Science.gov

Sample records for fefe hydrogenase model

  1. A sterically stabilized FeI-FeI semi-rotated conformation of [FeFe] hydrogenase subsite model.

    PubMed

    Goy, Roman; Bertini, Luca; Elleouet, Catherine; Görls, Helmar; Zampella, Giuseppe; Talarmin, Jean; De Gioia, Luca; Schollhammer, Philippe; Apfel, Ulf-Peter; Weigand, Wolfgang

    2015-01-28

    The [FeFe] hydrogenase is a highly sophisticated enzyme for the synthesis of hydrogen via a biological route. The rotated state of the H-cluster in the [Fe(I)Fe(I)] form was found to be an indispensable criteria for an effective catalysis. Mimicking the specific rotated geometry of the [FeFe] hydrogenase active site is highly challenging as no protein stabilization is present in model compounds. In order to simulate the sterically demanding environment of the nature's active site, the sterically crowded meso-bis(benzylthio)diphenylsilane (2) was utilized as dithiolate linker in an [2Fe2S] model complex. The reaction of the obtained hexacarbonyl complex 3 with 1,2-bis(dimethylphosphino)ethane (dmpe) results three different products depending on the amount of dmpe used in this reaction: [{Fe2(CO)5{μ-(SCHPh)2SiPh2}}2(μ-dmpe)] (4), [Fe2(CO)5(κ(2)-dmpe){μ-(SCHPh)2SiPh2}] (5) and [Fe2(CO)5(μ-dmpe){μ-(SCHPh)2SiPh2}] (6). Interestingly, the molecular structure of compound 5 shows a [FeFe] subsite comprising a semi-rotated conformation, which was fully characterized as well as the other isomers 4 and 6 by elemental analysis, IR and NMR spectroscopy, X-ray diffraction analysis (XRD) and DFT calculations. The herein reported model complex is the first example so far reported for [Fe(I)Fe(I)] hydrogenase model complex showing a semi-rotated geometry without the need of stabilization via agostic interactions (Fe···H-C). PMID:25436832

  2. Biomimetic assembly of the [FeFe] hydrogenase: synthetic mimics in a biological shell.

    PubMed

    Apfel, Ulf-Peter; Weigand, Wolfgang

    2013-11-25

    Combining synthetic chemistry and biology: A new method that allows the incorporation of synthetic [FeFe] hydrogenase mimics into the apo-hydrogenase is highlighted. Azadithiolato-functionalized model complexes showed similar activity to wild-type enzymes when implemented into the protein. PMID:24115635

  3. The [FeFe] hydrogenase of Nyctotherus ovalis has a chimeric origin

    PubMed Central

    Boxma, Brigitte; Ricard, Guenola; van Hoek, Angela HAM; Severing, Edouard; Moon-van der Staay, Seung-Yeo; van der Staay, Georg WM; van Alen, Theo A; de Graaf, Rob M; Cremers, Geert; Kwantes, Michiel; McEwan, Neil R; Newbold, C Jamie; Jouany, Jean-Pierre; Michalowski, Tadeusz; Pristas, Peter; Huynen, Martijn A; Hackstein, Johannes HP

    2007-01-01

    Background The hydrogenosomes of the anaerobic ciliate Nyctotherus ovalis show how mitochondria can evolve into hydrogenosomes because they possess a mitochondrial genome and parts of an electron-transport chain on the one hand, and a hydrogenase on the other hand. The hydrogenase permits direct reoxidation of NADH because it consists of a [FeFe] hydrogenase module that is fused to two modules, which are homologous to the 24 kDa and the 51 kDa subunits of a mitochondrial complex I. Results The [FeFe] hydrogenase belongs to a clade of hydrogenases that are different from well-known eukaryotic hydrogenases. The 24 kDa and the 51 kDa modules are most closely related to homologous modules that function in bacterial [NiFe] hydrogenases. Paralogous, mitochondrial 24 kDa and 51 kDa modules function in the mitochondrial complex I in N. ovalis. The different hydrogenase modules have been fused to form a polyprotein that is targeted into the hydrogenosome. Conclusion The hydrogenase and their associated modules have most likely been acquired by independent lateral gene transfer from different sources. This scenario for a concerted lateral gene transfer is in agreement with the evolution of the hydrogenosome from a genuine ciliate mitochondrion by evolutionary tinkering. PMID:18021395

  4. Process and genes for expression and overexpression of active [FeFe] hydrogenases

    DOEpatents

    Seibert, Michael; King, Paul W; Ghirardi, Maria Lucia; Posewitz, Matthew C; Smolinski, Sharon L

    2014-09-16

    A process for expression of active [FeFe]-hydrogenase in a host organism that does not contain either the structural gene(s) for [FeFe]-hydrogenases and/or homologues for the maturation genes HydE, HydF and HyG, comprising: cloning the structural hydrogenase gene(s) and/or the maturation genes HydE, HydF and HydG from an organisms that contains these genes into expression plasmids; transferring the plasmids into an organism that lacks a native [FeFe]-hydrogenase or that has a disrupted [FeFe]-hydrogenase and culturing it aerobically; and inducing anaerobiosis to provide [FeFe] hydrogenase biosynthesis and H?2#191 production.

  5. A Cell-Free Microtiter Plate Screen for Improved [FeFe] Hydrogenases

    PubMed Central

    Stapleton, James A.; Swartz, James R.

    2010-01-01

    Background [FeFe] hydrogenase enzymes catalyze the production and dissociation of H2, a potential renewable fuel. Attempts to exploit these catalysts in engineered systems have been hindered by the biotechnologically inconvenient properties of the natural enzymes, including their extreme oxygen sensitivity. Directed evolution has been used to improve the characteristics of a range of natural catalysts, but has been largely unsuccessful for [FeFe] hydrogenases because of a lack of convenient screening platforms. Methodology/Principal Findings Here we describe an in vitro screening technology for oxygen-tolerant and highly active [FeFe] hydrogenases. Despite the complexity of the protocol, we demonstrate a level of reproducibility that allows moderately improved mutants to be isolated. We have used the platform to identify a mutant of the Chlamydomonas reinhardtii [FeFe] hydrogenase HydA1 with a specific activity ∼4 times that of the wild-type enzyme. Conclusions/Significance Our results demonstrate the feasibility of using the screen presented here for large-scale efforts to identify improved biocatalysts for energy applications. The system is based on our ability to activate these complex enzymes in E. coli cell extracts, which allows unhindered access to the protein maturation and assay environment. PMID:20479937

  6. The quest for a functional substrate access tunnel in FeFe hydrogenase.

    PubMed

    Lautier, Thomas; Ezanno, Pierre; Baffert, Carole; Fourmond, Vincent; Cournac, Laurent; Fontecilla-Camps, Juan C; Soucaille, Philippe; Bertrand, Patrick; Meynial-Salles, Isabelle; Léger, Christophe

    2011-01-01

    We investigated di-hydrogen transport between the solvent and the active site of FeFe hydrogenases. Substrate channels supposedly exist and serve various functions in certain redox enzymes which use or produce O2, H2, NO, CO, or N2, but the preferred paths have not always been unambiguously identified, and whether a continuous, permanent channel is an absolute requirement for transporting diatomic molecules is unknown. Here, we review the literature on gas channels in proteins and enzymes and we report on the use of site-directed mutagenesis and various kinetic methods, which proved useful for characterizing substrate access to the active site of NiFe hydrogenase to test the putative "static" H2 channel of FeFe hydrogenases. We designed 8 mutations in attempts to interfere with intramolecular diffusion by remodeling this putative route in Clostridium acetobutylicum FeFe hydrogenase, and we observed that none of them has a strong effect on any of the enzyme's kinetic properties. We suggest that H2 may diffuse either via transient cavities, or along a conserved water-filled channel. Nitrogenase sets a precedent for the involvement of a hydrophilic channel to conduct hydrophobic molecules. PMID:21322495

  7. [FeFe]- and [NiFe]-hydrogenase diversity, mechanism, and maturation.

    PubMed

    Peters, John W; Schut, Gerrit J; Boyd, Eric S; Mulder, David W; Shepard, Eric M; Broderick, Joan B; King, Paul W; Adams, Michael W W

    2015-06-01

    The [FeFe]- and [NiFe]-hydrogenases catalyze the formal interconversion between hydrogen and protons and electrons, possess characteristic non-protein ligands at their catalytic sites and thus share common mechanistic features. Despite the similarities between these two types of hydrogenases, they clearly have distinct evolutionary origins and likely emerged from different selective pressures. [FeFe]-hydrogenases are widely distributed in fermentative anaerobic microorganisms and likely evolved under selective pressure to couple hydrogen production to the recycling of electron carriers that accumulate during anaerobic metabolism. In contrast, many [NiFe]-hydrogenases catalyze hydrogen oxidation as part of energy metabolism and were likely key enzymes in early life and arguably represent the predecessors of modern respiratory metabolism. Although the reversible combination of protons and electrons to generate hydrogen gas is the simplest of chemical reactions, the [FeFe]- and [NiFe]-hydrogenases have distinct mechanisms and differ in the fundamental chemistry associated with proton transfer and control of electron flow that also help to define catalytic bias. A unifying feature of these enzymes is that hydrogen activation itself has been restricted to one solution involving diatomic ligands (carbon monoxide and cyanide) bound to an Fe ion. On the other hand, and quite remarkably, the biosynthetic mechanisms to produce these ligands are exclusive to each type of enzyme. Furthermore, these mechanisms represent two independent solutions to the formation of complex bioinorganic active sites for catalyzing the simplest of chemical reactions, reversible hydrogen oxidation. As such, the [FeFe]- and [NiFe]-hydrogenases are arguably the most profound case of convergent evolution. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases. PMID:25461840

  8. Detection of Transient Intermediates Generated from Subsite Analogues of [FeFe] Hydrogenases.

    PubMed

    Hunt, Neil T; Wright, Joseph A; Pickett, Christopher

    2016-01-19

    This article reviews the application of transient techniques in the elucidation of electron, proton, and photon chemistry related to the catalytic subsite of [FeFe] hydrogenase from the perspective of research in this area carried out at the UEA and Strathclyde laboratories. The detection of mixed-valence states, bridging CO intermediates, paramagnetic hydrides, and coordinatively unsaturated species has both informed understanding of biological catalysis and stimulated the search for stable analogues of key structural motifs likely involved in turnover states. PMID:26689103

  9. The oxidative inactivation of FeFe hydrogenase reveals the flexibility of the H-cluster

    NASA Astrophysics Data System (ADS)

    Fourmond, Vincent; Greco, Claudio; Sybirna, Kateryna; Baffert, Carole; Wang, Po-Hung; Ezanno, Pierre; Montefiori, Marco; Bruschi, Maurizio; Meynial-Salles, Isabelle; Soucaille, Philippe; Blumberger, Jochen; Bottin, Herv; de Gioia, Luca; Lger, Christophe

    2014-04-01

    Nature is a valuable source of inspiration in the design of catalysts, and various approaches are used to elucidate the mechanism of hydrogenases, the enzymes that oxidize or produce H2. In FeFe hydrogenases, H2 oxidation occurs at the H-cluster, and catalysis involves H2 binding on the vacant coordination site of an iron centre. Here, we show that the reversible oxidative inactivation of this enzyme results from the binding of H2 to coordination positions that are normally blocked by intrinsic CO ligands. This flexibility of the coordination sphere around the reactive iron centre confers on the enzyme the ability to avoid harmful reactions under oxidizing conditions, including exposure to O2. The versatile chemistry of the diiron cluster in the natural system might inspire the design of novel synthetic catalysts for H2 oxidation.

  10. NRVS and EPR Spectroscopy of 57Fe-enriched [FeFe] Hydrogenase Indicate Stepwise Assembly of the H-cluster†

    PubMed Central

    Kuchenreuther, Jon M.; Guo, Yisong; Wang, Hongxin; Myers, William K.; George, Simon J.; Boyke, Christine A.; Yoda, Yoshitaka; Alp, E. Ercan; Zhao, Jiyong; Britt, R. David; Swartz, James R.; Cramer, Stephen P.

    2013-01-01

    The [FeFe] hydrogenase from Clostridium pasteurianum (CpI) harbors four Fe–S clusters that facilitate electron transfer to the H-cluster, a ligand-coordinated six-iron prosthetic group that catalyzes the redox interconversion of protons and H2. Here, we have used 57Fe nuclear resonance vibrational spectroscopy (NRVS) to study the iron centers in CpI, and we compare our data to that for a [4Fe–4S] ferredoxin as well as a model complex resembling the [2Fe]H catalytic domain of the H-cluster. In order to enrich the hydrogenase with 57Fe nuclei, we used cell-free methods to post-translationally mature the enzyme. Specifically, inactive CpI apoprotein with 56Fe-labeled Fe–S clusters was activated in vitro using 57Fe-enriched maturation proteins. This approach enabled us to selectively label the [2Fe]H subcluster with 57Fe, which NRVS confirms by detecting 57Fe–CO and 57Fe–CN normal modes from the H-cluster nonprotein ligands. The NRVS and iron quantification results also suggest that the hydrogenase contains a second 57Fe–S cluster. EPR spectroscopy indicates that this 57Fe-enriched metal center is not the [4Fe– 4S]H subcluster of the H-cluster. This finding demonstrates that the CpI hydrogenase retained an 56Fe-enriched [4Fe–4S]H cluster during in vitro maturation, providing unambiguous evidence for stepwise assembly of the H-cluster. In addition, this work represents the first NRVS characterization of [FeFe] hydrogenases. PMID:23249091

  11. Cysteine as a ligand platform in the biosynthesis of the FeFe hydrogenase H cluster.

    PubMed

    Suess, Daniel L M; Bürstel, Ingmar; De La Paz, Liliana; Kuchenreuther, Jon M; Pham, Cindy C; Cramer, Stephen P; Swartz, James R; Britt, R David

    2015-09-15

    Hydrogenases catalyze the redox interconversion of protons and H2, an important reaction for a number of metabolic processes and for solar fuel production. In FeFe hydrogenases, catalysis occurs at the H cluster, a metallocofactor comprising a [4Fe-4S]H subcluster coupled to a [2Fe]H subcluster bound by CO, CN(-), and azadithiolate ligands. The [2Fe]H subcluster is assembled by the maturases HydE, HydF, and HydG. HydG is a member of the radical S-adenosyl-L-methionine family of enzymes that transforms Fe and L-tyrosine into an [Fe(CO)2(CN)] synthon that is incorporated into the H cluster. Although it is thought that the site of synthon formation in HydG is the "dangler" Fe of a [5Fe] cluster, many mechanistic aspects of this chemistry remain unresolved including the full ligand set of the synthon, how the dangler Fe initially binds to HydG, and how the synthon is released at the end of the reaction. To address these questions, we herein show that L-cysteine (Cys) binds the auxiliary [4Fe-4S] cluster of HydG and further chelates the dangler Fe. We also demonstrate that a [4Fe-4S]aux[CN] species is generated during HydG catalysis, a process that entails the loss of Cys and the [Fe(CO)2(CN)] fragment; on this basis, we suggest that Cys likely completes the coordination sphere of the synthon. Thus, through spectroscopic analysis of HydG before and after the synthon is formed, we conclude that Cys serves as the ligand platform on which the synthon is built and plays a role in both Fe(2+) binding and synthon release. PMID:26324916

  12. Cysteine as a ligand platform in the biosynthesis of the FeFe hydrogenase H cluster

    PubMed Central

    Suess, Daniel L. M.; Bürstel, Ingmar; De La Paz, Liliana; Kuchenreuther, Jon M.; Pham, Cindy C.; Cramer, Stephen P.; Swartz, James R.; Britt, R. David

    2015-01-01

    Hydrogenases catalyze the redox interconversion of protons and H2, an important reaction for a number of metabolic processes and for solar fuel production. In FeFe hydrogenases, catalysis occurs at the H cluster, a metallocofactor comprising a [4Fe–4S]H subcluster coupled to a [2Fe]H subcluster bound by CO, CN–, and azadithiolate ligands. The [2Fe]H subcluster is assembled by the maturases HydE, HydF, and HydG. HydG is a member of the radical S-adenosyl-l-methionine family of enzymes that transforms Fe and l-tyrosine into an [Fe(CO)2(CN)] synthon that is incorporated into the H cluster. Although it is thought that the site of synthon formation in HydG is the “dangler” Fe of a [5Fe] cluster, many mechanistic aspects of this chemistry remain unresolved including the full ligand set of the synthon, how the dangler Fe initially binds to HydG, and how the synthon is released at the end of the reaction. To address these questions, we herein show that l-cysteine (Cys) binds the auxiliary [4Fe–4S] cluster of HydG and further chelates the dangler Fe. We also demonstrate that a [4Fe–4S]aux[CN] species is generated during HydG catalysis, a process that entails the loss of Cys and the [Fe(CO)2(CN)] fragment; on this basis, we suggest that Cys likely completes the coordination sphere of the synthon. Thus, through spectroscopic analysis of HydG before and after the synthon is formed, we conclude that Cys serves as the ligand platform on which the synthon is built and plays a role in both Fe2+ binding and synthon release. PMID:26324916

  13. Patterns of [FeFe] Hydrogenase Diversity in the Gut Microbial Communities of Lignocellulose-Feeding Higher Termites

    PubMed Central

    Ballor, Nicholas R.

    2012-01-01

    Hydrogen is the central free intermediate in the degradation of wood by termite gut microbes and can reach concentrations exceeding those measured for any other biological system. Degenerate primers targeting the largest family of [FeFe] hydrogenases observed in a termite gut metagenome have been used to explore the evolution and representation of these enzymes in termites. Sequences were cloned from the guts of the higher termites Amitermes sp. strain Cost010, Amitermes sp. strain JT2, Gnathamitermes sp. strain JT5, Microcerotermes sp. strain Cost008, Nasutitermes sp. strain Cost003, and Rhyncotermes sp. strain Cost004. Each gut sample harbored a more rich and evenly distributed population of hydrogenase sequences than observed previously in the guts of lower termites and Cryptocercus punctulatus. This accentuates the physiological importance of hydrogen for higher termite gut ecosystems and may reflect an increased metabolic burden, or metabolic opportunity, created by a lack of gut protozoa. The sequences were phylogenetically distinct from previously sequenced [FeFe] hydrogenases. Phylogenetic and UniFrac comparisons revealed congruence between host phylogeny and hydrogenase sequence library clustering patterns. This may reflect the combined influences of the stable intimate relationship of gut microbes with their host and environmental alterations in the gut that have occurred over the course of termite evolution. These results accentuate the physiological importance of hydrogen to termite gut ecosystems. PMID:22636002

  14. Raman Spectroscopy of Charge Transfer Interactions Between Single Wall Carbon Nanotubes and [FeFe] Hydrogenase

    SciTech Connect

    Blackburn, J. L. Svedruzic, D.; McDonald, T. J.; Kim, Y. H.; King, P. W.; Heben, M. J.

    2008-01-01

    We report a Raman spectroscopy study of charge transfer interactions in complexes formed by single-walled carbon nanotubes (SWNTs) and [FeFe] hydrogenase I (CaHydI) from Clostridium acetobutylicum. The choice of Raman excitation wavelength and sample preparation conditions allows differences to be observed for complexes involving metallic (m) and semiconducting (s) species. Adsorbed CaHydI can reversibly inject electronic charge into the LUMOs of s-SWNTs, while charge can be injected and removed from m-SWNTs at lower potentials just above the Fermi energy. Time-dependent enzymatic assays demonstrated that the reduced and oxidized forms of CaHydI are deactivated by oxygen, but at rates that varied by an order of magnitude. The time evolution of the oxidative decay of the CaHydI activity reveals different time constants when complexed with m-SWNTs and s-SWNTs. The correlation of enzymatic assays with time-dependent Raman spectroscopy provides a novel method by which the charge transfer interactions may be investigated in the various SWNT-CaHydI complexes. Surprisingly, an oxidized form of CaHydI is apparently more resistant to oxygen deactivation when complexed to m-SWNTs rather than s-SWNTs.

  15. Biosynthesis of the [FeFe] Hydrogenase H Cluster: A Central Role for the Radical SAM Enzyme HydG.

    PubMed

    Suess, Daniel L M; Kuchenreuther, Jon M; De La Paz, Liliana; Swartz, James R; Britt, R David

    2016-01-19

    Hydrogenase enzymes catalyze the rapid and reversible interconversion of H2 with protons and electrons. The active site of the [FeFe] hydrogenase is the H cluster, which consists of a [4Fe-4S]H subcluster linked to an organometallic [2Fe]H subcluster. Understanding the biosynthesis and catalytic mechanism of this structurally unusual active site will aid in the development of synthetic and biological hydrogenase catalysts for applications in solar fuel generation. The [2Fe]H subcluster is synthesized and inserted by three maturase enzymes-HydE, HydF, and HydG-in a complex process that involves inorganic, organometallic, and organic radical chemistry. HydG is a member of the radical S-adenosyl-l-methionine (SAM) family of enzymes and is thought to play a prominent role in [2Fe]H subcluster biosynthesis by converting inorganic Fe(2+), l-cysteine (Cys), and l-tyrosine (Tyr) into an organometallic [(Cys)Fe(CO)2(CN)](-) intermediate that is eventually incorporated into the [2Fe]H subcluster. In this Forum Article, the mechanism of [2Fe]H subcluster biosynthesis is discussed with a focus on how this key [(Cys)Fe(CO)2(CN)](-) species is formed. Particular attention is given to the initial metallocluster composition of HydG, the modes of substrate binding (Fe(2+), Cys, Tyr, and SAM), the mechanism of SAM-mediated Tyr cleavage to CO and CN(-), and the identification of the final organometallic products of the reaction. PMID:26703931

  16. Hydrogen-producing microflora and Fe-Fe hydrogenase diversities in seaweed bed associated with marine hot springs of Kalianda, Indonesia.

    PubMed

    Xu, Shou-Ying; He, Pei-Qing; Dewi, Seswita-Zilda; Zhang, Xue-Lei; Ekowati, Chasanah; Liu, Tong-Jun; Huang, Xiao-Hang

    2013-05-01

    Microbial fermentation is a promising technology for hydrogen (H(2)) production. H(2) producers in marine geothermal environments are thermophilic and halotolerant. However, no one has surveyed an environment specifically for thermophilic bacteria that produce H(2) through Fe-Fe hydrogenases (H(2)ase). Using heterotrophic medium, several microflora from a seaweed bed associated with marine hot springs were enriched and analyzed for H(2) production. A H(2)-producing microflora was obtained from Sargassum sp., 16S rRNA genes and Fe-Fe H(2)ase diversities of this enrichment were also analyzed. Based on 16S rRNA genes analysis, 10 phylotypes were found in the H(2)-producing microflora showing 90.0-99.5 % identities to known species, and belonged to Clostridia, Gammaproteobacteria, and Bacillales. Clostridia were the most abundant group, and three Clostridia phylotypes were most related to known H(2) producers such as Anaerovorax odorimutans (94.0 % identity), Clostridium papyrosolvens (98.4 % identity), and Clostridium tepidiprofundi (93.1 % identity). For Fe-Fe H(2)ases, seven phylotypes were obtained, showing 63-97 % identities to known Fe-Fe H(2)ases, and fell into four distinct clusters. Phylotypes HW55-3 and HM55-1 belonged to thermophilic and salt-tolerant H(2)-producing Clostridia, Halothermothrix orenii-like Fe-Fe H(2)ases (80 % identity), and cellulolytic H(2)-producing Clostridia, C. papyrosolvens-like Fe-Fe H(2)ases (97 % identity), respectively. The results of both 16S rRNA genes and Fe-Fe H(2)ases surveys suggested that the thermophilic and halotolerant H(2)-producing microflora in seaweed bed of hot spring area represented previously unknown H(2) producers, and have potential application for H(2) production. PMID:23325032

  17. Cell-free H-cluster synthesis and [FeFe] hydrogenase activation: all five CO and CN⁻ ligands derive from tyrosine.

    PubMed

    Kuchenreuther, Jon M; George, Simon J; Grady-Smith, Celestine S; Cramer, Stephen P; Swartz, James R

    2011-01-01

    [FeFe] hydrogenases are promising catalysts for producing hydrogen as a sustainable fuel and chemical feedstock, and they also serve as paradigms for biomimetic hydrogen-evolving compounds. Hydrogen formation is catalyzed by the H-cluster, a unique iron-based cofactor requiring three carbon monoxide (CO) and two cyanide (CN⁻) ligands as well as a dithiolate bridge. Three accessory proteins (HydE, HydF, and HydG) are presumably responsible for assembling and installing the H-cluster, yet their precise roles and the biosynthetic pathway have yet to be fully defined. In this report, we describe effective cell-free methods for investigating H-cluster synthesis and [FeFe] hydrogenase activation. Combining isotopic labeling with FTIR spectroscopy, we conclusively show that each of the CO and CN⁻ ligands derive respectively from the carboxylate and amino substituents of tyrosine. Such in vitro systems with reconstituted pathways comprise a versatile approach for studying biosynthetic mechanisms, and this work marks a significant step towards an understanding of both the protein-protein interactions and complex reactions required for H-cluster assembly and hydrogenase maturation. PMID:21673792

  18. N-Substituted Derivatives of the Azadithiolate Cofactor from the [FeFe] Hydrogenases: Stability and Complexation.

    PubMed

    Angamuthu, Raja; Chen, Chi-Shian; Cochrane, Tyler R; Gray, Danielle L; Schilter, David; Ulloa, Olbelina A; Rauchfuss, Thomas B

    2015-06-15

    Experiments are described that probe the stability of N-substituted derivatives of the azadithiolate cofactor recently confirmed in the [FeFe] hydrogenases (Berggren, G., et al. Nature 2013, 499, 66). Acid-catalyzed hydrolysis of bis(thioester) BnN(CH2SAc)2 gives [BnNCH2SCH2]2 rather than azadithiol BnN(CH2SH)2. Treatment of BnN(CH2SAc)2 with NaO(t)Bu generates BnN(CH2SNa)2, which was trapped with NiCl2(diphos) (diphos = 1,2-C2H4(PR2)2; R = Ph (dppe) and Cy (dcpe)) to give fully characterized complexes Ni[(SCH2)2NBn](diphos). The related N-aryl derivative Ni[(SCH2)2NC6H4Cl](diphos) was prepared analogously from 4-ClC6H4N(CH2SAc)2, NaO(t)Bu, and NiCl2(dppe). Crystallographic analysis confirmed that these rare nonbridging [adt(R)](2-) complexes feature distorted square planar Ni centers. The analogue Pd[(SCH2)2NBn](dppe) was also prepared. (31)P NMR analysis indicates that Ni[(SCH2)2NBn](dppe) has basicity comparable to typical amines. As shown by cyclic voltammetry, the couple [M[(SCH2)2NBn](dppe)](+/0) is reversible near -2.0 V versus Fc(+/0). The wave shifts to -1.78 V upon N-protonation. In the presence of CF3CO2H, Ni[(SCH2)2NBn](dppe) catalyzes hydrogen evolution at rate of 22 s(-1) in the acid-independent regime, at room temperature in CH2Cl2 solution. In contrast to the instability of RN(CH2SH)2 (R = alkyl, aryl), the dithiol of tosylamide TsN(CH2SH)2 proved sufficiently stable to allow full characterization. This dithiol reacts with Fe3(CO)12 and, in the presence of base, NiCl2(dppe) to give Fe2[(SCH2)2NTs](CO)6 and Ni[(SCH2)2NTs](dppe), respectively. PMID:26000618

  19. A Functional Model of [Fe]-Hydrogenase.

    PubMed

    Xu, Tao; Yin, Chih-Juo Madeline; Wodrich, Matthew D; Mazza, Simona; Schultz, Katherine M; Scopelliti, Rosario; Hu, Xile

    2016-03-16

    [Fe]-Hydrogenase catalyzes the hydrogenation of a biological substrate via the heterolytic splitting of molecular hydrogen. While many synthetic models of [Fe]-hydrogenase have been prepared, none yet are capable of activating H2 on their own. Here, we report the first Fe-based functional mimic of the active site of [Fe]-hydrogenase, which was developed based on a mechanistic understanding. The activity of this iron model complex is enabled by its unique ligand environment, consisting of biomimetic pyridinylacyl and carbonyl ligands, as well as a bioinspired diphosphine ligand with a pendant amine moiety. The model complex activates H2 and mediates hydrogenation of an aldehyde. PMID:26926708

  20. XAFS of short-lived reduction products of structural and functional models of the [Fe Fe] hydrogenase H-cluster

    NASA Astrophysics Data System (ADS)

    Bondin, Mark I.; Borg, Stacey J.; Cheah, Mun-Hon; Best, Stephen P.

    2006-11-01

    Thiolate-bridged diiron compounds that are related to the active site of the [Fe-Fe] hydrogenase enzyme have been shown to act as electrocatalysts for reduction of protons. The use of XAFS for clarification of the structures of intermediates formed following reduction of related diiron carbonyl compounds is described. These measurements allow the determination of Fe-Fe and Fe-S bond lengths with good reliability and when used in conjunction with the standard bonding models this provides a means of validating the structures proposed for longer-lived ( t>20 s at -50 C) reaction intermediates.

  1. Spectroscopic Characterization of the Bridging Amine in the Active Site of [FeFe] Hydrogenase Using Isotopologues of the H-Cluster.

    PubMed

    Adamska-Venkatesh, Agnieszka; Roy, Souvik; Siebel, Judith F; Simmons, Trevor R; Fontecave, Marc; Artero, Vincent; Reijerse, Edward; Lubitz, Wolfgang

    2015-10-14

    The active site of [FeFe] hydrogenase contains a catalytic binuclear iron subsite coordinated by CN(-) and CO ligands as well as a unique azadithiolate (adt(2-)) bridging ligand. It has been established that this binuclear cofactor is synthesized and assembled by three maturation proteins HydE, -F, and -G. By means of in vitro maturation in the presence of (15)N- and (13)C-labeled tyrosine it has been shown that the CN(-) and CO ligands originate from tyrosine. The source of the bridging adt(2-) ligand, however, remains unknown. In order to identify the nitrogen of the bridging amine using HYSCORE spectroscopy and distinguish its spectroscopic signature from that of the CN(-) nitrogens, we studied three isotope-labeled variants of the H-cluster ((15)N-adt(2-)/C(14)N(-), (15)N-adt(2-)/C(15)N(-), and (14)N-adt(2-)/C(15)N(-)) and extracted accurate values of the hyperfine and quadrupole couplings of both CN(-) and adt(2-) nitrogens. This will allow an evaluation of isotopologues of the H-cluster generated by in vitro bioassembly in the presence of various (15)N-labeled potential precursors as possible sources of the bridging ligand. PMID:26393426

  2. Solution-phase photochemistry of a [FeFe]hydrogenase model compound: Evidence of photoinduced isomerisation

    SciTech Connect

    Kania, Rafal; Hunt, Neil T.; Frederix, Pim W. J. M.; Wright, Joseph A.; Pickett, Christopher J.; Ulijn, Rein V.

    2012-01-28

    The solution-phase photochemistry of the [FeFe] hydrogenase subsite model ({mu}-S(CH{sub 2}){sub 3}S)Fe{sub 2}(CO){sub 4}(PMe{sub 3}){sub 2} has been studied using ultrafast time-resolved infrared spectroscopy supported by density functional theory calculations. In three different solvents, n-heptane, methanol, and acetonitrile, relaxation of the tricarbonyl intermediate formed by UV photolysis of a carbonyl ligand leads to geminate recombination with a bias towards a thermodynamically less stable isomeric form, suggesting that facile interconversion of the ligand groups at the Fe center is possible in the unsaturated species. In a polar or hydrogen bonding solvent, this process competes with solvent substitution leading to the formation of stable solvent adduct species. The data provide further insight into the effect of incorporating non-carbonyl ligands on the dynamics and photochemistry of hydrogenase-derived biomimetic compounds.

  3. Solution-phase photochemistry of a [FeFe]hydrogenase model compound: Evidence of photoinduced isomerisation

    NASA Astrophysics Data System (ADS)

    Kania, Rafal; Frederix, Pim W. J. M.; Wright, Joseph A.; Ulijn, Rein V.; Pickett, Christopher J.; Hunt, Neil T.

    2012-01-01

    The solution-phase photochemistry of the [FeFe] hydrogenase subsite model (μ-S(CH2)3S)Fe2(CO)4(PMe3)2 has been studied using ultrafast time-resolved infrared spectroscopy supported by density functional theory calculations. In three different solvents, n-heptane, methanol, and acetonitrile, relaxation of the tricarbonyl intermediate formed by UV photolysis of a carbonyl ligand leads to geminate recombination with a bias towards a thermodynamically less stable isomeric form, suggesting that facile interconversion of the ligand groups at the Fe center is possible in the unsaturated species. In a polar or hydrogen bonding solvent, this process competes with solvent substitution leading to the formation of stable solvent adduct species. The data provide further insight into the effect of incorporating non-carbonyl ligands on the dynamics and photochemistry of hydrogenase-derived biomimetic compounds.

  4. Extended X-ray absorption fine structure of the [Fe]-hydrogenase Hmd active site

    NASA Astrophysics Data System (ADS)

    Salomone-Stagni, Marco; Vogt, Sonja; Shima, Seigo; Meyer-Klaucke, Wolfram

    2009-11-01

    Hydrogenases are enzymes that catalyze the reversible oxidation of molecular hydrogen. Although their structure and catalytic mechanism are of considerable applied interest as models for the development of efficient catalysts for hydrogen fueled processes, the understanding of how hydrogenases react with H2 is only in its infancy. Two of the three known types of hydrogenases are iron-sulfur proteins that contain a dinuclear metal center, either [NiFe] or [FeFe]. In contrast, [Fe]-hydrogenase is the only mononuclear hydrogenase and thus a perfect system for studying the structural and electronic determinants of these enzymes. Here we summarize recent improvements in modeling based on the EXAFS signal and the geometric structure of this metalloenzyme in its as isolated or reconstituted form. The individual contributions to the EXAFS resulting in two different structural models are presented and discussed. Inspired by the new crystal structure, we show an advanced EXAFS model for the enzyme from Methanothermobacter marburgensis.

  5. [FeFe]-hydrogenase models assembled into vesicular structures.

    PubMed

    Menzel, Kristin; Apfel, Ulf-Peter; Wolter, Nonio; Rüger, Ronny; Alpermann, Theodor; Steiniger, Frank; Gabel, Detlef; Förster, Stephan; Weigand, Wolfgang; Fahr, Alfred

    2014-03-01

    Compartmentalization is a major prerequisite for the origin of life on earth according to Wächtershäuser "Iron-Sulfur-World". The hypothesis is mainly based on an autocatalytic inorganic energy reproducing redox system consisting of iron and sulfur as requirement for the subsequent synthesis of complex organic structures. Here, we modified [FeFe]-hydrogenase models by means of covalent coupling to either oleic acid or the amphiphilic block copolymer polybutadiene-polyethyleneoxide (PB-PEO) and incorporated those into the membranes of vesicles composed of phospholipids (liposomes) or the unmodified amphiphilic polymer (polymersomes). We employed a [2Fe-2S] cluster as a hydrogenase model, since these structures are known to be suitable catalysts for the generation of H2 in the presence of weak acids. Successful incorporation was confirmed by spectrophotometric iron quantification and the vesicles formed were characterized by size determination (photon correlation spectroscopy (PCS)), and zeta potential as well as by cryo-transmission electron microscopy (Cryo-TEM). The modified models could be incorporated into liposomes or polymersomes up to molar proportions of 3.15% and 28%, respectively. Due to the immobilization in vesicular bilayers the [FeFe]-hydrogenase models can even exhibit catalytic action under the particular conditions of the intravesicular microenvironment. Our results suggest that the vesicular systems described may be applied as a nanoreactor for the reduction of encapsulated substances by generating hydrogen and thus as a minimal cell model. PMID:24006843

  6. Modeling three-dimensional structure of two closely related Ni-Fe hydrogenases.

    PubMed

    Abdullatypov, A V; Tsygankov, A A

    2015-08-01

    The results of homology modeling of HydSL, a NiFe-hydrogenase from purple sulfur bacterium Thiocapsa roseopersicina BBS, and deep-water bacterium Alteromonas macleodii deep ecotype are presented in this work. It is shown that the models have larger confidence level than earlier published ones; full-size models of these enzymes are presented for the first time. The C-end fragment of small subunit of T. roseopersicina hydrogenase is shown to have random orientation in relation to the main protein globule. The obtained models of this enzyme have a large number of ion pairs, as well as thermostable HydSL hydrogenase from Allochromatium vinosum, in contrast to thermostable HydSL hydrogenase from Alt. macleodii and thermolabile HydAB hydrogenase from Desulfovibrio vulgaris. The possible determinant of oxygen stability of studied hydrogenases could be the lack of several intramolecular tunnels. Hydrophobic and electrostatic surfaces were mapped in order to find out possible pathways of coupling hydrogenase to electron-transferring chains, as well as methods for construction of artificial photobiohydrogen-producing systems. PMID:25572109

  7. Computational modeling of electron transfer in hydrogenase and carbon material complexes

    NASA Astrophysics Data System (ADS)

    Kim, Kwiseon; Long, Hai

    2012-02-01

    In biohybrid and biomimetic devices for energy conversion, the electron transfer between the enzyme and the electrode plays a central role. We use hydrogenase and carbon material as model systems and investigate the binding and electron transfer configurations between hydrogenase and carbon materials, including single-wall carbon nanotubes and graphene surfaces. We use Brownian dynamics simulations to sample the hydrogenase/carbon material phase-space. The results provide an atomistic picture of how enzyme interacts with the electrode materials. We find that the optimal enzyme/electrode binding configurations are not optimal for electronic tranfer.

  8. Microbial communities responsible for fixation of CO2 revealed by using mcrA, cbbM, cbbL, fthfs, fefe-hydrogenase genes as molecular biomarkers in petroleum reservoirs of different temperatures

    NASA Astrophysics Data System (ADS)

    Liu, J.-F.; Mbadinga, S. M.; Sun, X.-B.; Yang, G.-C.; Yang, S.-Z.; Gu, J.-D.; Mu, B.-Z.

    2015-01-01

    Sequestration of CO2 in oil reservoir is one of the feasible options for mitigating atmospheric CO2 building up. The in situ bioconversion of sequestrated CO2 to methane by microorganisms inhabiting oil reservoirs is feasible. To evaluate the potential of in situ microbial fixation and conversion of CO2 into CH4 in oil reservoirs, a comprehensive molecular survey was performed to reveal microbial communities inhabiting four oil reservoirs with different temperatures by analysis of functional genes involved in the biochemical pathways of CO2 fixation and CH4 synthesis (cbbM, cbbL, fthfs, [FeFe]-hydrogenase encoding gene, and mcrA). A rich diversity of these functional genes was found in all the samples with both high and low temperatures and they were affiliated to members of the Proteobacteria (cbbL and cbbM, fthfs), Firmicutes and Actinobacteria (fthfs), uncultured bacteria ([FeFe]-hydrogenase), and Methanomirobiales, Methanobacteriales and Methanosarcinales (mcrA). The predominant methanogens were all identified to be hydrogenotrophic CO2-reducing physiological types. These results showed that functional microbial communities capable of microbial fixation and bioconversion of CO2 into methane inhabit widely in oil reservoirs, which is helpful to microbial recycling of sequestrated CO2 to further new energy in oil reservoirs.

  9. Reconstitution of [Fe]-hydrogenase using model complexes.

    PubMed

    Shima, Seigo; Chen, Dafa; Xu, Tao; Wodrich, Matthew D; Fujishiro, Takashi; Schultz, Katherine M; Kahnt, Jörg; Ataka, Kenichi; Hu, Xile

    2015-12-01

    [Fe]-Hydrogenase catalyses the reversible hydrogenation of a methenyltetrahydromethanopterin substrate, which is an intermediate step during the methanogenesis from CO2 and H2. The active site contains an iron-guanylylpyridinol cofactor, in which Fe(2+) is coordinated by two CO ligands, as well as an acyl carbon atom and a pyridinyl nitrogen atom from a 3,4,5,6-substituted 2-pyridinol ligand. However, the mechanism of H2 activation by [Fe]-hydrogenase is unclear. Here we report the reconstitution of [Fe]-hydrogenase from an apoenzyme using two FeGP cofactor mimics to create semisynthetic enzymes. The small-molecule mimics reproduce the ligand environment of the active site, but are inactive towards H2 binding and activation on their own. We show that reconstituting the enzyme using a mimic that contains a 2-hydroxypyridine group restores activity, whereas an analogous enzyme with a 2-methoxypyridine complex was essentially inactive. These findings, together with density functional theory computations, support a mechanism in which the 2-hydroxy group is deprotonated before it serves as an internal base for heterolytic H2 cleavage. PMID:26587715

  10. Reconstitution of [Fe]-hydrogenase using model complexes

    NASA Astrophysics Data System (ADS)

    Shima, Seigo; Chen, Dafa; Xu, Tao; Wodrich, Matthew D.; Fujishiro, Takashi; Schultz, Katherine M.; Kahnt, Jörg; Ataka, Kenichi; Hu, Xile

    2015-12-01

    [Fe]-Hydrogenase catalyses the reversible hydrogenation of a methenyltetrahydromethanopterin substrate, which is an intermediate step during the methanogenesis from CO2 and H2. The active site contains an iron-guanylylpyridinol cofactor, in which Fe2+ is coordinated by two CO ligands, as well as an acyl carbon atom and a pyridinyl nitrogen atom from a 3,4,5,6-substituted 2-pyridinol ligand. However, the mechanism of H2 activation by [Fe]-hydrogenase is unclear. Here we report the reconstitution of [Fe]-hydrogenase from an apoenzyme using two FeGP cofactor mimics to create semisynthetic enzymes. The small-molecule mimics reproduce the ligand environment of the active site, but are inactive towards H2 binding and activation on their own. We show that reconstituting the enzyme using a mimic that contains a 2-hydroxypyridine group restores activity, whereas an analogous enzyme with a 2-methoxypyridine complex was essentially inactive. These findings, together with density functional theory computations, support a mechanism in which the 2-hydroxy group is deprotonated before it serves as an internal base for heterolytic H2 cleavage.

  11. Nitrogen heterocyclic carbene containing pentacoordinate iron dicarbonyl as a [Fe]-hydrogenase active site model.

    PubMed

    Jiang, Shuang; Zhang, Tianyong; Zhang, Xia; Zhang, Guanghui; Li, Bin

    2015-10-14

    A novel pentacoordinate mono iron dicarbonyl complex bearing a nitrogen heterocyclic carbene ligand was reported as a model of a [Fe]-hydrogenase active site, which exhibits interesting proton coupled CO binding reactivity, electro-catalytic proton reduction and catalytic transfer hydrogenation reactivity. PMID:26369379

  12. The Model [NiFe]-Hydrogenases of Escherichia coli.

    PubMed

    Sargent, F

    2016-01-01

    In Escherichia coli, hydrogen metabolism plays a prominent role in anaerobic physiology. The genome contains the capability to produce and assemble up to four [NiFe]-hydrogenases, each of which are known, or predicted, to contribute to different aspects of cellular metabolism. In recent years, there have been major advances in the understanding of the structure, function, and roles of the E. coli [NiFe]-hydrogenases. The membrane-bound, periplasmically oriented, respiratory Hyd-1 isoenzyme has become one of the most important paradigm systems for understanding an important class of oxygen-tolerant enzymes, as well as providing key information on the mechanism of hydrogen activation per se. The membrane-bound, periplasmically oriented, Hyd-2 isoenzyme has emerged as an unusual, bidirectional redox valve able to link hydrogen oxidation to quinone reduction during anaerobic respiration, or to allow disposal of excess reducing equivalents as hydrogen gas. The membrane-bound, cytoplasmically oriented, Hyd-3 isoenzyme is part of the formate hydrogenlyase complex, which acts to detoxify excess formic acid under anaerobic fermentative conditions and is geared towards hydrogen production under those conditions. Sequence identity between some Hyd-3 subunits and those of the respiratory NADH dehydrogenases has led to hypotheses that the activity of this isoenzyme may be tightly coupled to the formation of transmembrane ion gradients. Finally, the E. coli genome encodes a homologue of Hyd-3, termed Hyd-4, however strong evidence for a physiological role for E. coli Hyd-4 remains elusive. In this review, the versatile hydrogen metabolism of E. coli will be discussed and the roles and potential applications of the spectrum of different types of [NiFe]-hydrogenases available will be explored. PMID:27134027

  13. The organometallic active site of [Fe]hydrogenase: Models and entatic states

    PubMed Central

    Darensbourg, Marcetta Y.; Lyon, Erica J.; Zhao, Xuan; Georgakaki, Irene P.

    2003-01-01

    The simple organometallic, (μ-S2)Fe2(CO)6, serves as a precursor to synthetic analogues of the chemically rudimentary iron-only hydrogenase enzyme active site. The fundamental properties of the (μ-SCH2CH2CH2S)[Fe(CO)3]2 compound, including structural mobility and regioselectivity in cyanide/carbon monoxide substitution reactions, relate to the enzyme active site in the form of transition-state structures along reaction paths rather than ground-state structures. Even in the absence of protein-based active-site organization, the ground-state structural model complexes are shown to serve as hydrogenase enzyme reaction models, H2 uptake and H2 production, with the input of photo- or electrochemical energy, respectively. PMID:12642671

  14. Micropatterns of [Fe-Fe]-Hydrogenase Active-Site Model Complexes Fabricated by Electro-Oxidative Lithography.

    PubMed

    Liu, He; Trautwein, Ralf; Schrter, Bernd; Ignaszak, Anna; Weigand, Wolfgang; Hoeppener, Stephanie; Schubert, Ulrich S

    2015-10-27

    [Fe-Fe]-hydrogenase active site model complexes ([Fe(CO)3]2[(?-SCH2)2C(CH2OH)2]) were immobilized on micropatterned n-octadecyltrichlorosilane (OTS) monolayers deposited on a Si substrate to form a microscale catalytic system. The micropatterns were generated by electro-oxidative lithography performed with a conductive TEM grid. The [Fe-Fe]-hydrogenase active-site complex molecules were selectively anchored in lithographic line areas with good coverage. Additionally, the biomimetic metal centers of the hydrogenase active-site complex molecules still maintained their catalytic activity and their redox-active properties after the immobilization process, which was proven by cyclic voltammetry. PMID:26465964

  15. Effect of Bridgehead Steric Bulk on the Intramolecular C-H Heterolysis of [FeFe]-Hydrogenase Active Site Models Containing a P2N2 Pendant Amine Ligand.

    PubMed

    Zheng, Dehua; Wang, Mei; Wang, Ning; Cheng, Minglun; Sun, Licheng

    2016-01-19

    A series of pendant amine-containing [FeFe]-hydrogenase models, [X(CH2S-?)2{Fe(CO)3}{Fe(CO)(P2(Ph)N2(Bn))}] (1H, X = CH2; 2Me, C(CH3)2; 3Et, C(CH2CH3)2; and P2(Ph)N2(Bn) = 1,5-dibenzyl-3,7-diphenyl-1,5-diaza-3,7-diphosphacyclooctane) with different groups at the bridgehead carbon of the S-to-S linker were synthesized. The oxidations of these complexes as well as the reverse reduction reaction were studied by cyclic voltammetry and in situ IR spectroscopy. Regardless of the bridgehead steric bulk, all three complexes demonstrate intramolecular iron-mediated C(sp(3))-H bond heterolytic cleavage with the assistance of the pendant amine base within the chelating diphosphine ligand in the two-electron oxidation process. X-ray crystallographic analysis shows that the doubly oxidized products, [1'H](+), [2'Me](+), and [3'Et](+), all have a rigid FeSC three-membered ring at the open apical site of the rotated iron center. The most noticeable difference in structures of the oxidized complexes is that the single CO ligand of the rotated Fe(P2(Ph)N2(Bn))(CO) unit in [1'H](+) and [2'Me](+) is found below the FeFe vector, while in [3'Et](+) an unusually rotated Fe(P2(Ph)N2(Bn))(CO) moiety positions one of the P donors within the bidentate ligand under the FeFe vector. The starting Fe(I)Fe(I) complexes can be recovered from their corresponding doubly oxidized complexes by reduction in the presence of Brnsted acid. PMID:26230977

  16. Electrochemistry of Simple Organometallic Models of Iron-Iron Hydrogenases in Organic Solvent and Water.

    PubMed

    Gloaguen, Frederic

    2016-01-19

    Synthetic models of the active site of iron-iron hydrogenases are currently the subjects of numerous studies aimed at developing H2-production catalysts based on cheap and abundant materials. In this context, the present report offers an electrochemist's view of the catalysis of proton reduction by simple binuclear iron(I) thiolate complexes. Although these complexes probably do not follow a biocatalytic pathway, we analyze and discuss the interplay between the reduction potential and basicity and how these antagonist properties impact the mechanisms of proton-coupled electron transfer to the metal centers. This question is central to any consideration of the activity at the molecular level of hydrogenases and related enzymes. In a second part, special attention is paid to iron thiolate complexes holding rigid and unsaturated bridging ligands. The complexes that enjoy mild reduction potentials and stabilized reduced forms are promising iron-based catalysts for the photodriven evolution of H2 in organic solvents and, more importantly, in water. PMID:26641526

  17. Flexibility in Anaerobic Metabolism as Revealed in a Mutant of Chlamydomonas reinhardtii Lacking Hydrogenase Activity

    SciTech Connect

    Dubini, A.; Mus, F.; Seibert, M.; Grossman, A. R.; Posewitz, M. C.

    2009-03-13

    The green alga Chlamydomonas reinhardtii has a network of fermentation pathways that become active when cells acclimate to anoxia. Hydrogenase activity is an important component of this metabolism, and we have compared metabolic and regulatory responses that accompany anaerobiosis in wild-type C. reinhardtii cells and a null mutant strain for the HYDEF gene (hydEF-1 mutant), which encodes an [FeFe] hydrogenase maturation protein. This mutant has no hydrogenase activity and exhibits elevated accumulation of succinate and diminished production of CO2 relative to the parental strain during dark, anaerobic metabolism. In the absence of hydrogenase activity, increased succinate accumulation suggests that the cells activate alternative pathways for pyruvate metabolism, which contribute to NAD(P)H reoxidation, and continued glycolysis and fermentation in the absence of O2. Fermentative succinate production potentially proceeds via the formation of malate, and increases in the abundance of mRNAs encoding two malateforming enzymes, pyruvate carboxylase and malic enzyme, are observed in the mutant relative to the parental strain following transfer of cells from oxic to anoxic conditions. Although C. reinhardtii has a single gene encoding pyruvate carboxylase, it has six genes encoding putative malic enzymes. Only one of the malic enzyme genes, MME4, shows a dramatic increase in expression (mRNA abundance) in the hydEF-1 mutant during anaerobiosis. Furthermore, there are marked increases in transcripts encoding fumarase and fumarate reductase, enzymes putatively required to convert malate to succinate. These results illustrate the marked metabolic flexibility of C. reinhardtii and contribute to the development of an informed model of anaerobic metabolism in this and potentially other algae.

  18. Flexibility in anaerobic metabolism as revealed in a mutant of Chlamydomonas reinhardtii lacking hydrogenase activity.

    PubMed

    Dubini, Alexandra; Mus, Florence; Seibert, Michael; Grossman, Arthur R; Posewitz, Matthew C

    2009-03-13

    The green alga Chlamydomonas reinhardtii has a network of fermentation pathways that become active when cells acclimate to anoxia. Hydrogenase activity is an important component of this metabolism, and we have compared metabolic and regulatory responses that accompany anaerobiosis in wild-type C. reinhardtii cells and a null mutant strain for the HYDEF gene (hydEF-1 mutant), which encodes an [FeFe] hydrogenase maturation protein. This mutant has no hydrogenase activity and exhibits elevated accumulation of succinate and diminished production of CO2 relative to the parental strain during dark, anaerobic metabolism. In the absence of hydrogenase activity, increased succinate accumulation suggests that the cells activate alternative pathways for pyruvate metabolism, which contribute to NAD(P)H reoxidation, and continued glycolysis and fermentation in the absence of O2. Fermentative succinate production potentially proceeds via the formation of malate, and increases in the abundance of mRNAs encoding two malate-forming enzymes, pyruvate carboxylase and malic enzyme, are observed in the mutant relative to the parental strain following transfer of cells from oxic to anoxic conditions. Although C. reinhardtii has a single gene encoding pyruvate carboxylase, it has six genes encoding putative malic enzymes. Only one of the malic enzyme genes, MME4, shows a dramatic increase in expression (mRNA abundance) in the hydEF-1 mutant during anaerobiosis. Furthermore, there are marked increases in transcripts encoding fumarase and fumarate reductase, enzymes putatively required to convert malate to succinate. These results illustrate the marked metabolic flexibility of C. reinhardtii and contribute to the development of an informed model of anaerobic metabolism in this and potentially other algae. PMID:19117946

  19. Modeling the sublattice magnetizations for the layered bcc nanojunction … Fe[Fe1-cCoc ]ℓ Fe … systems

    NASA Astrophysics Data System (ADS)

    Ashokan, V.; Abou Ghantous, M.; Khater, A.

    2015-12-01

    Ferromagnetic nanojunctions … Fe[Fe1-cCoc ]ℓ Fe …, with ℓ is the number of layers which constitute the nanojunction, based on Fe/Co alloy are considered for the first time in this work. We model the salient magnetic properties of the layered ferromagnetic nanostructures between magnetically ordered iron leads. The effective field theory (EFT) Ising spin method is used to compute reliable Jav exchange values for the VCA Fe/Co alloy materials in comparison with experimental data and compared to existing DFT calculated exchange interactions. The new set of exchange interaction values between pairs of nearest neighbors atom in the alloy are deduced and agree with previous known measurement of lattice constant for this alloy. Using the combined EFT and mean field theory (MFT) spin methods, the sublattice magnetizations of the Fe and Co sites on the individual bcc basal planes of the layered nanostructures, are calculated and analyzed. The sublattice magnetizations, effective magnetic moments per site, and the possible ferromagnetic order of the layers [Fe1-cCoc ]ℓ on the individual bcc atomic planes of the embedded nanostructures for all temperatures and in particular for TcFe ≤ T ≤Tα → γ are presented as a function of temperature and thicknesses of the layered ferromagnetic nanostructures, for different stable concentrations c=0.25, 0.5 and 0.75. In the absence of first principles calculations for these basic physical variables for the layered nanostructures between iron leads, the combined EFT and MFT approach yields the only available information for them at present in the absence of a possible Curie temperature for these alloys. These variables are necessary for certain spin dynamic computations, as for the ballistic magnon transport across embedded nanojunctions in magnonics. The model is general, and may applied directly to other composite magnetic elements and embedded nanostructures.

  20. Functional model for the [Fe] hydrogenase inspired by the frustrated Lewis pair concept.

    PubMed

    Kalz, Kai F; Brinkmeier, Alexander; Dechert, Sebastian; Mata, Ricardo A; Meyer, Franc

    2014-11-26

    [Fe] hydrogenase (Hmd) catalyzes the heterolytic splitting of H2 by using, in its active site, a unique organometallic iron-guanylylpyridinol (FeGP) cofactor and, as a hydride acceptor, the substrate methenyltetrahydromethanopterin (methenyl-H4MPT(+)). The combination FeGP/methenyl-H4MPT(+) and its reactivity bear resemblance to the concept of frustrated Lewis pairs (FLPs), some of which have been shown to heterolytically activate H2. The present work exploits this interpretation of Hmd reactivity by using the combination of Lewis basic ruthenium metalates, namely K[CpRu(CO)2] (KRp) and a related polymeric Cp/Ru/CO compound (Rs), with the new imidazolinium salt 1,3-bis(2,6-difluorophenyl)-2-(4-tolyl)imidazolinium bromide ([(Tol)Im(F4)](+)Br(-)) that was designed to emulate the hydride acceptor properties of methenyl-H4MPT(+). Solid-state structures of [(Tol)Im(F4)](+)Br(-) and the corresponding imidazolidine H(Tol)Im(F4) reveal that the heterocycle undergoes similar structural changes as in the biological substrate. DFT calculations indicate that heterolytic splitting of dihydrogen by the FLP Rp(-)/[(Tol)Im(F4)](+) is exothermic, but the formation of the initial Lewis pair should be unfavorable in polar solvents. Consequently the combination Rp(-)/[(Tol)Im(F4)](+) does not react with H2 but leads instead to side products from nucleophilic substitution (k = 4 × 10(-2) L mol (-1) s(-1) at room temperature). In contrast, the heterogeneous combination Rs/[(Tol)Im(F4)](+) does split H2 heterolytically to give H(Tol)Im(F4) and HRuCp(CO)2 (HRp) or D(Tol)Im(F4) and DRp when using D2. The reaction has been followed by (1)H/(2)H and (19)F NMR spectroscopy as well as by IR spectroscopy and reaches 96% conversion after 1 d. Formation of H(Tol)Im(F4) under these conditions demonstrates that superelectrophilic activation by protonation, which has been proposed for methenyl-H4MPT(+) to increase its carbocationic character, is not necessarily required for an imidazolinium ion to serve as a hydride acceptor. This unprecedented functional model for the [Fe] hydrogenase, using a Lewis acidic imidazolinium salt as a biomimetic hydride acceptor in combination with an organometallic Lewis base, may provide new inspiration for biomimetic H2 activation. PMID:25353322

  1. Iron-sulfur clusters of hydrogenase I and hydrogenase II of Clostridium pasteurianum.

    PubMed Central

    Adams, M W; Eccleston, E; Howard, J B

    1989-01-01

    The iron and acid-labile sulfide contents and the electron paramagnetic resonance (EPR) properties of hydrogenase I (bidirectional) and hydrogenase II (uptake) of Clostridium pasteurianum (strain W5) have been determined on the basis of quantitative amino acid analyses. The iron and acid-labile sulfide values are approximately 20 and 18 atoms per molecule of hydrogenase I and 14 and 11 atoms per molecule of hydrogenase II, respectively. These amounts are substantially greater than previously reported values, which relied on protein concentration determined by colorimetric assay. The oxidized hydrogenases exhibit unusual EPR signals that originate from a novel type of iron-sulfur center, termed the hydrogenase or H cluster, which covalently binds the inhibitor CO. This EPR signal represents approximately one unpaired electron per molecule in each enzyme with and without bound CO, which is consistent with the presence of one oxidized H cluster (S = 1/2) per enzyme molecule. The two enzymes also contain ferredoxin-type four-iron centers or F clusters. The EPR signals from the F clusters observed in the reduced forms of hydrogenase I and hydrogenase II account for approximately four and one unpaired electron per molecule, respectively. We conclude from the iron determinations and the EPR results, together with a reevaluation of previous spectroscopic data, that in both hydrogenases the H cluster probably comprises six iron atoms. Mechanistic models of the two hydrogenases are presented that account for their cluster compositions and the dramatic differences in their catalytic activities. PMID:2544883

  2. Wiring-up hydrogenase with single-walled carbon nanotubes.

    PubMed

    McDonald, Timothy J; Svedruzic, Drazenka; Kim, Yong-Hyun; Blackburn, Jeffrey L; Zhang, S B; King, Paul W; Heben, Michael J

    2007-11-01

    Many envision a future where hydrogen is the centerpiece of a sustainable, carbon-free energy supply. For example, the energy in sunlight may be stored by splitting water into H2 and O2 using inorganic semiconductors and photoelectrochemical approaches or with artificial photosynthetic systems that seek to mimic the light absorption, energy transfer, electron transfer, and redox catalysis that occurs in green plants. Unfortunately, large scale deployment of artificial water-splitting technologies may be impeded by the need for the large amounts of precious metals required to catalyze the multielectron water-splitting reactions. Nature provides a variety of microbes that can activate the dihydrogen bond through the catalytic activity of [NiFe] and [FeFe] hydrogenases, and photobiological approaches to water splitting have been advanced. One may also consider a biohybrid approach; however, it is difficult to interface these sensitive, metalloenzymes to other materials and systems. Here we show that surfactant-suspended carbon single-walled nanotubes (SWNTs) spontaneously self-assemble with [FeFe] hydrogenases in solution to form catalytically active biohybrids. Photoluminescence excitation and Raman spectroscopy studies show that SWNTs act as molecular wires to make electrical contact to the biocatalytic region of hydrogenase. Hydrogenase mediates electron injection into nanotubes having appropriately positioned lowest occupied molecular orbital levels when the H2 partial pressure is varied. The hydrogenase is strongly attached to the SWNTs, so mass transport effects are eliminated and the absolute potential of the electronic levels of the nanotubes can be unambiguously measured. Our findings reveal new nanotube physics and represent the first example of "wiring-up" an hydrogenase with another nanoscale material. This latter advance offers a nonprecious metal route to the design of new biohybrid architectures and building blocks for hydrogen-related technologies. PMID:17967044

  3. Fundamental Studies of Recombinant Hydrogenases

    SciTech Connect

    Adams, Michael W

    2014-01-25

    This research addressed the long term goals of understanding the assembly and organization of hydrogenase enzymes, of reducing them in size and complexity, of determining structure/function relationships, including energy conservation via charge separation across membranes, and in screening for novel H2 catalysts. A key overall goal of the proposed research was to define and characterize minimal hydrogenases that are produced in high yields and are oxygen-resistant. Remarkably, in spite of decades of research carried out on hydrogenases, it is not possible to readily manipulate or design the enzyme using molecular biology approaches since a recombinant form produced in a suitable host is not available. Such resources are essential if we are to understand what constitutes a “minimal” hydrogenase and design such catalysts with certain properties, such as resistance to oxygen, extreme stability and specificity for a given electron donor. The model system for our studies is Pyrococcus furiosus, a hyperthermophile that grows optimally at 100°C, which contains three different nickel-iron [NiFe-] containing hydrogenases. Hydrogenases I and II are cytoplasmic while the other, MBH, is an integral membrane protein that functions to both evolve H2 and pump protons. Three important breakthroughs were made during the funding period with P. furiosus soluble hydrogenase I (SHI). First, we produced an active recombinant form of SHI in E. coli by the co-expression of sixteen genes using anaerobically-induced promoters. Second, we genetically-engineered P. furiosus to overexpress SHI by an order of magnitude compared to the wild type strain. Third, we generated the first ‘minimal’ form of SHI, one that contained two rather than four subunits. This dimeric form was stable and active, and directly interacted with a pyruvate-oxidizing enzyme with any intermediate electron carrier. The research resulted in five peer-reviewed publications.

  4. [NiFeSe]-hydrogenase chemistry.

    PubMed

    Wombwell, Claire; Caputo, Christine A; Reisner, Erwin

    2015-11-17

    The development of technology for the inexpensive generation of the renewable energy vector H2 through water splitting is of immediate economic, ecological, and humanitarian interest. Recent interest in hydrogenases has been fueled by their exceptionally high catalytic rates for H2 production at a marginal overpotential, which is presently only matched by the nonscalable noble metal platinum. The mechanistic understanding of hydrogenase function guides the design of synthetic catalysts, and selection of a suitable hydrogenase enables direct applications in electro- and photocatalysis. [FeFe]-hydrogenases display excellent H2 evolution activity, but they are irreversibly damaged upon exposure to O2, which currently prevents their use in full water splitting systems. O2-tolerant [NiFe]-hydrogenases are known, but they are typically strongly biased toward H2 oxidation, while H2 production by [NiFe]-hydrogenases is often product (H2) inhibited. [NiFeSe]-hydrogenases are a subclass of [NiFe]-hydrogenases with a selenocysteine residue coordinated to the active site nickel center in place of a cysteine. They exhibit a combination of unique properties that are highly advantageous for applications in water splitting compared with other hydrogenases. They display a high H2 evolution rate with marginal inhibition by H2 and tolerance to O2. [NiFeSe]-hydrogenases are therefore one of the most active molecular H2 evolution catalysts applicable in water splitting. Herein, we summarize our recent progress in exploring the unique chemistry of [NiFeSe]-hydrogenases through biomimetic model chemistry and the chemistry with [NiFeSe]-hydrogenases in semiartificial photosynthetic systems. We gain perspective from the structural, spectroscopic, and electrochemical properties of the [NiFeSe]-hydrogenases and compare them with the chemistry of synthetic models of this hydrogenase active site. Our synthetic models give insight into the effects on the electronic properties and reactivity of the active site upon the introduction of selenium. We have utilized the exceptional properties of the [NiFeSe]-hydrogenase from Desulfomicrobium baculatum in a number of photocatalytic H2 production schemes, which are benchmark systems in terms of single site activity, tolerance toward O2, and in vitro water splitting with biological molecules. Each system comprises a light-harvesting component, which allows for light-driven electron transfer to the hydrogenase in order for it to catalyze H2 production. A system with [NiFeSe]-hydrogenase on a dye-sensitized TiO2 nanoparticle gives an enzyme-semiconductor hybrid for visible light-driven generation of H2 with an enzyme-based turnover frequency of 50 s(-1). A stable and inexpensive polymeric carbon nitride as a photosensitizer in combination with the [NiFeSe]-hydrogenase shows good activity for more than 2 days. Light-driven H2 evolution with the enzyme and an organic dye under high O2 levels demonstrates the excellent robustness and feasibility of water splitting with a hydrogenase-based scheme. This has led, most recently, to the development of a light-driven full water splitting system with a [NiFeSe]-hydrogenase wired to the water oxidation enzyme photosystem II in a photoelectrochemical cell. In contrast to the other systems, this photoelectrochemical system does not rely on a sacrificial electron donor and allowed us to establish the long sought after light-driven water splitting with an isolated hydrogenase. PMID:26488197

  5. Immunological relationship among hydrogenases.

    PubMed Central

    Kovacs, K L; Seefeldt, L C; Tigyi, G; Doyle, C M; Mortenson, L E; Arp, D J

    1989-01-01

    We examined the immunological cross-reactions of 11 different hydrogenase antigens with 9 different hydrogenase antibodies. Included were antibodies and antigens of both subunits of the hydrogenases of Bradyrhizobium japonicum and Thiocapsa roseopersicina. The results showed a strong relationship among the Ni-Fe dimeric hydrogenases. The two subunits of Ni-Fe dimeric hydrogenases appeared immunologically distinct: specific interactions occurred only when antibodies to the 60- and 30-kilodalton subunits reacted with the 60- and 30-kilodalton-subunit antigens. The interspecies cross-reactions suggested that at least one conserved protein region exists among the large subunits of these enzymes, whereas the small subunits are less conserved. Antibodies to the Fe-only bidirectional hydrogenase of Clostridium pasteurianum reacted with the Desulfovibrio vulgaris bidirectional hydrogenase. Surprisingly, antibodies to the clostridial uptake hydrogenase did not react with any of the Fe-only bidirectional hydrogenases but did react with several of the Ni-Fe dimeric hydrogenases. The two hydrogenases from C. pasteurianum were found to be quite different immunologically. The possible relationship of these findings to the structure and catalytic functions of hydrogenase are discussed. Images PMID:2464579

  6. Synthetic Active Site Model of the [NiFeSe] Hydrogenase

    PubMed Central

    Wombwell, Claire; Reisner, Erwin

    2015-01-01

    A dinuclear synthetic model of the [NiFeSe] hydrogenase active site and a structural, spectroscopic and electrochemical analysis of this complex is reported. [NiFe(‘S2Se2’)(CO)3] (H2‘S2Se2’=1,2-bis(2-thiabutyl-3,3-dimethyl-4-selenol)benzene) has been synthesized by reacting the nickel selenolate complex [Ni(‘S2Se2’)] with [Fe(CO)3bda] (bda=benzylideneacetone). X-ray crystal structure analysis confirms that [NiFe(‘S2Se2’)(CO)3] mimics the key structural features of the enzyme active site, including a doubly bridged heterobimetallic nickel and iron center with a selenolate terminally coordinated to the nickel center. Comparison of [NiFe(‘S2Se2’)(CO)3] with the previously reported thiolate analogue [NiFe(‘S4’)(CO)3] (H2‘S4’=H2xbsms=1,2-bis(4-mercapto-3,3-dimethyl-2-thiabutyl)benzene) showed that the selenolate groups in [NiFe(‘S2Se2’)(CO)3] give lower carbonyl stretching frequencies in the IR spectrum. Electrochemical studies of [NiFe(‘S2Se2’)(CO)3] and [NiFe(‘S4’)(CO)3] demonstrated that both complexes do not operate as homogenous H2 evolution catalysts, but are precursors to a solid deposit on an electrode surface for H2 evolution catalysis in organic and aqueous solution. PMID:25847470

  7. Diiron azadithiolates as models for the [FeFe]-hydrogenase active site and paradigm for the role of the second coordination sphere.

    PubMed

    Rauchfuss, Thomas B

    2015-07-21

    The [FeFe] hydrogenases (H2ases) catalyze the redox reaction that interconverts protons and H2. This area of biocatalysis has attracted attention because the metal-based chemistry is unusual, and the reactions have practical implications. The active site consists of a [4Fe-4S] cluster bridged to a [Fe2(μ-dithiolate)(CN)2(CO)3](z) center (z = 1- and 2-). The dithiolate cofactor is [HN(CH2S)2](2-), called the azadithiolate ([adt(H)](2-)). Although many derivatives of Fe2(SR)2(CO)6-xLx are electrocatalysts for the hydrogen evolution reaction (HER), most operate by slow nonbiomimetic pathways. Biomimetic hydrogenogenesis is thought to involve intermediates, wherein the hydride substrate is adjacent to the amine of the adt(H), being bonded to only one Fe center. Formation of terminal hydride complexes is favored when the diiron carbonyl models contain azadithiolate. Although unstable in the free state, the adt cofactor is stable once it is affixed to the Fe2 center. It can be prepared by alkylation of Fe2(SH)2(CO)6 with formaldehyde in the presence of ammonia (to give adt(H) derivatives) or amines (to give adt(R) derivatives). Weak acids protonate Fe2(adt(R))(CO)2(PR3)4 to give terminal hydrido (term-H) complexes. In contrast, protonation of the related 1,3-propanedithiolate (pdt(2-)) complexes Fe2(pdt)(CO)2(PR3)4 requires strong acids. The amine in the azadithiolate is a kinetically fast base, relaying protons to and from the iron, which is a kinetically slow base. The crystal structure of the doubly protonated model [(term-H)Fe2(Hadt(H))(CO)2(dppv)2](2+) confirms the presence of both ammonium and terminal hydrido centers, which interact through a dihydrogen bond (dppv = cis-C2H2(PPh2)2). DFT calculations indicate that this H---H interaction is sensitive to the counterions and is strengthened upon reduction of the diiron center. For the monoprotonated models, the hydride [(term-H)Fe2(adt(H))(CO)2(dppv)2](+) exists in equilibrium with the ammonium tautomer [Fe2(Hadt(H))(CO)2(dppv)2](+). Both [(term-H)Fe2(Hadt(H))(CO)2(dppv)2](2+) and [(term-H)Fe2(adt(H))(CO)2(dppv)2](+) are highly active electrocatalysts for HER. Catalysis is initiated by reduction of the diferrous center, which induces coupling of the protic ammonium center and the hydride ligand. In contrast, the propanedithiolate [(term-H)Fe2(pdt)(CO)2(dppv)2](+) is a poor electrocatalyst for HER. Oxidation of H2 has been demonstrated, starting with models for the oxidized state ("Hox"), for example, [Fe2(adt(H))(CO)3(dppv)(PMe3)](+). Featuring a distorted Fe(II)Fe(I) center, this Hox model reacts slowly with high pressures of H2 to give [(μ-H)Fe2(adt(H))(CO)3(dppv)(PMe3)](+). Highlighting the role of the proton relay, the propanedithiolate [Fe2(pdt)(CO)3(dppv)(PMe3)](+) is unreactive toward H2. The Hox-model + H2 reaction is accelerated in the presence of ferrocenium salts, which simulate the role of the attached [4Fe-4S] cluster. The redox-complemented complex [Fe2(adt(Bn))(CO)3(dppv)(FcP*)](n+) catalyzes both proton reduction and hydrogen oxidation (FcP* = (C5Me5)Fe(C5Me4CH2PEt2)). PMID:26079848

  8. Interaction of [FeFe]-hydrogenases with single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Svedruzic Chang, Drazenka; McDonald, Timothy J.; Kim, Yong-Hyun; Blackburn, Jeffrey L.; Heben, Michael J.; King, Paul W.

    2007-09-01

    Single-walled carbon nanotubes (SWNT) are promising candidates for use in energy conversion devices as an active photo-collecting elements, for dissociation of bound excitons and charge-transfer from photo-excited chromophores, or as molecular wires to transport charge. Hydrogenases are enzymes that efficiently catalyze the reduction of protons from a variety of electron donors to produce molecular hydrogen. Hydrogenases together with SWNT suggest a novel biohybrid material for direct conversion of sunlight into H II. Here, we report changes in SWNT optical properties upon addition of recombinant [FeFe] hydrogenases from Clostridium acetobutylicum and Chlamydomonas reinhardtii. We find evidence that novel and stable charge-transfer complexes are formed under conditions of the hydrogenase catalytic turnover, providing spectroscopic handles for further study and application of this hybrid system.

  9. In search of metal hydrides: an X-ray absorption and emission study of [NiFe] hydrogenase model complexes.

    PubMed

    Hugenbruch, Stefan; Shafaat, Hannah S; Krämer, Tobias; Delgado-Jaime, Mario Ulises; Weber, Katharina; Neese, Frank; Lubitz, Wolfgang; DeBeer, Serena

    2016-04-20

    Metal hydrides are invoked as important intermediates in both chemical and biological H2 production. In the [NiFe] hydrogenase enzymes, pulsed EPR and high-resolution crystallography have argued that the hydride interacts primarily at the Ni site. In contrast, in [NiFe] hydrogenase model complexes, it is observed that the bridging hydride interacts primarily with the Fe. Herein, we utilize a combination of Ni and Fe X-ray absorption (XAS) and emission (XES) spectroscopies to examine the contribution of the bridging hydride to the observed spectral features in [(dppe)Ni(μ-pdt)(μ-H)Fe(CO)3](+). The corresponding data on (dppe)Ni(μ-pdt)Fe(CO)3 are used as a reference for the changes that occur in the absence of a hydride bridge. For further interpretation of the observed spectral features, all experimental spectra were calculated using a density functional theory (DFT) approach, with excellent agreement between theory and experiment. It is found that the iron valence-to-core (VtC) XES spectra reveal clear signatures for the presence of a Fe-H interaction in the hydride bridged model complex. In contrast, the Ni VtC XES spectrum largely reflects changes in the local Ni geometry and shows little contribution from a Ni-H interaction. A stepwise theoretical analysis of the hydride contribution and the Ni site symmetry provides insights into the factors, which govern the different metal-hydride interactions in both the model complexes and the enzyme. Furthermore, these results establish the utility of two-color XES to reveal important insights into the electronic structure of various metal-hydride species. PMID:26924248

  10. Synthesis, Characterization, and Reactivity of Functionalized Trinuclear Iron–Sulfur Clusters – A New Class of Bioinspired Hydrogenase Models

    PubMed Central

    Kaiser, Manuel; Knör, Günther

    2015-01-01

    The air- and moisture-stable iron–sulfur carbonyl clusters Fe3S2(CO)7(dppm) (1) and Fe3S2(CO)7(dppf) (2) carrying the bisphosphine ligands bis(diphenylphosphanyl)methane (dppm) and 1,1′-bis(diphenylphosphanyl)ferrocene (dppf) were prepared and fully characterized. Two alternative synthetic routes based on different thionation reactions of triiron dodecacarbonyl were tested. The molecular structures of the methylene-bridged compound 1 and the ferrocene-functionalized derivative 2 were determined by single-crystal X-ray diffraction. The catalytic reactivity of the trinuclear iron–sulfur cluster core for proton reduction in solution at low overpotential was demonstrated. These deeply colored bisphosphine-bridged sulfur-capped iron carbonyl systems are discussed as promising candidates for the development of new bioinspired model compounds of iron-based hydrogenases. PMID:26512211

  11. Multiscale modeling of the active site of [Fe] hydrogenase: the H₂ binding site in open and closed protein conformations.

    PubMed

    Hedegård, Erik Donovan; Kongsted, Jacob; Ryde, Ulf

    2015-05-18

    A series of QM/MM optimizations of the full protein of [Fe] hydrogenase were performed. The FeGP cofactor has been optimized in the water-bound resting state (1), with a side-on bound dihydrogen (2), or as a hydride intermediate (3). For inclusion of H4MPT in the closed structure, advanced multiscale modeling appears to be necessary, especially to obtain reliable distances between CH-H4MPT(+) and the dihydrogen (H2) or hydride (H(-)) ligand in the FeGP cofactor. Inclusion of the full protein is further important for the relative energies of the two intermediates 2 and 3. We finally find that hydride transfer from 3 has a significantly higher barrier than found in previous studies neglecting the full protein environment. PMID:25867218

  12. Chemistry and the hydrogenases.

    PubMed

    Evans, David J; Pickett, Christopher J

    2003-09-01

    The reversible reduction protons to dihydrogen: 2H+ + 2e [symbol: see text] H2 is deceptively the simplest of reactions but one that requires multistep catalysis to proceed at practical rates. How the metal-sulfur clusters of the hydrogenases catalyse this interconversion is currently the subject of extensive structural, spectroscopic and mechanistic studies of the enzymes, of synthetic assemblies and of in silico models. This is driven both by curiosity and by the view that an understanding of the underlying chemistry may inform the design of new electrocatalytic systems for hydrogen production or uptake, pertinent to energy transduction technology in an 'Hydrogen Economy'. Can chemists design materials that replace the expensive platinum metal catalysts of fuel cells with metal-sulfur cluster assemblies utilising abundant Ni, Fe and S as in the natural systems? Here we review the state of the art. PMID:14518180

  13. Studies of Hybrid Nano-Bio-System: Single-Walled Carbon Nanotubes and Hydrogenase

    SciTech Connect

    Svedruzic-Chang, D.; Blackburn, J. L.; McDonald, T. J.; Heben, M. J.; King, P. W.

    2008-01-01

    We have examined changes in single-walled carbon nanotubes (SWNT) optical signals upon addition of recombinant [FeFe] hydrogenases from Clostridium acetobutylicum or Chlamydomonas reinhardtii. We found evidence that novel and stable charge-transfer complexes are formed only under conditions of hydrogenase catalytic turnover. Formation of the complex sensitizes the nanotubes to the proton-to-hydrogen redox half-reaction. Thus, the experimental potential can be altered by changing the pH or molecular hydrogen concentration. In the presence of molecular hydrogen, hydrogenase mediates electron injection into the conduction band of semiconducting SWNT, which was observed as a quenching of the photoluminescence signals. Here, we will present recent Raman studies, which revealed that SWNTs in a complex with hydrogenase may undergo either oxidation or reduction, depending on the electronic structure of the SWNT and the oxidation state of the enzyme. In addition, we will describe our efforts to prepare stable, solubilized SWNT/hydrogenase complexes in the absence of detergent. This work shows that SWNT/hydrogenase complexes have potential applications as a component of an energy conversion device.

  14. Models of the Ni-L and Ni-SIa States of the [NiFe]-Hydrogenase Active Site.

    PubMed

    Chambers, Geoffrey M; Huynh, Mioy T; Li, Yulong; Hammes-Schiffer, Sharon; Rauchfuss, Thomas B; Reijerse, Edward; Lubitz, Wolfgang

    2016-01-19

    A new class of synthetic models for the active site of [NiFe]-hydrogenases are described. The Ni(I/II)(SCys)2 and Fe(II)(CN)2CO sites are represented with (RC5H4)Ni(I/II) and Fe(II)(diphos)(CO) modules, where diphos = 1,2-C2H4(PPh2)2(dppe) or cis-1,2-C2H2(PPh2)2(dppv). The two bridging thiolate ligands are represented by CH2(CH2S)2(2-) (pdt(2-)), Me2C(CH2S)2(2-) (Me2pdt(2-)), and (C6H5S)2(2-). The reaction of Fe(pdt)(CO)2(dppe) and [(C5H5)3Ni2]BF4 affords [(C5H5)Ni(pdt)Fe(dppe)(CO)]BF4 ([1a]BF4). Monocarbonyl [1a]BF4 features an S = 0 Ni(II)Fe(II) center with five-coordinated iron, as proposed for the Ni-SIa state of the enzyme. One-electron reduction of [1a](+) affords the S = (1)/2 derivative [1a](0), which, according to density functional theory (DFT) calculations and electron paramagnetic resonance and Mössbauer spectroscopies, is best described as a Ni(I)Fe(II) compound. The Ni(I)Fe(II) assignment matches that for the Ni-L state in [NiFe]-hydrogenase, unlike recently reported Ni(II)Fe(I)-based models. Compound [1a](0) reacts with strong acids to liberate 0.5 equiv of H2 and regenerate [1a](+), indicating that H2 evolution is catalyzed by [1a](0). DFT calculations were used to investigate the pathway for H2 evolution and revealed that the mechanism can proceed through two isomers of [1a](0) that differ in the stereochemistry of the Fe(dppe)CO center. Calculations suggest that protonation of [1a](0) (both isomers) affords Ni(III)-H-Fe(II) intermediates, which represent mimics of the Ni-C state of the enzyme. PMID:26421729

  15. Multiple Forms of Bacterial Hydrogenases

    PubMed Central

    Ackrell, B. A. C.; Asato, R. N.; Mower, H. F.

    1966-01-01

    Ackrell, B. A. C. (University of Hawaii, Honolulu), R. N. Asato, and H. F. Mower. Multiple forms of bacterial hydrogenases. J. Bacteriol. 92:828–838. 1966.—Extracts of certain bacterial species have been shown by disc electrophoresis on polyacrylamide gel to contain multiple hydrogenase systems. The hydrogenase enzymes comprising these systems have different electrophoretic mobilities and produce a band pattern that is unique for each bacterial species. Of 20 bacterial species known to possess hydrogenase activity and which were examined by this technique, only the activities of Clostridium tetanomorphum and C. thermosaccharolyticum could be attributed, at pH 8.3, to a single hydrogenase enzyme. This multiplicity of hydrogenase forms was found both in bacteria which contain mostly soluble hydrogenases and in those where the hydrogenase is predominantly associated with particulate material. When solubilization of this particulate material could be effected, at least two solubilized hydrogenases were released, and, of these, one would have the same electrophoretic properties (i.e., RF) as one of the soluble hydrogenases already present in small amounts within the cell. Different growth conditions for various types of bacteria, such as the nitrogen source, the degree of aeration, and photosynthetic versus aerobic growth in the dark, as well as the conditions under which the cells were stored, markedly affected the hydrogenase activity of the cells, but not their hydrogenase band pattern. The disc electrophoresis technique proved to be 10 times more sensitive than the manometric technique in detecting hydrogenase activity. PMID:5926752

  16. Hydride binding to the active site of [FeFe]-hydrogenase.

    PubMed

    Chernev, Petko; Lambertz, Camilla; Brünje, Annika; Leidel, Nils; Sigfridsson, Kajsa G V; Kositzki, Ramona; Hsieh, Chung-Hung; Yao, Shenglai; Schiwon, Rafael; Driess, Matthias; Limberg, Christian; Happe, Thomas; Haumann, Michael

    2014-11-17

    [FeFe]-hydrogenase from green algae (HydA1) is the most efficient hydrogen (H2) producing enzyme in nature and of prime interest for (bio)technology. Its active site is a unique six-iron center (H-cluster) composed of a cubane cluster, [4Fe4S]H, cysteine-linked to a diiron unit, [2Fe]H, which carries unusual carbon monoxide (CO) and cyanide ligands and a bridging azadithiolate group. We have probed the molecular and electronic configurations of the H-cluster in functional oxidized, reduced, and super-reduced or CO-inhibited HydA1 protein, in particular searching for intermediates with iron-hydride bonds. Site-selective X-ray absorption and emission spectroscopy were used to distinguish between low- and high-spin iron sites in the two subcomplexes of the H-cluster. The experimental methods and spectral simulations were calibrated using synthetic model complexes with ligand variations and bound hydride species. Distinct X-ray spectroscopic signatures of electronic excitation or decay transitions in [4Fe4S]H and [2Fe]H were obtained, which were quantitatively reproduced by density functional theory calculations, thereby leading to specific H-cluster model structures. We show that iron-hydride bonds are absent in the reduced state, whereas only in the super-reduced state, ligand rotation facilitates hydride binding presumably to the Fe-Fe bridging position at [2Fe]H. These results are in agreement with a catalytic cycle involving three main intermediates and at least two protonation and electron transfer steps prior to the H2 formation chemistry in [FeFe]-hydrogenases. PMID:25369169

  17. Combining acid-base, redox and substrate binding functionalities to give a complete model for the [FeFe]-hydrogenase

    NASA Astrophysics Data System (ADS)

    Camara, James M.; Rauchfuss, Thomas B.

    2012-01-01

    Some enzymes function by coupling substrate turnover with electron transfer from a redox cofactor such as ferredoxin. In the [FeFe]-hydrogenases, nature's fastest catalysts for the production and oxidation of H2, the one-electron redox by a ferredoxin complements the one-electron redox by the diiron active site. In this Article, we replicate the function of the ferredoxins with the redox-active ligand Cp*Fe(C5Me4CH2PEt2) (FcP*). FcP* oxidizes at mild potentials, in contrast to most ferrocene-based ligands, which suggests that it might be a useful mimic of ferredoxin cofactors. The specific model is Fe2[(SCH2)2NBn](CO)3(FcP*)(dppv) (1), which contains the three functional components of the active site: a reactive diiron centre, an amine as a proton relay and, for the first time, a one-electron redox module. By virtue of the synthetic redox cofactor, [1]2+ exhibits unique reactivity towards hydrogen and CO. In the presence of excess oxidant and base, H2 oxidation by [1]2+ is catalytic.

  18. Iron Hydride Detection and Intramolecular Hydride Transfer in a Synthetic Model of Mono-Iron Hydrogenase with a CNS Chelate.

    PubMed

    Durgaprasad, Gummadi; Xie, Zhu-Lin; Rose, Michael J

    2016-01-19

    We report the identification and reactivity of an iron hydride species in a synthetic model complex of monoiron hydrogenase. The hydride complex is derived from a phosphine-free CNS chelate that includes a Fe-C(NH)(═O) bond (carbamoyl) as a mimic of the active site iron acyl. The reaction of [((O═)C(HN)N(py)S(Me))Fe(CO)2(Br)] (1) with NaHBEt3 generates the iron hydride intermediate [((O═)C(HN)N(py)S(Me))Fe(H)(CO)2] (2; δFe-H = -5.08 ppm). Above -40 °C, the hydride species extrudes CH3S(-) via intramolecular hydride transfer, which is stoichiometrically trapped in the structurally characterized dimer μ2-(CH3S)2-[((O═)C(HN)N(Ph))Fe(CO)2]2 (3). Alternately, when activated by base ((t)BuOK), 1 undergoes desulfurization to form a cyclometalated species, [((O═)C(NH)NC(Ph))Fe(CO)2] (5); derivatization of 5 with PPh3 affords the structurally characterized species [((O═)C(NH)NC)Fe(CO)(PPh3)2] (6), indicating complex 6 as the common intermediate along each pathway of desulfurization. PMID:26405810

  19. Structure and Function of Photosystem I-[FeFe] Hydrogenase Protein Fusions: An All-Atom Molecular Dynamics Study.

    PubMed

    Harris, Bradley J; Cheng, Xiaolin; Frymier, Paul

    2016-02-01

    All-atom molecular dynamics (MD) simulation was used to study the solution dynamics and protein-protein interactions of protein fusions of photosystem I (PSI) from Thermosynechococcus elongatus and an [FeFe]-hydrogenase (FeFe H2ase) from Clostridium pasteurianum, a unique complex capable of photocatalytic hydrogen production. This study involved fusions of these two proteins via dithiol linkers of different length including decanedithiol, octanedithiol, and hexanedithiol, for which experimental data had previously been obtained. Evaluation of root-mean-squared deviations (RMSDs) relative to the respective crystal structures of PSI and the FeFe H2ase shows that these fusion complexes approach stable equilibrium conformations during the MD simulations. Investigating protein mobility via root-mean-squared fluctuations (RMSFs) reveals that tethering via the shortest hexanedithiol linker results in increased atomic fluctuations of both PSI and the hydrogenase in these fusion complexes. Evaluation of the inter- and intraprotein electron transfer distances in these fusion complexes indicates that the structural changes in the FeFe H2ase arising from ligation to PSI via the shortest hexanedithiol linker may hinder electron transport in the hydrogenase, thus providing a molecular level explanation for the observation that the medium-length octanedithiol linker gives the highest hydrogen production rate. PMID:26671167

  20. Dependence of Localized Electronic Structure on Ligand Configuration in the [2Fe] Hydrogenase Catalytic Core^*

    NASA Astrophysics Data System (ADS)

    Chang, Christopher H.; Kim, Kwiseon

    2007-03-01

    The [FeFe] hydrogenase enzyme is found in a variety of organisms, including Archaea, Eubacteria, and green algae^1,2, and crystallographically determined atomic position data is available for two examples. The biologically unusual catalytic H-cluster, responsible for proton reduction to H2 in vivo, is conserved in the known structures and includes two bis-thiolato bridged iron ions with extensive cyano- and carbonyl ligation. To address the configurational specificity of the diatomic ligand ligation, density functional theoretical calculations were done on [2Fe] core models of the active center, with varying CO and CN^- ligation patterns. Bonding in each complex has been characterized within the Natural Bond Orbital formalism. The effect of ligand configuration on bonding and charge distribution as well as Kohn-Sham orbital structure will be presented. [1] M. Forestier, P. King, L. Zhang, M. Posewitz, S. Schwarzer, T. Happe, M.L. Ghirardi, and M. Seibert, Eur. J. Biochem. 270, 2750 (2003). [2] Posewitz, M.C., P.W. King, S.L. Smolinski, R.D. Smith, II, A.R. Ginley, M.L. Ghirardi, and M. Seibert, Biochem. Soc. Trans. 33, 102 (2005). ^*This work was supported by the US DOE-SC-BES Hydrogen Fuels Initiative, and done in collaboration with the NREL Chemical and Biosciences Center.

  1. Photocatalytic hydrogen production using models of the iron-iron hydrogenase active site dispersed in micellar solution.

    PubMed

    Orain, Christophe; Quentel, François; Gloaguen, Frederic

    2014-02-01

    Iron-thiolate complexes of the type [Fe2 (μ-bdt)(CO)6-x P(OMe3 )x ] (bdt=S2 C6 H4 =benzenedithiolate, x≤2) are simplified models of iron-iron hydrogenase enzymes. Recently, we have shown that these water-insoluble organometallic complexes, when included into micelles formed by sodium dodecyl sulfate (SDS), are good catalysts for the electrochemical production of hydrogen in aqueous solutions at pH<6. We herein report that the all-CO derivative [Fe2 (μ-bdt)(CO)6 ] (1), owing to its comparatively low reduction potential, is also a robust molecular catalyst for visible-light-driven production of H2 in aqueous SDS solutions at pH 10.5. Irradiation at λ=455 nm of a system consisting of complex 1, Eosin Y as a sensitizer, and triethylamine as an electron donor produced up to 0.86 mL of H2 in 4.5 h, corresponding to a turnover number of 117 mol of H2 per mol of catalyst. In the presence of a large excess of sensitizer, the production of H2 lasted for more than 30 h, stressing the relative stability of complex 1 under the photocatalytic conditions used herein. Thermodynamic considerations and UV/Vis spectroscopy experiments suggest that the catalytic cycle begins with the photo-driven reduction of complex 1. The reduced intermediate reacts with a proton source to yield iron hydride. Subsequent reduction and protonation steps produce H2 , regenerating the starting complex. As a result, the iron-thiolate complex 1 is a versatile proton reduction catalyst that can utilize either solar or electrical energy inputs, providing a starting point for the construction of noble metal-free molecular systems for renewable H2 production. PMID:24127363

  2. Heterolytic Cleavage of Hydrogen by an Iron Hydrogenase Model: An Fe-H - - - H-N Dihydorgen Bond Characterized by Neutron Diffraction

    SciTech Connect

    Liu, Tianbiao L.; Wang, Xiaoping; Hoffmann, Christina; DuBois, Daniel L.; Bullock, R. Morris

    2014-05-19

    Use of hydrogen as a fuel by [FeFe]-hydrogenase enzymes in nature requires heterolytic cleavage of the H-H bond into a proton (H+) and hydride (H-), a reaction that is also a critical step in homogeneous catalysts for hydrogenation of C=O and C=N bonds. An understanding of the catalytic oxidation of H2 by hydrogenases provides insights into the design of synthetic catalysts that are sought as cost-effective alternatives to the use of the precious metal platinum in fuel cells. Crystallographic studies on the [FeFe]-hydrogenase enzyme were critical to understanding of its reactivity, but the key H-H cleavage step is not readily observed experimentally in natural hydrogenases. Synthetic biomimics have provided evidence for H2 cleavage leading to hydride transfer to the metal and proton transfer to an amine. Limitations on the precise location of hydrogen atoms by x-ray diffraction can be overcome by use of neutron diffraction, though its use is severely limited by the difficulty of obtaining suitable crystals and by the scarcity of neutron sources. Here we show that an iron complex with a pendant amine in the diphosphine ligand cleaves hydrogen heterolytically under mild conditions, leading to [CpC5F4NFeH(PtBu2NtBu2H)]+BArF4-, [PtBu2NtBu2 = 1,5-di(tert-butyl)-3,7-di(tert-butyl)-1,5-diaza-3,7-diphosphacyclooctane; ArF = 3,5-bis(trifluoromethyl)phenyl]. The Fe-H- - - H-N moiety has a strong dihydrogen bond, with a remarkably short H • • • H distance of 1.489(10) Å between the protic N-Hδ+ and hydridic Fe-Hδ-. The structural data for [CpC5F4NFeH(PtBu2NtBu2H)]+ provide a glimpse of how the H-H bond is oxidized or generated in hydrogenase enzymes, with the pendant amine playing a key role as a proton relay. The iron complex [CpC5F4NFeH(PtBu2NtBu2H)]+BArF4- is an electrocatalyst for oxidation of H2 (1 atm) at 22 °C, so the structural data are obtained on a complex that is a functional model for catalysis by [FeFe]-hydrogenase enzymes. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.

  3. Steric effect of the dithiolato linker on the reduction mechanism of [Fe2(CO)6{?-(XCH2)2CRR'}] hydrogenase models (X = S, Se).

    PubMed

    Trautwein, Ralf; Almazahreh, Laith R; Grls, Helmar; Weigand, Wolfgang

    2015-11-21

    Studying the redox features of the [FeFe]-hydrogenase models is essential for understanding the function of the H cluster. The reduction of the [FeFe]-hydrogenase models of the type [Fe2(CO)6{?-(XCH2)2E}] (X = S, Se) is described to occur either via sequential transfer of two electrons at and for the first and the second reduction steps, respectively, where , or via transfer of two electrons at the same applied potential due to potential inversion of the two reduction steps, i.e.. Typically, the phenomenon of potential inversion is observed when a structural change intervenes in the cathodic process stabilizing the reduced species. In this report, we investigate the mechanism of the cathodic process of series of models [Fe2(CO)6{?-(XCH2)2E}] (X = S or Se and E = CH2, CHMe or CMe2) applying cyclic voltammetry. The studies herein show the remarkable influence of the steric bulk of E toward the cathodic process, such that only complexes with E = CMe2 are reduced with inverted potentials due to occurrence of an ECE mechanism (E = electrochemical process, C = chemical process) of reduction. Moreover, we describe the catalytic behaviour of these models toward reduction of protons using acetic acid, AcOH, as a proton source. PMID:26455379

  4. Absolute potential of the Fermi level of single-walled carbon nanotubes via hydrogenase complex formation.

    NASA Astrophysics Data System (ADS)

    McDonald, Timothy; Svedruzic, Drazenka; Kim, Yong-Hyun; Blackburn, Jeffrey; Zhang, Shengbai; King, Paul; Heben, Michael

    2007-03-01

    The absolute potential of the Fermi level of nanotubes as a function of nanotube type is not presently understood, and is important for many nanotube applications and sorting strategies. Here, we study complexes of recombinant [FeFe] hydrogenases and single-walled carbon nanotubes. We find evidence that novel charge-transfer complexes are formed and are stable, which enables further study and application of this system. The hydrogenase functions as a hydrogen electrode sensitizing the nanotubes to the redox half-reaction for hydrogen. Thus the potential can be altered by changing the molecular hydrogen concentration, and this tunability is utilized to bleach various semiconducting nanotube transitions. By observing which are bleached and which remain emissive, we determine the alignment of the potential of the Fermi level of semiconducting single-walled carbon nanotubes. The experimentally determined Fermi level alignment is confirmed theoretically by the first-principles DFT-PBE method.

  5. Computational Investigation of [FeFe]-Hydrogenase Models: Characterization of Singly and Doubly Protonated Intermediates and Mechanistic Insights

    PubMed Central

    2015-01-01

    The [FeFe]-hydrogenase enzymes catalyze hydrogen oxidation and production efficiently with binuclear Fe metal centers. Recently the bioinspired H2-producing model system Fe2(adt)(CO)2(dppv)2 (adt=azadithiolate and dppv=diphosphine) was synthesized and studied experimentally. In this system, the azadithiolate bridge facilitates the formation of a doubly protonated ammonium-hydride species through a proton relay. Herein computational methods are utilized to examine this system in the various oxidation states and protonation states along proposed mechanistic pathways for H2 production. The calculated results agree well with the experimental data for the geometries, CO vibrational stretching frequencies, and reduction potentials. The calculations illustrate that the NH···HFe dihydrogen bonding distance in the doubly protonated species is highly sensitive to the effects of ion-pairing between the ammonium and BF4– counterions, which are present in the crystal structure, in that the inclusion of BF4– counterions leads to a significantly longer dihydrogen bond. The non-hydride Fe center was found to be the site of reduction for terminal hydride species and unsymmetric bridging hydride species, whereas the reduced symmetric bridging hydride species exhibited spin delocalization between the Fe centers. According to both experimental measurements and theoretical calculations of the relative pKa values, the Fed center of the neutral species is more basic than the amine, and the bridging hydride species is more thermodynamically stable than the terminal hydride species. The calculations implicate a possible pathway for H2 evolution that involves an intermediate with H2 weakly bonded to one Fe, a short H2 distance similar to the molecular bond length, the spin density delocalized over the two Fe centers, and a nearly symmetrically bridged CO ligand. Overall, this study illustrates the mechanistic roles of the ammonium-hydride interaction, flexibility of the bridging CO ligand, and intramolecular electron transfer between the Fe centers in the catalytic cycle. Such insights will assist in the design of more effective bioinspired catalysts for H2 production. PMID:25207842

  6. Protein induced singlet-triplet quasidegeneracy in the active site of [NiFe]-hydrogenase

    NASA Astrophysics Data System (ADS)

    Yson, Renante L.; Gilgor, Jessica L.; Guberman, Benjamin A.; Varganov, Sergey A.

    2013-07-01

    Molecular hydrogen oxidation and reduction on [NiFe]-hydrogenase is an inspiring example of using abundant first row transition metals to catalyze biologically and industrially important chemical reactions. We demonstrate that by rotating terminal thiolate ligands in the active site of [NiFe]-hydrogenase, either the singlet or triplet electronic state can be made a ground state. The two states become degenerate when the ligand orientations are similar to those observed in [NiFe]-hydrogenase, where this orientation is enforced by the protein backbone. The unusual distorted coordination geometry of Ni can explain the inability of the structural models of [NiFe]-hydrogenase to bind molecular hydrogen.

  7. Production and Engineering of Hydrogenase as a Biocatalyst for Hydrogen Fuel

    SciTech Connect

    Wang, Guangyi

    2010-04-09

    Hydrogenases are fascinating redox proteins, showing tremendous promise in the utilization of hydrogen fuel as a bioelectrocatalyst. They play critical roles in both biohydrogen production and hydrogen oxidation. Specifically, the recently-established comparability of the oxidative activity of the [NiFe]-hydrogenase active site to that of the fuel cell catalyst platinum marks a significant milestone for the potential application of hydrogenase in hydrogen fuel cells to replace platinum. However, the ability of producing hydrogenase in heterologous expression hosts and the sensitivity of hydrogenases to oxygen and carbon monoxide, etc. have seriously limited the viable macroscale utilization and production of hydrogen from the renewable source. A new technology for the production of up-take hydrogenase is being developed for the utilization of hydrogenase as a hydrogen catalyst. The development of this new technology integrates knowledge of structural biology, molecular biology, and principles of metabolic engineering to produce and engineer a stable hydrogenase as a hydrogen bioelectrocatalyst. It contributes to the critical issues of “expensive noble metal catalysts (i.e., platinum) and their limited reserves threatening the long-term sustainability of a hydrogen economy”. It also provides a model to “design natural materials and enzyme catalyst” for “efficient and cost-effective technologies” for a clean and sustainable energy in 21st century. This new technology includes 3 major components. The first component is the synthetic operons, which carry hydrogenase maturation pathways of Ralstonia eutropha. These synthetic operons are engineered to produce RH hydrogenase in the Escherichia coli strains based on our current molecular and genetic information of hydrogenase maturation mechanisms and pathways of R. eutropha. It presents the first example of producing hydrogenase in the conventional expression host using synthetic biology principles and tool kits. For the high-yield production of the hydrogenase, protein degradation pathways are altered to prevent hydrogenase degradation. This part of the new technology provides a frame work for the design of hydrogenase production pathways for desirable bioengineering purposes. The results of this work are significantly beneficial to research in the areas of enzyme fuel cells, bioelectrocatalyst production, and biohydrogen production as well as basic research in hydrogenase structure biology. The second component of the new technology includes the stable hydrogenase with the improved electrochemical and catalytic properties. With the guidance of the current information on [NiFe] hydrogenase structure, hydrogenase mutants and mutant libraries are generated using protein engineering approaches. The resulting mutants are screened for better hydrogenase stability and catalytic activities. This part of the research results in the identification of new hydrogenase mutants with improved catalytic properties, which can be used for the future studies on enzyme full cells and the catalytic mechanism of hydrogenase. The third component is the optimized production of the selected hydrogenase mutant using current fermentation and metabolic engineering strategies. Metabolic burdens and biomass is balanced using different induction conditions for the optimum production of the engineered hydrogenase in genetically engineered E. coli strains. The success of this work presents a good example of the application of modern fermentation technologies in bioelectrocatalyst production.

  8. Intramolecular C?H Activation and Metallacycle Aromaticity in the Photochemistry of [FeFe]-Hydrogenase Model Compounds in Low-Temperature Frozen Matrices.

    PubMed

    Thornley, Wyatt A; Bitterwolf, Thomas E

    2015-12-01

    The [FeFe]-hydrogenase model complexes [(?-pdt){Fe(CO)3 }2 ], [(?-edt){Fe(CO)3 }2 ], and [(?-mdt){Fe(CO)3 }2 ], where pdt=1,3-propanedithiolate, edt=1,2-ethanedithiolate, and mdt=methanedithiolate, undergo wavelength dependent photodecarbonylation in hydrocarbon matrices at 85?K resulting in multiple decarbonylation isomers. As previously reported in time-resolved solution photolysis experiments, the major photoproduct is attributed to a basal carbonyl-loss species. Apical carbonyl-loss isomers are also generated and may undergo secondary photolysis, resulting in ?-hydride activation of the alkyldithiolate bridge, as well as formation of bridging carbonyl isomers. For [(?-bdt){Fe(CO)3 }2 ], (bdt=1,2-benzenedithiolate), apical photodecarbonylation results in generation of a 10??-electron aromatic FeS2 C6 H4 metallacycle that coordinates the remaining iron through an ?(5) mode. PMID:26541102

  9. Deletion of a gene cluster for [Ni-Fe] hydrogenase maturation in the anaerobic hyperthermophilic bacterium Caldicellulosiruptor bescii identifies its role in hydrogen metabolism.

    PubMed

    Cha, Minseok; Chung, Daehwan; Westpheling, Janet

    2016-02-01

    The anaerobic, hyperthermophlic, cellulolytic bacterium Caldicellulosiruptor bescii grows optimally at ?80C and effectively degrades plant biomass without conventional pretreatment. It utilizes a variety of carbohydrate carbon sources, including both C5 and C6 sugars, released from plant biomass and produces lactate, acetate, CO2, and H2 as primary fermentation products. The C. bescii genome encodes two hydrogenases, a bifurcating [Fe-Fe] hydrogenase and a [Ni-Fe] hydrogenase. The [Ni-Fe] hydrogenase is the most widely distributed in nature and is predicted to catalyze hydrogen production and to pump protons across the cellular membrane creating proton motive force. Hydrogenases are the key enzymes in hydrogen metabolism and their crystal structure reveals complexity in the organization of their prosthetic groups suggesting extensive maturation of the primary protein. Here, we report the deletion of a cluster of genes, hypABFCDE, required for maturation of the [Ni-Fe] hydrogenase. These proteins are specific for the hydrogenases they modify and are required for hydrogenase activity. The deletion strain grew more slowly than the wild type or the parent strain and produced slightly less hydrogen overall, but more hydrogen per mole of cellobiose. Acetate yield per mole of cellobiose was increased ?67% and ethanol yield per mole of cellobiose was decreased ?39%. These data suggest that the primary role of the [Ni-Fe] hydrogenase is to generate a proton gradient in the membrane driving ATP synthesis and is not the primary enzyme for hydrogen catalysis. In its absence, ATP is generated from increased acetate production resulting in more hydrogen produced per mole of cellobiose. PMID:26536872

  10. Relating diffusion along the substrate tunnel and oxygen sensitivity in hydrogenase.

    PubMed

    Liebgott, Pierre-Pol; Leroux, Fanny; Burlat, Bénédicte; Dementin, Sébastien; Baffert, Carole; Lautier, Thomas; Fourmond, Vincent; Ceccaldi, Pierre; Cavazza, Christine; Meynial-Salles, Isabelle; Soucaille, Philippe; Fontecilla-Camps, Juan Carlos; Guigliarelli, Bruno; Bertrand, Patrick; Rousset, Marc; Léger, Christophe

    2010-01-01

    In hydrogenases and many other redox enzymes, the buried active site is connected to the solvent by a molecular channel whose structure may determine the enzyme's selectivity with respect to substrate and inhibitors. The role of these channels has been addressed using crystallography and molecular dynamics, but kinetic data are scarce. Using protein film voltammetry, we determined and then compared the rates of inhibition by CO and O2 in ten NiFe hydrogenase mutants and two FeFe hydrogenases. We found that the rate of inhibition by CO is a good proxy of the rate of diffusion of O2 toward the active site. Modifying amino acids whose side chains point inside the tunnel can slow this rate by orders of magnitude. We quantitatively define the relations between diffusion, the Michaelis constant for H2 and rates of inhibition, and we demonstrate that certain enzymes are slowly inactivated by O2 because access to the active site is slow. PMID:19966788

  11. Cyanobacterial Hydrogenases and Hydrogen Metabolism Revisited: Recent Progress and Future Prospects

    PubMed Central

    Khanna, Namita; Lindblad, Peter

    2015-01-01

    Cyanobacteria have garnered interest as potential cell factories for hydrogen production. In conjunction with photosynthesis, these organisms can utilize inexpensive inorganic substrates and solar energy for simultaneous biosynthesis and hydrogen evolution. However, the hydrogen yield associated with these organisms remains far too low to compete with the existing chemical processes. Our limited understanding of the cellular hydrogen production pathway is a primary setback in the potential scale-up of this process. In this regard, the present review discusses the recent insight around ferredoxin/flavodoxin as the likely electron donor to the bidirectional Hox hydrogenase instead of the generally accepted NAD(P)H. This may have far reaching implications in powering solar driven hydrogen production. However, it is evident that a successful hydrogen-producing candidate would likely integrate enzymatic traits from different species. Engineering the [NiFe] hydrogenases for optimal catalytic efficiency or expression of a high turnover [FeFe] hydrogenase in these photo-autotrophs may facilitate the development of strains to reach target levels of biohydrogen production in cyanobacteria. The fundamental advancements achieved in these fields are also summarized in this review. PMID:26006225

  12. [NiFe]-Hydrogenase Maturation.

    PubMed

    Lacasse, Michael J; Zamble, Deborah B

    2016-03-29

    [NiFe]-hydrogenases catalyze the reversible conversion of hydrogen gas into protons and electrons and are vital metabolic components of many species of bacteria and archaea. At the core of this enzyme is a sophisticated catalytic center comprising nickel and iron, as well as cyanide and carbon monoxide ligands, which is anchored to the large hydrogenase subunit through cysteine residues. The production of this multicomponent active site is accomplished by a collection of accessory proteins and can be divided into discrete stages. The iron component is fashioned by the proteins HypC, HypD, HypE, and HypF, which functionalize iron with cyanide and carbon monoxide. Insertion of the iron center signals to the metallochaperones HypA, HypB, and SlyD to selectively deliver the nickel to the active site. A specific protease recognizes the completed metal cluster and then cleaves the C-terminus of the large subunit, resulting in a conformational change that locks the active site in place. Finally, the large subunit associates with the small subunit, and the complete holoenzyme translocates to its final cellular position. Beyond this broad overview of the [NiFe]-hydrogenase maturation process, biochemical and structural studies are revealing the fundamental underlying molecular mechanisms. Here, we review recent work illuminating how the accessory proteins contribute to the maturation of [NiFe]-hydrogenase and discuss some of the outstanding questions that remain to be resolved. PMID:26919691

  13. Regulation of hydrogenase activity in enterobacteria.

    PubMed Central

    Krasna, A I

    1980-01-01

    Proteus vulgaris, Escherichia coli, and Citrobacter freundii cells were devoid of hydrogenase activity when grown on complex medium or minimal medium plus glucose in the presence of saturating levels of dissolved oxygen. Anaerobically grown cells had appreciable hydrogenase activity. Cells grown anaerobically in the presence of CO (an inhibitor of hydrogenase) or nitrate (an electron acceptor) lacked hydrogenase activity. To make hydrogenase essential for anaerobic growth, cells were grown on fumarate, a nonfermentable carbon source. P. vulgaris and C. freundii evolved H2 gas under these conditions, and the hydrogenase-specific activity was 8 to 10 times greater than that in cells grown on glucose. Cell growth was inhibited by CO, and the cells grew but lacked hydrogenase activity when grown in the presence of nitrate. E. coli grew on fumarate plus H2, and the specific activity was five times greater than that in cells grown on glucose. Thus, hydrogenase activity is inducible and is expressed maximally when the enzyme is essential for cellular growth. Under conditions of growth where the enzyme would not be catalytically active, cells contain little active hydrogenase. Under anaerobic conditions where the enzyme is not essential for growth, the level of hydrogenase activity is intermediate. PMID:7002905

  14. Reactivation pathway of the hydrogenase H-cluster: Density functional theory study

    NASA Astrophysics Data System (ADS)

    Motiu, Stefan; Dogaru, Daniela; Gogonea, Valentin

    This work puts forth a reaction pathway for the reactivation of exogenous ligand inhibited H-cluster, the active site of Fe-only hydrogenases. The H-cluster is a dimetal complex, Fe-Fe, with the metal centers bridged by di(thiomethyl)amine. Exogenous ligands, H2O, and OH-, are bound to the distal iron (Fed). Density functional theory (DFT) calculations on the native and ruthenium-modified H-cluster have been performed using the B3LYP functional with 6-31+G** and 6-311+G** basis sets. We have ascertained that there is a thermodynamically favorable pathway for the reactivation of the OH- inhibited H-cluster, which proceeds by an initial protonation of the Fed-OH- complex. The proposed reaction pathway has all its intermediate reactions ensue exothermically.

  15. Elimination of hydrogenase post-translational modification blocks H2 production and increases ethanol yield in Clostridium thermocellum

    SciTech Connect

    Biswas, Ranjita; Zheng, Tianyong; Olson, Daniel G.; Lynd, Lee R; Guss, Adam M

    2015-01-01

    The native ability of Clostridium thermocellum to rapidly consume cellulose and produce ethanol makes it a leading candidate for a consolidated bioprocessing (CBP) biofuel production strategy. C. thermocellum also synthesizes lactate, formate, acetate, H2, and amino acids that compete with ethanol production for carbon and electrons. Elimination of H2 production could redirect carbon flux towards ethanol production by making more electrons available for acetyl-CoA reduction to ethanol. C. thermocellum encodes four hydrogenases and rather than delete each individually, we targeted a hydrogenase maturase gene (hydG), involved in converting the three [FeFe] hydrogenase apoenzymes into holoenzymes. Further deletion of the [NiFe] hydrogenase (ech) resulted in a mutant that functionally lacks all four hydrogenases. H2 production in hydG ech was undetectable and ethanol yield increased nearly 2-fold compared to wild type. Interestingly, mutant growth improved upon the addition of acetate, which led to increased expression of genes related to sulfate metabolism, suggesting these mutants may use sulfate as a terminal electron acceptor to balance redox reactions. Genomic analysis of hydG revealed a mutation in adhE, resulting in a strain with both NADH- and NADPH-dependent alcohol dehydrogenase activities. While this same adhE mutation is found in ethanol tolerant C. thermocellum strain E50C, hydG and hydG ech are not more ethanol tolerant than wild type, illustrating the complicated interactions between redox balancing and ethanol tolerance in C. thermocellum. The dramatic increase in ethanol production here suggests that targeting protein post-translational modification is a promising new approach for inactivation of multiple enzymes simultaneously for metabolic engineering.

  16. Elimination of hydrogenase active site assembly blocks H2 production and increases ethanol yield in Clostridium thermocellum

    SciTech Connect

    Biswas, Ranjita; Zheng, Tianyong; Olson, Daniel G.; Lynd, Lee R.; Guss, Adam M.

    2015-02-01

    The native ability of Clostridium thermocellum to rapidly consume cellulose and produce ethanol makes it a leading candidate for a consolidated bioprocessing (CBP) biofuel production strategy. C. thermocellum also synthesizes lactate, formate, acetate, H2, and amino acids that compete with ethanol production for carbon and electrons. Elimination of H2 production could redirect carbon flux towards ethanol production by making more electrons available for acetyl-CoA reduction to ethanol. C. thermocellum encodes four hydrogenases and rather than delete each individually, we targeted a hydrogenase maturase gene (hydG), involved in converting the three [FeFe] hydrogenase apoenzymes into holoenzymes. Further deletion of the [NiFe] hydrogenase (ech) resulted in a mutant that functionally lacks all four hydrogenases. H2 production in hydG ech was undetectable and ethanol yield increased nearly 2-fold compared to wild type. Interestingly, mutant growth improved upon the addition of acetate, which led to increased expression of genes related to sulfate metabolism, suggesting these mutants may use sulfate as a terminal electron acceptor to balance redox reactions. Genomic analysis of hydG revealed a mutation in adhE, resulting in a strain with both NADH- and NADPH-dependent alcohol dehydrogenase activities. While this same adhE mutation is found in ethanol tolerant C. thermocellum strain E50C, hydG and hydG ech are not more ethanol tolerant than wild type, illustrating the complicated interactions between redox balancing and ethanol tolerance in C. thermocellum. The dramatic increase in ethanol production here suggests that targeting protein post-translational modification is a promising new approach for inactivation of multiple enzymes simultaneously for metabolic engineering.

  17. Elimination of hydrogenase active site assembly blocks H2 production and increases ethanol yield in Clostridium thermocellum

    DOE PAGESBeta

    Biswas, Ranjita; Zheng, Tianyong; Olson, Daniel G.; Lynd, Lee R.; Guss, Adam M.

    2015-02-01

    The native ability of Clostridium thermocellum to rapidly consume cellulose and produce ethanol makes it a leading candidate for a consolidated bioprocessing (CBP) biofuel production strategy. C. thermocellum also synthesizes lactate, formate, acetate, H2, and amino acids that compete with ethanol production for carbon and electrons. Elimination of H2 production could redirect carbon flux towards ethanol production by making more electrons available for acetyl-CoA reduction to ethanol. C. thermocellum encodes four hydrogenases and rather than delete each individually, we targeted a hydrogenase maturase gene (hydG), involved in converting the three [FeFe] hydrogenase apoenzymes into holoenzymes. Further deletion of the [NiFe]more » hydrogenase (ech) resulted in a mutant that functionally lacks all four hydrogenases. H2 production in hydG ech was undetectable and ethanol yield increased nearly 2-fold compared to wild type. Interestingly, mutant growth improved upon the addition of acetate, which led to increased expression of genes related to sulfate metabolism, suggesting these mutants may use sulfate as a terminal electron acceptor to balance redox reactions. Genomic analysis of hydG revealed a mutation in adhE, resulting in a strain with both NADH- and NADPH-dependent alcohol dehydrogenase activities. While this same adhE mutation is found in ethanol tolerant C. thermocellum strain E50C, hydG and hydG ech are not more ethanol tolerant than wild type, illustrating the complicated interactions between redox balancing and ethanol tolerance in C. thermocellum. The dramatic increase in ethanol production here suggests that targeting protein post-translational modification is a promising new approach for inactivation of multiple enzymes simultaneously for metabolic engineering.« less

  18. Understanding and harnessing hydrogenases, biological dihydrogen catalysts.

    PubMed

    Parkin, Alison

    2014-01-01

    It has been estimated that 99 % of all organisms utilize dihydrogen (H2). Most of these species are microbes and their ability to use H₂as a metabolite arises from the expression of H2 metalloenzymes known as hydrogenases. These molecules have been the focus of intense biological, biochemical, and chemical research because hydrogenases are biotechnologically relevant enzymes. PMID:25416392

  19. Modeling the Active Sites in Metalloenzymes 5. The Heterolytic Bond Cleavage of H2 in the [NiFe] Hydrogenase of DesulfoWibrio gigas by a Nucleophilic Addition Mechanism

    SciTech Connect

    Niu, Shuqiang; Hall, Michael B.

    2001-11-19

    The H2 activation catalyzed by an Fe(II)-Ni(III) model of the [NiFe] hydrogenase of DesulfoVibrio gigas has been investigated by density functional theory (DFT/B3LYP) calculations on the neutral and anionic active site complexes, [(CO)(CN)2Fe(Mu-SH)2Ni(SH)(SH2)]0 and [(CO)(CN)2Fe(Mu-SH)2Ni(SH)2]-. The results suggest that the reaction proceeds by a nucleophilic addition mechanism that cleaves the H-H bond heterolytically. The terminal cysteine residue Cys530 in the [NiFe] hydrogenase active site of the D. gigas enzyme plays a crucial role in the catalytic process by accepting the proton. The active site is constructed to provide access by this cysteine residue, and this role explains the change in activity observed when this cysteine is replaced by a selenocysteine. Furthermore, the optimized geometry of the transition state in the model bears a striking resemblance to the geometry of the active site as determined by X-ray crystallography.

  20. [FeFe] hydrogenase: protonation of {2Fe3S} systems and formation of super-reduced hydride states.

    PubMed

    Jablonskytė, Aušra; Wright, Joseph A; Fairhurst, Shirley A; Webster, Lee R; Pickett, Christopher J

    2014-09-15

    The synthesis and crystallographic characterization of a complex possessing a well-defined {2Fe3S(μ-H)} core gives access to a paramagnetic bridging hydride with retention of the core geometry. Chemistry of this 35-electron species within the confines of a thin-layer FTIR spectro-electrochemistry cell provides evidence for a unprecedented super-reduced Fe(I)(μ-H)Fe(I) intermediate. PMID:25079249

  1. Transcriptional Regulation of Alcaligenes eutrophus Hydrogenase Genes

    PubMed Central

    Schwartz, Edward; Gerischer, Ulrike; Friedrich, Bärbel

    1998-01-01

    Alcaligenes eutrophus H16 produces a soluble hydrogenase (SH) and a membrane-bound hydrogenase (MBH) which catalyze the oxidation of H2, supplying the organism with energy for autotrophic growth. The promoters of the structural genes for the SH and the MBH, PSH and PMBH, respectively, were identified by means of the primer extension technique. Both promoters were active in vivo under hydrogenase-derepressing conditions but directed only low levels of transcription under conditions which repressed hydrogenase synthesis. The cellular pools of SH and MBH transcripts under the different growth conditions correlated with the activities of the respective promoters. Also, an immediate and drastic increase in transcript pool levels occurred upon derepression of the hydrogenase system. Both promoters were dependent on the minor sigma factor ς54 and on the hydrogenase regulator HoxA in vivo. PSH was stronger than PMBH under both heterotrophic and autotrophic growth conditions. The two promoters were induced at approximately the same rates upon derepression of the hydrogenase system in diauxic cultures. The response regulator HoxA mediated low-level activation of PSH and PMBH in a heterologous system. PMID:9620971

  2. Hydrogenase activity in Rhodopseudomonas capsulata: relationship with nitrogenase activity.

    PubMed Central

    Colbeau, A; Kelley, B C; Vignais, P M

    1980-01-01

    Hydrogenase activity was found in cells of Rhodopseudomonas capsulata strain B10 cultured under a variety of growth conditions either anaerobically in the light or aerobically in the dark. The highest activities were found routinely in cells grown in the presence of H2. The hydrogenase of R. capsulata was localized in the particulate fraction of the cells. High hydrogenase activities were usually observed in cells possessing an active nitrogenase. The hydrogen produced by the nitrogenase stimulated the activity of hydrogenase in growing cells. However, the synthesis of hydrogenase was not closely linked to the synthesis of nitrogenase. Hydrogenase was present in dark-grown cultures, whereas nitrogenase synthesis was not significant in the absence of light. Unlike nitrogenase, hydrogenase was present in cultures grown on NH4+. Conditions were established which allowed the synthesis of either nitrogenase or hydrogenase by resting cells. We concluded that hydrogenase can be synthesized independently of nitrogenase. PMID:6998943

  3. Hydrogenase polypeptide and methods of use

    DOEpatents

    Adams, Michael W.W.; Hopkins, Robert C.; Jenney, JR, Francis E.; Sun, Junsong

    2016-02-02

    Provided herein are polypeptides having hydrogenase activity. The polypeptide may be multimeric, and may have hydrogenase activity of at least 0.05 micromoles H.sub.2 produced min.sup.-1 mg protein.sup.-1. Also provided herein are polynucleotides encoding the polypeptides, genetically modified microbes that include polynucleotides encoding one or more subunits of the multimeric polypeptide, and methods for making and using the polypeptides.

  4. Hydrogenase Mediated Nitrite Reduction in Chlorella 1

    PubMed Central

    Stiller, Mary

    1966-01-01

    The assay of the hydrogenase of glucose-grown cells of Chlorella pyrenoidosa, strain 7-11-05 by means of nitrite reduction with molecular hydrogen is described. The hydrogenase of Chlorella shows maximum activity immediately after equilibration in the hydrogen atmosphere. The hydrogenase mediated reduction of nitrite to ammonia requires the presence of CO2. However, at pH 6.4. when the reaction proceeds optimally, there is apparently sufficient retention of metabolic CO2 to support the reaction, which goes to completion, at near maximum rates. Reduction of nitrite in the hydrogenase system when CO2 is present results in the uptake of 3 moles of H2 per mole of nitrite and ammonia is the product. When CO2 is absent or limiting, ammonia is also formed from nitrite but with the uptake of less than the stoichiometric amount of H2. It is concluded that CO2 is essential for the uptake of H2, and that in the absence of CO2 internal hydrogen donors support nitrite reduction. The possibility that CO2 exerts a catalytic effect in all reductions mediated by hydrogenase in algae is considered, and a further hypothesis, that hydrogenase arises from that portion of the photosynthetic machinery which also shows a catalytic requirement for CO2, is proposed. PMID:16656261

  5. Site saturation mutagenesis demonstrates a central role for cysteine 298 as proton donor to the catalytic site in CaHydA [FeFe]-hydrogenase.

    PubMed

    Morra, Simone; Giraudo, Alberto; Di Nardo, Giovanna; King, Paul W; Gilardi, Gianfranco; Valetti, Francesca

    2012-01-01

    [FeFe]-hydrogenases reversibly catalyse molecular hydrogen evolution by reduction of two protons. Proton supply to the catalytic site (H-cluster) is essential for enzymatic activity. Cysteine 298 is a highly conserved residue in all [FeFe]-hydrogenases; moreover C298 is structurally very close to the H-cluster and it is important for hydrogenase activity. Here, the function of C298 in catalysis was investigated in detail by means of site saturation mutagenesis, simultaneously studying the effect of C298 replacement with all other 19 amino acids and selecting for mutants with high retained activity. We demonstrated that efficient enzymatic turnover was maintained only when C298 was replaced by aspartic acid, despite the structural diversity between the two residues. Purified CaHydA C298D does not show any significant structural difference in terms of secondary structure and iron incorporation, demonstrating that the mutation does not affect the overall protein fold. C298D retains the hydrogen evolution activity with a decrease of k(cat) only by 2-fold at pH 8.0 and it caused a shift of the optimum pH from 8.0 to 7.0. Moreover, the oxygen inactivation rate was not affected demonstrating that the mutation does not influence O(2) diffusion to the active site or its reactivity with the H-cluster. Our results clearly demonstrate that, in order to maintain the catalytic efficiency and the high turnover number typical of [FeFe] hydrogenases, the highly conserved C298 can be replaced only by another ionisable residue with similar steric hindrance, giving evidence of its involvement in the catalytic function of [FeFe]-hydrogenases in agreement with an essential role in proton transfer to the active site. PMID:23133586

  6. Paramagnetic centers in the nickel-containing, deazaflavin-reducing hydrogenase from Methanobacterium thermoautotrophicum

    PubMed Central

    Kojima, Nakao; Fox, Judith A.; Hausinger, Robert P.; Daniels, Lacy; Orme-Johnson, William H.; Walsh, Christopher

    1983-01-01

    Two hydrogenases from the methanogenic bacterium Methanobacterium thermoautotrophicum strain ΔH have been purified and contain tightly bound nickel as well as the anticipated iron/sulfur atoms with a fixed ratio of 15-20 iron atoms per nickel. One hydrogenase reduces the 8-hydroxy-5-deazaflavin coenzyme factor 420 (F420), whereas the other has been purified as a methyl viologen-reducing hydrogenase. Both enzymes possess an EPR signal attributed to paramagnetic nickel as demonstrated by hyperfine coupling in 61Ni-containing hydrogenases. Comparison to model compounds suggests a nickel(III) oxidation state in the inactive forms of these aerobically purified enzymes. Loss of the nickel(III) signal accompanies reductive activation but is not kinetically correlated with regain of high specific activity. On replacement of H2 by argon in the gas phase over reduced, active, F420-reducing enzyme, several EPR signals appear, including a signal at g = 2.004 that is probably enzyme-bound FADH semiquinone, two signals at g = 2.140 and 2.196 that reflect a new form of paramagnetic nickel(III), and also a signal at g = 2.036 that may be an iron signal. The F420-reducing hydrogenase in the second paramagnetic nickel form is either itself active or in facile equilibrium with active enzyme. The size of the signal at g = 2.036 may correlate with the degree of activation of the enzyme. In contrast to the hydrogenase of Clostridium pasteurianum [Erbes, D. L., Burris, R. H. & Orme-Johnson, W. H. (1975) Proc. Natl. Acad. Sci. USA 72, 4795-4799], which appears to use only iron/sulfur prosthetic groups and which reacts with one-electron-transfer agents, this methanogen hydrogenase seems to utilize iron, nickel, and flavin redox sites and to reduce obligate one-electron (viologen) and two-electron (deazaflavin) oxidants. PMID:6300837

  7. O2 reactions at the six-iron active site (H-cluster) in [FeFe]-hydrogenase.

    PubMed

    Lambertz, Camilla; Leidel, Nils; Havelius, Kajsa G V; Noth, Jens; Chernev, Petko; Winkler, Martin; Happe, Thomas; Haumann, Michael

    2011-11-25

    Irreversible inhibition by molecular oxygen (O(2)) complicates the use of [FeFe]-hydrogenases (HydA) for biotechnological hydrogen (H(2)) production. Modification by O(2) of the active site six-iron complex denoted as the H-cluster ([4Fe4S]-2Fe(H)) of HydA1 from the green alga Chlamydomonas reinhardtii was characterized by x-ray absorption spectroscopy at the iron K-edge. In a time-resolved approach, HydA1 protein samples were prepared after increasing O(2) exposure periods at 0 °C. A kinetic analysis of changes in their x-ray absorption near edge structure and extended X-ray absorption fine structure spectra revealed three phases of O(2) reactions. The first phase (τ(1) ≤ 4 s) is characterized by the formation of an increased number of Fe-O,C bonds, elongation of the Fe-Fe distance in the binuclear unit (2Fe(H)), and oxidation of one iron ion. The second phase (τ(2) ≈ 15 s) causes a ∼50% decrease of the number of ∼2.7-Å Fe-Fe distances in the [4Fe4S] subcluster and the oxidation of one more iron ion. The final phase (τ(3) ≤ 1000 s) leads to the disappearance of most Fe-Fe and Fe-S interactions and further iron oxidation. These results favor a reaction sequence, which involves 1) oxygenation at 2Fe(H(+)) leading to the formation of a reactive oxygen species-like superoxide (O(2)(-)), followed by 2) H-cluster inactivation and destabilization due to ROS attack on the [4Fe4S] cluster to convert it into an apparent [3Fe4S](+) unit, leading to 3) complete O(2)-induced degradation of the remainders of the H-cluster. This mechanism suggests that blocking of ROS diffusion paths and/or altering the redox potential of the [4Fe4S] cubane by genetic engineering may yield improved O(2) tolerance in [FeFe]-hydrogenase. PMID:21930709

  8. CO and CN- syntheses by [FeFe]-hydrogenase maturase HydG are catalytically differentiated events.

    PubMed

    Pagnier, Adrien; Martin, Lydie; Zeppieri, Laura; Nicolet, Yvain; Fontecilla-Camps, Juan C

    2016-01-01

    The synthesis and assembly of the active site [FeFe] unit of [FeFe]-hydrogenases require at least three maturases. The radical S-adenosyl-l-methionine HydG, the best characterized of these proteins, is responsible for the synthesis of the hydrogenase CO and CN(-) ligands from tyrosine-derived dehydroglycine (DHG). We speculated that CN(-) and the CO precursor (-):CO2H may be generated through an elimination reaction. We tested this hypothesis with both wild type and HydG variants defective in second iron-sulfur cluster coordination by measuring the in vitro production of CO, CN(-), and (-):CO2H-derived formate. We indeed observed formate production under these conditions. We conclude that HydG is a multifunctional enzyme that produces DHG, CN(-), and CO at three well-differentiated catalytic sites. We also speculate that homocysteine, cysteine, or a related ligand could be involved in Fe(CO)x(CN)y transfer to the HydF carrier/scaffold. PMID:26699472

  9. Purification of Hydrogenase from Chlamydomonas reinhardtii1

    PubMed Central

    Roessler, Paul G.; Lien, Stephen

    1984-01-01

    A method is described which results in a 2750-fold purification of hydrogenase from Chlamydomonas reinhardtii, yielding a preparation which is approximately 40% pure. With a saturating amount of ferredoxin as the electron mediator, the specific activity of pure enzyme was calculated to be 1800 micromoles H2 produced per milligram protein per minute. The molecular weight was determined to be 4.5 × 104 by gel filtration and 4.75 × 104 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme has an abundance of acidic side groups, contains iron, and has an activation energy of 55.1 kilojoules per mole for H2 production; these properties are similar to those of bacterial hydrogenases. The enzyme is less thermally stable than most bacterial hydrogenases, however, losing 50% of its activity in 1 hour at 55°C. The Km of purified hydrogenase for ferredoxin is 10 micromolar, and the binding of these proteins to each other is enhanced under slightly acidic conditions. Purified hydrogenase also accepts electrons from a variety of artificial electron mediators, including sodium metatungstate, sodium silicotungstate, and several viologen dyes. A lag period is frequently observed before maximal activity is expressed with these artificial electron mediators, although the addition of sodium thiosulfate at least partially overcomes this lag. Images Fig. 2 PMID:16663691

  10. Cobaloxime-based artificial hydrogenases.

    PubMed

    Bacchi, Marine; Berggren, Gustav; Niklas, Jens; Veinberg, Elias; Mara, Michael W; Shelby, Megan L; Poluektov, Oleg G; Chen, Lin X; Tiede, David M; Cavazza, Christine; Field, Martin J; Fontecave, Marc; Artero, Vincent

    2014-08-01

    Cobaloximes are popular H2 evolution molecular catalysts but have so far mainly been studied in nonaqueous conditions. We show here that they are also valuable for the design of artificial hydrogenases for application in neutral aqueous solutions and report on the preparation of two well-defined biohybrid species via the binding of two cobaloxime moieties, {Co(dmgH)2} and {Co(dmgBF2)2} (dmgH2 = dimethylglyoxime), to apo Sperm-whale myoglobin (SwMb). All spectroscopic data confirm that the cobaloxime moieties are inserted within the binding pocket of the SwMb protein and are coordinated to a histidine residue in the axial position of the cobalt complex, resulting in thermodynamically stable complexes. Quantum chemical/molecular mechanical docking calculations indicated a coordination preference for His93 over the other histidine residue (His64) present in the vicinity. Interestingly, the redox activity of the cobalt centers is retained in both biohybrids, which provides them with the catalytic activity for H2 evolution in near-neutral aqueous conditions. PMID:25029381

  11. [NiFe] hydrogenases: how close do structural and functional mimics approach the active site?

    PubMed

    Kaur-Ghumaan, Sandeep; Stein, Matthias

    2014-07-01

    Hydrogen is being considered as a versatile alternative fuel with the ever increasing energy demand and oil prices. Hydrogenases (H2ases) found in bacteria, archaea and eukaryotes are very efficient catalysts for biological hydrogen production. An important and unique hydrogenase enzyme is the [NiFe] H2ase, with an unusual heterobimetallic site. Since the determination of its crystal structure, a variety of complexes have been synthesised and studied. Bioinspired and biomimetic complexes have been investigated as potential catalysts. So far, of all the reported complexes only a few of them have been found to be catalytically active. Moreover, most of the reports are on the reverse reaction, e.g. proton reduction rather than dihydrogen oxidation. This perspective article therefore reviews the structural and functional aspects of the very recently reported model complexes that mimic the [NiFe] hydrogenase active site either in structure or function or both. PMID:24846119

  12. Hydride transfer and dihydrogen elimination from osmium and ruthenium metalloporphyrin hydrides: Model processes for hydrogenase enzymes and the hydrogen electrode reaction

    SciTech Connect

    Collman, J.P.; Wagenknecht, P.S.; Lewis, N.S.

    1992-07-01

    A series of metalloporphyrin hydride complexes of the type K[M(Por)(L)(H)] (M - Ru, Os; Por - OEP, TMP; L = THF, *Im, PPh{sub 3}, pyridine) has been synthesized by stoichiometric protonation of the corresponding K{sub 2}[M(Por)], followed by addition of L. The addition of excess acids to these hydrides resulted in the elimination of dihydrogen. The kinetics showed no evidence for a bimolecular mechanism for this process and suggest simple protonation of the metal-hydride bond followed by dihydrogen loss. One-electron oxidation of the metal hydrides also resulted in dihydrogen formation. The kinetics of the oxidatively induced hydrogen evolution step from K[Ru(OEP)(THF)(H)] were examined and indicate a biomolecular mechanism in which two metal hydrides reductively eliminate one dihydrogen molecule. The rate constant was determined to be 88 {+-} 14 M{sup -1} s{sup -1}. These reaction mechanisms are discussed in the context of designing bimetallic proton reduction catalysts. The metal hydride K[Ru(OEP)(THF)(H)], was also synthesized by heterolytic activation of H{sub 2}. This hydride is a good one-electron reductant (-1.15 V vs FeCp{sub 2}) and is capable of reducing, by hydride transfer, the NAD{sup +} analogue, 1-benzyl-N,N-diethyl-nicotinamide. This nicotinamide reduction by a hydride formed from heterolytic dihydrogen activation is suggested as the mechanism for hydrogenase enzymes. 38 refs., 4 figs., 3 tabs.

  13. The [NiFe]-Hydrogenase of Pyrococcus furiosus Exhibits a New Type of Oxygen Tolerance.

    PubMed

    Kwan, Patrick; McIntosh, Chelsea L; Jennings, David P; Hopkins, R Chris; Chandrayan, Sanjeev K; Wu, Chang-Hao; Adams, Michael W W; Jones, Anne K

    2015-10-28

    We report the first direct electrochemical characterization of the impact of oxygen on the hydrogen oxidation activity of an oxygen-tolerant, group 3, soluble [NiFe]-hydrogenase: hydrogenase I from Pyrococcus furiosus (PfSHI), which grows optimally near 100 C. Chronoamperometric experiments were used to probe the sensitivity of PfSHI hydrogen oxidation activity to both brief and prolonged exposure to oxygen. For experiments between 15 and 80 C, following short (<200 s) exposure to 14 ?M O2 under oxidizing conditions, PfSHI always maintains some fraction of its initial hydrogen oxidation activity; i.e., it is oxygen-tolerant. Reactivation experiments show that two inactive states are formed by interaction with oxygen and both can be quickly (<150 s) reactivated. Analogous experiments, in which the interval of oxygen exposure is extended to 900 s, reveal that the response is highly temperature-dependent. At 25 C, under sustained 1% O2/ 99% H2 exposure, the H2oxidation activity drops nearly to zero. However, at 80 C, up to 32% of the enzyme's oxidation activity is retained. Reactivation of PfSHI following sustained exposure to oxygen occurs on a much longer time scale (tens of minutes), suggesting that a third inactive species predominates under these conditions. These results stand in contrast to the properties of oxygen-tolerant, group 1 [NiFe]-hydrogenases, which form a single state upon reaction with oxygen, and we propose that this new type of hydrogenase should be referred to as oxygen-resilient. Furthermore, PfSHI, like other group 3 [NiFe]-hydrogenases, does not possess the proximal [4Fe3S] cluster associated with the oxygen tolerance of some group 1 enzymes. Thus, a new mechanism is necessary to explain the observed oxygen tolerance in soluble, group 3 [NiFe]-hydrogenases, and we present a model integrating both electrochemical and spectroscopic results to define the relationships of these inactive states. PMID:26436715

  14. Step barrier for interlayer diffusion in Fe/Fe(100) epitaxial growth

    NASA Astrophysics Data System (ADS)

    Amar, Jacques G.; Family, Fereydoon

    1995-11-01

    The interlayer diffusoin barrier for Fe/Fe(100) deposition is estimated by comparing the results of kinetic Monte Carlo simulations with experimental results in the first few monolayers of growth. We find that, in contrast to previous theoretical estimates for other systems, the step barrier for Fe/Fe(100) is small in comparison with the activation energy for diffusion on a flat terrace (0.454 eV). Our results resolve a long-standing controversy and provide quantiative support for the conjecture that the existence of mounds in this system is due to a finite positive step barrier.

  15. Evolutionary Significance of an Algal Gene Encoding an [FeFe]-Hydrogenase with F-Domain Homology and Hydrogenase Activity in Chlorella Variabilis NC64A

    SciTech Connect

    Meuser, J. E.; Boyd, E. S.; Ananyev, G.; Karns, D.; Radakovits, R.; Murthy, U. M. N.; Ghirardi, M. L.; Dismukes, G. C.; Peters, J. W.; Posewitz, M. C.

    2011-10-01

    [FeFe]-hydrogenases (HYDA) link the production of molecular H{sub 2} to anaerobic metabolism in many green algae. Similar to Chlamydomonas reinhardtii, Chlorella variabilis NC64A (Trebouxiophyceae, Chlorophyta) exhibits [FeFe]-hydrogenase (HYDA) activity during anoxia. In contrast to C. reinhardtii and other chlorophycean algae, which contain hydrogenases with only the HYDA active site (H-cluster), C. variabilis NC64A is the only known green alga containing HYDA genes encoding accessory FeS cluster-binding domains (F-cluster). cDNA sequencing confirmed the presence of F-cluster HYDA1 mRNA transcripts, and identified deviations from the in silico splicing models. We show that HYDA activity in C. variabilis NC64A is coupled to anoxic photosynthetic electron transport (PSII linked, as well as PSII-independent) and dark fermentation. We also show that the in vivo H{sub 2}-photoproduction activity observed is as O2 sensitive as in C. reinhardtii. The two C. variabilis NC64A HYDA sequences are similar to homologs found in more deeply branching bacteria (Thermotogales), diatoms, and heterotrophic flagellates, suggesting that an F-cluster HYDA is the ancestral enzyme in algae. Phylogenetic analysis indicates that the algal HYDA H-cluster domains are monophyletic, suggesting that they share a common origin, and evolved from a single ancestral F-cluster HYDA. Furthermore, phylogenetic reconstruction indicates that the multiple algal HYDA paralogs are the result of gene duplication events that occurred independently within each algal lineage. Collectively, comparative genomic, physiological, and phylogenetic analyses of the C. variabilis NC64A hydrogenase has provided new insights into the molecular evolution and diversity of algal [FeFe]-hydrogenases.

  16. The hydrogen-tritium exchange activity of Megasphaera elsdenii hydrogenase.

    PubMed

    Doherty, G M; Mayhew, S G

    1992-04-01

    The hydrogenase of Megasphaera elsdenii was purified to a specific activity of 350 units/mg. The hydrogen-tritium exchange assay of Hallahan et al. [Hallahan, D.L., Fernandez, V. M., Hatchikian, E. C. and Hall, D. O. (1986) Biochimie (Paris) 68, 49-54] was adapted to allow its use in the study of the M. elsdenii hydrogenase preparation. Under the assay conditions routinely employed, the enzyme's exchange activity was inhibited by Tris/HCl and MgCl2; it was stimulated by ethylene glycol. Maximal activity in this standard assay occurred at pH 7.1. The effect of the concentration of molecular hydrogen (1H2 plus 3H1H) on the exchange activity was studied. The resulting double-reciprocal plot was linear; its slope and its intercepts on the ordinate and abscissa were pH-dependent. The rate equations for a number of models of the exchange activity were derived. Each model gave rise to a linear double-reciprocal plot at constant pH, but none could explain fully the observed effects of varying pH. The experimental data corresponded most closely to the predictions of models in which protons were treated both as substrates and as regulators of the enzyme's activity. PMID:1555573

  17. Merging [FeFe]-hydrogenases with materials and nanomaterials as biohybrid catalysts for solar H II production

    NASA Astrophysics Data System (ADS)

    King, Paul W.; Svedruzic, Drazenka; Hambourger, Michael; Gervaldo, Miguel; McDonald, Tim; Blackburn, Jeff; Heben, Michael; Gust, Devens; Moore, Ana L.; Moore, Thomas A.; Ghirardi, Maria L.

    2007-09-01

    The catalysts commonly used for the H II producing reaction in artificial solar systems are typically platinum or particulate platinum composites. Biological catalysts, the hydrogenases, exist in a wide-variety of microbes and are biosynthesized from abundant, non-precious metals. By virtue of a unique catalytic metallo-cluster that is composed of iron and sulfur, [FeFe]-hydrogenases are capable of catalyzing H II production at turnover rates of millimoles-per-second. In addition, these biological catalysts possess some of the characteristics that are desired for cost-effective solar H II production systems, high solubilities in aqueous solutions and low activation energies, but are sensitive to CO and O II. We are investigating ways to merge [FeFe]-hydrogenases with a variety of organic materials and nanomaterials for the fabrication of electrodes and biohybrids as catalysts for use in artificial solar H II production systems. These efforts include designs that allow for the integration of [FeFe]-hydrogenase in dye-solar cells as models to measure solar conversion and H II production efficiencies. In support of a more fundamental understanding of [FeFe]-hydrogenase for these and other applications the role of protein structure in catalysis is being investigated. Currently there is little known about the mechanism of how these and other enzymes couple multi-electron transfer to proton reduction. To further the mechanistic understanding of [FeFe]-hydrogenases, structural models for substrate transfer are being used to create enzyme variants for biochemical analysis. Here results are presented on investigations of proton-transfer pathways in [FeFe]-hydrogenase and their interaction with single-walled carbon nanotubes.

  18. ASSESSING SHOOT-ROOT COMMUNICATION IN THE REGULATION OF IRON HOMEOSTASIS IN THE FEFE MELON MUTANT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fefe mutant of musk melon exhibits characteristics of iron deficiency such as interveinal chlorosis of leaves, retarded growth, and finally death unless supplemental Fe is provided. The seedlings have normal green cotyledons but the first true leaves are yellow with green veins. To determine the...

  19. A broad survey reveals substitution tolerance of residues ligating FeS clusters in [NiFe] hydrogenase

    PubMed Central

    2014-01-01

    Background In order to understand the effects of FeS cluster attachment in [NiFe] hydrogenase, we undertook a study to substitute all 12 amino acid positions normally ligating the three FeS clusters in the hydrogenase small subunit. Using the hydrogenase from Alteromonas macleodii “deep ecotype” as a model, we substituted one of four amino acids (Asp, His, Asn, Gln) at each of the 12 ligating positions because these amino acids are alternative coordinating residues in otherwise conserved-cysteine positions found in a broad survey of NiFe hydrogenase sequences. We also hoped to discover an enzyme with elevated hydrogen evolution activity relative to a previously reported “G1” (H230C/P285C) improved enzyme in which the medial FeS cluster Pro and the distal FeS cluster His were each substituted for Cys. Results Among all the substitutions screened, aspartic acid substitutions were generally well-tolerated, and examination suggests that the observed deficiency in enzyme activity may be largely due to misprocessing of the small subunit of the enzyme. Alignment of hydrogenase sequences from sequence databases revealed many rare substitutions; the five substitutions present in databases that we tested all exhibited measurable hydrogen evolution activity. Select substitutions were purified and tested, supporting the results of the screening assay. Analysis of these results confirms the importance of small subunit processing. Normalizing activity to quantity of mature small subunit, indicative of total enzyme maturation, weakly suggests an improvement over the “G1” enzyme. Conclusions We have comprehensively screened 48 amino acid substitutions of the hydrogenase from A. macleodii “deep ecotype”, to understand non-canonical ligations of amino acids to FeS clusters and to improve hydrogen evolution activity of this class of hydrogenase. Our studies show that non-canonical ligations can be functional and also suggests a new limiting factor in the production of active enzyme. PMID:24934472

  20. Mechanism of H2 production by the [FeFe]H subcluster of di-iron hydrogenases: implications for abiotic catalysts.

    PubMed

    Sbraccia, Carlo; Zipoli, Federico; Car, Roberto; Cohen, Morrel H; Dismukes, G Charles; Selloni, Annabella

    2008-10-23

    To explore the possibility that the active center of the di-iron hydrogenases, the [FeFe] H subcluster, can serve by itself as an efficient hydrogen-producing catalyst, we perform comprehensive calculations of the catalytic properties of the subcluster in vacuo using first principles density functional theory. For completeness, we examine all nine possible geometrical isomers of the Fe(II)Fe(I) active-ready state and report in detail on the relevant ones that lead to the production of H 2. These calculations, carried out at the generalized gradient approximation level, indicate that the most efficient catalytic site in the isolated [FeFe] H subcluster is the Fe d center distal (d) to the [4Fe-4S] H cluster; the other iron center site, the proximal Fe p, also considered in this study, has much higher energy barriers. The pathways with the most favorable kinetics (lowest energy barrier to reaction) proceed along configurations with a CO ligand in a bridging position. The most favorable of these CO-bridging pathways start from isomers where the distal CN (-) ligand is in up position, the vacancy V in down position, and the remaining distal CO is either cis or trans with respect to the proximal CO. These isomers, not observed in the available enzyme X-ray structures, are only marginally less stable than the most stable nonbridging Fe d-CO-terminal isomer. Our calculations indicate that this CO-bridging CN-up isomer has a small barrier to production of H 2 that is compatible with the observed rate for the enzyme. These results suggest that catalysis of H 2 production could proceed on this stereochemically modified [FeFe] H subcluster alone, thus offering a promising target for functional bioinspired catalyst design. PMID:18826265

  1. Purification and Properties of a Hydrogenase from Desulfovibrio vulgaris1

    PubMed Central

    Haschke, Richard H.; Campbell, L. Leon

    1971-01-01

    The soluble hydrogenase of Desulfovibrio vulgaris was purified and some of its properties are described. The molecular weight was determined for the enzyme by sedimentation equilibrium (45,400) and amino acid analysis (44,800). The hydrogenase appears to be a loosely coiled molecule or to have a high axial ratio, which is reflected in an unusually low sedimentation coefficient (2.58S) and a low diffusion coefficient (D 5.85). The molecular weight of the hydrogenase (41,000), as calculated by the Svedberg equation, was in general agreement with the sedimentation equilibrium molecular weight. Amino acid analysis revealed the presence of six halfcystine residues per mole of enzyme and a total of 417 amino acid residues. The specificity of the hydrogenase and its capacity to reduce certain low potential dyes and cytochrome c3 was studied. Metal analysis of the hydrogenase indicated the presence of 1 mole of ferrous iron per mole of enzyme. Images PMID:5541010

  2. Transcriptomic and physiological characterization of the fefe mutant of melon (Cucumis melo) reveals new aspects of iron–copper crosstalk

    PubMed Central

    Waters, Brian M.; McInturf, Samuel A.; Amundsen, Keenan

    2014-01-01

    Summary Iron (Fe) and copper (Cu) homeostasis are tightly linked across biology. In previous work, Fe deficiency interacted with Cu regulated genes and stimulated Cu accumulation. The C940-fe (fefe) Fe uptake mutant of melon (Cucumis melo) was characterized, and the fefe mutant was used to test whether Cu deficiency could stimulate Fe uptake. Wild type and fefe mutant transcriptomes were determined by RNA-seq under Fe and Cu deficiency. FeFe regulated genes included core Fe uptake, metal homeostasis, and transcription factor genes. Numerous genes were regulated by both Fe and Cu. The fefe mutant was rescued by high Fe or by Cu deficiency, which stimulated ferric-chelate reductase activity, FRO2 expression, and Fe accumulation. Accumulation of Fe in Cu deficient plants was independent of the normal Fe uptake system. One of the four FRO genes in the melon and cucumber (Cucumis sativus) genomes was Fe regulated, and one was Cu regulated. Simultaneous Fe and Cu deficiency synergistically upregulated Fe uptake gene expression. Overlap in Fe and Cu deficiency transcriptomes highlights the importance of Fe– Cu crosstalk in metal homeostasis. The fefe gene is not orthologous to FIT, thus identification of this gene will provide clues to help understand regulation of Fe uptake in plants. PMID:24975482

  3. Induction of Photosynthetic Carbon Fixation in Anoxia Relies on Hydrogenase Activity and Proton-Gradient Regulation-Like1-Mediated Cyclic Electron Flow in Chlamydomonas reinhardtii.

    PubMed

    Godaux, Damien; Bailleul, Benjamin; Berne, Nicolas; Cardol, Pierre

    2015-06-01

    The model green microalga Chlamydomonas reinhardtii is frequently subject to periods of dark and anoxia in its natural environment. Here, by resorting to mutants defective in the maturation of the chloroplastic oxygen-sensitive hydrogenases or in Proton-Gradient Regulation-Like1 (PGRL1)-dependent cyclic electron flow around photosystem I (PSI-CEF), we demonstrate the sequential contribution of these alternative electron flows (AEFs) in the reactivation of photosynthetic carbon fixation during a shift from dark anoxia to light. At light onset, hydrogenase activity sustains a linear electron flow from photosystem II, which is followed by a transient PSI-CEF in the wild type. By promoting ATP synthesis without net generation of photosynthetic reductants, the two AEF are critical for restoration of the capacity for carbon dioxide fixation in the light. Our data also suggest that the decrease in hydrogen evolution with time of illumination might be due to competition for reduced ferredoxins between ferredoxin-NADP(+) oxidoreductase and hydrogenases, rather than due to the sensitivity of hydrogenase activity to oxygen. Finally, the absence of the two alternative pathways in a double mutant pgrl1 hydrogenase maturation factor G-2 is detrimental for photosynthesis and growth and cannot be compensated by any other AEF or anoxic metabolic responses. This highlights the role of hydrogenase activity and PSI-CEF in the ecological success of microalgae in low-oxygen environments. PMID:25931521

  4. Biomimetic assembly and activation of [FeFe]-hydrogenases.

    PubMed

    Berggren, G; Adamska, A; Lambertz, C; Simmons, T R; Esselborn, J; Atta, M; Gambarelli, S; Mouesca, J-M; Reijerse, E; Lubitz, W; Happe, T; Artero, V; Fontecave, M

    2013-07-01

    Hydrogenases are the most active molecular catalysts for hydrogen production and uptake, and could therefore facilitate the development of new types of fuel cell. In [FeFe]-hydrogenases, catalysis takes place at a unique di-iron centre (the [2Fe] subsite), which contains a bridging dithiolate ligand, three CO ligands and two CN(-) ligands. Through a complex multienzymatic biosynthetic process, this [2Fe] subsite is first assembled on a maturation enzyme, HydF, and then delivered to the apo-hydrogenase for activation. Synthetic chemistry has been used to prepare remarkably similar mimics of that subsite, but it has failed to reproduce the natural enzymatic activities thus far. Here we show that three synthetic mimics (containing different bridging dithiolate ligands) can be loaded onto bacterial Thermotoga maritima HydF and then transferred to apo-HydA1, one of the hydrogenases of Chlamydomonas reinhardtii algae. Full activation of HydA1 was achieved only when using the HydF hybrid protein containing the mimic with an azadithiolate bridge, confirming the presence of this ligand in the active site of native [FeFe]-hydrogenases. This is an example of controlled metalloenzyme activation using the combination of a specific protein scaffold and active-site synthetic analogues. This simple methodology provides both new mechanistic and structural insight into hydrogenase maturation and a unique tool for producing recombinant wild-type and variant [FeFe]-hydrogenases, with no requirement for the complete maturation machinery. PMID:23803769

  5. Hydrogenase in actinorhizal root nodules and root nodule homogenates.

    PubMed Central

    Benson, D R; Arp, D J; Burris, R H

    1980-01-01

    Hydrogenases were measured in intact actinorhizal root nodules and from disrupted nodules of Alnus glutinosa, Alnus rhombifolia, Alnus rubra, and Myrica pensylvanica. Whole nodules took up H2 in an O2-dependent reaction. Endophyte preparations oxidized H2 through the oxyhydrogen reaction, but rates were enhanced when hydrogen uptake was coupled to artificial electron acceptors. Oxygen inhibited artifical acceptor-dependent H2 uptake. The hydrogenase system from M. pensylvanica had a different pattern of coupling to various electron acceptors than the hydrogenase systems from the alders; only the bayberry system evolved H2 from reduced viologen dyes. PMID:6989799

  6. Effect of exchange interaction in dumbbell Fe-Fe pairs on the curie temperature of the rhombohedral Gd2Fe17 phase

    NASA Astrophysics Data System (ADS)

    Medvedev, M. V.; Nekrasov, I. A.

    2015-05-01

    One of important problems of improving the magnetic properties of technologically promicing intermetallics R 2Fe17 ( R is rare-earth metal) with high Fe contents is related to the increase in the Curie temperature T C. There is a hypothesis on the possibility of a marked increase in T C of the alloys, which can be achieved via the synthesis of systems characterized by pairs of atoms coupled by strong exchange interaction similar to that for Fe-Fe pairs situated in the so-called dumbbell position in the R 2Fe17 systems. In the present study, based on an example of the rhombohedral Gd2Fe17 phase, it was shown in terms of a classical nearest-neighbor spin Heisenberg model that changes in the exchange interaction for a dimer pair of dumbbell Fe-Fe atoms from zero to infinitely large lead to no more than 10% increase in T C. Thus, the creation of ferromagnetic systems characterized by dimers of magnetic atoms coupled by strong short-range exchange interaction, which, in this case, do not form an infinite magnetic cluster, cannot increase radically the Curie temperature T C.

  7. Force Field Development and Molecular Dynamics of [NiFe] Hydrogenase

    SciTech Connect

    Smith, Dayle MA; Xiong, Yijia; Straatsma, TP; Rosso, Kevin M.; Squier, Thomas C.

    2012-05-09

    Classical molecular force-field parameters describing the structure and motion of metal clusters in [NiFe] hydrogenase enzymes can be used to compare the dynamics and thermodynamics of [NiFe] under different oxidation, protonation, and ligation circumstances. Using density functional theory (DFT) calculations of small model clusters representative of the active site and the proximal, medial, and distal Fe/S metal centers and their attached protein side chains, we have calculated classical force-field parameters for [NiFe] in reduced and oxidized states, including internal coordinates, force constants, and atom-centered charges. Derived force constants revealed that cysteinate ligands bound to the metal ions are more flexible in the Ni-B active site, which has a bridging hydroxide ligand, than in the Ni-C active site, which has a bridging hydride. Ten nanosecond all-atom, explicit-solvent MD simulations of [NiFe] hydrogenase in oxidized and reduced catalytic states established the stability of the derived force-field parameters in terms of C{alpha} and metal cluster fluctuations. Average active site structures from the protein MD simulations are consistent with [NiFe] structures from the Protein Data Bank, suggesting that the derived force-field parameters are transferrable to other hydrogenases beyond the structure used for testing. A comparison of experimental H{sub 2}-production rates demonstrated a relationship between cysteinate side chain rotation and activity, justifying the use of a fully dynamic model of [NiFe] metal cluster motion.

  8. Optimized Expression and Purification for High-Activity Preparations of Algal [FeFe]-Hydrogenase

    SciTech Connect

    Yacoby, I.; Tegler, L. T.; Pochekailov, S.; Zhang, S.; King, P. W.

    2012-04-01

    Recombinant expression and purification of metallo-enzymes, including hydrogenases, at high-yields is challenging due to complex, and enzyme specific, post-translational maturation processes. Low fidelities of maturation result in preparations containing a significant fraction of inactive, apo-protein that are not suitable for biophysical or crystallographic studies. We describe the construction, overexpression and high-yield purification of a fusion protein consisting of the algal [2Fe2S]-ferredoxin PetF (Fd) and [FeFe]-hydrogenase HydA1. The maturation of Fd-HydA1 was optimized through improvements in culture conditions and media components used for expression. We also demonstrated that fusion of Fd to the N-terminus of HydA1, in comparison to the C-terminus, led to increased expression levels that were 4-fold higher. Together, these improvements led to enhanced HydA1 activity and improved yield after purification. The strong binding-affinity of Fd for DEAE allowed for two-step purification by ion exchange and StrepTactin affinity chromatography. In addition, the incorporation of a TEV protease site in the Fd-HydA1 linker allowed for the proteolytic removal of Fd after DEAE step, and purification of HydA1 alone by StrepTactin. In combination, this process resulted in HydA1 purification yields of 5 mg L{sup -1} of culture from E. coli with specific activities of 1000 U (U = 1 {micro}mol hydrogen evolved mg{sup -1} min{sup -1}). The [FeFe]-hydrogenases are highly efficient enzymes and their catalytic sites provide model structures for synthetic efforts to develop robust hydrogen activation catalysts. In order to characterize their structure-function properties in greater detail, and to use hydrogenases for biotechnological applications, reliable methods for rapid, high-yield expression and purification are required.

  9. Resonant inelastic X-ray scattering on synthetic nickel compounds and Ni-Fe hydrogenase protein

    NASA Astrophysics Data System (ADS)

    Sanganas, Oliver; Lscher, Simone; Pfirrmann, Stefan; Marinos, Nicolas; Glatzel, Pieter; Weng, Tsu-Chien; Limberg, Christian; Driess, Matthias; Dau, Holger; Haumann, Michael

    2009-11-01

    Ni-Fe hydrogenases are proteins catalyzing the oxidative cleavage of dihydrogen (H2) and proton reduction to H2 at high turnover rates. Their active site is a heterobimetallic center comprising one Ni and one Fe atom. To understand the function of the site, well resolved structural and electronic information is required. Such information is expected to become accessible by high resolution X-ray absorption and emission techniques, which are rapidly developing at third generation synchrotron radiation sources. We studied a number of synthetic Ni compounds, which mimic relevant features of the Ni site in hydrogenases, and the Ni site in the soluble, NAD-reducing hydrogenase (SH) from the bacterium Ralstonia eutropha by resonant inelastic X-ray scattering (RIXS) using a Rowland-type spectrometer at the ESRF. The SH is particularly interesting because its H2-cleavage reaction is highly resistant against inhibition by O2. K?-fluorescence detected RIXS planes in the 1s?3d region of the X-ray absorption spectrum were recorded on the protein which allow to extract L3-edge type spectra Spectral features of the protein are compared to those of the model compounds.

  10. Synthesis of the H-cluster framework of iron-only hydrogenase.

    PubMed

    Tard, Cdric; Liu, Xiaoming; Ibrahim, Saad K; Bruschi, Maurizio; De Gioia, Luca; Davies, Sin C; Yang, Xin; Wang, Lai-Sheng; Sawers, Gary; Pickett, Christopher J

    2005-02-10

    The metal-sulphur active sites of hydrogenases catalyse hydrogen evolution or uptake at rapid rates. Understanding the structure and function of these active sites--through mechanistic studies of hydrogenases, synthetic assemblies and in silico models--will help guide the design of new materials for hydrogen production or uptake. Here we report the assembly of the iron-sulphur framework of the active site of iron-only hydrogenase (the H-cluster), and show that it functions as an electrocatalyst for proton reduction. Through linking of a di-iron subsite to a {4Fe4S} cluster, we achieve the first synthesis of a metallosulphur cluster core involved in small-molecule catalysis. In addition to advancing our understanding of the natural biological system, the availability of an active, free-standing analogue of the H-cluster may enable us to develop useful electrocatalytic materials for application in, for example, reversible hydrogen fuel cells. (Platinum is currently the preferred electrocatalyst for such applications, but is expensive, limited in availability and, in the long term, unsustainable.). PMID:15703741

  11. Activation and de novo synthesis of hydrogenase in chlamydomonas.

    PubMed

    Roessler, P G; Lien, S

    1984-12-01

    Two distinct processes are involved in the formation of active hydrogenase during anaerobic adaptation of Chlamydomonas reinhardtii cells. In the first 30 minutes of anaerobiosis, nearly all of the hydrogenase activity can be attributed to activation of a constituitive polypeptide precursor, based on the insensitivity of the process to treatment with cycloheximide (15 micrograms per milliliter). This concentration of cycloheximide inhibits protein synthesis by greater than 98%. After the initial activation period, de novo protein synthesis plays a critical role in the adaptation process since cycloheximide inhibits the expression of hydrogense in maximally adapted cells by 70%. Chloramphenicol (500 micrograms per milliliter) has a much lesser effect on the adaptation process.Incubation of cell-free extracts under anaerobic conditions in the presence of dithionite, dithiothreitol, NADH, NADP, ferredoxin, ATP, Mg(2+), Ca(2+), and iron does not lead to active hydrogenase formation. Futhermore, in vivo reactivation of oxygen-inactivated hydrogenase does not appear to take place.The adaptation process is very sensitive to the availability of iron. Iron-deficient cultures lose the ability to form active hydrogenase before growth, photosynthesis, and respiration are significantly affected. Preincubation of iron-deficient cells with iron 2 hours prior to the adaptation period fully restores the capacity of the cells to synthesize functional hydrogenase. PMID:16663954

  12. Fabrication and physical properties of [Fe/Fe4N]N multilayers with high saturation magnetization

    NASA Astrophysics Data System (ADS)

    Yu, B.; Lin, L.; Ma, B.; Zhang, Z. Z.; Jin, Q. Y.; Wang, J. P.

    2016-05-01

    [Fe/Fe4N]N multilayers with high saturation magnetization were prepared on MgO(200) substrate, by the DC reactive magnetron sputtering and then annealed at higher temperature. Their structural and magnetic properties were investigated. Epitaxial growth of α-Fe and γ'-Fe4N were demonstrated on MgO, and then excellent [Fe/Fe4N]N was obtained. Though the saturation magnetizations of the as-deposited [Fe/Fe4N]N are slightly below the average value of those of α-Fe and γ'-Fe4N, the saturation magnetization of the annealed [Fe(3.04 nm)/Fe4N(3.04 nm)]5 increases up to 1850 emu/cc, 32 % larger than that of α-Fe film. N atom diffusion from the γ'-Fe4N to the α-Fe layer at high temperature greatly improves the saturation magnetization.

  13. [FeFe]-hydrogenases and photobiological hydrogen production

    NASA Astrophysics Data System (ADS)

    Ghirardi, Maria L.; Cohen, Jordi; King, Paul; Schulten, Klaus; Kim, Kwiseon; Seibert, Michael

    2006-08-01

    The promise of efficient, economic and renewable H II photoproduction from water can potentially be met by green algae. These organisms are able to functionally link photosynthetic water oxidation to the catalytic recombination of protons and electrons to generate H II gas through the activity of the hydrogenase enzyme. Green algal hydrogenases contain a unique metallo-catalytic H-cluster that performs the reversible H II oxidation /evolution reactions. The H-cluster, located in the interior of the protein structure is irreversibly inactivated by O II, the by-product of water oxidation. We developed an Escherichi coli expression system to produce [FeFe]-hydrogenases from different biological sources and demonstrated that clostridial [FeFe]-hydrogenases have higher tolerance to O II inactivation compared to their algal counterparts. We have been using computational simulations of gas diffusion within the Clostridium pasteurianum CpI hydrogenase to identify the pathways through which O II can reach its catalytic site. Subsequently, we modify the protein structure at specific sites along the O II pathways (identified by the computational simulations) by site-directed mutagenesis with the goal of generating recombinant enzymes with higher O II tolerance. In this paper, we review the computational simulation work and report on preliminary results obtained through this strategy.

  14. Aerobic purification of hydrogenase from Rhizobium japonicum by affinity chromatography.

    PubMed Central

    Stults, L W; Moshiri, F; Maier, R J

    1986-01-01

    We purified active hydrogenase from free-living Rhizobium japonicum by affinity chromatography. The uptake hydrogenase of R. japonicum has been treated previously as an oxygen-sensitive protein. In this purification, however, reducing agents were not added nor was there any attempt to exclude oxygen. In fact, the addition of sodium dithionite to aerobically purified protein resulted in the rapid loss of activity. Purified hydrogenase was more stable when stored under O2 than when stored under Ar. Sodium-chloride-washed hydrogen-oxidizing membranes were solubilized in Triton X-100 and deoxycholate and loaded onto a reactive red 120-agarose column. Purified hydrogenase elutes at 0.36 M NaCl, contains a nickel, and has a pH optimum of 6.0. There was 452-fold purification resulting in a specific activity of 76.9 mumol of H2 oxidized per min per mg of protein and a yield of 17%. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed subunits with estimated molecular weights of 65,000 and 33,000. Hydrogenase prepared in this manner was used to raise and affinity purify antibodies against both subunits. Images PMID:3519580

  15. Solar powered biohydrogen production requires specific localization of the hydrogenase

    DOE PAGESBeta

    Burroughs, Nigel J.; Boehm, Marko; Eckert, Carrie; Mastroianni, Giulia; Spence, Edward M.; Yu, Jianfeng; Nixon, Peter J.; Appel, Jens; Mullineaux, Conrad W.; Bryan, Samantha J.

    2014-09-04

    Cyanobacteria contain a bidirectional [NiFe] hydrogenase which transiently produces hydrogen upon exposure of anoxic cells to light, potentially acting as a “valve” releasing excess electrons from the electron transport chain. However, its interaction with the photosynthetic electron transport chain remains unclear. By GFP-tagging the HoxF diaphorase subunit we show that the hydrogenase is thylakoid associated, comprising a population dispersed uniformly through the thylakoids and a subpopulation localized to discrete puncta in the distal thylakoid. Thylakoid localisation of both the HoxH and HoxY hydrogenase subunits is confirmed by immunogold electron microscopy. The diaphorase HoxE subunit is essential for recruitment to themore » dispersed thylakoid population, potentially anchoring the hydrogenase to the membrane, but aggregation to puncta occurs through a distinct HoxE-independent mechanism. Membrane association does not require NDH-1. Localization is dynamic on a scale of minutes, with anoxia and high light inducing a significant redistribution between these populations in favour of puncta. Lastly, since HoxE is essential for access to its electron donor, electron supply to the hydrogenase depends on a physiologically controlled localization, potentially offering a new avenue to enhance photosynthetic hydrogen production by exploiting localization/aggregation signals.« less

  16. Solar powered biohydrogen production requires specific localization of the hydrogenase

    SciTech Connect

    Burroughs, Nigel J.; Boehm, Marko; Eckert, Carrie; Mastroianni, Giulia; Spence, Edward M.; Yu, Jianfeng; Nixon, Peter J.; Appel, Jens; Mullineaux, Conrad W.; Bryan, Samantha J.

    2014-09-04

    Cyanobacteria contain a bidirectional [NiFe] hydrogenase which transiently produces hydrogen upon exposure of anoxic cells to light, potentially acting as a “valve” releasing excess electrons from the electron transport chain. However, its interaction with the photosynthetic electron transport chain remains unclear. By GFP-tagging the HoxF diaphorase subunit we show that the hydrogenase is thylakoid associated, comprising a population dispersed uniformly through the thylakoids and a subpopulation localized to discrete puncta in the distal thylakoid. Thylakoid localisation of both the HoxH and HoxY hydrogenase subunits is confirmed by immunogold electron microscopy. The diaphorase HoxE subunit is essential for recruitment to the dispersed thylakoid population, potentially anchoring the hydrogenase to the membrane, but aggregation to puncta occurs through a distinct HoxE-independent mechanism. Membrane association does not require NDH-1. Localization is dynamic on a scale of minutes, with anoxia and high light inducing a significant redistribution between these populations in favour of puncta. Lastly, since HoxE is essential for access to its electron donor, electron supply to the hydrogenase depends on a physiologically controlled localization, potentially offering a new avenue to enhance photosynthetic hydrogen production by exploiting localization/aggregation signals.

  17. Roles played by electric field, vertical wind and aurora in the source, formation and evolution of thermospheric Fe/Fe+ layers at high latitudes

    NASA Astrophysics Data System (ADS)

    Yu, Z.; Chu, X.

    2014-12-01

    The least-understood region of 100-200 km is crucial to the thermosphere, ionosphere and space weather. The roles of atmospheric gravity waves in transporting energy and momentum and causing atmospheric and ionospheric disturbances have been recognized by theoretical studies and observations. The thermospheric neutral Fe layers discovered by lidar observations at McMurdo, Antarctica, exhibit well-defined gravity wave signatures in the altitude range of 100-200 km. Another Fe lidar at Davis also observed Fe layers up to at least 150 km with a diurnal period of reoccurrence. These thermospheric metal layers provide an excellent tracer for measuring neutral temperatures and winds in the thermosphere as well as in studying wave dynamics. Our theory argues that the observed Fe layers are a result of coupling of electrodynamical, neutral dynamical and chemical processes. A time-dependent, 1-D, high-latitude Fe/Fe+ model has been developed to simulate the observed Fe layers based on the first principles of physics and chemistry. In this paper, we will provide quantitative analyses of the source, formation and transport of thermospheric Fe atoms and confirm that they are produced by neutralization of converged Fe+. The model shows that gravity-wave-induced wind shears converge Fe+ layers and the wave-induced vertical wind transports Fe layers to form the observed layer shapes. Furthermore, electric field causes upward flow transporting Fe+ ions from the main deposition region into the thermosphere. At the same time, electric field can help converge but can also destroy wind-shear-converged Fe+ layer, depending on the relative phase. In this paper, the competitions between wind-shear and electric field driving forces will be investigated to study the neutral-ion (Fe/Fe+) coupling. Our observational data also show that gravity-wave-driven neutral Fe layers are modulated by longer period waves or tides. These events will also be examined by our numerical model.

  18. Comparative characterization of two distinct hydrogenases from Anabaena sp. strain 7120.

    PubMed Central

    Houchins, J P; Burris, R H

    1981-01-01

    Two distinct hydrogenases, hereafter referred to as "uptake" and "reversible" hydrogenase, were extracted from Anabaena sp. strain 7120 and partially purified. The properties of the two enzymes were compared in cell-free extracts. Uptake hydrogenase was largely particulate, and although membrane bound, it could catalyze an oxyhydrogen reaction. Particulate and solubilized uptake hydrogenase could catalyze H2 uptake with a variety of artificial electron acceptors which had midpoint potentials above 0 mV. Reversible hydrogenase was soluble, could donate electrons rapidly to electron acceptors of both positive and negative midpoint potential, and could evolve H2 rapidly when provided with reduced methyl viologen. Uptake hydrogenase was irreversibly inactivated by O2, whereas reversible hydrogenase was reversibly inactivated and could be reactivated by exposure to dithionite or H2. Reversible hydrogenase was stable to heating at 70 degrees C, but uptake hydrogenase was inactivated with a half-life of 12 min at this temperature. Uptake hydrogenase was eluted from Sephadex G-200 in a single peak of molecular weight 56,000, whereas reversible hydrogenase was eluted in two peaks with molecular weights of 165,000 and 113,000. CO was competitive with H2 for each enzyme; the Ki's for CO were 0.0095 atm for reversible hydrogenase and 0.039 atm for uptake hydrogenase. The pH optima for H2 evolution and H2 uptake by reversible hydrogenase were 6 and 9, respectively. Uptake hydrogenase existed in two forms with pH optima of 6 and 8.5. Both enzymes had very low Km's for H2, and neither was inhibited by C2H2. PMID:6783615

  19. Purification of the membrane-bound hydrogenase of Escherichia coli.

    PubMed Central

    Adams, M W; Hall, D O

    1979-01-01

    The membrane-bound hydrogenase (EC class 1.12) of aerobically grown Escherichia coli cells was solubilized by treatment with deoxycholate and pancreatin. The enzyme was further purified to electrophoretic homogeneity by chromoatographic methods, including hydrophobic-interaction chromatography, with a yield of 10% as judged by activity and an overall purification of 2140-fold. The hydrogenase was a dimer of identical subunits with a mol.wt. of 113,000 and contained 12 iron and 12 acid-labile sulphur atoms per molecule. The epsilon 400 was 49,000M-1 . cm-1. The hydrogenase catalysed both H2 evolution and H2 uptake with a variety of artificial electron carriers, but would not interact with flavodoxin, ferredoxin or nicotinamide and flavin nucleotides. We were unable to identify any physiological electron carrier for the hydrogenase. With Methyl Viologen as the electron carrier, the pH optimum for H2 evolution and H2 uptake was 6.5 and 8.5 respectively. The enzyme was stable for long periods at neutral pH, low temperatures and under anaerobic conditions. The half-life of the hydrogenase under air at room temperature was about 12 h, but it could be stabilized by Methyl Viologen and Benzyl Viologen, both of which are electron carriers for the enzyme, and by bovine serum albumin. The hydrogenase was strongly inhibited by carbon monoxide (Ki = 1870Pa), heavy-metal salts and high concentrations of buffers, but was resistant to inhibition by thiol-blocking and metal-complexing reagents. These aerobically grown E. coli cells lacked formate hydrogenlyase activity and cytochrome c552. PMID:393247

  20. Rhizobitoxine inhibition of hydrogenase synthesis in free-living Bradyrhizobium japonicum.

    PubMed Central

    Minamisawa, K; Fukai, K; Asami, T

    1990-01-01

    Rhizobitoxine produced by Bradyrhizobium species strongly prevented derepression of hydrogenase expression in free-living Bradyrhizobium japonicum, although the toxin had no effect on the activity of cells which had already synthesized hydrogenase protein. Dihydrorhizobitoxine, a structural analog of rhizobitoxine, proved to be a less potent inhibitor of hydrogenase derepression. Rhizobitoxine did not cause cell death at a concentration sufficient to eliminate hydrogenase expression. The large subunit of hydrogenase was not detectable with antibody after derepression in the presence of rhizobitoxine. The general pattern of proteins synthesized from 14C-labeled amino acids during derepression was not significantly different in the presence or absence of rhizobitoxine. These results indicated that rhizobitoxine inhibited hydrogenase synthesis in free-living B. japonicum. Cystathionine and methionine strongly prevented the inhibition of hydrogenase derepression by rhizobitoxine, suggesting that the inhibition involves the level of sulfur-containing amino acids in the cell. Images PMID:2198262

  1. Distribution and activity of hydrogenase enzymes in subsurface sediments

    NASA Astrophysics Data System (ADS)

    Adhikari, R.; Nickel, J.; Glombitza, C.; Spivack, A. J.; D'Hondt, S. L.; Kallmeyer, J.

    2013-12-01

    Metabolically active microbial communities are present in a wide range of subsurface environments. Techniques like enumeration of microbial cells, activity measurements with radiotracer assays and the analysis of porewater constituents are currently being used to explore the subsurface biosphere, alongside with molecular biological analyses. However, many of these techniques reach their detection limits due to low microbial activity and abundance. Direct measurements of microbial turnover not just face issues of insufficient sensitivity, they only provide information about a single specific process rather than an overall microbial activity. Since hydrogenase enzymes are intracellular and ubiquitous in subsurface microbial communities, the enzyme activity represents a measure of total activity of the entire microbial community. A hydrogenase activity assay could quantify total metabolic activity without having to identify specific processes. This would be a major advantage in subsurface biosphere studies, where several metabolic processes can occur simultaneously. We quantified hydrogenase enzyme activity and distribution in sediment samples from different aquatic subsurface environments (Lake Van, Barents Sea, Equatorial Pacific and Gulf of Mexico) using a tritium-based assay. We found enzyme activity at all sites and depths. Volumetric hydrogenase activity did not show much variability between sites and sampling depths, whereas cell-specific activity ranged from 10-5 to 1 nmol H2 cell-1 d-1. Activity was lowest in sediment layers where nitrate was detected. Higher activity was associated with samples in which sulfate was the predominant electron acceptor. We found highest activity in samples from environments with >10 ppm methane in the pore water. The results show that cell-specific hydrogenase enzyme activity increases with decreasing energy yield of the electron acceptor used. It is not possible to convert volumetric or cell-specific hydrogenase activity into a turnover rate of a specific process like sulfate reduction. However, we can use the cell-specific hydrogenase activity to estimate the size of the metabolically active microbial population. The conversion factors vary according to the predominant electron-accepting process. In subsurface sediment standard methods for quantification of the metabolically active microbial population (e.g. CARD-FISH) are at their lower detection limit. The hydrogenase enzyme activity measurement provides an alternative and sensitive way of quantification.

  2. Nanocrystalline Fe-Fe2O3 particle-deposited N-doped graphene as an activity-modulated Pt-free electrocatalyst for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Dhavale, Vishal M.; Singh, Santosh K.; Nadeema, Ayasha; Gaikwad, Sachin S.; Kurungot, Sreekumar

    2015-11-01

    The size-controlled growth of nanocrystalline Fe-Fe2O3 particles (2-3 nm) and their concomitant dispersion on N-doped graphene (Fe-Fe2O3/NGr) could be attained when the mutually assisted redox reaction between NGr and Fe3+ ions could be controlled within the aqueous droplets of a water-in-oil emulsion. The synergistic interaction existing between Fe-Fe2O3 and NGr helped the system to narrow down the overpotential for the oxygen reduction reaction (ORR) by bringing a significant positive shift to the reduction onset potential, which is just 15 mV higher than its Pt-counterpart. In addition, the half-wave potential (E1/2) of Fe-Fe2O3/NGr is found to be improved by a considerable amount of 135 mV in comparison to the system formed by dispersing Fe-Fe2O3 nanoparticles on reduced graphene oxide (Fe-Fe2O3/RGO), which indicates the presence of a higher number of active sites in Fe-Fe2O3/NGr. Despite this, the ORR kinetics of Fe-Fe2O3/NGr are found to be shifted significantly to the preferred 4-electron-transfer pathway compared to NGr and Fe-Fe2O3/RGO. Consequently, the H2O2% was found to be reduced by 78.3% for Fe-Fe2O3/NGr (13.0%) in comparison to Fe-Fe2O3/RGO (51.2%) and NGr (41.0%) at -0.30 V (vs. Hg/HgO). This difference in the yield of H2O2 formed between the systems along with the improvements observed in terms of the oxygen reduction onset and E1/2 in the case of Fe-Fe2O3/NGr reveals the activity modulation achieved for the latter is due to the coexistence of factors such as the presence of the mixed valancies of iron nanoparticles, small size and homogeneous distribution of Fe-Fe2O3 nanoparticles and the electronic modifications induced by the doped nitrogen in NGr. A controlled interplay of these factors looks like worked favorably in the case of Fe-Fe2O3/NGr. As a realistic system level validation, Fe-Fe2O3/NGr was employed as the cathode electrode of a single cell in a solid alkaline electrolyte membrane fuel cell (AEMFC). The system could display an open circuit voltage (OCV) of 0.73 V and maximum power and current densities of 54.40 mW cm-2 and 200 mA cm-2, respectively, which are comparable to the performance characteristics of a similar system derived by using 40 wt% Pt/C as the cathode electrode.The size-controlled growth of nanocrystalline Fe-Fe2O3 particles (2-3 nm) and their concomitant dispersion on N-doped graphene (Fe-Fe2O3/NGr) could be attained when the mutually assisted redox reaction between NGr and Fe3+ ions could be controlled within the aqueous droplets of a water-in-oil emulsion. The synergistic interaction existing between Fe-Fe2O3 and NGr helped the system to narrow down the overpotential for the oxygen reduction reaction (ORR) by bringing a significant positive shift to the reduction onset potential, which is just 15 mV higher than its Pt-counterpart. In addition, the half-wave potential (E1/2) of Fe-Fe2O3/NGr is found to be improved by a considerable amount of 135 mV in comparison to the system formed by dispersing Fe-Fe2O3 nanoparticles on reduced graphene oxide (Fe-Fe2O3/RGO), which indicates the presence of a higher number of active sites in Fe-Fe2O3/NGr. Despite this, the ORR kinetics of Fe-Fe2O3/NGr are found to be shifted significantly to the preferred 4-electron-transfer pathway compared to NGr and Fe-Fe2O3/RGO. Consequently, the H2O2% was found to be reduced by 78.3% for Fe-Fe2O3/NGr (13.0%) in comparison to Fe-Fe2O3/RGO (51.2%) and NGr (41.0%) at -0.30 V (vs. Hg/HgO). This difference in the yield of H2O2 formed between the systems along with the improvements observed in terms of the oxygen reduction onset and E1/2 in the case of Fe-Fe2O3/NGr reveals the activity modulation achieved for the latter is due to the coexistence of factors such as the presence of the mixed valancies of iron nanoparticles, small size and homogeneous distribution of Fe-Fe2O3 nanoparticles and the electronic modifications induced by the doped nitrogen in NGr. A controlled interplay of these factors looks like worked favorably in the case of Fe-Fe2O3/NGr. As a realistic system level validation, Fe-Fe2O3/NGr was employed as the cathode electrode of a single cell in a solid alkaline electrolyte membrane fuel cell (AEMFC). The system could display an open circuit voltage (OCV) of 0.73 V and maximum power and current densities of 54.40 mW cm-2 and 200 mA cm-2, respectively, which are comparable to the performance characteristics of a similar system derived by using 40 wt% Pt/C as the cathode electrode. Electronic supplementary information (ESI) available: Experimental, deconvulated XPS of C 1s, and O 1s of Fe-Fe2O3/RGO, Fe-Fe2O3/NGr, RGO and NGr. Deconvoluted N 1s of Fe-Fe2O3/NGr and NGr, formulae, CV, LSV at different rpm, and K-L plots. See DOI: 10.1039/c5nr04929f

  3. Rates and Routes of Electron Transfer of [NiFe]-Hydrogenase in an Enzymatic Fuel Cell.

    PubMed

    Petrenko, Alexander; Stein, Matthias

    2015-10-29

    Hydrogenase enzymes are being used in enzymatic fuel cells immobilized on a graphite or carbon electrode surface, for example. The enzyme is used for the anodic oxidation of molecular hydrogen (H2) to produce protons and electrons. The association and orientation of the enzyme at the anode electrode for a direct electron transfer is not completely resolved. The distal FeS-cluster in [NiFe]-hydrogenases contains a histidine residue which is known to play a critical role in the intermolecular electron transfer between the enzyme and the electrode surface. The [NiFe]-hydrogenase graphite electrode association was investigated using Brownian Dynamics simulations. Residues that were shown to be in proximity to the electrode surface were identified (His184, Ser196, Glu461, Glu464), and electron transfer routes connecting the distal FeS-cluster with the surface residues were investigated. Several possible pathways for electron transfer between the distal FeS-cluster and the terminal amino acid residues were probed in terms of their rates of electron transfer using DFT methods. The reorganization energies λ of the distal iron-sulfur cluster and coronene as a molecular model for graphite were calculated. The reorganization energy of the distal (His)(Cys)3 cluster was found to be not very different from that of a standard cubane clusters with a (Cys)4 coordination. Electronic coupling matrix elements and rates of electron transfer for the different pathways were calculated according to the Marcus equation. The rates for glutamate-mediated electrode binding were found to be incompatible with experimental data. A direct electron transfer from the histidine ligand of the distal FeS-cluster to the electrode yielded rates of electron transfer in excellent agreement with experiment. A second pathway, however, from the distal FeS-cluster to the Ser196 residue was found to be equally efficient and feasible. PMID:26218232

  4. Guiding Principles of Hydrogenase Catalysis Instigated and Clarified by Protein Film Electrochemistry.

    PubMed

    Armstrong, Fraser A; Evans, Rhiannon M; Hexter, Suzannah V; Murphy, Bonnie J; Roessler, Maxie M; Wulff, Philip

    2016-05-17

    Protein film electrochemistry (PFE) is providing cutting-edge insight into the chemical principles underpinning biological hydrogen. Attached to an electrode, many enzymes exhibit "reversible" electrocatalytic behavior, meaning that a catalyzed redox reaction appears reversible or quasi-reversible when viewed by cyclic voltammetry. This efficiency is most relevant for enzymes that are inspiring advances in renewable energy, such as hydrogen-activating and CO2-reducing enzymes. Exploiting the rich repertoire of available instrumental methods, PFE experiments yield both a general snapshot and fine detail, all from tiny samples of enzyme. The dynamic electrochemical investigations blaze new trails and add exquisite detail to the information gained from structural and spectroscopic studies. This Account describes recent investigations of hydrogenases carried out in Oxford, including ideas initiated with PFE and followed through with complementary techniques, all contributing to an eventual complete picture of fast and efficient H2 activation without Pt. By immobilization of an enzyme on an electrode, catalytic electron flow and the chemistry controlling it can be addressed at the touch of a button. The buried nature of the active site means that structures that have been determined by crystallography or spectroscopy are likely to be protected, retained, and fully relevant in a PFE experiment. An electrocatalysis model formulated for the PFE of immobilized enzymes predicts interesting behavior and gives insight into why some hydrogenases are H2 producers and others are H2 oxidizers. Immobilization also allows for easy addition and removal of inhibitors along with precise potential control, one interesting outcome being that formaldehyde forms a reversible complex with reduced [FeFe]-hydrogenases, thereby providing insight into the order of electron and proton transfers. Experiments on O2-tolerant [NiFe]-hydrogenases show that O2 behaves like a reversible inhibitor: it is also a substrate, and implicit in the description of some hydrogenases as "H2/O2 oxidoreductases" is the hypothesis that fast and efficient multielectron transfer is a key to O2 tolerance because it promotes complete reduction of O2 to harmless water. Not only is a novel [4Fe-3S] cluster (able to transfer two electrons consecutively) an important component, but connections to additional electron sources (other Fe-S clusters, an electrode, another quaternary structure unit, or the physiological membrane itself) ensure that H2 oxidation can be sustained in the presence of O2, as demonstrated with enzyme fuel cells able to operate on a H2/air mixture. Manipulating the H-H bond in the active site is the simplest proton-coupled electron-transfer reaction to be catalyzed by an enzyme. Unlike small molecular catalysts or the surfaces of materials, metalloenzymes are far better suited to engineering the all-important outer-coordination shell. Hence, recent successful site-directed mutagenesis of the conserved outer-shell "canopy" residues in a [NiFe]-hydrogenase opens up new opportunities for understanding the mechanism of H2 activation beyond the role of the inner coordination shell. PMID:27104487

  5. From enzyme maturation to synthetic chemistry: the case of hydrogenases.

    PubMed

    Artero, Vincent; Berggren, Gustav; Atta, Mohamed; Caserta, Giorgio; Roy, Souvik; Pecqueur, Ludovic; Fontecave, Marc

    2015-08-18

    Water splitting into oxygen and hydrogen is one of the most attractive strategies for storing solar energy and electricity. Because the processes at work are multielectronic, there is a crucial need for efficient and stable catalysts, which in addition have to be cheap for future industrial developments (electrolyzers, photoelectrochemicals, and fuel cells). Specifically for the water/hydrogen interconversion, Nature is an exquisite source of inspiration since this chemistry contributes to the bioenergetic metabolism of a number of living organisms via the activity of fascinating metalloenzymes, the hydrogenases. In this Account, we first briefly describe the structure of the unique dinuclear organometallic active sites of the two classes of hydrogenases as well as the complex protein machineries involved in their biosynthesis, their so-called maturation processes. This knowledge allows for the development of a fruitful bioinspired chemistry approach, which has already led to a number of interesting and original catalysts mimicking the natural active sites. More specifically, we describe our own attempts to prepare artificial hydrogenases. This can be achieved via the standard bioinspired approach using the combination of a synthetic bioinspired catalyst and a polypeptide scaffold. Such hybrid complexes provide the opportunity to optimize the system by manipulating both the catalyst through chemical synthesis and the protein component through mutagenesis. We also raise the possibility to reach such artificial systems via an original strategy based on mimicking the enzyme maturation pathways. This is illustrated in this Account by two examples developed in our laboratory. First, we show how the preparation of a lysozyme-{Mn(I)(CO)3} hybrid and its clean reaction with a nickel complex led us to generate a new class of binuclear Ni-Mn H2-evolving catalysts mimicking the active site of [NiFe]-hydrogenases. Then we describe how we were able to rationally design and prepare a hybrid system, displaying remarkable structural similarities to an [FeFe]-hydrogenase, and we show here for the first time that it is catalytically active for proton reduction. This system is based on the combination of HydF, a protein involved in the maturation of [FeFe]-hydrogenase (HydA), and a close mimic of the active site of this class of enzymes. Moreover, the synthetic [Fe2(adt)(CO)4(CN)2](2-) (adt(2-)= aza-propanedithiol) mimic, alone or within a HydF hybrid system, was shown to be able to maturate and activate a form of HydA itself lacking its diiron active site. We discuss the exciting perspectives this "synthetic maturation" opens regarding the "invention" of novel hydrogenases by the chemists. PMID:26165393

  6. Nickel affects expression of the nickel-containing hydrogenase of Alcaligenes latus.

    PubMed Central

    Doyle, C M; Arp, D J

    1988-01-01

    The effects of nickel on the expression of hydrogenase in the hydrogen-oxidizing bacterium Alcaligenes latus were studied. In the absence of added nickel, both hydrogenase activity, measured as O2-dependent H2 uptake, and hydrogenase protein, measured in a Western immunoblot, were very low compared with the levels in cells induced for hydrogenase in the presence of nickel. Hydrogenase activity and protein levels were dependent on the added nickel concentration and were saturated at 30 nM added Ni2+. The amount of hydrogenase protein in a culture at a given nickel concentration was calculated from the H2 uptake activity of the culture at that Ni2+ concentration. Between 0 and 30 nM added Ni2+, the amount of hydrogenase protein (in nanomoles) was stoichiometric with the amount of added Ni2+. Thus, all of the added Ni2+ could be accounted for in hydrogenase. Between 0 and 50 nM added Ni2+, all the Ni present in the cultures was associated with the cells after 12 h; above 50 nM added Ni2+, some Ni remained in the medium. No other divalent metal cations tested were able to substitute for Ni2+ in the formation of active hydrogenase. We suggest two possible mechanisms for the regulation of hydrogenase activity and protein levels by nickel. Images PMID:3045080

  7. Characterization of a Cytosolic NiFe-Hydrogenase from the Hyperthermophilic Archaeon Thermococcus kodakaraensis KOD1

    PubMed Central

    Kanai, Tamotsu; Ito, Sota; Imanaka, Tadayuki

    2003-01-01

    We have identified an NiFe-hydrogenase exclusively localized in the cytoplasm of the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1 (T. kodakaraensis hydrogenase). A gene cluster encoding T. kodakaraensis hydrogenase was composed of four open reading frames (hyhBGSLTk), where the hyhSTk and hyhLTk gene products corresponded to the small and the large subunits of NiFe-hydrogenase, respectively. A putative open reading frame for hydrogenase-specific maturation endopeptidase (hybDTk) was found downstream of the cluster. Polyclonal antibodies raised against recombinant HyhLTk were used for immunoaffinity purification of T. kodakaraensis hydrogenase, leading to a 259-fold concentration of hydrogenase activity. The purified T. kodakaraensis hydrogenase was composed of four subunits (?, ?, ?, and ?), corresponding to the products of hyhBGSLTk, respectively. Each ???? unit contained 0.8 mol of Ni, 22.3 mol of Fe, 21.1 mol of acid-labile sulfide, and 1.01 mol of flavin adenine dinucleotide. The optimal temperature for the T. kodakaraensis hydrogenase was 95C for H2 uptake and 90C for H2 production with methyl viologen as the electron carrier. We found that NADP+ and NADPH promoted high levels of uptake and evolution of H2, respectively, suggesting that the molecule is the electron carrier for the T. kodakaraensis hydrogenase. PMID:12591889

  8. Variation in Nitrogenase and Hydrogenase Activity of Alaska Pea Root Nodules 1

    PubMed Central

    Bethlenfalvay, Gabor J.; Phillips, Donald A.

    1979-01-01

    Hydrogenase activity of root nodules in the symbiotic association between Pisum sativum L. and Rhizobium leguminosarum was determined by incubating unexcised nodules with tritiated H2 and measuring tissue HTO. Hydrogenase activity saturated at 0.50 millimolar H2 and was not inhibited by the presence of 0.10 atmosphere C2H2, which prevented H2 evolution from nitrogenase. Total H2 production from nitogenase was estimated as net H2 evolution in air plus H2 exchange in 0.10 atmosphere C2H2. Although such an estimate of nitrogenase function may not be quantitatively exact, due to uncertain relationships between H2 exchange and H2 uptake activity of hydrogenase, differences observed in H2 exchange under various conditions represent an indication of changes in hydrogenase activity. Hydrogenase activity was lower in associations grown under higher photosynthetic photon flux densities and decreased relative to total H2 production by nitrogenase. Total H2 production and hydrogenase activity were maximum 28 days after planting. Thereafter, hydrogenase activity and H2 production declined, but the potential proportion of nitrogenase-produced H2 recovered by the uptake hydrogenase system increased. Of five R. leguminosarum strains tested two possessed hydrogenase activity. Strains which had the potential to reassimilate H2 had significantly higher rates of N2 reduction than those which did not exhibit hydrogenase activity. PMID:16660819

  9. Anoxic and oxic removal of humic acids with Fe@Fe2O3 core-shell nanowires: a comparative study.

    PubMed

    Wu, Hao; Ai, Zhihui; Zhang, Lizhi

    2014-04-01

    In this study we comparatively investigate the removal of humic acids with Fe@Fe2O3 core-shell nanowires under anoxic and oxic conditions. The products of humic acids after reacting with Fe@Fe2O3 core-shell nanowires under anoxic and oxic conditions were carefully examined with three-dimensional excitation emission matrix fluorescence spectroscopy and gas chromatography mass spectrometry. It was found that humic acids were removed by Fe@Fe2O3 core-shell nanowires via adsorption under anoxic condition. Langmuir adsorption isotherm was applicable to describe the adsorption processes. Kinetics of humic acids adsorption onto Fe@Fe2O3 core-shell nanowires was found to follow pseudo-second-order rate equation. By contrast, the oxic removal of humic acids with Fe@Fe2O3 core-shell nanowires involved adsorption and subsequent oxidation of humic acids because Fe@Fe2O3 core-shell nanowires could activate molecular oxygen to produce reactive oxygen species to oxidize humic acids. This subsequent oxidation of humic acids could improve the oxic removal rate to 2.5 times that of anoxic removal, accompanying with about 8.4% of mineralization. This study provides a new method for humic acids removal and also sheds light on the effects of humic acids on the pollutant removal by nano zero-valent iron. PMID:24463174

  10. Nanocrystalline Fe-Fe2O3 particle-deposited N-doped graphene as an activity-modulated Pt-free electrocatalyst for oxygen reduction reaction.

    PubMed

    Dhavale, Vishal M; Singh, Santosh K; Nadeema, Ayasha; Gaikwad, Sachin S; Kurungot, Sreekumar

    2015-12-21

    The size-controlled growth of nanocrystalline Fe-Fe2O3 particles (2-3 nm) and their concomitant dispersion on N-doped graphene (Fe-Fe2O3/NGr) could be attained when the mutually assisted redox reaction between NGr and Fe(3+) ions could be controlled within the aqueous droplets of a water-in-oil emulsion. The synergistic interaction existing between Fe-Fe2O3 and NGr helped the system to narrow down the overpotential for the oxygen reduction reaction (ORR) by bringing a significant positive shift to the reduction onset potential, which is just 15 mV higher than its Pt-counterpart. In addition, the half-wave potential (E1/2) of Fe-Fe2O3/NGr is found to be improved by a considerable amount of 135 mV in comparison to the system formed by dispersing Fe-Fe2O3 nanoparticles on reduced graphene oxide (Fe-Fe2O3/RGO), which indicates the presence of a higher number of active sites in Fe-Fe2O3/NGr. Despite this, the ORR kinetics of Fe-Fe2O3/NGr are found to be shifted significantly to the preferred 4-electron-transfer pathway compared to NGr and Fe-Fe2O3/RGO. Consequently, the H2O2% was found to be reduced by 78.3% for Fe-Fe2O3/NGr (13.0%) in comparison to Fe-Fe2O3/RGO (51.2%) and NGr (41.0%) at -0.30 V (vs. Hg/HgO). This difference in the yield of H2O2 formed between the systems along with the improvements observed in terms of the oxygen reduction onset and E1/2 in the case of Fe-Fe2O3/NGr reveals the activity modulation achieved for the latter is due to the coexistence of factors such as the presence of the mixed valancies of iron nanoparticles, small size and homogeneous distribution of Fe-Fe2O3 nanoparticles and the electronic modifications induced by the doped nitrogen in NGr. A controlled interplay of these factors looks like worked favorably in the case of Fe-Fe2O3/NGr. As a realistic system level validation, Fe-Fe2O3/NGr was employed as the cathode electrode of a single cell in a solid alkaline electrolyte membrane fuel cell (AEMFC). The system could display an open circuit voltage (OCV) of 0.73 V and maximum power and current densities of 54.40 mW cm(-2) and 200 mA cm(-2), respectively, which are comparable to the performance characteristics of a similar system derived by using 40 wt% Pt/C as the cathode electrode. PMID:26568372

  11. Force-field development and molecular dynamics simulations of ferrocene-peptide conjugates as a scaffold for hydrogenase mimics

    SciTech Connect

    De Hatten, Xavier; Cournia, Zoe; Smith, Jeremy C; Huc, I; Metzler-Nolte, Nils

    2007-08-01

    The increasing importance of hydrogenase enzymes in the new energy research field has led us to examine the structure and dynamics of potential hydrogenase mimics, based on a ferrocene-peptide scaffold, using molecular dynamics (MD) simulations. To enable this MD study, a molecular mechanics force field for ferrocene-bearing peptides was developed and implemented in the CHARMM simulation package, thus extending the usefulness of the package into peptide-bioorganometallic chemistry. Using the automated frequency-matching method (AFMM), optimized intramolecular force-field parameters were generated through quantum chemical reference normal modes. The partial charges for ferrocene were derived by fitting point charges to quantum-chemically computed electrostatic potentials. The force field was tested against experimental X-ray crystal structures of dipeptide derivatives of ferrocene-1,1'-dicarboxylic acid. The calculations reproduce accurately the molecular geometries, including the characteristic C{sub 2}-symmetrical intramolecular hydrogen-bonding pattern, that were stable over 0.1 {micro}s MD simulations. The crystal packing properties of ferrocene-1-(D)alanine-(D)proline-1'-(D)alanine-(D)proline were also accurately reproduced. The lattice parameters of this crystal were conserved during a 0.1 {micro}s MD simulation and match the experimental values almost exactly. Simulations of the peptides in dichloromethane are also in good agreement with experimental NMR and circular dichroism (CD) data in solution. The developed force field was used to perform MD simulations on novel, as yet unsynthesized peptide fragments that surround the active site of [Ni-Fe] hydrogenase. The results of this simulation lead us to propose an improved design for synthetic peptide-based hydrogenase models. The presented MD simulation results of metallocenes thereby provide a convincing validation of our proposal to use ferrocene-peptides as minimal enzyme mimics.

  12. Force-field development and molecular dynamics simulations of ferrocene-peptide conjugates as a scaffold for hydrogenase mimics.

    SciTech Connect

    De Hatten, Xavier; Cournia, Zoe; Smith, Jeremy C; Metzler-Nolte, Nils

    2007-08-01

    The increasing importance of hydrogenase enzymes in the new energy research field has led us to examine the structure and dynamics of potential hydrogenase mimics, based on a ferrocene-peptide scaffold, using molecular dynamics (MD) simulations. To enable this MD study, a molecular mechanics force field for ferrocene-bearing peptides was developed and implemented in the CHARMM simulation package, thus extending the usefulness of the package into peptide-bioorganometallic chemistry. Using the automated frequency-matching method (AFMM), optimized intramolecular force-field parameters were generated through quantum chemical reference normal modes. The partial charges for ferrocene were derived by fitting point charges to quantum-chemically computed electrostatic potentials. The force field was tested against experimental X-ray crystal structures of dipeptide derivatives of ferrocene-1,1{prime}-dicarboxylic acid. The calculations reproduce accurately the molecular geometries, including the characteristic C2-symmetrical intramolecular hydrogen-bonding pattern, that were stable over 0.1{micro}s MD simulations. The crystal packing properties of ferrocene-1-(D)alanine-(D)proline{prime}-1-(D)alanine-(D)proline were also accurately reproduced. The lattice parameters of this crystal were conserved during a 0.1 s MD simulation and match the experimental values almost exactly. Simulations of the peptides in dichloromethane are also in good agreement with experimental NMR and circular dichroism (CD) data in solution. The developed force field was used to perform MD simulations on novel, as yet unsynthesized peptide fragments that surround the active site of [Ni-Fe] hydrogenase. The results of this simulation lead us to propose an improved design for synthetic peptide-based hydrogenase models. The presented MD simulation results of metallocenes thereby provide a convincing validation of our proposal to use ferrocene-peptides as minimal enzyme mimics.

  13. A hidden reservoir of Fe/FeS in interstellar silicates?

    NASA Astrophysics Data System (ADS)

    Köhler, M.; Jones, A.; Ysard, N.

    2014-05-01

    Context. The depletion of iron and sulphur into dust in the interstellar medium and the exact nature of interstellar amorphous silicate grains is still an open question. Aims: We study the incorporation of iron and sulphur into amorphous silicates of olivine- and pyroxene-types and their effects on the dust spectroscopy and thermal emission. Methods: We used the Maxwell-Garnett effective-medium theory to construct the optical constants for a mixture of silicates, metallic iron, and iron sulphide. We also studied the effects of iron and iron sulphide in aggregate grains. Results: Iron sulphide inclusions within amorphous silicates that contain iron metal inclusions show no strong differences in the optical properties of the grains. A mix of amorphous olivine- and pyroxene-type silicate broadens the silicate features. An amorphous carbon mantle with a thickness of 10 nm on the silicate grains leads to an increase in absorption on the short-wavelength side of the 10 μm silicate band. Conclusions: The assumption of amorphous olivine-type and pyroxene-type silicates and a 10 nm thick amorphous carbon mantle better matches the interstellar silicate band profiles. Including iron nano-particles leads to an increase in the mid-IR extinction, while up to 5 ppm of sulphur can be incorporated as Fe/FeS nano inclusions into silicate grains without leaving a significant trace of its presence.

  14. Measurement by ACE-CRIS of the 60 Fe/Fe ratio in Galactic Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Binns, W. R.; Israel, M. H.; Lave, K. A.; Christian, E. R.; de Nolfo, G. A.; von Rosenvinge, T. T.; Cummings, A. C.; Leske, R. A.; Mewaldt, R. A.; Stone, E. C.; Wiedenbeck, M. E.

    2015-04-01

    We have measured the abundance of the radioactive isotope 60 Fe (2.6 Myr half-life) relative to Fe in the galactic cosmic rays using the Cosmic Ray Isotope Spectrometer (CRIS) on NASA's Advanced Composition Explorer (ACE) satellite. The data correspond to 5802 days of data collection beginning December 4, 1997. The excellent resolution in mass that we obtain results in essentially complete separation of 60 Fe from the much more abundant stable isotopes of Fe. For the data set selected, we detected a total of fifteen 60 Fe nuclei and obtain a preliminary source abundance ratio for 60 Fe/Fe of (4 +/- 1) × 10-5. Of the fifteen 60 Fe nuclei we estimate that less than 1 event could have resulted from interactions of heavier nuclei during propagation from the source, or misidentification from unrecognized interactions in the instrument. This ratio can be used to constrain the nucleosynthesis processes that contribute to the observed cosmic rays and to set an upper limit to the time between nucleosynthesis and acceleration. It will also be discussed in the light of observations of gamma-rays from decay of 60 Fe ejected by supernovae. This research is supported by NASA under Grant # NNX13AH66G.

  15. Energy harvesting based on FE-FE transition in ferroelectric single crystals.

    PubMed

    Guyomar, Daniel; Pruvost, Sebastien; Sebald, Gael

    2008-02-01

    The pyroelectric properties of Pb(Zn(1/3)Nb(2/3))(0955)Ti(0.045)O(3) single crystals versus an electric field have been studied for energy harvesting in this paper. Two thermodynamic cycles (Stirling and Ericsson) were used for this purpose. By applying an electric field, a FE-FE transition was induced, abruptly increasing the polarization. This transition minimized the supplied energy and improved the harvested energy. By discharging the single crystal at a higher temperature, a gain of 1100% was obtained with the Stirling cycle at 1 kV/mm (gain is defined as harvested energy divided by supplied energy). The study revealed that Stirling cycles are more interesting for low electric fields. Based on experimental results, simulations were carried out to estimate energy harvesting in high electric fields to evaluate the performances of thin samples (single crystals or oriented thin films). At high electric fields, both cycles gave almost the same energy harvesting, but Ericsson cycles were more appropriate to control the voltage on the sample. The simulation led to a harvested energy of 500 mJ/g for an applied electric field equal to 50 kV/mm. The efficiency with respect to Carnot was raised 20%. PMID:18334334

  16. The role of hydrogenases in the anaerobic microbiologically influenced corrosion of steels.

    PubMed

    Da Silva, S; Basséguy, R; Bergel, A

    2002-05-15

    The direct electron transfer between 316 L stainless steel and the NAD-dependent hydrogenase from Ralstonia eutropha was studied by spectroelectrochemistry. The presence of hydrogenase and NAD+ clearly increased the quantity of electricity, which was consumed during the electrolysis performed at potential lower than -0.70 V/SCE. The involvement of hydrogenase in the cathodic depolarisation theory was discussed in the light of these results. PMID:12009448

  17. Oxygen-resistant hydrogenases and methods for designing and making same

    DOEpatents

    King, Paul; Ghirardi, Maria Lucia; Seibert, Michael

    2014-03-04

    The invention provides oxygen-resistant iron-hydrogenases ([Fe]-hydrogenases) for use in the production of H.sub.2. Methods used in the design and engineering of the oxygen-resistant [Fe]-hydrogenases are disclosed, as are the methods of transforming and culturing appropriate host cells with the oxygen-resistant [Fe]-hydrogenases. Finally, the invention provides methods for utilizing the transformed, oxygen insensitive, host cells in the bulk production of H.sub.2 in a light catalyzed reaction having water as the reactant.

  18. Oxygen-resistant hydrogenases and methods for designing and making same

    DOEpatents

    King, Paul; Ghirardi, Maria L; Seibert, Michael

    2009-03-10

    The invention provides oxygen- resistant iron-hydrogenases ([Fe]-hydrogenases) for use in the production of H2. Methods used in the design and engineering of the oxygen-resistant [Fe]-hydrogenases are disclosed, as are the methods of transforming and culturing appropriate host cells with the oxygen-resistant [Fe]-hydrogenases. Finally, the invention provides methods for utilizing the transformed, oxygen insensitive, host cells in the bulk production of H.sub.2 in a light catalyzed reaction having water as the reactant.

  19. Implementation of photobiological H2 production: the O 2 sensitivity of hydrogenases.

    PubMed

    Ghirardi, Maria L

    2015-09-01

    The search for the ultimate carbon-free fuel has intensified in recent years, with a major focus on photoproduction of H2. Biological sources of H2 include oxygenic photosynthetic green algae and cyanobacteria, both of which contain hydrogenase enzymes. Although algal and cyanobacterial hydrogenases perform the same enzymatic reaction through metallo-clusters, their hydrogenases have evolved separately, are expressed differently (transcription of algal hydrogenases is anaerobically induced, while bacterial hydrogenases are constitutively expressed), and display different sensitivity to O2 inactivation. Among various physiological factors, the sensitivity of hydrogenases to O2 has been one of the major factors preventing implementation of biological systems for commercial production of renewable H2. This review addresses recent strategies aimed at engineering increased O2 tolerance into hydrogenases (as of now mainly unsuccessful), as well as towards the development of methods to bypass the O2 sensitivity of hydrogenases (successful but still yielding low solar conversion efficiencies). The author concludes with a description of current approaches from various laboratories to incorporate multiple genetic traits into either algae or cyanobacteria to jointly address limiting factors other than the hydrogenase O2 sensitivity and achieve more sustained H2 photoproduction activity. PMID:26022106

  20. Multiscale simulations give insight into the hydrogen in and out pathways of [NiFe]-hydrogenases from Aquifex aeolicus and Desulfovibrio fructosovorans.

    PubMed

    Oteri, Francesco; Baaden, Marc; Lojou, Elisabeth; Sacquin-Mora, Sophie

    2014-12-01

    [NiFe]-hydrogenases catalyze the cleavage of molecular hydrogen into protons and electrons and represent promising tools for H2-based technologies such as biofuel cells. However, many aspects of these enzymes remain to be understood, in particular how the catalytic center can be protected from irreversible inactivation by O2. In this work, we combined homology modeling, all-atom molecular dynamics, and coarse-grain Brownian dynamics simulations to investigate and compare the dynamic and mechanical properties of two [NiFe]-hydrogenases: the soluble O2-sensitive enzyme from Desulfovibrio fructosovorans, and the O2-tolerant membrane-bound hydrogenase from Aquifex aeolicus. We investigated the diffusion pathways of H2 from the enzyme surface to the central [NiFe] active site, and the possible proton pathways that are used to evacuate hydrogen after the oxidation reaction. Our results highlight common features of the two enzymes, such as a Val/Leu/Arg triad of key residues that controls ligand migration and substrate access in the vicinity of the active site, or the key role played by a Glu residue for proton transfer after hydrogen oxidation. We show specificities of each hydrogenase regarding the enzymes internal tunnel network or the proton transport pathways. PMID:25399809

  1. Production and Application of a Soluble Hydrogenase from Pyrococcus furiosus

    PubMed Central

    Wu, Chang-Hao; McTernan, Patrick M.; Walter, Mary E.; Adams, Michael W. W.

    2015-01-01

    Hydrogen gas is a potential renewable alternative energy carrier that could be used in the future to help supplement humanity's growing energy needs. Unfortunately, current industrial methods for hydrogen production are expensive or environmentally unfriendly. In recent years research has focused on biological mechanisms for hydrogen production and specifically on hydrogenases, the enzyme responsible for catalyzing the reduction of protons to generate hydrogen. In particular, a better understanding of this enzyme might allow us to generate hydrogen that does not use expensive metals, such as platinum, as catalysts. The soluble hydrogenase I (SHI) from the hyperthermophile Pyrococcus furiosus, a member of the euryarchaeota, has been studied extensively and used in various biotechnological applications. This review summarizes the strategies used in engineering and characterizing three different forms of SHI and the properties of the recombinant enzymes. SHI has also been used in in vitro systems for hydrogen production and NADPH generation and these systems are also discussed. PMID:26543406

  2. Amidine Dications: Isolation and [Fe]-Hydrogenase-Related Hydrogenation

    PubMed Central

    2009-01-01

    This commmunication demonstrates the preparation, isolation, and full characterization of superelectrophilic salts based on amidine dications in organic solvent, as their triflate salts. These dications are highly activated toward regiospecific reaction with hydrogen gas under mild conditions in the presence of a metal catalyst (Pd/C), mimicking the behavior of the natural substrate, N5,N10-methenyltetrahydromethanopterin, in the iron−sulfur cluster-free [Fe]-hydrogenase. PMID:19534467

  3. Synthesis, characterization, and H/D exchange of μ-hydride-containing [FeFe]-hydrogenase subsite models formed by protonation reactions of (μ-TDT)Fe2(CO)4(PMe3)2 (TDT = SCH2SCH2S) with protic acids.

    PubMed

    Song, Li-Cheng; Zhu, An-Guo; Guo, Yuan-Qiang

    2016-03-15

    As [FeFe]-hydrogenase models, the first thiodithiolate (TDT) ligand-containing μ-hydride complexes [(μ-TDT)Fe2(CO)4(PMe3)2(μ-H)](+)Y(-) (, Y = Cl, ClO4, PF6, BF4, CF3CO2, CF3SO3) have been prepared by protonation reactions of (μ-TDT)Fe2(CO)4(PMe3)2 () with the corresponding HY acids. While the protonation reactions are monitored by in situ(1)H and (31)P{(1)H} NMR spectroscopy to show the isomer type and stability of , the structures of the isolated are characterized by elemental analysis, spectroscopy and for some of them by X-ray crystallography. Although the H/D exchange of μ-hydride complex (Y = CF3SO3) with D2 or D2O has been proved not to occur under the studied conditions, the H/D exchange of with DCl gives the μ-deuterium complex [(μ-TDT)Fe2(CO)4(PMe3)2(μ-D)](+)[CF3SO3](-) () in a nearly quantitative yield. To our knowledge, is the first crystallographically characterized μ-deuterium-containing butterfly [2Fe2S] complex produced by H/D exchange reaction. PMID:26777138

  4. Mechanism of hydrogen activation by [NiFe] hydrogenases.

    PubMed

    Evans, Rhiannon M; Brooke, Emily J; Wehlin, Sara A M; Nomerotskaia, Elena; Sargent, Frank; Carr, Stephen B; Phillips, Simon E V; Armstrong, Fraser A

    2016-01-01

    The active site of [NiFe] hydrogenases contains a strictly conserved arginine that suspends a guanidine nitrogen atom <4.5 Å above the nickel and iron atoms. The guanidine headgroup interacts with the side chains of two conserved aspartic acid residues to complete an outer-shell canopy that has thus far proved intractable to investigation by site-directed mutagenesis. Using hydrogenase-1 from Escherichia coli, the strictly conserved residues R509 and D574 have been replaced by lysine (R509K) and asparagine (D574N) and the highly conserved D118 has been replaced by alanine (D118A) or asparagine (D118N/D574N). Each enzyme variant is stable, and their [(RS)2Niμ(SR)2Fe(CO)(CN)2] inner coordination shells are virtually unchanged. The R509K variant had >100-fold lower activity than native enzyme. Conversely, the variants D574N, D118A and D118N/D574N, in which the position of the guanidine headgroup is retained, showed 83%, 26% and 20% activity, respectively. The special kinetic requirement for R509 implicates the suspended guanidine group as the general base in H2 activation by [NiFe] hydrogenases. PMID:26619250

  5. Wiring of Photosystem II to Hydrogenase for Photoelectrochemical Water Splitting.

    PubMed

    Mersch, Dirk; Lee, Chong-Yong; Zhang, Jenny Zhenqi; Brinkert, Katharina; Fontecilla-Camps, Juan C; Rutherford, A William; Reisner, Erwin

    2015-07-01

    In natural photosynthesis, light is used for the production of chemical energy carriers to fuel biological activity. The re-engineering of natural photosynthetic pathways can provide inspiration for sustainable fuel production and insights for understanding the process itself. Here, we employ a semiartificial approach to study photobiological water splitting via a pathway unavailable to nature: the direct coupling of the water oxidation enzyme, photosystem II, to the H2 evolving enzyme, hydrogenase. Essential to this approach is the integration of the isolated enzymes into the artificial circuit of a photoelectrochemical cell. We therefore developed a tailor-made hierarchically structured indium-tin oxide electrode that gives rise to the excellent integration of both photosystem II and hydrogenase for performing the anodic and cathodic half-reactions, respectively. When connected together with the aid of an applied bias, the semiartificial cell demonstrated quantitative electron flow from photosystem II to the hydrogenase with the production of H2 and O2 being in the expected two-to-one ratio and a light-to-hydrogen conversion efficiency of 5.4% under low-intensity red-light irradiation. We thereby demonstrate efficient light-driven water splitting using a pathway inaccessible to biology and report on a widely applicable in vitro platform for the controlled coupling of enzymatic redox processes to meaningfully study photocatalytic reactions. PMID:26046591

  6. Nickel availability to pea (Pisum sativum L.) plants limits hydrogenase activity of Rhizobium leguminosarum bv. viciae bacteroids by affecting the processing of the hydrogenase structural subunits.

    PubMed Central

    Brito, B; Palacios, J M; Hidalgo, E; Imperial, J; Ruiz-Argüeso, T

    1994-01-01

    Rhizobium leguminosarum bv. viciae UPM791 induces the synthesis of an [NiFe] hydrogenase in pea (Pisum sativum L.) bacteroids which oxidizes the H2 generated by the nitrogenase complex inside the root nodules. The synthesis of this hydrogenase requires the genes for the small and large hydrogenase subunits (hupS and hupL, respectively) and 15 accessory genes clustered in a complex locus in the symbiotic plasmid. We show here that the bacteroid hydrogenase activity is limited by the availability of nickel to pea plants. Addition of Ni2+ to plant nutrient solutions (up to 10 mg/liter) resulted in sharp increases (up to 15-fold) in hydrogenase activity. This effect was not detected when other divalent cations (Zn2+, Co2+, Fe2+, and Mn2+) were added at the same concentrations. Determinations of the steady-state levels of hupSL-specific mRNA indicated that this increase in hydrogenase activity was not due to stimulation of transcription of structural genes. Immunoblot analysis with antibodies raised against the large and small subunits of the hydrogenase enzyme demonstrated that in the low-nickel situation, both subunits are mainly present in slow-migrating, unprocessed forms. Supplementation of the plant nutrient solution with increasing nickel concentrations caused the conversion of the slow-migrating forms of both subunits into fast-moving, mature forms. This nickel-dependent maturation process of the hydrogenase subunits is mediated by accessory gene products, since bacteroids from H2 uptake-deficient mutants carrying Tn5 insertions in hupG and hupK and in hypB and hypE accumulated the immature forms of both hydrogenase subunits even in the presence of high nickel levels. Images PMID:8071205

  7. Distribution Analysis of Hydrogenases in Surface Waters of Marine and Freshwater Environments

    PubMed Central

    Barz, Martin; Beimgraben, Christian; Staller, Torsten; Germer, Frauke; Opitz, Friederike; Marquardt, Claudia; Schwarz, Christoph; Gutekunst, Kirstin; Vanselow, Klaus Heinrich; Schmitz, Ruth; LaRoche, Julie; Schulz, Rüdiger; Appel, Jens

    2010-01-01

    Background Surface waters of aquatic environments have been shown to both evolve and consume hydrogen and the ocean is estimated to be the principal natural source. In some marine habitats, H2 evolution and uptake are clearly due to biological activity, while contributions of abiotic sources must be considered in others. Until now the only known biological process involved in H2 metabolism in marine environments is nitrogen fixation. Principal Findings We analyzed marine and freshwater environments for the presence and distribution of genes of all known hydrogenases, the enzymes involved in biological hydrogen turnover. The total genomes and the available marine metagenome datasets were searched for hydrogenase sequences. Furthermore, we isolated DNA from samples from the North Atlantic, Mediterranean Sea, North Sea, Baltic Sea, and two fresh water lakes and amplified and sequenced part of the gene encoding the bidirectional NAD(P)-linked hydrogenase. In 21% of all marine heterotrophic bacterial genomes from surface waters, one or several hydrogenase genes were found, with the membrane-bound H2 uptake hydrogenase being the most widespread. A clear bias of hydrogenases to environments with terrestrial influence was found. This is exemplified by the cyanobacterial bidirectional NAD(P)-linked hydrogenase that was found in freshwater and coastal areas but not in the open ocean. Significance This study shows that hydrogenases are surprisingly abundant in marine environments. Due to its ecological distribution the primary function of the bidirectional NAD(P)-linked hydrogenase seems to be fermentative hydrogen evolution. Moreover, our data suggests that marine surface waters could be an interesting source of oxygen-resistant uptake hydrogenases. The respective genes occur in coastal as well as open ocean habitats and we presume that they are used as additional energy scavenging devices in otherwise nutrient limited environments. The membrane-bound H2-evolving hydrogenases might be useful as marker for bacteria living inside of marine snow particles. PMID:21079771

  8. Structure and magnetic properties of irradiated Fe/Fe oxide core-shell nanoclusters

    SciTech Connect

    McCloy, John S.; Jiang, Weilin; Sundararajan, Jennifer A.; Qiang, You; Burks, Edward; Liu, Kai

    2013-04-25

    A cluster deposition method was used to produce a film of loosely aggregated particles of Fe-Fe3O4 core-shell nanoclusters with an 8 nm iron core size and 2 nm oxide shell thickness. The film of particles on a silicon substrate was irradiated with 5.5 MeV Si2+ ions to a fluence of 1016 cm-2 near room temperature, and computer simulations based on the SRIM (Stopping and Range of Ions in Matter) code show that the implanted Si species stops near the film-substrate interface. The ion irradiation creates a structural change in the film with corresponding chemical and magnetic changes. X-ray diffraction shows that the core size and chemistry stay the same but the shell becomes FeO that grows to a thickness of 17 nm. Helium ion microscopy shows that the previously separate particles have densified into a nearly continuous film. Major loop magnetic hysteresis measurements show a decrease in saturation magnetization that we attribute to the presence of the antiferromagnetic (AFM) FeO shell. First-order reversal curve measurements on the irradiated film performed with a vibrating sample magnetometer show that the AFM shell prevents the particles from interacting magnetically, leading to low coercivity from the iron core and little bias field from the core interactions. These results, and others reported previously on different compositions (Fe3O4 or FeO+Fe3N nanoclusters), show that the ion irradiation behavior of nanocluster films such as these depends strongly on the initial nanostructure and chemistry.

  9. Interaction between Hydrogenase Maturation Factors HypA and HypB Is Required for [NiFe]-Hydrogenase Maturation

    PubMed Central

    Chan, Kwok-Ho; Lee, Ka-Man; Wong, Kam-Bo

    2012-01-01

    The active site of [NiFe]-hydrogenase contains nickel and iron coordinated by cysteine residues, cyanide and carbon monoxide. Metal chaperone proteins HypA and HypB are required for the nickel insertion step of [NiFe]-hydrogenase maturation. How HypA and HypB work together to deliver nickel to the catalytic core remains elusive. Here we demonstrated that HypA and HypB from Archaeoglobus fulgidus form 1∶1 heterodimer in solution and HypA does not interact with HypB dimer preloaded with GMPPNP and Ni. Based on the crystal structure of A. fulgidus HypB, mutants were designed to map the HypA binding site on HypB. Our results showed that two conserved residues, Tyr-4 and Leu-6, of A. fulgidus HypB are required for the interaction with HypA. Consistent with this observation, we demonstrated that the corresponding residues, Leu-78 and Val-80, located at the N-terminus of the GTPase domain of Escherichia coli HypB were required for HypA/HypB interaction. We further showed that L78A and V80A mutants of HypB failed to reactivate hydrogenase in an E. coli ΔhypB strain. Our results suggest that the formation of the HypA/HypB complex is essential to the maturation process of hydrogenase. The HypA binding site is in proximity to the metal binding site of HypB, suggesting that the HypA/HypB interaction may facilitate nickel transfer between the two proteins. PMID:22384275

  10. Electronic control of the protonation rates of Fe-Fe bonds.

    PubMed

    Jablonskytė, Aušra; Webster, Lee R; Simmons, Trevor R; Wright, Joseph A; Pickett, Christopher J

    2014-09-17

    Protonation at metal-metal bonds is of fundamental interest in the context of the function of the active sites of hydrogenases and nitrogenases. In diiron dithiolate complexes bearing carbonyl and electron-donating ligands, the metal-metal bond is the highest occupied molecular orbital (HOMO) with a "bent" geometry. Here we show that the experimentally measured rates of protonation (kH) of this bond and the energy of the HOMO as measured by the oxidation potential of the complexes (E1/2(ox)) correlate in a linear free energy relationship: ln kH = ((F(c - βE1/2(ox)))/(RT)), where c is a constant and β is the dimensionless Brønsted coefficient. The value of β of 0.68 is indicative of a strong dependence upon energy of the HOMO: measured rates of protonation vary over 6 orders of magnitude for a change in E1/2(ox) of ca. 0.55 V (ca. 11 orders of magnitude/V). This relationship allows prediction of protonation rates of systems that are either too fast to measure experimentally or that possess additional protonation sites. It is further suggested that the nature of the bridgehead in the dithiolate ligand can exert a stereoelectronic influence: bulky substituents destabilize the HOMO, thereby increasing the rate of protonation. PMID:25116589

  11. H, not O or pressure, causes eutectic T depression in the Fe-FeS System to 8 GPa

    NASA Astrophysics Data System (ADS)

    Buono, Antonio S.; Walker, David

    2015-04-01

    The Fe-FeS system maintains a eutectic temperature of 990 ± 10 °C to at least 8 GPa if starting materials and pressure media are rigorously dehydrated. Literature reports of pressure-induced freezing point depression of the eutectic for the Fe-FeS system are not confirmed. Modest addition of oxygen alone is confirmed to cause negligible freezing point depression at 6 GPa. Addition of H alone causes a progressive decrease in the eutectic temperature with P in the Fe-FeS-H system to below 965 °C at 6 GPa to below 950 °C at 8 GPa. It is our hypothesis that moisture contamination in unrigorously dried experiments may be an H source for freezing point depression. O released from H2O disproportionation reacts with Fe and is sequestered as ferropericlase along the sample capsules walls, leaving the H to escape the system and/or enter the Fe-FeS mixture. The observed occurrence of ferropericlase on undried MgO capsule margins is otherwise difficult to explain, because an alternate source for the oxygen in the ferropericlase layer is difficult to identify. This study questions the use of pressure-depressed Fe-S eutectic temperatures and suggests that the lower eutectic temperatures sometimes reported are achieved by moving into the ternary Fe-S-H system. These results adjust slightly the constraints on eutectic temperatures allowed for partly solidified cores on small planets. H substantially diminishes the temperature extent of the melting interval in Fe-S by reducing the melting points of the crystalline phases more than it depresses the eutectic.

  12. Enhanced Hydrogen Production by Co-cultures of Hydrogenase and Nitrogenase in Escherichia coli.

    PubMed

    Lee, Hyun Jeong; Sekhon, Simranjeet Singh; Kim, Young Su; Park, Ju-Yong; Kim, Yang-Hoon; Min, Jiho

    2016-03-01

    Rhodobacter sphaeroides is a bacterium that can produce hydrogen by interaction with hydrogenase and nitrogenase. We report a hydrogen production system using co-cultivation of hydrogenase in liquid medium and immobilized nitrogenase in Escherichia coli. The recombinant plasmid has been constructed to analyze the effect of hydrogen production on the expression of hupSL hydrogenase and nifHDK nitrogenase isolated from R. sphaeroides. All recombinant E. coli strains were cultured anaerobically, and cells for nitrogenase were immobilized in agar gel, whereas cells for hydrogenase were supplemented on the nitrogenase agar gel. The hupSL hydrogenase has been observed to enhance hydrogen production and hydrogenase activity under co-culture with nifHDK nitrogenase. The maximum hydrogen production has been obtained at an agar gel concentration and a cell concentration for co-culture of 2% and 6.4נ10(8) CFU. Thus, co-culture of hupSL hydrogenase and nifHDK nitrogenase provides a promising route for enhancing the hydrogen production and hydrogenase activity. PMID:26607360

  13. Melting relations in the Fe-rich portion of the system FeFeS at 30 kb pressure

    USGS Publications Warehouse

    Brett, R.; Bell, P.M.

    1969-01-01

    The melting relations of FeFeS mixtures covering the composition range from Fe to Fe67S33 have been determined at 30 kb pressure. The phase relations are similar to those at low pressure. The eutectic has a composition of Fe72.9S27.1 and a temperature of 990??C. Solubility of S in Fe at elevated temperatures at 30 kb is of the same order of magnitude as at low pressure. Sulfur may have significantly lowered the melting point of iron in the upper mantle during the period of coalescence of metal prior to core formation in the primitive earth. ?? 1969.

  14. Hydrogenase-based nanomaterials as anode electrode catalyst in polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Tsuda, Muneyuki; Dio, Wilson Agerico; Kasai, Hideaki

    2005-03-01

    We consider hydrogenase-based nanomaterials for possible use as anode electrode catalysts in polymer electrolyte fuel cells (PEFCs). We choose Fe-only hydrogenase component of Desulfovibrio desulfuricans (DdHase) as a hydrogenase complex, and investigate its catalytic activity for H 2 dissociation using ab initio calculations based on density functional theory (DFT). We found two possible H-H bond cleavage pathways, which are heterolytic and possess low activation barriers. Moreover, the H 2 dissociation can be promoted by inducing spin polarization of the H 2 adduct. We report that hydrogenase or hydrogenase-based nanomaterials can manipulate to exhibit the catalytic activity equivalent to the well-known platinum catalyst.

  15. Roles of HoxX and HoxA in biosynthesis of hydrogenase in Bradyrhizobium japonicum.

    PubMed Central

    Durmowicz, M C; Maier, R J

    1997-01-01

    In-frame deletion mutagenesis was used to study the roles of two Bradyrhizobium japonicum proteins, HoxX and HoxA, in hydrogenase biosynthesis; based on their sequences, these proteins were previously proposed to be sensor and regulator proteins, respectively, of a two-component regulatory system necessary for hydrogenase transcription. Deletion of the hoxX gene resulted in a strain that expressed only 30 to 40% of wild-type hydrogenase activity. The inactive unprocessed form of the hydrogenase large subunit accumulated in this strain, indicating a role for HoxX in posttranslational processing of the hydrogenase enzyme but not in transcriptional regulation. Strains containing a deletion of the hoxA gene or a double mutation (hoxX and hoxA) did not exhibit any hydrogenase activity under free-living conditions, and extracts from these strains were inactive in gel retardation assays with a 158-bp fragment of the DNA region upstream of the hupSL operon. However, bacteroids from root nodules formed by all three mutant types (hoxX, hoxA, and hoxX hoxA) exhibited hydrogenase activity comparable to that of wild-type bacteroids. Bacteroid extracts from all of these strains, including the wild type, failed to cause a shift of the hydrogenase upstream region used in our assay. It was shown that HoxA is a DNA-binding transcriptional activator of hydrogenase structural gene expression under free-living conditions but not under symbiotic conditions. Although symbiotic hydrogenase expression is still sigma54 dependent, a transcriptional activator other than HoxA functions presumably upstream of the HoxA binding site. PMID:9171416

  16. Insight into core-shell dependent anoxic Cr(VI) removal with Fe@Fe2O3 nanowires: indispensable role of surface bound Fe(II).

    PubMed

    Mu, Yi; Ai, Zhihui; Zhang, Lizhi; Song, Fahui

    2015-01-28

    In this study, we investigated the anoxic Cr(VI) removal with core-shell Fe@Fe2O3 nanowires. It was found the surface area normalized Cr(VI) removal rate constants of Fe@Fe2O3 nanowires first increased with increasing the iron oxide shell thickness and then decreased, suggesting that Fe@Fe2O3 nanowires possessed an interesting core-shell structure dependent Cr(VI) removal property. Meanwhile, the Cr(VI) removal efficiency was positively correlated to the amount of surface bound Fe(II). This result revealed that the core-shell structure dependent Cr(VI) removal property of Fe@Fe2O3 nanowires was mainly attributed to the reduction of Cr(VI) by the surface bound Fe(II) besides the reduction of Cr(VI) adsorbed on the iron oxide shell via the electrons transferred from the iron core. The indispensable role of surface bound Fe(II) was confirmed by Tafel polarization and high-resolution X-ray photoelectron spectroscopic depth profiles analyses. X-ray diffraction patterns and scanning electron microscope images of the fresh and used Fe@Fe2O3 nanowires revealed the formation of Fe(III)/Cr(III)/Cr(VI) composite oxides during the anoxic Cr(VI) removal process. This study sheds a deep insight into the anoxic Cr(VI) removal mechanism of core-shell Fe@Fe2O3 nanowires and also provides an efficient Cr(VI) removal method. PMID:25543716

  17. Understanding the High Activity of Fe-N-C Electrocatalysts in Oxygen Reduction: Fe/Fe3C Nanoparticles Boost the Activity of Fe-Nx.

    PubMed

    Jiang, Wen-Jie; Gu, Lin; Li, Li; Zhang, Yun; Zhang, Xing; Zhang, Lin-Juan; Wang, Jian-Qiang; Hu, Jin-Song; Wei, Zidong; Wan, Li-Jun

    2016-03-16

    Understanding the origin of high activity of Fe-N-C electrocatalysts in oxygen reduction reaction (ORR) is critical but still challenging for developing efficient sustainable nonprecious metal catalysts in fuel cells and metal-air batteries. Herein, we developed a new highly active Fe-N-C ORR catalyst containing Fe-Nx coordination sites and Fe/Fe3C nanocrystals (Fe@C-FeNC), and revealed the origin of its activity by intensively investigating the composition and the structure of the catalyst and their correlations with the electrochemical performance. The detailed analyses unambiguously confirmed the coexistence of Fe/Fe3C nanocrystals and Fe-Nx in the best catalyst. A series of designed experiments disclosed that (1) N-doped carbon substrate, Fe/Fe3C nanocrystals or Fe-Nx themselves did not deliver the high activity; (2) the catalysts with both Fe/Fe3C nanocrystals and Fe-Nx exhibited the high activity; (3) the higher content of Fe-Nx gave the higher activity; (4) the removal of Fe/Fe3C nanocrystals severely degraded the activity; (5) the blocking of Fe-Nx downgraded the activity and the recovery of the blocked Fe-Nx recovered the activity. These facts supported that the high ORR activity of the Fe@C-FeNC electrocatalysts should be ascribed to that Fe/Fe3C nanocrystals boost the activity of Fe-Nx. The coexistence of high content of Fe-Nx and sufficient metallic iron nanoparticles is essential for the high ORR activity. DFT calculation corroborated this conclusion by indicating that the interaction between metallic iron and Fe-N4 coordination structure favored the adsorption of oxygen molecule. These new findings open an avenue for the rational design and bottom-up synthesis of low-cost highly active ORR electrocatalysts. PMID:26906342

  18. Structural and functional investigations of biological catalysts for optimization of solar-driven H II production systems

    NASA Astrophysics Data System (ADS)

    King, Paul W.; Svedruzic, Drazenka; Cohen, Jordi; Schulten, Klaus; Seibert, Michael; Ghirardi, Maria L.

    2006-08-01

    Research efforts to develop efficient systems for H II production encompass a variety of biological and chemical approaches. For solar-driven H II production we are investigating an approach that integrates biological catalysts, the [FeFe] hydrogenases, with a photoelectrochemical cell as a novel bio-hybrid system. Structurally the [FeFe] hydrogenases consist of an iron-sulfur catalytic site that in some instances is electronically wired to accessory iron-sulfur clusters proposed to function in electron transfer. The inherent structural complexity of most examples of these enzymes is compensated by characteristics desired for bio-hybrid systems (i.e., low activation energy, high catalytic activity and solubility) with the benefit of utilizing abundant, less costly non-precious metals. Redesign and modification of [FeFe] hydrogenases is being undertaken to reduce complexity and to optimize structural properties for various integration strategies. The least complex examples of [FeFe] hydrogenase are found in the species of photosynthetic green algae and are being studied as design models for investigating the effects of structural minimization on substrate transfer, catalytic activity and oxygen sensitivity. Redesigning hydrogenases for effective use in bio-hybrid systems requires a detailed understanding of the relationship between structure and catalysis. To achieve better mechanistic understanding of [FeFe] hydrogenases both structural and dynamic models are being used to identify potential substrate transfer mechanisms which are tested in an experimental system. Here we report on recent progress of our investigations in the areas of [FeFe] hydrogenase overexpression, minimization and biochemical characterization.

  19. Molecular evolution of gas cavity in [NiFeSe] hydrogenases resurrected in silico

    NASA Astrophysics Data System (ADS)

    Tamura, Takashi; Tsunekawa, Naoki; Nemoto, Michiko; Inagaki, Kenji; Hirano, Toshiyuki; Sato, Fumitoshi

    2016-01-01

    Oxygen tolerance of selenium-containing [NiFeSe] hydrogenases (Hases) is attributable to the high reducing power of the selenocysteine residue, which sustains the bimetallic Ni-Fe catalytic center in the large subunit. Genes encoding [NiFeSe] Hases are inherited by few sulphate-reducing δ-proteobacteria globally distributed under various anoxic conditions. Ancestral sequences of [NiFeSe] Hases were elucidated and their three-dimensional structures were recreated in silico using homology modelling and molecular dynamic simulation, which suggested that deep gas channels gradually developed in [NiFeSe] Hases under absolute anaerobic conditions, whereas the enzyme remained as a sealed edifice under environmental conditions of a higher oxygen exposure risk. The development of a gas cavity appears to be driven by non-synonymous mutations, which cause subtle conformational changes locally and distantly, even including highly conserved sequence regions.

  20. Molecular evolution of gas cavity in [NiFeSe] hydrogenases resurrected in silico

    PubMed Central

    Tamura, Takashi; Tsunekawa, Naoki; Nemoto, Michiko; Inagaki, Kenji; Hirano, Toshiyuki; Sato, Fumitoshi

    2016-01-01

    Oxygen tolerance of selenium-containing [NiFeSe] hydrogenases (Hases) is attributable to the high reducing power of the selenocysteine residue, which sustains the bimetallic Ni–Fe catalytic center in the large subunit. Genes encoding [NiFeSe] Hases are inherited by few sulphate-reducing δ-proteobacteria globally distributed under various anoxic conditions. Ancestral sequences of [NiFeSe] Hases were elucidated and their three-dimensional structures were recreated in silico using homology modelling and molecular dynamic simulation, which suggested that deep gas channels gradually developed in [NiFeSe] Hases under absolute anaerobic conditions, whereas the enzyme remained as a sealed edifice under environmental conditions of a higher oxygen exposure risk. The development of a gas cavity appears to be driven by non-synonymous mutations, which cause subtle conformational changes locally and distantly, even including highly conserved sequence regions. PMID:26818780

  1. Ferrous Carbonyl Dithiolates as Precursors to FeFe, FeCo, and FeMn Carbonyl Dithiolates

    PubMed Central

    2015-01-01

    Reported are complexes of the formula Fe(dithiolate)(CO)2(diphos) and their use to prepare homo- and heterobimetallic dithiolato derivatives. The starting iron dithiolates were prepared by a one-pot reaction of FeCl2 and CO with chelating diphosphines and dithiolates, where dithiolate = S2(CH2)22– (edt2–), S2(CH2)32– (pdt2–), S2(CH2)2(C(CH3)2)2– (Me2pdt2–) and diphos = cis-C2H2(PPh2)2 (dppv), C2H4(PPh2)2 (dppe), C6H4(PPh2)2 (dppbz), C2H4[P(C6H11)2]2 (dcpe). The incorporation of 57Fe into such building block complexes commenced with the conversion of 57Fe into 57Fe2I4(iPrOH)4, which then was treated with K2pdt, CO, and dppe to give 57Fe(pdt)(CO)2(dppe). NMR and IR analyses show that these complexes exist as mixtures of all-cis and trans-CO isomers, edt2– favoring the former and pdt2– the latter. Treatment of Fe(dithiolate)(CO)2(diphos) with the Fe(0) reagent (benzylideneacetone)Fe(CO)3 gave Fe2(dithiolate)(CO)4(diphos), thereby defining a route from simple ferrous salts to models for hydrogenase active sites. Extending the building block route to heterobimetallic complexes, treatment of Fe(pdt)(CO)2(dppe) with [(acenaphthene)Mn(CO)3]+ gave [(CO)3Mn(pdt)Fe(CO)2(dppe)]+ ([3d(CO)]+). Reduction of [3d(CO)]+ with BH4– gave the Cs-symmetric μ-hydride (CO)3Mn(pdt)(H)Fe(CO)(dppe) (H3d). Complex H3d is reversibly protonated by strong acids, the proposed site of protonation being sulfur. Treatment of Fe(dithiolate)(CO)2(diphos) with CpCoI2(CO) followed by reduction by Cp2Co affords CpCo(dithiolate)Fe(CO)(diphos) (4), which can also be prepared from Fe(dithiolate)(CO)2(diphos) and CpCo(CO)2. Like the electronically related (CO)3Fe(pdt)Fe(CO)(diphos), these complexes undergo protonation to afford the μ-hydrido complexes [CpCo(dithiolate)HFe(CO)(diphos)]+. Low-temperature NMR studies indicate that Co is the kinetic site of protonation. PMID:24803716

  2. Purification of hydrogenases by affinity chromatography on Procion Red-agarose.

    PubMed Central

    Schneider, K; Pinkwart, M; Jochim, K

    1983-01-01

    The agarose-coupled triazine dye Procion Red HE-3B has been demonstrated to be applicable as an affinity gel for the purification of five diverse hydrogenases, namely the soluble, NAD-specific and the membrane-bound hydrogenase of Alcaligenes eutrophus, the membrane-bound hydrogenase of the N2-fixing Alcaligenes latus, the reversible H2-evolving and the unidirectional H2-oxidizing hydrogenase of Clostridium pasteurianum. In the case of the soluble hydrogenase of A. eutrophus, chromatography on Procion Red-agarose even permitted the separation of inactive from active enzyme, thus yielding a 2-3-fold increase in specific activity. For the homogeneous enzyme preparation obtained after two column steps (Procion Red-agarose, DEAE-Sephacel), a specific activity of 121 mumol of H2 oxidized/min per mg of protein was determined. Kinetic studies with free Procion Red provided evidence that the diverse hydrogenases are competitively inhibited by the dye, each with respect to the electron carrier (NAD, Methylene Blue, Methyl Viologen), indicating a specific interaction between Procion Red and the catalytic centres of the enzymes. For the highly purified preparations of the soluble and the membrane-bound hydrogenase of A. eutrophus, in 50 mM-potassium phosphate, pH 7.0, Ki values for Procion Red of 103 and 19 microM have been determined. PMID:6351840

  3. Activities, Occurrence, and Localization of Hydrogenase in Free-Living and Symbiotic Frankia1

    PubMed Central

    Sellstedt, Anita; Lindblad, Peter

    1990-01-01

    Symbiotic and free-living Frankia were investigated for correlation between hydrogenase activities (in vivo/in vitro assays) and for occurrence and localization of hydrogenase protein by Western blots and immuno-gold localization, respectively. Freshly prepared nodule homogenates from the symbiosis between Alnus incana and a local source of Frankia did not show any detectable in vivo or in vitro hydrogenase uptake activity, as also has been shown earlier. However, a free-living Frankia strain originally isolated from these nodules clearly showed both in vivo and in vitro hydrogenase activity, with the latter being approximately four times higher. Frankia strain Cpl1 showed hydrogen uptake activity both in symbiosis with Alnus incana and in a free-living state. Western blots on the different combinations of host plants and Frankia strains used in the present study revealed that all the Frankia sources contained a hydrogenase protein, even the local source where no in vivo or in vitro activity could be measured. The 72 kilodalton protein found in the symbiotic Frankia as well as in the free-living Frankia strains were immunologically related to the large subunit of a dimeric hydrogenase purified from Alcaligenes latus. Recognitions to polypeptides with molecular masses of about 41 and 19.5 kilodaltons were also observed in Frankia strain UGL011101 and in the local source of Frankia, respectively. Immunogold localization of the protein demonstrated that in both the symbiotic state and the free-living nitrogen-fixing Frankia, the protein is located in vesicles and in hyphae. The inability to measure any uptake hydrogenase activity is therefore not due to the absence of hydrogenase enzyme. However, the possibility of an inactive hydrogenase enzyme cannot be ruled out. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:16667353

  4. Partial characterization of an electrophoretically labile hydrogenase activity of Escherichia coli K-12.

    PubMed Central

    Stoker, K; Oltmann, L F; Stouthamer, A H

    1988-01-01

    A mutant of Escherichia coli K-12 is described that is specifically impaired in only one hydrogenase isoenzyme. By means of Tn5-mediated insertional mutagenesis, a class of mutants was isolated (class I) that had retained 20% of the overall hydrogenase activity. As determined by neutral polyacrylamide gel electrophoresis, the mutant contained normal amounts of the hydrogenase isoenzymes 1 and 2. Therefore, the hydrogenase activity affected seemed to be electrophoretically labile and was called hydrogenase L. The presence of such an activity was recently suggested in various papers and was called isoenzyme 3. Hydrogenase L might be identical or part of the latter isoenzyme. By DEAE ion-exchange chromatography it could be separated from hydrogenases 1 and 2. Hydrogenase activity in the parent strain HB101, determined manometrically with cell-free preparations and methylviologen as the electron acceptor, immediately showed maximal activity. However, class I mutants showed a lag phase which was dependent on the protein concentration utilized in the assay. This suggested that the fast initial activity of HB101 was due to hydrogenase L. The enzyme or enzyme complex showed an Mr around 300,000 and a pH optimum between 7 and 8. Strong indications about its physiological role were provided by the finding that in class I mutants H2 production by the formate-hydrogen lyase pathway was unimpaired, whereas fumarate-dependent H2 uptake was essentially zero. Complementation with F-prime factor F'116 but not with F'143 and coconjugation and cotransduction experiments localized the mutation (hydL) close to metC at approximately 64.8 min. Images PMID:3277948

  5. Active Site of the NAD(+)-Reducing Hydrogenase from Ralstonia eutropha Studied by EPR Spectroscopy.

    PubMed

    Lwenstein, Julia; Lauterbach, Lars; Teutloff, Christian; Lenz, Oliver; Bittl, Robert

    2015-10-29

    Pulsed ENDOR and HYSCORE measurements were carried out to characterize the active site of the oxygen-tolerant NAD(+)-reducing hydrogenase of Ralstonia eutropha. The catalytically active Nia-C state exhibits a bridging hydride between iron and nickel in the active site, which is photodissociated upon illumination. Its hyperfine coupling is comparable to that of standard hydrogenases. In addition, a histidine residue could be identified, which shows hyperfine and nuclear quadrupole parameters in significant variance from comparable histidine residues that are conserved in standard [NiFe] hydrogenases, and might be related to the O2 tolerance of the enzyme. PMID:26214595

  6. Turning cellulose waste into electricity: hydrogen conversion by a hydrogenase electrode.

    PubMed

    Abramov, Sergey M; Sadraddinova, Elmira R; Shestakov, Andrey I; Voronin, Oleg G; Karyakin, Arkadiy A; Zorin, Nikolay A; Netrusov, Alexander I

    2013-01-01

    Hydrogen-producing thermophilic cellulolytic microorganisms were isolated from cow faeces. Rates of cellulose hydrolysis and hydrogen formation were 0.2 mM L(-1) h(-1) and 1 mM L(-1) h(-1), respectively. An enzymatic fuel cell (EFC) with a hydrogenase anode was used to oxidise hydrogen produced in a microbial bioreactor. The hydrogenase electrode was exposed for 38 days (912 h) to a thermophilic fermentation medium. The hydrogenase activity remaining after continuous operation under load was 73% of the initial value. PMID:24312437

  7. Uptake Hydrogenase (Hup) in Common Bean (Phaseolus vulgaris) Symbioses

    PubMed Central

    Navarro, Rosangela B.; Vargas, Alvaro A. T.; Schröder, Eduardo C.; van Berkum, Peter

    1993-01-01

    Strains of Rhizobium forming nitrogen-fixing symbioses with common bean were systematically examined for the presence of the uptake hydrogenase (hup) structural genes and expression of uptake hydrogenase (Hup) activity. DNA with homology to the hup structural genes of Bradyrhizobium japonicum was present in 100 of 248 strains examined. EcoRI fragments with molecular sizes of approximately 20.0 and 2.2 kb hybridized with an internal SacI fragment, which contains part of both bradyrhizobial hup structural genes. The DNA with homology to the hup genes was located on pSym of one of the bean rhizobia. Hup activity was observed in bean symbioses with 13 of 30 strains containing DNA homologous with the hup structural genes. However, the Hup activity was not sufficient to eliminate hydrogen evolution from the nodules. Varying the host plant with two of the Hup+ strains indicated that expression of Hup activity was host regulated, as has been reported with soybean, pea, and cowpea strains. Images PMID:16349115

  8. Production and Application of a Soluble Hydrogenase from Pyrococcus furiosus

    DOE PAGESBeta

    Wu, Chang-Hao; McTernan, Patrick M.; Walter, Mary E.; Adams, Michael W. W.

    2015-01-01

    Hydrogen gas is a potential renewable alternative energy carrier that could be used in the future to help supplement humanity’s growing energy needs. Unfortunately, current industrial methods for hydrogen production are expensive or environmentally unfriendly. In recent years research has focused on biological mechanisms for hydrogen production and specifically on hydrogenases, the enzyme responsible for catalyzing the reduction of protons to generate hydrogen. In particular, a better understanding of this enzyme might allow us to generate hydrogen that does not use expensive metals, such as platinum, as catalysts. The soluble hydrogenase I (SHI) from the hyperthermophile Pyrococcus furiosus ,more » a member of the euryarchaeota, has been studied extensively and used in various biotechnological applications. This review summarizes the strategies used in engineering and characterizing three different forms of SHI and the properties of the recombinant enzymes. SHI has also been used in in vitro systems for hydrogen production and NADPH generation and these systems are also discussed.« less

  9. Structural features of [NiFeSe] and [NiFe] hydrogenases determining their different properties: a computational approach.

    PubMed

    Baltazar, Carla S A; Teixeira, Vitor H; Soares, Cláudio M

    2012-04-01

    Hydrogenases are metalloenzymes that catalyze the reversible reaction H(2)<->2H(+) + 2e(-), being potentially useful in H(2) production or oxidation. [NiFeSe] hydrogenases are a particularly interesting subgroup of the [NiFe] class that exhibit tolerance to O(2) inhibition and produce more H(2) than standard [NiFe] hydrogenases. However, the molecular determinants responsible for these properties remain unknown. Hydrophobic pathways for H(2) diffusion have been identified in [NiFe] hydrogenases, as have proton transfer pathways, but they have never been studied in [NiFeSe] hydrogenases. Our aim was, for the first time, to characterize the H(2) and proton pathways in a [NiFeSe] hydrogenase and compare them with those in a standard [NiFe] hydrogenase. We performed molecular dynamics simulations of H(2) diffusion in the [NiFeSe] hydrogenase from Desulfomicrobium baculatum and extended previous simulations of the [NiFe] hydrogenase from Desulfovibrio gigas (Teixeira et al. in Biophys J 91:2035-2045, 2006). The comparison showed that H(2) density near the active site is much higher in [NiFeSe] hydrogenase, which appears to have an alternative route for the access of H(2) to the active site. We have also determined a possible proton transfer pathway in the [NiFeSe] hydrogenase from D. baculatum using continuum electrostatics and Monte Carlo simulation and compared it with the proton pathway we found in the [NiFe] hydrogenase from D. gigas (Teixeira et al. in Proteins 70:1010-1022, 2008). The residues constituting both proton transfer pathways are considerably different, although in the same region of the protein. These results support the hypothesis that some of the special properties of [NiFeSe] hydrogenases could be related to differences in the H(2) and proton pathways. PMID:22286956

  10. Nickel-containing hydrogenase isoenzymes from anaerobically grown Escherichia coli K-12.

    PubMed Central

    Ballantine, S P; Boxer, D H

    1985-01-01

    Two membrane-bound hydrogenase isoenzymes present in Escherichia coli during anaerobic growth have been resolved. The isoenzymes are immunologically and electrophoretically distinct. The physically more abundant isoenzyme (hydrogenase 1) contains a subunit of Mr 64,000 and is not released from the membrane by exposure to either trypsin or pancreatin. The second isoenzyme (hydrogenase 2) apparently contributes the greater part of the membrane-bound hydrogen:benzyl viologen oxidoreductase activity and exists in two electrophoretic forms revealed by nondenaturing polyacrylamide gel analysis. This isoenzyme is irreversibly inactivated at alkaline pH and gives rise to an active, soluble derivative when the membrane-bound enzyme is exposed to either trypsin or pancreatin. Both hydrogenase isoenzymes contain nickel. Images PMID:3894325

  11. Radical S-Adenosyl-l-methionine Chemistry in the Synthesis of Hydrogenase and Nitrogenase Metal Cofactors*

    PubMed Central

    Byer, Amanda S.; Shepard, Eric M.; Peters, John W.; Broderick, Joan B.

    2015-01-01

    Nitrogenase, [FeFe]-hydrogenase, and [Fe]-hydrogenase enzymes perform catalysis at metal cofactors with biologically unusual non-protein ligands. The FeMo cofactor of nitrogenase has a MoFe7S9 cluster with a central carbon, whereas the H-cluster of [FeFe]-hydrogenase contains a 2Fe subcluster coordinated by cyanide and CO ligands as well as dithiomethylamine; the [Fe]-hydrogenase cofactor has CO and guanylylpyridinol ligands at a mononuclear iron site. Intriguingly, radical S-adenosyl-l-methionine enzymes are vital for the assembly of all three of these diverse cofactors. This minireview presents and discusses the current state of knowledge of the radical S-adenosylmethionine enzymes required for synthesis of these remarkable metal cofactors. PMID:25477518

  12. Randomly induced Escherichia coli K-12 Tn5 insertion mutants defective in hydrogenase activity.

    PubMed Central

    Stoker, K; Oltmann, L F; Stouthamer, A H

    1989-01-01

    Systematic screening of 6.10(4) independent Tn5 insertion mutants of Escherichia coli yielded one new hydrogenase locus, hydF, mapping near 64.8 min, i.e., close to the hydL locus (K. Stoker, L.F. Oltmann, and A.H. Stouthamer, J. Bacteriol. 170:1220-1226, 1988). It regulated specifically the activity of the hydrogenase isoenzymes, formate dehydrogenase and lyase activities being unaffected. In hydF mutants, hydrogenase 1 and 2 activities were reduced to 1% of the parental level, whereas the electrophoretically labile part was present at about 20% of the parental level. H2 uptake was also reduced to about 20%, which suggested a relationship between these two activities. Experiments with 63Ni indicated that hydrogenase isoenzymes 1 and 2 might be present in these strains but in an inactive form. The hydF product might therefore be a posttranslational activator. At least three other mutant classes were isolated. Additional data were obtained on coisolated, nickel-restorable hydC mutants (L.F. Wu and M.-A. Mandrand-Berthelot, Biochimie 68:167-179, 1986). These strains were found to suffer a general impairment of nickel uptake. Restoration of hydrogenase activities was specific for NiCl2 and inhibited by chloramphenicol, which indicated an effect either on the transcription of hydrogenase(-associated) genes or by cotranslational incorporation in nickel-containing enzymes (e.g., in hydrogenases). The hydC mutation could not be complemented in trans, evidence that the hydC product is not a nickel transport protein but rather a cis-acting regulatory gene. Parent HB101, hydF mutants, and the other mutants were further analyzed by monitoring the induction of hydrogenase and hydrogenase-associated activities upon transition of cells from aerobic to anaerobic growth. These experiments also revealed a correlation between the early-induced H2 uptake route and labile hydrogenase activity. The formate hydrogenlyase induction patterns followed quite well the slower induction patterns of hydrogenases 1 and 2. PMID:2536683

  13. Catalytic mechanism of hydrogenase from Azotobacter vinelandii. Final technical report, August 1, 1994--July 31, 1997

    SciTech Connect

    Arp, D.J.

    1997-10-01

    This project is focused on investigations of the catalytic mechanism of the hydrogenase found in the aerobic, N{sub 2}-fixing microorganism Azotobacter vinelandii. This report summarizes the progress during the first two years of the current project and include the anticipated course of the research for the remaining year of the current project. Because the current proposal represents a change in direction, the authors also include a brief progress report of prior DOE-sponsored research dealing with hydrogenases.

  14. Function of Periplasmic Hydrogenases in the Sulfate-ReducingBacterium Desulfovibrio vulgaris Hildenborough

    SciTech Connect

    Caffrey, Sean M.; Park, Hyung-Soo; Voordouw, Johanna K.; He,Zhili; Zhou, Jizhong; Voordouw, Gerrit

    2007-09-24

    The sulfate-reducing bacterium Desulfovibrio vulgarisHildenborough possesses four periplasmic hydrogenases to facilitate theoxidation of molecular hydrogen. These include an [Fe]hydrogenase, an[NiFeSe]hydrogenase, and two [NiFe]hydrogenases encoded by the hyd,hys, hyn1, and hyn2 genes, respectively. In order to understand theircellular functions, we have compared the growth rates of existing (hydand hyn1) and newly constructed (hys and hyn-1 hyd) mutants to those ofthe wild type in defined media in which lactate or hydrogen at either 5or 50 percent (vol/vol) was used as the sole electron donor for sulfatereduction. Only strains missing the [Fe]hydrogenase were significantlyaffected during growth with lactate or with 50 percent (vol/vol) hydrogenas the sole electron donor. When the cells were grown at low (5 percent[vol/vol]) hydrogen concentrations, those missing the [NiFeSe]hydrogenase suffered the greatest impairment. The growth rate datacorrelated strongly with gene expression results obtained from microarrayhybridizations and real-time PCR using mRNA extracted from cells grownunder the three conditions. Expression of the hys genes followed theorder 5 percent hydrogen>50 percent hydrogen>lactate, whereasexpression of the hyd genes followed the reverse order. These resultssuggest that growth with lactate and 50 percent hydrogen is associatedwith high intracellular hydrogen concentrations, which are best capturedby the higher activity, lower affinity [Fe]hydrogenase. In contrast,growth with 5 percent hydrogen is associated with a low intracellularhydrogen concentration, requiring the lower activity, higher affinity[NiFeSe]hydrogenase.

  15. (Catalytic mechanism of hydrogenase from aerobic N sub 2 -fixing microorganisms)

    SciTech Connect

    Arp, D.J.

    1991-01-01

    The results of this DOE-sponsored project have contributed to our understanding of the catalytic mechanism of A. vinelandii hydrogenase. A group of inhibitors have been characterized. These provide information about the different types of redox clusters involved in catalysis and the roles of each. One group has already used acetylene in a study of three desulfovibrian hydrogenases and shown that only the NiFe hydrogenases are inhibited. We have characterized a number of spectral properties of A. vinelandii hydrogenase. The EPR signals associated with this hydrogenase in the reduced state are reminiscent of other NiFe dimeric hydrogenases such as A. eutrophus, but distinctly difference from others such as D. gigas and Chromatium vinosum. Thus, while the NiFe dimeric hydrogenases are now recognized as a large group of similar enzymes, there are differences in the spectral and catalytic properties which are not explained by their similar redox inventories, identical subunit structures, immunological cross reactivity and conserved sequences. The inhibitors we have characterized are also proving of value in the spectral characterizations. Surprisingly, we only see a significant EP signal attributable to Ni after the enzyme has been inactivated with O{sub 2} and then reduced (though not reactivated). No spectral perterbations (EPR or UV-V is) of active enzyme can be attributed to binding of H{sub 2}, even though H{sub 2} clearly binds to this form of the enzyme. Acetylene, which does not substantially perterb the EPR signal of active hydrogenase, does result in a new absorption envelope in the UV-V is spectrum. Overall, the results of this project have revealed the complex interactions of the redox clusters in catalysis through studies of inhibitor mechanisms and spectral properties. 14 refs., 9 figs.

  16. Regulation of uptake hydrogenase and effects of hydrogen utilization on gene expression in Rhodopseudomonas palustris.

    PubMed

    Rey, Federico E; Oda, Yasuhiro; Harwood, Caroline S

    2006-09-01

    Rhodopseudomonas palustris is a purple, facultatively phototrophic bacterium that uses hydrogen gas as an electron donor for carbon dioxide fixation during photoautotrophic growth or for ammonia synthesis during nitrogen fixation. It also uses hydrogen as an electron supplement to enable the complete assimilation of oxidized carbon compounds, such as malate, into cell material during photoheterotrophic growth. The R. palustris genome predicts a membrane-bound nickel-iron uptake hydrogenase and several regulatory proteins to control hydrogenase synthesis. There is also a novel sensor kinase gene (RPA0981) directly adjacent to the hydrogenase gene cluster. Here we show that the R. palustris regulatory sensor hydrogenase HupUV acts in conjunction with the sensor kinase-response regulator protein pair HoxJ-HoxA to activate hydrogenase expression in response to hydrogen gas. Transcriptome analysis indicated that the HupUV-HoxJA regulatory system also controls the expression of genes encoding a predicted dicarboxylic acid transport system, a putative formate transporter, and a glutamine synthetase. RPA0981 had a small effect in repressing hydrogenase synthesis. We also determined that the two-component system RegS-RegR repressed expression of the uptake hydrogenase, probably in response to changes in intracellular redox status. Transcriptome analysis indicated that about 30 genes were differentially expressed in R. palustris cells that utilized hydrogen when growing photoheterotrophically on malate under nitrogen-fixing conditions compared to a mutant strain that lacked uptake hydrogenase. From this it appears that the recycling of reductant in the form of hydrogen does not have extensive nonspecific effects on gene expression in R. palustris. PMID:16923881

  17. Solubilization and Properties of a Particulate Hydrogenase from Methanobacterium Strain G2R†

    PubMed Central

    McKellar, R. C.; Sprott, G. D.

    1979-01-01

    Mechanical disruption of cells of Methanobacterium strain G2R resulted in a 78-fold increase in the specific activity of the hydrogenase as measured by the benzyl viologen reduction assay. Approximately 50% of the activity in disrupted cells was associated with the particulate fraction. Between 69 and 85% of the particulate hydrogenase was released by treatment with the detergents Triton X-100, deoxycholate, and octyl-β-d-glucopyranoside. The relative electrophoretic mobilities of the soluble hydrogenases were identical, indicating that G2R possessed a single electrophoretically distinct hydrogenase. The particulate enzyme was inactivated by oxygen and could be reactivated with dithionite or glucose plus glucose oxidase. The enzyme had a pH optimum of 8.5 and resisted heating at 52 but not 77°C. A number of nonspecific dyes, flavin adenine dinucleotide, and riboflavin 5′-phosphate were effective electron acceptors; oxidized nicotinamide adenine dinucleotide, nicotinamide adenine dinucleotide phosphate, and factor 420 were apparently not reduced. Hydrogenase activity was inhibited by p-hydroxymercuribenzoate, cyanide, chloroform, and chloramphenicol. The molecular weight of the solubilized enzyme was 900,000, with subunits of molecular weights 38,500, 50,700, and approximately 80,000. It is suggested that, in intact cells of G2R, the large hydrogenase complex is loosely bound to the cell wall or membrane. Images PMID:37236

  18. (Catalytic mechanism of hydrogenase from aerobic N2-fixing microorganisms). [Azotobacter vinelandii:a1

    SciTech Connect

    Not Available

    1991-01-01

    The results of this DOE-sponsored project have contributed to our understanding of the catalytic mechanism of A. vinelandii hydrogenase. A group of inhibitors have been characterized. These provide information about the different types of redox clusters involved in catalysis and the roles of each. One group has already used acetylene in a study of three desulfovibrian hydrogenases and shown that onbly the NiFe hydrogenases are inhibited. The inhibitor studies are also being extended to other enzymes. We have characterized a number of special properties of A. vinelandii hydrogenase. While the NiFe dimeric hydrogenases are now recognized as a large group of similar enzymes, there are differences in the spectral and catalytic properties which are not explained by their similar redox inventories, identical subunit structures, immunological cross reactivity and conserved sequences. Surprisingly, we only see a significant EPR signal attributable to Ni after the enzyme has been inactivated with O{sub 2} and then re-reduced (though not reactivated). Acetylene, which does not substantially perterb the EPR signal of active hydrogenase, does result in a new absorption envelope in the UV-Vis spectrum. Overall, the results of this project have revealed the complex interactions of the redox clusters in catalysis through studies of inhibitor mechanisms and spectral properties. 14 refs., 9 figs.

  19. Integration of an [FeFe]-hydrogenase into the anaerobic metabolism of Escherichia coli

    PubMed Central

    Kelly, Ciarán L.; Pinske, Constanze; Murphy, Bonnie J.; Parkin, Alison; Armstrong, Fraser; Palmer, Tracy; Sargent, Frank

    2015-01-01

    Biohydrogen is a potentially useful product of microbial energy metabolism. One approach to engineering biohydrogen production in bacteria is the production of non-native hydrogenase activity in a host cell, for example Escherichia coli. In some microbes, hydrogenase enzymes are linked directly to central metabolism via diaphorase enzymes that utilise NAD+/NADH cofactors. In this work, it was hypothesised that heterologous production of an NAD+/NADH-linked hydrogenase could connect hydrogen production in an E. coli host directly to its central metabolism. To test this, a synthetic operon was designed and characterised encoding an apparently NADH-dependent, hydrogen-evolving [FeFe]-hydrogenase from Caldanaerobacter subterranus. The synthetic operon was stably integrated into the E. coli chromosome and shown to produce an active hydrogenase, however no H2 production was observed. Subsequently, it was found that heterologous co-production of a pyruvate::ferredoxin oxidoreductase and ferredoxin from Thermotoga maritima was found to be essential to drive H2 production by this system. This work provides genetic evidence that the Ca.subterranus [FeFe]-hydrogenase could be operating in vivo as an electron-confurcating enzyme. PMID:26839796

  20. Proton Inventory and Dynamics in the Nia-S to Nia-C Transition of a [NiFe] Hydrogenase.

    PubMed

    Greene, Brandon L; Wu, Chang-Hao; Vansuch, Gregory E; Adams, Michael W W; Dyer, R Brian

    2016-03-29

    Hydrogenases (H2ases) represent one of the most striking examples of biological proton-coupled electron transfer (PCET) chemistry, functioning in facile proton reduction and H2 oxidation involving long-range proton and electron transport. Spectroscopic and electrochemical studies of the [NiFe] H2ases have identified several catalytic intermediates, but the details of their interconversion are still a matter of debate. Here we use steady state and time-resolved infrared spectroscopy, sensitive to the CO ligand of the active site iron, as a probe of the proton inventory as well as electron and proton transfer dynamics in the soluble hydrogenase I from Pyrococcus furiosus. Subtle shifts in infrared signatures associated with the Nia-C and Nia-S states as a function of pH revealed an acid-base equilibrium associated with an ionizable amino acid near the active site. Protonation of this residue was found to correlate with the photoproduct distribution that results from hydride photolysis of the Nia-C state, in which one of the two photoproduct states becomes inaccessible at low pH. Additionally, the ability to generate Nia-S via PCET from Nia-C was weakened at low pH, suggesting prior protonation of the proton acceptor. Kinetic and thermodynamic analysis of electron and proton transfer with respect to the various proton inventories was utilized to develop a chemical model for reversible hydride oxidation involving two intermediates differing in their hydrogen bonding character. PMID:26956769

  1. The Investigation and Characterization of the Group 3 [Nickel-Iron]-Hydrogenases Using Protein Film Electrochemistry

    NASA Astrophysics Data System (ADS)

    McIntosh, Chelsea Lee

    Hydrogenases, the enzymes that reversibly convert protons and electrons to hydrogen, are used in all three domains of life. [NiFe]-hydrogenases are considered best suited for biotechnological applications because of their reversible inactivation with oxygen. Phylogenetically, there are four groups of [NiFe]-hydrogenases. The best characterized group, "uptake" hydrogenases, are membrane-bound and catalyze hydrogen oxidation in vivo. In contrast, the group 3 [NiFe]-hydrogenases are heteromultimeric, bifunctional enzymes that fulfill various cellular roles. In this dissertation, protein film electrochemistry (PFE) is used to characterize the catalytic properties of two group 3 [NiFe]-hydrogenases: HoxEFUYH from Synechocystsis sp. PCC 6803 and SHI from Pyrococcus furiosus. First, HoxEFUYH is shown to be biased towards hydrogen production. Upon exposure to oxygen, HoxEFUYH inactivates to two states, both of which can be reactivated on the timescale of seconds. Second, we show that PfSHI is the first example of an oxygen tolerant [NiFe]-hydrogenase that produces two inactive states upon exposure to oxygen. Both inactive states are analogous to those characterized for HoxEFUYH, but oxygen exposed PfSHI produces a greater fraction that reactivates at high potentials, enabling hydrogen oxidation in the presence of oxygen. Third, it is shown that removing the NAD(P)-reducing subunits from PfSHI leads to a decrease in bias towards hydrogen oxidation and renders the enzyme oxygen sensitive. Both traits are likely due to impaired intramolecular electron transfer. Mechanistic hypotheseses for these functional differences are considered.

  2. Hydrogenase Activity of Mineral-Associated and Suspended Populations of Desulfovibrio desulfuricans Essex 6

    SciTech Connect

    C.L. Reardon; T.S. Magnuson; E.S. Boyd; W.D. Leavitt; D.W. Reed; G.G. Geesey

    2014-02-01

    The interactions between sulfate-reducing microorganisms and iron oxides influence a number of important redox-sensitive biogeochemical processes including the formation of iron sulfides. Enzymes, such as hydrogenase which catalyze the reversible oxidation of molecular hydrogen, are known to mediate electron transfer to metals and may contribute to the formation and speciation of ferrous sulfides formed at the cell–mineral interface. In the present study, we compared the whole cell hydrogenase activity of Desulfovibrio desulfuricans strain Essex 6 growing as biofilms on hematite (hematite-associated) or as suspended populations using different metabolic pathways. Hematite-associated cells exhibited significantly greater hydrogenase activity than suspended populations during sulfate respiration but not during pyruvate fermentation. The enhanced activity of the hematite-associated, sulfate-grown cells appears to be dependent on iron availability rather than a general response to surface attachment since the activity of glass-associated cells did not differ from that of suspended populations. Hydrogenase activity of pyruvate-fermenting cells was stimulated by addition of iron as soluble Fe(II)Cl2 and, in the absence of added iron, both sulfate-reducing and pyruvate-fermenting cells displayed similar rates of hydrogenase activity. These data suggest that iron exerts a stronger influence on whole cell hydrogenase activity than either metabolic pathway or mode of growth. The location of hydrogenase to the cell envelope and the enhanced activity at the hematite surface in sulfate-reducing cells may influence the redox conditions that control the species of iron sulfides on the mineral surface.

  3. Essential anaplerotic role for the energy-converting hydrogenase Eha in hydrogenotrophic methanogenesis

    PubMed Central

    Lie, Thomas J.; Costa, Kyle C.; Lupa, Boguslaw; Korpole, Suresh; Whitman, William B.; Leigh, John A.

    2012-01-01

    Despite decades of study, electron flow and energy conservation in methanogenic Archaea are still not thoroughly understood. For methanogens without cytochromes, flavin-based electron bifurcation has been proposed as an essential energy-conserving mechanism that couples exergonic and endergonic reactions of methanogenesis. However, an alternative hypothesis posits that the energy-converting hydrogenase Eha provides a chemiosmosis-driven electron input to the endergonic reaction. In vivo evidence for both hypotheses is incomplete. By genetically eliminating all nonessential pathways of H2 metabolism in the model methanogen Methanococcus maripaludis and using formate as an additional electron donor, we isolate electron flow for methanogenesis from flux through Eha. We find that Eha does not function stoichiometrically for methanogenesis, implying that electron bifurcation must operate in vivo. We show that Eha is nevertheless essential, and a substoichiometric requirement for H2 suggests that its role is anaplerotic. Indeed, H2 via Eha stimulates methanogenesis from formate when intermediates are not otherwise replenished. These results fit the model for electron bifurcation, which renders the methanogenic pathway cyclic, and as such requires the replenishment of intermediates. Defining a role for Eha and verifying electron bifurcation provide a complete model of methanogenesis where all necessary electron inputs are accounted for. PMID:22872868

  4. Effect of nickel on activity and subunit composition of purified hydrogenase from Nocardia opaca 1 b.

    PubMed

    Schneider, K; Schlegel, H G; Jochim, K

    1984-02-01

    The NAD-reducing hydrogenase of Nocardia opaca 1 b was found to be a soluble, cytoplasmic enzyme. N. opaca 1 b does not contain an additional membrane-bound hydrogenase. The soluble enzyme was purified to homogeneity with a yield of 19% and a final specific activity of 45 mumol H2 oxidized min-1 mg protein-1. NAD reduction with H2 was completely dependent on the presence of divalent metal ions (Ni2+, Co2+, Mg2+, Mn2+) or of high salt concentrations (0.5-1.5 M). The most specific effect was caused by NiCl2, whose optimal concentration turned out to be 1 mM. The stimulation of activity by salts was the greater the less chaotrophic the anion. Maximal activity was achieved in 0.5 M potassium phosphate. Hydrogenase was also activated by protons. The pH optimum in 50 mM triethanolamine/HCl buffer containing 1 mM NiCl2 was 7.8-8.0. In the absence of Ni2+, hydrogenase was only active at pH values below 7.0. The reduction of other electron acceptors was not dependent on metal ions or salts, even though an approximately 1.5-fold stimulation of the reactions by 0.1-10 microM NiCl2 was observed. With the most effective electron acceptor, benzyl viologen, a 50-fold higher specific activity was determined than with NAD. The total molecular weight of hydrogenase has been estimated to be 200 000 (gel filtration) and 178 000 (sucrose density gradient centrifugation, and sodium dodecyl sulfate electrophoresis) respectively. The enzyme is a tetramer consisting of non-identical subunits with molecular weights of 64 000, 56 000, 31 000 and 27 000. It was demonstrated by electrophoretic analyses that in the absence of NiCl2 and at alkaline pH values the native hydrogenase dissociates into two subunit dimers. The first dimer was dark yellow coloured, completely inactive and composed of subunits with molecular weights of 64 000 and 31 000. The second dimer was light yellow, inactive with NAD but still active with methyl viologen. It was composed of subunits with molecular weights of 56 000 and 27 000. Immunological comparison of the hydrogenase of N. opaca 1 b and the soluble hydrogenase of Alcaligenes eutrophus H16 revealed that these two NAD-linked hydrogenases are partially identical proteins. PMID:6319136

  5. [NiFe]-hydrogenase is essential for cyanobacterium Synechocystis sp. PCC 6803 aerobic growth in the dark

    PubMed Central

    De Rosa, Edith; Checchetto, Vanessa; Franchin, Cinzia; Bergantino, Elisabetta; Berto, Paola; Szabò, Ildikò; Giacometti, Giorgio M.; Arrigoni, Giorgio; Costantini, Paola

    2015-01-01

    The cyanobacterium Synechocystis sp. PCC 6803 has a bidirectional [NiFe]-hydrogenase (Hox hydrogenase) which reversibly reduces protons to H2. This enzyme is composed of a hydrogenase domain and a diaphorase moiety, which is distinctly homologous to the NADH input module of mitochondrial respiratory Complex I. Hox hydrogenase physiological function is still unclear, since it is not required for Synechocystis fitness under standard growth conditions. We analyzed the phenotype under prolonged darkness of three Synechocystis knock-out strains, lacking either Hox hydrogenase (ΔHoxE-H) or one of the proteins responsible for the assembly of its NiFe active site (ΔHypA1 and ΔHypB1). We found that Hox hydrogenase is required for Synechocystis growth under this condition, regardless of the functional status of its catalytic site, suggesting an additional role beside hydrogen metabolism. Moreover, quantitative proteomic analyses revealed that the expression levels of several subunits of the respiratory NADPH/plastoquinone oxidoreductase (NDH-1) are reduced when Synechocystis is grown in the dark. Our findings suggest that the Hox hydrogenase could contribute to electron transport regulation when both photosynthetic and respiratory pathways are down-regulated, and provide a possible explanation for the close evolutionary relationship between mitochondrial respiratory Complex I and cyanobacterial [NiFe]-hydrogenases. PMID:26215212

  6. Selenium increases hydrogenase expression in autotrophically cultured Bradyrhizobium japonicum and is a constituent of the purified enzyme.

    PubMed Central

    Boursier, P; Hanus, F J; Papen, H; Becker, M M; Russell, S A; Evans, H J

    1988-01-01

    We have investigated the effect of added selenite on autotrophic growth and the time course of hydrogen oxidation derepression in Bradyrhizobium japonicum 122DES cultured in a medium purified to remove selenium compounds. In addition, hydrogenase was purified to near homogeneity and examined for the specific incorporation of Se into the enzyme. The addition of Se at 0.1 microM significantly increased total cell protein and hydrogenase specific activity of harvested cells. Also, the addition of SeO3(2-) enhanced the time course of hydrogenase derepression by 133%, whereas VO3, AsO2(2-), SO2(2-), and TeO3(2-) failed to substantially affect hydrogenase derepression. During the final chromatographic purification of hydrogenase, a striking coincidence in peaks of protein content, Se radioactivity, and hydrogenase activity of fractions was obtained. The total Se content expressed per milligram of protein increased manyfold during the purification procedure. The mean Se content of the purified hydrogenase was 0.56 +/- 0.13 mol of Se per mol of enzyme. These results indicate that Se is an important element in the H2 metabolism of B. japonicum and that hydrogenase from B. japonicum is a seleno protein. Images PMID:3056905

  7. Production of superoxide radicals by soluble hydrogenase from Alcaligenes eutrophus H16.

    PubMed Central

    Schneider, K; Schlegel, H G

    1981-01-01

    The soluble hydrogenase (hydrogen-NAD+ oxidoreductase, EC 1.12.1.2) of Alcaligenes eutrophus H16 was shown to be stabilized by oxidation with oxygen and ferricyanide as long as electron donors and reducing compounds were absent. The simultaneous presence of H2, NADH and O2 in the enzyme solution, however, caused an irreversible inactivation of hydrogenase that was dependent on the O2 concentration. The half-life periods of 4 degrees C under partial pressures of 0.1, 5, 20 and 50% O2 were 11, 5, 2.5 and 1.5 h respectively. Evidence has been obtained that hydrogenase produces superoxide free radical anions (O2-.), which were detected by their ability to oxidize hydroxylamine to nitrite. The correlation between O2 concentration, nitrite formation and inactivation rates and the stabilization of hydrogenase by addition of superoxide dismutase indicated that superoxide radicals are responsible for enzyme inactivation. During short-term activity measurements (NAD+ reduction, H2 evolution from NADH), hydrogenase activity was inhibited by O2 only very slightly. In the presence of 0.7 mM-O2 an inhibition of about 20% was observed. PMID:6272708

  8. Molecular dynamics and experimental investigation of H2 and O2 diffusion in [Fe]-hydrogenase

    PubMed Central

    Cohen, Jordi; Kim, Kwiseon; Posewitz, Matthew; Ghirardi, Maria L.; Schulten, Klaus; Seibert, Michael; King, Paul

    2008-01-01

    The [Fe]-hydrogenase enzymes are highly efficient H2 catalysts found in ecologically, and phylogenetically diverse microorganisms, including the photosynthetic green alga, Chlamydomonas reinhardtii. Although these enzymes can occur in several forms, H2 catalysis takes place at a unique [FeS] prosthetic group, or H-cluster, located at the active site. Significant to the function of hydrogenases is how the surrounding protein structure facilitates substrate-product transfer, and protects the active site H-cluster from inactivation. To elucidate the role of protein structure in O2 inactivation of [Fe]-hydrogenases, experimental and theoretical investigations have been performed. Molecular dynamics was used to comparatively investigate O2 and H2 diffusion in [Fe]-hydrogenase CpI. The results are compared to initial investigations of H2 diffusion in [NiFe]-hydrogenase [1]. Our preliminary results suggest that H2 diffuses more easily and freely than O2, which is restricted to a small number of allowed pathways to and from the active site. These O2 pathways are located in the conserved active site domain, shown experimentally to have an essential role in active site protection. PMID:15667271

  9. The organization of hydrogenase in the cytoplasmic membrane of Escherichia coli.

    PubMed Central

    Graham, A

    1981-01-01

    The organization of the membrane-bound hydrogenase from Escherichia coli was studied by using two membrane-impermeant probes, diazotized [125I]di-iodosulphanilic acid and lactoperoxidase-catalysed radioiodination. The labelling pattern of the enzyme obtained from labelled spheroplasts was compared with that from predominantly inside-out membrane vesicles, after recovery of hydrogenase by immunoprecipitation. The labelling pattern of F1-ATPase was used as a control for labelling at the cytoplasmic surface throughout these experiments. Hydrogenase (mol.wt. approx. 63 000) is transmembranous. Crossed immunoelectrophoresis with anti-(membrane vesicle) immunoglobulins, coupled with successive immunoadsorption of the antiserum with spheroplasts, confirmed the location of hydrogenase at the periplasmic surface. Immunoadsorption with sonicated spheroplasts suggests that the enzyme is also exposed at the cytoplasmic surface. Inside-out vesicles were prepared by agglutination of sonicated spheroplasts, and the results of immunoadsorption using these vesicles confirms the location of hydrogenase at the cytoplasmic surface. Images Fig. 3. Fig. 4. PMID:7034717

  10. Hydrogenase Gene Distribution and H2 Consumption Ability within the Thiomicrospira Lineage.

    PubMed

    Hansen, Moritz; Perner, Mirjam

    2016-01-01

    Thiomicrospira were originally characterized as sulfur-oxidizing chemolithoautotrophs. Attempts to grow them on hydrogen failed for many years. Only recently we demonstrated hydrogen consumption among two of three tested Thiomicrospira and posited that hydrogen consumption may be more widespread among Thiomicrospira than previously assumed. Here, we investigate and compare the hydrogen consumption ability and the presence of group 1 [NiFe]-hydrogenase genes (enzyme catalyzes H2↔2H(+) + 2e(-)) for sixteen different Thiomicrospira species. Seven of these Thiomicrospira species encoded group 1 [NiFe]-hydrogenase genes and five of these species could also consume hydrogen. All Thiomicrospira species exhibiting hydrogen consumption were from hydrothermal vents along the Mid-Atlantic ridge or Eastern Pacific ridges. The tested Thiomicrospira from Mediterranean and Western Pacific vents could not consume hydrogen. The [NiFe]-hydrogenase genes were categorized into two clusters: those resembling the hydrogenase from Hydrogenovibrio are in cluster I and are related to those from Alpha- and other Gammaproteobacteria. In cluster II, hydrogenases found exclusively in Thiomicrospira crunogena strains are combined and form a monophyletic group with those from Epsilonproteobacteria suggesting they were acquired through horizontal gene transfer. Hydrogen consumption appears to be common among some Thiomicrospira, given that five of the tested sixteen strains carried this trait. The hydrogen consumption ability expands their competitiveness within an environment. PMID:26903978

  11. (Catalytic mechanism of hydrogenase from aerobic N sub 2 -fixing microorganisms)

    SciTech Connect

    Arp, D.J.

    1990-01-01

    Hydrogenases are enzymes which catalyze reactions involving dihydrogen. They serve integral roles in a number of microbial metabolic pathways. Our research is focussed on investigations of the catalytic mechanism of the hydrogenases found in aerobic, N{sub 2}-fixing microorganisms such as Azotobacter vinelandii and the agronomically important Bradyrhizobium japonicum as well as microorganisms with similar hydrogenases. The hydrogenases isolated from these microorganisms are Ni- and Fe-containing heterodimers. Our work has focussed on three areas during the last grant period. In all cases, a central theme has been the role of inhibitors in the characteristics under investigation. In addition, a number of collaborative efforts have yielded interesting results. In metalloenzymes such as hydrogenase, inhibitors often influence the activity of the enzyme through ligand interactions with redox centers, often metals, within the enzyme. Therefore, investigations of the ability of various compounds to inhibit an enzyme's activity, as well as the mechanism of inhibition, can provide insight into the catalytic mechanism of the enzyme as well as the role of various redox centers in catalysis. We have investigated in detail four inhibitors of A. vinelandii and the results are summarized here. The influence of these inhibitors on the spectral properties of the enzyme are summarized. Electron paramagnetic resonance and ultraviolet spectra investigations are discussed. 9 figs.

  12. Purification and characterization of the hydrogen uptake hydrogenase from the hyperthermpholic archaebacterium Pyrodictium brockii

    SciTech Connect

    Pihl, T.D. ); Maier, R.J. Univ. of Maryland, Baltimore )

    1991-03-01

    Pyrodictium brockii is a hyperthermophilic archaebacterium with an optimal growth temperature of 105C. P. brokii is also a chemolithotroph, requiring H{sub 2} and CO{sub 2} for growth. The authors have purified the hydrogen uptake hydrogenase from membranes of P. brockii by reactive red affinity chromatography and sucrose gradient centrifugation. Colorometric analysis of Fe and S content in reactive red-purified hydrogenase revealed 8.7 {plus minus} 0.6 mol of Fe and 6.2 {plus minus} 1.2 mol of S per mol of hydrogenase. Growth of cells in {sup 63} NiCl{sub 2} resulted in label incorporation into reactive red-purified hydrogenase. Temperature stability studies indicated that the membrane-bound form of the enzyme was more stable than the solubilized purified form over a period of minutes with respect to temperature. However, the membranes were not able to protect the enzyme from thermal inactivation over a period of hours. The artificial electron acceptor specificity of the pure enzyme was similar to that of the membrane-bound form, but the purified enzyme was able to evolve H{sub 2} in the presence of reduced methyl viologen. The K{sub m} of membrane-bound hydrogenase for H{sub 2} was approximately 19 {mu}M with methylene blue as the electron acceptor, whereas the purified enzyme had a higher K{sub m} value.

  13. Hydrogenase Gene Distribution and H2 Consumption Ability within the Thiomicrospira Lineage

    PubMed Central

    Hansen, Moritz; Perner, Mirjam

    2016-01-01

    Thiomicrospira were originally characterized as sulfur-oxidizing chemolithoautotrophs. Attempts to grow them on hydrogen failed for many years. Only recently we demonstrated hydrogen consumption among two of three tested Thiomicrospira and posited that hydrogen consumption may be more widespread among Thiomicrospira than previously assumed. Here, we investigate and compare the hydrogen consumption ability and the presence of group 1 [NiFe]-hydrogenase genes (enzyme catalyzes H2↔2H+ + 2e-) for sixteen different Thiomicrospira species. Seven of these Thiomicrospira species encoded group 1 [NiFe]-hydrogenase genes and five of these species could also consume hydrogen. All Thiomicrospira species exhibiting hydrogen consumption were from hydrothermal vents along the Mid-Atlantic ridge or Eastern Pacific ridges. The tested Thiomicrospira from Mediterranean and Western Pacific vents could not consume hydrogen. The [NiFe]-hydrogenase genes were categorized into two clusters: those resembling the hydrogenase from Hydrogenovibrio are in cluster I and are related to those from Alpha- and other Gammaproteobacteria. In cluster II, hydrogenases found exclusively in Thiomicrospira crunogena strains are combined and form a monophyletic group with those from Epsilonproteobacteria suggesting they were acquired through horizontal gene transfer. Hydrogen consumption appears to be common among some Thiomicrospira, given that five of the tested sixteen strains carried this trait. The hydrogen consumption ability expands their competitiveness within an environment. PMID:26903978

  14. Vibrational spectroscopic characterization of the phosphate mineral barbosalite FeFe23+()2( - Implications for the molecular structure

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; Xi, Yunfei; López, Andrés; Scholz, Ricardo; Lana, Cristiano de Carvalho; Souza, Bárbara Firmino e.

    2013-11-01

    Natural single-crystal specimens of barbosalite from Brazil, with general formula FeFe23+()2( were investigated by Raman and infrared spectroscopy. The mineral occurs as secondary products in granitic pegmatites. The Raman spectrum of barbosalite is characterized by bands at 1020, 1033 and 1044 cm-1 cm-1, assigned to ν1 symmetric stretching mode of the HOPO33- and PO43- units. Raman bands at around 1067, 1083 and 1138 cm-1 are attributed to both the HOP and PO antisymmetric stretching vibrations. The set of Raman bands observed at 575, 589 and 606 cm-1 are assigned to the ν4 out of plane bending modes of the PO4 and H2PO4 units. Raman bands at 439, 461, 475 and 503 cm-1 are attributed to the ν2 PO4 and H2PO4 bending modes. Strong Raman bands observed at 312, 346 cm-1 with shoulder bands at 361, 381 and 398 cm-1 are assigned to FeO stretching vibrations. No bands which are attributable to water vibrations were found. Vibrational spectroscopy enables aspects of the molecular structure of barbosalite to be assessed.

  15. Inhibition of hydrogen uptake in Escherichia coli by expressing the hydrogenase from the cyanobacterium Synechocystis sp. PCC 6803

    PubMed Central

    Maeda, Toshinari; Vardar, Gönül; Self, William T; Wood, Thomas K

    2007-01-01

    Background Molecular hydrogen is an environmentally-clean fuel and the reversible (bi-directional) hydrogenase of the cyanobacterium Synechocystis sp. PCC 6803 as well as the native Escherichia coli hydrogenase 3 hold great promise for hydrogen generation. These enzymes perform the simple reaction 2H+ + 2e- ↔ H2 (g). Results Hydrogen yields were enhanced up to 41-fold by cloning the bidirectional hydrogenase (encoded by hoxEFUYH) from the cyanobacterium into E. coli. Using an optimized medium, E. coli cells expressing hoxEFUYH also produced twice as much hydrogen as the well-studied Enterobacter aerogenes HU-101, and hydrogen gas bubbles are clearly visible from the cultures. Overexpression of HoxU alone (small diaphorase subunit) accounts for 43% of the additional hydrogen produced by HoxEFUYH. In addition, hydrogen production in E. coli mutants with defects in the native formate hydrogenlyase system show that the cyanobacterial hydrogenase depends on both the native E. coli hydrogenase 3 as well as on its maturation proteins. Hydrogen absorption by cells expressing hoxEFUYH was up to 10 times lower than cells which lack the cloned cyanobacterial hydrogenase; hence, the enhanced hydrogen production in the presence of hoxEFUYH is due to inhibition of hydrogen uptake activity in E. coli. Hydrogen uptake by cells expressing hoxEFUYH was suppressed in three wild-type strains and in two hycE mutants but not in a double mutant defective in hydrogenase 1 and hydrogenase 2; hence, the active cyanobacterial locus suppresses hydrogen uptake by hydrogenase 1 and hydrogenase 2 but not by hydrogenase 3. Differential gene expression indicated that overexpression of HoxEFUYH does not alter expression of the native E. coli hydrogenase system; instead, biofilm-related genes are differentially regulated by expression of the cyanobacterial enzymes which resulted in 2-fold elevated biofilm formation. This appears to be the first enhanced hydrogen production by cloning a cyanobacterial enzyme into a heterologous host. Conclusion Enhanced hydrogen production in E. coli cells expressing the cyanobacterial HoxEFUYH is by inhibiting hydrogen uptake of both hydrogenase 1 and hydrogenase 2. PMID:17521447

  16. Regulation of carbon monoxide dehydrogenase and hydrogenase in Rhodospirillum rubrum: Effects of CO and oxygen on synthesis and activity

    SciTech Connect

    Bonam, D.; Lehman, L.; Roberts, G.P.; Ludden, P.W.

    1989-06-01

    Exposure of the photosynthetic bacterium Rhodospirillum rubrum to carbon monoxide led to increased carbon monoxide dehydrogenase and hydrogenase activities due to de novo protein synthesis of both enzymes. Two-dimensional gels of (/sup 35/S)methionine-pulse-labeled cells showed that induction of CO dehydrogenase synthesis was rapidly initiated (less than 5 min upon exposure to CO) and was inhibited by oxygen. Both CO dehydrogenase and the CO-induced hydrogenase were inactivated by oxygen in vivo and in vitro. In contrast to CO dehydrogenase, the CO-induced hydrogenase was 95% inactivated by heating at 70 degrees C for 5 min. Unlike other hydrogenases, this CO-induced hydrogenase was inhibited only 60% by a 100% CO gas phase.

  17. Dual role of HupF in the biosynthesis of [NiFe] hydrogenase in Rhizobium leguminosarum

    PubMed Central

    2012-01-01

    Background [NiFe] hydrogenases are enzymes that catalyze the oxidation of hydrogen into protons and electrons, to use H2 as energy source, or the production of hydrogen through proton reduction, as an escape valve for the excess of reduction equivalents in anaerobic metabolism. Biosynthesis of [NiFe] hydrogenases is a complex process that occurs in the cytoplasm, where a number of auxiliary proteins are required to synthesize and insert the metal cofactors into the enzyme structural units. The endosymbiotic bacterium Rhizobium leguminosarum requires the products of eighteen genes (hupSLCDEFGHIJKhypABFCDEX) to synthesize an active hydrogenase. hupF and hupK genes are found only in hydrogenase clusters from bacteria expressing hydrogenase in the presence of oxygen. Results HupF is a HypC paralogue with a similar predicted structure, except for the C-terminal domain present only in HupF. Deletion of hupF results in the inability to process the hydrogenase large subunit HupL, and also in reduced stability of this subunit when cells are exposed to high oxygen tensions. A ΔhupF mutant was fully complemented for hydrogenase activity by a C-terminal deletion derivative under symbiotic, ultra low-oxygen tensions, but only partial complementation was observed in free living cells under higher oxygen tensions (1% or 3%). Co-purification experiments using StrepTag-labelled HupF derivatives and mass spectrometry analysis indicate the existence of a major complex involving HupL and HupF, and a less abundant HupF-HupK complex. Conclusions The results indicate that HupF has a dual role during hydrogenase biosynthesis: it is required for hydrogenase large subunit processing and it also acts as a chaperone to stabilize HupL when hydrogenase is synthesized in the presence of oxygen. PMID:23136881

  18. Nickel L-edge X-ray absorption spectroscopy of Pyrococcus furiosus hydrogenase

    SciTech Connect

    Elp, J. van; Baidya, N.; Mascharak, P.K.

    1995-05-10

    The authors have investigated the reduced, thionine-treated at 20 {degrees}C, and thionine-treated at 80 {degrees}C forms of Pyrococcus furiosus [NiFe] hydrogenase using L-edge X-ray absorption spectroscopy. At 20 {degrees}C, the Ni site is apparently not redox active, since the reduced and 20 {degrees}C thionine-treated forms exhibit the same spectra. Results of theoretical simulations as well as comparison with the spectra of mode compounds indicate the presence of high-spin Ni(II) in these forms. On the basis of a comparison with the spectral features of model nickel complexes, the nickel site in the hydorgenase appears to be 5- or 6-coordinate. The 80 {degrees}C thionine-treated form has a broader Ni L-edge centered at a higher energy, consistent with a charge distribution of at least two holes on the nickel and at least one hole significantly delocalized onto the ligand framework.

  19. Advances in the Function and Regulation of Hydrogenase in the Cyanobacterium Synechocystis PCC6803

    PubMed Central

    Cassier-Chauvat, Corinne; Veaudor, Théo; Chauvat, Franck

    2014-01-01

    In order to use cyanobacteria for the biological production of hydrogen, it is important to thoroughly study the function and the regulation of the hydrogen-production machine in order to better understand its role in the global cell metabolism and identify bottlenecks limiting H2 production. Most of the recent advances in our understanding of the bidirectional [Ni-Fe] hydrogenase (Hox) came from investigations performed in the widely-used model cyanobacterium Synechocystis PCC6803 where Hox is the sole enzyme capable of combining electrons with protons to produce H2 under specific conditions. Recent findings suggested that the Hox enzyme can receive electrons from not only NAD(P)H as usually shown, but also, or even preferentially, from ferredoxin. Furthermore, plasmid-encoded functions and glutathionylation (the formation of a mixed-disulfide between the cysteines residues of a protein and the cysteine residue of glutathione) are proposed as possible new players in the function and regulation of hydrogen production. PMID:25365180

  20. Crystallographic studies of nitrogenase and hydrogenase. Progress report, June 1, 1992--April 1, 1994

    SciTech Connect

    Bolin, J.T.

    1994-05-01

    The long term goal of this project is to obtain detailed knowledge of the structure and function of nitrogenase and hydrogenase through the analysis of physical, chemical, and biological data with reference to three-dimensional, atomic resolution crystal structures of components of the enzyme and/or complexes of the components. The current objectives to determine the crystal structure of wild-type Av1, the nitrogenase MoFe protein from Azotobacter vinelandii; to refine this structure at high resolution; and to initiate studies of mutant MoFe proteins that express altered chemical and physical properties. Further we seek to determine the crystal structure of the bi-directional all-Fe hydrogenase from C. pasteurianum, Cp-hydrI, and to initiate studies of the uptake hydrogenase from the same organism, Cp-hydrII.

  1. Mechanism of inhibition of NiFe hydrogenase by nitric oxide.

    PubMed

    Ceccaldi, Pierre; Etienne, Emilien; Dementin, Sébastien; Guigliarelli, Bruno; Léger, Christophe; Burlat, Bénédicte

    2016-04-01

    Hydrogenases reversibly catalyze the oxidation of molecular hydrogen and are inhibited by several small molecules including O2, CO and NO. In the present work, we investigate the mechanism of inhibition by NO of the oxygen-sensitive NiFe hydrogenase from Desulfovibrio fructosovorans by coupling site-directed mutagenesis, protein film voltammetry (PFV) and EPR spectroscopy. We show that micromolar NO strongly inhibits NiFe hydrogenase and that the mechanism of inhibition is complex, with NO targeting several metallic sites in the protein. NO reacts readily at the NiFe active site according to a two-step mechanism. The first and faster step is the reversible binding of NO to the active site followed by a slower and irreversible transformation at the active site. NO also induces irreversible damage of the iron-sulfur centers chain. We give direct evidence of preferential nitrosylation of the medial [3Fe-4S] to form dinitrosyl-iron complexes. PMID:26827939

  2. Evolutionary and biotechnological implications of robust hydrogenase activity in halophilic strains of Tetraselmis.

    PubMed

    D'Adamo, Sarah; Jinkerson, Robert E; Boyd, Eric S; Brown, Susan L; Baxter, Bonnie K; Peters, John W; Posewitz, Matthew C

    2014-01-01

    Although significant advances in H2 photoproduction have recently been realized in fresh water algae (e.g. Chlamydomonas reinhardtii), relatively few studies have focused on H2 production and hydrogenase adaptations in marine or halophilic algae. Salt water organisms likely offer several advantages for biotechnological H2 production due to the global abundance of salt water, decreased H2 and O2 solubility in saline and hypersaline systems, and the ability of extracellular NaCl levels to influence metabolism. We screened unialgal isolates obtained from hypersaline ecosystems in the southwest United States and identified two distinct halophilic strains of the genus Tetraselmis (GSL1 and QNM1) that exhibit both robust fermentative and photo H2-production activities. The influence of salinity (3.5%, 5.5% and 7.0% w/v NaCl) on H2 production was examined during anoxic acclimation, with the greatest in vivo H2-production rates observed at 7.0% NaCl. These Tetraselmis strains maintain robust hydrogenase activity even after 24 h of anoxic acclimation and show increased hydrogenase activity relative to C. reinhardtii after extended anoxia. Transcriptional analysis of Tetraselmis GSL1 enabled sequencing of the cDNA encoding the FeFe-hydrogenase structural enzyme (HYDA) and its maturation proteins (HYDE, HYDEF and HYDG). In contrast to freshwater Chlorophyceae, the halophilic Tetraselmis GSL1 strain likely encodes a single HYDA and two copies of HYDE, one of which is fused to HYDF. Phylogenetic analyses of HYDA and concatenated HYDA, HYDE, HYDF and HYDG in Tetraselmis GSL1 fill existing knowledge gaps in the evolution of algal hydrogenases and indicate that the algal hydrogenases sequenced to date are derived from a common ancestor. This is consistent with recent hypotheses that suggest fermentative metabolism in the majority of eukaryotes is derived from a common base set of enzymes that emerged early in eukaryotic evolution with subsequent losses in some organisms. PMID:24465722

  3. Purification and characterization of the hydrogen uptake hydrogenase from the hyperthermophilic archaebacterium Pyrodictium brockii.

    PubMed Central

    Pihl, T D; Maier, R J

    1991-01-01

    Pyrodictium brockii is a hyperthermophilic archaebacterium with an optimal growth temperature of 105 degrees C. P. brockii is also a chemolithotroph, requiring H2 and CO2 for growth. We have purified the hydrogen uptake hydrogenase from membranes of P. brockii by reactive red affinity chromatography and sucrose gradient centrifugation. The molecular mass of the holoenzyme was 118,000 +/- 19,000 Da in sucrose gradients. The holoenzyme consisted of two subunits by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The large subunit had a molecular mass of 66,000 Da, and the small subunit had a molecular mass of 45,000 Da. Colorometric analysis of Fe and S content in reactive red-purified hydrogenase revealed 8.7 +/- 0.6 mol of Fe and 6.2 +/- 1.2 mol of S per mol of hydrogenase. Growth of cells in 63NiCl2 resulted in label incorporation into reactive red-purified hydrogenase. Growth of cells in 63NiCl2 resulted in label incorporation into reactive red-purified hydrogenase. Temperature stability studies indicated that the membrane-bound form of the enzyme was more stable than the solubilized purified form over a period of minutes with respect to temperature. However, the membranes were not able to protect the enzyme from thermal inactivation over a period of hours. The artificial electron acceptor specificity of the pure enzyme was similar to that of the membrane-bound form, but the purified enzyme was able to evolve H2 in the presence of reduced methyl viologen. The Km of membrane-bound hydrogenase for H2 was approximately 19 microM with methylene blue as the electron acceptor, whereas the purified enzyme had a higher Km value. Images PMID:1900502

  4. Hydrogenases in Nostoc sp. Strain PCC 73102, a Strain Lacking a Bidirectional Enzyme

    PubMed Central

    Tamagnini, P.; Troshina, O.; Oxelfelt, F.; Salema, R.; Lindblad, P.

    1997-01-01

    The present study was carried out in order to examine and characterize the bidirectional hydrogenase in the cyanobacterium Nostoc sp. strain PCC 73102. Southern hybridizations with the probes Av1 and Av3 (hoxY and hoxH, bidirectional hydrogenase small and large subunits, respectively) revealed the occurrence of corresponding sequences in Anabaena variabilis (control), Anabaena sp. strain PCC 7120, and Nostoc muscorum but not in Nostoc sp. strain PCC 73102. As a control, hybridizations with the probe hup2 (hupL, uptake hydrogenase large subunit) demonstrated the presence of a corresponding gene in all the cyanobacteria tested, including Nostoc sp. strain PCC 73102. Moreover, with three different growth media, a bidirectional enzyme that was functional in vivo was observed in N. muscorum, Anabaena sp. strain PCC 7120, and A. variabilis, whereas Nostoc sp. strain PCC 73102 consistently lacked any detectable in vivo activity. Similar results were obtained when assaying for the presence of an enzyme that is functional in vitro. Native polyacrylamide gel electrophoresis followed by in situ hydrogenase activity staining was used to demonstrate the presence or absence of a functional enzyme. Again, bands corresponding to hydrogenase activity were observed for N. muscorum, Anabaena sp. strain PCC 7120, and A. variabilis but not for Nostoc sp. strain PCC 73102. In conclusion, we were unable to detect a bidirectional hydrogenase in Nostoc sp. strain PCC 73102 with specific physiological and molecular techniques. The same techniques clearly showed the presence of an inducible bidirectional enzyme and corresponding structural genes in N. muscorum, Anabaena sp. strain PCC 7120, and A. variabilis. Hence, Nostoc sp. strain PCC 73102 seems to be an unusual cyanobacterium and an interesting candidate for future biotechnological applications. PMID:16535596

  5. A missing link between complex I and group 4 membrane-bound [NiFe] hydrogenases.

    PubMed

    Marreiros, Bruno C; Batista, Ana P; Duarte, Afonso M S; Pereira, Manuela M

    2013-02-01

    Complex I of respiratory chains is an energy transducing enzyme present in most bacteria, mitochondria and chloroplasts. It catalyzes the oxidation of NADH and the reduction of quinones, coupled to cation translocation across the membrane. The complex has a modular structure composed of several proteins most of which are identified in other complexes. Close relations between complex I and group 4 membrane-bound [NiFe] hydrogenases and some subunits of multiple resistance to pH (Mrp) Na(+)/H(+) antiporters have been observed before and the suggestion that complex I arose from the association of a soluble nicotinamide adenine dinucleotide (NAD(+)) reducing hydrogenase with a Mrp-like antiporter has been put forward. In this article we performed a thorough taxonomic profile of prokaryotic group 4 membrane-bound [NiFe] hydrogenases, complexes I and complex I-like enzymes. In addition we have investigated the different gene clustering organizations of such complexes. Our data show the presence of complexes related to hydrogenases but which do not contain the binding site of the catalytic centre. These complexes, named before as Ehr (energy-converting hydrogenases related complexes) are a missing link between complex I and group 4 membrane-bound [NiFe] hydrogenases. Based on our observations we put forward a different perspective for the relation between complex I and related complexes. In addition we discuss the evolutionary, functional and mechanistic implications of this new perspective. This article is part of a Special Issue entitled: The evolutionary aspects of bioenergetic systems. PMID:23000657

  6. Evolutionary and Biotechnological Implications of Robust Hydrogenase Activity in Halophilic Strains of Tetraselmis

    PubMed Central

    D'Adamo, Sarah; Jinkerson, Robert E.; Boyd, Eric S.; Brown, Susan L.; Baxter, Bonnie K.; Peters, John W.; Posewitz, Matthew C.

    2014-01-01

    Although significant advances in H2 photoproduction have recently been realized in fresh water algae (e.g. Chlamydomonas reinhardtii), relatively few studies have focused on H2 production and hydrogenase adaptations in marine or halophilic algae. Salt water organisms likely offer several advantages for biotechnological H2 production due to the global abundance of salt water, decreased H2 and O2 solubility in saline and hypersaline systems, and the ability of extracellular NaCl levels to influence metabolism. We screened unialgal isolates obtained from hypersaline ecosystems in the southwest United States and identified two distinct halophilic strains of the genus Tetraselmis (GSL1 and QNM1) that exhibit both robust fermentative and photo H2-production activities. The influence of salinity (3.5%, 5.5% and 7.0% w/v NaCl) on H2 production was examined during anoxic acclimation, with the greatest in vivo H2-production rates observed at 7.0% NaCl. These Tetraselmis strains maintain robust hydrogenase activity even after 24 h of anoxic acclimation and show increased hydrogenase activity relative to C. reinhardtii after extended anoxia. Transcriptional analysis of Tetraselmis GSL1 enabled sequencing of the cDNA encoding the FeFe-hydrogenase structural enzyme (HYDA) and its maturation proteins (HYDE, HYDEF and HYDG). In contrast to freshwater Chlorophyceae, the halophilic Tetraselmis GSL1 strain likely encodes a single HYDA and two copies of HYDE, one of which is fused to HYDF. Phylogenetic analyses of HYDA and concatenated HYDA, HYDE, HYDF and HYDG in Tetraselmis GSL1 fill existing knowledge gaps in the evolution of algal hydrogenases and indicate that the algal hydrogenases sequenced to date are derived from a common ancestor. This is consistent with recent hypotheses that suggest fermentative metabolism in the majority of eukaryotes is derived from a common base set of enzymes that emerged early in eukaryotic evolution with subsequent losses in some organisms. PMID:24465722

  7. Hydrogen Formation and Its Regulation in Ruminococcus albus: Involvement of an Electron-Bifurcating [FeFe]-Hydrogenase, of a Non-Electron-Bifurcating [FeFe]-Hydrogenase, and of a Putative Hydrogen-Sensing [FeFe]-Hydrogenase

    PubMed Central

    Zheng, Yanning; Kahnt, Jörg; Kwon, In Hyuk; Mackie, Roderick I.

    2014-01-01

    Ruminococcus albus 7 has played a key role in the development of the concept of interspecies hydrogen transfer. The rumen bacterium ferments glucose to 1.3 acetate, 0.7 ethanol, 2 CO2, and 2.6 H2 when growing in batch culture and to 2 acetate, 2 CO2, and 4 H2 when growing in continuous culture in syntrophic association with H2-consuming microorganisms that keep the H2 partial pressure low. The organism uses NAD+ and ferredoxin for glucose oxidation to acetyl coenzyme A (acetyl-CoA) and CO2, NADH for the reduction of acetyl-CoA to ethanol, and NADH and reduced ferredoxin for the reduction of protons to H2. Of all the enzymes involved, only the enzyme catalyzing the formation of H2 from NADH remained unknown. Here, we report that R. albus 7 grown in batch culture on glucose contained, besides a ferredoxin-dependent [FeFe]-hydrogenase (HydA2), a ferredoxin- and NAD-dependent electron-bifurcating [FeFe]-hydrogenase (HydABC) that couples the endergonic formation of H2 from NADH to the exergonic formation of H2 from reduced ferredoxin. Interestingly, hydA2 is adjacent to the hydS gene, which is predicted to encode an [FeFe]-hydrogenase with a C-terminal PAS domain. We showed that hydS and hydA2 are part of a larger transcriptional unit also harboring putative genes for a bifunctional acetaldehyde/ethanol dehydrogenase (Aad), serine/threonine protein kinase, serine/threonine protein phosphatase, and a redox-sensing transcriptional repressor. Since HydA2 and Aad are required only when R. albus grows at high H2 partial pressures, HydS could be a H2-sensing [FeFe]-hydrogenase involved in the regulation of their biosynthesis. PMID:25157086

  8. Hydrogen Production by a Hyperthermophilic Membrane-Bound Hydrogenase in Soluble Nanolipoprotein Particles

    SciTech Connect

    Baker, S E; Hopkins, R C; Blanchette, C; Walsworth, V; Sumbad, R; Fischer, N; Kuhn, E; Coleman, M; Chromy, B; Letant, S; Hoeprich, P; Adams, M W; Henderson, P T

    2008-10-22

    Hydrogenases constitute a promising class of enzymes for ex vivo hydrogen production. Implementation of such applications is currently hindered by oxygen sensitivity and, in the case of membrane-bound hydrogenases (MBH), poor water solubility. Nanolipoprotein particles (NLPs), formed from apolipoproteins and phospholipids, offer a novel means to incorporate MBH into in a well-defined water-soluble matrix that maintains the enzymatic activity and is amenable to incorporation into more complex architectures. We report the synthesis, hydrogen-evolving activity and physical characterization of the first MBH-NLP assembly. This may ultimately lead to the development of biomimetic hydrogen production devices.

  9. Proton electroreduction catalyzed by cobaloximes: functional models for hydrogenases.

    PubMed

    Razavet, Mathieu; Artero, Vincent; Fontecave, Marc

    2005-06-27

    Cobaloximes have been examined as electrocatalysts for proton reduction in nonaqueous solvent in the presence of triethylammonium chloride. [Co(III)(dmgH)2pyCl], working at moderate potentials (-0.90 V/(Ag/AgCl/3 mol x L(-1) NaCl) and in neutral conditions, is a promising catalyst as compared to other first-row transition metal complexes which generally function at more negative potentials and/or at lower pH. More than 100 turnovers can be achieved during controlled-potential electrolysis without detectable degradation of the catalyst. Cyclic voltammograms simulation is consistent with a heterolytic catalytic mechanism and allowed us to extract related kinetic parameters. Introduction of an electron-donating (electron-withdrawing) substituent in the axial pyridine ligand significantly increases (decreases) the rate constant of the catalytic cycle determining step. This effect linearly correlates with the Hammet coefficients of the introduced substituents. The influence of the equatorial glyoxime ligand was also investigated and the capability of the stabilized BF2-bridged species [Co(dmgBF2)2(OH2)2] for electrocatalyzed hydrogen evolution confirmed. PMID:15962987

  10. Characterization of Hydrogenase II from the Hyperthermophilic Archaeon Pyrococcus furiosus and Assessment of Its Role in Sulfur Reduction

    PubMed Central

    Ma, Kesen; Weiss, Robert; Adams, Michael W. W.

    2000-01-01

    The fermentative hyperthermophile Pyrococcus furiosus contains an NADPH-utilizing, heterotetrameric (αβγδ), cytoplasmic hydrogenase (hydrogenase I) that catalyzes both H2 production and the reduction of elemental sulfur to H2S. Herein is described the purification of a second enzyme of this type, hydrogenase II, from the same organism. Hydrogenase II has an Mr of 320,000 ± 20,000 and contains four different subunits with Mrs of 52,000 (α), 39,000 (β), 30,000 (γ), and 24,000 (δ). The heterotetramer contained Ni (0.9 ± 0.1 atom/mol), Fe (21 ± 1.6 atoms/mol), and flavin adenine dinucleotide (FAD) (0.83 ± 0.1 mol/mol). NADPH and NADH were equally efficient as electron donors for H2 production with Km values near 70 μM and kcat/Km values near 350 min−1 mM−1. In contrast to hydrogenase I, hydrogenase II catalyzed the H2-dependent reduction of NAD (Km, 128 μM; kcat/Km, 770 min−1 mM−1). Ferredoxin from P. furiosus was not an efficient electron carrier for either enzyme. Both H2 and NADPH served as electron donors for the reduction of elemental sulfur (S0) and polysulfide by hydrogenase I and hydrogenase II, and both enzymes preferentially reduce polysulfide to sulfide rather than protons to H2 using NADPH as the electron donor. At least two [4Fe-4S] and one [2Fe-2S] cluster were detected in hydrogenase II by electron paramagnetic resonance spectroscopy, but amino acid sequence analyses indicated a total of five [4Fe-4S] clusters (two in the β subunit and three in the δ subunit) and one [2Fe-2S] cluster (in the γ subunit), as well as two putative nucleotide-binding sites in the γ subunit which are thought to bind FAD and NAD(P)(H). The amino acid sequences of the four subunits of hydrogenase II showed between 55 and 63% similarity to those of hydrogenase I. The two enzymes are present in the cytoplasm at approximately the same concentration. Hydrogenase II may become physiologically relevant at low S0 concentrations since it has a higher affinity than hydrogenase I for both S0 and polysulfide. PMID:10714990

  11. Mutational analysis of the hyc-operon determining the relationship between hydrogenase-3 and NADH pathway in Enterobacter aerogenes.

    PubMed

    Pi, Jian; Jawed, Muhammad; Wang, Jun; Xu, Li; Yan, Yunjun

    2016-01-01

    In this study, the hydrogenase-3 gene cluster (hycDEFGH) was isolated and identified from Enterobacter aerogenes CCTCC AB91102. All gene products were highly homologous to the reported bacterial hydrogenase-3 (Hyd-3) proteins. The genes hycE, hycF, hycG encoding the subunits of hydrogenase-3 were targeted for genetic knockout to inhibit the FHL hydrogen production pathway via the Red recombination system, generating three mutant strains AB91102-E (ΔhycE), AB91102-F (ΔhycF) and AB91102-G (ΔhycG). Deletion of the three genes affected the integrity of hydrogenase-3. The hydrogen production experiments with the mutant strains showed that no hydrogen was detected compared with the wild type (0.886 mol/mol glucose), demonstrating that knocking out any of the three genes could inhibit NADH hydrogen production pathway. Meanwhile, the metabolites of the mutant strains were significantly changed in comparison with the wild type, indicating corresponding changes in metabolic flux by mutation. Additionally, the activity of NADH-mediated hydrogenase was found to be nil in the mutant strains. The chemostat experiments showed that the NADH/NAD(+) ratio of the mutant strains increased nearly 1.4-fold compared with the wild type. The NADH-mediated hydrogenase activity and NADH/NAD(+) ratio analysis both suggested that NADH pathway required the involvement of the electron transport chain of hydrogenase-3. PMID:26672442

  12. Structural aspects and immunolocalization of the F420-reducing and non-F420-reducing hydrogenases from Methanobacterium thermoautotrophicum Marburg.

    PubMed Central

    Braks, I J; Hoppert, M; Roge, S; Mayer, F

    1994-01-01

    The F420-reducing hydrogenase and the non-F420-reducing hydrogenase (EC 1.12.99.1.) were isolated from a crude extract of Methanobacterium thermoautotrophicum Marburg. Electron microscopy of the negatively stained F420-reducing hydrogenase revealed that the enzyme is a complex with a diameter of 15.6 nm. It consists of two ring-like, stacked, parallel layers each composed of three major protein masses arranged in rotational symmetry. Each of these masses appeared to be subdivided into smaller protein masses. Electron microscopy of negatively stained samples taken from intermediate steps of the purification process revealed the presence of enzyme particles bound to inside-out membrane vesicles. Linker particles of 10 to 20 kDa which mediate the attachment of the hydrogenase to the cytoplasmic membrane were seen. Immunogold labelling confirmed that the F420-reducing hydrogenase is a membrane-bound enzyme. Electron microscopy of the negatively stained purified non-F420-reducing hydrogenase revealed that the enzyme is composed of three subunits exhibiting different diameters (5, 4, and 2 to 3 nm). According to immunogold labelling experiments, approximately 70% of the non-F420-reducing hydrogenase protein molecules were located at the cell periphery; the remaining 30% were cytoplasmic. No linker particles were observed for this enzyme. Images PMID:8002593

  13. hypD as a Marker for [NiFe]-Hydrogenases in Microbial Communities of Surface Waters

    PubMed Central

    Beimgraben, Christian; Gutekunst, Kirstin; Opitz, Friederike

    2014-01-01

    Hydrogen is an important trace gas in the atmosphere. Soil microorganisms are known to be an important part of the biogeochemical H2 cycle, contributing 80 to 90% of the annual hydrogen uptake. Different aquatic ecosystems act as either sources or sinks of hydrogen, but the contribution of their microbial communities is unknown. [NiFe]-hydrogenases are the best candidates for hydrogen turnover in these environments since they are able to cope with oxygen. As they lack sufficiently conserved sequence motifs, reliable markers for these enzymes are missing, and consequently, little is known about their environmental distribution. We analyzed the essential maturation genes of [NiFe]-hydrogenases, including their frequency of horizontal gene transfer, and found hypD to be an applicable marker for the detection of the different known hydrogenase groups. Investigation of two freshwater lakes showed that [NiFe]-hydrogenases occur in many prokaryotic orders. We found that the respective hypD genes cooccur with oxygen-tolerant [NiFe]-hydrogenases (groups 1 and 5) mainly of Actinobacteria, Acidobacteria, and Burkholderiales; cyanobacterial uptake hydrogenases (group 2a) of cyanobacteria; H2-sensing hydrogenases (group 2b) of Burkholderiales, Rhizobiales, and Rhodobacterales; and two groups of multimeric soluble hydrogenases (groups 3b and 3d) of Legionellales and cyanobacteria. These findings support and expand a previous analysis of metagenomic data (M. Barz et al., PLoS One 5:e13846, 2010, http://dx.doi.org/10.1371/journal.pone.0013846) and further identify [NiFe]-hydrogenases that could be involved in hydrogen cycling in aquatic surface waters. PMID:24727276

  14. Regulation and genetic organization of hydrogenase: Final progress report for the period June 1, 1985--July 31, 1988

    SciTech Connect

    Krasna, A.I.

    1988-10-01

    Hydrogenase is an enzyme which plays an important role in the anaerobic metabolism of many bacteria. The objectives of the research were to elucidate the regulation and genetic organization of hydrogenase in microorganisms. A mutation in the E. coli hydE gene leads to loss of all hydrogenase activities and isoenzymes as well as all formate-related activities. A 0.9 kb DNA fragment has been cloned from an E. coli genomic DNA library which restored all hydrogenase and formate activities to a hydE mutant strain. This gene coded for a polypeptide of subunit mw 36 kDa which is required for hydrogenase synthesis. It is involved in incorporation of nickel into hydrogenase. A mutation in the E coli hupB gene leads to the loss of the uptake of H/sub 2/ by dyes and the ability to grow on fumarate plus H/sub 2/, but expresses normal levels of hydrogenase when assayed by deuterium exchange. This mutation also leads to loss of all formate-related activities. The mutation mapped near minute 17 and a single mutation was responsible for loss of both activities. A 1.4 kb DNA fragment was isolated which restored the hydrogen uptake activities and coded for a polypeptide of subunit mw 30 kDa. Dna fragments have been isolated from Chromatium vinosum and Proteus vulgaris which restored hydrogenase activities to E. coli strains with mutations in the hydA or hydB regulatory genes and which lack all hydrogenase activities. 6 refs., 12 figs.

  15. The Uptake Hydrogenase in the Unicellular Diazotrophic Cyanobacterium Cyanothece sp. Strain PCC 7822 Protects Nitrogenase from Oxygen Toxicity

    PubMed Central

    Zhang, Xiaohui; Sherman, Debra M.

    2014-01-01

    Cyanothece sp. strain PCC 7822 is a unicellular, diazotrophic cyanobacterium that can produce large quantities of H2 when grown diazotrophically. This strain is also capable of genetic manipulations and can represent a good model for improving H2 production from cyanobacteria. To this end, a knockout mutation was made in the hupL gene (ΔhupL), and we determined how this would affect the amount of H2 produced. The ΔhupL mutant demonstrated virtually no nitrogenase activity or H2 production when grown under N2-fixing conditions. To ensure that this mutation only affected the hupL gene, a complementation strain was constructed readily with wild-type properties; this indicated that the original insertion was only in hupL. The mutant had no uptake hydrogenase activity but had increased bidirectional hydrogenase (Hox) activity. Western blotting and immunocytochemistry under the electron microscope indicated that the mutant had neither HupL nor NifHDK, although the nif genes were transcribed. Interestingly, biochemical analysis demonstrated that both HupL and NifH could be membrane associated. The results indicated that the nif genes were transcribed but that NifHDK was either not translated or was translated but rapidly degraded. We hypothesized that the Nif proteins were made but were unusually susceptible to O2 damage. Thus, we grew the mutant cells under anaerobic conditions and found that they grew well under N2-fixing conditions. We conclude that in unicellular diazotrophs, like Cyanothece sp. strain PCC 7822, the HupLS complex helps remove oxygen from the nitrogenase, and that this is a more important function than merely oxidizing the H2 produced by the nitrogenase. PMID:24317398

  16. Powerful fermentative hydrogen evolution of photosynthate in the cyanobacterium Lyngbya aestuarii BL J mediated by a bidirectional hydrogenase

    PubMed Central

    Kothari, Ankita; Parameswaran, Prathap; Garcia-Pichel, Ferran

    2014-01-01

    Cyanobacteria are considered good models for biohydrogen production because they are relatively simple organisms with a demonstrable ability to generate H2 under certain physiological conditions. However, most produce only little H2, revert readily to H2 consumption, and suffer from hydrogenase sensitivity to O2. Strains of the cyanobacteria Lyngbya aestuarii and Microcoleus chthonoplastes obtained from marine intertidal cyanobacterial mats were recently found to display much better H2 production potential. Because of their ecological origin in environments that become quickly anoxic in the dark, we hypothesized that this differential ability may have evolved to serve a role in the fermentation of the photosynthate. Here we show that, when forced to ferment internal substrate, these cyanobacteria display desirable characteristics of physiological H2 production. Among them, the strain L. aestuarii BL J had the fastest specific rates and attained the highest H2 concentrations during fermentation of photosynthate, which proceeded via a mixed acid fermentation pathway to yield acetate, ethanol, lactate, H2, CO2, and pyruvate. Contrary to expectations, the H2 yield per mole of glucose was only average compared to that of other cyanobacteria. Thermodynamic analyses point to the use of electron donors more electronegative than NAD(P)H in Lyngbya hydrogenases as the basis for its strong H2 production ability. In any event, the high specific rates and H2 concentrations coupled with the lack of reversibility of the enzyme, at the expense of internal, photosynthetically generated reductants, makes L. aestuarii BL J and/or its enzymes, a potentially feasible platform for large-scale H2 production. PMID:25540642

  17. Beyond H₂: exploiting 2-hydroxypyridine as a design element from [Fe]-hydrogenase for energy-relevant catalysis.

    PubMed

    Moore, Cameron M; Dahl, Eric W; Szymczak, Nathaniel K

    2015-04-01

    The unique primary and secondary coordination environments surrounding the active site of hydrogenase enzymes play a crucial role in H2 activation and transfer reactions. [Fe]-hydrogenase contains a 2-hydroxypyridine ligand motif, and many researchers have incorporated this design element into synthetic catalysts. Transition metal complexes supported by 2-hydroxypyridine scaffolds are catalysts for chemical conversion schemes relevant to alternative energy applications and, in addition to hydrogenase-type reactivity, find new uses in other chemical domains. In this review, the current status of 2-hydroxypyridine-derived catalysts is described with an emphasis on design features that lead to lower energy catalytic pathways. PMID:25528204

  18. Demonstration of hydrogenase in extracts of the homoacetate-fermenting bacterium Clostridium thermoaceticum.

    PubMed Central

    Drake, H L

    1982-01-01

    Cell-free extracts of the homoacetate-fermenting bacterium Clostridium thermoaceticum were shown to catalyze the hydrogen-dependent reduction of various artificial electron acceptors. The activity of the hydrogenase was optimal at pH 8.5 to 9 and was extremely sensitive to aeration. EDTA did not significantly reduce the liability of the enzymic activity to oxidation (aeration). At 50 degrees C, when both methyl viologen and hydrogen were at saturating concentrations with respect to hydrogenase, the specific activity of cell-free extracts approximated 4 mumol of H2 oxidized per min per mg of protein; fourfold higher specific activities were obtained when benzyl viologen was utilized as an electron acceptor. Activity stains of polyacrylamide gels demonstrated the presence of a single hydrogenase band, suggesting that the catalytic activity in cell extracts was due to a single enzyme. The activity was stable for at least 32 min at 55 degrees C but was slowly inactivated at 70 degrees C. NAD, NADP, flavin adenine dinucleotide, flavin mononucleotide, and ferredoxin were not significantly reduced, but possible reduction of the particulate b-type cytochrome of C. thermoaceticum was observed. NaCl, sodium dodecyl sulfate, iodoacetamide, and CO were shown to inhibit catalysis. A kinetic study is presented, and the possible physiologic roles for hydrogenase in C. thermoaceticum ar discussed. Images PMID:7040339

  19. A redox hydrogel protects hydrogenase from high-potential deactivation and oxygen damage

    NASA Astrophysics Data System (ADS)

    Plumer, Nicolas; Rdiger, Olaf; Oughli, Alaa Alsheikh; Williams, Rhodri; Vivekananthan, Jeevanthi; Pller, Sascha; Schuhmann, Wolfgang; Lubitz, Wolfgang

    2014-09-01

    Hydrogenases are nature's efficient catalysts for both the generation of energy via oxidation of molecular hydrogen and the production of hydrogen via the reduction of protons. However, their O2 sensitivity and deactivation at high potential limit their applications in practical devices, such as fuel cells. Here, we show that the integration of an O2-sensitive hydrogenase into a specifically designed viologen-based redox polymer protects the enzyme from O2 damage and high-potential deactivation. Electron transfer between the polymer-bound viologen moieties controls the potential applied to the active site of the hydrogenase and thus insulates the enzyme from excessive oxidative stress. Under catalytic turnover, electrons provided from the hydrogen oxidation reaction induce viologen-catalysed O2 reduction at the polymer surface, thus providing self-activated protection from O2. The advantages of this tandem protection are demonstrated using a single-compartment biofuel cell based on an O2-sensitive hydrogenase and H2/O2 mixed feed under anode-limiting conditions.

  20. Antigenic determinants of the membrane-bound hydrogenase in Alcaligenes eutrophus are exposed toward the periplasm.

    PubMed Central

    Eismann, K; Mlejnek, K; Zipprich, D; Hoppert, M; Gerberding, H; Mayer, F

    1995-01-01

    Electron microscopic immunogold labeling experiments were performed with ultrathin sections of plasmolyzed cells of Alcaligenes eutrophus and "whole-mount" samples of spheroplasts and protoplasts. They demonstrated that antigenic determinants of the membrane-bound hydrogenase are exposed, at the outside of the cytoplasmic membrane, to the periplasm. PMID:7592402

  1. Metabolic control of Clostridium thermocellum via inhibition of hydrogenase activity and the glucose transport rate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Clostridium thermocellum has the ability to catabolize cellulosic biomass into ethanol, but acetic acid, lactic acid, carbon dioxide, and hydrogen gas (H2) are also produced. The effect of hydrogenase inhibitors (H2, carbon monoxide (CO) and methyl viologen) on product selectivity was investigated....

  2. Hydrogenase activity of mineral-associated and suspended populations of Desulfovibrio Desulfuricans Essex 6

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The interactions between sulfate-reducing microorganisms and iron oxides influence a number of important redox-sensitive biogeochemical processes including the formation of iron sulfides. Enzymes, such as hydrogenase which catalyze the reversible oxidation of molecular hydrogen, are known to mediate...

  3. Lyophilization protects [FeFe]-hydrogenases against O2-induced H-cluster degradation

    PubMed Central

    Noth, Jens; Kositzki, Ramona; Klein, Kathrin; Winkler, Martin; Haumann, Michael; Happe, Thomas

    2015-01-01

    Nature has developed an impressive repertoire of metal-based enzymes that perform complex chemical reactions under moderate conditions. Catalysts that produce molecular hydrogen (H2) are particularly promising for renewable energy applications. Unfortunately, natural and chemical H2-catalysts are often irreversibly degraded by molecular oxygen (O2). Here we present a straightforward procedure based on freeze-drying (lyophilization), that turns [FeFe]-hydrogenases, which are excellent H2-producers, but typically extremely O2-sensitive in solution, into enzymes that are fully resistant against O2. Complete dryness protects and conserves both, the [FeFe]-hydrogenase proteins and their inorganic active-site cofactor (H-cluster), when exposed to 100% O2 for days. The full H2-formation capacity is restored after solvation of the lyophilized enzymes. However, even minimal moisturizing re-establishes O2-sensitivity. The dry [FeFe]-hydrogenase material is superior also for advanced spectroscopic investigations on the H-cluster reaction mechanism. Our method provides a convenient way for long-term storage and impacts on potential biotechnological hydrogen production applications of hydrogenase enzymes. PMID:26364994

  4. How the oxygen tolerance of a [NiFe]-hydrogenase depends on quaternary structure.

    PubMed

    Wulff, Philip; Thomas, Claudia; Sargent, Frank; Armstrong, Fraser A

    2016-03-01

    'Oxygen-tolerant' [NiFe]-hydrogenases can catalyze H2 oxidation under aerobic conditions, avoiding oxygenation and destruction of the active site. In one mechanism accounting for this special property, membrane-bound [NiFe]-hydrogenases accommodate a pool of electrons that allows an O2 molecule attacking the active site to be converted rapidly to harmless water. An important advantage may stem from having a dimeric or higher-order quaternary structure in which the electron-transfer relay chain of one partner is electronically coupled to that in the other. Hydrogenase-1 from E. coli has a dimeric structure in which the distal [4Fe-4S] clusters in each monomer are located approximately 12 Å apart, a distance conducive to fast electron tunneling. Such an arrangement can ensure that electrons from H2 oxidation released at the active site of one partner are immediately transferred to its counterpart when an O2 molecule attacks. This paper addresses the role of long-range, inter-domain electron transfer in the mechanism of O2-tolerance by comparing the properties of monomeric and dimeric forms of Hydrogenase-1. The results reveal a further interesting advantage that quaternary structure affords to proteins. PMID:26861789

  5. Regulation of H2 oxidation activity and hydrogenase protein levels by H2, O2, and carbon substrates in Alcaligenes latus.

    PubMed Central

    Doyle, C M; Arp, D J

    1987-01-01

    Regulation of H2 oxidation activity and hydrogenase protein levels in the free-living hydrogen bacterium Alcaligenes latus was investigated. Hydrogenase activity was induced when heterotrophically grown cells were transferred to chemolithoautotrophic conditions, i.e., in the presence of H2 and absence of carbon sources, with NH4Cl as the N source. Under these conditions, H2 oxidation activity was detectable after 30 min of incubation and reached near-maximal levels by 12 h. The levels of hydrogenase protein, as measured by a Western blot (immunoblot) assay of the hydrogenase large subunit, increased in parallel with activity. This increase suggested that the increased H2 oxidation activity was due to de novo synthesis of hydrogenase protein. H2 oxidation activity was controlled over a surprisingly wide range of H2 concentrations, between 0.001 and 30% in the gas phase. H2 oxidation activity was induced to high levels between 2 and 12.5% O2, and above 12.5% O2, H2 oxidation activity was inhibited. Almost all organic carbon sources studied inhibited the expression of hydrogenase, although none repressed hydrogenase synthesis completely. In all cases examined, hydrogenase protein, as detected by Western blot, paralleled the level of H2 oxidation activity, suggesting that control of hydrogenase activity was mediated through changes in hydrogenase protein levels. Images PMID:3308842

  6. Molecular and immunological comparison of membrane-bound, H2-oxidizing hydrogenases of Bradyrhizobium japonicum, Alcaligenes eutrophus, Alcaligenes latus, and Azotobacter vinelandii.

    PubMed Central

    Arp, D J; McCollum, L C; Seefeldt, L C

    1985-01-01

    The membrane-bound hydrogenases of Bradyrhizobium japonicum, Alcaligenes eutrophus, Alcaligenes latus, and Azotobacter vinelandii were purified extensively and compared. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of each hydrogenase revealed two prominent protein bands, one near 60 kilodaltons and the other near 30 kilodaltons. The migration distances during nondenaturing polyacrylamide gel electrophoresis were similar for all except A. vinelandii hydrogenase, which migrated further than the other three. The amino acid composition of each hydrogenase was determined, revealing substantial similarity among these enzymes. This was confirmed by calculation of S delta Q values, which ranged from 8.0 to 26.7 S delta Q units. S delta Q is defined as sigma j(Xi,j-Xk,j)2, where i and k identify the proteins compared and Xj is the content (residues per 100) of a given amino acid of type j. The hydrogenases of this study were also compared with an enzyme-linked immunosorbent assay. Antibody raised against B. japonicum hydrogenase cross-reacted with all four hydrogenases, but to various degrees and in the order B. japonicum greater than A. latus greater than A. eutrophus greater than A. vinelandii. Antibody raised against A. eutrophus hydrogenase also cross-reacted with all four hydrogenases, following the pattern of cross-reaction A. eutrophus greater than A. latus = B. japonicum greater than A. vinelandii. Antibody raised against B. japonicum hydrogenase inhibited B. japonicum hydrogenase activity to a greater extent than the A. eutrophus and A. latus activities; no inhibition of A. vinelandii hydrogenase activity was detected. The results of these experiments indicated remarkable homology of the hydrogenases from these four microorganisms. Images PMID:4008438

  7. Characterization of the CO-induced, CO-tolerant hydrogenase from Rhodospirillum rubrum and the gene encoding the large subunit of the enzyme.

    PubMed Central

    Fox, J D; Kerby, R L; Roberts, G P; Ludden, P W

    1996-01-01

    In the presence of carbon monoxide, the photosynthetic bacterium Rhodospirillum rubrum induces expression of proteins which allow the organism to metabolize carbon monoxide in the net reaction CO + H2O --> CO2 + H2. These proteins include the enzymes carbon monoxide dehydrogenase (CODH) and a CO-tolerant hydrogenase. In this paper, we present the complete amino acid sequence for the large subunit of this hydrogenase and describe the properties of the crude enzyme in relation to other known hydrogenases. The amino acid sequence deduced from the CO-induced hydrogenase large-subunit gene (cooH) shows significant similarity to large subunits of other Ni-Fe hydrogenases. The closest similarity is with HycE (58% similarity and 37% identity) from Escherichia coli, which is the large subunit of an Ni-Fe hydrogenase (isoenzyme 3). The properties of the CO-induced hydrogenase are unique. It is exceptionally resistant to inhibition by carbon monoxide. It also exhibits a very high ratio of H2 evolution to H2 uptake activity compared with other known hydrogenases. The CO-induced hydrogenase is tightly membrane bound, and its inhibition by nonionic detergents is described. Finally, the presence of nickel in the hydrogenase is addressed. Analysis of wild-type R. rubrum grown on nickel-depleted medium indicates a requirement for nickel for hydrogenase activity. However, analysis of strain UR294 (cooC insertion mutant defective in nickel insertion into CODH) shows that independent nickel insertion mechanisms are utilized by hydrogenase and CODH. CooH lacks the C-terminal peptide that is found in other Ni-Fe hydrogenases; in other systems, this peptide is cleaved during Ni processing. PMID:8626276

  8. A Fe/Fe3O4/N-carbon composite with hierarchical porous structure and in situ formed N-doped graphene-like layers for high-performance lithium ion batteries.

    PubMed

    Li, Yao; Meng, Qing; Zhu, Shen-min; Sun, Zeng-hui; Yang, Hao; Chen, Zhi-xin; Zhu, Cheng-ling; Guo, Zai-ping; Zhang, Di

    2015-03-14

    A Fe/Fe3O4/N-carbon composite consisting of a porous carbon matrix containing a highly conductive N-doped graphene-like network and Fe/Fe3O4 nanoparticles was prepared. The porous carbon has a hierarchical structure which is inherited from rice husk and the N-doped graphene-like network formed in situ. When used as an anode material for lithium batteries, the composite delivered a reversible capacity of approximately 610 mA h g(-1) at a current density of 200 mA g(-1) even after 100 cycles, due to the synergism between the unique hierarchical porous structures, highly electrically conductive N-doped graphene-like networks and nanosized particles of Fe/Fe3O4. This work provides a simple approach to prepare N-doped porous carbon activated nanoparticle composites which could be used to improve the electrochemical performance of lithium ion batteries. PMID:25655996

  9. Characterization of the region encoding the CO-induced hydrogenase of Rhodospirillum rubrum.

    PubMed Central

    Fox, J D; He, Y; Shelver, D; Roberts, G P; Ludden, P W

    1996-01-01

    In the photosynthetic bacterium Rhodospirillum rubrum, the presence of carbon monoxide (CO) induces expression of several proteins. These include carbon monoxide dehydrogenase (CODH) and a CO-tolerant hydrogenase. Together these enzymes catalyze the following conversion: CO + H2O --> CO2 + H2. This system enables R. rubrum to grow in the dark on CO as the sole energy source. Expression of this system has been shown previously to be regulated at the transcriptional level by CO. We have now identified the remainder of the CO-regulated genes encoded in a contiguous region of the R. rubrum genome. These genes, cooMKLXU, apparently encode proteins related to the function of the CO-induced hydrogenase. As seen before with the gene for the large subunit of the CO-induced hydrogenase (cooH), most of the proteins predicted by these additional genes show significant sequence similarity to subunits of Escherichia coli hydrogenase 3. In addition, all of the newly identified coo gene products show similarity to subunits of NADH-quinone oxidoreductase (energy-conserving NADH dehydrogenase I) from various eukaryotic and prokaryotic organisms. We have found that dicyclohexylcarbodiimide, an inhibitor of mitochondrial NADH dehydrogenase I (also called complex I), inhibits the CO-induced hydrogenase as well. We also show that expression of the cooMKLXUH operon is regulated by CO and the transcriptional activator CooA in a manner similar to that of the cooFSCTJ operon that encodes the subunits of CODH and related proteins. PMID:8892819

  10. Importance of the Protein Framework for Catalytic Activity of [FeFe]-Hydrogenases

    PubMed Central

    Knörzer, Philipp; Silakov, Alexey; Foster, Carina E.; Armstrong, Fraser A.; Lubitz, Wolfgang; Happe, Thomas

    2012-01-01

    The active center (H-cluster) of [FeFe]-hydrogenases is embedded into a hydrophobic pocket within the protein. We analyzed several amino acids, located in the vicinity of this niche, by site-directed mutagenesis of the [FeFe]-hydrogenases from Clostridium pasteurianum (CpI) and Chlamydomonas reinhardtii (CrHydA1). These amino acids are highly conserved and predicted to be involved in H-cluster coordination. Characterization of two hydrogenase variants confirmed this hypothesis. The exchange of residues CrHydA1Met415 and CrHydA1Lys228 resulted in inactive proteins, which, according to EPR and FTIR analyses, contain no intact H-cluster. However, [FeFe]-hydrogenases in which CpIMet353 (CrHydA1Met223) and CpICys299 (CrHydA1Cys169) were exchanged to leucine and serine, respectively, showed a structurally intact H-cluster with catalytic activity either absent (CpIC299S) or strongly diminished (CpIM353L). In the case of CrHydA1C169S, the H-cluster was trapped in an inactive state exhibiting g values and vibrational frequencies that resembled the Htrans state of DdH from Desulfovibrio desulfuricans. This cysteine residue, interacting with the bridge head nitrogen of the di(methyl)amine ligand, seems therefore to represent an essential contribution of the immediate protein environment to the reaction mechanism. Exchanging methionine CpIM353 (CrHydA1M223) to leucine led to a strong decrease in turnover without affecting the Km value of the electron donor. We suggest that this methionine constitutes a “fine-tuning” element of hydrogenase activity. PMID:22110126

  11. A redox hydrogel protects the O2 -sensitive [FeFe]-hydrogenase from Chlamydomonas reinhardtii from oxidative damage.

    PubMed

    Oughli, Alaa Alsheikh; Conzuelo, Felipe; Winkler, Martin; Happe, Thomas; Lubitz, Wolfgang; Schuhmann, Wolfgang; Rdiger, Olaf; Plumer, Nicolas

    2015-10-12

    The integration of sensitive catalysts in redox matrices opens up the possibility for their protection from deactivating molecules such as O2 . [FeFe]-hydrogenases are enzymes catalyzing H2 oxidation/production which are irreversibly deactivated by O2 . Therefore, their use under aerobic conditions has never been achieved. Integration of such hydrogenases in viologen-modified hydrogel films allows the enzyme to maintain catalytic current for H2 oxidation in the presence of O2 , demonstrating a protection mechanism independent of reactivation processes. Within the hydrogel, electrons from the hydrogenase-catalyzed H2 oxidation are shuttled to the hydrogel-solution interface for O2 reduction. Hence, the harmful O2 molecules do not reach the hydrogenase. We illustrate the potential applications of this protection concept with a biofuel cell under H2 /O2 mixed feed. PMID:26073322

  12. [FeFe]-hydrogenase in Yellowstone National Park: evidence for dispersal limitation and phylogenetic niche conservatism.

    PubMed

    Boyd, Eric S; Hamilton, Trinity L; Spear, John R; Lavin, Matthew; Peters, John W

    2010-12-01

    Hydrogen (H₂) has an important role in the anaerobic degradation of organic carbon and is the basis for many syntrophic interactions that commonly occur in microbial communities. Little is known, however, with regard to the biotic and/or abiotic factors that control the distribution and phylogenetic diversity of organisms which produce H₂ in microbial communities. In this study, we examined the [FeFe]-hydrogenase gene (hydA) as a proxy for fermentative bacterial H₂ production along physical and chemical gradients in various geothermal springs in Yellowstone National Park (YNP), WY, USA. The distribution of hydA in YNP geothermal springs was constrained by pH to environments co-inhabited by oxygenic phototrophs and to environments predicted to have low inputs of abiotic H₂. The individual HydA asssemblages from YNP springs were more closely related when compared with randomly assembled communities, which suggests ecological filtering. Model selection approaches revealed that geographic distance was the best explanatory variable to predict the phylogenetic relatedness of HydA communities. This evinces the dispersal limitation imposed by the geothermal spring environment on HydA phylogenetic diversity even at small spatial scales. pH differences between sites is the second highest ranked explanatory variable of HydA phylogenetic relatedness, which suggests that the ecology related to pH imposes strong phylogenetic niche conservatism. Collectively, these results indicate that pH has imposed strong niche conservatism on fermentative bacteria and that, within a narrow pH realm, YNP springs are dispersal limited with respect to fermentative bacterial communities. PMID:20535223

  13. Negative impact of oxygen molecular activation on Cr(VI) removal with core-shell Fe@Fe2O3 nanowires.

    PubMed

    Mu, Yi; Wu, Hao; Ai, Zhihui

    2015-11-15

    In this study, we demonstrate that the presence of oxygen molecule can inhibit Cr(VI) removal with core-shell Fe@Fe2O3 nanowires at neutral pH of 6.1. 100% of Cr(VI) removal was achieved by the Fe@Fe2O3 nanowires within 60 min in the anoxic condition, in contrast, only 81.2% of Cr(VI) was sequestrated in the oxic condition. Removal kinetics analysis indicated that the presence of oxygen could inhibit the Cr(VI) removal efficiency by near 3 times. XRD, SEM, and XPS analysis revealed that either the anoxic or oxic Cr(VI) removal was involved with adsorption, reduction, co-precipitation, and re-adsorption processes. More Cr(VI) was bound in a reduced state of Cr(III) in the anoxic process, while a thicker Cr(III)/Fe(III)/Cr(VI) oxyhydroxides shell, leading to inhibiting the electron transfer, was found under the oxic process. The negative impact of oxygen molecule was attributed to the oxygen molecular activation which competed with Cr(VI) adsorbed for the consumption of donor electrons from Fe(0) core and ferrous ions bound on the iron oxides surface under the oxic condition. This study sheds light on the understanding of the fate and transport of Cr(VI) in oxic and anoxic environment, as well provides helpful guide for optimizing Cr(VI) removal conditions in real applications. PMID:25988715

  14. The biosynthetic routes for carbon monoxide and cyanide in the Ni-Fe active site of hydrogenases are different.

    PubMed

    Roseboom, Winfried; Blokesch, Melanie; Böck, August; Albracht, Simon P J

    2005-01-17

    The incorporation of carbon into the carbon monoxide and cyanide ligands of [NiFe]-hydrogenases has been investigated by using (13)C labelling in infrared studies of the Allochromatium vinosum enzyme and by (14)C labelling experiments with overproduced Hyp proteins from Escherichia coli. The results suggest that the biosynthetic routes of the carbon monoxide and cyanide ligands in [NiFe]-hydrogenases are different. PMID:15642360

  15. Impact of the chemicals, essential for the purification process of strict Fe-hydrogenase, on the corrosion of mild steel.

    PubMed

    Rouvre, Ingrid; Gauquelin, Charles; Meynial-Salles, Isabelle; Basseguy, Régine

    2016-06-01

    The influence of additional chemical molecules, necessary for the purification process of [Fe]-hydrogenase from Clostridium acetobutylicum, was studied on the anaerobic corrosion of mild steel. At the end of the purification process, the pure [Fe-Fe]-hydrogenase was recovered in a Tris-HCl medium containing three other chemicals at low concentration: DTT, dithionite and desthiobiotin. Firstly, mild steel coupons were exposed in parallel to a 0.1M pH7 Tris-HCl medium with or without pure hydrogenase. The results showed that hydrogenase and the additional molecules were in competition, and the electrochemical response could not be attributed solely to hydrogenase. Then, solutions with additional chemicals of different compositions were studied electrochemically. DTT polluted the electrochemical signal by increasing the Eoc by 35mV 24h after the injection of 300μL of control solutions with DTT, whereas it drastically decreased the corrosion rate by increasing the charge transfer resistance (Rct 10 times the initial value). Thus, DTT was shown to have a strong antagonistic effect on corrosion and was removed from the purification process. An optimal composition of the medium was selected (0.5mM dithionite, 7.5mM desthiobiotin) that simultaneously allowed a high activity of hydrogenase and a lower impact on the electrochemical response for corrosion tests. PMID:26774688

  16. A trimeric supercomplex of the oxygen-tolerant membrane-bound [NiFe]-hydrogenase from Ralstonia eutropha H16.

    PubMed

    Frielingsdorf, Stefan; Schubert, Torsten; Pohlmann, Anne; Lenz, Oliver; Friedrich, Bärbel

    2011-12-20

    The oxygen-tolerant membrane-bound [NiFe]-hydrogenase (MBH) from Ralstonia eutropha H16 consists of three subunits. The large subunit HoxG carries the [NiFe] active site, and the small subunit HoxK contains three [FeS] clusters. Both subunits form the so-called hydrogenase module, which is oriented toward the periplasm. Membrane association is established by a membrane-integral cytochrome b subunit (HoxZ) that transfers the electrons from the hydrogenase module to the respiratory chain. So far, it was not possible to isolate the MBH in its native heterotrimeric state due to the loss of HoxZ during the process of protein solubilization. By using the very mild detergent digitonin, we were successful in isolating the MBH hydrogenase module in complex with the cytochrome b. H(2)-dependent reduction of the two HoxZ-stemming heme centers demonstrated that the hydrogenase module is productively connected to the cytochrome b. Further investigation provided evidence that the MBH exists in the membrane as a high molecular mass complex consisting of three heterotrimeric units. The lipids phosphatidylethanolamine and phosphatidylglycerol were identified to play a role in the interaction of the hydrogenase module with the cytochrome b subunit. PMID:22097922

  17. Light-driven hydrogen production by a hybrid complex of a [NiFe]-hydrogenase and the cyanobacterial photosystem I.

    PubMed

    Ihara, Masaki; Nishihara, Hirofumi; Yoon, Ki-Seok; Lenz, Oliver; Friedrich, Brbel; Nakamoto, Hitoshi; Kojima, Kouji; Honma, Daisuke; Kamachi, Toshiaki; Okura, Ichiro

    2006-01-01

    In order to generate renewable and clean fuels, increasing efforts are focused on the exploitation of photosynthetic microorganisms for the production of molecular hydrogen from water and light. In this study we engineered a 'hard-wired' protein complex consisting of a hydrogenase and photosystem I (hydrogenase-PSI complex) as a direct light-to-hydrogen conversion system. The key component was an artificial fusion protein composed of the membrane-bound [NiFe] hydrogenase from the beta-proteobacterium Ralstonia eutropha H16 and the peripheral PSI subunit PsaE of the cyanobacterium Thermosynechococcus elongatus. The resulting hydrogenase-PsaE fusion protein associated with PsaE-free PSI spontaneously, thereby forming a hydrogenase-PSI complex as confirmed by sucrose-gradient ultracentrifuge and immunoblot analysis. The hydrogenase-PSI complex displayed light-driven hydrogen production at a rate of 0.58 mumol H(2).mg chlorophyll(-1).h(-1). The complex maintained its accessibility to the native electron acceptor ferredoxin. This study provides the first example of a light-driven enzymatic reaction by an artificial complex between a redox enzyme and photosystem I and represents an important step on the way to design a photosynthetic organism that efficiently converts solar energy and water into hydrogen. PMID:16542111

  18. Bacterial genes involved in incorporation of nickel into a hydrogenase enzyme.

    PubMed Central

    Fu, C; Javedan, S; Moshiri, F; Maier, R J

    1994-01-01

    Nickel is an essential component of all H2-uptake hydrogenases. A fragment of DNA that complements a H2-uptake-deficient but nickel-cured mutant strain (JHK7) of Bradyrhizobium japonicum was isolated and sequenced. This 4.5-kb DNA fragment contains four open reading frames designated as ORF1, hupN, hupO, and hupP, which encode polypeptides with predicted masses of 17, 40, 19, and 63.5 kDa, respectively. The last three open reading frames (hupNOP) are most likely organized as an operon with a putative sigma 54-type promoter. Based on its hydropathy profile, HupN is predicted to be a transmembrane protein. It has 56% identity to the previously described HoxN (high-affinity nickel transport protein) of Alcaligenes eutrophus. A subclone (pJF23) containing the hupNOP genes excluding ORF1 completely complemented (in trans) strain JHK7 for hydrogenase activity in low nickel conditions. pJF26 containing only a functional hupN complemented the hydrogenase activity of mutant strain JHK7 to 30-55% of the wild-type level. Mutant strain JHK70, with a chromosomal deletion in hupP but with an intact hupNO, showed greater activities than pJF26-complemented JHK7 but still had lower activities than the wild type at all nickel levels tested. pJF25, containing the entire hupO and hupP, but without hupN (a portion of hupN was deleted), did not complement hydrogenase activity of mutant strain JHK7. The results suggest that the products of the hupNOP operon are all involved in nickel incorporation/metabolism into the hydrogenase apoprotein. Based on (previous) nickel transport studies of strain JHK7, the hupNOP genes appear not to be involved in nickel transport by whole cells. The deleterious effects on hydrogenase expression are most pronounced by lack of the HupN product. PMID:8197192

  19. New FeFe-hydrogenase genes identified in a metagenomic fosmid library from a municipal wastewater treatment plant as revealed by high-throughput sequencing.

    PubMed

    Tomazetto, Geizecler; Wibberg, Daniel; Schlter, Andreas; Oliveira, Valria M

    2015-01-01

    A fosmid metagenomic library was constructed with total community DNA obtained from a municipal wastewater treatment plant (MWWTP), with the aim of identifying new FeFe-hydrogenase genes encoding the enzymes most important for hydrogen metabolism. The dataset generated by pyrosequencing of a fosmid library was mined to identify environmental gene tags (EGTs) assigned to FeFe-hydrogenase. The majority of EGTs representing FeFe-hydrogenase genes were affiliated with the class Clostridia, suggesting that this group is the main hydrogen producer in the MWWTP analyzed. Based on assembled sequences, three FeFe-hydrogenase genes were predicted based on detection of the L2 motif (MPCxxKxxE) in the encoded gene product, confirming true FeFe-hydrogenase sequences. These sequences were used to design specific primers to detect fosmids encoding FeFe-hydrogenase genes predicted from the dataset. Three identified fosmids were completely sequenced. The cloned genomic fragments within these fosmids are closely related to members of the Spirochaetaceae, Bacteroidales and Firmicutes, and their FeFe-hydrogenase sequences are characterized by the structure type M3, which is common to clostridial enzymes. FeFe-hydrogenase sequences found in this study represent hitherto undetected sequences, indicating the high genetic diversity regarding these enzymes in MWWTP. Results suggest that MWWTP have to be considered as reservoirs for new FeFe-hydrogenase genes. PMID:25446611

  20. Hydrogenase of the hyperthermophile Pyrococcus furiosus is an elemental sulfur reductase or sulfhydrogenase: Evidence for a sulfur-reducing hydrogenase ancestor

    SciTech Connect

    Ma, K.; Adams, M.W.W. ); Schicho, R.N. ); Kelly, R.M. )

    1993-06-01

    Microorganisms growing near and above 100[degrees]C have recently been discovered near shallow and deep sea hydrothermal vents. Most are obligately dependent upon the reduction of elemental sulfur (S[sup 0]) to hydrogen sulfide (H[sub 2]S) for optimal growth, even though S[sup 0] reduction readily occurs abiotically at their growth temperatures. The sulfur reductase activity of the anaerobic archaeon Pyrococcus furiosus, which grows optimally at 100[degrees]C by a metabolism that produces H[sub 2]S if S[sup 0] is present, was found in the cytoplasm. It was purified anaerobically and was shown to be identical to the hydrogenase that had been previously purified from this organism. Both S[sup 0] and polysulfide served as substrates for H[sub 2]S production, and the S[sub 0] reduction activity but not the H[sub 2]-oxidation activity was enhanced by the redox protein rubredoxin. The H[sub 2]-oxidizing and S[sup 0]-reduction activities of the enzyme also showed different responses to pH, temperature, and inhibitors. This bifunctional [open quotes]sulfhydrogenase[close quotes] enzyme can, therefore, dispose of the excess reductant generated during fermentation using either protons or polysulfides as the electron acceptor. In addition, purified hydrogenases from both hyperthermophilic and mesophilic representatives of the archaeal and bacterial domains were shown to reduce S[sup 0] to H[sub 2]S. It is suggested that the function of some form of ancestral hydrogenase was S[sup 0] reduction rather than, or in addition, to the reduction of protons. 33 refs., 4 figs., 2 tabs.

  1. Identification and isolation of genes essential for H sub 2 oxidation in Rhodobacter capsulatus. [Hydrogenase

    SciTech Connect

    Xu, H.W.; Love, J.; Borghese, R.; Wall, J.D. )

    1989-02-01

    Mutants of Rhodobacter capsulatus unable to grow photoautotrophically with H{sub 2} and CO{sub 2} were isolated. Those lacking uptake hydrogenase activity as measured by H{sub 2}-dependent methylene blue reduction were analyzed genetically and used in complementation studies for the isolation of the wild-type genes. Results of further subcloning and transposon Tn5 mutagenesis suggest the involvement of a minimum of five genes. Hybridization to the 2.2-kilobase-pair SstI fragment that lies within the coding region for the large and small subunits of Bradyrhizobium japonicum uptake hydrogenase showed one region of strong homology among the R. capsulatus fragments isolated, which we interpret to mean that one or both structural genes were among the genes isolated.

  2. Electrochemical insights into the mechanism of NiFe membrane-bound hydrogenases

    PubMed Central

    Flanagan, Lindsey A.; Parkin, Alison

    2016-01-01

    Hydrogenases are enzymes of great biotechnological relevance because they catalyse the interconversion of H2, water (protons) and electricity using non-precious metal catalytic active sites. Electrochemical studies into the reactivity of NiFe membrane-bound hydrogenases (MBH) have provided a particularly detailed insight into the reactivity and mechanism of this group of enzymes. Significantly, the control centre for enabling O2 tolerance has been revealed as the electron-transfer relay of FeS clusters, rather than the NiFe bimetallic active site. The present review paper will discuss how electrochemistry results have complemented those obtained from structural and spectroscopic studies, to present a complete picture of our current understanding of NiFe MBH. PMID:26862221

  3. Rapid Colony Screening Method for Identifying Hydrogenase Activity in Rhizobium japonicum

    PubMed Central

    Haugland, Richard A.; Hanus, Frank J.; Cantrell, Michael A.; Evans, Harold J.

    1983-01-01

    A method has been developed for the rapid screening of Rhizobium japonicum colonies for hydrogenase activity based on their ability to reduce methylene blue in the presence of respiratory inhibitors and hydrogen. Hydrogen uptake-positive (Hup+) colonies derepressed for hydrogenase activity were visualized by their localized decolorization of filter paper disks impregnated with the dye. Appropriate responses were seen with a number of Hup+ and Hup− wild-type strains of R. japonicum as well as Hup− mutants. Its specificity was further confirmed in selected strains on the basis of comparisons with chemolithotrophic growth and the presence of other genetic markers. Utilization of the method in identifying Hup+ colonies among 16,000 merodiploid derivatives of the Hup− mutant strain PJ17nal containing cloned DNA fragments of the Hup+ strain 122 DES has demonstrated its applicability as a screening procedure in the genetic analysis of the R. japonicum hydrogen uptake system. Images PMID:16346252

  4. Electrochemical insights into the mechanism of NiFe membrane-bound hydrogenases.

    PubMed

    Flanagan, Lindsey A; Parkin, Alison

    2016-02-15

    Hydrogenases are enzymes of great biotechnological relevance because they catalyse the interconversion of H2, water (protons) and electricity using non-precious metal catalytic active sites. Electrochemical studies into the reactivity of NiFe membrane-bound hydrogenases (MBH) have provided a particularly detailed insight into the reactivity and mechanism of this group of enzymes. Significantly, the control centre for enabling O2 tolerance has been revealed as the electron-transfer relay of FeS clusters, rather than the NiFe bimetallic active site. The present review paper will discuss how electrochemistry results have complemented those obtained from structural and spectroscopic studies, to present a complete picture of our current understanding of NiFe MBH. PMID:26862221

  5. Differential stability of mRNA species of Alcaligenes eutrophus soluble and particulate hydrogenases.

    PubMed Central

    Oelmüller, U; Schlegel, H G; Friedrich, C G

    1990-01-01

    The functional half-lives of Alcaligenes eutrophus hydrogenase mRNAs were determined by physiological studies. Evidence was obtained for a functional half-life of about 1 h for the soluble NAD-linked hydrogenase (HoxS) mRNA and 14 min for the particulate hydrogenase (HoxP) mRNA. The synthesis of active HoxS continued for about 4 h, albeit at a decreasing rate after inhibition of transcription, e.g., by rifampin. In this strain, the mRNA of HoxS appeared to be stable, while the mRNA of HoxP did not. Different species of hoxS mRNA were detected by the Northern (RNA) hybridization technique using as a probe plasmid pCH139 carrying hoxS structural genes. The sizes of the major hoxS mRNA species were 7.6, 6.2, 5.0, and 0.9 kb. The chemical half-lives of these species ranged from 1 h (5.0-kb mRNA) to 7 h (0.9-kb mRNA). Evidence for a specific cleavage of the 6.2-kb transcript yielding the 0.9-kb species was obtained from RNA-DNA hybridizations with subcloned hoxS DNA. The chemical half-life of total hoxP mRNA was 8 min. Images PMID:1701427

  6. Molecular characterization and transcriptional analysis of the putative hydrogenase gene of Clostridium acetobutylicum ATCC 824.

    PubMed Central

    Gorwa, M F; Croux, C; Soucaille, P

    1996-01-01

    A 2.8-kbp DNA region of Clostridium acetobutylicum ATCC 824 containing the putative hydrogenase gene (hydA) was cloned and sequenced. The 1,745-bp hydA encodes a 64,415-Da protein and presents strong identity with the [Fe] hydrogenase genes of Desulfovibrio and Clostridium species. The level of the putative hydA mRNA was high in cells from an acidogenic or an alcohologenic phosphate-limited continuous culture, while it was comparatively very low in cells from a solventogenic phosphate-limited continuous culture. These results were in agreement with the hydrogenase protein level, indicating that expression of hydA is regulated at the transcriptional level. Primer extension analysis identified a major transcriptional start site 90 bp upstream of the hydA start codon. The position of a putative rho-independent transcription terminator immediately downstream of the termination codon is in agreement with the size of the hydA transcript (1.9 kb) determined by Northern (RNA) blot experiments and confirms that the gene is transcribed as a monocistronic operon. Two truncated open reading frames (ORFs) were identified downstream and upstream of hydA and in opposite directions. The amino acid sequence deduced from ORF2 presents strong identity with ortho phosphoribosyl transferases involved in pyrimidine synthesis. The amino acid sequence deduced from ORF3 presents no significant similarity to any sequence in various available databases. PMID:8626337

  7. The Alcaligenes eutrophus H16 hoxX gene participates in hydrogenase regulation.

    PubMed Central

    Lenz, O.; Schwartz, E.; Dernedde, J.; Eitinger, M.; Friedrich, B.

    1994-01-01

    Nucleotide sequence analysis revealed a 1,791-bp open reading frame in the hox gene cluster of the gram-negative chemolithotroph Alcaligenes eutrophus H16. In order to investigate the biological role of this open reading frame, we generated an in-frame deletion allele via a gene replacement strategy. The resulting mutant grew significantly more slowly than the wild type under lithoautotrophic conditions (6.1 versus 4.2 h doubling time). A reduction in the level of the soluble NAD-reducing hydrogenase (60% of the wild-type activity) was shown to be the cause of the slow lithoautotrophic growth. We used plasmid-borne gene fusions to monitor the expression of the operons encoding the soluble and membrane-bound hydrogenases. The expression of both operons was lower in the mutant than in the wild-type strain. These results suggest that the newly identified gene, designated hoxX, encodes a regulatory component which, in conjunction with the transcriptional activator HoxA, controls hydrogenase synthesis. Images PMID:8021224

  8. Hydrogenase Activity and the H2-Fumarate Electron Transport System in Bacteroides fragilis1

    PubMed Central

    Harris, Martha A.; Reddy, C. Adinaryayana

    1977-01-01

    Hydrogenase activity and the H2-fumarate electron transport system in a carbohydrate-fermenting obligate anaerobe, Bacteroides fragilis, were investigated. In both whole cells and cell extracts, hydrogenase activity was demonstrated with methylene blue, benzyl viologen, flavin mononucleotide, or flavin adenine dinucleotide as the electron acceptor. A catalytic quantity of benzyl viologen or ferredoxin from Clostridium pasteurianum was required to reduce nicotinamide adenine dinucleotide or nicotinamide adenine dinucleotide phosphate with H2. Much of the hydrogenase activity appeared to be associated with the soluble fraction of the cell. Fumarate reduction to succinate by H2 was demonstrable in cell extracts only in the presence of a catalytic quantity of benzyl viologen, flavin mononucleotide, flavin adenine dinucleotide, or ferredoxin from C. pasteurianum. Sulfhydryl compounds were not required for fumarate reduction by H2, but mercaptoethanol and dithiothreitol appeared to stimulate this activity by 59 and 61%, respectively. Inhibition of fumarate reduction by acriflavin, rotenone, 2-heptyl-4-hydroxyquinoline-N-oxide, and antimycin A suggest the involvement of a flavoprotein, a quinone, and cytochrome b in the reduction of fumarate to succinate. The involvement of a quinone in fumarate reduction is also apparent from the inhibition of fumarate reduction by H2 when cell extracts were irradiated with ultraviolet light. Based on the evidence obtained, a possible scheme for the flow of electrons from H2 to fumarate in B. fragilis is proposed. PMID:893348

  9. Immunological homology between the membrane-bound uptake hydrogenases of Rhizobium japonicum and Escherichia coli.

    PubMed Central

    Harker, A R; Zuber, M; Evans, H J

    1986-01-01

    Two polypeptides present in aerobic and anaerobic cultures of Escherichia coli HB101 were shown to cross-react with antibodies to the 30- and 60-kilodalton (kDa) subunits of the uptake hydrogenase of Rhizobium japonicum. The cross-reactive polypeptides in a series of different E. coli strains are of Mrs ca. 60,000 and 30,000, and both polypeptides are present in proportion to measurable hydrogen uptake (Hup) activity (r = 0.95). The 60-kDa polypeptide from E. coli HB101 comigrated on native gels with detectable Hup activity. The exact role of the 30-kDa polypeptide in E. coli is unclear. E. coli MBM7061, a natural Hup- variant, grown anaerobically or aerobically lacked detectable Hup activity and failed to cross-react with the antisera against the hydrogenase from R. japonicum. Anaerobically cultured E. coli MBM7061, however, did express formate hydrogenlyase activity, indicating that the hydrogenases involved in the oxygen-dependent activation of hydrogen and the formate-dependent evolution of hydrogen are biochemically distinct. Images PMID:3511036

  10. Hydrogenase-independent uptake and metabolism of electrons by the archaeon Methanococcus maripaludis

    PubMed Central

    Lohner, Svenja T; Deutzmann, Jörg S; Logan, Bruce E; Leigh, John; Spormann, Alfred M

    2014-01-01

    Direct, shuttle-free uptake of extracellular, cathode-derived electrons has been postulated as a novel mechanism of electron metabolism in some prokaryotes that may also be involved in syntrophic electron transport between two microorganisms. Experimental proof for direct uptake of cathodic electrons has been mostly indirect and has been based on the absence of detectable concentrations of molecular hydrogen. However, hydrogen can be formed as a transient intermediate abiotically at low cathodic potentials (<−414 mV) under conditions of electromethanogenesis. Here we provide genetic evidence for hydrogen-independent uptake of extracellular electrons. Methane formation from cathodic electrons was observed in a wild-type strain of the methanogenic archaeon Methanococcus maripaludis as well as in a hydrogenase-deletion mutant lacking all catabolic hydrogenases, indicating the presence of a hydrogenase-independent mechanism of electron catabolism. In addition, we discovered a new route for hydrogen or formate production from cathodic electrons: Upon chemical inhibition of methanogenesis with 2-bromo-ethane sulfonate, hydrogen or formate accumulated in the bioelectrochemical cells instead of methane. These results have implications for our understanding on the diversity of microbial electron uptake and metabolism. PMID:24844759

  11. Inactivation of Hydrogenase in Cell-free Extracts and Whole Cells of Chlamydomonas reinhardi by Oxygen 1

    PubMed Central

    Erbes, David L.; King, Dan; Gibbs, Martin

    1979-01-01

    O2 irreversibly inactivates hydrogenase from Chlamydomonas reinhardi. The mechanism for the inactivation involves the reaction of one molecule of hydrogenase with one molecule of O2 (or two oxygen atoms) in the transition complex of the rate-limiting step. The second order rate constant for this reaction is 190 atmospheres−1 minute−1 (1.4 × 105 molar−1 minute−1). At levels above 0.01 atmosphere O2, the increased numbers of O2 molecules may compete for the site of inactivation hindering the proper orientation for inactivation of any one O2 molecule and resulting in lowered rates of inactivation. CO is a reversible inhibitor of hydrogenase acting competitively against H2. The Ki for CO is 0.0010 atmosphere. CO antagonizes O2 inactivation. In a period when complete inactivation by O2 would usually occur, the presence of CO greatly reduces the inactivation rate. After 3 hours of adaptation in whole cells, the presence of H2 lowers the rate of deadaptation of hydrogenase. Inasmuch as H2 promotes increased O2 uptake the cellular concentration of O2 is likely to be lower. After 48 hours of adaptation O2 uptake is reduced even when H2 is present and the pattern of deadaptation under O2 with and without H2 and CO is qualitatively the same as observed for the inactivation of cell-free hydrogenase. The mechanism of inactivation of cell-free hydrogenase by O2 may be the same as the mechanism for loss of hydrogenase during deadaptation in whole algal cells. PMID:16660871

  12. [NiFe]-hydrogenases revisited: nickel-carboxamido bond formation in a variant with accrued O2-tolerance and a tentative re-interpretation of Ni-SI states.

    PubMed

    Volbeda, Anne; Martin, Lydie; Liebgott, Pierre-Pol; De Lacey, Antonio L; Fontecilla-Camps, Juan C

    2015-04-01

    [NiFe]-hydrogenases are well-studied enzymes capable of oxidizing molecular hydrogen and reducing protons. EPR and FTIR spectroscopic studies have shown that these enzymes can be isolated in several redox states that include paramagnetic oxidized inactive Ni-A and Ni-B species and a reduced Ni-C form. The latter and the diamagnetic respectively more oxidized Ni-SI and more reduced Ni-R forms are generally thought to be involved in the catalytic cycle of [NiFe]-hydrogenases. With the exception of Ni-SI, these different stable states have been well characterized. Here, based on the crystal structure of a partially reduced Desulfovibrio fructosovorans (Df) enzyme and data from the literature we propose that at least one of the Ni-SI sub-states contains an unexpected combination of hydride and sulfenic acid moieties. We have also determined the structure of the less oxygen-sensitive Df [NiFe]-hydrogenase V74C mutant and found that more than half of the active site nickel occupies a novel position, called Ni'. In this new position, the metal ion is coordinated by two cysteine thiolates, a bridging species modeled as SH(-) and a main chain carboxamido N atom. The Ni' coordination is similar to the one found in Ni superoxide dismutase, an enzyme that operates at significantly more positive potentials than [NiFe]-hydrogenases. We propose that the oxygen-tolerance of the V74C variant results from a high potential stabilization of a Ni'(iii) species induced by the change in the metal ion coordination sphere. We also propose that transient Ni'(iii) species can rapidly attract successive electrons from the Fe4S4 proximal cluster accelerating the reduction of oxygen to water and hydroxide. The naturally occurring oxygen-tolerant [NiFe]-hydrogenases have an unusual proximal cluster that has been shown to be exceptionally plastic and capable of undergoing two successive one-electron oxidations. This double oxidation is modulated by the migration of one of the iron atoms in the cluster to the main chain where, as Fe(iii), it forms a bond with a carboxamido N ligand. Like in the Df V74C variant the electrons from the proximal cluster help reducing O2 to H2O and OH(-). In conclusion, in both cases a metal-carboxamido bond may explain, at least partially, the observed oxygen tolerance. PMID:25780984

  13. The hupTUV operon is involved in negative control of hydrogenase synthesis in Rhodobacter capsulatus.

    PubMed Central

    Elsen, S; Colbeau, A; Chabert, J; Vignais, P M

    1996-01-01

    The hupT, hupU, and hupV genes, which are located upstream from the hupSLC and hypF genes in the chromosome of Rhodobacter capsulatus, form the hupTUV operon expressed from the hupT promoter. The hupU and hupV genes, previously thought to belong to a single open reading frame, encode HupU, of 34.5 kDa (332 amino acids), and HupV, of 50.4 kDa (476 amino acids), which are >/= 50% identical to the homologous Bradyrhizobium japonicum HupU and HupV proteins and Rhodobacter sphaeroides HupU1 and HupU2 proteins, respectively; they also have 20 and 29% similarity with the small subunit (HupS) and the large subunit (HupL), respectively, of R. capsulatus [NiFe]hydrogenase. HupU lacks the signal peptide of HupS and HupV lacks the C-terminal sequence of HupL, which are cleaved during hydrogenase processing. Inactivation of hupV by insertional mutagenesis or of hupUV by in-frame deletion led to HupV- and Hup(UV)- mutants derepressed for hydrogenase synthesis, particularly in the presence of oxygen. These mutants were complemented in trans by plasmid-borne hupTUV but not by hupT or by hupUV, except when expressed from the inducible fru promoter. Complementation of the HupV- and Hup(UV)- mutants brought about a decrease in hydrogenase activity up to 10-fold, to the level of the wild-type strain B10, indicating that HupU and HupV participate in negative regulation of hydrogenase expression in concert with HupT, a sensor histidine kinase involved in the repression process. Plasmid-borne gene fusions used to monitor hupTUV expression indicated that the operon is expressed at a low level (50- to 100-fold lower than hupS). PMID:8752335

  14. A hydrogen-sensing system in transcriptional regulation of hydrogenase gene expression in Alcaligenes species.

    PubMed Central

    Lenz, O; Strack, A; Tran-Betcke, A; Friedrich, B

    1997-01-01

    Heterologous complementation studies using Alcaligenes eutrophus H16 as a recipient identified a hydrogenase-specific regulatory DNA region on megaplasmid pHG21-a of the related species Alcaligenes hydrogenophilus. Nucleotide sequence analysis revealed four open reading frames on the subcloned DNA, designated hoxA, hoxB, hoxC, and hoxJ. The product of hoxA is homologous to a transcriptional activator of the family of two-component regulatory systems present in a number of H2-oxidizing bacteria. hoxB and hoxC predict polypeptides of 34.5 and 52.5 kDa, respectively, which resemble the small and the large subunits of [NiFe] hydrogenases and correlate with putative regulatory proteins of Bradyrhizobium japonicum (HupU and HupV) and Rhodobacter capsulatus (HupU). hoxJ encodes a protein with typical consensus motifs of histidine protein kinases. Introduction of the complete set of genes on a broad-host-range plasmid into A. eutrophus H16 caused severe repression of soluble and membrane-bound hydrogenase (SH and MBH, respectively) synthesis in the absence of H2. This repression was released by truncation of hoxJ. H2-dependent hydrogenase gene transcription is a typical feature of A. hydrogenophilus and differs from the energy and carbon source-responding, H2-independent mode of control characteristic of A. eutrophus H16. Disruption of the A. hydrogenophilus hoxJ gene by an in-frame deletion on megaplasmid pHG21-a led to conversion of the regulatory phenotype: SH and MBH of the mutant were expressed in the absence of H2 in response to the availability of the carbon and energy source. RNA dot blot analysis showed that HoxJ functions on the transcriptional level. These results suggest that the putative histidine protein kinase HoxJ is involved in sensing molecular hydrogen, possibly in conjunction with the hydrogenase-like polypeptides HoxB and HoxC. PMID:9045826

  15. Salt-tolerant and high-pH-resistant hydrogenase from the haloalkaliphilic, sulfate-reducing bacterium Desulfonatronum thiodismutans

    NASA Astrophysics Data System (ADS)

    Detkova, Ekaterina N.; Pikuta, Elena V.; Hoover, Richard B.

    2004-11-01

    Hydrogenase is the key enzyme of energetic metabolism in cells, catalyzing the converse reaction of hydrogen oxidation and responsible for the consumption and excretion of hydrogen in bacteria. Hydrogenases are proteins, most of which contain either nickel and iron or iron alone in their active center. Hydrogenases have been found in many microorganisms, such as methanogenic, acetogenic, nitrogen-fixing, sulfate-reducing, photosynthetic bacteria, and algae that use the hydrogen as an energy source or as an electron sink. Hydrogenases are the subject of wide physiological, biochemical, physico-chemical and genetic studies due to their abilities to produce molecular hydrogen as an alternative source of energy. Despite the large quantity of work dealing with the intracellular and extracellular enzymes of halophilic bacteria, the data about the response of hydrogenases to salts are practically absent. The study of hydrogenase in cell-free extracts of the extremely halophilic eubacterium Acetohalobium arabaticum showed a dramatic increase in the activity of the enzyme at high concentrations of NaCl and KCl (near saturated solutions). Here we present data about hydrogenase in a free-cell extract from the new halo-alkaliphilic sulfate-reducing bacterium Desulfonatronum thiodismutans, which grows on a highly mineralized carbonate-bicarbonate medium in the salinity range from 1 to 7 % NaCl and at pH 8.0-10.0. The studied enzyme was active in concentration range from 0.0 to 4.3 M NaCl with the optimum at 1.0 M NaCl. At 1.0 M NaCl the enzyme expressed 20 % additional activity, with NaCl concentration changing from 2.1 M to 3.4 M, and then the activity decreased and reached a constant level. Although sodium bicarbonate decreases the hydrogenase activity, the enzyme still showed activity at 60 % of the maximum level at concentration in a near saturated solution (1.2 M NaHCO3). The maximum enzyme activity was observed at pH 9.5 with limits of 7.5 and 11.5, which is practically equal to the pH optimum of bacterial growth. Therefore the hydrogenase of D. thiodismutans is extremely tolerant to high concentrations of sodium salts and resistant to high pH, which makes it a unique subject for biochemical research with the possibility of important biotechnological applications.

  16. Halotolerant and Resistant to High pH Hydrogenase from Haloalkaliphilic Sulfate-Reducing Bacterium Desulfonatronum thiodismutans

    NASA Technical Reports Server (NTRS)

    Detkova, Ekaterina N.; Pikuta, Elena V.; Hoover, Richard B.

    2004-01-01

    Hydrogenase is the key enzyme of energetic metabolism in cells, it catalyzing the converse reaction of hydrogen oxidation and responsible for consumption and excretion of hydrogen in bacteria. Hydrogenases are proteins containing either Nickel and Iron, or the only Iron in theirs active center. Hydrogenases have been found in many microorganisms, such as Methanogenic, acetogenic, nitrogen-fixing, photosynthetic and sulfate-reducing bacteria that could utilize the hydrogen as energy source or use it as electron sink. Hydrogenases are subject for wide physiological, biochemical, physicochemical and genetic studies due to theirs abilities produce the molecular hydrogen as alternative source of pure energy. Notwithstanding on enough large quantity of works that deal with intracellular and extrasellular enzymes of halophilic bacteria, the data about hydrogenases and theirs functions of salts practically are absent. The study of hydrogenase in cell-free extracts of extremely halophilic eubacterium Acetohalobium mabaticum showed dramatic increasing activity of the enzyme at high concentrations of NaCl and KCI (close to saturated solution). Here we present the data of free-cells extracted hydrogenase from new haloalkaliphilic sulfate-reducing bacterium Desulfonatronum thiodismutans, which grow on highly miniralized carbonate-bicarbonate medium in salinity range 1 to 7 % and at pH 7.8 - 10.5. Studied enzyme was active in Concentration range from 0 to 4.3 M NaCl with optimum at 1.0 M NaCl. At 1.0 M NaCl the enzyme activity was increased on 20 %, but with changing concentration from 2.1 M to 3.4 M the activity decreased and was kept on constant level. NaHCO3 inhibited hydrogenase activity on more then 30 %. The maximum of enzyme activity was observed at pH 9.5 with limits 7.5 and 11.5 that practically equal to pH optimum of bacterial growth. Therefore the hydrogenase of Desulfanatronum thiodismutans is tolerant to high concentrations of sodium salts and it also resistant to high pH that make it the unique subject for different biochemical research and detects the possibility for biotechnological application.

  17. Genetic diversity and expression of the [NiFe] hydrogenase large-subunit gene of Desulfovibrio spp. in environmental samples.

    PubMed Central

    Wawer, C; Jetten, M S; Muyzer, G

    1997-01-01

    The genetic diversity and expression of the [NiFe] hydrogenase large-subunit gene of Desulfovibrio spp. in environmental samples were determined in order to show in parallel the existing and active members of Desulfovibrio populations. DNA and total RNA were extracted from different anaerobic bioreactor samples; RNA was transcribed into cDNA. Subsequently, PCR was performed to amplify a ca.-440-bp fragment of the [NiFe] hydrogenase large-subunit gene and its mRNA. Denaturing gradient gel electrophoresis analysis was used to separate the PCR products according to their sequence and thereby to visualize the individual community members. Desulfovibrio strains corresponding to amplified [NiFe] hydrogenase transcripts were regarded as metabolically active, because in pure cultures transcripts were detectable in exponentially growing cells but not in cultures in the stationary phase. DNA sequencing and comparative sequence analysis were used to identify the detected organisms on the basis of their [NiFe] hydrogenase sequences. The genes of characterized Desulfovibrio spp. showed a considerable extent of divergence (ca. 30%), whereas sequences obtained from bacterial populations of the bioreactors showed a low level of variation and indicated the coexistence of closely related strains probably belonging to the species Desulfovibrio sulfodismutans. Under methanogenic conditions, all detected populations were active; under denitrifying conditions, no [NiFe] hydrogenase mRNA was visible. Changes in activity and composition of Desulfovibrio populations caused by changes in the environmental conditions could be monitored by using the approach described in this study. PMID:9361423

  18. The Hydrogenase Chip: a tiling oligonucleotide DNA microarray technique for characterizing hydrogen-producing and -consuming microbes in microbial communities

    PubMed Central

    Marshall, Ian PG; Berggren, Dusty RV; Azizian, Mohammad F; Burow, Luke C; Semprini, Lewis; Spormann, Alfred M

    2012-01-01

    We developed a broad-ranging method for identifying key hydrogen-producing and consuming microorganisms through analysis of hydrogenase gene content and expression in complex anaerobic microbial communities. The method is based on a tiling hydrogenase gene oligonucleotide DNA microarray (Hydrogenase Chip), which implements a high number of probes per gene by tiling probe sequences across genes of interest at 1.67 × –2 × coverage. This design favors the avoidance of false positive gene identification in samples of DNA or RNA extracted from complex microbial communities. We applied this technique to interrogate interspecies hydrogen transfer in complex communities in (i) lab-scale reductive dehalogenating microcosms enabling us to delineate key H2-consuming microorganisms, and (ii) hydrogen-generating microbial mats where we found evidence for significant H2 production by cyanobacteria. Independent quantitative PCR analysis on selected hydrogenase genes showed that this Hydrogenase Chip technique is semiquantitative. We also determined that as microbial community complexity increases, specificity must be traded for sensitivity in analyzing data from tiling DNA microarrays. PMID:21993396

  19. Identification, cloning and heterologous expression of active [NiFe]-hydrogenase 2 from Citrobacter sp. SG in Escherichia coli.

    PubMed

    Maier, Johannes A H; Ragozin, Sergey; Jeltsch, Albert

    2015-04-10

    Hydrogen (H2) is a potential alternative energy carrier which only produces water and heat upon combustion. Today, industrial hydrogen production mainly uses thermochemical processes based on fossil fuels or electrolysis of water. Therefore, biotechnological approaches to produce H2 from biomass are an interesting alternative. We introduce here a novel direct hydrogen measurement system using a semiconducting device specific for hydrogen detection. Using this device, a bacterium producing considerable amounts of hydrogen under aerobic cultivation was isolated and identified by 16S ribosomal DNA sequencing as Citrobacter sp. The enzyme responsible for the observed hydrogenase activity was partially purified by 3 chromatographic purification steps and could be identified by peptide mass fingerprinting to be a type 2 [NiFe]-hydrogenase. Expression of the [NiFe]-hydrogenase 2 containing operon from Citrobacter sp. SG in Escherichia coli allowed recombinant hydrogen production. The [NiFe]-hydrogenase 2 identified here may be useful for biotechnological hydrogen production. We speculate that the expression of the hydrogenase in Citrobacter may be an adaptation to growth in acidic conditions. PMID:25678135

  20. Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival.

    PubMed

    Greening, Chris; Biswas, Ambarish; Carere, Carlo R; Jackson, Colin J; Taylor, Matthew C; Stott, Matthew B; Cook, Gregory M; Morales, Sergio E

    2016-03-01

    Recent physiological and ecological studies have challenged the long-held belief that microbial metabolism of molecular hydrogen (H2) is a niche process. To gain a broader insight into the importance of microbial H2 metabolism, we comprehensively surveyed the genomic and metagenomic distribution of hydrogenases, the reversible enzymes that catalyse the oxidation and evolution of H2. The protein sequences of 3286 non-redundant putative hydrogenases were curated from publicly available databases. These metalloenzymes were classified into multiple groups based on (1) amino acid sequence phylogeny, (2) metal-binding motifs, (3) predicted genetic organisation and (4) reported biochemical characteristics. Four groups (22 subgroups) of [NiFe]-hydrogenase, three groups (6 subtypes) of [FeFe]-hydrogenases and a small group of [Fe]-hydrogenases were identified. We predict that this hydrogenase diversity supports H2-based respiration, fermentation and carbon fixation processes in both oxic and anoxic environments, in addition to various H2-sensing, electron-bifurcation and energy-conversion mechanisms. Hydrogenase-encoding genes were identified in 51 bacterial and archaeal phyla, suggesting strong pressure for both vertical and lateral acquisition. Furthermore, hydrogenase genes could be recovered from diverse terrestrial, aquatic and host-associated metagenomes in varying proportions, indicating a broad ecological distribution and utilisation. Oxygen content (pO2) appears to be a central factor driving the phylum- and ecosystem-level distribution of these genes. In addition to compounding evidence that H2 was the first electron donor for life, our analysis suggests that the great diversification of hydrogenases has enabled H2 metabolism to sustain the growth or survival of microorganisms in a wide range of ecosystems to the present day. This work also provides a comprehensive expanded system for classifying hydrogenases and identifies new prospects for investigating H2 metabolism. PMID:26405831

  1. The Mssbauer Parameters of the Proximal Cluster of Membrane-Bound Hydrogenase Revisited: A Density Functional Theory Study.

    PubMed

    Tabrizi, Shadan Ghassemi; Pelmenschikov, Vladimir; Noodleman, Louis; Kaupp, Martin

    2016-01-12

    An unprecedented [4Fe-3S] cluster proximal to the regular [NiFe] active site has recently been found to be responsible for the ability of membrane-bound hydrogenases (MBHs) to oxidize dihydrogen in the presence of ambient levels of oxygen. Starting from proximal cluster models of a recent DFT study on the redox-dependent structural transformation of the [4Fe-3S] cluster, (57)Fe Mssbauer parameters (electric field gradients, isomer shifts, and nuclear hyperfine couplings) were calculated using DFT. Our results revise the previously reported correspondence of Mssbauer signals and iron centers in the [4Fe-3S](3+) reduced-state proximal cluster. Similar conflicting assignments are also resolved for the [4Fe-3S](5+) superoxidized state with particular regard to spin-coupling in the broken-symmetry DFT calculations. Calculated (57)Fe hyperfine coupling (HFC) tensors expose discrepancies in the experimental set of HFC tensors and substantiate the need for additional experimental work on the magnetic properties of the MBH proximal cluster in its reduced and superoxidized redox states. PMID:26598030

  2. Desulfovibrio vulgaris hydrogenase: a nonheme iron enzyme lacking nickel that exhibits anomalous EPR and Mössbauer spectra.

    PubMed Central

    Huynh, B H; Czechowski, M H; Krüger, H J; DerVartanian, D V; Peck, H D; LeGall, J

    1984-01-01

    A purification procedure for the periplasmic hydrogenase from Desulfovibrio vulgaris ( Hildenborough , National Collection of Industrial Bacteria 8303) is reported. The purified hydrogenase has a specific activity of 4800 units per mg of protein. Plasma emission studies reveal that this highly active hydrogenase is free of nickel and contains 11 (+/- 1) nonheme iron atoms per molecule. A combined EPR and Mössbauer study indicates that the majority of the iron atoms are bound in the form of iron- sulfur clusters. Two ferredoxin-type [4Fe-4S] clusters have been identified that exhibit normal EPR and Mössbauer parameters; however, no trace of 3Fe cluster is detected by the Mössbauer measurement. In the presence of oxidants, cytochrome c3, and CO, anomalous EPR and Mössbauer spectra indicative of atypical nonheme iron centers are observed. PMID:6328525

  3. Photoelectrochemical H2 Evolution with a Hydrogenase Immobilized on a TiO2 -Protected Silicon Electrode.

    PubMed

    Lee, Chong-Yong; Park, Hyun S; Fontecilla-Camps, Juan C; Reisner, Erwin

    2016-05-10

    The combination of enzymes with semiconductors enables the photoelectrochemical characterization of electron-transfer processes at highly active and well-defined catalytic sites on a light-harvesting electrode surface. Herein, we report the integration of a hydrogenase on a TiO2 -coated p-Si photocathode for the photo-reduction of protons to H2 . The immobilized hydrogenase exhibits activity on Si attributable to a bifunctional TiO2 layer, which protects the Si electrode from oxidation and acts as a biocompatible support layer for the productive adsorption of the enzyme. The p-Si|TiO2 |hydrogenase photocathode displays visible-light driven production of H2 at an energy-storing, positive electrochemical potential and an essentially quantitative faradaic efficiency. We have thus established a widely applicable platform to wire redox enzymes in an active configuration on a p-type semiconductor photocathode through the engineering of the enzyme-materials interface. PMID:27061334

  4. Purification, crystallization and preliminary X-ray analysis of the membrane-bound [NiFe] hydrogenase from Allochromatium vinosum

    SciTech Connect

    Kellers, Petra; Ogata, Hideaki; Lubitz, Wolfgang

    2008-08-01

    This article describes the first successful crystallization of a membrane-bound [NiFe] hydrogenase isolated from a photosynthetic organism (A. vinosum). The crystals obtained produced diffraction patterns up to 2.5 Å resolution. The membrane-bound [NiFe] hydrogenase is a unique metalloprotein that is able to catalyze the reversible oxidation of hydrogen to protons and electrons during a complex reaction cycle. The [NiFe] hydrogenase was isolated from the photosynthetic purple sulfur bacterium Allochromatium vinosum and its crystallization and preliminary X-ray analysis are reported. It was crystallized by the hanging-drop vapour-diffusion method using sodium citrate and imidazole as crystallization agents. The crystals belong to space group P2{sub 1}2{sub 1}2, with unit-cell parameters a = 205.00, b = 217.42, c = 120.44 Å. X-ray diffraction data have been collected to 2.5 Å resolution.

  5. Purification, crystallization and preliminary crystallographic analysis of the [NiFeSe] hydrogenase from Desulfovibrio vulgaris Hildenborough

    PubMed Central

    Marques, Marta; Coelho, Ricardo; Pereira, Inês A. C.; Matias, Pedro M.

    2009-01-01

    The [NiFeSe] hydrogenases belong to a subgroup of the [NiFe] proteins in which a selenocysteine is a ligand of the Ni. These enzymes demonstrate interesting catalytic properties, showing a very high H2-producing activity that is sustained in the presence of low O2 concentrations. The purification, crystallization and preliminary X-ray diffraction analysis of the [NiFeSe] hydrogenase isolated from Desulfovibrio vulgaris Hildenborough are reported. Crystals of the soluble form of this hydrogenase were obtained using 20% PEG 1500 as a precipitant and belonged to the monoclinic space group P21, with unit-cell parameters a = 60.57, b = 91.05, c = 66.85 Å, β = 101.46°. Using an in-house X-ray diffraction system, they were observed to diffract X-rays to 2.4 Å resolution. PMID:19724133

  6. Cloning, sequencing, and mutational analysis of the hyb operon encoding Escherichia coli hydrogenase 2.

    PubMed Central

    Menon, N. K.; Chatelus, C. Y.; Dervartanian, M.; Wendt, J. C.; Shanmugam, K. T.; Peck, H. D.; Przybyla, A. E.

    1994-01-01

    The genes encoding the two structural subunits of Escherichia coli hydrogenase 2 (HYD2) have been cloned and sequenced. They occur in an operon (hyb) which contains seven open reading frames. An hyb deletion mutant (strain AP3) failed to grown on dihydrogen-fumarate medium and also produced very low levels of HYD1. All seven open reading frames are required for restoration of wild-type levels of active HYD2 in AP3. The hyb operon was mapped at 65 min on the E. coli chromosome. Images PMID:8021226

  7. Kinetics and thermodynamics of gas diffusion in a NiFe hydrogenase.

    PubMed

    Topin, Jérémie; Rousset, Marc; Antonczak, Serge; Golebiowski, Jérôme

    2012-03-01

    We have investigated O₂ and H₂ transport across a NiFe hydrogenase at the atomic scale by means of computational methods. The Wild Type protein has been compared with the V74Q mutant. Two distinct methodologies have been applied to study the gas access to the active site. Temperature locally enhanced sampling simulations have emphasized the importance of protein dynamics on gas diffusion. The O₂ diffusion free energy profiles, obtained by umbrella sampling, are in agreement with the known kinetic data and show that in the V74Q mutant, the inhibition process is lowered from both a kinetic and a thermodynamic point of view. PMID:22189859

  8. Sequences and characterization of hupU and hupV genes of Bradyrhizobium japonicum encoding a possible nickel-sensing complex involved in hydrogenase expression.

    PubMed Central

    Black, L K; Fu, C; Maier, R J

    1994-01-01

    A 2.7-kb DNA fragment of Bradyrhizobium japonicum previously shown to be involved in hydrogenase expression has been sequenced. The area is located just upstream of the hupSLCDF operon and was found to contain two open reading frames, designated hupU and hupV; these encode proteins of 35.4 and 51.8 kDa, respectively. These proteins are homologous to Rhodobacter capsulatus HupU, a possible repressor of hydrogenase expression in that organism. B. japonicum HupU is 54% identical to the N terminus of R. capsulatus HupU, and HupV is 50% identical to the C terminus of R. capsulatus HupU. HupU and HupV also show homology to the [Ni-Fe] hydrogenase small and large subunits, respectively. Notably, HupV contains the probable nickel-binding sites RxCGxC and DPCxxCxxH, which are located in the N- and C-terminal portions, respectively, of the large subunit of hydrogenases. Hydrogenase activity assays, immunological assays for hydrogenase subunits, and beta-galactosidase assays on mutant strain JHCS2 (lacking a portion of HupV) were all indicative that HupV is necessary for transcriptional activation of hydrogenase. A physiological role as a possible nickel- or other environmental (i.e., oxygen or hydrogen)-sensing complex is proposed for HupU and HupV. Images PMID:7961478

  9. HupO, a Novel Regulator Involved in Thiosulfate-Responsive Control of HupSL [NiFe]-Hydrogenase Synthesis in Thiocapsa roseopersicina.

    PubMed

    Nagy, Ildikó K; Kovács, Kornél L; Rákhely, Gábor; Maróti, Gergely

    2016-01-01

    [NiFe]-hydrogenases are regulated by various factors to fulfill their physiological functions in bacterial cells. The photosynthetic purple sulfur bacterium Thiocapsa roseopersicina harbors four functional [NiFe]-hydrogenases: HynSL, HupSL, Hox1, and Hox2. Most of these hydrogenases are functionally linked to sulfur metabolism, and thiosulfate has a central role in this organism. The membrane-associated Hup hydrogenases have been shown to play a role in energy conservation through hydrogen recycling. The expression of Hup-type hydrogenases is regulated by H2 in Rhodobacter capsulatus and Cupriavidus necator; however, it has been shown that the corresponding hydrogen-sensing system is nonfunctional in T. roseopersicina and that thiosulfate is a regulating factor of hup expression. Here, we describe the discovery and analysis of mutants of a putative regulator (HupO) of the Hup hydrogenase in T. roseopersicina. HupO appears to mediate the transcriptional repression of Hup enzyme synthesis under low-thiosulfate conditions. We also demonstrate that the presence of the Hox1 hydrogenase strongly influences Hup enzyme synthesis in that hup expression was decreased significantly in the hox1 mutant. This reduction in Hup synthesis could be reversed by mutation of hupO, which resulted in strongly elevated hup expression, as well as Hup protein levels, and concomitant in vivo hydrogen uptake activity in the hox1 mutant. However, this regulatory control was observed only at low thiosulfate concentrations. Additionally, weak hydrogen-dependent hup expression was shown in the hupO mutant strain lacking the Hox1 hydrogenase. HupO-mediated Hup regulation therefore appears to link thiosulfate metabolism and the hydrogenase network in T. roseopersicina. PMID:26801573

  10. Electron transfer activation of a second water channel for proton transport in [FeFe]-hydrogenase

    NASA Astrophysics Data System (ADS)

    Sode, Olaseni; Voth, Gregory A.

    2014-12-01

    Hydrogenase enzymes are important because they can reversibly catalyze the production of molecular hydrogen. Proton transport mechanisms have been previously studied in residue pathways that lead to the active site of the enzyme via residues Cys299 and Ser319. The importance of this pathway and these residues has been previously exhibited through site-specific mutations, which were shown to interrupt the enzyme activity. It has been shown recently that a separate water channel (WC2) is coupled with electron transport to the active site of the [FeFe]-hydrogenase. The water-mediated proton transport mechanisms of the enzyme in different electronic states have been studied using the multistate empirical valence bond reactive molecular dynamics method, in order to understand any role WC2 may have in facilitating the residue pathway in bringing an additional proton to the enzyme active site. In a single electronic state A2-, a water wire was formed through which protons can be transported with a low free energy barrier. The remaining electronic states were shown, however, to be highly unfavorable to proton transport in WC2. A double amino acid substitution is predicted to obstruct proton transport in electronic state A2- by closing a cavity that could otherwise fill with water near the proximal Fe of the active site.

  11. Hydride bridge in [NiFe]-hydrogenase observed by nuclear resonance vibrational spectroscopy

    NASA Astrophysics Data System (ADS)

    Ogata, Hideaki; Krämer, Tobias; Wang, Hongxin; Schilter, David; Pelmenschikov, Vladimir; van Gastel, Maurice; Neese, Frank; Rauchfuss, Thomas B.; Gee, Leland B.; Scott, Aubrey D.; Yoda, Yoshitaka; Tanaka, Yoshihito; Lubitz, Wolfgang; Cramer, Stephen P.

    2015-08-01

    The metabolism of many anaerobes relies on [NiFe]-hydrogenases, whose characterization when bound to substrates has proven non-trivial. Presented here is direct evidence for a hydride bridge in the active site of the 57Fe-labelled fully reduced Ni-R form of Desulfovibrio vulgaris Miyazaki F [NiFe]-hydrogenase. A unique `wagging' mode involving H- motion perpendicular to the Ni(μ-H)57Fe plane was studied using 57Fe-specific nuclear resonance vibrational spectroscopy and density functional theory (DFT) calculations. On Ni(μ-D)57Fe deuteride substitution, this wagging causes a characteristic perturbation of Fe-CO/CN bands. Spectra have been interpreted by comparison with Ni(μ-H/D)57Fe enzyme mimics [(dppe)Ni(μ-pdt)(μ-H/D)57Fe(CO)3]+ and DFT calculations, which collectively indicate a low-spin Ni(II)(μ-H)Fe(II) core for Ni-R, with H- binding Ni more tightly than Fe. The present methodology is also relevant to characterizing Fe-H moieties in other important natural and synthetic catalysts.

  12. How oxygen reacts with oxygen-tolerant respiratory [NiFe]-hydrogenases

    PubMed Central

    Wulff, Philip; Day, Christopher C.; Sargent, Frank; Armstrong, Fraser A.

    2014-01-01

    An oxygen-tolerant respiratory [NiFe]-hydrogenase is proven to be a four-electron hydrogen/oxygen oxidoreductase, catalyzing the reaction 2 H2 + O2 = 2 H2O, equivalent to hydrogen combustion, over a sustained period without inactivating. At least 86% of the H2O produced by Escherichia coli hydrogenase-1 exposed to a mixture of 90% H2 and 10% O2 is accounted for by a direct four-electron pathway, whereas up to 14% arises from slower side reactions proceeding via superoxide and hydrogen peroxide. The direct pathway is assigned to O2 reduction at the [NiFe] active site, whereas the side reactions are an unavoidable consequence of the presence of low-potential relay centers that release electrons derived from H2 oxidation. The oxidase activity is too slow to be useful in removing O2 from the bacterial periplasm; instead, the four-electron reduction of molecular oxygen to harmless water ensures that the active site survives to catalyze sustained hydrogen oxidation. PMID:24715724

  13. A rationale for stabilization of oxygen-labile enzymes: application to a clostridial hydrogenase.

    PubMed Central

    Klibanov, A M; Kaplan, N O; Kamen, M D

    1978-01-01

    A general procedure for stabilization of O2-labile enzymes exploiting "salting out" of oxygen from the microenvironment in the molecular layers immediately adjacent to charged surfaces of polyionic solid adsorbents has been developed. Empirical verification of this rationale is provided. The half-life of air inactivation of the O2-labile hydrogenase (EC 1.12.7.1) from Clostridium pasteurianum is increased 20- to 25-fold simply by adsorption (noncovalent binding) in dilute Tris.HCl buffer on common anion exchange supports such as DEAE-cellulose or Dowex 1-X2. Predicted increases in degree of stabilization by using more densely charged adsorbents (such as polyethyleneimine-cellulose), as well as bulkier solvent counter-anions, are found; half-lives for air inactivation for the bound hydrogenase can be increased to 3000-fold longer than that of the free enzyme. Most of the total catalytic activity, assayed as H2 evolution from dithionite mediated by methyl viologen or ferredoxin, is retained, whereas the expected suppression of H2 uptake in the reverse reaction is observed. PMID:278979

  14. Applications of bacterial hydrogenases in waste decontamination, manufacture of novel bionanocatalysts and in sustainable energy.

    PubMed

    Macaskie, L E; Baxter-Plant, V S; Creamer, N J; Humphries, A C; Mikheenko, I P; Mikheenko, P M; Penfold, D W; Yong, P

    2005-02-01

    Bacterial hydrogenases have been harnessed to the removal of heavy metals from solution by reduction to less soluble metal species. For Pd(II), its bioreduction results in the deposition of cell-bound Pd(0)-nanoparticles that are ferromagnetic and have a high catalytic activity. Hydrogenases can also be used synthetically in the production of hydrogen from sugary wastes through breakdown of formate produced by fermentation. The Bio-H(2) produced can be used to power an electrical device using a fuel cell to provide clean electricity. Production of hydrogen from confectionery wastes by one organism (Escherichia coli) can be used as the electron donor for the production of Bio-Pd(0) from soluble Pd(II) by a second organism. The resulting Bio-Pd(0) can then be used as a bioinorganic catalyst in the remediation of Cr(VI)-contaminated solutions or polychlorinated biphenyls at the expense of Bio-H(2), as a hydrogenation catalyst for industry or as a component of a fuel cell electrode. PMID:15667270

  15. Fast and efficient molecular electrocatalysts for H{sub 2} production: Using hydrogenase enzymes as guides

    SciTech Connect

    Yang, Jenny Y.; Bullock, R. Morris; DuBois, M. Rakowski; DuBois, Daniel L.

    2011-01-01

    Hydrogen generation using solar energy will require the development of efficient electrocatalysts for proton reduction. This article discusses the important role that proton movement plays in hydrogenase enzymes and potential devices for solar generation. Studies of hydrogenase enzymes provide many important design principles for the development of simpler molecular catalysts. These principles are illustrated with examples from the literature and from the authors’ laboratories. In particular, pendant bases incorporated in the second coordination sphere of catalytic molecules play a number of important roles that are crucial to efficient catalysis. These roles include acting as relays to move protons between the metal center and solution, promoting intra- and intermolecular proton transfer reactions, coupling proton and electron transfer reactions, assisting heterolytic cleavage of hydrogen, and stabilizing critical reaction intermediates. The importance of controlling proton movement on the molecular scale underscores the importance of a similar degree of control in devices designed for the solar production of hydrogen or any fuel generation process involving multiple electrons and protons.

  16. Electron transfer activation of a second water channel for proton transport in [FeFe]-hydrogenase

    SciTech Connect

    Sode, Olaseni; Voth, Gregory A.

    2014-12-14

    Hydrogenase enzymes are important because they can reversibly catalyze the production of molecular hydrogen. Proton transport mechanisms have been previously studied in residue pathways that lead to the active site of the enzyme via residues Cys299 and Ser319. The importance of this pathway and these residues has been previously exhibited through site-specific mutations, which were shown to interrupt the enzyme activity. It has been shown recently that a separate water channel (WC2) is coupled with electron transport to the active site of the [FeFe]-hydrogenase. The water-mediated proton transport mechanisms of the enzyme in different electronic states have been studied using the multistate empirical valence bond reactive molecular dynamics method, in order to understand any role WC2 may have in facilitating the residue pathway in bringing an additional proton to the enzyme active site. In a single electronic state A{sup 2−}, a water wire was formed through which protons can be transported with a low free energy barrier. The remaining electronic states were shown, however, to be highly unfavorable to proton transport in WC2. A double amino acid substitution is predicted to obstruct proton transport in electronic state A{sup 2-} by closing a cavity that could otherwise fill with water near the proximal Fe of the active site.

  17. Anaerobic regulation of the hydrogenase 1 (hya) operon of Escherichia coli.

    PubMed Central

    Brøndsted, L; Atlung, T

    1994-01-01

    Using a transcriptional fusion to the lacZ gene, we have analyzed the anaerobic regulation of the hydrogenase 1 (hya) operon in response to different anaerobic growth conditions and to mutations in regulatory genes. We found that the transcription of the hya operon was induced when the growth condition was changed from aerobic to anaerobic and that this induction was independent of Fnr but dependent on regulators AppY and ArcA. Furthermore, we found that the transcription of the hya operon was not regulated by the cyclic AMP-cyclic AMP receptor protein complex. Investigation of the effects of different anaerobic growth conditions on the expression of the hya operon showed that expression was induced by formate and repressed by nitrate. Formate induction was not mediated by the fhlA gene product, and nitrate repression was not mediated by the narL gene product. We found a high level of anaerobic expression of the hya operon in glucose medium supplemented with formate and in glycerol medium supplemented with fumarate, suggesting that hydrogenase isoenzyme 1 has a function during both fermentative growth and anaerobic respiration. PMID:8071220

  18. Hydride bridge in [NiFe]-hydrogenase observed by nuclear resonance vibrational spectroscopy

    PubMed Central

    Ogata, Hideaki; Krämer, Tobias; Wang, Hongxin; Schilter, David; Pelmenschikov, Vladimir; van Gastel, Maurice; Neese, Frank; Rauchfuss, Thomas B.; Gee, Leland B.; Scott, Aubrey D.; Yoda, Yoshitaka; Tanaka, Yoshihito; Lubitz, Wolfgang; Cramer, Stephen P.

    2015-01-01

    The metabolism of many anaerobes relies on [NiFe]-hydrogenases, whose characterization when bound to substrates has proven non-trivial. Presented here is direct evidence for a hydride bridge in the active site of the 57Fe-labeled fully reduced Ni-R form of Desulfovibrio vulgaris Miyazaki F (DvMF) [NiFe]-hydrogenase. A unique ‘wagging’ mode involving H− motion perpendicular to the Ni(μ-H)57Fe plane was studied using 57Fe-specific nuclear resonance vibrational spectroscopy (NRVS) and density functional theory (DFT) calculations. Upon Ni(μ-D)57Fe deuteride substitution, this wagging causes a characteristic perturbation of Fe–CO/CN bands. Spectra have been interpreted by comparison with Ni(μ-H/D)57Fe enzyme mimics [(dppe)Ni(μ-pdt)(μ-H/D)57Fe(CO)3]+ and DFT calculations, which collectively indicate a low-spin Ni(II)(μ-H)Fe(II) core for Ni-R, with H− binding Ni more tightly than Fe. The present methodology is also relevant to characterizing Fe–H moieties in other important natural and synthetic catalysts. PMID:26259066

  19. Artificial hydrogenases: biohybrid and supramolecular systems for catalytic hydrogen production or uptake.

    PubMed

    Caserta, Giorgio; Roy, Souvik; Atta, Mohamed; Artero, Vincent; Fontecave, Marc

    2015-04-01

    There is an urgent need for cheap, abundant and efficient catalysts as an alternative to platinum for hydrogen production and oxidation in (photo)electrolyzers and fuel cells. Hydrogenases are attractive solutions. These enzymes use exclusively nickel and iron in their active sites and function with high catalytic rates at the thermodynamic equilibrium. As an alternative, a number of biomimetic and bioinspired catalysts for H2 production and/or uptake, based on Ni, Fe and Co, have been developed and shown to display encouraging performances. In this review we discuss specifically recent approaches aiming at incorporating these compounds within oligomeric and polymeric hosts. The latter are most often biological compounds (peptides, proteins, polysaccharides, etc.) but we also discuss non-biological scaffolds (synthetic polymers, Metal-organic-Frameworks, etc.) which can provide the appropriate environment to tune the activity and stability of the synthetic catalysts. These supramolecular catalytic systems thus define a class of original compounds so-called artificial hydrogenases. PMID:25553541

  20. Properties of purified hydrogenase from the particulate fraction of Desulfovibrio vulgaris, Miyazaki.

    PubMed

    Yagi, T; Kimura, K; Daidoji, H; Sakai, F; Tamura, S

    1976-03-01

    The properties of purified hydrogenase [EC 1.12.2.1] solubilized from particulate fraction of sonicated Desulfovibrio vulgaris cells are described. The enzyme was a brownish iron-sulfur protein of molecular weight 89,000, composed of two different subunits (mol. wt.: 28,000 and 59,000), and it contained 7-9 iron atoms and 7-8 labile sulfide ions. Molybdenum was not detected in the preparation. The absorption spectrum of the enzyme was characteristic of iron-sulfur proteins. The millimolar absorbance coefficients of the enzyme were about 164 at 280nm, and 47 at 400nm. The absorption spectrum of the enzyme in the visible region changed upon incubating the enzyme under H2 in the presence of cytochrome c3, but not in its absence. This spectral change was due to the reduction of the enzyme. The absorbance ratio at 400nm of the reduced and the oxidized forms of the enzyme was 0.66. The activity of the enzyme was hardly affected by metal-complexing agents such as cyanide, azide, 1,10-phenanthroline, etc., except for CO, which was a strong inhibitor of the enzyme. The activity was inhibited by SH-reagents such as p-chloromercuribenzenesulfonate. The enzyme was significantly resistant to urea, but susceptible to sodium dodecyl sulfate. These properties were very similar to those of clostridial hydrogenase [EC 1.12.7.1], in spite of differences in the acceptor specificity and subunit structure. PMID:181372

  1. Amphiphilic polymeric micelles as microreactors: improving the photocatalytic hydrogen production of the [FeFe]-hydrogenase mimic in water.

    PubMed

    Wang, Feng; Wen, Min; Feng, Ke; Liang, Wen-Jing; Li, Xu-Bing; Chen, Bin; Tung, Chen-Ho; Wu, Li-Zhu

    2016-01-11

    An amphiphilic polymeric micelle is utilized as a microreactor to load a hydrophobic [FeFe]-hydrogenase mimic in water. The local concentration enhancement and strong interaction between the mimic and the photosensitizer as well as the water-mediated fast proton migration caused by the microreactor improve photocatalytic hydrogen production remarkably in water. PMID:26442776

  2. Structure of an Actinobacterial-Type [NiFe]-Hydrogenase Reveals Insight into O2-Tolerant H2 Oxidation.

    PubMed

    Schfer, Caspar; Bommer, Martin; Hennig, Sandra E; Jeoung, Jae-Hun; Dobbek, Holger; Lenz, Oliver

    2016-02-01

    A novel group of bacterial [NiFe]-hydrogenases is responsible for high-affinity H2 uptake from the troposphere, and is therefore thought to play an important role in the global H2 cycle. Here we present the first crystal structure at 2.85- resolution of such an actinobacterial-type hydrogenase (AH), which was isolated from the dihydrogen oxidizing bacterium, Ralstonia eutropha. The enzyme has a dimeric structure carrying two active [NiFe] sites that are interconnected by six [4Fe4S] clusters over a range of approximately 90. Unlike most other [NiFe]-hydrogenases, the [4Fe4S] cluster proximal to the [NiFe] site is coordinated by three cysteines and one aspartate. Mutagenesis experiments revealed that this aspartate residue is related to the apparent O2 insensitivity of the AH. Our data provide first structural insight into specialized hydrogenases that are supposed to consume atmospheric H2 under challenging conditions, i.e. at high O2 concentration and wide temperature and pH ranges. PMID:26749450

  3. Strategies for reliable and improved large-scale production of Pyrococcus furiosus with integrated purification of hydrogenase I.

    PubMed

    Rieckenberg, Fabian; Gtz, Katharina; Hilterhaus, Lutz; Liese, Andreas; Zeng, An-Ping

    2014-12-01

    The hyperthermophilic archaeon Pyrococcus furiosus is an interesting organism for research and application, especially owing to its unique NADPH-dependent hydrogenase I. However, mass production of P. furiosus through fermentation is susceptible to fault because of its sensitivity to oxygen, a short exponential and stationary phase and a rapid cell lysis in typical cultivation process. In this study, significant improvement for pilot plant scale production processes for P. furiosus biomass was made by investigations of the fermentation process with subsequent hydrogenase I enzyme purification. Scale-up in a 300-L stirred tank bioreactor was successfully achieved. A repeated-batch cultivation process with high reproducibility and productivity was realized. Furthermore, the enzyme hydrogenase I was purified, and its activity tested and verified. The improvements in this production process for the production of large amount of P. furiosus biomass and hydrogenase I have been achieved, especially by successfully implementing the following key measures and steps: unsterile cultivation setup, skipping typical intermediate preculture and inoculation steps, accelerating the cultivation process by defining an optimal state of the inoculation, optimal time point of biomass harvesting and finally by choosing a one-step purification procedure for enzyme recovery. PMID:24894374

  4. How the structure of the large subunit controls function in an oxygen-tolerant [NiFe]-hydrogenase

    PubMed Central

    Bowman, Lisa; Flanagan, Lindsey; Fyfe, Paul K.; Parkin, Alison; Hunter, William N.; Sargent, Frank

    2014-01-01

    Salmonella enterica is an opportunistic pathogen that produces a [NiFe]-hydrogenase under aerobic conditions. In the present study, genetic engineering approaches were used to facilitate isolation of this enzyme, termed Hyd-5. The crystal structure was determined to a resolution of 3.2 Å and the hydro-genase was observed to comprise associated large and small subunits. The structure indicated that His229 from the large subunit was close to the proximal [4Fe–3S] cluster in the small subunit. In addition, His229 was observed to lie close to a buried glutamic acid (Glu73), which is conserved in oxygen-tolerant hydrogenases. His229 and Glu73 of the Hyd-5 large subunit were found to be important in both hydrogen oxidation activity and the oxygen-tolerance mechanism. Substitution of His229 or Glu73 with alanine led to a loss in the ability of Hyd-5 to oxidize hydrogen in air. Furthermore, the H229A variant was found to have lost the overpotential requirement for activity that is always observed with oxygen-tolerant [NiFe]-hydrogenases. It is possible that His229 has a role in stabilizing the super-oxidized form of the proximal cluster in the presence of oxygen, and it is proposed that Glu73could play a supporting role in fine-tuning the chemistry of His229 to enable this function. PMID:24428762

  5. Expression of Shewanella oneidensis MR-1 [FeFe]-hydrogenase genes in Anabaena sp. strain PCC 7120.

    PubMed

    Gärtner, Katrin; Lechno-Yossef, Sigal; Cornish, Adam J; Wolk, C Peter; Hegg, Eric L

    2012-12-01

    H(2) generated from renewable resources holds promise as an environmentally innocuous fuel that releases only energy and water when consumed. In biotechnology, photoautotrophic oxygenic diazotrophs could produce H(2) from water and sunlight using the cells' endogenous nitrogenases. However, nitrogenases have low turnover numbers and require large amounts of ATP. [FeFe]-hydrogenases found in other organisms can have 1,000-fold higher turnover numbers and no specific requirement for ATP but are very O(2) sensitive. Certain filamentous cyanobacteria protect nitrogenase from O(2) by sequestering the enzyme within internally micro-oxic, differentiated cells called heterocysts. We heterologously expressed the [FeFe]-hydrogenase operon from Shewanella oneidensis MR-1 in Anabaena sp. strain PCC 7120 using the heterocyst-specific promoter P(hetN). Active [FeFe]-hydrogenase was detected in and could be purified from aerobically grown Anabaena sp. strain PCC 7120, but only when the organism was grown under nitrate-depleted conditions that elicited heterocyst formation. These results suggest that the heterocysts protected the [FeFe]-hydrogenase against inactivation by O(2). PMID:23023750

  6. Expression of Shewanella oneidensis MR-1 [FeFe]-Hydrogenase Genes in Anabaena sp. Strain PCC 7120

    PubMed Central

    Gärtner, Katrin; Lechno-Yossef, Sigal; Cornish, Adam J.; Wolk, C. Peter

    2012-01-01

    H2 generated from renewable resources holds promise as an environmentally innocuous fuel that releases only energy and water when consumed. In biotechnology, photoautotrophic oxygenic diazotrophs could produce H2 from water and sunlight using the cells' endogenous nitrogenases. However, nitrogenases have low turnover numbers and require large amounts of ATP. [FeFe]-hydrogenases found in other organisms can have 1,000-fold higher turnover numbers and no specific requirement for ATP but are very O2 sensitive. Certain filamentous cyanobacteria protect nitrogenase from O2 by sequestering the enzyme within internally micro-oxic, differentiated cells called heterocysts. We heterologously expressed the [FeFe]-hydrogenase operon from Shewanella oneidensis MR-1 in Anabaena sp. strain PCC 7120 using the heterocyst-specific promoter PhetN. Active [FeFe]-hydrogenase was detected in and could be purified from aerobically grown Anabaena sp. strain PCC 7120, but only when the organism was grown under nitrate-depleted conditions that elicited heterocyst formation. These results suggest that the heterocysts protected the [FeFe]-hydrogenase against inactivation by O2. PMID:23023750

  7. Overexpression, Isolation, and Spectroscopic Characterization of the Bidirectional [NiFe] Hydrogenase from Synechocystis sp. PCC 6803*

    PubMed Central

    Germer, Frauke; Zebger, Ingo; Saggu, Miguel; Lendzian, Friedhelm; Schulz, Rüdiger; Appel, Jens

    2009-01-01

    The bidirectional [NiFe] hydrogenase of the cyanobacterium Synechocystis sp. PCC 6803 was purified to apparent homogeneity by a single affinity chromatography step using a Synechocystis mutant with a Strep-tag II fused to the C terminus of HoxF. To increase the yield of purified enzyme and to test its overexpression capacity in Synechocystis the psbAII promoter was inserted upstream of the hoxE gene. In addition, the accessory genes (hypF, C, D, E, A, and B) from Nostoc sp. PCC 7120 were expressed under control of the psbAII promoter. The respective strains show higher hydrogenase activities compared with the wild type. For the first time a Fourier transform infrared (FTIR) spectroscopic characterization of a [NiFe] hydrogenase from an oxygenic phototroph is presented, revealing that two cyanides and one carbon monoxide coordinate the iron of the active site. At least four different redox states of the active site were detected during the reversible activation/inactivation. Although these states appear similar to those observed in standard [NiFe] hydrogenases, no paramagnetic nickel state could be detected in the fully oxidized and reduced forms. Electron paramagnetic resonance spectroscopy confirms the presence of several iron-sulfur clusters after reductive activation. One [4Fe4S]+ and at least one [2Fe2S]+ cluster could be identified. Catalytic amounts of NADH or NADPH are sufficient to activate the reaction of this enzyme with hydrogen. PMID:19801638

  8. Synthesis by ball milling and characterization of nanocrystalline Fe3O4 and Fe/Fe3O4 composite system

    NASA Astrophysics Data System (ADS)

    Bonetti, E.; Del Bianco, L.; Signoretti, S.; Tiberto, P.

    2001-02-01

    Nanocrystalline Fe3O4 and a composite system constituted by nanocrystalline Fe and Fe3O4 have been synthesized by ball-milling commercial magnetite and an equimolar mixture of iron and magnetite powders. The physical parameters governing the milling process have been strictly controlled so as to achieve the nanocrystalline state of the precursor material and to avoid chemical reactions. X-ray diffraction and Mössbauer spectroscopy measurements have been carried out both on as-milled powders and on samples previously subjected to annealing treatments in the 100-600 °C temperature range. The results, providing information on the structural and compositional features of the produced samples, are discussed in terms of structural disorder which is healed by subsequent annealing. In the case of the composite system, this analysis indicates that a high mixing degree between the constituent phases has been reached. In particular, the presence of a sextet with anomalous hyperfine parameters in the Mössbauer spectrum of as-milled Fe+Fe3O4 has been associated with an alteration of the magnetite structure at the interface with bcc Fe. For both sets of samples, the influence of the structural features on the macroscopic magnetic behavior has been investigated by performing magnetic hysteresis loop measurements at room temperature.

  9. Vibrational cooling dynamics of a [FeFe]-hydrogenase mimic probed by time-resolved infrared spectroscopy.

    PubMed

    Caplins, Benjamin W; Lomont, Justin P; Nguyen, Son C; Harris, Charles B

    2014-12-11

    Picosecond time-resolved infrared spectroscopy (TRIR) was performed for the first time on a dithiolate bridged binuclear iron(I) hexacarbonyl complex ([Fe₂(μ-bdt)(CO)₆], bdt = benzene-1,2-dithiolate) which is a structural mimic of the active site of the [FeFe]-hydrogenase enzyme. As these model active sites are increasingly being studied for their potential in photocatalytic systems for hydrogen production, understanding their excited and ground state dynamics is critical. In n-heptane, absorption of 400 nm light causes carbonyl loss with low quantum yield (<10%), while the majority (ca. 90%) of the parent complex is regenerated with biexponential kinetics (τ₁ = 21 ps and τ₂ = 134 ps). In order to understand the mechanism of picosecond bleach recovery, a series of UV-pump TRIR experiments were performed in different solvents. The long time decay (τ₂) of the transient spectra is seen to change substantially as a function of solvent, from 95 ps in THF to 262 ps in CCl₄. Broadband IR-pump TRIR experiments were performed for comparison. The measured vibrational lifetimes (T₁(avg)) of the carbonyl stretches were found to be in excellent correspondence to the observed τ₂ decays in the UV-pump experiments, signifying that vibrationally excited carbonyl stretches are responsible for the observed longtime decays. The fast spectral evolution (τ₁) was determined to be due to vibrational cooling of low frequency modes anharmonically coupled to the carbonyl stretches that were excited after electronic internal conversion. The results show that cooling of both low and high frequency vibrational modes on the electronic ground state give rise to the observed picosecond TRIR transient spectra of this compound, without the need to invoke electronically excited states. PMID:25426927

  10. Catalytic generation of hydrogen from acidic aqueous solutions of aqua ion of vanadium in the presence of thiocapsa roseopersicina hydrogenase and methyl viologen

    SciTech Connect

    Savinova, E.R.; Gogotov, I.N.; Parmon, V.N.; Zorin, N.A.

    1985-05-01

    It is known that hydrogenases are not highly specific and that they can release H/sub 2/ in the presence of various electron donors. Thus, in the case of Thiocapsa roseopersicina hydrogenase, the specific donors may be any one of a number of low-potential electron carriers, including flavodoxin, cytochrome c/sub 3/, and methyl and benzyl viologen, substances which differ in nature. Thus far, however, no data are available on the use of inorganic reducing agents as electron donors for hydrogenase. The authors report here on a study of the possibility of using such a typical inorganic reducing agent as V/sup 2 +/ (aq) as an electron donor for Th. roseopersicina hydrogenase. They conclude that this hydrogenase can function in an acidic medium without loss of activity over the course of greater than or equal to 0.5h, and that feasibility is demonstrated for the use of vanadium (II) aqua ions as an electron donor for this hydrogenase in the presence of small quantities of methyl viologen, used as an intermediate electron carrier.

  11. Nickel Availability and hupSL Activation by Heterologous Regulators Limit Symbiotic Expression of the Rhizobium leguminosarum bv. Viciae Hydrogenase System in Hup− Rhizobia

    PubMed Central

    Brito, Belén; Monza, Jorge; Imperial, Juan; Ruiz-Argüeso, Tomás; Palacios, Jose Manuel

    2000-01-01

    A limited number of Rhizobium and Bradyrhizobium strains possess a hydrogen uptake (Hup) system that recycles the hydrogen released from the nitrogen fixation process in legume nodules. To extend this ability to rhizobia that nodulate agronomically important crops, we investigated factors that affect the expression of a cosmid-borne Hup system from Rhizobium leguminosarum bv. viciae UPM791 in R. leguminosarum bv. viciae, Rhizobium etli, Mesorhizobium loti, and Sinorhizobium meliloti Hup− strains. After cosmid pAL618 carrying the entire hup system of strain UPM791 was introduced, all recipient strains acquired the ability to oxidize H2 in symbioses with their hosts, although the levels of hydrogenase activity were found to be strain and species dependent. The levels of hydrogenase activity were correlated with the levels of nickel-dependent processing of the hydrogenase structural polypeptides and with transcription of structural genes. Expression of the NifA-dependent hupSL promoter varied depending on the genetic background, while the hyp operon, which is controlled by the FnrN transcriptional regulator, was expressed at similar levels in all recipient strains. With the exception of the R. etli-bean symbiosis, the availability of nickel to bacteroids strongly affected hydrogenase processing and activity in the systems tested. Our results indicate that efficient transcriptional activation by heterologous regulators and processing of the hydrogenase as a function of the availability of nickel to the bacteroid are relevant factors that affect hydrogenase expression in heterologous rhizobia. PMID:10698755

  12. Nickel availability and hupSL activation by heterologous regulators limit symbiotic expression of the Rhizobium leguminosarum bv. viciae hydrogenase system in Hup(-) rhizobia.

    PubMed

    Brito, B; Monza, J; Imperial, J; Ruiz-Argüeso, T; Palacios, J M

    2000-03-01

    A limited number of Rhizobium and Bradyrhizobium strains possess a hydrogen uptake (Hup) system that recycles the hydrogen released from the nitrogen fixation process in legume nodules. To extend this ability to rhizobia that nodulate agronomically important crops, we investigated factors that affect the expression of a cosmid-borne Hup system from Rhizobium leguminosarum bv. viciae UPM791 in R. leguminosarum bv. viciae, Rhizobium etli, Mesorhizobium loti, and Sinorhizobium meliloti Hup(-) strains. After cosmid pAL618 carrying the entire hup system of strain UPM791 was introduced, all recipient strains acquired the ability to oxidize H(2) in symbioses with their hosts, although the levels of hydrogenase activity were found to be strain and species dependent. The levels of hydrogenase activity were correlated with the levels of nickel-dependent processing of the hydrogenase structural polypeptides and with transcription of structural genes. Expression of the NifA-dependent hupSL promoter varied depending on the genetic background, while the hyp operon, which is controlled by the FnrN transcriptional regulator, was expressed at similar levels in all recipient strains. With the exception of the R. etli-bean symbiosis, the availability of nickel to bacteroids strongly affected hydrogenase processing and activity in the systems tested. Our results indicate that efficient transcriptional activation by heterologous regulators and processing of the hydrogenase as a function of the availability of nickel to the bacteroid are relevant factors that affect hydrogenase expression in heterologous rhizobia. PMID:10698755

  13. Orientation-Controlled Electrocatalytic Efficiency of an Adsorbed Oxygen-Tolerant Hydrogenase

    PubMed Central

    Zerball, Maximilian; Horch, Marius; Millo, Diego; Fritsch, Johannes; Lenz, Oliver; von Klitzing, Regine; Hildebrandt, Peter; Fischer, Anna; Mroginski, Maria Andrea; Zebger, Ingo

    2015-01-01

    Protein immobilization on electrodes is a key concept in exploiting enzymatic processes for bioelectronic devices. For optimum performance, an in-depth understanding of the enzyme-surface interactions is required. Here, we introduce an integral approach of experimental and theoretical methods that provides detailed insights into the adsorption of an oxygen-tolerant [NiFe] hydrogenase on a biocompatible gold electrode. Using atomic force microscopy, ellipsometry, surface-enhanced IR spectroscopy, and protein film voltammetry, we explore enzyme coverage, integrity, and activity, thereby probing both structure and catalytic H2 conversion of the enzyme. Electrocatalytic efficiencies can be correlated with the mode of protein adsorption on the electrode as estimated theoretically by molecular dynamics simulations. Our results reveal that pre-activation at low potentials results in increased current densities, which can be rationalized in terms of a potential-induced re-orientation of the immobilized enzyme. PMID:26580976

  14. Coordinate positive regulation of genes encoding [NiFe] hydrogenases in Methanococcus voltae.

    PubMed

    Mller, S; Klein, A

    2001-08-01

    Two transcription units encoding selenium-free [NiFe] hydrogenases in Methanococcus voltae are transcribed only upon selenium deprivation. Their products replace or complement selenocysteine-containing isoenzymes. The transcription units are linked by a 453-bp intergenic region, and are subject to both positive and negative transcriptional regulation. The mechanism of positive regulation was studied in detail. Mutations in identical 11-bp putative activator recognition sites close to each promoter showed that each site is involved in the activation of both promoters. Sequence-specific DNA-affinity chromatography yielded a 55-kDa protein which specifically recognized the 11-bp sequence. We consider this protein to be a transcriptional activator for both transcription units. PMID:11523779

  15. Aerobic Damage to [FeFe]-Hydrogenases: Activation Barriers for the Chemical Attachment of O2**

    PubMed Central

    Kubas, Adam; De Sancho, David; Best, Robert B; Blumberger, Jochen

    2014-01-01

    [FeFe]-hydrogenases are the best natural hydrogen-producing enzymes but their biotechnological exploitation is hampered by their extreme oxygen sensitivity. The free energy profile for the chemical attachment of O2 to the enzyme active site was investigated by using a range-separated density functional re-parametrized to reproduce high-level ab initio data. An activation free-energy barrier of 13 kcal mol−1 was obtained for chemical bond formation between the di-iron active site and O2, a value in good agreement with experimental inactivation rates. The oxygen binding can be viewed as an inner-sphere electron-transfer process that is strongly influenced by Coulombic interactions with the proximal cubane cluster and the protein environment. The implications of these results for future mutation studies with the aim of increasing the oxygen tolerance of this enzyme are discussed. PMID:24615978

  16. Characterization of Hydrogenase and Reductive Dehalogenase Activities of Dehalococcoides ethenogenes Strain 195

    PubMed Central

    Nijenhuis, Ivonne; Zinder, Stephen H.

    2005-01-01

    Dehalococcoides ethenogenes strain 195 reductively dechlorinates tetrachloroethene (PCE) and trichloroethene (TCE) to vinyl chloride and ethene using H2 as an electron donor. PCE- and TCE-reductive dehalogenase (RD) activities were mainly membrane associated, whereas only about 20% of the hydrogenase activity was membrane associated. Experiments with methyl viologen (MV) were consistent with a periplasmic location for the RDs or a component feeding electrons to them. The protonophore uncoupler tetrachlorosalicylanilide did not inhibit reductive dechlorination in cells incubated with H2 and PCE and partially restored activity in cells incubated with the ATPase inhibitor N,N?-dicyclohexylcarbodiimide. Benzyl viologen or diquat (Eo? ? ?360 mV) supported reductive dechlorination of PCE or TCE at rates comparable to MV (?450 mV) in cell extracts. PMID:15746376

  17. Photocatalytic Hydrogen Production using Polymeric Carbon Nitride with a Hydrogenase and a Bioinspired Synthetic Ni Catalyst**

    PubMed Central

    Caputo, Christine A; Gross, Manuela A; Lau, Vincent W; Cavazza, Christine; Lotsch, Bettina V; Reisner, Erwin

    2014-01-01

    Solar-light-driven H2 production in water with a [NiFeSe]-hydrogenase (H2ase) and a bioinspired synthetic nickel catalyst (NiP) in combination with a heptazine carbon nitride polymer, melon (CNx), is reported. The semibiological and purely synthetic systems show catalytic activity during solar light irradiation with turnover numbers (TONs) of more than 50 000 mol H2 (mol H2ase)−1 and approximately 155 mol H2 (mol NiP)−1 in redox-mediator-free aqueous solution at pH 6 and 4.5, respectively. Both systems maintained a reduced photoactivity under UV-free solar light irradiation (λ>420 nm). PMID:25205168

  18. Photocatalytic Hydrogen Production using Polymeric Carbon Nitride with a Hydrogenase and a Bioinspired Synthetic Ni Catalyst**

    PubMed Central

    Caputo, Christine A; Gross, Manuela A; Lau, Vincent W; Cavazza, Christine; Lotsch, Bettina V; Reisner, Erwin

    2014-01-01

    Solar-light-driven H2 production in water with a [NiFeSe]-hydrogenase (H2ase) and a bioinspired synthetic nickel catalyst (NiP) in combination with a heptazine carbon nitride polymer, melon (CNx), is reported. The semibiological and purely synthetic systems show catalytic activity during solar light irradiation with turnover numbers (TONs) of more than 50 000 mol H2 (mol H2ase)−1 and approximately 155 mol H2 (mol NiP)−1 in redox-mediator-free aqueous solution at pH 6 and 4.5, respectively. Both systems maintained a reduced photoactivity under UV-free solar light irradiation (λ>420 nm). PMID:26300567

  19. Photocatalytic hydrogen production using polymeric carbon nitride with a hydrogenase and a bioinspired synthetic Ni catalyst.

    PubMed

    Caputo, Christine A; Gross, Manuela A; Lau, Vincent W; Cavazza, Christine; Lotsch, Bettina V; Reisner, Erwin

    2014-10-20

    Solar-light-driven H2 production in water with a [NiFeSe]-hydrogenase (H2ase) and a bioinspired synthetic nickel catalyst (NiP) in combination with a heptazine carbon nitride polymer, melon (CN(x)), is reported. The semibiological and purely synthetic systems show catalytic activity during solar light irradiation with turnover numbers (TONs) of more than 50,000 mol H2(mol H2ase)(-1) and approximately 155 mol H2 (mol NiP)(-1) in redox-mediator-free aqueous solution at pH 6 and 4.5, respectively. Both systems maintained a reduced photoactivity under UV-free solar light irradiation (λ>420 nm). PMID:25205168

  20. An NAD(P)H-Dependent Artificial Transfer Hydrogenase for Multienzymatic Cascades.

    PubMed

    Okamoto, Yasunori; Köhler, Valentin; Ward, Thomas R

    2016-05-11

    Enzymes typically depend on either NAD(P)H or FADH2 as hydride source for reduction purposes. In contrast, organometallic catalysts most often rely on isopropanol or formate to generate the reactive hydride moiety. Here we show that incorporation of a Cp*Ir cofactor possessing a biotin moiety and 4,7-dihydroxy-1,10-phenanthroline into streptavidin yields an NAD(P)H-dependent artificial transfer hydrogenase (ATHase). This ATHase (0.1 mol%) catalyzes imine reduction with 1 mM NADPH (2 mol%), which can be concurrently regenerated by a glucose dehydrogenase (GDH) using only 1.2 equiv of glucose. A four-enzyme cascade consisting of the ATHase, the GDH, a monoamine oxidase, and a catalase leads to the production of enantiopure amines. PMID:27100673

  1. Refinement of the nickel site structure in Desulfovibrio gigas hydrogenase using range-extended EXAFS spectroscopy.

    PubMed

    Gu, Weiwei; Jacquamet, L; Patil, D S; Wang, H X; Evans, D J; Smith, M C; Millar, M; Koch, S; Eichhorn, D M; Latimer, M; Cramer, S P

    2003-01-01

    We have reexamined the Ni EXAFS of oxidized, inactive (as-isolated) and H(2) reduced Desulfovibrio gigas hydrogenase. Better spatial resolution was achieved by analyzing the data over a 50% wider k-range than was previously available. A lower k(min) was obtained using the FEFF code for phase shifts and amplitudes. A higher k(max) was obtained by removing an interfering Cu signal from the raw spectra using multiple energy fluorescence detection. The larger k-range allowed us to better resolve the Ni-S bond lengths and to define more accurately the Ni-O and Ni-Fe bond lengths. We find that as-isolated, hydrogenase has two Ni-S bonds at approximately 2.2 A, but also 1-2 Ni-S bonds in the 2.35+/-0.05 A range. A Ni-O interaction is evident at 1.91 A. The as-isolated Ni-Fe distance cannot be unambiguously determined. Upon H(2) reduction, two short Ni-S bonds persist at approximately 2.2 A, but the remaining Ni-S bonds lengthen to 2.47+/-0.05 A. Good simulations are obtained with a Ni-Fe distance at 2.52 A, in agreement with crystal structures of the reduced enzyme. Although not evident in the crystal structures, an improvement in the fit is obtained by inclusion of one Ni-O interaction at 2.03 A. Implications of these distances for the spin-state of H(2) reduced H(2)ase are discussed. PMID:12538051

  2. Isolation and characterization of the small subunit of the uptake hydrogenase from the cyanobacterium Nostoc punctiforme.

    PubMed

    Raleiras, Patrícia; Kellers, Petra; Lindblad, Peter; Styring, Stenbjörn; Magnuson, Ann

    2013-06-21

    In nitrogen-fixing cyanobacteria, hydrogen evolution is associated with hydrogenases and nitrogenase, making these enzymes interesting targets for genetic engineering aimed at increased hydrogen production. Nostoc punctiforme ATCC 29133 is a filamentous cyanobacterium that expresses the uptake hydrogenase HupSL in heterocysts under nitrogen-fixing conditions. Little is known about the structural and biophysical properties of HupSL. The small subunit, HupS, has been postulated to contain three iron-sulfur clusters, but the details regarding their nature have been unclear due to unusual cluster binding motifs in the amino acid sequence. We now report the cloning and heterologous expression of Nostoc punctiforme HupS as a fusion protein, f-HupS. We have characterized the anaerobically purified protein by UV-visible and EPR spectroscopies. Our results show that f-HupS contains three iron-sulfur clusters. UV-visible absorption of f-HupS has bands ∼340 and 420 nm, typical for iron-sulfur clusters. The EPR spectrum of the oxidized f-HupS shows a narrow g = 2.023 resonance, characteristic of a low-spin (S = ½) [3Fe-4S] cluster. The reduced f-HupS presents complex EPR spectra with overlapping resonances centered on g = 1.94, g = 1.91, and g = 1.88, typical of low-spin (S = ½) [4Fe-4S] clusters. Analysis of the spectroscopic data allowed us to distinguish between two species attributable to two distinct [4Fe-4S] clusters, in addition to the [3Fe-4S] cluster. This indicates that f-HupS binds [4Fe-4S] clusters despite the presence of unusual coordinating amino acids. Furthermore, our expression and purification of what seems to be an intact HupS protein allows future studies on the significance of ligand nature on redox properties of the iron-sulfur clusters of HupS. PMID:23649626

  3. Isolation and Characterization of the Small Subunit of the Uptake Hydrogenase from the Cyanobacterium Nostoc punctiforme*

    PubMed Central

    Raleiras, Patrícia; Kellers, Petra; Lindblad, Peter; Styring, Stenbjörn; Magnuson, Ann

    2013-01-01

    In nitrogen-fixing cyanobacteria, hydrogen evolution is associated with hydrogenases and nitrogenase, making these enzymes interesting targets for genetic engineering aimed at increased hydrogen production. Nostoc punctiforme ATCC 29133 is a filamentous cyanobacterium that expresses the uptake hydrogenase HupSL in heterocysts under nitrogen-fixing conditions. Little is known about the structural and biophysical properties of HupSL. The small subunit, HupS, has been postulated to contain three iron-sulfur clusters, but the details regarding their nature have been unclear due to unusual cluster binding motifs in the amino acid sequence. We now report the cloning and heterologous expression of Nostoc punctiforme HupS as a fusion protein, f-HupS. We have characterized the anaerobically purified protein by UV-visible and EPR spectroscopies. Our results show that f-HupS contains three iron-sulfur clusters. UV-visible absorption of f-HupS has bands ∼340 and 420 nm, typical for iron-sulfur clusters. The EPR spectrum of the oxidized f-HupS shows a narrow g = 2.023 resonance, characteristic of a low-spin (S = ½) [3Fe-4S] cluster. The reduced f-HupS presents complex EPR spectra with overlapping resonances centered on g = 1.94, g = 1.91, and g = 1.88, typical of low-spin (S = ½) [4Fe-4S] clusters. Analysis of the spectroscopic data allowed us to distinguish between two species attributable to two distinct [4Fe-4S] clusters, in addition to the [3Fe-4S] cluster. This indicates that f-HupS binds [4Fe-4S] clusters despite the presence of unusual coordinating amino acids. Furthermore, our expression and purification of what seems to be an intact HupS protein allows future studies on the significance of ligand nature on redox properties of the iron-sulfur clusters of HupS. PMID:23649626

  4. Hydrogenase- and outer membrane c-type cytochrome-facilitated reduction of technetium(VII) by Shewanella oneidensis MR-1.

    PubMed

    Marshall, Matthew J; Plymale, Andrew E; Kennedy, David W; Shi, Liang; Wang, Zheming; Reed, Samantha B; Dohnalkova, Alice C; Simonson, Cody J; Liu, Chongxuan; Saffarini, Daad A; Romine, Margaret F; Zachara, John M; Beliaev, Alexander S; Fredrickson, James K

    2008-01-01

    Pertechnetate, (99)Tc(VII)O(4)(-), is a highly mobile radionuclide contaminant at US Department of Energy sites that can be enzymatically reduced by a range of anaerobic and facultatively anaerobic microorganisms, including Shewanella oneidensis MR-1, to poorly soluble Tc(IV)O(2(s)). In other microorganisms, Tc(VII)O(4)(-) reduction is generally considered to be catalysed by hydrogenase. Here, we provide evidence that although the NiFe hydrogenase of MR-1 was involved in the H(2)-driven reduction of Tc(VII)O(4)(-)[presumably through a direct coupling of H(2) oxidation and Tc(VII) reduction], the deletion of both hydrogenase genes did not completely eliminate the ability of MR-1 to reduce Tc(VII). With lactate as the electron donor, mutants lacking the outer membrane c-type cytochromes MtrC and OmcA or the proteins required for the maturation of c-type cytochromes were defective in reducing Tc(VII) to nanoparticulate TcO(2) x nH(2)O((s)) relative to MR-1 or a NiFe hydrogenase mutant. In addition, reduced MtrC and OmcA were oxidized by Tc(VII)O(4)(-), confirming the capacity for direct electron transfer from these OMCs to TcO(4)(-). c-Type cytochrome-catalysed Tc(VII) reduction could be a potentially important mechanism in environments where organic electron donor concentrations are sufficient to allow this reaction to dominate. PMID:17888007

  5. Cloning of hydrogenase genes and fine structure analysis of an operon essential for H2 metabolism in Escherichia coli.

    PubMed Central

    Sankar, P; Lee, J H; Shanmugam, K T

    1985-01-01

    Escherichia coli has two unlinked genes that code for hydrogenase synthesis and activity. The DNA fragments containing the two genes (hydA and hydB) were cloned into a plasmid vector, pBR322. The plasmids containing the hyd genes (pSE-290 and pSE-111 carrying the hydA and hydB genes, respectively) were used to genetically map a total of 51 mutant strains with defects in hydrogenase activity. A total of 37 mutants carried a mutation in the hydB gene, whereas the remaining 14 hyd were hydA. This complementation analysis also established the presence of two new genes, so far unidentified, one coding for formate dehydrogenase-2 (fdv) and another producing an electron transport protein (fhl) coupling formate dehydrogenase-2 to hydrogenase. Three of the four genes, hydB, fhl, and fdv, may constitute a single operon, and all three genes are carried by a 5.6-kilobase-pair chromosomal DNA insert in plasmid pSE-128. Plasmids carrying a part of this 5.6-kilobase-pair DNA (pSE-130) or fragments derived from this DNA in different orientations (pSE-126 and pSE-129) inhibited the production of active formate hydrogenlyase. This inhibition occurred even in a prototrophic E. coli, strain K-10, but only during an early induction period. These results, based on complementation analysis with cloned DNA fragments, show that both hydA and hydB genes are essential for the production of active hydrogenase. For the expression of active formate hydrogenlyase, two other gene products, fhl and fdv are also needed. All four genes map between 58 and 59 min in the E. coli chromosome. PMID:3884595

  6. Photosensitivity of the Ni-A state of [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F with visible light

    SciTech Connect

    Osuka, Hisao; Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma-shi, Nara 630-0192 ; Shomura, Yasuhito; Komori, Hirofumi; Shibata, Naoki; Nagao, Satoshi; Higuchi, Yoshiki; CREST, JST, Gobancho, Chiyoda-ku, Tokyo 102-0076 ; Hirota, Shun; CREST, JST, Gobancho, Chiyoda-ku, Tokyo 102-0076

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Ni-A state of [NiFe] hydrogenase showed light sensitivity. Black-Right-Pointing-Pointer New FT-IR bands were observed with light irradiation of the Ni-A state. Black-Right-Pointing-Pointer EPR g-values of the Ni-A state shifted upon light irradiation. Black-Right-Pointing-Pointer The light-induced state converted back to the Ni-A state under the dark condition. -- Abstract: [NiFe] hydrogenase catalyzes reversible oxidation of molecular hydrogen. Its active site is constructed of a hetero dinuclear Ni-Fe complex, and the oxidation state of the Ni ion changes according to the redox state of the enzyme. We found that the Ni-A state (an inactive unready, oxidized state) of [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F (DvMF) is light sensitive and forms a new state (Ni-AL) with irradiation of visible light. The Fourier transform infrared (FT-IR) bands at 1956, 2084 and 2094 cm{sup -1} of the Ni-A state shifted to 1971, 2086 and 2098 cm{sup -1} in the Ni-AL state. The g-values of g{sub x} = 2.30, g{sub y} = 2.23 and g{sub z} = 2.01 for the signals in the electron paramagnetic resonance (EPR) spectrum of the Ni-A state at room temperature varied for -0.009, +0.012 and +0.010, respectively, upon light irradiation. The light-induced Ni-AL state converted back immediately to the Ni-A state under dark condition at room temperature. These results show that the coordination structure of the Fe site of the Ni-A state of [NiFe] hydrogenase is perturbed significantly by light irradiation with relatively small coordination change at the Ni site.

  7. Stability and sulfur-reduction activity in non-aqueous phase liquids of the hydrogenase from the hyperthermophile Pyrococcus furiosus

    SciTech Connect

    Kim, C.; Adams, M.W.W.; Woodward, C.A.; Kaufman, E.N.

    1999-10-05

    Hydrogenase from the hyperthermophilic archaeon, Pyrococcus furiousus, catalyzes the reversible activation of H{sub 2} gas and the reduction of elemental sulfur (S{degree}) at 90 C and above. the pure enzyme, modified with polyethylene glycol (PEG), was soluble in toluene and benzene with t{sub {1/2}} values of more than 6 h at 25 C. At 100 C the PEG-modified enzyme was less stable in aqueous solution than the native (unmodified) enzyme, but they exhibited comparable H{sub 2} evolution, H{sub 2} oxidation, and S{degree} reduction activities at 80 C. The H{sub 2} evolution activity of the modified enzyme was twice that of the unmodified enzyme at 25 C. The PEG-modified enzyme did not catalyze S{degree} reduction (at 80 C) in pure toluene unless H{sub 2}O was added. The mechanism by which hydrogenase produces H{sub 2}S appears to involve H{sub 2}O as the proton source and H{sub 2} as the electron source. The inability of the modified hydrogenase to catalyze S{degree} reduction in a homogeneous nonaqueous phase complicates potential applications of this enzyme.

  8. Using Gas Chromatography/Isotope Ratio Mass Spectrometry to Determine the Fractionation Factor for H2 Production by Hydrogenases

    SciTech Connect

    Yang, Hui; Ghandi, H.; Shi, Liang; Kreuzer, Helen W.; Ostrom, Nathaniel; Hegg, Eric L.

    2012-01-15

    Hydrogenases catalyze the reversible formation of H2, and they are key enzymes in the biological cycling of H2. H isotopes should be a very useful tool in quantifying proton trafficking in biological H2 production processes, but there are several obstacles that have thus far limited the use of this tool. In this manuscript, we describe a new method that overcomes some of these barriers and is specifically designed to measure isotopic fractionation during enzyme-catalyzed H2 evolution. A key feature of this technique is that purified hydrogenases are employed, allowing precise control over the reaction conditions and therefore a high level of precision. A custom-designed high-throughput gas chromatography-isotope ratio mass spectrometer is employed to measure the isotope ratio of the H2. Using this method, we determined that the fractionation factor of H2 production by the [NiFe]-hydrogenase from Desulfivibrio fructosovran is 0.27. This result indicates that, as expected, protons are highly favored over deuterons during H2 evolution. Potential applications of this new method are discussed.

  9. In vivo and in vitro nickel-dependent processing of the [NiFe] hydrogenase in Azotobacter vinelandii.

    PubMed Central

    Menon, A L; Robson, R L

    1994-01-01

    H2 oxidation in Azotobacter vinelandii is catalyzed by a membrane-bound, alpha beta dimeric [NiFe] hydrogenase. Maturation of the enzyme involves cleavage of a putative N-terminal signal sequence in the beta subunit and removal of 15 amino acids from the C terminus of the alpha subunit. Cells limited for nickel exhibited low hydrogenase activities and contained an apparently large form of the alpha subunit. Addition of nickel to such cells increased hydrogenase activities fivefold over 2 h. The increase in the first hour did not require transcription and translation and correlated with processing of the large form of the alpha subunit (pre-alpha) to the small form (alpha) resembling the alpha subunit from the purified enzyme. In vivo, pre-alpha appeared soluble whereas the majority of alpha was membrane bound. Processing of pre-alpha to alpha was reproduced in vitro in membrane-depleted extracts of nickel-limited cells. Processing specifically required the addition of Ni2+, whereas Co2+, Cu2+, Ca2+, Fe2+, Mn2+, and Zn2+ were ineffective. However, Zn2+, Co2+, and Cu2+ inhibited nickel-dependent processing. Mg-ATP and Mg-GTP stimulated processing, whereas anaerobic conditions and/or the addition of dithiothreitol and sodium dithionite was unnecessary. Processing was not inhibited by the protease inhibitors phenylmethylsulfonyl fluoride, E64, and pepstatin. Images PMID:8288521

  10. Genetic Analysis of the Hox Hydrogenase in the Cyanobacterium Synechocystis sp. PCC 6803 Reveals Subunit Roles in Association, Assembly, Maturation, and Function*

    PubMed Central

    Eckert, Carrie; Boehm, Marko; Carrieri, Damian; Yu, Jianping; Dubini, Alexandra; Nixon, Peter J.; Maness, Pin-Ching

    2012-01-01

    Hydrogenases are metalloenzymes that catalyze 2H+ + 2e− ↔ H2. A multisubunit, bidirectional [NiFe]-hydrogenase has been identified and characterized in a number of bacteria, including cyanobacteria, where it is hypothesized to function as an electron valve, balancing reductant in the cell. In cyanobacteria, this Hox hydrogenase consists of five proteins in two functional moieties: a hydrogenase moiety (HoxYH) with homology to heterodimeric [NiFe]-hydrogenases and a diaphorase moiety (HoxEFU) with homology to NuoEFG of respiratory Complex I, linking NAD(P)H ↔ NAD(P)+ as a source/sink for electrons. Here, we present an extensive study of Hox hydrogenase in the cyanobacterium Synechocystis sp. PCC 6803. We identify the presence of HoxEFUYH, HoxFUYH, HoxEFU, HoxFU, and HoxYH subcomplexes as well as association of the immature, unprocessed large subunit (HoxH) with other Hox subunits and unidentified factors, providing a basis for understanding Hox maturation and assembly. The analysis of mutants containing individual and combined hox gene deletions in a common parental strain reveals apparent alterations in subunit abundance and highlights an essential role for HoxF and HoxU in complex/subcomplex association. In addition, analysis of individual and combined hox mutant phenotypes in a single strain background provides a clear view of the function of each subunit in hydrogenase activity and presents evidence that its physiological function is more complicated than previously reported, with no outward defects apparent in growth or photosynthesis under various growth conditions. PMID:23139416

  11. Purification and molecular characterization of the H2 uptake membrane-bound NiFe-hydrogenase from the carboxidotrophic bacterium Oligotropha carboxidovorans.

    PubMed Central

    Santiago, B; Meyer, O

    1997-01-01

    The membrane-bound hydrogenase of Oligotropha carboxidovorans was solubilized with n-dodecyl-beta-D-maltoside and purified 28-fold with a yield of 29% and a specific activity of 173 to 178 micromol of H2 x min(-1) x mg(-1). It is the first hydrogenase studied in a carboxidotrophic bacterium. The enzyme acts on artificial electron-accepting dyes, such as methylene blue, but is ineffective with pyridine nucleotides or other soluble physiological electron acceptors. Hydrogenase of O. carboxidovorans belongs to class I of hydrogenases and is a heterodimeric 101,692-Da NiFe-protein composed of the polypeptides HoxL and HoxS. Molecular cloning data revealed, that HoxL comprises 604 amino acid residues and has a molecular mass of 67,163 Da. Pre-HoxS comprises 360 amino acid residues and is synthesized as a precursor protein which is cleaved after alanine at position 45, thus producing a mature HoxS of 33,767 Da. The leader sequence corresponds to the signal peptide of small subunits of hydrogenases. The hydropathy plots of HoxL and HoxS were indicative for the absence of transmembranous helices. HoxZ has four transmembranous helices and is considered the potential membrane anchor of hydrogenase in O. carboxidovorans. Hydrogenase genes show the transcriptional order 5' hoxV --> hoxS --> hoxL --> hoxZ 3'. The hox gene cluster as well as the clustered CO dehydrogenase (cox) and Calvin cycle (cbb) genes are arranged within a 30-kb DNA segment of the 128-kb megaplasmid pHCG3 of O. carboxidovorans. PMID:9324252

  12. Genetic analysis of the Hox hydrogenase in the cyanobacterium Synechocystis sp. PCC 6803 reveals subunit roles in association, assembly, maturation, and function.

    PubMed

    Eckert, Carrie; Boehm, Marko; Carrieri, Damian; Yu, Jianping; Dubini, Alexandra; Nixon, Peter J; Maness, Pin-Ching

    2012-12-21

    Hydrogenases are metalloenzymes that catalyze 2H(+) + 2e(-) ↔ H(2). A multisubunit, bidirectional [NiFe]-hydrogenase has been identified and characterized in a number of bacteria, including cyanobacteria, where it is hypothesized to function as an electron valve, balancing reductant in the cell. In cyanobacteria, this Hox hydrogenase consists of five proteins in two functional moieties: a hydrogenase moiety (HoxYH) with homology to heterodimeric [NiFe]-hydrogenases and a diaphorase moiety (HoxEFU) with homology to NuoEFG of respiratory Complex I, linking NAD(P)H ↔ NAD(P)(+) as a source/sink for electrons. Here, we present an extensive study of Hox hydrogenase in the cyanobacterium Synechocystis sp. PCC 6803. We identify the presence of HoxEFUYH, HoxFUYH, HoxEFU, HoxFU, and HoxYH subcomplexes as well as association of the immature, unprocessed large subunit (HoxH) with other Hox subunits and unidentified factors, providing a basis for understanding Hox maturation and assembly. The analysis of mutants containing individual and combined hox gene deletions in a common parental strain reveals apparent alterations in subunit abundance and highlights an essential role for HoxF and HoxU in complex/subcomplex association. In addition, analysis of individual and combined hox mutant phenotypes in a single strain background provides a clear view of the function of each subunit in hydrogenase activity and presents evidence that its physiological function is more complicated than previously reported, with no outward defects apparent in growth or photosynthesis under various growth conditions. PMID:23139416

  13. Initial cloning and sequencing of hydHG, an operon homologous to ntrBC and regulating the labile hydrogenase activity in Escherichia coli K-12.

    PubMed Central

    Stoker, K; Reijnders, W N; Oltmann, L F; Stouthamer, A H

    1989-01-01

    To isolate genes from Escherichia coli which regulate the labile hydrogenase activity, a plasmid library was used to transform hydL mutants lacking the labile hydrogenase. A single type of gene, designated hydG, was isolated. This gene also partially restored the hydrogenase activity in hydF mutants (which are defective in all hydrogenase isoenzymes), although the low hydrogenase 1 and 2 levels were not induced. Therefore, hydG apparently regulates, specifically, the labile hydrogenase activity. Restoration of this latter activity in hydF mutants was accompanied by a proportional increase of the H2 uptake activity, suggesting a functional relationship. H2:fumarate oxidoreductase activity was not restored in complemented hydL mutants. These latter strains may therefore lack, in addition to the labile hydrogenase, a second component (provisionally designated component R), possibly an electron carrier coupling H2 oxidation to the anerobic respiratory chain. Sequence analysis showed an open reading frame of 1,314 base pairs for hydG. It was preceded by a ribosome-binding site but apparently lacked a promoter. Minicell experiments revealed a single polypeptide of approximately 50 kilodaltons. Comparison of the predicted amino acid sequence with a protein sequence data base revealed strong homology to NtrC from Klebsiella pneumoniae, a DNA-binding transcriptional activator. The 411 base pairs upstream from pHG40 contained a second open reading frame overlapping hydG by four bases. The deduced amino acid sequence showed considerable homology with the C-terminal part of NtrB. This sequence was therefore assumed to be part of a second gene, encoding the NtrB-like component, and was designated hydH. The labile hydrogenase activity in E. coli is apparently regulated by a multicomponent system analogous to the NtrB-NtrC system. This conclusion is in agreement with the results of Birkmann et al. (A. Birkmann, R. G. Sawers, and A. Böck, Mol. Gen. Genet. 210:535-542, 1987), who demonstrated ntrA dependence for the labile hydrogenase activity. Images PMID:2666400

  14. Molecular Dynamics Study of the Proposed Proton Transport Pathways in [FeFe]-Hydrogenase

    SciTech Connect

    Ginovska-Pangovska, Bojana; Ho, Ming-Hsun; Linehan, John C.; Cheng, Yuhui; Dupuis, Michel; Raugei, Simone; Shaw, Wendy J.

    2014-01-15

    Possible proton channels in Clostridium pasteurianum [FeFe]-hydrogenase were investigated with molecular dynamics simulations. This study was undertaken to discern proposed channels, compare their properties, evaluate the functional channel, and to provide insight into the features of an active proton channel. Our simulations suggest that protons are not transported through water wires. Instead, a five-residue motif (E282, S319, E279, HOH, C299) was found to be the likely channel, consistent with experimental observations. This channel connects the surface of the enzyme and the di-thiomethylamine bridge of the catalytic H-cluster, permitting the transport of protons. The channel was found to have a persistent hydrogen bonded core (residues E279 to S319), with less persistent hydrogen bonds at the ends of the channel. The hydrogen bond occupancy in this network was found to be sensitive to the protonation state of the residues in the channel, with different protonation states enhancing or stabilizing hydrogen bonding in different regions of the network. Single site mutations to non-hydrogen bonding residues break the hydrogen bonding network at that residue, consistent with experimental observations showing catalyst inactivation. In many cases, these mutations alter the hydrogen bonding in other regions of the channel which may be equally important in catalytic failure. A correlation between the protein dynamics near the proton channel and the redox partner binding regions was also found as a function of protonation state. The likely mechanism of proton movement in [FeFe]-hydrogenases is discussed based on the structural analysis presented here. This work was funded by the DOE Office of Science Early Career Research Program through the Office of Basic Energy Sciences. Computational resources were provided at W. R. Wiley Environmental Molecular Science Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy’s Office of Biological and Environmental Research located at Pacific Northwest National Laboratory, and a portion of the research was performed using PNNL Institutional Computing at Pacific Northwest National Laboratory. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.

  15. H2-driven biotransformation of n-octane to 1-octanol by a recombinant Pseudomonas putida strain co-synthesizing an O2-tolerant hydrogenase and a P450 monooxygenase.

    PubMed

    Lonsdale, Thomas H; Lauterbach, Lars; Honda Malca, Sumire; Nestl, Bettina M; Hauer, Bernhard; Lenz, Oliver

    2015-11-21

    An in vivo biotransformation system is presented that affords the hydroxylation of n-octane to 1-octanol on the basis of NADH-dependent CYP153A monooxygenase and NAD(+)-reducing hydrogenase heterologously synthesized in a bacterial host. The hydrogenase sustains H2-driven NADH cofactor regeneration even in the presence of O2, the co-substrate of monooxygenase. PMID:26394141

  16. Genetic diversity of Desulfovibrio spp. in environmental samples analyzed by denaturing gradient gel electrophoresis of [NiFe] hydrogenase gene fragments.

    PubMed Central

    Wawer, C; Muyzer, G

    1995-01-01

    The genetic diversity of Desulfovibrio species in environmental samples was determined by denaturing gradient gel electrophoresis (DGGE) of PCR-amplified [NiFe] hydrogenase gene fragments. Five different PCR primers were designed after comparative analysis of [NiFe] hydrogenase gene sequences from three Desulfovibrio species. These primers were tested in different combinations on the genomic DNAs of a variety of hydrogenase-containing and hydrogenase-lacking bacteria. One primer pair was found to be specific for Desulfovibrio species only, while the others gave positive results with other bacteria also. By using this specific primer pair, we were able to amplify the [NiFe] hydrogenase genes of DNAs isolated from environmental samples and to detect the presence of Desulfovibrio species in these samples. However, only after DGGE analysis of these PCR products could the number of different Desulfovibrio species within the samples be determined. DGGE analysis of PCR products from different bioreactors demonstrated up to two bands, while at least five distinguishable bands were detected in a microbial mat sample. Because these bands most likely represent as many Desulfovibrio species present in these samples, we conclude that the genetic diversity of Desulfovibrio species in the natural microbial mat is far greater than that in the experimental bioreactors. PMID:7793940

  17. Crystal structure of the O(2)-tolerant membrane-bound hydrogenase 1 from Escherichia coli in complex with its cognate cytochrome b.

    PubMed

    Volbeda, Anne; Darnault, Claudine; Parkin, Alison; Sargent, Frank; Armstrong, Fraser A; Fontecilla-Camps, Juan C

    2013-01-01

    We report the 3.3 Å resolution structure of dimeric membrane-bound O(2)-tolerant hydrogenase 1 from Escherichia coli in a 2:1 complex with its physiological partner, cytochrome b. From the short distance between distal [Fe(4)S(4)] clusters, we predict rapid transfer of H(2)-derived electrons between hydrogenase heterodimers. Thus, under low O(2) levels, a functional active site in one heterodimer can reductively reactivate its O(2)-exposed counterpart in the other. Hydrogenase 1 is maximally expressed during fermentation, when electron acceptors are scarce. These conditions are achieved in the lower part of the host's intestinal tract when E. coli is soon to be excreted and undergo an anaerobic-to-aerobic metabolic transition. The apparent paradox of having an O(2)-tolerant hydrogenase expressed under anoxia makes sense if the enzyme functions to keep intracellular O(2) levels low by reducing it to water, protecting O(2)-sensitive enzymes during the transition. Cytochrome b's main role may be anchoring the hydrogenase to the membrane. PMID:23260654

  18. A versatile and sensitive tritium-based radioassay for measuring hydrogenase activity in aquatic sediments.

    PubMed

    Soffientino, Bruno; Spivack, Arthur J; Smith, David C; Roggenstein, Edward B; D'Hondt, Steven

    2006-07-01

    We present a method for the measurement of hydrogenase (H(2)ase) activity in aquatic sediments. The assay is based on the H(2)ase-mediated isotopic exchange between dissolved molecular hydrogen (H(2)) and water. A slurry of sediment material is incubated with a tritiated hydrogen (HT) headspace in a glass syringe on a rotary shaker. The method includes a procedure for preparing HT from radiolabeled sodium borohydride, which is a useful alternative to purchasing HT directly. A method for measuring HT specific activity based on liquid scintillation counting is also presented. Validation tests were run using live and frozen cultures of Clostridium pasteurianum and Desulfovibrio vulgaris, and freshly collected marine sediments. Adherence to Michaelis-Menten kinetics was demonstrated. An interassay coefficient of variation of 15% was determined using frozen C. pasteurianum cultures as reference material. Serial dilutions of cultures and sediments showed that measured H(2)ase activity scales with cell concentration, and indicate that the method can detect C. pasteurianum cell concentrations of between 300 and 3000 cells/ml. This technique allows measurement of H(2)ase activity in a variety of environmental samples, and will be particularly useful in the study of deep marine sediments with low microbial activity. PMID:16356571

  19. Hydrogenase-Mediated Activities in Isolated Chloroplasts of Chlamydomonas reinhardii1

    PubMed Central

    Maione, Theodore E.; Gibbs, Martin

    1986-01-01

    Isolated intact chloroplasts of Chlamydomonas reinhardii were found to catalyze photoreduction of CO2 in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea when adapted under an atmosphere of H2 demonstrating the association of a hydrogenase and anaerobic adaptation system with these plastids. The specific activity of photoreduction was approximately one third that detected in cells and protoplasts. Photoreduction was found to have a lower osmoticum optimum relative to aerobically maintained chloroplasts (50 millimolar versus 120 millimolar mannitol). 3-Phosphoglycerate (3-PGA) stimulated photoreduction up to a peak at 0.25 millimolar beyond which inhibition was observed. In the absence of 3-PGA, inorganic phosphate had no effect on photoreduction but in the presence of 3-PGA, inorganic phosphate also stimulated the reaction. Carbonyl cyanide-p-trifluoromethoxyphenylhydrazone and 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone inhibited photoreduction but inhibition by the former could be partially overcome by exogenously added ATP. The intact plastid can also catalyze photoevolution of H2 while lysed chloroplast extracts catalyzed the reduction of methyl viologen by H2. Both reactions occurred at rates approximately one-third of those found in cells. The oxyhydrogen reaction in the presence or absence of CO2 was not detected. PMID:16664626

  20. Organization of the genes encoding [Fe] hydrogenase in Desulfovibrio vulgaris subsp. oxamicus Monticello.

    PubMed Central

    Voordouw, G; Strang, J D; Wilson, F R

    1989-01-01

    The genes encoding the periplasmic [Fe] hydrogenase from Desulfovibrio vulgaris subsp. oxamicus Monticello were cloned by exploiting their homology with the hydAB genes from D. vulgaris subsp. vulgaris Hildenborough, in which this enzyme is present as a heterologous dimer of alpha and beta subunits. Nucleotide sequencing showed that the enzyme is encoded by an operon in which the gene for the 46-kilodalton (kDa) alpha subunit precedes that of the 13.5-kDa beta subunit, exactly as in the Hildenborough strain. The pairs of hydA and hydB genes are highly homologous; both alpha subunits (420 amino acid residues) share 79% sequence identity, while the unprocessed beta subunits (124 and 123 amino acid residues, respectively) share 71% sequence identity. In contrast, there appears to be no sequence homology outside these coding regions, with the exception of a possible promoter element, which was found approximately 90 base pairs upstream from the translational start of the hydA gene. The recently discovered hydC gene, which may code for a 65.8-kDa fusion protein (gamma) of the alpha and beta subunits and is present immediately downstream from the hydAB genes in the Hildenborough strain, was found to be absent from the Monticello strain. The implication of this result for the possible function of the hydC gene product in Desulfovibrio species is discussed. Images PMID:2661538

  1. Self-assembled biomimetic [2Fe2S]-hydrogenase-based photocatalyst for molecular hydrogen evolution

    PubMed Central

    Kluwer, A. M.; Kapre, R.; Hartl, F.; Lutz, M.; Spek, A. L.; Brouwer, A. M.; van Leeuwen, P. W. N. M.; Reek, J. N. H.

    2009-01-01

    The large-scale production of clean energy is one of the major challenges society is currently facing. Molecular hydrogen is envisaged as a key green fuel for the future, but it becomes a sustainable alternative for classical fuels only if it is also produced in a clean fashion. Here, we report a supramolecular biomimetic approach to form a catalyst that produces molecular hydrogen using light as the energy source. It is composed of an assembly of chromophores to a bis(thiolate)-bridged diiron ([2Fe2S]) based hydrogenase catalyst. The supramolecular building block approach introduced in this article enabled the easy formation of a series of complexes, which are all thoroughly characterized, revealing that the photoactivity of the catalyst assembly strongly depends on its nature. The active species, formed from different complexes, appears to be the [Fe2(μ-pdt)(CO)4{PPh2(4-py)}2] (3) with 2 different types of porphyrins (5a and 5b) coordinated to it. The modular supramolecular approach was important in this study as with a limited number of building blocks several different complexes were generated. PMID:19164541

  2. Hydrogen production by the naked active site of the di-iron hydrogenases in water.

    PubMed

    Zipoli, Federico; Car, Roberto; Cohen, Morrel H; Selloni, Annabella

    2009-10-01

    We explored the reactivity of the active center of the [FeFe]-hydrogenases detached from the enzyme and immersed in acidified water by first-principles Car-Parrinello molecular-dynamics simulations. We focused on the identification of the structures that are stable and metastable in acidified water and on their activity for hydrogen production. Our calculations revealed that the naked active center could be an efficient catalyst provided that electrons are transferred to the cluster. We found that both bridging and terminal isomers are present at equilibrium and that the bridging configuration is essential for efficient hydrogen production. The formation of the hydrogen molecule occurs via sequential protonations of the distal iron and of the N-atom of the S-CH(2)-NH-CH(2)-S chelating group. H(2) desorption does not involve a significant energy barrier, making the process very efficient at room temperature. We established that the bottleneck in the reaction is the direct proton transfer from water to the vacant site of the distal iron. Moreover, we found that even if the terminal isomer is present at the equilibrium, its strong local hydrophobicity prevents poisoning of the cluster. PMID:19737003

  3. In silico evaluation of proposed biosynthetic pathways for the unique dithiolate ligand of the H-cluster of [FeFe]-hydrogenase.

    PubMed

    Grigoropoulos, Alexios; Szilagyi, Robert K

    2011-11-30

    The biosynthesis of the active site of the [FeFe]-hydrogenases (H-cluster) remains a tantalizing puzzle due to its unprecedented and complex ligand environment. It contains a [2Fe] cluster ([2Fe](H)) bearing cyanide and carbon monoxide ligands attached to low-valence Fe ions and an abiological dithiolate ligand (SCH(2)XCH(2)S)(2-) that bridges the two iron centers. Various experimentally testable hypotheses have already been put forward regarding the precursor molecule and the biosynthetic mechanism that leads to the formation of the dithiolate ligand. In this work, we report a density functional theory-based theoretical evaluation of these hypotheses. We find preference for a mechanistically simple and energetically favorable pathway that includes known radical-SAM (S-adenosylmethionine) catalyzed reactions. We modeled this pathway using a long alkyl chain precursor molecule that leads to the formation of pronanadithiolate (X = CH(2)). However, the same pathway can be readily adopted for the biosynthesis of the dithiomethylamine (X = NH) or the dithiomethylether (X = O) analog, provided that the proper precursor molecule is available. PMID:21953555

  4. Infrared Spectroscopy During Electrocatalytic Turnover Reveals the Ni-L Active Site State During H2 Oxidation by a NiFe Hydrogenase**

    PubMed Central

    Hidalgo, Ricardo; Ash, Philip A; Healy, Adam J; Vincent, Kylie A

    2015-01-01

    A novel in situ IR spectroscopic approach is demonstrated for the characterization of hydrogenase during catalytic turnover. E. coli hydrogenase 1 (Hyd-1) is adsorbed on a high surface-area carbon electrode and subjected to the same electrochemical control and efficient supply of substrate as in protein film electrochemistry during spectral acquisition. The spectra reveal that the active site state known as Ni-L, observed in other NiFe hydrogenases only under illumination or at cryogenic temperatures, can be generated reversibly in the dark at ambient temperature under both turnover and non-turnover conditions. The observation that Ni-L is present at all potentials during turnover under H2 suggests that the final steps in the catalytic cycle of H2 oxidation by Hyd-1 involve sequential proton and electron transfer via Ni-L. A broadly applicable IR spectroscopic technique is presented for addressing electrode-adsorbed redox enzymes under fast catalytic turnover. PMID:25925315

  5. Involvement of the GroE chaperonins in the nickel-dependent anaerobic biosynthesis of NiFe-hydrogenases of Escherichia coli.

    PubMed Central

    Rodrigue, A; Batia, N; Müller, M; Fayet, O; Böhm, R; Mandrand-Berthelot, M A; Wu, L F

    1996-01-01

    We analyzed the involvement of chaperonins GroES and GroEL in the biosynthesis of the three hydrogenase isoenzymes, HYD1, HYD2, and HYD3, of Escherichia coli. These hydrogenases are NiFe-containing, membrane-bound enzymes composed of small and large subunits, each of which is proteolytically processed during biosynthesis. Total hydrogenase activity was found to be reduced by up to 60% in groES and groEL thermosensitive mutant strains. This effect was specific because it was not seen for another oligomeric, membrane-bound metalloenzyme, i.e., nitrate reductase. Analyses of the single hydrogenase isoenzymes revealed that a temperature shift during the growth of groE mutants led to an absence of HYD1 activity and to an accumulation of the precursor of the large subunit of HYD3, whereas only marginal effects on the processing of HYD2 and its activity were observed under these conditions. A decrease in total hydrogenase activity, together with accumulation of the precursors of the large subunits of HYD2 and HYD3, was also found to occur in a nickel uptake mutant (nik). The phenotype of this nik mutant was suppressed by supplementation of the growth medium with nickel ions. On the contrary, Ni2+ no longer restored hydrogenase activity and processing of the large subunit of HYD3 when the nik and groE mutations were combined in one strain. This finding suggests the involvement of these chaperonins in the biosynthesis of a functional HYD3 isoenzyme via the incorporation of nickel. In agreement with these in vivo results, we demonstrated a specific binding of GroEL to the precursor of the large subunit of HYD3 in vitro. Collectively, our results are consistent with chaperonin-dependent incorporation of nickel into the precursor of the large subunit of HYD3 as a prerequisite of its proteolytic processing and the acquisition of enzymatic activity. PMID:8755872

  6. Cloning and sequencing of the genes encoding the large and small subunits of the periplasmic (NiFeSe) hydrogenase of Desulfovibrio baculatus.

    PubMed Central

    Menon, N K; Peck, H D; Gall, J L; Przybyla, A E

    1987-01-01

    The genes coding for the large and small subunits of the periplasmic hydrogenase from Desulfovibrio baculatus have been cloned and sequenced. The genes are arranged in an operon with the small subunit gene preceding the large subunit gene. The small subunit gene codes for a 32 amino acid leader sequence supporting the periplasmic localization of the protein, however no ferredoxin-like or other characteristic iron-sulfur coordination sites were observed. The periplasmic hydrogenases from D. baculatus (an NiFeSe protein) and D. vulgaris (an Fe protein) exhibit no homology suggesting that they are structurally different, unrelated entities. Images PMID:3316183

  7. Fermentation enzymes of Giardia intestinalis, pyruvate:ferredoxin oxidoreductase and hydrogenase, do not localize to its mitosomes.

    PubMed

    Emelyanov, Victor V; Goldberg, Alina V

    2011-06-01

    It is becoming increasingly clear that the so-called remnant organelles of microaerophilic unicellular eukaryotes, hydrogenosomes and mitosomes, are significantly reduced versions of mitochondria. They normally lack most of the classic mitochondrial attributes, such as an electron transport chain and a genome. While hydrogenosomes generate energy by substrate-level phosphorylation along a hydrogen-producing fermentation pathway, involving iron-sulfur-cluster-containing enzymes pyruvate : ferredoxin oxidoreductase (PFO) and hydrogenase, whether mitosomes participate in ATP synthesis is currently unknown. Both enzymes were recently described in the mitosome-bearing diplomonad Giardia intestinalis, also shown to produce molecular hydrogen. As published data show that giardial PFO is a membrane-associated enzyme, it could be suspected that PFO and hydrogenase operate in the mitosome, in which case the latter would by definition be a hydrogenosome. Using antibodies against recombinant enzymes of G. intestinalis, it was shown by Western blot analysis of subcellular fractions and by confocal immunofluorescence microscopy of whole cells that neither PFO nor hydrogenase localize to the mitosome, but are mostly found in the cytosol. The giardial mitosome is known to play a role in iron-sulfur cluster assembly and to contain chaperones Cpn60 and mtHsp70, which assist, in particular, in protein import. In mitochondria, transmembrane potential is essential for this complex process. Using MitoTracker Red and organelle-specific antibodies, transmembrane potential could be detected in the Trichomonas vaginalis hydrogenosome, but not in the G. intestinalis mitosome. These results provide further evidence that the Giardia mitosome is one of the most highly reduced mitochondrial homologues. PMID:21349979

  8. Overproduction of the membrane-bound [NiFe]-hydrogenase in Thermococcus kodakarensis and its effect on hydrogen production

    PubMed Central

    Kanai, Tamotsu; Simons, Jan-Robert; Tsukamoto, Ryohei; Nakajima, Akihito; Omori, Yoshiyuki; Matsuoka, Ryoji; Beppu, Haruki; Imanaka, Tadayuki; Atomi, Haruyuki

    2015-01-01

    The hyperthermophilic archaeon Thermococcus kodakarensis can utilize sugars or pyruvate for growth. In the absence of elemental sulfur, the electrons via oxidation of these substrates are accepted by protons, generating molecular hydrogen (H2). The hydrogenase responsible for this reaction is a membrane-bound [NiFe]-hydrogenase (Mbh). In this study, we have examined several possibilities to increase the protein levels of Mbh in T. kodakarensis by genetic engineering. Highest levels of intracellular Mbh levels were achieved when the promoter of the entire mbh operon (TK2080-TK2093) was exchanged to a strong constitutive promoter from the glutamate dehydrogenase gene (TK1431) (strain MHG1). When MHG1 was cultivated under continuous culture conditions using pyruvate-based medium, a nearly 25% higher specific hydrogen production rate (SHPR) of 35.3 mmol H2 g-dcw−1 h−1 was observed at a dilution rate of 0.31 h−1. We also combined mbh overexpression using an even stronger constitutive promoter from the cell surface glycoprotein gene (TK0895) with disruption of the genes encoding the cytosolic hydrogenase (Hyh) and an alanine aminotransferase (AlaAT), both of which are involved in hydrogen consumption (strain MAH1). At a dilution rate of 0.30 h−1, the SHPR was 36.2 mmol H2 g-dcw−1 h−1, corresponding to a 28% increase compared to that of the host T. kodakarensis strain. Increasing the dilution rate to 0.83 h−1 or 1.07 h−1 resulted in a SHPR of 120 mmol H2 g-dcw−1 h−1, which is one of the highest production rates observed in microbial fermentation. PMID:26379632

  9. Fractionation of sulfur isotopes by Desulfovibrio vulgaris mutants lacking hydrogenases or type I tetraheme cytochrome c3

    PubMed Central

    Sim, Min Sub; Wang, David T.; Zane, Grant M.; Wall, Judy D.; Bosak, Tanja; Ono, Shuhei

    2013-01-01

    The sulfur isotope effect produced by sulfate reducing microbes is commonly used to trace biogeochemical cycles of sulfur and carbon in aquatic and sedimentary environments. To test the contribution of intracellular coupling between carbon and sulfur metabolisms to the overall magnitude of the sulfur isotope effect, this study compared sulfur isotope fractionations by mutants of Desulfovibrio vulgaris Hildenborough. We tested mutant strains lacking one or two periplasmic (Hyd, Hyn-1, Hyn-2, and Hys) or cytoplasmic hydrogenases (Ech and CooL), and a mutant lacking type I tetraheme cytochrome (TpI-c3). In batch culture, wild-type D. vulgaris and its hydrogenase mutants had comparable growth kinetics and produced the same sulfur isotope effects. This is consistent with the reported redundancy of hydrogenases in D. vulgaris. However, the TpI-c3 mutant (?cycA) exhibited slower growth and sulfate reduction rates in batch culture, and produced more H2 and an approximately 50% larger sulfur isotope effect, compared to the wild type. The magnitude of sulfur isotope fractionation in the CycA deletion strain, thus, increased due to the disrupted coupling of the carbon oxidation and sulfate reduction pathways. In continuous culture, wild-type D. vulgaris and the CycA mutant produced similar sulfur isotope effects, underscoring the influence of environmental conditions on the relative contribution of hydrogen cycling to the electron transport. The large sulfur isotope effects associated with the non-ideal stoichiometry of sulfate reduction in this study imply that simultaneous fermentation and sulfate reduction may be responsible for some of the large naturally-occurring sulfur isotope effects. Overall, mutant strains provide a powerful tool to test the effect of specific redox proteins and pathways on sulfur isotope fractionation. PMID:23805134

  10. Rubredoxin-related Maturation Factor Guarantees Metal Cofactor Integrity during Aerobic Biosynthesis of Membrane-bound [NiFe] Hydrogenase*

    PubMed Central

    Fritsch, Johannes; Siebert, Elisabeth; Priebe, Jacqueline; Zebger, Ingo; Lendzian, Friedhelm; Teutloff, Christian; Friedrich, Bärbel; Lenz, Oliver

    2014-01-01

    The membrane-bound [NiFe] hydrogenase (MBH) supports growth of Ralstonia eutropha H16 with H2 as the sole energy source. The enzyme undergoes a complex biosynthesis process that proceeds during cell growth even at ambient O2 levels and involves 14 specific maturation proteins. One of these is a rubredoxin-like protein, which is essential for biosynthesis of active MBH at high oxygen concentrations but dispensable under microaerobic growth conditions. To obtain insights into the function of HoxR, we investigated the MBH protein purified from the cytoplasmic membrane of hoxR mutant cells. Compared with wild-type MBH, the mutant enzyme displayed severely decreased hydrogenase activity. Electron paramagnetic resonance and infrared spectroscopic analyses revealed features resembling those of O2-sensitive [NiFe] hydrogenases and/or oxidatively damaged protein. The catalytic center resided partially in an inactive Niu-A-like state, and the electron transfer chain consisting of three different Fe-S clusters showed marked alterations compared with wild-type enzyme. Purification of HoxR protein from its original host, R. eutropha, revealed only low protein amounts. Therefore, recombinant HoxR protein was isolated from Escherichia coli. Unlike common rubredoxins, the HoxR protein was colorless, rather unstable, and essentially metal-free. Conversion of the atypical iron-binding motif into a canonical one through genetic engineering led to a stable reddish rubredoxin. Remarkably, the modified HoxR protein did not support MBH-dependent growth at high O2. Analysis of MBH-associated protein complexes points toward a specific interaction of HoxR with the Fe-S cluster-bearing small subunit. This supports the previously made notion that HoxR avoids oxidative damage of the metal centers of the MBH, in particular the unprecedented Cys6[4Fe-3S] cluster. PMID:24448806

  11. Proton management as a design principle for hydrogenase-inspired catalysts

    SciTech Connect

    Small, Yolanda A.; DuBois, Daniel L.; Fujita, Etsuko; Muckerman, J. T.

    2011-06-01

    The properties of the hydrogenase-inspired [Ni(PNP)2]2+ (PNP ¼ Et2PCH2NMeCH2PEt2) catalyst for homogeneous hydrogen oxidation in acetonitrile solution are explored from a theoretical perspective for hydrogen production. The defining characteristic of this catalyst is the presence of pendent bases in the second coordination sphere that function as proton relays between the solution and the metal center. DFT calculations of the possible intermediates along proposed catalytic pathways are carried out and used to construct coupled Pourbaix diagrams of the redox processes and free-energy profiles along the reaction pathways. Analysis of the coupled Pourbaix diagrams reveals insights into the intermediate species and the mechanisms favored at different pH values of the solution. Consideration of the acid-base behavior of the metal hydride and H2 adduct species imposes additional constraints on the reaction mechanism, which can involve intramolecular as well as intermolecular proton-coupled electron-transfer steps. The efficacy of the catalyst is shown to depend critically on the pKa values of these potential intermediates, as they control both the species in solution at a given pH and the freeenergy profile of reaction pathways. Optimal relationships among these pKa values can be identified, and it is demonstrated that ‘‘proton management’’, i.e., the manipulation of these pKa values (e.g., through choice of metal or substituents on ligands), can serve as a design principle for improved catalytic behavior. This material is based upon work supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences.

  12. Hybrid [FeFe]-hydrogenases with modified active sites show remarkable residual enzymatic activity.

    PubMed

    Siebel, Judith F; Adamska-Venkatesh, Agnieszka; Weber, Katharina; Rumpel, Sigrun; Reijerse, Edward; Lubitz, Wolfgang

    2015-02-24

    [FeFe]-hydrogenases are to date the only enzymes for which it has been demonstrated that the native inorganic binuclear cofactor of the active site Fe2(adt)(CO)3(CN)2 (adt = azadithiolate = [S-CH2-NH-CH2-S](2-)) can be synthesized on the laboratory bench and subsequently inserted into the unmaturated enzyme to yield fully functional holo-enzyme (Berggren, G. et al. (2013) Nature 499, 66-70; Esselborn, J. et al. (2013) Nat. Chem. Biol. 9, 607-610). In the current study, we exploit this procedure to introduce non-native cofactors into the enzyme. Mimics of the binuclear subcluster with a modified bridging dithiolate ligand (thiodithiolate, N-methylazadithiolate, dimethyl-azadithiolate) and three variants containing only one CN(-) ligand were inserted into the active site of the enzyme. We investigated the activity of these variants for hydrogen oxidation as well as proton reduction and their structural accommodation within the active site was analyzed using Fourier transform infrared spectroscopy. Interestingly, the monocyanide variant with the azadithiolate bridge showed ?50% of the native enzyme activity. This would suggest that the CN(-) ligands are not essential for catalytic activity, but rather serve to anchor the binuclear subsite inside the protein pocket through hydrogen bonding. The inserted artificial cofactors with a propanedithiolate and an N-methylazadithiolate bridge as well as their monocyanide variants also showed residual activity. However, these activities were less than 1% of the native enzyme. Our findings indicate that even small changes in the dithiolate bridge of the binuclear subsite lead to a rather strong decrease of the catalytic activity. We conclude that both the Brnsted base function and the conformational flexibility of the native azadithiolate amine moiety are essential for the high catalytic activity of the native enzyme. PMID:25633077

  13. A strenuous experimental journey searching for spectroscopic evidence of a bridging nickel-iron-hydride in [NiFe] hydrogenase.

    PubMed

    Wang, Hongxin; Yoda, Yoshitaka; Ogata, Hideaki; Tanaka, Yoshihito; Lubitz, Wolfgang

    2015-11-01

    Direct spectroscopic evidence for a hydride bridge in the Ni-R form of [NiFe] hydrogenase has been obtained using iron-specific nuclear resonance vibrational spectroscopy (NRVS). The Ni-H-Fe wag mode at 675 cm(-1) is the first spectroscopic evidence for a bridging hydride in Ni-R as well as the first iron-hydride-related NRVS feature observed for a biological system. Although density function theory (DFT) calculation assisted the determination of the Ni-R structure, it did not predict the Ni-H-Fe wag mode at ? 675 cm(-1) before NRVS. Instead, the observed Ni-H-Fe mode provided a critical reference for the DFT calculations. While the overall science about Ni-R is presented and discussed elsewhere, this article focuses on the long and strenuous experimental journey to search for and experimentally identify the Ni-H-Fe wag mode in a Ni-R sample. As a methodology, the results presented here will go beyond Ni-R and hydrogenase research and will also be of interest to other scientists who use synchrotron radiation for measuring dilute samples or weak spectroscopic features. PMID:26524296

  14. Improved purification, crystallization and crystallographic study of Hyd-2-type [NiFe]-hydrogenase from Citrobacter sp. S-77.

    PubMed

    Muhd Noor, Noor Dina; Nishikawa, Koji; Nishihara, Hirofumi; Yoon, Ki Seok; Ogo, Seiji; Higuchi, Yoshiki

    2016-01-01

    The purification procedure of Hyd-2-type [NiFe]-hydrogenase from Citrobacter sp. S-77 was improved by applying treatment with trypsin before chromatography. Purified protein samples both with and without trypsin treatment were successfully crystallized using the sitting-drop vapour-diffusion method with polyethylene glycol as a precipitant. Both crystals belonged to space group P21, with unit-cell parameters a = 63.90, b = 118.89, c = 96.70?, ? = 100.61 for the protein subjected to trypsin treatment and a = 65.38, b = 121.45, c = 98.63?, ?=102.29 for the sample not treated with trypsin. The crystal obtained from the trypsin-treated protein diffracted to 1.60? resolution, which is considerably better than the 2.00? resolution obtained without trypsin treatment. The [NiFe]-hydrogenase from Citrobacter sp. S-77 retained catalytic activity with some amount of O2, indicating that it has clear O2 tolerance. PMID:26750485

  15. Role of hydrogen in the activation and regulation of hydrogen oxidation by the soluble hydrogenase from Alcaligenes eutrophus H16.

    PubMed Central

    Hyman, M R; Fox, C A; Arp, D J

    1988-01-01

    The activation kinetics of the H2-oxidizing activity of the soluble hydrogenase from Alcaligenes eutrophus H16 were investigated. Activation with Na2S2O4 plus 101 kPa H2 resulted in a rapid increase in activity over 1 h and constant activity after 3 h incubation. Less-stable activations were achieved if enzyme was incubated with Na2S2O4 under 1 kPa H2 or 101 kPa N2. The enzyme could also be partly activated either with NADH alone or with H2 alone. The level of activity obtained with both 101 kPa H2 and NADH present was greater than that obtained with either 101 kPa H2 or NADH alone. Activation with H2 plus NADH was virtually independent of NADH concentration but highly dependent on H2 concentration. The effects of various concentrations of H2 and constant concentration of NADH on the level of activation were the same whether H2 oxidation was assayed by H2-dependent Methylene Blue or NAD+ reduction. Diaphorase activity did not require activation and was little affected by the treatments that activated H2-oxidizing activity. The results suggest that H2 plays an important role in regulating the level of H2-oxidizing activity in this soluble hydrogenase. PMID:3052435

  16. A Universal Scaffold for Synthesis of the Fe(CN)2(CO) Moiety of [NiFe] Hydrogenase*

    PubMed Central

    Brstel, Ingmar; Siebert, Elisabeth; Winter, Gordon; Hummel, Philipp; Zebger, Ingo; Friedrich, Brbel; Lenz, Oliver

    2012-01-01

    Hydrogen-cycling [NiFe] hydrogenases harbor a dinuclear catalytic center composed of nickel and iron ions, which are coordinated by four cysteine residues. Three unusual diatomic ligands in the form of two cyanides (CN?) and one carbon monoxide (CO) are bound to the iron and apparently account for the complexity of the cofactor assembly process, which involves the function of at least six auxiliary proteins, designated HypA, -B, -C, -D, -E, and -F. It has been demonstrated previously that the HypC, -D, -E, and -F proteins participate in cyanide synthesis and transfer. Here, we show by infrared spectroscopic analysis that the purified HypCD complexes from Ralstonia eutropha and Escherichia coli carry in addition to both cyanides the CO ligand. We present experimental evidence that in vivo the attachment of the CN? ligands is a prerequisite for subsequent CO binding. With the aid of genetic engineering and subsequent mutant analysis, the functional role of conserved cysteine residues in HypD from R. eutropha was investigated. Our results demonstrate that the HypCD complex serves as a scaffold for the assembly of the Fe(CN)2(CO) entity of [NiFe] hydrogenase. PMID:23019332

  17. Disruption of the Operon Encoding Ehb Hydrogenase Limits AnabolicCO2 Assimilation in the Archaeon Methanococcus maripaludis

    SciTech Connect

    Porat, Iris; Kim, Wonduck; Hendrickson, Erik L.; Xia, Qiangwei; Zhang, Yi; Wang, Tiansong; Taub, Fred; Moore, Brian C.; Anderson, IainJ.; Hackett, Murray; Leigh, John A.; Whitman, William B.

    2006-02-01

    Methanococcus maripaludis is a mesophilic archaeon thatreduces CO2 to methane with H2 or formate as an energy source. Itcontains two membrane-bound energy-conserving hydrogenases, Eha and Ehb.To determine therole of Ehb, a deletion in the ehb operon wasconstructed to yield the mutant, strain S40. Growth of S40 was severelyimpaired in minimal medium. Both acetate and yeast extract were necessaryto restore growth to nearly wild-type levels, suggesting that Ehb wasinvolved in multiple steps in carbon assimilation. However, nodifferences in the total hydrogenase specific activities were foundbetween the wild type and mutant in either cell extracts ormembrane-purified fractions. Methanogenesis by resting cells withpyruvate as the electron donor was also reduced by 30 percent in S40,suggesting a defect in pyruvate oxidation. CO dehydrogenase/acetylcoenzyme A (CoA) synthase and pyruvate oxidoreductase had higher specificactivities in the mutant, and genes encoding these enzymes, as well asAMP-forming acetyl-CoA synthetase, were expressed at increased levels.These observations support a role for Ehb in anabolic CO2 assimilation inmethanococci.

  18. Sequence analysis and interposon mutagenesis of the hupT gene, which encodes a sensor protein involved in repression of hydrogenase synthesis in Rhodobacter capsulatus.

    PubMed Central

    Elsen, S; Richaud, P; Colbeau, A; Vignais, P M

    1993-01-01

    The hupT gene, which represses hydrogenase gene expression in the purple photosynthetic bacterium Rhodobacter capsulatus, has been identified and sequenced. The nucleotide sequence of hupT and of the contiguous downstream open reading frame, hupU, is reported. The HupT protein of 456 amino acids (48,414 Da) has sequence similarity with the FixL, DctB, NtrB, and ArcB proteins and is predicted to be a soluble sensor kinase. Insertional inactivation of the hupT gene led to deregulation of transcriptional control, so that the hydrogenase structural operon hupSLC became overexpressed in cells grown anaerobically or aerobically. The HupT- mutants were complemented in trans by a plasmid containing an intact copy of the hupT gene. The hupU open reading frame, capable of encoding a protein of 84,879 Da, shared identity with [NiFe]hydrogenase subunits; the strongest similarity was observed with the periplasmic hydrogenase of Desulfovibrio baculatus. Images PMID:8226687

  19. Crystallization and preliminary X-ray analysis of the NAD+-reducing [NiFe] hydrogenase from Hydrogenophilus thermoluteolus TH-1.

    PubMed

    Taketa, Midori; Nakagawa, Hanae; Habukawa, Mao; Osuka, Hisao; Kihira, Kiyohito; Komori, Hirofumi; Shibata, Naoki; Ishii, Masaharu; Igarashi, Yasuo; Nishihara, Hirofumi; Yoon, Ki-Seok; Ogo, Seiji; Shomura, Yasuhito; Higuchi, Yoshiki

    2015-01-01

    NAD+-reducing [NiFe] hydrogenases catalyze the oxidoreduction of dihydrogen concomitant with the interconversion of NAD+ and NADH. Here, the isolation, purification and crystallization of the NAD+-reducing [NiFe] hydrogenase from Hydrogenophilus thermoluteolus TH-1 are reported. Crystals of the NAD+-reducing [NiFe] hydrogenase were obtained within one week from a solution containing polyethylene glycol using the sitting-drop vapour-diffusion method and micro-seeding. The crystal diffracted to 2.58 Å resolution and belonged to space group C2, with unit-cell parameters a=131.43, b=189.71, c=124.59 Å, β=109.42°. Assuming the presence of two NAD+-reducing [NiFe] hydrogenase molecules in the asymmetric unit, VM was calculated to be 2.2 Å3 Da(-1), which corresponds to a solvent content of 43%. Initial phases were determined by the single-wavelength anomalous dispersion method using the anomalous signal from the Fe atoms. PMID:25615977

  20. Krypton Derivatization of an O2 -Tolerant Membrane-Bound [NiFe] Hydrogenase Reveals a Hydrophobic Tunnel Network for Gas Transport.

    PubMed

    Kalms, Jacqueline; Schmidt, Andrea; Frielingsdorf, Stefan; van der Linden, Peter; von Stetten, David; Lenz, Oliver; Carpentier, Philippe; Scheerer, Patrick

    2016-04-25

    [NiFe] hydrogenases are metalloenzymes catalyzing the reversible heterolytic cleavage of hydrogen into protons and electrons. Gas tunnels make the deeply buried active site accessible to substrates and inhibitors. Understanding the architecture and function of the tunnels is pivotal to modulating the feature of O2 tolerance in a subgroup of these [NiFe] hydrogenases, as they are interesting for developments in renewable energy technologies. Here we describe the crystal structure of the O2 -tolerant membrane-bound [NiFe] hydrogenase of Ralstonia eutropha (ReMBH), using krypton-pressurized crystals. The positions of the krypton atoms allow a comprehensive description of the tunnel network within the enzyme. A detailed overview of tunnel sizes, lengths, and routes is presented from tunnel calculations. A comparison of the ReMBH tunnel characteristics with crystal structures of other O2 -tolerant and O2 -sensitive [NiFe] hydrogenases revealed considerable differences in tunnel size and quantity between the two groups, which might be related to the striking feature of O2 tolerance. PMID:26913499

  1. Reversible oxygen-tolerant hydrogenase carried by free-living N2-fixing bacteria isolated from the rhizospheres of rice, maize, and wheat

    PubMed Central

    Roumagnac, Philippe; Richaud, Pierre; Barakat, Mohamed; Ortet, Philippe; Roncato, Marie-Anne; Heulin, Thierry; Peltier, Gilles; Achouak, Wafa; Cournac, Laurent

    2012-01-01

    Hydrogen production by microorganisms is often described as a promising sustainable and clean energy source, but still faces several obstacles, which prevent practical application. Among them, oxygen sensitivity of hydrogenases represents one of the major limitations hampering the biotechnological implementation of photobiological production processes. Here, we describe a hierarchical biodiversity-based approach, including a chemochromic screening of hydrogenase activity of hundreds of bacterial strains collected from several ecosystems, followed by mass spectrometry measurements of hydrogenase activity of a selection of the H2-oxidizing bacterial strains identified during the screen. In all, 131 of 1266 strains, isolated from cereal rhizospheres and basins containing irradiating waste, were scored as H2-oxidizing bacteria, including Pseudomonas sp., Serratia sp., Stenotrophomonas sp., Enterobacter sp., Rahnella sp., Burkholderia sp., and Ralstonia sp. isolates. Four free-living N2-fixing bacteria harbored a high and oxygen-tolerant hydrogenase activity, which was not fully inhibited within entire cells up to 150250 ?mol/L O2 concentration or within soluble protein extracts up to 2530 ?mol/L. The only hydrogenase-related genes that we could reveal in these strains were of the hyc type (subunits of formate hydrogenlyase complex). The four free-living N2-fixing bacteria were closely related to Enterobacter radicincitans based on the sequences of four genes (16S rRNA, rpoB, hsp60, and hycE genes). These results should bring interesting prospects for microbial biohydrogen production and might have ecophysiological significance for bacterial adaptation to the oxicanoxic interfaces in the rhizosphere. PMID:23233392

  2. Nickel binding and [NiFe]-hydrogenase maturation by the metallochaperone SlyD with a single metal-binding site in Escherichia coli.

    PubMed

    Kaluarachchi, Harini; Altenstein, Matthias; Sugumar, Sonia R; Balbach, Jochen; Zamble, Deborah B; Haupt, Caroline

    2012-03-16

    SlyD (sensitive to lysis D) is a nickel metallochaperone involved in the maturation of [NiFe]-hydrogenases in Escherichia coli (E. coli) and specifically contributes to the nickel delivery step during enzyme biosynthesis. This protein contains a C-terminal metal-binding domain that is rich in potential metal-binding residues that enable SlyD to bind multiple nickel ions with high affinity. The SlyD homolog from Thermus thermophilus does not contain the extended cysteine- and histidine-rich C-terminal tail of the E. coli protein, yet it binds a single Ni(II) ion tightly. To investigate whether a single metal-binding motif can functionally replace the full-length domain, we generated a truncation of E. coli SlyD, SlyD155. Ni(II) binding to SlyD155 was investigated by using isothermal titration calorimetry, NMR and electrospray ionization mass spectrometry measurements. This in vitro characterization revealed that SlyD155 contains a single metal-binding motif with high affinity for nickel. Structural characterization by X-ray absorption spectroscopy and NMR indicated that nickel was coordinated in an octahedral geometry with at least two histidines as ligands. Heterodimerization between SlyD and another hydrogenase accessory protein, HypB, is essential for optimal hydrogenase maturation and was confirmed for SlyD155 via cross-linking experiments and NMR titrations, as were conserved chaperone and peptidyl-prolyl isomerase activities. Although these properties of SlyD are preserved in the truncated version, it does not modulate nickel binding to HypB in vitro or contribute to the maturation of [NiFe]-hydrogenases in vivo, unlike the full-length protein. This study highlights the importance of the unusual metal-binding domain of E. coli SlyD in hydrogenase biogenesis. PMID:22310044

  3. Purification and Characterization of the [NiFe]-Hydrogenase of Shewanella oneidensis MR-1 ▿

    PubMed Central

    Shi, Liang; Belchik, Sara M.; Plymale, Andrew E.; Heald, Steve; Dohnalkova, Alice C.; Sybirna, Kateryna; Bottin, Hervé; Squier, Thomas C.; Zachara, John M.; Fredrickson, James K.

    2011-01-01

    Shewanella oneidensis MR-1 possesses a periplasmic [NiFe]-hydrogenase (MR-1 [NiFe]-H2ase) that has been implicated in H2 production and oxidation as well as technetium [Tc(VII)] reduction. To characterize the roles of MR-1 [NiFe]-H2ase in these proposed reactions, the genes encoding both subunits of MR-1 [NiFe]-H2ase were cloned and then expressed in an MR-1 mutant without hyaB and hydA genes. Expression of recombinant MR-1 [NiFe]-H2ase in trans restored the mutant's ability to produce H2 at 37% of that for the wild type. Following purification, MR-1 [NiFe]-H2ase coupled H2 oxidation to reduction of Tc(VII)O4− and methyl viologen. Change of the buffers used affected MR-1 [NiFe]-H2ase-mediated reduction of Tc(VII)O4− but not methyl viologen. Under the conditions tested, all Tc(VII)O4− used was reduced in Tris buffer, while in HEPES buffer, only 20% of Tc(VII)O4− was reduced. The reduced products were soluble in Tris buffer but insoluble in HEPES buffer. Transmission electron microscopy analysis revealed that Tc precipitates reduced in HEPES buffer were aggregates of crystallites with diameters of ∼5 nm. Measurements with X-ray absorption near-edge spectroscopy revealed that the reduction products were a mixture of Tc(IV) and Tc(V) in Tris buffer but only Tc(IV) in HEPES buffer. Measurements with extended X-ray adsorption fine structure showed that while the Tc bonding environment in Tris buffer could not be determined, the Tc(IV) product in HEPES buffer was very similar to Tc(IV)O2·nH2O, which was also the product of Tc(VII)O4− reduction by MR-1 cells. These results shows for the first time that MR-1 [NiFe]-H2ase catalyzes Tc(VII)O4− reduction directly by coupling to H2 oxidation. PMID:21724888

  4. Purification and Characterization of [NiFe]-Hydrogenase of Shewanella oneidensis MR-1

    SciTech Connect

    Shi, Liang; Belchik, Sara M.; Plymale, Andrew E.; Heald, Steve M.; Dohnalkova, Alice; Sybirna, Kateryna; Bottin, Herve; Squier, Thomas C.; Zachara, John M.; Fredrickson, Jim K.

    2011-08-02

    The γ-proteobacterium Shewanella oneidensis MR-1 possesses a periplasmic [NiFe]-hydrogenase (MR-1 [NiFe]-H2ase) that was implicated in both H2 production and oxidation as well as technetium [Tc(VII)] reduction. To characterize the roles of MR-1 [NiFe]-H2ase in these proposed reactions, the genes encoding both subunits of MR-1 [NiFe]-H2ase were cloned into a protein expression vector. The resulting plasmid was transformed into a MR-1 mutant deficient in H2 formation. Expression of MR-1 [NiFe]-H2ase in trans restored the mutant’s ability to produce H2 at 37% of that for wild type. Following expression, MR-1 [NiFe]-H2ase was purified to near homogeneity. The purified MR-1 [NiFe]-H2ase could couple H2 oxidation to reduction of Tc(VII) and methyl viologen directly. Change of the buffers used affected MR-1 [NiFe]-H2ase-mediated Tc(VII) but not methyl viologen reductions. Under the conditions tested, Tc(VII) reduction was complete in Tris buffer but not in HEPES buffer. The reduced Tc(IV) was soluble in Tris buffer but insoluble in HEPES buffer. Transmission electron microscopy analysis revealed that Tc(IV) precipitates formed in HEPES buffer were packed with crystallites. Although X-ray absorption near-edge spectroscopy measurements confirmed that the reduction products found in both buffers were Tc(IV), extended X-ray adsorption fine-structure measurements revealed that these products were very different. While the product in Tris buffer could not be determined, the Tc(IV) product in HEPES buffer was very similar to Tc(IV)O2•nH2O. These results shows for the first time that MR-1 [NiFe]-H2ase is a bidirectional enzyme that catalyzes both H2 formation and oxidation as well as Tc(VII) reduction directly by coupling H2 oxidation.

  5. Protonation of Nickel–Iron Hydrogenase Models Proceeds after Isomerization at Nickel

    PubMed Central

    2015-01-01

    Theory and experiment indicate that the protonation of reduced NiFe dithiolates proceeds via a previously undetected isomer with enhanced basicity. In particular, it is proposed that protonation of (OC)3Fe(pdt)Ni(dppe) (1; pdt2– = –S(CH2)3S–; dppe = Ph2P(CH2)2PPh2) occurs at the Fe site of the two-electron mixed-valence Fe(0)Ni(II) species, not the Fe(I)-Ni(I) bond for the homovalence isomer of 1. The new pathway, which may have implications for protonation of other complexes and clusters, was uncovered through studies on the homologous series L(OC)2Fe(pdt)M(dppe), where M = Ni, Pd (2), and Pt (3) and L = CO, PCy3. Similar to 1, complexes 2 and 3 undergo both protonation and 1e– oxidation to afford well-characterized hydrides ([2H]+ and [3H]+) and mixed-valence derivatives ([2]+ and [3]+), respectively. Whereas the Pd site is tetrahedral in 2, the Pt site is square-planar in 3, indicating that this complex is best described as Fe(0)Pt(II). In view of the results on 2 and 3, the potential energy surface of 1 was reinvestigated with density functional theory. These calculations revealed the existence of an energetically accessible and more basic Fe(0)Ni(II) isomer with a square-planar Ni site. PMID:25094041

  6. Crystals of the hydrogenase maturation factor HypF N-terminal domain grown in microgravity, display improved internal order

    NASA Astrophysics Data System (ADS)

    Ponassi, Marco; Felli, Lamberto; Parodi, Stefania; Valbusa, Ugo; Rosano, Camillo

    2011-01-01

    Synthesis of the active [Ni-Fe]-hydrogenase in prokaryotes requires a series of ancillary maturation factors. Among them, the HypF maturation factor is a multidomain 82 kDa protein, whose N-terminal domain displays sequence and structural similarities to acylphosphatases. Acylphosphatases are small enzymes that are able to catalyze carboxyl-phosphate bond hydrolysis in acylphosphates, as well as in nucleoside di- and tri-phosphates and in arylphosphates. Here, we present a crystallographic comparison between microgravity and earth-grown crystals of the HypF N-terminal domain. Both crystals were of excellent quality, thereby allowing us to collect very high resolution datasets. A detailed analysis of data collection and refinement statistics, together with an analysis of the diffraction pattern showed that microgravity would appear to further improve the internal order of crystals.

  7. Production and purification of a soluble hydrogenase from Ralstonia eutropha H16 for potential hydrogen fuel cell applications.

    PubMed

    Jugder, Bat-Erdene; Lebhar, Helene; Aguey-Zinsou, Kondo-Francois; Marquis, Christopher P

    2016-01-01

    The soluble hydrogenase (SH) from Ralstonia eutropha H16 is a promising candidate enzyme for H2-based biofuel application as it favours H2 oxidation and is relatively oxygen-tolerant. In this report, bioprocess development studies undertaken to produce and purify an active SH are described, based on the methods previously reported [1], [2], [3], [4]. Our modifications are: •Upstream method optimizations were undertaken on heterotrophic growth media and cell lysis involving ultrasonication.•Two anion exchangers (Q Sepharose and RESOURCE Q) and size exclusion chromatographic (Superdex 200) matrices were successfully employed for purification of a hexameric SH from R. eutropha.•The H2 oxidizing activity of the SH was demonstrated spectrophotometrically in solution and also immobilized on an EPG electrode using cyclic voltammetry. PMID:27077052

  8. [NiFe]Hydrogenase from Citrobacter sp. S-77 surpasses platinum as an electrode for H2 oxidation reaction.

    PubMed

    Matsumoto, Takahiro; Eguchi, Shigenobu; Nakai, Hidetaka; Hibino, Takashi; Yoon, Ki-Seok; Ogo, Seiji

    2014-08-18

    Reported herein is an electrode for dihydrogen (H2) oxidation, and it is based on [NiFe]Hydrogenase from Citrobacter sp. S-77 ([NiFe]S77). It has a 637 times higher mass activity than Pt (calculated based on 1?mg of [NiFe]S77 or Pt) at 50?mV in a hydrogen half-cell. The [NiFe]S77 electrode is also stable in air and, unlike Pt, can be recovered 100?% after poisoning by carbon monoxide. Following characterization of the [NiFe]S77 electrode, a fuel cell comprising a [NiFe]S77 anode and Pt cathode was constructed and shown to have a a higher power density than that achievable by Pt. PMID:24895095

  9. Production and purification of a soluble hydrogenase from Ralstonia eutropha H16 for potential hydrogen fuel cell applications

    PubMed Central

    Jugder, Bat-Erdene; Lebhar, Helene; Aguey-Zinsou, Kondo-Francois; Marquis, Christopher P.

    2016-01-01

    The soluble hydrogenase (SH) from Ralstonia eutropha H16 is a promising candidate enzyme for H2-based biofuel application as it favours H2 oxidation and is relatively oxygen-tolerant. In this report, bioprocess development studies undertaken to produce and purify an active SH are described, based on the methods previously reported [1], [2], [3], [4]. Our modifications are: • Upstream method optimizations were undertaken on heterotrophic growth media and cell lysis involving ultrasonication. • Two anion exchangers (Q Sepharose and RESOURCE Q) and size exclusion chromatographic (Superdex 200) matrices were successfully employed for purification of a hexameric SH from R. eutropha. • The H2 oxidizing activity of the SH was demonstrated spectrophotometrically in solution and also immobilized on an EPG electrode using cyclic voltammetry. PMID:27077052

  10. Occurrence of H2-Uptake Hydrogenases in Bradyrhizobium sp. (Lupinus) and Their Expression in Nodules of Lupinus spp. and Ornithopus compressus1

    PubMed Central

    Murillo, Jesús; Villa, Ana; Chamber, Manuel; Ruiz-Argüeso, Tomás

    1989-01-01

    Fifty-four strains of Bradyrhizobium sp. (Lupinus) from worldwide collections were screened by a colony hybridization method for the presence of DNA sequences homologous to the structural genes of the Bradyrhizobium japonicum hydrogenase. Twelve strains exhibited strong colony hybridization signals, and subsequent Southern blot hybridization experiments showed that they fell into two different groups on the basis of the pattern of EcoRI fragments containing the homology to the hup probe. All strains in the first group (UPM860, UPM861, and 750) expressed uptake hydrogenase activity in symbiosis with Lupinus albus, Lupinus angustifolius, Lupinus luteus, and Ornithopus compressus, but both the rate of H2 uptake by bacteroids and the relative efficiency of N2 fixation (RE = 1 - [H2 evolved in air/acetylene reduced]) by nodules were markedly affected by the legume host. L. angustifolius was the less permissive host for hydrogenase expression in symbiosis with the three strains (average RE = 0.76), and O. compressus was the more permissive (average RE = 1.0). None of the strains in the second group expressed hydrogenase activity in lupine nodules, and only one exhibited low H2-uptake activity in symbiosis with O. compressus. The inability of these putative Hup+ strains to induce hydrogenase activity in lupine nodules is discussed on the basis of the legume host effect. Among the 42 strains showing no homology to the B. japonicum hup-specific probe in the colony hybridization assay, 10 were examined in symbiosis with L. angustifolius. The average RE for these strains was 0.51. However, one strain, IM43B, exhibited high RE values (higher than 0.80) and high levels of hydrogenase activity in symbiosis with L. angustifolius, L. albus, and L. luteus. In Southern blot hybridization experiments, no homology was detected between the B. japonicum hup-specific DNA probe and total DNA from vegetative cells or bacteroids from strain IM43B even under low stringency hybridization conditions. We conclude from these results that strain IM43B contains hup DNA sequences different from those in B. japonicum and in other lupine rhizobia strains. Images Figure 1 Figure 2 PMID:16666550

  11. [FeFe]-Hydrogenase Abundance and Diversity along a Vertical Redox Gradient in Great Salt Lake, USA

    PubMed Central

    Boyd, Eric S.; Hamilton, Trinity L.; Swanson, Kevin D.; Howells, Alta E.; Baxter, Bonnie K.; Meuser, Jonathan E.; Posewitz, Matthew C.; Peters, John W.

    2014-01-01

    The use of [FeFe]-hydrogenase enzymes for the biotechnological production of H2 or other reduced products has been limited by their sensitivity to oxygen (O2). Here, we apply a PCR-directed approach to determine the distribution, abundance, and diversity of hydA gene fragments along co-varying salinity and O2 gradients in a vertical water column of Great Salt Lake (GSL), UT. The distribution of hydA was constrained to water column transects that had high salt and relatively low O2 concentrations. Recovered HydA deduced amino acid sequences were enriched in hydrophilic amino acids relative to HydA from less saline environments. In addition, they harbored interesting variations in the amino acid environment of the complex H-cluster metalloenzyme active site and putative gas transfer channels that may be important for both H2 transfer and O2 susceptibility. A phylogenetic framework was created to infer the accessory cluster composition and quaternary structure of recovered HydA protein sequences based on phylogenetic relationships and the gene contexts of known complete HydA sequences. Numerous recovered HydA are predicted to harbor multiple N- and C-terminal accessory iron-sulfur cluster binding domains and are likely to exist as multisubunit complexes. This study indicates an important role for [FeFe]-hydrogenases in the functioning of the GSL ecosystem and provides new target genes and variants for use in identifying O2 tolerant enzymes for biotechnological applications. PMID:25464382

  12. The Alcaligenes eutrophus membrane-bound hydrogenase gene locus encodes functions involved in maturation and electron transport coupling.

    PubMed Central

    Bernhard, M; Schwartz, E; Rietdorf, J; Friedrich, B

    1996-01-01

    Alcaligenes eutrophus H16 produces two [NiFe] hydrogenases which catalyze the oxidation of hydrogen and enable the organism to utilize H2 as the sole energy source. The genes (hoxK and hoxG) for the heterodimeric, membrane-bound hydrogenase (MBH) are located adjacent to a series of eight accessory genes (hoxZ, hoxM, hoxL, hoxO, hoxQ, hoxR, hoxT, and hoxV). In the present study, we generated a set of isogenic mutants with in-frame deletions in the two structural genes and in each of the eight accessory genes. The resulting mutants can be grouped into two classes on the basis of the H2-oxidizing activity of the MBH. Class I mutants (hoxKdelta, hoxGdelta, hoxMdelta, hoxOdelta, and hoxQdelta) were totally devoid of MBH-mediated, H2-oxidizing activity. The hoxM deletion strain was the only mutant in our collection which was completely blocked in carboxy-terminal processing of large subunit HoxG, indicating that hoxM encodes a specific protease. Class II mutants (hoxZdelta, hoxLdelta, hoxRdelta, hoxTdelta, and hoxVdelta) contained residual amounts of MBH activity in the membrane fraction of the extracts. Immunochemical analysis and 63Ni incorporation experiments revealed that the mutations affect various steps in MBH maturation. A lesion in hoxZ led to the production of a soluble MBH which was highly active with redox dye. PMID:8755880

  13. Multiscale simulation reveals multiple pathways for H2 and O2 transport in a [NiFe]-hydrogenase.

    PubMed

    Wang, Po-hung; Best, Robert B; Blumberger, Jochen

    2011-03-16

    Hydrogenases are enzymes that catalyze the reversible conversion of hydrogen molecules to protons and electrons. The mechanism by which the gas molecules reach the active site is important for understanding the function of the enzyme and may play a role in the selectivity for hydrogen over inhibitor molecules. Here, we develop a general multiscale molecular simulation approach for the calculation of diffusion rates and determination of pathways by which substrate or inhibitor gases can reach the protein active site. Combining kinetic data from both equilibrium simulations and enhanced sampling, we construct a master equation describing the movement of gas molecules within the enzyme. We find that the time-dependent gas population of the active site can be fit to the same phenomenological rate law used to interpret experiments, with corresponding diffusion rates in very good agreement with experimental data. However, in contrast to the conventional picture, in which the gases follow a well-defined hydrophobic tunnel, we find that there is a diverse network of accessible pathways by which the gas molecules can reach the active site. The previously identified tunnel accounts for only about 60% of the total flux. Our results suggest that the dramatic decrease in the diffusion rate for mutations involving the residue Val74 could be in part due to the narrowing of the passage Val74-Arg476, immediately adjacent to the binding site, explaining why mutations of Leu122 had only a negligible effect in experiment. Our method is not specific to the [NiFe]-hydrogenase and should be generally applicable to the transport of small molecules in proteins. PMID:21341658

  14. [FeFe]-hydrogenase abundance and diversity along a vertical redox gradient in Great Salt Lake, USA.

    PubMed

    Boyd, Eric S; Hamilton, Trinity L; Swanson, Kevin D; Howells, Alta E; Baxter, Bonnie K; Meuser, Jonathan E; Posewitz, Matthew C; Peters, John W

    2014-01-01

    The use of [FeFe]-hydrogenase enzymes for the biotechnological production of H2 or other reduced products has been limited by their sensitivity to oxygen (O2). Here, we apply a PCR-directed approach to determine the distribution, abundance, and diversity of hydA gene fragments along co-varying salinity and O2 gradients in a vertical water column of Great Salt Lake (GSL), UT. The distribution of hydA was constrained to water column transects that had high salt and relatively low O2 concentrations. Recovered HydA deduced amino acid sequences were enriched in hydrophilic amino acids relative to HydA from less saline environments. In addition, they harbored interesting variations in the amino acid environment of the complex H-cluster metalloenzyme active site and putative gas transfer channels that may be important for both H2 transfer and O2 susceptibility. A phylogenetic framework was created to infer the accessory cluster composition and quaternary structure of recovered HydA protein sequences based on phylogenetic relationships and the gene contexts of known complete HydA sequences. Numerous recovered HydA are predicted to harbor multiple N- and C-terminal accessory iron-sulfur cluster binding domains and are likely to exist as multisubunit complexes. This study indicates an important role for [FeFe]-hydrogenases in the functioning of the GSL ecosystem and provides new target genes and variants for use in identifying O2 tolerant enzymes for biotechnological applications. PMID:25464382

  15. Quantification of microbial activity in subsurface environments using a hydrogenase enzyme assay

    NASA Astrophysics Data System (ADS)

    Adhikari, R. R.; Nickel, J.; Kallmeyer, J.

    2012-04-01

    The subsurface biosphere is the largest microbial ecosystem on Earth. Despite its large size and extensive industrial exploitation, very little is known about the role of microbial activity in the subsurface. Subsurface microbial activity plays a fundamental role in geochemical cycles of carbon and other biologically important elements. How the indigenous microbial communities are supplied with energy is one of the most fundamental questions in subsurface research. It is still an enigma how these communities can survive with such recalcitrant carbon over geological time scales. Despite its usually very low concentration, hydrogen is an important element in subsurface environments. Heterotrophic and chemoautotrophic microorganisms use hydrogen in their metabolic pathways; they either obtain protons from the radiolysis of water and/or cleavage of hydrogen generated by the alteration of basaltic crust, or they dispose of protons by formation of water. Hydrogenase (H2ase) is a ubiquitous intracellular enzyme that catalyzes the interconversion of molecular hydrogen and/or water into protons and electrons. The protons are used for the synthesis of ATP, thereby coupling energy-generating metabolic processes to electron acceptors such as carbon dioxide or sulfate. H2ase activity can therefore be used as a measure for total microbial activity as it targets a key metabolic compound rather than a specific turnover process. Using a highly sensitive tritium assay we measured H2ase enzyme activity in the organic-rich sediments of Lake Van, a saline, alkaline lake in eastern Turkey and in marine subsurface sediments of the Barents Sea. Additionally, sulfate reduction rates (SRRs) were measured to compare the results of the H2ase enzyme assay with the quantitatively most important electron acceptor process. H2ase activity was found at all sites, measured values and distribution of activity varied widely with depth and between sites. At the Lake Van sites H2ase activity ranged from ca. 20 mmol H2 cm-3 d-1 close to the sediment-water interface to 0.5 mmol H2 cm-3 d-1 at a depth of 0.8 m. In samples from the Barents Sea H2ase activity ranged between 0.1 to 2.5 mmol H2 cm-3 d-1 down to a depth of 1.60 m. At all sites the SRR profile followed the H2ase activity profile until SRR declined to values close to the minimum detection limit (~10 pmol cm-3 d-1). H2ase activity increased again after SRR declined, indicating that other microbial processes are becoming quantitatively more important. The H2ase and SRR data show that our assay has a potential to become a valuable tool to measure total subsurface microbial activity.

  16. Stereochemical studies of a selenium-containing hydrogenase from Methanococcus vannielii: determination of the absolute configuration of C-5 chirally labeled dihydro-8-hydroxy-5-deazaflavin cofactor.

    PubMed Central

    Yamazaki, S; Tsai, L; Stadtman, T C; Teshima, T; Nakaji, A; Shiba, T

    1985-01-01

    Reduction of 7,8-didemethyl-8-hydroxy-[5-2H]-5-deazariboflavin by the selenium-containing hydrogenase from Methanococcus vannielii gave a C-5 chirally labeled 1,5-dihydro derivative. The absolute configuration of the chiral label was shown to be (R) by comparison of the chemically degraded product with authentic samples of known absolute configurations. Therefore, the steric course of the enzymic reactions involving the 8-hydroxy-5-deazaflavin cofactor can be defined as follows: (a) reduction occurs on the si face of the 5-deazaflavin molecule; (b) oxidation proceeds by the abstraction of the pro-S hydrogen at C-5 of the 1,5-dihydro-5-deazaflavin. Thus, the selenium-containing hydrogenase and 8-hydroxy-5-deazaflavin-dependent NADP+ reductase from M. vannielii are si face specific. PMID:3883357

  17. Atypical effect of temperature tuning on the insertion of the catalytic iron-sulfur center in a recombinant [FeFe]-hydrogenase.

    PubMed

    Morra, Simone; Cordara, Alessandro; Gilardi, Gianfranco; Valetti, Francesca

    2015-12-01

    The expression of recombinant [FeFe]-hydrogenases is an important step for the production of large amount of these enzymes for their exploitation in biotechnology and for the characterization of the protein-metal cofactor interactions. The correct assembly of the organometallic catalytic site, named H-cluster, requires a dedicated set of maturases that must be coexpressed in the microbial hosts or used for in vitro assembly of the active enzymes. In this work, the effect of the post-induction temperature on the recombinant expression of CaHydA [FeFe]-hydrogenase in E. coli is investigated. The results show a peculiar behavior: the enzyme expression is maximum at lower temperatures (20°C), while the specific activity of the purified CaHydA is higher at higher temperature (30°C), as a consequence of improved protein folding and active site incorporation. PMID:26362685

  18. Direct comparison of the performance of a bio-inspired synthetic nickel catalyst and a [NiFe]-hydrogenase, both covalently attached to electrodes.

    PubMed

    Rodriguez-Maciá, Patricia; Dutta, Arnab; Lubitz, Wolfgang; Shaw, Wendy J; Rüdiger, Olaf

    2015-10-12

    The active site of hydrogenases has been a source of inspiration for the development of molecular catalysts. However, direct comparisons between molecular catalysts and enzymes have not been possible because different techniques are used to evaluate both types of catalysts, minimizing our ability to determine how far we have come in mimicking the enzymatic performance. The catalytic properties of the [Ni(P(Cy) 2 N(Gly) 2 )2 ](2+) complex with the [NiFe]-hydrogenase from Desulfovibrio vulgaris immobilized on a functionalized electrode were compared under identical conditions. At pH 7, the enzyme shows higher activity and lower overpotential with better stability, while at low pH, the molecular catalyst outperforms the enzyme in all respects. This is the first direct comparison of enzymes and molecular complexes, enabling a unique understanding of the benefits and detriments of both systems, and advancing our understanding of the utilization of these bio-inspired complexes in fuel cells. PMID:26140506

  19. Exposure studies of core-shell Fe/Fe(3)O(4) and Cu/CuO NPs to lettuce (Lactuca sativa) plants: Are they a potential physiological and nutritional hazard?

    PubMed

    Trujillo-Reyes, J; Majumdar, S; Botez, C E; Peralta-Videa, J R; Gardea-Torresdey, J L

    2014-02-28

    Iron and copper nanomaterials are widely used in environmental remediation and agriculture. However, their effects on physiological parameters and nutritional quality of terrestrial plants such as lettuce (Lactuca sativa) are still unknown. In this research, 18-day-old hydroponically grown lettuce seedlings were treated for 15 days with core-shell nanoscale materials (Fe/Fe(3)O(4), Cu/CuO) at 10 and 20mg/L, and FeSO(4)·7H(2)O and CuSO(4)·5H(2)O at 10mg/L. At harvest, Fe, Cu, micro and macronutrients were determined by ICP-OES. Also, we evaluated chlorophyll content, plant growth, and catalase (CAT) and ascorbate peroxidase (APX) activities. Our results showed that iron ions/NPs did not affect the physiological parameters with respect to water control. Conversely, Cu ions/NPs reduced water content, root length, and dry biomass of the lettuce plants. ICP-OES results showed that nano-Cu/CuO treatments produced significant accumulation of Cu in roots compared to the CuSO(4)·5H(2)O treatment. In roots, all Cu treatments increased CAT activity but decreased APX activity. In addition, relative to the control, nano-Cu/CuO altered the nutritional quality of lettuce, since the treated plants had significantly more Cu, Al and S but less Mn, P, Ca, and Mg. PMID:24462971

  20. Electronic structure of the unique [4Fe-3S] cluster in O2-tolerant hydrogenases characterized by 57Fe Mossbauer and EPR spectroscopy.

    PubMed

    Pandelia, Maria-Eirini; Bykov, Dmytro; Izsak, Robert; Infossi, Pascale; Giudici-Orticoni, Marie-Thérèse; Bill, Eckhard; Neese, Frank; Lubitz, Wolfgang

    2013-01-01

    Iron-sulfur clusters are ubiquitous electron transfer cofactors in hydrogenases. Their types and redox properties are important for H(2) catalysis, but, recently, their role in a protection mechanism against oxidative inactivation has also been recognized for a [4Fe-3S] cluster in O(2)-tolerant group 1 [NiFe] hydrogenases. This cluster, which is uniquely coordinated by six cysteines, is situated in the proximity of the catalytic [NiFe] site and exhibits unusual redox versatility. The [4Fe-3S] cluster in hydrogenase (Hase) I from Aquifex aeolicus performs two redox transitions within a very small potential range, forming a superoxidized state above +200 mV vs. standard hydrogen electrode (SHE). Crystallographic data has revealed that this state is stabilized by the coordination of one of the iron atoms to a backbone nitrogen. Thus, the proximal [4Fe-3S] cluster undergoes redox-dependent changes to serve multiple purposes beyond classical electron transfer. In this paper, we present field-dependent (57)Fe-Mössbauer and EPR data for Hase I, which, in conjunction with spectroscopically calibrated density functional theory (DFT) calculations, reveal the distribution of Fe valences and spin-coupling schemes for the iron-sulfur clusters. The data demonstrate that the electronic structure of the [4Fe-3S] core in its three oxidation states closely resembles that of corresponding conventional [4Fe-4S] cubanes, albeit with distinct differences for some individual iron sites. The medial and distal iron-sulfur clusters have similar electronic properties as the corresponding cofactors in standard hydrogenases, although their redox potentials are higher. PMID:23267108

  1. Nuclear resonance vibrational spectroscopy reveals the FeS cluster composition and active site vibrational properties of an O2-tolerant NAD+-reducing [NiFe] hydrogenase

    PubMed Central

    Lauterbach, Lars; Wang, Hongxin; Horch, Marius; Gee, Leland B.; Yoda, Yoshitaka; Tanaka, Yoshihito; Zebger, Ingo; Lenz, Oliver; Cramer, Stephen P.

    2015-01-01

    Hydrogenases are complex metalloenzymes that catalyze the reversible splitting of molecular hydrogen into protons and electrons essentially without overpotential. The NAD+-reducing soluble hydrogenase (SH) from Ralstonia eutropha is capable of H2 conversion even in the presence of usually toxic dioxygen. The molecular details of the underlying reactions are largely unknown, mainly because of limited knowledge of the structure and function the various metal cofactors present in the enzyme. Here all iron-containing cofactors of the SH were investigated by 57Fe specific nuclear resonance vibrational spectroscopy (NRVS). Our data provide experimental evidence for one [2Fe2S] center and four [4Fe4S] clusters, which is consistent with amino acid sequence composition. Only the [2Fe2S] cluster and one of the four [4Fe4S] clusters were reduced upon incubation of the SH with NADH. This finding explains the discrepancy between the large number of FeS clusters and the small amount of FeS cluster-related signals as detected by electron paramagnetic resonance spectroscopic analysis of several NAD+-reducing hydrogenases. For the first time, Fe-CO and Fe-CN modes derived from the [NiFe] active site could be distinguished by NRVS through selective 13C labeling of the CO ligand. This strategy also revealed the molecular coordinates that dominate the individual Fe-CO modes. The present approach explores the complex vibrational signature of the Fe-S clusters and the hydrogenase active site, thereby showing that NRVS represents a powerful tool for the elucidation of complex biocatalysts containing multiple cofactors. PMID:25678951

  2. Nuclear resonance vibrational spectroscopy reveals the FeS cluster composition and active site vibrational properties of an O2-tolerant NAD+-reducing [NiFe] hydrogenase

    DOE PAGESBeta

    Lauterbach, Lars; Wang, Hongxin; Horch, Marius; Gee, Leland B.; Yoda, Yoshitaka; Tanaka, Yoshihito; Zebger, Ingo; Lenz, Oliver; Cramer, Stephen P.

    2014-10-30

    Hydrogenases are complex metalloenzymes that catalyze the reversible splitting of molecular hydrogen into protons and electrons essentially without overpotential. The NAD+-reducing soluble hydrogenase (SH) from Ralstonia eutropha is capable of H2 conversion even in the presence of usually toxic dioxygen. The molecular details of the underlying reactions are largely unknown, mainly because of limited knowledge of the structure and function of the various metal cofactors present in the enzyme. Here, all iron-containing cofactors of the SH were investigated by 57Fe specific nuclear resonance vibrational spectroscopy (NRVS). Our data provide experimental evidence for one [2Fe2S] center and four [4Fe4S] clusters, whichmore » is consistent with the amino acid sequence composition. Only the [2Fe2S] cluster and one of the four [4Fe4S] clusters were reduced upon incubation of the SH with NADH. This finding explains the discrepancy between the large number of FeS clusters and the small amount of FeS cluster-related signals as detected by electron paramagnetic resonance spectroscopic analysis of several NAD+-reducing hydrogenases. For the first time, Fe–CO and Fe–CN modes derived from the [NiFe] active site could be distinguished by NRVS through selective 13C labeling of the CO ligand. This strategy also revealed the molecular coordinates that dominate the individual Fe–CO modes. The present approach explores the complex vibrational signature of the Fe–S clusters and the hydrogenase active site, thereby showing that NRVS represents a powerful tool for the elucidation of complex biocatalysts containing multiple cofactors.« less

  3. Nuclear resonance vibrational spectroscopy reveals the FeS cluster composition and active site vibrational properties of an O2-tolerant NAD+-reducing [NiFe] hydrogenase

    DOE PAGESBeta

    Lauterbach, Lars; Wang, Hongxin; Horch, Marius; Gee, Leland B.; Yoda, Yoshitaka; Tanaka, Yoshihito; Zebger, Ingo; Lenz, Oliver; Cramer, Stephen P.

    2014-10-30

    Hydrogenases are complex metalloenzymes that catalyze the reversible splitting of molecular hydrogen into protons and electrons essentially without overpotential. The NAD+-reducing soluble hydrogenase (SH) from Ralstonia eutropha is capable of H2 conversion even in the presence of usually toxic dioxygen. The molecular details of the underlying reactions are largely unknown, mainly because of limited knowledge of the structure and function of the various metal cofactors present in the enzyme. Here, all iron-containing cofactors of the SH were investigated by 57Fe specific nuclear resonance vibrational spectroscopy (NRVS). Our data provide experimental evidence for one [2Fe2S] center and four [4Fe4S] clusters, whichmore »is consistent with the amino acid sequence composition. Only the [2Fe2S] cluster and one of the four [4Fe4S] clusters were reduced upon incubation of the SH with NADH. This finding explains the discrepancy between the large number of FeS clusters and the small amount of FeS cluster-related signals as detected by electron paramagnetic resonance spectroscopic analysis of several NAD+-reducing hydrogenases. For the first time, Fe–CO and Fe–CN modes derived from the [NiFe] active site could be distinguished by NRVS through selective 13C labeling of the CO ligand. This strategy also revealed the molecular coordinates that dominate the individual Fe–CO modes. The present approach explores the complex vibrational signature of the Fe–S clusters and the hydrogenase active site, thereby showing that NRVS represents a powerful tool for the elucidation of complex biocatalysts containing multiple cofactors.« less

  4. Identification of an Isothiocyanate on the HypEF Complex Suggests a Route for Efficient Cyanyl–Group Channeling during [NiFe]–Hydrogenase Cofactor Generation

    PubMed Central

    Stripp, Sven T.; Lindenstrauss, Ute; Sawers, R. Gary; Soboh, Basem

    2015-01-01

    [NiFe]–hydrogenases catalyze uptake and evolution of H2 in a wide range of microorganisms. The enzyme is characterized by an inorganic nickel/ iron cofactor, the latter of which carries carbon monoxide and cyanide ligands. In vivo generation of these ligands requires a number of auxiliary proteins, the so–called Hyp family. Initially, HypF binds and activates the precursor metabolite carbamoyl phosphate. HypF catalyzes removal of phosphate and transfers the carbamate group to HypE. In an ATP–dependent condensation reaction, the C–terminal cysteinyl residue of HypE is modified to what has been interpreted as thiocyanate. This group is the direct precursor of the cyanide ligands of the [NiFe]–hydrogenase active site cofactor. We present a FT–IR analysis of HypE and HypF as isolated from E. coli. We follow the HypF–catalyzed cyanation of HypE in vitro and screen for the influence of carbamoyl phosphate and ATP. To elucidate on the differences between HypE and the HypEF complex, spectro–electrochemistry was used to map the vibrational Stark effect of naturally cyanated HypE. The IR signature of HypE could ultimately be assigned to isothiocyanate (–N=C=S) rather than thiocyanate (–S–C≡N). This has important implications for cyanyl–group channeling during [NiFe]–hydrogenase cofactor generation. PMID:26186649

  5. Electrochemical and Infrared Spectroscopic Studies Provide Insight into Reactions of the NiFe Regulatory Hydrogenase from Ralstonia eutropha with O2 and CO.

    PubMed

    Ash, Philip A; Liu, Juan; Coutard, Nathan; Heidary, Nina; Horch, Marius; Gudim, Ingvild; Simler, Thomas; Zebger, Ingo; Lenz, Oliver; Vincent, Kylie A

    2015-10-29

    The regulatory hydrogenase (RH) from Ralstonia eutropha acts as the H2-sensing unit of a two-component system that regulates biosynthesis of the energy conserving hydrogenases of the organism according to the availability of H2. The H2 oxidation activity, which was so far determined in vitro with artificial electron acceptors, has been considered to be insensitive to O2 and CO. It is assumed that bulky isoleucine and phenylalanine amino acid residues close to the NiFe active site "gate" gas access, preventing molecules larger than H2 interacting with the active site. We have carried out sensitive electrochemical measurements to demonstrate that O2 is in fact an inhibitor of H2 oxidation by the RH, and that both H(+) reduction and H2 oxidation are inhibited by CO. Furthermore, we have demonstrated that the inhibitory effect of O2 arises due to interaction of O2 with the active site. Using protein film infrared electrochemistry (PFIRE) under H2 oxidation conditions, in conjunction with solution infrared measurements, we have identified previously unreported oxidized inactive and catalytically active reduced states of the RH active site. These findings suggest that the RH has a rich active site chemistry similar to that of other NiFe hydrogenases. PMID:26115011

  6. Computational studies of the H-cluster of Fe-only hydrogenases: geometric, electronic, and magnetic properties and their dependence on the [Fe4S4] cubane.

    PubMed

    Fiedler, Adam T; Brunold, Thomas C

    2005-12-12

    The active sites of Fe-only hydrogenases (FeHases) feature an unusual polynuclear iron-sulfur cluster, known as the H-cluster, that consists of a [Fe4S4] cubane linked to a di-iron subunit (the [2Fe]H component) via a bridging cysteine ligand (SCys). While previous computational studies of FeHases employed H-cluster models that only included the [2Fe]H component, we have utilized density functional theory (DFT), in conjunction with the broken-symmetry (BS) approach, to explore the geometric, electronic, and magnetic properties of the entire H-cluster. These calculations have allowed us to evaluate, for the first time, the influence of the [Fe4S4] cubane on the [2Fe]H component of the H-cluster in its active (Hox) and CO-inhibited (Hox-CO) states, both of which are paramagnetic (S=1/2). Our results reveal that the presence of the cubane tunes both the position and the donor strength of the SCys ligand, which, in turn, modulates the internal geometric and electronic structures of the [2Fe]H subcluster. Importantly, the BS methodology provides an accurate description of the exchange interactions within the H-cluster, permitting insight into the electronic origin of the changes in magnetic properties observed experimentally upon conversion of Hox to Hox-CO. Specifically, while the unpaired spin density in the Hox state is localized on the distal Fe center, in the Hox-CO state, it is delocalized over the [2Fe]H component, such that the proximal Fe center acquires significant spin density (where distal and proximal refer to the positions of the Fe centers relative to the cubane). To validate our H-cluster models on the basis of experimental data, two DFT-based approaches and the semiempirical INDO/S method have been employed to compute electron paramagnetic resonance parameters for the H-cluster states. While most computations yield reasonably accurate g values and ligand hyperfine coupling constants (i.e., A values) for the Hox and Hox-CO states, they fail to reproduce the isotropic 57Fe A tensors found experimentally. Finally, extension of the computational methodology employed successfully for the Hox and Hox-CO states to the metastable Hoxphoto state, generated by irradiation of the Hox-CO state at cryogenic temperatures, has allowed us to discriminate between proposed structural models for this species. PMID:16323916

  7. Fractionation of Sulfur Isotopes by Desulfovibrio vulgaris Mutants Lacking Periplasmic Hydrogenases or the Type I Tetraheme Cytochrome c3

    NASA Astrophysics Data System (ADS)

    Sim, M.; Ono, S.; Bosak, T.

    2012-12-01

    A large fraction of anaerobic mineralization of organic compounds relies on microbial sulfate reduction. Sulfur isotope fractionation by these microbes has been widely used to trace the biogeochemical cycling of sulfur and carbon, but intracellular mechanisms behind the wide range of fractionations observed in nature and cultures are not fully understood. In this study, we investigated the influence of electron transport chain components on the fractionation of sulfur isotopes by culturing Desulfovibrio vulgaris Hildenborough mutants lacking hydrogenases or type I tetraheme cytochrome c3 (Tp1-c3). The mutants were grown both in batch and continuous cultures. All tested mutants grew on lactate or pyruvate as the sole carbon and energy sources, generating sulfide. Mutants lacking cytoplasmic and periplasmic hydrogenases exhibited similar growth physiologies and sulfur isotope fractionations to their parent strains. On the other hand, a mutant lacking Tp1-c3 (ΔcycA) fractionated the 34S/32S ratio more than the wild type, evolving H2 in the headspace and exhibiting a lower specific respiration rate. In the presence of high concentrations of pyruvate, the growth of ΔcycA relied largely on fermentation rather than sulfate reduction, even when sulfate was abundant, producing the largest sulfur isotope effect observed in this study. Differences between sulfur isotope fractionation by ΔcycA and the wild type highlight the effect of electron transfer chains on the magnitude of sulfur isotope fractionation. Because Tp1-c3 is known to exclusively shuttle electrons from periplasmic hydrogenases to transmembrane complexes, electron transfers in the absence of Tp1-c3 should bypass the periplasmic hydrogen cycling, and the loss of reducing equivalents in the form of H2 can impair the flow of electrons from organic acids to sulfur, increasing isotope fractionation. Larger fractionation by ΔcycA can inform interpretations of sulfur isotope data at an environmental scale as well, because intracellular concentrations of electron transport components can be altered by environmental factors such as iron availability. Simultaneous sulfate reduction and fermentation, and their corresponding sulfur isotope effects, also generate a hypothesis that links sulfur isotope fractionation to the cellular energy budget. Theoretically, the largest fractionation during microbial sulfate reduction occurs when the backward fluxes equal the forward fluxes in sulfate reduction pathway. However, when the generation of ATP depends exclusively on sulfate respiration, a minimum respiration rate is required to fulfill the maintenance energy requirement. In contrast, when sulfate reduction occurs simultaneously with fermentation, the latter process may contribute toward maintenance energy, enabling slower and more reversible sulfate reduction, and leading to larger fractionation. Given that many sulfate-reducing microbes are also facultative fermenters, fermentation by sulfate reducing microbes in natural habitats and sulfur isotope signatures produced by such communities deserve further exploration.

  8. Control of the transition between Ni-C and Ni-SI(a) states by the redox state of the proximal Fe-S cluster in the catalytic cycle of [NiFe] hydrogenase.

    PubMed

    Tai, Hulin; Nishikawa, Koji; Suzuki, Masayuki; Higuchi, Yoshiki; Hirota, Shun

    2014-12-01

    [NiFe] hydrogenase catalyzes the reversible cleavage of H2. The electrons produced by the H2 cleavage pass through three Fe-S clusters in [NiFe] hydrogenase to its redox partner. It has been reported that the Ni-SI(a), Ni-C, and Ni-R states of [NiFe] hydrogenase are involved in the catalytic cycle, although the mechanism and regulation of the transition between the Ni-C and Ni-SI(a) states remain unrevealed. In this study, the FT-IR spectra under light irradiation at 138-198 K show that the Ni-L state of [NiFe] hydrogenase is an intermediate between the transition of the Ni-C and Ni-SI(a) states. The transition of the Ni-C state to the Ni-SI(a) state occurred when the proximal [Fe4S4]p(2+/+) cluster was oxidized, but not when it was reduced. These results show that the catalytic cycle of [NiFe] hydrogenase is controlled by the redox state of its [Fe4S4]p(2+/+) cluster, which may function as a gate for the electron flow from the NiFe active site to the redox partner. PMID:25297065

  9. Direct probing of photoinduced electron transfer in a self-assembled biomimetic [2Fe2S]-hydrogenase complex using ultrafast vibrational spectroscopy.

    PubMed

    Li, Ping; Amirjalayer, Saeed; Hartl, František; Lutz, Martin; de Bruin, Bas; Becker, René; Woutersen, Sander; Reek, Joost N H

    2014-05-19

    A pyridyl-functionalized diiron dithiolate complex, [μ-(4-pyCH2-NMI-S2)Fe2(CO)6] (3, py = pyridine (ligand), NMI = naphthalene monoimide) was synthesized and fully characterized. In the presence of zinc tetraphenylporphyrin (ZnTPP), a self-assembled 3·ZnTPP complex was readily formed in CH2Cl2 by the coordination of the pyridyl nitrogen to the porphyrin zinc center. Ultrafast photoinduced electron transfer from excited ZnTPP to complex 3 in the supramolecular assembly was observed in real time by monitoring the ν(C≡O) and ν(C═O)NMI spectral changes with femtosecond time-resolved infrared (TRIR) spectroscopy. We have confirmed that photoinduced charge separation produced the monoreduced species by comparing the time-resolved IR spectra with the conventional IR spectra of 3(•-) generated by reversible electrochemical reduction. The lifetimes for the charge separation and charge recombination processes were found to be τCS = 40 ± 3 ps and τCR = 205 ± 14 ps, respectively. The charge recombination is much slower than that in an analogous covalent complex, demonstrating the potential of a supramolecular approach to extend the lifetime of the charge-separated state in photocatalytic complexes. The observed vibrational frequency shifts provide a very sensitive probe of the delocalization of the electron-spin density over the different parts of the Fe2S2 complex. The TR and spectro-electrochemical IR spectra, electron paramagnetic resonance spectra, and density functional theory calculations all show that the spin density in 3(•-) is delocalized over the diiron core and the NMI bridge. This delocalization explains why the complex exhibits low catalytic dihydrogen production even though it features a very efficient photoinduced electron transfer. The ultrafast porphyrin-to-NMI-S2-Fe2(CO)6 photoinduced electron transfer is the first reported example of a supramolecular Fe2S2-hydrogenase model studied by femtosecond TRIR spectroscopy. Our results show that TRIR spectroscopy is a powerful tool to investigate photoinduced electron transfer in potential dihydrogen-producing catalytic complexes, and that way to optimize their performance by rational approaches. PMID:24766080

  10. Enhanced nematic and antiferromagnetic phases in the spin-fermion model for strained iron pnictides

    NASA Astrophysics Data System (ADS)

    Qin, Minghui; Dong, Shuai; Liu, Junming; Ren, Zhifeng

    2015-01-01

    The effects of anisotropic superexchange and Fe-Fe hoppings on phase transitions in the undoped three-orbital spin-fermion model are investigated to understand the experimentally reported strain effect in BaFe2As2. Monte Carlo simulated phase diagrams show that both the collinear antiferromagnetic and nematic transitions shift toward high temperature with the increasing magnitude of anisotropies, qualitatively consistent with experimental observation. Thus, both the anisotropic superexchange and Fe-Fe hoppings are suggested to be responsible for the variation of the transition temperatures of BaFe2As2 with uniaxial stress. In addition, we observed a 90 degree rotation of the collinear antiferromagnetic order, accompanied with a reversal of the orbital occupancy at the Fermi surface when the sign of the superexchange anisotropy changes, further supporting previous predictions by first principles calculation.

  11. Protonation states of intermediates in the reaction mechanism of [NiFe] hydrogenase studied by computational methods.

    PubMed

    Dong, Geng; Ryde, Ulf

    2016-06-01

    The [NiFe] hydrogenases catalyse the reversible conversion of H2 to protons and electrons. The active site consists of a Fe ion with one carbon monoxide, two cyanide, and two cysteine (Cys) ligands. The latter two bridge to a Ni ion, which has two additional terminal Cys ligands. It has been suggested that one of the Cys residues is protonated during the reaction mechanism. We have used combined quantum mechanical and molecular mechanics (QM/MM) geometry optimisations, large QM calculations with 817 atoms, and QM/MM free energy simulations, using the TPSS and B3LYP methods with basis sets extrapolated to the quadruple zeta level to determine which of the four Cys residues is more favourable to protonate for four putative states in the reaction mechanism, Ni-SIa, Ni-R, Ni-C, and Ni-L. The calculations show that for all states, the terminal Cys-546 residue is most easily protonated by 14-51 kJ/mol, owing to a more favourable hydrogen-bond pattern around this residue in the protein. PMID:26940957

  12. An iron-iron hydrogenase mimic with appended electron reservoir for efficient proton reduction in aqueous media.

    PubMed

    Becker, René; Amirjalayer, Saeed; Li, Ping; Woutersen, Sander; Reek, Joost N H

    2016-01-01

    The transition from a fossil-based economy to a hydrogen-based economy requires cheap and abundant, yet stable and efficient, hydrogen production catalysts. Nature shows the potential of iron-based catalysts such as the iron-iron hydrogenase (H2ase) enzyme, which catalyzes hydrogen evolution at rates similar to platinum with low overpotential. However, existing synthetic H2ase mimics generally suffer from low efficiency and oxygen sensitivity and generally operate in organic solvents. We report on a synthetic H2ase mimic that contains a redox-active phosphole ligand as an electron reservoir, a feature that is also crucial for the working of the natural enzyme. Using a combination of (spectro)electrochemistry and time-resolved infrared spectroscopy, we elucidate the unique redox behavior of the catalyst. We find that the electron reservoir actively partakes in the reduction of protons and that its electron-rich redox states are stabilized through ligand protonation. In dilute sulfuric acid, the catalyst has a turnover frequency of 7.0 × 10(4) s(-1) at an overpotential of 0.66 V. This catalyst is tolerant to the presence of oxygen, thereby paving the way for a new generation of synthetic H2ase mimics that combine the benefits of the enzyme with synthetic versatility and improved stability. PMID:26844297

  13. Protein-pyridinol thioester precursor for biosynthesis of the organometallic acyl-iron ligand in [Fe]-hydrogenase cofactor.

    PubMed

    Fujishiro, Takashi; Kahnt, Jörg; Ermler, Ulrich; Shima, Seigo

    2015-01-01

    The iron-guanylylpyridinol (FeGP) cofactor of [Fe]-hydrogenase contains a prominent iron centre with an acyl-Fe bond and is the only acyl-organometallic iron compound found in nature. Here, we identify the functions of HcgE and HcgF, involved in the biosynthesis of the FeGP cofactor using structure-to-function strategy. Analysis of the HcgE and HcgF crystal structures with and without bound substrates suggest that HcgE catalyses the adenylylation of the carboxy group of guanylylpyridinol (GP) to afford AMP-GP, and subsequently HcgF catalyses the transesterification of AMP-GP to afford a Cys (HcgF)-S-GP thioester. Both enzymatic reactions are confirmed by in vitro assays. The structural data also offer plausible catalytic mechanisms. This strategy of thioester activation corresponds to that used for ubiquitin activation, a key event in the regulation of multiple cellular processes. It further implicates a nucleophilic attack onto the acyl carbon presumably via an electron-rich Fe(0)- or Fe(I)-carbonyl complex in the Fe-acyl formation. PMID:25882909

  14. The Influence of Oxygen on [NiFe]–Hydrogenase Cofactor Biosynthesis and How Ligation of Carbon Monoxide Precedes Cyanation

    PubMed Central

    Stripp, Sven T.; Lindenstrauss, Ute; Granich, Claudia; Sawers, R. Gary; Soboh, Basem

    2014-01-01

    The class of [NiFe]–hydrogenases is characterized by a bimetallic cofactor comprising low–spin nickel and iron ions, the latter of which is modified with a single carbon monoxide (CO) and two cyanide (CN−) molecules. Generation of these ligands in vivo requires a complex maturation apparatus in which the HypC–HypD complex acts as a ‘construction site’ for the Fe–(CN)2CO portion of the cofactor. The order of addition of the CO and CN– ligands determines the ultimate structure and catalytic efficiency of the cofactor; however much debate surrounds the succession of events. Here, we present an FT–IR spectroscopic analysis of HypC–HypD isolated from a hydrogenase–competent wild–type strain of Escherichia coli. In contrast to previously reported samples, HypC–HypD showed spectral contributions indicative of an electron–rich Fe–CO cofactor, at the same time lacking any Fe–CN– signatures. This immature iron site binds external CO and undergoes oxidative damage when in contact with O2. Binding of CO protects the site against loss of spectral features associated with O2 damage. Our findings strongly suggest that CO ligation precedes cyanation in vivo. Furthermore, the results provide a rationale for the deleterious effects of O2 on in vivo cofactor biosynthesis. PMID:25211029

  15. A Threonine Stabilizes the NiC and NiR Catalytic Intermediates of [NiFe]-hydrogenase*

    PubMed Central

    Abou-Hamdan, Abbas; Ceccaldi, Pierre; Lebrette, Hugo; Gutiérrez-Sanz, Oscar; Richaud, Pierre; Cournac, Laurent; Guigliarelli, Bruno; De Lacey, Antonio L.; Léger, Christophe; Volbeda, Anne; Burlat, Bénédicte; Dementin, Sébastien

    2015-01-01

    The heterodimeric [NiFe] hydrogenase from Desulfovibrio fructosovorans catalyzes the reversible oxidation of H2 into protons and electrons. The catalytic intermediates have been attributed to forms of the active site (NiSI, NiR, and NiC) detected using spectroscopic methods under potentiometric but non-catalytic conditions. Here, we produced variants by replacing the conserved Thr-18 residue in the small subunit with Ser, Val, Gln, Gly, or Asp, and we analyzed the effects of these mutations on the kinetic (H2 oxidation, H2 production, and H/D exchange), spectroscopic (IR, EPR), and structural properties of the enzyme. The mutations disrupt the H-bond network in the crystals and have a strong effect on H2 oxidation and H2 production turnover rates. However, the absence of correlation between activity and rate of H/D exchange in the series of variants suggests that the alcoholic group of Thr-18 is not necessarily a proton relay. Instead, the correlation between H2 oxidation and production activity and the detection of the NiC species in reduced samples confirms that NiC is a catalytic intermediate and suggests that Thr-18 is important to stabilize the local protein structure of the active site ensuring fast NiSI-NiC-NiR interconversions during H2 oxidation/production. PMID:25666617

  16. A threonine stabilizes the NiC and NiR catalytic intermediates of [NiFe]-hydrogenase.

    PubMed

    Abou-Hamdan, Abbas; Ceccaldi, Pierre; Lebrette, Hugo; Gutirrez-Sanz, Oscar; Richaud, Pierre; Cournac, Laurent; Guigliarelli, Bruno; De Lacey, Antonio L; Lger, Christophe; Volbeda, Anne; Burlat, Bndicte; Dementin, Sbastien

    2015-03-27

    The heterodimeric [NiFe] hydrogenase from Desulfovibrio fructosovorans catalyzes the reversible oxidation of H2 into protons and electrons. The catalytic intermediates have been attributed to forms of the active site (NiSI, NiR, and NiC) detected using spectroscopic methods under potentiometric but non-catalytic conditions. Here, we produced variants by replacing the conserved Thr-18 residue in the small subunit with Ser, Val, Gln, Gly, or Asp, and we analyzed the effects of these mutations on the kinetic (H2 oxidation, H2 production, and H/D exchange), spectroscopic (IR, EPR), and structural properties of the enzyme. The mutations disrupt the H-bond network in the crystals and have a strong effect on H2 oxidation and H2 production turnover rates. However, the absence of correlation between activity and rate of H/D exchange in the series of variants suggests that the alcoholic group of Thr-18 is not necessarily a proton relay. Instead, the correlation between H2 oxidation and production activity and the detection of the NiC species in reduced samples confirms that NiC is a catalytic intermediate and suggests that Thr-18 is important to stabilize the local protein structure of the active site ensuring fast NiSI-NiC-NiR interconversions during H2 oxidation/production. PMID:25666617

  17. An iron-iron hydrogenase mimic with appended electron reservoir for efficient proton reduction in aqueous media

    PubMed Central

    Becker, René; Amirjalayer, Saeed; Li, Ping; Woutersen, Sander; Reek, Joost N. H.

    2016-01-01

    The transition from a fossil-based economy to a hydrogen-based economy requires cheap and abundant, yet stable and efficient, hydrogen production catalysts. Nature shows the potential of iron-based catalysts such as the iron-iron hydrogenase (H2ase) enzyme, which catalyzes hydrogen evolution at rates similar to platinum with low overpotential. However, existing synthetic H2ase mimics generally suffer from low efficiency and oxygen sensitivity and generally operate in organic solvents. We report on a synthetic H2ase mimic that contains a redox-active phosphole ligand as an electron reservoir, a feature that is also crucial for the working of the natural enzyme. Using a combination of (spectro)electrochemistry and time-resolved infrared spectroscopy, we elucidate the unique redox behavior of the catalyst. We find that the electron reservoir actively partakes in the reduction of protons and that its electron-rich redox states are stabilized through ligand protonation. In dilute sulfuric acid, the catalyst has a turnover frequency of 7.0 × 104 s−1 at an overpotential of 0.66 V. This catalyst is tolerant to the presence of oxygen, thereby paving the way for a new generation of synthetic H2ase mimics that combine the benefits of the enzyme with synthetic versatility and improved stability. PMID:26844297

  18. A hydrogen biosensor made of clay, poly(butylviologen), and hydrogenase sandwiched on a glass carbon electrode.

    PubMed

    Qian, Dong-Jin; Nakamura, Chikashi; Wenk, Stephan-Olav; Ishikawa, Hiroshi; Zorin, Nikolay; Miyake, Jun

    2002-09-01

    A hydrogen gas (H(2)) biosensor was developed in which hydrogenase (H(2)ase) was immobilized and sandwiched between two layers of a montmorillonite clay and poly(butylviologen) (PBV) mixture on a glass carbon electrode. The immobilized PBV efficiently enhanced the electron transfer among the electrode, H(2)ase, and methyl viologen in solution. Both PBV and methyl viologen acted as the electron carrier in the clay-PBV-H(2)ase modified electrode. The clay-PBV-H(2)ase electrode catalyzed the oxidation of H(2) to protons (H(+)) with the electrons being transferred by viologen groups to the electrode. The activation energy of this process was 38+/-2 kJ/mol at pH 7. The catalytic current of the clay-PBV-H(2)ase electrode increased linearly when exposed to increasing concentrations of H(2) gas. In contrast, this electrode showed no activity when exposed to three combustible compounds, namely, carbon monoxide, methane and methanol. The optimum pH range for the oxidation of H(2) by the clay-PBV-H(2)ase electrode was from 7 to 10. Electron transfer process in the clay-PBV-H(2)ase electrode is discussed. PMID:12191927

  19. Substitution of Azotobacter vinelandii hydrogenase small-subunit cysteines by serines can create insensitivity to inhibition by O2 and preferentially damages H2 oxidation over H2 evolution.

    PubMed Central

    McTavish, H; Sayavedra-Soto, L A; Arp, D J

    1995-01-01

    Mutants in which conserved cysteines 294, 297 or 64 and 65 of the Azotobacter vinelandii hydrogenase small subunit were replaced by serines were studied. Cysteines 294 and 297 are homologous to cysteines 246 and 249 of the Desulfovibrio gigas hydrogenase, and these cysteines are ligands to the [3Fe-4S] clusters (A. Volbeda, M.-H. Charon, C. Piras, E. C. Hatchikian, M. Frey, and J. C. Fontecilla-Camps, Nature (London) 373:580-587, 1995). Cysteine 65 is homologous to cysteine 20 of the D. gigas hydrogenase, and this cysteine is a ligand to the proximal [4Fe-4S] cluster. All three mutants retained some hydrogenase activity. All three mutants studied had H2 oxidation-to-H2 evolution activity ratios with whole cells of approximately 1.5, compared with 46 for the wild type. The changes preferentially deplete H2 oxidation activity, while having less effect on evolution. The K64,65C-->S hydrogenase was partially purified and had a specific activity for the evolution reaction that was 22% that of the wild type, while the oxidation-specific activity was 2% that of the wild type. Because cysteine 65 provides a ligand to the proximal [4Fe-4S] cluster, this cluster can be altered without entirely eliminating enzyme activity. Likewise, the detection of H2 evolution and H2 oxidation activities with whole cells and membranes of the K294C-->S and K297C-->S mutants indicates that the [3Fe-4S] cluster can also be altered or possibly eliminated without entirely eliminating enzyme activity. Membranes with K294C-->S or K297C-->S hydrogenase were uninhibited by O2 in H2 oxidation and uninhibited by H2 in H2 evolution. Wild-type membranes and membranes with K64,65C-->S hydrogenase were both sensitive to these inhibitors. These data indicate that the [3Fe-4S] cluster controls the reversible inhibition of hydrogenase activity by O2 or H2. PMID:7608067

  20. Analysis of the vhoGAC and vhtGAC operons from Methanosarcina mazei strain Gö1, both encoding a membrane-bound hydrogenase and a cytochrome b.

    PubMed

    Deppenmeier, U; Blaut, M; Lentes, S; Herzberg, C; Gottschalk, G

    1995-01-15

    DNA encompassing the structural genes of two membrane-bound hydrogenases from Methanosarcina mazei Gö1 was cloned and sequenced. The genes, arranged in the order vhoG and vhoA as well as vhtG and vhtA, were identified as those encoding the small and the large subunits of the NiFe hydrogenases [Deppenmeier, U., Blaut, M., Schmidt, B. & Gottschalk, G. (1992) Arch. Microbiol. 157, 505-511]. Northern-blot analysis revealed that the structural genes formed part of two operons, both containing one additional open reading frame (vhoC and vhtC) which codes for a cytochrome b. This conclusion was drawn from the homology of the deduced N-terminal amino acid sequences of vhoC and vhtC and the N-terminus of a 27-kDa cytochrome isolated from Ms. mazei C16. VhoC and VhtC contain four tentative hydrophobic segments which might span the cytoplasmic membrane. Hydropathy plots suggest that His23 and His50 are involved in heme coordination. The comparison of the sequencing data of vhoG and vhtG with the experimentally determined N-terminus of the small subunit indicate the presence of a 48-amino-acid leader peptide in front of the polypeptides. VhoA and VhtA contained the conserved sequence DPCXXC in the C-terminal region, which excludes the presence of a selenocysteine residue in these hydrogenases. Promoter sequences were found upstream of vhoG and vhtG, respectively. Downstream of vhoC, a putative terminator sequence was identified. Alignments of the deduced amino acid sequences of the gene clusters vhoGAC and vhtGAC showed 92-97% identity. Only the C-termini of VhoC and VhtC were not similar. PMID:7851393

  1. Catalytic Properties of the Isolated Diaphorase Fragment of the NAD+-Reducing [NiFe]-Hydrogenase from Ralstonia eutropha

    PubMed Central

    Lauterbach, Lars; Idris, Zulkifli; Vincent, Kylie A.; Lenz, Oliver

    2011-01-01

    The NAD+-reducing soluble hydrogenase (SH) from Ralstonia eutropha H16 catalyzes the H2-driven reduction of NAD+, as well as reverse electron transfer from NADH to H+, in the presence of O2. It comprises six subunits, HoxHYFUI2, and incorporates a [NiFe] H+/H2 cycling catalytic centre, two non-covalently bound flavin mononucleotide (FMN) groups and an iron-sulfur cluster relay for electron transfer. This study provides the first characterization of the diaphorase sub-complex made up of HoxF and HoxU. Sequence comparisons with the closely related peripheral subunits of Complex I in combination with UV/Vis spectroscopy and the quantification of the metal and FMN content revealed that HoxFU accommodates a [2Fe2S] cluster, FMN and a series of [4Fe4S] clusters. Protein film electrochemistry (PFE) experiments show clear electrocatalytic activity for both NAD+ reduction and NADH oxidation with minimal overpotential relative to the potential of the NAD+/NADH couple. Michaelis-Menten constants of 56 µM and 197 µM were determined for NADH and NAD+, respectively. Catalysis in both directions is product inhibited with KI values of around 0.2 mM. In PFE experiments, the electrocatalytic current was unaffected by O2, however in aerobic solution assays, a moderate superoxide production rate of 54 nmol per mg of protein was observed, meaning that the formation of reactive oxygen species (ROS) observed for the native SH can be attributed mainly to HoxFU. The results are discussed in terms of their implications for aerobic functioning of the SH and possible control mechanism for the direction of catalysis. PMID:22016788

  2. Analysis of a pentacoordinate iron dicarbonyl as synthetic analogue of the Hmd or mono-iron hydrogenase active site.

    PubMed

    Liu, Tianbiao; Li, Bin; Popescu, Codrina V; Bilko, Andrey; Prez, Lisa M; Hall, Michael B; Darensbourg, Marcetta Y

    2010-03-01

    Pentacoordinate iron dicarbonyls, (NS)Fe(CO)(2)P (NS=2-amidothiophenylate, P=PCy(3) (4), PPh(3), (5), and P(OEt)(3) (6)) were prepared as potential biomimetics of the active site of the mono-iron hydrogenase, [Fe]-H(2)ase. Full characterization including X-ray diffraction, density functional theory (DFT) computations, and Mssbauer studies for complexes 5 and 6 find that, despite similar infrared v(CO) pattern and absorption frequencies as the active site of the [Fe]-H(2)ase, the geometrical distortions towards trigonal bipyramidal, the negative isomer shift parameters, and the differences in CO-uptake reactivity are due to the "non-innocence" of the NS ligand. Ligand-based protonation with a strong acid, HBF(4).Et(2)O, interrupted the extensive pi-delocalization over Fe and NS ligand of complex 4 and switched on CO uptake (1 bar) to form a CO adduct, mer-[(H-NS)Fe(CO)(3)(PCy(3))](+) or 4(CO)-H(+). The extrinsic CO is reversibly removed on deprotonation with Et(3)N to regenerate complex 4. In a (13)CO atmosphere, concomitant CO uptake by 4-H(+) and exchange with intrinsic CO groups provide a facile route to (13)C-labeled 4(CO)-H(+) and, upon deprotonation, (13)C-labeled complex 4. DFT calculations show substantial Fe character in the LUMO of 4-H(+) typical of the d(6) Fe(II) in a regular square-pyramidal geometry. Thus, the Lewis acidity of 4-H(+) makes it amenable for CO binding, whereas the dianionic NS ligand renders the iron center of 4 insufficiently electrophilic and largely of Fe(I) character. PMID:20119989

  3. Synthesis and Photophysical Study of a [NiFe] Hydrogenase Biomimetic Compound Covalently Linked to a Re-diimine Photosensitizer

    PubMed Central

    2015-01-01

    The synthesis, photophysics, and photochemistry of a linked dyad ([Re]-[NiFe2]) containing an analogue ([NiFe2]) of the active site of [NiFe] hydrogenase, covalently bound to a Re-diimine photosensitizer ([Re]), are described. Following excitation, the mechanisms of electron transfer involving the [Re] and [NiFe2] centers and the resulting decomposition were investigated. Excitation of the [Re] center results in the population of a diimine-based metal-to-ligand charge transfer excited state. Reductive quenching by NEt3 produces the radically reduced form of [Re], [Re]− (kq = 1.4 ± 0.1 × 107 M–1 s–1). Once formed, [Re]− reduces the [NiFe2] center to [NiFe2]−, and this reduction was followed using time-resolved infrared spectroscopy. The concentration dependence of the electron transfer rate constants suggests that both inter- and intramolecular electron transfer pathways are involved, and the rate constants for these processes have been estimated (kinter = 5.9 ± 0.7 × 108 M–1 s–1, kintra = 1.5 ± 0.1 × 105 s–1). For the analogous bimolecular system, only intermolecular electron transfer could be observed (kinter = 3.8 ± 0.5 × 109 M–1 s–1). Fourier transform infrared spectroscopic studies confirms that decomposition of the dyad occurs upon prolonged photolysis, and this appears to be a major factor for the low activity of the system toward H2 production in acidic conditions. PMID:26605700

  4. Synthesis and Photophysical Study of a [NiFe] Hydrogenase Biomimetic Compound Covalently Linked to a Re-diimine Photosensitizer.

    PubMed

    Summers, Peter A; Calladine, James A; Ghiotto, Fabio; Dawson, Joe; Sun, Xue-Z; Hamilton, Michelle L; Towrie, Michael; Davies, E Stephen; McMaster, Jonathan; George, Michael W; Schröder, Martin

    2016-01-19

    The synthesis, photophysics, and photochemistry of a linked dyad ([Re]-[NiFe2]) containing an analogue ([NiFe2]) of the active site of [NiFe] hydrogenase, covalently bound to a Re-diimine photosensitizer ([Re]), are described. Following excitation, the mechanisms of electron transfer involving the [Re] and [NiFe2] centers and the resulting decomposition were investigated. Excitation of the [Re] center results in the population of a diimine-based metal-to-ligand charge transfer excited state. Reductive quenching by NEt3 produces the radically reduced form of [Re], [Re](-) (kq = 1.4 ± 0.1 × 10(7) M(-1) s(-1)). Once formed, [Re](-) reduces the [NiFe2] center to [NiFe2](-), and this reduction was followed using time-resolved infrared spectroscopy. The concentration dependence of the electron transfer rate constants suggests that both inter- and intramolecular electron transfer pathways are involved, and the rate constants for these processes have been estimated (kinter = 5.9 ± 0.7 × 10(8) M(-1) s(-1), kintra = 1.5 ± 0.1 × 10(5) s(-1)). For the analogous bimolecular system, only intermolecular electron transfer could be observed (kinter = 3.8 ± 0.5 × 10(9) M(-1) s(-1)). Fourier transform infrared spectroscopic studies confirms that decomposition of the dyad occurs upon prolonged photolysis, and this appears to be a major factor for the low activity of the system toward H2 production in acidic conditions. PMID:26605700

  5. Synthetic and Structural Studies of 2-Acylmethyl-6-R-Difunctionalized Pyridine Ligand-Containing Iron Complexes Related to [Fe]-Hydrogenase.

    PubMed

    Song, Li-Cheng; Xu, Kai-Kai; Han, Xiao-Feng; Zhang, Ji-Wei

    2016-02-01

    As active site models of [Fe]-hydrogenase, tridentate 2-acylmethyl-6-methoxymethoxy-difunctionalized pyridine-containing complexes η(3)-(2-COCH2-6-MeOCH2OC5H3N)Fe(CO)2(L1) (4, L1 = I; 5, SCN; 6, PhCS2) were prepared via the following multistep reactions: (i) etherification of 2-MeO2C-6-HOC5H3N with ClCH2OMe to give 2-MeO2C-6-MeOCH2OC5H3N (1), (ii) reduction of 1 with NaBH4 to give 2-HOCH2-6-MeOCH2OC5H3N (2), (iii) esterification of 2 with 4-toluenesulfonyl chloride to give 2-TsOCH2-6-MeOCH2OC5H3N (3), (iv) nucleophilic substitution of 3 with Na2Fe(CO)4 followed by treatment of the resulting Fe(0) intermediate Na[(2-CH2-6-MeOCH2OC5H3N)Fe(CO)4] (M1) with I2 to give complex 4, and (v) condensation of 4 with KSCN and PhCS2K to give complexes 5 and 6, respectively. In contrast to the preparation of complexes 4-6, bidentate 2-acylmethyl-6-methoxymethoxy-difunctionalized pyridine-containing model complexes η(2)-(2-COCH2-6-MeOCH2OC5H3N)Fe(CO)2(I)(L2) (7, L2 = PPh3; 8, Cy-C6H11NC) and η(2)-(2-COCH2-6-MeOCH2OC5H3N)Fe(CO)2(L3) (9, L3 = 2-SC5H4N; 10, 8-SC9H6N) were prepared by ligand exchange reactions of 4 with PPh3, Cy-C6H11NC, 2-KSC5H4N, and 8-KSC9H6N, respectively. Particularly interesting is that the tridentate 2,6-bis(acylmethyl)pyridine- and 2-acylmethyl-6-arylthiomethylpyridine-containing model complexes η(3)-[2,6-(COCH2)2C5H3N]Fe(CO)2(L4) (11, L4 = PPh3; 12, CO) and η(3)-2-(COCH2-6-ArSCH2C5H3N)Fe(CO)2(ArS) (13, ArS = PhS; 14, 2-S-5-MeC4H2O) were obtained, unexpectedly, when 2,6-(TsOCH2)2C5H3N reacted with Na2Fe(CO)4 followed by treatment of the resulting mixture with ligands PPh3 and CO or disulfides (PhS)2 and (2-S-5-MeC4H2O)2. Reactions of ligand precursors 3 and 2,6-(TsOCH2)2C5H3N with Na2Fe(CO)4 were monitored by in situ IR spectroscopy, and the possible pathways for producing complexes 4 and 11-14 via intermediates Na[(2-CH2-6-MeOCH2OC5H3N)Fe(CO)4] (M1), Na[(2-CH2-6-TsOCH2C5H3N)Fe(CO)4] (M2), and (2-COCH2-6-CH2C5H3N)Fe(CO)3 (M3) are suggested. New compounds 1-14 were characterized by elemental analysis, spectroscopy, and, for some of them, X-ray crystallography. PMID:26756374

  6. Synthetic analogues of [Fe4S4(Cys)3(His)] in hydrogenases and [Fe4S4(Cys)4] in HiPIP derived from all-ferric [Fe4S4{N(SiMe3)2}4

    PubMed Central

    Ohki, Yasuhiro; Tanifuji, Kazuki; Yamada, Norihiro; Imada, Motosuke; Tajima, Tomoyuki; Tatsumi, Kazuyuki

    2011-01-01

    The all-ferric [Fe4S4]4+ cluster [Fe4S4{N(SiMe3)2}4] 1 and its one-electron reduced form [1]- serve as convenient precursors for the synthesis of 3∶1-site differentiated [Fe4S4] clusters and high-potential iron-sulfur protein (HiPIP) model clusters. The reaction of 1 with four equivalents (equiv) of the bulky thiol HSDmp (Dmp = 2,6-(mesityl)2C6H3, mesityl = 2,4,6-Me3C6H2) followed by treatment with tetrahydrofuran (THF) resulted in the isolation of [Fe4S4(SDmp)3(THF)3] 2. Cluster 2 contains an octahedral iron atom with three THF ligands, and its Fe(S)3(O)3 coordination environment is relevant to that in the active site of substrate-bound aconitase. An analogous reaction of [1]- with four equiv of HSDmp gave [Fe4S4(SDmp)4]- 3, which models the oxidized form of HiPIP. The THF ligands in 2 can be replaced by tetramethyl-imidazole (Me4Im) to give [Fe4S4(SDmp)3(Me4Im)] 4 modeling the [Fe4S4(Cys)3(His)] cluster in hydrogenases, and its one-electron reduced form [4]- was synthesized from the reaction of 3 with Me4Im. The reversible redox couple between 3 and [3]- was observed at E1/2 = -820 mV vs. Ag/Ag+, and the corresponding reversible couple for 4 and [4]- is positively shifted by +440 mV. The cyclic voltammogram of 3 also exhibited a reversible oxidation couple, which indicates generation of the all-ferric [Fe4S4]4+ cluster, [Fe4S4(SDmp)4]. PMID:21768339

  7. Synthetic analogues of [Fe4S4(Cys)3(His)] in hydrogenases and [Fe4S4(Cys)4] in HiPIP derived from all-ferric [Fe4S4{N(SiMe3)2}4].

    PubMed

    Ohki, Yasuhiro; Tanifuji, Kazuki; Yamada, Norihiro; Imada, Motosuke; Tajima, Tomoyuki; Tatsumi, Kazuyuki

    2011-08-01

    The all-ferric [Fe(4)S(4)](4+) cluster [Fe(4)S(4){N(SiMe(3))(2)}(4)] 1 and its one-electron reduced form [1](-) serve as convenient precursors for the synthesis of 31-site differentiated [Fe(4)S(4)] clusters and high-potential iron-sulfur protein (HiPIP) model clusters. The reaction of 1 with four equivalents (equiv) of the bulky thiol HSDmp (Dmp = 2,6-(mesityl)(2)C(6)H(3), mesityl = 2,4,6-Me(3)C(6)H(2)) followed by treatment with tetrahydrofuran (THF) resulted in the isolation of [Fe(4)S(4)(SDmp)(3)(THF)(3)] 2. Cluster 2 contains an octahedral iron atom with three THF ligands, and its Fe(S)(3)(O)(3) coordination environment is relevant to that in the active site of substrate-bound aconitase. An analogous reaction of [1](-) with four equiv of HSDmp gave [Fe(4)S(4)(SDmp)(4)](-) 3, which models the oxidized form of HiPIP. The THF ligands in 2 can be replaced by tetramethyl-imidazole (Me(4)Im) to give [Fe(4)S(4)(SDmp)(3)(Me(4)Im)] 4 modeling the [Fe(4)S(4)(Cys)(3)(His)] cluster in hydrogenases, and its one-electron reduced form [4](-) was synthesized from the reaction of 3 with Me(4)Im. The reversible redox couple between 3 and [3](-) was observed at E(1/2) = -820 mV vs. Ag/Ag(+), and the corresponding reversible couple for 4 and [4](-) is positively shifted by +440 mV. The cyclic voltammogram of 3 also exhibited a reversible oxidation couple, which indicates generation of the all-ferric [Fe(4)S(4)](4+) cluster, [Fe(4)S(4)(SDmp)(4)]. PMID:21768339

  8. Breathing air to save energy - new insights into the ecophysiological role of high-affinity [NiFe]-hydrogenase inStreptomyces avermitilis.

    PubMed

    Liot, Quentin; Constant, Philippe

    2016-02-01

    The Streptomyces avermitilis genome encodes a putative high-affinity [NiFe]-hydrogenase conferring the ability to oxidize tropospheric H2 in mature spores. Here, we used a combination of transcriptomic and mutagenesis approaches to shed light on the potential ecophysiological role of the enzyme. First, S. avermitilis was either exposed to low or hydrogenase-saturating levels of H2 to investigate the impact of H2 on spore transcriptome. In total, 1293 genes were differentially expressed, with 1127 and 166 showing lower and higher expression under elevated H2 concentration, respectively. High H2 exposure lowered the expression of the Sec protein secretion pathway and ATP-binding cassette-transporters, with increased expression of genes encoding proteins directing carbon metabolism toward sugar anabolism and lower expression of NADH dehydrogenase in the respiratory chain. Overall, the expression of relA responsible for the synthesis of the pleiotropic alarmone ppGpp decreased upon elevated H2 exposure, which likely explained the reduced expression of antibiotic synthesis and stress response genes. Finally, deletion of hhySL genes resulted in a loss of H2 uptake activity and a dramatic loss of viability in spores. We propose that H2 is restricted to support the seed bank of Streptomyces under a unique survival-mixotrophic energy mode and discuss important ecological implications of this finding. PMID:26541261

  9. Reactivation from the Ni-B state in [NiFe] hydrogenase of Ralstonia eutropha is controlled by reduction of the superoxidised proximal cluster.

    PubMed

    Radu, Valentin; Frielingsdorf, Stefan; Lenz, Oliver; Jeuken, Lars J C

    2016-02-11

    The tolerance towards oxic conditions of O2-tolerant [NiFe] hydrogenases has been attributed to an unusual [4Fe-3S] cluster that lies proximal to the [NiFe] active site. Upon exposure to oxygen, this cluster converts to a superoxidised (5+) state, which is believed to secure the formation of the so-called Ni-B state that is rapidly reactivated under reducing conditions. Here, the reductive reactivation of the membrane-bound [NiFe]-hydrogenase (MBH) from Ralstonia eutropha in a native-like lipid membrane was characterised and compared to a variant that instead carries a typical [4Fe-4S] proximal cluster. Reactivation from the Ni-B state was faster in the [4Fe-4S] variant, suggesting that the reactivation rate in MBH is limited by the reduction of the superoxidised [4Fe-3S] cluster. We propose that the [4Fe-3S] cluster plays a major role in protecting MBH by blocking the reversal of electron transfer to the [NiFe] active site, which would produce damaging radical oxygen species. PMID:26750202

  10. Effects of Metal on the Biochemical Properties of Helicobacter pylori HypB, a Maturation Factor of [NiFe]-Hydrogenase and Urease ▿ †

    PubMed Central

    Sydor, Andrew M.; Liu, Jenny; Zamble, Deborah B.

    2011-01-01

    The biosyntheses of the [NiFe]-hydrogenase and urease enzymes in Helicobacter pylori require several accessory proteins for proper construction of the nickel-containing metallocenters. The hydrogenase accessory proteins HypA and HypB, a GTPase, have been implicated in the nickel delivery steps of both enzymes. In this study, the metal-binding properties of H. pylori HypB were characterized, and the effects of metal binding on the biochemical behavior of the protein were examined. The protein can bind stoichiometric amounts of Zn(II) or Ni(II), each with nanomolar affinity. Mutation of Cys106 and His107, which are located between two major GTPase motifs, results in undetectable Ni(II) binding, and the Zn(II) affinity is weakened by 2 orders of magnitude. These two residues are also required for the metal-dependent dimerization observed in the presence of Ni(II) but not Zn(II). The addition of metals to the protein has distinct impacts on GTPase activity, with zinc significantly reducing GTP hydrolysis to below detectable levels and nickel only slightly altering the kcat and Km of the reaction. The regulation of HypB activities by metal binding may contribute to the maturation of the nickel-containing enzymes. PMID:21239585

  11. Carboxyl-terminal processing of the cytoplasmic NAD-reducing hydrogenase of Alcaligenes eutrophus requires the hoxW gene product.

    PubMed Central

    Thiemermann, S; Dernedde, J; Bernhard, M; Schroeder, W; Massanz, C; Friedrich, B

    1996-01-01

    Two open reading frames (ORFs) were identified immediately downstream of the four structural genes for the soluble hydrogenase (SH) of Alcaligenes eutrophus H16. While a mutation in ORF2 had no obvious effect on hydrogen metabolism, an in-frame deletion in ORF1, subsequently designated hoxW, led to a complete loss of SH activity and hence a significant retardation of autotrophic growth on hydrogen. Hydrogen oxidation in the hoxW mutant was catalyzed by the second hydrogenase, a membrane-bound enzyme. Assembly of the four subunits of the SH was blocked in mutant cells, and HoxH, the hydrogen-activating subunit, accumulated as a precursor which was still capable of binding nickel. Protein sequencing revealed that HoxH isolated from the wild type terminates at His-464, whereas the C-terminal amino acid sequence of HoxH from the hoxW mutant is colinear with the deduced sequence. Processing of the HoxH precursor was restored in vitro by a cell extract containing HoxW. These results indicate that HoxW is a highly specific carboxyl-terminal protease which releases a 24-amino-acid peptide from HoxH prior to progression of subunit assembly. PMID:8636040

  12. Direct Comparison of the Performance of a Bio-inspired Synthetic Nickel Catalyst and a [NiFe]-Hydrogenase, Both Covalently Attached to Electrodes

    SciTech Connect

    Rodriguez-Macia, Patricia; Dutta, Arnab; Lubitz, Wolfgang; Shaw, Wendy J.; Rudiger, Olaf

    2015-10-12

    The active site of hydrogenases has been a source of inspiration for the development of molecular catalysts. However, direct comparisons between molecular catalysts and enzymes have not been possible because different techniques are used to evaluate both types of catalysts, minimizing our ability to determine how far we’ve come in mimicking the impressive enzymatic performance. Here we directly compare the catalytic properties of the [Ni(PCy2NGly2)2]2+ complex with the [NiFe]-hydrogenase from Desulfobivrio vulgaris Miyazaki F (DvMF) immobilized to a functionalized electrode under identical conditions. At pH=7, the enzyme has higher performance in both activity and overpotential, and is more stable, while at low pH, the molecular catalyst outperforms the enzyme in all respects. The Ni complex also has increased tolerance to CO. This is the first direct comparison of enzymes and molecular complexes, enabling a unique understanding of the benefits and detriments of both systems, and advancing our understanding of the utilization of these bioinspired complexes in fuel cells. AD and WJS acknowledge the Office of Science Early Career Research Program through the US Department of Energy (US DOE), Office of Science, Office of Basic Energy Sciences (BES), and Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the US DOE.

  13. Hydrogen bioelectrooxidation on gold nanoparticle-based electrodes modified by Aquifex aeolicus hydrogenase: Application to hydrogen/oxygen enzymatic biofuel cells.

    PubMed

    Monsalve, Karen; Roger, Magali; Gutierrez-Sanchez, Cristina; Ilbert, Marianne; Nitsche, Serge; Byrne-Kodjabachian, Deborah; Marchi, Valérie; Lojou, Elisabeth

    2015-12-01

    For the first time, gold nanoparticle-based electrodes have been used as platforms for efficient immobilization of the [NiFe] hydrogenase from the hyperthermophilic bacterium Aquifex aeolicus. AuNPs were characterized by electronic microscopy, dynamic light scattering and UV-Vis spectroscopy. Two sizes around 20.0±5.3 nm and 37.2±4.3 nm nm were synthesized. After thiol-based functionalization, the AuNPs were proved to allow direct H2 oxidation over a large range of temperatures. A high current density up to 1.85±0.15 mA·cm(-2) was reached at the smallest AuNPs, which is 170 times higher than the one recorded at the bare gold electrode. The catalytic current was especially studied as a function of the AuNP size and amount, and procedure for deposition. A synergetic effect between the AuNP porous deposit and the increase surface area was shown. Compared to previously used nanomaterials such as carbon nanofibers, the covalent grafting of the enzyme on the thiol-modified gold nanoparticles was shown to enhance the stability of the hydrogenase. This bioanode was finally coupled to a biocathode where BOD from Myrothecium verrucaria was immobilized on AuNP-based film. The performance of the so-mounted H2/O2 biofuel cell was evaluated, and a power density of 0.25 mW·cm(-2) was recorded. PMID:25960259

  14. Biochemical Characterization of HydF, a Scaffolding Enzyme, in the Synthesis of the Hydrogenase Active Site Metal Center: Implications Towards the Evolution of Biocatalysts from Mineral-based Components on Early Earth

    NASA Astrophysics Data System (ADS)

    Duffus, B. R.; Shepard, E. M.; McGlynn, S. E.; Bueling, A. L.; Winslow, M. A.; Peters, J. W.; Broderick, J. B.

    2010-04-01

    [FeFe]-hydrogenase active site biosynthesis utilizes radical chemistry on a scaffold protein whose ancestor may have been one of the earliest examples of a protein that couples the chemistry of an Fe-S peptide nest with a nucleotide binding nest.

  15. Contributions of the [NiFe]- and [FeFe]-hydrogenase to H2 production in Shewanella oneidensis MR-1 as revealed by isotope ratio analysis of evolved H2

    SciTech Connect

    Kreuzer, Helen W.; Hill, Eric A.; Moran, James J.; Bartholomew, Rachel A.; Hui, Yang; Hegg, Eric L.

    2014-03-01

    Shewanella oneidensis MR-1 encodes both a [NiFe]- and an [FeFe]-hydrogenase. While the output of these proteins has been characterized in mutant strains expressing only one of the enzymes, the contribution of each to H2 synthesis in the wild-type organism is not clear. Here we use stable isotope analysis of H2 in the culture headspace, along with transcription data and measurements of the concentrations of gases in the headspace, to characterize H2 production in the wild-type strain. After most of the O2 in the headspace had been consumed, H2 was produced and then consumed by the bidirectional [NiFe]-hydrogenase. Once the cultures were completely anaerobic, a new burst of H2 synthesis catalyzed by both enzymes took place. Our data is consistent with the hypothesis that at this point in the culture cycle, a pool of electrons is shunted toward both hydrogenases in the wild-type organism, but that in the absence of one of the hydrogenases, the flux is redirected to the available enzyme. To our knowledge, this is the first use of stable isotope analysis of a metabolic product to elucidate substrate flux through two alternative enzymes in the same cellular system.

  16. Contributions of the [NiFe]- and [FeFe]-hydrogenase to H2 production in Shewanella oneidensis MR-1 as revealed by isotope ratio analysis of evolved H(2).

    PubMed

    Kreuzer, Helen W; Hill, Eric A; Moran, James J; Bartholomew, Rachel A; Yang, Hui; Hegg, Eric L

    2014-03-01

    Shewanella oneidensis MR-1 encodes both a [NiFe]- and an [FeFe]-hydrogenase. While the output of these proteins has been characterized in mutant strains expressing only one of the enzymes, the contribution of each to H2 synthesis in the wild-type organism is not clear. Here, we use stable isotope analysis of H2 in the culture headspace, along with transcription data and measurements of the concentrations of gases in the headspace, to characterize H2 production in the wild-type strain. After most of the O2 in the headspace had been consumed, H2 was produced and then consumed by the bidirectional [NiFe]-hydrogenase. Once the cultures were completely anaerobic, a new burst of H2 synthesis catalyzed by both enzymes took place. Our data are consistent with the hypothesis that at this point in the culture cycle, a pool of electrons is shunted toward both hydrogenases in the wild-type organisms, but that in the absence of one of the hydrogenases, the flux is redirected to the available enzyme. To our knowledge, this is the first use of natural-abundance stable isotope analysis of a metabolic product to elucidate substrate flux through two alternative enzymes in the same cellular system. PMID:24372594

  17. Genome Data Mining and Soil Survey for the Novel Group 5 [NiFe]-Hydrogenase To Explore the Diversity and Ecological Importance of Presumptive High-Affinity H2-Oxidizing Bacteria ▿†

    PubMed Central

    Constant, Philippe; Chowdhury, Soumitra Paul; Hesse, Laura; Pratscher, Jennifer; Conrad, Ralf

    2011-01-01

    Streptomyces soil isolates exhibiting the unique ability to oxidize atmospheric H2 possess genes specifying a putative high-affinity [NiFe]-hydrogenase. This study was undertaken to explore the taxonomic diversity and the ecological importance of this novel functional group. We propose to designate the genes encoding the small and large subunits of the putative high-affinity hydrogenase hhyS and hhyL, respectively. Genome data mining revealed that the hhyL gene is unevenly distributed in the phyla Actinobacteria, Proteobacteria, Chloroflexi, and Acidobacteria. The hhyL gene sequences comprised a phylogenetically distinct group, namely, the group 5 [NiFe]-hydrogenase genes. The presumptive high-affinity H2-oxidizing bacteria constituting group 5 were shown to possess a hydrogenase gene cluster, including the genes encoding auxiliary and structural components of the enzyme and four additional open reading frames (ORFs) of unknown function. A soil survey confirmed that both high-affinity H2 oxidation activity and the hhyL gene are ubiquitous. A quantitative PCR assay revealed that soil contained 106 to 108 hhyL gene copies g (dry weight)−1. Assuming one hhyL gene copy per genome, the abundance of presumptive high-affinity H2-oxidizing bacteria was higher than the maximal population size for which maintenance energy requirements would be fully supplied through the H2 oxidation activity measured in soil. Our data indicate that the abundance of the hhyL gene should not be taken as a reliable proxy for the uptake of atmospheric H2 by soil, because high-affinity H2 oxidation is a facultatively mixotrophic metabolism, and microorganisms harboring a nonfunctional group 5 [NiFe]-hydrogenase may occur. PMID:21742924

  18. NADP-Specific Electron-Bifurcating [FeFe]-Hydrogenase in a Functional Complex with Formate Dehydrogenase in Clostridium autoethanogenum Grown on CO

    PubMed Central

    Wang, Shuning; Huang, Haiyan; Kahnt, Jörg; Mueller, Alexander P.; Köpke, Michael

    2013-01-01

    Flavin-based electron bifurcation is a recently discovered mechanism of coupling endergonic to exergonic redox reactions in the cytoplasm of anaerobic bacteria and archaea. Among the five electron-bifurcating enzyme complexes characterized to date, one is a heteromeric ferredoxin- and NAD-dependent [FeFe]-hydrogenase. We report here a novel electron-bifurcating [FeFe]-hydrogenase that is NADP rather than NAD specific and forms a complex with a formate dehydrogenase. The complex was found in high concentrations (6% of the cytoplasmic proteins) in the acetogenic Clostridium autoethanogenum autotrophically grown on CO, which was fermented to acetate, ethanol, and 2,3-butanediol. The purified complex was composed of seven different subunits. As predicted from the sequence of the encoding clustered genes (fdhA/hytA-E) and from chemical analyses, the 78.8-kDa subunit (FdhA) is a selenocysteine- and tungsten-containing formate dehydrogenase, the 65.5-kDa subunit (HytB) is an iron-sulfur flavin mononucleotide protein harboring the NADP binding site, the 51.4-kDa subunit (HytA) is the [FeFe]-hydrogenase proper, and the 18.1-kDa (HytC), 28.6-kDa (HytD), 19.9-kDa (HytE1), and 20.1-kDa (HytE2) subunits are iron-sulfur proteins. The complex catalyzed both the reversible coupled reduction of ferredoxin and NADP+ with H2 or formate and the reversible formation of H2 and CO2 from formate. We propose the complex to have two functions in vivo, namely, to normally catalyze CO2 reduction to formate with NADPH and reduced ferredoxin in the Wood-Ljungdahl pathway and to catalyze H2 formation from NADPH and reduced ferredoxin when these redox mediators get too reduced during unbalanced growth of C. autoethanogenum on CO (E0′ = −520 mV). PMID:23893107

  19. Designing interfaces of hydrogenase-nanomaterial hybrids for efficient solar conversion.

    PubMed

    King, Paul W

    2013-01-01

    The direct conversion of sunlight into biofuels is an intriguing alternative to a continued reliance on fossil fuels. Natural photosynthesis has long been investigated both as a potential solution, and as a model for utilizing solar energy to drive a water-to-fuel cycle. The molecules and organizational structure provide a template to inspire the design of efficient molecular systems for photocatalysis. A clear design strategy is the coordination of molecular interactions that match kinetic rates and energetic levels to control the direction and flow of energy from light harvesting to catalysis. Energy transduction and electron-transfer reactions occur through interfaces formed between complexes of donor-acceptor molecules. Although the structures of several of the key biological complexes have been solved, detailed descriptions of many electron-transfer complexes are lacking, which presents a challenge to designing and engineering biomolecular systems for solar conversion. Alternatively, it is possible to couple the catalytic power of biological enzymes to light harvesting by semiconductor nanomaterials. In these molecules, surface chemistry and structure can be designed using ligands. The passivation effect of the ligand can also dramatically affect the photophysical properties of the semiconductor, and energetics of external charge-transfer. The length, degree of bond saturation (aromaticity), and solvent exposed functional groups of ligands can be manipulated to further tune the interface to control molecular assembly, and complex stability in photocatalytic hybrids. The results of this research show how ligand selection is critical to designing molecular interfaces that promote efficient self-assembly, charge-transfer and photocatalysis. This article is part of a Special Issue entitled: Metals in Bioenergetics and Biomimetics Systems. PMID:23541891

  20. Hydrogen production at high Faradaic efficiency by a bio-electrode based on TiO2 adsorption of a new [FeFe]-hydrogenase from Clostridium perfringens.

    PubMed

    Morra, Simone; Valetti, Francesca; Sarasso, Veronica; Castrignan, Silvia; Sadeghi, Sheila J; Gilardi, Gianfranco

    2015-12-01

    The [FeFe]-hydrogenase CpHydA from Clostridium perfringens was immobilized by adsorption on anatase TiO2 electrodes for clean hydrogen production. The immobilized enzyme proved to perform direct electron transfer to and from the electrode surface and catalyses both H2 oxidation (H2 uptake) and H2 production (H2 evolution) with a current density for H2 evolution of about 2 mA cm(-1). The TiO2/CpHydA bioelectrode remained active for several days upon storage and when a reducing potential was set, H2 evolution occurred with a mean Faradaic efficiency of 98%. The high turnover frequency of H2 production and the tight coupling of electron transfer, resulting in a Faradaic efficiency close to 100%, support the exploitation of the novel TiO2/CpHydA stationary electrode as a powerful device for H2 production. PMID:26278509

  1. The Radical SAM Enzyme HydG Requires Cysteine and a Dangler Iron for Generating an Organometallic Precursor to the [FeFe]-Hydrogenase H-Cluster.

    PubMed

    Suess, Daniel L M; Pham, Cindy C; Bürstel, Ingmar; Swartz, James R; Cramer, Stephen P; Britt, R David

    2016-02-01

    Three maturase enzymes-HydE, HydF, and HydG-synthesize and insert the organometallic component of the [FeFe]-hydrogenase active site (the H-cluster). HydG generates the first organometallic intermediates in this process, ultimately producing an [Fe(CO)2(CN)] complex. A limitation in understanding the mechanism by which this complex forms has been uncertainty regarding the precise metallocluster composition of HydG that comprises active enzyme. We herein show that the HydG auxiliary cluster must bind both l-cysteine and a dangler Fe in order to generate the [Fe(CO)2(CN)] product. These findings support a mechanistic framework in which a [(Cys)Fe(CO)2(CN)](-) species is a key intermediate in H-cluster maturation. PMID:26764535

  2. Transcriptional regulation of genes encoding the selenium-free [NiFe]-hydrogenases in the archaeon Methanococcus voltae involves positive and negative control elements.

    PubMed Central

    Noll, I; Müller, S; Klein, A

    1999-01-01

    Methanococcus voltae harbors genetic information for two pairs of homologous [NiFe]-hydrogenases. Two of the enzymes contain selenocysteine, while the other two gene groups encode apparent isoenzymes that carry cysteinyl residues in the homologous positions. The genes coding for the selenium-free enzymes, frc and vhc, are expressed only under selenium limitation. They are transcribed out of a common intergenic region. A series of deletions made in the intergenic region localized a common negative regulatory element for the vhc and frc promoters as well as two activator elements that are specific for each of the two transcription units. Repeated sequences, partially overlapping the frc promoter, were also detected. Mutations in these repeated heptanucleotide sequences led to a weak induction of a reporter gene under the control of the frc promoters in the presence of selenium. This result suggests that the heptamer repeats contribute to the negative regulation of the frc transcription unit. PMID:10430564

  3. The Radical SAM Enzyme HydG Requires Cysteine and a Dangler Iron for Generating an Organometallic Precursor to the [FeFe]-Hydrogenase H-Cluster

    PubMed Central

    Suess, Daniel L. M.; Pham, Cindy C.; Bürstel, Ingmar; Swartz, James R.; Cramer, Stephen P.; Britt, R. David

    2016-01-01

    Three maturase enzymes—HydE, HydF, and HydG—synthesize and insert the organometallic component of the [FeFe]-hydrogenase active site (the H-cluster). HydG generates the first organometallic intermediates in this process, ultimately producing an [Fe(CO)2(CN)] complex. A limitation in understanding the mechanism by which this complex forms has been uncertainty regarding the precise metallocluster composition of HydG that comprises active enzyme. We herein show that the HydG auxiliary cluster must bind both l-cysteine and a dangler Fe in order to generate the [Fe(CO)2(CN)] product. These findings support a mechanistic framework in which a [(Cys)Fe(CO)2(CN)]− species is a key intermediate in H-cluster maturation. PMID:26764535

  4. Synthetic Models for the [FeFe]-Hydrogenase: Catalytic Proton Reduction and the Structure of the Doubly Protonated Intermediate

    PubMed Central

    Carroll, Maria E.; Barton, Bryan E.; Rauchfuss, Thomas B.; Carroll, Patrick J.

    2012-01-01

    This report compares biomimetic HER catalysts with and without the amine cofactor (adtNH): Fe2(adtNH)(CO)2(dppv)2 (1NH) and Fe2(pdt)(CO)2(dppv)2 (2; (adtNH)2− = (HN(CH2S)22−, pdt2− = 1,3-(CH2)3S22−). These compounds are spectroscopically, structurally, and stereodynamically very similar but exhibit very different catalytic properties. Protonation of 1NH and 2 each give three isomeric hydrides beginning with the kinetically favored terminal hydride, which converts sequentially to sym and unsym isomers of the bridging hydrides. In the case of the amine, the corresponding ammonium-hydrides are also observed. In the case of the terminal amine hydride [t-H1NH]BF4, the ammonium/amine-hydride equilibrium is sensitive to counteranions and solvent. The species [t-H1NH2](BF4)2 represents the first example of a crystallographically characterized terminal hydride produced by protonation. The NH--HFe distance of 1.88(7) Å indicates dihydrogen bonding. The bridging hydrides [µ-H1NH]+ and [µ-H2]+ reduce near −1.8 V, about 150 mV more negative than the reductions of the terminal hydride [t-H1NH]+ and [t-H2]+ at −1.65 V. Reductions of the amine hydrides [t-H1NH]+ and [t-H1NH2]2+ are irreversible. For the pdt analog, the [t-H2]+/0 couple is unaffected by weak acids (pKaMeCN 15.3) but exhibits catalysis with HBF4•Et2O, albeit with a TOF around 4 s−1 and an overpotential greater than 1 V. The voltammetry of [t-H1NH]+ is strongly affected by relatively weak acids and proceeds at 5000 s−1 with an overpotential of 0.7 V. The ammonium-hydride [t-H1NH2]2+ is a faster catalyst with an estimated TOF of 58,000 s−1 and an overpotential of 0.5 V. PMID:23126330

  5. Active-Site Models for the Nickel-Iron Hydrogenases: Effects of Ligands on Reactivity and Catalytic Properties

    PubMed Central

    Carroll, Maria E.; Barton, Bryan E.; Gray, Danielle L.; Mack, Amanda E.; Rauchfuss, Thomas B.

    2011-01-01

    Described are new derivatives of the type [HNiFe(SR)2(diphosphine)(CO)3]+, which feature a Ni(diphosphine) group linked to a Fe(CO)3 group via two bridging thiolate ligands. Previous work had described [HNiFe(pdt)(dppe)(CO)3]+ ([1H]+) and its activity as a catalyst for the reduction of protons. Work described in this paper focused on the effects of the diphosphine attached to nickel as well as the dithiolate bridge, 1,3-propanedithiolate (pdt) vs 1,2-ethanedithiolate (edt). A new synthetic route to these Ni-Fe dithiolates is described, involving reaction of Ni(SR)2(diphosphine) with FeI2(CO)4 followed by in situ reduction with cobaltocene. Evidence is presented that this route proceeds via metastable μ-iodo derivatives. Attempted isolation of such species led to the crystallization of NiFe(Me2pdt)(dppe)I2, which features tetrahedral Fe(II) and square planar Ni(II) centers (Me2pdt = 2,2-dimethylpropanedithiol). The new tricarbonyls prepared in this work are NiFe(pdt)(dcpe)(CO)3 (2, dcpe = 1,2-bis(dicyclohexylphosphino)ethane), NiFe(edt)(dppe)(CO)3 (3), and NiFe(edt)(dcpe)(CO)3 (4). Attempted preparation of a phenylthiolate-bridged complex via the FeI2(CO)4 + Ni(SPh)2(dppe) route gave the tetrametallic species [(CO)2Fe(SPh)2Ni(CO)]2(μ-dppe)2. Crystallographic analysis of the edt-dcpe compund [2H]BF4 and the edt-dppe compound [3H]BF4 verified their close resemblance. Each features pseudo-octahedral Fe and square pyramidal Ni centers. Starting from [4H]BF4 we prepared the PPh3 derivative [HNiFe(edt)(dppe)(PPh3)(CO)2]BF4 ([5H]BF4), which was obtained as a ~2:1 mixture of unsymmetrical and symmetrical isomers. Acid-base measurements indicate that changing from Ni(dppe) to Ni(dcpe) decreases the acidity of the cationic hydride complexes by 2.5 pKaMeCN units, from ~11 to ~13.5 (previous work showed that substitution at Fe leads to more dramatic effects). The redox potentials are more strongly affected by the change from dppe to dcpe, for example the [2]0/+ couple occurs at E1/2 = −820 for [2]0/+ vs −574 mV (vs Fc+/0) for [1]0/+. Changes in the dithiolate do not affect the acidity or the reduction potentials of the hydrides. The acid-independent rate of reduction of CH2ClCO2H by [2H]+ is ca. 50 s−1 (25 °C), twice that of [1H]+. The edt-dppe complex [2H]+ proved to be the most active catalyst, with an acid-independent rate of 300 s−1. PMID:21866886

  6. Relationship between Ni(II) and Zn(II) Coordination and Nucleotide Binding by the Helicobacter pylori [NiFe]-Hydrogenase and Urease Maturation Factor HypB*

    PubMed Central

    Sydor, Andrew M.; Lebrette, Hugo; Ariyakumaran, Rishikesh; Cavazza, Christine; Zamble, Deborah B.

    2014-01-01

    The pathogen Helicobacter pylori requires two nickel-containing enzymes, urease and [NiFe]-hydrogenase, for efficient colonization of the human gastric mucosa. These enzymes possess complex metallocenters that are assembled by teams of proteins in multistep pathways. One essential accessory protein is the GTPase HypB, which is required for Ni(II) delivery to [NiFe]-hydrogenase and participates in urease maturation. Ni(II) or Zn(II) binding to a site embedded in the GTPase domain of HypB modulates the enzymatic activity, suggesting a mechanism of regulation. In this study, biochemical and structural analyses of H. pylori HypB (HpHypB) revealed an intricate link between nucleotide and metal binding. HpHypB nickel coordination, stoichiometry, and affinity were modulated by GTP and GDP, an effect not observed for zinc, and biochemical evidence suggests that His-107 coordination to nickel toggles on and off in a nucleotide-dependent manner. These results are consistent with the crystal structure of HpHypB loaded with Ni(II), GDP, and Pi, which reveals a nickel site distinct from that of zinc-loaded Methanocaldococcus jannaschii HypB as well as subtle changes to the protein structure. Furthermore, Cys-142, a metal ligand from the Switch II GTPase motif, was identified as a key component of the signal transduction between metal binding and the enzymatic activity. Finally, potassium accelerated the enzymatic activity of HpHypB but had no effect on the other biochemical properties of the protein. Altogether, this molecular level information about HpHypB provides insight into its cellular function and illuminates a possible mechanism of metal ion discrimination. PMID:24338018

  7. X-ray crystallographic and EPR spectroscopic analysis of HydG, a maturase in [FeFe]-hydrogenase H-cluster assembly

    PubMed Central

    Dinis, Pedro; Suess, Daniel L. M.; Fox, Stephen J.; Harmer, Jenny E.; Driesener, Rebecca C.; De La Paz, Liliana; Swartz, James R.; Essex, Jonathan W.; Britt, R. David; Roach, Peter L.

    2015-01-01

    Hydrogenases use complex metal cofactors to catalyze the reversible formation of hydrogen. In [FeFe]-hydrogenases, the H-cluster cofactor includes a diiron subcluster containing azadithiolate, three CO, and two CN− ligands. During the assembly of the H cluster, the radical S-adenosyl methionine (SAM) enzyme HydG lyses the substrate tyrosine to yield the diatomic ligands. These diatomic products form an enzyme-bound Fe(CO)x(CN)y synthon that serves as a precursor for eventual H-cluster assembly. To further elucidate the mechanism of this complex reaction, we report the crystal structure and EPR analysis of HydG. At one end of the HydG (βα)8 triosephosphate isomerase (TIM) barrel, a canonical [4Fe-4S] cluster binds SAM in close proximity to the proposed tyrosine binding site. At the opposite end of the active-site cavity, the structure reveals the auxiliary Fe-S cluster in two states: one monomer contains a [4Fe-5S] cluster, and the other monomer contains a [5Fe-5S] cluster consisting of a [4Fe-4S] cubane bridged by a μ2-sulfide ion to a mononuclear Fe2+ center. This fifth iron is held in place by a single highly conserved protein-derived ligand: histidine 265. EPR analysis confirms the presence of the [5Fe-5S] cluster, which on incubation with cyanide, undergoes loss of the labile iron to yield a [4Fe-4S] cluster. We hypothesize that the labile iron of the [5Fe-5S] cluster is the site of Fe(CO)x(CN)y synthon formation and that the limited bonding between this iron and HydG may facilitate transfer of the intact synthon to its cognate acceptor for subsequent H-cluster assembly. PMID:25605932

  8. Bis[1,2-bis-(eth-oxy-carbon-yl)ethene-1,2-dithiol-ato-κ(2) S,S']bis-(η(5)-penta-methyl-cyclo-penta-dien-yl)tetra-μ3-sulfido-diiron(IV)diiron(III)(3 Fe-Fe).

    PubMed

    Ito, Shohei; Hisamichi, Nozomu; Takase, Tsugiko; Inomata, Shinji

    2013-04-01

    The title compound, [Fe4(C10H15)2(C8H10O4S2)2S4], contains a twisted Fe4S4 cubane-like core. A twofold rotation axis passes through the Fe4S4 core, completing the coordination of the four Fe atoms with two penta-methyl-cyclo-penta-dienyl ligands and two chelating dithiol-ate ligands. There are three short Fe-Fe and three long Fe⋯Fe contacts in the Fe4S4 core, suggesting bonding and non-bonding inter-actions, respectively. The Fe-S bonds in the Fe4S4 core range from 2.1523 (5) to 2.2667 (6) Å and are somewhat longer than the Fe-S bonds involving the dithiol-ate ligand. PMID:23633986

  9. Nuclear resonance vibrational spectroscopy reveals the FeS cluster composition and active site vibrational properties of an O2-tolerant NAD+-reducing [NiFe] hydrogenase

    SciTech Connect

    Lauterbach, Lars; Wang, Hongxin; Horch, Marius; Gee, Leland B.; Yoda, Yoshitaka; Tanaka, Yoshihito; Zebger, Ingo; Lenz, Oliver; Cramer, Stephen P.

    2014-10-30

    Hydrogenases are complex metalloenzymes that catalyze the reversible splitting of molecular hydrogen into protons and electrons essentially without overpotential. The NAD+-reducing soluble hydrogenase (SH) from Ralstonia eutropha is capable of H2 conversion even in the presence of usually toxic dioxygen. The molecular details of the underlying reactions are largely unknown, mainly because of limited knowledge of the structure and function of the various metal cofactors present in the enzyme. Here, all iron-containing cofactors of the SH were investigated by 57Fe specific nuclear resonance vibrational spectroscopy (NRVS). Our data provide experimental evidence for one [2Fe2S] center and four [4Fe4S] clusters, which is consistent with the amino acid sequence composition. Only the [2Fe2S] cluster and one of the four [4Fe4S] clusters were reduced upon incubation of the SH with NADH. This finding explains the discrepancy between the large number of FeS clusters and the small amount of FeS cluster-related signals as detected by electron paramagnetic resonance spectroscopic analysis of several NAD+-reducing hydrogenases. For the first time, Fe–CO and Fe–CN modes derived from the [NiFe] active site could be distinguished by NRVS through selective 13C labeling of the CO ligand. This strategy also revealed the molecular coordinates that dominate the individual Fe–CO modes. The present approach explores the complex vibrational signature of the Fe–S clusters and the hydrogenase active site, thereby showing that NRVS represents a powerful tool for the elucidation of complex biocatalysts containing multiple cofactors.

  10. Discovery of Dark pH-Dependent H+ Migration in a [NiFe]-Hydrogenase and Its Mechanistic Relevance: Mobilizing the Hydrido Ligand of the Ni-C Intermediate

    PubMed Central

    2015-01-01

    Despite extensive studies on [NiFe]-hydrogenases, the mechanism by which these enzymes produce and activate H2 so efficiently remains unclear. A well-known EPR-active state produced under H2 and known as Ni-C is assigned as a NiIII–FeII species with a hydrido ligand in the bridging position between the two metals. It has long been known that low-temperature photolysis of Ni-C yields distinctive EPR-active states, collectively termed Ni-L, that are attributed to migration of the bridging-H species as a proton; however, Ni-L has mainly been regarded as an artifact with no mechanistic relevance. It is now demonstrated, based on EPR and infrared spectroscopic studies, that the Ni-C to Ni-L interconversion in Hydrogenase-1 (Hyd-1) from Escherichia coli is a pH-dependent process that proceeds readily in the dark—proton migration from Ni-C being favored as the pH is increased. The persistence of Ni-L in Hyd-1 must relate to unassigned differences in proton affinities of metal and adjacent amino acid sites, although the unusually high reduction potentials of the adjacent Fe–S centers in this O2-tolerant hydrogenase might also be a contributory factor, impeding elementary electron transfer off the [NiFe] site after proton departure. The results provide compelling evidence that Ni-L is a true, albeit elusive, catalytic intermediate of [NiFe]-hydrogenases. PMID:26103582

  11. Polarized potential and electrode materials implication on electro-fermentative di-hydrogen production: Microbial assemblages and hydrogenase gene copy variation.

    PubMed

    Arunasri, Kotakonda; Annie Modestra, J; Yeruva, Dileep Kumar; Vamshi Krishna, K; Venkata Mohan, S

    2016-01-01

    This study examined the changes in microbial diversity in response to different electrode materials viz., stainless steel mesh (SS) and graphite plate as anodes in two microbial electrolysis cell (MEC) each poised at 0.2V, 0.4V, 0.6V and 0.8V. Changes in microbiota prior to and after pretreatment along with microbiota enriched in response to various poised potentials with SS and graphite are monitored by 16S rRNA gene based DGGE profiling. Significant shifts in microbial community were noticed at all these experimental conditions. Correspondingly, the level of hydrogenase belonging to genera Bacillus, Pseudomonas, Rhodopseudomonas and Clostridium was studied by quantitative real time PCR (RT-PCR) at various applied potentials. DGGE based 16S rRNA gene profiling revealed enriched members belonging to phylum Firmicutes predominantly present at 0.8V in both MECs contributing to high hydrogen production. This study first time explored the growth behavior of mixed consortia in response to poised potentials and electrode materials. PMID:26556403

  12. Investigating the Role of the Outer-Coordination Sphere in [Ni(PPh2NPh-R2)2]2+ Hydrogenase Mimics

    SciTech Connect

    Jain, Avijita; Reback, Matthew L.; Lindstrom, Mary L.; Thogerson, Colleen E.; Helm, Monte L.; Appel, Aaron M.; Shaw, Wendy J.

    2012-06-18

    A series of dipeptide nickel complexes with the general formula, [Ni(PPh2NNNA-amino acid/ester2)2](BF4)2, have been synthesized and characterized (P2N2= 1,5-diaza-3,7-diphosphacyclooctane, amino acid/esters = glutamic acid, alanine, lysine, and aspartic acid). Each of these complexes is an efficient electrocatalyst for H2 production. The contribution of the outer-coordination sphere, specifically the impact of sterics, the ability to protonate and the pKa of amino acid side chain on the hydrogen production activity of these complexes, was investigated. The rates of all of the catalysts ranged over an order of magnitude. The amino acid containing complexes display 2-3 times higher rates of hydrogen production than the corresponding ester complexes, suggesting the significance of protonated species (side chains/backbone of amino acids) in the outer-coordination sphere. The largest had the fastest rates suggesting that catalytic activity is not hindered by sterics. However, the shapes of catalytic waves are indicative of hindered electron transfer and may suggest a competing mechanism for catalysis than that observed for the unsubstituted parent complex. These studies demonstrate the significant contribution that the outer-coordination sphere can have in tuning the catalytic activity of small molecule hydrogenase mimics.

  13. Applications of X-ray absorption spectroscopy to biologically relevant metal-based chemistry

    NASA Astrophysics Data System (ADS)

    Best, Stephen P.; Cheah, Mun Hon

    2010-02-01

    Recent developments in the understanding of the biosynthesis of the active site of the nitrogenase enzyme, the structure of the iron centre of [Fe]-hydrogenase and the structure and biomimetic chemistry of the [FeFe] hydrogenase H-cluster as deduced by application of X-ray spectroscopy are reviewed. The techniques central to this work include X-ray absorption spectroscopy either in the form of extended X-ray absorption fine structure (EXAFS), X-ray absorption near-edge structure (XANES) and nuclear resonant vibrational spectroscopy (NRVS). Examples of the advances in the understanding of the chemistry of the system through integration of a range of spectroscopic and computational techniques with X-ray spectroscopy are highlighted. The critical role played by ab initio calculation of structural and spectroscopic properties of transition-metal compounds using density functional theory (DFT) is illustrated both by the calculation of nuclear resonance vibrational spectroscopy (NRVS) spectra and the structures and spectra of intermediates through the catalytic reactions of hydrogenase model compounds.

  14. Electronic Structure and Chemistry of Iron-Based Metal Oxide Nanostructured Materials: A NEXAFS Investigation of BiFeO3, Bi2Fe4O9, α-Fe2O3, γ-Fe2O3, and Fe/Fe3O4

    SciTech Connect

    Park,T.; Sambasivan, S.; Fischer, D.; Yoon, W.; Misewich, J.; Wong, S.

    2008-01-01

    We present a systematic and detailed near edge X-ray absorption fine structure (NEXAFS) experimental investigation of the electronic structure and chemistry of iron-based metal oxide nanostructured (FeMONS) materials including BiFeO3, Bi2Fe4O9, a-Fe2O3, ?-Fe2O3, and Fe/Fe3O4. Correlations of the electronic structure and structural chemistry of these intriguing nanomaterials are presented, ranging from the nano to the bulk scale. In this work, variations in the shape, position, and intensity of the O K-edge and Fe L-edge NEXAFS spectra have been analyzed in terms of electronic structure and surface chemistry of the FeMONS materials as compared with that of the bulk. We hypothesize that surface imperfection and surface strain anisotropies in nanoparticles induce distortion and site inequivalency of the oxygen Oh sites around the Fe ion located close to the surface, resulting in an increase in the degree of multiplicity as well as in nonstoichiometric effects in FeMONS materials.

  15. Bis[1,2-bis-(meth-oxy-carbon-yl)ethene-1,2-dithiol-ato-κ(2) S,S']bis-(η(5)-penta-methyl-cyclo-penta-dien-yl)tetra-μ3-sulfido-tetra-iron(4 Fe-Fe) hexa-fluoridophosphate.

    PubMed

    Inomata, Shinji; Ito, Shohei; Takase, Tsugiko

    2013-04-01

    The asymmetric unit of the title compound, [Fe4(C6H6O4S2)2(C10H15)2S4]PF6, contains two different complex cations and two PF6 (-) anions. The two complex cations have similar conformations with the butterfly-like Fe4S4 core surrounded by two penta-methyl-cyclo-penta-dienyl ligands and the S atoms of two dithiol-ate ligands. In each Fe4S4 core, there are four short Fe-Fe and two long Fe⋯Fe contacts, suggesting bonding and non-bonding inter-actions, respectively. The Fe-S distances range from 2.1287 (13) to 2.2706 (16) Å for one and from 2.1233 (13) to 2.2650 (16) Å for the other Fe4S4 core. The Fe-S distances involving the dithiol-ate ligands are in a more narrow range [2.1764 (16)-2.1874 (13) Å for one and 2.1743 (14)-2.1779 (16) Å for the other cation]. There are no significant inter-actions between cations and anions. PMID:23634019

  16. FT-IR Characterization of the Light-Induced Ni-L2 and Ni-L3 States of [NiFe] Hydrogenase from Desulfovibrio vulgaris Miyazaki F.

    PubMed

    Tai, Hulin; Nishikawa, Koji; Inoue, Seiya; Higuchi, Yoshiki; Hirota, Shun

    2015-10-29

    Different light-induced Ni-L states of [NiFe] hydrogenase from its Ni-C state have previously been observed by EPR spectroscopy. Herein, we succeeded in detecting simultaneously two Ni-L states of [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F by FT-IR spectroscopy. A new light-induced ?CO band at 1890 cm(-1) and ?CN bands at 2034 and 2047 cm(-1) were detected in the FT-IR spectra of the H2-activated enzyme under N2 atmosphere at basic conditions, in addition to the 1910 cm(-1) ?CO band and 2047 and 2061 cm(-1) ?CN bands of the Ni-L2 state. The new bands were attributed to the Ni-L3 state by comparison of the FT-IR and EPR spectra. The ?CO and ?CN frequencies of the Ni-L3 state are the lowest frequencies observed among the corresponding frequencies of standard-type [NiFe] hydrogenases in various redox states. These results indicate that a residue, presumably Ni-coordinating Cys546, is protonated and deprotonated in the Ni-L2 and Ni-L3 states, respectively. Relatively small ?H (6.4 0.8 kJ mol(-1)) and ?S (25.5 10.3 J mol(-1) K(-1)) values were obtained for the conversion from the Ni-L2 to Ni-L3 state, which was in agreement with the previous proposals that deprotonation of Cys546 is important for the catalytic reaction of the enzyme. PMID:25898020

  17. Hydrogen Photoproduction by Immobilized N2-Fixing Cyanobacteria: Understanding the Role of the Uptake Hydrogenase in the Long-Term Process

    PubMed Central

    Kosourov, Sergey; Leino, Hannu; Murukesan, Gayathri; Lynch, Fiona; Sivonen, Kaarina; Tsygankov, Anatoly A.; Aro, Eva-Mari

    2014-01-01

    We have investigated two approaches to enhance and extend H2 photoproduction yields in heterocystous, N2-fixing cyanobacteria entrapped in thin alginate films. In the first approach, periodic CO2 supplementation was provided to alginate-entrapped, N-deprived cells. N deprivation led to the inhibition of photosynthetic activity in vegetative cells and the attenuation of H2 production over time. Our results demonstrated that alginate-entrapped ΔhupL cells were considerably more sensitive to high light intensity, N deficiency, and imbalances in C/N ratios than wild-type cells. In the second approach, Anabaena strain PCC 7120, its ΔhupL mutant, and Calothrix strain 336/3 films were supplemented with N2 by periodic treatments of air, or air plus CO2. These treatments restored the photosynthetic activity of the cells and led to a high level of H2 production in Calothrix 336/3 and ΔhupL cells (except for the treatment air plus CO2) but not in the Anabaena PCC 7120 strain (for which H2 yields did not change after air treatments). The highest H2 yield was obtained by the air treatment of ΔhupL cells. Notably, the supplementation of CO2 under an air atmosphere led to prominent symptoms of N deficiency in the ΔhupL strain but not in the wild-type strain. We propose that uptake hydrogenase activity in heterocystous cyanobacteria not only supports nitrogenase activity by removing excess O2 from heterocysts but also indirectly protects the photosynthetic apparatus of vegetative cells from photoinhibition, especially under stressful conditions that cause an imbalance in the C/N ratio in cells. PMID:25015894

  18. Pd(II)-Directed Encapsulation of Hydrogenase within the Layer-by-Layer Multilayers of Carbon Nanotube Polyelectrolyte Used as a Heterogeneous Catalyst for Oxidation of Hydrogen.

    PubMed

    Liu, Jiang; Zorin, Nikolay A; Chen, Meng; Qian, Dong-Jin

    2015-06-16

    A metal-directed assembling approach has been developed to encapsulate hydrogenase (H2ase) within a layer-by-layer (LBL) multilayer of carbon nanotube polyelectrolyte (MWNT-PVPMe), which showed efficient biocatalytic oxidation of H2 gas. The MWNT-PVPMe was prepared via a diazonium process and addition reactions with poly(4-vinylpyridine) (PVP) and methyl iodide (MeI). The covalently attached polymers and organic substituents in the polyelectrolyte comprised 60-70% of the total weight. The polyelectrolyte was then used as a substrate for H2ase binding to produce MWNT-PVPMe@H2ase bionanocomposites. X-ray photoelectron spectra revealed that the bionanocomposites included the elements of Br, S, C, N, O, I, Fe, and Ni, which confirmed that they were composed of MWNT-PVPMe and H2ase. Field emission transmission electron microscope images revealed that the H2ase was adsorbed on the surface of MWNT-PVPMe with the domains ranging from 20 to 40 nm. Further, with the use of the bionanocomposites as nanolinkers and Na2PdCl4 as connectors, the (Pd/MWNT-PVPMe@H2ase)n multilayers were constructed on the quartz and gold substrate surfaces by the Pd(II)-directed LBL assembling technique. Finally, the as-prepared LBL multilayers were used as heterogeneous catalysts for hydrogen oxidation with methyl viologen (MV(2+)) as an electron carrier. The dynamic processes for the reversible color change between blue-colored MV(+) and colorless MV(2+) (catalyzed by the LBL multilayers) were video recorded, which confirmed that the H2ase encapsulated within the present LBL multilayers was of much stronger stability and higher biocatalytic activity of H2 oxidation resulting in potential applications for the development of H2 biosensors and fuel cells. PMID:26010012

  19. Hydrogen photoproduction by immobilized n2-fixing cyanobacteria: understanding the role of the uptake hydrogenase in the long-term process.

    PubMed

    Kosourov, Sergey; Leino, Hannu; Murukesan, Gayathri; Lynch, Fiona; Sivonen, Kaarina; Tsygankov, Anatoly A; Aro, Eva-Mari; Allahverdiyeva, Yagut

    2014-09-01

    We have investigated two approaches to enhance and extend H2 photoproduction yields in heterocystous, N2-fixing cyanobacteria entrapped in thin alginate films. In the first approach, periodic CO2 supplementation was provided to alginate-entrapped, N-deprived cells. N deprivation led to the inhibition of photosynthetic activity in vegetative cells and the attenuation of H2 production over time. Our results demonstrated that alginate-entrapped ΔhupL cells were considerably more sensitive to high light intensity, N deficiency, and imbalances in C/N ratios than wild-type cells. In the second approach, Anabaena strain PCC 7120, its ΔhupL mutant, and Calothrix strain 336/3 films were supplemented with N2 by periodic treatments of air, or air plus CO2. These treatments restored the photosynthetic activity of the cells and led to a high level of H2 production in Calothrix 336/3 and ΔhupL cells (except for the treatment air plus CO2) but not in the Anabaena PCC 7120 strain (for which H2 yields did not change after air treatments). The highest H2 yield was obtained by the air treatment of ΔhupL cells. Notably, the supplementation of CO2 under an air atmosphere led to prominent symptoms of N deficiency in the ΔhupL strain but not in the wild-type strain. We propose that uptake hydrogenase activity in heterocystous cyanobacteria not only supports nitrogenase activity by removing excess O2 from heterocysts but also indirectly protects the photosynthetic apparatus of vegetative cells from photoinhibition, especially under stressful conditions that cause an imbalance in the C/N ratio in cells. PMID:25015894

  20. Temperature tolerance of hydrogenase expression in Alcaligenes eutrophus is conferred by a single amino acid exchange in the transcriptional activator HoxA.

    PubMed Central

    Zimmer, D; Schwartz, E; Tran-Betcke, A; Gewinner, P; Friedrich, B

    1995-01-01

    Expression of the soluble (SH) and membrane-bound (MBH) hydrogenases in the facultatively lithoautotrophic bacterium Alcaligenes eutrophus is dependent on the transcriptional activator HoxA and the alternative sigma factor sigma 54. Deletion analysis revealed that a region 170 bp upstream of the transcriptional start of the SH operon is necessary for high-level promoter activity. Mobility shift assays with DNA fragments containing the SH upstream region and purified beta-galactosidase-HoxA fusion protein isolated from Escherichia coli or authentic HoxA isolated by immunoaffinity chromatography from A. eutrophus failed to detect specific binding. In contrast, A. eutrophus extracts enriched for HoxA by heparin-Sepharose chromatography and ammonium sulfate fractionation produced a weak but discrete shift in the mobility of the target DNA. This effect was not observed with comparable extracts prepared from hoxA mutants. A similar experiment using antibodies against HoxA confirmed that HoxA was responsible for the observed mobility shift. Extracts prepared from a temperature-tolerant mutant of A. eutrophus gave a stronger retardation than did those from the wild type. Unlike the wild type, the hox(Tr) mutant is able to grow with hydrogen at temperatures above 33 degrees C because of a mutation in the regulatory gene hoxA. In this paper, we show that a single amino acid substitution (Gly-468-->Val) in the C-terminal part of HoxA is responsible for temperature tolerance. The SH upstream region also contains sequence motifs resembling the E. coli integration host factor (IHF) binding site, and purified E. coli IHF protein shifted the corresponding indicator fragment. PMID:7730267

  1. Binding of Iron(III) to Organic Soils: Exafs Spectroscopy And Chemical Equilibrium Modeling

    SciTech Connect

    Gustafsson, J.P.; Persson, I.; Kleja, D.B.; Schaik, J.W.J.van

    2007-07-09

    The complexation of iron(III) to soil organic matter is important for the binding of trace metals in natural environments because of competition effects. In this study, we used extended X-ray absorption fine structure (EXAFS) spectroscopy to characterize the binding mode for iron(III) in two soil samples from organic mor layers, one of which was also treated with iron(III). In most cases the EXAFS spectra had three significant contributions, inner-core Fe-O/N interactions at about 2.02(2) angstroms, Fe-C interactions in the second scattering shell at 3.00(4) angstroms, and a mean Fe-Fe distance at 3.37(3) angstroms. One untreated sample showed features typical for iron (hydr)oxides; however, after treatment of iron(III) the EXAFS spectrum was dominated by organically complexed iron. The presence of a Fe-Fe distance in all samples showed that the major part of the organically complexed iron was hydrolyzed, most likely in a mixture of complexes with an inner core of (O{sub 5}Fe){sub 2}O and (O{sub 5}Fe){sub 3}O. These results were used to constrain a model for metal-humic complexation, the Stockholm Humic Model (SHM). The model was able to describe iron(III) binding very well at low pH considering only one dimeric iron(III)-humic complex. The competition effect on trace metals was also well described.

  2. Probing the Solvent Accessibility of the [4Fe-4S] Cluster of the Hydrogenase Maturation Protein HydF from Thermotoga neapolitana by HYSCORE and 3p-ESEEM.

    PubMed

    Albertini, Marco; Berto, Paola; Vallese, Francesca; Di Valentin, Marilena; Costantini, Paola; Carbonera, Donatella

    2015-10-29

    The catalytic site of [FeFe]-hydrogenase, the "H-cluster", composed of a [4Fe-4S] unit connected by a cysteinyl residue to a [2Fe] center coordinated by three CO, two CN(-), and a bridging dithiolate, is assembled in a complex maturation pathway, at present not fully characterized, involving three conserved proteins, HydG, HydE, and HydF. HydF is a complex enzyme, which is thought to act as a scaffold and carrier for the [2Fe] subunit of the H-cluster. This maturase protein contains itself a [4Fe-4S] cluster binding site, with three conserved cysteine residues and a noncysteinyl fourth ligand. In this work, we have exploited 3p-ESEEM and HYSCORE spectroscopies to get insight into the structure and the chemical environment of the [4Fe-4S] cluster of HydF from the hyperthermophilic organism Thermotoga neapolitana. The nature of the fourth ligand and the solvent accessibility of the active site comprising the [4Fe-4S] cluster are discussed on the basis of the spectroscopic results obtained upon H/D exchange. We propose that the noncysteinyl ligated Fe atom of the [4Fe-4S] cluster is the site where the [2Fe] subcluster precursor is anchored and finally processed to be delivered to the hydrogenase (HydA). PMID:25978307

  3. Computer Modeling in Biotechnology

    NASA Astrophysics Data System (ADS)

    Aksimentiev, Aleksei; Brunner, Robert; Cohen, Jordi; Comer, Jeffrey; Cruz-Chu, Eduardo; Hardy, David; Rajan, Aruna; Shih, Amy; Sigalov, Grigori; Yin, Ying; Schulten, Klaus

    Computational modeling can be a useful partner in biotechnology, in particular, in nanodevice engineering. Such modeling guides development through nanoscale views of biomolecules and devices not available through experimental imaging methods. We illustrate the role of computational modeling, mainly of molecular dynamics, through four case studies: development of silicon bionanodevices for single molecule electrical recording, development of carbon nano-tube-biomolecular systems as in vivo sensors, development of lipoprotein nanodiscs for assays of single membrane proteins, and engineering of oxygen tolerance into the enzyme hydrogenase for photosynthetic hydrogen gas production. The four case studies show how molecular dynamics approaches were adapted to the specific technical uses through (i) multi-scale extensions, (ii) fast quantum chemical force field evaluation, (iii) coarse graining, and (iv) novel sampling methods. The adapted molecular dynamics simulations provided key information on device behavior and revealed development opportunities, arguing that the "computational microscope" is an indispensable nanoengineering tool.

  4. The active site of the [FeFe]-hydrogenase from Desulfovibrio desulfuricans. I. Light sensitivity and magnetic hyperfine interactions as observed by electron paramagnetic resonance.

    PubMed

    Albracht, Simon P J; Roseboom, Winfried; Hatchikian, E Claude

    2006-01-01

    The hydrogen-activating cluster (H cluster) in [FeFe]-hydrogenases consists of two moieties. The [2Fe]H subcluster is a (L)(CO)(CN)Fe(mu-RS2)(mu-CO)Fe(CysS)(CO)(CN) centre. The Cys-bound Fe is called Fe1, the other iron Fe2. The Cys-thiol forms a bridge to a [4Fe-4S] cluster, the [4Fe-4S]H subcluster. We report that electron paramagnetic resonance (EPR) spectra of the 57Fe-enriched enzyme from Desulfovibrio desulfuricans in the H(ox)-CO state are consistent with a magnetic hyperfine interaction of the unpaired spin with all six Fe atoms of the H cluster. In contrast to the inactive aerobic enzyme, the active enzyme is easily destroyed by light. The [2Fe]H subcluster in some enzyme molecules loses CO by photolysis, whereupon other molecules firmly bind the released CO to form the H(ox)-CO state giving rise to the so-called axial 2.06 EPR signal. Though not destroyed by light, the H(ox)-CO state is affected by it. As demonstrated in the accompanying paper [49] two of the intrinsic COs, both bound to Fe2, can be exchanged by extrinsic 13CO during illumination at 2 degrees C. We found that only one of the three 13COs, the one at the extrinsic position, gives an EPR-detectable isotropic superhyperfine interaction of 0.6 mT. At 30 K both the inhibiting extrinsic CO bound to Fe2 and one more CO can be photolysed. EPR spectra of the photolysed products are consistent with a 3d7 system of Fe with the formal oxidation state +1. The damaged enzyme shows a light-sensitive g = 5 signal which is ascribed to an S = 3/2 form of the [2Fe](H) subcluster. The light sensitivity of the enzyme explains the occurrence of the g = 5 signal and the axial 2.06 signal in published EPR spectra of nearly all preparations studied thus far. PMID:16323020

  5. A computational library for multiscale modeling of material failure

    NASA Astrophysics Data System (ADS)

    Talebi, Hossein; Silani, Mohammad; Bordas, Stéphane P. A.; Kerfriden, Pierre; Rabczuk, Timon

    2014-05-01

    We present an open-source software framework called PERMIX for multiscale modeling and simulation of fracture in solids. The framework is an object oriented open-source effort written primarily in Fortran 2003 standard with Fortran/C++ interfaces to a number of other libraries such as LAMMPS, ABAQUS, LS-DYNA and GMSH. Fracture on the continuum level is modeled by the extended finite element method (XFEM). Using several novel or state of the art methods, the piece software handles semi-concurrent multiscale methods as well as concurrent multiscale methods for fracture, coupling two continuum domains or atomistic domains to continuum domains, respectively. The efficiency of our open-source software is shown through several simulations including a 3D crack modeling in clay nanocomposites, a semi-concurrent FE-FE coupling, a 3D Arlequin multiscale example and an MD-XFEM coupling for dynamic crack propagation.

  6. The active site of the [FeFe]-hydrogenase from Desulfovibrio desulfuricans. II. Redox properties, light sensitivity and CO-ligand exchange as observed by infrared spectroscopy.

    PubMed

    Roseboom, Winfried; De Lacey, Antonio L; Fernandez, Victor M; Hatchikian, E Claude; Albracht, Simon P J

    2006-01-01

    In [FeFe]-hydrogenases, the H cluster (hydrogen-activating cluster) contains a di-iron centre ([2Fe]H subcluster, a (L)(CO)(CN)Fe(mu-RS2)(mu-CO)Fe(CysS)(CO)(CN) group) covalently attached to a cubane iron-sulphur cluster ([4Fe-4S]H subcluster). The Cys-thiol functions as the link between one iron (called Fe1) of the [2Fe]H subcluster and one iron of the cubane subcluster. The other iron in the [2Fe]H subcluster is called Fe2. The light sensitivity of the Desulfovibrio desulfuricans enzyme in a variety of states has been studied with infrared (IR) spectroscopy. The aerobic inactive enzyme (H(inact) state) and the CO-inhibited active form (H(ox)-CO state) were stable in light. Illumination of the H(ox) state led to a kind of cannibalization; in some enzyme molecules the H cluster was destroyed and the released CO was captured by the H clusters in other molecules to form the light-stable H(ox)-CO state. Illumination of active enzyme under 13CO resulted in the complete exchange of the two intrinsic COs bound to Fe2. At cryogenic temperatures, light induced the photodissociation of the extrinsic CO and the bridging CO of the enzyme in the H(ox)-CO state. Electrochemical redox titrations showed that the enzyme in the H(inact) state converts to the transition state (H(trans)) in a reversible one-electron redox step (E (m, pH 7) = -75 mV). IR spectra demonstrate that the added redox equivalent not only affects the [4Fe-4S]H subcluster, but also the di-iron centre. Enzyme in the H(trans) state reacts with extrinsic CO, which binds to Fe2. The H(trans) state converts irreversibly into the H(ox) state in a redox-dependent reaction most likely involving two electrons (E (m, pH 7) = -261 mV). These electrons do not end up on any of the six Fe atoms of the H cluster; the possible destiny of the two redox equivalents is discussed. An additional reversible one-electron redox reaction leads to the H(red) state (E (m, pH 7) = -354 mV), where both Fe atoms of the [2Fe]H subcluster have the same formal oxidation state. The possible oxidation states of Fe1 and Fe2 in the various enzyme states are discussed. Low redox potentials (below -500 mV) lead to destruction of the [2Fe]H subcluster. PMID:16323019

  7. Resonance Raman Spectroscopic Analysis of the [NiFe] Active Site and the Proximal [4Fe-3S] Cluster of an O2-Tolerant Membrane-Bound Hydrogenase in the Crystalline State.

    PubMed

    Siebert, Elisabeth; Rippers, Yvonne; Frielingsdorf, Stefan; Fritsch, Johannes; Schmidt, Andrea; Kalms, Jacqueline; Katz, Sagie; Lenz, Oliver; Scheerer, Patrick; Paasche, Lars; Pelmenschikov, Vladimir; Kuhlmann, Uwe; Mroginski, Maria Andrea; Zebger, Ingo; Hildebrandt, Peter

    2015-10-29

    We have applied resonance Raman (RR) spectroscopy on single protein crystals of the O2-tolerant membrane-bound [NiFe] hydrogenase (MBH from Ralstonia eutropha) which catalyzes the splitting of H2 into protons and electrons. RR spectra taken from 65 MBH samples in different redox states were analyzed in terms of the respective component spectra of the active site and the unprecedented proximal [4Fe-3S] cluster using a combination of statistical methods and global fitting procedures. These component spectra of the individual cofactors were compared with calculated spectra obtained by quantum mechanics/molecular mechanics (QM/MM) methods. Thus, the recently discovered hydroxyl-coordination of one iron in the [4Fe-3S] cluster was confirmed. Infrared (IR) microscopy of oxidized MBH crystals revealed the [NiFe] active site to be in the Nir-B [Ni(III)] and Nir-S [Ni(II)] states, whereas RR measurements of these crystals uncovered the Nia-S [Ni(II)] state as the main spectral component, suggesting its in situ formation via photodissociation of the assumed bridging hydroxyl or water ligand. On the basis of QM/MM calculations, individual band frequencies could be correlated with structural parameters for the Nia-S state as well as for the Ni-L state, which is formed upon photodissociation of the bridging hydride of H2-reduced active site states. PMID:26201814

  8. Effect of a C298D Mutation in CaHydA [FeFe]-Hydrogenase: Insights into the Protein-Metal Cluster Interaction by EPR and FTIR Spectroscopic Investigation

    SciTech Connect

    Morra, Simone; Maurelli, Sara; Chiesa, Mario; Mulder, David W.; Ratzloff, Michael W.; Giamello, Elio; King, Paul W.; Gilardi, Gianfranco; Valettia, Francesca

    2016-01-01

    A conserved cysteine located in the signature motif of the catalytic center (H-cluster) of [FeFe]-hydrogenases functions in proton transfer. This residue corresponds to C298 in Clostridium acetobutylicum CaHydA. Despite the chemical and structural difference, the mutant C298D retains fast catalytic activity, while replacement with any other amino acid caused significant activity loss. Given the proximity of C298 to the H-cluster, the effect of the C298D mutation on the catalytic center was studied by continuous wave (CW) and pulse electron paramagnetic resonance (EPR) and by Fourier transform infrared (FTIR) spectroscopies. Comparison of the C298D mutant with the wild type CaHydA by CW and pulse EPR showed that the electronic structure of the center is not altered. FTIR spectroscopy confirmed that absorption peak values observed in the mutant are virtually identical to those observed in the wild type, indicating that the H-cluster is not generally affected by the mutation. Significant differences were observed only in the inhibited state Hox-CO: the vibrational modes assigned to the COexo and Fed-CO in this state are shifted to lower values in C298D, suggesting different interaction of these ligands with the protein moiety when C298 is changed to D298. More relevant to the catalytic cycle, the redox equilibrium between the Hox and Hred states is modified by the mutation, causing a prevalence of the oxidized state. This work highlights how the interactions between the protein environment and the H-cluster, a dynamic closely interconnected system, can be engineered and studied in the perspective of designing bio-inspired catalysts and mimics.

  9. The effect of a C298D mutation in CaHydA [FeFe]-hydrogenase: Insights into the protein-metal cluster interaction by EPR and FTIR spectroscopic investigation.

    PubMed

    Morra, Simone; Maurelli, Sara; Chiesa, Mario; Mulder, David W; Ratzloff, Michael W; Giamello, Elio; King, Paul W; Gilardi, Gianfranco; Valetti, Francesca

    2016-01-01

    A conserved cysteine located in the signature motif of the catalytic center (H-cluster) of [FeFe]-hydrogenases functions in proton transfer. This residue corresponds to C298 in Clostridium acetobutylicum CaHydA. Despite the chemical and structural difference, the mutant C298D retains fast catalytic activity, while replacement with any other amino acid causes significant activity loss. Given the proximity of C298 to the H-cluster, the effect of the C298D mutation on the catalytic center was studied by continuous wave (CW) and pulse electron paramagnetic resonance (EPR) and by Fourier transform infrared (FTIR) spectroscopies. Comparison of the C298D mutant with the wild type CaHydA by CW and pulse EPR showed that the electronic structure of the center is not altered. FTIR spectroscopy confirmed that absorption peak values observed in the mutant are virtually identical to those observed in the wild type, indicating that the H-cluster is not generally affected by the mutation. Significant differences were observed only in the inhibited state Hox-CO: the vibrational modes assigned to the COexo and Fed-CO in this state are shifted to lower values in C298D, suggesting different interaction of these ligands with the protein moiety when C298 is changed to D298. More relevant to the catalytic cycle, the redox equilibrium between the Hox and Hred states is modified by the mutation, causing a prevalence of the oxidized state. This work highlights how the interactions between the protein environment and the H-cluster, a dynamic closely interconnected system, can be engineered and studied in the perspective of designing bio-inspired catalysts and mimics. PMID:26482707

  10. Computer modeling in biotechnology: a partner in development.

    PubMed

    Aksimentiev, Aleksei; Brunner, Robert; Cohen, Jordi; Comer, Jeffrey; Cruz-Chu, Eduardo; Hardy, David; Rajan, Aruna; Shih, Amy; Sigalov, Grigori; Yin, Ying; Schulten, Klaus

    2008-01-01

    Computational modeling can be a useful partner in biotechnology, in particular, in nanodevice engineering. Such modeling guides development through nanoscale views of biomolecules and devices not available through experimental imaging methods. We illustrate the role of computational modeling, mainly of molecular dynamics, through four case studies: development of silicon bionanodevices for single molecule electrical recording, development of carbon nano-tube-biomolecular systems as in vivo sensors, development of lipoprotein nanodiscs for assays of single membrane proteins, and engineering of oxygen tolerance into the enzyme hydrogenase for photosynthetic hydrogen gas production. The four case studies show how molecular dynamics approaches were adapted to the specific technical uses through (i) multi-scale extensions, (ii) fast quantum chemical force field evaluation, (iii) coarse graining, and (iv) novel sampling methods. The adapted molecular dynamics simulations provided key information on device behavior and revealed development opportunities, arguing that the "computational microscope" is an indispensable nanoengineering tool. PMID:19031067

  11. Modelling the Thermal History of Asteroid 4 Vesta

    NASA Technical Reports Server (NTRS)

    Solano, James M.; Kiefer, W. S.; Mittlefehldt, D. W.

    2012-01-01

    The asteroid 4 Vesta is widely thought to be the source of the HED (Howardite, Eucrite and Diogenite) meteorites, with this link supported by spectroscopic and dynamical studies. The availability of the HED meteorites for study and the new data being gained from the Dawn mission provides an excellent opportunity to investigate Vesta s history. In this study, modelling of Vesta has been undertaken to investigate its evolution from an unconsolidated chondritic body to a differentiated body with an iron core. In contrast to previous modelling, both heat and mass transfer are considered as coupled processes. This work draws on models of melt segregation in terrestrial environments to inform the evolution of Vesta into the differentiated body observed today. In order for a core to form in this body, a separation of the metallic iron from the silicates must take place. Temperatures in excess of the solidus temperatures for the Fe-FeS system and the silicates are therefore required. Thermal modelling has shown accretion before 2Myr leads to temperatures in excess of the silicate solidus.

  12. Using Stable Isotopes to Trace Microbial Hydrogen Production Pathways

    NASA Astrophysics Data System (ADS)

    Moran, J.; Hill, E.; Bartholomew, R.; Yang, H.; Shi, L.; Ostrom, N. E.; Gandhi, H.; Hegg, E.; Kreuzer, H.

    2010-12-01

    Biological H2 production by hydrogenase enzymes (H2ases) plays an important role in anaerobic microbial metabolism and community structure. Despite considerable progress in elucidating H2 metabolism, the regulation of and flux through key H2 production pathways remain largely undefined. Our goal is to improve understanding of biological H2 production by using H isotope ratios to dissect proton fluxes through different H2ase enzymes and from different substrates. We hypothesized that the isotope ratio of H2 produced by various hydrogenases (H2ase) would differ, and that the H isotope ratios would allow us to define the contribution of different enzymes when more than one is present in vivo. We chose Shewanella oneidensis (S.o.) MR-1, a facultative anaerobe capable of transferring electrons to a variety of terminal acceptors, including protons, as a model system for in vivo studies. S. o. encodes one [FeFe]- and one [NiFe]-H2ase. We purified three [FeFe]-H2ases (S.o., Clostridium pasteurianum, and Chlamydomonas reinhardtii) and two [NiFe]-H2ases (S. o. and Desulfovibrio fructosovorans) to test the isotope fractionation associated with activity by each enzyme in vitro. For in vivo analysis we used wild-type S.o. as well as electron transfer-deficient and H2ase-deficient strains. We employed batch cultures using lactate as an electron donor and O2 as an initial electron acceptor (with H2 production after O2 consumption). The five H2ases we tested all had a unique isotope fractionation. Measurements of H2 produced in vivo showed distinct periods of H2 production having isotope signatures consistent with in vitro results. Isotope data as well as studies of H2 production by mutants in the genes encoding either the [NiFe]-H2ase or the [FeFe]-H2ase, respectively, show that the [NiFe]- and [FeFe]- H2ases became active at different times. The [NiFe]-H2ase both produces and consumes H2 before the [FeFe]-H2ase becomes active. RNA analysis is consistent with up regulation of different hydrogenases at different points in the culture’s growth, but presents a mystery. Transcription of the [NiFe]-H2ase is more coincident with detection of H2 production and uptake by the protein. The [FeFe]-H2ase gene, however, undergoes a burst of transcription long before H2 production by the protein is detected. A second burst of transcription of the gene coincides with H2 production. We are working towards identifying key conditions that direct hydrogenase activity (including redox conditions and availability of auxiliary electron acceptors). Taken together we show that different H2ases express different fractionation factors in vitro, and H isotope ratios can be exploited to dissect pathways of H2 production in vivo.

  13. Numerical Modeling Studies of Thermospheric Metal Layers Driven by Gravity Waves

    NASA Astrophysics Data System (ADS)

    Yu, Z.; Chu, X.

    2013-12-01

    As the lower boundary of ionosphere and space weather regime, the mesosphere and thermosphere is a chemically and dynamically complex and important region. The roles of atmospheric gravity waves in transporting energy and momentum and causing atmospheric and ionospheric disturbances have been recognized by theoretical studies and observational evidence. The thermospheric neutral Fe layers discovered by the Chu lidar group at McMurdo (77.8S, 166.7E), Antarctica, exhibit well defined gravity wave signatures in the altitude range of 110~155 km. Those thermospheric Fe layers provide an excellent trace for measuring neutral temperature and winds in the thermosphere. Our theory argues that the observed Fe layers are a result of coupling of electrodynamical, neutral dynamical and chemical processes. The thermospheric Fe atoms are produced by neutralization of converged Fe+ layers driven by gravity wave wind shear. Although a qualitative understanding has been offered in a paper by Chu et al., the quantitative understanding of the neutral Fe layer formation and wave structures is unresolved. Meanwhile, the chemical process is highly coupled with the electrodynamic and thermodynamic processes in the E-F regions, which leads to more difficulties to understand the new observations. Such challenges stimulate our development of a numerical model. A time-dependent, 1-D, high-latitude Fe/Fe+ model has been developed to simulate the observed Fe profiles based on the first principles of physics and chemistry. The model solves ions' motion explicitly taking the full Fe chemistry and ambient ions chemistry in the E-F region into account. In this paper, we will demonstrate that gravity wave wind shear creates Fe+ layers of enhanced density that produce neutral Fe layers consistent with observations. Besides the wind-shear mechanism, electric field driving force is also important for transporting and converging Fe+ at high latitudes. Electric field can cause divergent or convergent ion flow, and upward flow transporting Fe+ ions from the main deposition region into the thermosphere. In this paper, the competitions between wind-shear and electric field driving forces will be investigated to study the neutral-ion (Fe/Fe+) coupling. Our observational data also show that gravity-wave-driven neutral Fe layers are modulated by longer period waves or tides. These events will also be examined by our numerical model.

  14. Iron-sulfur clusters—new features in enzymes and synthetic models

    NASA Astrophysics Data System (ADS)

    Bill, Eckhard

    2012-03-01

    Mössbauer spectroscopy is very important for the characterization of iron sulfur clusters in biological and synthetic molecules. The electric and magnetic hyperfine parameters obtained for 57Fe provide valuable information about the electronic structure of the different iron sites occurring in Fe:S clusters. Although known since more than four decades, research in this field is very active, revealing unexpected functions, structures and redox states. In this overview, new aspects of double exchange and vibronic coupling in a structurally well-characterized two-iron model compound are discussed, the electronic structure of extremely reduced clusters with all iron in ferrous or even in iron(I) state is elucidated, and an exciting new type of cubane cluster occurring in oxygen-insensitive hydrogenases is presented. The latter cluster involves structural changes during function and it supports more than one redox transition, which may be essential for oxygen protection of the enzymes.

  15. Numerical Modeling Studies of Thermospheric Metal Layers Driven by Gravity Waves

    NASA Astrophysics Data System (ADS)

    Yu, Zhibin; Chu, Xinzhao

    As the lower boundary of ionosphere and space weather regime, the mesosphere and thermosphere is a chemically and dynamically complex and important region. The roles of atmospheric gravity waves in transporting energy and momentum and in causing atmospheric and ionospheric disturbances have been recognized by theoretical studies and observational evidence. The thermospheric neutral Fe layers discovered by the Chu lidar group at McMurdo (77.8S, 166.7E), Antarctica, exhibit well defined gravity wave signatures in the altitude range of 110~155 km. Those thermospheric Fe layers provide an excellent tracer for measuring neutral temperature and winds in the thermosphere. Our theory argues that the observed Fe layers are a result of the coupling among electrodynamical, neutral dynamical and chemical processes. Stimulated by the new observations and understanding, a time-dependent, 1-D, high-latitude Fe/Fe+ model has been developed to simulate the observed Fe layers based on the first principles of physics and chemistry. In this paper, we will provide quantitative analyses of the formation of thermospheric Fe atoms and confirm that they are produced by neutralization of converged Fe+ layers. We will further quantitatively demonstrate that gravity wave wind shear generates Fe+ layers with enhanced density. The simulations of Fe layers are consistent with the lidar observations. Besides the wind-shear mechanism, electric field causes upward flow transporting Fe+ ions from the main deposition region into the thermosphere. At the same time, electric field can help the convergence but can also destroy wind-shear-converged Fe+ layers, depending on the relative phase between the electric field and the wave-driven wind shear. In this paper, the competitions between wind-shear and electric field driving forces will be investigated to study the neutral-ion (Fe/Fe+) coupling. Our observational data also show that gravity-wave-driven neutral Fe layers are modulated by longer period waves or tides. These events will also be examined by our numerical model.

  16. Integrated analysis of transcriptomic and proteomic data of Desulfovibrio vulgaris: Zero-Inflated Poisson regression models to predict abundance of undetected proteins

    SciTech Connect

    Nie, Lei; Wu, Gang; Brockman, Fred J.; Zhang, Weiwen

    2006-05-04

    Abstract Advances in DNA microarray and proteomics technologies have enabled high-throughput measurement of mRNA expression and protein abundance. Parallel profiling of mRNA and protein on a global scale and integrative analysis of these two data types could provide additional insight into the metabolic mechanisms underlying complex biological systems. However, because protein abundance and mRNA expression are affected by many cellular and physical processes, there have been conflicting results on the correlation of these two measurements. In addition, as current proteomic methods can detect only a small fraction of proteins present in cells, no correlation study of these two data types has been done thus far at the whole-genome level. In this study, we describe a novel data-driven statistical model to integrate whole-genome microarray and proteomic data collected from Desulfovibrio vulgaris grown under three different conditions. Based on the Poisson distribution pattern of proteomic data and the fact that a large number of proteins were undetected (excess zeros), Zero-inflated Poisson models were used to define the correlation pattern of mRNA and protein abundance. The models assumed that there is a probability mass at zero representing some of the undetected proteins because of technical limitations. The models thus use abundance measurements of transcripts and proteins experimentally detected as input to generate predictions of protein abundances as output for all genes in the genome. We demonstrated the statistical models by comparatively analyzing D. vulgaris grown on lactate-based versus formate-based media. The increased expressions of Ech hydrogenase and alcohol dehydrogenase (Adh)-periplasmic Fe-only hydrogenase (Hyd) pathway for ATP synthesis were predicted for D. vulgaris grown on formate.

  17. Molecular Models for Conductance in Junctions and Electrochemical Electron Transfer

    NASA Astrophysics Data System (ADS)

    Mazinani, Shobeir Khezr Seddigh

    This thesis develops molecular models for electron transport in molecular junctions and intra-molecular electron transfer. The goal is to identify molecular descriptors that afford a substantial simplification of these electronic processes. First, the connection between static molecular polarizability and the molecular conductance is examined. A correlation emerges whereby the measured conductance of a tunneling junction decreases as a function of the calculated molecular polarizability for several systems, a result consistent with the idea of a molecule as a polarizable dielectric. A model based on a macroscopic extension of the Clausius-Mossotti equation to the molecular domain and Simmon's tunneling model is developed to explain this correlation. Despite the simplicity of the theory, it paves the way for further experimental, conceptual and theoretical developments in the use of molecular descriptors to describe both conductance and electron transfer. Second, the conductance of several biologically relevant, weakly bonded, hydrogen-bonded systems is systematically investigated. While there is no correlation between hydrogen bond strength and conductance, the results indicate a relation between the conductance and atomic polarizability of the hydrogen bond acceptor atom. The relevance of these results to electron transfer in biological systems is discussed. Hydrogen production and oxidation using catalysts inspired by hydrogenases provides a more sustainable alternative to the use of precious metals. To understand electrochemical and spectroscopic properties of a collection of Fe and Ni mimics of hydrogenases, high-level density functional theory calculations are described. The results, based on a detailed analysis of the energies, charges and molecular orbitals of these metal complexes, indicate the importance of geometric constraints imposed by the ligand on molecular properties such as acidity and electrocatalytic activity. Based on model calculations of several intermediates in the catalytic cycle of a model NiFe complex, a hypothetical reaction mechanism, which very well agrees with the observed experimental results, is proffered. Future work related to this thesis may involve the systematic analysis of chemical reactivity in constrained geometries, a subject of importance if the context of enzymatic activity. Another, more intriguing direction is related to the fundamental issue of reformulating Marcus theory in terms of the molecular dielectric response function.

  18. Structure and magnetic properties of irradiated Fe-Fe oxide core-shell nanoclusters

    SciTech Connect

    McCloy, John S.; Jiang Weilin; Sundararajan, Jennifer A.; Qiang, You; Burks, Edward; Liu Kai

    2013-04-19

    A cluster deposition method was used to produce a film of loosely aggregated particles of Fe-Fe{sub 3}O{sub 4} coreshell nanoclusters with an 8 nm iron core size and 2 nm oxide shell thickness. The film of particles on a silicon substrate was irradiated with 5.5 MeV Si{sup 2+} ions to a fluence of 10{sup 16} cm{sup -2} near room temperature, and computer simulations based on the SRIM (Stopping and Range of Ions in Matter) code show that the implanted Si species stops near the filmsubstrate interface. The ion irradiation creates a structural change in the film with corresponding chemical and magnetic changes. X-ray diffraction shows that the core size and chemistry stay the same but the shell becomes FeO that grows to a thickness of 17 nm. Helium ion microscopy shows that the previously separate particles have densified into a nearly continuous film. Major loop magnetic hysteresis measurements show a decrease in saturation magnetization that we attribute to the presence of the antiferromagnetic (AFM) FeO shell. First-order reversal curve measurements on the irradiated film performed with a vibrating sample magnetometer show that the AFM shell prevents the particles from interacting magnetically, leading to low coercivity from the iron core and little bias field from the core interactions. These results, and others reported previously on different compositions (Fe{sub 3}O{sub 4} or FeO+Fe{sub 3}N nanoclusters), show that the ion irradiation behavior of nanocluster films such as these depends strongly on the initial nanostructure and chemistry.

  19. Shock compression of Fe-FeS mixture up to 204 GPa

    NASA Astrophysics Data System (ADS)

    Huang, Haijun; Wu, Shijie; Hu, Xiaojun; Wang, Qingsong; Wang, Xiang; Fei, Yingwei

    2013-02-01

    AbstractUsing a two-stage light gas gun, we obtained new shock wave Hugoniot data for an iron-sulfur alloy (Fe-11.8wt%S) over the pressure range of 94-204 GPa. A least-squares fit to the Hugoniot data yields a linear relationship between shock velocity DS and particle velocity u, DS (km/s) =3.60(0.14) +1.57(0.05) u. The measured Hugoniot data for Fe-11.8wt%S agree well with the calculated results based on the thermodynamic parameters of Fe and FeS using the additive law. By comparing the calculated densities along the adiabatic core temperature with the PREM density profile, an iron core with 10 wt.% sulfur (S) provides the best solution for the composition of the Earth's outer core.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/21975539','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/21975539"><span id="translatedtitle">Combined DFT and BS study on the exchange coupling of dinuclear sandwich-type POM: comparison of different functionals and reliability of structure <span class="hlt">modeling</span>.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yin, Bing; Xue, GangLin; Li, JianLi; Bai, Lu; Huang, YuanHe; Wen, ZhenYi; Jiang, ZhenYi</p> <p>2012-05-01</p> <p>The exchange coupling of a group of three dinuclear sandwich-type polyoxomolybdates [MM'(AsMo7O27)2](12-) with MM' = CrCr, <span class="hlt">FeFe</span>, FeCr are theoretically predicted from combined DFT and broken-symmetry (BS) approach. Eight different XC functionals are utilized to calculate the exchange-coupling constant J from both the full crystalline structures and <span class="hlt">model</span> structures of smaller size. The comparison between theoretical values and accurate experimental results supports the applicability of DFT-BS method in this new type of sandwich-type dinuclear polyoxomolybdates. However, a careful choice of functionals is necessary to achieve the desired accuracy. The encouraging results obtained from calculations on <span class="hlt">model</span> structures highlight the great potential of application of structure <span class="hlt">modeling</span> in theoretical study of POM. Structural <span class="hlt">modeling</span> may not only reduce the computational cost of large POM species but also be able to take into account the external field effect arising from solvent molecules in solution or counterions in crystal. PMID:21975539</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/17189435','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/17189435"><span id="translatedtitle">Hydrogen metabolism in Shewanella oneidensis MR-1.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Meshulam-Simon, Galit; Behrens, Sebastian; Choo, Alexander D; Spormann, Alfred M</p> <p>2007-02-01</p> <p>Shewanella oneidensis MR-1 is a facultative sediment microorganism which uses diverse compounds, such as oxygen and fumarate, as well as insoluble Fe(III) and Mn(IV) as electron acceptors. The electron donor spectrum is more limited and includes metabolic end products of primary fermenting bacteria, such as lactate, formate, and hydrogen. While the utilization of hydrogen as an electron donor has been described previously, we report here the formation of hydrogen from pyruvate under anaerobic, stationary-phase conditions in the absence of an external electron acceptor. Genes for the two S. oneidensis MR-1 <span class="hlt">hydrogenases</span>, hydA, encoding a periplasmic [<span class="hlt">Fe-Fe</span>] <span class="hlt">hydrogenase</span>, and hyaB, encoding a periplasmic [Ni-Fe] <span class="hlt">hydrogenase</span>, were found to be expressed only under anaerobic conditions during early exponential growth and into stationary-phase growth. Analyses of DeltahydA, DeltahyaB, and DeltahydA DeltahyaB in-frame-deletion mutants indicated that HydA functions primarily as a hydrogen-forming <span class="hlt">hydrogenase</span> while HyaB has a bifunctional role and represents the dominant <span class="hlt">hydrogenase</span> activity under the experimental conditions tested. Based on results from physiological and genetic experiments, we propose that hydrogen is formed from pyruvate by multiple parallel pathways, one pathway involving formate as an intermediate, pyruvate-formate lyase, and formate-hydrogen lyase, comprised of HydA <span class="hlt">hydrogenase</span> and formate dehydrogenase, and a formate-independent pathway involving pyruvate dehydrogenase. A reverse electron transport chain is potentially involved in a formate-hydrogen lyase-independent pathway. While pyruvate does not support a fermentative mode of growth in this microorganism, pyruvate, in the absence of an electron acceptor, increased cell viability in anaerobic, stationary-phase cultures, suggesting a role in the survival of S. oneidensis MR-1 under stationary-phase conditions. PMID:17189435</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://pubs.er.usgs.gov/publication/70015588','USGSPUBS'); return false;" href="http://pubs.er.usgs.gov/publication/70015588"><span id="translatedtitle">Cluster molecular orbital description of the electronic structures of mixed-valence iron oxides and silicates</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Sherman, David M.</p> <p>1986-01-01</p> <p>A molecular orbital description, based on spin-unrestricted X??-scattered wave calculations, is given for the electronic structures of mixed valence iron oxides and silicates. The cluster calculations show that electron hopping and optical intervalence charge-transger result from weak <span class="hlt">FeFe</span> bonding across shared edges of FeO6 coordination polyhedra. In agreement with Zener's double exchange <span class="hlt">model</span>, <span class="hlt">FeFe</span> bonding is found to stabilize ferromagnetic coupling between Fe2+ and Fe3+ cations. ?? 1986.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/biblio/894277','DOE-PATENT-XML'); return false;" href="http://www.osti.gov/scitech/biblio/894277"><span id="translatedtitle">Hydrogen Production Using <span class="hlt">Hydrogenase</span>-Containing Oxygenic Photosynthetic Organisms</span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Melis, A.; Zhang, L.; Benemann, J. R.; Forestier, M.; Ghirardi, M.; Seibert, M.</p> <p>2006-01-24</p> <p>A reversible physiological process provides for the temporal separation of oxygen evolution and hydrogen production in a microorganism, which includes the steps of growing a culture of the microorganism in medium under illuminated conditions to accumulate an endogenous substrate, depleting from the medium a nutrient selected from the group consisting of sulfur, iron, and/or manganese, sealing the culture from atmospheric oxygen, incubating the culture in light whereby a rate of light-induced oxygen production is equal to or less than a rate of respiration, and collecting an evolved gas. The process is particularly useful to accomplish a sustained photobiological hydrogen gas production in cultures of microorganisms, such as Chlamydomonas reinhardtii.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/servlets/purl/1175631','DOE-PATENT-XML'); return false;" href="http://www.osti.gov/scitech/servlets/purl/1175631"><span id="translatedtitle">Hydrogen production using <span class="hlt">hydrogenase</span>-containing oxygenic photosynthetic organisms</span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Melis, Anastasios; Zhang, Liping; Benemann, John R.; Forestier, Marc; Ghirardi, Maria; Seibert, Michael</p> <p>2006-01-24</p> <p>A reversible physiological process provides for the temporal separation of oxygen evolution and hydrogen production in a microorganism, which includes the steps of growing a culture of the microorganism in medium under illuminated conditions to accumulate an endogenous substrate, depleting from the medium a nutrient selected from the group consisting of sulfur, iron, and/or manganese, sealing the culture from atmospheric oxygen, incubating the culture in light whereby a rate of light-induced oxygen production is equal to or less than a rate of respiration, and collecting an evolved gas. The process is particularly useful to accomplish a sustained photobiological hydrogen gas production in cultures of microorganisms, such as Chlamydomonas reinhardtii.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/servlets/purl/1068602','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/servlets/purl/1068602"><span id="translatedtitle">Survey of <span class="hlt">Hydrogenase</span> Activity in Algae: Final Report</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Brand, J. J.</p> <p>1982-04-01</p> <p>The capacity for hydrogen gas production was examined in nearly 100 strains of Eukaryotic algae. Each strain was assessed for rate of H2 production in darkness, at compensating light intensity and at saturating Tight intensity. Maximum H2 yield on illumination and sensitivity to molecular oxygen were also measured.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/biblio/5694589','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/biblio/5694589"><span id="translatedtitle">Geochemical <span class="hlt">modeling</span> of low melt-fraction anatexis in a peraluminous system: The Pena Negra complex (central Spain)</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Bea, F. )</p> <p>1991-07-01</p> <p>A study was made of the chemical fractionation associated with four cases of anatectic segregation of low melt-fraction cordieritic granites from migmatized meta-greywackes. The aims of the study were to (1) reveal the fractionation patterns of major and trace elements, (2) compare the major element chemistry of leucogranites and the quantitative behavior of source minerals during anatexis - inferred by mass-balance adjustment - with available experimental data for peraluminous systems, and (3) discuss the behavior of trace elements in crustal melting by comparing the chemically determined composition of leucogranites with the results of three fractionation <span class="hlt">models</span>. Two of these assume a perfect diffusive behavior of trace elements within residual solids, but they use a different set of distribution coefficients. The third assumes a perfect nondiffusive behavior. In relation to their source rocks, the leucogranites are strongly depleted in Li, Transition Elements, and Light Rare Earth Elements, but enriched in K{sub 2}O, SiO{sub 2}, and Ba. Mass balance analysis using the Anatexis Mixing <span class="hlt">Model</span> shows that the chemistry of cordierite leucogranites is compatible with its having originated by closed-system, water-undersaturated anatexis on previously migmatized meta-greywackes, leaving a residue enriched in cordierite plus biotite and exhausted in K-feldspar. Biotite melts congruently unless important amounts of sillimanite were also present in the source. Compared with experimental metals obtained from sources with the same chemical composition but with a different femic mineralogy (biotite + sillimanite, instead of cordierite + biotite), the Pena Negra leucogranites are richer in K{sub 2}O and MgO with a lower <span class="hlt">Fe/(Fe</span> + Mg) ratio. The differences in magnesium are believed to result from the changes in the mineral assemblage of the source rocks.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://ntrs.nasa.gov/search.jsp?R=19870064649&hterms=bonding+lead&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dbonding%2Blead','NASA-TRS'); return false;" href="http://ntrs.nasa.gov/search.jsp?R=19870064649&hterms=bonding+lead&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dbonding%2Blead"><span id="translatedtitle">The bonding of FeN2, FeCO, and Fe2N2 - <span class="hlt">Model</span> systems for side-on bonding of CO and N2</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bauschlicher, Charles W., Jr.; Pettersson, Lars G. M.; Siegbahn, Per E. M.</p> <p>1987-01-01</p> <p>Qualitative calculations are performed to elucidate the nature of the side-on interaction of both N2 and CO with a single Fe atom. The systems are found to be quite similar, with bonding leading to an increase in the CO or N2 bond length and a decrease in the vibrational frequency. The CO or N2 stretching modes lead to a large dipole derivative along the metal-ligand bond axis. The populations show an almost identical, large donation from the Fe 3d orbitals into the CO or N2 Pi-asterisk. The larger system Fe2N2 is then considered, with the N2 bridging the Fe2, both parallel and perpendicular to the Fe2 bond axis for two different <span class="hlt">Fe-Fe</span> distances. For FeN2, the shift in the observed N2 frequency is smaller than observed for the alpha state of N2/Fe(111). The shift in the N2 vibrational frequency increases when the N2 interacts with two Fe atoms, either at the <span class="hlt">Fe-Fe</span> nearest neighbor distance or at the first layer <span class="hlt">Fe-Fe</span> distance, when the side-on N2 axis is oriented perpendicular to an <span class="hlt">Fe-Fe</span> bond.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.B23B0198Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.B23B0198Y"><span id="translatedtitle">A Tale of Two Gases: Isotope Effects Associated with the Enzymatic Production of H2 and N2O</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yang, H.; Gandhi, H.; Kreuzer, H. W.; Moran, J.; Hill, E. A.; McQuarters, A.; Lehnert, N.; Ostrom, N. E.; Hegg, E. L.</p> <p>2014-12-01</p> <p>Stable isotopes can provide considerable insight into enzymatic mechanisms and fluxes in various biological processes. In our studies, we used stable isotopes to characterize both enzyme-catalyzed H2 and N2O production. H2 is a potential alternative clean energy source and also a key metabolite in many microbial communities. Biological H2 production is generally catalyzed by <span class="hlt">hydrogenases</span>, enzymes that combine protons and electrons to produce H2 under anaerobic conditions. In our study, H isotopes and fractionation factors (α) were used to characterize two types of <span class="hlt">hydrogenases</span>: [<span class="hlt">FeFe</span>]- and [NiFe]-<span class="hlt">hydrogenases</span>. Due to differences in the active site, the α associated with H2 production for [<span class="hlt">FeFe</span>]- and [NiFe]-<span class="hlt">hydrogenases</span> separated into two distinct clusters (αFeFe > αNiFe). The calculated kinetic isotope effects indicate that <span class="hlt">hydrogenase</span>-catalyzed H2 production has a preference for light isotopes, consistent with the relative bond strengths of O-H and H-H bonds. Interestingly, the isotope effects associated with H2 consumption and H2-H2O exchange reactions were also characterized, but in this case no specific difference was observed between the different enzymes. N2O is a potent greenhouse gas with a global warming potential 300 times that of CO2, and the concentration of N2O is currently increasing at a rate of ~0.25% per year. Thus far, bacterial and fungal denitrification processes have been identified as two of the major sources of biologically generated N2O. In this study, we measured the δ15N, δ18O, δ15Nα (central N atom in N2O), and δ15Nβ (terminal N atom in N2O) of N2O generated by purified fungal P450 nitric oxide reductase (P450nor) from Histoplasma capsulatum. We observed normal isotope effects for δ18O and δ15Nα, and inverse isotope effects for bulk δ15N (the average of Nα and Nβ) and δ15Nβ. The observed isotope effects have been used in conjunction with DFT calculations to provide important insight into the mechanism of P450nor. Similar experiments were performed with bacterial nitric oxide reductase from Paracoccus denitrificans (cNOR). In this case both Nα and Nβ exhibited inverse isotope effects, while O had a normal isotope effect. Together, these data highlight the utility in using stable isotopes as both tracers and mechanistic probes when studying metabolic processes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/biblio/896062','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/biblio/896062"><span id="translatedtitle"><span class="hlt">Modeling</span> methanogenesis with a genome-scale metabolic reconstruction of Methanosarcina barkeri</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Feist, Adam; Scholten, Johannes C.; Palsson, Bernard O.; Brockman, Fred J.; Ideker, Trey</p> <p>2006-01-31</p> <p>We present a genome-scale metabolic reconstruction for the archaeal methanogen Methanosarcina barkeri. This reconstruction represents the first large-scale, predictive <span class="hlt">model</span> of a methanogen and an archael species. We characterize this reconstruction and compare it to those from the prokaryotic, eukaryotic, and archael domains. We further apply constraint-based methods to stimulate the metabolic fluxes and resulting phenotypes under different environmental and genetic conditions. These results are validated by comparison to experimental growth measurements and phenotypes of M. barkeri on different substrates. The predicted growth phenotypes for mutants of the methanogenic pathway were found to have a high level of agreement with experimental findings. The active reactions and pathways under selected growth conditions are presented and characterized. We also examined the efficiency of the energy-conserving reactions in the methanogenic pathway, specifically the Ech <span class="hlt">hydrogenase</span> reaction. This work demonstrates that a reconstructed metabolic network can serve as an in silico analysis platform to predict cellular phenotypes, characterize methanogenic growth, improve the genome annotation, and further uncover the metabolic characteristics of methanogenesis.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1284704','PMC'); return false;" href="http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1284704"><span id="translatedtitle"><span class="hlt">Modeling</span> <span class="hlt">modeling</span>.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Killeen, P R</p> <p>1999-01-01</p> <p><span class="hlt">Models</span> are tools; they need to fit both the hand and the task. Presence or absence of a feature such as a pacemaker or a cascade is not in itself good. Or bad. Criteria for <span class="hlt">model</span> evaluation involve benefit-cost ratios, with the numerator a function of the range of phenomena explained, goodness of fit, consistency with other nearby <span class="hlt">models</span>, and intangibles such as beauty. The denominator is a function of complexity, the number of phenomena that must be ignored, and the effort necessary to incorporate the <span class="hlt">model</span> into one's parlance. Neither part of the ratio can yet be evaluated for MTS, whose authors provide some cogent challenges to SET. PMID:10220934</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/biblio/22218100','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/biblio/22218100"><span id="translatedtitle">Ion irradiation of <span class="hlt">Fe-Fe</span> oxide core-shell nanocluster films: Effect of interface on stability of magnetic properties</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>McCloy, John S.; Jiang, Weilin; Droubay, Timothy C.; Varga, Tamas; Kovarik, Libor; Sundararajan, Jennifer A.; Kaur, Maninder; Qiang, You; Burks, Edward C.; Liu, Kai</p> <p>2013-08-28</p> <p>A cluster deposition method was used to produce films of loosely aggregated nanoclusters (NCs) of Fe core-Fe{sub 3}O{sub 4} shell or fully oxidized Fe{sub 3}O{sub 4}. Films of these NC on Si(100) or MgO(100)/Fe{sub 3}O{sub 4}(100) were irradiated to 10{sup 16} Si{sup 2+}/cm{sup 2} near room temperature using an ion accelerator. Ion irradiation creates structural change in the NC film with corresponding chemical and magnetic changes which depend on the initial oxidation state of the cluster. Films were characterized using magnetometry (hysteresis, first order reversal curves), microscopy (transmission electron, helium ion), and x-ray diffraction. In all cases, the particle sizes increased due to ion irradiation, and when a core of Fe is present, irradiation reduces the oxide shells to lower valent Fe species. These results show that ion irradiated behavior of the NC films depends strongly on the initial nanostructure and chemistry, but in general saturation magnetization decreases slightly.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/24931896','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/24931896"><span id="translatedtitle">Draft genome sequence of Hydrogenovibrio marinus MH-110, a <span class="hlt">model</span> organism for aerobic H2 metabolism.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jo, Byung Hoon; Hwang, Byeong Hee; Cha, Hyung Joon</p> <p>2014-09-20</p> <p>Hydrogenovibrio marinus, an obligate chemolithoautotroph isolated from oceanic surface water, is a Knallgas bacterium that conserves energy by oxidizing H2 in the presence of O2. The strain possesses a periplasmic membrane-bound respiratory [NiFe]-<span class="hlt">hydrogenase</span> with high O2 tolerance, hence is of great biotechnological importance in the development of H2-based technologies for a promising alternative energy. Here, we report the draft genome of H. marinus MH-110, providing genomic information on the biosynthesis of the <span class="hlt">hydrogenase</span>, aerobic H2 metabolism, and autotrophic carbon assimilation. PMID:24931896</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009JPCA..11311793H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009JPCA..11311793H"><span id="translatedtitle">Do Quantum Mechanical Energies Calculated for Small <span class="hlt">Models</span> of Protein-Active Sites Converge?</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hu, Lihong; Eliasson, Jenny; Heimdal, Jimmy; Ryde, Ulf</p> <p>2009-09-01</p> <p>A common approach for the computational <span class="hlt">modeling</span> of enzyme reactions is to study a rather small <span class="hlt">model</span> of the active site (20-200 atoms) with quantum mechanical (QM) methods, <span class="hlt">modeling</span> the rest of the surroundings by a featureless continuum with a dielectric constant of 4. In this paper, we discuss how the residues included in the QM <span class="hlt">model</span> should be selected and how many residues need to be included before reaction energies converge. As a test case, we use a proton-transfer reaction between a first-sphere cysteine ligand and a second-sphere histidine group in the active site of [Ni,Fe] <span class="hlt">hydrogenase</span>. We show that it is not a good approach to add groups according to their distance to the active site. A better approach is to add groups according to their contributions to the QM/MM energy difference. However, the energies can still vary by up to 50 kJ/mol for QM systems of sizes up to 230 atoms. In fact, the QM-only approach is based on the hope that a large number of sizable contributions will cancel. Interactions with neutral groups are, in general, short-ranged, with net energy contributions of less than 4 kJ/mol at distances above 5 from the active site. Interactions with charged groups are much more long-ranged, and interactions with buried charges 20 from the active site can still contribute by 5 kJ/mol to the reaction energy. Thus, to accurately <span class="hlt">model</span> the influence of the surroundings on enzyme reaction energies, a detailed and unbiased atomistic account of the surroundings needs to be included.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/servlets/purl/1051787','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/servlets/purl/1051787"><span id="translatedtitle">Toward a rigorous network of protein-protein interactions of the <span class="hlt">model</span> sulfate reducer Desulfovibrio vulgaris Hildenborough</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Chhabra, S.R.; Joachimiak, M.P.; Petzold, C.J.; Zane, G.M.; Price, M.N.; Gaucher, S.; Reveco, S.A.; Fok, V.; Johanson, A.R.; Batth, T.S.; Singer, M.; Chandonia, J.M.; Joyner, D.; Hazen, T.C.; Arkin, A.P.; Wall, J.D.; Singh, A.K.; Keasling, J.D.</p> <p>2011-05-01</p> <p>Protein–protein interactions offer an insight into cellular processes beyond what may be obtained by the quantitative functional genomics tools of proteomics and transcriptomics. The aforementioned tools have been extensively applied to study E. coli and other aerobes and more recently to study the stress response behavior of Desulfovibrio 5 vulgaris Hildenborough, a <span class="hlt">model</span> anaerobe and sulfate reducer. In this paper we present the first attempt to identify protein-protein interactions in an obligate anaerobic bacterium. We used suicide vector-assisted chromosomal modification of 12 open reading frames encoded by this sulfate reducer to append an eight amino acid affinity tag to the carboxy-terminus of the chosen proteins. Three biological replicates of the 10 ‘pulled-down’ proteins were separated and analyzed using liquid chromatography-mass spectrometry. Replicate agreement ranged between 35% and 69%. An interaction network among 12 bait and 90 prey proteins was reconstructed based on 134 bait-prey interactions computationally identified to be of high confidence. We discuss the biological significance of several unique metabolic features of D. vulgaris revealed by this protein-protein interaction data 15 and protein modifications that were observed. These include the distinct role of the putative carbon monoxide-induced <span class="hlt">hydrogenase</span>, unique electron transfer routes associated with different oxidoreductases, and the possible role of methylation in regulating sulfate reduction.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/biblio/1214968','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/biblio/1214968"><span id="translatedtitle">Hydrogen Production by Water Biophotolysis</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Ghirardi, Maria L.; King, Paul W.; Mulder, David W.; Eckert, Carrie; Dubini, Alexandra; Maness, Pin-Ching; Yu, Jianping</p> <p>2014-01-22</p> <p>The use of microalgae for production of hydrogen gas from water photolysis has been studied for many years, but its commercialization is still limited by multiple challenges. Most of the barriers to commercialization are attributed to the existence of biological regulatory mechanisms that, under anaerobic conditions, quench the absorbed light energy, down-regulate linear electron transfer, inactivate the H2-producing enzyme, and compete for electrons with the <span class="hlt">hydrogenase</span>. Consequently, the conversion efficiency of absorbed photons into H2 is significantly lower than its estimated potential of 12–13 %. However, extensive research continues towards addressing these barriers by either trying to understand and circumvent intracellular regulatory mechanisms at the enzyme and metabolic level or by developing biological systems that achieve prolonged H2 production albeit under lower than 12–13 % solar conversion efficiency. This chapter describes the metabolic pathways involved in biological H2 photoproduction from water photolysis, the attributes of the two <span class="hlt">hydrogenases</span>, [<span class="hlt">FeFe</span>] and [NiFe], that catalyze biological H2 production, and highlights research related to addressing the barriers described above. These highlights include: (a) recent advances in improving our understanding of the O2 inactivation mechanism in different classes of <span class="hlt">hydrogenases</span>; (b) progress made in preventing competitive pathways from diverting electrons from H2 photoproduction; and (c) new developments in bypassing the non-dissipated proton gradient from down-regulating photosynthetic electron transfer. As an example of a major success story, we mention the generation of truncated-antenna mutants in Chlamydomonas and Synechocystis that address the inherent low-light saturation of photosynthesis. In addition, we highlight the rationale and progress towards coupling biological <span class="hlt">hydrogenases</span> to non-biological, photochemical charge-separation as a means to bypass the barriers of photobiological systems.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/24748710','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/24748710"><span id="translatedtitle">Bioinspired <span class="hlt">Hydrogenase</span> <span class="hlt">Models</span>: The Mixed-Valence Triiron Complex [Fe3(CO)7(μ-edt)2] and Phosphine Derivatives [Fe3(CO)7-x (PPh3) x (μ-edt)2] (x = 1, 2) and [Fe3(CO)5(κ(2)-diphosphine)(μ-edt)2] as Proton Reduction Catalysts.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rahaman, Ahibur; Ghosh, Shishir; Unwin, David G; Basak-Modi, Sucharita; Holt, Katherine B; Kabir, Shariff E; Nordlander, Ebbe; Richmond, Michael G; Hogarth, Graeme</p> <p>2014-03-24</p> <p>The mixed-valence triiron complexes [Fe3(CO)7-x (PPh3) x (μ-edt)2] (x = 0-2; edt = SCH2CH2S) and [Fe3(CO)5(κ(2)-diphosphine)(μ-edt)2] (diphosphine = dppv, dppe, dppb, dppn) have been prepared and structurally characterized. All adopt an anti arrangement of the dithiolate bridges, and PPh3 substitution occurs at the apical positions of the outer iron atoms, while the diphosphine complexes exist only in the dibasal form in both the solid state and solution. The carbonyl on the central iron atom is semibridging, and this leads to a rotated structure between the bridged diiron center. IR studies reveal that all complexes are inert to protonation by HBF4·Et2O, but addition of acid to the pentacarbonyl complexes results in one-electron oxidation to yield the moderately stable cations [Fe3(CO)5(PPh3)2(μ-edt)2](+) and [Fe3(CO)5(κ(2)-diphosphine)(μ-edt)2](+), species which also result upon oxidation by [Cp2Fe][PF6]. The electrochemistry of the formally Fe(I)-Fe(II)-Fe(I) complexes has been investigated. Each undergoes a quasi-reversible oxidation, the potential of which is sensitive to phosphine substitution, generally occurring between 0.15 and 0.50 V, although [Fe3(CO)5(PPh3)2(μ-edt)2] is oxidized at -0.05 V. Reduction of all complexes is irreversible and is again sensitive to phosphine substitution, varying between -1.47 V for [Fe3(CO)7(μ-edt)2] and around -1.7 V for phosphine-substituted complexes. In their one-electron-reduced states, all complexes are catalysts for the reduction of protons to hydrogen, the catalytic overpotential being increased upon successive phosphine substitution. In comparison to the diiron complex [Fe2(CO)6(μ-edt)], [Fe3(CO)7(μ-edt)2] catalyzes proton reduction at 0.36 V less negative potentials. Electronic structure calculations have been carried out in order to fully elucidate the nature of the oxidation and reduction processes. In all complexes, the HOMO comprises an iron-iron bonding orbital localized between the two iron atoms not ligated by the semibridging carbonyl, while the LUMO is highly delocalized in nature and is antibonding between both pairs of iron atoms but also contains an antibonding dithiolate interaction. PMID:24748710</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3985925','PMC'); return false;" href="http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3985925"><span id="translatedtitle">Bioinspired <span class="hlt">Hydrogenase</span> <span class="hlt">Models</span>: The Mixed-Valence Triiron Complex [Fe3(CO)7(μ-edt)2] and Phosphine Derivatives [Fe3(CO)7–x(PPh3)x(μ-edt)2] (x = 1, 2) and [Fe3(CO)5(κ2-diphosphine)(μ-edt)2] as Proton Reduction Catalysts</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2014-01-01</p> <p>The mixed-valence triiron complexes [Fe3(CO)7–x(PPh3)x(μ-edt)2] (x = 0–2; edt = SCH2CH2S) and [Fe3(CO)5(κ2-diphosphine)(μ-edt)2] (diphosphine = dppv, dppe, dppb, dppn) have been prepared and structurally characterized. All adopt an anti arrangement of the dithiolate bridges, and PPh3 substitution occurs at the apical positions of the outer iron atoms, while the diphosphine complexes exist only in the dibasal form in both the solid state and solution. The carbonyl on the central iron atom is semibridging, and this leads to a rotated structure between the bridged diiron center. IR studies reveal that all complexes are inert to protonation by HBF4·Et2O, but addition of acid to the pentacarbonyl complexes results in one-electron oxidation to yield the moderately stable cations [Fe3(CO)5(PPh3)2(μ-edt)2]+ and [Fe3(CO)5(κ2-diphosphine)(μ-edt)2]+, species which also result upon oxidation by [Cp2Fe][PF6]. The electrochemistry of the formally Fe(I)–Fe(II)–Fe(I) complexes has been investigated. Each undergoes a quasi-reversible oxidation, the potential of which is sensitive to phosphine substitution, generally occurring between 0.15 and 0.50 V, although [Fe3(CO)5(PPh3)2(μ-edt)2] is oxidized at −0.05 V. Reduction of all complexes is irreversible and is again sensitive to phosphine substitution, varying between −1.47 V for [Fe3(CO)7(μ-edt)2] and around −1.7 V for phosphine-substituted complexes. In their one-electron-reduced states, all complexes are catalysts for the reduction of protons to hydrogen, the catalytic overpotential being increased upon successive phosphine substitution. In comparison to the diiron complex [Fe2(CO)6(μ-edt)], [Fe3(CO)7(μ-edt)2] catalyzes proton reduction at 0.36 V less negative potentials. Electronic structure calculations have been carried out in order to fully elucidate the nature of the oxidation and reduction processes. In all complexes, the HOMO comprises an iron–iron bonding orbital localized between the two iron atoms not ligated by the semibridging carbonyl, while the LUMO is highly delocalized in nature and is antibonding between both pairs of iron atoms but also contains an antibonding dithiolate interaction. PMID:24748710</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4257681','PMC'); return false;" href="http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4257681"><span id="translatedtitle">Genome Annotation Provides Insight into Carbon Monoxide and Hydrogen Metabolism in Rubrivivax gelatinosus</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Wawrousek, Karen; Noble, Scott; Korlach, Jonas; Chen, Jin; Eckert, Carrie; Yu, Jianping; Maness, Pin-Ching</p> <p>2014-01-01</p> <p>We report here the sequencing and analysis of the genome of the purple non-sulfur photosynthetic bacterium Rubrivivax gelatinosus CBS. This microbe is a <span class="hlt">model</span> for studies of its carboxydotrophic life style under anaerobic condition, based on its ability to utilize carbon monoxide (CO) as the sole carbon substrate and water as the electron acceptor, yielding CO2 and H2 as the end products. The CO-oxidation reaction is known to be catalyzed by two enzyme complexes, the CO dehydrogenase and <span class="hlt">hydrogenase</span>. As expected, analysis of the genome of Rx. gelatinosus CBS reveals the presence of genes encoding both enzyme complexes. The CO-oxidation reaction is CO-inducible, which is consistent with the presence of two putative CO-sensing transcription factors in its genome. Genome analysis also reveals the presence of two additional <span class="hlt">hydrogenases</span>, an uptake <span class="hlt">hydrogenase</span> that liberates the electrons in H2 in support of cell growth, and a regulatory <span class="hlt">hydrogenase</span> that senses H2 and relays the signal to a two-component system that ultimately controls synthesis of the uptake <span class="hlt">hydrogenase</span>. The genome also contains two sets of <span class="hlt">hydrogenase</span> maturation genes which are known to assemble the catalytic metallocluster of the <span class="hlt">hydrogenase</span> NiFe active site. Collectively, the genome sequence and analysis information reveals the blueprint of an intricate network of signal transduction pathways and its underlying regulation that enables Rx. gelatinosus CBS to thrive on CO or H2 in support of cell growth. PMID:25479613</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012NatCh...4...11D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012NatCh...4...11D"><span id="translatedtitle">Biomimetic chemistry: Merging the old with the new</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Darensbourg, Marcetta Y.; Bethel, Ryan D.</p> <p>2012-01-01</p> <p>The classic organometallic compound ferrocene has been combined with a unique diiron unit in the latest synthetic analogue of an enzyme active site, achieving the three functionalities needed for a working <span class="hlt">model</span> of diiron <span class="hlt">hydrogenase</span>, itself of ancient origin.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4287179','PMC'); return false;" href="http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4287179"><span id="translatedtitle">Genome sequence of the <span class="hlt">model</span> sulfate reducer Desulfovibrio gigas: a comparative analysis within the Desulfovibrio genus*</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Morais-Silva, Fabio O; Rezende, Antonio Mauro; Pimentel, Catarina; Santos, Catia I; Clemente, Carla; Varela–Raposo, Ana; Resende, Daniela M; da Silva, Sofia M; de Oliveira, Luciana Márcia; Matos, Marcia; Costa, Daniela A; Flores, Orfeu; Ruiz, Jerónimo C; Rodrigues-Pousada, Claudina</p> <p>2014-01-01</p> <p>Desulfovibrio gigas is a <span class="hlt">model</span> organism of sulfate-reducing bacteria of which energy metabolism and stress response have been extensively studied. The complete genomic context of this organism was however, not yet available. The sequencing of the D. gigas genome provides insights into the integrated network of energy conserving complexes and structures present in this bacterium. Comparison with genomes of other Desulfovibrio spp. reveals the presence of two different CRISPR/Cas systems in D. gigas. Phylogenetic analysis using conserved protein sequences (encoded by rpoB and gyrB) indicates two main groups of Desulfovibrio spp, being D. gigas more closely related to D. vulgaris and D. desulfuricans strains. Gene duplications were found such as those encoding fumarate reductase, formate dehydrogenase, and superoxide dismutase. Complexes not yet described within Desulfovibrio genus were identified: Mnh complex, a v-type ATP-synthase as well as genes encoding the MinCDE system that could be responsible for the larger size of D. gigas when compared to other members of the genus. A low number of <span class="hlt">hydrogenases</span> and the absence of the codh/acs and pfl genes, both present in D. vulgaris strains, indicate that intermediate cycling mechanisms may contribute substantially less to the energy gain in D. gigas compared to other Desulfovibrio spp. This might be compensated by the presence of other unique genomic arrangements of complexes such as the Rnf and the Hdr/Flox, or by the presence of NAD(P)H related complexes, like the Nuo, NfnAB or Mnh. PMID:25055974</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3933540','PMC'); return false;" href="http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3933540"><span id="translatedtitle">Engineering Synechocystis PCC6803 for Hydrogen Production: Influence on the Tolerance to Oxidative and Sugar Stresses</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Ortega-Ramos, Marcia; Jittawuttipoka, Thichakorn; Saenkham, Panatda; Czarnecka-Kwasiborski, Aurelia; Bottin, Hervé; Cassier-Chauvat, Corinne; Chauvat, Franck</p> <p>2014-01-01</p> <p>In the prospect of engineering cyanobacteria for the biological photoproduction of hydrogen, we have studied the hydrogen production machine in the <span class="hlt">model</span> unicellular strain Synechocystis PCC6803 through gene deletion, and overexpression (constitutive or controlled by the growth temperature). We demonstrate that the <span class="hlt">hydrogenase</span>-encoding hoxEFUYH operon is dispensable to standard photoautotrophic growth in absence of stress, and it operates in cell defense against oxidative (H2O2) and sugar (glucose and glycerol) stresses. Furthermore, we showed that the simultaneous over-production of the proteins HoxEFUYH and HypABCDE (assembly of <span class="hlt">hydrogenase</span>), combined to an increase in nickel availability, led to an approximately 20-fold increase in the level of active <span class="hlt">hydrogenase</span>. These novel results and mutants have major implications for those interested in <span class="hlt">hydrogenase</span>, hydrogen production and redox metabolism, and their connections with environmental conditions. PMID:24586727</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/biblio/1024072','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/biblio/1024072"><span id="translatedtitle">A Synthetic Nickel Electrocatalyst With a Turnover Frequency Above 100,000 s-1 for H2 Production</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Helm, Monte L.; Stewart, Michael P.; Bullock, R. Morris; Rakowski DuBois, Mary; DuBois, Daniel L.</p> <p>2011-08-12</p> <p>Increased worldwide energy demand will require greater use of carbon-neutral sustainable energy sources. The intermittent nature of solar and wind power requires storage of energy, so electrocatalysts that convert electrical energy to chemical bonds in fuels are needed. Platinum is an excellent catalyst, but it is of low abundance and high cost. <span class="hlt">Hydrogenase</span> enzymes in Nature catalyze the evolution of H2 and use earth-abundant metals such as nickel and iron. We report that a synthetic nickel catalyst, [Ni(7PPh2NPh)2](BF4)2, (7PPh2NPh = 1,3,6-triphenyl-1-aza-3,6-diphosphacycloheptane) catalyzes the production of H2 using [(DMF)H]+OTf as the proton source, with turnover frequencies of 31,000 s-1 in dry acetonitrile and 108,000 s-1 in the presence of H2O (1.2 M), at a potential of -1.13 V (vs. the ferrocenium/ferrocene couple). These turnover frequencies exceed those reported for the [<span class="hlt">FeFe</span>] <span class="hlt">hydrogenase</span> enzyme by more than an order of magnitude, and are the fastest reported for any molecular catalyst for H2 production. This material is based upon work supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/22106822','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/22106822"><span id="translatedtitle">Regioselectivity of H cluster oxidation.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bruska, Marta K; Stiebritz, Martin T; Reiher, Markus</p> <p>2011-12-21</p> <p>The H(2)-evolving potential of [<span class="hlt">FeFe</span>] <span class="hlt">hydrogenases</span> is severely limited by the oxygen sensitivity of this class of enzymes. Recent experimental studies on <span class="hlt">hydrogenase</span> from C. reinhardtii point to O(2)-induced structural changes in the [Fe(4)S(4)] subsite of the H cluster. Here, we investigate the mechanistic basis of this observation by means of density functional theory. Unexpectedly, we find that the isolated H cluster shows a pathological catalytic activity for the formation of reactive oxygen species such as O(2)(-) and HO(2)(-). After protonation of O(2)(-), an OOH radical may coordinate to the Fe atoms of the cubane, whereas H(2)O(2) specifically reacts with the S atoms of the cubane-coordinating cysteine residues. Both pathways are accompanied by significant structural distortions that compromise cluster integrity and thus catalytic activity. These results explain the experimental observation that O(2)-induced inhibition is accompanied by distortions of the [Fe(4)S(4)] moiety and account for the irreversibility of this process. PMID:22106822</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://ntrs.nasa.gov/search.jsp?R=19930040727&hterms=Empa&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DEmpa','NASA-TRS'); return false;" href="http://ntrs.nasa.gov/search.jsp?R=19930040727&hterms=Empa&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DEmpa"><span id="translatedtitle">Experimental partitioning studies near the <span class="hlt">Fe-FeS</span> eutectic, with an emphasis on elements important to iron meteorite chronologies (Pb, Ag, Pd, and Tl)</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jones, J. H.; Hart, S. R.; Benjamin, T. M.</p> <p>1993-01-01</p> <p>Partitioning coefficients for metal/sulfide liquid, troilite/sulfide liquid, and schreibersite/sulfide liquid were determined for Ag, Au, Mo, Ni, Pd, and Tl (using EMPA and proton-induced X-ray microprobe and ion microprobe analyses) in order to understand the chronometer systems of iron meteorites. In general, the obtained schreibersite/metal and troilite/metal partition coefficients for 'compatible' elements were quite similar to those inferred from natural assemblages, reinforcing an earlier made conclusion that there is a class of elements for which experimental troilite/metal and schreibersite/metal partition coefficients approximate those inferred from natural samples. The consistency between experimental and natural assemblages, however, was not observed for Ag, Pb, and Tl, indicating that the abundances of these elements determined in 'metal' and 'troilite' separates from iron meteorites are influenced by trace minerals that concentrate incompatible elements.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14.9902H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14.9902H"><span id="translatedtitle">Comprehensive structural and chemical (CO2, <span class="hlt">Fe/Fe</span> Mg, H2O) investigations of Mg-Fe cordierite with micro Raman spectroscopy</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Haefeker, U.; Kaindl, R.; Tropper, P.</p> <p>2012-04-01</p> <p>The Mg-Fe silicate cordierite with the idealized formula (Fe, Mg)2Al4Si5O18 occurs as a hexagonal and an orthorhombic polymorph with disordered/ordered Al-Si distribution on the tetrahedral sites. Most of the natural cordierites are fully ordered. Six-membered rings of (Si,Al)O4 are piled in the direction of the crystallographic c-axis and form channels, laterally and vertically linked by additional (Al, Si) tetrahedrons. Mg and Fe in varying fractions occupy the octahedrally coordinated M-sites. CO2 and H2O (and other volatiles) can be incorporated into the structural channels, thus cordierite can be used for paleofluid reconstruction. The vibration energies of incorporated volatiles, their interaction with the lattice and variations of certain lattice-vibration energies caused by the Mg-Fe exchange can be determined with Raman spectroscopy, allowing chemical quantifications and structural investigations. A method for the semi-quantitative determination of CO2-contents of natural cordierites by Kaindl et al. (2006) was optimized and enhanced by Haefeker et al. (2007). CO2 contents can be measured in single crystals and thin sections with an error of ± 0.05 - 0.09 wt.-%. Based on the Mg-Fe exchange with garnet, cordierite can be used as a geothermobarometer. Recent investigations of synthetic Mg-Fe cordierites with XFe = 0 - 1 have shown a linear downshift of six selected lattice peaks between 100 and 1250 cm-1 with the Mg-Fe contents. Correlation diagrams allow an estimation of the Mg-Fe contents in synthetic and natural samples. The experimental data are in good agreement with the results of quantum-mechanical calculations of the Raman spectra of Mg- and Fe cordierite (Kaindl et al., 2011) allowing the assignment of the peaks to specific vibrations of tetrahedral and octahedral sites. Natural Mg-Fe cordierites are mainly orthorhombic with a fully ordered Al/Si distribution on the tetrahedral sites. However, the disordered hexagonal polymorph is observed in many experiments. Raman spectroscopy allows easy distinguishing between the two polymorphs by the splitting of a characteristic peak at ~569 cm-1. Crystallographic and Raman spectroscopic data of the Fe endmember polymorphs are rare in literature, therefore, Raman and single-crystal x-ray data of synthetic samples were collected and compared with the well-known Mg and Mg-Fe cordierites. First compositional Raman maps show a relation between the degree of ordering of Fe cordierite and the amount of water incorporated into the channels. The effects of water incorporation on the Raman spectra of Mg cordierites is currently being evaluated. Preliminary investigations indicate a downshift of the peak at ~1186 cm-1with increasing water contents. Literature: Kaindl, R., Tropper P., Deibl, I. (2006) A semi-quantitative technique for determination of CO2in cordierite by Raman spectroscopy in thin sections. Eur. J. Mineral, 18, 331-335 Haefeker, U. (2007) Verbesserte semiquantitative Analyse von CO2 in natürlichem Cordierit mit Hilfe der Mikro-Raman-Spektroskopie. Unpublished master thesis. University of Innsbruck, 86p Kaindl, R., Többens, D. M., Haefeker, U. (2011) Quantum-mechanical calculations of the Raman spectra of Mg- and Fe-cordierite. American Mineralogist, 96, 1568-1574</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/17171719','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/17171719"><span id="translatedtitle">Fermentation of biomass-generated synthesis gas: effects of nitric oxide.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ahmed, Asma; Lewis, Randy S</p> <p>2007-08-01</p> <p>The production of renewable fuels, such as ethanol, has been steadily increasing owing to the need for a reduced dependency on fossil fuels. It was demonstrated previously that biomass-generated synthesis gas (biomass-syngas) can be converted to ethanol and acetic acid using a microbial catalyst. The biomass-syngas (primarily CO, CO(2), H(2), and N(2)) was generated in a fluidized-bed gasifier and used as a substrate for Clostridium carboxidivorans P7(T). Results showed that the cells stopped consuming H(2) when exposed to biomass-syngas, thus indicating that there was an inhibition of the <span class="hlt">hydrogenase</span> enzyme due to some biomass-syngas contaminant. It was hypothesized that nitric oxide (NO) detected in the biomass-syngas could be the possible cause of this inhibition. The specific activity of <span class="hlt">hydrogenase</span> was monitored with time under varying concentrations of H(2) and NO. Results indicated that NO (at gas concentrations above 40 ppm) was a non-competitive inhibitor of <span class="hlt">hydrogenase</span> activity, although the loss of <span class="hlt">hydrogenase</span> activity was reversible. In addition, NO also affected the cell growth and increased the amount of ethanol produced. A kinetic <span class="hlt">model</span> of <span class="hlt">hydrogenase</span> activity with inhibition by NO was demonstrated with results suggesting there are multiple binding sites of NO on the <span class="hlt">hydrogenase</span> enzyme. Since other syngas-fermenting organisms utilize the same metabolic pathways, this study estimates that NO < 40 ppm can be tolerated by cells in a syngas-fermentation system without compromising the <span class="hlt">hydrogenase</span> activity, cell growth, and product distribution. PMID:17171719</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/19757795','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/19757795"><span id="translatedtitle"><span class="hlt">Modeling</span> the syn disposition of nitrogen donors in non-heme diiron enzymes. Synthesis, characterization, and hydrogen peroxide reactivity of diiron(III) complexes with the syn N-donor ligand H2BPG2DEV.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Friedle, Simone; Kodanko, Jeremy J; Morys, Anna J; Hayashi, Takahiro; Moënne-Loccoz, Pierre; Lippard, Stephen J</p> <p>2009-10-14</p> <p>In order to <span class="hlt">model</span> the syn disposition of histidine residues in carboxylate-bridged non-heme diiron enzymes, we prepared a new dinucleating ligand, H(2)BPG(2)DEV, that provides this geometric feature. The ligand incorporates biologically relevant carboxylate functionalities, which have not been explored as extensively as nitrogen-only analogues. Three novel oxo-bridged diiron(III) complexes, [Fe(2)(mu-O)(H(2)O)(2)(BPG(2)DEV)](ClO(4))(2) (6), [Fe(2)(mu-O)(mu-O(2)CAr(iPrO))(BPG(2)DEV)](ClO(4)) (7), and [Fe(2)(mu-O)(mu-CO(3))(BPG(2)DEV)] (8), were prepared. Single-crystal X-ray structural characterization confirms that two pyridyl groups are bound syn with respect to the <span class="hlt">Fe-Fe</span> vector in these compounds. The carbonato-bridged complex 8 forms quantitatively from 6 in a rapid reaction with gaseous CO(2) in organic solvents. A common maroon-colored intermediate (lambda(max) = 490 nm; epsilon = 1500 M(-1) cm(-1)) forms in reactions of 6, 7, or 8 with H(2)O(2) and NEt(3) in CH(3)CN/H(2)O solutions. Mass spectrometric analyses of this species, formed using (18)O-labeled H(2)O(2), indicate the presence of a peroxide ligand bound to the oxo-bridged diiron(III) center. The Mossbauer spectrum at 90 K of the EPR-silent intermediate exhibits a quadrupole doublet with delta = 0.58 mm/s and DeltaE(Q) = 0.58 mm/s. The isomer shift is typical for a peroxodiiron(III) species, but the quadrupole splitting parameter is unusually small compared to those of related complexes. These Mossbauer parameters are comparable to those observed for a peroxo intermediate formed in the reaction of reduced toluene/o-xylene monooxygenase hydroxylase with dioxygen. Resonance Raman studies reveal an unusually low-energy O-O stretching mode in the peroxo intermediate that is consistent with a short diiron distance. Although peroxodiiron(III) intermediates generated from 6, 7, and 8 are poor O-atom-transfer catalysts, they display highly efficient catalase activity, with turnover numbers up to 10,000. In contrast to hydrogen peroxide reactions of diiron(III) complexes that lack a dinucleating ligand, the intermediates generated here could be re-formed in significant quantities after a second addition of H(2)O(2), as observed spectroscopically and by mass spectrometry. PMID:19757795</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009IJQC..109..876D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009IJQC..109..876D"><span id="translatedtitle">Inactivation of [Fe=Fe]-<span class="hlt">hydrogenase</span> by O2. Thermodynamics and frontier molecular orbitals analyses</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dogaru, Daniela; Motiu, Stefan; Gogonea, Valentin</p> <p></p> <p>The oxidation of H-cluster in gas phase, and in aqueous enzyme phase, has been investigated by means of quantum mechanics (QM) and combined quantum mechanics-molecular mechanics (QM/MM). Several potential reaction pathways (in the above-mentioned chemical environments) have been studied, wherein only the aqueous enzyme phase has been found to lead to an inhibited hydroxylated cluster. Specifically, the inhibitory process occurs at the distal iron (Fed) of the catalytic H-cluster (which isalso the atom involved in H2 synthesis). The processes involved in the H-cluster oxidative pathways are O2 binding, e- transfer, protonation, and H2O removal. We found that oxygen binding is nonspontaneous in gas phase, and spontaneous for aqueous enzyme phase where both Fe atoms have oxidation state II; however, it is spontaneous for the partially oxidized and reduced clusters in both phases. Hence, in the protein environment the hydroxylated H-cluster is obtained by means of completely exergonic reaction pathway starting with proton transfer. A unifying endeavor has been carried out for the purpose of understanding the thermodynamic results vis--vis several other performed electronic structural methods, such as frontier molecular orbitals (FMO), natural bond orbital partial charges (NBO), and H-cluster geometrical analysis. An interesting result of the FMO examination (for gas phase) is that an e- is transferred to LUMO? rather than to SOMO?, which is unexpected because SOMO? usually resides in a lower energy rather than LUMO? for open-shell clusters.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/26375327','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/26375327"><span id="translatedtitle">Reengineering cyt b562 for hydrogen production: A facile route to artificial <span class="hlt">hydrogenases</span>.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sommer, Dayn Joseph; Vaughn, Michael David; Clark, Brett Colby; Tomlin, John; Roy, Anindya; Ghirlanda, Giovanna</p> <p>2016-05-01</p> <p>Bioinspired, protein-based molecular catalysts utilizing base metals at the active are emerging as a promising avenue to sustainable hydrogen production. The protein matrix modulates the intrinsic reactivity of organometallic active sites by tuning second-sphere and long-range interactions. Here, we show that swapping Co-Protoporphyrin IX for Fe-Protoporphyrin IX in cytochrome b562 results in an efficient catalyst for photoinduced proton reduction to molecular hydrogen. Further, the activity of wild type Co-cyt b562 can be modulated by a factor of 2.5 by exchanging the coordinating methionine with alanine or aspartic acid. The observed turnover numbers (TON) range between 125 and 305, and correlate well with the redox potential of the Co-cyt b562 mutants. The photosensitized system catalyzes proton reduction with high efficiency even under an aerobic atmosphere, implicating its use for biotechnological applications. This article is part of a Special Issue entitled Biodesign for Bioenergetics - the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson. PMID:26375327</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014sems.book..107L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014sems.book..107L"><span id="translatedtitle"><span class="hlt">Models</span>, Fiction, and Fictional <span class="hlt">Models</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Chuang</p> <p>2014-03-01</p> <p>The following sections are included: * Introduction * Why Most <span class="hlt">Models</span> in Science Are Not Fictional * Typically Fictional <span class="hlt">Models</span> in Science * <span class="hlt">Modeling</span> the Unobservable * Fictional <span class="hlt">Models</span> for the Unobservable? * References</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/24991701','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/24991701"><span id="translatedtitle">Paramagnetic intermediates generated by radical S-adenosylmethionine (SAM) enzymes.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Stich, Troy A; Myers, William K; Britt, R David</p> <p>2014-08-19</p> <p>A [4Fe-4S](+) cluster reduces a bound S-adenosylmethionine (SAM) molecule, cleaving it into methionine and a 5'-deoxyadenosyl radical (5'-dA(•)). This step initiates the varied chemistry catalyzed by each of the so-called radical SAM enzymes. The strongly oxidizing 5'-dA(•) is quenched by abstracting a H-atom from a target species. In some cases, this species is an exogenous molecule of substrate, for example, L-tyrosine in the [<span class="hlt">FeFe</span>] <span class="hlt">hydrogenase</span> maturase, HydG. In other cases, the target is a proteinaceous residue as in all the glycyl radical forming enzymes. The generation of this initial radical species and the subsequent chemistry involving downstream radical intermediates is meticulously controlled by the enzyme so as to prevent unwanted reactions. But the manner in which this control is exerted is unknown. Electron paramagnetic resonance (EPR) spectroscopy has proven to be a valuable tool used to gain insight into these mechanisms. In this Account, we summarize efforts to trap such radical intermediates in radical SAM enzymes and highlight four examples in which EPR spectroscopic results have shed significant light on the corresponding mechanism. For lysine 2,3-aminomutase, nearly each possible intermediate, from an analogue of the initial 5'-dA(•) to the product radical L-β-lysine, has been explored. A paramagnetic intermediate observed in biotin synthase is shown to involve an auxiliary [FeS] cluster whose bridging sulfide is a co-substrate for the final step in the biosynthesis of vitamin B7. In HydG, the L-tyrosine substrate is converted in unprecedented fashion to a 4-oxidobenzyl radical on the way to generating CO and CN(-) ligands for the [<span class="hlt">FeFe</span>] cluster of <span class="hlt">hydrogenase</span>. And finally, EPR has confirmed a mechanistic proposal for the antibiotic resistance protein Cfr, which methylates the unactivated sp(2)-hybridized C8-carbon of an adenosine base of 23S ribosomal RNA. These four systems provide just a brief survey of the ever-growing set of radical SAM enzymes. The diverse chemistries catalyzed by these enzymes make them an intriguing target for continuing study, and EPR spectroscopy, in particular, seems ideally placed to contribute to our understanding. PMID:24991701</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4139163','PMC'); return false;" href="http://www.pubmedcentr