EEG synchronization and cognitive performance. These results demonstrate that the crucial factor for cortical excitability, and basic brain function in general, is the balance between circadian rhythmicity and sleep need, rather than sleep homoeostasis alone. These findings have implications for clinical applications such as non-invasive brain stimulation in neurorehabilitation. PMID:27339884

  2. Genetic Basis of Human Circadian Rhythm Disorders

    PubMed Central

    Jones, Christopher R.; Huang, Angela L.; Ptáček, Louis J.; Fu, Ying-Hui

    2012-01-01

    Circadian rhythm disorders constitute a group of phenotypes that usually present as altered sleep-wake schedules. Until a human genetics approach was applied to investigate these traits, the genetic components regulating human circadian rhythm and sleep behaviors remained mysterious. Steady advances in the last decade have dramatically improved our understanding of the genes involved in circadian rhythmicity and sleep regulation. Finding these genes presents new opportunities to use a wide range of approaches, including in vitro molecular studies and in vivo animal modeling, to elevate our understanding of how sleep and circadian rhythms are regulated and maintained. Ultimately, this knowledge will reveal how circadian and sleep disruption contribute to various ailments and shed light on how best to maintain and recover good health. PMID:22849821

  3. Circadian regulation of human cortical excitability

    PubMed Central

    Ly, Julien Q. M.; Gaggioni, Giulia; Chellappa, Sarah L.; Papachilleos, Soterios; Brzozowski, Alexandre; Borsu, Chloé; Rosanova, Mario; Sarasso, Simone; Middleton, Benita; Luxen, André; Archer, Simon N.; Phillips, Christophe; Dijk, Derk-Jan; Maquet, Pierre; Massimini, Marcello; Vandewalle, Gilles

    2016-01-01

    Prolonged wakefulness alters cortical excitability, which is essential for proper brain function and cognition. However, besides prior wakefulness, brain function and cognition are also affected by circadian rhythmicity. Whether the regulation of cognition involves a circadian impact on cortical excitability is unknown. Here, we assessed cortical excitability from scalp electroencephalography (EEG) responses to transcranial magnetic stimulation in 22 participants during 29 h of wakefulness under constant conditions. Data reveal robust circadian dynamics of cortical excitability that are strongest in those individuals with highest endocrine markers of circadian amplitude. In addition, the time course of cortical excitability correlates with changes in EEG synchronization and cognitive performance. These results demonstrate that the crucial factor for cortical excitability, and basic brain function in general, is the balance between circadian rhythmicity and sleep need, rather than sleep homoeostasis alone. These findings have implications for clinical applications such as non-invasive brain stimulation in neurorehabilitation. PMID:27339884

  4. Metabolic consequences of sleep and circadian disorders

    PubMed Central

    Depner, Christopher M.; Stothard, Ellen R.; Wright, Kenneth P.

    2014-01-01

    Sleep and circadian rhythms modulate or control daily physiological patterns with importance for normal metabolic health. Sleep deficiencies associated with insufficient sleep schedules, insomnia with short-sleep duration, sleep apnea, narcolepsy, circadian misalignment, shift work, night eating syndrome and sleep-related eating disorder may all contribute to metabolic dysregulation. Sleep deficiencies and circadian disruption associated with metabolic dysregulation may contribute to weight gain, obesity, and type 2 diabetes potentially by altering timing and amount of food intake, disrupting energy balance, inflammation, impairing glucose tolerance and insulin sensitivity. Given the rapidly increasing prevalence of metabolic diseases, it is important to recognize the role of sleep and circadian disruption in the development, progression, and morbidity of metabolic disease. Some findings indicate sleep treatments and countermeasures improve metabolic health, but future clinical research investigating prevention and treatment of chronic metabolic disorders through treatment of sleep and circadian disruption is needed. PMID:24816752

  5. Circadian light-input pathways in Drosophila.

    PubMed

    Yoshii, Taishi; Hermann-Luibl, Christiane; Helfrich-Förster, Charlotte

    2016-01-01

    Light is the most important environmental cue to entrain the circadian clock in most animals. In the fruit fly Drosophila melanogaster, the light entrainment mechanisms of the clock have been well-studied. The Drosophila brain contains approximately 150 neurons that rhythmically express circadian clock genes. These neurons are called "clock neurons" and control behavioral activity rhythms. Many clock neurons express the Cryptochrome (CRY) protein, which is sensitive to UV and blue light, and thus enables clock neurons deep in the brain to directly perceive light. In addition to the CRY protein, external photoreceptors in the Drosophila eyes play an important role in circadian light-input pathways. Recent studies have provided new insights into the mechanisms that integrate these light inputs into the circadian network of the brain. In this review, we will summarize the current knowledge on the light entrainment pathways in the Drosophila circadian clock. PMID:27066180

  6. Sludge reduction by uncoupling metabolism: SBR tests with para-nitrophenol and a commercial uncoupler.

    PubMed

    Zuriaga-Agustí, E; Mendoza-Roca, J A; Bes-Piá, A; Alonso-Molina, J L; Amorós-Muñoz, I

    2016-11-01

    Nowadays cost reduction is a very important issue in wastewater treatment plants. One way, is to minimize the sludge production. Microorganisms break down the organic matter into inorganic compounds through catabolism. Uncoupling metabolism is a method which promote catabolism reactions instead of anabolism ones, where adenosine triphosphate synthesis is inhibited. In this work, the influence of the addition of para-nitrophenol and a commercial reagent to a sequencing batch reactor (SBR) on sludge production and process performance has been analyzed. Three laboratory SBRs were operated in parallel to compare the effect of the addition of both reagents with a control reactor. SBRs were fed with synthetic wastewater and were operated with the same conditions. Results showed that sludge production was slightly reduced for the tested para-nitrophenol concentrations (20 and 25 mg/L) and for a LODOred dose of 1 mL/day. Biological process performance was not influenced and high COD removals were achieved. PMID:27505165

  7. The circadian system: plasticity at many levels.

    PubMed

    Muraro, N I; Pírez, N; Ceriani, M F

    2013-09-01

    Over the years it has become crystal clear that a variety of processes encode time-of-day information, ranging from gene expression, protein stability, or subcellular localization of key proteins, to the fine tuning of network properties and modulation of input signals, ultimately ensuring that physiology and behavior are properly synchronized to a changing environment. The purpose of this review is to put forward examples (as opposed to generate a comprehensive revision of all the available literature) in which the circadian system displays a remarkable degree of plasticity, from cell autonomous to circuit-based levels. In the literature, the term circadian plasticity has been used to refer to different concepts. The obvious one, more literally, refers to any change that follows a circadian (circa=around, diem=day) pattern, i.e. a daily change of a given parameter. The discovery of daily remodeling of neuronal structures will be referred herein as structural circadian plasticity, and represents an additional and novel phenomenon modified daily. Finally, any plasticity that has to do with a circadian parameter would represent a type of circadian plasticity; as an example, adjustments that allow organisms to adapt their daily behavior to the annual changes in photoperiod is a form of circadian plasticity at a higher organizational level, which is an emergent property of the whole circadian system. Throughout this work we will revisit these types of changes by reviewing recent literature delving around circadian control of clock outputs, from the most immediate ones within pacemaker neurons to the circadian modulation of rest-activity cycles. PMID:23727010

  8. Molecular cloning of amphioxus uncoupling protein and assessment of its uncoupling activity using a yeast heterologous expression system

    SciTech Connect

    Chen, Kun; Sun, Guoxun; Lv, Zhiyuan; Wang, Chen; Jiang, Xueyuan; Li, Donghai; Zhang, Chenyu

    2010-10-01

    Research highlights: {yields} Invertebrates, for example amphioxus, do express uncoupling proteins. {yields} Both the sequence and the uncoupling activity of amphioxus UCP resemble UCP2. {yields} UCP1 is the only UCP that can form dimer on yeast mitochondria. -- Abstract: The present study describes the molecular cloning of a novel cDNA fragment from amphioxus (Branchiostoma belcheri) encoding a 343-amino acid protein that is highly homologous to human uncoupling proteins (UCP), this protein is therefore named amphioxus UCP. This amphioxus UCP shares more homology with and is phylogenetically more related to mammalian UCP2 as compared with UCP1. To further assess the functional similarity of amphioxus UCP to mammalian UCP1 and -2, the amphioxus UCP, rat UCP1, and human UCP2 were separately expressed in Saccharomyces cerevisiae, and the recombinant yeast mitochondria were isolated and assayed for the state 4 respiration rate and proton leak, using pYES2 empty vector as the control. UCP1 increased the state 4 respiration rate by 2.8-fold, and the uncoupling activity was strongly inhibited by GDP, while UCP2 and amphioxus UCP only increased the state 4 respiration rate by 1.5-fold and 1.7-fold in a GDP-insensitive manner, moreover, the proton leak kinetics of amphioxus UCP was very similar to UCP2, but much different from UCP1. In conclusion, the amphioxus UCP has a mild, unregulated uncoupling activity in the yeast system, which resembles mammalian UCP2, but not UCP1.

  9. An Energy-Optimal Approach for Entrainment of Uncertain Circadian Oscillators

    PubMed Central

    Wilson, Dan; Moehlis, Jeff

    2014-01-01

    We develop an approach to find an energy-optimal stimulus that entrains an ensemble of uncertain, uncoupled limit cycle oscillators. Furthermore, when entrainment occurs, the phase shift between oscillators is constrained to be less than a predetermined amount. This approach is illustrated for a model of Drosophila circadian activity, for which it performs better than a standard 24-h light-dark cycle. Because this method explicitly accounts for uncertainty in a given system and only requires information that is experimentally obtainable, it is well suited for experimental implementation and could ultimately represent what is believed to be a novel treatment for patients suffering from advanced/delayed sleep-phase syndrome. PMID:25296328

  10. Insulin post-transcriptionally modulates Bmal1 protein to affect the hepatic circadian clock.

    PubMed

    Dang, Fabin; Sun, Xiujie; Ma, Xiang; Wu, Rong; Zhang, Deyi; Chen, Yaqiong; Xu, Qian; Wu, Yuting; Liu, Yi

    2016-01-01

    Although food availability is a potent synchronizer of the peripheral circadian clock in mammals, the underlying mechanisms are unclear. Here, we show that hepatic Bmal1, a core transcription activator of the molecular clock, is post-transcriptionally regulated by signals from insulin, an important hormone that is temporally controlled by feeding. Insulin promotes postprandial Akt-mediated Ser42-phosphorylation of Bmal1 to induce its dissociation from DNA, interaction with 14-3-3 protein and subsequently nuclear exclusion, which results in the suppression of Bmal1 transcriptional activity. Inverted feeding cycles not only shift the phase of daily insulin oscillation, but also elevate the amplitude due to food overconsumption. This enhanced and reversed insulin signalling initiates the reset of clock gene rhythms by altering Bmal1 nuclear accumulation in mouse liver. These results reveal the molecular mechanism of insulin signalling in regulating peripheral circadian rhythms. PMID:27576939

  11. The on/off switches of the mitochondrial uncoupling proteins

    PubMed Central

    Azzu, Vian; Brand, Martin D.

    2013-01-01

    Mitochondrial uncoupling proteins disengage substrate oxidation from ADP phosphorylation by dissipating the proton electrochemical gradient that is required for ATP synthesis. In doing this, the archetypal uncoupling protein, UCP1, mediates adaptive thermogenesis. By contrast, its paralogues UCP2 and UCP3 are not thought to mediate whole body thermogenesis in mammals. Instead, they have been implicated in a variety of physiological and pathological processes, including protection from oxidative stress, negative regulation of glucose sensing systems and the adaptation of fatty acid oxidation capacity to starving. Although much work has been devoted to how these proteins are activated, little is known of the mechanisms that reverse this activation. PMID:20006514

  12. Incorporating Uncoupled Stress Effects into FEHM Modeling of HDR Reservoirs

    SciTech Connect

    Birdsell, Stephen A.

    1988-07-01

    Thermal and pressure-induced stress effects are extremely important aspects of modeling HDR reservoirs because these effects will control the transient behavior of reservoir flow impedance, water loss and flow distribution. Uncoupled stress effects will be added to the existing three-dimensional Finite Element Heat and Mass Transfer (FEHM) model (Birdsell, 1988) in order to more realistically simulate HDR reservoirs. Stress effects will be uncoupled in the new model since a fully-coupled code will not be available for some time.

  13. Nonphotic entrainment of the human circadian pacemaker

    NASA Technical Reports Server (NTRS)

    Klerman, E. B.; Rimmer, D. W.; Dijk, D. J.; Kronauer, R. E.; Rizzo, J. F. 3rd; Czeisler, C. A.

    1998-01-01

    In organisms as diverse as single-celled algae and humans, light is the primary stimulus mediating entrainment of the circadian biological clock. Reports that some totally blind individuals appear entrained to the 24-h day have suggested that nonphotic stimuli may also be effective circadian synchronizers in humans, although the nonphotic stimuli are probably comparatively weak synchronizers, because the circadian rhythms of many totally blind individuals "free run" even when they maintain a 24-h activity-rest schedule. To investigate entrainment by nonphotic synchronizers, we studied the endogenous circadian melatonin and core body temperature rhythms of 15 totally blind subjects who lacked conscious light perception and exhibited no suppression of plasma melatonin in response to ocular bright-light exposure. Nine of these fifteen blind individuals were able to maintain synchronization to the 24-h day, albeit often at an atypical phase angle of entrainment. Nonphotic stimuli also synchronized the endogenous circadian rhythms of a totally blind individual to a non-24-h schedule while living in constant near darkness. We conclude that nonphotic stimuli can entrain the human circadian pacemaker in some individuals lacking ocular circadian photoreception.

  14. Circadian Clock Regulates Bone Resorption in Mice.

    PubMed

    Xu, Cheng; Ochi, Hiroki; Fukuda, Toru; Sato, Shingo; Sunamura, Satoko; Takarada, Takeshi; Hinoi, Eiichi; Okawa, Atsushi; Takeda, Shu

    2016-07-01

    The circadian clock controls many behavioral and physiological processes beyond daily rhythms. Circadian dysfunction increases the risk of cancer, obesity, and cardiovascular and metabolic diseases. Although clinical studies have shown that bone resorption is controlled by circadian rhythm, as indicated by diurnal variations in bone resorption, the molecular mechanism of circadian clock-dependent bone resorption remains unknown. To clarify the role of circadian rhythm in bone resorption, aryl hydrocarbon receptor nuclear translocator-like (Bmal1), a prototype circadian gene, was knocked out specifically in osteoclasts. Osteoclast-specific Bmal1-knockout mice showed a high bone mass phenotype due to reduced osteoclast differentiation. A cell-based assay revealed that BMAL1 upregulated nuclear factor of activated T cells, cytoplasmic, calcineurin-dependent 1 (Nfatc1) transcription through its binding to an E-box element located on the Nfatc1 promoter in cooperation with circadian locomotor output cycles kaput (CLOCK), a heterodimer partner of BMAL1. Moreover, steroid receptor coactivator (SRC) family members were shown to interact with and upregulate BMAL1:CLOCK transcriptional activity. Collectively, these data suggest that bone resorption is controlled by osteoclastic BMAL1 through interactions with the SRC family and binding to the Nfatc1 promoter. © 2016 American Society for Bone and Mineral Research. PMID:26841172

  15. Circadian Rhythms, Sleep Deprivation, and Human Performance

    PubMed Central

    Goel, Namni; Basner, Mathias; Rao, Hengyi; Dinges, David F.

    2014-01-01

    Much of the current science on, and mathematical modeling of, dynamic changes in human performance within and between days is dominated by the two-process model of sleep–wake regulation, which posits a neurobiological drive for sleep that varies homeostatically (increasing as a saturating exponential during wakefulness and decreasing in a like manner during sleep), and a circadian process that neurobiologically modulates both the homeostatic drive for sleep and waking alertness and performance. Endogenous circadian rhythms in neurobehavioral functions, including physiological alertness and cognitive performance, have been demonstrated using special laboratory protocols that reveal the interaction of the biological clock with the sleep homeostatic drive. Individual differences in circadian rhythms and genetic and other components underlying such differences also influence waking neurobehavioral functions. Both acute total sleep deprivation and chronic sleep restriction increase homeostatic sleep drive and degrade waking neurobehavioral functions as reflected in sleepiness, attention, cognitive speed, and memory. Recent evidence indicating a high degree of stability in neurobehavioral responses to sleep loss suggests that these trait-like individual differences are phenotypic and likely involve genetic components, including circadian genes. Recent experiments have revealed both sleep homeostatic and circadian effects on brain metabolism and neural activation. Investigation of the neural and genetic mechanisms underlying the dynamically complex interaction between sleep homeostasis and circadian systems is beginning. A key goal of this work is to identify biomarkers that accurately predict human performance in situations in which the circadian and sleep homeostatic systems are perturbed. PMID:23899598

  16. Design principles underlying circadian clocks.

    PubMed Central

    Rand, D. A.; Shulgin, B. V.; Salazar, D.; Millar, A. J.

    2004-01-01

    A fundamental problem for regulatory networks is to understand the relation between form and function: to uncover the underlying design principles of the network. Circadian clocks present a particularly interesting instance, as recent work has shown that they have complex structures involving multiple interconnected feedback loops with both positive and negative feedback. While several authors have speculated on the reasons for this, a convincing explanation is still lacking.We analyse both the flexibility of clock networks and the relationships between various desirable properties such as robust entrainment, temperature compensation, and stability to environmental variations and parameter fluctuations. We use this to argue that the complexity provides the flexibility necessary to simultaneously attain multiple key properties of circadian clocks. As part of our analysis we show how to quantify the key evolutionary aims using infinitesimal response curves, a tool that we believe will be of general utility in the analysis of regulatory networks. Our results suggest that regulatory and signalling networks might be much less flexible and of lower dimension than their apparent complexity would suggest. PMID:16849158

  17. Association of intrinsic circadian period with morningness-eveningness, usual wake time, and circadian phase

    NASA Technical Reports Server (NTRS)

    Duffy, J. F.; Rimmer, D. W.; Czeisler, C. A.

    2001-01-01

    The biological basis of preferences for morning or evening activity patterns ("early birds" and "night owls") has been hypothesized but has remained elusive. The authors reported that, compared with evening types, the circadian pacemaker of morning types was entrained to an earlier hour with respect to both clock time and wake time. The present study explores a chronobiological mechanism by which the biological clock of morning types may be set to an earlier hour. Intrinsic period, a fundamental property of the circadian system, was measured in a month-long inpatient study. A subset of participants also had their circadian phase assessed. Participants completed a morningness-eveningness questionnaire before study. Circadian period was correlated with morningness-eveningness, circadian phase, and wake time, demonstrating that a fundamental property of the circadian pacemaker is correlated with the behavioral trait of morningness-eveningness.

  18. Characterisation of circadian rhythms of various duckweeds.

    PubMed

    Muranaka, T; Okada, M; Yomo, J; Kubota, S; Oyama, T

    2015-01-01

    The plant circadian clock controls various physiological phenomena that are important for adaptation to natural day-night cycles. Many components of the circadian clock have been identified in Arabidopsis thaliana, the model plant for molecular genetic studies. Recent studies revealed evolutionary conservation of clock components in green plants. Homologues of clock-related genes have been isolated from Lemna gibba and Lemna aequinoctialis, and it has been demonstrated that these homologues function in the clock system in a manner similar to their functioning in Arabidopsis. While clock components are widely conserved, circadian phenomena display diversity even within the Lemna genus. In order to survey the full extent of diversity in circadian rhythms among duckweed plants, we characterised the circadian rhythms of duckweed by employing a semi-transient bioluminescent reporter system. Using a particle bombardment method, circadian bioluminescent reporters were introduced into nine strains representing five duckweed species: Spirodela polyrhiza, Landoltia punctata, Lemna gibba, L. aequinoctialis and Wolffia columbiana. We then monitored luciferase (luc+) reporter activities driven by AtCCA1, ZmUBQ1 or CaMV35S promoters under entrainment and free-running conditions. Under entrainment, AtCCA1::luc+ showed similar diurnal rhythms in all strains. This suggests that the mechanism of biological timing under day-night cycles is conserved throughout the evolution of duckweeds. Under free-running conditions, we observed circadian rhythms of AtCCA1::luc+, ZmUBQ1::luc+ and CaMV35S::luc+. These circadian rhythms showed diversity in period length and sustainability, suggesting that circadian clock mechanisms are somewhat diversified among duckweeds. PMID:24942699

  19. Circadian rhythms of women with fibromyalgia

    NASA Technical Reports Server (NTRS)

    Klerman, E. B.; Goldenberg, D. L.; Brown, E. N.; Maliszewski, A. M.; Adler, G. K.

    2001-01-01

    Fibromyalgia syndrome is a chronic and debilitating disorder characterized by widespread nonarticular musculoskeletal pain whose etiology is unknown. Many of the symptoms of this syndrome, including difficulty sleeping, fatigue, malaise, myalgias, gastrointestinal complaints, and decreased cognitive function, are similar to those observed in individuals whose circadian pacemaker is abnormally aligned with their sleep-wake schedule or with local environmental time. Abnormalities in melatonin and cortisol, two hormones whose secretion is strongly influenced by the circadian pacemaker, have been reported in women with fibromyalgia. We studied the circadian rhythms of 10 women with fibromyalgia and 12 control healthy women. The protocol controlled factors known to affect markers of the circadian system, including light levels, posture, sleep-wake state, meals, and activity. The timing of the events in the protocol were calculated relative to the habitual sleep-wake schedule of each individual subject. Under these conditions, we found no significant difference between the women with fibromyalgia and control women in the circadian amplitude or phase of rhythms of melatonin, cortisol, and core body temperature. The average circadian phases expressed in hours posthabitual bedtime for women with and without fibromyalgia were 3:43 +/- 0:19 and 3:46 +/- 0:13, respectively, for melatonin; 10:13 +/- 0:23 and 10:32 +/- 0:20, respectively for cortisol; and 5:19 +/- 0:19 and 4:57 +/- 0:33, respectively, for core body temperature phases. Both groups of women had similar circadian rhythms in self-reported alertness. Although pain and stiffness were significantly increased in women with fibromyalgia compared with healthy women, there were no circadian rhythms in either parameter. We suggest that abnormalities in circadian rhythmicity are not a primary cause of fibromyalgia or its symptoms.

  20. The circadian timing system in clinical oncology.

    PubMed

    Innominato, Pasquale F; Roche, Véronique P; Palesh, Oxana G; Ulusakarya, Ayhan; Spiegel, David; Lévi, Francis A

    2014-06-01

    The circadian timing system (CTS) controls several critical molecular pathways for cancer processes and treatment effects over the 24 hours, including drug metabolism, cell cycle, apoptosis, and DNA damage repair mechanisms. This results in the circadian time dependency of whole-body and cellular pharmacokinetics and pharmacodynamics of anticancer agents. However, CTS robustness and phase varies among cancer patients, based on circadian monitoring of rest- activity, body temperature, sleep, and/or hormonal secretion rhythms. Circadian disruption has been further found in up to 50% of patients with metastatic cancer. Such disruption was associated with poor outcomes, including fatigue, anorexia, sleep disorders, and short progression-free and overall survival. Novel, minimally invasive devices have enabled continuous CTS assessment in non-hospitalized cancer patients. They revealed up to 12-hour differences in individual circadian phase. Taken together, the data support the personalization of chronotherapy. This treatment method aims at the adjustment of cancer treatment delivery according to circadian rhythms, using programmable-in-time pumps or novel release formulations, in order to increase both efficacy and tolerability. A fixed oxaliplatin, 5-fluorouracil and leucovorin chronotherapy protocol prolonged median overall survival in men with metastatic colorectal cancer by 3.3 months as compared to conventional delivery, according to a meta-analysis (P=0.009). Further analyses revealed the need for the prevention of circadian disruption or the restoration of robust circadian function in patients on chronotherapy, in order to further optimize treatment effects. The strengthening of external synchronizers could meet such a goal, through programmed exercise, meal timing, light exposure, improved social support, sleep scheduling, and the properly timed administration of drugs that target circadian clocks. Chrono-rehabilitation warrants clinical testing for improving

  1. Circadian Redox and Metabolic Oscillations in Mammalian Systems

    PubMed Central

    Feeney, Kevin A.

    2014-01-01

    Abstract Significance: A substantial proportion of mammalian physiology is organized around the day/night cycle, being regulated by the co-ordinated action of numerous cell-autonomous circadian oscillators throughout the body. Disruption of internal timekeeping, by genetic or environmental perturbation, leads to metabolic dysregulation, whereas changes in metabolism affect timekeeping. Recent Advances: While gene expression cycles are essential for the temporal coordination of normal physiology, it has become clear that rhythms in metabolism and redox balance are cell-intrinsic phenomena, which may regulate gene expression cycles reciprocally, but persist in their absence. For example, a circadian rhythm in peroxiredoxin oxidation was recently observed in isolated human erythrocytes, fibroblast cell lines in vitro, and mouse liver in vivo. Critical Issues: Mammalian timekeeping is a cellular phenomenon. While we understand many of the cellular systems that contribute to this biological oscillation's fidelity and robustness, a comprehensive mechanistic understanding remains elusive. Moreover, the formerly clear distinction between “core clock components” and rhythmic cellular outputs is blurred since several outputs, for example, redox balance, can feed back to regulate timekeeping. As with any cyclical system, establishing causality becomes problematic. Future Directions: A detailed molecular understanding of the temporal crosstalk between cellular systems, and the coincidence detection mechanisms that allow a cell to discriminate clock-relevant from irrelevant stimuli, will be essential as we move toward an integrated model of how this daily biological oscillation works. Such knowledge will highlight new avenues by which the functional consequences of circadian timekeeping can be explored in the context of human health and disease. Antioxid. Redox Signal. 20, 2966–2981. PMID:24063592

  2. Genetic analysis of ectopic circadian clock induction in Drosophila.

    PubMed

    Kilman, Valerie L; Allada, Ravi

    2009-10-01

    Cell-autonomous feedback loops underlie the molecular oscillations that define circadian clocks. In Drosophila the transcription factor Clk activates multiple clock components of feedback loops many of which feed back and regulate Clk expression or activity. Previously the authors evoked similar molecular oscillations in putatively naïve neurons in Drosophila by ectopic expression of a single gene, Clk, suggesting a master regulator function. Using molecular oscillations of the core clock component PERIOD (PER), the authors observed dramatic and widespread molecular oscillations throughout the brain in flies expressing ectopic Clk. Consistent with the master regulator hypothesis, they found that Clk is uniquely capable of inducing ectopic clocks as ectopic induction of other clock components fails to induce circadian rhythms. Clk also induces oscillations even when expression is adult restricted, suggesting that ectopic clocks can even be induced in differentiated cells. However, if transgene expression is discontinued, PER expression disappears, indicating that Clk must be continually active to sustain ectopic clock function. In some cases Clk-mediated PER induction was observed without apparent synchronous cycling, perhaps due to desynchronization of rhythms between clocks or truly cell autonomous arrhythmic PER expression, indicating that additional factors may be necessary for coherent rhythms in cells ectopically expressing Clk. To determine minimal requirements for circadian clock induction by Clk, the authors determined the genetic requirements of ectopic clocks. No ectopic clocks are induced in mutants of Clk's heterodimeric partner cyc. In addition, noncycling PER is observed when ectopic Clk is induced in a cryb mutant background. While other factors may contribute, these results indicate that persistent Clock induction is uniquely capable of broadly inducing ectopic rhythms even in adults, consistent with a special role at the top of a clock gene

  3. Calorie restriction regulates circadian clock gene expression through BMAL1 dependent and independent mechanisms.

    PubMed

    Patel, Sonal A; Velingkaar, Nikkhil; Makwana, Kuldeep; Chaudhari, Amol; Kondratov, Roman

    2016-01-01

    Feeding behavior, metabolism and circadian clocks are interlinked. Calorie restriction (CR) is a feeding paradigm known to extend longevity. We found that CR significantly affected the rhythms in the expression of circadian clock genes in mice on the mRNA and protein levels, suggesting that CR reprograms the clocks both transcriptionally and post-transcriptionally. The effect of CR on gene expression was distinct from the effects of time-restricted feeding or fasting. Furthermore, CR affected the circadian output through up- or down-regulation of the expression of several clock-controlled transcriptional factors and the longevity candidate genes. CR-dependent effects on some clock gene expression were impaired in the liver of mice deficient for BMAL1, suggesting importance of this transcriptional factor for the transcriptional reprogramming of the clock, however, BMAL1- independent mechanisms also exist. We propose that CR recruits biological clocks as a natural mechanism of metabolic optimization under conditions of limited energy resources. PMID:27170536

  4. Calorie restriction regulates circadian clock gene expression through BMAL1 dependent and independent mechanisms

    PubMed Central

    Patel, Sonal A.; Velingkaar, Nikkhil; Makwana, Kuldeep; Chaudhari, Amol; Kondratov, Roman

    2016-01-01

    Feeding behavior, metabolism and circadian clocks are interlinked. Calorie restriction (CR) is a feeding paradigm known to extend longevity. We found that CR significantly affected the rhythms in the expression of circadian clock genes in mice on the mRNA and protein levels, suggesting that CR reprograms the clocks both transcriptionally and post-transcriptionally. The effect of CR on gene expression was distinct from the effects of time-restricted feeding or fasting. Furthermore, CR affected the circadian output through up- or down-regulation of the expression of several clock-controlled transcriptional factors and the longevity candidate genes. CR-dependent effects on some clock gene expression were impaired in the liver of mice deficient for BMAL1, suggesting importance of this transcriptional factor for the transcriptional reprogramming of the clock, however, BMAL1- independent mechanisms also exist. We propose that CR recruits biological clocks as a natural mechanism of metabolic optimization under conditions of limited energy resources. PMID:27170536

  5. Targeting the hypoxia inducible factor pathway with mitochondrial uncouplers.

    PubMed

    Thomas, Rusha; Kim, Myoung H

    2007-02-01

    Hypoxia inducible factor-1 (HIF-1) is central to most adaptation responses of tumors to hypoxia, and consists of a hypoxia inducible HIF-1alpha or -2alpha subunit, and a constitutively expressed HIF-1beta subunit. Previously, mitochondrial uncouplers, rottlerin and FCCP, were shown to increase the rate of cellular O(2 )consumption. In this study, we determined that mitochondrial uncouplers, rottlerin and FCCP, significantly decreased hypoxic as well as normoxic HIF-1 transcriptional activity which was in part mediated by down-regulation of the oxygen labile HIF-1alpha and HIF-2alpha protein levels in PC-3 and DU-145 prostate cancer cells. Our results also revealed that mitochondrial uncouplers decreased the expression of HIF target genes, VEGF and VEGF receptor-2. Taken together, our results indicate that functional mitochondria are important in HIF-1alpha and HIF-2alpha protein stability and transcriptional activity during normoxia as well as in hypoxia, and that mitochondrial uncouplers may be useful in the inhibition of HIF pathway in tumors. PMID:16924414

  6. Do UCP2 and mild uncoupling improve longevity?

    PubMed

    Dikov, Daniel; Aulbach, Angelique; Muster, Britta; Dröse, Stefan; Jendrach, Marina; Bereiter-Hahn, Jürgen

    2010-08-01

    Mild uncoupling of mitochondrial respiration is considered to prolong life span of organisms by reducing the production of reactive oxygen species (ROS). Experimental evidence against this hypothesis has been brought forward by premature senescence in cell cultures treated with uncouplers. Exposing HUVEC to a mixture of nutritionally important fatty acids (oil extract of chicken yolk) mild uncoupling with "naturally acting substances" was performed. This treatment also resulted in premature senescence although ROS production did not increase. Fatty acids activate uncoupling proteins (UCP) in the inner mitochondrial membrane. UCP2 expression proved to be sensitive to the presence of fatty acids but remains unchanged during the ageing process. UCP3 expression in senescent HUVEC and avUCP expression in senescent CEF were considerably less than in young cultures. No indication for protonophoric reduction of mitochondrial membrane potential was found in UCP2 overexpressing HeLa cells and only little in HUVEC. ROS levels increased instead of being reduced in these cells. Stable transfection with UCP2-GFP was possible only in chick embryo fibroblasts and HeLa cells and resulted in decreased proliferation. Stable transfection of HUVEC with UCP2-GFP resulted in death of cultures within one or two weeks. The reason for this behaviour most probably is apoptosis preceded by mitochondrial fragmentation and loss of membrane potential. PMID:20332018

  7. Uncoupling activity of the anthelmintic oxyclozanide in rodents

    PubMed Central

    Veenendaal, G.H.; De Waal, M.J.

    1974-01-01

    The uncoupling activity of oxyclozanide in warm blooded animals has been studied in whole animals, isolated tissue in vitro and on mitochondrial preparations. The onset of post mortem rigidity in mice and rats is accelerated and a contracture of striated muscle is produced. Oxyclozanide (1 μM) stimulated rat liver mitochondrial respiration and stimulated an ATP-ase activity. PMID:4277750

  8. A mitochondria-targeted protonophoric uncoupler derived from fluorescein.

    PubMed

    Denisov, Stepan S; Kotova, Elena A; Plotnikov, Egor Y; Tikhonov, Artur A; Zorov, Dmitry B; Korshunova, Galina A; Antonenko, Yuri N

    2014-12-18

    Linking decyl-triphenyl-phosphonium to fluorescein yields a fluorescent probe that accumulates in energized mitochondria, facilitates proton transfer across membranes and stimulates mitochondrial respiration. This features a mitochondria-targeted uncoupler, being of potential interest for therapeutic use against oxidative stress-related diseases. PMID:25349923

  9. Penetrating cations enhance uncoupling activity of anionic protonophores in mitochondria.

    PubMed

    Antonenko, Yuri N; Khailova, Ljudmila S; Knorre, Dmitry A; Markova, Olga V; Rokitskaya, Tatyana I; Ilyasova, Tatyana M; Severina, Inna I; Kotova, Elena A; Karavaeva, Yulia E; Prikhodko, Anastasia S; Severin, Fedor F; Skulachev, Vladimir P

    2013-01-01

    Protonophorous uncouplers causing a partial decrease in mitochondrial membrane potential are promising candidates for therapeutic applications. Here we showed that hydrophobic penetrating cations specifically targeted to mitochondria in a membrane potential-driven fashion increased proton-translocating activity of the anionic uncouplers 2,4-dinitrophenol (DNP) and carbonylcyanide-p-trifluorophenylhydrazone (FCCP). In planar bilayer lipid membranes (BLM) separating two compartments with different pH values, DNP-mediated diffusion potential of H(+) ions was enhanced in the presence of dodecyltriphenylphosphonium cation (C12TPP). The mitochondria-targeted penetrating cations strongly increased DNP- and carbonylcyanide m-chlorophenylhydrazone (CCCP)-mediated steady-state current through BLM when a transmembrane electrical potential difference was applied. Carboxyfluorescein efflux from liposomes initiated by the plastoquinone-containing penetrating cation SkQ1 was inhibited by both DNP and FCCP. Formation of complexes between the cation and CCCP was observed spectophotometrically. In contrast to the less hydrophobic tetraphenylphosphonium cation (TPP), SkQ1 and C12TPP promoted the uncoupling action of DNP and FCCP on isolated mitochondria. C12TPP and FCCP exhibited a synergistic effect decreasing the membrane potential of mitochondria in yeast cells. The stimulating action of penetrating cations on the protonophore-mediated uncoupling is assumed to be useful for medical applications of low (non-toxic) concentrations of protonophores. PMID:23626747

  10. Penetrating Cations Enhance Uncoupling Activity of Anionic Protonophores in Mitochondria

    PubMed Central

    Antonenko, Yuri N.; Khailova, Ljudmila S.; Knorre, Dmitry A.; Markova, Olga V.; Rokitskaya, Tatyana I.; Ilyasova, Tatyana M.; Severina, Inna I.; Kotova, Elena A.; Karavaeva, Yulia E.; Prikhodko, Anastasia S.; Severin, Fedor F.; Skulachev, Vladimir P.

    2013-01-01

    Protonophorous uncouplers causing a partial decrease in mitochondrial membrane potential are promising candidates for therapeutic applications. Here we showed that hydrophobic penetrating cations specifically targeted to mitochondria in a membrane potential-driven fashion increased proton-translocating activity of the anionic uncouplers 2,4-dinitrophenol (DNP) and carbonylcyanide-p-trifluorophenylhydrazone (FCCP). In planar bilayer lipid membranes (BLM) separating two compartments with different pH values, DNP-mediated diffusion potential of H+ ions was enhanced in the presence of dodecyltriphenylphosphonium cation (C12TPP). The mitochondria-targeted penetrating cations strongly increased DNP- and carbonylcyanide m-chlorophenylhydrazone (CCCP)-mediated steady-state current through BLM when a transmembrane electrical potential difference was applied. Carboxyfluorescein efflux from liposomes initiated by the plastoquinone-containing penetrating cation SkQ1 was inhibited by both DNP and FCCP. Formation of complexes between the cation and CCCP was observed spectophotometrically. In contrast to the less hydrophobic tetraphenylphosphonium cation (TPP), SkQ1 and C12TPP promoted the uncoupling action of DNP and FCCP on isolated mitochondria. C12TPP and FCCP exhibited a synergistic effect decreasing the membrane potential of mitochondria in yeast cells. The stimulating action of penetrating cations on the protonophore-mediated uncoupling is assumed to be useful for medical applications of low (non-toxic) concentrations of protonophores. PMID:23626747

  11. Plasticity of circadian clocks and consequences for metabolism.

    PubMed

    Coomans, C P; Lucassen, E A; Kooijman, S; Fifel, K; Deboer, T; Rensen, P C N; Michel, S; Meijer, J H

    2015-09-01

    The increased prevalence of metabolic disorders and obesity in modern society, together with the widespread use of artificial light at night, have led researchers to investigate whether altered patterns of light exposure contribute to metabolic disorders. This article discusses the experimental evidence that perturbed environmental cycles induce rhythm disorders in the circadian system, thus leading to metabolic disorders. This notion is generally supported by animal studies. Distorted environmental cycles, including continuous exposure to light, affect the neuronal organization of the central circadian pacemaker in the suprachiasmatic nucleus (SCN), its waveform and amplitude of the rhythm in electrical activity. Moreover, repeated exposure to a shifted light cycle or the application of dim light at night are environmental cues that cause a change in SCN function. The effects on the SCN waveform are the result of changes in synchronization among the SCN's neuronal cell population, which lead consistently to metabolic disturbances. Furthermore, we discuss the effects of sleep deprivation and the time of feeding on metabolism, as these factors are associated with exposure to disturbed environmental cycles. Finally, we suggest that these experimental studies reveal a causal relationship between the rhythm disorders and the metabolic disorders observed in epidemiological studies performed in humans. PMID:26332970

  12. Circadian control of mRNA polyadenylation dynamics regulates rhythmic protein expression

    PubMed Central

    Kojima, Shihoko; Sher-Chen, Elaine L.; Green, Carla B.

    2012-01-01

    Poly(A) tails are 3′ modifications of eukaryotic mRNAs that are important in the control of translation and mRNA stability. We identified hundreds of mouse liver mRNAs that exhibit robust circadian rhythms in the length of their poly(A) tails. Approximately 80% of these are primarily the result of nuclear adenylation coupled with rhythmic transcription. However, unique decay kinetics distinguish these mRNAs from other mRNAs that are transcribed rhythmically but do not exhibit poly(A) tail rhythms. The remaining 20% are uncoupled from transcription and exhibit poly(A) tail rhythms even though the steady-state mRNA levels are not rhythmic. These are under the control of rhythmic cytoplasmic polyadenylation, regulated at least in some cases by cytoplasmic polyadenylation element-binding proteins (CPEBs). Importantly, we found that the rhythmicity in poly(A) tail length is closely correlated with rhythmic protein expression, with a several-hour delay between the time of longest tail and the time of highest protein level. Our study demonstrates that the circadian clock regulates the dynamic polyadenylation status of mRNAs, which can result in rhythmic protein expression independent of the steady-state levels of the message. PMID:23249735

  13. The Nuclear Receptor Rev-erbα Controls Circadian Thermogenic Plasticity

    PubMed Central

    Gerhart-Hines, Zachary; Everett, Logan J.; Loro, Emanuele; Briggs, Erika R.; Bugge, Anne; Hou, Catherine; Ferrara, Christine; Seale, Patrick; Pryma, Daniel A.; Khurana, Tejvir S.; Lazar, Mitchell A.

    2013-01-01

    Circadian oscillation of body temperature is a basic, evolutionary-conserved feature of mammalian biology1. Additionally, homeostatic pathways allow organisms to protect their core temperatures in response to cold exposure2. However, the mechanism responsible for coordinating daily body temperature rhythm and adaptability to environmental challenges is unknown. Here we show that the nuclear receptor Rev-erbα, a powerful transcriptional repressor, links circadian and thermogenic networks through the regulation of brown adipose tissue (BAT) function. Mice exposed to cold fare dramatically better at 5 AM (Zeitgeber time 22) when Rev-erbα is barely expressed than at 5 PM (ZT10) when Rev-erbα is abundant. Deletion of Rev-erbα markedly improves cold tolerance at 5 PM, indicating that overcoming Rev-erbα-dependent repression is a fundamental feature of the thermogenic response to cold. Physiological induction of uncoupling protein 1 (UCP1) by cold temperatures is preceded by rapid down-regulation of Rev-erbα in BAT. Rev-erbα represses UCP1 in a brown adipose cell-autonomous manner and BAT UCP1 levels are high in Rev-erbα-null mice even at thermoneutrality. Genetic loss of Rev-erbα also abolishes normal rhythms of body temperature and BAT activity. Thus, Rev-erbα acts as a thermogenic focal point required for establishing and maintaining body temperature rhythm in a manner that is adaptable to environmental demands. PMID:24162845

  14. The nuclear receptor Rev-erbα controls circadian thermogenic plasticity.

    PubMed

    Gerhart-Hines, Zachary; Feng, Dan; Emmett, Matthew J; Everett, Logan J; Loro, Emanuele; Briggs, Erika R; Bugge, Anne; Hou, Catherine; Ferrara, Christine; Seale, Patrick; Pryma, Daniel A; Khurana, Tejvir S; Lazar, Mitchell A

    2013-11-21

    Circadian oscillation of body temperature is a basic, evolutionarily conserved feature of mammalian biology. In addition, homeostatic pathways allow organisms to protect their core temperatures in response to cold exposure. However, the mechanism responsible for coordinating daily body temperature rhythm and adaptability to environmental challenges is unknown. Here we show that the nuclear receptor Rev-erbα (also known as Nr1d1), a powerful transcriptional repressor, links circadian and thermogenic networks through the regulation of brown adipose tissue (BAT) function. Mice exposed to cold fare considerably better at 05:00 (Zeitgeber time 22) when Rev-erbα is barely expressed than at 17:00 (Zeitgeber time 10) when Rev-erbα is abundant. Deletion of Rev-erbα markedly improves cold tolerance at 17:00, indicating that overcoming Rev-erbα-dependent repression is a fundamental feature of the thermogenic response to cold. Physiological induction of uncoupling protein 1 (Ucp1) by cold temperatures is preceded by rapid downregulation of Rev-erbα in BAT. Rev-erbα represses Ucp1 in a brown-adipose-cell-autonomous manner and BAT Ucp1 levels are high in Rev-erbα-null mice, even at thermoneutrality. Genetic loss of Rev-erbα also abolishes normal rhythms of body temperature and BAT activity. Thus, Rev-erbα acts as a thermogenic focal point required for establishing and maintaining body temperature rhythm in a manner that is adaptable to environmental demands. PMID:24162845

  15. Modulation of sphingosine receptors influences circadian pattern of cardiac autonomic regulation.

    PubMed

    Simula, Sakari; Laitinen, Tomi P; Laitinen, Tiina M; Hartikainen, Päivi; Hartikainen, Juha E K

    2016-09-01

    Fingolimod is an oral sphingosine-1-phospate (S1P) receptor modulator for the treatment of relapsing-remitting multiple sclerosis (RRMS). In addition to therapeutic effects on lymphoid and neural tissue, fingolimod influences cardiovascular system by specific S1P-receptor modulation. The effects of S1P-receptor modulation on the endogenous circadian pattern of cardiac autonomic regulation (CAR), however, are not known. We examined the effects of fingolimod on the circadian pattern of CAR Ambulatory 24-h ECG recordings were undertaken in 27 RRMS patients before fingolimod (baseline), at the day of fingolimod initiation (1D) and after 3 months of fingolimod treatment (3M). The mean time between two consecutive R-peaks (RR-interval) and mean values for measures of heart rate variability (HRV) in time- and frequency domain were calculated from ECG recording at daytime and nighttime. The mean night:day-ratio of RR-interval was 1.23 ± 0.12 at baseline, decreased temporarily at 1D (1.16 ± 0.12; P < 0.01) and was higher at 3M (1.32 ± 0.11; P < 0.001) than at baseline. The night:day-ratio of HRV parameters reflecting parasympathetic cardiac regulation (pNN50, rMSSD, HFnu) decreased at 1D but recovered back to baseline at 3M (P < 0.05 for all). On the other hand, the night:day-ratio of TP, a parameter reflecting overall HRV gradually decreased and was lower at 3M than at baseline (P < 0.05). Our findings suggest that physiological relation between the circadian pattern of RR-interval and overall HRV as well as parasympathetic cardiac regulation becomes uncoupled during fingolimod treatment. In addition, fingolimod shifts the circadian equilibrium of CAR toward greater daytime dominance of overall HRV Accordingly, S1P-receptor modulation influences circadian pattern of CAR. PMID:27624686

  16. Reciprocal interactions between circadian clocks and aging.

    PubMed

    Banks, Gareth; Nolan, Patrick M; Peirson, Stuart N

    2016-08-01

    Virtually, all biological processes in the body are modulated by an internal circadian clock which optimizes physiological and behavioral performance according to the changing demands of the external 24-h world. This circadian clock undergoes a number of age-related changes, at both the physiological and molecular levels. While these changes have been considered to be part of the normal aging process, there is increasing evidence that disruptions to the circadian system can substantially impact upon aging and these impacts will have clear health implications. Here we review the current data of how both the physiological and core molecular clocks change with age and how feedback from external cues may modulate the aging of the circadian system. PMID:27137838

  17. Photopic transduction implicated in human circadian entrainment

    NASA Technical Reports Server (NTRS)

    Zeitzer, J. M.; Kronauer, R. E.; Czeisler, C. A.

    1997-01-01

    Despite the preeminence of light as the synchronizer of the circadian timing system, the phototransductive machinery in mammals which transmits photic information from the retina to the hypothalamic circadian pacemaker remains largely undefined. To determine the class of photopigments which this phototransductive system uses, we exposed a group (n = 7) of human subjects to red light below the sensitivity threshold of a scotopic (i.e. rhodopsin/rod-based) system, yet of sufficient strength to activate a photopic (i.e. cone-based) system. Exposure to this light stimulus was sufficient to reset significantly the human circadian pacemaker, indicating that the cone pigments which mediate color vision can also mediate circadian vision.

  18. Effects of circadian disruption on cardiometabolic system

    PubMed Central

    Rüger, Melanie; Scheer, Frank A.J.L.

    2011-01-01

    The presence of day-night variations in cardiovascular and metabolic functioning is well known. However, only recently it has been shown that cardiovascular and metabolic processes are not only affected by the behavioral sleep/wake cycle but are partly under direct control of the master circadian pacemaker located in the suprachiasmatic nucleus (SCN). Heart rate, cardiac autonomic activity, glucose metabolism and leptin —involved in appetite control—all show circadian variation (i.e., under constant behavioral and environmental conditions). This knowledge of behavioral vs. circadian modulation of cardiometabolic function is of clinical relevance given the morning peak in adverse cardiovascular incidents observed in epidemiological studies and given the increased risk for the development of diabetes, obesity, and cardiovascular disease in shift workers. We will review the evidence for circadian control of cardiometabolic functioning, as well its sensitivity to light and melatonin, and discuss potential implication for therapy. PMID:19784781

  19. Lung Adenocarcinoma Distally Rewires Hepatic Circadian Homeostasis.

    PubMed

    Masri, Selma; Papagiannakopoulos, Thales; Kinouchi, Kenichiro; Liu, Yu; Cervantes, Marlene; Baldi, Pierre; Jacks, Tyler; Sassone-Corsi, Paolo

    2016-05-01

    The circadian clock controls metabolic and physiological processes through finely tuned molecular mechanisms. The clock is remarkably plastic and adapts to exogenous "zeitgebers," such as light and nutrition. How a pathological condition in a given tissue influences systemic circadian homeostasis in other tissues remains an unanswered question of conceptual and biomedical importance. Here, we show that lung adenocarcinoma operates as an endogenous reorganizer of circadian metabolism. High-throughput transcriptomics and metabolomics revealed unique signatures of transcripts and metabolites cycling exclusively in livers of tumor-bearing mice. Remarkably, lung cancer has no effect on the core clock but rather reprograms hepatic metabolism through altered pro-inflammatory response via the STAT3-Socs3 pathway. This results in disruption of AKT, AMPK, and SREBP signaling, leading to altered insulin, glucose, and lipid metabolism. Thus, lung adenocarcinoma functions as a potent endogenous circadian organizer (ECO), which rewires the pathophysiological dimension of a distal tissue such as the liver. PAPERCLIP. PMID:27153497

  20. Circadian expression of clock and putative clock-controlled genes in skeletal muscle of the zebrafish.

    PubMed

    Amaral, Ian P G; Johnston, Ian A

    2012-01-01

    To identify circadian patterns of gene expression in skeletal muscle, adult male zebrafish were acclimated for 2 wk to a 12:12-h light-dark photoperiod and then exposed to continuous darkness for 86 h with ad libitum feeding. The increase in gut food content associated with the subjective light period was much diminished by the third cycle, enabling feeding and circadian rhythms to be distinguished. Expression of zebrafish paralogs of mammalian transcriptional activators of the circadian mechanism (bmal1, clock1, and rora) followed a rhythmic pattern with a ∼24-h periodicity. Peak expression of rora paralogs occurred at the beginning of the subjective light period [Zeitgeber time (ZT)07 and ZT02 for roraa and rorab], whereas the highest expression of bmal1 and clock paralogs occurred 12 h later (ZT13-15 and ZT16 for bmal and clock paralogs). Expression of the transcriptional repressors cry1a, per1a/1b, per2, per3, nr1d2a/2b, and nr1d1 also followed a circadian pattern with peak expression at ZT0-02. Expression of the two paralogs of cry2 occurred in phase with clock1a/1b. Duplicated genes had a high correlation of expression except for paralogs of clock1, nr1d2, and per1, with cry1b showing no circadian pattern. The highest expression difference was 9.2-fold for the activator bmal1b and 51.7-fold for the repressor per1a. Out of 32 candidate clock-controlled genes, only myf6, igfbp3, igfbp5b, and hsf2 showed circadian expression patterns. Igfbp3, igfbp5b, and myf6 were expressed in phase with clock1a/1b and had an average of twofold change in expression from peak to trough, whereas hsf2 transcripts were expressed in phase with cry1a and had a 7.2-fold-change in expression. The changes in expression of clock and clock-controlled genes observed during continuous darkness were also observed at similar ZTs in fish exposed to a normal photoperiod in a separate control experiment. The role of circadian clocks in regulating muscle maintenance and growth are discussed

  1. Pilot Fatigue and Circadian Desynchronosis

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Pilot fatigue and circadian desynchronosis, its significance to air transport safety, and research approaches, were examined. There is a need for better data on sleep, activity, and other pertinent factors from pilots flying a variety of demanding schedules. Simulation studies of flight crew performance should be utilized to determine the degree of fatigue induced by demanding schedules and to delineate more precisely the factors responsible for performance decrements in flight and to test solutions proposed to resolve problems induced by fatigue and desynchronosis. It was concluded that there is a safety problem of uncertain magnitude due to transmeridian flying and a potential problem due to fatigue associated with various factors found in air transport operations.

  2. Circadian periodicity of tryptophan metabolism

    PubMed Central

    Rapoport, Morton I.; Beisel, William R.

    1968-01-01

    Rhythmicity of tryptophan metabolism via the kynurenine pathway has been demonstrated in man. Normal subjects given 3 g of tryptophan at 0900 hours excreted almost three times the quantity of kynurenine, kynurenic acid, and xanthurenic acid than did subjects given the same dose at 2100 hours. Other metabolites of the kynurenine pathway varied in the same fashion but with lesser magnitude. In contrast, indican, a tryptophan metabolite not in the kynurenine pathway, varied inversely with the other metabolites measured. The data suggest that the liver enzyme tryptophan pyrrolase has a circadian rhythm in man similar to that already described in mice in a previous study. Tryptophan tolerance tests in the future should be controlled relative to time of amino acid administration. PMID:5641628

  3. Circadian rhythms of performance: new trends

    NASA Technical Reports Server (NTRS)

    Carrier, J.; Monk, T. H.

    2000-01-01

    This brief review is concerned with how human performance efficiency changes as a function of time of day. It presents an overview of some of the research paradigms and conceptual models that have been used to investigate circadian performance rhythms. The influence of homeostatic and circadian processes on performance regulation is discussed. The review also briefly presents recent mathematical models of alertness that have been used to predict cognitive performance. Related topics such as interindividual differences and the postlunch dip are presented.

  4. The early bee catches the flower - circadian rhythmicity influences learning performance in honey bees, Apis mellifera

    PubMed Central

    Lehmann, Marina; Gustav, David

    2010-01-01

    Circadian rhythmicity plays an important role for many aspects of honey bees’ lives. However, the question whether it also affects learning and memory remained unanswered. To address this question, we studied the effect of circadian timing on olfactory learning and memory in honey bees Apis mellifera using the olfactory conditioning of the proboscis extension reflex paradigm. Bees were differentially conditioned to odours and tested for their odour learning at four different “Zeitgeber” time points. We show that learning behaviour is influenced by circadian timing. Honey bees perform best in the morning compared to the other times of day. Additionally, we found influences of the light condition bees were trained at on the olfactory learning. This circadian-mediated learning is independent from feeding times bees were entrained to, indicating an inherited and not acquired mechanism. We hypothesise that a co-evolutionary mechanism between the honey bee as a pollinator and plants might be the driving force for the evolution of the time-dependent learning abilities of bees. Electronic supplementary material The online version of this article (doi:10.1007/s00265-010-1026-9) contains supplementary material, which is available to authorized users. PMID:21350590

  5. Circadian Metabolic Regulation through Crosstalk between Casein Kinase 1δ and Transcriptional Coactivator PGC-1α

    PubMed Central

    Li, Siming; Chen, Xiao-Wei; Yu, Lei; Saltiel, Alan R.

    2011-01-01

    Circadian clock coordinates behavior and physiology in mammals in response to light and feeding cycles. Disruption of normal clock function is associated with increased risk for cardiovascular and metabolic diseases, underscoring the emerging concept that temporal regulation of tissue metabolism is a fundamental aspect of energy homeostasis. We have previously demonstrated that transcriptional coactivator, peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), coordinates circadian metabolic rhythms through simultaneous regulation of metabolic and clock gene expression. In this study, we found that PGC-1α physically interacts with, and is phosphorylated by, casein kinase 1δ (CK1δ), a core component of the circadian pacemaker. CK1δ represses the transcriptional function of PGC-1α in cultured hepatocytes, resulting in decreased gluconeogenic gene expression and glucose secretion. At the molecular level, CK1δ phosphorylation of PGC-1α within its arginine/serine-rich domain enhances its degradation through the proteasome system. Together, these results elucidate a novel mechanism through which circadian pacemaker transduces timing signals to the metabolic regulatory network that controls hepatic energy metabolism. PMID:22052997

  6. Neuroimaging, cognition, light and circadian rhythms.

    PubMed

    Gaggioni, Giulia; Maquet, Pierre; Schmidt, Christina; Dijk, Derk-Jan; Vandewalle, Gilles

    2014-01-01

    In humans, sleep and wakefulness and the associated cognitive processes are regulated through interactions between sleep homeostasis and the circadian system. Chronic disruption of sleep and circadian rhythmicity is common in our society and there is a need for a better understanding of the brain mechanisms regulating sleep, wakefulness and associated cognitive processes. This review summarizes recent investigations which provide first neural correlates of the combined influence of sleep homeostasis and circadian rhythmicity on cognitive brain activity. Markers of interindividual variations in sleep-wake regulation, such as chronotype and polymorphisms in sleep and clock genes, are associated with changes in cognitive brain responses in subcortical and cortical areas in response to manipulations of the sleep-wake cycle. This review also includes recent data showing that cognitive brain activity is regulated by light, which is a powerful modulator of cognition and alertness and also directly impacts sleep and circadian rhythmicity. The effect of light varied with age, psychiatric status, PERIOD3 genotype and changes in sleep homeostasis and circadian phase. These data provide new insights into the contribution of demographic characteristics, the sleep-wake cycle, circadian rhythmicity and light to brain functioning. PMID:25071478

  7. Linking Core Promoter Classes to Circadian Transcription.

    PubMed

    Westermark, Pål O

    2016-08-01

    Circadian rhythms in transcription are generated by rhythmic abundances and DNA binding activities of transcription factors. Propagation of rhythms to transcriptional initiation involves the core promoter, its chromatin state, and the basal transcription machinery. Here, I characterize core promoters and chromatin states of genes transcribed in a circadian manner in mouse liver and in Drosophila. It is shown that the core promoter is a critical determinant of circadian mRNA expression in both species. A distinct core promoter class, strong circadian promoters (SCPs), is identified in mouse liver but not Drosophila. SCPs are defined by specific core promoter features, and are shown to drive circadian transcriptional activities with both high averages and high amplitudes. Data analysis and mathematical modeling further provided evidence for rhythmic regulation of both polymerase II recruitment and pause release at SCPs. The analysis provides a comprehensive and systematic view of core promoters and their link to circadian mRNA expression in mouse and Drosophila, and thus reveals a crucial role for the core promoter in regulated, dynamic transcription. PMID:27504829

  8. Linking Core Promoter Classes to Circadian Transcription

    PubMed Central

    Westermark, Pål O.

    2016-01-01

    Circadian rhythms in transcription are generated by rhythmic abundances and DNA binding activities of transcription factors. Propagation of rhythms to transcriptional initiation involves the core promoter, its chromatin state, and the basal transcription machinery. Here, I characterize core promoters and chromatin states of genes transcribed in a circadian manner in mouse liver and in Drosophila. It is shown that the core promoter is a critical determinant of circadian mRNA expression in both species. A distinct core promoter class, strong circadian promoters (SCPs), is identified in mouse liver but not Drosophila. SCPs are defined by specific core promoter features, and are shown to drive circadian transcriptional activities with both high averages and high amplitudes. Data analysis and mathematical modeling further provided evidence for rhythmic regulation of both polymerase II recruitment and pause release at SCPs. The analysis provides a comprehensive and systematic view of core promoters and their link to circadian mRNA expression in mouse and Drosophila, and thus reveals a crucial role for the core promoter in regulated, dynamic transcription. PMID:27504829

  9. Circadian Clock Control of Liver Metabolic Functions.

    PubMed

    Reinke, Hans; Asher, Gad

    2016-03-01

    The circadian clock is an endogenous biological timekeeping system that synchronizes physiology and behavior to day/night cycles. A wide variety of processes throughout the entire gastrointestinal tract and notably the liver appear to be under circadian control. These include various metabolic functions such as nutrient uptake, processing, and detoxification, which align organ function to cycle with nutrient supply and demand. Remarkably, genetic or environmental disruption of the circadian clock can cause metabolic diseases or exacerbate pathological states. In addition, modern lifestyles force more and more people worldwide into asynchrony between the external time and their circadian clock, resulting in a constant state of social jetlag. Recent evidence indicates that interactions between altered energy metabolism and disruptions in the circadian clock create a downward spiral that can lead to diabetes and other metabolic diseases. In this review, we provide an overview of rhythmic processes in the liver and highlight the functions of circadian clock genes under physiological and pathological conditions; we focus on their roles in regulation of hepatic glucose as well as lipid and bile acid metabolism and detoxification and their potential effects on the development of fatty liver and nonalcoholic steatohepatitis. PMID:26657326

  10. Personalized medicine for pathological circadian dysfunctions

    PubMed Central

    Skelton, Rachel L.; Kornhauser, Jon M.; Tate, Barbara A.

    2015-01-01

    The recent approval of a therapeutic for a circadian disorder has increased interest in developing additional medicines for disorders characterized by circadian disruption. However, previous experience demonstrates that drug development for central nervous system (CNS) disorders has a high failure rate. Personalized medicine, or the approach to identifying the right treatment for the right patient, has recently become the standard for drug development in the oncology field. In addition to utilizing Companion Diagnostics (CDx) that identify specific genetic biomarkers to prescribe certain targeted therapies, patient profiling is regularly used to enrich for a responsive patient population during clinical trials, resulting in fewer patients required for statistical significance and a higher rate of success for demonstrating efficacy and hence receiving approval for the drug. This personalized medicine approach may be one mechanism that could reduce the high clinical trial failure rate in the development of CNS drugs. This review will discuss current circadian trials, the history of personalized medicine in oncology, lessons learned from a recently approved circadian therapeutic, and how personalized medicine can be tailored for use in future clinical trials for circadian disorders to ultimately lead to the approval of more therapeutics for patients suffering from circadian abnormalities. PMID:26150790