Science.gov

Sample records for feiii-reducing bacterium geobacter

  1. Geobacter soli sp. nov., a dissimilatory Fe(III)-reducing bacterium isolated from forest soil.

    PubMed

    Zhou, Shungui; Yang, Guiqin; Lu, Qin; Wu, Min

    2014-11-01

    A novel Fe(III)-reducing bacterium, designated GSS01(T), was isolated from a forest soil sample using a liquid medium containing acetate and ferrihydrite as electron donor and electron acceptor, respectively. Cells of strain GSS01(T) were strictly anaerobic, Gram-stain-negative, motile, non-spore-forming and slightly curved rod-shaped. Growth occurred at 16-40 °C and optimally at 30 °C. The DNA G+C content was 60.9 mol%. The major respiratory quinone was MK-8. The major fatty acids were C(16:0), C(18:0) and C(16:1)ω7c/C(16:1)ω6c. Strain GSS01(T) was able to grow with ferrihydrite, Fe(III) citrate, Mn(IV), sulfur, nitrate or anthraquinone-2,6-disulfonate, but not with fumarate, as sole electron acceptor when acetate was the sole electron donor. The isolate was able to utilize acetate, ethanol, glucose, lactate, butyrate, pyruvate, benzoate, benzaldehyde, m-cresol and phenol but not toluene, p-cresol, propionate, malate or succinate as sole electron donor when ferrihydrite was the sole electron acceptor. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain GSS01(T) was most closely related to Geobacter sulfurreducens PCA(T) (98.3% sequence similarity) and exhibited low similarities (94.9-91.8%) to the type strains of other species of the genus Geobacter. The DNA-DNA relatedness between strain GSS01(T) and G. sulfurreducens PCA(T) was 41.4 ± 1.1%. On the basis of phylogenetic analysis, phenotypic characterization and physiological tests, strain GSS01(T) is believed to represent a novel species of the genus Geobacter, and the name Geobacter soli sp. nov. is proposed. The type strain is GSS01(T) ( =KCTC 4545(T) =MCCC 1K00269(T)). PMID:25139417

  2. Arsenic dissolution from Japanese paddy soil by a dissimilatory arsenate-reducing bacterium Geobacter sp. OR-1.

    PubMed

    Ohtsuka, Toshihiko; Yamaguchi, Noriko; Makino, Tomoyuki; Sakurai, Kazuhiro; Kimura, Kenta; Kudo, Keitaro; Homma, Eri; Dong, Dian Tao; Amachi, Seigo

    2013-06-18

    Dissimilatory As(V) (arsenate)-reducing bacteria may play an important role in arsenic release from anoxic sediments in the form of As(III) (arsenite). Although respiratory arsenate reductase genes (arrA) closely related to Geobacter species have been frequently detected in arsenic-rich sediments, it is still unclear whether they directly participate in arsenic release, mainly due to lack of pure cultures capable of arsenate reduction. In this study, we isolated a novel dissimilatory arsenate-reducing bacterium, strain OR-1, from Japanese paddy soil, and found that it was phylogenetically closely related to Geobacter pelophilus. OR-1 also utilized soluble Fe(III), ferrihydrite, nitrate, and fumarate as electron acceptors. OR-1 catalyzed dissolution of arsenic from arsenate-adsorbed ferrihydrite, while Geobacter metallireducens GS-15 did not. Furthermore, inoculation of washed cells of OR-1 into sterilized paddy soil successfully restored arsenic release. Arsenic K-edge X-ray absorption near-edge structure analysis revealed that strain OR-1 reduced arsenate directly on the soil solid phase. Analysis of putative ArrA sequences from paddy soils suggested that Geobacter-related bacteria, including those closely related to OR-1, play an important role in arsenic release from paddy soils. Our results provide direct evidence for arsenic dissolution by Geobacter species and support the hypothesis that Geobacter species play a significant role in reduction and mobilization of arsenic in flooded soils and anoxic sediments. PMID:23668621

  3. Draft Genome Sequence of Geobacter sp. Strain OR-1, an Arsenate-Respiring Bacterium Isolated from Japanese Paddy Soil

    PubMed Central

    Ehara, Ayaka; Suzuki, Haruo

    2015-01-01

    Here, we report a draft genome sequence of Geobacter sp. strain OR-1, an arsenate-respiring bacterium isolated from Japanese paddy soil. It contained two distinct arsenic islands, one including genes for a respiratory arsenate reductase (Arr) as well as for arsenic resistance (arsD-arsA-acr3-arsR-arrA-arrB) and the second containing only genes for arsenic resistance. PMID:25635012

  4. Draft Genome Sequence of Geobacter sp. Strain OR-1, an Arsenate-Respiring Bacterium Isolated from Japanese Paddy Soil.

    PubMed

    Ehara, Ayaka; Suzuki, Haruo; Amachi, Seigo

    2015-01-01

    Here, we report a draft genome sequence of Geobacter sp. strain OR-1, an arsenate-respiring bacterium isolated from Japanese paddy soil. It contained two distinct arsenic islands, one including genes for a respiratory arsenate reductase (Arr) as well as for arsenic resistance (arsD-arsA-acr3-arsR-arrA-arrB) and the second containing only genes for arsenic resistance. PMID:25635012

  5. Geobacter anodireducens sp. nov., an exoelectrogenic microbe in bioelectrochemical systems.

    PubMed

    Sun, Dan; Wang, Aijie; Cheng, Shaoan; Yates, Matthew; Logan, Bruce E

    2014-10-01

    A previously isolated exoelectrogenic bacterium, strain SD-1(T), was further characterized and identified as a representative of a novel species of the genus Geobacter. Strain SD-1(T) was Gram-negative, aerotolerant, anaerobic, non-spore-forming, non-fermentative and non-motile. Cells were short, curved rods (0.8-1.3 µm long and 0.3 µm in diameter). Growth of strain SD-1(T) was observed at 15-42 °C and pH 6.0-8.5, with optimal growth at 30-35 °C and pH 7. Analysis of 16S rRNA gene sequences indicated that the isolate was a member of the genus Geobacter, with the closest known relative being Geobacter sulfurreducens PCA(T) (98% similarity). Similar to other members of the genus Geobacter, strain SD-1(T) used soluble or insoluble Fe(III) as the sole electron acceptor coupled with the oxidation of acetate. However, SD-1(T) could not reduce fumarate as an electron acceptor with acetate oxidization, which is an important physiological trait for G. sulfurreducens. Moreover, SD-1(T) could grow in media containing as much as 3% NaCl, while G. sulfurreducens PCA(T) can tolerate just half this concentration, and this difference in salt tolerance was even more obvious when cultivated in bioelectrochemical systems. DNA-DNA hybridization analysis of strain SD-1(T) and its closest relative, G. sulfurreducens ATCC 51573(T), showed a relatedness of 61.6%. The DNA G+C content of strain SD-1(T) was 58.9 mol%. Thus, on the basis of these characteristics, strain SD-1(T) was not assigned to G. sulfurreducens, and was instead classified in the genus Geobacter as a representative of a novel species. The name Geobacter anodireducens sp. nov. is proposed, with the type strain SD-1(T) ( = CGMCC 1.12536(T) = KCTC 4672(T)). PMID:25052395

  6. Enhanced Uranium Immobilization and Reduction by Geobacter sulfurreducens Biofilms

    PubMed Central

    Cologgi, Dena L.; Speers, Allison M.; Bullard, Blair A.; Kelly, Shelly D.

    2014-01-01

    Biofilms formed by dissimilatory metal reducers are of interest to develop permeable biobarriers for the immobilization of soluble contaminants such as uranium. Here we show that biofilms of the model uranium-reducing bacterium Geobacter sulfurreducens immobilized substantially more U(VI) than planktonic cells and did so for longer periods of time, reductively precipitating it to a mononuclear U(IV) phase involving carbon ligands. The biofilms also tolerated high and otherwise toxic concentrations (up to 5 mM) of uranium, consistent with a respiratory strategy that also protected the cells from uranium toxicity. The enhanced ability of the biofilms to immobilize uranium correlated only partially with the biofilm biomass and thickness and depended greatly on the area of the biofilm exposed to the soluble contaminant. In contrast, uranium reduction depended on the expression of Geobacter conductive pili and, to a lesser extent, on the presence of the c cytochrome OmcZ in the biofilm matrix. The results support a model in which the electroactive biofilm matrix immobilizes and reduces the uranium in the top stratum. This mechanism prevents the permeation and mineralization of uranium in the cell envelope, thereby preserving essential cellular functions and enhancing the catalytic capacity of Geobacter cells to reduce uranium. Hence, the biofilms provide cells with a physically and chemically protected environment for the sustained immobilization and reduction of uranium that is of interest for the development of improved strategies for the in situ bioremediation of environments impacted by uranium contamination. PMID:25128347

  7. Probing single- to multi-cell level charge transport in Geobacter sulfurreducens DL-1

    NASA Astrophysics Data System (ADS)

    Jiang, Xiaocheng; Hu, Jinsong; Petersen, Emily R.; Fitzgerald, Lisa A.; Jackan, Charles S.; Lieber, Alexander M.; Ringeisen, Bradley R.; Lieber, Charles M.; Biffinger, Justin C.

    2013-11-01

    Microbial fuel cells, in which living microorganisms convert chemical energy into electricity, represent a potentially sustainable energy technology for the future. Here we report the single-bacterium level current measurements of Geobacter sulfurreducens DL-1 to elucidate the fundamental limits and factors determining maximum power output from a microbial fuel cell. Quantized stepwise current outputs of 92(±33) and 196(±20) fA are generated from microelectrode arrays confined in isolated wells. Simultaneous cell imaging/tracking and current recording reveals that the current steps are directly correlated with the contact of one or two cells with the electrodes. This work establishes the amount of current generated by an individual Geobacter cell in the absence of a biofilm and highlights the potential upper limit of microbial fuel cell performance for Geobacter in thin biofilms.

  8. Coexistence of Microaerophilic, Nitrate-Reducing, and Phototrophic Fe(II) Oxidizers and Fe(III) Reducers in Coastal Marine Sediment

    PubMed Central

    Laufer, Katja; Nordhoff, Mark; Røy, Hans; Schmidt, Caroline; Behrens, Sebastian; Jørgensen, Bo Barker

    2015-01-01

    Iron is abundant in sediments, where it can be biogeochemically cycled between its divalent and trivalent redox states. The neutrophilic microbiological Fe cycle involves Fe(III)-reducing and three different physiological groups of Fe(II)-oxidizing microorganisms, i.e., microaerophilic, anoxygenic phototrophic, and nitrate-reducing Fe(II) oxidizers. However, it is unknown whether all three groups coexist in one habitat and how they are spatially distributed in relation to gradients of O2, light, nitrate, and Fe(II). We examined two coastal marine sediments in Aarhus Bay, Denmark, by cultivation and most probable number (MPN) studies for Fe(II) oxidizers and Fe(III) reducers and by quantitative-PCR (qPCR) assays for microaerophilic Fe(II) oxidizers. Our results demonstrate the coexistence of all three metabolic types of Fe(II) oxidizers and Fe(III) reducers. In qPCR, microaerophilic Fe(II) oxidizers (Zetaproteobacteria) were present with up to 3.2 × 106 cells g dry sediment−1. In MPNs, nitrate-reducing Fe(II) oxidizers, anoxygenic phototrophic Fe(II) oxidizers, and Fe(III) reducers reached cell numbers of up to 3.5 × 104, 3.1 × 102, and 4.4 × 104 g dry sediment−1, respectively. O2 and light penetrated only a few millimeters, but the depth distribution of the different iron metabolizers did not correlate with the profile of O2, Fe(II), or light. Instead, abundances were homogeneous within the upper 3 cm of the sediment, probably due to wave-induced sediment reworking and bioturbation. In microaerophilic Fe(II)-oxidizing enrichment cultures, strains belonging to the Zetaproteobacteria were identified. Photoferrotrophic enrichments contained strains related to Chlorobium and Rhodobacter; the nitrate-reducing Fe(II) enrichments contained strains related to Hoeflea and Denitromonas. This study shows the coexistence of all three types of Fe(II) oxidizers in two near-shore marine environments and the potential for competition and interrelationships between them. PMID:26682861

  9. Coexistence of Microaerophilic, Nitrate-Reducing, and Phototrophic Fe(II) Oxidizers and Fe(III) Reducers in Coastal Marine Sediment.

    PubMed

    Laufer, Katja; Nordhoff, Mark; Røy, Hans; Schmidt, Caroline; Behrens, Sebastian; Jørgensen, Bo Barker; Kappler, Andreas

    2015-01-01

    Iron is abundant in sediments, where it can be biogeochemically cycled between its divalent and trivalent redox states. The neutrophilic microbiological Fe cycle involves Fe(III)-reducing and three different physiological groups of Fe(II)-oxidizing microorganisms, i.e., microaerophilic, anoxygenic phototrophic, and nitrate-reducing Fe(II) oxidizers. However, it is unknown whether all three groups coexist in one habitat and how they are spatially distributed in relation to gradients of O2, light, nitrate, and Fe(II). We examined two coastal marine sediments in Aarhus Bay, Denmark, by cultivation and most probable number (MPN) studies for Fe(II) oxidizers and Fe(III) reducers and by quantitative-PCR (qPCR) assays for microaerophilic Fe(II) oxidizers. Our results demonstrate the coexistence of all three metabolic types of Fe(II) oxidizers and Fe(III) reducers. In qPCR, microaerophilic Fe(II) oxidizers (Zetaproteobacteria) were present with up to 3.2 × 10(6) cells g dry sediment(-1). In MPNs, nitrate-reducing Fe(II) oxidizers, anoxygenic phototrophic Fe(II) oxidizers, and Fe(III) reducers reached cell numbers of up to 3.5 × 10(4), 3.1 × 10(2), and 4.4 × 10(4) g dry sediment(-1), respectively. O2 and light penetrated only a few millimeters, but the depth distribution of the different iron metabolizers did not correlate with the profile of O2, Fe(II), or light. Instead, abundances were homogeneous within the upper 3 cm of the sediment, probably due to wave-induced sediment reworking and bioturbation. In microaerophilic Fe(II)-oxidizing enrichment cultures, strains belonging to the Zetaproteobacteria were identified. Photoferrotrophic enrichments contained strains related to Chlorobium and Rhodobacter; the nitrate-reducing Fe(II) enrichments contained strains related to Hoeflea and Denitromonas. This study shows the coexistence of all three types of Fe(II) oxidizers in two near-shore marine environments and the potential for competition and interrelationships between them. PMID:26682861

  10. Complete Genome Sequence of Geobacter anodireducens SD-1T, a Salt-Tolerant Exoelectrogenic Microbe in Bioelectrochemical Systems.

    PubMed

    Sun, Dan; Cheng, Shaoan; Wang, Aijie; Huang, Fangliang; Liu, Wenzong; Xia, Xue

    2016-01-01

    Strain SD-1 is the type strain of the species Geobacter anodireducens, which was originally isolated from a microbial fuel cell reactor in the United States. The characteristic of this bacterium is its high electrochemical activity. Here, we report the fully assembled genome and plasmid sequence of G. anodireducens SD-1(T). PMID:27257213

  11. Complete Genome Sequence of Geobacter anodireducens SD-1T, a Salt-Tolerant Exoelectrogenic Microbe in Bioelectrochemical Systems

    PubMed Central

    Wang, Aijie; Huang, Fangliang; Liu, Wenzong; Xia, Xue

    2016-01-01

    Strain SD-1 is the type strain of the species Geobacter anodireducens, which was originally isolated from a microbial fuel cell reactor in the United States. The characteristic of this bacterium is its high electrochemical activity. Here, we report the fully assembled genome and plasmid sequence of G. anodireducens SD-1T. PMID:27257213

  12. Anaerobic Mercury Methylation and Demethylation by Geobacter bemidjiensis Bem

    DOE PAGESBeta

    Lu, Xia; Liu, Yurong; Johs, Alexander; Zhao, Linduo; Wang, Tieshan; Yang, Ziming; Lin, Hui; Elias, Dwayne A.; Pierce, Eric M.; Liang, Liyuan; et al

    2016-03-28

    Two competing processes controlling the net production and bioaccumulation of neurotoxic methylmercury (MeHg) in natural ecosystems are microbial methylation and demethylation. Though mercury (Hg) methylation by anaerobic microorganisms and demethylation by aerobic Hg-resistant bacteria have both been extensively studied, little attention has been given to MeHg degradation by anaerobic bacteria, particularly the iron-reducing bacterium Geobacter bemidjensis Bem. Here we report, for the first time, that the strain G. bemidjensis Bem can methylate inorganic Hg and degrade MeHg concurrently under anoxic conditions. Our results suggest that G. bemidjensis cells utilize a reductive demethylation pathway to degrade MeHg, with elemental Hg(0) asmore » the major reaction product, possibly due to the presence of homologs encoding both organo-mercurial lyase (MerB) and mercuric reductase (MerA) in this organism. In addition, the cells can mediate multiple reactions including Hg/MeHg sorption, Hg reduction and oxidation, resulting in both time and concentration dependent Hg species transformations. Moderate concentrations (10 500 M) of Hg-binding ligands such as cysteine enhance Hg(II) methylation but inhibit MeHg degradation. These findings indicate a cycle of methylation and demethylation among anaerobic bacteria and suggest that mer-mediated demethylation may play a role in the net balance of MeHg production in anoxic water and sediments.« less

  13. Geobacter: the microbe electric's physiology, ecology, and practical applications.

    PubMed

    Lovley, Derek R; Ueki, Toshiyuki; Zhang, Tian; Malvankar, Nikhil S; Shrestha, Pravin M; Flanagan, Kelly A; Aklujkar, Muktak; Butler, Jessica E; Giloteaux, Ludovic; Rotaru, Amelia-Elena; Holmes, Dawn E; Franks, Ashley E; Orellana, Roberto; Risso, Carla; Nevin, Kelly P

    2011-01-01

    Geobacter species specialize in making electrical contacts with extracellular electron acceptors and other organisms. This permits Geobacter species to fill important niches in a diversity of anaerobic environments. Geobacter species appear to be the primary agents for coupling the oxidation of organic compounds to the reduction of insoluble Fe(III) and Mn(IV) oxides in many soils and sediments, a process of global biogeochemical significance. Some Geobacter species can anaerobically oxidize aromatic hydrocarbons and play an important role in aromatic hydrocarbon removal from contaminated aquifers. The ability of Geobacter species to reductively precipitate uranium and related contaminants has led to the development of bioremediation strategies for contaminated environments. Geobacter species produce higher current densities than any other known organism in microbial fuel cells and are common colonizers of electrodes harvesting electricity from organic wastes and aquatic sediments. Direct interspecies electron exchange between Geobacter species and syntrophic partners appears to be an important process in anaerobic wastewater digesters. Functional and comparative genomic studies have begun to reveal important aspects of Geobacter physiology and regulation, but much remains unexplored. Quantifying key gene transcripts and proteins of subsurface Geobacter communities has proven to be a powerful approach to diagnose the in situ physiological status of Geobacter species during groundwater bioremediation. The growth and activity of Geobacter species in the subsurface and their biogeochemical impact under different environmental conditions can be predicted with a systems biology approach in which genome-scale metabolic models are coupled with appropriate physical/chemical models. The proficiency of Geobacter species in transferring electrons to insoluble minerals, electrodes, and possibly other microorganisms can be attributed to their unique "microbial nanowires," pili

  14. Scarless Genome Editing and Stable Inducible Expression Vectors for Geobacter sulfurreducens

    PubMed Central

    Chan, Chi Ho; Levar, Caleb E.; Zacharoff, Lori; Badalamenti, Jonathan P.

    2015-01-01

    Metal reduction by members of the Geobacteraceae is encoded by multiple gene clusters, and the study of extracellular electron transfer often requires biofilm development on surfaces. Genetic tools that utilize polar antibiotic cassette insertions limit mutant construction and complementation. In addition, unstable plasmids create metabolic burdens that slow growth, and the presence of antibiotics such as kanamycin can interfere with the rate and extent of Geobacter biofilm growth. We report here genetic system improvements for the model anaerobic metal-reducing bacterium Geobacter sulfurreducens. A motile strain of G. sulfurreducens was constructed by precise removal of a transposon interrupting the fgrM flagellar regulator gene using SacB/sucrose counterselection, and Fe(III) citrate reduction was eliminated by deletion of the gene encoding the inner membrane cytochrome imcH. We also show that RK2-based plasmids were maintained in G. sulfurreducens for over 15 generations in the absence of antibiotic selection in contrast to unstable pBBR1 plasmids. Therefore, we engineered a series of new RK2 vectors containing native constitutive Geobacter promoters, and modified one of these promoters for VanR-dependent induction by the small aromatic carboxylic acid vanillate. Inducible plasmids fully complemented ΔimcH mutants for Fe(III) reduction, Mn(IV) oxide reduction, and growth on poised electrodes. A real-time, high-throughput Fe(III) citrate reduction assay is described that can screen numerous G. sulfurreducens strain constructs simultaneously and shows the sensitivity of imcH expression by the vanillate system. These tools will enable more sophisticated genetic studies in G. sulfurreducens without polar insertion effects or need for multiple antibiotics. PMID:26253675

  15. Geobacter bremensis sp. nov. and Geobacter pelophilus sp. nov., two dissimilatory ferric-iron-reducing bacteria.

    PubMed

    Straub, K L; Buchholz-Cleven, B E

    2001-09-01

    Two strictly anaerobic, dissimilatory ferric-iron-reducing bacteria, strains Dfr1T and Dfr2T, were isolated from freshwater mud samples with ferrihydrite as electron acceptor. Both strains also grew by reducing Mn(IV), S0 and fumarate. Electron donors used by strains Dfr1T and Dfr2T for growth with ferric iron as electron acceptor included hydrogen, formate, acetate, pyruvate, succinate, fumarate and ethanol. An affiliation with the family Geobacteraceae was revealed by comparative analysis of 165 rRNA gene sequences. Strains Dfr1T and Dfr2T shared 92.5% sequence identity and their closest known relative was Geobacter sulfurreducens, with approximately 93% sequence identity. Cultures and colonies of strains Dfr1T and Dfr2T were intensely red in colour, due to the presence of c-type cytochromes. On the basis of physiological and phylogenetic data, strain Dfr1T (= DSM 12179T = OCM 796T) is described as Geobacter bremensis sp. nov. and strain Dfr2T (= DSM 12255T = OCM 797T) as Geobacter pelophilus sp. nov. PMID:11594612

  16. How the xap Locus Put Electrical “Zap” in Geobacter sulfurreducens Biofilms

    SciTech Connect

    Magnuson, Timothy S.

    2011-03-01

    Investigation of microbial mineral respiration remains an experimental challenge. In this issue of Journal of Bacteriology, Rollefson et al. (11) present a foundational study on the functionality of the biofilm matrix in Geobacter sulfurreducens, a model dissimilatory metal respiring bacterium (DMRB). In this study, the investigators identify an extracellular polysaccharide scaffold or network that entraps redox-active proteins, thus positioning these proteins for optimal electron transfer from the membrane-bound respiratory supercomplexes to a mineral phase electron acceptor. The distinguishing feature of this study is the perspective, in that the team examined specifically exopolysaccharide formation and how it enables entrapment and tethering of redox proteins in the vicinity of the cell. Previous studies on Geobacter (10) and Shewanella (4) have focused primarily on the presence and functionality of conductive pili and nanowires, proteinaceous structures that also enable and enhance extracellular electron transfer. Rollefson et al. remind investigators in this field that many microbial systems have redundancy in essential functions, and in the case of DMRB, it is clearly critical that more than one mechanism exists to ensure

  17. Biochemical capacitance of Geobacter sulfurreducens biofilms.

    PubMed

    Bueno, Paulo R; Schrott, Germán D; Bonanni, Pablo S; Simison, Silvia N; Busalmen, Juan P

    2015-08-10

    An electrical model able to decouple the electron pathway from microbial cell machinery impedance terms is introduced. In this context, capacitance characteristics of the biofilm are clearly resolved. In other words, the model allows separating, according to the advantage of frequency and spectroscopic response approach, the different terms controlling the performance of the microbial biofilm respiratory process and thus the directly related electricity production process. The model can be accurately fitted to voltammetry measurements obtained under steady-state conditions and also to biofilm discharge amperometric measurements. The implications of biological aspects of the electrochemical or redox capacitance are discussed theoretically in the context of current knowledge with regard to structure and physiological activity of microbial Geobacter biofilms. PMID:26212121

  18. In Silico Modeling of Geobacter Species.

    SciTech Connect

    Lovley, Derek, R.

    2008-01-29

    This project employed a combination of in silico modeling and physiological studies to begin the construction of models that could predict the activity of Geobacter species under different environmental conditions. A major accomplishment of the project was the development of the first genome-based models of organisms known environmental relevance. This included the modeling of two Geobacter species and two species of Pelobacter. Construction of these models required increased sophistication in the annotation of the original draft genomes as well as collection of physiological data on growth yields, cell composition, and metabolic reactions. Biochemical studies were conducted to determine whether proposed enzymatic reactions were in fact expressed. During this process we developed an Automodel Pipeline process to accelerate future model development of other environmentally relevant organisms by using bioinformatics techniques to leverage predicted protein sequences and the Genomatica database containing a collection of well-curated metabolic models. The Automodel Pipeline was also used for iterative updating of the primary Geobacter model of G. sulfurreducens to expand metabolic functions or to add alternative pathways. Although each iteration of the model does not lead to another publication, it is an invaluable resource for hypothesis development and evaluation of experimental data. In order to develop a more accurate G. sulfurreducens model, a series of physiological studies that could be analyzed in the context of the model were carried out. For example, previous field trials of in situ uranium bioremediation demonstrated that Geobacter species face an excess of electron donor and a limitation of electron acceptor near the point of acetate injection into the groundwater. Therefore, a model-based analysis of electron acceptor limitation physiology was conducted and model predictions were compared with growth observed in chemostats. Iterative studies resulted in

  19. Global transcriptional start site mapping in Geobacter sulfurreducens during growth with two different electron acceptors.

    PubMed

    González, Getzabeth; Labastida, Aurora; Jímenez-Jacinto, Verónica; Vega-Alvarado, Leticia; Olvera, Maricela; Morett, Enrique; Juárez, Katy

    2016-09-01

    Geobacter sulfurreducens is an anaerobic soil bacterium that is involved in biogeochemical cycles of elements such as Fe and Mn. Although significant progress has been made in the understanding of the electron transfer processes in G. sulfurreducens, little is known about the regulatory mechanisms involved in their control. To expand the study of gene regulation in G. sulfurreducens, we carried out a genome-wide identification of transcription start sites (TSS) by 5'RACE and by deep RNA sequencing of primary mRNAs in two growth conditions. TSSs were identified along G. sulfurreducens genome and over 50% of them were located in the upstream region of the associated gene, and in some cases we detected genes with more than one TSS. Our global mapping of TSSs contributes with valuable information, which is needed for the study of transcript structure and transcription regulation signals and can ultimately contribute to the understanding of transcription initiation phenomena in G. sulfurreducens. PMID:27488344

  20. Proteogenomic monitoring of Geobacter physiology during stimulated uranium bioremediation

    SciTech Connect

    Wilkins, M.J.; VerBerkmoes, N.C.; Williams, K.H.; Callister, S.J.; Mouser, P.J.; Elifantz, H.; N'Guessan, A.L.; Thomas, B.C.; Nicora, C.D.; Shah, M.B.; Lipton, M.S.; Lovley, D.R.; Hettich, R.L.; Long, P.E.; Banfield, J.F.; Abraham, P.

    2009-08-01

    Implementation of uranium bioremediation requires methods for monitoring the membership and activities of the subsurface microbial communities that are responsible for reduction of soluble U(VI) to insoluble U(IV). Here, we report a proteomics-based approach for simultaneously documenting the strain membership and microbial physiology of the dominant Geobacter community members during in situ acetate amendment of the U-contaminated Rifle, CO, aquifer. Three planktonic Geobacter-dominated samples were obtained from two wells down-gradient of acetate addition. Over 2,500 proteins from each of these samples were identified by matching liquid chromatography-tandem mass spectrometry spectra to peptides predicted from seven isolate Geobacter genomes. Genome-specific peptides indicate early proliferation of multiple M21 and Geobacter bemidjiensis-like strains and later possible emergence of M21 and G. bemidjiensis-like strains more closely related to Geobacter lovleyi. Throughout biostimulation, the proteome is dominated by enzymes that convert acetate to acetyl-coenzyme A and pyruvate for central metabolism, while abundant peptides matching tricarboxylic acid cycle proteins and ATP synthase subunits were also detected, indicating the importance of energy generation during the period of rapid growth following the start of biostimulation. Evolving Geobacter strain composition may be linked to changes in protein abundance over the course of biostimulation and may reflect changes in metabolic functioning. Thus, metagenomics-independent community proteogenomics can be used to diagnose the status of the subsurface consortia upon which remediation biotechnology relies.

  1. A Description of an Acidophilic, Iron Reducer, Geobacter sp. FeAm09 Isolated from Tropical Soils

    NASA Astrophysics Data System (ADS)

    Healy, O.; Souchek, J.; Heithoff, A.; LaMere, B.; Pan, D.; Hollis, G.; Yang, W. H.; Silver, W. L.; Weber, K. A.

    2014-12-01

    Iron (Fe) is the fourth most abundant element in the Earth's crust and plays a significant role controlling the geochemistry in soils, sediments, and aquatic systems. As part of a study to understand microbially-catalysed iron biogeochemical cycling in tropical soils, an iron reducing isolate, strain FeAm09, was obtained. Strain FeAm09 was isolated from acidic, Fe-rich soils collected from a tropical forest (Luquillo Experimental Forest, Puerto Rico). Strain FeAm09 is a rod-shaped, motile, Gram-negative bacterium. Taxonomic analysis of the near complete 16S rRNA gene sequence revealed that strain FeAm09 is 94.7% similar to Geobacter lovleyi, placing it in the genus Geobacter within the Family Geobacteraceae in the Deltaproteobacteria. Characterization of the optimal growth conditions revealed that strain FeAm09 is a moderate acidophile with an optimal growth pH of 5.0. The optimal growth temperature was 37°C. Growth of FeAm09 was coupled to the reduction of soluble Fe(III), Fe(III)-NTA, with H2, fumarate, ethanol, and various organic acids and sugars serving as the electron donor. Insoluble Fe(III), in the form of synthetic ferrihydrite, was reduced by strain FeAm09 using acetate or H2 as the electron donor. The use of H2 as an electron donor in the presence of CO2 and absence of organic carbon and assimilation of 14C-labelled CO2 into biomass indicate that strain FeAm09 is an autotrophic Fe(III)-reducing bacterium. Together, these data describe the first acidophilic, autotrophic Geobacter species. Iron reducing bacteria were previously shown to be as abundant in tropical soils as in saturated sediments (lake-bottoms) and saturated soils (wetlands) where Fe(III) reduction is more commonly recognized as a dominant mode of microbial respiration. Furthermore, Fe(III) reduction was identified as a primary driver of carbon mineralization in these tropical soils (Dubinsky et al. 2010). In addition to mineralizing organic carbon, Geobacter sp. FeAm09 is likely to also

  2. Scale-up of the production of highly reactive biogenic magnetite nanoparticles using Geobacter sulfurreducens.

    PubMed

    Byrne, J M; Muhamadali, H; Coker, V S; Cooper, J; Lloyd, J R

    2015-06-01

    Although there are numerous examples of large-scale commercial microbial synthesis routes for organic bioproducts, few studies have addressed the obvious potential for microbial systems to produce inorganic functional biomaterials at scale. Here we address this by focusing on the production of nanoscale biomagnetite particles by the Fe(III)-reducing bacterium Geobacter sulfurreducens, which was scaled up successfully from laboratory- to pilot plant-scale production, while maintaining the surface reactivity and magnetic properties which make this material well suited to commercial exploitation. At the largest scale tested, the bacterium was grown in a 50 l bioreactor, harvested and then inoculated into a buffer solution containing Fe(III)-oxyhydroxide and an electron donor and mediator, which promoted the formation of magnetite in under 24 h. This procedure was capable of producing up to 120 g of biomagnetite. The particle size distribution was maintained between 10 and 15 nm during scale-up of this second step from 10 ml to 10 l, with conserved magnetic properties and surface reactivity; the latter demonstrated by the reduction of Cr(VI). The process presented provides an environmentally benign route to magnetite production and serves as an alternative to harsher synthetic techniques, with the clear potential to be used to produce kilogram to tonne quantities. PMID:25972437

  3. Scale-up of the production of highly reactive biogenic magnetite nanoparticles using Geobacter sulfurreducens

    PubMed Central

    Byrne, J. M.; Muhamadali, H.; Coker, V. S.; Cooper, J.; Lloyd, J. R.

    2015-01-01

    Although there are numerous examples of large-scale commercial microbial synthesis routes for organic bioproducts, few studies have addressed the obvious potential for microbial systems to produce inorganic functional biomaterials at scale. Here we address this by focusing on the production of nanoscale biomagnetite particles by the Fe(III)-reducing bacterium Geobacter sulfurreducens, which was scaled up successfully from laboratory- to pilot plant-scale production, while maintaining the surface reactivity and magnetic properties which make this material well suited to commercial exploitation. At the largest scale tested, the bacterium was grown in a 50 l bioreactor, harvested and then inoculated into a buffer solution containing Fe(III)-oxyhydroxide and an electron donor and mediator, which promoted the formation of magnetite in under 24 h. This procedure was capable of producing up to 120 g of biomagnetite. The particle size distribution was maintained between 10 and 15 nm during scale-up of this second step from 10 ml to 10 l, with conserved magnetic properties and surface reactivity; the latter demonstrated by the reduction of Cr(VI). The process presented provides an environmentally benign route to magnetite production and serves as an alternative to harsher synthetic techniques, with the clear potential to be used to produce kilogram to tonne quantities. PMID:25972437

  4. Evidence of Geobacter-associated phage in a uranium-contaminated aquifer

    PubMed Central

    Holmes, Dawn E; Giloteaux, Ludovic; Chaurasia, Akhilesh K; Williams, Kenneth H; Luef, Birgit; Wilkins, Michael J; Wrighton, Kelly C; Thompson, Courtney A; Comolli, Luis R; Lovley, Derek R

    2015-01-01

    Geobacter species may be important agents in the bioremediation of organic and metal contaminants in the subsurface, but as yet unknown factors limit the in situ growth of subsurface Geobacter well below rates predicted by analysis of gene expression or in silico metabolic modeling. Analysis of the genomes of five different Geobacter species recovered from contaminated subsurface sites indicated that each of the isolates had been infected with phage. Geobacter-associated phage sequences were also detected by metagenomic and proteomic analysis of samples from a uranium-contaminated aquifer undergoing in situ bioremediation, and phage particles were detected by microscopic analysis in groundwater collected from sediment enrichment cultures. Transcript abundance for genes from the Geobacter-associated phage structural proteins, tail tube Gp19 and baseplate J, increased in the groundwater in response to the growth of Geobacter species when acetate was added, and then declined as the number of Geobacter decreased. Western blot analysis of a Geobacter-associated tail tube protein Gp19 in the groundwater demonstrated that its abundance tracked with the abundance of Geobacter species. These results suggest that the enhanced growth of Geobacter species in the subsurface associated with in situ uranium bioremediation increased the abundance and activity of Geobacter-associated phage and show that future studies should focus on how these phages might be influencing the ecology of this site. PMID:25083935

  5. Evidence of Geobacter-associated phage in a uranium-contaminated aquifer.

    PubMed

    Holmes, Dawn E; Giloteaux, Ludovic; Chaurasia, Akhilesh K; Williams, Kenneth H; Luef, Birgit; Wilkins, Michael J; Wrighton, Kelly C; Thompson, Courtney A; Comolli, Luis R; Lovley, Derek R

    2015-02-01

    Geobacter species may be important agents in the bioremediation of organic and metal contaminants in the subsurface, but as yet unknown factors limit the in situ growth of subsurface Geobacter well below rates predicted by analysis of gene expression or in silico metabolic modeling. Analysis of the genomes of five different Geobacter species recovered from contaminated subsurface sites indicated that each of the isolates had been infected with phage. Geobacter-associated phage sequences were also detected by metagenomic and proteomic analysis of samples from a uranium-contaminated aquifer undergoing in situ bioremediation, and phage particles were detected by microscopic analysis in groundwater collected from sediment enrichment cultures. Transcript abundance for genes from the Geobacter-associated phage structural proteins, tail tube Gp19 and baseplate J, increased in the groundwater in response to the growth of Geobacter species when acetate was added, and then declined as the number of Geobacter decreased. Western blot analysis of a Geobacter-associated tail tube protein Gp19 in the groundwater demonstrated that its abundance tracked with the abundance of Geobacter species. These results suggest that the enhanced growth of Geobacter species in the subsurface associated with in situ uranium bioremediation increased the abundance and activity of Geobacter-associated phage and show that future studies should focus on how these phages might be influencing the ecology of this site. PMID:25083935

  6. The Low Conductivity of Geobacter uraniireducens Pili Suggests a Diversity of Extracellular Electron Transfer Mechanisms in the Genus Geobacter

    PubMed Central

    Tan, Yang; Adhikari, Ramesh Y.; Malvankar, Nikhil S.; Ward, Joy E.; Nevin, Kelly P.; Woodard, Trevor L.; Smith, Jessica A.; Snoeyenbos-West, Oona L.; Franks, Ashley E.; Tuominen, Mark T.; Lovley, Derek R.

    2016-01-01

    Studies on the mechanisms for extracellular electron transfer in Geobacter species have primarily focused on Geobacter sulfurreducens, but the poor conservation of genes for some electron transfer components within the Geobacter genus suggests that there may be a diversity of extracellular electron transport strategies among Geobacter species. Examination of the gene sequences for PilA, the type IV pilus monomer, in Geobacter species revealed that the PilA sequence of Geobacter uraniireducens was much longer than that of G. sulfurreducens. This is of interest because it has been proposed that the relatively short PilA sequence of G. sulfurreducens is an important feature conferring conductivity to G. sulfurreducens pili. In order to investigate the properties of the G. uraniireducens pili in more detail, a strain of G. sulfurreducens that expressed pili comprised the PilA of G. uraniireducens was constructed. This strain, designated strain GUP, produced abundant pili, but generated low current densities and reduced Fe(III) very poorly. At pH 7, the conductivity of the G. uraniireducens pili was 3 × 10-4 S/cm, much lower than the previously reported 5 × 10-2 S/cm conductivity of G. sulfurreducens pili at the same pH. Consideration of the likely voltage difference across pili during Fe(III) oxide reduction suggested that G. sulfurreducens pili can readily accommodate maximum reported rates of respiration, but that G. uraniireducens pili are not sufficiently conductive to be an effective mediator of long-range electron transfer. In contrast to G. sulfurreducens and G. metallireducens, which require direct contact with Fe(III) oxides in order to reduce them, G. uraniireducens reduced Fe(III) oxides occluded within microporous beads, demonstrating that G. uraniireducens produces a soluble electron shuttle to facilitate Fe(III) oxide reduction. The results demonstrate that Geobacter species may differ substantially in their mechanisms for long-range electron transport

  7. The Low Conductivity of Geobacter uraniireducens Pili Suggests a Diversity of Extracellular Electron Transfer Mechanisms in the Genus Geobacter.

    PubMed

    Tan, Yang; Adhikari, Ramesh Y; Malvankar, Nikhil S; Ward, Joy E; Nevin, Kelly P; Woodard, Trevor L; Smith, Jessica A; Snoeyenbos-West, Oona L; Franks, Ashley E; Tuominen, Mark T; Lovley, Derek R

    2016-01-01

    Studies on the mechanisms for extracellular electron transfer in Geobacter species have primarily focused on Geobacter sulfurreducens, but the poor conservation of genes for some electron transfer components within the Geobacter genus suggests that there may be a diversity of extracellular electron transport strategies among Geobacter species. Examination of the gene sequences for PilA, the type IV pilus monomer, in Geobacter species revealed that the PilA sequence of Geobacter uraniireducens was much longer than that of G. sulfurreducens. This is of interest because it has been proposed that the relatively short PilA sequence of G. sulfurreducens is an important feature conferring conductivity to G. sulfurreducens pili. In order to investigate the properties of the G. uraniireducens pili in more detail, a strain of G. sulfurreducens that expressed pili comprised the PilA of G. uraniireducens was constructed. This strain, designated strain GUP, produced abundant pili, but generated low current densities and reduced Fe(III) very poorly. At pH 7, the conductivity of the G. uraniireducens pili was 3 × 10(-4) S/cm, much lower than the previously reported 5 × 10(-2) S/cm conductivity of G. sulfurreducens pili at the same pH. Consideration of the likely voltage difference across pili during Fe(III) oxide reduction suggested that G. sulfurreducens pili can readily accommodate maximum reported rates of respiration, but that G. uraniireducens pili are not sufficiently conductive to be an effective mediator of long-range electron transfer. In contrast to G. sulfurreducens and G. metallireducens, which require direct contact with Fe(III) oxides in order to reduce them, G. uraniireducens reduced Fe(III) oxides occluded within microporous beads, demonstrating that G. uraniireducens produces a soluble electron shuttle to facilitate Fe(III) oxide reduction. The results demonstrate that Geobacter species may differ substantially in their mechanisms for long-range electron

  8. Proteogenomic monitoring of Geobacter physiology during stimulated uranium bioremediation

    SciTech Connect

    Wilkins, Mike; Verberkmoes, Nathan C; Williams, Ken; Callister, Stephen J; Mouser, Paula J; Elifantz, Hila; N'Guessan, A. Lucie; Thomas, Brian; Nicora, Carrie D.; Shah, Manesh B; Abraham, Paul E; Lipton, Mary S; Lovley, Derek; Hettich, Robert {Bob} L; Long, Phil; Banfield, Jillian F.

    2009-01-01

    Implementation of uranium bioremediation requires methods to monitor the membership and activities of the subsurface microbial communities that are responsible for reduction of soluble U(VI) to insoluble U(IV). Here we report a proteomics-based approach to simultaneously document strain membership and microbial physiology of the dominant Geobacter community members during in situ acetate amendment of the U-contaminated Rifle, CO aquifer. Three planktonic Geobacter-dominated samples were obtained from two wells down-gradient of acetate addition. Over 2,500 proteins from each of these samples were identified by matching LC MS/MS spectra to peptides predicted from 7 isolate Geobacter genomes. Genome-specific peptides indicate early proliferation of multiple M21 and G. bemidjiensis like strains and later possible emergence of M21 and G. bemidjiensis like strains more closely related to G. lovleyi. Throughout biostimulation, the proteome is dominated by enzymes that convert acetate to acetyl-CoA and pyruvate for central metabolism while abundant peptides matching TCA cycle proteins and ATP synthase subunits were also detected, indicating the importance of energy generation during the period of rapid growth following the start of biostimulation. Evolving Geobacter strain composition may be linked to changes in protein abundance over the course of biostimulation and may reflect changes in metabolic functioning. Thus, metagenomics independent community proteogenomics can be used to diagnose the status of the subsurface consortia upon which remediation biotechnology relies.

  9. Proteogenomic monitoring of Geobacter physiology during stimulated uranium bioremediation

    SciTech Connect

    Wilkins, Michael J.; VerBerkmoes, Nathan C.; Williams, Kenneth H.; Callister, Stephen J.; Mouser, Paula; Elifantz, H.; N'Guessan, A. Lucie; Thomas, Brian C.; Nicora, Carrie D.; Shah, Manesh B.; Abraham, Paul; Lipton, Mary S.; Lovely, Derek R.; Hettich, Robert L.; Long, Philip E.; Banfield, Jillian F.

    2009-10-01

    Implementation of uranium bioremediation requires methods to monitor the membership and activities of the subsurface microbial communities that are responsible for reduction of soluble U(VI) to insoluble U(IV). Here we report a proteomics-based approach to simultaneously document strain membership and microbial physiology of the dominant Geobacter community members during in situ acetate amendment of the U-contaminated Rifle, CO aquifer. Three planktonic Geobacter-dominated samples were obtained from two wells down-gradient of acetate addition. Over 2,500 proteins from each of these samples were identified by matching LC MS/MS spectra to peptides predicted from 7 isolate Geobacter genomes. Genome-specific peptides indicate early proliferation of multiple M21 and G. bemidjiensis–like strains and later possible emergence of M21 and G. bemidjiensis–like strains more closely related to G. lovleyi. Throughout biostimulation, the proteome is dominated by enzymes that convert acetate to acetyl-CoA and pyruvate for central metabolism while abundant peptides matching TCA cycle proteins and ATP synthase subunits were also detected, indicating the importance of energy generation during the period of rapid growth following the start of biostimulation. Evolving Geobacter strain composition may be linked to changes in protein abundance over the course of biostimulation and may reflect changes in metabolic functioning. Thus, metagenomics independent community proteogenomics can be used to diagnose the status of the subsurface consortia upon which remediation biotechnology relies.

  10. Development of a Genetic System for Geobacter sulfurreducens

    PubMed Central

    Coppi, Maddalena V.; Leang, Ching; Sandler, Steven J.; Lovley, Derek R.

    2001-01-01

    Members of the genus Geobacter are the dominant metal-reducing microorganisms in a variety of anaerobic subsurface environments and have been shown to be involved in the bioremediation of both organic and metal contaminants. To facilitate the study of the physiology of these organisms, a genetic system was developed for Geobacter sulfurreducens. The antibiotic sensitivity of this organism was characterized, and optimal conditions for plating it at high efficiency were established. A protocol for the introduction of foreign DNA into G. sulfurreducens by electroporation was also developed. Two classes of broad-host-range vectors, IncQ and pBBR1, were found to be capable of replication in G. sulfurreducens. In particular, the IncQ plasmid pCD342 was found to be a suitable expression vector for this organism. When the information and novel methods described above were utilized, the nifD gene of G. sulfurreducens was disrupted by the single-step gene replacement method. Insertional mutagenesis of this key gene in the nitrogen fixation pathway impaired the ability of G. sulfurreducens to grow in medium lacking a source of fixed nitrogen. Expression of the nifD gene in trans complemented this phenotype. This paper constitutes the first report of genetic manipulation of a member of the Geobacter genus. PMID:11425739

  11. High methylation rates of mercury bound to cysteine by Geobacter sulfurreducens

    NASA Astrophysics Data System (ADS)

    Schaefer, Jeffra K.; Morel, François M. M.

    2009-02-01

    Methylmercury bioaccumulates in aquatic food chains and is able to cross the blood-brain barrier, making this organometallic compound a much more worrisome pollutant than inorganic mercury. We know that methylation of inorganic mercury is carried out by microbes in the anoxic layers of sediments and water columns, but the factors that control the extent of this methylation are poorly known. Mercury methylation is generally thought to be catalysed accidentally by some methylating enzyme, and it has been suggested that cellular mercury uptake results from passive diffusion of neutral mercury complexes. Here, we show that mercury methylation by the bacterium Geobacter sulfurreducens is greatly enhanced in the presence of low concentrations of the amino acid cysteine. The formation of a mercury-cysteine complex promotes both the uptake of inorganic mercury by the bacteria and the enzymatic formation of methylmercury, which is subsequently released to the external medium. Our results suggest that mercury uptake and methylation by microbes are controlled more tightly by biological mechanisms than previously thought, and that the formation of specific mercury complexes in anoxic waters modulates the efficiency of the microbial methylation of mercury.

  12. Biochemical Mechanisms and Energy Strategies of Geobacter sulfurreducens for Long- Term Survival

    NASA Astrophysics Data System (ADS)

    Helmus, R. A.; Liermann, L. J.; Brantley, S. L.; Tien, M.

    2008-12-01

    Numerous species of bacteria have been observed to exhibit a growth advantage in stationary phase (GASP) phenotype, indicating that microorganisms starved of an energy source may adapt to allow for long-term survival. Understanding how Geobacter sulfurreducens persists using various metal forms as energy sources and whether a GASP phenotype develops during long-term growth are important for efficient application of this bacterium to sites requiring engineered bioremediation of soluble metals. Thus, we investigated the growth kinetics and survival of G. sulfurreducens. The growth rate of G. sulfurreducens was highest when cultured with soluble iron and generally higher on iron oxide than manganese oxide, suggesting that soluble metal forms are more readily utilized as energy sources by G. sulfurreducens. By monitoring the abundance of G. sulfurreducens in batch cultures for >6 months, distinct growth, stationary, and prolonged starvation phases were observed and a cell density of 105- 106 cells/mL persisted under long-term starvation conditions. The outgrowth of an aged G. sulfurreducens strain co-cultured with a young strain was monitored as a measure of the existence of the GASP phenotype. As the strains aged, the rpoS gene was cloned and sequenced at different stages of growth to identify mutations corresponding to a growth advantage. The results of these studies provide insight into the use of various metal forms for growth by G. sulfurreducens and its ability to persist when starved of energy sources.

  13. Targeted genomic discovery of biosynthetic pathways: Anaerobic synthesis of hopanoids by Geobacter sulfurreducens

    NASA Astrophysics Data System (ADS)

    Fischer, W. W.; Summons, R. E.; Pearson, A.

    2004-12-01

    The biomarker concept requires that preservable molecules (molecular fossils) carry specific taxonomic and/or metabolic information. Initially, an empirical approach was used to discover which compounds are produced by certain taxa. These observations provided the basis for the interpretation of biomarkers in modern environments and the geologic record. Now, with the rapid sequencing of hundreds of microbial genomes, a more focused genomic approach can be taken to test phylogenetic patterns and hypotheses. To deduce whether specific compounds are indeed taxonomic (and metabolic) markers, candidate organisms can be selected for study on the basis of genes that encode proteins fundamental to the synthesis of certain biomarkers. Hopanoids, a class of pentacyclic triterpenoid lipid biomarkers, provide an illustrative example. For the past twenty years, biomarker studies have worked under the assumption that hopanoids are only produced by aerobic organisms. But the discovery of isotopically-depleted hopanoids in environments of anaerobic methane oxidation suggests that some hopanoids are produced anaerobically. To test these ideas we searched publicly-available genomic databases using squalene-hopene cyclase (a fundamental enzyme responsible for hopanoid biosynthesis) sequences from known hopanoid producers to find a candidate organism potentially capable of anaerobic hopanoid biosynthesis. Here we present evidence from a pure culture that Geobacter sulfurreducens, a bacterium common in anoxic environments, has the appropriate genes for hopanoid biosynthesis and produces a wide variety of complex hopanoids under strictly anaerobic conditions.

  14. GEMM-I riboswitches from Geobacter sense the bacterial second messenger cyclic AMP-GMP

    PubMed Central

    Kellenberger, Colleen A.; Wilson, Stephen C.; Hickey, Scott F.; Gonzalez, Tania L.; Su, Yichi; Hallberg, Zachary F.; Brewer, Thomas F.; Iavarone, Anthony T.; Carlson, Hans K.; Hsieh, Yu-Fang; Hammond, Ming C.

    2015-01-01

    Cyclic dinucleotides are an expanding class of signaling molecules that control many aspects of bacterial physiology. A synthase for cyclic AMP-GMP (cAG, also referenced as 3′-5′, 3′-5′ cGAMP) called DncV is associated with hyperinfectivity of Vibrio cholerae but has not been found in many bacteria, raising questions about the prevalence and function of cAG signaling. We have discovered that the environmental bacterium Geobacter sulfurreducens produces cAG and uses a subset of GEMM-I class riboswitches (GEMM-Ib, Genes for the Environment, Membranes, and Motility) as specific receptors for cAG. GEMM-Ib riboswitches regulate genes associated with extracellular electron transfer; thus cAG signaling may control aspects of bacterial electrophysiology. These findings expand the role of cAG beyond organisms that harbor DncV and beyond pathogenesis to microbial geochemistry, which is important to environmental remediation and microbial fuel cell development. Finally, we have developed an RNA-based fluorescent biosensor for live-cell imaging of cAG. This selective, genetically encodable biosensor will be useful to probe the biochemistry and cell biology of cAG signaling in diverse bacteria. PMID:25848022

  15. Formation of Nanoscale Elemental Silver Particles via Enzymatic Reduction by Geobacter sulfurreducens▿

    PubMed Central

    Law, Nicholas; Ansari, Saadia; Livens, Francis R.; Renshaw, Joanna C.; Lloyd, Jonathan R.

    2008-01-01

    Geobacter sulfurreducens reduced Ag(I) (as insoluble AgCl or Ag+ ions), via a mechanism involving c-type cytochromes, precipitating extracellular nanoscale Ag(0). These results extend the range of metals known to be reduced by Geobacter species and offer a method for recovering silver from contaminated water as potentially useful silver nanoparticles. PMID:18723646

  16. Metabolic spatial variability in electrode-respiring Geobacter sulfurreducens biofilms

    SciTech Connect

    Renslow, Ryan S.; Babauta, Jerome T.; Dohnalkova, Alice; Boyanov, Maxim I.; Kemner, Kenneth M.; Majors, Paul D.; Fredrickson, Jim K.; Beyenal, Haluk

    2013-06-01

    Certain bacteria are capable of transferring electrons derived from respiratory metabolism to solid extracellular electron-accepting materials1-4. This ability allows the organisms to use conductive substrata as their sole electron sink, generating electricity that is available for practical applications5-7. Geobacter is a biofilm-forming genus capable of this extracellular electron transfer8-11. Evidence in the literature suggests that Geobacter cells produce a conductive matrix to gain access to electron-accepting surfaces12,13. It has been hypothesized that cells that are more than tens of microns from the electron-accepting surface cannot respire because of electrical resistance in the matrix and thus remain metabolically inactive14-16. To test this hypothesis, we sought to determine whether the entire biofilm remains metabolically active and able to respire on an electron-accepting surface as the biofilm thickness increases. We developed and used a novel electrochemical-nuclear magnetic resonance (EC-NMR) microimaging system capable of sustaining an electrochemically active biofilm on a polarized electrode inside a superconducting magnet, allowing for simultaneous NMR and electrochemical investigation of a biofilm for the first time. Here, we show that Geobacter biofilms can grow to several hundred microns thick while respiring on an electrode and that the top of the biofilm remains metabolically active. This is only possible if the cells near the top are able to transfer electrons through the initial biofilm matrix to the electrode. We used X-ray absorption spectroscopy to verify electron transfer to uranium ions by metabolically active cells near the top of the biofilm. Our results reveal that extracellular electron transfer is not prevented by electrical resistance, even when the biofilm is hundreds of microns thick. Furthermore, the electron donor may be the limiting factor for respiration and the base of the biofilm may be less active despite being in

  17. The genome sequence of Geobacter metallireducens: features of metabolism, physiology and regulation common and dissimilar to Geobacter sulfurreducens

    SciTech Connect

    Aklujkar, Muktak; Krushkal, Julia; DiBartolo, Genevieve; Lapidus, Alla L.; Land, Miriam L; Lovley, Derek

    2009-01-01

    Background. The genome sequence of Geobacter metallireducens is the second to be completed from the metal-respiring genus Geobacter, and is compared in this report to that of Geobacter sulfurreducens in order to understand their metabolic, physiological and regulatory similarities and differences. Results. The experimentally observed greater metabolic versatility of G. metallireducens versus G. sulfurreducens is borne out by the presence of more numerous genes for metabolism of organic acids including acetate, propionate, and pyruvate. Although G. metallireducens lacks a dicarboxylic acid transporter, it has acquired a second succinate dehydrogenase/fumarate reductase complex, suggesting that respiration of fumarate was important until recently in its evolutionary history. Vestiges of the molybdate (ModE) regulon of G. sulfurreducens can be detected in G. metallireducens, which has lost the global regulatory protein ModE but retained some putative ModE-binding sites and multiplied certain genes of molybdenum cofactor biosynthesis. Several enzymes of amino acid metabolism are of different origin in the two species, but significant patterns of gene organization are conserved. Whereas most Geobacteraceae are predicted to obtain biosynthetic reducing equivalents from electron transfer pathways via a ferredoxin oxidoreductase, G. metallireducens can derive them from the oxidative pentose phosphate pathway. In addition to the evidence of greater metabolic versatility, the G. metallireducens genome is also remarkable for the abundance of multicopy nucleotide sequences found in intergenic regions and even within genes. Conclusion. The genomic evidence suggests that metabolism, physiology Background. The genome sequence of Geobacter metallireducens is the second to be completed from the metal-respiring genus Geobacter, and is compared in this report to that of Geobacter sulfurreducens in order to understand their metabolic, physiological and regulatory similarities and

  18. The genome sequence of Geobacter metallireducens: features of metabolism, physiology and regulation common and dissimilar to Geobacter sulfurreducens

    SciTech Connect

    Aklujkar, Muktak; Krushkal, Julia; DiBartolo, Genevieve; Lapidus, Alla; Land, Miriam L.; Lovley, Derek R.

    2008-12-01

    Background: The genome sequence of Geobacter metallireducens is the second to be completed from the metal-respiring genus Geobacter, and is compared in this report to that of Geobacter sulfurreducens in order to understand their metabolic, physiological and regulatory similarities and differences. Results: The experimentally observed greater metabolic versatility of G. metallireducens versus G. sulfurreducens is borne out by the presence of more numerous genes for metabolism of organic acids including acetate, propionate, and pyruvate. Although G. metallireducens lacks a dicarboxylic acid transporter, it has acquired a second succinate dehydrogenase/fumarate reductase complex, suggesting that respiration of fumarate was important until recently in its evolutionary history. Vestiges of the molybdate (ModE) regulon of G. sulfurreducens can be detected in G. metallireducens, which has lost the global regulatory protein ModE but retained some putative ModE-binding sites and multiplied certain genes of molybdenum cofactor biosynthesis. Several enzymes of amino acid metabolism are of different origin in the two species, but significant patterns of gene organization are conserved. Whereas most Geobacteraceae are predicted to obtain biosynthetic reducing equivalents from electron transfer pathways via a ferredoxin oxidoreductase, G. metallireducens can derive them from the oxidative pentose phosphate pathway. In addition to the evidence of greater metabolic versatility, the G. metallireducens genome is also remarkable for the abundance of multicopy nucleotide sequences found in intergenic regions and even within genes. Conclusion: The genomic evidence suggests that metabolism, physiology and regulation of gene expression in G. metallireducens may be dramatically different from other Geobacteraceae.

  19. The genome sequence of Geobacter metallireducens: features of metabolism, physiology and regulation common and dissimilar to Geobacter sulfurreducens

    PubMed Central

    2009-01-01

    Background The genome sequence of Geobacter metallireducens is the second to be completed from the metal-respiring genus Geobacter, and is compared in this report to that of Geobacter sulfurreducens in order to understand their metabolic, physiological and regulatory similarities and differences. Results The experimentally observed greater metabolic versatility of G. metallireducens versus G. sulfurreducens is borne out by the presence of more numerous genes for metabolism of organic acids including acetate, propionate, and pyruvate. Although G. metallireducens lacks a dicarboxylic acid transporter, it has acquired a second putative succinate dehydrogenase/fumarate reductase complex, suggesting that respiration of fumarate was important until recently in its evolutionary history. Vestiges of the molybdate (ModE) regulon of G. sulfurreducens can be detected in G. metallireducens, which has lost the global regulatory protein ModE but retained some putative ModE-binding sites and multiplied certain genes of molybdenum cofactor biosynthesis. Several enzymes of amino acid metabolism are of different origin in the two species, but significant patterns of gene organization are conserved. Whereas most Geobacteraceae are predicted to obtain biosynthetic reducing equivalents from electron transfer pathways via a ferredoxin oxidoreductase, G. metallireducens can derive them from the oxidative pentose phosphate pathway. In addition to the evidence of greater metabolic versatility, the G. metallireducens genome is also remarkable for the abundance of multicopy nucleotide sequences found in intergenic regions and even within genes. Conclusion The genomic evidence suggests that metabolism, physiology and regulation of gene expression in G. metallireducens may be dramatically different from other Geobacteraceae. PMID:19473543

  20. Harvesting Electricity with Geobacter bremensis Isolated from Compost

    PubMed Central

    Nercessian, Olivier; Parot, Sandrine; Délia, Marie-Line; Bergel, Alain; Achouak, Wafa

    2012-01-01

    Electrochemically active (EA) biofilms were formed on metallic dimensionally stable anode-type electrode (DSA), embedded in garden compost and polarized at +0.50 V/SCE. Analysis of 16S rRNA gene libraries revealed that biofilms were heavily enriched in Deltaproteobacteria in comparison to control biofilms formed on non-polarized electrodes, which were preferentially composed of Gammaproteobacteria and Firmicutes. Among Deltaproteobacteria, sequences affiliated with Pelobacter and Geobacter genera were identified. A bacterial consortium was cultivated, in which 25 isolates were identified as Geobacter bremensis. Pure cultures of 4 different G. bremensis isolates gave higher current densities (1400 mA/m2 on DSA, 2490 mA/m2 on graphite) than the original multi-species biofilms (in average 300 mA/m2 on DSA) and the G. bremensis DSM type strain (100–300 A/m2 on DSA; 2485 mA/m2 on graphite). FISH analysis confirmed that G. bremensis represented a minor fraction in the original EA biofilm, in which species related to Pelobacter genus were predominant. The Pelobacter type strain did not show EA capacity, which can explain the lower performance of the multi-species biofilms. These results stressed the great interest of extracting and culturing pure EA strains from wild EA biofilms to improve the current density provided by microbial anodes. PMID:22470538

  1. The Complex Conductivity Signature of Geobacter Species in Geological Media

    NASA Astrophysics Data System (ADS)

    Brown, I.; Atekwana, E. A.; Sarkisova, S.; Achang, M.

    2013-12-01

    The Complex Conductivity (CC) technique is a promising biogeophysical approach for sensing microbially-induced changes in geological media because of its low-invasive character and sufficient sensitivity to enhanced microbial activity in the near subsurface. Geobacter species have been shown to play important roles in the bioremediation of groundwater contaminated with petroleum and landfill leachate. This capability is based on the ability of Geobacter species to reduce Fe(III) by transferring of electrons from the reduced equivalents to Fe(III) rich minerals through respiration chain and special metallic-like conductors - pili. Only the cultivation of Geobacter species on Fe(III) oxides specifically express pili biosynthesis. Moreover, mutants that cannot produce pili are unable to reduce Fe(III) oxides. However, little is known about the contribution of these molecular conductors (nanowires) to the generation of complex conductivity signatures in geological media. Here, we present the results about the modulation of CC signatures in geological media by Geobacter sulfurreducens (G.s.). Cultures of wild strain G.s. and its pilA(-) mutant were anaerobically cultivated in the presence of the pair of such donors and acceptors of electrons: acetate - fumarate, and acetate - magnetite under anaerobic conditions. Each culture was injected in CC sample holders filled either with N2-CO2 mix (planktonic variant) or with this gases mix and glass beads, d=1 mm, (porous medium variant). Both strains of G.s. proliferated well in a medium supplemented with acetate-fumarate. However, pilA(-) mutant did not multiply in a medium supplemented with ox-red pair yeast extract - magnetite. This observation confirmed that only wild pilA(+) strain is capable of the dissimilatory reduction of Fe(III) within magnetite molecule. The measurement of CC responses from planktonic culture of G.s. wild strain grown with acetate-fumarate did not show linear correlation with their magnitudes but

  2. Physiological stratification in electricity-producing biofilms of Geobacter sulfurreducens.

    PubMed

    Schrott, Germán David; Ordoñez, María Victoria; Robuschi, Luciana; Busalmen, Juan Pablo

    2014-02-01

    The elucidation of mechanisms and limitations in electrode respiration by electroactive biofilms is significant for the development of rapidly emerging clean energy production and wastewater treatment technologies. In Geobacter sulfurreducens biofilms, the controlling steps in current production are thought to be the metabolic activity of cells, but still remain to be determined. By quantifying the DNA, RNA, and protein content during the long-term growth of biofilms on polarized graphite electrodes, we show in this work that current production becomes independent of DNA accumulation immediately after a maximal current is achieved. Indeed, the mean respiratory rate of biofilms rapidly decreases after this point, which indicates the progressive accumulation of cells that do not contribute to current production or contribute to a negligible extent. These results support the occurrence of physiological stratification within biofilms as a consequence of respiratory limitations imposed by limited biofilm conductivity. PMID:24307451

  3. Biochemical Mechanisms and Energy Strategies of Geobacter Sulfurreducens

    SciTech Connect

    Tien, Ming; Brantley, Susan L.

    2013-10-28

    To provide the scientific understanding required to allow DOE sites to incorporate relevant biological, chemical, and physical processes into decisions concerning environmental remediation, a fundamental understanding of the controls on micro-organism growth in the subsurface is necessary. Specifically, mobility of metals in the environment, including chromium, technetium and uranium, is greatly affected by the process of dissimilatory metal reduction (DMR), which has been shown to be an important biological activity controlling contaminant mobility in the subsurface at many DOE sites. Long-term maintenance of DMR at constant rates must rely upon steady fluxes of electron donors to provide the maintenance energy needed by organisms such as Geobacter sulfurreducens to maintain steady state populations in the subsurface.

  4. Role of U(VI) Reduction by Geobacter species

    SciTech Connect

    Lovely, Derrick

    2008-12-23

    Previous work had suggested that Acholeplasma palmae has a higher capacity for uranium sorption than other bacteria studied. Sorption studies were performed with cells in suspension in various solutions containing uranium, and results were used to generate uranium-biosorption isotherms. Results from this study showed that the U(VI) sorption capacity of G. uraniireducens was relatively similar in simple solutions, such as sodium chloride or bicarbonate. However, this ability to sorb uranium significantly decreased in groundwater. This suggested that certain chemicals present in the groundwater were inhibiting the ability of cell components of Geobacter to adsorb uranium. It was hypothesized that uranium removal would also be diminished in the bicarbonate solution. However, this did not seem to be the case, as uranium was as easily removed in the bicarbonate solution as in the sodium chloride solution.

  5. Modeling and sensitivity analysis of electron capacitance for Geobacter in sedimentary environments

    SciTech Connect

    Zhao, Jiao; Fang, Yilin; Scheibe, Timothy D.; Lovley, Derek R.; Mahadevan, Radhakrishnan

    2010-03-01

    In situ stimulation of the metabolic activity of Geobacter species through acetate amendment has been shown to be a promising bioremediation strategy to reduce and immobilize hexavalent uranium [U(VI)] as insoluble U(IV). Although Geobacter species are reducing U(VI), they primarily grow via Fe(III) reduction. Unfortunately, the biogeochemistry and the physiology of simultaneous reduction of multiple metals are still poorly understood. A detailed model is therefore required to better understand the pathways leading to U(VI) and Fe(III) reduction by Geobacter species. Based on recent experimental evidence of temporary electron sinks in Geobacter we propose a novel kinetic model that physically distinguishes Geobacter species into neutral and electron-charged states. This model shows that the existence of an electron load-unload cycle might be responsible for efficient U(VI) reduction, and elucidates the relationship between U(VI) and Fe(III)-reducing activity and further explains the correlation of high U(VI) removal with high proportions of Geobacter species in a planktonic state in groundwater. Global sensitivity analysis was used to validate the beneficial effects of electron capacitance and determine the level of importance and interactions of physicochemical and biogeochemical processes controlling Geobacter growth and U(VI) reduction. As compared with current modeling approaches in which biomass is often assumed to maintain the same metabolic state over all conditions, the structured two-state model accounts for important aspects of the dynamic electron capacitance of subsurface Geobacter, thereby facilitating further applications in the optimal bioremediation design strategy.

  6. The genome of Geobacter bemidjiensis, exemplar for the subsurface clade of Geobacter species that predominate in Fe(III)-reducing subsurface environments

    SciTech Connect

    Aklujkar, Muktak; Young, Nelson D; Holmes, Dawn; Chavan, Milind; Risso, Carla; Kiss, Hajnalka; Han, Cliff; Land, Miriam L; Lovley, Derek

    2010-01-01

    Background. Geobacter species in a phylogenetic cluster known as subsurface clade 1 are often the predominant microorganisms in subsurface environments in which Fe(III) reduction is the primary electron-accepting process. Geobacter bemidjiensis, a member of this clade, was isolated from hydrocarbon-contaminated subsurface sediments in Bemidji, Minnesota, and is closely related to Geobacter species found to be abundant at other subsurface sites. This study examines whether there are significant differences in the metabolism and physiology of G. bemidjiensis compared to non-subsurface Geobacter species. Results. Annotation of the genome sequence of G. bemidjiensis indicates several differences in metabolism compared to previously sequenced non-subsurface Geobacteraceae, which will be useful for in silico metabolic modeling of subsurface bioremediation processes involving Geobacter species. Pathways can now be predicted for the use of various carbon sources such as propionate by G. bemidjiensis. Additional metabolic capabilities such as carbon dioxide fixation and growth on glucose were predicted from the genome annotation. The presence of different dicarboxylic acid transporters and two oxaloacetate decarboxylases in G. bemidjiensis may explain its ability to grow by disproportionation of fumarate. Although benzoate is the only aromatic compound that G. bemidjiensis is known or predicted to utilize as an electron donor and carbon source, the genome suggests that this species may be able to detoxify other aromatic pollutants without degrading them. Furthermore, G. bemidjiensis is auxotrophic for 4-aminobenzoate, which makes it the first Geobacter species identified as having a vitamin requirement. Several features of the genome indicated that G. bemidjiensis has enhanced abilities to respire, detoxify and avoid oxygen. Conclusion. Overall, the genome sequence of G. bemidjiensis offers surprising insights into the metabolism and physiology of Geobacteraceae in

  7. Molecular Analysis of the In Situ Growth Rates of Subsurface Geobacter Species

    PubMed Central

    Giloteaux, Ludovic; Barlett, Melissa; Chavan, Milind A.; Smith, Jessica A.; Williams, Kenneth H.; Wilkins, Michael; Long, Philip; Lovley, Derek R.

    2013-01-01

    Molecular tools that can provide an estimate of the in situ growth rate of Geobacter species could improve understanding of dissimilatory metal reduction in a diversity of environments. Whole-genome microarray analyses of a subsurface isolate of Geobacter uraniireducens, grown under a variety of conditions, identified a number of genes that are differentially expressed at different specific growth rates. Expression of two genes encoding ribosomal proteins, rpsC and rplL, was further evaluated with quantitative reverse transcription-PCR (qRT-PCR) in cells with doubling times ranging from 6.56 h to 89.28 h. Transcript abundance of rpsC correlated best (r2 = 0.90) with specific growth rates. Therefore, expression patterns of rpsC were used to estimate specific growth rates of Geobacter species during an in situ uranium bioremediation field experiment in which acetate was added to the groundwater to promote dissimilatory metal reduction. Initially, increased availability of acetate in the groundwater resulted in higher expression of Geobacter rpsC, and the increase in the number of Geobacter cells estimated with fluorescent in situ hybridization compared well with specific growth rates estimated from levels of in situ rpsC expression. However, in later phases, cell number increases were substantially lower than predicted from rpsC transcript abundance. This change coincided with a bloom of protozoa and increased attachment of Geobacter species to solid phases. These results suggest that monitoring rpsC expression may better reflect the actual rate that Geobacter species are metabolizing and growing during in situ uranium bioremediation than changes in cell abundance. PMID:23275510

  8. Integrative analysis of the interactions between Geobacter spp. and sulfate-reducing bacteria during uranium bioremediation

    NASA Astrophysics Data System (ADS)

    Barlett, M.; Zhuang, K.; Mahadevan, R.; Lovley, D. R.

    2011-11-01

    Enhancing microbial U(VI) reduction with the addition of organic electron donors is a promising strategy for immobilizing uranium in contaminated groundwaters, but has yet to be optimized because of a poor understanding of the factors controlling the growth of various microbial communities during bioremediation. In previous field trials in which acetate was added to the subsurface, there were two distinct phases: an initial phase in which acetate-oxidizing, U(VI)-reducing Geobacter predominated and U(VI) was effectively reduced and a second phase in which acetate-oxidizing sulfate reducing bacteria (SRB) predominated and U(VI) reduction was poor. The interaction of Geobacter and SRB was investigated both in sediment incubations that mimicked in situ bioremediation and with in silico metabolic modeling. In sediment incubations, Geobacter grew quickly but then declined in numbers as the microbially reducible Fe(III) was depleted whereas the SRB grow more slowly and reached dominance after 30-40 days. Modeling predicted a similar outcome. Additional modeling in which the relative initial percentages of the Geobacter and SRB were varied indicated that there was little to no competitive interaction between Geobacter and SRB when acetate was abundant. Further simulations suggested that the addition of Fe(III) would revive the Geobacter, but have little to no effect on the SRB. This result was confirmed experimentally. The results demonstrate that it is possible to predict the impact of amendments on important components of the subsurface microbial community during groundwater bioremediation. The finding that Fe(III) availability, rather than competition with SRB, is the key factor limiting the activity of Geobacter during in situ uranium bioremediation will aid in the design of improved uranium bioremediation strategies.

  9. Integrative analysis of Geobacter spp. and sulfate-reducing bacteria during uranium bioremediation

    NASA Astrophysics Data System (ADS)

    Barlett, M.; Zhuang, K.; Mahadevan, R.; Lovley, D.

    2012-03-01

    Enhancing microbial U(VI) reduction with the addition of organic electron donors is a promising strategy for immobilizing uranium in contaminated groundwaters, but has yet to be optimized because of a poor understanding of the factors controlling the growth of various microbial communities during bioremediation. In previous field trials in which acetate was added to the subsurface, there were two distinct phases: an initial phase in which acetate-oxidizing, U(VI)-reducing Geobacter predominated and U(VI) was effectively reduced and a second phase in which acetate-oxidizing sulfate reducing bacteria (SRB) predominated and U(VI) reduction was poor. The interaction of Geobacter and SRB was investigated both in sediment incubations that mimicked in situ bioremediation and with in silico metabolic modeling. In sediment incubations, Geobacter grew quickly but then declined in numbers as the microbially reducible Fe(III) was depleted whereas the SRB grow more slowly and reached dominance after 30-40 days. Modeling predicted a similar outcome. Additional modeling in which the relative initial percentages of the Geobacter and SRB were varied indicated that there was little to no competitive interaction between Geobacter and SRB when acetate was abundant. Further simulations suggested that the addition of Fe(III) would revive the Geobacter, but have little to no effect on the SRB. This result was confirmed experimentally. The results demonstrate that it is possible to predict the impact of amendments on important components of the subsurface microbial community during groundwater bioremediation. The finding that Fe(III) availability, rather than competition with SRB, is the key factor limiting the activity of Geobacter during in situ uranium bioremediation will aid in the design of improved uranium bioremediation strategies.

  10. Genome-scale constraint-based modeling of Geobacter metallireducens

    PubMed Central

    Sun, Jun; Sayyar, Bahareh; Butler, Jessica E; Pharkya, Priti; Fahland, Tom R; Famili, Iman; Schilling, Christophe H; Lovley, Derek R; Mahadevan, Radhakrishnan

    2009-01-01

    Background Geobacter metallireducens was the first organism that can be grown in pure culture to completely oxidize organic compounds with Fe(III) oxide serving as electron acceptor. Geobacter species, including G. sulfurreducens and G. metallireducens, are used for bioremediation and electricity generation from waste organic matter and renewable biomass. The constraint-based modeling approach enables the development of genome-scale in silico models that can predict the behavior of complex biological systems and their responses to the environments. Such a modeling approach was applied to provide physiological and ecological insights on the metabolism of G. metallireducens. Results The genome-scale metabolic model of G. metallireducens was constructed to include 747 genes and 697 reactions. Compared to the G. sulfurreducens model, the G. metallireducens metabolic model contains 118 unique reactions that reflect many of G. metallireducens' specific metabolic capabilities. Detailed examination of the G. metallireducens model suggests that its central metabolism contains several energy-inefficient reactions that are not present in the G. sulfurreducens model. Experimental biomass yield of G. metallireducens growing on pyruvate was lower than the predicted optimal biomass yield. Microarray data of G. metallireducens growing with benzoate and acetate indicated that genes encoding these energy-inefficient reactions were up-regulated by benzoate. These results suggested that the energy-inefficient reactions were likely turned off during G. metallireducens growth with acetate for optimal biomass yield, but were up-regulated during growth with complex electron donors such as benzoate for rapid energy generation. Furthermore, several computational modeling approaches were applied to accelerate G. metallireducens research. For example, growth of G. metallireducens with different electron donors and electron acceptors were studied using the genome-scale metabolic model, which

  11. Biochemical Mechanisms Controlling Terminal Electron Transfer in Geobacter sulfurreducens

    NASA Astrophysics Data System (ADS)

    Helmus, R.; Liermann, L. J.; Brantley, S. L.; Tien, M.

    2009-04-01

    The ability of Geobacter sulfurreducens to use a variety of metals as terminal electron acceptors (TEAs) for cellular respiration makes it attractive for use in bioremediation and implies its importance to mineral cycling in the environment. This study is aimed at understanding the biochemical mechanisms that allow Geobacter sulfurreducens to use soluble and insoluble iron and manganese forms as TEAs for cellular respiration and is the first of its kind to address the kinetics of manganese use as a TEA by G. sulfurreducens. First, G. sulfurreducens was conditioned to grow on various soluble and insoluble iron and manganese forms. G. sulfurreducens demonstrated enhanced growth rates when cultured using soluble TEAs compared with insoluble TEAs. However, the lower growth rate on insoluble iron compared with soluble iron was observed concomitantly with a 1-2 log lower cell density in stationary phase in insoluble iron cultures and a lower growth yield per electron donor used in log growth phase. Furthermore, the growth yield per electron was similar with both soluble and insoluble iron. These results suggest that the net amount of energy available for biomass production achieved from reducing insoluble iron is lower than with soluble iron, which may be due to a different biochemical mechanism catalyzing the electron transfer to TEA dependent upon the solubility of the TEA. One scenario consistent with this notion is that protein(s) in the outer membrane of G. sulfurreducens that transfers electrons to insoluble TEAs does so in a manner that uncouples electron flow from the proton pump in the cellular membrane, similar to what we have observed with Shewanella oneidensis MR-1. Both the growth rate and growth yield of G. sulfurreducens on insoluble manganese were higher than on insoluble iron, indicating that there is a difference in the flow of electrons to the TEA in these two situations. While the different redox potentials of these elements may affect these values

  12. Limitations for current production in Geobacter sulfurreducens biofilms.

    PubMed

    Bonanni, P Sebastian; Bradley, Dan F; Schrott, Germán D; Busalmen, Juan Pablo

    2013-04-01

    Devices that exploit electricity produced by electroactive bacteria such as Geobacter sulfurreducens have not yet been demonstrated beyond the laboratory scale. The current densities are far from the maximum that the bacteria can produce because fundamental properties such as the mechanism of extracellular electron transport and factors limiting cell respiration remain unclear. In this work, a strategy for the investigation of electroactive biofilms is presented. Numerical modeling of the response of G. sulfurreducens biofilms cultured on a rotating disk electrode has allowed for the discrimination of different limiting steps in the process of current production within a biofilm. The model outputs reveal that extracellular electron transport limits the respiration rate of the cells furthest from the electrode to the extent that cell division is not possible. The mathematical model also demonstrates that recent findings such as the existence of a redox gradient in actively respiring biofilms can be explained by an electron hopping mechanism but not when considering metallic-like conductivities. PMID:23417889

  13. Structural and Operational Complexity of the Geobacter Sulfurreducens Genome

    SciTech Connect

    Qiu, Yu; Cho, Byung-Kwan; Park, Young S.; Lovley, Derek R.; Palsson, Bernhard O.; Zengler, Karsten

    2010-06-30

    Prokaryotic genomes can be annotated based on their structural, operational, and functional properties. These annotations provide the pivotal scaffold for understanding cellular functions on a genome-scale, such as metabolism and transcriptional regulation. Here, we describe a systems approach to simultaneously determine the structural and operational annotation of the Geobacter sulfurreducens genome. Integration of proteomics, transcriptomics, RNA polymerase, and sigma factor-binding information with deep-sequencing-based analysis of primary 59-end transcripts allowed for a most precise annotation. The structural annotation is comprised of numerous previously undetected genes, noncoding RNAs, prevalent leaderless mRNA transcripts, and antisense transcripts. When compared with other prokaryotes, we found that the number of antisense transcripts reversely correlated with genome size. The operational annotation consists of 1453 operons, 22% of which have multiple transcription start sites that use different RNA polymerase holoenzymes. Several operons with multiple transcription start sites encoded genes with essential functions, giving insight into the regulatory complexity of the genome. The experimentally determined structural and operational annotations can be combined with functional annotation, yielding a new three-level annotation that greatly expands our understanding of prokaryotic genomes.

  14. Elucidation of an alternate isoleucine biosynthesis pathway in Geobacter sulfurreducens.

    PubMed

    Risso, Carla; Van Dien, Stephen J; Orloff, Amber; Lovley, Derek R; Coppi, Maddalena V

    2008-04-01

    The central metabolic model for Geobacter sulfurreducens included a single pathway for the biosynthesis of isoleucine that was analogous to that of Escherichia coli, in which the isoleucine precursor 2-oxobutanoate is generated from threonine. 13C labeling studies performed in G. sulfurreducens indicated that this pathway accounted for a minor fraction of isoleucine biosynthesis and that the majority of isoleucine was instead derived from acetyl-coenzyme A and pyruvate, possibly via the citramalate pathway. Genes encoding citramalate synthase (GSU1798), which catalyzes the first dedicated step in the citramalate pathway, and threonine ammonia-lyase (GSU0486), which catalyzes the conversion of threonine to 2-oxobutanoate, were identified and knocked out. Mutants lacking both of these enzymes were auxotrophs for isoleucine, whereas single mutants were capable of growth in the absence of isoleucine. Biochemical characterization of the single mutants revealed deficiencies in citramalate synthase and threonine ammonia-lyase activity. Thus, in G. sulfurreducens, 2-oxobutanoate can be synthesized either from citramalate or threonine, with the former being the main pathway for isoleucine biosynthesis. The citramalate synthase of G. sulfurreducens constitutes the first characterized member of a phylogenetically distinct clade of citramalate synthases, which contains representatives from a wide variety of microorganisms. PMID:18245290

  15. Proteins involved in electron transfer to Fe(III) and Mn(IV) oxides by Geobacter sulfurreducens and Geobacter uraniireducens.

    PubMed

    Aklujkar, M; Coppi, M V; Leang, C; Kim, B C; Chavan, M A; Perpetua, L A; Giloteaux, L; Liu, A; Holmes, D E

    2013-03-01

    Whole-genome microarray analysis of Geobacter sulfurreducens grown on insoluble Fe(III) oxide or Mn(IV) oxide versus soluble Fe(III) citrate revealed significantly different expression patterns. The most upregulated genes, omcS and omcT, encode cell-surface c-type cytochromes, OmcS being required for Fe(III) and Mn(IV) oxide reduction. Other electron transport genes upregulated on both metal oxides included genes encoding putative menaquinol : ferricytochrome c oxidoreductase complexes Cbc4 and Cbc5, periplasmic c-type cytochromes Dhc2 and PccF, outer membrane c-type cytochromes OmcC, OmcG and OmcV, multicopper oxidase OmpB, the structural components of electrically conductive pili, PilA-N and PilA-C, and enzymes that detoxify reactive oxygen/nitrogen species. Genes upregulated on Fe(III) oxide encode putative menaquinol : ferricytochrome c oxidoreductase complexes Cbc3 and Cbc6, periplasmic c-type cytochromes, including PccG and PccJ, and outer membrane c-type cytochromes, including OmcA, OmcE, OmcH, OmcL, OmcN, OmcO and OmcP. Electron transport genes upregulated on Mn(IV) oxide encode periplasmic c-type cytochromes PccR, PgcA, PpcA and PpcD, outer membrane c-type cytochromes OmaB/OmaC, OmcB and OmcZ, multicopper oxidase OmpC and menaquinone-reducing enzymes. Genetic studies indicated that MacA, OmcB, OmcF, OmcG, OmcH, OmcI, OmcJ, OmcM, OmcV and PccH, the putative Cbc5 complex subunit CbcC and the putative Cbc3 complex subunit CbcV are important for reduction of Fe(III) oxide but not essential for Mn(IV) oxide reduction. Gene expression patterns for Geobacter uraniireducens were similar. These results demonstrate that the physiology of Fe(III)-reducing bacteria differs significantly during growth on different insoluble and soluble electron acceptors and emphasize the importance of c-type cytochromes for extracellular electron transfer in G. sulfurreducens. PMID:23306674

  16. Structural characterization of a β-hydroxyacid dehydrogenase from Geobacter sulfurreducens and Geobacter metallireducens with succinic semialdehyde reductase activity

    SciTech Connect

    Zhang, Yanfeng; Zheng, Yi; Qin, Ling; Wang, Shihua; Buchko, Garry W.; Garavito, Michael R.

    2014-07-30

    Beta-hydroxyacid dehydrogenase (β-HAD) genes have been identified in all sequenced genomes of eukaryotes and prokaryotes. Their gene products catalyze the NAD+- or NADP+-dependent oxidation of various β-hydroxy acid substrates into their corresponding semialdehyde. In many fungal and bacterial genomes, multiple β-HAD genes are observed leading to the hypothesis that these gene products may have unique, uncharacterized metabolic roles specific to their species. The genomes of Geobacter sulfurreducens and Geobacter metallireducens each contain two potential β-HAD genes. The protein sequences of one pair of these genes, Gs-βHAD (Q74DE4) and Gm-βHAD (Q39R98), have 65% sequence identity and 77% sequence similarity with each other. Both proteins reduce succinic semialdehyde, a metabolite of the GABA shunt. To further explore the structural and functional characteristics of these two β-HADs with a potentially unique substrate specificity, crystal structures for Gs-βHAD and Gm-βHAD in complex with NADP+ were determined to a resolution of 1.89 Å and 2.07 Å, respectively. The structure of both proteins are similar, composed of 14 α-helices and nine β-strands organized into two domains. Domain One (1-165) adopts a typical Rossmann fold composed of two α/β units: a six-strand parallel β-sheet surrounded by six α-helices (α1 – α6) followed by a mixed three-strand β-sheet surrounded by two α-helices (α7 and α8). Domain Two (166-287) is composed of a bundle of seven α-helices (α9 – α14). Four functional regions conserved in all β-HADs are spatially located near each other at the interdomain cleft in both Gs-βHAD and Gm-βHAD with a buried molecule of NADP+. The structural features of Gs-βHAD and Gm-βHAD are described in relation to the four conserved consensus sequences characteristic of β-HADs and the potential biochemical importance of these enzymes as an alternative pathway for the degradation of succinic semialdehyde.

  17. Growth of geobacter sulfurreducens with acetate in syntrophic cooperation with hydrogen-oxidizing anaerobic partners

    PubMed

    Cord-Ruwisch; Lovley; Schink

    1998-06-01

    Pure cultures of Geobacter sulfurreducens and other Fe(III)-reducing bacteria accumulated hydrogen to partial pressures of 5 to 70 Pa with acetate, butyrate, benzoate, ethanol, lactate, or glucose as the electron donor if electron release to an acceptor was limiting. G. sulfurreducens coupled acetate oxidation with electron transfer to an anaerobic partner bacterium in the absence of ferric iron or other electron acceptors. Cocultures of G. sulfurreducens and Wolinella succinogenes with nitrate as the electron acceptor degraded acetate efficiently and grew with doubling times of 6 to 8 h. The hydrogen partial pressures in these acetate-degrading cocultures were considerably lower, in the range of 0.02 to 0.04 Pa. From these values and the concentrations of the other reactants, it was calculated that in this cooperation the free energy change available to G. sulfurreducens should be about -53 kJ per mol of acetate oxidized, assuming complete conversion of acetate to CO2 and H2. However, growth yields (18.5 g of dry mass per mol of acetate for the coculture, about 14 g for G. sulfurreducens) indicated considerably higher energy gains. These yield data, measurement of hydrogen production rates, and calculation of the diffusive hydrogen flux indicated that electron transfer in these cocultures may not proceed exclusively via interspecies hydrogen transfer but may also proceed through an alternative carrier system with higher redox potential, e.g., a c-type cytochrome that was found to be excreted by G. sulfurreducens into the culture fluid. Syntrophic acetate degradation was also possible with G. sulfurreducens and Desulfovibrio desulfuricans CSN but only with nitrate as electron acceptor. These cultures produced cell yields of 4.5 g of dry mass per mol of acetate, to which both partners contributed at about equal rates. These results demonstrate that some Fe(III)-reducing bacteria can oxidize organic compounds under Fe(III) limitation with the production of hydrogen

  18. Adaptation of the Biolog Phenotype MicroArrayTM Technology to Profile the Obligate Anaerobe Geobacter metallireducens

    SciTech Connect

    Joyner, Dominique; Fortney, Julian; Chakraborty, Romy; Hazen, Terry

    2010-05-17

    The Biolog OmniLog? Phenotype MicroArray (PM) plate technology was successfully adapted to generate a select phenotypic profile of the strict anaerobe Geobacter metallireducens (G.m.). The profile generated for G.m. provides insight into the chemical sensitivity of the organism as well as some of its metabolic capabilities when grown with a basal medium containing acetate and Fe(III). The PM technology was developed for aerobic organisms. The reduction of a tetrazolium dye by the test organism represents metabolic activity on the array which is detected and measured by the OmniLog(R) system. We have previously adapted the technology for the anaerobic sulfate reducing bacterium Desulfovibrio vulgaris. In this work, we have taken the technology a step further by adapting it for the iron reducing obligate anaerobe Geobacter metallireducens. In an osmotic stress microarray it was determined that the organism has higher sensitivity to impermeable solutes 3-6percent KCl and 2-5percent NaNO3 that result in osmotic stress by osmosis to the cell than to permeable non-ionic solutes represented by 5-20percent ethylene glycol and 2-3percent urea. The osmotic stress microarray also includes an array of osmoprotectants and precursor molecules that were screened to identify substrates that would provide osmotic protection to NaCl stress. None of the substrates tested conferred resistance to elevated concentrations of salt. Verification studies in which G.m. was grown in defined medium amended with 100mM NaCl (MIC) and the common osmoprotectants betaine, glycine and proline supported the PM findings. Further verification was done by analysis of transcriptomic profiles of G.m. grown under 100mM NaCl stress that revealed up-regulation of genes related to degradation rather than accumulation of the above-mentioned osmoprotectants. The phenotypic profile, supported by additional analysis indicates that the accumulation of these osmoprotectants as a response to salt stress does not

  19. METABOLIC SPATIAL VARIABILITY IN ELECTRODE-RESPIRING GEOBACTER SULFURREDUCENS BIOFILMS.

    PubMed

    Renslow, Rs; Babauta, Jt; Dohnalkova, A; Boyanov, Mi; Kemner, Km; Majors, Pd; Fredrickson, Jk; Beyenal, H

    2013-06-01

    In this study, we quantified electron transfer rates, depth profiles of electron donor, and biofilm structure of Geobacter sulfurreducens biofilms using an electrochemical-nuclear magnetic resonance microimaging biofilm reactor. Our goal was to determine whether electron donor limitations existed in electron transfer processes of electrode-respiring G. sulfurreducens biofilms. Cells near the top of the biofilms consumed acetate and were metabolically active; however, acetate concentration decreased to below detection within the top 100 microns of the biofilms. Additionally, porosity in the biofilms fell below 10% near the electrode surface, exacerbating exclusion of acetate from the lower regions. The dense biofilm matrix in the acetate-depleted zone acted as an electrical conduit passing electrons generated at the top of the biofilm to the electrode. To verify the distribution of cell metabolic activity, we used uranium as a redox-active probe for localizing electron transfer activity and X-ray absorption spectroscopy to determine the uranium oxidation state. Cells near the top reduced U(VI) more actively than the cells near the base. High-resolution transmission electron microscopy images showed intact, healthy cells near the top and plasmolyzed cells near the base. Contrary to models proposed in the literature, which hypothesize that cells nearest the electrode surface are the most metabolically active because of a lower electron transfer resistance, our results suggest that electrical resistance through the biofilm does not restrict long-range electron transfer. Cells far from the electrode can respire across metabolically inactive cells, taking advantage of their extracellular infrastructure produced during the initial biofilm formation. PMID:23930138

  20. METABOLIC SPATIAL VARIABILITY IN ELECTRODE-RESPIRING GEOBACTER SULFURREDUCENS BIOFILMS

    PubMed Central

    Renslow, RS; Babauta, JT; Dohnalkova, A; Boyanov, MI; Kemner, KM; Majors, PD; Fredrickson, JK; Beyenal, H

    2013-01-01

    In this study, we quantified electron transfer rates, depth profiles of electron donor, and biofilm structure of Geobacter sulfurreducens biofilms using an electrochemical-nuclear magnetic resonance microimaging biofilm reactor. Our goal was to determine whether electron donor limitations existed in electron transfer processes of electrode-respiring G. sulfurreducens biofilms. Cells near the top of the biofilms consumed acetate and were metabolically active; however, acetate concentration decreased to below detection within the top 100 microns of the biofilms. Additionally, porosity in the biofilms fell below 10% near the electrode surface, exacerbating exclusion of acetate from the lower regions. The dense biofilm matrix in the acetate-depleted zone acted as an electrical conduit passing electrons generated at the top of the biofilm to the electrode. To verify the distribution of cell metabolic activity, we used uranium as a redox-active probe for localizing electron transfer activity and X-ray absorption spectroscopy to determine the uranium oxidation state. Cells near the top reduced UVI more actively than the cells near the base. High-resolution transmission electron microscopy images showed intact, healthy cells near the top and plasmolyzed cells near the base. Contrary to models proposed in the literature, which hypothesize that cells nearest the electrode surface are the most metabolically active because of a lower electron transfer resistance, our results suggest that electrical resistance through the biofilm does not restrict long-range electron transfer. Cells far from the electrode can respire across metabolically inactive cells, taking advantage of their extracellular infrastructure produced during the initial biofilm formation. PMID:23930138

  1. Rational engineering of Geobacter sulfurreducens electron transfer components: a foundation for building improved Geobacter-based bioelectrochemical technologies

    PubMed Central

    Dantas, Joana M.; Morgado, Leonor; Aklujkar, Muktak; Bruix, Marta; Londer, Yuri Y.; Schiffer, Marianne; Pokkuluri, P. Raj; Salgueiro, Carlos A.

    2015-01-01

    Multiheme cytochromes have been implicated in Geobacter sulfurreducens extracellular electron transfer (EET). These proteins are potential targets to improve EET and enhance bioremediation and electrical current production by G. sulfurreducens. However, the functional characterization of multiheme cytochromes is particularly complex due to the co-existence of several microstates in solution, connecting the fully reduced and fully oxidized states. Over the last decade, new strategies have been developed to characterize multiheme redox proteins functionally and structurally. These strategies were used to reveal the functional mechanism of G. sulfurreducens multiheme cytochromes and also to identify key residues in these proteins for EET. In previous studies, we set the foundations for enhancement of the EET abilities of G. sulfurreducens by characterizing a family of five triheme cytochromes (PpcA-E). These periplasmic cytochromes are implicated in electron transfer between the oxidative reactions of metabolism in the cytoplasm and the reduction of extracellular terminal electron acceptors at the cell's outer surface. The results obtained suggested that PpcA can couple e−/H+ transfer, a property that might contribute to the proton electrochemical gradient across the cytoplasmic membrane for metabolic energy production. The structural and functional properties of PpcA were characterized in detail and used for rational design of a family of 23 single site PpcA mutants. In this review, we summarize the functional characterization of the native and mutant proteins. Mutants that retain the mechanistic features of PpcA and adopt preferential e−/H+ transfer pathways at lower reduction potential values compared to the wild-type protein were selected for in vivo studies as the best candidates to increase the electron transfer rate of G. sulfurreducens. For the first time G. sulfurreducens strains have been manipulated by the introduction of mutant forms of essential

  2. Rational engineering of Geobacter sulfurreducens electron transfer components: A foundation for building improved Geobacter-based bioelectrochemical technologies

    DOE PAGESBeta

    Dantas, Joana M.; Morgado, Leonor; Aklujkar, Muktak; Bruix, Marta; Londer, Yuri Y.; Schiffer, Marianne; Pokkuluri, P. Raj; Salgueiro, Carlos A.

    2015-07-30

    Multiheme cytochromes have been implicated in Geobacter sulfurreducens extracellular electron transfer (EET). These proteins are potential targets to improve EET and enhance bioremediation and electrical current production by G. sulfurreducens. However, the functional characterization of multiheme cytochromes is particularly complex due to the co-existence of several microstates in solution, connecting the fully reduced and fully oxidized states. Throughout the last decade, new strategies have been developed to characterize multiheme redox proteins functionally and structurally. These strategies were used to reveal the functional mechanism of G. sulfurreducens multiheme cytochromes and also to identify key residues in these proteins for EET. Inmore » previous studies, we set the foundations for enhancement of the EET abilities of G. sulfurreducens by characterizing a family of five triheme cytochromes (PpcA-E). These periplasmic cytochromes are implicated in electron transfer between the oxidative reactions of metabolism in the cytoplasm and the reduction of extracellular terminal electron acceptors at the cell's outer surface. The results obtained suggested that PpcA can couple e-/H+ transfer, a property that might contribute to the proton electrochemical gradient across the cytoplasmic membrane for metabolic energy production. The structural and functional properties of PpcA were characterized in detail and used for rational design of a family of 23 single site PpcA mutants. In this review, we summarize the functional characterization of the native and mutant proteins. Mutants that retain the mechanistic features of PpcA and adopt preferential e-/H+ transfer pathways at lower reduction potential values compared to the wild-type protein were selected for in vivo studies as the best candidates to increase the electron transfer rate of G. sulfurreducens. For the first time G. sulfurreducens strains have been manipulated by the introduction of mutant forms of

  3. Electricity Production by Geobacter sulfurreducens Attached to Electrodes

    PubMed Central

    Bond, Daniel R.; Lovley, Derek R.

    2003-01-01

    Previous studies have suggested that members of the Geobacteraceae can use electrodes as electron acceptors for anaerobic respiration. In order to better understand this electron transfer process for energy production, Geobacter sulfurreducens was inoculated into chambers in which a graphite electrode served as the sole electron acceptor and acetate or hydrogen was the electron donor. The electron-accepting electrodes were maintained at oxidizing potentials by connecting them to similar electrodes in oxygenated medium (fuel cells) or to potentiostats that poised electrodes at +0.2 V versus an Ag/AgCl reference electrode (poised potential). When a small inoculum of G. sulfurreducens was introduced into electrode-containing chambers, electrical current production was dependent upon oxidation of acetate to carbon dioxide and increased exponentially, indicating for the first time that electrode reduction supported the growth of this organism. When the medium was replaced with an anaerobic buffer lacking nutrients required for growth, acetate-dependent electrical current production was unaffected and cells attached to these electrodes continued to generate electrical current for weeks. This represents the first report of microbial electricity production solely by cells attached to an electrode. Electrode-attached cells completely oxidized acetate to levels below detection (<10 μM), and hydrogen was metabolized to a threshold of 3 Pa. The rates of electron transfer to electrodes (0.21 to 1.2 μmol of electrons/mg of protein/min) were similar to those observed for respiration with Fe(III) citrate as the electron acceptor (Eo′ =+0.37 V). The production of current in microbial fuel cell (65 mA/m2 of electrode surface) or poised-potential (163 to 1,143 mA/m2) mode was greater than what has been reported for other microbial systems, even those that employed higher cell densities and electron-shuttling compounds. Since acetate was completely oxidized, the efficiency of

  4. Maintenance of Geobacter-dominated biofilms in microbial fuel cells treating synthetic wastewater.

    PubMed

    Commault, Audrey S; Lear, Gavin; Weld, Richard J

    2015-12-01

    Geobacter-dominated biofilms can be selected under stringent conditions that limit the growth of competing bacteria. However, in many practical applications, such stringent conditions cannot be maintained and the efficacy and stability of these artificial biofilms may be challenged. In this work, biofilms were selected on low-potential anodes (-0.36 V vs Ag/AgCl, i.e. -0.08 V vs SHE) in minimal acetate or ethanol media. Selection conditions were then relaxed by transferring the biofilms to synthetic wastewater supplemented with soil as a source of competing bacteria. We tracked community succession and functional changes in these biofilms. The Geobacter-dominated biofilms showed stability in their community composition and electrochemical properties, with Geobacter sp. being still electrically active after six weeks in synthetic wastewater with power densities of 100±19 mW·m(-2) (against 74±14 mW·m(-2) at week 0) for all treatments. After six weeks, the ethanol-selected biofilms, despite their high taxon richness and their efficiency at removing the chemical oxygen demand (0.8 g·L(-1) removed against the initial 1.3 g·L(-1) injected), were the least stable in terms of community structure. These findings have important implications for environmental microbial fuel cells based on Geobacter-dominated biofilms and suggest that they could be stable in challenging environments. PMID:25935865

  5. Changes in protein expression across laboratory and field experiments in Geobacter bemidjiensis

    SciTech Connect

    Merkley, Eric D.; Wrighton, Kelly C.; Castelle, Cindy; Anderson, Brian J.; Wilkins, Michael J.; Shah, Vega; Arbour, Tyler; Brown, Joseph N.; Singer, Steven W.; Smith, Richard D.; Lipton, Mary S.

    2015-03-06

    Bacterial extracellular metal respiration, as carried out by members of the genus Geobacter, is of interest for applications including microbial fuel cells and bioremediation. Geobacter bemidjiensis is the major species whose growth is stimulated during groundwater amendment with acetate. We have carried out label-free proteomics studies of Geobacter bemidjiensis grown with acetate as the electron donor and either fumarate, ferric citrate, or one of two hydrous ferric oxide mineral types as electron acceptor. The major class of proteins whose expression changes across these conditions is c-type cytochromes, many of which are known to be involved in extracellular metal reduction in other, better-characterized Geobacter species. Some proteins with multiple homologues in G. bemidjiensis (OmcS, OmcB) had different expression patterns than observed for their G. sulfurreducens homologues under similar growth conditions. We also compared the proteome from our study to a prior proteomics study of biomass recovered from an aquifer in Colorado, where the microbial community was dominated by strains closely-related to G. bemidjiensis. We detected an increased number of proteins with functions related to motility and chemotaxis in the Colorado field samples compared to the laboratory samples, suggesting the importance of motility for in situ extracellular metal respiration.

  6. Proteogenomic Analysis of Geobacter Populations in a low Nutrient Contaminated Aquifer Under Stimulated Conditions.

    NASA Astrophysics Data System (ADS)

    Wilkins, M. J.; Williams, K. H.; Verberkmoes, N. C.; Hettich, R. L.; Lipton, M. S.; Callister, S. J.; Long, P. E.; Banfield, J. F.

    2008-12-01

    Proteogenomic samples were obtained from a U(VI)-contaminated aquifer undergoing acetate-stimulated bioreduction at the U.S. Department of Energy Integrated Field Challenge (IFC) site in Western Colorado. Analysis of these samples using ICP-MS/MS indicated that they were dominated by Geobacter species, with over 2,500 proteins identified per sample. The detected proteins revealed a wealth of information about how Geobacter species are able to dominate subsurface environments under nutrient-poor conditions such as those at Rifle. The presence of nitrogenase proteins indicates that the Geobacter populations are fixing nitrogen, although the absence of other proteins indicative of nitrogen stress, such as the uridylylated version of the P-II regulatory protein and NtrB, suggests that low-level N2 fixation occurs without the community undergoing extreme nitrogen stress. The detection of a large number of proteins involved in two- component sensor and chemotaxis systems, along with flagella subunits, indicates that Geobacter species are able to rapidly detect and respond to chemical gradients in the environment. Pathways for the efficient utilization of the elevated acetate concentrations in the subsurface have also been elucidated, with an important role suggested for acetyl-CoA transferase in controlling flux between succinyl-CoA and succinate. Other proteins detected that are clearly important for growth in the subsurface include those involved in phosphate acquisition and heavy-metal efflux.

  7. Plutonium(IV) reduction by the metal-reducing bacteria Geobacter metallireducens GS15 and Shewanella oneidensis MR1.

    PubMed

    Boukhalfa, Hakim; Icopini, Gary A; Reilly, Sean D; Neu, Mary P

    2007-09-01

    The bacterial reduction of actinides has been suggested as a possible remedial strategy for actinide-contaminated environments, and the bacterial reduction of Pu(VI/V) has the potential to produce highly insoluble Pu(IV) solid phases. However, the behavior of plutonium with regard to bacterial reduction is more complex than for other actinides because it is possible for Pu(IV) to be further reduced to Pu(III), which is relatively more soluble than Pu(IV). This work investigates the ability of the metal-reducing bacteria Geobacter metallireducens GS15 and Shewanella oneidensis MR1 to enzymatically reduce freshly precipitated amorphous Pu(IV) (OH)(4) [Pu(IV)(OH)(4(am))] and soluble Pu(IV)(EDTA). In cell suspensions without added complexing ligands, minor Pu(III) production was observed in cultures containing S. oneidensis, but little or no Pu(III) production was observed in cultures containing G. metallireducens. In the presence of EDTA, most of the Pu(IV)(OH)(4(am)) present was reduced to Pu(III) and remained soluble in cell suspensions of both S. oneidensis and G. metallireducens. When soluble Pu(IV)(EDTA) was provided as the terminal electron acceptor, cell suspensions of both S. oneidensis and G. metallireducens rapidly reduced Pu(IV)(EDTA) to Pu(III)(EDTA) with nearly complete reduction within 20 to 40 min, depending on the initial concentration. Neither bacterium was able to use Pu(IV) (in any of the forms used) as a terminal electron acceptor to support growth. These results have significant implications for the potential remediation of plutonium and suggest that strongly reducing environments where complexing ligands are present may produce soluble forms of reduced Pu species. PMID:17644643

  8. The Dnmt2 RNA methyltransferase homolog of Geobacter sulfurreducens specifically methylates tRNA-Glu.

    PubMed

    Shanmugam, Raghuvaran; Aklujkar, Muktak; Schäfer, Matthias; Reinhardt, Richard; Nickel, Olaf; Reuter, Gunter; Lovley, Derek R; Ehrenhofer-Murray, Ann; Nellen, Wolfgang; Ankri, Serge; Helm, Mark; Jurkowski, Tomasz P; Jeltsch, Albert

    2014-06-01

    Dnmt2 enzymes are conserved in eukaryotes, where they methylate C38 of tRNA-Asp with high activity. Here, the activity of one of the very few prokaryotic Dnmt2 homologs from Geobacter species (GsDnmt2) was investigated. GsDnmt2 was observed to methylate tRNA-Asp from flies and mice. Unexpectedly, it had only a weak activity toward its matching Geobacter tRNA-Asp, but methylated Geobacter tRNA-Glu with good activity. In agreement with this result, we show that tRNA-Glu is methylated in Geobacter while the methylation is absent in tRNA-Asp. The activities of Dnmt2 enzymes from Homo sapiens, Drosophila melanogaster, Schizosaccharomyces pombe and Dictyostelium discoideum for methylation of the Geobacter tRNA-Asp and tRNA-Glu were determined showing that all these Dnmt2s preferentially methylate tRNA-Asp. Hence, the GsDnmt2 enzyme has a swapped transfer ribonucleic acid (tRNA) specificity. By comparing the different tRNAs, a characteristic sequence pattern was identified in the variable loop of all preferred tRNA substrates. An exchange of two nucleotides in the variable loop of murine tRNA-Asp converted it to the corresponding variable loop of tRNA-Glu and led to a strong reduction of GsDnmt2 activity. Interestingly, the same loss of activity was observed with human DNMT2, indicating that the variable loop functions as a specificity determinant in tRNA recognition of Dnmt2 enzymes. PMID:24711368

  9. The Dnmt2 RNA methyltransferase homolog of Geobacter sulfurreducens specifically methylates tRNA-Glu

    PubMed Central

    Shanmugam, Raghuvaran; Aklujkar, Muktak; Schäfer, Matthias; Reinhardt, Richard; Nickel, Olaf; Reuter, Gunter; Lovley, Derek R.; Ehrenhofer-Murray, Ann; Nellen, Wolfgang; Ankri, Serge; Helm, Mark; Jurkowski, Tomasz P.; Jeltsch, Albert

    2014-01-01

    Dnmt2 enzymes are conserved in eukaryotes, where they methylate C38 of tRNA-Asp with high activity. Here, the activity of one of the very few prokaryotic Dnmt2 homologs from Geobacter species (GsDnmt2) was investigated. GsDnmt2 was observed to methylate tRNA-Asp from flies and mice. Unexpectedly, it had only a weak activity toward its matching Geobacter tRNA-Asp, but methylated Geobacter tRNA-Glu with good activity. In agreement with this result, we show that tRNA-Glu is methylated in Geobacter while the methylation is absent in tRNA-Asp. The activities of Dnmt2 enzymes from Homo sapiens, Drosophila melanogaster, Schizosaccharomyces pombe and Dictyostelium discoideum for methylation of the Geobacter tRNA-Asp and tRNA-Glu were determined showing that all these Dnmt2s preferentially methylate tRNA-Asp. Hence, the GsDnmt2 enzyme has a swapped transfer ribonucleic acid (tRNA) specificity. By comparing the different tRNAs, a characteristic sequence pattern was identified in the variable loop of all preferred tRNA substrates. An exchange of two nucleotides in the variable loop of murine tRNA-Asp converted it to the corresponding variable loop of tRNA-Glu and led to a strong reduction of GsDnmt2 activity. Interestingly, the same loss of activity was observed with human DNMT2, indicating that the variable loop functions as a specificity determinant in tRNA recognition of Dnmt2 enzymes. PMID:24711368

  10. GSEL version 2, an online genome-wide query system of operon organization and regulatory sequence elements of Geobacter sulfurreducens.

    PubMed

    Qu, Yanhua; Brown, Peter; Barbe, Jose F; Puljic, Marko; Merino, Enrique; Adkins, Ronald M; Lovley, Derek R; Krushkal, Julia

    2009-10-01

    Geobacter sulfurreducens is a model organism within the delta-Proteobacterial family Geobacteraceae, members of which can participate in environmental bioremediation of metal and organic waste contaminants and in production of bioenergy. In this report, we describe a new, significantly expanded and updated, version 2 of the GSEL (Geobacter Sequence Elements) database ( http://geobacter.org/research/gsel2/ and http://geobacter.org/refs/gsel2/ ) and its accompanying online query system, which compiles information on operon organization and regulatory sequence elements in the genome of G. sulfurreducens. It incorporates a new online graphical browser, provides novel search capabilities, and includes updated operon predictions along with new information on predicted and experimentally validated genome regulatory sites. The GSEL database and online search system provides a unique and comprehensive tool cataloging information about gene regulation in G. sulfurreducens, aiding in investigation of mechanisms that regulate its ability to generate electric power, bioremediate environmental waste, and adapt to environmental changes. PMID:19792871

  11. Constraint-Based Modeling of Carbon Fixation and the Energetics of Electron Transfer in Geobacter metallireducens

    SciTech Connect

    Feist, AM; Nagarajan, H; Rotaru, AE; Tremblay, PL; Zhang, T; Nevin, KP; Lovley, DR; Zengler, K

    2014-04-24

    Geobacter species are of great interest for environmental and biotechnology applications as they can carry out direct electron transfer to insoluble metals or other microorganisms and have the ability to assimilate inorganic carbon. Here, we report on the capability and key enabling metabolic machinery of Geobacter metallireducens GS-15 to carry out CO2 fixation and direct electron transfer to iron. An updated metabolic reconstruction was generated, growth screens on targeted conditions of interest were performed, and constraint-based analysis was utilized to characterize and evaluate critical pathways and reactions in G. metallireducens. The novel capability of G. metallireducens to grow autotrophically with formate and Fe(III) was predicted and subsequently validated in vivo. Additionally, the energetic cost of transferring electrons to an external electron acceptor was determined through analysis of growth experiments carried out using three different electron acceptors (Fe(III), nitrate, and fumarate) by systematically isolating and examining different parts of the electron transport chain. The updated reconstruction will serve as a knowledgebase for understanding and engineering Geobacter and similar species. Author Summary The ability of microorganisms to exchange electrons directly with their environment has large implications for our knowledge of industrial and environmental processes. For decades, it has been known that microbes can use electrodes as electron acceptors in microbial fuel cell settings. Geobacter metallireducens has been one of the model organisms for characterizing microbe-electrode interactions as well as environmental processes such as bioremediation. Here, we significantly expand the knowledge of metabolism and energetics of this model organism by employing constraint-based metabolic modeling. Through this analysis, we build the metabolic pathways necessary for carbon fixation, a desirable property for industrial chemical production. We

  12. A long way to the electrode: how do Geobacter cells transport their electrons?

    PubMed

    Bonanni, Pablo Sebastián; Schrott, Germán David; Busalmen, Juan Pablo

    2012-12-01

    The mechanism of electron transport in Geobacter sulfurreducens biofilms is a topic under intense study and debate. Although some proteins were found to be essential for current production, the specific role that each one plays in electron transport to the electrode remains to be elucidated and a consensus on the mechanism of electron transport has not been reached. In the present paper, to understand the state of the art in the topic, electron transport from inside of the cell to the electrode in Geobacter sulfurreducens biofilms is analysed, reviewing genetic studies, biofilm conductivity assays and electrochemical and spectro-electrochemical experiments. Furthermore, crucial data still required to achieve a deeper understanding are highlighted. PMID:23176467

  13. Stepping stones in the electron transport from cells to electrodes in Geobacter sulfurreducens biofilms.

    PubMed

    Bonanni, Pablo Sebastián; Massazza, Diego; Busalmen, Juan Pablo

    2013-07-01

    Geobacter sulfurreducens bacteria grow on biofilms and have the particular ability of using polarized electrodes as the final electron acceptor of their respiratory chain. In these biofilms, electrons are transported through distances of more than 50 μm before reaching the electrode. The way in which electrons are transported across the biofilm matrix through such large distances remains under intense discussion. None of the two mechanisms proposed for explaining the process, electron hopping through outer membrane cytochromes and metallic like conduction through conductive PilA filaments, can account for all the experimental evidence collected so far. Aiming at providing new elements for understanding the basis for electron transport, in this perspective article we present a modelled structure of Geobacter pilus. Its analysis in combination with already existing experimental evidence gives support to the proposal of the "stepping stone" mechanism, in which the combined action of pili and cytochromes allows long range electron transport through the biofilm. PMID:23698325

  14. Conjugated oligoelectrolyte represses hydrogen oxidation by Geobacter sulfurreducens in microbial electrolysis cells.

    PubMed

    Liu, Jia; Hou, Huijie; Chen, Xiaofen; Bazan, Guillermo C; Kashima, Hiroyuki; Logan, Bruce E

    2015-12-01

    A conjugated oligoelectrolyte (COE), which spontaneously aligns within cell membranes, was shown to completely inhibit H2 uptake by Geobacter sulfurreducens in microbial electrolysis cells. Coulombic efficiencies that were 490±95%, due to H2 recycling between the cathode and microorganisms on the anode, were reduced to 86±2% with COE addition. The use of the COE resulted in a 67-fold increase in H2 gas recovery, and a 4.4-fold increase in acetate removal. Current generation, H2 recovery and COD removals by Geobacter metallireducens, which cannot use H2, were unaffected by COE addition. These results show that this COE is an effective H2 uptake inhibitor, and that it can enable improved and sustained H2 gas recovery in this bioelectrochemical system. PMID:26265121

  15. Influence of inoculum and anode surface properties on the selection of Geobacter-dominated biofilms.

    PubMed

    Commault, Audrey S; Barrière, Frédéric; Lapinsonnière, Laure; Lear, Gavin; Bouvier, Solène; Weld, Richard J

    2015-11-01

    This study evaluated the impact of inoculum source and anode surface modification (carboxylate -COO(-) and sulfonamide -SO2NH2 groups) on the microbial composition of anode-respiring biofilms. These two factors have not previously been considered in detail. Three different inoculum sources were investigated, a dry aerobic soil, brackish estuarine mud and freshwater sediment. The biofilms were selected using a poised anode (-0.36 V vs Ag/AgCl) and acetate as the electron donor in a three-electrode configuration microbial fuel cell (MFC). Population profiling and cloning showed that all biofilms selected were dominated by Geobacter sp., although their electrochemical properties varied depending on the source inoculum and electrode surface modification. These findings suggest that Geobacter sp. are widespread in soils, even those that do not provide a continuously anaerobic environment, and are better at growing in the MFC conditions than other bacteria. PMID:26166461

  16. Lactate Oxidation Coupled to Iron or Electrode Reduction by Geobacter sulfurreducens PCA▿

    PubMed Central

    Call, Douglas F.; Logan, Bruce E.

    2011-01-01

    Geobacter sulfurreducens PCA completely oxidized lactate and reduced iron or an electrode, producing pyruvate and acetate intermediates. Compared to the current produced by Shewanella oneidensis MR-1, G. sulfurreducens PCA produced 10-times-higher current levels in lactate-fed microbial electrolysis cells. The kinetic and comparative analyses reported here suggest a prominent role of G. sulfurreducens strains in metal- and electrode-reducing communities supplied with lactate. PMID:22003020

  17. Link between capacity for current production and syntrophic growth in Geobacter species

    PubMed Central

    Rotaru, Amelia-Elena; Woodard, Trevor L.; Nevin, Kelly P.; Lovley, Derek R.

    2015-01-01

    Electrodes are unnatural electron acceptors, and it is yet unknown how some Geobacter species evolved to use electrodes as terminal electron acceptors. Analysis of different Geobacter species revealed that they varied in their capacity for current production. Geobacter metallireducens and G. hydrogenophilus generated high current densities (ca. 0.2 mA/cm2), comparable to G. sulfurreducens. G. bremensis, G. chapellei, G. humireducens, and G. uraniireducens, produced much lower currents (ca. 0.05 mA/cm2) and G. bemidjiensis was previously found to not produce current. There was no correspondence between the effectiveness of current generation and Fe(III) oxide reduction rates. Some high-current-density strains (G. metallireducens and G. hydrogenophilus) reduced Fe(III)-oxides as fast as some low-current-density strains (G. bremensis, G. humireducens, and G. uraniireducens) whereas other low-current-density strains (G. bemidjiensis and G. chapellei) reduced Fe(III) oxide as slowly as G. sulfurreducens, a high-current-density strain. However, there was a correspondence between the ability to produce higher currents and the ability to grow syntrophically. G. hydrogenophilus was found to grow in co-culture with Methanosarcina barkeri, which is capable of direct interspecies electron transfer (DIET), but not with Methanospirillum hungatei capable only of H2 or formate transfer. Conductive granular activated carbon (GAC) stimulated metabolism of the G. hydrogenophilus – M. barkeri co-culture, consistent with electron exchange via DIET. These findings, coupled with the previous finding that G. metallireducens and G. sulfurreducens are also capable of DIET, suggest that evolution to optimize DIET has fortuitously conferred the capability for high-density current production to some Geobacter species. PMID:26284037

  18. Extracellular reduction of uranium via Geobacter conductive pili as a protective cellular mechanism

    PubMed Central

    Cologgi, Dena L.; Lampa-Pastirk, Sanela; Speers, Allison M.; Kelly, Shelly D.; Reguera, Gemma

    2011-01-01

    The in situ stimulation of Fe(III) oxide reduction by Geobacter bacteria leads to the concomitant precipitation of hexavalent uranium [U(VI)] from groundwater. Despite its promise for the bioremediation of uranium contaminants, the biological mechanism behind this reaction remains elusive. Because Fe(III) oxide reduction requires the expression of Geobacter's conductive pili, we evaluated their contribution to uranium reduction in Geobacter sulfurreducens grown under pili-inducing or noninducing conditions. A pilin-deficient mutant and a genetically complemented strain with reduced outer membrane c-cytochrome content were used as controls. Pili expression significantly enhanced the rate and extent of uranium immobilization per cell and prevented periplasmic mineralization. As a result, pili expression also preserved the vital respiratory activities of the cell envelope and the cell's viability. Uranium preferentially precipitated along the pili and, to a lesser extent, on outer membrane redox-active foci. In contrast, the pilus-defective strains had different degrees of periplasmic mineralization matching well with their outer membrane c-cytochrome content. X-ray absorption spectroscopy analyses demonstrated the extracellular reduction of U(VI) by the pili to mononuclear tetravalent uranium U(IV) complexed by carbon-containing ligands, consistent with a biological reduction. In contrast, the U(IV) in the pilin-deficient mutant cells also required an additional phosphorous ligand, in agreement with the predominantly periplasmic mineralization of uranium observed in this strain. These findings demonstrate a previously unrecognized role for Geobacter conductive pili in the extracellular reduction of uranium, and highlight its essential function as a catalytic and protective cellular mechanism that is of interest for the bioremediation of uranium-contaminated groundwater. PMID:21896750

  19. Novel regulatory cascades controlling expression of nitrogen-fixation genes in Geobacter sulfurreducens

    PubMed Central

    Ueki, Toshiyuki; Lovley, Derek R.

    2010-01-01

    Geobacter species often play an important role in bioremediation of environments contaminated with metals or organics and show promise for harvesting electricity from waste organic matter in microbial fuel cells. The ability of Geobacter species to fix atmospheric nitrogen is an important metabolic feature for these applications. We identified novel regulatory cascades controlling nitrogen-fixation gene expression in Geobacter sulfurreducens. Unlike the regulatory mechanisms known in other nitrogen-fixing microorganisms, nitrogen-fixation gene regulation in G. sulfurreducens is controlled by two two-component His–Asp phosphorelay systems. One of these systems appears to be the master regulatory system that activates transcription of the majority of nitrogen-fixation genes and represses a gene encoding glutamate dehydrogenase during nitrogen fixation. The other system whose expression is directly activated by the master regulatory system appears to control by antitermination the expression of a subset of the nitrogen-fixation genes whose transcription is activated by the master regulatory system and whose promoter contains transcription termination signals. This study provides a new paradigm for nitrogen-fixation gene regulation. PMID:20660485

  20. Constraint-Based Modeling of Carbon Fixation and the Energetics of Electron Transfer in Geobacter metallireducens

    PubMed Central

    Feist, Adam M.; Nagarajan, Harish; Rotaru, Amelia-Elena; Tremblay, Pier-Luc; Zhang, Tian; Nevin, Kelly P.; Lovley, Derek R.; Zengler, Karsten

    2014-01-01

    Geobacter species are of great interest for environmental and biotechnology applications as they can carry out direct electron transfer to insoluble metals or other microorganisms and have the ability to assimilate inorganic carbon. Here, we report on the capability and key enabling metabolic machinery of Geobacter metallireducens GS-15 to carry out CO2 fixation and direct electron transfer to iron. An updated metabolic reconstruction was generated, growth screens on targeted conditions of interest were performed, and constraint-based analysis was utilized to characterize and evaluate critical pathways and reactions in G. metallireducens. The novel capability of G. metallireducens to grow autotrophically with formate and Fe(III) was predicted and subsequently validated in vivo. Additionally, the energetic cost of transferring electrons to an external electron acceptor was determined through analysis of growth experiments carried out using three different electron acceptors (Fe(III), nitrate, and fumarate) by systematically isolating and examining different parts of the electron transport chain. The updated reconstruction will serve as a knowledgebase for understanding and engineering Geobacter and similar species. PMID:24762737

  1. Spatial and temporal distributions of Geobacter lovleyi and Dehalococcoides spp. during bioenhanced PCE-NAPL dissolution.

    PubMed

    Amos, Benjamin K; Suchomel, Eric J; Pennell, Kurt D; Löffler, Frank E

    2009-03-15

    The spatial and temporal distributions of multiple reductively dechlorinating bacteria were simultaneously assessed in a one-dimensional sand column containing a tetrachloroethene (PCE) nonaqueous phase liquid (NAPL) source and associated plume zones. The column was uniformly inoculated with a PCE-to-ethene dechlorinating microbial consortium that contained Dehalococcoides spp., Dehalobacter spp., and Geobacter lovleyi strain SZ. Geobacter and Dehalococcoides populations grew and colonized the column material, including the mixed-NAPL (0.25 mol/mol PCE in hexadecane) source zone. In contrast, Dehalobacter cells did not colonize the porous column material, and planktonic Dehalobacter cell titers remained below the detection limit of ca. 2.6 x 10(2) cells/mL throughout the experiment. Significant PCE dechlorination was observed and resulted in bioenhanced NAPL dissolution up to 21-fold (maximum) and 5.2-fold (cumulative) relative to abiotic dissolution. cis-1,2-Dichloroethene (cis-DCE) wasthe primary dechlorination product although vinyl chloride (VC) was also formed throughout the experiment. Ethene production occurred after significant depletion of PCE from the NAPL and when cis-DCE concentrations dropped below 6 microM. Data obtained after increasing the column residence time from 1.1 to 2.8 days and introducing a VC pulse to the column indicated that both the residence time and cis-DCE inhibition limited significant VC and ethene production. Although both Geobacter and Dehalococcoides cells were present and active in the mixed-NAPL source zone and plume region, Geobacter cell numbers were typically more than 1 order of magnitude higher than Dehalococcoides cell numbers, which is consistent with the production of predominantly cis-DCE. Analysis of both liquid- and solid-phase samples indicated that Geobacter cells grew and remained attached to the porous medium within the source zone but were largely planktonic in the plume region. In contrast Dehalococcoides cell

  2. Steady state protein levels in Geobacter metallireducens grown with Iron (III) citrate or nitrate as terminal electron acceptor.

    SciTech Connect

    Ahrendt, A. J.; Tollaksen, S. L.; Lindberg, C.; Zhu, W.; Yates, J. R., III; Nevin, K. P.; Lovley, D.; Giometti, C. S.; Biosciences Division; The Scripps Research Inst.; Univ. of Massachusetts

    2007-01-01

    Geobacter species predominate in aquatic sediments and submerged soils where organic carbon sources are oxidized with the reduction of Fe(III). The natural occurrence of Geobacter in some waste sites suggests this microorganism could be useful for bioremediation if growth and metabolic activity can be regulated. 2-DE was used to monitor the steady state protein levels of Geobacter metallireducens grown with either Fe(III) citrate or nitrate to elucidate metabolic differences in response to different terminal electron acceptors present in natural environments populated by Geobacter. Forty-six protein spots varied significantly in abundance (p<0.05) between the two growth conditions; proteins were identified by tryptic peptide mass and peptide sequence determined by MS/MS. Enzymes involved in pyruvate metabolism and the tricarboxylic acid (TCA) cycle were more abundant in cells grown with Fe(III) citrate, while proteins associated with nitrate metabolism and sensing cellular redox status along with several proteins of unknown function were more abundant in cells grown with nitrate. These results indicate a higher level of flux through the TCA cycle in the presence of Fe(III) compared to nitrate. The oxidative stress response observed in previous studies of Geobacter sulfurreducens grown with Fe(III) citrate was not seen in G. metallireducens.

  3. Enhanced methane production in an anaerobic digestion and microbial electrolysis cell coupled system with co-cultivation of Geobacter and Methanosarcina.

    PubMed

    Yin, Qi; Zhu, Xiaoyu; Zhan, Guoqiang; Bo, Tao; Yang, Yanfei; Tao, Yong; He, Xiaohong; Li, Daping; Yan, Zhiying

    2016-04-01

    The anaerobic digestion (AD) and microbial electrolysis cell (MEC) coupled system has been proved to be a promising process for biomethane production. In this paper, it was found that by co-cultivating Geobacter with Methanosarcina in an AD-MEC coupled system, methane yield was further increased by 24.1%, achieving to 360.2mL/g-COD, which was comparable to the theoretical methane yield of an anaerobic digester. With the presence of Geobacter, the maximum chemical oxygen demand (COD) removal rate (216.8mg COD/(L·hr)) and current density (304.3A/m(3)) were both increased by 1.3 and 1.8 fold compared to the previous study without Geobacter, resulting in overall energy efficiency reaching up to 74.6%. Community analysis demonstrated that Geobacter and Methanosarcina could coexist together in the biofilm, and the electrochemical activities of both were confirmed by cyclic voltammetry. Our study observed that the carbon dioxide content in total gas generated from the AD reactor with Geobacter was only half of that generated from the same reactor without Geobacter, suggesting that Methanosarcina may obtain the electron transferred from Geobacter for the reduction of carbon dioxide to methane. Taken together, Geobacter not only can improve the performance of the MEC system, but also can enhance methane production. PMID:27090713

  4. Long-range electron transport in Geobacter sulfurreducens biofilms is redox gradient-driven

    PubMed Central

    Snider, Rachel M.; Strycharz-Glaven, Sarah M.; Tsoi, Stanislav D.; Erickson, Jeffrey S.; Tender, Leonard M.

    2012-01-01

    Geobacter spp. can acquire energy by coupling intracellular oxidation of organic matter with extracellular electron transfer to an anode (an electrode poised at a metabolically oxidizing potential), forming a biofilm extending many cell lengths away from the anode surface. It has been proposed that long-range electron transport in such biofilms occurs through a network of bound redox cofactors, thought to involve extracellular matrix c-type cytochromes, as occurs for polymers containing discrete redox moieties. Here, we report measurements of electron transport in actively respiring Geobacter sulfurreducens wild type biofilms using interdigitated microelectrode arrays. Measurements when one electrode is used as an anode and the other electrode is used to monitor redox status of the biofilm 15 μm away indicate the presence of an intrabiofilm redox gradient, in which the concentration of electrons residing within the proposed redox cofactor network is higher farther from the anode surface. The magnitude of the redox gradient seems to correlate with current, which is consistent with electron transport from cells in the biofilm to the anode, where electrons effectively diffuse from areas of high to low concentration, hopping between redox cofactors. Comparison with gate measurements, when one electrode is used as an electron source and the other electrode is used as an electron drain, suggests that there are multiple types of redox cofactors in Geobacter biofilms spanning a range in oxidation potential that can engage in electron transport. The majority of these redox cofactors, however, seem to have oxidation potentials too negative to be involved in electron transport when acetate is the electron source. PMID:22955881

  5. Geobacter sp. SD-1 with enhanced electrochemical activity in high-salt concentration solutions.

    PubMed

    Sun, Dan; Call, Douglas; Wang, Aijie; Cheng, Shaoan; Logan, Bruce E

    2014-12-01

    An isolate, designated strain SD-1, was obtained from a biofilm dominated by Geobacter sulfurreducens in a microbial fuel cell. The electrochemical activity of strain SD-1 was compared with type strains, G. sulfurreducens PCA and Geobacter metallireducens GS-15, and a mixed culture in microbial electrolysis cells. SD-1 produced a maximum current density of 290 ± 29 A m−3 in a high-concentration phosphate buffer solution (PBS-H, 200 mM). This current density was significantly higher than that produced by the mixed culture (189 ± 44 A m−3) or the type strains (< 70 A m−3). In a highly saline water (SW; 50 mM PBS and 650 mM NaCl), current by SD-1 (158 ± 4 A m−3) was reduced by 28% compared with 50 mM PBS (220 ± 4 A m−3), but it was still higher than that of the mixed culture (147 ± 19 A m−3), and strains PCA and GS-15 did not produce any current. Electrochemical tests showed that the improved performance of SD-1 was due to its lower charge transfer resistance and more negative potentials produced at higher current densities. These results show that the electrochemical activity of SD-1 was significantly different than other Geobacter strains and mixed cultures in terms of its salt tolerance. PMID:25756125

  6. Geobacter lovleyi sp. nov. Strain SZ, a Novel Metal-Reducing and Tetrachloroethene-Dechlorinating Bacterium†

    PubMed Central

    Sung, Youlboong; Fletcher, Kelly E.; Ritalahti, Kirsti M.; Apkarian, Robert P.; Ramos-Hernández, Natalia; Sanford, Robert A.; Mesbah, Noha M.; Löffler, Frank E.

    2006-01-01

    A bacterial isolate, designated strain SZ, was obtained from noncontaminated creek sediment microcosms based on its ability to derive energy from acetate oxidation coupled to tetrachloroethene (PCE)-to-cis-1,2-dichloroethene (cis-DCE) dechlorination (i.e., chlororespiration). Hydrogen and pyruvate served as alternate electron donors for strain SZ, and the range of electron acceptors included (reduced products are given in brackets) PCE and trichloroethene [cis-DCE], nitrate [ammonium], fumarate [succinate], Fe(III) [Fe(II)], malate [succinate], Mn(IV) [Mn(II)], U(VI) [U(IV)], and elemental sulfur [sulfide]. PCE and soluble Fe(III) (as ferric citrate) were reduced at rates of 56.5 and 164 nmol min−1 mg of protein−1, respectively, with acetate as the electron donor. Alternate electron acceptors, such as U(VI) and nitrate, did not inhibit PCE dechlorination and were consumed concomitantly. With PCE, Fe(III) (as ferric citrate), and nitrate as electron acceptors, H2 was consumed to threshold concentrations of 0.08 ± 0.03 nM, 0.16 ± 0.07 nM, and 0.5 ± 0.06 nM, respectively, and acetate was consumed to 3.0 ± 2.1 nM, 1.2 ± 0.5 nM, and 3.6 ± 0.25 nM, respectively. Apparently, electron acceptor-specific acetate consumption threshold concentrations exist, suggesting that similar to the hydrogen threshold model, the measurement of acetate threshold concentrations offers an additional diagnostic tool to delineate terminal electron-accepting processes in anaerobic subsurface environments. Genetic and phenotypic analyses classify strain SZ as the type strain of the new species, Geobacter lovleyi sp. nov., with Geobacter (formerly Trichlorobacter) thiogenes as the closest relative. Furthermore, the analysis of 16S rRNA gene sequences recovered from PCE-dechlorinating consortia and chloroethene-contaminated subsurface environments suggests that Geobacter lovleyi belongs to a distinct, dechlorinating clade within the metal-reducing Geobacter group. Substrate versatility

  7. Recent Origin of the Methacrylate Redox System in Geobacter sulfurreducens AM-1 through Horizontal Gene Transfer

    PubMed Central

    Arkhipova, Oksana V.; Meer, Margarita V.; Mikoulinskaia, Galina V.; Zakharova, Marina V.; Galushko, Alexander S.; Kondrashov, Fyodor A.

    2015-01-01

    The origin and evolution of novel biochemical functions remains one of the key questions in molecular evolution. We study recently emerged methacrylate reductase function that is thought to have emerged in the last century and reported in Geobacter sulfurreducens strain AM-1. We report the sequence and study the evolution of the operon coding for the flavin-containing methacrylate reductase (Mrd) and tetraheme cytochrome с (Mcc) in the genome of G. sulfurreducens AM-1. Different types of signal peptides in functionally interlinked proteins Mrd and Mcc suggest a possible complex mechanism of biogenesis for chromoproteids of the methacrylate redox system. The homologs of the Mrd and Mcc sequence found in δ-Proteobacteria and Deferribacteres are also organized into an operon and their phylogenetic distribution suggested that these two genes tend to be horizontally transferred together. Specifically, the mrd and mcc genes from G. sulfurreducens AM-1 are not monophyletic with any of the homologs found in other Geobacter genomes. The acquisition of methacrylate reductase function by G. sulfurreducens AM-1 appears linked to a horizontal gene transfer event. However, the new function of the products of mrd and mcc may have evolved either prior or subsequent to their acquisition by G. sulfurreducens AM-1. PMID:25962149

  8. From Nanowires to Biofilms: An Exploration of Novel Mechanisms of Uranium Transformation Mediated by Geobacter Bacteria

    SciTech Connect

    REGUERA, GEMMA

    2014-01-16

    One promising strategy for the in situ bioremediation of radioactive groundwater contaminants that has been identified by the SBR Program is to stimulate the activity of dissimilatory metal-reducing microorganisms to reductively precipitate uranium and other soluble toxic metals. The reduction of U(VI) and other soluble contaminants by Geobacteraceae is directly dependent on the reduction of Fe(III) oxides, their natural electron acceptor, a process that requires the expression of Geobacter’s conductive pili (pilus nanowires). Expression of conductive pili by Geobacter cells leads to biofilm development on surfaces and to the formation of suspended biogranules, which may be physiological closer to biofilms than to planktonic cells. Biofilm development is often assumed in the subsurface, particularly at the matrix-well screen interface, but evidence of biofilms in the bulk aquifer matrix is scarce. Our preliminary results suggest, however, that biofilms develop in the subsurface and contribute to uranium transformations via sorption and reductive mechanisms. In this project we elucidated the mechanism(s) for uranium immobilization mediated by Geobacter biofilms and identified molecular markers to investigate if biofilm development is happening in the contaminated subsurface. The results provided novel insights needed in order to understand the metabolic potential and physiology of microorganisms with a known role in contaminant transformation in situ, thus having a significant positive impact in the SBR Program and providing novel concept to monitor, model, and predict biological behavior during in situ treatments.

  9. Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism.

    PubMed Central

    Caccavo, F; Lonergan, D J; Lovley, D R; Davis, M; Stolz, J F; McInerney, M J

    1994-01-01

    A dissimilatory metal- and sulfur-reducing microorganism was isolated from surface sediments of a hydrocarbon-contaminated ditch in Norman, Okla. The isolate, which was designated strain PCA, was an obligately anaerobic, nonfermentative nonmotile, gram-negative rod. PCA grew in a defined medium with acetate as an electron donor and ferric PPi, ferric oxyhydroxide, ferric citrate, elemental sulfur, Co(III)-EDTA, fumarate, or malate as the sole electron acceptor. PCA also coupled the oxidation of hydrogen to the reduction of Fe(III) but did not reduce Fe(III) with sulfur, glucose, lactate, fumarate, propionate, butyrate, isobutyrate, isovalerate, succinate, yeast extract, phenol, benzoate, ethanol, propanol, or butanol as an electron donor. PCA did not reduce oxygen, Mn(IV), U(VI), nitrate, sulfate, sulfite, or thiosulfate with acetate as the electron donor. Cell suspensions of PCA exhibited dithionite-reduced minus air-oxidized difference spectra which were characteristic of c-type cytochromes. Phylogenetic analysis of the 16S rRNA sequence placed PCA in the delta subgroup of the proteobacteria. Its closest known relative is Geobacter metallireducens. The ability to utilize either hydrogen or acetate as the sole electron donor for Fe(III) reduction makes strain PCA a unique addition to the relatively small group of respiratory metal-reducing microorganisms available in pure culture. A new species name, Geobacter sulfurreducens, is proposed. Images PMID:7527204

  10. Structural insights into the modulation of the redox properties of two Geobacter sulfurreducens homologous triheme cytochromes.

    SciTech Connect

    Morgado, L.; Bruix, M.; Orshonsky, V.; Londer, Y. Y.; Duke, N. E. C.; Yang, X.; Pokkuluri, P. R.; Schiffer, M.; Salgueiro, C. A.; Biosciences Division; Univ. Nova de Lisboa; Insti. de Quimica-Fisica

    2008-09-01

    The redox properties of a periplasmic triheme cytochrome, PpcB from Geobacter sulfurreducens, were studied by NMR and visible spectroscopy. The structure of PpcB was determined by X-ray diffraction. PpcB is homologous to PpcA (77% sequence identity), which mediates cytoplasmic electron transfer to extracellular acceptors and is crucial in the bioenergetic metabolism of Geobacter spp. The heme core structure of PpcB in solution, probed by 2D-NMR, was compared to that of PpcA. The results showed that the heme core structures of PpcB and PpcA in solution are similar, in contrast to their crystal structures where the heme cores of the two proteins differ from each other. NMR redox titrations were carried out for both proteins and the order of oxidation of the heme groups was determined. The microscopic properties of PpcB and PpcA redox centers showed important differences: (1) the order in which hemes become oxidized is III-I-IV for PpcB, as opposed to I-IV-III for PpcA; (2) the redox-Bohr effect is also different in the two proteins. The different redox features observed between PpcB and PpcA suggest that each protein uniquely modulates the properties of their co-factors to assure effectiveness in their respective metabolic pathways. The origins of the observed differences are discussed.

  11. Mechanisms for Electron Transfer Through Pili to Fe(III) Oxide in Geobacter

    SciTech Connect

    Lovley, Derek R.

    2015-03-09

    The purpose of these studies was to aid the Department of Energy in its goal of understanding how microorganisms involved in the bioremediation of metals and radionuclides sustain their activity in the subsurface. This information is required in order to incorporate biological processes into decision making for environmental remediation and long-term stewardship of contaminated sites. The proposed research was designed to elucidate the mechanisms for electron transfer to Fe(III) oxides in Geobacter species because Geobacter species are abundant dissimilatory metal-reducing microorganisms in a diversity of sites in which uranium is undergoing natural attenuation via the reduction of soluble U(VI) to insoluble U(IV) or when this process is artificially stimulated with the addition of organic electron donors. This study investigated the novel, but highly controversial, concept that the final conduit for electron transfer to Fe(III) oxides are electrically conductive pili. The specific objectives were to: 1) further evaluate the conductivity along the pili of Geobacter sulfurreducens and related organisms; 2) determine the mechanisms for pili conductivity; and 3) investigate the role of pili in Fe(III) oxide reduction. The studies demonstrated that the pili of G. sulfurreducens are conductive along their length. Surprisingly, the pili possess a metallic-like conductivity similar to that observed in synthetic organic conducting polymers such as polyaniline. Detailed physical analysis of the pili, as well as studies in which the structure of the pili was genetically modified, demonstrated that the metallic-like conductivity of the pili could be attributed to overlapping pi-pi orbitals of aromatic amino acids. Other potential mechanisms for conductivity, such as electron hopping between cytochromes associated with the pili were definitively ruled out. Pili were also found to be essential for Fe(III) oxide reduction in G. metallireducens. Ecological studies demonstrated

  12. Direct involvement of ombB, omaB, and omcB genes in extracellular reduction of Fe(III) by Geobacter sulfurreducens PCA

    SciTech Connect

    Liu, Yimo; Fredrickson, Jim K.; Zachara, John M.; Shi, Liang

    2015-10-01

    The tandem gene clusters orfR-ombB-omaB-omcB and orfS-ombC-omaC-omcC of the metal-reducing bacterium Geobacter sulfurreducens PCA are responsible for trans-outer membrane electron transfer during extracellular reduction of Fe(III)-citrate and ferrihydrite [a poorly crystalline Fe(III) oxide]. Each gene cluster encodes a putative transcriptional factor (OrfR/OrfS), a porin-like outer-membrane protein (OmbB/OmbC), a periplasmic c-type cytochrome (c-Cyt, OmaB/OmaC) and an outer-membrane c-Cyt (OmcB/OmcC). The individual roles of OmbB, OmaB and OmcB in extracellular reduction of Fe(III), however, have remained either uninvestigated or controversial. Here, we showed that replacements of ombB, omaB, omcB and ombB-omaB with an antibiotic gene in the presence of ombC-omaC-omcC had no impact on reduction of Fe(III)-citrate by G. sulfurreducens PCA. Disruption of ombB, omaB, omcB and ombB-omaB in the absence of ombC-omaC-omcC, however, severely impaired the bacterial ability to reduce Fe(III)-citrate as well as ferrihydrite. These results unequivocally demonstrate an overlapping role of ombB-omaB-omcB and ombC-omaC-omcC in extracellular Fe(III) reduction by G. sulfurreducens PCA. Involvement of both ombB-omaB-omcB and ombC-omaC-omcC in extracellular Fe(III) reduction reflects the importance of these trans-outer membrane protein complexes in the physiology of this bacterium. Moreover, the kinetics of Fe(III)-citrate and ferrihydrite reduction by these mutants in the absence of ombC-omaC-omcC were nearly identical, which clearly show that OmbB, OmaB and OmcB contribute equally to extracellular Fe(III) reduction. Finally, orfS was found to have a negative impact on the extracellular reduction of Fe(III)-citrate and ferrihydrite in G. sulfurreducens PCA probably by serving as a transcriptional repressor.

  13. Direct Involvement of ombB, omaB and omcB Genes in Extracellular Reduction of Fe(III) by Geobacter sulfurreducens PCA

    SciTech Connect

    Liu, Yimo; Fredrickson, Jim K.; Zachara, John M.; Shi, Liang

    2015-10-01

    The tandem gene clusters orfR-ombB-omaB-omcB and orfS-ombC-omaC-omcC of the metal-reducing bacterium Geobacter sulfurreducens PCA are responsible for trans-outer membrane electron transfer during extracellular reduction of Fe(III)-citrate and ferrihydrite [a poorly crystalline Fe(III) oxide]. Each gene cluster encodes a putative transcriptional factor (OrfR/OrfS), a porin-like outer-membrane protein (OmbB/OmbC), a periplasmic c-type cytochrome (c-Cyt, OmaB/OmaC) and an outer-membrane c-Cyt (OmcB/OmcC). The individual roles of OmbB, OmaB and OmcB in extracellular reduction of Fe(III), however, have remained either uninvestigated or controversial. Here, we showed that replacements of ombB, omaB, omcB and ombB-omaB with an antibiotic gene in the presence of ombC-omaC-omcC had no impact on reduction of Fe(III)-citrate by G. sulfurreducens PCA. Disruption of ombB, omaB, omcB and ombB-omaB in the absence of ombC-omaC-omcC, however, severely impaired the bacterial ability to reduce Fe(III)-citrate as well as ferrihydrite. These results unequivocally demonstrate an overlapping role of ombB-omaB-omcB and ombC-omaC-omcC in extracellular Fe(III) reduction by G. sulfurreducens PCA. Involvement of both ombB-omaB-omcB and ombC-omaC-omcC in extracellular Fe(III) reduction reflects the importance of these trans-outer membrane protein complexes in the physiology of this bacterium. Moreover, the kinetics of Fe(III)-citrate and ferrihydrite reduction by these mutants in the absence of ombC-omaC-omcC were nearly identical, which clearly show that OmbB, OmaB and OmcB contribute equally to extracellular Fe(III) reduction. Finally, orfS was found to have a negative impact on the extracellular reduction of Fe(III)-citrate and ferrihydrite in G. sulfurreducens PCA probably by serving as a transcriptional repressor.

  14. Direct involvement of ombB, omaB, and omcB genes in extracellular reduction of Fe(III) by Geobacter sulfurreducens PCA

    DOE PAGESBeta

    Liu, Yimo; Fredrickson, Jim K.; Zachara, John M.; Shi, Liang

    2015-10-01

    The tandem gene clusters orfR-ombB-omaB-omcB and orfS-ombC-omaC-omcC of the metal-reducing bacterium Geobacter sulfurreducens PCA are responsible for trans-outer membrane electron transfer during extracellular reduction of Fe(III)-citrate and ferrihydrite [a poorly crystalline Fe(III) oxide]. Each gene cluster encodes a putative transcriptional factor (OrfR/OrfS), a porin-like outer-membrane protein (OmbB/OmbC), a periplasmic c-type cytochrome (c-Cyt, OmaB/OmaC) and an outer-membrane c-Cyt (OmcB/OmcC). The individual roles of OmbB, OmaB and OmcB in extracellular reduction of Fe(III), however, have remained either uninvestigated or controversial. Here, we showed that replacements of ombB, omaB, omcB and ombB-omaB with an antibiotic gene in the presence of ombC-omaC-omcC had nomore » impact on reduction of Fe(III)-citrate by G. sulfurreducens PCA. Disruption of ombB, omaB, omcB and ombB-omaB in the absence of ombC-omaC-omcC, however, severely impaired the bacterial ability to reduce Fe(III)-citrate as well as ferrihydrite. These results unequivocally demonstrate an overlapping role of ombB-omaB-omcB and ombC-omaC-omcC in extracellular Fe(III) reduction by G. sulfurreducens PCA. Involvement of both ombB-omaB-omcB and ombC-omaC-omcC in extracellular Fe(III) reduction reflects the importance of these trans-outer membrane protein complexes in the physiology of this bacterium. Moreover, the kinetics of Fe(III)-citrate and ferrihydrite reduction by these mutants in the absence of ombC-omaC-omcC were nearly identical, which clearly show that OmbB, OmaB and OmcB contribute equally to extracellular Fe(III) reduction. Finally, orfS was found to have a negative impact on the extracellular reduction of Fe(III)-citrate and ferrihydrite in G. sulfurreducens PCA probably by serving as a transcriptional repressor.« less

  15. Geobacter Project

    SciTech Connect

    Derek Lovley; Maddalena Coppi; Stacy Ciufo; Barbara Methe; Pablo, Pomposiello; Steve Sandler; Cinthia Nunez; Daniel Bond; Susan Childers; Carol Giometti; Julia Krushkal; Christophe Shilling; Bernard Palsson

    2004-03-17

    Analysis of the Genetic Potential and Gene Expression of Microbial Communities Involved in the In Situ Bioremediation of Uranium and Harvesting Electrical Energy from Organic Matter The primary goal of this research is to develop conceptual and computational models that can describe the functioning of complex microbial communities involved in microbial processes of interest to the Department of Energy. Microbial Communities to be Investigated: (1) Microbial community associated with the in situ bioremediation of uranium-contaminated groundwater; and (2) Microbial community that is capable of harvesting energy from waste organic matter in the form of electricity.

  16. Biochar as an electron shuttle for reductive dechlorination of pentachlorophenol by Geobacter sulfurreducens.

    PubMed

    Yu, Linpeng; Yuan, Yong; Tang, Jia; Wang, Yueqiang; Zhou, Shungui

    2015-01-01

    The reductive dechlorination of pentachlorophenol (PCP) by Geobacter sulfurreducens in the presence of different biochars was investigated to understand how biochars affect the bioreduction of environmental contaminants. The results indicated that biochars significantly accelerate electron transfer from cells to PCP, thus enhancing reductive dechlorination. The promotion effects of biochar (as high as 24-fold) in this process depend on its electron exchange capacity (EEC) and electrical conductivity (EC). A kinetic model revealed that the surface redox-active moieties (RAMs) and EC of biochar (900 °C) contributed to 56% and 41% of the biodegradation rate, respectively. This work demonstrates that biochars are efficient electron mediators for the dechlorination of PCP and that both the EC and RAMs of biochars play important roles in the electron transfer process. PMID:26592958

  17. Investigation of Electron Transfer by Geobacter sulfurreducens Biofilms by using an Electrochemical Quartz Crystal Microbalance

    PubMed Central

    Babauta, Jerome T; Beasley, Christopher A; Beyenal, Haluk

    2014-01-01

    Both the short- and long-term electron-transfer processes of electrode-respiring Geobacter sulfurreducens biofilms are demonstrated by using an electrochemical quartz crystal microbalance (QCM). The QCM monitors the frequency shift from the initial resonant frequency (background) in real time, while the current increases, because of biofilm growth. In the short term, the frequency shift is linear with respect to current for the biofilm. In long-term biofilm growth up to the exponential phase, a second linear region of frequency shift with respect to current is observed. In addition to the frequency shift response at constant polarization, the frequency shift response is coupled to cyclic voltammetry experiments. During cyclic voltammetry, a reproducible, negative increase in frequency shift is observed at oxidizing potentials. The results suggest that a QCM can be used in applications in which it is useful to find the most efficient current producer.

  18. Biochar as an electron shuttle for reductive dechlorination of pentachlorophenol by Geobacter sulfurreducens

    NASA Astrophysics Data System (ADS)

    Yu, Linpeng; Yuan, Yong; Tang, Jia; Wang, Yueqiang; Zhou, Shungui

    2015-11-01

    The reductive dechlorination of pentachlorophenol (PCP) by Geobacter sulfurreducens in the presence of different biochars was investigated to understand how biochars affect the bioreduction of environmental contaminants. The results indicated that biochars significantly accelerate electron transfer from cells to PCP, thus enhancing reductive dechlorination. The promotion effects of biochar (as high as 24-fold) in this process depend on its electron exchange capacity (EEC) and electrical conductivity (EC). A kinetic model revealed that the surface redox-active moieties (RAMs) and EC of biochar (900 °C) contributed to 56% and 41% of the biodegradation rate, respectively. This work demonstrates that biochars are efficient electron mediators for the dechlorination of PCP and that both the EC and RAMs of biochars play important roles in the electron transfer process.

  19. Biochar as an electron shuttle for reductive dechlorination of pentachlorophenol by Geobacter sulfurreducens

    PubMed Central

    Yu, Linpeng; Yuan, Yong; Tang, Jia; Wang, Yueqiang; Zhou, Shungui

    2015-01-01

    The reductive dechlorination of pentachlorophenol (PCP) by Geobacter sulfurreducens in the presence of different biochars was investigated to understand how biochars affect the bioreduction of environmental contaminants. The results indicated that biochars significantly accelerate electron transfer from cells to PCP, thus enhancing reductive dechlorination. The promotion effects of biochar (as high as 24-fold) in this process depend on its electron exchange capacity (EEC) and electrical conductivity (EC). A kinetic model revealed that the surface redox-active moieties (RAMs) and EC of biochar (900 °C) contributed to 56% and 41% of the biodegradation rate, respectively. This work demonstrates that biochars are efficient electron mediators for the dechlorination of PCP and that both the EC and RAMs of biochars play important roles in the electron transfer process. PMID:26592958

  20. Mechanistic stratification in electroactive biofilms of Geobacter sulfurreducens mediated by pilus nanowires

    NASA Astrophysics Data System (ADS)

    Steidl, Rebecca J.; Lampa-Pastirk, Sanela; Reguera, Gemma

    2016-08-01

    Electricity generation by Geobacter sulfurreducens biofilms grown on electrodes involves matrix-associated electron carriers, such as c-type cytochromes. Yet, the contribution of the biofilm's conductive pili remains uncertain, largely because pili-defective mutants also have cytochrome defects. Here we report that a pili-deficient mutant carrying an inactivating mutation in the pilus assembly motor PilB has no measurable defects in cytochrome expression, yet forms anode biofilms with reduced electroactivity and is unable to grow beyond a threshold distance (~10 μm) from the underlying electrode. The defects are similar to those of a Tyr3 mutant, which produces poorly conductive pili. The results support a model in which the conductive pili permeate the biofilms to wire the cells to the conductive biofilm matrix and the underlying electrode, operating coordinately with cytochromes until the biofilm reaches a threshold thickness that limits the efficiency of the cytochrome pathway but not the functioning of the conductive pili network.

  1. Identification of succinic semialdehyde reductases from Geobacter: expression, purification, crystallization, preliminary functional, and crystallographic analysis

    SciTech Connect

    Zhang, Yanfeng; Gao, Xiaoli; Zheng, Yi; Garavito, R. Michael

    2012-04-30

    Succinic semialdehyde reductase (SSAR) is an important enzyme involved in {gamma}-aminobutyrate (GABA) metabolism. By converting succinic semialdehyde (SSA) to {gamma}-hydroxybutyrate (GHB), the SSAR facilitates an alternative pathway for GABA degradation. In this study, we identified SSARs from Geobacter sulfurreducens and Geobacter metallireducens (GsSSAR and GmSSAR, respectively). The enzymes were over-expressed in Escherichia coli and purified to near homogeneity. Both GsSSAR and GmSSAR showed the activity of reducing SSA using nicotinamide adenine dinucleotide phosphate as a co-factor. The oligomeric sizes of GsSSAR and GmSSAR, as determined by analytical size exclusion chromatography, suggest that the enzymes presumably exist as tetramers in solution. The recombinant GsSSAR and GmSSAR crystallized in the presence of NADP{sup +}, and the resulting crystals diffracted to 1.89 {angstrom} (GsSSAR) and 2.25 {angstrom} (GmSSAR) resolution. The GsSSAR and GmSSAR crystals belong to the space groups P2{sub 1}22{sub 1} (a = 99.61 {angstrom}, b = 147.49 {angstrom}, c = 182.47 {angstrom}) and P1 (a = 75.97 {angstrom}, b = 79.14 {angstrom}, c = 95.47 {angstrom}, {alpha} = 82.15{sup o}, {beta} = 88.80{sup o}, {gamma} = 87.66{sup o}), respectively. Preliminary crystallographic data analysis suggests the presence of eight protein monomers in the asymmetric units for both GsSSAR and GmSSAR.

  2. Genome-wide analysis of the RpoN regulon in Geobacter sulfurreducens

    PubMed Central

    2009-01-01

    Background The role of the RNA polymerase sigma factor RpoN in regulation of gene expression in Geobacter sulfurreducens was investigated to better understand transcriptional regulatory networks as part of an effort to develop regulatory modules for genome-scale in silico models, which can predict the physiological responses of Geobacter species during groundwater bioremediation or electricity production. Results An rpoN deletion mutant could not be obtained under all conditions tested. In order to investigate the regulon of the G. sulfurreducens RpoN, an RpoN over-expression strain was made in which an extra copy of the rpoN gene was under the control of a taclac promoter. Combining both the microarray transcriptome analysis and the computational prediction revealed that the G. sulfurreducens RpoN controls genes involved in a wide range of cellular functions. Most importantly, RpoN controls the expression of the dcuB gene encoding the fumarate/succinate exchanger, which is essential for cell growth with fumarate as the terminal electron acceptor in G. sulfurreducens. RpoN also controls genes, which encode enzymes for both pathways of ammonia assimilation that is predicted to be essential under all growth conditions in G. sulfurreducens. Other genes that were identified as part of the RpoN regulon using either the computational prediction or the microarray transcriptome analysis included genes involved in flagella biosynthesis, pili biosynthesis and genes involved in central metabolism enzymes and cytochromes involved in extracellular electron transfer to Fe(III), which are known to be important for growth in subsurface environment or electricity production in microbial fuel cells. The consensus sequence for the predicted RpoN-regulated promoter elements is TTGGCACGGTTTTTGCT. Conclusion The G. sulfurreducens RpoN is an essential sigma factor and a global regulator involved in a complex transcriptional network controlling a variety of cellular processes. PMID

  3. Unexpected Specificity of Interspecies Cobamide Transfer from Geobacter spp. to Organohalide-Respiring Dehalococcoides mccartyi Strains

    PubMed Central

    Yan, Jun; Ritalahti, Kirsti M.; Wagner, Darlene D.

    2012-01-01

    Dehalococcoides mccartyi strains conserve energy from reductive dechlorination reactions catalyzed by corrinoid-dependent reductive dehalogenase enzyme systems. Dehalococcoides lacks the ability for de novo corrinoid synthesis, and pure cultures require the addition of cyanocobalamin (vitamin B12) for growth. In contrast, Geobacter lovleyi, which dechlorinates tetrachloroethene to cis-1,2-dichloroethene (cis-DCE), and the nondechlorinating species Geobacter sulfurreducens have complete sets of cobamide biosynthesis genes and produced 12.9 ± 2.4 and 24.2 ± 5.8 ng of extracellular cobamide per liter of culture suspension, respectively, during growth with acetate and fumarate in a completely synthetic medium. G. lovleyi-D. mccartyi strain BAV1 or strain FL2 cocultures provided evidence for interspecies corrinoid transfer, and cis-DCE was dechlorinated to vinyl chloride and ethene concomitant with Dehalococcoides growth. In contrast, negligible increase in Dehalococcoides 16S rRNA gene copies and insignificant dechlorination occurred in G. sulfurreducens-D. mccartyi strain BAV1 or strain FL2 cocultures. Apparently, G. lovleyi produces a cobamide that complements Dehalococcoides' nutritional requirements, whereas G. sulfurreducens does not. Interestingly, Dehalococcoides dechlorination activity and growth could be restored in G. sulfurreducens-Dehalococcoides cocultures by adding 10 μM 5′,6′-dimethylbenzimidazole. Observations made with the G. sulfurreducens-Dehalococcoides cocultures suggest that the exchange of the lower ligand generated a cobalamin, which supported Dehalococcoides activity. These findings have implications for in situ bioremediation and suggest that the corrinoid metabolism of Dehalococcoides must be understood to faithfully predict, and possibly enhance, reductive dechlorination activities. PMID:22773645

  4. Single Bacterium Detection Using Sers

    NASA Astrophysics Data System (ADS)

    Gonchukov, S. A.; Baikova, T. V.; Alushin, M. V.; Svistunova, T. S.; Minaeva, S. A.; Ionin, A. A.; Kudryashov, S. I.; Saraeva, I. N.; Zayarny, D. A.

    2016-02-01

    This work is devoted to the study of a single Staphylococcus aureus bacterium detection using surface-enhanced Raman spectroscopy (SERS) and resonant Raman spectroscopy (RS). It was shown that SERS allows increasing sensitivity of predominantly low frequency lines connected with the vibrations of Amide, Proteins and DNA. At the same time the lines of carotenoids inherent to this kind of bacterium are well-detected due to the resonance Raman scattering mechanism. The reproducibility and stability of Raman spectra strongly depend on the characteristics of nanostructured substrate, and molecular structure and size of the tested biological object.

  5. Low Energy Atomic Models Suggesting a Pilus Structure that could Account for Electrical Conductivity of Geobacter sulfurreducens Pili

    PubMed Central

    Xiao, Ke; Malvankar, Nikhil S.; Shu, Chuanjun; Martz, Eric; Lovley, Derek R.; Sun, Xiao

    2016-01-01

    The metallic-like electrical conductivity of Geobacter sulfurreducens pili has been documented with multiple lines of experimental evidence, but there is only a rudimentary understanding of the structural features which contribute to this novel mode of biological electron transport. In order to determine if it was feasible for the pilin monomers of G. sulfurreducens to assemble into a conductive filament, theoretical energy-minimized models of Geobacter pili were constructed with a previously described approach, in which pilin monomers are assembled using randomized structural parameters and distance constraints. The lowest energy models from a specific group of predicted structures lacked a central channel, in contrast to previously existing pili models. In half of the no-channel models the three N-terminal aromatic residues of the pilin monomer are arranged in a potentially electrically conductive geometry, sufficiently close to account for the experimentally observed metallic like conductivity of the pili that has been attributed to overlapping pi-pi orbitals of aromatic amino acids. These atomic resolution models capable of explaining the observed conductive properties of Geobacter pili are a valuable tool to guide further investigation of the metallic-like conductivity of the pili, their role in biogeochemical cycling, and applications in bioenergy and bioelectronics. PMID:27001169

  6. A humic substance analogue AQDS stimulates Geobacter sp. abundance and enhances pentachlorophenol transformation in a paddy soil.

    PubMed

    Chen, Manjia; Tong, Hui; Liu, Chengshuai; Chen, Dandan; Li, Fangbai; Qiao, Jiangtao

    2016-10-01

    Soil humic substances can be used as redox mediators in accelerating the biotransformation of organic pollutants, and humus-respiring bacteria are widely distributed in soils. However, the impact of humic substances on the soil microbial community during the biotransformation of organic pollutants is expected to be crucial while remains to be unclear. In this study, the biostimulation of indigenous microbial communities and the consequent effects on anaerobic transformation of pentachlorophenol (PCP) by a model humic substance, anthraquinone-2,6-disulfonate (AQDS), were systematically investigated in a paddy soil. The addition of AQDS was observed to increase the production of HCl-extractable Fe(II) and enhance the PCP transformation rates consequently. The pseudo-first-order rate constants of the PCP transformation showed a positive exponential relationship with the AQDS dosage. The terminal restriction fragment length polymorphism (T-RFLP) results indicated the substantial effect of added AQDS on soil microbial community. The enhanced abundance of Geobacter sp. was disclosed to be most critical for accelerated PCP transformation when with AQDS, in which Geobacter sp. functioned for promoting the generation of active Fe(II) and consequently enhancing the PCP transformation rates. The transformation rates of PCP were exponentially correlated with the abundance of Geobacter sp. positively. The findings are expected to improve the understanding of diversity and ubiquity of microorganisms in humic substances-rich soils for accelerating the transformations of soil chlorinated pollutants. PMID:27372263

  7. Expression of acetate permease-like (apl) genes in subsurface communities of Geobacter species under fluctuating acetate concentrations

    SciTech Connect

    Elifantz, H.; N'Guessan, L.A.; Mouser, P.J.; Williams, K H.; Wilkins, M J.; Risso, C.; Holmes, D.E.; Long, P.E.; Lovley, D.R.

    2010-03-01

    The addition of acetate to uranium-contaminated aquifers in order to stimulate the growth and activity of Geobacter species that reduce uranium is a promising in situ bioremediation option. Optimizing this bioremediation strategy requires that sufficient acetate be added to promote Geobacter species growth. We hypothesized that under acetate-limiting conditions, subsurface Geobacter species would increase the expression of either putative acetate symporters genes (aplI and aplII). Acetate was added to a uranium-contaminated aquifer (Rifle, CO) in two continuous amendments separated by 5 days of groundwater flush to create changing acetate concentrations. While the expression of aplI in monitoring well D04 (high acetate) weakly correlated with the acetate concentration over time, the transcript levels for this gene were relatively constant in well D08 (low acetate). At the lowest acetate concentrations during the groundwater flush, the transcript levels of aplII were the highest. The expression of aplII decreased 2-10-fold upon acetate reintroduction. However, the overall instability of acetate concentrations throughout the experiment could not support a robust conclusion regarding the role of apl genes in response to acetate limitation under field conditions, in contrast to previous chemostat studies, suggesting that the function of a microbial community cannot be inferred based on lab experiments alone.

  8. Expression of Acetate Permease-like (apl) Genes in Subsurface Communities of Geobacter Species Under Fluctuating Acetate Concentrations

    SciTech Connect

    Elifantz, H; N'Guessan, A L; Mouser, Paula; Williams, Kenneth H; Wilkins, Michael J; Risso, Carla; Holmes, Dawn; Long, Philip E; Lovley, Derek R

    2010-09-01

    The addition of acetate to uranium-contaminated aquifers in order to stimulate the growth and activity of Geobacter species that reduce uranium is a promising in situ bioremediation option. Optimizing this bioremediation strategy requires that sufficient acetate be added to promote Geobacter species growth. We hypothesized that under acetate-limiting conditions, subsurface Geobacter species would increase the expression of either putative acetate symporters genes (aplI and aplII). Acetate was added to a uranium-contaminated aquifer (Rifle, CO) in two continuous amendments separated by 5 days of groundwater flush to create changing acetate concentrations. While the expression of aplI in monitoring well D04 (high acetate) weakly correlated with the acetate concentration over time, the transcript levels for this gene were relatively constant in well D08 (low acetate). At the lowest acetate concentrations during the groundwater flush, the transcript levels of aplII were the highest. The expression of aplII decreased 2–10-fold upon acetate reintroduction. However, the overall instability of acetate concentrations throughout the experiment could not support a robust conclusion regarding the role of apl genes in response to acetate limitation under field conditions, in contrast to previous chemostat studies, suggesting that the function of a microbial community cannot be inferred based on lab experiments alone.

  9. Importance of c-Type cytochromes for U(VI) reduction by Geobacter sulfurreducens

    PubMed Central

    Shelobolina, Evgenya S; Coppi, Maddalena V; Korenevsky, Anton A; DiDonato, Laurie N; Sullivan, Sara A; Konishi, Hiromi; Xu, Huifang; Leang, Ching; Butler, Jessica E; Kim, Byoung-Chan; Lovley, Derek R

    2007-01-01

    Background In order to study the mechanism of U(VI) reduction, the effect of deleting c-type cytochrome genes on the capacity of Geobacter sulfurreducens to reduce U(VI) with acetate serving as the electron donor was investigated. Results The ability of several c-type cytochrome deficient mutants to reduce U(VI) was lower than that of the wild type strain. Elimination of two confirmed outer membrane cytochromes and two putative outer membrane cytochromes significantly decreased (ca. 50–60%) the ability of G. sulfurreducens to reduce U(VI). Involvement in U(VI) reduction did not appear to be a general property of outer membrane cytochromes, as elimination of two other confirmed outer membrane cytochromes, OmcB and OmcC, had very little impact on U(VI) reduction. Among the periplasmic cytochromes, only MacA, proposed to transfer electrons from the inner membrane to the periplasm, appeared to play a significant role in U(VI) reduction. A subpopulation of both wild type and U(VI) reduction-impaired cells, 24–30%, accumulated amorphous uranium in the periplasm. Comparison of uranium-accumulating cells demonstrated a similar amount of periplasmic uranium accumulation in U(VI) reduction-impaired and wild type G. sulfurreducens. Assessment of the ability of the various suspensions to reduce Fe(III) revealed no correlation between the impact of cytochrome deletion on U(VI) reduction and reduction of Fe(III) hydroxide and chelated Fe(III). Conclusion This study indicates that c-type cytochromes are involved in U(VI) reduction by Geobacter sulfurreducens. The data provide new evidence for extracellular uranium reduction by G. sulfurreducens but do not rule out the possibility of periplasmic uranium reduction. Occurrence of U(VI) reduction at the cell surface is supported by the significant impact of elimination of outer membrane cytochromes on U(VI) reduction and the lack of correlation between periplasmic uranium accumulation and the capacity for uranium reduction

  10. Rational engineering of Geobacter sulfurreducens electron transfer components: A foundation for building improved Geobacter-based bioelectrochemical technologies

    SciTech Connect

    Dantas, Joana M.; Morgado, Leonor; Aklujkar, Muktak; Bruix, Marta; Londer, Yuri Y.; Schiffer, Marianne; Pokkuluri, P. Raj; Salgueiro, Carlos A.

    2015-07-30

    Multiheme cytochromes have been implicated in Geobacter sulfurreducens extracellular electron transfer (EET). These proteins are potential targets to improve EET and enhance bioremediation and electrical current production by G. sulfurreducens. However, the functional characterization of multiheme cytochromes is particularly complex due to the co-existence of several microstates in solution, connecting the fully reduced and fully oxidized states. Throughout the last decade, new strategies have been developed to characterize multiheme redox proteins functionally and structurally. These strategies were used to reveal the functional mechanism of G. sulfurreducens multiheme cytochromes and also to identify key residues in these proteins for EET. In previous studies, we set the foundations for enhancement of the EET abilities of G. sulfurreducens by characterizing a family of five triheme cytochromes (PpcA-E). These periplasmic cytochromes are implicated in electron transfer between the oxidative reactions of metabolism in the cytoplasm and the reduction of extracellular terminal electron acceptors at the cell's outer surface. The results obtained suggested that PpcA can couple e-/H+ transfer, a property that might contribute to the proton electrochemical gradient across the cytoplasmic membrane for metabolic energy production. The structural and functional properties of PpcA were characterized in detail and used for rational design of a family of 23 single site PpcA mutants. In this review, we summarize the functional characterization of the native and mutant proteins. Mutants that retain the mechanistic features of PpcA and adopt preferential e-/H+ transfer pathways at lower reduction potential values compared to the wild-type protein were selected for in vivo studies as the best candidates to increase the electron transfer rate of G. sulfurreducens. For the first time G. sulfurreducens

  11. Spectroscopic Studies of Abiotic and Biological Nanomaterials: Silver Nanoparticles, Rhodamine 6G Adsorbed on Graphene, and c-Type Cytochromes and Type IV Pili in Geobacter sulfurreducens

    NASA Astrophysics Data System (ADS)

    Thrall, Elizabeth S.

    This thesis describes spectroscopic studies of three different systems: silver nanoparticles, the dye molecule rhodamine 6G adsorbed on graphene, and the type IV pili and c-type cytochromes produced by the dissimilatory metal-reducing bacterium Geobacter sulfurreducens. Although these systems are quite different in some ways, they can all be considered examples of nanomaterials. A nanomaterial is generally defined as having at least one dimension below 100 nm in size. Silver nanoparticles, with sub-100 nm size in all dimensions, are examples of zero-dimensional nanomaterials. Graphene, a single atomic layer of carbon atoms, is the paradigmatic two-dimensional nanomaterial. And although bacterial cells are on the order of 1 μm in size, the type IV pili and multiheme c-type cytochromes produced by G. sulfurreducens can be considered to be one- and zero-dimensional nanomaterials respectively. A further connection between these systems is their strong interaction with visible light, allowing us to study them using similar spectroscopic tools. The first chapter of this thesis describes research on the plasmon-mediated photochemistry of silver nanoparticles. Silver nanoparticles support coherent electron oscillations, known as localized surface plasmons, at resonance frequencies that depend on the particle size and shape and the local dielectric environment. Nanoparticle absorption and scattering cross-sections are maximized at surface plasmon resonance frequencies, and the electromagnetic field is amplified near the particle surface. Plasmonic effects can enhance the photochemistry of silver particles alone or in conjunction with semiconductors according to several mechanisms. We study the photooxidation of citrate by silver nanoparticles in a photoelectrochemical cell, focusing on the wavelength-dependence of the reaction rate and the role of the semiconductor substrate. We find that the citrate

  12. Computational and Experimental Analysis of Redundancy in the Central Metabolism of Geobacter sulfurreducens

    PubMed Central

    Segura, Daniel; Mahadevan, Radhakrishnan; Juárez, Katy; Lovley, Derek R

    2008-01-01

    Previous model-based analysis of the metabolic network of Geobacter sulfurreducens suggested the existence of several redundant pathways. Here, we identified eight sets of redundant pathways that included redundancy for the assimilation of acetate, and for the conversion of pyruvate into acetyl-CoA. These equivalent pathways and two other sub-optimal pathways were studied using 5 single-gene deletion mutants in those pathways for the evaluation of the predictive capacity of the model. The growth phenotypes of these mutants were studied under 12 different conditions of electron donor and acceptor availability. The comparison of the model predictions with the resulting experimental phenotypes indicated that pyruvate ferredoxin oxidoreductase is the only activity able to convert pyruvate into acetyl-CoA. However, the results and the modeling showed that the two acetate activation pathways present are not only active, but needed due to the additional role of the acetyl-CoA transferase in the TCA cycle, probably reflecting the adaptation of these bacteria to acetate utilization. In other cases, the data reconciliation suggested additional capacity constraints that were confirmed with biochemical assays. The results demonstrate the need to experimentally verify the activity of key enzymes when developing in silico models of microbial physiology based on sequence-based reconstruction of metabolic networks. PMID:18266464

  13. Unraveling the electron transfer processes of a nanowire protein from Geobacter sulfurreducens.

    PubMed

    Alves, Mónica N; Fernandes, Ana P; Salgueiro, Carlos A; Paquete, Catarina M

    2016-01-01

    The extracellular electron transfer metabolism of Geobacter sulfurreducens is sustained by several multiheme c-type cytochromes. One of these is the dodecaheme cytochrome GSU1996 that belongs to a new sub-class of c-type cytochromes. GSU1996 is composed by four similar triheme domains (A–D). The C-terminal half of the molecule encompasses the domains C and D, which are connected by a small linker and the N-terminal half of the protein contains two domains (A and B) that form one structural unit. It was proposed that this protein works as an electrically conductive device in G. sulfurreducens, transferring electrons within the periplasm or to outer-membrane cytochromes. In this work, a novel strategy was applied to characterize in detail the thermodynamic and kinetic properties of the hexaheme fragment CD of GSU1996. This characterization revealed the electron transfer process of GSU1996 for the first time, showing that a heme at the edge of the C-terminal of the protein is thermodynamic and kinetically competent to receive electrons from physiological redox partners. This information contributes towards understanding how this new sub-class of cytochromes functions as nanowires, and also increases the current knowledge of the extracellular electron transfer mechanisms in G. sulfurreducens. PMID:26435389

  14. Effects of humic substances and quinones at low concentrations on ferrihydrite reduction by Geobacter metallireducens.

    PubMed

    Wolf, Manfred; Kappler, Andreas; Jiang, Jie; Meckenstock, Rainer U

    2009-08-01

    Humic substances (HS) and quinones can accelerate dissimilatory Fe(III) reduction by electron shuttling between microorganisms and poorly soluble iron(III) (hydr)oxides. The mechanism of electron shuttling for HS is not fully understood, but it is suggested that the most important redox-active components in HS are also quinones. Here we studied the influence of HS and different quinones at low concentrations on ferrihydrite reduction by Geobacter metallireducens. The aquatic HS used were humic and fulvic acids (HA and FA) isolated from groundwater of a deep aquifer in Gorleben (Niedersachsen, Germany). HA stimulated iron reduction stronger than FA down to total HA concentrations as low as 1 mg/L. The quinones studied showed large differences: some had strong accelerating effects, whereas others showed only small effects, no effects, or even inhibitory effects on the kinetics of iron reduction. We found that the redox potentials of the most active quinones fall in a narrow range of -137 to -225 mV vs NHE at pH 7. These results give evidence that the kinetic of microbial iron reduction mediated by electron shuttles is mainly controlled by thermodynamic parameters, i.e., by the redox potential of the shuttle compound, rather than by the proportion of dissolved vs adsorbed compound. PMID:19731662

  15. Control of nanoparticle size, reactivity and magnetic properties during the bioproduction of magnetite by Geobacter sulfurreducens

    SciTech Connect

    Byrne, J. M.; Telling, N. D.; Coker, V. S.; Pattrick, R. A. D.; Laan, G. van der; Arenholz, E.; Tuna, F.; Lloyd, J. R.

    2011-08-02

    The bioproduction of nano-scale magnetite by Fe(III)-reducing bacteria offers a potentially tunable, environmentally benign route to magnetic nanoparticle synthesis. Here, we demonstrate that it is possible to control the size of magnetite nanoparticles produced by Geobacter sulfurreducens, by adjusting the total biomass introduced at the start of the process. The particles have a narrow size distribution and can be controlled within the range of 10-50 nm. X-ray diffraction analysis indicates that controlled production of a number of different biominerals is possible via this method including goethite, magnetite and siderite, but their formation is strongly dependent upon the rate of Fe(III) reduction and total concentration and rate of Fe(II) produced by the bacteria during the reduction process. Relative cation distributions within the structure of the nanoparticles has been investigated by X-ray magnetic circular dichroism and indicates the presence of a highly reduced surface layer which is not observed when magnetite is produced through abiotic methods. The enhanced Fe(II)-rich surface, combined with small particle size, has important environmental applications such as in the reductive bioremediation of organics, radionuclides and metals. In the case of Cr(VI), as a model high-valence toxic metal, optimised biogenic magnetite is able to reduce and sequester the toxic hexavalent chromium very efficiently in the less harmful trivalent form.

  16. Crystallographic orientation and electrode nature are key factors for electric current generation by Geobacter sulfurreducens.

    PubMed

    Maestro, Beatriz; Ortiz, Juan M; Schrott, Germán; Busalmen, Juan P; Climent, Víctor; Feliu, Juan M

    2014-08-01

    We have investigated the influence of electrode material and crystallographic structure on electron transfer and biofilm formation of Geobacter sulfurreducens. Single-crystal gold-Au(110), Au(111), Au(210)-and platinum-Pt(100), Pt(110), Pt(111), Pt(210)-electrodes were tested and compared to graphite rods. G. sulfurreducens electrochemically interacts with all these materials with different attachment kinetics and final current production, although redox species involved in the electron transfer to the anode are virtually the same in all cases. Initial bacterial colonization was fastest on graphite up to the monolayer level, whereas gold electrodes led to higher final current densities. Crystal geometry was shown to have an important influence, with Au(210) sustaining a current density of up to 1442±101μAcm(-2) at the steady state, over Au(111) with 961±94μAcm(-2) and Au(110) with 944±89μAcm(-2). On the other hand, the platinum electrodes displayed the lowest performances, including Pt(210). Our results indicate that both crystal geometry and electrode material are key parameters for the efficient interaction of bacteria with the substrate and should be considered for the design of novel materials and microbial devices to optimize energy production. PMID:24642203

  17. Relevance of Aromatic Amino Acids for Electron Conduction along Geobacter Pili Protein

    NASA Astrophysics Data System (ADS)

    Adhikari, Ramesh; Malvankar, Nikhil; Tuominen, Mark; Lovley, Derek

    It has been proposed that the charge transport though Geobacter sulfurreducens pili protein occurs through the aromatic amino acids forming helical conducting chain within pili. X-ray studies of pili show that the aromatic amino acids are packed close enough (3-4 Å) for pi-stacking to occur. Conductivity of the pili network increases with lowering temperature indicating metallic-like transport mechanism. However due to the complexity of charge percolation path in 3D network, the intrinsic conductivity of an individual pili was not known. Here, we report transport measurements of individual pili of G. sulfurreducens. The conductivity, similar to that of organic polymers, shows that the pili may have implications in materials research. In addition, the conductivity value is sufficient to explain the respiration rate of the G. sulfurreducens. Further studies of pili from different natural and genetically modified species with varying amount of aromatic amino acid density demonstrate that it can play a decisive role on the magnitude of the conductivity. This research was supported by the Office of Naval Research (ONR) and National Science Foundation (NSF) Center for Hierarchical Manufacturing (CHM). Nikhil S. Malvankar holds a Career Award from the Burroughs Wellcome Fund.

  18. Control of nanoparticle size, reactivity and magnetic properties during the bioproduction of magnetite by Geobacter sulfurreducens

    NASA Astrophysics Data System (ADS)

    Byrne, J. M.; Telling, N. D.; Coker, V. S.; Pattrick, R. A. D.; van der Laan, G.; Arenholz, E.; Tuna, F.; Lloyd, J. R.

    2011-11-01

    The bioproduction of nanoscale magnetite by Fe(III)-reducing bacteria offers a potentially tunable, environmentally benign route to magnetic nanoparticle synthesis. Here, we demonstrate that it is possible to control the size of magnetite nanoparticles produced by Geobacter sulfurreducens by adjusting the total biomass introduced at the start of the process. The particles have a narrow size distribution and can be controlled within the range of 10-50 nm. X-ray diffraction analysis indicates that controlled production of a number of different biominerals is possible via this method including goethite, magnetite and siderite, but their formation is strongly dependent upon the rate of Fe(III) reduction and total concentration and rate of Fe(II) produced by the bacteria during the reduction process. Relative cation distributions within the structure of the nanoparticles have been investigated by x-ray magnetic circular dichroism and indicate the presence of a highly reduced surface layer which is not observed when magnetite is produced through abiotic methods. The enhanced Fe(II)-rich surface, combined with small particle size, has important environmental applications such as in the reductive bioremediation of organics, radionuclides and metals. In the case of Cr(VI), as a model high-valence toxic metal, optimized biogenic magnetite is able to reduce and sequester the toxic hexavalent chromium very efficiently to the less harmful trivalent form.

  19. Mechanistic stratification in electroactive biofilms of Geobacter sulfurreducens mediated by pilus nanowires.

    PubMed

    Steidl, Rebecca J; Lampa-Pastirk, Sanela; Reguera, Gemma

    2016-01-01

    Electricity generation by Geobacter sulfurreducens biofilms grown on electrodes involves matrix-associated electron carriers, such as c-type cytochromes. Yet, the contribution of the biofilm's conductive pili remains uncertain, largely because pili-defective mutants also have cytochrome defects. Here we report that a pili-deficient mutant carrying an inactivating mutation in the pilus assembly motor PilB has no measurable defects in cytochrome expression, yet forms anode biofilms with reduced electroactivity and is unable to grow beyond a threshold distance (∼10 μm) from the underlying electrode. The defects are similar to those of a Tyr3 mutant, which produces poorly conductive pili. The results support a model in which the conductive pili permeate the biofilms to wire the cells to the conductive biofilm matrix and the underlying electrode, operating coordinately with cytochromes until the biofilm reaches a threshold thickness that limits the efficiency of the cytochrome pathway but not the functioning of the conductive pili network. PMID:27481214

  20. Investigating different mechanisms for biogenic selenite transformations: Geobacter sulfurreducens, Shewanella oneidensis and Veillonella atypica

    USGS Publications Warehouse

    Pearce, C.I.; Pattrick, R.A.D.; Law, N.; Charnock, J.M.; Coker, V.S.; Fellowes, J.W.; Oremland, R.S.; Lloyd, J.R.

    2009-01-01

    The metal-reducing bacteria Geobacter sulfurreducens, Shewanella oneidensis and Veillonella atypica, use different mechanisms to transform toxic, bioavailable sodium selenite to less toxic, non-mobile elemental selenium and then to selenide in anaerobic environments, offering the potential for in situ and ex situ bioremediation of contaminated soils, sediments, industrial effluents, and agricultural drainage waters. The products of these reductive transformations depend on both the organism involved and the reduction conditions employed, in terms of electron donor and exogenous extracellular redox mediator. The intermediary phase involves the precipitation of elemental selenium nanospheres and the potential role of proteins in the formation of these structures is discussed. The bionanomineral phases produced during these transformations, including both elemental selenium nanospheres and metal selenide nanoparticles, have catalytic, semiconducting and light-emitting properties, which may have unique applications in the realm of nanophotonics. This research offers the potential to combine remediation of contaminants with the development of environmentally friendly manufacturing pathways for novel bionanominerals. ?? 2009 Taylor & Francis.

  1. Mechanistic stratification in electroactive biofilms of Geobacter sulfurreducens mediated by pilus nanowires

    PubMed Central

    Steidl, Rebecca J.; Lampa-Pastirk, Sanela; Reguera, Gemma

    2016-01-01

    Electricity generation by Geobacter sulfurreducens biofilms grown on electrodes involves matrix-associated electron carriers, such as c-type cytochromes. Yet, the contribution of the biofilm's conductive pili remains uncertain, largely because pili-defective mutants also have cytochrome defects. Here we report that a pili-deficient mutant carrying an inactivating mutation in the pilus assembly motor PilB has no measurable defects in cytochrome expression, yet forms anode biofilms with reduced electroactivity and is unable to grow beyond a threshold distance (∼10 μm) from the underlying electrode. The defects are similar to those of a Tyr3 mutant, which produces poorly conductive pili. The results support a model in which the conductive pili permeate the biofilms to wire the cells to the conductive biofilm matrix and the underlying electrode, operating coordinately with cytochromes until the biofilm reaches a threshold thickness that limits the efficiency of the cytochrome pathway but not the functioning of the conductive pili network. PMID:27481214

  2. Metabolic efficiency of Geobacter sulfurreducens growing on anodes with different redox potentials.

    PubMed

    Bosch, Julian; Lee, Keun-Young; Hong, Siang-Fu; Harnisch, Falk; Schröder, Uwe; Meckenstock, Rainer U

    2014-06-01

    Microorganisms respiring Fe(III) in the environment face a range of redox potentials of the prospective terminal ferric electron acceptors, because Fe(III) can be present in different minerals or organic complexes. We investigated the adaptation of Geobacter sulfurreducens to this range by exposing the bacteria to different redox potentials between the electron donor acetate and solid, extracellular anodes in a microbial fuel-cell set-up. Over a range of anode potentials from -0.105 to +0.645 V versus standard hydrogen electrode, G. sulfurreducens produced identical amounts of biomass per electron respired. This indicated that the organism cannot utilize higher available energies for energy conservation to ATP, and confirmed recent studies. Either the high potentials cannot be used due to physiological limitations, or G. sulfurreducens decreased its metabolic efficiency, and less biomass per unit of energy was produced. In this case, G. sulfurreducens "wasted" energy at high-potential differences, most likely as heat to fuel growth kinetics. PMID:24554342

  3. Redox-linked conformational changes of a multiheme cytochrome from Geobacter sulfurreducens

    SciTech Connect

    Morgado, Leonor; Bruix, Marta; Londer, Yuri Y.; Pokkuluri, P. Raj; Schiffer, Marianne; Salgueiro, Carlos A. . E-mail: csalgueiro@dq.fct.unl.pt

    2007-08-17

    Multiheme c-type cytochromes from members of the Desulfovibrionacea and Geobactereacea families play crucial roles in the bioenergetics of these microorganisms. Thermodynamic studies using NMR and visible spectroscopic techniques on tetraheme cytochromes c {sub 3} isolated from Desulfovibrio spp. and more recently on a triheme cytochrome from Geobacter sulfurreducens showed that the properties of each redox centre are modulated by the neighbouring redox centres enabling these proteins to perform energy transduction and thus contributing to cellular energy conservation. Electron/proton transfer coupling relies on redox-linked conformational changes that were addressed for some multiheme cytochromes from the comparison of protein structure of fully reduced and fully oxidised forms. In this work, we identify for the first time in a multiheme cytochrome the simultaneous presence of two different conformations in solution. This was achieved by probing the different oxidation stages of a triheme cytochrome isolated from G. sulfurreducens using 2D-NMR techniques. The results presented here will be the foundations to evaluate the modulation of the redox centres properties by conformational changes that occur during the reoxidation of a multiheme protein.

  4. Structure of the Type IVa Major Pilin from the Electrically Conductive Bacterial Nanowires of Geobacter sulfurreducens

    SciTech Connect

    Reardon, Patrick N.; Mueller, Karl T.

    2013-10-11

    Several species of bacteria are capable of reducing insoluble metal oxides as well as other extracellular electron acceptors. These bacteria play a critical role in the cycling of minerals in subsurface environments, sediments, and groundwater. In some species of bacteria, such as Geobacter sulfurreducens, the transport of electrons is facilitated by filamentous fibers that are referred to as bacterial nanowires. These nanowires belong to the type IVa family of pilin proteins and are mainly comprised of one subunit protein, PilA. Here, we report the high resolution solution nuclear magnetic resonance (NMR) structure of the PilA protein from G. sulfurreducens determined in detergent micelles. The protein is over 85% α-helical and exhibits similar architecture to the N-terminal regions of other non-conductive type IVa pilins. The detergent micelle interacts with the first 21 amino acids of the protein, indicating that this region likely associates with the bacterial inner membrane prior to fiber formation. A model of the G. sulfurreducens pilus fiber is proposed based on docking of this structure into the fiber model of the type IVa pilin from Neisseria gonorrhoeae. This model provides insight into the organization of aromatic amino acids that are important for electrical conduction.

  5. Mass transfer studies of Geobacter sulfurreducens biofilms on rotating disk electrodes.

    PubMed

    Babauta, Jerome T; Beyenal, Haluk

    2014-02-01

    Electrochemical impedance spectroscopy has received significant attention recently as a method to measure electrochemical parameters of Geobacter sulfurreducens biofilms. Here, we use electrochemical impedance spectroscopy to demonstrate the effect of mass transfer processes on electron transfer by G. sulfurreducens biofilms grown in situ on an electrode that was subsequently rotated. By rotating the biofilms up to 530 rpm, we could control the microscale gradients formed inside G. sulfurreducens biofilms. A 24% increase above a baseline of 82 µA could be achieved with a rotation rate of 530 rpm. By comparison, we observed a 340% increase using a soluble redox mediator (ferrocyanide) limited by mass transfer. Control of mass transfer processes was also used to quantify the change in biofilm impedance during the transition from turnover to non-turnover. We found that only one element of the biofilm impedance, the interfacial resistance, changed significantly from 900 to 4,200 Ω under turnover and non-turnover conditions, respectively. We ascribed this change to the electron transfer resistance overcome by the biofilm metabolism and estimate this value as 3,300 Ω. Additionally, under non-turnover, the biofilm impedance developed pseudocapacitive behavior indicative of bound redox mediators. Pseudocapacitance of the biofilm was estimated at 740 µF and was unresponsive to rotation of the electrode. The increase in electron transfer resistance and pseudocapacitive behavior under non-turnover could be used as indicators of acetate limitations inside G. sulfurreducens biofilms. PMID:23996084

  6. Mass Transfer Studies of Geobacter sulfurreducens Biofilms on Rotating Disk Electrodes

    PubMed Central

    Babuta, Jerome T.; Beyenal, Haluk

    2014-01-01

    Electrochemical impedance spectroscopy has received significant attention recently as a method to measure electrochemical parameters of Geobacter sulfurreducens bio-films. Here, we use electrochemical impedance spectroscopy to demonstrate the effect of mass transfer processes on electron transfer by G.sulfurreducens biofilms grown in situ on an electrode that was subsequently rotated. By rotating the biofilms up to 530 rpm, we could control the microscale gradients formed inside G.sulfurreducens biofilms. A 24% increase above a baseline of 82 μA could be achieved with a rotation rate of 530 rpm. By comparison, we observed a 340% increase using a soluble redox mediator (ferrocyanide) limited by mass transfer. Control of mass transfer processes was also used to quantify the change in biofilm impedance during the transition from turnover to non-turnover. We found that only one element of the biofilm impedance, the interfacial resistance, changed significantly from 900 to 4,200 Ω under turnover and non-turnover conditions, respectively. We ascribed this change to the electron transfer resistance overcome by the biofilm metabolism and estimate this value as 3,300 Ω. Additionally, under non-turnover, the biofilm impedance developed pseudocapacitive behavior indicative of bound redox mediators. Pseudocapacitance of the biofilm was estimated at 740 μF and was unresponsive to rotation of the electrode. The increase in electron transfer resistance and pseudocapacitive behavior under non-turnover could be used as indicators of acetate limitations inside G.sulfurreducens biofilms. PMID:23996084

  7. Geobacter strains that use alternate organic compounds, methods of making, and methods of use thereof

    DOEpatents

    Lovley, Derek R; Summers, Zarath Morgan; Haveman, Shelley Annette; Izallalen, Mounir

    2013-12-03

    In preferred embodiments, the present invention provides new isolated strains of Geobacter species that are capable of using a carbon source that is selected from C.sub.3 to C.sub.12 organic compounds selected from pyruvate or metabolic precursors of pyruvate as an electron donor in metabolism and in subsequent energy production. In other aspects, other preferred embodiments of the present invention include methods of making such strains and methods of using such strains. In general, the wild type strain of the microorganisms has been shown to be unable to use these C.sub.3 to C.sub.12 organic compounds as electron donors in metabolic steps such as the reduction of metallic ions. The inventive strains of microorganisms are useful improving bioremediation applications, including in situ bioremediation (including uranium bioremediation and halogenated solvent bioremediation), microbial fuel cells, power generation from small and large-scale waste facilities (e.g., biomass waste from dairy, agriculture, food processing, brewery, or vintner industries, etc.) using microbial fuel cells, and other applications of microbial fuel cells, including, but not limited to, improved electrical power supplies for environmental sensors, electronic sensors, and electric vehicles.

  8. Geobacter strains that use alternate organic compounds, methods of making, and methods of use thereof

    DOEpatents

    Lovley, Derek R.; Summers, Zarath Morgan; Haveman, Shelley Annette; Izallalen, Mounir

    2016-03-01

    In preferred embodiments, the present invention provides new isolated strains of a Geobacter species that are capable of using a carbon source that is selected from C.sub.3 to C.sub.12 organic compounds selected from pyruvate or metabolic precursors of pyruvate as an electron donor in metabolism and in subsequent energy production. The wild type strain of the microorganisms has been shown to be unable to use these C.sub.3 to C.sub.12 organic compounds as electron donors. The inventive strains of microorganisms are useful for improving bioremediation applications, including in situ bioremediation (including uranium bioremediation and halogenated solvent bioremediation), microbial fuel cells, power generation from small and large-scale waste facilities (e.g., biomass waste from dairy, agriculture, food processing, brewery, or vintner industries, etc.) using microbial fuel cells, and other applications of microbial fuel cells, including, but not limited to, improved electrical power supplies for environmental sensors, electronic devices, and electric vehicles.

  9. Diving into the redox properties of Geobacter sulfurreducens cytochromes: a model for extracellular electron transfer.

    PubMed

    Santos, Telma C; Silva, Marta A; Morgado, Leonor; Dantas, Joana M; Salgueiro, Carlos A

    2015-05-28

    Geobacter bacteria have a remarkable respiratory versatility that includes the dissimilatory reduction of insoluble metal oxides in natural habitats and electron transfer to electrode surfaces from which electricity can be harvested. In both cases, electrons need to be exported from the cell interior to the exterior via a mechanism designated as extracellular electron transfer (EET). Several c-type cytochromes from G. sulfurreducens (Gs) were identified as key players in this process. Biochemical and biophysical data have been obtained for ten Gs cytochromes, including inner-membrane associated (MacA), periplasmic (PpcA, PpcB, PpcC, PpcD, PpcE and GSU1996) and outer membrane-associated (OmcF, OmcS and OmcZ). The redox properties of these cytochromes have been determined, except for PpcC and GSU1996. In this perspective, the reduction potentials of these two cytochromes were determined by potentiometric redox titrations followed by visible spectroscopy. The data obtained are taken together with those available for other key cytochromes to present a thorough overview of the current knowledge of Gs EET mechanisms and provide a possible rationalization for the existence of several multiheme cytochromes involved in the same respiratory pathways. PMID:25906375

  10. Nanowires, Capacitors, and Other Novel Outer-Surface Components Involved in Electron Transfer to Fe(III) Oxides in Geobacter Species

    SciTech Connect

    Lovley, Derek, R.

    2008-12-22

    The overall goal of this project was to better understand the mechanisms by which Geobacter species transfer electrons outside the cell onto Fe(III) oxides. The rationale for this study was that Geobacter species are often the predominant microorganisms involved in in situ uranium bioremediation and the growth and activity of the Geobacter species during bioremediation is primarily supported by electron transfer to Fe(III) oxides. These studies greatly expanded the understanding of electron transfer to Fe(III). Novel concepts developed included the potential role of microbial nanowires for long range electron transfer in Geobacter species and the importance of extracytoplasmic cytochromes functioning as capacitors to permit continued electron transfer during the hunt for Fe(III) oxide. Furthermore, these studies provided target sequences that were then used in other studies to tract the activity of Geobacter species in the subsurface through monitoring the abundance of gene transcripts of the target genes. A brief summary of the major accomplishments of the project is provided.

  11. Motile Geobacter dechlorinators migrate into a model source zone of trichloroethene dense non-aqueous phase liquid: Experimental evaluation and modeling

    NASA Astrophysics Data System (ADS)

    Philips, Jo; Miroshnikov, Alexey; Haest, Pieter Jan; Springael, Dirk; Smolders, Erik

    2014-12-01

    Microbial migration towards a trichloroethene (TCE) dense non-aqueous phase liquid (DNAPL) could facilitate the bioaugmentation of TCE DNAPL source zones. This study characterized the motility of the Geobacter dechlorinators in a TCE to cis-dichloroethene dechlorinating KB-1™ subculture. No chemotaxis towards or away from TCE was found using an agarose in-plug bridge method. A second experiment placed an inoculated aqueous layer on top of a sterile sand layer and showed that Geobacter migrated several centimeters in the sand layer in just 7 days. A random motility coefficient for Geobacter in water of 0.24 ± 0.02 cm2·day- 1 was fitted. A third experiment used a diffusion-cell setup with a 5.5 cm central sand layer separating a DNAPL from an aqueous top layer as a model source zone to examine the effect of random motility on TCE DNAPL dissolution. With top layer inoculation, Geobacter quickly colonized the sand layer, thereby enhancing the initial TCE DNAPL dissolution flux. After 19 days, the DNAPL dissolution enhancement was only 24% lower than with an homogenous inoculation of the sand layer. A diffusion-motility model was developed to describe dechlorination and migration in the diffusion-cells. This model suggested that the fast colonization of the sand layer by Geobacter was due to the combination of random motility and growth on TCE.

  12. Development of a biomarker for Geobacter activity and strain composition: Proteogenomic analysis of the citrate synthase protein during bioremediation of U(VI)

    SciTech Connect

    Wilkins, M.J.; Callister, S.J.; Miletto, M.; Williams, K.H.; Nicora, C.D.; Lovley, D.R.; Long, P.E.; Lipton, M.S.

    2010-02-15

    Monitoring the activity of target microorganisms during stimulated bioremediation is a key problem for the development of effective remediation strategies. At the US Department of Energy's Integrated Field Research Challenge (IFRC) site in Rifle, CO, the stimulation of Geobacter growth and activity via subsurface acetate addition leads to precipitation of U(VI) from groundwater as U(IV). Citrate synthase (gltA) is a key enzyme in Geobacter central metabolism that controls flux into the TCA cycle. Here, we utilize shotgun proteomic methods to demonstrate that the measurement of gltA peptides can be used to track Geobacter activity and strain evolution during in situ biostimulation. Abundances of conserved gltA peptides tracked Fe(III) reduction and changes in U(VI) concentrations during biostimulation, whereas changing patterns of unique peptide abundances between samples suggested sample-specific strain shifts within the Geobacter population. Abundances of unique peptides indicated potential differences at the strain level between Fe(III)-reducing populations stimulated during in situ biostimulation experiments conducted a year apart at the Rifle IFRC. These results offer a novel technique for the rapid screening of large numbers of proteomic samples for Geobacter species and will aid monitoring of subsurface bioremediation efforts that rely on metal reduction for desired outcomes.

  13. Development of a biomarker for Geobacter activity and strain composition; Proteogenomic analysis of the citrate synthase protein during bioremediation of U(VI).

    SciTech Connect

    Wilkins, Michael J.; Callister, Stephen J.; Miletto, Marzia; Williams, Kenneth H.; Nicora, Carrie D.; Lovely, Derek R.; Long, Philip E.; Lipton, Mary S.

    2011-01-01

    Monitoring the activity of target microorganisms during stimulated bioremediation is a key problem for the development of effective remediation strategies. At the U.S. Department of Energy’s Integrated Field Research Challenge (IFRC) site in Rifle, CO, the stimulation of Geobacter growth and activity via subsurface acetate addition leads to precipitation of U(VI) from groundwater as U(IV). Citrate synthase (gltA) is a key enzyme in Geobacter central metabolism that controls flux into the TCA cycle. Here, we utilize shotgun proteomic methods to demonstrate that the measurement of gltA peptides can be used to track Geobacter activity and strain evolution during in situ biostimulation. Abundances of conserved gltA peptides tracked Fe(III) reduction and changes in U(VI) concentrations during biostimulation, whereas changing patterns of unique peptide abundances between samples suggested sample-specific strain shifts within the Geobacter population. Abundances of unique peptides indicated potential differences at the strain level between Fe(III)-reducing populations stimulated during in situ biostimulation experiments conducted a year apart at the Rifle IFRC. These results offer a novel technique for the rapid screening of large numbers of proteomic samples for Geobacter species and will aid monitoring of subsurface bioremediation efforts that rely on metal reduction for desired outcomes.

  14. Outer-membrane cytochrome-c, OmcF from Geobacter sulfurreducens: high structural similarity to an algal cytochrome c6.

    SciTech Connect

    Pokkuluri, P. R.; Londer, Y. Y.; Wood, S. J.; Duke, N. E. C.; Morgado, L.; Salgueiro, C. A.; Schiffer, M.; Biosciences Division; Univ. Nova de Lisboa

    2009-01-01

    Putative outer membrane c-type cytochromes have been implicated in metal ion reducing properties of Geobacter sulfurreducens. OmcF (GSU2432), OmcB (GSU2731), and OmcC (GSU2737) are three such proteins that have predicted lipid anchors. OmcF is a monoheme cytochrome, whereas OmcB and OmcC are multiheme cytochromes. Deletion of OmcF was reported to affect the expression of OmcB and OmcC in G. sulfurreducens. The OmcF deficient strain was impaired in its ability to both reduce and grow on Fe(III) citrate probably because the expression of OmcB, which is crucial for iron reduction, is low in this strain. U(VI) reduction activity of this bacterium is also lower on deletion of OmcB or OmcF. The U(VI) reduction activity is affected more by the deletion of OmcF than by the deletion of OmcB. The soluble part of OmcF (residues 20-104, referred to as OmcF{sub S} hereafter) has sequence similarity to soluble cytochromes c{sub 6} of photosynthetic algae and cyanobacteria. The cytochrome c{sub 6} proteins in algae and cyanobacteria are electron transport proteins that mediate the transfer of electrons from cytochrome b{sub 6}f to photosystem I and have high reduction potentials of about +350 mV and low pI. The structures of seven cytochromes c{sub 6} have been previously determined. Further, a c{sub 6}-like cytochrome (PetJ2) of unknown function was recently identified in Synechoccus sp. PCC 7002 with a reduction potential of +148 mV and high pI. Here, we report the structure of OmcF{sub S} and its remarkable structural similarity to that of cytochrome c{sub 6} from the green alga, Monoraphidium braunii. To our knowledge, OmcF{sub S} is the first example of a cytochrome c{sub 6}-like structure from a nonphotosynthetic organism.

  15. Stimulating the In Situ Activity of Geobacter Species To Remove Uranium from the Groundwater of a Uranium-Contaminated Aquifer

    PubMed Central

    Anderson, Robert T.; Vrionis, Helen A.; Ortiz-Bernad, Irene; Resch, Charles T.; Long, Philip E.; Dayvault, Richard; Karp, Ken; Marutzky, Sam; Metzler, Donald R.; Peacock, Aaron; White, David C.; Lowe, Mary; Lovley, Derek R.

    2003-01-01

    The potential for removing uranium from contaminated groundwater by stimulating the in situ activity of dissimilatory metal-reducing microorganisms was evaluated in a uranium-contaminated aquifer located in Rifle, Colo. Acetate (1 to 3 mM) was injected into the subsurface over a 3-month period via an injection gallery composed of 20 injection wells, which was installed upgradient from a series of 15 monitoring wells. U(VI) concentrations decreased in as little as 9 days after acetate injection was initiated, and within 50 days uranium had declined below the prescribed treatment level of 0.18 μM in some of the monitoring wells. Analysis of 16S ribosomal DNA (rDNA) sequences and phospholipid fatty acid profiles demonstrated that the initial loss of uranium from the groundwater was associated with an enrichment of Geobacter species in the treatment zone. Fe(II) in the groundwater also increased during this period, suggesting that U(VI) reduction was coincident with Fe(III) reduction. As the acetate injection continued over 50 days there was a loss of sulfate from the groundwater and an accumulation of sulfide and the composition of the microbial community changed. Organisms with 16S rDNA sequences most closely related to those of sulfate reducers became predominant, and Geobacter species became a minor component of the community. This apparent switch from Fe(III) reduction to sulfate reduction as the terminal electron accepting process for the oxidation of the injected acetate was associated with an increase in uranium concentration in the groundwater. These results demonstrate that in situ bioremediation of uranium-contaminated groundwater is feasible but suggest that the strategy should be optimized to better maintain long-term activity of Geobacter species. PMID:14532040

  16. Stimulating the In Situ Activity of Geobacter Species to Remove Uranium from the Groundwater of a Uranium-Contaminated Aquifer

    SciTech Connect

    Anderson, R. T.; Vrionis, Helen A.; Ortiz-Bernad, Irene; Resch, Charles T.; Long, Philip E.; Dayvault, R. D.; Karp, Ken; Marutzky, Sammy J.; Metzler, Donald R.; Peacock, Aaron D.; White, David C.; Lowe, Mary; Lovley, Derek R.

    2003-10-01

    The potential for removing uranium from contaminated groundwater by stimulating the in situ activity of dissimilatory metal-reducing microorganisms was evaluated in a uranium-contaminated aquifer located in Rifle, Colo. Acetate (1 to 3 mM) was injected into the subsurface over a 3-month period via an injection gallery composed of 20 injection wells, which was installed upgradient from a series of 15 monitoring wells. U(VI) concentrations decreased in as little as 9 days after acetate injection was initiated, and within 50 days uranium had declined below the prescribed treatment level of 0.18 _M in some of the monitoring wells. Analysis of 16S ribosomal DNA (rDNA) sequences and phospholipid fatty acid profiles demonstrated that the initial loss of uranium from the groundwater was associated with an enrichment of Geobacter species in the treatment zone. Fe(II) in the groundwater also increased during this period, suggesting that U(VI) reduction was coincident with Fe(III) reduction. As the acetate injection continued over 50 days there was a loss of sulfate from the groundwater and an accumulation of sulfide and the composition of the microbial community changed. Organisms with 16S rDNA sequences most closely related to those of sulfate reducers became predominant, and Geobacter species became a minor component of the community. This apparent switch from Fe(III) reduction to sulfate reduction as the terminal electron accepting process for the oxidation of the injected acetate was associated with an increase in uranium concentration in the groundwater. These results demonstrate that in situ bioremediation of uranium-contaminated groundwater is feasible but suggest that the strategy should be optimized to better maintain long-term activity of Geobacter species.

  17. Phylogenetic analysis of dissimilatory Fe(III)-reducing bacteria

    USGS Publications Warehouse

    Lonergan, D.J.; Jenter, H.L.; Coates, J.D.; Phillips, E.J.P.; Schmidt, T.M.; Lovley, D.R.

    1996-01-01

    Evolutionary relationships among strictly anaerobic dissimilatory Fe(III)- reducing bacteria obtained from a diversity of sedimentary environments were examined by phylogenetic analysis of 16S rRNA gene sequences. Members of the genera Geobacter, Desulfuromonas, Pelobacter, and Desulfuromusa formed a monophyletic group within the delta subdivision of the class Proteobacteria. On the basis of their common ancestry and the shared ability to reduce Fe(III) and/or S0, we propose that this group be considered a single family, Geobacteraceae. Bootstrap analysis, characteristic nucleotides, and higher- order secondary structures support the division of Geobacteraceae into two subgroups, designated the Geobacter and Desulfuromonas clusters. The genus Desulfuromusa and Pelobacter acidigallici make up a distinct branch with the Desulfuromonas cluster. Several members of the family Geobacteraceae, none of which reduce sulfate, were found to contain the target sequences of probes that have been previously used to define the distribution of sulfate-reducing bacteria and sulfate-reducing bacterium-like microorganisms. The recent isolations of Fe(III)-reducing microorganisms distributed throughout the domain Bacteria suggest that development of 16S rRNA probes that would specifically target all Fe(III) reducers may not be feasible. However, all of the evidence suggests that if a 16S rRNA sequence falls within the family Geobacteraceae, then the organism has the capacity for Fe(III) reduction. The suggestion, based on geological evidence, that Fe(III) reduction was the first globally significant process for oxidizing organic matter back to carbon dioxide is consistent with the finding that acetate-oxidizing Fe(III) reducers are phylogenetically diverse.

  18. MacA is a Second Cytochrome c Peroxidase of Geobacter sulfurreducens

    PubMed Central

    Seidel, Julian; Hoffmann, Maren; Ellis, Katie E.; Seidel, Antonia; Spatzal, Thomas; Gerhardt, Stefan; Elliott, Sean J.

    2012-01-01

    The metal-reducing δ-proteobacterium Geobacter sulfurreducens produces a large number of c-type cytochromes, many of which have been implicated in the transfer of electrons to insoluble metal oxides. Among these, the dihemic MacA was assigned a central role. Here we have produced G. sulfurreducens MacA by recombinant expression in Escherichia coli and have solved its three-dimensional structure in three different oxidation states. Sequence comparisons group MacA into the family of diheme cytochrome c peroxidases, and the protein indeed showed hydrogen peroxide reductase activity with ABTS2– as an electron donor. The observed KM was 38.5 ± 3.7 μM H2O2 and vmax was 0.78 ± 0.03 μmol H2O2·min–1·mg–1, resulting in a turnover number kcat = 0.46 · s–1. In contrast, no Fe(III) reductase activity was observed. MacA was found to display similar electrochemical properties to other bacterial diheme peroxidases, in additional to the ability to electrochemically mediate electron transfer to the soluble cytochrome PpcA. Differences in activity between CcpA and MacA can be rationalized with structural variations in one of the three loop regions, loop 2, that undergo conformational changes during reductive activation of the enzyme. This loop is adjacent to the active site heme and forms an open loop structure rather than a more rigid helix as in CcpA. For the activation of the protein the loop has to displace the distal ligand to the active site heme, H93, in loop 1. A H93G variant showed an unexpected formation of a helix in loop 2 and disorder in loop 1, while a M297H variant that altered the properties of the electron transfer heme abolished reductive activation. PMID:22417533

  19. Thermodynamic Characterization of a Triheme Cytochrome Family from Geobacter sulfurreducens Reveals Mechanistic and Functional Diversity

    PubMed Central

    Morgado, Leonor; Bruix, Marta; Pessanha, Miguel; Londer, Yuri Y.; Salgueiro, Carlos A.

    2010-01-01

    Abstract A family of five periplasmic triheme cytochromes (PpcA-E) was identified in Geobacter sulfurreducens, where they play a crucial role by driving electron transfer from the cytoplasm to the cell exterior and assisting the reduction of extracellular acceptors. The thermodynamic characterization of PpcA using NMR and visible spectroscopies was previously achieved under experimental conditions identical to those used for the triheme cytochrome c7 from Desulfuromonas acetoxidans. Under such conditions, attempts to obtain NMR data were complicated by the relatively fast intermolecular electron exchange. This work reports the detailed thermodynamic characterization of PpcB, PpcD, and PpcE under optimal experimental conditions. The thermodynamic characterization of PpcA was redone under these new conditions to allow a proper comparison of the redox properties with those of other members of this family. The heme reduction potentials of the four proteins are negative, differ from each other, and cover different functional ranges. These reduction potentials are strongly modulated by heme-heme interactions and by interactions with protonated groups (the redox-Bohr effect) establishing different cooperative networks for each protein, which indicates that they are designed to perform different functions in the cell. PpcA and PpcD appear to be optimized to interact with specific redox partners involving e−/H+ transfer via different mechanisms. Although no evidence of preferential electron transfer pathway or e−/H+ coupling was found for PpcB and PpcE, the difference in their working potential ranges suggests that they may also have different physiological redox partners. This is the first study, to our knowledge, to characterize homologous cytochromes from the same microorganism and provide evidence of their different mechanistic and functional properties. These findings provide an explanation for the coexistence of five periplasmic triheme cytochromes in G

  20. Structure Determination and Biochemical Characterization of a Putative HNH Endonuclease from Geobacter metallireducens GS-15

    PubMed Central

    Seetharaman, Jayaraman; Gutjahr, Alice; Chan, Siu-Hong; Chen, Yang; Xiao, Rong; Acton, Thomas B.; Montelione, Gaetano T.; Tong, Liang

    2013-01-01

    The crystal structure of a putative HNH endonuclease, Gmet_0936 protein from Geobacter metallireducens GS-15, has been determined at 2.6 Å resolution using single-wavelength anomalous dispersion method. The structure contains a two-stranded anti-parallel β-sheet that are surrounded by two helices on each face, and reveals a Zn ion bound in each monomer, coordinated by residues Cys38, Cys41, Cys73, and Cys76, which likely plays an important structural role in stabilizing the overall conformation. Structural homologs of Gmet_0936 include Hpy99I endonuclease, phage T4 endonuclease VII, and other HNH endonucleases, with these enzymes sharing 15–20% amino acid sequence identity. An overlay of Gmet_0936 and Hpy99I structures shows that most of the secondary structure elements, catalytic residues as well as the zinc binding site (zinc ribbon) are conserved. However, Gmet_0936 lacks the N-terminal domain of Hpy99I, which mediates DNA binding as well as dimerization. Purified Gmet_0936 forms dimers in solution and a dimer of the protein is observed in the crystal, but with a different mode of dimerization as compared to Hpy99I. Gmet_0936 and its N77H variant show a weak DNA binding activity in a DNA mobility shift assay and a weak Mn2+-dependent nicking activity on supercoiled plasmids in low pH buffers. The preferred substrate appears to be acid and heat-treated DNA with AP sites, suggesting Gmet_0936 may be a DNA repair enzyme. PMID:24039739

  1. U(VI) Reduction by Diverse Outer Surface c-Type Cytochromes of Geobacter sulfurreducens

    PubMed Central

    Leavitt, Janet J.; Comolli, Luis R.; Csencsits, Roseann; Janot, Noemie; Flanagan, Kelly A.; Gray, Arianna S.; Leang, Ching; Izallalen, Mounir; Mester, Tünde; Lovley, Derek R.

    2013-01-01

    Early studies with Geobacter sulfurreducens suggested that outer-surface c-type cytochromes might play a role in U(VI) reduction, but it has recently been suggested that there is substantial U(VI) reduction at the surface of the electrically conductive pili known as microbial nanowires. This phenomenon was further investigated. A strain of G. sulfurreducens, known as Aro-5, which produces pili with substantially reduced conductivity reduced U(VI) nearly as well as the wild type, as did a strain in which the gene for PilA, the structural pilin protein, was deleted. In order to reduce rates of U(VI) reduction to levels less than 20% of the wild-type rates, it was necessary to delete the genes for the five most abundant outer surface c-type cytochromes of G. sulfurreducens. X-ray absorption near-edge structure spectroscopy demonstrated that whereas 83% ± 10% of the uranium associated with wild-type cells correspond to U(IV) after 4 h of incubation, with the quintuple mutant, 89% ± 10% of uranium was U(VI). Transmission electron microscopy and X-ray energy dispersion spectroscopy revealed that wild-type cells did not precipitate uranium along pili as previously reported, but U(IV) was precipitated at the outer cell surface. These findings are consistent with those of previous studies, which have suggested that G. sulfurreducens requires outer-surface c-type cytochromes but not pili for the reduction of soluble extracellular electron acceptors. PMID:23934497

  2. A genetic system for Geobacter metallireducens: role of the flagellin and pilin in the reduction of Fe(III) oxide

    SciTech Connect

    Tremblay, PL; Aklujkar, M; Leang, C; Nevin, KP; Lovley, D

    2011-11-27

    Geobacter metallireducens is an important model organism for many novel aspects of extracellular electron exchange and the anaerobic degradation of aromatic compounds, but studies of its physiology have been limited by a lack of techniques for gene deletion and replacement. Therefore, a genetic system was developed for G. metallireducens by making a number of modifications in the previously described approach for homologous recombination in Geobacter sulfurreducens. Critical modifications included, among others, a 3.5-fold increased in the quantity of electrotransformed linear DNA and the harvesting of cells at early-log. The Cre-lox recombination system was used to remove an antibiotic resistance cassette from the G. metallireducens chromosome permitting the generation of multiple mutations in the same strain. Deletion of the gene fliC, which encodes the flagellin protein, resulted in a strain that did not produce flagella, was non-motile, and was defective for the reduction of insoluble Fe(III). Deletion of pilA, which encodes the structural protein of the type IV pili, inhibited the production of lateral pili as well as Fe(III) oxide reduction and electron transfer to an electrode. These results demonstrate the importance of flagella and pili in the reduction of insoluble Fe(III) by G. metallireducens and provide methods for additional genetic-based approaches for the study of G. metallireducens.

  3. Metabolic Profiling of Geobacter sulfurreducens during Industrial Bioprocess Scale-Up

    PubMed Central

    Muhamadali, Howbeer; Xu, Yun; Ellis, David I.; Allwood, J. William; Rattray, Nicholas J. W.; Correa, Elon; Alrabiah, Haitham

    2015-01-01

    During the industrial scale-up of bioprocesses it is important to establish that the biological system has not changed significantly when moving from small laboratory-scale shake flasks or culturing bottles to an industrially relevant production level. Therefore, during upscaling of biomass production for a range of metal transformations, including the production of biogenic magnetite nanoparticles by Geobacter sulfurreducens, from 100-ml bench-scale to 5-liter fermentors, we applied Fourier transform infrared (FTIR) spectroscopy as a metabolic fingerprinting approach followed by the analysis of bacterial cell extracts by gas chromatography-mass spectrometry (GC-MS) for metabolic profiling. FTIR results clearly differentiated between the phenotypic changes associated with different growth phases as well as the two culturing conditions. Furthermore, the clustering patterns displayed by multivariate analysis were in agreement with the turbidimetric measurements, which displayed an extended lag phase for cells grown in a 5-liter bioreactor (24 h) compared to those grown in 100-ml serum bottles (6 h). GC-MS analysis of the cell extracts demonstrated an overall accumulation of fumarate during the lag phase under both culturing conditions, coinciding with the detected concentrations of oxaloacetate, pyruvate, nicotinamide, and glycerol-3-phosphate being at their lowest levels compared to other growth phases. These metabolites were overlaid onto a metabolic network of G. sulfurreducens, and taking into account the levels of these metabolites throughout the fermentation process, the limited availability of oxaloacetate and nicotinamide would seem to be the main metabolic bottleneck resulting from this scale-up process. Additional metabolite-feeding experiments were carried out to validate the above hypothesis. Nicotinamide supplementation (1 mM) did not display any significant effects on the lag phase of G. sulfurreducens cells grown in the 100-ml serum bottles. However

  4. Metabolic Profiling of Geobacter sulfurreducens during Industrial Bioprocess Scale-Up.

    PubMed

    Muhamadali, Howbeer; Xu, Yun; Ellis, David I; Allwood, J William; Rattray, Nicholas J W; Correa, Elon; Alrabiah, Haitham; Lloyd, Jonathan R; Goodacre, Royston

    2015-05-15

    During the industrial scale-up of bioprocesses it is important to establish that the biological system has not changed significantly when moving from small laboratory-scale shake flasks or culturing bottles to an industrially relevant production level. Therefore, during upscaling of biomass production for a range of metal transformations, including the production of biogenic magnetite nanoparticles by Geobacter sulfurreducens, from 100-ml bench-scale to 5-liter fermentors, we applied Fourier transform infrared (FTIR) spectroscopy as a metabolic fingerprinting approach followed by the analysis of bacterial cell extracts by gas chromatography-mass spectrometry (GC-MS) for metabolic profiling. FTIR results clearly differentiated between the phenotypic changes associated with different growth phases as well as the two culturing conditions. Furthermore, the clustering patterns displayed by multivariate analysis were in agreement with the turbidimetric measurements, which displayed an extended lag phase for cells grown in a 5-liter bioreactor (24 h) compared to those grown in 100-ml serum bottles (6 h). GC-MS analysis of the cell extracts demonstrated an overall accumulation of fumarate during the lag phase under both culturing conditions, coinciding with the detected concentrations of oxaloacetate, pyruvate, nicotinamide, and glycerol-3-phosphate being at their lowest levels compared to other growth phases. These metabolites were overlaid onto a metabolic network of G. sulfurreducens, and taking into account the levels of these metabolites throughout the fermentation process, the limited availability of oxaloacetate and nicotinamide would seem to be the main metabolic bottleneck resulting from this scale-up process. Additional metabolite-feeding experiments were carried out to validate the above hypothesis. Nicotinamide supplementation (1 mM) did not display any significant effects on the lag phase of G. sulfurreducens cells grown in the 100-ml serum bottles. However

  5. Requirement for a microbial consortium to completely oxidize glucose in Fe(III)- reducing sediments

    USGS Publications Warehouse

    Lovley, D.R.; Phillips, E.J.P.

    1989-01-01

    In various sediments in which Fe(III) reduction was the terminal electron-accepting process, [14C]glucose was fermented to 14C-fatty acids in a manner similar to that observed in methanogenic sediments. These results are consistent with the hypothesis that, in Fe(III)-reducing sediments, fermentable substrates are oxidized to carbon dioxide by the combined activity of fermentative bacteria and fatty acid-oxidizing, Fe(III)-reducing bacteria.

  6. Proteome of Geobacter sulfurreducens grown with Fe(III) oxide or Fe(III) citrate as the electron acceptor.

    SciTech Connect

    Ding, Y-H R.; Hixson, Kim K.; Aklujkar, Ma; Lipton, Mary S.; Smith, Richard D.; Lovley, Derek R.; Mester, Tunde

    2008-12-01

    e(III) oxides are the most abundant source of reducible Fe(III) by microorganisms in most soils and sediments, yet few studies on the physiology of Fe(III)-reducing microorganisms during growth on Fe(III) oxide have been conducted because of the technical difficulties in working with cell growth and harvest in the presence of Fe(III) oxides. Geobacter sulfurreducens is a representative of the Geobacter species that predominate in a variety of subsurface environments in which Fe(III) oxide is important. In order to better understand the physiology of Geobacter species during growth on Fe(III) oxide, the proteome of G. sulfurreducens grown on Fe(III) oxide was compared with the proteome of cells grown with soluble Fe(III) citrate. Two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) revealed 19 proteins that were more abundant during growth on Fe(III) oxide than on soluble Fe(III). These included proteins related to protein synthesis, electron transfer and energy production, oxidative stress, protein folding, outer membrane proteins, nitrogen metabolism and hypothetical proteins. Further analysis of the proteome with the accurate mass and time (AMT) tag method revealed additional proteins associated with growth on Fe(III) oxide. These included the outer-membrane c-type cytochrome, OmcS and OmcG, which genetic studies have suggested are required for Fe(III) oxide reduction. Furthermore, several other cytochromes, as yet unstudied, were detected to be significantly up regulated during growth on Fe(III) oxide and other proteins of unknown function were more abundant during growth on Fe(III) oxide than on soluble Fe(III). PilA, the structural protein for pili, which is required for Fe(III) oxide reduction, and other pilin-associated proteins were also more abundant during growth on Fe(III) oxide. Confirmation of the differential expression of proteins known to be important in Fe(III) oxide reduction was observed, and an additional number of previously

  7. A trans-outer membrane porin-cytochrome protein complex for extracellular electron transfer by Geobacter sulfurreducens PCA

    SciTech Connect

    Liu, Yimo; Wang, Zheming; Liu, Juan; Levar, Caleb; Edwards, Marcus; Babauta, Jerome T.; Kennedy, David W.; Shi, Zhi; Beyenal, Haluk; Bond, Daniel R.; Clarke, Thomas A.; Butt, Julea N.; Richardson, David J.; Rosso, Kevin M.; Zachara, John M.; Fredrickson, Jim K.; Shi, Liang

    2014-09-24

    The multiheme, outer membrane c-type cytochrome (c-Cyt) OmcB of Geobacter sulfurreducens was previously proposed to mediate electron transfer across the outer membrane. However, the underlying mechanism has remained uncharacterized. In G. sulfurreducens, the omcB gene is part of two tandem four-gene clusters, each is predicted to encode a transcriptional factor (OrfR/OrfS), a porin-like outer membrane protein (OmbB/OmbC), a periplasmic c-type cytochrome (OmaB/OmaC), and an outer membrane c-Cyt (OmcB/OmcC), respectively. Here we showed that OmbB/OmbC, OmaB/OmaC and OmcB/OmcC of G. sulfurreducens PCA formed the porin-cytochrome (Pcc) protein complexes, which were involved in transferring electrons across the outer membrane. The isolated Pcc protein complexes reconstituted in proteoliposomes transferred electrons from reduced methyl viologen across the lipid bilayer of liposomes to Fe(III)-citrate and ferrihydrite. The pcc clusters were found in all eight sequenced Geobacter and 11 other bacterial genomes from six different phyla, demonstrating a widespread distribution of Pcc protein complexes in phylogenetically diverse bacteria. Deletion of ombB-omaB-omcB-orfS-ombC-omaC-omcC gene clusters had no impact on the growth of G. sulfurreducens PCA with fumarate, but diminished the ability of G. sulfurreducens PCA to reduce Fe(III)-citrate and ferrihydrite. Finally, complementation with the ombB-omaB-omcB gene cluster restored the ability of G. sulfurreducens PCA to reduce Fe(III)-citrate and ferrihydrite.

  8. A trans-outer membrane porin-cytochrome protein complex for extracellular electron transfer by Geobacter sulfurreducens PCA

    PubMed Central

    Liu, Yimo; Wang, Zheming; Liu, Juan; Levar, Caleb; Edwards, Marcus J; Babauta, Jerome T; Kennedy, David W; Shi, Zhi; Beyenal, Haluk; Bond, Daniel R; Clarke, Thomas A; Butt, Julea N; Richardson, David J; Rosso, Kevin M; Zachara, John M; Fredrickson, James K; Shi, Liang

    2014-01-01

    The multi-heme, outer membrane c-type cytochrome (c-Cyt) OmcB of Geobacter sulfurreducens was previously proposed to mediate electron transfer across the outer membrane. However, the underlying mechanism has remained uncharacterized. In G. sulfurreducens, the omcB gene is part of two tandem four-gene clusters, each is predicted to encode a transcriptional factor (OrfR/OrfS), a porin-like outer membrane protein (OmbB/OmbC), a periplasmic c-type cytochrome (OmaB/OmaC) and an outer membrane c-Cyt (OmcB/OmcC) respectively. Here, we showed that OmbB/OmbC, OmaB/OmaC and OmcB/OmcC of G. sulfurreducens PCA formed the porin-cytochrome (Pcc) protein complexes, which were involved in transferring electrons across the outer membrane. The isolated Pcc protein complexes reconstituted in proteoliposomes transferred electrons from reduced methyl viologen across the lipid bilayer of liposomes to Fe(III)-citrate and ferrihydrite. The pcc clusters were found in all eight sequenced Geobacter and 11 other bacterial genomes from six different phyla, demonstrating a widespread distribution of Pcc protein complexes in phylogenetically diverse bacteria. Deletion of ombB-omaB-omcB-orfS-ombC-omaC-omcC gene clusters had no impact on the growth of G. sulfurreducens PCA with fumarate but diminished the ability of G. sulfurreducens PCA to reduce Fe(III)-citrate and ferrihydrite. Complementation with the ombB-omaB-omcB gene cluster restored the ability of G. sulfurreducens PCA to reduce Fe(III)-citrate and ferrihydrite. PMID:25139405

  9. A trans-outer membrane porin-cytochrome protein complex for extracellular electron transfer by Geobacter sulfurreducens PCA

    SciTech Connect

    Liu, Yimo; Wang, Zheming; Liu, Juan; Levar, Caleb; Edwards, Marcus; Babauta, Jerome T.; Kennedy, David W.; Shi, Zhi; Beyenal, Haluk; Bond, Daniel R.; Clarke, Thomas A.; Butt, Julea N.; Richardson, David J.; Rosso, Kevin M.; Zachara, John M.; Fredrickson, Jim K.; Shi, Liang

    2014-09-24

    The multiheme, outer membrane c-type cytochrome (c-Cyt) OmcB of Geobacter sulfurreducens was previously proposed to mediate electron transfer across the outer membrane. However, the underlying mechanism has remained uncharacterized. In G. sulfurreducens, the omcB gene is part of two tandem four-gene clusters, each is predicted to encode a transcriptional factor (OrfR/OrfS), a porin-like outer membrane protein (OmbB/OmbC), a periplasmic c-type cytochrome (OmaB/OmaC), and an outer membrane c-Cyt (OmcB/OmcC), respectively. Here we showed that OmbB/OmbC, OmaB/OmaC and OmcB/OmcC of G. sulfurreducens PCA formed the porin-cytochrome (Pcc) protein complexes, which were involved in transferring electrons across the outer membrane. The isolated Pcc protein complexes reconstituted in proteoliposomes transferred electrons from reduced methyl viologen across the lipid bilayer of liposomes to Fe(III)-citrate and ferrihydrite. The pcc clusters were found in all eight sequenced Geobacter and 11 other bacterial genomes from six different phyla, demonstrating a widespread distribution of Pcc protein complexes in phylogenetically diverse bacteria. Deletion of ombB-omaB-omcB-orfS-ombC-omaC-omcC gene clusters had no impact on the growth of G. sulfurreducens PCA with fumarate, but diminished the ability of G. sulfurreducens PCA to reduce Fe(III)-citrate and ferrihydrite. Complementation with the ombB-omaB-omcB gene cluster restored the ability of G. sulfurreducens PCA to reduce Fe(III)-citrate and ferrihydrite.

  10. A trans-outer membrane porin-cytochrome protein complex for extracellular electron transfer by Geobacter sulfurreducens PCA

    DOE PAGESBeta

    Liu, Yimo; Wang, Zheming; Liu, Juan; Levar, Caleb; Edwards, Marcus; Babauta, Jerome T.; Kennedy, David W.; Shi, Zhi; Beyenal, Haluk; Bond, Daniel R.; et al

    2014-09-24

    The multiheme, outer membrane c-type cytochrome (c-Cyt) OmcB of Geobacter sulfurreducens was previously proposed to mediate electron transfer across the outer membrane. However, the underlying mechanism has remained uncharacterized. In G. sulfurreducens, the omcB gene is part of two tandem four-gene clusters, each is predicted to encode a transcriptional factor (OrfR/OrfS), a porin-like outer membrane protein (OmbB/OmbC), a periplasmic c-type cytochrome (OmaB/OmaC), and an outer membrane c-Cyt (OmcB/OmcC), respectively. Here we showed that OmbB/OmbC, OmaB/OmaC and OmcB/OmcC of G. sulfurreducens PCA formed the porin-cytochrome (Pcc) protein complexes, which were involved in transferring electrons across the outer membrane. The isolated Pccmore » protein complexes reconstituted in proteoliposomes transferred electrons from reduced methyl viologen across the lipid bilayer of liposomes to Fe(III)-citrate and ferrihydrite. The pcc clusters were found in all eight sequenced Geobacter and 11 other bacterial genomes from six different phyla, demonstrating a widespread distribution of Pcc protein complexes in phylogenetically diverse bacteria. Deletion of ombB-omaB-omcB-orfS-ombC-omaC-omcC gene clusters had no impact on the growth of G. sulfurreducens PCA with fumarate, but diminished the ability of G. sulfurreducens PCA to reduce Fe(III)-citrate and ferrihydrite. Finally, complementation with the ombB-omaB-omcB gene cluster restored the ability of G. sulfurreducens PCA to reduce Fe(III)-citrate and ferrihydrite.« less

  11. Wrapping of a single bacterium with Functionalized - Chemically Modified Graphene (FCMG) sheets via highly specific protein-cell wall interaction

    NASA Astrophysics Data System (ADS)

    Mohanty, Nihar; Berry, Vikas

    2009-03-01

    Graphene has recently generated a lot of interest due to its unique structural and electrical properties. It's micro-scale area and sub-nano-scale thickness coupled with ballistic electronic transport at room temperature, low Johnston noise and low charge scattering, have made it a gold mine for novel applications. Since its discovery in 2004, there have been a plethora of studies on characterizing its unique physical, chemical and electrical properties of graphene as well as on integrating it with various physical/chemical systems to utilize these properties. But there have been limited or no studies on the integration of graphene with living microorganisms or mammalian cells. Here we describe the novel wrapping of a single live bacterium (Bacillus cereus) with a chemically modified graphene sheet functionalized with the protein Concanavalin-A (Con-A) via the highly specific Con-A - Teichoic acid interaction. We are investigating the structural and the electrical properties of these novel bacteria-FCMG ensembles. Further, we are also interested in characterizing this wrapping process in detail by studying the kinetics and the mechanism of action of bacterial-wrapping via 3D modelling. This is a first step towards the live-bio-nano-integration of graphene which would open up avenues for applications as diverse as bio-batteries using the Geobacter to recombinant enzyme compartmentalization.

  12. Thermodynamic and kinetic characterization of PccH, a key protein in microbial electrosynthesis processes in Geobacter sulfurreducens.

    PubMed

    Santos, Telma C; de Oliveira, André R; Dantas, Joana M; Salgueiro, Carlos A; Cordas, Cristina M

    2015-10-01

    The monoheme c-type cytochrome PccH from Geobacter sulfurreducens, involved in the pathway of current-consumption in biofilms, was electrochemically characterized in detail. Cyclic voltammetry was used to determine the kinetics and thermodynamics properties of PccH redox behavior. Entropy, enthalpy and Gibbs free energy changes associated with the redox center transition between the ferric and the ferrous state were determined, indicating an enhanced solvent exposure. The midpoint redox potential is considerably low for a monoheme c-type cytochrome and the heterogeneous electron transfer constant rate reflects a high efficiency of electron transfer process in PccH. The midpoint redox potential dependence on the pH (redox-Bohr effect) was investigated, over the range of 2.5 to 9.1, and is described by the protonation/deprotonation events of two distinct centers in the vicinity of the heme group with pKa values of 2.7 (pKox1); 4.1 (pKred1) and 5.9 (pKox2); 6.4 (pKred2). Based on the inspection of PccH structure, these centers were assigned to heme propionic acids P13 and P17, respectively. The observed redox-Bohr effect indicates that PccH is able to thermodynamically couple electron and proton transfer in the G. sulfurreducens physiological pH range. PMID:26071083

  13. Flux analysis of central metabolic pathways in the Fe(III)-reducing organism Geobacter metallireducens via 13C isotopiclabeling

    SciTech Connect

    Tang, Yinjie J.; Chakraborty, Romy; Martin, Hector Garcia; Chu,Jeannie; Hazen, Terry C.; Keasling, Jay D.

    2007-08-13

    We analyzed the carbon fluxes in the central metabolism ofGeobacter metallireducens strain GS-15 using 13C isotopomer modeling.Acetate labeled in the 1st or 2nd position was the sole carbon source,and Fe-NTA was the sole terminal electron acceptor. The measured labeledacetate uptake rate was 21 mmol/gdw/h in the exponential growth phase.The resulting isotope labeling pattern of amino acids allowed an accuratedetermination of the in vivo global metabolic reaction rates (fluxes)through the central metabolic pathways using a computational isotopomermodel. The model indicated that over 90 percent of the acetate wascompletely oxidized to CO2 via a complete tricarboxylic acid (TCA) cyclewhile reducing iron. Pyruvate carboxylase and phosphoenolpyruvatecarboxykinase were present under these conditions, but enzymes in theglyoxylate shunt and malic enzyme were absent. Gluconeogenesis and thepentose phosphate pathway were mainly employed for biosynthesis andaccounted for less than 3 percent of total carbon consumption. The modelalso indicated surprisingly high reversibility in the reaction betweenoxoglutarate and succinate. This step operates close to the thermodynamicequilibrium possibly because succinate is synthesized via a transferasereaction, and its product, acetyl-CoA, inhibits the conversion ofoxoglutarate to succinate. These findings enable a better understandingof the relationship between genome annotation and extant metabolicpathways in G. metallireducens.

  14. pH, redox potential and local biofilm potential microenvironments within Geobacter sulfurreducens biofilms and their roles in electron transfer.

    PubMed

    Babauta, Jerome T; Nguyen, Hung Duc; Harrington, Timothy D; Renslow, Ryan; Beyenal, Haluk

    2012-10-01

    The limitation of pH inside electrode-respiring biofilms is a well-known concept. However, little is known about how pH and redox potential are affected by increasing current inside biofilms respiring on electrodes. Quantifying the variations in pH and redox potential with increasing current is needed to determine how electron transfer is tied to proton transfer within the biofilm. In this research, we quantified pH and redox potential variations in electrode-respiring Geobacter sulfurreducens biofilms as a function of respiration rates, measured as current. We also characterized pH and redox potential at the counter electrode. We concluded that (1) pH continued to decrease in the biofilm through different growth phases, showing that the pH is not always a limiting factor in a biofilm and (2) decreasing pH and increasing redox potential at the biofilm electrode were associated only with the biofilm, demonstrating that G. sulfurreducens biofilms respire in a unique internal environment. Redox potential inside the biofilm was also compared to the local biofilm potential measured by a graphite microelectrode, where the tip of the microelectrode was allowed to acclimatize inside the biofilm. PMID:22549331

  15. pH, Redox Potential and Local Biofilm Potential Microenvironments Within Geobacter sulfurreducens Biofilms and Their Roles in Electron Transfer

    PubMed Central

    Babauta, Jerome T.; Nguyen, Hung Duc; Harrington, Timothy D.; Renslow, Ryan; Beyenal, Haluk

    2012-01-01

    The limitation of pH inside electrode-respiring biofilms is a well-known concept. However, little is known about how pH and redox potential are affected by increasing current inside biofilms respiring on electrodes. Quantifying the variations in pH and redox potential with increasing current is needed to determine how electron transfer is tied to proton transfer within the biofilm. In this research, we quantified pH and redox potential variations in electrode-respiring Geobacter sulfurreducens biofilms as a function of respiration rates, measured as current. We also characterized pH and redox potential at the counter electrode. We concluded that (1) pH continued to decrease in the biofilm through different growth phases, showing that the pH is not always a limiting factor in a biofilm and (2) decreasing pH and increasing redox potential at the biofilm electrode were associated only with the biofilm, demonstrating that G. sulfurreducens biofilms respire in a unique internal environment. Redox potential inside the biofilm was also compared to the local biofilm potential measured by a graphite microelectrode, where the tip of the micro-electrode was allowed to acclimatize inside the biofilm. PMID:22549331

  16. Novel Waddlia Intracellular Bacterium in Artibeus intermedius Fruit Bats, Mexico

    PubMed Central

    Pierlé, Sebastián Aguilar; Morales, Cirani Obregón; Martínez, Leonardo Perea; Ceballos, Nidia Aréchiga; Rivero, Juan José Pérez; Díaz, Osvaldo López; Brayton, Kelly A.

    2015-01-01

    An intracellular bacterium was isolated from fruit bats (Artibeus intermedius) in Cocoyoc, Mexico. The bacterium caused severe lesions in the lungs and spleens of bats and intracytoplasmic vacuoles in cell cultures. Sequence analyses showed it is related to Waddlia spp. (order Chlamydiales). We propose to call this bacterium Waddlia cocoyoc. PMID:26583968

  17. Novel Waddlia Intracellular Bacterium in Artibeus intermedius Fruit Bats, Mexico.

    PubMed

    Pierlé, Sebastián Aguilar; Morales, Cirani Obregón; Martínez, Leonardo Perea; Ceballos, Nidia Aréchiga; Rivero, Juan José Pérez; Díaz, Osvaldo López; Brayton, Kelly A; Setién, Alvaro Aguilar

    2015-12-01

    An intracellular bacterium was isolated from fruit bats (Artibeus intermedius) in Cocoyoc, Mexico. The bacterium caused severe lesions in the lungs and spleens of bats and intracytoplasmic vacuoles in cell cultures. Sequence analyses showed it is related to Waddlia spp. (order Chlamydiales). We propose to call this bacterium Waddlia cocoyoc. PMID:26583968

  18. Phylogenetic analysis of dissimilatory Fe(III)-reducing bacteria.

    PubMed Central

    Lonergan, D J; Jenter, H L; Coates, J D; Phillips, E J; Schmidt, T M; Lovley, D R

    1996-01-01

    Evolutionary relationships among strictly anaerobic dissimilatory Fe(III)-reducing bacteria obtained from a diversity of sedimentary environments were examined by phylogenetic analysis of 16S rRNA gene sequences. Members of the genera Geobacter, Desulfuromonas, Pelobacter, and Desulfuromusa formed a monophyletic group within the delta subdivision of the class Proteobacteria. On the basis of their common ancestry and the shared ability to reduce Fe(III) and/or S0, we propose that this group be considered a single family, Geobacteraceae. Bootstrap analysis, characteristic nucleotides, and higher-order secondary structures support the division of Geobacteraceae into two subgroups, designated the Geobacter and Desulfuromonas clusters. The genus Desulfuromusa and Pelobacter acidigallici make up a distinct branch within the Desulfuromonas cluster. Several members of the family Geobacteraceae, none of which reduce sulfate, were found to contain the target sequences of probes that have been previously used to define the distribution of sulfate-reducing bacteria and sulfate-reducing bacterium-like microorganisms. The recent isolations of Fe(III)-reducing microorganisms distributed throughout the domain Bacteria suggest that development of 16S rRNA probes that would specifically target all Fe(III) reducers may not be feasible. However, all of the evidence suggests that if a 16S rRNA sequence falls within the family Geobacteraceae, then the organism has the capacity for Fe(III) reduction. The suggestion, based on geological evidence, that Fe(III) reduction was the first globally significant process for oxidizing organic matter back to carbon dioxide is consistent with the finding that acetate-oxidizing Fe(III) reducers are phylogenetically diverse. PMID:8636045

  19. Reduction Kinetics of Manganese Dioxide by Geobacter Sulfurreducens and Associated Biofilm Morphology in a Flow-Through Reactor

    NASA Astrophysics Data System (ADS)

    Berns, E.; Werth, C. J.; Valocchi, A. J.; Sanford, R. A.

    2015-12-01

    Biogeochemical interactions have been investigated extensively to characterize natural nutrient cycling and predict contaminant transport in surface and groundwater. Dissimilatory metal reducing bacteria, many of which form biofilms, play an important role in reducing a variety of metals in these systems. It has been shown that biofilm morphology is impacted by flow conditions, but there has been little work that explores how reduction kinetics change as a result of these different morphologies. Different flow rates may affect physical properties of the biofilm that influence the rate of substrate reduction. We introduce an approach to calculate changes in Monod kinetic parameters while simultaneously evaluating biofilm morphologies under different flow rates. A vertical, cylindrical flow cell with removable glass slide sections coated in manganese dioxide (electron acceptor) was used to grow a biofilm of Geobacter sulfurreducens with acetate as the electron donor under both high (50 mL/hr) and low (5 mL/h) flow rates. The removable sections allowed for visualization of the biofilm at different time points with a confocal microscope, and quantification of the biomass on the surface using a combination of a protein assay and image analysis. Data collected from the experiments was used to determine yield and specific growth rate at the different flow rates, and a simple numerical model was used to estimate the half saturation constant of manganese dioxide at both flow rates. A smaller half saturation constant was estimated at the higher flow rate, indicating that the biofilm was more efficient in the high flow system, but a strong correlation between morphology and the faster reduction rate was not observed. Monod kinetic parameters are important for the development of accurate nutrient cycling and contaminant transport models in natural environments, and understanding how they are impacted by flow will be important for the development of new, improved models.

  20. Structural characterization of a family of cytochromes c{sub 7} involved in Fe(III) respiration by Geobacter sulfurreducens.

    SciTech Connect

    Pokkuluri, P. R.; Londer, Y. Y.; Yang, X.; Duke, N. E. C.; Erickson, J.; Orshonsky, V.; Johnson, G.; Schiffer, M.; Biosciences Division

    2010-02-01

    Periplasmic cytochromes c{sub 7} are important in electron transfer pathway(s) in Fe(III) respiration by Geobacter sulfurreducens. The genome of G. sulfurreducens encodes a family of five 10-kDa, three-heme cytochromes c{sub 7}. The sequence identity between the five proteins (designated PpcA, PpcB, PpcC, PpcD, and PpcE) varies between 45% and 77%. Here, we report the high-resolution structures of PpcC, PpcD, and PpcE determined by X-ray diffraction. This new information made it possible to compare the sequences and structures of the entire family. The triheme cores are largely conserved but are not identical. We observed changes, due to different crystal packing, in the relative positions of the hemes between two molecules in the crystal. The overall protein fold of the cytochromes is similar. The structure of PpcD differs most from that of the other homologs, which is not obvious from the sequence comparisons of the family. Interestingly, PpcD is the only cytochrome c{sub 7} within the family that has higher abundance when G. sulfurreducens is grown on insoluble Fe(III) oxide compared to ferric citrate. The structures have the highest degree of conservation around 'heme IV'; the protein surface around this heme is positively charged in all of the proteins, and therefore all cytochromes c{sub 7} could interact with similar molecules involving this region. The structures and surface characteristics of the proteins near the other two hemes, 'heme I' and 'heme III', differ within the family. The above observations suggest that each of the five cytochromes c{sub 7} could interact with its own redox partner via an interface involving the regions of heme I and/or heme III; this provides a possible rationalization for the existence of five similar proteins in G. sulfurreducens.

  1. Plutonium(V/VI) Reduction by the Metal-Reducing Bacteria Geobacter metallireducens GS-15 and Shewanella oneidensis MR-1.

    PubMed

    Icopini, Gary A; Lack, Joe G; Hersman, Larry E; Neu, Mary P; Boukhalfa, Hakim

    2009-06-01

    We examined the ability of the metal-reducing bacteria Geobacter metallireducens GS-15 and Shewanella oneidensis MR-1 to reduce Pu(VI) and Pu(V). Cell suspensions of both bacteria reduced oxidized Pu [a mixture of Pu(VI) and Pu(V)] to Pu(IV). The rate of plutonium reduction was similar to the rate of U(VI) reduction obtained under similar conditions for each bacteria. The rates of Pu(VI) and U(VI) reduction by cell suspensions of S. oneidensis were slightly higher than the rates observed with G. metallireducens. The reduced form of Pu was characterized as aggregates of nanoparticulates of Pu(IV). Transmission electron microscopy images of the solids obtained from the cultures after the reduction of Pu(VI) and Pu(V) by S. oneidensis show that the Pu precipitates have a crystalline structure. The nanoparticulates of Pu(IV) were precipitated on the surface of or within the cell walls of the bacteria. The production of Pu(III) was not observed, which indicates that Pu(IV) was the stable form of reduced Pu under these experimental conditions. Experiments examining the ability of these bacteria to use Pu(VI) as a terminal electron acceptor for growth were inconclusive. A slight increase in cell density was observed for both G. metallireducens and S. oneidensis when Pu(VI) was provided as the sole electron acceptor; however, Pu(VI) concentrations decreased similarly in both the experimental and control cultures. PMID:19363069

  2. Structure of a novel dodecaheme cytochrome c from Geobacter sulfurreducens reveals an extended 12 nm protein with interacting hemes.

    SciTech Connect

    Pokkuluri, P. R.; Londer, Y. Y.; Duke, N. E. C.; Pessanha, M.; Yang, X.; Orshonsky, V.; Orshonsky, L.; Erickson, J.; Zagyansky, Y.; Salgueiro, C. A.; Schiffer, M.

    2011-04-01

    Multiheme cytochromes c are important in electron transfer pathways in reduction of both soluble and insoluble Fe(III) by Geobacter sulfurreducens. We determined the crystal structure at 3.2 {angstrom} resolution of the first dodecaheme cytochrome c (GSU1996) along with its N-terminal and C-terminal hexaheme fragments at 2.6 and 2.15 {angstrom} resolution, respectively. The macroscopic reduction potentials of the full-length protein and its fragments were measured. The sequence of GSU1996 can be divided into four c{sub 7}-type domains (A, B, C and D) with homology to triheme cytochromes c{sub 7}. In cytochromes c{sub 7} all three hemes are bis-His coordinated, whereas in c{sub 7}-type domains the last heme is His-Met coordinated. The full-length GSU1996 has a 12 nm long crescent shaped structure with the 12 hemes arranged along a polypeptide to form a 'nanowire' of hemes; it has a modular structure. Surprisingly, while the C-terminal half of the protein consists of two separate c{sub 7}-type domains (C and D) connected by a small linker, the N-terminal half of the protein has two c{sub 7}-type domains (A and B) that form one structural unit. This is also observed in the AB fragment. There is an unexpected interaction between the hemes at the interface of domains A and B, which form a heme-pair with nearly parallel stacking of their porphyrin rings. The hemes adjacent to each other throughout the protein are within van der Waals distance which enables efficient electron exchange between them. For the first time, the structural details of c{sub 7}-type domains from one multiheme protein were compared.

  3. Analysis of enhanced current-generating mechanism of Geobacter sulfurreducens strain via model-driven metabolism simulation.

    PubMed

    Meng, Jing; Xu, Zixiang; Guo, Jing; Yue, Yunxia; Sun, Xiao

    2013-01-01

    Microbial fuel cells (MFCs) are a class of ideal technologies that function via anaerobic respiration of electricigens, which bring current generation and environmental restoration together. An in-depth understanding of microbial metabolism is of great importance in engineering microbes to further improve their respiration. We employed flux balance analysis and selected Fe(iii) as a substitute for the electrode to simulate current-generating metabolism of Geobacter sulfurreducens PCA with a fixed acetate uptake rate. Simulation results indicated the fluxes of reactions directing acetate towards dissimilation to generate electrons increased under the suboptimal growth condition, resulting in an increase in the respiration rate and a decrease in the growth rate. The results revealed the competitive relationship between oxidative respiration and cell growth during the metabolism of microbe current generation. The results helped us quantitatively understand why microbes growing slowly have the potential to make good use of fuel in MFCs. At the same time, slow growth does not necessarily result in speedy respiration. Alternative respirations may exist under the same growth state due to redundant pathways in the metabolic network. The big difference between the maximum and minimum respiration mainly results from the total formate secretion. With iterative flux variability analysis, a relatively ideal model of variant of G. sulfurreducens PCA was reconstructed by deleting several enzymes in the wild model, which could reach simultaneous suboptimal growth and maximum respiration. Under this ideal condition, flux towards extracellular electron transfer rather than for biosynthesis is beneficial for the conversion of organic matter to electricity without large accumulations of biomass and electricigens may maximize utilization of limited fuel. Our simulations will provide an insight into the enhanced current-generating mechanism and identify theoretical range of respiration

  4. Nanowires, Capacitors, and Other Novel Outer-Surface Components Involved in Electron Transfer to Fe(III) Oxides in Geobacter Species

    SciTech Connect

    Lovley, Derek R.

    2005-06-01

    In the past year studies have primarily focused on elucidating the role of pili in electron transport to Fe(III) oxide in Geobacter sulfurreducens. As summarized in last year's report, it was previously found that pili are specifically expressed during growth on Fe(III) oxide and that Fe(III) oxide reduction is inhibited if the gene for the structural pilin protein is deleted. However, it was also found that a pilin-deficient mutant of G. sulfurreducens could attached to Fe(III) oxide as well as wild type.

  5. On the road to improve the bioremediation and electricity-harvesting skills of Geobacter sulfurreducens: functional and structural characterization of multihaem cytochromes.

    PubMed

    Morgado, Leonor; Fernandes, Ana P; Dantas, Joana M; Silva, Marta A; Salgueiro, Carlos A

    2012-12-01

    Extracellular electron transfer is one of the physiological hallmarks of Geobacter sulfurreducens, allowing these bacteria to reduce toxic and/or radioactive metals and grow on electrode surfaces. Aiming to functionally optimize the respiratory electron-transfer chains, such properties can be explored through genetically engineered strains. Geobacter species comprise a large number of different multihaem c-type cytochromes involved in the extracellular electron-transfer pathways. The functional characterization of multihaem proteins is particularly complex because of the coexistence of several microstates in solution, connecting the fully reduced and oxidized states. NMR spectroscopy has been used to monitor the stepwise oxidation of each individual haem and thus to obtain information on each microstate. For the structural study of these proteins, a cost-effective isotopic labelling of the protein polypeptide chains was combined with the comparative analysis of 1H-13C HSQC (heteronuclear single-quantum correlation) NMR spectra obtained for labelled and unlabelled samples. These new methodological approaches allowed us to study G. sulfurreducens haem proteins functionally and structurally, revealing functional mechanisms and key residues involved in their electron-transfer capabilities. Such advances can now be applied to the design of engineered haem proteins to improve the bioremediation and electricity-harvesting skills of G. sulfurreducens. PMID:23176471

  6. Comparative genomic analysis of Geobacter sulfurreducens KN400, a strain with enhanced capacity for extracellular electron transfer and electricity production

    PubMed Central

    2012-01-01

    Background A new strain of Geobacter sulfurreducens, strain KN400, produces more electrical current in microbial fuel cells and reduces insoluble Fe(III) oxides much faster than the wildtype strain, PCA. The genome of KN400 was compared to wildtype with the goal of discovering how the network for extracellular electron transfer has changed and how these two strains evolved. Results Both genomes were re-annotated, resulting in 14 fewer genes (net) in the PCA genome; 28 fewer (net) in the KN400 genome; and ca. 400 gene start and stop sites moved. 96% of genes in KN400 had clear orthologs with conserved synteny in PCA. Most of the remaining genes were in regions of genomic mobility and were strain-specific or conserved in other Geobacteraceae, indicating that the changes occurred post-divergence. There were 27,270 single nucleotide polymorphisms (SNP) between the genomes. There was significant enrichment for SNP locations in non-coding or synonymous amino acid sites, indicating significant selective pressure since the divergence. 25% of orthologs had sequence differences, and this set was enriched in phosphorylation and ATP-dependent enzymes. Substantial sequence differences (at least 12 non-synonymous SNP/kb) were found in 3.6% of the orthologs, and this set was enriched in cytochromes and integral membrane proteins. Genes known to be involved in electron transport, those used in the metabolic cell model, and those that exhibit changes in expression during growth in microbial fuel cells were examined in detail. Conclusions The improvement in external electron transfer in the KN400 strain does not appear to be due to novel gene acquisition, but rather to changes in the common metabolic network. The increase in electron transfer rate and yield in KN400 may be due to changes in carbon flux towards oxidation pathways and to changes in ATP metabolism, both of which indicate that the overall energy state of the cell may be different. The electrically conductive pili appear

  7. Ratoon stunting disease of sugarcane: isolation of the causal bacterium.

    PubMed

    Davis, M J; Gillaspie, A G; Harris, R W; Lawson, R H

    1980-12-19

    A small coryneform bacterium was consistently isolated from sugarcane with ratoon stunting disease and shown to be the causal agent. A similar bacterium was isolated from Bermuda grass. Both strains multiplied in sugarcane and Bermuda grass, but the Bermuda grass strain did not incite the symptoms of ratoon stunting disease in sugarcane. Shoot growth in Bermuda grass was retarded by both strains. PMID:17817853

  8. Agrobacterium tumefaciens is a diazotrophic bacterium

    SciTech Connect

    Kanvinde, L.; Sastry, G.R.K. )

    1990-07-01

    This is the first report that Agrobacterium tumefaciens can fix nitrogen in a free-living condition as shown by its abilities to grown on nitrogen-free medium, reduce acetylene to ethylene, and incorporate {sup 15}N supplied as {sup 15}N{sub 2}. As with most other well-characterized diazotrophic bacteria, the presence of NH{sub 4}{sup +} in the medium and aerobic conditions repress nitrogen fixation by A. tumefaciens. The system requires molybdenum. No evidence for nodulation was found with pea, peanut, or soybean plants. Further understanding of the nitrogen-fixing ability of this bacterium, which has always been considered a pathogen, should cast new light on the evolution of a pathogenic versus symbiotic relationship.

  9. The chemical formula of a magnetotactic bacterium.

    PubMed

    Naresh, Mohit; Das, Sayoni; Mishra, Prashant; Mittal, Aditya

    2012-05-01

    Elucidation of the chemical logic of life is one of the grand challenges in biology, and essential to the progress of the upcoming field of synthetic biology. Treatment of microbial cells explicitly as a "chemical" species in controlled reaction (growth) environments has allowed fascinating discoveries of elemental formulae of a few species that have guided the modern views on compositions of a living cell. Application of mass and energy balances on living cells has proved to be useful in modeling of bioengineering systems, particularly in deriving optimized media compositions for growing microorganisms to maximize yields of desired bio-derived products by regulating intra-cellular metabolic networks. In this work, application of elemental mass balance during growth of Magnetospirillum gryphiswaldense in bioreactors has resulted in the discovery of the chemical formula of the magnetotactic bacterium. By developing a stoichiometric equation characterizing the formation of a magnetotactic bacterial cell, coupled with rigorous experimental measurements and robust calculations, we report the elemental formula of M. gryphiswaldense cell as CH(2.06)O(0.13)N(0.28)Fe(1.74×10(-3)). Remarkably, we find that iron metabolism during growth of this magnetotactic bacterium is much more correlated individually with carbon and nitrogen, compared to carbon and nitrogen with each other, indicating that iron serves more as a nutrient during bacterial growth rather than just a mineral. Magnetotactic bacteria have not only invoked some interest in the field of astrobiology for the last two decades, but are also prokaryotes having the unique ability of synthesizing membrane bound intracellular organelles. Our findings on these unique prokaryotes are a strong addition to the limited repertoire, of elemental compositions of living cells, aimed at exploring the chemical logic of life. PMID:22170293

  10. A putative multicopper protein secreted by an atypical type II secretion system involved in the reduction of insoluble electron acceptors in Geobacter sulfurreducens.

    PubMed

    Mehta, Teena; Childers, Susan E; Glaven, Richard; Lovley, Derek R; Mester, Tünde

    2006-08-01

    Extracellular electron transfer onto Fe(III) oxides in Geobacter sulfurreducens is considered to require proteins that must be exported to the outer surface of the cell. In order to investigate this, the putative gene for OxpG, the pseudopilin involved in a type II general secretion pathway of Gram-negative bacteria, was deleted. The mutant was unable to grow with insoluble Fe(III) oxide as the electron acceptor. Growth on soluble Fe(III) was not affected. An analysis of proteins that accumulated in the periplasm of the oxpG mutant, but not in the wild-type, led to the identification of a secreted protein, OmpB. OmpB is predicted to be a multicopper protein, with highest homology to the manganese oxidase, MofA, from Leptothrix discophora. OmpB contains a potential Fe(III)-binding site and a fibronectin type III domain, suggesting a possible role for this protein in accessing Fe(III) oxides. OmpB was localized to the membrane fraction of G. sulfurreducens and in the supernatant of growing cultures, consistent with the type II secretion system exporting OmpB. A mutant in which ompB was deleted had the same phenotype as the oxpG mutant, suggesting that the failure to export OmpB was responsible for the inability of the oxpG-deficient mutant to reduce Fe(III) oxide. This is the first report that proposes a role for a multicopper oxidase-like protein in an anaerobic organism. These results further emphasize the importance of outer-membrane proteins in Fe(III) oxide reduction and suggest that outer-membrane proteins other than c-type cytochromes are required for Fe(III) oxide reduction in Geobacter species. PMID:16849792

  11. Laboratory evolution of Geobacter sulfurreducens for enhanced growth on lactate via a single-base-pair substitution in a transcriptional regulator

    PubMed Central

    Summers, Zarath M; Ueki, Toshiyuki; Ismail, Wael; Haveman, Shelley A; Lovley, Derek R

    2012-01-01

    The addition of organic compounds to groundwater in order to promote bioremediation may represent a new selective pressure on subsurface microorganisms. The ability of Geobacter sulfurreducens, which serves as a model for the Geobacter species that are important in various types of anaerobic groundwater bioremediation, to adapt for rapid metabolism of lactate, a common bioremediation amendment, was evaluated. Serial transfer of five parallel cultures in a medium with lactate as the sole electron donor yielded five strains that could metabolize lactate faster than the wild-type strain. Genome sequencing revealed that all five strains had non-synonymous single-nucleotide polymorphisms in the same gene, GSU0514, a putative transcriptional regulator. Introducing the single-base-pair mutation from one of the five strains into the wild-type strain conferred rapid growth on lactate. This strain and the five adaptively evolved strains had four to eight-fold higher transcript abundance than wild-type cells for genes for the two subunits of succinyl-CoA synthase, an enzyme required for growth on lactate. DNA-binding assays demonstrated that the protein encoded by GSU0514 bound to the putative promoter of the succinyl-CoA synthase operon. The binding sequence was not apparent elsewhere in the genome. These results demonstrate that a single-base-pair mutation in a transcriptional regulator can have a significant impact on the capacity for substrate utilization and suggest that adaptive evolution should be considered as a potential response of microorganisms to environmental change(s) imposed during bioremediation. PMID:22113376

  12. Characterizations of intracellular arsenic in a bacterium

    NASA Astrophysics Data System (ADS)

    Wolfe-Simon, F.; Yannone, S. M.; Tainer, J. A.

    2011-12-01

    Life requires a key set of chemical elements to sustain growth. Yet, a growing body of literature suggests that microbes can alter their nutritional requirements based on the availability of these chemical elements. Under limiting conditions for one element microbes have been shown to utilize a variety of other elements to serve similar functions often (but not always) in similar molecular structures. Well-characterized elemental exchanges include manganese for iron, tungsten for molybdenum and sulfur for phosphorus or oxygen. These exchanges can be found in a wide variety of biomolecules ranging from protein to lipids and DNA. Recent evidence suggested that arsenic, as arsenate or As(V), was taken up and incorporated into the cellular material of the bacterium GFAJ-1. The evidence was interpreted to support As(V) acting in an analogous role to phosphate. We will therefore discuss our ongoing efforts to characterize intracellular arsenate and how it may partition among the cellular fractions of the microbial isolate GFAJ-1 when exposed to As(V) in the presence of various levels of phosphate. Under high As(V) conditions, cells express a dramatically different proteome than when grown given only phosphate. Ongoing studies on the diversity and potential role of proteins and metabolites produced in the presence of As(V) will be reported. These investigations promise to inform the role and additional metabolic potential for As in biology. Arsenic assimilation into biomolecules contributes to the expanding set of chemical elements utilized by microbes in unusual environmental niches.

  13. Detection of Salmonella bacterium in drinking water using microring resonator.

    PubMed

    Bahadoran, Mahdi; Noorden, Ahmad Fakhrurrazi Ahmad; Mohajer, Faeze Sadat; Abd Mubin, Mohamad Helmi; Chaudhary, Kashif; Jalil, Muhammad Arif; Ali, Jalil; Yupapin, Preecha

    2016-01-01

    A new microring resonator system is proposed for the detection of the Salmonella bacterium in drinking water, which is made up of SiO2-TiO2 waveguide embedded inside thin film layer of the flagellin. The change in refractive index due to the binding of the Salmonella bacterium with flagellin layer causes a shift in the output signal wavelength and the variation in through and drop port's intensities, which leads to the detection of Salmonella bacterium in drinking water. The sensitivity of proposed sensor for detecting of Salmonella bacterium in water solution is 149 nm/RIU and the limit of detection is 7 × 10(-4)RIU. PMID:25133457

  14. Genome Sequence of the Soil Bacterium Janthinobacterium sp. KBS0711.

    PubMed

    Shoemaker, William R; Muscarella, Mario E; Lennon, Jay T

    2015-01-01

    We present a draft genome of Janthinobacterium sp. KBS0711 that was isolated from agricultural soil. The genome provides insight into the ecological strategies of this bacterium in free-living and host-associated environments. PMID:26089434

  15. Genome Sequence of the Soil Bacterium Janthinobacterium sp. KBS0711

    PubMed Central

    Shoemaker, William R.; Muscarella, Mario E.

    2015-01-01

    We present a draft genome of Janthinobacterium sp. KBS0711 that was isolated from agricultural soil. The genome provides insight into the ecological strategies of this bacterium in free-living and host-associated environments. PMID:26089434

  16. Taxonomic characterization of the cellulose-degrading bacterium NCIB 10462

    SciTech Connect

    Dees, C.; Ringleberg, D.; Scott, T.C.; Phelps, T.

    1994-06-01

    The gram negative cellulase-producing bacterium NCIB 10462 has been previously named Pseudomonas fluorescens subsp. or var. cellulosa. Since there is renewed interest in cellulose-degrading bacteria for use in bioconversion of cellulose to chemical feed stocks and fuels, we re-examined the characteristics of this microorganism to determine its proper taxonomic characterization and to further define it`s true metabolic potential. Metabolic and physical characterization of NCIB 10462 revealed that this was an alkalophilic, non-fermentative, gram negative, oxidase positive, motile, cellulose-degrading bacterium. The aerobic substrate utilization profile of this bacterium was found to have few characteristics consistent with a classification of P. fluorescens with a very low probability match with the genus Sphingomonas. Total lipid analysis did not reveal that any sphingolipid bases are produced by this bacterium. NCIB 10462 was found to grow best aerobically but also grows well in complex media under reducing conditions. NCIB 10462 grew slowly under full anaerobic conditions on complex media but growth on cellulosic media was found only under aerobic conditions. Total fatty acid analysis (MIDI) of NCIB 10462 failed to group this bacterium with a known pseudomonas species. However, fatty acid analysis of the bacteria when grown at temperatures below 37{degrees}C suggest that the organism is a pseudomonad. Since a predominant characteristic of this bacterium is it`s ability to degrade cellulose, we suggest it be called Pseudomonas cellulosa.

  17. Pangenome Evolution in the Marine Bacterium Alteromonas

    PubMed Central

    López-Pérez, Mario; Rodriguez-Valera, Francisco

    2016-01-01

    We have examined a collection of the free-living marine bacterium Alteromonas genomes with cores diverging in average nucleotide identities ranging from 99.98% to 73.35%, i.e., from microbes that can be considered members of a natural clone (like in a clinical epidemiological outbreak) to borderline genus level. The genomes were largely syntenic allowing a precise delimitation of the core and flexible regions in each. The core was 1.4 Mb (ca. 30% of the typical strain genome size). Recombination rates along the core were high among strains belonging to the same species (37.7–83.7% of all nucleotide polymorphisms) but they decreased sharply between species (18.9–5.1%). Regarding the flexible genome, its main expansion occurred within the boundaries of the species, i.e., strains of the same species already have a large and diverse flexible genome. Flexible regions occupy mostly fixed genomic locations. Four large genomic islands are involved in the synthesis of strain-specific glycosydic receptors that we have called glycotypes. These genomic regions are exchanged by homologous recombination within and between species and there is evidence for their import from distant taxonomic units (other genera within the family). In addition, several hotspots for integration of gene cassettes by illegitimate recombination are distributed throughout the genome. They code for features that give each clone specific properties to interact with their ecological niche and must flow fast throughout the whole genus as they are found, with nearly identical sequences, in different species. Models for the generation of this genomic diversity involving phage predation are discussed. PMID:27189983

  18. Pangenome Evolution in the Marine Bacterium Alteromonas.

    PubMed

    López-Pérez, Mario; Rodriguez-Valera, Francisco

    2016-01-01

    We have examined a collection of the free-living marine bacterium Alteromonas genomes with cores diverging in average nucleotide identities ranging from 99.98% to 73.35%, i.e., from microbes that can be considered members of a natural clone (like in a clinical epidemiological outbreak) to borderline genus level. The genomes were largely syntenic allowing a precise delimitation of the core and flexible regions in each. The core was 1.4 Mb (ca. 30% of the typical strain genome size). Recombination rates along the core were high among strains belonging to the same species (37.7-83.7% of all nucleotide polymorphisms) but they decreased sharply between species (18.9-5.1%). Regarding the flexible genome, its main expansion occurred within the boundaries of the species, i.e., strains of the same species already have a large and diverse flexible genome. Flexible regions occupy mostly fixed genomic locations. Four large genomic islands are involved in the synthesis of strain-specific glycosydic receptors that we have called glycotypes. These genomic regions are exchanged by homologous recombination within and between species and there is evidence for their import from distant taxonomic units (other genera within the family). In addition, several hotspots for integration of gene cassettes by illegitimate recombination are distributed throughout the genome. They code for features that give each clone specific properties to interact with their ecological niche and must flow fast throughout the whole genus as they are found, with nearly identical sequences, in different species. Models for the generation of this genomic diversity involving phage predation are discussed. PMID:27189983

  19. Putative Mineral-Specific Proteins Synthesized by a Metal Reducing Bacterium

    SciTech Connect

    Lower, Brian H.; Hochella Jr., Michael F.; Lower, Steven K.

    2006-02-01

    Biological force microscopy (BFM) was combined with two-dimensional (2D) gel electrophoresis and mass spectrometry to identify outer membrane proteins (OM) from Shewanella oneidensis that are involved in anaerobic Fe(III) reduction. This is the first time that biophysical force measurements have been coupled with protein expression patterns to search for evidence of putative mineral-specific proteins synthesized by bacteria. BFM shows that S. oneidensis possess an affinity towards goethite (FeOOH) but not diaspore (AlOOH) under anaerobic conditions, despite the fact that diaspore is isostructural with goethite and has essentially the same surface charge. The worm-like chain model was used to identify force-signatures in BFM-derived force curves indicative of putative outer membrane (OM) polypeptides synthesized by S. oneidensis to form a bond with goethite. Protein expression patterns from OM extract of cells grown under anaerobic Fe(III) reducing versus aerobic conditions show that approximately 400 protein spots exhibit significant differences in abundance on 2D gels. Peptide mass fingerprinting and tandem mass spectrometry were used to identify several of the protein spots that were significantly more abundant in 2D gels from OM extract of cells grown under anaerobic Fe(III) reducing conditions. Among those identified were proteins involved in Fe(III) and Mn(IV) reduction, protein transport and secretion, polysaccharide biosynthesis and export, and hypothetical proteins with unknown functions. Together, the BFM and proteomic data suggest that OM proteins are synthesized by S. oneidensis under anaerobic conditions to function in iron oxide binding and/or Fe(III) reduction. If this is the case, then it is possible that the evolution of dissimilatory iron-reducing bacteria like Shewanella, could have been, at least in part, driven by the binding/reduction ability of certain proteins to specific mineral phases.

  20. Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals

    USGS Publications Warehouse

    Lovley, D.R.; Giovannoni, S.J.; White, D.C.; Champine, J.E.; Phillips, E.J.P.; Gorby, Y.A.; Goodwin, S.

    1993-01-01

    The gram-negative metal-reducing microorganism, previously known as strain GS-15, was further characterized. This strict anaerobe oxidizes several short-chain fatty acids, alcohols, and monoaromatic compounds with Fe(III) as the sole electron acceptor. Furthermore, acetate is also oxidized with the reduction of Mn(IV), U(VI), and nitrate. In whole cell suspensions, the c-type cytochrome(s) of this organism was oxidized by physiological electron acceptors and also by gold, silver, mercury, and chromate. Menaquinone was recovered in concentrations comparable to those previously found in gram-negative sulfate reducers. Profiles of the phospholipid ester-linked fatty acids indicated that both the anaerobic desaturase and the branched pathways for fatty acid biosynthesis were operative. The organism contained three lipopolysaccharide hydroxy fatty acids which have not been previously reported in microorganisms, but have been observed in anaerobic freshwater sediments. The 16S rRNA sequence indicated that this organism belongs in the delta proteobacteria. Its closest known relative is Desulfuromonas acetoxidans. The name Geobacter metallireducens is proposed.

  1. Reduction of ferrihydrite with adsorbed and coprecipitated organic matter: microbial reduction by Geobacter bremensis vs. abiotic reduction by Na-dithionite

    NASA Astrophysics Data System (ADS)

    Eusterhues, K.; Hädrich, A.; Neidhardt, J.; Küsel, K.; Keller, T. F.; Jandt, K. D.; Totsche, K. U.

    2014-09-01

    Ferrihydrite is a widespread poorly crystalline Fe oxide which becomes easily coated by natural organic matter in the environment. This mineral-bound organic matter entirely changes the mineral surface properties and therefore the reactivity of the original mineral. Here, we investigated 2-line ferrihydrite, ferrihydrite with adsorbed organic matter, and ferrihydrite coprecipitated with organic matter for microbial and abiotic reduction of Fe(III). Ferrihydrite-organic matter associations with different organic matter loadings were reduced either by Geobacter bremensis or abiotically by Na-dithionite. Both types of experiments showed decreasing initial Fe-reduction rates and decreasing degrees of reduction with increasing amounts of mineral-bound organic matter. At similar organic matter loadings, coprecipitated ferrihydrites were more reactive than ferrihydrites with adsorbed organic matter. The difference can be explained by the smaller crystal size and poor crystallinity of such coprecipitates. At small organic matter loadings the poor crystallinity of coprecipitates led to even faster Fe-reduction rates than found for pure ferrihydrite. The amount of mineral-bound organic matter also affected the formation of secondary minerals: goethite was only found after reduction of organic matter-free ferrihydrite and siderite was only detected when ferrihydrites with relatively low amounts of mineral-bound organic matter were reduced. We conclude that direct contact of G. bremensis to the Fe oxide mineral surface was inhibited by attached organic matter. Consequently, mineral-bound organic matter shall be taken into account as a factor in slowing down reductive dissolution.

  2. Nanowires, Capacitors, and Other Novel Outer-Surface Components Involved in Electron Transfer to Fe(III) Oxides in Geobacter Species

    SciTech Connect

    Lovley, Derek R.

    2006-06-01

    In the first 8 months of this grant we initiated investigations on several of the new hypothesis in the proposal. Hypothesis 1-4 deal with the mechanisms of conductivity along the length of the pili of Geobacter sulfurreducens. The initial approach to evaluating these mechanisms was to attempt to measure end-to-end conductivity of the pili with lithographically-patterned electrodes in which conductive strips of graphite are placed on an insulating silicon dioxide surface. To our knowledge this is the first time that such conductivity measurements have been attempted with natural protein structures. Conductivity along the pili was measured with two methods. In the first method, the conductivity of the pili was measured by applying a voltage between the lithographic electrodes. In the second method, the voltage was applied between one lithographic electrode and the AFM tip. To date, we have not been able to consistently measure current of pili because of an inability to readily observe pili on the nanoelectrode system. Although we were able to make conductivity measurements in this manner on one attempt, we have not been able to consistently obtain appropriate preparations to consistently make such measurements. Therefore, we are evaluating strategies to modify this approach to make it more consistent.

  3. Lignocellulosic hydrolysates and extracellular electron shuttles for H2 production using co-culture fermentation with Clostridium beijerinckii and Geobacter metallireducens.

    PubMed

    Zhang, Xinyu; Ye, Xiaofeng; Guo, Bin; Finneran, Kevin T; Zilles, Julie L; Morgenroth, Eberhard

    2013-11-01

    A co-culture of Clostridium beijerinckii and Geobacter metallireducens with AH2QDS produced hydrogen from lignocellulosic hydrolysates (biomass of Miscanthus prepared by hydrothermal treatment with dilute acids). This co-culture system enhanced hydrogen production from lignocellulosic hydrolysates by improving substrate utilization and diminishing acetate accumulation, despite the presence of fermentation inhibitors in the hydrolysates. The improvements were greater for xylose-rich hydrolysates. The increase in maximum cumulative hydrogen production for hydrolysates with glucose:xylose mass ratios of 1:0.2, 1:1 and 1:10 g/g was 0%, 22% and 11%, respectively. Alternative extracellular electron shuttles (EES), including indigo dye, juglone, lawsone, fulvic acids and humic acids, were able to substitute for AH2QDS, improving hydrogen production in the co-culture system using xylose as model substrate. Increased utilization of xylose-rich hydrolysates and substitution of alternative EES make the co-culture with EES system a more attractive strategy for industrial biohydrogen production. PMID:23994308

  4. Abundance of the Multiheme c-Type Cytochrome OmcB Increases in Outer Biofilm Layers of Electrode-Grown Geobacter sulfurreducens

    PubMed Central

    Stephen, Camille S.; LaBelle, Edward V.; Brantley, Susan L.; Bond, Daniel R.

    2014-01-01

    When Geobacter sulfurreducens utilizes an electrode as its electron acceptor, cells embed themselves in a conductive biofilm tens of microns thick. While environmental conditions such as pH or redox potential have been shown to change close to the electrode, less is known about the response of G. sulfurreducens to growth in this biofilm environment. To investigate whether respiratory protein abundance varies with distance from the electrode, antibodies against an outer membrane multiheme cytochrome (OmcB) and cytoplasmic acetate kinase (AckA) were used to determine protein localization in slices spanning ∼25 µm-thick G. sulfurreducens biofilms growing on polished electrodes poised at +0.24 V (vs. Standard Hydrogen Electrode). Slices were immunogold labeled post-fixing, imaged via transmission electron microscopy, and digitally reassembled to create continuous images allowing subcellular location and abundance per cell to be quantified across an entire biofilm. OmcB was predominantly localized on cell membranes, and 3.6-fold more OmcB was detected on cells 10–20 µm distant from the electrode surface compared to inner layers (0–10 µm). In contrast, acetate kinase remained constant throughout the biofilm, and was always associated with the cell interior. This method for detecting proteins in intact conductive biofilms supports a model where the utilization of redox proteins changes with depth. PMID:25090411

  5. Geobacter, Anaeromyxobacter and Anaerolineae populations are enriched on anodes of root exudate-driven microbial fuel cells in rice field soil.

    PubMed

    Cabezas, Angela; Pommerenke, Bianca; Boon, Nico; Friedrich, Michael W

    2015-06-01

    Plant-based sediment microbial fuel cells (PMFCs) couple the oxidation of root exudates in living rice plants to current production. We analysed the composition of the microbial community on anodes from PMFC with natural rice field soil as substratum for rice by analysing 16S rRNA as an indicator of microbial activity and diversity. Terminal restriction fragment length polymorphism (TRFLP) analysis indicated that the active bacterial community on anodes from PMFCs differed strongly compared with controls. Moreover, clones related to Deltaproteobacteria and Chloroflexi were highly abundant (49% and 21%, respectively) on PMFCs anodes. Geobacter (19%), Anaeromyxobacter (15%) and Anaerolineae (17%) populations were predominant on anodes with natural rice field soil and differed strongly from those previously detected with potting soil. In open circuit (OC) control PMFCs, not allowing electron transfer, Deltaproteobacteria (33%), Betaproteobacteria (20%), Chloroflexi (12%), Alphaproteobacteria (10%) and Firmicutes (10%) were detected. The presence of an electron accepting anode also had a strong influence on methanogenic archaea. Hydrogenotrophic methanogens were more active on PMFC (21%) than on OC controls (10%), whereas acetoclastic Methanosaetaceae were more active on OC controls (31%) compared with PMFCs (9%). In conclusion, electron accepting anodes and rice root exudates selected for distinct potential anode-reducing microbial populations in rice soil inoculated PMFC. PMID:25683328

  6. Genetic evidence that the degradation of para-cresol by Geobacter metallireducens is catalyzed by the periplasmic para-cresol methylhydroxylase.

    PubMed

    Chaurasia, Akhilesh Kumar; Tremblay, Pier-Luc; Holmes, Dawn E; Zhang, Tian

    2015-10-01

    Two pathways for para-cresol (p-cresol) degradation by anaerobic bacteria have been elucidated; one involves fumarate addition at the methyl group of p-cresol by a hydroxylbenzylsuccinate synthase protein while the other utilizes a methylhydroxylase protein (PCMH) to catalyze hydroxylation of the methyl group of p-cresol. In Geobacter metallireducens, in vitro enzymatic assays showed that p-cresol is degraded via the methylhydroxylation pathway. However, prior to this study these results had not been confirmed by genetic analyses. In this work, the gene coding for benzylsuccinate-CoA dehydrogenase (bbsG), an enzyme required for toluene degradation by G. metallireducens that is homologous to the p-hydroxybenzylsuccinyl-CoA dehydrogenase involved in p-cresol degradation by Desulfobacula toluolica Tol2 via fumarate addition, and the gene encoding the alpha prime subunit of PCMH (pcmI), were deleted to investigate the possibility of co-existing p-cresol degradation pathways in G. metallireducens. The absence of a functional PcmI protein completely inhibited p-cresol degradation, while deletion of the bbsG gene had little impact. These results further support the observation that G. metallireducens utilizes a PCMH-initiated pathway for p-cresol degradation. PMID:26316547

  7. Two Isoforms of Geobacter sulfurreducens PilA Have Distinct Roles in Pilus Biogenesis, Cytochrome Localization, Extracellular Electron Transfer, and Biofilm Formation

    PubMed Central

    Richter, Lubna V.; Sandler, Steven J.

    2012-01-01

    Type IV pili of Geobacter sulfurreducens are composed of PilA monomers and are essential for long-range extracellular electron transfer to insoluble Fe(III) oxides and graphite anodes. A previous analysis of pilA expression indicated that transcription was initiated at two positions, with two predicted ribosome-binding sites and translation start codons, potentially producing two PilA preprotein isoforms. The present study supports the existence of two functional translation start codons for pilA and identifies two isoforms (short and long) of the PilA preprotein. The short PilA isoform is found predominantly in an intracellular fraction. It seems to stabilize the long isoform and to influence the secretion of several outer-surface c-type cytochromes. The long PilA isoform is required for secretion of PilA to the outer cell surface, a process that requires coexpression of pilA with nine downstream genes. The long isoform was determined to be essential for biofilm formation on certain surfaces, for optimum current production in microbial fuel cells, and for growth on insoluble Fe(III) oxides. PMID:22408162

  8. Evaluation of a Genome-Scale In Silico Metabolic Model for Geobacter metallireducens Using Proteomic Data from a Field Biostimulation Experiment

    SciTech Connect

    Fang, Yilin; Wilkins, Michael J.; Yabusaki, Steven B.; Lipton, Mary S.; Long, Philip E.

    2012-12-12

    Biomass and shotgun global proteomics data that reflected relative protein abundances from samples collected during the 2008 experiment at the U.S. Department of Energy Integrated Field-Scale Subsurface Research Challenge site in Rifle, Colorado, provided an unprecedented opportunity to validate a genome-scale metabolic model of Geobacter metallireducens and assess its performance with respect to prediction of metal reduction, biomass yield, and growth rate under dynamic field conditions. Reconstructed from annotated genomic sequence, biochemical, and physiological data, the constraint-based in silico model of G. metallireducens relates an annotated genome sequence to the physiological functions with 697 reactions controlled by 747 enzyme-coding genes. Proteomic analysis showed that 180 of the 637 G. metallireducens proteins detected during the 2008 experiment were associated with specific metabolic reactions in the in silico model. When the field-calibrated Fe(III) terminal electron acceptor process reaction in a reactive transport model for the field experiments was replaced with the genome-scale model, the model predicted that the largest metabolic fluxes through the in silico model reactions generally correspond to the highest abundances of proteins that catalyze those reactions. Central metabolism predicted by the model agrees well with protein abundance profiles inferred from proteomic analysis. Model discrepancies with the proteomic data, such as the relatively low fluxes through amino acid transport and metabolism, revealed pathways or flux constraints in the in silico model that could be updated to more accurately predict metabolic processes that occur in the subsurface environment.

  9. Hydrogen Production by the Thermophilic Bacterium Thermotoga neapolitana.

    PubMed

    Pradhan, Nirakar; Dipasquale, Laura; d'Ippolito, Giuliana; Panico, Antonio; Lens, Piet N L; Esposito, Giovanni; Fontana, Angelo

    2015-01-01

    As the only fuel that is not chemically bound to carbon, hydrogen has gained interest as an energy carrier to face the current environmental issues of greenhouse gas emissions and to substitute the depleting non-renewable reserves. In the last years, there has been a significant increase in the number of publications about the bacterium Thermotoga neapolitana that is responsible for production yields of H2 that are among the highest achievements reported in the literature. Here we present an extensive overview of the most recent studies on this hyperthermophilic bacterium together with a critical discussion of the potential of fermentative production by this bacterium. The review article is organized into sections focused on biochemical, microbiological and technical issues, including the effect of substrate, reactor type, gas sparging, temperature, pH, hydraulic retention time and organic loading parameters on rate and yield of gas production. PMID:26053393

  10. Hydrogen Production by the Thermophilic Bacterium Thermotoga neapolitana

    PubMed Central

    Pradhan, Nirakar; Dipasquale, Laura; d’Ippolito, Giuliana; Panico, Antonio; Lens, Piet N. L.; Esposito, Giovanni; Fontana, Angelo

    2015-01-01

    As the only fuel that is not chemically bound to carbon, hydrogen has gained interest as an energy carrier to face the current environmental issues of greenhouse gas emissions and to substitute the depleting non-renewable reserves. In the last years, there has been a significant increase in the number of publications about the bacterium Thermotoga neapolitana that is responsible for production yields of H2 that are among the highest achievements reported in the literature. Here we present an extensive overview of the most recent studies on this hyperthermophilic bacterium together with a critical discussion of the potential of fermentative production by this bacterium. The review article is organized into sections focused on biochemical, microbiological and technical issues, including the effect of substrate, reactor type, gas sparging, temperature, pH, hydraulic retention time and organic loading parameters on rate and yield of gas production. PMID:26053393

  11. Extreme Ionizing-Radiation-Resistant Bacterium

    NASA Technical Reports Server (NTRS)

    Vaishampayan, Parag A.; Venkateswaran, Kasthuri J.; Schwendner, Petra

    2013-01-01

    potential for transfer, and subsequent proliferation, on another solar body such as Mars and Europa. These organisms are more likely to escape planetary protection assays, which only take into account presence of spores. Hence, presences of extreme radiation-resistant Deinococcus in the cleanroom facility where spacecraft are assembled pose a serious risk for integrity of life-detection missions. The microorganism described herein was isolated from the surfaces of the cleanroom facility in which the Phoenix Lander was assembled. The isolated bacterial strain was subjected to a comprehensive polyphasic analysis to characterize its taxonomic position. This bacterium exhibits very low 16SrRNA similarity with any other environmental isolate reported to date. Both phenotypic and phylogenetic analyses clearly indicate that this isolate belongs to the genus Deinococcus and represents a novel species. The name Deinococcus phoenicis was proposed after the Phoenix spacecraft, which was undergoing assembly, testing, and launch operations in the spacecraft assembly facility at the time of isolation. D. phoenicis cells exhibited higher resistance to ionizing radiation (cobalt-60; 14 kGy) than the cells of the D. radiodurans (5 kGy). Thus, it is in the best interest of NASA to thoroughly characterize this organism, which will further assess in determining the potential for forward contamination. Upon the completion of genetic and physiological characteristics of D. phoenicis, it will be added to a planetary protection database to be able to further model and predict the probability of forward contamination.

  12. Extreme Ionizing-Radiation-Resistant Bacterium

    NASA Technical Reports Server (NTRS)

    Vaishampayan, Parag A.; Venkateswaran, Kasthuri J.; Schwendner, Petra

    2012-01-01

    potential for transfer, and subsequent proliferation, on another solar body such as Mars and Europa. These organisms are more likely to escape planetary protection assays, which only take into account presence of spores. Hence, presences of extreme radiation-resistant Deinococcus in the cleanroom facility where spacecraft are assembled pose a serious risk for integrity of life-detection missions. The microorganism described herein was isolated from the surfaces of the cleanroom facility in which the Phoenix Lander was assembled. The isolated bacterial strain was subjected to a comprehensive polyphasic analysis to characterize its taxonomic position. This bacterium exhibits very low 16SrRNA similarity with any other environmental isolate reported to date. Both phenotypic and phylogenetic analyses clearly indicate that this isolate belongs to the genus Deinococcus and represents a novel species. The name Deinococcus phoenicis was proposed after the Phoenix spacecraft, which was undergoing assembly, testing, and launch operations in the spacecraft assembly facility at the time of isolation. D. phoenicis cells exhibited higher resistance to ionizing radiation (cobalt-60; 14 kGy) than the cells of the D. radiodurans (5 kGy). Thus, it is in the best interest of NASA to thoroughly characterize this organism, which will further assess in determining the potential for forward contamination. Upon the completion of genetic and physiological characteristics of D. phoenicis, it will be added to a planetary protection database to be able to further model and predict the probability of forward contamination.

  13. Microcalorimetric Measurements of Glucose Metabolism by Marine Bacterium Vibrio alginolyticus

    PubMed Central

    Gordon, Andrew S.; Millero, Frank J.; Gerchakov, Sol M.

    1982-01-01

    Microcalorimetric measurements of heat production from glucose by Vibrio alginolyticus were made to assess the viability of calorimetry as a technique for studying the metabolism of marine bacteria at organic nutrient concentrations found in marine waters. The results show that the metabolism of glucose by this bacterium can be measured by calorimetry at submicromolar concentrations. A linear correlation between glucose concentration and total heat production was observed over a concentration range of 8 mM to 0.35 μM. It is suggested that these data indicate a constant efficiency of metabolism for this bacterium over the wide range of glucose concentrations studied. PMID:16346131

  14. Draft Genome Sequence of Oral Bacterium Streptococcus mutans JH1140

    PubMed Central

    Escano, Jerome; Deng, Peng; Lu, Shi-En

    2016-01-01

    Streptococcus mutans JH1140 is an oral bacterium known to produce the bacteriocin mutacin 1140, and the strain has been genetically engineered to combat dental caries. Here, we report the 2.0-Mb draft genome of S. mutans JH1140. This genome provides new insights into the strain’s superior colonization properties and its utility in replacement therapy. PMID:27257196

  15. Complete Genome of the Cellulolytic Ruminal Bacterium Ruminococcus albus 7

    SciTech Connect

    Suen, Garret; Stevenson, David M; Bruce, David; Chertkov, Olga; Copeland, A; Cheng, Jan-Fang; Detter, J. Chris; Goodwin, Lynne A.; Han, Cliff; Hauser, Loren John; Ivanova, N; Kyrpides, Nikos C; Land, Miriam L; Lapidus, Alla L.; Lucas, Susan; Ovchinnikova, Galina; Pitluck, Sam; Tapia, Roxanne; Woyke, Tanja; Boyum, Julie; Mead, David; Weimer, Paul J

    2011-01-01

    Ruminococcus albus 7 is a highly cellulolytic ruminal bacterium that is a member of the phylum Firmicutes. Here, we describe the complete genome of this microbe. This genome will be useful for rumen microbiology and cellulosome biology and in biofuel production, as one of its major fermentation products is ethanol.

  16. Complete genome of the cellulolytic ruminal bacterium Ruminococcus albus 7

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ruminococcus albus 7 is a highly cellulolytic rumen bacterium that is a member of the phylum Firmicutes. Here, we describe the complete genome for this microbe. This genome will be useful for rumen microbiology, cellulosome biology, and in biofuel production, as one of its major fermentation product...

  17. Draft Genome Sequence of Oral Bacterium Streptococcus mutans JH1140.

    PubMed

    Escano, Jerome; Deng, Peng; Lu, Shi-En; Smith, Lief

    2016-01-01

    Streptococcus mutans JH1140 is an oral bacterium known to produce the bacteriocin mutacin 1140, and the strain has been genetically engineered to combat dental caries. Here, we report the 2.0-Mb draft genome of S. mutans JH1140. This genome provides new insights into the strain's superior colonization properties and its utility in replacement therapy. PMID:27257196

  18. Molecular interaction studies revealed the bifunctional behavior of triheme cytochrome PpcA from Geobacter sulfurreducens toward the redox active analog of humic substances.

    PubMed

    Dantas, Joana M; Kokhan, Oleksandr; Pokkuluri, P Raj; Salgueiro, Carlos A

    2015-10-01

    Humic substances (HS) constitute a significant fraction of natural organic matter in terrestrial and aquatic environments and can act as terminal electron acceptors in anaerobic microbial respiration. Geobacter sulfurreducens has a remarkable respiratory versatility and can utilize the HS analog anthraquinone-2,6-disulfonate (AQDS) as a terminal electron acceptor or its reduced form (AH2QDS) as an electron donor. Previous studies set the triheme cytochrome PpcA as a key component for HS respiration in G. sulfurreducens, but the process is far from fully understood. In this work, NMR chemical shift perturbation measurements were used to map the interaction region between PpcA and AH2QDS, and to measure their binding affinity. The results showed that the AH2QDS binds reversibly to the more solvent exposed edge of PpcA heme IV. The NMR and visible spectroscopies coupled to redox measurements were used to determine the thermodynamic parameters of the PpcA:quinol complex. The higher reduction potential of heme IV (-127mV) compared to that of AH2QDS (-184mV) explains why the electron transfer is more favorable in the case of reduction of the cytochrome by the quinol. The clear evidence obtained for the formation of an electron transfer complex between AH2QDS and PpcA, combined with the fact that the protein also formed a redox complex with AQDS, revealed for the first time the bifunctional behavior of PpcA toward an analog of the HS. Such behavior might confer selective advantage to G. sulfurreducens, which can utilize the HS in any redox state available in the environment for its metabolic needs. PMID:26071085

  19. Reduction of ferrihydrite with adsorbed and coprecipitated organic matter: microbial reduction by Geobacter bremensis vs. abiotic reduction by Na-dithionite

    NASA Astrophysics Data System (ADS)

    Eusterhues, K.; Hädrich, A.; Neidhardt, J.; Küsel, K.; Keller, T. F.; Jandt, K. D.; Totsche, K. U.

    2014-04-01

    Ferrihydrite (Fh) is a widespread poorly crystalline Fe oxide which becomes easily coated by natural organic matter (OM) in the environment. This mineral-bound OM entirely changes the mineral surface properties and therefore the reactivity of the original mineral. Here, we investigated the reactivity of 2-line Fh, Fh with adsorbed OM and Fh coprecipitated with OM towards microbial and abiotic reduction of Fe(III). As a surrogate for dissolved soil OM we used a water extract of a Podzol forest floor. Fh-OM associations with different OM-loadings were reduced either by Geobacter bremensis or abiotically by Na-dithionite. Both types of experiments showed decreasing initial Fe reduction rates and decreasing degrees of reduction with increasing amounts of mineral-bound OM. At similar OM-loadings, coprecipitated Fhs were more reactive than Fhs with adsorbed OM. The difference can be explained by the smaller crystal size and poor crystallinity of such coprecipitates. At small OM loadings this led to even faster Fe reduction rates than found for pure Fh. The amount of mineral-bound OM also affected the formation of secondary minerals: goethite was only found after reduction of OM-free Fh and siderite was only detected when Fhs with relatively low amounts of mineral-bound OM were reduced. We conclude that direct contact of G. bremensis to the Fe oxide mineral surface was inhibited when blocked by OM. Consequently, mineral-bound OM shall be taken into account besides Fe(II) accumulation as a further widespread mechanism to slow down reductive dissolution.

  20. Solution Structure of 4'-Phosphopantetheine - GmACP3 from Geobacter Metallireducens: A Specialized Acyl Carrier Protein with Atypical Structural Features and a Putative Role in Lipopolysaccharide Biosyntheses

    SciTech Connect

    Ramelot, Theresa A.; Smola, Matthew J.; Lee, Hsiau-Wei; Ciccosanti, Colleen; Hamilton, Keith; Acton, Thomas; Xiao, Rong; Everett, John K.; Prestegard, James H.; Montelione, Gaetano; Kennedy, Michael A.

    2011-03-08

    GmACP3 from Geobacter metallireducens is a specialized acyl carrier protein (ACP) whose gene, gmet_2339, is located near genes encoding many proteins involved in lipopolysaccharide (LPS) biosynthesis, indicating a likely function for GmACP3 in LPS production. By overexpression in Escherichia coli, about 50% holo-GmACP3 and 50% apo-GmACP3 were obtained. Apo-GmACP3 exhibited slow precipitation and non-monomeric behavior by 15NNMRrelaxation measurements. Addition of 4'-phosphopantetheine (4'-PP) via enzymatic conversion by E. coli holo-ACP synthase resulted in stable >95% holo-GmACP3 that was characterized as monomeric by 15N relaxation measurements and had no indication of conformational exchange. We have determined a high-resolution solution structure of holo-GmACP3 by standard NMR methods, including refinement with two sets of NH residual dipolar couplings, allowing for a detailed structural analysis of the interactions between 4'-PP and GmACP3. Whereas the overall four helix bundle topology is similar to previously solved ACP structures, this structure has unique characteristics, including an ordered 4'-PP conformation that places the thiol at the entrance to a central hydrophobic cavity near a conserved hydrogen-bonded Trp-His pair. These residues are part of a conservedWDSLxH/N motif found in GmACP3 and its orthologs. The helix locations and the large hydrophobic cavity are more similar tomediumand long-chain acyl-ACPs than to other apo- and holo-ACP structures. Taken together, structural characterization along with bioinformatic analysis of nearby genes suggests that GmACP3 is involved in lipid A acylation, possibly by atypical long-chain hydroxy fatty acids, and potentially is involved in synthesis of secondary metabolites.

  1. Adaptation of anaerobically grown Thauera aromatica, Geobacter sulfurreducens and Desulfococcus multivorans to organic solvents on the level of membrane fatty acid composition

    PubMed Central

    Duldhardt, Ilka; Gaebel, Julia; Chrzanowski, Lukasz; Nijenhuis, Ivonne; Härtig, Claus; Schauer, Frieder; Heipieper, Hermann J.

    2010-01-01

    Summary The effect of different solvents and pollutants on the cellular fatty acid composition of three bacterial strains: Thauera aromatica, Geobacter sulfurreducens and Desulfococcus multivorans, representatives of diverse predominant anaerobic metabolisms was investigated. As the prevailing adaptive mechanism in cells of T. aromatica and G. sulfurreducens whose cellular fatty acids patterns were dominated by palmitic acid (C16:0) and palmitoleic acid (C16:1cis), the cells reacted by an increase in the degree of saturation of their membrane fatty acids when grown in the presence of sublethal concentrations of the chemicals. Next to palmitic acid C16:0, the fatty acid pattern of D. multivorans was dominated by anteiso‐branched fatty acids which are characteristic for several sulfate‐reducing bacteria. The cells responded to the solvents with an increase in the ratio of straight‐chain saturated (C14:0, C16:0, C18:0) to anteiso‐branched fatty acids (C15:0anteiso, C17:0anteiso, C17:1anteisoΔ9cis). The results show that anaerobic bacteria react with similar mechanisms like aerobic bacteria in order to adapt their membrane to toxic organic solvents. The observed adaptive modifications on the level of membrane fatty acid composition can only be carried out with de novo synthesis of the fatty acids which is strictly related to cell growth. As the growth rates of anaerobic bacteria are generally much lower than in the so far investigated aerobic bacteria, this adaptive response needs more time in anaerobic bacteria. This might be one explanation for the previously observed higher sensitivity of anaerobic bacteria when compared with aerobic ones. PMID:21255320

  2. Adaptation of anaerobically grown Thauera aromatica, Geobacter sulfurreducens and Desulfococcus multivorans to organic solvents on the level of membrane fatty acid composition.

    PubMed

    Duldhardt, Ilka; Gaebel, Julia; Chrzanowski, Lukasz; Nijenhuis, Ivonne; Härtig, Claus; Schauer, Frieder; Heipieper, Hermann J

    2010-03-01

    The effect of different solvents and pollutants on the cellular fatty acid composition of three bacterial strains: Thauera aromatica, Geobacter sulfurreducens and Desulfococcus multivorans, representatives of diverse predominant anaerobic metabolisms was investigated. As the prevailing adaptive mechanism in cells of T. aromatica and G. sulfurreducens whose cellular fatty acids patterns were dominated by palmitic acid (C16:0) and palmitoleic acid (C16:1cis), the cells reacted by an increase in the degree of saturation of their membrane fatty acids when grown in the presence of sublethal concentrations of the chemicals. Next to palmitic acid C16:0, the fatty acid pattern of D. multivorans was dominated by anteiso-branched fatty acids which are characteristic for several sulfate-reducing bacteria. The cells responded to the solvents with an increase in the ratio of straight-chain saturated (C14:0, C16:0, C18:0) to anteiso-branched fatty acids (C15:0anteiso, C17:0anteiso, C17:1anteisoΔ9cis). The results show that anaerobic bacteria react with similar mechanisms like aerobic bacteria in order to adapt their membrane to toxic organic solvents. The observed adaptive modifications on the level of membrane fatty acid composition can only be carried out with de novo synthesis of the fatty acids which is strictly related to cell growth. As the growth rates of anaerobic bacteria are generally much lower than in the so far investigated aerobic bacteria, this adaptive response needs more time in anaerobic bacteria. This might be one explanation for the previously observed higher sensitivity of anaerobic bacteria when compared with aerobic ones. PMID:21255320

  3. Purification and Characterization of OmcZ, an Outer-Surface, Octaheme c-Type Cytochrome Essential for Optimal Current Production by Geobacter sulfurreducens▿ †

    PubMed Central

    Inoue, Kengo; Qian, Xinlei; Morgado, Leonor; Kim, Byoung-Chan; Mester, Tünde; Izallalen, Mounir; Salgueiro, Carlos A.; Lovley, Derek R.

    2010-01-01

    Previous studies have demonstrated that Geobacter sulfurreducens requires the c-type cytochrome OmcZ, which is present in large (OmcZL; 50-kDa) and small (OmcZS; 30-kDa) forms, for optimal current production in microbial fuel cells. This protein was further characterized to aid in understanding its role in current production. Subcellular-localization studies suggested that OmcZS was the predominant extracellular form of OmcZ. N- and C-terminal amino acid sequence analysis of purified OmcZS and molecular weight measurements indicated that OmcZS is a cleaved product of OmcZL retaining all 8 hemes, including 1 heme with the unusual c-type heme-binding motif CX14CH. The purified OmcZS was remarkably thermally stable (thermal-denaturing temperature, 94.2°C). Redox titration analysis revealed that the midpoint reduction potential of OmcZS is approximately −220 mV (versus the standard hydrogen electrode [SHE]) with nonequivalent heme groups that cover a large reduction potential range (−420 to −60 mV). OmcZS transferred electrons in vitro to a diversity of potential extracellular electron acceptors, such as Fe(III) citrate, U(VI), Cr(VI), Au(III), Mn(IV) oxide, and the humic substance analogue anthraquinone-2,6-disulfonate, but not Fe(III) oxide. The biochemical properties and extracellular localization of OmcZ suggest that it is well suited for promoting electron transfer in current-producing biofilms of G. sulfurreducens. PMID:20400562

  4. Evaluation of a Genome-Scale In Silico Metabolic Model for Geobacter metallireducens by Using Proteomic Data from a Field Biostimulation Experiment

    PubMed Central

    Fang, Yilin; Yabusaki, Steven B.; Lipton, Mary S.; Long, Philip E.

    2012-01-01

    Accurately predicting the interactions between microbial metabolism and the physical subsurface environment is necessary to enhance subsurface energy development, soil and groundwater cleanup, and carbon management. This study was an initial attempt to confirm the metabolic functional roles within an in silico model using environmental proteomic data collected during field experiments. Shotgun global proteomics data collected during a subsurface biostimulation experiment were used to validate a genome-scale metabolic model of Geobacter metallireducens—specifically, the ability of the metabolic model to predict metal reduction, biomass yield, and growth rate under dynamic field conditions. The constraint-based in silico model of G. metallireducens relates an annotated genome sequence to the physiological functions with 697 reactions controlled by 747 enzyme-coding genes. Proteomic analysis showed that 180 of the 637 G. metallireducens proteins detected during the 2008 experiment were associated with specific metabolic reactions in the in silico model. When the field-calibrated Fe(III) terminal electron acceptor process reaction in a reactive transport model for the field experiments was replaced with the genome-scale model, the model predicted that the largest metabolic fluxes through the in silico model reactions generally correspond to the highest abundances of proteins that catalyze those reactions. Central metabolism predicted by the model agrees well with protein abundance profiles inferred from proteomic analysis. Model discrepancies with the proteomic data, such as the relatively low abundances of proteins associated with amino acid transport and metabolism, revealed pathways or flux constraints in the in silico model that could be updated to more accurately predict metabolic processes that occur in the subsurface environment. PMID:23042184

  5. Global Proteome Response to Deletion of Genes Related to Mercury Methylation and Dissimilatory Metal Reduction Reveals Changes in Respiratory Metabolism in Geobacter sulfurreducens PCA

    DOE PAGESBeta

    Qian, Chen; Johs, Alexander; Chen, Hongmei; Mann, Benjamin F.; Lu, Xia; Abraham, Paul E.; Hettich, Robert L.; Gu, Baohua

    2016-07-27

    Geobacter sulfurreducens PCA can reduce, sorb, and methylate mercury (Hg); however, the underlying biochemical mechanisms of these processes and interdependent metabolic pathways remain unknown. In this study, shotgun proteomics was used to compare global proteome profiles between wild-type G. sulfurreducens PCA and two mutant strains: a ΔhgcAB mutant, which is deficient in two genes known to be essential for Hg methylation and a ΔomcBESTZ mutant, which is deficient in five outer membrane c-type cytochromes and thus impaired in its ability for dissimilatory metal ion reduction. We were able to delineate the global response of G. sulfurreducens PCA in both mutantsmore » and identify cellular networks and metabolic pathways that were affected by the loss of these genes. Deletion of hgcAB increased the relative abundances of proteins implicated in extracellular electron transfer, including most of the c-type cytochromes, PilA-C, and OmpB, and is consistent with a previously observed increase in Hg reduction in the hgcAB mutant. Deletion of omcBESTZ was found to significantly increase relative abundances of various methyltransferases, suggesting that a loss of dissimilatory reduction capacity results in elevated activity among one-carbon metabolic pathways and thus increased methylation. We show that G. sulfurreducens PCA encodes only the folate branch of the Wood Ljungdahl pathway, and proteins associated with the folate branch were found at lower abundance in the ΔhgcAB mutant strain than the wild type. In conclusion, this observation supports the hypothesis that the function of HgcA and HgcB may be linked to one carbon metabolism through the folate branch of the Wood-Ljungdahl pathway by providing methyl groups required for Hg methylation.« less

  6. Structures and solution properties of two novel periplasmic sensor domains with c-type heme from chemotaxis proteins of Geobacter sulfurreducens : implications for signal transduction.

    SciTech Connect

    Pokkuluri, P. R.; Pessanha, M.; Londer, Y. Y.; Wood, S. J.; Duke, N. E. C.; Wilton, R.; Catarino, T.; Salgueiro, C. A.; Schiffer, M.; Biosciences Division; Univ.Nova de Lisboa; Insti. de Tecnologia Quimica e Biologica

    2008-04-11

    Periplasmic sensor domains from two methyl-accepting chemotaxis proteins from Geobacter sulfurreducens (encoded by genes GSU0935 and GSU0582) were expressed in Escherichia coli. The sensor domains were isolated, purified, characterized in solution, and their crystal structures were determined. In the crystal, both sensor domains form swapped dimers and show a PAS-type fold. The swapped segment consists of two helices of about 45 residues at the N terminus with the hemes located between the two monomers. In the case of the GSU0582 sensor, the dimer contains a crystallographic 2-fold symmetry and the heme is coordinated by an axial His and a water molecule. In the case of the GSU0935 sensor, the crystals contain a non-crystallographic dimer, and surprisingly, the coordination of the heme in each monomer is different; monomer A heme has His-Met ligation and monomer B heme has His-water ligation as found in the GSU0582 sensor. The structures of these sensor domains are the first structures of PAS domains containing covalently bound heme. Optical absorption, electron paramagnetic resonance and NMR spectroscopy have revealed that the heme groups of both sensor domains are high-spin and low-spin in the oxidized and reduced forms, respectively, and that the spin-state interconversion involves a heme axial ligand replacement. Both sensor domains bind NO in their ferric and ferrous forms but bind CO only in the reduced form. The binding of both NO and CO occurs via an axial ligand exchange process, and is fully reversible. The reduction potentials of the sensor domains differ by 95 mV (-156 mV and -251 mV for sensors GSU0582 and GSU0935, respectively). The swapped dimerization of these sensor domains and redox-linked ligand switch might be related to the mechanism of signal transduction by these chemotaxis proteins.

  7. Isolation of a bacterium capable of degrading peanut hull lignin

    SciTech Connect

    Kerr, T.A.; Kerr, R.D.; Benner, R.

    1983-11-01

    Thirty-seven bacterial strains capable of degrading peanut hull lignin were isolated by using four types of lignin preparations and hot-water-extracted peanut hulls. One of the isolates, tentatively identified as Arthrobacter species, was capable of utilizing all four lignin preparations as well as extracted peanut hulls as a sole source of carbon. The bacterium was also capable of degrading specifically labeled (/sup 14/C) lignin-labeled lignocellulose and (/sup 14/C)cellulose-labeled lignocellulose from the cordgrass Spartina alterniflora and could also degrade (/sup 14/C) Kraft lignin from slash pine. After 10 days of incubation with (/sup 14/C) cellulose-labeled lignocellulose or (/sup 14/C) lignin-labeled lignocellulose from S. alterniflora, the bacterium mineralized 6.5% of the polysaccharide component and 2.9% of the lignin component. (Refs. 24).

  8. A Streamlined Strategy for Biohydrogen Production with an Alkaliphilic Bacterium

    SciTech Connect

    Elias, Dwayne A; Wall, Judy D.; Mormile, Dr. Melanie R.; Begemann, Matthew B

    2012-01-01

    Biofuels are anticipated to enable a shift from fossil fuels for renewable transportation and manufacturing fuels, with biohydrogen considered attractive since it could offer the largest reduction of global carbon budgets. Currently, biohydrogen production remains inefficient and heavily fossil fuel-dependent. However, bacteria using alkali-treated biomass could streamline biofuel production while reducing costs and fossil fuel needs. An alkaliphilic bacterium, Halanaerobium strain sapolanicus, is described that is capable of biohydrogen production at levels rivaling neutrophilic strains, but at pH 11 and hypersaline conditions. H. sapolanicus ferments a variety of 5- and 6- carbon sugars derived from hemicellulose and cellulose including cellobiose, and forms the end products hydrogen and acetate. Further, it can also produce biohydrogen from switchgrass and straw pretreated at temperatures far lower than any previously reported and in solutions compatible with growth. Hence, this bacterium can potentially increase the efficiency and efficacy of biohydrogen production from renewable biomass resources.

  9. Delta8(14)-steroids in the bacterium Methylococcus capsulatus.

    PubMed Central

    Bouvier, P; Rohmer, M; Benveniste, P; Ourisson, G

    1976-01-01

    The 4,4-dimethyl and 4alpha-methyl sterols of the bacterium Methylococcus capsulatus were identified as 4,4-dimethyl- and 4alpha-methyl-5alpha-cholest-8(14)-en-3beta-ol and 4,4-dimethyl- and 4alpha-methyl-5alpha-cholesta-8(14),24-dien-3beta-ol. Sterol biosynthesis is blocked at the level of 4alpha-methyl delta8(14)-sterols. PMID:999649

  10. Thermostable purified endoglucanase from thermophilic bacterium acidothermus cellulolyticus

    DOEpatents

    Tucker, Melvin P.; Grohmann, Karel; Himmel, Michael E.; Mohagheghi, Ali

    1992-01-01

    A substantially purified high molecular weight cellulase enzyme having a molecular weight of between about 156,000 to about 203,400 daltons isolated from the bacterium Acidothermus cellulolyticus (ATCC 43068) and a method of producing it are disclosed. The enzyme is water soluble, possesses both C.sub.1 and C.sub.x types of enzymatic activity, has a high degree of stability toward heat and exhibits both a high optimum temperature activity and high inactivation characteristics.

  11. Isolation and Characterization of a Chlorinated-Pyridinol-Degrading Bacterium

    PubMed Central

    Feng, Y.; Racke, K. D.; Bollag, J.

    1997-01-01

    The isolation of a pure culture of bacteria able to use 3,5,6-trichloro-2-pyridinol (TCP) as a sole source of carbon and energy under aerobic conditions was achieved for the first time. The bacterium was identified as a Pseudomonas sp. and designated ATCC 700113. [2,6-(sup14)C]TCP degradation yielded (sup14)CO(inf2), chloride, and unidentified polar metabolites. PMID:16535719

  12. An on-bacterium flow cytometric immunoassay for protein quantification.

    PubMed

    Lan, Wen-Jun; Lan, Wei; Wang, Hai-Yan; Yan, Lei; Wang, Zhe-Li

    2013-09-01

    The polystyrene bead-based flow cytometric immunoassay has been widely reported. However, the preparation of functional polystyrene bead is still inconvenient. This study describes a simple and easy on-bacterium flow cytometric immunoassay for protein quantification, in which Staphylococcus aureus (SAC) is used as an antibody-antigen carrier to replace the polystyrene bead. The SAC beads were prepared by carboxyfluorescein diacetate succinimidyl ester (CFSE) labeling, paraformaldehyde fixation and antibody binding. Carcinoembryonic antigen (CEA) and cytokeratin-19 fragment (CYFRA 21-1) proteins were used as models in the test system. Using prepared SAC beads, biotinylated proteins, and streptavidin-phycoerythrin (SA-PE), the on-bacterium flow cytometric immunoassay was validated by quantifying CEA and CYFRA 21-1 in sample. Obtained data demonstrated a concordant result between the logarithm of the protein concentration and the logarithm of the PE mean fluorescence intensity (MFI). The limit of detection (LOD) in this immunoassay was at least 0.25 ng/ml. Precision and accuracy assessments appeared that either the relative standard deviation (R.S.D.) or the relative error (R.E.) was <10%. The comparison between this immunoassay and a polystyrene bead-based flow cytometric immunoassay showed a correlation coefficient of 0.998 for serum CEA or 0.996 for serum CYFRA 21-1. In conclusion, the on-bacterium flow cytometric immunoassay may be of use in the quantification of serum protein. PMID:23739299

  13. Glutaryl-coenzyme A dehydrogenase from Geobacter metallireducens - interaction with electron transferring flavoprotein and kinetic basis of unidirectional catalysis.

    PubMed

    Estelmann, Sebastian; Boll, Matthias

    2014-11-01

    Glutaryl-CoA dehydrogenases (GDHs) are FAD containing acyl-CoA dehydrogenases that usually catalyze the dehydrogenation and decarboxylation of glutaryl-CoA to crotonyl-CoA with an electron transferring flavoprotein (ETF) acting as natural electron acceptor. In anaerobic bacteria, GDHs play an important role in the benzoyl-CoA degradation pathway of monocyclic aromatic compounds. In the present study, we identified, purified and characterized the benzoate-induced BamOP as the electron accepting ETF of GDH (BamM) from the Fe(III)-respiring Geobacter metallireducens. The BamOP heterodimer contained FAD and AMP as cofactors. In the absence of an artificial electron acceptor, at pH values above 8, the BamMOP-components catalyzed the expected glutaryl-CoA oxidation to crotonyl-CoA and CO2 ; however, at pH values below 7, the redox-neutral glutaryl-CoA conversion to butyryl-CoA and CO2 became the dominant reaction. This previously unknown, strictly ETF-dependent coupled glutaryl-CoA oxidation/crotonyl-CoA reduction activity was facilitated by an unexpected two-electron transfer between FAD(BamM) and FAD(BamOP) , as well as by the similar redox potentials of the two FAD cofactors in the substrate-bound state. The strict order of electron/proton transfer and C-C-cleavage events including transient charge-transfer complexes did not allow an energetic coupling of electron transfer and decarboxylation. This explains why it was difficult to release the glutaconyl-CoA intermediate from reduced GDH. Moreover, it provides a kinetic rational for the apparent inability of BamM to catalyze the reverse reductive crotonyl-CoA carboxylation, even under thermodynamically favourable conditions. For this reason reductive crotonyl-CoA carboxylation, a key reaction in C2-assimilation via the ethylmalonyl-CoA pathway, is accomplished by a different crotonyl-CoA carboxylase/reductase via a covalent NADPH/ene-adduct. PMID:25223645

  14. Influence of plaque-forming bacterium, Rhodobacteraceae sp. on the growth of Chlorella vulgaris.

    PubMed

    Chen, Zhangran; Zhang, Jingyan; Lei, Xueqian; Zhang, Bangzhou; Cai, Guanjing; Zhang, Huajun; Li, Yi; Zheng, Wei; Tian, Yun; Xu, Hong; Zheng, Tianling

    2014-10-01

    Experiments were conducted to find out the molecular features, infection process of a special alga plaque-forming microorganism and its potential influence on the biomass of Chlorella vulgaris during the infection process. Direct contact between the algal cell and the bacterium may be the primary steps needed for the bacterium to lyse the alga. Addition of C. vulgaris cells into f/2 medium allowed us obtain the object bacterium. The 16S rRNA gene sequence comparisons results showed that the plaque-forming bacterium kept the closest relationship with Labrenzia aggregata IAM 12614(T) at 98.90%. The existence of the bacterium could influence both the dry weight and lipid content of C. vulgaris. This study demonstrated that direct cell wall disruption of C. vulgaris by the bacterium would be a potentially effective method to utilize the biomass of microalgae. PMID:25086475

  15. Fast Neutron Irradiation of the Highly Radioresistant Bacterium Deinococcus Radiodurans

    NASA Astrophysics Data System (ADS)

    Case, Diane Louise

    Fast neutron dose survival curves were generated for the bacterium Deinococcus radiodurans, which is renowned for its unusually high resistance to gamma, x-ray, and ultraviolet radiation, but for which fast neutron response was unknown. The fast neutrons were produced by the University of Massachusetts Lowell 5.5-MV, type CN Van de Graaff accelerator through the ^7Li(p,n)^7 Be reaction by bombarding a thick metallic lithium target with a 4-MeV proton beam. The bacteria were uniformly distributed on 150-mm agar plates and were exposed to the fast neutron beam under conditions of charged particle equilibrium. The plates were subdivided into concentric rings of increasing diameter from the center to the periphery of the plate, within which the average neutron dose was calculated as the product of the precisely known neutron fluence at the average radius of the ring and the neutron energy dependent kerma factor. The neutron fluence and dose ranged from approximately 3 times 1013 n cm^ {-2} to 1 times 1012 n cm^ {-2}, and 200 kilorad to 5 kilorad, respectively, from the center to the periphery of the plate. Percent survival for Deinococcus radiodurans as a function of fast neutron dose was derived from the ability of the irradiated cells to produce visible colonies within each ring compared to that of a nonirradiated control population. The bacterium Escherichia coli B/r (CSH) was irradiated under identical conditions for comparative purposes. The survival response of Deinococcus radiodurans as a result of cumulative fast neutron exposures was also investigated. The quantification of the ability of Deinococcus radiodurans to survive cellular insult from secondary charged particles, which are produced by fast neutron interactions in biological materials, will provide valuable information about damage and repair mechanisms under extreme cellular stress, and may provide new insight into the origin of this bacterium's unprecedented radiation resistance.

  16. The terminal oxidase in the marine bacterium Pseudomonas nautica 617.

    PubMed

    Simpson, H; Denis, M; Malatesta, F

    1997-06-01

    The molecular properties of a novel membrane quinol oxidase from the marine bacterium Pseudomonas nautica 617 are presented. The protein contains 2b hemes/mole which may be distinguished by EPR spectroscopy but not by optical spectroscopy and electrochemistry. Respiration, though being cyanide insensitive, is not inhibited by carbon monoxide and oxygen reduction is carried out only half-way with production of hydrogen peroxide. The terminal oxidase represents, therefore, a unique example in the large family of terminal oxidases known up to date. PMID:9337488

  17. Triazine herbicide resistance in the photosynthetic bacterium Rhodopseudomonas sphaeroides

    SciTech Connect

    Brown, A.E.; Gilbert, C.W.; Guy, R.; Arntzen, C.J.

    1984-10-01

    The photoaffinity herbicide azidoatrazine (2-azido-4-ethylamino-6-isopropylamino-s-triazine) selectively labels the L subunit of the reaction center of the photosynthetic bacterium Rhodopseudomonas sphaeroides. Herbicide-resistant mutants retain the L subunit and have altered binding properties for methylthio- and chloro-substituted triazines as well as altered equilibrium constants for electron transfer between primary and secondary electron acceptors. We suggest that a subtle alteration in the L subunit is responsible for herbicide resistance and that the L subunit is the functional analog of the 32-kDa Q/sub B/ protein of chloroplast membranes. 42 references, 6 figures, 1 table.

  18. Factors Affecting Zebra Mussel Kill by the Bacterium Pseudomonas fluorescens

    SciTech Connect

    Daniel P. Molloy

    2004-02-24

    The specific purpose of this research project was to identify factors that affect zebra mussel kill by the bacterium Pseudomonas fluorescens. Test results obtained during this three-year project identified the following key variables as affecting mussel kill: treatment concentration, treatment duration, mussel siphoning activity, dissolved oxygen concentration, water temperature, and naturally suspended particle load. Using this latter information, the project culminated in a series of pipe tests which achieved high mussel kill inside power plants under once-through conditions using service water in artificial pipes.

  19. Intracellular iron minerals in a dissimilatory iron-reducing bacterium.

    PubMed

    Glasauer, Susan; Langley, Sean; Beveridge, Terry J

    2002-01-01

    Among prokaryotes, there are few examples of controlled mineral formation; the formation of crystalline iron oxides and sulfides [magnetite (Fe3O4) or greigite (Fe3S4)] by magnetotactic bacteria is an exception. Shewanella putrefaciens CN32, a Gram-negative, facultative anaerobic bacterium that is capable of dissimilatory iron reduction, produced microscopic intracellular grains of iron oxide minerals during growth on two-line ferrihydrite in a hydrogen-argon atmosphere. The minerals, formed at iron concentrations found in the soil and sedimentary environments where these bacteria are active, could represent an unexplored pathway for the cycling of iron by bacteria. PMID:11778045

  20. Magnetic guidance of the magnetotactic bacterium Magnetospirillum gryphiswaldense.

    PubMed

    Loehr, Johannes; Pfeiffer, Daniel; Schüler, Dirk; Fischer, Thomas M

    2016-04-21

    Magnetospirillum gryphiswaldense is a magnetotactic bacterium with a permanent magnetic moment capable of swimming using two bipolarly located flagella. In their natural environment these bacteria swim along the field lines of the homogeneous geomagnetic field in a typical run and reversal pattern and thereby create non-differentiable trajectories with sharp edges. In the current work we nevertheless achieve stable guidance along curved lines of mechanical instability by using a heterogeneous magnetic field of a garnet film. The successful guidance of the bacteria depends on the right balance between motility and the magnetic moment of the magnetosome chain. PMID:26972517

  1. Polysaccharide degradation systems of the saprophytic bacterium Cellvibrio japonicus.

    PubMed

    Gardner, Jeffrey G

    2016-07-01

    Study of recalcitrant polysaccharide degradation by bacterial systems is critical for understanding biological processes such as global carbon cycling, nutritional contributions of the human gut microbiome, and the production of renewable fuels and chemicals. One bacterium that has a robust ability to degrade polysaccharides is the Gram-negative saprophyte Cellvibrio japonicus. A bacterium with a circuitous history, C. japonicus underwent several taxonomy changes from an initially described Pseudomonas sp. Most of the enzymes described in the pre-genomics era have also been renamed. This review aims to consolidate the biochemical, structural, and genetic data published on C. japonicus and its remarkable ability to degrade cellulose, xylan, and pectin substrates. Initially, C. japonicus carbohydrate-active enzymes were studied biochemically and structurally for their novel polysaccharide binding and degradation characteristics, while more recent systems biology approaches have begun to unravel the complex regulation required for lignocellulose degradation in an environmental context. Also included is a discussion for the future of C. japonicus as a model system, with emphasis on current areas unexplored in terms of polysaccharide degradation and emerging directions for C. japonicus in both environmental and biotechnological applications. PMID:27263016

  2. Hydrogenomics of the Extremely Thermophilic Bacterium Caldicellulosiruptor saccharolyticus▿ †

    PubMed Central

    van de Werken, Harmen J. G.; Verhaart, Marcel R. A.; VanFossen, Amy L.; Willquist, Karin; Lewis, Derrick L.; Nichols, Jason D.; Goorissen, Heleen P.; Mongodin, Emmanuel F.; Nelson, Karen E.; van Niel, Ed W. J.; Stams, Alfons J. M.; Ward, Donald E.; de Vos, Willem M.; van der Oost, John; Kelly, Robert M.; Kengen, Servé W. M.

    2008-01-01

    Caldicellulosiruptor saccharolyticus is an extremely thermophilic, gram-positive anaerobe which ferments cellulose-, hemicellulose- and pectin-containing biomass to acetate, CO2, and hydrogen. Its broad substrate range, high hydrogen-producing capacity, and ability to coutilize glucose and xylose make this bacterium an attractive candidate for microbial bioenergy production. Here, the complete genome sequence of C. saccharolyticus, consisting of a 2,970,275-bp circular chromosome encoding 2,679 predicted proteins, is described. Analysis of the genome revealed that C. saccharolyticus has an extensive polysaccharide-hydrolyzing capacity for cellulose, hemicellulose, pectin, and starch, coupled to a large number of ABC transporters for monomeric and oligomeric sugar uptake. The components of the Embden-Meyerhof and nonoxidative pentose phosphate pathways are all present; however, there is no evidence that an Entner-Doudoroff pathway is present. Catabolic pathways for a range of sugars, including rhamnose, fucose, arabinose, glucuronate, fructose, and galactose, were identified. These pathways lead to the production of NADH and reduced ferredoxin. NADH and reduced ferredoxin are subsequently used by two distinct hydrogenases to generate hydrogen. Whole-genome transcriptome analysis revealed that there is significant upregulation of the glycolytic pathway and an ABC-type sugar transporter during growth on glucose and xylose, indicating that C. saccharolyticus coferments these sugars unimpeded by glucose-based catabolite repression. The capacity to simultaneously process and utilize a range of carbohydrates associated with biomass feedstocks is a highly desirable feature of this lignocellulose-utilizing, biofuel-producing bacterium. PMID:18776029

  3. Molybdate Reduction to Molybdenum Blue by an Antarctic Bacterium

    PubMed Central

    Ahmad, S. A.; Shukor, M. Y.; Shamaan, N. A.; Mac Cormack, W. P.; Syed, M. A.

    2013-01-01

    A molybdenum-reducing bacterium from Antarctica has been isolated. The bacterium converts sodium molybdate or Mo6+ to molybdenum blue (Mo-blue). Electron donors such as glucose, sucrose, fructose, and lactose supported molybdate reduction. Ammonium sulphate was the best nitrogen source for molybdate reduction. Optimal conditions for molybdate reduction were between 30 and 50 mM molybdate, between 15 and 20°C, and initial pH between 6.5 and 7.5. The Mo-blue produced had a unique absorption spectrum with a peak maximum at 865 nm and a shoulder at 710 nm. Respiratory inhibitors such as antimycin A, sodium azide, potassium cyanide, and rotenone failed to inhibit the reducing activity. The Mo-reducing enzyme was partially purified using ion exchange and gel filtration chromatography. The partially purified enzyme showed optimal pH and temperature for activity at 6.0 and 20°C, respectively. Metal ions such as cadmium, chromium, copper, silver, lead, and mercury caused more than 95% inhibition of the molybdenum-reducing activity at 0.1 mM. The isolate was tentatively identified as Pseudomonas sp. strain DRY1 based on partial 16s rDNA molecular phylogenetic assessment and the Biolog microbial identification system. The characteristics of this strain would make it very useful in bioremediation works in the polar and temperate countries. PMID:24381945

  4. Molybdate reduction to molybdenum blue by an Antarctic bacterium.

    PubMed

    Ahmad, S A; Shukor, M Y; Shamaan, N A; Mac Cormack, W P; Syed, M A

    2013-01-01

    A molybdenum-reducing bacterium from Antarctica has been isolated. The bacterium converts sodium molybdate or Mo⁶⁺ to molybdenum blue (Mo-blue). Electron donors such as glucose, sucrose, fructose, and lactose supported molybdate reduction. Ammonium sulphate was the best nitrogen source for molybdate reduction. Optimal conditions for molybdate reduction were between 30 and 50 mM molybdate, between 15 and 20°C, and initial pH between 6.5 and 7.5. The Mo-blue produced had a unique absorption spectrum with a peak maximum at 865 nm and a shoulder at 710 nm. Respiratory inhibitors such as antimycin A, sodium azide, potassium cyanide, and rotenone failed to inhibit the reducing activity. The Mo-reducing enzyme was partially purified using ion exchange and gel filtration chromatography. The partially purified enzyme showed optimal pH and temperature for activity at 6.0 and 20°C, respectively. Metal ions such as cadmium, chromium, copper, silver, lead, and mercury caused more than 95% inhibition of the molybdenum-reducing activity at 0.1 mM. The isolate was tentatively identified as Pseudomonas sp. strain DRY1 based on partial 16s rDNA molecular phylogenetic assessment and the Biolog microbial identification system. The characteristics of this strain would make it very useful in bioremediation works in the polar and temperate countries. PMID:24381945

  5. Biological Control of Meloidogyne hapla Using an Antagonistic Bacterium

    PubMed Central

    Park, Jiyeong; Seo, Yunhee; Kim, Young Ho

    2014-01-01

    We examined the efficacy of a bacterium for biocontrol of the root-knot nematode (RKN) Meloidogyne hapla in carrot (Daucus carota subsp. sativus) and tomato (Solanum lycopersicum). Among 542 bacterial isolates from various soils and plants, the highest nematode mortality was observed for treatments with isolate C1-7, which was identified as Bacillus cereus based on cultural and morphological characteristics, the Biolog program, and 16S rRNA sequencing analyses. The population density and the nematicidal activity of B. cereus C1-7 remained high until the end of culture in brain heart infusion broth, suggesting that it may have sustainable biocontrol potential. In pot experiments, the biocontrol efficacy of B. cereus C1-7 was high, showing complete inhibition of root gall or egg mass formation by RKN in carrot and tomato plants, and subsequently reducing RKN damage and suppressing nematode population growth, respectively. Light microscopy of RKN-infected carrot root tissues treated with C1-7 showed reduced formation of gall cells and fully developed giant cells, while extensive gall cells and fully mature giant cells with prominent cell wall ingrowths formed in the untreated control plants infected with RKNs. These histopathological characteristics may be the result of residual or systemic biocontrol activity of the bacterium, which may coincide with the biocontrol efficacies of nematodes in pots. These results suggest that B. cereus C1-7 can be used as a biocontrol agent for M. hapla. PMID:25289015

  6. Radiation response mechanisms of the extremely radioresistant bacterium Deinococcus radiodurans.

    PubMed

    Kobayashi, Yasuhiko; Narumi, Issay; Satoh, Katsuya; Funayama, Tomoo; Kikuchi, Masahiro; Kitayama, Shigeru; Watanabe, Hiroshi

    2004-11-01

    Effect of microgravity on recovery of bacterial cells from radiation damage was examined in IML-2, S/MM-4 and S/MM-9 experiments using the extremely radioresistant bacterium Deinococcus radiodurans. The cells were irradiated with gamma rays before the space flight and incubated on board the Space Shuttle. The survival of the wild type cells incubated in space increased compared with the ground controls, suggesting that the recovery of this bacterium from radiation damage was enhanced under the space environment. No difference was observed between the survivals of radiosensitive mutant rec30 cells incubated in space and on the ground. The amount of DNA-repair related RecA protein induced under microgravity was similar to those of ground controls, however, induction of PprA protein, product of a unique radiation-inducible gene (designated pprA) responsible for loss of radiation resistance in repair-deficient mutant, KH311, was enhanced under microgravity compared with ground controls. Recent investigation in vitro showed that PprA preferentially bound to double-stranded DNA carrying strand breaks, inhibited Escherichia coli exonuclease III activity, and stimulated the DNA end-joining reaction catalyzed by DNA ligases. These results suggest that D. radiodurans has a radiation-induced non-homologous end-joining (NHEJ) repair mechanism in which PprA plays a critical role. PMID:15858357

  7. Polysaccharide degradation systems of the saprophytic bacterium Cellvibrio japonicus

    DOE PAGESBeta

    Gardner, Jeffrey G.

    2016-06-04

    Study of recalcitrant polysaccharide degradation by bacterial systems is critical for understanding biological processes such as global carbon cycling, nutritional contributions of the human gut microbiome, and the production of renewable fuels and chemicals. One bacterium that has a robust ability to degrade polysaccharides is the Gram-negative saprophyte Cellvibrio japonicus. A bacterium with a circuitous history, C. japonicus underwent several taxonomy changes from an initially described Pseudomonas sp. Most of the enzymes described in the pre-genomics era have also been renamed. Furthermore, this review aims to consolidate the biochemical, structural, and genetic data published on C. japonicus and its remarkablemore » ability to degrade cellulose, xylan, and pectin substrates. Initially, C. japonicus carbohydrate-active enzymes were studied biochemically and structurally for their novel polysaccharide binding and degradation characteristics, while more recent systems biology approaches have begun to unravel the complex regulation required for lignocellulose degradation in an environmental context. Also included is a discussion for the future of C. japonicus as a model system, with emphasis on current areas unexplored in terms of polysaccharide degradation and emerging directions for C. japonicus in both environmental and biotechnological applications.« less

  8. Isolation and characterization of luminescent bacterium for sludge biodegradation.

    PubMed

    Zahaba, Maryam; Halmi, Mohd Izuan Effendi; Ahmad, Siti Aqlima; Shukor, Mohd Yunus; Syed, Mohd Arif

    2015-11-01

    Microtox is based on the inhibition of luminescence of the bacterium Vibrio fischeri by the toxicants. This technique has been accepted by the USEPA (United States Environmental Protection Agency) as a biomonitoring tool for remediation of toxicants such as hydrocarbon sludge. In the present study, a luminescent bacterium was isolated from yellow striped scad (Selaroides leptolepis) and was tentatively identified as Vibrio sp. isolate MZ. This aerobic isolate showed high luminescence activity in a broad range of temperature from 25 to 35 °C. In addition, optimal conditions for high bioluminescence activity in range of pH 7.5 to 8.5 and 10 gl(-1) of sodium chloride, 10 gl(-1) of peptone and 10 gl(-1) of sucrose as carbon source. Bench scale biodegradation 1% sludge (w/v) was set up and degradation was determined using gas chromatography with flame ionised detector (GC-FID). In this study, Rhodococcus sp. strain AQ5NOL2 was used to degrade the sludge. Based on the preliminary results obtained, Vibrio sp. isolate MZwas able to monitor the biodegradation of sludge. Therefore, Vibrio sp. isolate MZ has the potential to be used as a biomonitoring agent for biomonitoring of sludge biodegradation particularly in the tropical ranged environment. PMID:26688958

  9. Metabolism of threo-beta-methylmalate by a soil bacterium.

    PubMed

    Suzuki, S; Takeuchi, Y; Sasaki, K; Katsuki, H

    1976-10-01

    Studies on threo-beta-methylmalate metabolism in a soil bacterium of the genus Bacillus which can utilize threo-beta-methylmalate as a sole carbon source were carried out. When DL-threo-beta-methylmalate was incubated with a cell-free extract of the bacterium, citramalate was found to be formed. Similarly, formation of threo-beta-methylmalate from DL-citramalate was confirmed. These dicarbosylic acids were identified by gas chromatography-mass spectrometry. Examination of inducibility, substrate specificity, and cofactor requirement of the enzymes involved in the reactions showed the existence of two interconversion reactions between the threo-beta-methylmalate and citramalate. One was an interconversion reaction between L-threo-beta-methylmalate and L-citramalate via mesaconate and the other was an interconversion reaction between D-threo-beta-methylmalate and D-citramalate via citraconate. These reactions were both reversible and were catalyzed by distinct and inducible enzymes. It is suggested that the two reactions participate in the catabolism of threo-beta-methylmalate. PMID:1010849

  10. Structure and morphology of magnetite anaerobically-produced by a marine magnetotactic bacterium and a dissimilatory iron-reducing bacterium

    USGS Publications Warehouse

    Sparks, N.H.C.; Mann, S.; Bazylinski, D.A.; Lovley, D.R.; Jannasch, H.W.; Frankel, R.B.

    1990-01-01

    Intracellular crystals of magnetite synthesized by cells of the magnetotactic vibroid organism, MV-1, and extracellular crystals of magnetite produced by the non-magnetotactic dissimilatory iron-reducing bacterium strain GS-15, were examined using high-resolution transmission electron microscopy, electron diffraction and 57Fe Mo??ssbauer spectroscopy. The magnetotactic bacterium contained a single chain of approximately 10 crystals aligned along the long axis of the cell. The crystals were essentially pure stoichiometric magnetite. When viewed along the crystal long axis the particles had a hexagonal cross-section whereas side-on they appeared as rectangules or truncated rectangles of average dimension, 53 ?? 35 nm. These findings are explained in terms of a three-dimensional morphology comprising a hexagonal prism of {110} faces which are capped and truncated by {111} end faces. Electron diffraction and lattice imaging studies indicated that the particles were structurally well-defined single crystals. In contrast, magnetite particles produced by the strain, GS-15 were irregular in shape and had smaller mean dimensions (14 nm). Single crystals were imaged but these were not of high structural perfection. These results highlight the influence of intracellular control on the crystallochemical specificity of bacterial magnetites. The characterization of these crystals is important in aiding the identification of biogenic magnetic materials in paleomagnetism and in studies of sediment magnetization. ?? 1990.

  11. Draft Genome Sequence of Ensifer adhaerens M78, a Mineral-Weathering Bacterium Isolated from Soil.

    PubMed

    Wang, Yuanli; Chen, Wei; He, Linyan; Wang, Qi; Sheng, Xia-Fang

    2016-01-01

    Ensifer adhaerens M78, a bacterium isolated from soil, can weather potash feldspar and release Fe, Si, and Al from rock under nutrient-poor conditions. Here, we report the draft genome sequence of strain M78, which may facilitate a better understanding of the molecular mechanism involved in mineral weathering by the bacterium. PMID:27609930

  12. Genome Sequence of the Antarctic Psychrophile Bacterium Planococcus antarcticus DSM 14505

    PubMed Central

    Margolles, Abelardo; Gueimonde, Miguel

    2012-01-01

    Planococcus antarcticus DSM 14505 is a psychrophile bacterium that was isolated from cyanobacterial mat samples, originally collected from ponds in McMurdo, Antarctica. This orange-pigmented bacterium grows at 4°C and may possess interesting enzymatic activities at low temperatures. Here we report the first genomic sequence of P. antarcticus DSM 14505. PMID:22843594

  13. Kinetic study of trichloroethylene and toluene degradation by a bioluminescent reporter bacterium

    SciTech Connect

    Kelly, C.J.; Sanseverino, J.; Bienkowski, P.R.; Sayler, G.S.

    1995-12-31

    A constructed bioluminescent reporter bacterium, Pseudomonas putida B2, is very briefly described in this paper. The bacterium degrades toluene and trichloroethylene (TCE), and produces light in the presence of toluene. The light response is an indication of cellular viability and expression of the genes encoding toluene and TCE degrading enzymes.

  14. Near-complete genome sequence of the cellulolytic Bacterium Bacteroides (Pseudobacteroides) cellulosolvens ATCC 35603

    DOE PAGESBeta

    Dassa, Bareket; Utturkar, Sagar M.; Hurt, Richard A.; Klingeman, Dawn Marie; Keller, Martin; Xu, Jian; Reddy, Harish Kumar; Borovok, Ilya; Grinberg, Inna Rozman; Lamed, Raphael; et al

    2015-09-24

    We report the single-contig genome sequence of the anaerobic, mesophilic, cellulolytic bacterium, Bacteroides cellulosolvens. The bacterium produces a particularly elaborate cellulosome system, whereas the types of cohesin-dockerin interactions are opposite of other known cellulosome systems: cell-surface attachment is thus mediated via type-I interactions whereas enzymes are integrated via type-II interactions.

  15. FEEDING EXPERIMENTS WITH BACTERIUM PULLORUM. THE TOXICITY OF INFECTED EGGS.

    PubMed

    Rettger, L F; Hull, T G; Sturges, W S

    1916-04-01

    The problem of eradicating ovarian infection in the domestic fowl assumes still greater importance than heretofore, in the light of data recently acquired. Not only is it of great significance to eliminate the permanent carriers of Bacterium pullorum from all flocks of fowls from the standpoint of successful poultry breeding, but also because they constitute a possible source of danger to man. Eggs which harbor Bacterium pullorum in the yolk in large numbers may produce abnormal conditions, when fed, not only in young chicks, but in adult fowls, young rabbits, guinea pigs, and kittens. The toxicity for young rabbits is most pronounced, the infection usually resulting in the death of the animals. In kittens the most prominent symptoms are those of severe food-poisoning with members of the paratyphoid group of bacteria. The possibility of infected eggs causing serious disturbances in young children and in the sick and convalescent of all ages must therefore receive serious consideration. Ovarian infection of fowls is very common throughout this country. Hence, a large proportion of the marketed eggs are infected with Bacterium pullorum. When such eggs are allowed to remain in nests under broody hens, or in warm storage places, for comparatively few hours, they contain large numbers of the organism. Soft boiling, coddling, and frying on one side only do not necessarily render the yolks free from viable bacteria; therefore, eggs which have gone through these processes may, like raw eggs, be the cause of serious disturbances in persons who are particularly susceptible to such influences, and especially to infants. That no well authenticated instances of egg-poisoning of this kind are on record does not warrant the assumption that there have been no cases. The etiology of infantile stomach and intestinal disturbances is as yet too little understood; in fact, it may be said that many of these disorders have no known cause, and almost as much may be said regarding gastro

  16. Metabolic characterisation of a novel vanillylmandelate-degrading bacterium.

    PubMed

    Turner, J E; Allison, N; Fewson, C A

    1996-10-01

    A newly isolated gram-negative bacterium, possibly Brevundimonas diminuta, utilised D,L-vanillylmandelate (D,L-VMA) as a sole carbon and energy source. The organism converted D,L-VMA to vanillylglyoxylate using a soluble NAD-dependent dehydrogenase specific for D-VMA and a dye-linked, membrane-associated L-VMA dehydrogenase. Vanillylglyoxylate was further metabolised by decarboxylation, dehydrogenation and demethylation to protocatechuate. A 4,5-dioxygenase cleaved protocatechuate to 2-hydroxy-4-carboxymuconic semialdehyde. Partially purified d-VMA dehydrogenase exhibited optimal activity at 30 degrees C and pH 9.5 and had an apparent Km for D-VMA of 470 microM. Although induced by several substituted mandelates, the enzyme had a narrow substrate specificity range with virtually no activity towards D-mandelate. Such properties render the enzyme of potential use in both diagnostic and biosynthetic applications. PMID:8824148

  17. Fungal lysis by a soil bacterium fermenting cellulose.

    PubMed

    Tolonen, Andrew C; Cerisy, Tristan; El-Sayyed, Hafez; Boutard, Magali; Salanoubat, Marcel; Church, George M

    2015-08-01

    Recycling of plant biomass by a community of bacteria and fungi is fundamental to carbon flow in terrestrial ecosystems. Here we report how the plant fermenting, soil bacterium Clostridium phytofermentans enhances growth on cellulose by simultaneously lysing and consuming model fungi from soil. We investigate the mechanism of fungal lysis to show that among the dozens of different glycoside hydrolases C. phytofermentans secretes on cellulose, the most highly expressed enzymes degrade fungi rather than plant substrates. These enzymes, the GH18 Cphy1799 and Cphy1800, synergize to hydrolyse chitin, a main component of the fungal cell wall. Purified enzymes inhibit fungal growth and mutants lacking either GH18 grow normally on cellulose and other plant substrates, but have a reduced ability to hydrolyse chitinous substrates and fungal hyphae. Thus, C. phytofermentans boosts growth on cellulose by lysing fungi with its most highly expressed hydrolases, highlighting the importance of fungal interactions to the ecology of cellulolytic bacteria. PMID:24798076

  18. Characterization of the quinones in purple sulfur bacterium Thermochromatium tepidum.

    PubMed

    Kimura, Yuuka; Kawakami, Tomoaki; Yu, Long-Jiang; Yoshimura, Miku; Kobayashi, Masayuki; Wang-Otomo, Zheng-Yu

    2015-07-01

    Quinone distributions in the thermophilic purple sulfur bacterium Thermochromatium tepidum have been investigated at different levels of the photosynthetic apparatus. Here we show that, on average, the intracytoplasmic membrane contains 18 ubiquinones (UQ) and 4 menaquinones (MQ) per reaction center (RC). About one-third of the quinones are retained in the light-harvesting-reaction center core complex (LH1-RC) with a similar ratio of UQ to MQ. The numbers of quinones essentially remains unchanged during crystallization of the LH1-RC. There are 1-2 UQ and 1 MQ associated with the RC-only complex in the purified solution sample. Our results suggest that a large proportion of the quinones are confined to the core complex and at least five UQs remain invisible in the current LH1-RC crystal structure. PMID:26048701

  19. Mechanism of anaerobic degradation of triethanolamine by a homoacetogenic bacterium

    SciTech Connect

    Speranza, Giovanna . E-mail: giovanna.speranza@unimi.it; Morelli, Carlo F.; Cairoli, Paola; Mueller, Britta; Schink, Bernhard

    2006-10-20

    Triethanolamine (TEA) is converted into acetate and ammonia by a strictly anaerobic, gram-positive Acetobacterium strain LuTria3. Fermentation experiments with resting cell suspensions and specifically deuterated substrates indicate that in the acetate molecule the carboxylate and the methyl groups correspond to the alcoholic function and to its adjacent methylene group, respectively, of the 2-hydroxyethyl unit of TEA. A 1,2 shift of a hydrogen (deuterium) atom from -CH{sub 2} -O- to =N-CH{sub 2} - without exchange with the medium was observed. This fact gives evidence that a radical mechanism occurs involving the enzyme and/or coenzyme molecule as a hydrogen carrier. Such a biodegradation appears analogous to the conversion of 2-phenoxyethanol into acetate mediated by another strain of the anaerobic homoacetogenic bacterium Acetobacterium.

  20. A bacterium that degrades and assimilates poly(ethylene terephthalate).

    PubMed

    Yoshida, Shosuke; Hiraga, Kazumi; Takehana, Toshihiko; Taniguchi, Ikuo; Yamaji, Hironao; Maeda, Yasuhito; Toyohara, Kiyotsuna; Miyamoto, Kenji; Kimura, Yoshiharu; Oda, Kohei

    2016-03-11

    Poly(ethylene terephthalate) (PET) is used extensively worldwide in plastic products, and its accumulation in the environment has become a global concern. Because the ability to enzymatically degrade PET has been thought to be limited to a few fungal species, biodegradation is not yet a viable remediation or recycling strategy. By screening natural microbial communities exposed to PET in the environment, we isolated a novel bacterium, Ideonella sakaiensis 201-F6, that is able to use PET as its major energy and carbon source. When grown on PET, this strain produces two enzymes capable of hydrolyzing PET and the reaction intermediate, mono(2-hydroxyethyl) terephthalic acid. Both enzymes are required to enzymatically convert PET efficiently into its two environmentally benign monomers, terephthalic acid and ethylene glycol. PMID:26965627

  1. Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene

    SciTech Connect

    Maymo-Gatell, X.; Chien, Yueh-tyng; Zinder, S.H.

    1997-06-06

    Tetrachloroethene is a prominent groundwater pollutant that can be reductively dechlorinated by mixed anaerobic microbial populations to the nontoxic product ethene. Strain 195, a coccoid bacterium that dechlorinates tetrachlorethene to ethene, was isolated and characterized. Growth of strain 195 with H{sub 2} and tetrachloroethene as the electron donor and acceptor pair required extracts from mixed microbial cultures. Growth of strain 195 was resistant to ampicillin and vancomycin; its cell wall did not react with a peptidoglycan-specific lectin and its ultrastructure resembled S-layers of Archaea. Analysis of the 16S ribosomal DNA sequence of strain 195 indicated that it is a eubacterium without close affiliation to any known groups. 24 refs., 4 figs., 1 tab.

  2. The domestication of the probiotic bacterium Lactobacillus acidophilus

    PubMed Central

    Bull, Matthew J.; Jolley, Keith A.; Bray, James E.; Aerts, Maarten; Vandamme, Peter; Maiden, Martin C. J.; Marchesi, Julian R.; Mahenthiralingam, Eshwar

    2014-01-01

    Lactobacillus acidophilus is a Gram-positive lactic acid bacterium that has had widespread historical use in the dairy industry and more recently as a probiotic. Although L. acidophilus has been designated as safe for human consumption, increasing commercial regulation and clinical demands for probiotic validation has resulted in a need to understand its genetic diversity. By drawing on large, well-characterised collections of lactic acid bacteria, we examined L. acidophilus isolates spanning 92 years and including multiple strains in current commercial use. Analysis of the whole genome sequence data set (34 isolate genomes) demonstrated L. acidophilus was a low diversity, monophyletic species with commercial isolates essentially identical at the sequence level. Our results indicate that commercial use has domesticated L. acidophilus with genetically stable, invariant strains being consumed globally by the human population. PMID:25425319

  3. The capacity of phototrophic sulfur bacterium Thiocapsa roseopersicina for chemosynthesis.

    PubMed

    Kondratieva, E N; Zhukov, V G; Ivanovsky, R N; Petushkova, U P; Monosov, E Z

    1976-07-01

    Purple sulfur bacterium Thiocapsa roseopersicina strain BBS requiring vitamin B12 may grow in the dark in media containing no other organic compounds. Under such conditions the cells oxidize sulfide and thiosulfate with the use of O2 and assimilate carbon dioxide. After 10--30s assimilation of NaH14CO3 about 60% of radioactivity is found in phosphorylated compounds characteristic for the reductive pentose phosphate cycle. The possibility of the function of this cycle in the dark in the presence of O2 is confirmed by the capacity of cells grown under such conditions to synthesize ribulose-1,5-diphosphate carboxylase. All this evidence suggests the ability of T. roseopersicina to change from phototrophy to aerobic chemolithoautotrophy. PMID:942280

  4. Genome analysis of the Anerobic Thermohalophilic bacterium Halothermothrix orenii

    SciTech Connect

    Mavromatis, Konstantinos; Ivanova, Natalia; Anderson, Iain; Lykidis, Athanasios; Hooper, Sean D.; Sun, Hui; Kunin, Victor; Lapidus, Alla; Hugenholtz, Philip; Patel, Bharat; Kyrpides, Nikos C.

    2008-11-03

    Halothermothirx orenii is a strictly anaerobic thermohalophilic bacterium isolated from sediment of a Tunisian salt lake. It belongs to the order Halanaerobiales in the phylum Firmicutes. The complete sequence revealed that the genome consists of one circular chromosome of 2578146 bps encoding 2451 predicted genes. This is the first genome sequence of an organism belonging to the Haloanaerobiales. Features of both Gram positive and Gram negative bacteria were identified with the presence of both a sporulating mechanism typical of Firmicutes and a characteristic Gram negative lipopolysaccharide being the most prominent. Protein sequence analyses and metabolic reconstruction reveal a unique combination of strategies for thermophilic and halophilic adaptation. H. orenii can serve as a model organism for the study of the evolution of the Gram negative phenotype as well as the adaptation under thermohalophilic conditions and the development of biotechnological applications under conditions that require high temperatures and high salt concentrations.

  5. Ecology and metabolism of the beneficial intestinal commensal bacterium Faecalibacterium prausnitzii.

    PubMed

    Miquel, Sylvie; Martín, Rebeca; Bridonneau, Chantal; Robert, Véronique; Sokol, Harry; Bermúdez-Humarán, Luis G; Thomas, Muriel; Langella, Philippe

    2014-01-01

    Faecalibacterium prausnitzii is a major commensal bacterium, and its prevalence is often decreased in conditions of intestinal dysbiosis. The phylogenic identity of this bacterium was described only recently. It is still poorly characterized, and its specific growth requirements in the human gastrointestinal tract are not known. In this review, we consider F. prausnitzii metabolism, its ecophysiology in both humans and animals, and the effects of drugs and nutrition on its population. We list important questions about this beneficial and ubiquitous commensal bacterium that it would be valuable to answer. PMID:24637606

  6. Novel Trypanosomatid-Bacterium Association: Evolution of Endosymbiosis in Action

    PubMed Central

    Kostygov, Alexei Y.; Dobáková, Eva; Grybchuk-Ieremenko, Anastasiia; Váhala, Dalibor; Maslov, Dmitri A.; Votýpka, Jan

    2016-01-01

    ABSTRACT We describe a novel symbiotic association between a kinetoplastid protist, Novymonas esmeraldas gen. nov., sp. nov., and an intracytoplasmic bacterium, “Candidatus Pandoraea novymonadis” sp. nov., discovered as a result of a broad-scale survey of insect trypanosomatid biodiversity in Ecuador. We characterize this association by describing the morphology of both organisms, as well as their interactions, and by establishing their phylogenetic affinities. Importantly, neither partner is closely related to other known organisms previously implicated in eukaryote-bacterial symbiosis. This symbiotic association seems to be relatively recent, as the host does not exert a stringent control over the number of bacteria harbored in its cytoplasm. We argue that this unique relationship may represent a suitable model for studying the initial stages of establishment of endosymbiosis between a single-cellular eukaryote and a prokaryote. Based on phylogenetic analyses, Novymonas could be considered a proxy for the insect-only ancestor of the dixenous genus Leishmania and shed light on the origin of the two-host life cycle within the subfamily Leishmaniinae. PMID:26980834

  7. High cell density cultivation of the chemolithoautotrophic bacterium Nitrosomonas europaea.

    PubMed

    Papp, Benedek; Török, Tibor; Sándor, Erzsébet; Fekete, Erzsébet; Flipphi, Michel; Karaffa, Levente

    2016-05-01

    Nitrosomonas europaea is a chemolithoautotrophic nitrifier, a gram-negative bacterium that can obtain all energy required for growth from the oxidation of ammonia to nitrite, and this may be beneficial for various biotechnological and environmental applications. However, compared to other bacteria, growth of ammonia oxidizing bacteria is very slow. A prerequisite to produce high cell density N. europaea cultures is to minimize the concentrations of inhibitory metabolic by-products. During growth on ammonia nitrite accumulates, as a consequence, N. europaea cannot grow to high cell concentrations under conventional batch conditions. Here, we show that single-vessel dialysis membrane bioreactors can be used to obtain substantially increased N. europaea biomasses and substantially reduced nitrite levels in media initially containing high amounts of the substrate. Dialysis membrane bioreactor fermentations were run in batch as well as in continuous mode. Growth was monitored with cell concentration determinations, by assessing dry cell mass and by monitoring ammonium consumption as well as nitrite formation. In addition, metabolic activity was probed with in vivo acridine orange staining. Under continuous substrate feed, the maximal cell concentration (2.79 × 10(12)/L) and maximal dry cell mass (0.895 g/L) achieved more than doubled the highest values reported for N. europaea cultivations to date. PMID:26358065

  8. Bacterium organizes hierarchical amorphous structure in microbial cellulose

    NASA Astrophysics Data System (ADS)

    Koizumi, S.; Yue, Z.; Tomita, Y.; Kondo, T.; Iwase, H.; Yamaguchi, D.; Hashimoto, T.

    2008-05-01

    A pellicle, a gel film of microbial cellulose, is a supermolecular system containing 99% of water by weight, which is closely related to an amorphous structure in it. Using ultra-small-angle neutron scattering, in order to cover over a wide range of length scales from nm to 10μm, we examined the hierarchical amorphous structure in the microbial cellulose, which is synthesized by a bacterium (Acetobacter xylinum). The microbial cellulose swollen by water shows small-angle scattering that obeys a power law q -behavior according to q-α as a function of the magnitude of the scattering vector q . The power law, determined by scattering, is attributed to a mass fractal due to the distribution of the center of mass for the crystallite (microfibril) in amorphous cellulose swollen by water. As q increases, α takes the values of 2.5, 1, and 2.35, corresponding, respectively, to a gel network composed of bundles, a bundle composed of cellulose ribbons, and concentration fluctuations in a bundle. From the mass fractal q -behavior and its length scale limits, we evaluated a volume fraction of crystallite in microbial cellulose. It was found that 90% of the cellulose bundle is occupied by amorphous cellulose containing water.

  9. Fitness correlates with the extent of cheating in a bacterium.

    PubMed

    Jiricny, N; Diggle, S P; West, S A; Evans, B A; Ballantyne, G; Ross-Gillespie, A; Griffin, A S

    2010-04-01

    There is growing awareness of the importance of cooperative behaviours in microbial communities. Empirical support for this insight comes from experiments using mutant strains, termed 'cheats', which exploit the cooperative behaviour of wild-type strains. However, little detailed work has gone into characterising the competitive dynamics of cooperative and cheating strains. We test three specific predictions about the fitness consequences of cheating to different extents by examining the production of the iron-scavenging siderophore molecule, pyoverdin, in the bacterium Pseudomonas aeruginosa. We create a collection of mutants that differ in the amount of pyoverdin that they produce (from 1% to 96% of the production of paired wild types) and demonstrate that these production levels correlate with both gene activity and the ability to bind iron. Across these mutants, we found that (1) when grown in a mixed culture with a cooperative wild-type strain, the relative fitness of a mutant is negatively correlated with the amount of pyoverdin that it produces; (2) the absolute and relative fitness of the wild-type strain in the mixed culture is positively correlated with the amount of pyoverdin that the mutant produces; and (3) when grown in a monoculture, the absolute fitness of the mutant is positively correlated with the amount of pyoverdin that it produces. Overall, we demonstrate that cooperative pyoverdin production is exploitable and illustrate how variation in a social behaviour determines fitness differently, depending on the social environment. PMID:20210835

  10. P450 enzymes from the bacterium Novosphingobium aromaticivorans.

    PubMed

    Bell, Stephen G; Wong, Luet-Lok

    2007-08-31

    Twelve of the fifteen potential P450 enzymes from the bacterium Novosphingobium aromaticivorans, which is known to degrade a wide range of aromatic hydrocarbons, have been produced via heterologous expression in Escherichia coli. The enzymes were tested for their ability to bind a range of substrates including polyaromatic hydrocarbons. While two of the enzymes were found to bind aromatic compounds (CYP108D1 and CYP203A2), the others show binding with a variety of compounds including linear alkanes (CYP153C1) and mono- and sesqui-terpenoid compounds (CYP101B1, CYP101C1, CYP101D1, CYP101D2, CYP111A1, and CYP219A1). A 2Fe-2S ferredoxin (Arx-A), which is associated with CYP101D2, was also produced. The activity of five of the P450 enzymes (CYP101B1, CYP101C1, CYP101D1, CYP101D2, and CYP111A2) was reconstituted with Arx-A and putidaredoxin reductase (of the P450cam system from Pseudomonas putida) in a Class I type electron transfer system. Preliminary characterisation of the majority of the substrate oxidation products is reported. PMID:17618912