Science.gov

Sample records for feedwater heater train

  1. Corrosion-related failures in feedwater heaters. Final report

    SciTech Connect

    Beavers, J.A.; Agrawal, A.K.; Berry, W.E.

    1983-07-01

    A survey of the literature was performed for the Electric Power Research Institute on corrosion-related failures in feedwater heaters. The survey was directed toward failures in fossil and in pressurized water reactor (PWR) nuclear power plants, but includes some pertinent information related to failures in boiling water reactor (BWR) power plants. The survey was organized into sections on the commonly used feedwater heater materials; C steel, brasses, Cu-Ni alloys, MONEL Alloy 400, and Type 304 Stainless Steel. A section on Ti as a potential feedwater heater material also is given in the appendices. Each section is divided into subsections on field experience and laboratory studies tat relate to the field failures that have been observed. Appendices are given on a feedwater heater description, water quality in power plants, forms of corrosion, and failure analysis techniques.

  2. Feedwater heater life optimization at Peach Bottom Atomic Power Station

    SciTech Connect

    Catapano, M.C.; Thomas, D.S.

    1995-12-01

    Many papers published over the last 15 years have strongly emphasized the need for an ongoing program of inspection and testing with subsequent failure cause analysis of feedwater heaters. With deregulation of the electric utility industry in various phases of implementation, utilities must decrease costs, both O&M and capital, while optimizing plant efficiency. In order to accomplish this coal, utility engineers must monitor feedwater heater performance in order to recognize degradation, correct/eliminate failure mechanisms, and prevent in-service failures while optimizing availability. Periodic tube plugging without complete analysis of the degraded/failed area resolves the immediate need for return for service, however, heater life will not be graded/failed area resolves optimized. This paper illustrates a complete inspection, testing, and maintenance program implemented at PECO Energy`s Peach Bottom Atomic Power Station (PBAPS). Concerns that tubes may have been too conservatively plugged due to insufficient data justified a program that included: (1) Removal of previously installed plugs. (2) Videoprobe inspection of failed areas. (3) Extraction of tube samples for further analysis. (4) Eddy current testing of selected tubes. (5) Evaluation of the condition of {open_quotes}insurance{close_quotes} plugged tubes for return to service. (6) Hydrostatic testing of selected tubes. (7) Final repair plan based on the results of the above program. This paper concludes that no single method of inspection or testing should solely be relied upon in establishing: (1) The extent of actual degraded conditions, (2) The source(s) of failure mechanisms, (3) The details of repair. It is a combination of all gathered data that affords the best chance in arresting problems and optimizing feedwater heater life.

  3. 46 CFR 52.25-3 - Feedwater heaters (modifies PFH-1).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... BOILERS Other Boiler Types § 52.25-3 Feedwater heaters (modifies PFH-1). In addition to the requirements in PFH-1 of section I of the ASME Boiler and Pressure Vessel Code (incorporated by reference; see 46 CFR 52.01-1), feedwater heaters must meet the requirements in this part or the requirements in part 54....

  4. 46 CFR 52.25-3 - Feedwater heaters (modifies PFH-1).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... BOILERS Other Boiler Types § 52.25-3 Feedwater heaters (modifies PFH-1). In addition to the requirements in PFH-1 of section I of the ASME Boiler and Pressure Vessel Code (incorporated by reference; see 46 CFR 52.01-1), feedwater heaters must meet the requirements in this part or the requirements in part 54....

  5. 46 CFR 52.25-3 - Feedwater heaters (modifies PFH-1).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... BOILERS Other Boiler Types § 52.25-3 Feedwater heaters (modifies PFH-1). In addition to the requirements in PFH-1 of section I of the ASME Boiler and Pressure Vessel Code (incorporated by reference; see 46 CFR 52.01-1), feedwater heaters must meet the requirements in this part or the requirements in part 54....

  6. 46 CFR 52.25-3 - Feedwater heaters (modifies PFH-1).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... BOILERS Other Boiler Types § 52.25-3 Feedwater heaters (modifies PFH-1). In addition to the requirements in PFH-1 of section I of the ASME Boiler and Pressure Vessel Code (incorporated by reference; see 46 CFR 52.01-1), feedwater heaters must meet the requirements in this part or the requirements in part 54....

  7. 46 CFR 52.25-3 - Feedwater heaters (modifies PFH-1).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... BOILERS Other Boiler Types § 52.25-3 Feedwater heaters (modifies PFH-1). In addition to the requirements in PFH-1 of section I of the ASME Boiler and Pressure Vessel Code (incorporated by reference; see 46 CFR 52.01-1), feedwater heaters must meet the requirements in this part or the requirements in part 54....

  8. An optimized periodic inspection program for condensers and feedwater heaters

    SciTech Connect

    Reinhart, E.R.; Kaminski, S.

    1996-12-31

    Tube failures in steam plant surface condensers and feedwater heaters are a significant reliability problem for the electric power industry. Tube failures can also result in an increase in replacement power costs. In addition, condenser leaks from failed tubes have potentially harmful effects on major components such as steam generators and turbines. To reduce the number of tube failures and consequent leakage, periodic maintenance programs have used the nondestructive evaluation (NDE) method of eddy-current testing (ET) to inspect the condition of the tubes from the water side. This NDE method can identify tubes that have experienced major degradation and should be plugged to prevent in-service failure. However, the use of NDE methods in plant maintenance of condensers and feedwater heaters is not standard practice and varies significantly throughout the utility industry. Variability of inspection results and difficulty in inspecting some types of tubing (monel, carbon steel) have caused many utility sites to question the value of in-service inspection of heat transfer tubing from the water side. Recognizing the above problem, advanced ET systems have been developed that use multi-frequency, remote field and digital data processing techniques to inspect a wide variety of tubing materials and produce on-site inspection reports. Recent field examination results will be presented.

  9. Feedwater heater life optimization at Peach Bottom Atomic Power Station

    SciTech Connect

    Thomas, D.S.; Catapano, M.C.

    1996-08-01

    This paper illustrates a complete inspection, testing, and maintenance program implemented at PECO Energy`s Peach Bottom Atomic Power Station (PBAPS). Concerns that tubes may have been too conservatively plugged due to insufficient data justified a program that included: removal of previously installed plugs; videoprobe inspection of failed areas; extraction of tube samples for further analysis; eddy current testing of selected tubes; evaluation of the condition of insurance plugged tubes for return to service; hydrostatic testing of selected tubes; final repair plan based on the results of the above program. This paper concludes that no single method of inspection or testing should be solely relied upon in establishing: the extent of actual degraded conditions; the source(s) of failure mechanisms; and the details of repair. It is a combination of all gathered data that affords the best chance in arresting problems and optimizing feedwater heater life.

  10. Development of Multi-Stage Steam Injector for Feedwater Heaters in Simplified Nuclear Power Plant

    NASA Astrophysics Data System (ADS)

    Narabayashi, Tadashi; Ohmori, Shuichi; Mori, Michitsugu; Asanuma, Yutaka; Iwaki, Chikako

    A steam injector (SI) is a simple, compact and passive pump and also acts as a high-performance direct-contact compact heater to heat up feedwater by using extracted steam from the turbine. To develop high performance compact feedwater heater, it is necessary to quantify the characteristics between physical properties of the flow field. Its performance depends on the phenomena of steam condensation onto the water jet surface and heat transfer in the water jet due to turbulence on to the phase-interface. The analysis was conducted by using CFD code embedded separate two-phase flow models that were confirmed by the experimental data. As the four-stage SI is compact heater, the system is expected to bring about great simplification and materials-saving effects, and high reliability of its operation. Therefore, it is confirmed that the simplification of the power plant by replacing all low-pressure feedwater heaters with the four-stage SI system, having steam extraction pressures equal to those for the existing ABWR system.

  11. Comparison of three electromagnetic NDE procedures using realistic feedwater heater mock-ups

    SciTech Connect

    Krzywosz, K.; Cagle, L. Jr. )

    1993-02-01

    Three electromagnetic NDE techniques are currently available to evaluate the tubing integrity of high-pressure feedwater heaters. They are remote-field eddy current, magnetically biased partial saturation eddy current, and flux leakage. To evaluate the performance of each technique, tubes containing filed-induced flaws were removed from retired bundles, characterized both destructively and nondestructively, and assembled into realistic mock-ups with tube support plates at their original locations. The assembled mockups were tested by vendors using three different inspection techniques. Each procedure was evaluated for its ability to detect and size field-induced flaws. Both flaw detection and NDE estimates were compared with known ground truth.' Based on the comparative test results, the most suitable inspection procedures evaluated to date for flaw detection and sizing were discerned. The evaluated high-pressure feedwater heater was made of SA 556-C2 carbon steel (CS) tubing.

  12. Prevention of corrosion-related failures in condensers and feedwater heaters

    SciTech Connect

    Beavers, J.A.; Agrawal, A.K.; Berry, W.E.

    1982-12-01

    The common alloys used for tubing in power plant feedwater heaters and condensers are identified and the major corrosion problems encountered in these components are described. The frequency of failure and failure modes in both components are shown to be alloy specific. Some corrosion problems are shown to be controllable through minor design modifications in the equipment and others through judicious selection of alloys. In condensers, alloy selection is most effective when based on tube location. In feedwater heaters, strict control of water quality is shown to be necessary with most alloys to minimize corrosion problems. Benefits of some auxiliary techniques for preventing corrosion attack include coating and cathodic protection of the tube sheet and cooling water intake screens.

  13. Review of Boston Edison`s feedwater heater condition assessment program

    SciTech Connect

    Bell, B.J.; Palter, L.; Doody, S.

    1995-12-01

    Boston Edison Co. has proactively conducted numerous heat exchanger condition assessments at Mystic and New Boston Stations. This paper focuses upon low and high pressure feedwater heater assessments, performed in accordance with EPRI GS-6724, Condition Assessment Guidelines for Fossil Fuel Power Plants. The elements of this EPRI guideline are reviewed. Thereafter, Boston Edison`s condition assessment approach, techniques employed, typical findings obtained and benefits derived are described on a multiple case history basis.

  14. Stationary Engineers Apprenticeship. Related Training Modules. 17.1-17.3 Feedwater.

    ERIC Educational Resources Information Center

    Lane Community Coll., Eugene, OR.

    This learning module, one in a series of 20 related training modules for apprentice stationary engineers, deals with feedwater. Addressed in the individual instructional packages included in the module are the following topics: types of feedwater, equipment for use in working with feedwater, water treatments, and procedures for testing feedwater.…

  15. Millwright Apprenticeship. Related Training Modules. 12.1-12.3 Feedwater.

    ERIC Educational Resources Information Center

    Lane Community Coll., Eugene, OR.

    This packet of three learning modules on feedwater is one of six such packets developed for apprenticeship training for millwrights. Introductory materials are a complete listing of all available modules and a supplementary reference list. Each module contains some or all of these components: goal, performance indicators, study guide (a check list…

  16. Feedwater temperature control methods and systems

    SciTech Connect

    Moen, Stephan Craig; Noonan, Jack Patrick; Saha, Pradip

    2014-04-22

    A system for controlling the power level of a natural circulation boiling water nuclear reactor (NCBWR) is disclosed. The system, in accordance with an example embodiment of the present invention, may include a controller configured to control a power output level of the NCBWR by controlling a heating subsystem to adjust a temperature of feedwater flowing into an annulus of the NCBWR. The heating subsystem may include a steam diversion line configured to receive steam generated by a core of the NCBWR and a steam bypass valve configured to receive commands from the controller to control a flow of the steam in the steam diversion line, wherein the steam received by the steam diversion line has not passed through a turbine. Additional embodiments of the invention may include a feedwater bypass valve for controlling an amount of flow of the feedwater through a heater bypass line to the annulus.

  17. Removable feedwater sparger assembly

    DOEpatents

    Challberg, R.C.

    1994-10-04

    A removable feedwater sparger assembly includes a sparger having an inlet pipe disposed in flow communication with the outlet end of a supply pipe. A tubular coupling includes an annular band fixedly joined to the sparger inlet pipe and a plurality of fingers extending from the band which are removably joined to a retention flange extending from the supply pipe for maintaining the sparger inlet pipe in flow communication with the supply pipe. The fingers are elastically deflectable for allowing engagement of the sparger inlet pipe with the supply pipe and for disengagement therewith. 8 figs.

  18. Removable feedwater sparger assembly

    DOEpatents

    Challberg, Roy C.

    1994-01-01

    A removable feedwater sparger assembly includes a sparger having an inlet pipe disposed in flow communication with the outlet end of a supply pipe. A tubular coupling includes an annular band fixedly joined to the sparger inlet pipe and a plurality of fingers extending from the band which are removably joined to a retention flange extending from the supply pipe for maintaining the sparger inlet pipe in flow communication with the supply pipe. The fingers are elastically deflectable for allowing engagement of the sparger inlet pipe with the supply pipe and for disengagement therewith.

  19. Heater drain system transient monitoring

    SciTech Connect

    Voll, B.J.; Farsaci, C.D.

    1995-12-01

    Feedwater heater drain systems are susceptible to unstable, two phase flow conditions. These instabilities are difficult to predict and are dependent on plant-specific system designs and operating conditions. Therefore, significant vibrations and transient events can occur that the systems are not specifically designed for. This paper describes how heater drain system responses due to unanticipated transient events at a nuclear plant were captured and quantified using a digital data acquisition system. The setup of the data acquisition system, including the determination of what parameters to monitor and how to effectively capture potential transient events, is discussed. This paper also discusses the monitoring results and their relevance to system modification evaluations and root cause evaluations.

  20. Infrared Heaters

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The heating units shown in the accompanying photos are Panelbloc infrared heaters, energy savers which burn little fuel in relation to their effective heat output. Produced by Bettcher Manufacturing Corporation, Cleveland, Ohio, Panelblocs are applicable to industrial or other facilities which have ceilings more than 12 feet high, such as those pictured: at left the Bare Hills Tennis Club, Baltimore, Maryland and at right, CVA Lincoln- Mercury, Gaithersburg, Maryland. The heaters are mounted high above the floor and they radiate infrared energy downward. Panelblocs do not waste energy by warming the surrounding air. Instead, they beam invisible heat rays directly to objects which absorb the radiation- people, floors, machinery and other plant equipment. All these objects in turn re-radiate the energy to the air. A key element in the Panelbloc design is a coating applied to the aluminized steel outer surface of the heater. This coating must be corrosion resistant at high temperatures and it must have high "emissivity"-the ability of a surface to emit radiant energy. The Bettcher company formerly used a porcelain coating, but it caused a production problem. Bettcher did not have the capability to apply the material in its own plant, so the heaters had to be shipped out of state for porcelainizing, which entailed extra cost. Bettcher sought a coating which could meet the specifications yet be applied in its own facilities. The company asked The Knowledge Availability Systems Center, Pittsburgh, Pennsylvania, a NASA Industrial Applications Center (IAC), for a search of NASA's files

  1. Convective heater

    DOEpatents

    Thorogood, R.M.

    1983-12-27

    A convective heater for heating fluids such as a coal slurry is constructed of a tube circuit arrangement which obtains an optimum temperature distribution to give a relatively constant slurry film temperature. The heater is constructed to divide the heating gas flow into two equal paths and the tube circuit for the slurry is arranged to provide a mixed flow configuration whereby the slurry passes through the two heating gas paths in successive co-current, counter-current and co-current flow relative to the heating gas flow. This arrangement permits the utilization of minimum surface area for a given maximum film temperature of the slurry consistent with the prevention of coke formation. 14 figs.

  2. Convective heater

    DOEpatents

    Thorogood, Robert M.

    1986-01-01

    A convective heater for heating fluids such as a coal slurry is constructed of a tube circuit arrangement which obtains an optimum temperature distribution to give a relatively constant slurry film temperature. The heater is constructed to divide the heating gas flow into two equal paths and the tube circuit for the slurry is arranged to provide a mixed flow configuration whereby the slurry passes through the two heating gas paths in successive co-current, counter-current and co-current flow relative to the heating gas flow. This arrangement permits the utilization of minimum surface area for a given maximum film temperature of the slurry consistent with the prevention of coke formation.

  3. Convective heater

    DOEpatents

    Thorogood, Robert M.

    1983-01-01

    A convective heater for heating fluids such as a coal slurry is constructed of a tube circuit arrangement which obtains an optimum temperature distribution to give a relatively constant slurry film temperature. The heater is constructed to divide the heating gas flow into two equal paths and the tube circuit for the slurry is arranged to provide a mixed flow configuration whereby the slurry passes through the two heating gas paths in successive co-current, counter-current and co-current flow relative to the heating gas flow. This arrangement permits the utilization of minimum surface area for a given maximum film temperature of the slurry consistent with the prevention of coke formation.

  4. Packaged die heater

    SciTech Connect

    Spielberger, Richard; Ohme, Bruce Walker; Jensen, Ronald J.

    2011-06-21

    A heater for heating packaged die for burn-in and heat testing is described. The heater may be a ceramic-type heater with a metal filament. The heater may be incorporated into the integrated circuit package as an additional ceramic layer of the package, or may be an external heater placed in contact with the package to heat the die. Many different types of integrated circuit packages may be accommodated. The method provides increased energy efficiency for heating the die while reducing temperature stresses on testing equipment. The method allows the use of multiple heaters to heat die to different temperatures. Faulty die may be heated to weaken die attach material to facilitate removal of the die. The heater filament or a separate temperature thermistor located in the package may be used to accurately measure die temperature.

  5. Condensate and feedwater systems, pumps, and water chemistry. Volume seven

    SciTech Connect

    Not Available

    1986-01-01

    Subject matter includes condensate and feedwater systems (general features of condensate and feedwater systems, condenser hotwell level control, condensate flow, feedwater flow), pumps (principles of fluid flow, types of pumps, centrifugal pumps, positive displacement pumps, jet pumps, pump operating characteristics) and water chemistry (water chemistry fundamentals, corrosion, scaling, radiochemistry, water chemistry control processes, water pretreatment, PWR water chemistry, BWR water chemistry, condenser circulating water chemistry.

  6. Grouped exposed metal heaters

    DOEpatents

    Vinegar, Harold J.; Coit, William George; Griffin, Peter Terry; Hamilton, Paul Taylor; Hsu, Chia-Fu; Mason, Stanley Leroy; Samuel, Allan James; Watkins, Ronnie Wade

    2012-07-31

    A system for treating a hydrocarbon containing formation is described. The system includes two or more groups of elongated heaters. The group includes two or more heaters placed in two or more openings in the formation. The heaters in the group are electrically coupled below the surface of the formation. The openings include at least partially uncased wellbores in a hydrocarbon layer of the formation. The groups are electrically configured such that current flow through the formation between at least two groups is inhibited. The heaters are configured to provide heat to the formation.

  7. Grouped exposed metal heaters

    SciTech Connect

    Vinegar, Harold J.; Coit, William George; Griffin, Peter Terry; Hamilton, Paul Taylor; Hsu, Chia-Fu; Mason, Stanley Leroy; Samuel, Allan James; Watkins, Ronnie Wade

    2010-11-09

    A system for treating a hydrocarbon containing formation is described. The system includes two or more groups of elongated heaters. The group includes two or more heaters placed in two or more openings in the formation. The heaters in the group are electrically coupled below the surface of the formation. The openings include at least partially uncased wellbores in a hydrocarbon layer of the formation. The groups are electrically configured such that current flow through the formation between at least two groups is inhibited. The heaters are configured to provide heat to the formation.

  8. 49 CFR 230.57 - Injectors and feedwater pumps.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Appurtenances Injectors, Feedwater Pumps, and Flue Plugs § 230.57 Injectors and feedwater pumps. (a) Water... water to the boiler, at least one of which is a live steam injector. (b) Maintenance and testing... delivering water to the boiler. Boiler checks, delivery pipes, feed water pipes, tank hose and tank...

  9. 49 CFR 230.57 - Injectors and feedwater pumps.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Appurtenances Injectors, Feedwater Pumps, and Flue Plugs § 230.57 Injectors and feedwater pumps. (a) Water... water to the boiler, at least one of which is a live steam injector. (b) Maintenance and testing... delivering water to the boiler. Boiler checks, delivery pipes, feed water pipes, tank hose and tank...

  10. 49 CFR 230.57 - Injectors and feedwater pumps.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Appurtenances Injectors, Feedwater Pumps, and Flue Plugs § 230.57 Injectors and feedwater pumps. (a) Water... water to the boiler, at least one of which is a live steam injector. (b) Maintenance and testing... delivering water to the boiler. Boiler checks, delivery pipes, feed water pipes, tank hose and tank...

  11. 49 CFR 230.57 - Injectors and feedwater pumps.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Appurtenances Injectors, Feedwater Pumps, and Flue Plugs § 230.57 Injectors and feedwater pumps. (a) Water... water to the boiler, at least one of which is a live steam injector. (b) Maintenance and testing... delivering water to the boiler. Boiler checks, delivery pipes, feed water pipes, tank hose and tank...

  12. 49 CFR 230.57 - Injectors and feedwater pumps.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Injectors and feedwater pumps. 230.57 Section 230.57 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Injectors, Feedwater Pumps,...

  13. System Study: Auxiliary Feedwater 1998-2014

    SciTech Connect

    Schroeder, John Alton

    2015-12-01

    This report presents an unreliability evaluation of the auxiliary feedwater (AFW) system at 69 U.S. commercial nuclear power plants. Demand, run hours, and failure data from fiscal year 1998 through 2014 for selected components were obtained from the Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES). The unreliability results are trended for the most recent 10 year period, while yearly estimates for system unreliability are provided for the entire active period. No statistically significant increasing or decreasing trends were identified in the AFW results.

  14. System Study: Auxiliary Feedwater 1998–2013

    SciTech Connect

    Schroeder, John Alton

    2014-12-31

    This report presents an unreliability evaluation of the auxiliary feedwater (AFW) system at 69 U.S. commercial nuclear power plants. Demand, run hours, and failure data from fiscal year 1998 through 2013 for selected components were obtained from the Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES). The unreliability results are trended for the most recent 10-year period, while yearly estimates for system unreliability are provided for the entire active period. No statistically significant increasing or decreasing trends were identified in the AFW results.

  15. Explosives tester with heater

    DOEpatents

    Del Eckels, Joel; Nunes, Peter J.; Simpson, Randall L.; Whipple, Richard E.; Carter, J. Chance; Reynolds, John G.

    2010-08-10

    An inspection tester system for testing for explosives. The tester includes a body and a swab unit adapted to be removeably connected to the body. At least one reagent holder and dispenser is operatively connected to the body. The reagent holder and dispenser contains an explosives detecting reagent and is positioned to deliver the explosives detecting reagent to the swab unit. A heater is operatively connected to the body and the swab unit is adapted to be operatively connected to the heater.

  16. Looking south at boiler feedwater pumps (steam turbine pump on ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking south at boiler feedwater pumps (steam turbine pump on left, electric motor pump on right). - Wheeling-Pittsburgh Steel Corporation, Allenport Works, Boiler House, Route 88 on West bank of Monongahela River, Allenport, Washington County, PA

  17. Experience in the repair of steam generator auxiliary feedwater nozzle

    SciTech Connect

    Chao, K.K.N.

    1996-12-01

    The auxiliary feedwater nozzle is quite often subjected to more thermal stress cycles and other loading mechanisms during their service life than the material was designed and fabricated for at the nozzle of the earlier steam generators in many nuclear plants. During plant operation, the auxiliary feedwater nozzle outlet is exposed to the hot steam from the generator side, while the auxiliary feedwater piping which contains subcooled water from the inlet often induces water hammer as a result of the steam-water mixing phenomena. The thermal cycles and the steam bubble collapse at the nozzle may cause cracking in the nozzle liner and interior surface of the nozzle, and subsequently results in structural damage to the steam generator. This presentation is intended to share the lessons learned from the evaluation of the nozzle condition and the subsequent modification and repair made to the auxiliary feedwater nozzle at the Palisades Nuclear Plant. Other nuclear plant owners may benefit from this experience.

  18. 29. NORTHWEST VIEW OF BOILER FEEDWATER CHEMICAL REACTION TANKS, WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. NORTHWEST VIEW OF BOILER FEEDWATER CHEMICAL REACTION TANKS, WITH FORMER GENERAL OFFICE BUILDING IN BACKGROUND. - U.S. Steel Duquesne Works, Fuel & Utilities Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  19. Detail view of feedwater pump (below) and preheater tanks (above) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of feedwater pump (below) and preheater tanks (above) in boiler house. - Burnsville Natural Gas Pumping Station, Saratoga Avenue between Little Kanawha River & C&O Railroad line, Burnsville, Braxton County, WV

  20. Analysis of failure modes resulting in stress corrosion cracking of 304N tubing in a high pressure heater desuperheater

    SciTech Connect

    Karg, D.C.; Svensen, L.M.E.; Ford, A.W.; Catapano, M.C.

    1998-10-01

    Santee Cooper (South Carolina Public Service Authority) experienced twenty-three tube failures in a high pressure feedwater heater that was in service less than three years. The tube failures were located at baffles adjacent to both exists of the dual flow desuperheater. Metallurgical analysis of the failed tubes indicated that stress corrosion cracking of the 304N stainless steel was the primary failure mode (Rudin, 1994; Shifler, 1994). The investigation to determine the factors leading to the onset of stress corrosion cracking included analysis of heater acceptance tests, the heater manufacturer`s proposal and manufacturing procedures, operational data, eddy current reports, metallurgical reports, and a heater design review for vibration and wet wall potential (formation of condensation on the outside diameter (OD) of the tube prior to the desuperheater exit).

  1. Analysis of failure modes resulting in stress corrosion cracking of 304N tubing in a high pressure heater desuperheater

    SciTech Connect

    Karg, D.C.; Svensen, L.M.E. III; Ford, A.W. III; Catapano, M.C.

    1995-12-31

    Santee Cooper (South Carolina Public Service Authority) experienced twenty-three tube failures in a high pressure feedwater heater that was in service less than three years. The tube failures were located at baffles adjacent to both exits of the dual flow desuperheater. Metallurgical analysis of the failed tubes indicated that stress corrosion cracking of the 304N stainless steel was the primary failure mode. The investigation to determine the factors leading to the onset of stress corrosion cracking included analysis of heater acceptance tests, the heater manufacturer`s proposal and manufacturing procedures, operational data, eddy current reports, metallurgical reports, and a heater design review for vibration and wet wall potential (formation of condensation on the outside diameter (OD) of the tube prior to the desuperheater exit).

  2. Coaxial Electric Heaters

    NASA Technical Reports Server (NTRS)

    Strekalov, Dmitry; Matsko, Andrey; Savchenkov, Anatoliy; Maleki, Lute

    2008-01-01

    Coaxial electric heaters have been conceived for use in highly sensitive instruments in which there are requirements for compact heaters but stray magnetic fields associated with heater electric currents would adversely affect operation. Such instruments include atomic clocks and magnetometers that utilize heated atomic-sample cells, wherein stray magnetic fields at picotesla levels could introduce systematic errors into instrument readings. A coaxial electric heater is essentially an axisymmetric coaxial cable, the outer conductor of which is deliberately made highly electrically resistive so that it can serve as a heating element. As in the cases of other axisymmetric coaxial cables, the equal magnitude electric currents flowing in opposite directions along the inner and outer conductors give rise to zero net magnetic field outside the outer conductor. Hence, a coaxial electric heater can be placed near an atomic-sample cell or other sensitive device. A coaxial electric heater can be fabricated from an insulated copper wire, the copper core of which serves as the inner conductor. For example, in one approach, the insulated wire is dipped in a colloidal graphite emulsion, then the emulsion-coated wire is dried to form a thin, uniform, highly electrically resistive film that serves as the outer conductor. Then the film is coated with a protective layer of high-temperature epoxy except at the end to be electrically connected to the power supply. Next, the insulation is stripped from the wire at that end. Finally, electrical leads from the heater power supply are attached to the exposed portions of the wire and the resistive film. The resistance of the graphite film can be tailored via its thickness. Alternatively, the film can be made from an electrically conductive paint, other than a colloidal graphite emulsion, chosen to impart the desired resistance. Yet another alternative is to tailor the resistance of a graphite film by exploiting the fact that its resistance

  3. Hot gas engine heater head

    DOEpatents

    Berntell, John O.

    1983-01-01

    A heater head for a multi-cylinder double acting hot gas engine in which each cylinder is surrounded by an annular regenerator unit, and in which the tops of each cylinder and its surrounding regenerator are interconnected by a multiplicity of heater tubes. A manifold for the heater tubes has a centrally disposed duct connected to the top of the cylinder and surrounded by a wider duct connecting the other ends of the heater tubes with the regenerator unit.

  4. Immersible solar heater for fluids

    DOEpatents

    Kronberg, James W.

    1995-01-01

    An immersible solar heater comprising a light-absorbing panel attached to a frame for absorbing heat energy from the light and transferring the absorbed heat energy directly to the fluid in which the heater is immersed. The heater can be used to heat a swimming pool, for example, and is held in position and at a preselected angle by a system of floats, weights and tethers so that the panel can operate efficiently. A skid can be used in one embodiment to prevent lateral movement of the heater along the bottom of the pool. Alternative embodiments include different arrangements of the weights, floats and tethers and methods for making the heater.

  5. Solar Water Heater

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Skylab derived Heating System offers computerized control with an innovative voice synthesizer that literally allows the control unit to talk to the system user. It reports time of day, outside temperature and system temperature, and asks questions as to how the user wants the system programmed. Master Module collects energy from the Sun and either transfers it directly to the home water heater or stores it until needed.

  6. Qualification of improved joint heaters

    NASA Technical Reports Server (NTRS)

    Cook, M.

    1989-01-01

    Qualification testing of the Redesigned Solid Rocket Motor improved igniter-to-case joint and field joint heaters was conducted on the fired TEM-04 static test motor and was completed on 7 Sep. 1989. The purpose of the test was to certify the installation and performance of the improved joint heaters for use on flight motors. The changes incorporated in the improved heaters improve durability and should reduce handling damage. The igniter-to-case joint and field joint primary heater circuits were subjected to five 20-hr ON cycles. The heater redundant circuits were then subjected to one 20-hr ON cycle. Voltage, current, and temperature set point values were maintained within the specified limits for both heaters during each ON cycle. When testing was complete, both heaters were removed and inspected. No discolorations or any other anomalies were found on either of the heaters. Based on the successful completion of this test, it is recommended that the improved igniter-to-case joint and field joint heaters be used on future flight motors.

  7. Water heater control module

    DOEpatents

    Hammerstrom, Donald J

    2013-11-26

    An advanced electric water heater control system that interfaces with a high temperature cut-off thermostat and an upper regulating thermostat. The system includes a control module that is electrically connected to the high-temperature cut-off thermostat and the upper regulating thermostat. The control module includes a switch to open or close the high-temperature cut-off thermostat and the upper regulating thermostat. The control module further includes circuitry configured to control said switch in response to a signal selected from the group of an autonomous signal, a communicated signal, and combinations thereof.

  8. Regenerative air heater

    DOEpatents

    Hasselquist, Paul B.; Baldner, Richard

    1982-01-01

    A gas-cooled steel skirt is used to support a refractory cored brick matrix and dome structure in a high temperature regenerative air heater useful in magnetohydrodynamic power generation. The steel skirt thermally expands to accommodate the thermal expansion of the dome structure despite substantial temperature differential thereby reducing relative movement between the dome bricks. Gas cooling of the steel skirt allows the structure to operate above its normal temperature during clean-out cycles and also allows for the control of the thermal expansion of the steel skirt.

  9. Regenerative air heater

    DOEpatents

    Hasselquist, P.B.; Baldner, R.

    1980-11-26

    A gas-cooled steel skirt is used to support a refractory cored brick matrix and dome structure in a high temperature regenerative air heater useful in magnetohydrodynamic power generation. The steel skirt thermally expands to accommodate the thermal expansion of the dome structure despite substantial temperature differential thereby reducing relative movement between the dome bricks. Gas cooling of the steel skirt allows the structure to operate above its normal temperature during clean-out cycles and also allows for the control of the thermal expansion of the steel skirt.

  10. Comparative assessment of selected PWR auxiliary feedwater system reliability analyses

    SciTech Connect

    Youngblood, R.; Fresco, A.; Papazoglou, I.A.; Tsao, J.

    1985-01-01

    This paper presents a sample of results obtained in reviewing utility submittals of Auxiliary Feedwater System reliability studies. These results are then used to illustrate a few general points regarding such studies. The submittals and reviews for operating license applications are quite significant in that they represent an application of probabilistic risk assessment techniques in the licensing process.

  11. Review of industry efforts to manage pressurized water reactor feedwater nozzle, piping, and feedring cracking and wall thinning

    SciTech Connect

    Shah, V.N.; Ware, A.G.; Porter, A.M.

    1997-03-01

    This report presents a review of nuclear industry efforts to manage thermal fatigue, flow-accelerated corrosion, and water hammer damage to pressurized water reactor (PWR) feedwater nozzles, piping, and feedrings. The review includes an evaluation of design modifications, operating procedure changes, augmented inspection and monitoring programs, and mitigation, repair and replacement activities. Four actions were taken: (a) review of field experience to identify trends of operating events, (b) review of technical literature, (c) visits to PWR plants and a PWR vendor, and (d) solicitation of information from 8 other countries. Assessment of field experience is that licensees have apparently taken sufficient action to minimize feedwater nozzle cracking caused by thermal fatigue and wall thinning of J-tubes and feedwater piping. Specific industry actions to minimize the wall-thinning in feedrings and thermal sleeves were not found, but visual inspection and necessary repairs are being performed. Assessment of field experience indicates that licensees have taken sufficient action to minimize steam generator water hammer in both top-feed and preheat steam generators. Industry efforts to minimize multiple check valve failures that have allowed backflow of steam from a steam generator and have played a major role in several steam generator water hammer events were not evaluated. A major finding of this review is that analysis, inspection, monitoring, mitigation, and replacement techniques have been developed for managing thermal fatigue and flow-accelerated corrosion damage to feedwater nozzles, piping, and feedrings. Adequate training and appropriate applications of these techniques would ensure effective management of this damage.

  12. Subsurface heaters with low sulfidation rates

    SciTech Connect

    John, Randy Carl; Vinegar, Harold J

    2013-12-10

    A system for heating a hydrocarbon containing formation includes a heater having an elongated ferromagnetic metal heater section. The heater is located in an opening in a formation. The heater section is configured to heat the hydrocarbon containing formation. The exposed ferromagnetic metal has a sulfidation rate that goes down with increasing temperature of the heater, when the heater is in a selected temperature range.

  13. Immersible solar heater for fluids

    DOEpatents

    Hazen, T.C.; Fliermans, C.B.

    1994-01-01

    An immersible solar heater is described comprising a light-absorbing panel attached to a frame for absorbing heat energy from the light and transferring the absorbed heat energy directly to the fluid in which the heater is immersed. The heater can be used to heat a swimming pool, for example, and is held in position and at a preselected angle by a system of floats, weights and tethers so that the panel can operate efficiently. A skid can be used in one embodiment to prevent lateral movement of the heater along the bottom of the pool. Alternative embodiments include different arrangements of the weights, floats and tethers and methods for making the heater.

  14. Immersible solar heater for fluids

    DOEpatents

    Kronberg, J.W.

    1995-07-11

    An immersible solar heater is described comprising a light-absorbing panel attached to a frame for absorbing heat energy from the light and transferring the absorbed heat energy directly to the fluid in which the heater is immersed. The heater can be used to heat a swimming pool, for example, and is held in position and at a preselected angle by a system of floats, weights and tethers so that the panel can operate efficiently. A skid can be used in one embodiment to prevent lateral movement of the heater along the bottom of the pool. Alternative embodiments include different arrangements of the weights, floats and tethers and methods for making the heater. 11 figs.

  15. Visibly Transparent Heaters.

    PubMed

    Gupta, Ritu; Rao, K D M; Kiruthika, S; Kulkarni, Giridhar U

    2016-05-25

    Heater plates or sheets that are visibly transparent have many interesting applications in optoelectronic devices such as displays, as well as in defrosting, defogging, gas sensing and point-of-care disposable devices. In recent years, there have been many advances in this area with the advent of next generation transparent conducting electrodes (TCE) based on a wide range of materials such as oxide nanoparticles, CNTs, graphene, metal nanowires, metal meshes and their hybrids. The challenge has been to obtain uniform and stable temperature distribution over large areas, fast heating and cooling rates at low enough input power yet not sacrificing the visible transmittance. This review provides topical coverage of this important research field paying due attention to all the issues mentioned above. PMID:27176472

  16. Evaluation of steam generator feedwater nozzles for the effects of thermal stratification

    SciTech Connect

    Qashu, R.; El-Akily, N.M.; Kuo, A.

    1995-12-01

    The potential for thermal stratification in the main feedwater (FW) line of a Pressurized Water Reactor (PWR) plant exists whenever the auxiliary feedwater is initiated. The thermal stratification phenomenon is attributed to the difference in density between the hotter normal feedwater, initially in the pipe, and the colder auxiliary feedwater introduced into the piping. The effect of thermal stratification on the fatigue life is two fold: the global bending due to the bowing effect caused by thermal stratification, and the local effect due to the fluctuation in the level of the hot-cold interface. This paper deals with the global and local effects of thermal stratification in the main feedwater line on the fatigue life of the steam generator feedwater nozzle. This nozzle, which is attached to the main feedwater line, is subjected to the effects of thermal stratification in the main feedwater line and in the nozzle itself due to the difference in the water density between the auxiliary feedwater and the steam generator. It should be noted that steam generator feedwater nozzle cracking has been a concern in the nuclear power industry since the late 1970`s.

  17. Dynamic heater for display elements

    NASA Astrophysics Data System (ADS)

    Dehmlow, Brian P.; Bishop, Gary D.; Steffensmeier, Martin J.; Sampica, James D.; Skarohlid, Mark C.

    1997-07-01

    Liquid crystal display (LCD) deliver optimal performance when the entire display surface is isothermal and at a controllable temperature. This condition creates uniform electro-optical properties within the liquid crystal layer. This paper describes a dynamic, multicontact heater system that actively compensates for uneven heat loads, thereby creating the desired isothermal condition. The heater system includes a uniform resistive sheet, with multiple electrical contacts around the perimeter. A switch network connects each heater contact to a power supply, ground potential, or a high impedance. A microprocessor monitors the display temperature, and detects non-uniformity, and selectively applies heat to cold areas of the display. The dynamic heater system employs a variety of heating patterns to create the desired isothermal condition.Heating patterns vary in duration, power applied, and location on the display face. The microprocessor control loop can also detect and isolate faulty drive elements, and compensate for non- uniformity in the heater itself. The heater prevents stress- induced delaminations, mechanical distortions, and stress- induced birefringence in optical components. Test results indicate that a dynamic heater can be beneficial in the thermal design of LCD products.

  18. Digital feedwater and recirculation flow control for GPUN Oyster Creek

    SciTech Connect

    Burjorjee, D. ); Gan, B. )

    1992-01-01

    This paper describes the digital system for feedwater and recirculation control that GPU Nuclear will be installing at Oyster Creek during its next outage - expected circa December 1992. The replacement was motivated by considerations of reliability and obsolescence - the analog equipment was aging and reaching the end of its useful life. The new system uses Atomic Energy of Canada Ltd.'s software platform running on dual, redundant, industrial-grade 386 computers with opto-isolated field input/output (I/O) accessed through a parallel bus. The feedwater controller controls three main feed regulating valves, two low flow regulating valves, and two block valves. The recirculation controller drives the five scoop positioners of the hydraulic couplers. The system also drives contacts that lock up the actuators on detecting an open circuit in their current loops.

  19. Tuning The Laser Heater Undulator

    SciTech Connect

    Wolf, Zackary

    2010-12-03

    The laser heater undulator for the LCLS requires different tuning techniques than the main undulators. It is a pure permanent magnet (PPM) undulator, rather than the hybrid design of the main undulators. The PPM design allows analytic calculation of the undulator fields. The calculations let errors be introduced and correction techniques be derived. This note describes how the undulator was modelled, and the methods which were found to correct potential errors in the undulator. The laser heater undulator for the LCLS is a pure permanent magnet device requiring different tuning techniques than the main undulators. In this note, the laser heater undulator is modelled and tuning techniques to compensate various errors are derived.

  20. 46 CFR 119.320 - Water heaters.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Water heaters. 119.320 Section 119.320 Shipping COAST... Machinery § 119.320 Water heaters. (a) A water heater must meet the requirements of Parts 53 and 63 in... electric water heater is also acceptable if it: (1) Has a capacity of not more than 454 liters (120...

  1. 46 CFR 119.320 - Water heaters.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Water heaters. 119.320 Section 119.320 Shipping COAST... Machinery § 119.320 Water heaters. (a) A water heater must meet the requirements of Parts 53 and 63 in... electric water heater is also acceptable if it: (1) Has a capacity of not more than 454 liters (120...

  2. 46 CFR 119.320 - Water heaters.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Water heaters. 119.320 Section 119.320 Shipping COAST... Machinery § 119.320 Water heaters. (a) A water heater must meet the requirements of Parts 53 and 63 in... electric water heater is also acceptable if it: (1) Has a capacity of not more than 454 liters (120...

  3. 46 CFR 119.320 - Water heaters.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Water heaters. 119.320 Section 119.320 Shipping COAST... Machinery § 119.320 Water heaters. (a) A water heater must meet the requirements of Parts 53 and 63 in... electric water heater is also acceptable if it: (1) Has a capacity of not more than 454 liters (120...

  4. 46 CFR 119.320 - Water heaters.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Water heaters. 119.320 Section 119.320 Shipping COAST... Machinery § 119.320 Water heaters. (a) A water heater must meet the requirements of Parts 53 and 63 in... electric water heater is also acceptable if it: (1) Has a capacity of not more than 454 liters (120...

  5. Methods for forming long subsurface heaters

    DOEpatents

    Kim, Dong Sub

    2013-09-17

    A method for forming a longitudinal subsurface heater includes longitudinally welding an electrically conductive sheath of an insulated conductor heater along at least one longitudinal strip of metal. The longitudinal strip is formed into a tubular around the insulated conductor heater with the insulated conductor heater welded along the inside surface of the tubular.

  6. 49 CFR 393.77 - Heaters.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... charcoal. Any stove or other heater employing solid fuel except wood charcoal. (6) Portable heaters... the vehicle or burning occupants by direct radiation. Wood charcoal heaters shall be enclosed within a... or on which it is mounted. Wood charcoal heaters shall be secured against relative motion within...

  7. 49 CFR 393.77 - Heaters.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... charcoal. Any stove or other heater employing solid fuel except wood charcoal. (6) Portable heaters... the vehicle or burning occupants by direct radiation. Wood charcoal heaters shall be enclosed within a... or on which it is mounted. Wood charcoal heaters shall be secured against relative motion within...

  8. Heater head for stirling engine

    DOEpatents

    Corey, John A.

    1985-07-09

    A monolithic heater head assembly which augments cast fins with ceramic inserts which narrow the flow of combustion gas and obtains high thermal effectiveness with the assembly including an improved flange design which gives greater durability and reduced conduction loss.

  9. Solar Hot Water Heater

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The solar panels pictured below, mounted on a Moscow, Idaho home, are part of a domestic hot water heating system capable of providing up to 100 percent of home or small business hot water needs. Produced by Lennox Industries Inc., Marshalltown, Iowa, the panels are commercial versions of a collector co-developed by NASA. In an effort to conserve energy, NASA has installed solar collectors at a number of its own facilities and is conducting research to develop the most efficient systems. Lewis Research Center teamed with Honeywell Inc., Minneapolis, Minnesota to develop the flat plate collector shown. Key to the collector's efficiency is black chrome coating on the plate developed for use on spacecraft solar cells, the coating prevents sun heat from "reradiating," or escaping outward. The design proved the most effective heat absorber among 23 different types of collectors evaluated in a Lewis test program. The Lennox solar domestic hot water heating system has three main components: the array of collectors, a "solar module" (blue unit pictured) and a conventional water heater. A fluid-ethylene glycol and water-is circulated through the collectors to absorb solar heat. The fluid is then piped to a double-walled jacket around a water tank within the solar module.

  10. Advanced Process Heater

    SciTech Connect

    Tom Briselden, Chris Parrish

    2005-03-07

    The Roadmap for Process Heating Technology (March 16, 2001), identified the following priority R&D needs: Improved performance of high temperature materials; Improved methods for stabilizing low emission flames; Heating technologies that simultaneously reduce emissions, increase efficiency, and increase heat transfer. This Category I award entitled ''Proof of Concept of an Advanced Process Heater (APH) for Steel, Aluminum, and Petroleum Industries of the Future'' met the technical feasibility goals of: (1) Doubling the heat transfer rates (2) Improving thermal efficiencies by 20%, (3) Improving temperature uniformity by 100 degrees F and (4) simultaneously reducing NOx and CO2 emissions. The APH address EERE's mission priority of increasing efficiency/reducing fuel usage in energy intensive industries. One component of the APH, the SpyroCorTM, was commercialized by STORM Development's partner, Spinworks LLC. Over 2000 SpyrCorsTM were sold in 2004 resulting in 480 million BTU's of energy savings, 20% reduction in NOx and CO2 levels, and 9 jobs in N.W. Pennsylvania. A second component, the HeatCorTM, a low-cost high-temperature heat exchanger will be demonstrated by Spinworks in 2005 in preparation for commercial sales in 2006. The project occurred in the 21st Congressional District of Pennsylvania. Once fully commercialized, the APH energy savings potential is 339 trillion BTUs annually in the U.S. and will process 1.5 million more tons annually without major capital equipment expenditures. Spinworks will commercialize the APH and add over 100 U.S. workers. To accomplish the objective, STORM Development LLC teamed with Penn State University, SyCore, Inc, Spinworks LLC, and Schunk-INEX, Inc. The project consisted of component engineering and integration of the APH followed by parametric testing. All components of the system were tested in a lab furnace that simulates a full scale industrial installation. The target areas for development include: (1) Scale up STORM

  11. MHD oxidant intermediate temperature ceramic heater study

    NASA Technical Reports Server (NTRS)

    Carlson, A. W.; Chait, I. L.; Saari, D. P.; Marksberry, C. L.

    1981-01-01

    The use of three types of directly fired ceramic heaters for preheating oxygen enriched air to an intermediate temperature of 1144K was investigated. The three types of ceramic heaters are: (1) a fixed bed, periodic flow ceramic brick regenerative heater; (2) a ceramic pebble regenerative heater. The heater design, performance and operating characteristics under conditions in which the particulate matter is not solidified are evaluated. A comparison and overall evaluation of the three types of ceramic heaters and temperature range determination at which the particulate matter in the MHD exhaust gas is estimated to be a dry powder are presented.

  12. Preparation and reactivity of lepidocrocite under simulated feedwater conditions

    SciTech Connect

    McGarvey, G.B.; Burnett, K.B.; Owen, D.G.

    1998-02-01

    Lepidocrocite ({gamma}-FeOOH), prepared using several different aging temperatures and aging times, possesses widely varying morphological and structural features. Mean particle dimensions and surface areas were all found to depend on the conditions of the synthesis. Studies of the aqueous reduction of several of the lepidocrocite samples to magnetite indicated that the initial steps in the dissolution-reprecipitation process were influenced by the crystallinity of the material. Results of the morphological studies and the transformation reaction studies are described within the context of corrosion-product generation and stability in secondary feedwater systems of pressurized heavy-water nuclear reactors.

  13. Herbert Easterly auxiliary truck heater

    SciTech Connect

    Not Available

    1991-12-09

    The objective of this work was to continue the development of the Herbert Easterly heater apparatus for vehicles, such as semi-trailer tractors in order to fully establish its technical feasibility and provide the basis for its commercialization. This heater is auxiliary to the vehicle's primary heating system. With the engine off it heats both the vehicle engine to a temperature at which it starts easily and the vehicle passenger compartment. Specifically, this heater is automatically ignitable, operates directly from the vehicle diesel fuel supply and preheats the vehicle engine fuel prior to combustion. During the course of this work nine different versions of prototype heaters were designed, constructed and tested. All designs were based on the ideas and principles outlined in the Easterly patent. Each successive version incorporated design and fabrication improvements relative to the previous version. The final version, Prototype 9, utilized a multiple water jacket design to capture additional heat from the combustion gases prior to exhausting to the atmosphere. This final prototype exceeded the performance of a commercially available Webasto DBW-2010 using the same commercial burner as the one used in the Webasto unit. The time required to raise the heater fluid temperature by 120{degree}F was 23% less (20 minutes compared to 26 minutes) for Prototype 9 compared to the commercially available unit. In addition a prototype heat exchanger for preheating engine fuel was designed, fabricated and tested. It was also determined that the Prototype 9 auxiliary heater could operate at 85{degree}F for approximately 6 hours on a fully charged 12 volt marine battery rated to deliver 500 cold cranking amps.

  14. Solar heater for swimming pools

    SciTech Connect

    Babcock, H.W.

    1984-12-04

    A solar heater for swimming pools is provided having one or more heating panels installable on a roof or the like and arranged to discharge into a pool equipped with an apron without need for disturbing or obstructing the apron. This is accomplished by the provision of an elevated bistable dumper adjacent the perimeter of the apron having a dispensing spout normally inclined upwardly but pivoting at intervals to discharge into the pool across the apron without obstructing it. Water to be heated is diverted from the pool filtering system to the solar heater via a pressure regulator and a solar responsive flow control.

  15. Solar water heater design package

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Package describes commercial domestic-hot-water heater with roof or rack mounted solar collectors. System is adjustable to pre-existing gas or electric hot-water house units. Design package includes drawings, description of automatic control logic, evaluation measurements, possible design variations, list of materials and installation tools, and trouble-shooting guide and manual.

  16. Solar Water Heater Installation Package

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A 48-page report describes water-heating system, installation (covering collector orientation, mounting, plumbing and wiring), operating instructions and maintenance procedures. Commercial solar-powered water heater system consists of a solar collector, solar-heated-water tank, electrically heated water tank and controls. Analysis of possible hazards from pressure, electricity, toxicity, flammability, gas, hot water and steam are also included.

  17. FIRED HEATERS: NITROGEN OXIDES EMISSIONS AND CONTROLS

    EPA Science Inventory

    The report gives results of a study of nitrogen oxide (NOx) emissions from, and controls for, fired heaters. The petroleum refining and chemical manufacturing industries account for most of fired-heater energy use with an estimated 4600 fired heaters in operation, in these two in...

  18. 14 CFR 27.833 - Heaters.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Heaters. 27.833 Section 27.833 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... Heaters. Each combustion heater must be approved. Fire Protection...

  19. 14 CFR 29.833 - Heaters.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Heaters. 29.833 Section 29.833 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... Heaters. Each combustion heater must be approved. Fire Protection...

  20. 14 CFR 27.833 - Heaters.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Heaters. 27.833 Section 27.833 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... Heaters. Each combustion heater must be approved. Fire Protection...

  1. 14 CFR 29.833 - Heaters.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Heaters. 29.833 Section 29.833 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... Heaters. Each combustion heater must be approved. Fire Protection...

  2. 21 CFR 884.5390 - Perineal heater.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Perineal heater. 884.5390 Section 884.5390 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL... Perineal heater. (a) Identification. A perineal heater is a device designed to apply heat directly...

  3. Build Your Own Solar Air Heater.

    ERIC Educational Resources Information Center

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    The solar air heater is a simple device for catching some of the sun's energy to heat a home. Procedures for making and installing such a heater are presented. Included is a materials list, including tools needed for constructing the heater, sources for obtaining further details, and a list of material specifications. (JN)

  4. Sealed-in-quartz resistance heater

    NASA Technical Reports Server (NTRS)

    Miller, C. G.; Stephens, J. B.

    1980-01-01

    Electric resistance quartz heater operates at 1,400 F without developing excessively hot spots that can fail prematurely. Since resistance element is sealed in quartz, heater can be used in hostile environments. Sealed construction also keeps heater from contaminating heated object.

  5. 46 CFR 182.320 - Water heaters.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... listed under UL 174, UL 1453 (both incorporated by reference; see 46 CFR 175.600) or other standard... 46 Shipping 7 2014-10-01 2014-10-01 false Water heaters. 182.320 Section 182.320 Shipping COAST...) MACHINERY INSTALLATION Auxiliary Machinery § 182.320 Water heaters. (a) A water heater must meet...

  6. 46 CFR 182.320 - Water heaters.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... listed under UL 174, UL 1453 (both incorporated by reference; see 46 CFR 175.600) or other standard... 46 Shipping 7 2010-10-01 2010-10-01 false Water heaters. 182.320 Section 182.320 Shipping COAST...) MACHINERY INSTALLATION Auxiliary Machinery § 182.320 Water heaters. (a) A water heater must meet...

  7. 46 CFR 182.320 - Water heaters.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... listed under UL 174, UL 1453 (both incorporated by reference; see 46 CFR 175.600) or other standard... 46 Shipping 7 2011-10-01 2011-10-01 false Water heaters. 182.320 Section 182.320 Shipping COAST...) MACHINERY INSTALLATION Auxiliary Machinery § 182.320 Water heaters. (a) A water heater must meet...

  8. 46 CFR 182.320 - Water heaters.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... listed under UL 174, UL 1453 (both incorporated by reference; see 46 CFR 175.600) or other standard... 46 Shipping 7 2013-10-01 2013-10-01 false Water heaters. 182.320 Section 182.320 Shipping COAST...) MACHINERY INSTALLATION Auxiliary Machinery § 182.320 Water heaters. (a) A water heater must meet...

  9. 46 CFR 182.320 - Water heaters.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... listed under UL 174, UL 1453 (both incorporated by reference; see 46 CFR 175.600) or other standard... 46 Shipping 7 2012-10-01 2012-10-01 false Water heaters. 182.320 Section 182.320 Shipping COAST...) MACHINERY INSTALLATION Auxiliary Machinery § 182.320 Water heaters. (a) A water heater must meet...

  10. Fluid bed solids heater. Final technical report

    SciTech Connect

    Preuit, L. C.

    1980-01-01

    A solids heater which operates at up to 2000 F was designed, fabricated, installed and operated through checkout at the Morgantown Energy Technology Center at Morgantown, West Virginia. The system, designated the 2000 F Fluid Bed Solids Heater (FBSH) uses a fluidized bed to heat limestone to 600 F and aluminium oxide or silicon carbide to 2000 F and discharges heated solids upon demand. The FBSH with added valve handling and pressurization equipment is known as the Valve Hot Solids Test Unit and is intended for use by the US Department of Energy for testing of valves for severe service applications in coal conversion and utilization processes. The FBSH as designed and supplied by Combustion Power Company includes process equipment, controls, the enclosing building and other associated equipment. In the 600 F range of operation it can circulate limestone through two valve test trains simultaneously on a continuous basis. Only one valve test train is used for 2000 F solids and operation in that range is also continuous. Limestone, crushed to minus 5/16 size, is heated, discharged, and recycled at a maximum average rate of 250 lb/min while aluminum oxide or silicon carbide, No. 8 grit, is circulated at rates up to 167 lb/min. The FBSH control system is designed for automatic operation, and capability is included for external computerized data acquisition and/or supervisory control. An operating and maintenance manual and as-built drawings have been submitted. This report describes the FBSH equipment, its design basis, and its operation. It has been prepared and submitted in fulfillment of Contract Number DIAC05-77ET10499.

  11. FFTF reactor immersion heaters. Revision 1

    SciTech Connect

    Romrell, D.M.

    1994-08-26

    This specification establishes requirements for design, testing, and quality assurance for electric heaters that will be used to maintain primary Sodium temperature in the Fast Test Facility (FFTF) reactor vessel. The Test Specification (WHC-SD-FF-SDS-003) has been revised to Rev. 1. This change modifies the fabrication of approximately 25 feet of the subject heater using ceramic insulators over the heater lead wire rather than compressed magnesium oxide. Also, 304 or 316 stainless steel can be used for the heater sheath. This change should simplify fabrication and improve the heater operational reliability.

  12. Heater Development, Fabrication, and Testing: Analysis of Fabricated Heaters

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, S. M.; Dickens, R. E.; Farmer, J. T.; Davis, J. D.; Adams, M. R.; Martin, J. J.; Webster, K. L.

    2008-01-01

    Thermal simulators (highly designed heater elements) developed at the Early Flight Fission Test Facility (EFF-TF) are used to simulate the heat from nuclear fission in a variety of reactor concepts. When inserted into the reactor geometry, the purpose of the thermal simulators is to deliver thermal power to the test article in the same fashion as if nuclear fuel were present. Considerable effort has been expended to mimic heat from fission as closely as possible. To accurately represent the fuel, the simulators should be capable of matching the overall properties of the nuclear fuel rather than simply matching the fuel temperatures. This includes matching thermal stresses in the pin, pin conductivities, total core power, and core power profile (axial and radial). This Technical Memorandum discusses the historical development of the thermal simulators used in nonnuclear testing at the EFF-TF and provides a basis for the development of the current series of thermal simulators. The status of current heater fabrication and testing is assessed, providing data and analyses for both successes and failures experienced in the heater development and testing program.

  13. Review of the Vogtle Units 1 and 2 Auxiliary Feedwater System reliability analysis

    SciTech Connect

    Fresco, A.; Youngblood, R.; Papazoglou, I.A.

    1985-10-01

    This report presents the results of the review of the Auxiliary Feedwater System reliability analysis for the Vogtle Electric Generating Plant (VEGP) Units 1 and 2. The objective of this report is to estimate the probability that the Auxiliary Feedwater System will fail to perform its mission for each of three different initiators: (1) loss of main feedwater with offsite power available, (2) loss of offsite power, (3) loss of all ac power except vital instrumentation and control 125-V dc/120-V ac power. The scope, methodology, and failure data are prescribed by NUREG-0611, Appendix III. The results are compared with those obtained in NUREG-0611 for other Westinghouse plants.

  14. Review of the Shearon Harris Unit 1 auxiliary feedwater system reliability analysis

    SciTech Connect

    Fresco, A.; Youngblood, R.; Papazoglou, I.A.

    1986-02-01

    This report presents the results of a review of the Auxiliary Feedwater System Reliability Analysis for the Shearon Harris Nuclear Power Plant (SHNPP) Unit 1. The objective of this report is to estimate the probability that the Auxiliary Feedwater System will fail to perform its mission for each of three different initiators: (1) loss of main feedwater with offsite power available, (2) loss of offsite power, (3) loss of all ac power except vital instrumentation and control 125-V dc/120-V ac power. The scope, methodology, and failure data are prescribed by NUREG-0611 for other Westinghouse plants.

  15. Review of the Catawba Units 1 and 2 auxiliary feedwater system reliability analysis

    SciTech Connect

    Fresco, A.; Youngblood, R.; Papazoglou, I.A.

    1983-10-01

    This report presents the results of a review of the Auxiliary Feedwater System Reliability Analysis for Catawba Units 1 and 2. The objective of this report is to estimate the probability that the Auxiliary Feedwater System will fail to perform its mission for each of three different initiators: (1) loss of main feedwater with offsite power available, (2) loss of offsite power, (3) loss of all ac power except for vital instrumentation and control power. The scope, methodology, and failure data are prescribed by NUREG-0611, Appendix III. The results are compared with those obtained in NUREG-0611 for other Westinghouse plants.

  16. Review of the Seabrook Units 1 and 2 auxiliary feedwater system reliability analysis

    SciTech Connect

    Fresco, A.; Youngblood, R.; Papazoglou, I.A.

    1984-02-01

    This report presents the results of a review of the Emergency Feedwater System Reliability Analysis for Seabrook Nuclear Station Units 1 and 2. The objective of this report is to estimate the probability that the Emergency Feedwater System will fail to perform its mission for each of three different initiators: (1) loss of main feedwater with offsite power available, (2) loss of offsite power, (3) loss of all ac power except vital instrumentation and control 125 VDC/120 VAC power. The scope, methodology, and failure data are prescribed by NUREG-0611, Appendix III. The results are compared with those obtained in NUREG-0611 for other Westinghouse plants.

  17. Welding shield for coupling heaters

    DOEpatents

    Menotti, James Louis

    2010-03-09

    Systems for coupling end portions of two elongated heater portions and methods of using such systems to treat a subsurface formation are described herein. A system may include a holding system configured to hold end portions of the two elongated heater portions so that the end portions are abutted together or located near each other; a shield for enclosing the end portions, and one or more inert gas inlets configured to provide at least one inert gas to flush the system with inert gas during welding of the end portions. The shield may be configured to inhibit oxidation during welding that joins the end portions together. The shield may include a hinged door that, when closed, is configured to at least partially isolate the interior of the shield from the atmosphere. The hinged door, when open, is configured to allow access to the interior of the shield.

  18. Space Station solar water heater

    NASA Technical Reports Server (NTRS)

    Horan, D. C.; Somers, Richard E.; Haynes, R. D.

    1990-01-01

    The feasibility of directly converting solar energy for crew water heating on the Space Station Freedom (SSF) and other human-tended missions such as a geosynchronous space station, lunar base, or Mars spacecraft was investigated. Computer codes were developed to model the systems, and a proof-of-concept thermal vacuum test was conducted to evaluate system performance in an environment simulating the SSF. The results indicate that a solar water heater is feasible. It could provide up to 100 percent of the design heating load without a significant configuration change to the SSF or other missions. The solar heater system requires only 15 percent of the electricity that an all-electric system on the SSF would require. This allows a reduction in the solar array or a surplus of electricity for onboard experiments.

  19. Silicon photonic heater-modulator

    DOEpatents

    Zortman, William A.; Trotter, Douglas Chandler; Watts, Michael R.

    2015-07-14

    Photonic modulators, methods of forming photonic modulators and methods of modulating an input optical signal are provided. A photonic modulator includes a disk resonator having a central axis extending along a thickness direction of the disk resonator. The disk resonator includes a modulator portion and a heater portion. The modulator portion extends in an arc around the central axis. A PN junction of the modulator portion is substantially normal to the central axis.

  20. Molded polymer solar water heater

    DOEpatents

    Bourne, Richard C.; Lee, Brian E.

    2004-11-09

    A solar water heater has a rotationally-molded water box and a glazing subassembly disposed over the water box that enhances solar gain and provides an insulating air space between the outside environment and the water box. When used with a pressurized water system, an internal heat exchanger is integrally molded within the water box. Mounting and connection hardware is included to provide a rapid and secure method of installation.

  1. Adjusting alloy compositions for selected properties in temperature limited heaters

    DOEpatents

    Brady; Michael Patrick , Horton, Jr.; Joseph Arno , Vitek; John Michael

    2010-03-23

    Heaters for treating a subsurface formation are described herein. Such heaters can be obtained by using the systems and methods described herein. The heater includes a heater section including iron, cobalt, and carbon. The heater section has a Curie temperature less than a phase transformation temperature. The Curie temperature is at least 740.degree. C. The heater section provides, when time varying current is applied to the heater section, an electrical resistance.

  2. Design of a Software Sensor for Feedwater Flow Measurement Using a Fuzzy Inference System

    SciTech Connect

    Na, Man Gyun; Shin, Sun Ho; Jung, Dong Won

    2005-06-15

    Venturi meters are used to measure the feedwater flow rate in most current pressurized water reactors. These meters can decrease the thermal performance of nuclear power plants because the feedwater flow rate can be overmeasured due to their fouling phenomena that make corrosion products caused by long-term operation accumulate in the feedwater flow meters. Therefore, in this paper, a software sensor using a fuzzy inference system is developed in order to increase the thermal efficiency by accurately estimating online the feedwater flow rate. The fuzzy inference system to be used for black-box modeling of the feedwater system is equipped with an automatic design algorithm that automates the selection of the input signals to the fuzzy inference system and its fuzzy rule generation including parameter optimization. The proposed algorithm was verified by using the numerical simulation data of the MARS code for Kori Nuclear Power Plant Unit 1 and also the real plant data of Yonggwang Nuclear Power Plant Unit 3. In the simulations using numerical simulation data and real plant data, the relative 2{sigma} errors and the relative maximum error are small enough. The proposed method can be applied successfully to validate and monitor the existing feedwater flow meters.

  3. Joint used for coupling long heaters

    DOEpatents

    Menottie, James Louis

    2013-02-26

    Systems for coupling ends of elongated heaters and methods of using such systems to treat a subsurface formation are described herein. A system may include two elongated heaters with an end portion of one heater abutted or near to an end portion of the other heater and a core coupling material. The core coupling material may extend between the two elongated heaters. The elongated heaters may include cores and at least one conductor substantially concentrically surrounds the cores. The cores may have a lower melting point than the conductors. At least one end portion of the conductor may have a beveled edge. The gap formed by the beveled edge may be filled with a coupling material for coupling the one or more conductors. One end portion of at least one core may have a recessed opening and the core coupling material may be partially inside the recessed opening.

  4. Resistance Heater Helps Stirling-Engine Research

    NASA Technical Reports Server (NTRS)

    Hoehn, F. W.

    1982-01-01

    Stirling engine heater head consists of 18 double-turn coils of tubing, each of which is tightly wrapped with resistance-heating element, through which working gas flows. Coils form a toroid about periphery of heater-head body. With new resistance heater, total circuit resistance can be selected independently of tube geometry by changing size of wires and/or number of wire wraps around each tube.

  5. Condensing Hybrid Water Heater Monitoring Field Evaluation

    SciTech Connect

    Maguire, J.; Earle, L.; Booten, C.; Hancock, C. E.

    2011-10-01

    This paper summarizes the Mascot home, an abandoned property that was extensively renovated. Several efficiency upgrades were integrated into this home, of particular interest, a unique water heater (a Navien CR240-A). Field monitoring was performed to determine the in-use efficiency of the hybrid condensing water heater. The results were compared to the unit's rated efficiency. This unit is Energy Star qualified and one of the most efficient gas water heaters currently available on the market.

  6. Parallel heater system for subsurface formations

    DOEpatents

    Harris, Christopher Kelvin; Karanikas, John Michael; Nguyen, Scott Vinh

    2011-10-25

    A heating system for a subsurface formation is disclosed. The system includes a plurality of substantially horizontally oriented or inclined heater sections located in a hydrocarbon containing layer in the formation. At least a portion of two of the heater sections are substantially parallel to each other. The ends of at least two of the heater sections in the layer are electrically coupled to a substantially horizontal, or inclined, electrical conductor oriented substantially perpendicular to the ends of the at least two heater sections.

  7. SINGLE HEATER TEST FINAL REPORT

    SciTech Connect

    J.B. Cho

    1999-05-01

    The Single Heater Test is the first of the in-situ thermal tests conducted by the U.S. Department of Energy as part of its program of characterizing Yucca Mountain in Nevada as the potential site for a proposed deep geologic repository for the disposal of spent nuclear fuel and high-level nuclear waste. The Site Characterization Plan (DOE 1988) contained an extensive plan of in-situ thermal tests aimed at understanding specific aspects of the response of the local rock-mass around the potential repository to the heat from the radioactive decay of the emplaced waste. With the refocusing of the Site Characterization Plan by the ''Civilian Radioactive Waste Management Program Plan'' (DOE 1994), a consolidated thermal testing program emerged by 1995 as documented in the reports ''In-Situ Thermal Testing Program Strategy'' (DOE 1995) and ''Updated In-Situ Thermal Testing Program Strategy'' (CRWMS M&O 1997a). The concept of the Single Heater Test took shape in the summer of 1995 and detailed planning and design of the test started with the beginning fiscal year 1996. The overall objective of the Single Heater Test was to gain an understanding of the coupled thermal, mechanical, hydrological, and chemical processes that are anticipated to occur in the local rock-mass in the potential repository as a result of heat from radioactive decay of the emplaced waste. This included making a priori predictions of the test results using existing models and subsequently refining or modifying the models, on the basis of comparative and interpretive analyses of the measurements and predictions. A second, no less important, objective was to try out, in a full-scale field setting, the various instruments and equipment to be employed in the future on a much larger, more complex, thermal test of longer duration, such as the Drift Scale Test. This ''shake down'' or trial aspect of the Single Heater Test applied not just to the hardware, but also to the teamwork and cooperation between

  8. Combustion heater for oil shale

    DOEpatents

    Mallon, R.; Walton, O.; Lewis, A.E.; Braun, R.

    1983-09-21

    A combustion heater for oil shale heats particles of spent oil shale containing unburned char by burning the char. A delayed fall is produced by flowing the shale particles down through a stack of downwardly sloped overlapping baffles alternately extending from opposite sides of a vertical column. The delayed fall and flow reversal occurring in passing from each baffle to the next increase the residence time and increase the contact of the oil shale particles with combustion supporting gas flowed across the column to heat the shale to about 650 to 700/sup 0/C for use as a process heat source.

  9. Combustion heater for oil shale

    DOEpatents

    Mallon, Richard G.; Walton, Otis R.; Lewis, Arthur E.; Braun, Robert L.

    1985-01-01

    A combustion heater for oil shale heats particles of spent oil shale containing unburned char by burning the char. A delayed fall is produced by flowing the shale particles down through a stack of downwardly sloped overlapping baffles alternately extending from opposite sides of a vertical column. The delayed fall and flow reversal occurring in passing from each baffle to the next increase the residence time and increase the contact of the oil shale particles with combustion supporting gas flowed across the column to heat the shale to about 650.degree.-700.degree. C. for use as a process heat source.

  10. Thermal-hydraulic analysis for changing feedwater check valve leakage rate testing methodology

    SciTech Connect

    Fuller, R.; Harrell, J.

    1996-12-01

    The current design and testing requirements for the feedwater check valves (FWCVs) at the Grand Gulf Nuclear Station are established from original licensing requirements that necessitate extremely restrictive air testing with tight allowable leakage limits. As a direct result of these requirements, the original high endurance hard seats in the FWCVs were modified with elastomeric seals to provide a sealing surface capable of meeting the stringent air leakage limits. However, due to the relatively short functional life of the elastomeric seals compared to the hard seats, the overall reliability of the sealing function actually decreased. This degraded performance was exhibited by frequent seal failures and subsequent valve repairs. The original requirements were based on limited analysis and the belief that all of the high energy feedwater vaporized during the LOCA blowdown. These phenomena would have resulted in completely voided feedwater lines and thus a steam environment within the feedwater leak pathway. To challenge these criteria, a comprehensive design basis accident analysis was developed using the RELAP5/MOD3.1 thermal-hydraulic code. Realistic assumptions were used to more accurately model the post-accident fluid conditions within the feedwater system. The results of this analysis demonstrated that no leak path exists through the feedwater lines during the reactor blowdown phase and that sufficient subcooled water remains in various portions of the feedwater piping to form liquid water loop seals that effectively isolate this leak path. These results provided the bases for changing the leak testing requirements of the FWCVs from air to water. The analysis results also established more accurate allowable leakage limits, determined the real effective margins associated with the FWCV safety functions, and led to design changes that improved the overall functional performance of the valves.

  11. SELECTED ORGANIC POLLUTANT EMISSIONS FROM UNVENTED KEROSENE HEATERS

    EPA Science Inventory

    An exploratory study was performed to assess the semivolatile and nonvolatile organic pollutant emission rates from unvented kerosene space heaters. A well-tuned radiant heater and maltuned convective heater were tested for semivolatile and nonvolatile organic pollutant emiss...

  12. "Starfish" Heater Head For Stirling Engine

    NASA Technical Reports Server (NTRS)

    Vitale, N.

    1993-01-01

    Proposed "starfish" heater head for Stirling engine enables safe use of liquid sodium as heat-transfer fluid. Sodium makes direct contact with heater head but does not come in contact with any structural welds. Design concept minimizes number of, and simplifies nonstructural thermal welds and facilitates inspection of such welds.

  13. Strategy Guideline: Proper Water Heater Selection

    SciTech Connect

    Hoeschele, M.; Springer, D.; German, A.; Staller, J.; Zhang, Y.

    2015-04-01

    This Strategy Guideline on proper water heater selection was developed by the Building America team Alliance for Residential Building Innovation to provide step-by-step procedures for evaluating preferred cost-effective options for energy efficient water heater alternatives based on local utility rates, climate, and anticipated loads.

  14. Strategy Guideline. Proper Water Heater Selection

    SciTech Connect

    Hoeschele, M.; Springer, D.; German, A.; Staller, J.; Zhang, Y.

    2015-04-09

    This Strategy Guideline on proper water heater selection was developed by the Building America team Alliance for Residential Building Innovation to provide step-by-step procedures for evaluating preferred cost-effective options for energy efficient water heater alternatives based on local utility rates, climate, and anticipated loads.

  15. 49 CFR 393.77 - Heaters.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... in which the engine exhaust gases are conducted into or through any space occupied by persons or any heater which conducts engine compartment air into any such space. (2) Unenclosed flame heaters. Any type... air, heated or to be heated, from the engine compartment or from direct contact with any portion...

  16. 49 CFR 393.77 - Heaters.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... in which the engine exhaust gases are conducted into or through any space occupied by persons or any heater which conducts engine compartment air into any such space. (2) Unenclosed flame heaters. Any type... air, heated or to be heated, from the engine compartment or from direct contact with any portion...

  17. 49 CFR 393.77 - Heaters.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... in which the engine exhaust gases are conducted into or through any space occupied by persons or any heater which conducts engine compartment air into any such space. (2) Unenclosed flame heaters. Any type... air, heated or to be heated, from the engine compartment or from direct contact with any portion...

  18. Electric arc heater is self starting

    NASA Technical Reports Server (NTRS)

    Brown, R. D.

    1966-01-01

    Remote method initiates an electric arc over a large range of gaps between two water-cooled electrodes of an arc-heated wind tunnel without disassembling the arc unit. This type of starting system can be used on both three-phase ac arc heaters and dc arc heaters.

  19. Heater for Combustible-Gas Tanks

    NASA Technical Reports Server (NTRS)

    Ingle, Walter B.

    1987-01-01

    Proposed heater for pressurizing hydrogen, oxygen, or another combustible liquid or gas sealed in immersion cup in pressurized tank. Firmly supported in finned cup, coiled rod transfers heat through liquid metal to gas tank. Heater assembly welded or bolted to tank flange.

  20. Subsurface connection methods for subsurface heaters

    DOEpatents

    Vinegar, Harold J.; Bass, Ronald Marshall; Kim, Dong Sub; Mason, Stanley Leroy; Stegemeier, George Leo; Keltner, Thomas Joseph; Carl, Jr., Frederick Gordon

    2010-12-28

    A system for heating a subsurface formation is described. The system includes a first elongated heater in a first opening in the formation. The first elongated heater includes an exposed metal section in a portion of the first opening. The portion is below a layer of the formation to be heated. The exposed metal section is exposed to the formation. A second elongated heater is in a second opening in the formation. The second opening connects to the first opening at or near the portion of the first opening below the layer to be heated. At least a portion of an exposed metal section of the second elongated heater is electrically coupled to at least a portion of the exposed metal section of the first elongated heater in the portion of the first opening below the layer to be heated.

  1. Infrared microradiometry of thermal ink jet heaters

    NASA Astrophysics Data System (ADS)

    Muller, Olaf; Drews, Reinhold E.

    1989-07-01

    Thermal inkjet heaters were studied by infrared microradiometry using an apparatus similar to that reported in the literature. An InSb infrared sensor is mounted on a modified Leitz microscope equipped with a 36X reflecting objective. The system looks at a spot on the heater about 14 μm in diameter. The locally emitted infrared output is used as a qualitative measure of the local temperature. The temperature distribution on the heater surface is studied by constructing two-dimensional temperature contour maps. Current pulsing is carried out in air or in the presence of a high boiling point liquid. Other variables include pulse width, frequency, voltage, and heater geometry. Temperature profiles obtained in this way are in good agreement with those obtained from modeling calculations. Cycling has been carried out with several different passivation coatings with an emphasis on Ta passivation. Microradiometry of Ta-passivated heaters is complicated by the formation of Ta2O5 under most pulsing conditions and Ta2O5 has a much higher emissivity than tantalum. Burn-in curves (infrared output versus time) are used to monitor this oxidation process. Since the Ta2O5 thickness is not uniform over the heater surface, an accurate interpretation of the temperature contour maps of Ta-covered heaters is not easy. Microradiometry data of oxidized Ta heaters are supplemented with data obtained using optical microscopy, SEM, and profilometry. By overstressing heaters, hot spots were generated and studied using temperature contour maps. Subsequently, failed heaters were studied using SEM, and from these data failure mechanisms are postulated.

  2. D-Zero End Cap Calorimeter Inner Vessel Heater Documentation

    SciTech Connect

    Rucinski, R.; /Fermilab

    1990-06-15

    There will be 48 finned strip heaters installed in each end cap calorimeter vessel. The strip heaters were specified and the lowest bid vendor submitted a sample heater which was tested. This engineering note will document specifications of the heater, test procedure used, and results of the test. The finned strip heaters were of stainless steel construction. The lowest bid was $45.00 per heater from TEMPCO Electric Heater Corporation. A sample heater from TEMPCO was inspected, cold shocked tested to -320 F, and found to be acceptable.

  3. Extended range tankless water heater

    SciTech Connect

    Harris, J.A.

    1993-04-18

    In this research program, a laboratory test facility was built for the purpose of testing a gas-fired water heating appliance. This test facility can be used to examine the important performance characteristics of efficiency, dynamic response, and quality of combustion. An innovative design for a tankless water heater was built and then tested to determine its performance characteristics. This unit was tested over a 5:1 range in input (20,000 to 100,000 btuh heat input). The unit was then configured as a circulating hot water boiler, and a specially designed heat exchanger was used with it to generate domestic hot water. This unit was also tested, and was found to offer performance advantages with regard to low flow and temperature stability.

  4. Particulate matter sensor with a heater

    DOEpatents

    Hall, Matthew

    2011-08-16

    An apparatus to detect particulate matter. The apparatus includes a sensor electrode, a shroud, and a heater. The electrode measures a chemical composition within an exhaust stream. The shroud surrounds at least a portion of the sensor electrode, exclusive of a distal end of the sensor electrode exposed to the exhaust stream. The shroud defines an air gap between the sensor electrode and the shroud and an opening toward the distal end of the sensor electrode. The heater is mounted relative to the sensor electrode. The heater burns off particulate matter in the air gap between the sensor electrode and the shroud.

  5. 14 CFR 23.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Combustion heater fire protection. 23.859... Construction Fire Protection § 23.859 Combustion heater fire protection. (a) Combustion heater fire regions. The following combustion heater fire regions must be protected from fire in accordance with...

  6. 14 CFR 23.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Combustion heater fire protection. 23.859... Construction Fire Protection § 23.859 Combustion heater fire protection. (a) Combustion heater fire regions. The following combustion heater fire regions must be protected from fire in accordance with...

  7. 49 CFR 179.12 - Interior heater systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Interior heater systems. 179.12 Section 179.12... Design Requirements § 179.12 Interior heater systems. (a) Interior heater systems shall be of approved... each compartment. (b) Each interior heater system shall be hydrostatically tested at not less than...

  8. 49 CFR 179.12 - Interior heater systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Interior heater systems. 179.12 Section 179.12... § 179.12 Interior heater systems. (a) Interior heater systems shall be of approved design and materials...) Each interior heater system shall be hydrostatically tested at not less than 13.79 bar (200 psig)...

  9. 46 CFR 52.25-15 - Fired thermal fluid heaters.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Fired thermal fluid heaters. 52.25-15 Section 52.25-15... Boiler Types § 52.25-15 Fired thermal fluid heaters. (a) Fired thermal fluid heaters shall be designed...) Each fired thermal fluid heater must be fitted with a control which prevents the heat transfer...

  10. 46 CFR 52.25-15 - Fired thermal fluid heaters.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Fired thermal fluid heaters. 52.25-15 Section 52.25-15... Boiler Types § 52.25-15 Fired thermal fluid heaters. (a) Fired thermal fluid heaters shall be designed...) Each fired thermal fluid heater must be fitted with a control which prevents the heat transfer...

  11. 46 CFR 52.25-15 - Fired thermal fluid heaters.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Fired thermal fluid heaters. 52.25-15 Section 52.25-15... Boiler Types § 52.25-15 Fired thermal fluid heaters. (a) Fired thermal fluid heaters shall be designed...) Each fired thermal fluid heater must be fitted with a control which prevents the heat transfer...

  12. 46 CFR 52.25-15 - Fired thermal fluid heaters.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Fired thermal fluid heaters. 52.25-15 Section 52.25-15... Boiler Types § 52.25-15 Fired thermal fluid heaters. (a) Fired thermal fluid heaters shall be designed...) Each fired thermal fluid heater must be fitted with a control which prevents the heat transfer...

  13. 46 CFR 52.25-15 - Fired thermal fluid heaters.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Fired thermal fluid heaters. 52.25-15 Section 52.25-15... Boiler Types § 52.25-15 Fired thermal fluid heaters. (a) Fired thermal fluid heaters shall be designed...) Each fired thermal fluid heater must be fitted with a control which prevents the heat transfer...

  14. 46 CFR 111.85-1 - Electric oil immersion heaters.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Electric oil immersion heaters. 111.85-1 Section 111.85... SYSTEMS-GENERAL REQUIREMENTS Electric Oil Immersion Heaters § 111.85-1 Electric oil immersion heaters. Each oil immersion heater must have the following: (a) An operating thermostat. (b) Heating...

  15. 46 CFR 111.85-1 - Electric oil immersion heaters.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Electric oil immersion heaters. 111.85-1 Section 111.85... SYSTEMS-GENERAL REQUIREMENTS Electric Oil Immersion Heaters § 111.85-1 Electric oil immersion heaters. Each oil immersion heater must have the following: (a) An operating thermostat. (b) Heating...

  16. 46 CFR 111.85-1 - Electric oil immersion heaters.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Electric oil immersion heaters. 111.85-1 Section 111.85... SYSTEMS-GENERAL REQUIREMENTS Electric Oil Immersion Heaters § 111.85-1 Electric oil immersion heaters. Each oil immersion heater must have the following: (a) An operating thermostat. (b) Heating...

  17. 46 CFR 111.85-1 - Electric oil immersion heaters.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Electric oil immersion heaters. 111.85-1 Section 111.85... SYSTEMS-GENERAL REQUIREMENTS Electric Oil Immersion Heaters § 111.85-1 Electric oil immersion heaters. Each oil immersion heater must have the following: (a) An operating thermostat. (b) Heating...

  18. 46 CFR 111.85-1 - Electric oil immersion heaters.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Electric oil immersion heaters. 111.85-1 Section 111.85... SYSTEMS-GENERAL REQUIREMENTS Electric Oil Immersion Heaters § 111.85-1 Electric oil immersion heaters. Each oil immersion heater must have the following: (a) An operating thermostat. (b) Heating...

  19. Design data brochure: Solar hot air heater

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The design, installation, performance, and application of a solar hot air heater for residential, commercial and industrial use is reported. The system has been installed at the Concho Indian School in El Reno, Oklahoma.

  20. Heater head for a Stirling engine

    SciTech Connect

    Darooka, D.K.

    1988-09-06

    A heater head is described for a compound Stirling engine modules, each including a displacer cylinder coaxially aligned with the displacer cylinder of the other of the engine modules, a displacer piston mounted for reciprocation in the displacer cylinder.

  1. High-temperature MEMS Heater Platforms: Long-term Performance of Metal and Semiconductor Heater Materials

    PubMed Central

    Spannhake, Jan; Schulz, Olaf; Helwig, Andreas; Krenkow, Angelika; Müller, Gerhard; Doll, Theodor

    2006-01-01

    Micromachined thermal heater platforms offer low electrical power consumption and high modulation speed, i.e. properties which are advantageous for realizing non-dispersive infrared (NDIR) gas- and liquid monitoring systems. In this paper, we report on investigations on silicon-on-insulator (SOI) based infrared (IR) emitter devices heated by employing different kinds of metallic and semiconductor heater materials. Our results clearly reveal the superior high-temperature performance of semiconductor over metallic heater materials. Long-term stable emitter operation in the vicinity of 1300 K could be attained using heavily antimony-doped tin dioxide (SnO2:Sb) heater elements.

  2. Varying properties along lengths of temperature limited heaters

    DOEpatents

    Vinegar, Harold J.; Xie, Xueying; Miller, David Scott; Ginestra, Jean Charles

    2011-07-26

    A system for heating a subsurface formation is described. The system includes an elongated heater in an opening in the formation. The elongated heater includes two or more portions along the length of the heater that have different power outputs. At least one portion of the elongated heater includes at least one temperature limited portion with at least one selected temperature at which the portion provides a reduced heat output. The heater is configured to provide heat to the formation with the different power outputs. The heater is configured so that the heater heats one or more portions of the formation at one or more selected heating rates.

  3. Slat Heater Boxes for Thermal Vacuum Testing

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene

    2003-01-01

    Slat heater boxes have been invented for controlling the sink temperatures of objects under test in a thermal vacuum chamber, the walls of which are cooled to the temperature of liquid nitrogen. A slat heater box (see Figure 1) includes a framework of struts that support electrically heated slats that are coated with a high-emissivity optically gray paint. The slats can be grouped together into heater zones for the purpose of maintaining an even temperature within each side. The sink temperature of an object under test is defined as the steady-state temperature of the object in the vacuum/ radiative environment during the absence of any internal heat source or sink. The slat heater box makes it possible to closely control the radiation environment to obtain a desired sink temperature. The slat heater box is placed inside the cold thermal vacuum chamber, and the object under test is placed inside (but not in contact with) the slat heater box. The slat heaters occupy about a third of the field of view from any point on the surface of the object under test, the remainder of the field of view being occupied by the cold chamber wall. Thus, the radiation environment is established by the combined effects of the slat heater box and the cold chamber wall. Given (1) the temperature of the chamber wall, (2) the fractions of the field of view occupied by the chamber wall and the slat heater box, and (3) the emissivities of the slats, chamber wall, and the surface of object under test, the slat temperature required to maintain a desired sink temperature can be calculated by solving the equations of gray-body radiation for the steady-state adiabatic case (equal absorption and emission by the object under test). Slat heater boxes offer an important advantage over the infrared lamps that have been previously used to obtain desired sink temperatures: In comparison with an infrared lamp, a slat heater box provides a greater degree of sink temperature uniformity for a test

  4. Phase change material storage heater

    DOEpatents

    Goswami, D. Yogi; Hsieh, Chung K.; Jotshi, Chand K.; Klausner, James F.

    1997-01-01

    A storage heater for storing heat and for heating a fluid, such as water, has an enclosure defining a chamber therein. The chamber has a lower portion and an upper portion with a heating element being disposed within the enclosure. A tube through which the fluid flows has an inlet and an outlet, both being disposed outside of the enclosure, and has a portion interconnecting the inlet and the outlet that passes through the enclosure. A densely packed bed of phase change material pellets is disposed within the enclosure and is surrounded by a viscous liquid, such as propylene glycol. The viscous liquid is in thermal communication with the heating element, the phase change material pellets, and the tube and transfers heat from the heating element to the pellets and from the pellets to the tube. The viscous fluid has a viscosity so that the frictional pressure drop of the fluid in contact with the phase change material pellets substantially reduces vertical thermal convection in the fluid. As the fluid flows through the tube heat is transferred from the viscous liquid to the fluid flowing through the tube, thereby heating the fluid.

  5. Dampers for Natural Draft Heaters: Technical Report

    SciTech Connect

    Lutz, James D.; Biermayer, Peter; King, Derek

    2008-10-27

    Energy required for water heating accounts for approximately 40percent of national residential natural gas consumption in California. With water heating contributing such a substantial portion of natural gas consumption, it is important to pay attention to water heater efficiencies. This paper reports on an investigation of a patented, buoyancy-operated flue damper. It is an add-on design to a standard atmospherically vented natural-draft gas-fired storage water heater. The flue damper was expected to reduce off-cycle standby losses, which would lead to improvements in the efficiency of the water heater. The test results showed that the Energy Factor of the baseline water heater was 0.576. The recovery efficiency was 0.768. The standby heat loss coefficient was 10.619 (BTU/hr-oF). After the damper was installed, the test results show an Energy Factor for the baseline water heater of 0.605. The recovery efficiency was 0.786. The standby heat loss coefficient was 9.135 (BTU/hr-oF). The recovery efficiency increased 2.3percent and the standby heat loss coefficient decreased 14percent. When the burner was on, the baseline water heater caused 28.0 CFM of air to flow from the room. During standby, the flow was 12.4 CFM. The addition of the damper reduced the flow when the burner was on to 23.5 CFM. During standby, flow with the damper was reduced to 11.1 CFM. The flue damper reduced off-cycle standby losses, and improved the efficiency of the water heater. The flue damper also improved the recovery efficiency of the water heater by restricting on-cycle air flows through the flue.With or without the flue damper, off-cycle air flow upthe stack is nearly half the air flow rate as when the burner is firing.

  6. Diesel particulate filter with zoned resistive heater

    DOEpatents

    Gonze, Eugene V [Pinckney, MI

    2011-03-08

    A diesel particulate filter assembly comprises a diesel particulate filter (DPF) and a heater assembly. The DPF filters a particulate from exhaust produced by an engine. The heater assembly has a first metallic layer that is applied to the DPF, a resistive layer that is applied to the first metallic layer, and a second metallic layer that is applied to the resistive layer. The second metallic layer is etched to form a plurality of zones.

  7. Intelligent annunciator for solar water heater

    NASA Astrophysics Data System (ADS)

    Chen, Xiao

    2009-07-01

    The solar water heater has advantages of low cost, no pollution, safety, energy conservation and is very suitable for users in rural area. But many now used solar water heater has no alarm device resulting water and resource wasting because of forgetting to turn off the valve after water sailing upstream. To overcome this defect, an intelligent annunciator for solar water heater installed at the end of the return pipe is presented and designed in order to remind the user. Firstly, the advantages and disadvantages of automatic and manual sailing upstream are compared concluding that manual sailing upstream is more trustiness. Then an annunciator for solar water heater is studied and ameliorated. Its principle, parameters index and functions are introduced. The annunciator uses CD4069 chip as the core circuit with very little assistant circuit. It can provide sound and light alarm at the same time. This annunciator for solar water heater water is very simple in production, low cost, the use of safe and convenient. The annunciator is applicable to all solar power products, including various types of early installation of solar power water heaters and water tanks without changing their structures. It can meet family and industrial environmental applications.

  8. JPS heater and sensor lightning qualification

    NASA Technical Reports Server (NTRS)

    Cook, M.

    1989-01-01

    Simulated lightning strike testing of the Redesigned Solid Rocket Motor (RSRM) field joint protection system heater assembly was performed at Thiokol Corp., Wendover Lightning Facility. Testing consisted of subjecting the lightning evaluation test article to simulated lightning strikes and evaluating the effects of heater cable transients on cables within the systems tunnel. The maximum short circuit current coupled onto a United Space Boosters, Inc. operational flight cable within the systems tunnel, induced by transients from all cables external to the systems tunnel, was 92 amperes. The maximum open-circuit voltage coupled was 316 volts. The maximum short circuit current coupled onto a United Space Boosters, Inc. operational flight cable within the systems tunnel, induced by heater power cable transients only, was 2.7 amperes; the maximum open-circuit voltage coupled was 39 volts. All heater power cable induced coupling was due to simulated lightning discharges only, no heater operating power was applied during the test. The results showed that, for a worst-case lightning discharge, the heater power cable is responsible for a 3.9 decibel increase in voltage coupling to operational flight cables within the systems tunnel. Testing also showed that current and voltage levels coupled onto cables within the systems tunnel are partially dependant on the relative locations of the cables within the systems tunnel.

  9. 46 CFR 52.01-115 - Feedwater supply (modifies PG-61).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Feedwater supply (modifies PG-61). 52.01-115 Section 52.01-115 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER... by reference; see 46 CFR 52.01-1) and § 56.50-30 of this subchapter....

  10. 46 CFR 52.01-115 - Feedwater supply (modifies PG-61).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Feedwater supply (modifies PG-61). 52.01-115 Section 52.01-115 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER... by reference; see 46 CFR 52.01-1) and § 56.50-30 of this subchapter....

  11. 46 CFR 52.01-115 - Feedwater supply (modifies PG-61).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Feedwater supply (modifies PG-61). 52.01-115 Section 52.01-115 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER... by reference; see 46 CFR 52.01-1) and § 56.50-30 of this subchapter....

  12. 46 CFR 52.01-115 - Feedwater supply (modifies PG-61).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Feedwater supply (modifies PG-61). 52.01-115 Section 52.01-115 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER... by reference; see 46 CFR 52.01-1) and § 56.50-30 of this subchapter....

  13. BWR feedwater nozzle and control-rod-drive return line nozzle cracking

    SciTech Connect

    Not Available

    1981-11-01

    In its 1978 Annual Report to Congress, the Nuclear Regulatory Commission identified as an unresolved safety issue the appearance of cracks in feedwater nozzles at boiling-water reactors (BWRs). Later similar cracking, detected in return water lines for control-rod-drive systems at BWRs, was designated Part II of the issue. This article outlines the resolution of these cracking problems.

  14. 46 CFR 52.01-115 - Feedwater supply (modifies PG-61).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Feedwater supply (modifies PG-61). 52.01-115 Section 52.01-115 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER... by reference; see 46 CFR 52.01-1) and § 56.50-30 of this subchapter....

  15. Performance Study of Swimming Pool Heaters

    SciTech Connect

    McDonald, R.J.

    2009-01-01

    The objective of this report is to perform a controlled laboratory study on the efficiency and emissions of swimming pool heaters based on a limited field investigation into the range of expected variations in operational parameters. Swimming pool heater sales trends have indicated a significant decline in the number of conventional natural gas-fired swimming pool heaters (NGPH). On Long Island the decline has been quite sharp, on the order of 50%, in new installations since 2001. The major portion of the decline has been offset by a significant increase in the sales of electric powered heat pump pool heaters (HPPH) that have been gaining market favor. National Grid contracted with Brookhaven National Laboratory (BNL) to measure performance factors in order to compare the relative energy, environmental and economic consequences of using one technology versus the other. A field study was deemed inappropriate because of the wide range of differences in actual load variations (pool size), geographic orientations, ground plantings and shading variations, number of hours of use, seasonal use variations, occupancy patterns, hour of the day use patterns, temperature selection, etc. A decision was made to perform a controlled laboratory study based on a limited field investigation into the range of expected operational variations in parameters. Critical to this are the frequency of use, temperature selection, and sizing of the heater to the associated pool heating loads. This would be accomplished by installing a limited amount of relatively simple compact field data acquisition units on selected pool installations. This data included gas usage when available and alternately heater power or gas consumption rates were inferred from the manufacturer's specifications when direct metering was not available in the field. Figure 1 illustrates a typical pool heater installation layout.

  16. Dielectric Heaters for Testing Spacecraft Nuclear Reactors

    NASA Technical Reports Server (NTRS)

    Sims, William Herbert; Bitteker, Leo; Godfroy, Thomas

    2006-01-01

    A document proposes the development of radio-frequency-(RF)-driven dielectric heaters for non-nuclear thermal testing of the cores of nuclear-fission reactors for spacecraft. Like the electrical-resistance heaters used heretofore for such testing, the dielectric heaters would be inserted in the reactors in place of nuclear fuel rods. A typical heater according to the proposal would consist of a rod of lossy dielectric material sized and shaped like a fuel rod and containing an electrically conductive rod along its center line. Exploiting the dielectric loss mechanism that is usually considered a nuisance in other applications, an RF signal, typically at a frequency .50 MHz and an amplitude between 2 and 5 kV, would be applied to the central conductor to heat the dielectric material. The main advantage of the proposal is that the wiring needed for the RF dielectric heating would be simpler and easier to fabricate than is the wiring needed for resistance heating. In some applications, it might be possible to eliminate all heater wiring and, instead, beam the RF heating power into the dielectric rods from external antennas.

  17. Performance characterization of a hydrogen catalytic heater.

    SciTech Connect

    Johnson, Terry Alan; Kanouff, Michael P.

    2010-04-01

    This report describes the performance of a high efficiency, compact heater that uses the catalytic oxidation of hydrogen to provide heat to the GM Hydrogen Storage Demonstration System. The heater was designed to transfer up to 30 kW of heat from the catalytic reaction to a circulating heat transfer fluid. The fluid then transfers the heat to one or more of the four hydrogen storage modules that make up the Demonstration System to drive off the chemically bound hydrogen. The heater consists of three main parts: (1) the reactor, (2) the gas heat recuperator, and (3) oil and gas flow distribution manifolds. The reactor and recuperator are integrated, compact, finned-plate heat exchangers to maximize heat transfer efficiency and minimize mass and volume. Detailed, three-dimensional, multi-physics computational models were used to design and optimize the system. At full power the heater was able to catalytically combust a 10% hydrogen/air mixture flowing at over 80 cubic feet per minute and transfer 30 kW of heat to a 30 gallon per minute flow of oil over a temperature range from 100 C to 220 C. The total efficiency of the catalytic heater, defined as the heat transferred to the oil divided by the inlet hydrogen chemical energy, was characterized and methods for improvement were investigated.

  18. Applications of infrared thermography for petrochemical process heaters

    NASA Astrophysics Data System (ADS)

    Weigle, Robert K.

    2005-03-01

    Process heaters are a critical component in the refining of crude oil. Traditional means of monitoring these high temperature vessels have frequently been more art than science, often relying on highly subjective analyses and/or frequently inaccurate thermocouple data. By utilizing an imaging radiometer specifically designed for heater inspections, valuable performance information can be obtained for operating heaters. In the hands of a knowledgeable engineering team, accurate infrared data can be utilized to significantly increase heater throughput while helping to ensure safe operation of the heater. This paper discusses the use of infrared thermography for online monitoring of operating crude heaters and the special challenges associated with this application.

  19. Primary helium heater for propellant pressurization systems

    NASA Technical Reports Server (NTRS)

    Reichmuth, D. M.; Nguyen, T. V.; Pieper, J. L.

    1991-01-01

    The primary helium heater is a unique design that provides direct heating of pressurant gas for large pressure fed propulsion systems. It has been conceptually designed to supply a heated (800-1000 R) pressurization gas to both a liquid oxygen and an RP-1 propellant tank. This pressurization gas is generated within the heater by mixing super critical helium (40-300 R and 3000-1600 psi) with an appropriate amount of combustion products from a 4:1 throttling stoichiometric LO2/LH2 combustor. This simple, low cost and reliable mixer utilizes the large quantity of helium to provide stoichiometric combustor cooling, extend the throttling limits and enhance the combustion stability margin. Preliminary combustion, thermal, and CFD analyses confirm that this low-pressure-drop direct helium heater can provide the constant-temperature pressurant suitable for tank pressurization of both fuel and oxidizer tanks of large pressure fed vehicles.

  20. Bonded Invar Clip Removal Using Foil Heaters

    NASA Technical Reports Server (NTRS)

    Pontius, James T.; Tuttle, James G.

    2009-01-01

    A new process uses local heating and temperature monitoring to soften the adhesive under Invar clips enough that they can be removed without damaging the composite underneath or other nearby bonds. Two 1x1 in. (approx.2.5x2.5 cm), 10-W/sq in. (approx.1.6-W/sq cm), 80-ohm resistive foil Kapton foil heaters, with pressure-sensitive acrylic adhesive backing, are wired in parallel to a 50-V, 1-A limited power supply. At 1 A, 40 W are applied to the heater pair. The temperature is monitored in the clip radius and inside the tube, using a dual thermocouple readout. Several layers of aluminum foil are used to speed the heat up, allowing clips to be removed in less than five minutes. The very local heating via the foil heaters allows good access for clip removal and protects all underlying and adjacent materials.

  1. Electrical Resistive Heaters for Magnetically Sensitive Instruments

    NASA Astrophysics Data System (ADS)

    Bulatowicz, Michael

    2014-05-01

    US Patent 8,138,760 ``Temperature System with Magnetic Field Suppression'' describes design concepts and examples for development of electrical resistive heaters and temperature detectors suitable for temperature control of the alkali vapor cells of magnetically sensitive atomic instruments such as spin-exchange relaxation free (SERF) magnetometers. This is achieved through careful manipulation of electromagnetic multi-pole moments in the design of these resistive heaters for substantial self-cancellation of electrically generated magnetic fields. The magnetic performance of electrical resistive heaters produced according to these design principles and directly attached to a rubidium vapor cell has been demonstrated to cause no measurable degradation of the performance of a SERF magnetometer exhibiting noise below 2 femto-Tesla per square root Hz.

  2. Economic analysis of residential solar water heaters

    SciTech Connect

    1980-09-23

    A typical residential solar water heater, and typical cost and performance information are described briefly. The monthly costs and savings of the typical system are discussed. Economic evaluations of solar water heaters are presented in increasingly complex levels of detail. Utilizing a typical system, the effective interest rate that the purchaser of a system would receive on money invested is shown for all regions of the country. The importance of numerous variables that can make a significant difference on the economics of the system is described. Methods for calculating the Payback Period for any non-typical solar water heater are described. This calculated Payback Period is then shown to be related to the effective interest rate that the puchaser of the system would receive for a typical set of economic conditions. A method is presented to calculate the effective interest rate that the solar system would provide. (MHR)

  3. Substrate heater for thin film deposition

    DOEpatents

    Foltyn, Steve R.

    1996-01-01

    A substrate heater for thin film deposition of metallic oxides upon a target substrate configured as a disk including means for supporting in a predetermined location a target substrate configured as a disk, means for rotating the target substrate within the support means, means for heating the target substrate within the support means, the heating means about the support means and including a pair of heating elements with one heater element situated on each side of the predetermined location for the target substrate, with one heater element defining an opening through which desired coating material can enter for thin film deposition and with the heating means including an opening slot through which the target substrate can be entered into the support means, and, optionally a means for thermal shielding of the heating means from surrounding environment is disclosed.

  4. Modeling a high output marine steam generator feedwater control system which uses parallel turbine-driven feed pumps

    NASA Astrophysics Data System (ADS)

    Qiu, Zhi-Qiang; Zou, Hai; Sun, Jian-Hua

    2008-09-01

    Parallel turbine-driven feedwater pumps are needed when ships travel at high speed. In order to study marine steam generator feedwater control systems which use parallel turbine-driven feed pumps, a mathematical model of marine steam generator feedwater control system was developed which includes mathematical models of two steam generators and parallel turbine-driven feed pumps as well as mathematical models of feedwater pipes and feed regulating valves. The operating condition points of the parallel turbine-driven feed pumps were calculated by the Chebyshev curve fit method. A water level controller for the steam generator and a rotary speed controller for the turbine-driven feed pumps were also included in the model. The accuracy of the mathematical models and their controllers was verified by comparing their results with those from a simulator.

  5. Hollow cathode heater development for the Space Station plasma contactor

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    1993-01-01

    A hollow cathode-based plasma contactor has been selected for use on the Space Station. During the operation of the plasma contactor, the hollow cathode heater will endure approximately 12000 thermal cycles. Since a hollow cathode heater failure would result in a plasma contactor failure, a hollow cathode heater development program was established to produce a reliable heater design. The development program includes the heater design, process documents for both heater fabrication and assembly, and heater testing. The heater design was a modification of a sheathed ion thruster cathode heater. Three heaters have been tested to date using direct current power supplies. Performance testing was conducted to determine input current and power requirements for achieving activation and ignition temperatures, single unit operational repeatability, and unit-to-unit operational repeatability. Comparisons of performance testing data at the ignition input current level for the three heaters show the unit-to-unit repeatability of input power and tube temperature near the cathode tip to be within 3.5 W and 44 degrees C, respectively. Cyclic testing was then conducted to evaluate reliability under thermal cycling. The first heater, although damaged during assembly, completed 5985 ignition cycles before failing. Two additional heaters were subsequently fabricated and have completed 3178 cycles to date in an on-going test.

  6. Measure Guideline. Transitioning to a Tankless Water Heater

    SciTech Connect

    Brozyna, K.; Rapport, A.

    2012-09-01

    This measure guideline provides information to help residential builders and retrofitters with the design, specification, selection, implementation, installation, and maintenance issues of transitioning from tank-type water heaters to tankless water heaters.

  7. Technology Solutions Case Study: Heat Pump Water Heater Retrofit

    SciTech Connect

    none,

    2012-08-01

    In this project, Pacific Northwest National Laboratory studied heat pump water heaters, an efficient, cost-effective alternative to traditional electric resistance water heaters that can improve energy efficiency by up to 62%.

  8. Plant data comparisons for Comanche Peak 1/2 main feedwater pump trip transient

    SciTech Connect

    Boatwright, W.J.; Choe, W.G; Hiltbrand, D.W.

    1995-09-01

    A RETRAN-02 MOD5 model of Comanche Peak Steam Electric Station was developed by TU Electric for the purpose of performing core reload safety analyses. In order to qualify this model, comparisons against plant transient data from a partial loss of main feedwater flow were performed. These comparisons demonstrated that good representations of the plant response could be obtained with RETRAN-02 and the user-developed models of the primary-to-secondary heat transfer and plant control systems.

  9. A programmable heater control circuit for spacecraft

    NASA Technical Reports Server (NTRS)

    Nguyen, D. D.; Owen, J. W.; Smith, D. A.; Lewter, W. J.

    1994-01-01

    Spacecraft thermal control is accomplished for many components through use of multilayer insulation systems, electrical heaters, and radiator systems. The heaters are commanded to maintain component temperatures within design specifications. The programmable heater control circuit (PHCC) was designed to obtain an effective and efficient means of spacecraft thermal control. The hybrid circuit provides use of control instrumentation as temperature data, available to the spacecraft central data system, reprogramming capability of the local microprocessor during the spacecraft's mission, and the elimination of significant spacecraft wiring. The hybrid integrated circuit has a temperature sensing and conditioning circuit, a microprocessor, and a heater power and control circuit. The device is miniature and housed in a volume which allows physical integration with the component to be controlled. Applications might include alternate battery-powered logic-circuit configurations. A prototype unit with appropriate physical and functional interfaces was procured for testing. The physical functionality and the feasibility of fabrication of the hybrid integrated circuit were successfully verified. The remaining work to develop a flight-qualified device includes fabrication and testing of a Mil-certified part. An option for completing the PHCC flight qualification testing is to enter into a joint venture with industry.

  10. Materials for a Stirling engine heater head

    NASA Technical Reports Server (NTRS)

    Noble, J. E.; Lehmann, G. A.; Emigh, S. G.

    1990-01-01

    Work done on the 25-kW advanced Stirling conversion system (ASCS) terrestrial solar program in establishing criteria and selecting materials for the engine heater head and heater tubes is described. Various mechanisms contributing to incompatibility between materials are identified and discussed. Large thermal gradients, coupled with requirements for long life (60,000 h at temperature) and a large number of heatup and cooldown cycles (20,000) drive the design from a structural standpoint. The pressurized cylinder is checked for creep rupture, localized yielding, reverse plasticity, creep and fatigue damage, and creep ratcheting, in addition to the basic requirements for bust and proof pressure. In general, creep rupture and creep and fatigue interaction are the dominant factors in the design. A wide range of materials for the heater head and tubes was evaluated. Factors involved in the assessment were strength and effect on engine efficiency, reliability, and cost. A preliminary selection of Inconel 713LC for the heater head is based on acceptable structural properties but driven mainly by low cost. The criteria for failure, the structural analysis, and the material characteristics with basis for selection are discussed.

  11. Fired heater for coal liquefaction process

    DOEpatents

    Ying, David H. S.

    1984-01-01

    A fired heater for a coal liquefaction process is constructed with a heat transfer tube having U-bends at regular intervals along the length thereof to increase the slug frequency of the multi-phase mixture flowing therethrough to thereby improve the heat transfer efficiency.

  12. 10 CFR 429.24 - Pool heaters.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Pool heaters. 429.24 Section 429.24 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION CERTIFICATION, COMPLIANCE, AND ENFORCEMENT FOR CONSUMER PRODUCTS AND... that any represented value of the thermal efficiency or other measure of energy consumption of a...

  13. 10 CFR 429.24 - Pool heaters.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Pool heaters. 429.24 Section 429.24 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION CERTIFICATION, COMPLIANCE, AND ENFORCEMENT FOR CONSUMER PRODUCTS AND... that any represented value of the thermal efficiency or other measure of energy consumption of a...

  14. 10 CFR 429.24 - Pool heaters.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Pool heaters. 429.24 Section 429.24 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION CERTIFICATION, COMPLIANCE, AND ENFORCEMENT FOR CONSUMER PRODUCTS AND... that any represented value of the thermal efficiency or other measure of energy consumption of a...

  15. 14 CFR 25.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Combustion heater fire protection. 25.859... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Fire Protection § 25.859 Combustion heater fire protection. (a) Combustion heater fire zones. The following...

  16. 14 CFR 29.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Combustion heater fire protection. 29.859... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Fire Protection § 29.859 Combustion heater fire protection. (a) Combustion heater fire zones. The following...

  17. 14 CFR 29.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Combustion heater fire protection. 29.859... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Fire Protection § 29.859 Combustion heater fire protection. (a) Combustion heater fire zones. The following...

  18. 14 CFR 25.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Combustion heater fire protection. 25.859... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Fire Protection § 25.859 Combustion heater fire protection. (a) Combustion heater fire zones. The following...

  19. 14 CFR 29.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... heater when any of the following occurs: (i) The heat exchanger temperature exceeds safe limits. (ii) The... that might accumulate in the combustion chamber or the heat exchanger. In addition— (1) Each part of... serving any other heater whose heat output is essential for safe operation; and (ii) Keep the heater...

  20. 14 CFR 29.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... heater when any of the following occurs: (i) The heat exchanger temperature exceeds safe limits. (ii) The... that might accumulate in the combustion chamber or the heat exchanger. In addition— (1) Each part of... serving any other heater whose heat output is essential for safe operation; and (ii) Keep the heater...

  1. 7 CFR 58.215 - Pre-heaters.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Pre-heaters. 58.215 Section 58.215 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....215 Pre-heaters. The pre-heaters shall be of stainless steel or other equally corrosion...

  2. 46 CFR 63.25-5 - Fired thermal fluid heaters.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Fired thermal fluid heaters. 63.25-5 Section 63.25-5... BOILERS Requirements for Specific Types of Automatic Auxiliary Boilers § 63.25-5 Fired thermal fluid heaters. (a) Construction. Fired thermal fluid heaters must meet the requirements of part 52 of...

  3. 46 CFR 63.25-5 - Fired thermal fluid heaters.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Fired thermal fluid heaters. 63.25-5 Section 63.25-5... BOILERS Requirements for Specific Types of Automatic Auxiliary Boilers § 63.25-5 Fired thermal fluid heaters. (a) Construction. Fired thermal fluid heaters must meet the requirements of part 52 of...

  4. 46 CFR 63.25-5 - Fired thermal fluid heaters.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Fired thermal fluid heaters. 63.25-5 Section 63.25-5... BOILERS Requirements for Specific Types of Automatic Auxiliary Boilers § 63.25-5 Fired thermal fluid heaters. (a) Construction. Fired thermal fluid heaters must meet the requirements of part 52 of...

  5. 46 CFR 63.25-5 - Fired thermal fluid heaters.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Fired thermal fluid heaters. 63.25-5 Section 63.25-5... BOILERS Requirements for Specific Types of Automatic Auxiliary Boilers § 63.25-5 Fired thermal fluid heaters. (a) Construction. Fired thermal fluid heaters must meet the requirements of part 52 of...

  6. 46 CFR 63.25-5 - Fired thermal fluid heaters.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Fired thermal fluid heaters. 63.25-5 Section 63.25-5... BOILERS Requirements for Specific Types of Automatic Auxiliary Boilers § 63.25-5 Fired thermal fluid heaters. (a) Construction. Fired thermal fluid heaters must meet the requirements of part 52 of...

  7. 46 CFR 111.70-5 - Heater circuits.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... location of the heater circuit disconnect device. (c) Electric heaters installed within motor controllers... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL... motor, master switch, or other equipment has an electric heater inside the enclosure that is...

  8. 46 CFR 111.70-5 - Heater circuits.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... location of the heater circuit disconnect device. (c) Electric heaters installed within motor controllers... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL... motor, master switch, or other equipment has an electric heater inside the enclosure that is...

  9. 46 CFR 111.70-5 - Heater circuits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... location of the heater circuit disconnect device. (c) Electric heaters installed within motor controllers... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL... motor, master switch, or other equipment has an electric heater inside the enclosure that is...

  10. 46 CFR 111.70-5 - Heater circuits.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... location of the heater circuit disconnect device. (c) Electric heaters installed within motor controllers... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL... motor, master switch, or other equipment has an electric heater inside the enclosure that is...

  11. 46 CFR 111.70-5 - Heater circuits.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... location of the heater circuit disconnect device. (c) Electric heaters installed within motor controllers... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL... motor, master switch, or other equipment has an electric heater inside the enclosure that is...

  12. Infrared heater arrays for warming grazingland field plots

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to study the likely effects of global warming on rangeland and other ecosystems in the future, we developed arrays of infrared heaters that can produce uniform warming across 3-m-diameter field plots. The efficiency of the heaters was higher than that of the heaters used in most previous in...

  13. 40 CFR 65.149 - Boilers and process heaters.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... requirements of 40 CFR part 266, subpart H; or (B) The boiler or process heater has certified compliance with...). If an owner or operator elects to use a boiler or process heater to replace an existing recovery... 40 Protection of Environment 16 2013-07-01 2013-07-01 false Boilers and process heaters....

  14. 40 CFR 65.149 - Boilers and process heaters.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... requirements of 40 CFR part 266, subpart H; or (B) The boiler or process heater has certified compliance with...). If an owner or operator elects to use a boiler or process heater to replace an existing recovery... 40 Protection of Environment 16 2012-07-01 2012-07-01 false Boilers and process heaters....

  15. 40 CFR 65.149 - Boilers and process heaters.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... requirements of 40 CFR part 266, subpart H; or (B) The boiler or process heater has certified compliance with...). If an owner or operator elects to use a boiler or process heater to replace an existing recovery... 40 Protection of Environment 15 2011-07-01 2011-07-01 false Boilers and process heaters....

  16. 40 CFR 65.149 - Boilers and process heaters.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... requirements of 40 CFR part 266, subpart H; or (B) The boiler or process heater has certified compliance with...). If an owner or operator elects to use a boiler or process heater to replace an existing recovery... 40 Protection of Environment 16 2014-07-01 2014-07-01 false Boilers and process heaters....

  17. 40 CFR 65.149 - Boilers and process heaters.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements of 40 CFR part 266, subpart H; or (B) The boiler or process heater has certified compliance with...). If an owner or operator elects to use a boiler or process heater to replace an existing recovery... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Boilers and process heaters....

  18. Single-heater test final report

    SciTech Connect

    Blair, S. C.; Buscheck, T. A.; DeLoach, L. D.; Lin, W.; Ramirez, A. I.

    1998-09-01

    The Single-Heater Test (SHT) was one phase of the field-scale thermal testing program of the Yucca Mountain Site Characterization Project. The primary purpose of the SHT was to study the thermomechanical (TM) behavior of the densely welded, non-lithophysal Topopah Spring tuff at the Exploratory Studies Facility. The SHT was also used as a shake-down for testing thermal-hydrologic-chemical-mechanical processes in situ, testing that will be conducted in the Drift-Scale Test. In the SHT, a line-heat source 5-m long was emplaced in a pillar and used to heat the pillar for approximately nine months. The thermal field was relatively cylindrical about the line-heat source. The heater was turned off after nine months of heating, and the rock mass was monitored during the cool-down for another nine months, until May 28, 1997, when the test was terminated.

  19. Electric heater for nuclear fuel rod simulators

    DOEpatents

    McCulloch, Reginald W.; Morgan, Jr., Chester S.; Dial, Ralph E.

    1982-01-01

    The present invention is directed to an electric cartridge-type heater for use as a simulator for a nuclear fuel pin in reactor studies. The heater comprises an elongated cylindrical housing containing a longitudinally extending helically wound heating element with the heating element radially inwardly separated from the housing. Crushed cold-pressed preforms of boron nitride electrically insulate the heating element from the housing while providing good thermal conductivity. Crushed cold-pressed preforms of magnesia or a magnesia-15 percent boron nitride mixture are disposed in the cavity of the helical heating element. The coefficient of thermal expansion of the magnesia or the magnesia-boron nitride mixture is higher than that of the boron nitride disposed about the heating element for urging the boron nitride radially outwardly against the housing during elevated temperatures to assure adequate thermal contact between the housing and the boron nitride.

  20. Solar water heater for NASA's Space Station

    NASA Technical Reports Server (NTRS)

    Somers, Richard E.; Haynes, R. Daniel

    1988-01-01

    The feasibility of using a solar water heater for NASA's Space Station is investigated using computer codes developed to model the Space Station configuration, orbit, and heating systems. Numerous orbit variations, system options, and geometries for the collector were analyzed. Results show that a solar water heater, which would provide 100 percent of the design heating load and would not impose a significant impact on the Space Station overall design is feasible. A heat pipe or pumped fluid radial plate collector of about 10-sq m, placed on top of the habitat module was found to be well suited for satisfying water demand of the Space Station. Due to the relatively small area required by a radial plate, a concentrator is unnecessary. The system would use only 7 to 10 percent as much electricity as an electric water-heating system.

  1. Fired heater for coal liquefaction process

    DOEpatents

    Ying, David H. S.; McDermott, Wayne T.; Givens, Edwin N.

    1985-01-01

    A fired heater for a coal liquefaction process is operated under conditions to maximize the slurry slug frequency and thereby improve the heat transfer efficiency. The operating conditions controlled are (1) the pipe diameter and pipe arrangement, (2) the minimum coal/solvent slurry velocity, (3) the maximum gas superficial velocity, and (4) the range of the volumetric flow velocity ratio of gas to coal/solvent slurry.

  2. Tubular electric heater with a thermocouple assembly

    DOEpatents

    House, R.K.; Williams, D.E.

    1975-08-01

    This patent relates to a thermocouple or other instrumentation which is installed within the walls of a tubular sheath surrounding a process device such as an electric heater. The sheath comprises two concentric tubes, one or both of which have a longitudinal, concave crease facing the other tube. The thermocouple is fixedly positioned within the crease and the outer tube is mechanically reduced to form an interference fit onto the inner tube. (auth)

  3. (''Breadbox'' solar water heater). Final technical report

    SciTech Connect

    Shippee, P.

    1980-10-14

    Progress is reported on a project to study and construct a prototype bread box type solar water heater with movable insulation integral to a Trombe-Meinel cusp reflector. Performance tests were carried out to determine the all day heat gain, instantaneous efficiency at various tank temperatures, and heat loss coefficient of the cusp in the closed position. The same tank was tested with a black paint coating and then with a selective black coating of adhesive foil of etched nickel. (LEW)

  4. Water heaters subject to new regulations.

    PubMed

    Clarke, Alan

    2014-06-01

    On 26 September 2015 the Ecodesign and Energy Labelling Directives for water heaters (Lot 2) come into force, meaning that water-heating products sold in the UK and other countries in the European Economic Area will need to meet minimum energy performance criteria in order to be legally placed on the market, and will require an energy label. Here Alan Clarke, technical support manager at Heatrae Sadia, explains more. PMID:25004554

  5. Field Monitoring Protocol. Heat Pump Water Heaters

    SciTech Connect

    Sparn, B.; Earle, L.; Christensen, D.; Maguire, J.; Wilson, E.; Hancock, C. E.

    2013-02-01

    This document provides a standard field monitoring protocol for evaluating the installed performance of Heat Pump Water Heaters in residential buildings. The report is organized to be consistent with the chronology of field test planning and execution. Research questions are identified first, followed by a discussion of analysis methods, and then the details of measuring the required information are laid out. A field validation of the protocol at a house near the NREL campus is included for reference.

  6. Field Monitoring Protocol: Heat Pump Water Heaters

    SciTech Connect

    Sparn, B.; Earle, L.; Christensen, D.; Maguire, J.; Wilson, E.; Hancock, E.

    2013-02-01

    This document provides a standard field monitoring protocol for evaluating the installed performance of Heat Pump Water Heaters in residential buildings. The report is organized to be consistent with the chronology of field test planning and execution. Research questions are identified first, followed by a discussion of analysis methods, and then the details of measuring the required information are laid out. A field validation of the protocol at a house near the NREL campus is included for reference.

  7. Cryostat including heater to heat a target

    DOEpatents

    Pehl, R.H.; Madden, N.W.; Malone, D.F.

    1990-09-11

    A cryostat is provided which comprises a vacuum vessel; a target disposed within the vacuum vessel; a heat sink disposed within the vacuum vessel for absorbing heat from the detector; a cooling mechanism for cooling the heat sink; a cryoabsorption mechanism for cryoabsorbing residual gas within the vacuum vessel; and a heater for maintaining the target above a temperature at which the residual gas is cryoabsorbed in the course of cryoabsorption of the residual gas by the cryoabsorption mechanism. 2 figs.

  8. Hydrothermal carbonization (HTC) of wheat straw: influence of feedwater pH prepared by acetic acid and potassium hydroxide.

    PubMed

    Reza, M Toufiq; Rottler, Erwin; Herklotz, Laureen; Wirth, Benjamin

    2015-04-01

    In this study, influence of feedwater pH (2-12) was studied for hydrothermal carbonization (HTC) of wheat straw at 200 and 260°C. Acetic acid and KOH were used as acidic and basic medium, respectively. Hydrochars were characterized by elemental and fiber analyses, SEM, surface area, pore volume and size, and ATR-FTIR, while HTC process liquids were analyzed by HPLC and GC. Both hydrochar and HTC process liquid qualities vary with feedwater pH. At acidic pH, cellulose and elemental carbon increase in hydrochar, while hemicellulose and pseudo-lignin decrease. Hydrochars produced at pH 2 feedwater has 2.7 times larger surface area than that produced at pH 12. It also has the largest pore volume (1.1 × 10(-1) ml g(-1)) and pore size (20.2 nm). Organic acids were increasing, while sugars were decreasing in case of basic feedwater, however, phenolic compounds were present only at 260°C and their concentrations were increasing in basic feedwater. PMID:25710573

  9. Aging and service wear of auxiliary feedwater pumps for PWR nuclear power plants

    SciTech Connect

    Greenstreet, W.L.

    1989-01-01

    This paper describes investigations on auxiliary feedwater pumps being done under the Nuclear Plant Aging Research (NPAR) Program. Objectives of these studies are: to identify and evaluate practical, cost-effective methods for detecting, monitoring, and assessing the severity of time-dependent degradation (aging and service wear); recommend inspection and maintenance practices; establish acceptance criteria; and help facilitate use of the results. Emphasis is given to identifying and assessing methods for detecting failure in the incipient stage and to developing degradation trends to allow timely maintenance, repair or replacement actions. 3 refs.

  10. Automated robotic equipment for ultrasonic inspection of pressurizer heater wells

    DOEpatents

    Nachbar, Henry D.; DeRossi, Raymond S.; Mullins, Lawrence E.

    1993-01-01

    A robotic device for remotely inspecting pressurizer heater wells is provided which has the advantages of quickly, precisely, and reliably acquiring data at reasonable cost while also reducing radiation exposure of an operator. The device comprises a prober assembly including a probe which enters a heater well, gathers data regarding the condition of the heater well and transmits a signal carrying that data; a mounting device for mounting the probe assembly at the opening of the heater well so that the probe can enter the heater well; a first motor mounted on the mounting device for providing movement of the probe assembly in an axial direction; and a second motor mounted on the mounting device for providing rotation of the probe assembly. This arrangement enables full inspection of the heater well to be carried out.

  11. Assessment of radioisotope heaters for remote terrestrial applications

    SciTech Connect

    Uherka, K.L.

    1987-05-01

    This paper examines the feasibility of using radioisotope byproducts for special heating applications at remote sites in Alaska and other cold regions. The investigation included assessment of candidate radioisotope materials for heater applications, identification of the most promising cold region applications, evaluation of key technical issues and implementation constraints, and development of conceptual heater designs for candidate applications. Strontium-90 (Sr-90) was selected as the most viable fuel for radioisotopic heaters used in terrestrial applications. Opportunities for the application of radioisotopic heaters were determined through site visits to representative Alaska installations. Candidate heater applications included water storage tanks, sludge digesters, sewage lagoons, water piping systems, well-head pumping stations, emergency shelters, and fuel storage tank deicers. Radioisotopic heaters for water storage tank freeze-up protection and for enhancement of biological waste treatment processes at remote sites were selected as the most promising applications.

  12. Use Feedwater Economizers for Waste Heat Recovery: Office of Industrial Technologies (OIT) Steam Energy Tips No.3

    SciTech Connect

    Not Available

    2002-03-01

    A feedwater economizer reduces steam boiler fuel requirements by transferring heat from the flue gas to incoming feedwater. Boiler flue gases are often rejected to the stack at temperatures more than 100 F to 150 F higher than the temperature of the generated steam. Generally, boiler efficiency can be increased by 1% for every 40 F reduction in flue gas temperature. By recovering waste heat, an economizer can often reduce fuel requirements by 5% to 10% and pay for itself in less than 2 years. The table provides examples of the potential for heat recovery.

  13. Multi-step heater deployment in a subsurface formation

    SciTech Connect

    Mason, Stanley Leroy

    2012-04-03

    A method for installing a horizontal or inclined subsurface heater includes placing a heating section of a heater in a horizontal or inclined section of a wellbore with an installation tool. The tool is uncoupled from the heating section. A lead in section is mechanically and electrically coupled to the heating section of the heater. The lead-in section is located in an angled or vertical section of the wellbore.

  14. Insulated conductor temperature limited heater for subsurface heating coupled in a three-phase WYE configuration

    DOEpatents

    Vinegar, Harold J.; Sandberg, Chester Ledlie

    2010-11-09

    A heating system for a subsurface formation is described. The heating system includes a first heater, a second heater, and a third heater placed in an opening in the subsurface formation. Each heater includes: an electrical conductor; an insulation layer at least partially surrounding the electrical conductor; and an electrically conductive sheath at least partially surrounding the insulation layer. The electrical conductor is electrically coupled to the sheath at a lower end portion of the heater. The lower end portion is the portion of the heater distal from a surface of the opening. The first heater, the second heater, and the third heater are electrically coupled at the lower end portions of the heaters. The first heater, the second heater, and the third heater are configured to be electrically coupled in a three-phase wye configuration.

  15. Measure Guideline: Transitioning to a Tankless Water Heater

    SciTech Connect

    Brozyna, K.; Rapport, A.

    2012-09-01

    This Measure Guideline provides information to help residential builders and retrofitters with the design, specification, selection, implementation, installation, and maintenance issues of transitioning from tank-type water heaters to tankless water heaters. The report compares the differences between tankless and tank-type water heaters, highlighting the energy savings that can be realized by adopting tankless water heaters over tank-type water heaters. Selection criteria and risks discussed include unit sizing and location, water distribution system, plumbing line length and diameter, water quality, electrical backup, and code issues. Cost and performance data are provided for various types of tankless and tank-type water heaters, both natural gas fired and electric. Also considered are interactions between the tankless water heater and other functional elements of a house, such as cold water supply and low-flow devices. Operating costs and energy use of water distribution systems for single- and two-story houses are provided, along with discussion of the various types of distribution systems that can be used with tankless water heaters. Finally, details to prepare for proper installation of a tankless water heater are described.

  16. Shipping device for heater unit assembly

    DOEpatents

    Blaushild, Ronald M.; Abbott, Stephan L.; Miller, Phillip E.; Shaffer, Robert

    1991-01-01

    A shipping device for a heater unit assembly (23), the heater unit assembly (23) including a cylindrical wall (25) and a top plate (31) secured to the cylindrical wall (25) and having a flange portion which projects radially beyond the outer surface of the cylindrical wall (25), and the shipping device including: a cylindrical container (3) having a closed bottom (13); a support member (47) secured to the container (3) and having an inwardly directed flange for supporting the flange portion of the top plate (31); a supplemental supporting system (1) for positioning the heater unit assembly (23) in the container (3) at a spaced relation from the inner surface and bottom wall (13) of the container (3); a cover (15) for closing the top of the container (3); and a container supporting structure (5,7,8) supporting the container (3) in a manner to permit the container (3) to be moved, relative to the supporting structure (5,7,8 ), between a vertical position for loading and unloading the assembly (23) and a horizontal position for transport of the assembly (23). A seal (57) is interposed between the container (3) and the cover (15) for sealing the interior of the container (3) from the environment. An abutment member (41) is mounted on the container supporting structure (5,7,8) for supporting the container bottom (13), when the container (3) is in the vertical position, to prevent the container (3) from moving past the vertical position in the direction away from the horizontal position, and a retainer member (55) is secured within the cover (15) for retaining the assembly top plate (31) in contact with the support member (47) when the cover (15) closes the top of the container (3).

  17. Slurry fired heater cold-flow modelling

    SciTech Connect

    Moujaes, S.F.

    1983-07-01

    This report summarizes the experimental and theoretical work leading to the scale-up of the SRC-I Demonstration Plant slurry fired heater. The scale-up involved a theoretical model using empirical relations in the derivation, and employed variables such as flow conditions, liquid viscosity, and slug frequency. Such variables have been shown to affect the heat transfer characteristics ofthe system. The model assumes that, if all other variables remain constant, the heat transfer coefficient can be scaled up proportional to D/sup -2/3/ (D = inside diameter of the fired heater tube). All flow conditions, liquid viscosities, and pipe inclinations relevant to the demonstration plant have indicated a slug flow regime in the slurry fired heater. The annular and stratified flow regimes should be avoided to minimize the potential for excessive pipe erosion and to decrease temperature gradients along the pipe cross section leading to coking and thermal stresses, respectively. Cold-flow studies in 3- and 6.75-in.-inside-diameter (ID) pipes were conducted to determine the effect of scale-up on flow regime, slug frequency, and slug dimensions. The developed model assumes that conduction heat transfer occurs through the liquid film surrounding the gas slug and laminar convective heat transfer to the liquid slug. A weighted average of these two heat transfer mechanisms gives a value for the average pipe heat transfer coefficient. The cold-flow work showed a decrease in the observed slug frequency between the 3- and 6.75-ID pipes. Data on the ratio of gas to liquid slug length in the 6.75-in. pipe are not yet complete, but are expected to yield generally lower values than those obtained in the 3-in. pipe; this will probably affect the scale-up to demonstration plant conditions. 5 references, 15 figures, 7 tables.

  18. Ethanolamine properties and use for feedwater pH control: A pressurized water reactor case study

    SciTech Connect

    Keeling, D.L.; Polidoroff, C.T.; Cortese, S.; Cushner, M.C.

    1995-12-31

    Ethanolamine (ETA) as a feedwater pH control additive has been recently used to minimize corrosion of secondary water components in the nuclear power industry pressurized water reactors (PWRs). The use of ETA is compared with ammonia. Relative volatility effects on various parts of the system are analyzed and chemistry changes are presented. Materials of construction and the use of existing plant equipment for ETA service are discussed. Properties of ETA as well as safety, storage and handling issues are compared with ammonia. Health d aquatic toxicity are reviewed. warnings, safety, handling guidelines, biodegradability an Diablo Canyon Power Plant used ammonia for pH control from 1985 until a change over to ETA in 1993/1994. Full flow condensate polishers that are required to protect the plant from saltwater cooling incursions limit the amount of pH additive. Iron levels in the secondary water systems are compared before and after changing to ETA and replacement of corrosion-susceptible piping. Iron reduction benefits are assessed along with other effects on the feedwater nozzles, low pressure turbine, polisher resin capacity and polisher regeneration system.

  19. Periodic feedwater reversal and air sparging as antifouling strategies in reverse electrodialysis.

    PubMed

    Vermaas, David A; Kunteng, Damnearn; Veerman, Joost; Saakes, Michel; Nijmeijer, Kitty

    2014-01-01

    Renewable energy can be generated using natural streams of seawater and river water in reverse electrodialysis (RED). The potential for electricity production of this technology is huge, but fouling of the membranes and the membrane stack reduces the potential for large scale applications. This research shows that, without any specific antifouling strategies, the power density decreases in the first 4 h of operation to 40% of the originally obtained power density. It slowly decreases further in the remaining 67 days of operation. Using antifouling strategies, a significantly higher power density can be maintained. Periodically switching the feedwaters (i.e., changing seawater for river water and vice versa) generates the highest power density in the first hours of operation, probably due to a removal of multivalent ions and organic foulants from the membrane when the electrical current reverses. In the long term, colloidal fouling is observed in the stack without treatment and the stack with periodic feedwater switching, and preferential channeling is observed in the latter. This decreases the power density further. This decrease in power density is partly reversible. Only a stack with periodic air sparging has a minimum of colloidal fouling, resulting in a higher power density in the long term. A combination of the discussed antifouling strategies, together with the use of monovalent selective membranes, is recommended to maintain a high power density in RED in short-term and long-term operations. PMID:24512109

  20. Experimental study on the operational and the cooling performance of the APR+ passive auxiliary feedwater system

    SciTech Connect

    Kang, K. H.; Bae, B. U.; Kim, S.; Cho, Y. J.; Park, Y. S.; Kim, B. D.

    2012-07-01

    The passive auxiliary feedwater system (PAFS) is one of the advanced safety features adopted in the APR+ which is intended to completely replace the conventional active auxiliary feedwater system. The PAFS cools down the steam generator secondary side and eventually removes the decay heat from the reactor core by introducing a natural driving force mechanism; i.e., condensing steam in nearly-horizontal U-tubes submerged inside the passive condensation cooling tank (PCCT). With an aim of validating the cooling and operational performance of the PAFS, the separate effect test, PASCAL (PAFS Condensing Heat Removal Assessment Loop), is being performed to experimentally investigate the condensation heat transfer and natural convection phenomena in the PAFS. A single nearly-horizontal U-tube whose dimension is same as the prototypic U-tube of the APR+ PAFS is simulated in the PASCAL test. By performing the PASCAL test, the major thermal-hydraulic parameters such as local/overall heat transfer coefficients, fluid temperature inside the tube, wall temperature of the tube, and pool temperature distribution in the PCCT were produced not only to evaluate the current condensation heat transfer model but also to present database for the safety analysis related with the PAFS. (authors)

  1. Probe with integrated heater and thermocouple pack

    SciTech Connect

    McCulloch, Reg W.; Dial, Ralph E.; Finnell, Wilber K. R.

    1990-01-01

    A probe for measuring heat includes an elongate rod fitted within a sheath, and a plurality of annular recesses are formed on the surface of the rod in a spaced-apart relationship to form annular chambers that are resistant to heat flow. A longitudinal bore extends axially into the rod and within the cylinders defined by the annular chambers, and an integrated heater and thermocouple pack is dimensioned to fit within the bore. In construction, the integrated pack includes a plurality of wires disposed in electrical insulation within a sheath and a heater cable. These wires include one common wire and a plurality of thermocuple wires. The common wire is constructed of one type of conductive material while the thermocouple wires are each constructed of two types of materials so that at least one thermocouple junction is formed therein. All of the wires extend the length of the integrated pack and are connected together at their ends. The thermocouple wires are constructed to form thermocouple junctions proximate to each annular chamber for producing electromotive forces corresponding to the temperature of the rod within the annular chambers relative to outside the chambers. In the preferred embodiment, each thermocouple wire forms two thermocouple junctions, one junction being disposed within an annular chamber and the second junction being disposed outside of, but proximate to, the same annular chamber. In one embodiment two thermocouple wires are configured to double the sensitivity of the probe in one region.

  2. Combined grate and hot water heater

    SciTech Connect

    Milano, E.

    1984-09-25

    A combined grate and hot water heater for a fireplace which can be easily fabricated using conventional parts, easily installed and easily used is disclosed. The combined grate and hot water heater includes a rectangular shaped cradle for holding combustible materials to be burned which is sized and configured to fit into the fire chamber of the fireplace and a set of supporting legs for supporting the cradle on the floor of the fire chamber in spaced apart relationship. The cradle is made of a plurality of longitudinally extending and laterally extending heavy duty cast iron pipes interconnected by suitable pipe couplings so as to be in fluid communication with one another. A water inlet pipe and a water outlet pipe are connected to and in fluid communication with the pipes in the cradle for supplying water to be heated into the pipes and then allowing exit of the water after it has circulated through the pipes and has been heated by the fire produced on burning of the combustible materials. An inverted U shaped pipe section also made of heavy duty cast iron is coupled in fluid communication with the pipes in the cradle and extends vertically upward into the flue of the fireplace to utilize the heat present in the flue to further heat the water circulated through the pipes.

  3. Radioisotopic heater units warm an interplanetary spacecraft

    SciTech Connect

    Franco-Ferreira, E.A.; Rinehart, G.H.

    1998-01-01

    The Cassini orbiter and Huygens probe, which were successfully launched on October 15, 1997, constitute NASA`s last grand-scale interplanetary mission of this century. The mission, which consists of a four-year, close-up study of Saturn and its moons, begins in July 2004 with Cassini`s 60 orbits of Saturn and about 33 fly-bys of the large moon Titan. The Huygens probe will descend and land on Titan. Investigations will include Saturn`s atmosphere, its rings and its magnetosphere. The atmosphere and surface of Titan and other icy moons also will be characterized. Because of the great distance of Saturn from the sun, some of the instruments and equipment on both the orbiter and the probe require external heaters to maintain their temperature within normal operating ranges. These requirements are met by Light Weight Radioisotope Heater Units (LWRHUs) designed, fabricated and safety tested at Los Alamos National Laboratory, New Mexico. An improved gas tungsten arc welding procedure lowered costs and decreased processing time for heat units for the Cassini spacecraft.

  4. Probe with integrated heater and thermocouple pack

    DOEpatents

    McCulloch, Reginald W.; Dial, Ralph E.; Finnell, Wilber K. R.

    1988-01-01

    A probe for measuring heat includes an elongate rod fitted within a sheath, and a plurality of annular recesses are formed on the surface of the rod in a spaced-apart relationship to form annular chambers that are resistant to heat flow. A longitudinal bore extends axially into the rod and within the cylinders defined by the annular chambers, and an integrated heater and thermocouple pack is dimensioned to fit within the bore. In construction, the integrated pack includes a plurality of wires disposed in electrical insulation within a sheath and a heater cable. These wires include one common wire and a plurality of thermocouple wires. The common wire is constructed of one type of conductive material while the thermocouple wires are each constructed of two types of materials so that at least one thermocouple junction is formed therein. All of the wires extend the length of the integrated pack and are connected together at their ends. The thermocouple wires are constructed to form thermocouple junctions proximate to each annular chamber for producing electromotive forces corresponding to the temperature of the rod within the annular chambers relative to outside the chambers. In the preferred embodiment, each thermocouple wire forms two thermocouple junctions, one junction being disposed within an annular chamber and the second junction being disposed outside of, but proximate to, the same annular chamber. In one embodiment two thermocouple wires are configured to double the sensitivity of the probe in one region.

  5. Status of Hollow Cathode Heater Development for the Space Station Plasma Contactor

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    1994-01-01

    A hollow cathode-based plasma contactor has been selected for use on the Space Station. During the operation of the plasma contactor, the hollow cathode heater will endure approximately 12000 thermal cycles. Since a hollow cathode heater failure would result in a plasma contactor failure, a hollow cathode heater development program was established to produce a reliable heater. The development program includes the heater design, process documents for both heater fabrication and assembly, and heater testing. The heater design was a modification of a sheathed ion thruster cathode heater. Heater tests included testing of the heater unit alone and plasma contactor and ion thruster testing. To date, eight heaters have been or are being processed through heater unit testing, two through plasma contactor testing and three through ion thruster testing, all using direct current power supplies. Comparisons of data from heater unit performance tests before cyclic testing, plasma contactor tests, and ion thruster tests at the ignition input current level show the average deviation of input power and tube temperature near the cathode tip to be +/-0.9 W and +/- 21 C, respectively. Heater unit testing included cyclic testing to evaluate reliability under thermal cycling. The first heater, although damaged during assembly, completed 5985 ignition cycles before failing. Four additional heaters successfully completed 6300, 6300, 700, and 700 cycles. Heater unit testing is currently ongoing for three heaters which have to date accumulated greater than 7250, greater than 5500, and greater than 5500 cycles, respectively.

  6. 14 CFR 29.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Combustion heater fire protection. 29.859 Section 29.859 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Fire Protection § 29.859 Combustion heater fire protection....

  7. 14 CFR 25.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Combustion heater fire protection. 25.859 Section 25.859 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Fire Protection § 25.859 Combustion heater fire protection....

  8. 14 CFR 25.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) The heat exchanger temperature exceeds safe limits. (ii) The ventilating air temperature exceeds safe... might accumulate within the combustion chamber or the heat exchanger. In addition— (1) Each part of any... for any individual heater must— (i) Be independent of components serving any other heater whose...

  9. 14 CFR 25.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) The heat exchanger temperature exceeds safe limits. (ii) The ventilating air temperature exceeds safe... might accumulate within the combustion chamber or the heat exchanger. In addition— (1) Each part of any... for any individual heater must— (i) Be independent of components serving any other heater whose...

  10. 21 CFR 868.5270 - Breathing system heater.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Breathing system heater. 868.5270 Section 868.5270 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5270 Breathing system heater....

  11. 21 CFR 868.5270 - Breathing system heater.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Breathing system heater. 868.5270 Section 868.5270 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5270 Breathing system heater....

  12. 21 CFR 868.5270 - Breathing system heater.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Breathing system heater. 868.5270 Section 868.5270 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5270 Breathing system heater....

  13. 21 CFR 868.5270 - Breathing system heater.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Breathing system heater. 868.5270 Section 868.5270 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5270 Breathing system heater....

  14. 21 CFR 868.5270 - Breathing system heater.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Breathing system heater. 868.5270 Section 868.5270 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5270 Breathing system heater....

  15. 10 CFR 429.17 - Residential water heaters.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Residential water heaters. 429.17 Section 429.17 Energy... COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.17 Residential water heaters. (a) Sampling plan for selection of units for testing. (1) The requirements of § 429.11 are applicable to residential water...

  16. 10 CFR 429.50 - Commercial unit heaters.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Commercial unit heaters. 429.50 Section 429.50 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION CERTIFICATION, COMPLIANCE, AND ENFORCEMENT FOR CONSUMER PRODUCTS AND COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.50 Commercial unit heaters. (a) Sampling plan...

  17. 10 CFR 429.50 - Commercial unit heaters.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Commercial unit heaters. 429.50 Section 429.50 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION CERTIFICATION, COMPLIANCE, AND ENFORCEMENT FOR CONSUMER PRODUCTS AND COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.50 Commercial unit heaters. (a) Sampling plan...

  18. 10 CFR 429.50 - Commercial unit heaters.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Commercial unit heaters. 429.50 Section 429.50 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION CERTIFICATION, COMPLIANCE, AND ENFORCEMENT FOR CONSUMER PRODUCTS AND COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.50 Commercial unit heaters. (a) Sampling plan...

  19. 10 CFR 429.17 - Residential water heaters.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Residential water heaters. 429.17 Section 429.17 Energy... COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.17 Residential water heaters. (a) Sampling plan for selection of units for testing. (1) The requirements of § 429.11 are applicable to residential water...

  20. 10 CFR 429.17 - Residential water heaters.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Residential water heaters. 429.17 Section 429.17 Energy... COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.17 Residential water heaters. (a) Sampling plan for selection of units for testing. (1) The requirements of § 429.11 are applicable to residential water...

  1. INFRARED HEATER ARRAYS FOR WARMING ECOSYSTEM FIELD PLOTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    TThere is a need for methodology to warm open-field plots in order to study the likely effects of global warming on ecosystems in the future. Herein, we describe the development of arrays of more powerful and efficient infrared heaters with ceramic heating elements. By tilting the heaters at 45 de...

  2. 40 CFR 63.988 - Incinerators, boilers, and process heaters.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... status requirements of 40 CFR part 265, subpart O; (ii) A boiler or process heater with a design heat... 40 CFR part 266, subpart H; or (B) The boiler or process heater has certified compliance with the interim status requirements of 40 CFR part 266, subpart H. (c) Incinerator, boiler, and process...

  3. 40 CFR 63.988 - Incinerators, boilers, and process heaters.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... status requirements of 40 CFR part 265, subpart O; (ii) A boiler or process heater with a design heat... 40 CFR part 266, subpart H; or (B) The boiler or process heater has certified compliance with the interim status requirements of 40 CFR part 266, subpart H. (c) Incinerator, boiler, and process...

  4. 40 CFR 63.988 - Incinerators, boilers, and process heaters.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... status requirements of 40 CFR part 265, subpart O; (ii) A boiler or process heater with a design heat... 40 CFR part 266, subpart H; or (B) The boiler or process heater has certified compliance with the interim status requirements of 40 CFR part 266, subpart H. (c) Incinerator, boiler, and process...

  5. 40 CFR 63.988 - Incinerators, boilers, and process heaters.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... status requirements of 40 CFR part 265, subpart O; (ii) A boiler or process heater with a design heat... 40 CFR part 266, subpart H; or (B) The boiler or process heater has certified compliance with the interim status requirements of 40 CFR part 266, subpart H. (c) Incinerator, boiler, and process...

  6. Transparent and Flexible Large-scale Graphene-based Heater

    NASA Astrophysics Data System (ADS)

    Kang, Junmo; Lee, Changgu; Kim, Young-Jin; Choi, Jae-Boong; Hong, Byung Hee

    2011-03-01

    We report the application of transparent and flexible heater with high optical transmittance and low sheet resistance using graphene films, showing outstanding thermal and electrical properties. The large-scale graphene films were grown on Cu foil by chemical vapor deposition methods, and transferred to transparent substrates by multiple stacking. The wet chemical doping process enhanced the electrical properties, showing a sheet resistance as low as 35 ohm/sq with 88.5 % transmittance. The temperature response usually depends on the dimension and the sheet resistance of the graphene-based heater. We show that a 4x4 cm2 heater can reach 80& circ; C within 40 seconds and large-scale (9x9 cm2) heater shows uniformly heating performance, which was measured using thermocouple and infra-red camera. These heaters would be very useful for defogging systems and smart windows.

  7. Performance test plan for a space station toluene heater tube

    SciTech Connect

    Parekh, M.B.

    1987-10-01

    Sundstrand Energy Systems was awarded a contract to investigate the performance capabilities of a toluene heater tube integral to a heat pipe as applied to the Organic Rankine Cycle (ORC) solar dynamic power system for the Space Station. This heat pipe is a subassembly of the heat receiver. The heat receiver, the heat absorption component of the ORC solar dynamic power system, consists of forty liquid metal heat pipes located circumferentially around the heat receiver`s outside diameter. Each heat pipe contains a toluene heater, two thermal energy storage (TES) canisters and potassium. The function of the heater tube is to heat the supercritical toluene to the required turbine inlet temperature. During the orbit of the space station, the heat receiver and thereby the heat pipe and heater tube will be subjected to variable heat input. The design of the heater must be such that it can accommodate the thermal and hydraulic variations that will be imposed upon it.

  8. Industrial applications of MHD high temperature air heater technology

    NASA Astrophysics Data System (ADS)

    Saari, D. P.; Fenstermacher, J. E.; White, L. R.; Marksberry, C. L.

    1981-12-01

    The MHD high temperature air heater (HTAH) requires technology beyond the current state-of-the-art of industrial regenerative heaters. Specific aspects of HTAH technology which may find other application include refractory materials and valves resistant to the high temperature, corrosive, slag-bearing gas, materials resistant to cyclic thermal stresses, high temperature support structures for the cored brick bed, regenerative heater operating techniques for preventing accumulation of slag in the heater, and analytical tools for computing regenerative heater size, cost, and performance. Areas where HTAH technology may find application include acetylene/ethylene production processes, flash pyrolysis of coal, high temperature gas reactors, coal gasification processes, various metallurgical processes, waste incineration, and improvements to existing regenerator technology such as blast furnace stoves and glass tank regenerators.

  9. Infrared transparent graphene heater for silicon photonic integrated circuits.

    PubMed

    Schall, Daniel; Mohsin, Muhammad; Sagade, Abhay A; Otto, Martin; Chmielak, Bartos; Suckow, Stephan; Giesecke, Anna Lena; Neumaier, Daniel; Kurz, Heinrich

    2016-04-18

    Thermo-optical tuning of the refractive index is one of the pivotal operations performed in integrated silicon photonic circuits for thermal stabilization, compensation of fabrication tolerances, and implementation of photonic operations. Currently, heaters based on metal wires provide the temperature control in the silicon waveguide. The strong interaction of metal and light, however, necessitates a certain gap between the heater and the photonic structure to avoid significant transmission loss. Here we present a graphene heater that overcomes this constraint and enables an energy efficient tuning of the refractive index. We achieve a tuning power as low as 22 mW per free spectral range and fast response time of 3 µs, outperforming metal based waveguide heaters. Simulations support the experimental results and suggest that for graphene heaters the spacing to the silicon can be further reduced yielding the best possible energy efficiency and operation speed. PMID:27137229

  10. Heater utilizing copper-nickel alloy core

    SciTech Connect

    Van Egmond, C.F.H.

    1991-10-22

    This patent describes a well heater. It comprises: at least one heating section which is capable of extending for at least a hundred feet within a well borehole adjacent to an interval of subterranean earth formation to be heated, contains at least one electrical heating cable, and contains a combination of heating cable core resistance and core cross-sectional areas capable of producing temperatures between about 600[degrees]C and 1000[degrees]C within the subterranean earth formation, wherein the heating cable is an electrical resistance heating cable comprising: a core consisting essentially of 6 percent by weight nickel and 94 percent by weight copper; electrical insulation surrounding the core; and surrounding the electrical insulation, a metal sheath; and a means of supplying electrical power to the heating cable core.