Science.gov

Sample records for fem3a model development

  1. LNG Safety Research: FEM3A Model Development

    SciTech Connect

    2006-09-30

    The initial scope of work for this project included: 1) Improving the FEM3A advanced turbulence closure module, 2) Adaptation of FEM3A for more general applications, and 3) Verification of dispersion over rough surfaces, with and without obstacle using the advanced turbulence closure module. These work elements were to be performed by Chemical Hazards Research Center (CHRC), Department of Chemical Engineering, University of Arkansas as a subcontractor to Gas Technology Institute (GTI). The tasks for GTI included establishment of the scientific support base for standardization of the FEM3A model, project management, technology transfer, and project administration. Later in the course of the project, the scope of work was modified by the National Energy Technology Laboratories (NETL) to remove the emphasis on FEM3A model and instead, develop data in support of NETL’s FLUENT modeling. With this change, GTI was also instructed to cease activities relative to FEM3A model. GTI’s technical activities through this project included the initial verification of FEM3A model, provision of technical inputs to CHRC researchers regarding the structure of the final product, and participation in technical discussion sessions with CHRC and NETL technical staff. GTI also began the development of a Windows-based front end for the model but the work was stopped due to the change in scope of work. In the meantime, GTI organized a workshop on LNG safety in Houston, Texas. The workshop was very successful and 75 people from various industries participated. All technical objectives were met satisfactorily by Dr. Jerry Havens and Dr. Tom Spicer of CHRC and results are presented in a stand-alone report included as Appendix A to this report.

  2. LNG Safety Research: FEM3A Model Development

    SciTech Connect

    Iraj A. Salehi; Jerry Havens; Tom Spicer

    2006-09-30

    The initial scope of work for this project included: (1) Improving the FEM3A advanced turbulence closure module, (2) Adaptation of FEM3A for more general applications, and (3) Verification of dispersion over rough surfaces, with and without obstacle using the advanced turbulence closure module. These work elements were to be performed by Chemical Hazards Research Center (CHRC), Department of Chemical Engineering, University of Arkansas as a subcontractor to Gas Technology Institute (GTI). The tasks for GTI included establishment of the scientific support base for standardization of the FEM3A model, project management, technology transfer, and project administration. Later in the course of the project, the scope of work was modified by the National Energy Technology Laboratories (NETL) to remove the emphasis on FEM3A model and instead, develop data in support of NETL's FLUENT modeling. With this change, GTI was also instructed to cease activities relative to FEM3A model. GTI's technical activities through this project included the initial verification of FEM3A model, provision of technical inputs to CHRC researchers regarding the structure of the final product, and participation in technical discussion sessions with CHRC and NETL technical staff. GTI also began the development of a Windows-based front end for the model but the work was stopped due to the change in scope of work. In the meantime, GTI organized a workshop on LNG safety in Houston, Texas. The workshop was very successful and 75 people from various industries participated. All technical objectives were met satisfactorily by Dr. Jerry Havens and Dr. Tom Spicer of CHRC and results are presented in a stand-alone report included as Appendix A to this report.

  3. LNG SAFETY RESEARCH: FEM3A MODEL DEVELOPMENT

    SciTech Connect

    Jerry Havens; Iraj A. Salehi

    2005-05-10

    The objective of this report is to develop the FEM3A model for application to general scenarios involving dispersion problems with obstacles and terrain features of realistic complexity, and for very low wind speed, stable weather conditions as required for LNG vapor dispersion application specified in 49 CFR 193. The dispersion model DEGADIS specified in 49 CFR 193 is limited to application for dispersion over smooth, level terrain free of obstacles (such as buildings, tanks, or dikes). There is a need for a dispersion model that allows consideration of the effects of terrain features and obstacles on the dispersion of LNG vapor clouds. Project milestones are: (1) Simulation of Low-Wind-Speed Stable Atmospheric Milestones Conditions; (2) Verification for Dispersion over Rough Surfaces, With And Without Obstacles; and (3) Adapting the FEM3A Model for General Application. Results for this quarter are work continues to underway to address numerical problems during simulation of low-wind-speed, stable, atmospheric conditions with FEM3A. Steps 1 and 2 in the plan outlined in the first Quarterly report are complete and steps 3 and 4 are in progress. During this quarter, we have been investigating the effect upon numerical stability of the heat transfer model used to predict the surface-to-cloud heat transfer, which can be important for LNG vapor dispersion. Previously, no consideration has been given to ground cooling as a result of heat transfer to the colder gas cloud in FEM3A. The present effort is directed to describing the ground surface temperature decrease as a function of time.

  4. LNG Safety Research: FEM3A Model Development

    SciTech Connect

    Iraj A. Salehi; Jerry Havens; Tom Spicer

    2006-09-30

    This quarterly report for DE-FG26-04NT42030 covers a period from July 1, 2006 to October 31, 2006. GTI's activities during the report quarter were limited to administrative work. The work at the University of Arkansas continued in line with the initial scope of work and the identified questions regarding surface to cloud heat transfer as being largely responsible for the instability problems previously encountered. A brief summary of results is discussed in this section and the complete report from University of Arkansas is provided. All work planned for this project has been completed. Specifically: Task A--Simulation of Low-Wind-Speed Stable Atmospheric Conditions: This task has been completed, and a new version of FEM3A will be received by GTI. Task B--Verification for Dispersion over Rough Surfaces With and Without Obstacles: This task has been completed, and a new version of FEM3A will be received by GTI. Task C--Adapting the FEM3A Model for More General Application This task was obviated when DOE redirected the contract near the project midpoint. Task D--Provide assistance and wind tunnel data to DOE for FLUENT development This task has been completed and data requested by DOE-NETL has been delivered. Researchers at the University of Arkansas are preparing the final report that will be received by GTI by November 30, 2006.

  5. LNG SAFETY RESEARCH: FEM3A MODEL DEVELOPMENT

    SciTech Connect

    Jerry Havens; Iraj A. Salehi

    2005-02-21

    This quarterly report for DE-FG26-04NT42030 covers a period from October 1, 2004 to December 31, 2004. On December 9, 2004 a meeting was held in Morgantown to rescope the LNG safety modeling project such that the work would complement the DOE's efforts relative to the development of the intended LNG-Fluent model. It was noted and discussed at the December 9th meeting that the fundamental research being performed on surface to cloud heat transfer and low wind speed issues will be relevant to the development of the DOE LNG/Fluent Model. In general, it was decided that all research to be performed from December 9th through the remainder of the contract is to be focused on the development of the DOE LNG/Fluent model. In addition, all GTI activities for dissemination and transfer of FEM3A will cease and dissemination activities will focus on the new DOE LNG/Fluent model. The proposed new scope of work is presented in section 4 of this report. The work reported in the present document relates to the original scope of work which was in effect during the reporting period. The future work will be re-scoped to meet the requirements of the new scope of work. During the report period work was underway to address numerical problems present during simulation of low-wind-speed, stable, atmospheric conditions with FEM3A. Steps 1 and 2 in the plan outlined in the first Quarterly report are complete and steps 3 and 4 are in progress. During this quarter, the University of Arkansas has been investigating the effect upon numerical stability of the heat transfer model used to predict the surface-to-cloud heat transfer, which can be important for LNG vapor dispersion. Previously, no consideration has been given to ground cooling as a result of heat transfer to the colder gas cloud in FEM3A.

  6. LNG Safety Research: FEM3A Model Development

    SciTech Connect

    Iraj A Salehi; Jerry Havens; Tom Spicer

    2006-05-01

    Work continued to address numerical problems experienced with simulation of low-wind-speed, stable, atmospheric conditions with FEM3A. Steps 1 through 8 in the plan outlined in the first Quarterly report have been completed successfully for the FEM3A model utilizing the Planetary Boundary Layer (PBL) turbulence closure model. Researchers at the University of Arkansas have solved the problems related to stability of the simulations at regulatory conditions of low wind speed and stable atmospheric conditions with FEM3A using the PBL model, and are continuing our program to verify the operation of the model using an updated, verified, version of the k-epsilon turbulence closure model which has been modified to handle dense gas dispersion effects. This quarterly report for DE-FG26-04NT42030 covers a period from January 1, 2006 to March 31, 2006. GTI's activities during the report quarter were limited to administrative work. The work at the University of Arkansas continued in line with the initial scope of work and the identified questions regarding surface to cloud heat transfer as being largely responsible for the instability problems previously encountered. A brief summary of results is discussed in this section and the complete report from University of Arkansas is attached.

  7. LNG Safety Research: FEM3A Model Development

    SciTech Connect

    Iraj A. Salehi; Jerry Havens; Tom Spicer

    2005-10-01

    Work has continued to address numerical problems experienced with simulation of low-wind-speed, stable, atmospheric conditions with FEM3A. Steps 1 through 8 in the plan outlined in the first Quarterly report have been satisfied. Researchers at the University of Arkansas have all indications that the important problems related to stability of the simulations at regulatory conditions of low wind speed and stable atmospheric conditions have been resolved. This quarterly report for DE-FG26-04NT42030 covers a period from July 1, 2005 to September 31, 2005. GTI's activities during the report quarter were limited to administrative work. The work at the University of Arkansas continued in line with the initial scope of work and identified the questions regarding surface to cloud heat transfer as being largely responsible for the instability problems previously encountered. A brief summary of results is included in this section and the complete report from University of Arkansas is attached as Appendix A.

  8. Recent upgrades and enhancements of the FEM3A model

    SciTech Connect

    Chan, S.T.

    1994-12-01

    In 1984, the US Army Edgewood Research, Development and Engineering Center began to fund Lawrence Livermore National Laboratory to further develop FEM3, a fully three-dimensional heavy-gas dispersion model, as a research tool for studying the atmospheric transport and diffusion of certain chemical systems. As a result, a significantly improved version of the model, called FEM3A, was delivered to ERDEC in 1988. During the past few years, two more major improvements have been developed and tested. They are: improved mass conservation for treating dispersion scenarios with large density variations, and the addition of an advanced turbulence submodel based on the k-{var_epsilon} transport equations. These enhancements have resulted in substantial improvements in the dispersion simulations of heavy-gases and can greatly extend the range of applicability of the model, including the ability to treat problems with large density variations and dispersion scenarios of much greater complexities. Documented in this report are the new features and some of the improvements obtained with the new model.

  9. LNG Safety Research FEM3A Model Development

    SciTech Connect

    Iraj A. Salehi; Jerry Havens; Tom Spicer

    2006-02-02

    This quarterly report for DE-FG26-04NT42030 covers a period from October 1, 2005 to December 31, 2005. GTI's activities during the report quarter were limited to administrative work. The work at the University of Arkansas continued in line with the initial scope of work and identified the questions regarding surface to cloud heat transfer as being largely responsible for the instability problems previously encountered. A brief summary of results is included in this section and the complete report from University of Arkansas is attached as Appendix A.

  10. FEM3A simulations of selected LNG vapor barrier verification field tests

    SciTech Connect

    Chan, S.T.

    1990-10-01

    In order to evaluate and eventually predict the possible mitigating effects of vapor fences on the dispersion of the vapor cloud resulting from an accidental liquefied natural gas (LNG) spill in storage areas, a research program was initiated to evaluate methods for predicting LNG dispersion distances for realistic facility configurations. As part of the program, Lawrence Livermore National Laboratory (LLNL) conducted a series of large-scale field experiments called the LNG Vapor Barrier Verification Field Trials (also referred to as the Falcon Series) at the Liquefied Gaseous Fuels Spill Test Facility (LGFSTF), Nevada. Objectives were (1) to provide a data base on LNG vapor dispersion from spill involving complex field obstacles to assist in validation of wind tunnel and mathematical models, and (2) to assess the effectiveness of vapor fences for mitigating LNG vapor dispersion hazards in the events of an accidental spill. Five spill experiments were conducted on water in order to generate vapor at rates equivalent to the liquid spill rates. In this study, the FEM3A model was applied to simulate four of the Falcon experiments. The objectives of this study were, through numerical modeling and a detailed model-data comparison: (1) to improve our understanding of LNG vapor dispersion involving vapor barriers, (2) to assess FEM3A in modeling such complex vapor dispersion scenarios, and (3) to complement the results of field and wind tunnel tests, such as providing plausible explanations for unexpected results and filling in data gaps due to instrument failure or limited array size. Toward these goals, the relevant field measurements were analyzed and several series of 2-D and 3-D simulations were carried out. 11 refs., 93 figs., 11 tabs.

  11. Gain-of-function mutations of fem-3, a sex-determination gene in Caenorhabditis elegans

    SciTech Connect

    Barton, M.K.; Schedl, T.B.; Kimble, J.

    1987-01-01

    The authors have isolated nine gain-of-function (gf) alleles of the sex-determination gene fem-3 as suppressors of feminizing mutations in fem-1 and fem-2. The wild type fem-3 gene is needed for spermatogenesis in XX self-fertilizing hermaphrodites and for male development in both soma and germ line of XO animals. Loss-of-function alleles of fem-3 transform XX and XO animals into females (spermless hermaphrodites). In contrast, fem-3 (gf) alleles masculinize only one tissue, the hermaphrodite germ line. Thus, XX fem-3 (gf) mutant animals have a normal hermaphrodite soma, but the germ line produces a vast excess of sperm and no oocytes. All nine fem-3 (gf) alleles are temperature sensitive. The temperature-sensitive period is from late L4 to early adult, a period just preceding the first signs of oogenesis. The finding of gain-of-function alleles which confer a phenotype opposite to that of loss-of-function alleles supports the idea that fem-3 plays a critical role in germ-line sex determination. Furthermore, the germ-line specificity of the fem-3 (gf) mutant phenotype and the late temperature-sensitive period suggest that, in the wild-type XX hermaphrodite, fem-3 is negatively regulated so that the hermaphrodite stops making sperm and starts making oocytes. Temperature shift experiments also show that, in the germ line, sexual commitment appears to be a continuing process. Spermatogenesis can resume even after oogenesis has begun, and oogenesis can be initiated much later than normal.

  12. Three-dimensional model for simulating atmospheric dispersion of heavy-gases over complex terrain

    SciTech Connect

    Chan, S.T.

    1997-09-01

    To help understand heavy gas releases and simulate the resultant dispersion, we have developed a three-dimensional finite element model called FEM3 and an improved version names FEM3A for solving the time dependent conservation equations based on generalized anelastic approximation. Recent enhancements to the model to include the treatment of dispersion scenarios involving density variations much larger than the liquefied natural gas range and an advanced turbulence submodel based on the buoyancy-extended transport equations. This paper presents the main features of the present model FEM3C and numerical results from the simulations of a field-scale LNG spill experiment.

  13. MODEL DEVELOPMENT - DOSE MODELS

    EPA Science Inventory

    Model Development

    Humans are exposed to mixtures of chemicals from multiple pathways and routes. These exposures may result from a single event or may accumulate over time if multiple exposure events occur. The traditional approach of assessing risk from a single chemica...

  14. Develop a Model Component

    NASA Technical Reports Server (NTRS)

    Ensey, Tyler S.

    2013-01-01

    During my internship at NASA, I was a model developer for Ground Support Equipment (GSE). The purpose of a model developer is to develop and unit test model component libraries (fluid, electrical, gas, etc.). The models are designed to simulate software for GSE (Ground Special Power, Crew Access Arm, Cryo, Fire and Leak Detection System, Environmental Control System (ECS), etc. .) before they are implemented into hardware. These models support verifying local control and remote software for End-Item Software Under Test (SUT). The model simulates the physical behavior (function, state, limits and 110) of each end-item and it's dependencies as defined in the Subsystem Interface Table, Software Requirements & Design Specification (SRDS), Ground Integrated Schematic (GIS), and System Mechanical Schematic.(SMS). The software of each specific model component is simulated through MATLAB's Simulink program. The intensiv model development life cycle is a.s follows: Identify source documents; identify model scope; update schedule; preliminary design review; develop model requirements; update model.. scope; update schedule; detailed design review; create/modify library component; implement library components reference; implement subsystem components; develop a test script; run the test script; develop users guide; send model out for peer review; the model is sent out for verifictionlvalidation; if there is empirical data, a validation data package is generated; if there is not empirical data, a verification package is generated; the test results are then reviewed; and finally, the user. requests accreditation, and a statement of accreditation is prepared. Once each component model is reviewed and approved, they are intertwined together into one integrated model. This integrated model is then tested itself, through a test script and autotest, so that it can be concluded that all models work conjointly, for a single purpose. The component I was assigned, specifically, was a

  15. Recent developments on the FEM3 and SLAB atmospheric dispersion models

    SciTech Connect

    Ermak, D.L.; Chan, S.T.

    1986-08-01

    Lawrence Livermore National Laboratory, under the sponsorship of the US Department of Energy and other agencies, has been conducting research in the area of atmospheric dispersion of heavier-than-air gases over the past eight years. This research has successfully produced a number of field scale test series and two state-of-the-art dense gas dispersion models called FEM3 (a fully three-dimensional model) and SLAB (a quasi three-dimensional model). Over the past few years, the predictions from both models have been compared with the data obtained from a variety of field scale experiments. In this paper, we further evaluate the entrainment submodel in SLAB and present an improved turbulence submodel for FEM3, which is assessed via using the data obtained from two laboratory-scale dense gas dispersion experiments conducted by McQuaid.

  16. ATMOSPHERIC MODEL DEVELOPMENT

    EPA Science Inventory

    This task provides credible state of the art air quality models and guidance for use in implementation of National Ambient Air Quality Standards for ozone and PM. This research effort is to develop and improve air quality models, such as the Community Multiscale Air Quality (CMA...

  17. Reference Model Development

    SciTech Connect

    Jepsen, Richard

    2011-11-02

    Presentation from the 2011 Water Peer Review in which principal investigator discusses project progress to develop a representative set of Reference Models (RM) for the MHK industry to develop baseline cost of energy (COE) and evaluate key cost component/system reduction pathways.

  18. Developing a Model Component

    NASA Technical Reports Server (NTRS)

    Fields, Christina M.

    2013-01-01

    The Spaceport Command and Control System (SCCS) Simulation Computer Software Configuration Item (CSCI) is responsible for providing simulations to support test and verification of SCCS hardware and software. The Universal Coolant Transporter System (UCTS) was a Space Shuttle Orbiter support piece of the Ground Servicing Equipment (GSE). The initial purpose of the UCTS was to provide two support services to the Space Shuttle Orbiter immediately after landing at the Shuttle Landing Facility. The UCTS is designed with the capability of servicing future space vehicles; including all Space Station Requirements necessary for the MPLM Modules. The Simulation uses GSE Models to stand in for the actual systems to support testing of SCCS systems during their development. As an intern at Kennedy Space Center (KSC), my assignment was to develop a model component for the UCTS. I was given a fluid component (dryer) to model in Simulink. I completed training for UNIX and Simulink. The dryer is a Catch All replaceable core type filter-dryer. The filter-dryer provides maximum protection for the thermostatic expansion valve and solenoid valve from dirt that may be in the system. The filter-dryer also protects the valves from freezing up. I researched fluid dynamics to understand the function of my component. The filter-dryer was modeled by determining affects it has on the pressure and velocity of the system. I used Bernoulli's Equation to calculate the pressure and velocity differential through the dryer. I created my filter-dryer model in Simulink and wrote the test script to test the component. I completed component testing and captured test data. The finalized model was sent for peer review for any improvements. I participated in Simulation meetings and was involved in the subsystem design process and team collaborations. I gained valuable work experience and insight into a career path as an engineer.

  19. Developing a Model Component

    NASA Technical Reports Server (NTRS)

    Fields, Christina M.

    2013-01-01

    The Spaceport Command and Control System (SCCS) Simulation Computer Software Configuration Item (CSCI) is,. responsible for providing simulations to support test and verification of SCCS hardware and software. The Universal Coolant Transporter System (UCTS) is a Space Shuttle Orbiter support piece of the Ground Servicing Equipment (GSE). The purpose of the UCTS is to provide two support services to the Space Shuttle Orbiter immediately after landing at the Shuttle Landing Facility. The Simulation uses GSE Models to stand in for the actual systems to support testing of SCCS systems s:luring their development. As an intern at KSC, my assignment was to develop a model component for the UCTS. I was given a fluid component (drier) to model in Matlab. The drier was a Catch All replaceable core type filter-drier. The filter-drier provides maximum protection for the thermostatic expansion valve and solenoid valve from dirt that may be in the system. The filter-drier also protects the valves from freezing up. I researched fluid dynamics to understand the function of my component. I completed training for UNIX and Simulink to help aid in my assignment. The filter-drier was modeled by determining affects it has on the pressure, velocity and temperature of the system. I used Bernoulli's Equation to calculate the pressure and velocity differential through the dryer. I created my model filter-drier in Simulink and wrote the test script to test the component. I completed component testing and captured test data. The finalized model was sent for peer review for any improvements.

  20. IMPACT fragmentation model developments

    NASA Astrophysics Data System (ADS)

    Sorge, Marlon E.; Mains, Deanna L.

    2016-09-01

    The IMPACT fragmentation model has been used by The Aerospace Corporation for more than 25 years to analyze orbital altitude explosions and hypervelocity collisions. The model is semi-empirical, combining mass, energy and momentum conservation laws with empirically derived relationships for fragment characteristics such as number, mass, area-to-mass ratio, and spreading velocity as well as event energy distribution. Model results are used for several types of analysis including assessment of short-term risks to satellites from orbital altitude fragmentations, prediction of the long-term evolution of the orbital debris environment and forensic assessments of breakup events. A new version of IMPACT, version 6, has been completed and incorporates a number of advancements enabled by a multi-year long effort to characterize more than 11,000 debris fragments from more than three dozen historical on-orbit breakup events. These events involved a wide range of causes, energies, and fragmenting objects. Special focus was placed on the explosion model, as the majority of events examined were explosions. Revisions were made to the mass distribution used for explosion events, increasing the number of smaller fragments generated. The algorithm for modeling upper stage large fragment generation was updated. A momentum conserving asymmetric spreading velocity distribution algorithm was implemented to better represent sub-catastrophic events. An approach was developed for modeling sub-catastrophic explosions, those where the majority of the parent object remains intact, based on estimated event energy. Finally, significant modifications were made to the area-to-mass ratio distribution to incorporate the tendencies of different materials to fragment into different shapes. This ability enabled better matches between the observed area-to-mass ratios and those generated by the model. It also opened up additional possibilities for post-event analysis of breakups. The paper will discuss

  1. Developing New Models for Collection Development.

    ERIC Educational Resources Information Center

    Stoffle, Carla J.; Fore, Janet; Allen, Barbara

    1999-01-01

    Discusses the need to develop new models for collection development in academic libraries, based on experiences at the University of Arizona. Highlights include changes in the organizational chart; focusing on users' information goals and needs; integrative services; shared resources; interlibrary loans; digital technology; and funding. (LRW)

  2. SSME structural dynamic model development

    NASA Technical Reports Server (NTRS)

    Foley, M. J.; Tilley, D. M.; Welch, C. T.

    1983-01-01

    A mathematical model of the Space Shuttle Main Engine (SSME) as a complete assembly, with detailed emphasis on LOX and High Fuel Turbopumps is developed. The advantages of both complete engine dynamics, and high fidelity modeling are incorporated. Development of this model, some results, and projected applications are discussed.

  3. Physiological water model development

    NASA Technical Reports Server (NTRS)

    Doty, Susan

    1993-01-01

    The water of the human body can be categorized as existing in two main compartments: intracellular water and extracellular water. The intracellular water consists of all the water within the cells and constitutes over half of the total body water. Since red blood cells are surrounded by plasma, and all other cells are surrounded by interstitial fluid, the intracellular compartment has been subdivided to represent these two cell types. The extracellular water, which includes all of the fluid outside of the cells, can be further subdivided into compartments which represent the interstitial fluid, circulating blood plasma, lymph, and transcellular water. The interstitial fluid surrounds cells outside of the vascular system whereas plasma is contained within the blood vessels. Avascular tissues such as dense connective tissue and cartilage contain interstitial water which slowly equilibrates with tracers used to determine extracellular fluid volume. For this reason, additional compartments are sometimes used to represent these avascular tissues. The average size of each compartment, in terms of percent body weight, has been determined for adult males and females. These compartments and the forces which cause flow between them are presented. The kidneys, a main compartment, receive about 25 percent of the cardiac output and filters out a fluid similar to plasma. The composition of this filtered fluid changes as it flows through the kidney tubules since compounds are continually being secreted and reabsorbed. Through this mechanism, the kidneys eliminate wastes while conserving body water, electrolytes, and metabolites. Since sodium accounts for over 90 percent of the cations in the extracellular fluid, and the number of cations is balanced by the number of anions, considering the renal handling sodium and water only should sufficiently describe the relationship between the plasma compartment and kidneys. A kidney function model is presented which has been adapted from a

  4. Strategies for developing competency models.

    PubMed

    Marrelli, Anne F; Tondora, Janis; Hoge, Michael A

    2005-01-01

    There is an emerging trend within healthcare to introduce competency-based approaches in the training, assessment, and development of the workforce. The trend is evident in various disciplines and specialty areas within the field of behavioral health. This article is designed to inform those efforts by presenting a step-by-step process for developing a competency model. An introductory overview of competencies, competency models, and the legal implications of competency development is followed by a description of the seven steps involved in creating a competency model for a specific function, role, or position. This modeling process is drawn from advanced work on competencies in business and industry. PMID:16082796

  5. Pilipino American Identity Development Model

    ERIC Educational Resources Information Center

    Nadal, Kevin L.

    2004-01-01

    This article examines the identity development of F/Pilipino Americans. Because of a distinct history and culture that differentiates them from other Asian groups, F/Pilipino Americans may experience a different ethnic identity development than other Asian Americans. A nonlinear 6-stage ethnic identity development model is proposed to promote…

  6. Advanced Mirror & Modelling Technology Development

    NASA Technical Reports Server (NTRS)

    Effinger, Michael; Stahl, H. Philip; Abplanalp, Laura; Maffett, Steven; Egerman, Robert; Eng, Ron; Arnold, William; Mosier, Gary; Blaurock, Carl

    2014-01-01

    The 2020 Decadal technology survey is starting in 2018. Technology on the shelf at that time will help guide selection to future low risk and low cost missions. The Advanced Mirror Technology Development (AMTD) team has identified development priorities based on science goals and engineering requirements for Ultraviolet Optical near-Infrared (UVOIR) missions in order to contribute to the selection process. One key development identified was lightweight mirror fabrication and testing. A monolithic, stacked, deep core mirror was fused and replicated twice to achieve the desired radius of curvature. It was subsequently successfully polished and tested. A recently awarded second phase to the AMTD project will develop larger mirrors to demonstrate the lateral scaling of the deep core mirror technology. Another key development was rapid modeling for the mirror. One model focused on generating optical and structural model results in minutes instead of months. Many variables could be accounted for regarding the core, face plate and back structure details. A portion of a spacecraft model was also developed. The spacecraft model incorporated direct integration to transform optical path difference to Point Spread Function (PSF) and between PSF to modulation transfer function. The second phase to the project will take the results of the rapid mirror modeler and integrate them into the rapid spacecraft modeler.

  7. Space Flight Cable Model Development

    NASA Technical Reports Server (NTRS)

    Spak, Kaitlin

    2013-01-01

    This work concentrates the modeling efforts presented in last year's VSGC conference paper, "Model Development for Cable-Harnessed Beams." The focus is narrowed to modeling of space-flight cables only, as a reliable damped cable model is not yet readily available and is necessary to continue modeling cable-harnessed space structures. New experimental data is presented, eliminating the low-frequency noise that plagued the first year's efforts. The distributed transfer function method is applied to a single section of space flight cable for Euler-Bernoulli and shear beams. The work presented here will be developed into a damped cable model that can be incorporated into an interconnected beam-cable system. The overall goal of this work is to accurately predict natural frequencies and modal damping ratios for cabled space structures.

  8. OSPREY Model Development Status Update

    SciTech Connect

    Veronica J Rutledge

    2014-04-01

    During the processing of used nuclear fuel, volatile radionuclides will be discharged to the atmosphere if no recovery processes are in place to limit their release. The volatile radionuclides of concern are 3H, 14C, 85Kr, and 129I. Methods are being developed, via adsorption and absorption unit operations, to capture these radionuclides. It is necessary to model these unit operations to aid in the evaluation of technologies and in the future development of an advanced used nuclear fuel processing plant. A collaboration between Fuel Cycle Research and Development Offgas Sigma Team member INL and a NEUP grant including ORNL, Syracuse University, and Georgia Institute of Technology has been formed to develop off gas models and support off gas research. Georgia Institute of Technology is developing fundamental level model to describe the equilibrium and kinetics of the adsorption process, which are to be integrated with OSPREY. This report discusses the progress made on expanding OSPREY to be multiple component and the integration of macroscale and microscale level models. Also included in this report is a brief OSPREY user guide.

  9. VARTM Model Development and Verification

    NASA Technical Reports Server (NTRS)

    Cano, Roberto J. (Technical Monitor); Dowling, Norman E.

    2004-01-01

    In this investigation, a comprehensive Vacuum Assisted Resin Transfer Molding (VARTM) process simulation model was developed and verified. The model incorporates resin flow through the preform, compaction and relaxation of the preform, and viscosity and cure kinetics of the resin. The computer model can be used to analyze the resin flow details, track the thickness change of the preform, predict the total infiltration time and final fiber volume fraction of the parts, and determine whether the resin could completely infiltrate and uniformly wet out the preform.

  10. A Testbed for Model Development

    NASA Astrophysics Data System (ADS)

    Berry, J. A.; Van der Tol, C.; Kornfeld, A.

    2014-12-01

    Carbon cycle and land-surface models used in global simulations need to be computationally efficient and have a high standard of software engineering. These models also make a number of scaling assumptions to simplify the representation of complex biochemical and structural properties of ecosystems. This makes it difficult to use these models to test new ideas for parameterizations or to evaluate scaling assumptions. The stripped down nature of these models also makes it difficult to "connect" with current disciplinary research which tends to be focused on much more nuanced topics than can be included in the models. In our opinion/experience this indicates the need for another type of model that can more faithfully represent the complexity ecosystems and which has the flexibility to change or interchange parameterizations and to run optimization codes for calibration. We have used the SCOPE (Soil Canopy Observation, Photochemistry and Energy fluxes) model in this way to develop, calibrate, and test parameterizations for solar induced chlorophyll fluorescence, OCS exchange and stomatal parameterizations at the canopy scale. Examples of the data sets and procedures used to develop and test new parameterizations are presented.

  11. Pilipino American Identity Development Model.

    ERIC Educational Resources Information Center

    Nadal, Kevin L.

    This paper uses a nonlinear, six-stage ethnic identity development model to promote proper therapeutic treatment of Filipino (Pilipino) Americans, introducing the terms panethnic assimilation and ethnocentric consciousness in relation to the Filipino and Asian American communities. After examining the social, cultural, economic, and mental…

  12. USEPA Resistance Management Model development

    EPA Science Inventory

    The US EPA requires registrants of plant incorporated protectant (PIP) crops to provide information relating to the time frame for pest resistance development related to the control traits of the crop. Simulation models are used to evaluate the future conditions for resistance de...

  13. Developing + Using Models in Physics

    ERIC Educational Resources Information Center

    Campbell, Todd; Neilson, Drew; Oh, Phil Seok

    2013-01-01

    Of the eight practices of science identified in "A Framework for K-12 Science Education" (NRC 2012), helping students develop and use models has been identified by many as an anchor (Schwarz and Passmore 2012; Windschitl 2012). In instruction, disciplinary core ideas, crosscutting concepts, and scientific practices can be meaningfully…

  14. Deformable human body model development

    SciTech Connect

    Wray, W.O.; Aida, T.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). A Deformable Human Body Model (DHBM) capable of simulating a wide variety of deformation interactions between man and his environment has been developed. The model was intended to have applications in automobile safety analysis, soldier survivability studies and assistive technology development for the disabled. To date, we have demonstrated the utility of the DHBM in automobile safety analysis and are currently engaged in discussions with the U.S. military involving two additional applications. More specifically, the DHBM has been incorporated into a Virtual Safety Lab (VSL) for automobile design under contract to General Motors Corporation. Furthermore, we have won $1.8M in funding from the U.S. Army Medical Research and Material Command for development of a noninvasive intracranial pressure measurement system. The proposed research makes use of the detailed head model that is a component of the DHBM; the project duration is three years. In addition, we have been contacted by the Air Force Armstrong Aerospace Medical Research Laboratory concerning possible use of the DHBM in analyzing the loads and injury potential to pilots upon ejection from military aircraft. Current discussions with Armstrong involve possible LANL participation in a comparison between DHBM and the Air Force Articulated Total Body (ATB) model that is the current military standard.

  15. Space market model development project

    NASA Technical Reports Server (NTRS)

    Bishop, Peter C.

    1987-01-01

    The objectives of the research program, Space Market Model Development Project, (Phase 1) were: (1) to study the need for business information in the commercial development of space; and (2) to propose a design for an information system to meet the identified needs. Three simultaneous research strategies were used in proceeding toward this goal: (1) to describe the space business information which currently exists; (2) to survey government and business representatives on the information they would like to have; and (3) to investigate the feasibility of generating new economical information about the space industry.

  16. Modelling meristem development in plants.

    PubMed

    Heisler, Marcus G; Jönsson, Henrik

    2007-02-01

    Meristems continually supply new cells for post-embryonic plant development and coordinate the initiation of new organs, such as leaves and flowers. Meristem function is regulated by a large and interconnected dynamic system that includes transcription networks, intercellular protein signalling, polarized transport of hormones and a constantly changing cellular topology. Mathematical modelling, in which the dynamics of a system are simulated using explicitly defined interactions, can serve as a powerful tool for examining the expected behaviour of such a system given our present knowledge and assumptions. Modelling can also help to investigate new hypotheses in silico both to validate ideas and to obtain inspiration for new experiments. Several recent studies have used new molecular data together with modelling and computational techniques to investigate meristem function. PMID:17140844

  17. Developing a Malaysia flood model

    NASA Astrophysics Data System (ADS)

    Haseldine, Lucy; Baxter, Stephen; Wheeler, Phil; Thomson, Tina

    2014-05-01

    Faced with growing exposures in Malaysia, insurers have a need for models to help them assess their exposure to flood losses. The need for an improved management of flood risks has been further highlighted by the 2011 floods in Thailand and recent events in Malaysia. The increasing demand for loss accumulation tools in Malaysia has lead to the development of the first nationwide probabilistic Malaysia flood model, which we present here. The model is multi-peril, including river flooding for thousands of kilometres of river and rainfall-driven surface water flooding in major cities, which may cause losses equivalent to river flood in some high-density urban areas. The underlying hazard maps are based on a 30m digital surface model (DSM) and 1D/2D hydraulic modelling in JFlow and RFlow. Key mitigation schemes such as the SMART tunnel and drainage capacities are also considered in the model. The probabilistic element of the model is driven by a stochastic event set based on rainfall data, hence enabling per-event and annual figures to be calculated for a specific insurance portfolio and a range of return periods. Losses are estimated via depth-damage vulnerability functions which link the insured damage to water depths for different property types in Malaysia. The model provides a unique insight into Malaysian flood risk profiles and provides insurers with return period estimates of flood damage and loss to property portfolios through loss exceedance curve outputs. It has been successfully validated against historic flood events in Malaysia and is now being successfully used by insurance companies in the Malaysian market to obtain reinsurance cover.

  18. Development Model for Research Infrastructures

    NASA Astrophysics Data System (ADS)

    Wächter, Joachim; Hammitzsch, Martin; Kerschke, Dorit; Lauterjung, Jörn

    2015-04-01

    . The maturity of individual scientific domains differs considerably. • Technologically and organisationally many different RI components have to be integrated. Individual systems are often complex and have a long-term history. Existing approaches are on different maturity levels, e.g. in relation to the standardisation of interfaces. • The concrete implementation process consists of independent and often parallel development activities. In many cases no detailed architectural blue-print for the envisioned system exists. • Most of the funding currently available for RI implementation is provided on a project basis. To increase the synergies in infrastructure development the authors propose a specific RI Maturity Model (RIMM) that is specifically qualified for open system-of-system environments. RIMM is based on the concepts of Capability Maturity Models for organisational development, concretely the Levels of Conceptual Interoperability Model (LCIM) specifying the technical, syntactical, semantic, pragmatic, dynamic, and conceptual layers of interoperation [1]. The model is complemented by the identification and integration of growth factors (according to the Nolan Stages Theory [2]). These factors include supply and demand factors. Supply factors comprise available resources, e.g., data, services and IT-management capabilities including organisations and IT-personal. Demand factors are the overall application portfolio for RIs but also the skills and requirements of scientists and communities using the infrastructure. RIMM thus enables a balanced development process of RI and RI components by evaluating the status of the supply and demand factors in relation to specific levels of interoperability. [1] Tolk, A., Diallo, A., Turnitsa, C. (2007): Applying the Levels of Conceptual Interoperability Model in Support of Integratability, Interoperability, and Composability for System-of-Systems Engineering. Systemics, Cybernetics and Informatics, Volume 5 - Number 5. [2

  19. Development Model for Research Infrastructures

    NASA Astrophysics Data System (ADS)

    Wächter, Joachim; Hammitzsch, Martin; Kerschke, Dorit; Lauterjung, Jörn

    2015-04-01

    . The maturity of individual scientific domains differs considerably. • Technologically and organisationally many different RI components have to be integrated. Individual systems are often complex and have a long-term history. Existing approaches are on different maturity levels, e.g. in relation to the standardisation of interfaces. • The concrete implementation process consists of independent and often parallel development activities. In many cases no detailed architectural blue-print for the envisioned system exists. • Most of the funding currently available for RI implementation is provided on a project basis. To increase the synergies in infrastructure development the authors propose a specific RI Maturity Model (RIMM) that is specifically qualified for open system-of-system environments. RIMM is based on the concepts of Capability Maturity Models for organisational development, concretely the Levels of Conceptual Interoperability Model (LCIM) specifying the technical, syntactical, semantic, pragmatic, dynamic, and conceptual layers of interoperation [1]. The model is complemented by the identification and integration of growth factors (according to the Nolan Stages Theory [2]). These factors include supply and demand factors. Supply factors comprise available resources, e.g., data, services and IT-management capabilities including organisations and IT-personal. Demand factors are the overall application portfolio for RIs but also the skills and requirements of scientists and communities using the infrastructure. RIMM thus enables a balanced development process of RI and RI components by evaluating the status of the supply and demand factors in relation to specific levels of interoperability. [1] Tolk, A., Diallo, A., Turnitsa, C. (2007): Applying the Levels of Conceptual Interoperability Model in Support of Integratability, Interoperability, and Composability for System-of-Systems Engineering. Systemics, Cybernetics and Informatics, Volume 5 - Number 5. [2

  20. Recent development of hydrodynamic modeling

    NASA Astrophysics Data System (ADS)

    Hirano, Tetsufumi

    2014-09-01

    In this talk, I give an overview of recent development in hydrodynamic modeling of high-energy nuclear collisions. First, I briefly discuss about current situation of hydrodynamic modeling by showing results from the integrated dynamical approach in which Monte-Carlo calculation of initial conditions, quark-gluon fluid dynamics and hadronic cascading are combined. In particular, I focus on rescattering effects of strange hadrons on final observables. Next I highlight three topics in recent development in hydrodynamic modeling. These include (1) medium response to jet propagation in di-jet asymmetric events, (2) causal hydrodynamic fluctuation and its application to Bjorken expansion and (3) chiral magnetic wave from anomalous hydrodynamic simulations. (1) Recent CMS data suggest the existence of QGP response to propagation of jets. To investigate this phenomenon, we solve hydrodynamic equations with source term which exhibits deposition of energy and momentum from jets. We find a large number of low momentum particles are emitted at large angle from jet axis. This gives a novel interpretation of the CMS data. (2) It has been claimed that a matter created even in p-p/p-A collisions may behave like a fluid. However, fluctuation effects would be important in such a small system. We formulate relativistic fluctuating hydrodynamics and apply it to Bjorken expansion. We found the final multiplicity fluctuates around the mean value even if initial condition is fixed. This effect is relatively important in peripheral A-A collisions and p-p/p-A collisions. (3) Anomalous transport of the quark-gluon fluid is predicted when extremely high magnetic field is applied. We investigate this possibility by solving anomalous hydrodynamic equations. We found the difference of the elliptic flow parameter between positive and negative particles appears due to the chiral magnetic wave. Finally, I provide some personal perspective of hydrodynamic modeling of high energy nuclear collisions

  1. Shuttle Spacesuit (Radiation) Model Development

    NASA Technical Reports Server (NTRS)

    Anderson, Brooke M.; Nealy, J. E.; Qualls, G. D.; Staritz, P. J.; Wilson, J. W.; Kim, M.-H. Y.; Cucinotta, F. A.; Atwell, W.; DeAngelis, G.; Ware, J.

    2001-01-01

    A detailed spacesuit computational model is being developed at the Langley Research Center for exposure evaluation studies. The details of the construction of the spacesuit are critical to an estimate of exposures and for assessing the health risk to the astronaut during extravehicular activity (EVA). Fine detail of the basic fabric structure, helmet, and backpack is required to assure a valid evaluation. The exposure fields within the Computerized Anatomical Male (CAM) and Female (CAF) are evaluated at 148 and 156 points, respectively, to determine the dose fluctuations within critical organs. Exposure evaluations for ambient environments will be given and potential implications for geomagnetic storm conditions discussed.

  2. Developing a Professional Development Program Model Based on Teachers' Needs

    ERIC Educational Resources Information Center

    Lee, Hea-Jin

    2005-01-01

    This paper presents a model of a teacher needs-based (TNB) professional development program. The TNB model formed the foundation of three externally funded professional development programs. The objectives of this model are to maximize the effects of a professional development program, and to help participants sustain their learning over the long…

  3. Radiation Environment Modeling for Spacecraft Design: New Model Developments

    NASA Technical Reports Server (NTRS)

    Barth, Janet; Xapsos, Mike; Lauenstein, Jean-Marie; Ladbury, Ray

    2006-01-01

    A viewgraph presentation on various new space radiation environment models for spacecraft design is described. The topics include: 1) The Space Radiatio Environment; 2) Effects of Space Environments on Systems; 3) Space Radiatio Environment Model Use During Space Mission Development and Operations; 4) Space Radiation Hazards for Humans; 5) "Standard" Space Radiation Environment Models; 6) Concerns about Standard Models; 7) Inadequacies of Current Models; 8) Development of New Models; 9) New Model Developments: Proton Belt Models; 10) Coverage of New Proton Models; 11) Comparison of TPM-1, PSB97, AP-8; 12) New Model Developments: Electron Belt Models; 13) Coverage of New Electron Models; 14) Comparison of "Worst Case" POLE, CRESELE, and FLUMIC Models with the AE-8 Model; 15) New Model Developments: Galactic Cosmic Ray Model; 16) Comparison of NASA, MSU, CIT Models with ACE Instrument Data; 17) New Model Developmemts: Solar Proton Model; 18) Comparison of ESP, JPL91, KIng/Stassinopoulos, and PSYCHIC Models; 19) New Model Developments: Solar Heavy Ion Model; 20) Comparison of CREME96 to CREDO Measurements During 2000 and 2002; 21) PSYCHIC Heavy ion Model; 22) Model Standardization; 23) Working Group Meeting on New Standard Radiation Belt and Space Plasma Models; and 24) Summary.

  4. FEM3C, An improved three-dimensional heavy-gas dispersion model: User`s manual

    SciTech Connect

    Chan, S.T.

    1994-03-01

    FEM3C is another upgraded version of FEM3 (a three-dimensional Finite Element Model), which was developed primarily for simulating the atmospheric dispersion of heavier-than-air gas (or heavy gas) releases, based on solving the fully three-dimensional, time-dependent conservation equations of mass, momentum, energy, and species of an inert gas or a pollutant in the form of vapor/droplets. A generalized anelastic approximation, together with the ideal gas law for the density of the gas/air mixture, is invoked to preclude sound waves and allow large density variations in both space and time. Thee numerical algorithm utilizes a modified Galerkin finite element method to discretize spatially the time-dependent conservation equations of mass, momentum, energy, and species. A consistent pressure Poisson equation is formed and solved separately from the time-dependent equations, which are sequentially solved and integrated in time via a modified forward Euler method. The model can handle instantaneous source, finite-duration, and continuous releases. Also, it is capable of treating terrain and obstructions. Besides a K-theory model using similarity functions, an advanced turbulence model based on solving the k - {var_epsilon} transport equations is available as well. Imbedded in the code are also options for solving the Boussinesq equations. In this report, an overview of the model is given, user`s guides for using the model are provided, and example problems are presented to illustrate the usage of the model.

  5. Curriculum Development: A Philosophical Model.

    ERIC Educational Resources Information Center

    Bruening, William H.

    Presenting models based on the philosophies of Carl Rogers, John Dewey, Erich Fromm, and Jean-Paul Sartre, this paper proposes a philosophical approach to education and concludes with pragmatic suggestions concerning teaching based on a fully-functioning-person model. The fully-functioning person is characterized as being open to experience,…

  6. RECEPTOR MODEL DEVELOPMENT AND APPLICATION

    EPA Science Inventory

    Source apportionment (receptor) models are mathematical procedures for identifying and quantifying the sources of ambient air pollutants and their effects at a site (the receptor), primarily on the basis of species concentration measurements at the receptor, and generally without...

  7. Development of ocean model LSOMG

    NASA Astrophysics Data System (ADS)

    Sachl, Libor; Martinec, Zdenek

    2015-04-01

    The purpose of this contribution is to present the ocean general circulation model LSOMG. It originates from the LSG (Maier-Reimer and Mikolajewicz, 1992) ocean model, however, significant number of changes has been made. LSOMG is a z-coordinate baroclinic ocean model which solves the primitive equations under the Boussinesq approximation. We intend to use the model for a various geophysical applications with the focus on paleoclimate studies. Hence, the model is not as complex as the current state-of-art climate models, such as the Modular Ocean Model or NEMO models. On the other hand, it is less computationally demanding. The changes and improvements in the code will be reported. One of the obvious changes is that the governing equations are no more discretized on the Arakawa E grid. The whole model has been rewritten on the Arakawa C grid. The main motivation is to avoid a coexistence of two solutions on the grid that evolve independently of each other. A more natural treatment of boundary conditions and simpler structure of the grid are additional advantages. Another significant change is the treatment of time tendencies. The system of equations is split to barotropic and baroclinic subsystems. Both subsystems may either be discretized at the same time points (as in the original LSG model), or their discretizations may be staggered in time as described in Griffies (2004). The original fully implicit barotropic time stepping scheme was found to significantly dissipate energy. Three different time stepping schemes are available instead. Namely, the predictor-corrector scheme of Griffies (2004), the generalized forward-backward scheme of Shchepetkin and McWilliams (2008) and the implicit free surface scheme of Campin et al. (2004). The first two schemes are intended to be used with the split-explicit model configuration for short-term studies whereas the third scheme is suitable for long-term studies, e.g. paleoclimate studies. The short-term studies may also

  8. Modeling First Grade Reading Development

    ERIC Educational Resources Information Center

    Mesmer, Heidi Anne E.; Williams, Thomas O.

    2014-01-01

    This study tested a hypothesized model examining reading proficiency across first grade. It addressed how alphabetics at the beginning of the year were mediated by applied and automated skills at the middle of the year to explain actualized reading at the end of the year. The alphabetic skills of 102 first graders were measured in October and the…

  9. The CORE Model to Student Organization Development.

    ERIC Educational Resources Information Center

    Conyne, Robert K.

    Student organization development (SOD) is an emerging technology for conducting intentional student development through positive alteration of student organizations. One model (CORE) for conceptualizing SOD is in use at the Student Development Center of the University of Cincinnati. The CORE model to SOD is comprised of three concentric rings, the…

  10. Class Model Development Using Business Rules

    NASA Astrophysics Data System (ADS)

    Skersys, Tomas; Gudas, Saulius

    New developments in the area of computer-aided system engineering (CASE) greatly improve processes of the information systems development life cycle (ISDLC). Much effort is put into the quality improvement issues, but IS development projects still suffer from the poor quality of models during the system analysis and design cycles. At some degree, quality of models that are developed using CASE tools can be assured using various. automated. model comparison, syntax. checking procedures. It. is also reasonable to check these models against the business domain knowledge, but the domain knowledge stored in the repository of CASE tool (enterprise model) is insufficient (Gudas et al. 2004). Involvement of business domain experts into these processes is complicated because non- IT people often find it difficult to understand models that were developed by IT professionals using some specific modeling language.

  11. DSN RFI susceptibility models development program overview

    NASA Technical Reports Server (NTRS)

    Sue, M. K.

    1982-01-01

    The RFI model development described intended to provide an understanding of the interference susceptibility of DSN receivers. An overview of interference types and effects, analytic modelling and experimental verification is presented.

  12. ANIMAL MODELS OF COGNITIVE DEVELOPMENT IN NEUROTOXICITY

    EPA Science Inventory

    The thesis of this chapter has been that spatial delayed alternation versus position discrimination learning can serve as a valuable rodent model of cognitive development in neurotoxicology. his model captures dual process conceptualizations of memory in human neuropsychology and...

  13. A Model for Learning Development

    ERIC Educational Resources Information Center

    Kilfoil, W. R.

    2008-01-01

    This article looks at the way in which people perceive learning and the impact of these perceptions on teaching methods within the context of learning development in distance education. The context could, in fact, be any type of teaching and learning environment. The point is to balance approaches to teaching and learning depending on student…

  14. Organization Development: Strategies and Models.

    ERIC Educational Resources Information Center

    Beckhard, Richard

    This book, written for managers, specialists, and students of management, is based largely on the author's experience in helping organization leaders with planned-change efforts, and on related experience of colleagues in the field. Chapter 1 presents the background and causes for the increased concern with organization development and planned…

  15. Yield model development project implementation plan

    NASA Technical Reports Server (NTRS)

    Ambroziak, R. A.

    1982-01-01

    Tasks remaining to be completed are summarized for the following major project elements: (1) evaluation of crop yield models; (2) crop yield model research and development; (3) data acquisition processing, and storage; (4) related yield research: defining spectral and/or remote sensing data requirements; developing input for driving and testing crop growth/yield models; real time testing of wheat plant process models) and (5) project management and support.

  16. DEVELOPMENT OF THE ADVANCED UTILITY SIMULATION MODEL

    EPA Science Inventory

    The paper discusses the development of the Advanced Utility Simulation Model (AUSM), developed for the National Acid Precipitation Assessment Program (NAPAP), to forecast air emissions of pollutants from electric utilities. USM integrates generating unit engineering detail with d...

  17. Development of consistent equivalent models by mixed-model search

    NASA Technical Reports Server (NTRS)

    Guo, X.; Stoica, A.; Zebulum, R.; Keymeulen, D.

    2003-01-01

    This paper introduces a new approach to the development of equivalent models. Models of various accuracy and simulation speed may be needed in different contexts of design and analysis, or within different simulators.

  18. Development in reliability models and methods

    SciTech Connect

    Vaurio, J.K.

    1983-01-01

    This paper reviews analytical developments in modeling reliability characteristics for components and systems. Modeling involves definition of failure modes, relevant probability and timing parameters for the modes, and derivation of explicit equations for component and system unavailabilities and failure intensities. Some but not all developments to be discussed were carried out within the DOE-sponsored LMFBR safety program.

  19. Faculty Development Using the Situational Leadership Model.

    ERIC Educational Resources Information Center

    Shaner, Michael C.

    1995-01-01

    The situational leadership model developed by Hersey and Blanchard is described, and the task-specific model is then applied to the four primary tasks of college faculty--teaching, research, community service, and institutional service. The model combines directive and supportive behavior as they are reflected in four distinctive leadership…

  20. Clinical Psychology: A Research and Development Model.

    ERIC Educational Resources Information Center

    Broskowski, Anthony

    The purpose of this paper is to present a clinical research and development (R and D) model along with the rationale for its implementation and a sample training program for clinical psychologists. Although it may be possible to correct some problems by a clearer restatement of the scientist-professional model, a new model of clinical R and D has…

  1. Animal models of tuberculosis for vaccine development.

    PubMed

    Gupta, U D; Katoch, V M

    2009-01-01

    Animal models for testing different vaccine candidates have been developed since a long time for studying tuberculosis. Mice, guinea pigs and rabbits are animals most frequently used. Each model has its own merits for studying human tuberculosis, and none completely mimics the human disease. Different animal models are being used depending upon the availability of the space, trained manpower as well as other resources. Efforts should continue to develop a vaccine which can replace/outperform the presently available vaccine BCG. PMID:19287053

  2. Professional Development for the New Millennium. Professional Development Model.

    ERIC Educational Resources Information Center

    Mississippi State Dept. of Education, Jackson.

    In 1998, the Mississippi Legislature amended Mississippi Code Section 37-17 concerning the requirements for local school district professional development programs. The Department of Education then revised this portion of the model to reflect the statutory changes. This handbook contains the definition and purpose of professional development and…

  3. What Develops in Moral Development? A Model of Moral Sensibility

    ERIC Educational Resources Information Center

    Sherblom, Stephen A.

    2012-01-01

    The field of moral psychology would benefit from an integrative model of what develops in moral development, contextualized within the larger scope of social science research. Moral sensibility is proposed as the best concept to embody stated aims, but the content of this concept must be more finely articulated and conceptualized as a dynamic…

  4. SCID: Model for Effective Instructional Development.

    ERIC Educational Resources Information Center

    Norton, Robert E.

    The Systematic Curriculum and Instructional Development (SCID) model provides a tested procedure for developing high-quality, low-cost competency-based education and tech prep curriculum and instructional materials. It consists of 5 phases--analysis, design, development, implementation, and evaluation--and 23 components. The analysis phase…

  5. An Aristotelian Model of Moral Development

    ERIC Educational Resources Information Center

    Sanderse, Wouter

    2015-01-01

    Despite the Aristotelian renaissance in the philosophy of education, the development of virtue has not received much attention. This is unfortunate, because an attempt to draft an Aristotelian model of moral development can help philosophers to evaluate the contribution Aristotelian virtue ethics can make to our understanding of moral development,…

  6. A Career Roles Model of Career Development

    ERIC Educational Resources Information Center

    Hoekstra, Hans A.

    2011-01-01

    Career development is described as the interactive progression of internal career identity formation and the growth of external career significance. Argued is the need for a content model of career development where the field is dominated by process theories. A theory is put forward of career development crystallizing in the acquisition of career…

  7. Development of a comprehensive weld process model

    SciTech Connect

    Radhakrishnan, B.; Zacharia, T.; Paul, A.

    1997-05-01

    This cooperative research and development agreement (CRADA) between Concurrent Technologies Corporation (CTC) and Lockheed Martin Energy Systems (LMES) combines CTC`s expertise in the welding area and that of LMES to develop computer models and simulation software for welding processes. This development is of significant impact to the industry, including materials producers and fabricators. The main thrust of the research effort was to develop a comprehensive welding simulation methodology. A substantial amount of work has been done by several researchers to numerically model several welding processes. The primary drawback of most of the existing models is the lack of sound linkages between the mechanistic aspects (e.g., heat transfer, fluid flow, and residual stress) and the metallurgical aspects (e.g., microstructure development and control). A comprehensive numerical model which can be used to elucidate the effect of welding parameters/conditions on the temperature distribution, weld pool shape and size, solidification behavior, and microstructure development, as well as stresses and distortion, does not exist. It was therefore imperative to develop a comprehensive model which would predict all of the above phenomena during welding. The CRADA built upon an already existing three-dimensional (3-D) welding simulation model which was developed by LMES which is capable of predicting weld pool shape and the temperature history in 3-d single-pass welds. However, the model does not account for multipass welds, microstructural evolution, distortion and residual stresses. Additionally, the model requires large resources of computing time, which limits its use for practical applications. To overcome this, CTC and LMES have developed through this CRADA the comprehensive welding simulation model described above.

  8. Gene Regulation Networks for Modeling Drosophila Development

    NASA Technical Reports Server (NTRS)

    Mjolsness, E.

    1999-01-01

    This chapter will very briefly introduce and review some computational experiments in using trainable gene regulation network models to simulate and understand selected episodes in the development of the fruit fly, Drosophila Melanogaster.

  9. Mathematical Model Development and Simulation Support

    NASA Technical Reports Server (NTRS)

    Francis, Ronald C.; Tobbe, Patrick A.

    2000-01-01

    This report summarizes the work performed in support of the Contact Dynamics 6DOF Facility and the Flight Robotics Lab at NASA/ MSFC in the areas of Mathematical Model Development and Simulation Support.

  10. Structure development models of ETS-VI

    NASA Astrophysics Data System (ADS)

    Katagi, Tsuguhiko; Tsujihata, Akio; Nishio, Masanobu; Kuwao, Fumihiro; Tsukashima, Takashi; Katoh, Tatsuo; Akaeda, Tadayoshi

    Japan's Engineering Test Satellite (ETS) VI has been designed to conduct several communications experiments relevant to future direct-broadcasting satellites and is currently in its design finalization phase. Two structure-development models have accordingly been devised for static and dynamic loading tests, respectively. Results are presented from the ETS VI development models' modal survey, acoustics, sinusoid vibration, pyrotechnic shock, alignment, and mass properties tests.

  11. Development of an infrared radiative heating model

    NASA Technical Reports Server (NTRS)

    Bergstrom, R. W.; Helmle, L. C.

    1979-01-01

    Infrared radiative transfer solution algorithms used in global circulation models were assessed. Computation techniques applicable to the Ames circulation model are identified. Transmission properties of gaseous CO2, H2O, and O3 are gathered, and a computer program is developed, using the line parameter tape and Voight profile subroutine, which computes the transmission of CO2, H2O, and O3. A computer code designed to compute atmospheric cooling rates was developed.

  12. Oil spill impact modeling: development and validation.

    PubMed

    French-McCay, Deborah P

    2004-10-01

    A coupled oil fate and effects model has been developed for the estimation of impacts to habitats, wildlife, and aquatic organisms resulting from acute exposure to spilled oil. The physical fates model estimates the distribution of oil (as mass and concentrations) on the water surface, on shorelines, in the water column, and in the sediments, accounting for spreading, evaporation, transport, dispersion, emulsification, entrainment, dissolution, volatilization, partitioning, sedimentation, and degradation. The biological effects model estimates exposure of biota of various behavior types to floating oil and subsurface contamination, resulting percent mortality, and sublethal effects on production (somatic growth). Impacts are summarized as areas or volumes affected, percent of populations lost, and production foregone because of a spill's effects. This paper summarizes existing information and data used to develop the model, model algorithms and assumptions, validation studies, and research needs. Simulation of the Exxon Valdez oil spill is presented as a case study and validation of the model. PMID:15511105

  13. ARSENIC MODEL DEVELOPMENT FOR IMPROVED RISK ASSESSMENT

    EPA Science Inventory

    This project integrates research on the kinetic behavior and metabolism of arsenic at both the cellular and whole organism levels using a physiologically based pharmacokinetic (PBPK) modeling approach. The ultimate goal is development of a robust human PBPK model for arsenic met...

  14. Survey of Instructional Development Models. Third Edition.

    ERIC Educational Resources Information Center

    Gustafson, Kent L.; Branch, Robert Maribe

    This ERIC (Educational Resources Information Center) monograph updates and expands upon earlier ERIC publications on the topic of instructional development (ID) models. This monograph presents a brief history of ID models, describes a taxonomy for classifying them, provides examples from each of the categories in the taxonomy, and describes trends…

  15. Sectioning Clay Models Makes Anatomy & Development Tangible

    ERIC Educational Resources Information Center

    Howell, Carina Endres; Howell, James Endres

    2010-01-01

    Clay models have proved to be useful teaching aids for many topics in biology that depend on three-dimensional reasoning. Students studying embryonic development struggle to mentally reconstruct the three-dimensional structure of embryos and larvae by observing prepared slides of cross-sectional slices. Students who build clay models of embryos…

  16. The PEARL Model of Sustainable Development

    ERIC Educational Resources Information Center

    Bilgin, Mert

    2012-01-01

    This paper addresses perception (P), environment (E), action (A), relationship (R), and locality (L) as the social indicators of sustainable development (SD), the capital letters of which label the PEARL model. The paper refers to PEARL with regard to three aspects to elaborate the promises and limits of the model. Theoretically; it discusses…

  17. MODEL DEVELOPMENT FOR FY08 CMAQ RELEASE

    EPA Science Inventory

    This task provides credible state of the art air quality models and guidance for use in implementation of National Ambient Air Quality Standards for ozone and PM. This research effort is to develop and improve air quality models, such as the Community Multiscale Air Quality (CMA...

  18. Rainfall runoff model development and applications

    NASA Astrophysics Data System (ADS)

    Brazil, Larry E.

    A special symposium on rainfall runoff modeling was held during the 1986 AGU Fall Meeting in San Francisco, Calif. The purpose of the symposium, which was sponsored by the Surface Runoff Committee of the Hydrology Section, was to provide a forum for discussion between researchers responsible for model development and users of rainfall runoff models. The symposium consisted of morning and afternoon sessions followed by a panel discussion.

  19. Development of a realistic human airway model.

    PubMed

    Lizal, Frantisek; Elcner, Jakub; Hopke, Philip K; Jedelsky, Jan; Jicha, Miroslav

    2012-03-01

    Numerous models of human lungs with various levels of idealization have been reported in the literature; consequently, results acquired using these models are difficult to compare to in vivo measurements. We have developed a set of model components based on realistic geometries, which permits the analysis of the effects of subsequent model simplification. A realistic digital upper airway geometry except for the lack of an oral cavity has been created which proved suitable both for computational fluid dynamics (CFD) simulations and for the fabrication of physical models. Subsequently, an oral cavity was added to the tracheobronchial geometry. The airway geometry including the oral cavity was adjusted to enable fabrication of a semi-realistic model. Five physical models were created based on these three digital geometries. Two optically transparent models, one with and one without the oral cavity, were constructed for flow velocity measurements, two realistic segmented models, one with and one without the oral cavity, were constructed for particle deposition measurements, and a semi-realistic model with glass cylindrical airways was developed for optical measurements of flow velocity and in situ particle size measurements. One-dimensional phase doppler anemometry measurements were made and compared to the CFD calculations for this model and good agreement was obtained. PMID:22558834

  20. Developing modelling lenses among practicing teachers

    NASA Astrophysics Data System (ADS)

    Awawdeh Shahbari, Juhaina; Tabach, Michal

    2016-07-01

    Growing awareness of the importance of modelling activities in mathematics education has raised the question of whether teachers are prepared to facilitate the engagement of students in such activities. The current study investigates the effects of how teachers cope with modelling activities in developing their abilities to identify modelling cycles. The research was conducted among 34 practicing teachers studying for master's degrees at a college of education. The data were collected from two reports and one reflection provided by the participants about a modelling activity conducted by a group of five sixth-grade students. The first report was submitted before the participants themselves dealt with the modelling activities, while the second report and the reflection were submitted after their participation in the modelling activities. The findings indicate that prior to participating in the activity most of the teachers described the students' participation in modelling activity as a linear process. The participating teachers noticed the final mathematical model and the mathematical results obtained from applying the model, but most of them ignored the realistic results, the validating process and the cyclical nature of the mathematical model's progress. However, after the practicing teachers participated in modelling activities as learners, their reports indicated that most were able to recognize all the modelling phases and to distinguish the cyclical processes of the progress of the mathematical models. Moreover, according to the analyses of the reflections, the participating teachers are aware of the changes in their descriptions.

  1. Conceptualizing Evolving Models of Educational Development

    ERIC Educational Resources Information Center

    Fraser, Kym; Gosling, David; Sorcinelli, Mary Deane

    2010-01-01

    Educational development, which the authors use to refer to the field of professional and strategic development associated with university and college learning and teaching, can be described in many ways by referring to its different aspects. In this article the authors endeavor to categorize many of the models that have been used to describe…

  2. A Model for IT Policy Development.

    ERIC Educational Resources Information Center

    Goodyear, Marilu; Warner, Beth Forrest

    2003-01-01

    Describes the University of Kansas' information technology (IT) policy development process as a model for other institutions' IT policy development. The policy involves seven dimensions: access, freedom of expression, privacy, intellectual property, security, effective use of information resources, and records management. (EV)

  3. Modeling Socioeconomic Status Effects on Language Development

    ERIC Educational Resources Information Center

    Thomas, Michael S. C.; Forrester, Neil A.; Ronald, Angelica

    2013-01-01

    Socioeconomic status (SES) is an important environmental predictor of language and cognitive development, but the causal pathways by which it operates are unclear. We used a computational model of development to explore the adequacy of manipulations of environmental information to simulate SES effects in English past-tense acquisition, in a data…

  4. Development and Integration of Control System Models

    NASA Technical Reports Server (NTRS)

    Kim, Young K.

    1998-01-01

    The computer simulation tool, TREETOPS, has been upgraded and used at NASA/MSFC to model various complicated mechanical systems and to perform their dynamics and control analysis with pointing control systems. A TREETOPS model of Advanced X-ray Astrophysics Facility - Imaging (AXAF-1) dynamics and control system was developed to evaluate the AXAF-I pointing performance for Normal Pointing Mode. An optical model of Shooting Star Experiment (SSE) was also developed and its optical performance analysis was done using the MACOS software.

  5. A Generic Modeling Process to Support Functional Fault Model Development

    NASA Technical Reports Server (NTRS)

    Maul, William A.; Hemminger, Joseph A.; Oostdyk, Rebecca; Bis, Rachael A.

    2016-01-01

    Functional fault models (FFMs) are qualitative representations of a system's failure space that are used to provide a diagnostic of the modeled system. An FFM simulates the failure effect propagation paths within a system between failure modes and observation points. These models contain a significant amount of information about the system including the design, operation and off nominal behavior. The development and verification of the models can be costly in both time and resources. In addition, models depicting similar components can be distinct, both in appearance and function, when created individually, because there are numerous ways of representing the failure space within each component. Generic application of FFMs has the advantages of software code reuse: reduction of time and resources in both development and verification, and a standard set of component models from which future system models can be generated with common appearance and diagnostic performance. This paper outlines the motivation to develop a generic modeling process for FFMs at the component level and the effort to implement that process through modeling conventions and a software tool. The implementation of this generic modeling process within a fault isolation demonstration for NASA's Advanced Ground System Maintenance (AGSM) Integrated Health Management (IHM) project is presented and the impact discussed.

  6. Development of a working Hovercraft model

    NASA Astrophysics Data System (ADS)

    Noor, S. H. Mohamed; Syam, K.; Jaafar, A. A.; Mohamad Sharif, M. F.; Ghazali, M. R.; Ibrahim, W. I.; Atan, M. F.

    2016-02-01

    This paper presents the development process to fabricate a working hovercraft model. The purpose of this study is to design and investigate of a fully functional hovercraft, based on the studies that had been done. The different designs of hovercraft model had been made and tested but only one of the models is presented in this paper. In this thesis, the weight, the thrust, the lift and the drag force of the model had been measured and the electrical and mechanical parts are also presented. The processing unit of this model is Arduino Uno by using the PSP2 (Playstation 2) as the controller. Since our prototype should be functioning on all kind of earth surface, our model also had been tested in different floor condition. They include water, grass, cement and tile. The Speed of the model is measured in every case as the respond variable, Current (I) as the manipulated variable and Voltage (V) as the constant variable.

  7. Testing Strategies for Model-Based Development

    NASA Technical Reports Server (NTRS)

    Heimdahl, Mats P. E.; Whalen, Mike; Rajan, Ajitha; Miller, Steven P.

    2006-01-01

    This report presents an approach for testing artifacts generated in a model-based development process. This approach divides the traditional testing process into two parts: requirements-based testing (validation testing) which determines whether the model implements the high-level requirements and model-based testing (conformance testing) which determines whether the code generated from a model is behaviorally equivalent to the model. The goals of the two processes differ significantly and this report explores suitable testing metrics and automation strategies for each. To support requirements-based testing, we define novel objective requirements coverage metrics similar to existing specification and code coverage metrics. For model-based testing, we briefly describe automation strategies and examine the fault-finding capability of different structural coverage metrics using tests automatically generated from the model.

  8. Modeling psychiatric disorders for developing effective treatments

    PubMed Central

    Kaiser, Tobias; Feng, Guoping

    2016-01-01

    The recent advance in identifying risk genes has provided an unprecedented opportunity for developing animal models for psychiatric disease research with the goal of attaining translational utility to ultimately develop novel treatments. However, at this early stage, successful translation has yet to be achieved. Here, we review recent advances in modeling psychiatric disease, discuss utility and limitations of animal models, and emphasize the importance of shifting from behavioral analysis to identifying neurophysiological defects, which are likely more conserved across species and thus increase translatability. Looking forward, we envision that preclinical research will align with clinical research to build a common framework of comparable neurobiological abnormalities and form subgroups of patients based on similar pathophysiology. Experimental neuroscience can then use animal models to discover mechanisms underlying distinct abnormalities and develop strategies for effective treatments. PMID:26340119

  9. System model development for nuclear thermal propulsion

    SciTech Connect

    Walton, J.T.; Hannan, N.A.; Perkins, K.R.; Buksa, J.J.; Worley, B.A.; Dobranich, D.

    1992-10-01

    A critical enabling technology in the evolutionary development of nuclear thermal propulsion (NTP) is the ability to predict the system performance under a variety of operating conditions. Since October 1991, US (DOE), (DOD) and NASA have initiated critical technology development efforts for NTP systems to be used on Space Exploration Initiative (SEI) missions to the Moon and Mars. This paper presents the strategy and progress of an interagency NASA/DOE/DOD team for NTP system modeling. It is the intent of the interagency team to develop several levels of computer programs to simulate various NTP systems. An interagency team was formed for this task to use the best capabilities available and to assure appropriate peer review. The vision and strategy of the interagency team for developing NTP system models will be discussed in this paper. A review of the progress on the Level 1 interagency model is also presented.

  10. Modeling socioeconomic status effects on language development.

    PubMed

    Thomas, Michael S C; Forrester, Neil A; Ronald, Angelica

    2013-12-01

    Socioeconomic status (SES) is an important environmental predictor of language and cognitive development, but the causal pathways by which it operates are unclear. We used a computational model of development to explore the adequacy of manipulations of environmental information to simulate SES effects in English past-tense acquisition, in a data set provided by Bishop (2005). To our knowledge, this is the first application of computational models of development to SES. The simulations addressed 3 new challenges: (a) to combine models of development and individual differences in a single framework, (b) to expand modeling to the population level, and (c) to implement both environmental and genetic/intrinsic sources of individual differences. The model succeeded in capturing the qualitative patterns of regularity effects in both population performance and the predictive power of SES that were observed in the empirical data. The model suggested that the empirical data are best captured by relatively wider variation in learning abilities and relatively narrow variation in (and good quality of) environmental information. There were shortcomings in the model's quantitative fit, which are discussed. The model made several novel predictions, with respect to the influence of SES on delay versus giftedness, the change of SES effects over development, and the influence of SES on children of different ability levels (gene-environment interactions). The first of these predictions was that SES should reliably predict gifted performance in children but not delayed performance, and the prediction was supported by the Bishop data set. Finally, the model demonstrated limits on the inferences that can be drawn about developmental mechanisms on the basis of data from individual differences. PMID:23544858

  11. Developing a Model for Continuous Professional Development by Action Research

    ERIC Educational Resources Information Center

    Herbert, Susan; Rainford, Marcia

    2014-01-01

    This paper presents a case study of the work of two teacher educators with an in-service science teacher. This case study forms one cycle of a larger action research study that will eventually lead to a model of how the third-space concept for teacher professional development can be realized in natural school settings. The case study took place in…

  12. A history of mesoscale model development

    NASA Astrophysics Data System (ADS)

    Dudhia, Jimy

    2014-01-01

    The development of atmospheric mesoscale models from their early origins in the 1970's until the present day is described. Evolution has occurred in dynamical and physics representations in these models. The dynamics has had to change from hydrostatic to fully nonhydrostatic equations to handle the finer scales that have become possible in the last few decades with advancing computer power, which has enabled real-time forecasting to go to finer grid sizes. Meanwhile the physics has also become more sophisticated than the initial representations of the major processes associated with the surface, boundary layer, radiation, clouds and convection. As resolutions have become finer, mesoscale models have had to change paradigms associated with assumptions related to what is considered sub-grid scale needing parameterization, and what is resolved well enough to be explicitly handled by the dynamics. This first occurred with cumulus parameterization as real-time forecast models became able to represent individual updrafts, and is now starting to occur in the boundary layer as future forecast models may be able resolve individual thermals. Beyond that, scientific research has provided a greater understanding of detailed microphysical and land-surface processes that are important to aspects of weather prediction, and these parameterizations have been developing complexity at a steady rate. This paper can just give a perspective of these developments in the broad field of research associated with mesoscale atmospheric model development.

  13. Constraints and Opportunities in GCM Model Development

    NASA Astrophysics Data System (ADS)

    Schmidt, G. A.; Clune, T.

    2010-12-01

    Over the past 30 years climate models have evolved from relatively simple representations of a few atmospheric processes to complex multi-disciplinary system models which incorporate physics from bottom of the ocean to the mesopause and are used for seasonal to multi-million year timescales. Computer infrastructure over that period has gone from punchcard mainframes to modern parallel clusters. Constraints of working within an ever evolving research code mean that most software changes must be incremental so as not to disrupt scientific throughput. Unfortunately, programming methodologies have generally not kept pace with these challenges, and existing implementations now present a heavy and growing burden on further model development as well as limiting flexibility and reliability. Opportunely, advances in software engineering from other disciplines (e.g. the commercial software industry) as well as new generations of powerful development tools can be incorporated by the model developers to incrementally and systematically improve underlying implementations and reverse the long term trend of increasing development overhead. However, these methodologies cannot be applied blindly, but rather must be carefully tailored to the unique characteristics of scientific software development. We will discuss the need for close integration of software engineers and climate scientists to find the optimal processes for climate modeling.

  14. Kinetics model development of cocoa bean fermentation

    NASA Astrophysics Data System (ADS)

    Kresnowati, M. T. A. P.; Gunawan, Agus Yodi; Muliyadini, Winny

    2015-12-01

    Although Indonesia is one of the biggest cocoa beans producers in the world, Indonesian cocoa beans are oftenly of low quality and thereby frequently priced low in the world market. In order to improve the quality, adequate post-harvest cocoa processing techniques are required. Fermentation is the vital stage in series of cocoa beans post harvest processing which could improve the quality of cocoa beans, in particular taste, aroma, and colours. During the fermentation process, combination of microbes grow producing metabolites that serve as the precursors for cocoa beans flavour. Microbial composition and thereby their activities will affect the fermentation performance and influence the properties of cocoa beans. The correlation could be reviewed using a kinetic model that includes unstructured microbial growth, substrate utilization and metabolic product formation. The developed kinetic model could be further used to design cocoa bean fermentation process to meet the expected quality. Further the development of kinetic model of cocoa bean fermentation also serve as a good case study of mixed culture solid state fermentation, that has rarely been studied. This paper presents the development of a kinetic model for solid-state cocoa beans fermentation using an empirical approach. Series of lab scale cocoa bean fermentations, either natural fermentations without starter addition or fermentations with mixed yeast and lactic acid bacteria starter addition, were used for model parameters estimation. The results showed that cocoa beans fermentation can be modelled mathematically and the best model included substrate utilization, microbial growth, metabolites production and its transport. Although the developed model still can not explain the dynamics in microbial population, this model can sufficiently explained the observed changes in sugar concentration as well as metabolic products in the cocoa bean pulp.

  15. Development of Ensemble Model Based Water Demand Forecasting Model

    NASA Astrophysics Data System (ADS)

    Kwon, Hyun-Han; So, Byung-Jin; Kim, Seong-Hyeon; Kim, Byung-Seop

    2014-05-01

    In recent years, Smart Water Grid (SWG) concept has globally emerged over the last decade and also gained significant recognition in South Korea. Especially, there has been growing interest in water demand forecast and optimal pump operation and this has led to various studies regarding energy saving and improvement of water supply reliability. Existing water demand forecasting models are categorized into two groups in view of modeling and predicting their behavior in time series. One is to consider embedded patterns such as seasonality, periodicity and trends, and the other one is an autoregressive model that is using short memory Markovian processes (Emmanuel et al., 2012). The main disadvantage of the abovementioned model is that there is a limit to predictability of water demands of about sub-daily scale because the system is nonlinear. In this regard, this study aims to develop a nonlinear ensemble model for hourly water demand forecasting which allow us to estimate uncertainties across different model classes. The proposed model is consist of two parts. One is a multi-model scheme that is based on combination of independent prediction model. The other one is a cross validation scheme named Bagging approach introduced by Brieman (1996) to derive weighting factors corresponding to individual models. Individual forecasting models that used in this study are linear regression analysis model, polynomial regression, multivariate adaptive regression splines(MARS), SVM(support vector machine). The concepts are demonstrated through application to observed from water plant at several locations in the South Korea. Keywords: water demand, non-linear model, the ensemble forecasting model, uncertainty. Acknowledgements This subject is supported by Korea Ministry of Environment as "Projects for Developing Eco-Innovation Technologies (GT-11-G-02-001-6)

  16. Clover development during spaceflight: a model system.

    PubMed

    Guikema, J A; DeBell, L; Paulsen, A; Spooner, B S; Wong, P P

    1994-01-01

    The development of legume root nodules was studied as a model system for the examination of gravitational effects on plant root development. In order to examine whether rhizobial association with clover roots can be achieved in microgravity, experiments were performed aboard the KC-135 parabolic aircraft and aboard the sounding rocket mission Consort 3. Binding of rhizobia to roots and the initial stages of root nodule development successfully occurred in microgravity. Seedling germination experiments were performed in the sliding block device, the Materials Dispersion Apparatus, aboard STS-37. When significant hydration of the seeds was achieved, normal rates of germination and seedling development were observed. PMID:11537915

  17. Clover development during spaceflight: A model system

    NASA Technical Reports Server (NTRS)

    Guikema, James A.; Debell, Lynnette; Paulsen, Avelina; Spooner, Brian S.; Wong, Peter P.

    1994-01-01

    The development of legume root nodules was studied as a model system for the examination of gravitational effects on plant root development. In order to examine whether rhizobial association with clover roots can be achieved in microgravity, experiments were performed aboard the KC-135 parabolic aircraft and aboard the sounding rocket mission Consort 3. Binding of rhizobia to roots and the initial stages of root nodule development successfully occurred in microgravity. Seedling germination experiments were performed in the sliding block device, the Materials Dispersion Apparatus, aboard STS-37. When significant hydration of the seeds was achieved, normal rates of germination and seedling development were observed.

  18. An anisotropic extension of Bodner's model of viscoplasticity: Model development

    NASA Technical Reports Server (NTRS)

    Robinson, David N.

    1994-01-01

    An anisotropic viscoplasticity model is developed as an extension of the well known Bodner model. The extension is made by replacing the effective stress of the isotropic Bodner model by one involving invariants for transverse isotropy. The resulting model retains the simplicity of Bodner's in the ease with which the material constants are determined experimentally. It allows a representation of strong initial anisotropy yet is based on the scalar state variable under the assertion that induced anisotropy is negligible relative to the strong initial anisotropy. Temperature dependence is taken as in the original Bodner theory. Account is made of fiber volume fraction through nonlinear rules of mixture applied to the stress history and anisotropy parameters. Focus is on the theoretical development of the model, however, application to a W/Cu composite is in progress and will be reported as a sequel to this report.

  19. System model development for nuclear thermal propulsion

    NASA Astrophysics Data System (ADS)

    Hannan, Nelson A.; Worley, Brian A.; Walton, James T.; Perkins, Ken R.; Buska, John J.; Dobranich, Dean

    1992-08-01

    A critical enabling technology in the evolutionary development of nuclear thermal propulsion (NTP) is the ability to predict the system performance under a variety of operating conditions. This is crucial for mission analysis and for control subsystem testing as well as for the modeling of various failure modes. Performance must be accurately predicted during steady-state and transient operation, including startup, shutdown and post operation cooling. The development and application of verified and validated system models has the potential to reduce the design, testing, cost and time required for the technology to reach flight-ready status. Since October 1991, the US Department of Energy (DOE), Department of Defense (DOD) and NASA have initiated critical technology development efforts for NTP systems to be used on Space Exploration Initiative (SEI) missions to the Moon and Mars. This paper presents the strategy and progress of an interagency NASA/DOE/DOD team for NTP system modeling.

  20. System model development for nuclear thermal propulsion

    SciTech Connect

    Hannan, N.A.; Worley, B.A.; Walton, J.T.; Perkins, K.R.; Buksa, J.J.; Dobranich, D.

    1992-11-01

    A critical enabling technology in the evolutionary development of nuclear thermal propulsion (NTP) is the ability to predict the system performance under a variety of operating conditions. This is crucial for mission analysis and for control subsystem testing as well as for the modeling of various failure modes. Performance must be accurately predicted during steady-state and transient operation, including startup, shutdown and post operation cooling. The development and application of verified and validated system models has the potential to reduce the design, testing, cost and time required for the technology to reach flight-ready status. Since October 1991, the US Department of Energy (DOE), Department of Defense (DOD) and NASA have initiated critical technology development efforts for NTP systems to be used on Space Exploration Initiative (SEI) missions to the Moon and Mars. This paper presents the strategy and progress of an interagency NASA/DOE/DOD team for NTP system modeling.

  1. Turbulence Modeling Validation, Testing, and Development

    NASA Technical Reports Server (NTRS)

    Bardina, J. E.; Huang, P. G.; Coakley, T. J.

    1997-01-01

    The primary objective of this work is to provide accurate numerical solutions for selected flow fields and to compare and evaluate the performance of selected turbulence models with experimental results. Four popular turbulence models have been tested and validated against experimental data often turbulent flows. The models are: (1) the two-equation k-epsilon model of Wilcox, (2) the two-equation k-epsilon model of Launder and Sharma, (3) the two-equation k-omega/k-epsilon SST model of Menter, and (4) the one-equation model of Spalart and Allmaras. The flows investigated are five free shear flows consisting of a mixing layer, a round jet, a plane jet, a plane wake, and a compressible mixing layer; and five boundary layer flows consisting of an incompressible flat plate, a Mach 5 adiabatic flat plate, a separated boundary layer, an axisymmetric shock-wave/boundary layer interaction, and an RAE 2822 transonic airfoil. The experimental data for these flows are well established and have been extensively used in model developments. The results are shown in the following four sections: Part A describes the equations of motion and boundary conditions; Part B describes the model equations, constants, parameters, boundary conditions, and numerical implementation; and Parts C and D describe the experimental data and the performance of the models in the free-shear flows and the boundary layer flows, respectively.

  2. Preform Characterization in VARTM Process Model Development

    NASA Technical Reports Server (NTRS)

    Grimsley, Brian W.; Cano, Roberto J.; Hubert, Pascal; Loos, Alfred C.; Kellen, Charles B.; Jensen, Brian J.

    2004-01-01

    Vacuum-Assisted Resin Transfer Molding (VARTM) is a Liquid Composite Molding (LCM) process where both resin injection and fiber compaction are achieved under pressures of 101.3 kPa or less. Originally developed over a decade ago for marine composite fabrication, VARTM is now considered a viable process for the fabrication of aerospace composites (1,2). In order to optimize and further improve the process, a finite element analysis (FEA) process model is being developed to include the coupled phenomenon of resin flow, preform compaction and resin cure. The model input parameters are obtained from resin and fiber-preform characterization tests. In this study, the compaction behavior and the Darcy permeability of a commercially available carbon fabric are characterized. The resulting empirical model equations are input to the 3- Dimensional Infiltration, version 5 (3DINFILv.5) process model to simulate infiltration of a composite panel.

  3. Model development for Ulysses and SOHO

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    1993-01-01

    The purpose of this research is to provide scientific expertise in solar physics and in the development and use of magnetohydrodynamic (MHD) models of coronal structures for the computation of Lyman alpha scattered radiation in these structures. The specific objectives will be to run MHD models with new boundary conditions and compute resulting scattered solar Lyman alpha intensities, guided by results from the first series of boundary conditions.

  4. Model Developments for Development of Improved Emissions Scenarios: Developing Purchasing-Power Parity Models, Analyzing Uncertainty, and Developing Data Sets for Gridded Integrated Assessment Models

    SciTech Connect

    Yang, Zili; Nordhaus, William

    2009-03-19

    In the duration of this project, we finished the main tasks set up in the initial proposal. These tasks include: setting up the basic platform in GAMS language for the new RICE 2007 model; testing various model structure of RICE 2007; incorporating PPP data set in the new RICE model; developing gridded data set for IA modeling.

  5. Development of a Comprehensive Weld Process Model

    SciTech Connect

    Radhakrishnan, B.; Zacharia, T.

    1997-05-01

    This cooperative research and development agreement (CRADA) between Concurrent Technologies Corporation (CTC) and Lockheed Martin Energy Systems (LMES) combines CTC's expertise in the welding area and that of LMES to develop computer models and simulation software for welding processes. This development is of significant impact to the industry, including materials producers and fabricators. The main thrust of the research effort was to develop a comprehensive welding simulation methodology. A substantial amount of work has been done by several researchers to numerically model several welding processes. The primary drawback of most of the existing models is the lack of sound linkages between the mechanistic aspects (e.g., heat transfer, fluid flow, and residual stress) and the metallurgical aspects (e.g., microstructure development and control). A comprehensive numerical model which can be used to elucidate the effect of welding parameters/conditions on the temperature distribution, weld pool shape and size, solidification behavior, and microstructure development, as well as stresses and distortion, does not exist. It was therefore imperative to develop a comprehensive model which would predict all of the above phenomena during welding. The CRADA built upon an already existing three- dimensional (3-D) welding simulation model which was developed by LMES which is capable of predicting weld pool shape and the temperature history in 3-d single-pass welds. However, the model does not account for multipass welds, microstructural evolution, distortion and residual stresses. Additionally, the model requires large resources of computing time, which limits its use for practical applications. To overcome this, CTC and LMES have developed through this CRADA the comprehensive welding simulation model described above. The following technical tasks have been accomplished as part of the CRADA. 1. The LMES welding code has been ported to the Intel Paragon parallel computer at ORNL

  6. Argonne Bubble Experiment Thermal Model Development

    SciTech Connect

    Buechler, Cynthia Eileen

    2015-12-03

    This report will describe the Computational Fluid Dynamics (CFD) model that was developed to calculate the temperatures and gas volume fractions in the solution vessel during the irradiation. It is based on the model used to calculate temperatures and volume fractions in an annular vessel containing an aqueous solution of uranium . The experiment was repeated at several electron beam power levels, but the CFD analysis was performed only for the 12 kW irradiation, because this experiment came the closest to reaching a steady-state condition. The aim of the study is to compare results of the calculation with experimental measurements to determine the validity of the CFD model.

  7. Software Model Of Software-Development Process

    NASA Technical Reports Server (NTRS)

    Lin, Chi Y.; Synott, Debra J.; Levary, Reuven R.

    1990-01-01

    Collection of computer programs constitutes software tool for simulation of medium- to large-scale software-development projects. Necessary to include easily identifiable and more-readily quantifiable characteristics like costs, times, and numbers of errors. Mathematical model incorporating these and other factors of dynamics of software-development process implemented in the Software Life Cycle Simulator (SLICS) computer program. Simulates dynamics of software-development process. In combination with input and output expert software systems and knowledge-based management software system, develops information for use in managing large software-development project. Intended to aid managers in planning, managing, and controlling software-development processes by reducing uncertainties in budgets, required personnel, and schedules.

  8. Development modeling of Lucilia sericata (Diptera: Calliphoridae)

    PubMed Central

    Higley, Leon G.

    2015-01-01

    The relationship between insect development and temperature has been well established and has a wide range of uses, including the use of blow flies for postmortem (PMI) interval estimations in death investigations. To use insects in estimating PMI, we must be able to determine the insect age at the time of discovery and backtrack to time of oviposition. Unfortunately, existing development models of forensically important insects are only linear approximations and do not take into account the curvilinear properties experienced at extreme temperatures. A series of experiments were conducted with Lucilia sericata, a forensically important blow fly species, that met the requirements needed to create statistically valid development models. Experiments were conducted over 11 temperatures (7.5 to 32.5 °C, at 2.5 °C) with a 16:8 L:D cycle. Experimental units contained 20 eggs, 10 g beef liver, and 2.5 cm of pine shavings. Each life stage (egg to adult) had five sampling times. Each sampling time was replicated four times, for a total of 20 measurements per life stage. For each sampling time, the cups were pulled from the chambers and the stage of each maggot was documented morphologically through posterior spiracle slits and cephalopharyngeal skeletal development. Data were normally distributed with the later larval stages (L3f, L3m) having the most variation within and transitioning between stages. The biological minimum was between 7.5 °C and 10 °C, with little egg development and no egg emergence at 7.5 °C. Temperature-induced mortality was highest from 10.0 to 17.5 °C and 32.5 °C. The development data generated illustrates the advantages of large datasets in modeling Lucilia sericata development and the need for curvilinear models in describing development at environmental temperatures near the biological minima and maxima. PMID:25780761

  9. Development of Impact Model for Water Ice

    NASA Astrophysics Data System (ADS)

    Church, Philip; Gould, Peter; Lewtas, Ian; Jardine, Andy; Braithwaite, Chris; Jarman, Katie; QinetiQ Team; Cambridge Team

    2015-06-01

    This work, which is supported by the European Space Agency (ESA) is in support of Penetrator technology development for a potential mission to Europa or other icy bodies. An ice model has been constructed to predict the shock and impact behaviour of water ice. The equation of state is based on the theoretical Porter-Gould approach and is capable of predicting the shock response of ice. The constitutive model is based on a Johnson-Holmquist model and is constructed from a combination of low and high rate compression tests and a simple spall model is included. The model has been incorporated into the GRIM and DYNA hydrocodes and has been validated for impacts of ball-bearings into very well controlled ice blocks. The results are discussed and future studies are suggested. funding from ESA.

  10. Development of a simplified biofilm model

    NASA Astrophysics Data System (ADS)

    Sarkar, Sushovan; Mazumder, Debabrata

    2015-11-01

    A simplified approach for analyzing the biofilm process in deriving an easy model has been presented. This simplified biofilm model formulated correlations between substrate concentration in the influent/effluent and at biofilm-liquid interface along with substrate flux and biofilm thickness. The model essentially considered the external mass transport according to Fick's Law, steady state substrate as well as biomass balance for attached growth microorganisms. In substrate utilization, Monod growth kinetics has been followed incorporating relevant boundary conditions at the liquid-biofilm interface and at the attachment surface. The numerical solution of equations was accomplished using Runge-Kutta method and accordingly an integrated computer program was developed. The model has been successfully applied in a distinct set of trials with varying range of representative input variables. The model performance was compared with available existing methods and it was found an easy, accurate method that can be used for process design of biofilm reactor.

  11. SSME structural dynamic model development, phase 2

    NASA Technical Reports Server (NTRS)

    Foley, M. J.; Wilson, V. L.

    1985-01-01

    A set of test correlated mathematical models of the SSME High Pressure Oxygen Turbopump (HPOTP) housing and rotor assembly was produced. New analysis methods within the EISI/EAL and SPAR systems were investigated and runstreams for future use were developed. The LOX pump models have undergone extensive modification since the first phase of this effort was completed. The rotor assembly from the original model was abandoned and a new, more detailed model constructed. A description of the new rotor math model is presented. Also, the pump housing model was continually modified as additional test data have become available. This model is documented along with measured test results. Many of the more advanced features of the EAL/SPAR finite element analysis system were exercised. These included the cyclic symmetry option, the macro-element procedures, and the fluid analysis capability. In addition, a new tool was developed that allows an automated analysis of a disjoint structure in terms of its component modes. A complete description of the implementation of the Craig-Bampton method is given along with two worked examples.

  12. Gis in Tourism Development Using Spatial Modelling

    NASA Astrophysics Data System (ADS)

    Juodkienė, Vytautė

    2014-12-01

    The article deals with a spatial problem - setting the best places for tourism development in Panevėžys district (Lithuania). In order to select areas using ArcGIS software, there was developed a model that evaluated the criteria that influence the selection of areas suitable for tourism. The article presents a digital map, which indicates most suitable locations for rural development by evaluating zones by points in order of importance. The evaluation scale is from 10 points (the most suitable location) to 2 points (the least suitable location). Evaluation points in thematic maps indicate exact locations that are most suitable for tourism homesteads.

  13. Development of an Integrated Global Energy Model

    SciTech Connect

    Krakowski, R.A.

    1999-07-08

    The primary objective of this research was to develop a forefront analysis tool for application to enhance understanding of long-term, global, nuclear-energy and nuclear-material futures. To this end, an existing economics-energy-environmental (E{sup 3}) model was adopted, modified, and elaborated to examine this problem in a multi-regional (13), long-term ({approximately}2,100) context. The E{sup 3} model so developed was applied to create a Los Alamos presence in this E{sup 3} area through ''niche analyses'' that provide input to the formulation of policies dealing with and shaping of nuclear-energy and nuclear-materials futures. Results from analyses using the E{sup 3} model have been presented at a variety of national and international conferences and workshops. Through use of the E{sup 3} model Los Alamos was afforded the opportunity to participate in a multi-national E{sup 3} study team that is examining a range of global, long-term nuclear issues under the auspices of the IAEA during the 1998-99 period . Finally, the E{sup 3} model developed under this LDRD project is being used as an important component in more recent Nuclear Material Management Systems (NMMS) project.

  14. The development of circuit models for ZR.

    SciTech Connect

    Harjes, Henry Charles III; Corley, J.

    2005-06-01

    Summary from only given. The capabilities of the Z accelerator will be significantly enhanced by the Z Refurbishment (ZR) project [McDaniel DH, 2002]. The performance of a single ZR module is currently being characterized in the pre-production engineering evaluation test bed, Z20 [Lehr, JM, 2003]. Z20 is thoroughly diagnosed so that electrical performance of the module can be established. Circuit models of Z20 have been developed and validated in both Screamer [1985] and Bertha [1989] circuit codes. For the purposes of predicting ZR performance, a full ZR circuit model has also been developed in Bertha. The full ZR model (using operating parameters demonstrated on Z20) indicates that the required 26 MA, 100 ns implosion time, output load current pulse will be achieved on ZR. In this paper, the electrical characterization of Z20 and development of the single module circuit models will be discussed in detail. The full ZR model will also be discussed and the results of several system studies conducted to predict ZR performance will be presented.

  15. Theoretical models of neural circuit development.

    PubMed

    Simpson, Hugh D; Mortimer, Duncan; Goodhill, Geoffrey J

    2009-01-01

    Proper wiring up of the nervous system is critical to the development of organisms capable of complex and adaptable behaviors. Besides the many experimental advances in determining the cellular and molecular machinery that carries out this remarkable task precisely and robustly, theoretical approaches have also proven to be useful tools in analyzing this machinery. A quantitative understanding of these processes can allow us to make predictions, test hypotheses, and appraise established concepts in a new light. Three areas that have been fruitful in this regard are axon guidance, retinotectal mapping, and activity-dependent development. This chapter reviews some of the contributions made by mathematical modeling in these areas, illustrated by important examples of models in each section. For axon guidance, we discuss models of how growth cones respond to their environment, and how this environment can place constraints on growth cone behavior. Retinotectal mapping looks at computational models for how topography can be generated in populations of neurons based on molecular gradients and other mechanisms such as competition. In activity-dependent development, we discuss theoretical approaches largely based on Hebbian synaptic plasticity rules, and how they can generate maps in the visual cortex very similar to those seen in vivo. We show how theoretical approaches have substantially contributed to the advancement of developmental neuroscience, and discuss future directions for mathematical modeling in the field. PMID:19427515

  16. Developing a Motivational Model of College Achievement.

    ERIC Educational Resources Information Center

    Tuckman, Bruce W.; Abry, Dennis

    This study involves developing a motivational model of college achievement. The predictor variables, which were procrastination tendency, self-efficacy, self-regulation, intrinsic value, outcome value, cognitive strategy, test anxiety, students grade goals, parent grade goals, and grade point average, as well as the criterion variable exam…

  17. DEVELOPMENT OF RESIDENTIAL WOOD COMSUMPTION ESTIMATION MODELS

    EPA Science Inventory

    The report gives data on the distribution and usage of firewood, obtained from a pool of household wood use surveys. ased on a series of regression models developed using the STEPWISE procedure in the SAS statistical package, two variables appear to be most predictive of wood use...

  18. Modeling Sustainability in Product Development and Commercialization

    ERIC Educational Resources Information Center

    Carlson, Robert C.; Rafinejad, Dariush

    2008-01-01

    In this article, the authors present the framework of a model that integrates strategic product development decisions with the product's impact on future conditions of resources and the environment. The impact of a product on stocks of nonrenewable sources and sinks is linked in a feedback loop to the cost of manufacturing and using the product…

  19. Analysis of Reflective Professional Development Models.

    ERIC Educational Resources Information Center

    Filby, Nikola N.

    This paper reviews the background of and compares three particular approaches to reflective professional development, specifically as used by Far West Laboratory: case methods, the Peer Assisted Leadership process, in which peer partners observe each other, conduct reflective interviews, construct leadership models, and explore alternate ways to…

  20. A Model of Teacher Change and Development

    ERIC Educational Resources Information Center

    Honey, Sukrat; Graham, Edward

    2012-01-01

    This paper looks at research based models that have been put forward to describe how teacher use of technology develops. There have been a variety of studies that have proposed levels that describe teacher use of technology and identify the different aspects of use that distinguish these levels. Very few of these studies have shown how teachers…

  1. CONCEPTUAL DEVELOPMENT OF A TOXIC SCREENING MODEL

    EPA Science Inventory

    This report presents the application of the Routing and Graphical Display system developed by EPA to show how computer based modeling and simulation using the Reach File can be used to assess the types and concentrations of contaminants that could be found at any point in a river...

  2. CPAS Parachute Testing, Model Development, & Verification

    NASA Technical Reports Server (NTRS)

    Romero, Leah M.

    2013-01-01

    Capsule Parachute Assembly System (CPAS) is the human rated parachute system for the Orion vehicle used during re-entry. Similar to Apollo parachute design. Human rating requires additional system redundancy. A Government Furnished Equipment (GFE) project responsible for: Design; Development testing; Performance modeling; Fabrication; Qualification; Delivery

  3. Competency Assessment Model: Development and Verification.

    ERIC Educational Resources Information Center

    Von Fange, Theodore; Benson, Sterling

    The development of a model that would provide organized direction in describing the "competent teacher" is discussed. In a joint effort of practicing teachers and college of education personnel, the parameters for identifying behaviors of effective teachers were established. Six areas of competency were used--intellectual, personality, teaching…

  4. The Jeffrey Town Model for Community Development

    ERIC Educational Resources Information Center

    Gordon, Ivy Veronica

    2014-01-01

    The Jeffrey Town model for community development has been effectively applied to the rural community of Jeffrey Town in Jamaica with Information and Computer Technology (ICT) as a key element. The farmer's association is the vehicle that has driven the change. Included is a brief outline of the community plus highlights of the tangible and…

  5. Model Professional Development Programs Win Recognition.

    ERIC Educational Resources Information Center

    Price, Kathleen C., Ed.; Quinn, Peggy, Ed.

    1999-01-01

    This bulletin is designed to illustrate the broad range of research and improvement activities supported by the Office of Educational Research and Improvement. Contents include: "Model Professional Development Programs Win Recognition,""Are Our Schools Safe?,""Charter Schools on the Rise,""What to Expect Your First Year of Teaching,""Evaluating…

  6. A Brush Seals Program Modeling and Developments

    NASA Technical Reports Server (NTRS)

    Hendricks, Robert C.; Flower, Ralph; Howe, Harold

    1996-01-01

    Some events of a U.S. Army/NASA Lewis Research Center brush seals program are reviewed, and the development of ceramic brush seals is described. Some preliminary room-temperature flow data are modeled and compare favorably to the results of Ergun.

  7. A Model for Enhancing Online Course Development

    ERIC Educational Resources Information Center

    Knowles, Evelyn; Kalata, Kathleen

    2008-01-01

    In order to meet the growing demand for quality online education, Park University has adopted a model that provides a common framework for all of its online courses. Evelyn Knowles and Kathleen Kalata discuss the circumstances leading to the current system and describe the university's implementation of a course development process that ensures…

  8. GPU Developments for General Circulation Models

    NASA Astrophysics Data System (ADS)

    Appleyard, Jeremy; Posey, Stan; Ponder, Carl; Eaton, Joe

    2014-05-01

    Current trends in high performance computing (HPC) are moving towards the use of graphics processing units (GPUs) to achieve speedups through the extraction of fine-grain parallelism of application software. GPUs have been developed exclusively for computational tasks as massively-parallel co-processors to the CPU, and during 2013 an extensive set of new HPC architectural features were developed in a 4th generation of NVIDIA GPUs that provide further opportunities for GPU acceleration of general circulation models used in climate science and numerical weather prediction. Today computational efficiency and simulation turnaround time continue to be important factors behind scientific decisions to develop models at higher resolutions and deploy increased use of ensembles. This presentation will examine the current state of GPU parallel developments for stencil based numerical operations typical of dynamical cores, and introduce new GPU-based implicit iterative schemes with GPU parallel preconditioning and linear solvers based on ILU, Krylov methods, and multigrid. Several GCMs show substantial gain in parallel efficiency from second-level fine-grain parallelism under first-level distributed memory parallel through a hybrid parallel implementation. Examples are provided relevant to science-scale HPC practice of CPU-GPU system configurations based on model resolution requirements of a particular simulation. Performance results compare use of the latest conventional CPUs with and without GPU acceleration. Finally a forward looking discussion is provided on the roadmap of GPU hardware, software, tools, and programmability for GCM development.

  9. Development of a dynamic thermal model process

    SciTech Connect

    Smith, F. R.

    1996-04-01

    A dynamic electrical-thermal modeling simulation technique was developed to allow up-front design of thermal and electronic packaging with a high degree of accuracy and confidence. We are developing a hybrid multichip module output driver which controls with power MOSFET driver circuits. These MOSFET circuits will dissipate from 13 to 26 watts per driver in a physical package less than two square inches. The power dissipation plus an operating temperature range of -55{degrees} C to 100{degrees} C makes an accurate thermal package design critical. The project goal was to develop a simulation process to dynamically model the electrical/thermal characteristics of the power MOSFETS using the SABER analog simulator and the ABAQUS finite element simulator. SABER would simulate the electrical characteristics of the multi-chip module design while co-simulation is being done with ABAQUS simulating the solid model thermal characteristics of the MOSFET package. The dynamic parameters, MOSFET power and chip temperature, would be actively passed between simulators to effect a coupled simulator modelling technique. The project required a development of a SABER late for the analog ASIC controller circuit, a dynamic electrical/thermal template for the IRF150 and IRF9130 power MOSFETs, a solid model of the multi-chip module package, FORTRAN code to handle I/Q between and HP755 workstation and SABER, and I/O between CRAY J90 computer and ABAQUS. The simulation model was certified by measured electrical characteristics of the circuits and real time thermal imaging of the output multichip module.

  10. Thermal barrier coating life prediction model development

    NASA Technical Reports Server (NTRS)

    Hillery, R. V.; Pilsner, B. H.; Mcknight, R. L.; Cook, T. S.; Hartle, M. S.

    1988-01-01

    This report describes work performed to determine the predominat modes of degradation of a plasma sprayed thermal barrier coating system and to develop and verify life prediction models accounting for these degradation modes. The primary TBC system consisted of a low pressure plasma sprayed NiCrAlY bond coat, an air plasma sprayed ZrO2-Y2O3 top coat, and a Rene' 80 substrate. The work was divided into 3 technical tasks. The primary failure mode to be addressed was loss of the zirconia layer through spalling. Experiments showed that oxidation of the bond coat is a significant contributor to coating failure. It was evident from the test results that the species of oxide scale initially formed on the bond coat plays a role in coating degradation and failure. It was also shown that elevated temperature creep of the bond coat plays a role in coating failure. An empirical model was developed for predicting the test life of specimens with selected coating, specimen, and test condition variations. In the second task, a coating life prediction model was developed based on the data from Task 1 experiments, results from thermomechanical experiments performed as part of Task 2, and finite element analyses of the TBC system during thermal cycles. The third and final task attempted to verify the validity of the model developed in Task 2. This was done by using the model to predict the test lives of several coating variations and specimen geometries, then comparing these predicted lives to experimentally determined test lives. It was found that the model correctly predicts trends, but that additional refinement is needed to accurately predict coating life.

  11. Inducer analysis/pump model development

    NASA Technical Reports Server (NTRS)

    Cheng, Gary C.

    1994-01-01

    Current design of high performance turbopumps for rocket engines requires effective and robust analytical tools to provide design information in a productive manner. The main goal of this study was to develop a robust and effective computational fluid dynamics (CFD) pump model for general turbopump design and analysis applications. A finite difference Navier-Stokes flow solver, FDNS, which includes an extended k-epsilon turbulence model and appropriate moving zonal interface boundary conditions, was developed to analyze turbulent flows in turbomachinery devices. In the present study, three key components of the turbopump, the inducer, impeller, and diffuser, were investigated by the proposed pump model, and the numerical results were benchmarked by the experimental data provided by Rocketdyne. For the numerical calculation of inducer flows with tip clearance, the turbulence model and grid spacing are very important. Meanwhile, the development of the cross-stream secondary flow, generated by curved blade passage and the flow through tip leakage, has a strong effect on the inducer flow. Hence, the prediction of the inducer performance critically depends on whether the numerical scheme of the pump model can simulate the secondary flow pattern accurately or not. The impeller and diffuser, however, are dominated by pressure-driven flows such that the effects of turbulence model and grid spacing (except near leading and trailing edges of blades) are less sensitive. The present CFD pump model has been proved to be an efficient and robust analytical tool for pump design due to its very compact numerical structure (requiring small memory), fast turnaround computing time, and versatility for different geometries.

  12. Advanced Small Modular Reactor Economics Model Development

    SciTech Connect

    Harrison, Thomas J.

    2014-10-01

    The US Department of Energy Office of Nuclear Energy’s Advanced Small Modular Reactor (SMR) research and development activities focus on four key areas: Developing assessment methods for evaluating advanced SMR technologies and characteristics; and Developing and testing of materials, fuels and fabrication techniques; and Resolving key regulatory issues identified by US Nuclear Regulatory Commission and industry; and Developing advanced instrumentation and controls and human-machine interfaces. This report focuses on development of assessment methods to evaluate advanced SMR technologies and characteristics. Specifically, this report describes the expansion and application of the economic modeling effort at Oak Ridge National Laboratory. Analysis of the current modeling methods shows that one of the primary concerns for the modeling effort is the handling of uncertainty in cost estimates. Monte Carlo–based methods are commonly used to handle uncertainty, especially when implemented by a stand-alone script within a program such as Python or MATLAB. However, a script-based model requires each potential user to have access to a compiler and an executable capable of handling the script. Making the model accessible to multiple independent analysts is best accomplished by implementing the model in a common computing tool such as Microsoft Excel. Excel is readily available and accessible to most system analysts, but it is not designed for straightforward implementation of a Monte Carlo–based method. Using a Monte Carlo algorithm requires in-spreadsheet scripting and statistical analyses or the use of add-ons such as Crystal Ball. An alternative method uses propagation of error calculations in the existing Excel-based system to estimate system cost uncertainty. This method has the advantage of using Microsoft Excel as is, but it requires the use of simplifying assumptions. These assumptions do not necessarily bring into question the analytical results. In fact, the

  13. Heat Pump Clothes Dryer Model Development

    SciTech Connect

    Shen, Bo

    2016-01-01

    A heat pump clothes dryer (HPCD) is an innovative appliance that uses a vapor compression system to dry clothes. Air circulates in a closed loop through the drum, so no vent is required. The condenser heats air to evaporate moisture out of the clothes, and the evaporator condenses water out of the air stream. As a result, the HPCD can achieve 50% energy savings compared to a conventional electric resistance dryer. We developed a physics-based, quasi-steady-state HPCD system model with detailed heat exchanger and compressor models. In a novel approach, we applied a heat and mass transfer effectiveness model to simulate the drying process of the clothes load in the drum. The system model is able to simulate the inherently transient HPCD drying process, to size components, and to reveal trends in key variables (e.g. compressor discharge temperature, power consumption, required drying time, etc.) The system model was calibrated using experimental data on a prototype HPCD. In the paper, the modeling method is introduced, and the model predictions are compared with experimental data measured on a prototype HPCD.

  14. Mathematical modeling of vertebrate limb development.

    PubMed

    Zhang, Yong-Tao; Alber, Mark S; Newman, Stuart A

    2013-05-01

    In this paper, we review the major mathematical and computational models of vertebrate limb development and their roles in accounting for different aspects of this process. The main aspects of limb development that have been modeled include outgrowth and shaping of the limb bud, establishment of molecular gradients within the bud, and formation of the skeleton. These processes occur interdependently during development, although (as described in this review), there are various interpretations of the biological relationships among them. A wide range of mathematical and computational methods have been used to study these processes, including ordinary and partial differential equation systems, cellular automata and discrete, stochastic models, finite difference methods, finite element methods, the immersed boundary method, and various combinations of the above. Multiscale mathematical modeling and associated computational simulation have become integrated into the study of limb morphogenesis and pattern formation to an extent with few parallels in the field of developmental biology. These methods have contributed to the design and analysis of experiments employing microsurgical and genetic manipulations, evaluation of hypotheses for limb bud outgrowth, interpretation of the effects of natural mutations, and the formulation of scenarios for the origination and evolution of the limb skeleton. PMID:23219575

  15. Development of models for welding applications

    SciTech Connect

    Roper, J.R.; Hayer, L.K.

    1990-01-01

    The modeling of welding processes offers considerable potential for help with manufacturing problems but a complete definition of any welding process offers many challenges. However, the modular structure of MARC, and the diverse range of capabilities offered, create a good opportunity for development in this area. This paper discusses these problems and describes techniques used to overcome some of them. Models have been developed to simulate gas tungsten arc (GTA) and electron beam (EB) welding with a moving heat source. Fortran routines for subroutines FLUX and FORCDT have been written to generate a moving heat source. Sequential element activation has permitted the simulation of GTA welding with cold wire feed (CWF), as in filling of a machined weld groove. A program which generates History Definition blocks necessary for this type of welding model is also described in this paper. Semi-infinite heat transfer elements were used to get accurate temperature histories while keeping the size of the model manageable. Time-temperature histories and isothermal contours compare well with experimental measurements, although many areas for improvement and refinement remain. Results have been used to anticipate the necessity for weld parameter changes after part redesign, and the electron beam model relates closely to situations in which information is needed for the minimization of peak temperatures on the underside of the welded part. 8 refs., 11 figs.

  16. System model development for nuclear thermal propulsion

    NASA Astrophysics Data System (ADS)

    Walton, James T.; Hannan, Nelson A.; Perkins, Ken R.; Buksa, John H.; Worley, Brian A.; Dobranich, Dean

    1992-08-01

    A critical enabling technology in the evolutionary development of nuclear thermal propulsion (NTP) is the ability to predict the system performance under a variety of operating conditions. This is crucial for mission analysis and for control subsystem testing as well as for the modeling of various failure modes. Performance must be accurately predicted during steady-state and transient operation, including startup, shutdown, and post operation cooling. The development and application of verified and validated system models has the potential to reduce the design, testing, and cost and time required for the technology to reach flight-ready status. Since Oct. 1991, the U.S. Department of Energy (DOE), Department of Defense (DOD), and NASA have initiated critical technology development efforts for NTP systems to be used on Space Exploration Initiative (SEI) missions to the Moon and Mars. This paper presents the strategy and progress of an interagency NASA/DOE/DOD team for NTP system modeling. It is the intent of the interagency team to develop several levels of computer programs to simulate various NTP systems. The first level will provide rapid, parameterized calculations of overall system performance. Succeeding computer programs will provide analysis of each component in sufficient detail to guide the design teams and experimental efforts. The computer programs will allow simulation of the entire system to allow prediction of the integrated performance. An interagency team was formed for this task to use the best capabilities available and to assure appropriate peer review.

  17. System model development for nuclear thermal propulsion

    NASA Technical Reports Server (NTRS)

    Walton, James T.; Hannan, Nelson A.; Perkins, Ken R.; Buksa, John H.; Worley, Brian A.; Dobranich, Dean

    1992-01-01

    A critical enabling technology in the evolutionary development of nuclear thermal propulsion (NTP) is the ability to predict the system performance under a variety of operating conditions. This is crucial for mission analysis and for control subsystem testing as well as for the modeling of various failure modes. Performance must be accurately predicted during steady-state and transient operation, including startup, shutdown, and post operation cooling. The development and application of verified and validated system models has the potential to reduce the design, testing, and cost and time required for the technology to reach flight-ready status. Since Oct. 1991, the U.S. Department of Energy (DOE), Department of Defense (DOD), and NASA have initiated critical technology development efforts for NTP systems to be used on Space Exploration Initiative (SEI) missions to the Moon and Mars. This paper presents the strategy and progress of an interagency NASA/DOE/DOD team for NTP system modeling. It is the intent of the interagency team to develop several levels of computer programs to simulate various NTP systems. The first level will provide rapid, parameterized calculations of overall system performance. Succeeding computer programs will provide analysis of each component in sufficient detail to guide the design teams and experimental efforts. The computer programs will allow simulation of the entire system to allow prediction of the integrated performance. An interagency team was formed for this task to use the best capabilities available and to assure appropriate peer review.

  18. Preliminary Phase Field Computational Model Development

    SciTech Connect

    Li, Yulan; Hu, Shenyang Y.; Xu, Ke; Suter, Jonathan D.; McCloy, John S.; Johnson, Bradley R.; Ramuhalli, Pradeep

    2014-12-15

    This interim report presents progress towards the development of meso-scale models of magnetic behavior that incorporate microstructural information. Modeling magnetic signatures in irradiated materials with complex microstructures (such as structural steels) is a significant challenge. The complexity is addressed incrementally, using the monocrystalline Fe (i.e., ferrite) film as model systems to develop and validate initial models, followed by polycrystalline Fe films, and by more complicated and representative alloys. In addition, the modeling incrementally addresses inclusion of other major phases (e.g., martensite, austenite), minor magnetic phases (e.g., carbides, FeCr precipitates), and minor nonmagnetic phases (e.g., Cu precipitates, voids). The focus of the magnetic modeling is on phase-field models. The models are based on the numerical solution to the Landau-Lifshitz-Gilbert equation. From the computational standpoint, phase-field modeling allows the simulation of large enough systems that relevant defect structures and their effects on functional properties like magnetism can be simulated. To date, two phase-field models have been generated in support of this work. First, a bulk iron model with periodic boundary conditions was generated as a proof-of-concept to investigate major loop effects of single versus polycrystalline bulk iron and effects of single non-magnetic defects. More recently, to support the experimental program herein using iron thin films, a new model was generated that uses finite boundary conditions representing surfaces and edges. This model has provided key insights into the domain structures observed in magnetic force microscopy (MFM) measurements. Simulation results for single crystal thin-film iron indicate the feasibility of the model for determining magnetic domain wall thickness and mobility in an externally applied field. Because the phase-field model dimensions are limited relative to the size of most specimens used in

  19. Instructional systems development model for interactive videodisc

    NASA Astrophysics Data System (ADS)

    Campbell, J. O.; Tuttle, D. M.; Gibbons, A. S.

    1983-12-01

    This is the third and final report on an Instructional Systems Development Model for Videodisc Training Delivery Systems with Interactive Capability. The report reviews the current state of the art, and describes two videodiscs made for the project, with lessons learned from them. Each block of the Interservice Procedures for Instructional Systems Development (IPISD) is described in terms of the new opportunities and requirements of interactive videodisc. A separate report, "Interactive Videodisc Design and Production Workshop Guide,' presents a step by step procedure for making interactive videodiscs.

  20. Thermal barrier coating life prediction model development

    NASA Technical Reports Server (NTRS)

    Hillery, R. V.

    1984-01-01

    In order to fully exploit thermal barrier coatings (TBCs) on turbine components and achieve the maximum performance benefit, the knowledge and understanding of TBC failure mechanisms must be increased and the means to predict coating life developed. The proposed program will determine the predominant modes of TBC system degradation and then develop and verify life prediction models accounting for those degradation modes. The successful completion of the program will have dual benefits: the ability to take advantage of the performance benefits offered by TBCs, and a sounder basis for making future improvements in coating behavior.

  1. In Vitro Models for Candida Biofilm Development.

    PubMed

    Krom, Bastiaan P; Willems, Hubertine M E

    2016-01-01

    Development of Candida spp. biofilms on medical devices such as catheters and voice prosthesis has been recognized as an increasing clinical problem. Different in vitro models are presented with increasing complexity. Each model system can be utilized for analysis of new active compounds to prevent or treat Candida biofilms as well as to study molecular processes involved in biofilm formation. Susceptibility studies of clinical isolates are generally performed in a simple 96-well model system similar to the CLSI standard. In the present chapter, optimized conditions that promote biofilm formation within individual wells of microtiter plates are described. In addition, the method has proven useful in preparing C. albicans biofilms for investigation by a variety of microscopic and molecular techniques. A more realistic and more complex biofilm system is presented by the Amsterdam Active Attachment (AAA) model. In this 24-well model all crucial steps of biofilm formation: adhesion, proliferation, and maturation, can be simulated on various surfaces, while still allowing a medium throughput approach. This model has been applied to study susceptibility, complex molecular mechanisms as well as interspecies (Candida-bacterium) interactions. Finally, a realistic microfluidics channel system is presented to follow dynamic processes in biofilm formation. In this Bioflux-based system, molecular mechanisms as well as dynamic processes can be studied at a high time-resolution. PMID:26519068

  2. Thermal Effects Modeling Developed for Smart Structures

    NASA Technical Reports Server (NTRS)

    Lee, Ho-Jun

    1998-01-01

    Applying smart materials in aeropropulsion systems may improve the performance of aircraft engines through a variety of vibration, noise, and shape-control applications. To facilitate the experimental characterization of these smart structures, researchers have been focusing on developing analytical models to account for the coupled mechanical, electrical, and thermal response of these materials. One focus of current research efforts has been directed toward incorporating a comprehensive thermal analysis modeling capability. Typically, temperature affects the behavior of smart materials by three distinct mechanisms: Induction of thermal strains because of coefficient of thermal expansion mismatch 1. Pyroelectric effects on the piezoelectric elements; 2. Temperature-dependent changes in material properties; and 3. Previous analytical models only investigated the first two thermal effects mechanisms. However, since the material properties of piezoelectric materials generally vary greatly with temperature (see the graph), incorporating temperature-dependent material properties will significantly affect the structural deflections, sensory voltages, and stresses. Thus, the current analytical model captures thermal effects arising from all three mechanisms through thermopiezoelectric constitutive equations. These constitutive equations were incorporated into a layerwise laminate theory with the inherent capability to model both the active and sensory response of smart structures in thermal environments. Corresponding finite element equations were formulated and implemented for both the beam and plate elements to provide a comprehensive thermal effects modeling capability.

  3. Air Tightness of US Homes: Model Development

    SciTech Connect

    Sherman, Max H.

    2006-05-01

    Air tightness is an important property of building envelopes. It is a key factor in determining infiltration and related wall-performance properties such as indoor air quality, maintainability and moisture balance. Air leakage in U.S. houses consumes roughly 1/3 of the HVAC energy but provides most of the ventilation used to control IAQ. The Lawrence Berkeley National Laboratory has been gathering residential air leakage data from many sources and now has a database of more than 100,000 raw measurements. This paper uses that database to develop a model for estimating air leakage as a function of climate, building age, floor area, building height, floor type, energy-efficiency and low-income designations. The model developed can be used to estimate the leakage distribution of populations of houses.

  4. Model of the Product Development Lifecycle.

    SciTech Connect

    He, Sunny L.; Roe, Natalie H.; Wood, Evan; Nachtigal, Noel M.; Helms, Jovana

    2015-10-01

    While the increased use of Commercial Off-The-Shelf information technology equipment has presented opportunities for improved cost effectiveness and flexibility, the corresponding loss of control over the product's development creates unique vulnerabilities and security concerns. Of particular interest is the possibility of a supply chain attack. A comprehensive model for the lifecycle of hardware and software products is proposed based on a survey of existing literature from academic, government, and industry sources. Seven major lifecycle stages are identified and defined: (1) Requirements, (2) Design, (3) Manufacturing for hardware and Development for software, (4) Testing, (5) Distribution, (6) Use and Maintenance, and (7) Disposal. The model is then applied to examine the risk of attacks at various stages of the lifecycle.

  5. Development of an energy storage tank model

    NASA Astrophysics Data System (ADS)

    Buckley, Robert Christopher

    A linearized, one-dimensional finite difference model employing an implicit finite difference method for energy storage tanks is developed, programmed with MATLAB, and demonstrated for different applications. A set of nodal energy equations is developed by considering the energy interactions on a small control volume. The general method of solving these equations is described as are other features of the simulation program. Two modeling applications are presented: the first using a hot water storage tank with a solar collector and an absorption chiller to cool a building in the summer, the second using a molten salt storage system with a solar collector and steam power plant to generate electricity. Recommendations for further study as well as all of the source code generated in the project are also provided.

  6. Developing Soil Models for Dynamic Impact Simulations

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Lyle, Karen H.; Jackson, Karen E.

    2009-01-01

    This paper describes fundamental soils characterization work performed at NASA Langley Research Center in support of the Subsonic Rotary Wing (SRW) Aeronautics Program and the Orion Landing System (LS) Advanced Development Program (ADP). LS-DYNA(Registered TradeMark)1 soil impact model development and test-analysis correlation results are presented for: (1) a 38-ft/s vertical drop test of a composite fuselage section, outfitted with four blocks of deployable energy absorbers (DEA), onto sand, and (2) a series of impact tests of a 1/2-scale geometric boilerplate Orion capsule onto soil. In addition, the paper will discuss LS-DYNA contact analysis at the soil/structure interface, methods used to estimate frictional forces, and the sensitivity of the model to density, moisture, and compaction.

  7. NASA: Model development for human factors interfacing

    NASA Technical Reports Server (NTRS)

    Smith, L. L.

    1984-01-01

    The results of an intensive literature review in the general topics of human error analysis, stress and job performance, and accident and safety analysis revealed no usable techniques or approaches for analyzing human error in ground or space operations tasks. A task review model is described and proposed to be developed in order to reduce the degree of labor intensiveness in ground and space operations tasks. An extensive number of annotated references are provided.

  8. Model development for household waste prevention behaviour

    SciTech Connect

    Bortoleto, Ana Paula; Kurisu, Kiyo H.; Hanaki, Keisuke

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer We model waste prevention behaviour using structure equation modelling. Black-Right-Pointing-Pointer We merge attitude-behaviour theories with wider models from environmental psychology. Black-Right-Pointing-Pointer Personal norms and perceived behaviour control are the main behaviour predictors. Black-Right-Pointing-Pointer Environmental concern, moral obligation and inconvenience are the main influence on the behaviour. Black-Right-Pointing-Pointer Waste prevention and recycling are different dimensions of waste management behaviour. - Abstract: Understanding waste prevention behaviour (WPB) could enable local governments and decision makers to design more-effective policies for reducing the amount of waste that is generated. By merging well-known attitude-behaviour theories with elements from wider models from environmental psychology, an extensive cognitive framework that provides new and valuable insights is developed for understanding the involvement of individuals in waste prevention. The results confirm the usefulness of the theory of planned behaviour and of Schwartz's altruistic behaviour model as bases for modelling participation in waste prevention. A more elaborate integrated model of prevention was shown to be necessary for the complete analysis of attitudinal aspects associated with waste prevention. A postal survey of 158 respondents provided empirical support for eight of 12 hypotheses. The proposed structural equation indicates that personal norms and perceived behaviour control are the main predictors and that, unlike the case of recycling, subjective norms have a weak influence on WPB. It also suggests that, since social norms have not presented a direct influence, WPB is likely to be influenced by a concern for the environment and the community as well by perceptions of moral obligation and inconvenience. Results also proved that recycling and waste prevention represent different dimensions of waste

  9. Developing a Common Information Model for climate models and data

    NASA Astrophysics Data System (ADS)

    Valcke, S.; Balaji, V.; Bentley, P.; Guilyardi, E.; Lawrence, B.; Pascoe, C.; Steenman-Clark, L.; Toussaint, F.; Treshansky, A.

    2009-04-01

    The Metafor project, funded under the EU Framework Programme 7, proposes a Common Information Model (CIM) to describe in a standard way climate data and the models and modelling environments that produced this data. To establish the CIM, Metafor first considered the metadata models developed by other groups engaged in similar efforts in Europe and worlwide, such as the US Earth System Curator, explored fragmentation and gaps as well as duplication of information present in these metadata models, and reviewed current problems in identifying, accessing or using climate data present in existing repositories. Based on this analysis and on different use cases, the first version of the CIM is composed of 5 packages. The "data" package is used to describe the data objects that can be collected and stored in any number of ways; the "activity" package details the simulations and experiments and related requirements that were performed with numerical (possibly coupled) models described with the "software" packages. Both data and models can be associated with numerical grids represented by the "grid" package and finally the "shared" package gathers concepts shared among the other packages. The CIM is defined and implemented in the Unified Modelling Language (UML) and application schema have been generated in XML schema. Aiming at a wide adoption of the CIM, Metafor will optimize the way climate data infrastructures are used to store knowledge, thereby adding value to primary research data and information, and providing an essential asset for the numerous stakeholders actively engaged in climate change issues (policy, research, impacts, mitigation, private sector).

  10. High-Fidelity Flash Lidar Model Development

    NASA Technical Reports Server (NTRS)

    Hines, Glenn D.; Pierrottet, Diego F.; Amzajerdian, Farzin

    2014-01-01

    NASA's Autonomous Landing and Hazard Avoidance Technologies (ALHAT) project is currently developing the critical technologies to safely and precisely navigate and land crew, cargo and robotic spacecraft vehicles on and around planetary bodies. One key element of this project is a high-fidelity Flash Lidar sensor that can generate three-dimensional (3-D) images of the planetary surface. These images are processed with hazard detection and avoidance and hazard relative navigation algorithms, and then are subsequently used by the Guidance, Navigation and Control subsystem to generate an optimal navigation solution. A complex, high-fidelity model of the Flash Lidar was developed in order to evaluate the performance of the sensor and its interaction with the interfacing ALHAT components on vehicles with different configurations and under different flight trajectories. The model contains a parameterized, general approach to Flash Lidar detection and reflects physical attributes such as range and electronic noise sources, and laser pulse temporal and spatial profiles. It also provides the realistic interaction of the laser pulse with terrain features that include varying albedo, boulders, craters slopes and shadows. This paper gives a description of the Flash Lidar model and presents results from the Lidar operating under different scenarios.

  11. High-fidelity flash lidar model development

    NASA Astrophysics Data System (ADS)

    Hines, Glenn D.; Pierrottet, Diego F.; Amzajerdian, Farzin

    2014-06-01

    NASA's Autonomous Landing and Hazard Avoidance Technologies (ALHAT) project is currently developing the critical technologies to safely and precisely navigate and land crew, cargo and robotic spacecraft vehicles on and around planetary bodies. One key element of this project is a high-fidelity Flash Lidar sensor that can generate three-dimensional (3-D) images of the planetary surface. These images are processed with hazard detection and avoidance and hazard relative navigation algorithms, and then are subsequently used by the Guidance, Navigation and Control subsystem to generate an optimal navigation solution. A complex, high-fidelity model of the Flash Lidar was developed in order to evaluate the performance of the sensor and its interaction with the interfacing ALHAT components on vehicles with different configurations and under different flight trajectories. The model contains a parameterized, general approach to Flash Lidar detection and reflects physical attributes such as range and electronic noise sources, and laser pulse temporal and spatial profiles. It also provides the realistic interaction of the laser pulse with terrain features that include varying albedo, boulders, craters slopes and shadows. This paper gives a description of the Flash Lidar model and presents results from the Lidar operating under different scenarios.

  12. Development of a smart DC grid model

    NASA Astrophysics Data System (ADS)

    Dalimunthe, Amty Ma'rufah Ardhiyah; Mindara, Jajat Yuda; Panatarani, Camellia; Joni, I. Made

    2016-03-01

    Smart grid and distributed generation should be the solution of the global climate change and the crisis energy of the main source of electrical power generation which is fossil fuel. In order to meet the rising electrical power demand and increasing service quality demands, as well as reduce pollution, the existing power grid infrastructure should be developed into a smart grid and distributed power generation which provide a great opportunity to address issues related to energy efficiency, energy security, power quality and aging infrastructure systems. The conventional of the existing distributed generation system is an AC grid while for a renewable resources requires a DC grid system. This paper explores the model of smart DC grid by introducing a model of smart DC grid with the stable power generation give a minimal and compressed circuitry that can be implemented very cost-effectively with simple components. The PC based application software for controlling was developed to show the condition of the grid and to control the grid become `smart'. The model is then subjected to a severe system perturbation, such as incremental change in loads to test the performance of the system again stability. It is concluded that the system able to detect and controlled the voltage stability which indicating the ability of power system to maintain steady voltage within permissible rangers in normal condition.

  13. Nematode model systems in evolution and development.

    PubMed

    Sommer, Ralf J; Bumbarger, Daniel J

    2012-01-01

    The free-living nematode Caenorhabditis elegans is one of the most important model organisms in all areas of modern biology. Using the knowledge about C. elegans as a baseline, nematodes are now intensively studied in evolution and development. Evolutionary developmental biology or for short, 'evo-devo' has been developed as a new research discipline during the last two decades to investigate how changes in developmental processes and mechanisms result in the modification of morphological structures and phenotypic novelty. In this article, we review the concepts that make nematode evo-devo a successful approach to evolutionary biology. We introduce selected model systems for nematode evo-devo and provide a detailed discussion of four selected case studies. The most striking finding of nematode evo-devo is the magnitude of developmental variation in the context of a conserved body plan. Detailed investigation of early embryogenesis, gonad formation, vulva development, and sex determination revealed that molecular mechanisms evolve rapidly, often in the context of a conserved body plan. These studies highlight the importance of developmental systems drift and neutrality in evolution. PMID:23801489

  14. Model development for household waste prevention behaviour.

    PubMed

    Bortoleto, Ana Paula; Kurisu, Kiyo H; Hanaki, Keisuke

    2012-12-01

    Understanding waste prevention behaviour (WPB) could enable local governments and decision makers to design more-effective policies for reducing the amount of waste that is generated. By merging well-known attitude-behaviour theories with elements from wider models from environmental psychology, an extensive cognitive framework that provides new and valuable insights is developed for understanding the involvement of individuals in waste prevention. The results confirm the usefulness of the theory of planned behaviour and of Schwartz's altruistic behaviour model as bases for modelling participation in waste prevention. A more elaborate integrated model of prevention was shown to be necessary for the complete analysis of attitudinal aspects associated with waste prevention. A postal survey of 158 respondents provided empirical support for eight of 12 hypotheses. The proposed structural equation indicates that personal norms and perceived behaviour control are the main predictors and that, unlike the case of recycling, subjective norms have a weak influence on WPB. It also suggests that, since social norms have not presented a direct influence, WPB is likely to be influenced by a concern for the environment and the community as well by perceptions of moral obligation and inconvenience. Results also proved that recycling and waste prevention represent different dimensions of waste management behaviour requiring particular approaches to increase individuals' engagement in future policies. PMID:22763047

  15. Development and application of earth system models

    PubMed Central

    Prinn, Ronald G.

    2013-01-01

    The global environment is a complex and dynamic system. Earth system modeling is needed to help understand changes in interacting subsystems, elucidate the influence of human activities, and explore possible future changes. Integrated assessment of environment and human development is arguably the most difficult and most important “systems” problem faced. To illustrate this approach, we present results from the integrated global system model (IGSM), which consists of coupled submodels addressing economic development, atmospheric chemistry, climate dynamics, and ecosystem processes. An uncertainty analysis implies that without mitigation policies, the global average surface temperature may rise between 3.5 °C and 7.4 °C from 1981–2000 to 2091–2100 (90% confidence limits). Polar temperatures, absent policy, are projected to rise from about 6.4 °C to 14 °C (90% confidence limits). Similar analysis of four increasingly stringent climate mitigation policy cases involving stabilization of greenhouse gases at various levels indicates that the greatest effect of these policies is to lower the probability of extreme changes. The IGSM is also used to elucidate potential unintended environmental consequences of renewable energy at large scales. There are significant reasons for attention to climate adaptation in addition to climate mitigation that earth system models can help inform. These models can also be applied to evaluate whether “climate engineering” is a viable option or a dangerous diversion. We must prepare young people to address this issue: The problem of preserving a habitable planet will engage present and future generations. Scientists must improve communication if research is to inform the public and policy makers better. PMID:22706645

  16. Space market model development project, phase 3

    NASA Technical Reports Server (NTRS)

    Bishop, Peter C.; Hamel, Gary P.

    1989-01-01

    The results of a research project investigating information needs for space commercialization is described. The Space Market Model Development Project (SMMDP) was designed to help NASA identify the information needs of the business community and to explore means to meet those needs. The activity of the SMMDP is reviewed and a report of its operation via three sections is presented. The first part contains a brief historical review of the project since inception. The next part reports results of Phase 3, the most recent stage of activity. Finally, overall conclusions and observations based on the SMMDP research results are presented.

  17. Vortex Generator Model Developed for Turbomachinery

    NASA Technical Reports Server (NTRS)

    Chima, Rodrick V.

    2002-01-01

    A computational model was developed at the NASA Glenn Research Center to investigate possible uses of vortex generators (VG's) for improving the performance of turbomachinery. A vortex generator is a small, winglike device that generates vortices at its tip. The vortices mix high-speed core flow with low-speed boundary layer flow and, thus, can be used to delay flow separation. VG's also turn the flow near the walls and, thus, can be used to control flow incidence into a turbomachinery blade row or to control secondary flows.

  18. Recent developments for realistic solar models

    SciTech Connect

    Serenelli, Aldo M.

    2014-05-02

    The 'solar abundance problem' has triggered a renewed interest in revising the concept of SSM from different perspectives: 1) constituent microphysics: equation of state, nuclear rates, radiative opacities; 2) constituent macrophysics: the physical processes impact the evolution of the Sun and its present-day structure, e.g. dynamical processes induced by rotation, presence of magnetic fields; 3) challenge the hypothesis that the young Sun was chemically homogeneous: the possible interaction of the young Sun with its protoplanetary disk. Here, I briefly review and then present a (personal) view on recent advances and developments on solar modeling, part of them carried out as attempts to solve the solar abundance problem.

  19. Modeling Development and Disease with Organoids.

    PubMed

    Clevers, Hans

    2016-06-16

    Recent advances in 3D culture technology allow embryonic and adult mammalian stem cells to exhibit their remarkable self-organizing properties, and the resulting organoids reflect key structural and functional properties of organs such as kidney, lung, gut, brain and retina. Organoid technology can therefore be used to model human organ development and various human pathologies 'in a dish." Additionally, patient-derived organoids hold promise to predict drug response in a personalized fashion. Organoids open up new avenues for regenerative medicine and, in combination with editing technology, for gene therapy. The many potential applications of this technology are only beginning to be explored. PMID:27315476

  20. MEDSLIK oil spill model recent developments

    NASA Astrophysics Data System (ADS)

    Lardner, Robin; Zodiatis, George

    2016-04-01

    MEDSLIK oil spill model recent developments Robin Lardner and George Zodiatis Oceanography Center, University of Cyprus, 1678 Nicosia, Cyprus MEDSLIK is a well established 3D oil spill model that predicts the transport, fate and weathering of oil spills and is used by several response agencies and institutions around the Mediterranean, the Black seas and worldwide. MEDSLIK has been used operationally for real oil spill accidents and for preparedness in contingency planning within the framework of pilot projects with REMPEC-Regional Marine Pollution Emergency Response Centre for the Mediterranean Sea and EMSA-European Maritime Safety Agency. MEDSLIK has been implemented in many EU funded projects regarding oil spill predictions using the operational ocean forecasts, as for example the ECOOP, NEREIDs, RAOP-Med, EMODNET MedSea Check Point. Within the frame of MEDESS4MS project, MEDSLIK is at the heart of the MEDESS4MS multi model oil spill prediction system. The MEDSLIK oil spill model contains among other, the following features: a built-in database with 240 different oil types characteristics, assimilation of oil slick observations from in-situ or aerial, to correct the predictions, virtual deployment of oil booms and/or oil skimmers/dispersants, continuous or instantaneous oil spills from moving or drifting ships whose slicks merge can be modelled together, multiple oil spill predictions from different locations, backward simulations for tracking the source of oil spill pollution, integration with AIS data upon the availability of AIS data, sub-surface oil spills at any given water depth, coupling with SAR satellite data. The MEDSLIK can be used for operational intervention for any user-selected region in the world if the appropriate coastline, bathymetry and meteo-ocean forecast files are provided. MEDSLIK oil spill model has been extensively validated in the Mediterranean Sea, both in real oil spill incidents (i.e. during the Lebanese oil pollution crisis in

  1. Developments in vapour cloud explosion blast modeling.

    PubMed

    Mercx, W P; van den Berg, A C; Hayhurst, C J; Robertson, N J; Moran, K C

    2000-01-01

    TNT Equivalency methods are widely used for vapour cloud explosion blast modeling. Presently, however, other types of models are available which do not have the fundamental objections TNT Equivalency models have. TNO Multi-Energy method is increasingly accepted as a more reasonable alternative to be used as a simple and practical method. Computer codes based on computational fluid dynamics (CFD) like AutoReaGas, developed by TNO and Century Dynamics, could be used also in case a more rigorous analysis is required. Application of the Multi-Energy method requires knowledge of two parameters describing the explosion: a charge size and a charge strength. During the last years, research has led to an improved determination of the charge strength (i.e., the class number or source overpressure) to be chosen to apply the blast charts. A correlation has been derived relating the charge strength to a set of parameters describing the boundary conditions of the flammable cloud and the fuel in the cloud. A simple approach may not be satisfactory in all situations. The overpressure distribution inside a vapour cloud explosion is generally not homogeneous and the presence of obstructions causes directional blast propagation in the near field. A CFD approach, in which the actual situation is modeled, supplies case-specific results. An overview of the key aspects relevant to the application of the Multi-Energy method and CFD modeling is provided. Then the application of the two methods is demonstrated for an example problem involving the calculation of the explosion blast load on a structure at some distance from the explosion in an offshore platform complex. PMID:10677667

  2. Thermal barrier coating life prediction model development

    NASA Technical Reports Server (NTRS)

    Demasi, J.; Sheffler, K.

    1984-01-01

    The objective of this program is to develop an integrated life prediction model accounting for all potential life-limiting Thermal Barrier Coating (TBC) degradation and failure modes including spallation resulting from cyclic thermal stress, oxidative degradation, hot corrosion, erosion, and foreign object damage (FOD). The mechanisms and relative importance of the various degradation and failure modes will be determined, and the methodology to predict predominant mode failure life in turbine airfoil application will be developed and verified. An empirically based correlative model relating coating life to parametrically expressed driving forces such as temperature and stress will be employed. The two-layer TBC system being investigated, designated PWA264, currently is in commercial aircraft revenue service. It consists of an inner low pressure chamber plasma-sprayed NiCoCrAlY metallic bond coat underlayer (4 to 6 mils) and an outer air plasma-sprayed 7 w/o Y2O3-ZrO2 (8 to 12 mils) ceramic top layer.

  3. An Age-Graded Model for Career Development Education.

    ERIC Educational Resources Information Center

    Tuckman, Bruce W.

    This paper presents a career developmental model covering the ages of 5 to 18. Career development education includes experiences which facilitate self-awareness, career-awareness and career decision-making. Before choosing a model for career development, it is necessary to decide on a model for child development. The model developed here borrows…

  4. Building Energy Model Development for Retrofit Homes

    SciTech Connect

    Chasar, David; McIlvaine, Janet; Blanchard, Jeremy; Widder, Sarah H.; Baechler, Michael C.

    2012-09-30

    Based on previous research conducted by Pacific Northwest National Laboratory and Florida Solar Energy Center providing technical assistance to implement 22 deep energy retrofits across the nation, 6 homes were selected in Florida and Texas for detailed post-retrofit energy modeling to assess realized energy savings (Chandra et al, 2012). However, assessing realized savings can be difficult for some homes where pre-retrofit occupancy and energy performance are unknown. Initially, savings had been estimated using a HERS Index comparison for these homes. However, this does not account for confounding factors such as occupancy and weather. This research addresses a method to more reliably assess energy savings achieved in deep energy retrofits for which pre-retrofit utility bills or occupancy information in not available. A metered home, Riverdale, was selected as a test case for development of a modeling procedure to account occupancy and weather factors, potentially creating more accurate estimates of energy savings. This “true up” procedure was developed using Energy Gauge USA software and post-retrofit homeowner information and utility bills. The 12 step process adjusts the post-retrofit modeling results to correlate with post-retrofit utility bills and known occupancy information. The “trued” post retrofit model is then used to estimate pre-retrofit energy consumption by changing the building efficiency characteristics to reflect the pre-retrofit condition, but keeping all weather and occupancy-related factors the same. This creates a pre-retrofit model that is more comparable to the post-retrofit energy use profile and can improve energy savings estimates. For this test case, a home for which pre- and post- retrofit utility bills were available was selected for comparison and assessment of the accuracy of the “true up” procedure. Based on the current method, this procedure is quite time intensive. However, streamlined processing spreadsheets or

  5. Developing and Extending a Cyberinfrastructure Model

    SciTech Connect

    Alvarez, Rosio

    2007-11-13

    Increasingly, research and education institutions are realizing the strategic value and challenge of deploying and supporting institutional cyberinfrastructure (CI). Cyberinfrastructure is composed of high performance computing systems, massive storage systems, visualization systems, and advanced networks to interconnect the components within and across institutions and research communities. CI also includes the professionals with expertise in scientific application and algorithm development and parallel systems operation. Unlike ?regular? IT infrastructure, the manner in which the components are configured and skills to do so are highly specific and specialized. Planning and coordinating these assets is a fundamental step toward enhancing an institution?s research competitiveness and return on personnel, technology, and facilities investments. Coordinated deployment of CI assets has implications across the institution. Consider the VC for Research whose new faculty in the Life Sciences are now asking for simulation systems rather than wet labs, or the Provost who lost another faculty candidate to a peer institution that offered computational support for research, or the VC for Administration who has seen a spike in power and cooling demands from many of the labs and office spaces being converted to house systems. These are just some of the issues that research institutions are wrestling with as research becomes increasingly computational, data-intensive and interdisciplinary. This bulletin will discuss these issues and will present an approach for developing a cyberinfrastructure model that was successfully developed at one institution and then deployed across institutions.

  6. Multicomponent aerosol dynamics model UHMA: model development and validation

    NASA Astrophysics Data System (ADS)

    Korhonen, H.; Lehtinen, K. E. J.; Kulmala, M.

    2004-05-01

    A size-segregated aerosol dynamics model UHMA (University of Helsinki Multicomponent Aerosol model) was developed for studies of multicomponent tropospheric aerosol particles. The model includes major aerosol microphysical processes in the atmosphere with a focus on new particle formation and growth; thus it incorporates particle coagulation and multicomponent condensation, applying a revised treatment of condensation flux onto free molecular regime particles and the activation of nanosized clusters by organic vapours (Nano-Köhler theory), as well as recent parameterizations for binary H2SO4-H2O and ternary H2SO4-NH3-H2O homogeneous nucleation and dry deposition. The representation of particle size distribution can be chosen from three sectional methods: the hybrid method, the moving center method, and the retracking method in which moving sections are retracked to a fixed grid after a certain time interval. All these methods can treat particle emissions and atmospheric transport consistently, and are therefore suitable for use in large scale atmospheric models. In a test simulation against an accurate high resolution solution, all the methods showed reasonable treatment of new particle formation with 20 size sections although the hybrid and the retracking methods suffered from artificial widening of the distribution. The moving center approach, on the other hand, showed extra dents in the particle size distribution and failed to predict the onset of detectable particle formation. In a separate test simulation of an observed nucleation event, the model captured the key qualitative behaviour of the system well. Furthermore, its prediction of the organic volume fraction in newly formed particles, suggesting values as high as 0.5 for 3-4 nm particles and approximately 0.8 for 10 nm particles, agrees with recent indirect composition measurements.

  7. Modeling household behavior in developing countries: discussion.

    PubMed

    Quisumbing, A R

    1996-12-01

    A large and growing body of literature has examined how agricultural households cope with risk. Much of the work has focused on which types of households are better able to smooth consumption, testing whether households with more resources and greater access to income-smoothing institutions, such as credit markets or well-functioning labor markets exhibit greater consumption smoothing. However, income shocks may have different effects upon different individuals within households, and differences in individual ability to smooth income or consumption may have welfare consequences which go beyond foregone income. The development of collective household models challenges the assumption that individuals within households maximize a single utility function. The assumption of income pooling has also been rejected in a growing body of empirical research on intrahousehold resource allocation. However, research on risk-pooling within households and differences in individual abilities to smooth consumption is relatively new. Selected papers are discussed. PMID:12292622

  8. A stochastic model for retinocollicular map development

    PubMed Central

    Koulakov, Alexei A; Tsigankov, Dmitry N

    2004-01-01

    Background We examine results of gain-of-function experiments on retinocollicular maps in knock-in mice [Brown et al. (2000) Cell 102:77]. In wild-type mice the temporal-nasal axis of retina is mapped to the rostral-caudal axis of superior colliculus. The established map is single-valued, which implies that each point in retina maps to a unique termination zone in superior colliculus. In homozygous Isl2/EphA3 knock-in mice the map is double-valued, which means that each point on retina maps to two termination zones in superior colliculus. This is because about 50 percent of cells in retina express Isl2, and two types of projections, wild-type and Isl2/EphA3 positive, form two branches of the map. In heterozygous Isl2/EphA3 knock-ins the map is intermediate between the homozygous and wild-type: it is single-valued in temporal and double-valued in the nasal parts of retina. In this study we address possible reasons for such a bifurcation of the map. Results We study the map formation using stochastic model based on Markov chains. In our model the map undergoes a series of reconstructions with probabilities dependent upon a set of chemical cues. Our model suggests that the map in heterozygotes is single-valued in temporal region of retina for two reasons. First, the inhomogeneous gradient of endogenous receptor in retina makes the impact of exogenous receptor less significant in temporal retina. Second, the gradient of ephrin in the corresponding region of superior colliculus is smaller, which reduces the chemical signal-to-noise ratio. We predict that if gradient of ephrin is reduced by a genetic manipulation, the single-valued region of the map should extend to a larger portion of temporal retina, i.e. the point of transition between single-and doulble-valued maps should move to a more nasal position in Isl2-EphA3 heterozygotes. Conclusions We present a theoretical model for retinocollicular map development, which can account for intriguing behaviors observed in

  9. Thermal barrier coating life prediction model development

    NASA Technical Reports Server (NTRS)

    Demasi, J. T.

    1986-01-01

    A methodology is established to predict thermal barrier coating life in a environment similar to that experienced by gas turbine airfoils. Experiments were conducted to determine failure modes of the thermal barrier coating. Analytical studies were employed to derive a life prediction model. A review of experimental and flight service components as well as laboratory post evaluations indicates that the predominant mode of TBC failure involves thermomechanical spallation of the ceramic coating layer. This ceramic spallation involves the formation of a dominant crack in the ceramic coating parallel to and closely adjacent to the topologically complex metal ceramic interface. This mechanical failure mode clearly is influenced by thermal exposure effects as shown in experiments conducted to study thermal pre-exposure and thermal cycle-rate effects. The preliminary life prediction model developed focuses on the two major damage modes identified in the critical experiments tasks. The first of these involves a mechanical driving force, resulting from cyclic strains and stresses caused by thermally induced and externally imposed mechanical loads. The second is an environmental driving force based on experimental results, and is believed to be related to bond coat oxidation. It is also believed that the growth of this oxide scale influences the intensity of the mechanical driving force.

  10. Model development for naphthenic acids ozonation process.

    PubMed

    Al Jibouri, Ali Kamel H; Wu, Jiangning

    2015-02-01

    Naphthenic acids (NAs) are toxic constituents of oil sands process-affected water (OSPW) which is generated during the extraction of bitumen from oil sands. NAs consist mainly of carboxylic acids which are generally biorefractory. For the treatment of OSPW, ozonation is a very beneficial method. It can significantly reduce the concentration of NAs and it can also convert NAs from biorefractory to biodegradable. In this study, a factorial design (2(4)) was used for the ozonation of OSPW to study the influences of the operating parameters (ozone concentration, oxygen/ozone flow rate, pH, and mixing) on the removal of a model NAs in a semi-batch reactor. It was found that ozone concentration had the most significant effect on the NAs concentration compared to other parameters. An empirical model was developed to correlate the concentration of NAs with ozone concentration, oxygen/ozone flow rate, and pH. In addition, a theoretical analysis was conducted to gain the insight into the relationship between the removal of NAs and the operating parameters. PMID:25189805

  11. LADEE Satellite Modeling and Simulation Development

    NASA Technical Reports Server (NTRS)

    Adams, Michael; Cannon, Howard; Frost, Chad

    2011-01-01

    As human activity on and around the Moon increases, so does the likelihood that our actions will have an impact on its atmosphere. The Lunar Atmosphere and Dust Environment Explorer (LADEE), a NASA satellite scheduled to launch in 2013, will orbit the Moon collecting composition, density, and time variability data to characterize the current state of the lunar atmosphere. LADEE will also test the concept of the "Modular Common Bus" spacecraft architecture, an effort to reduce both development time and cost by designing reusable, modular components for use in multiple missions with similar requirements. An important aspect of this design strategy is to both simulate the spacecraft and develop the flight code in Simulink, a block diagram-style programming language that allows easy algorithm visualization and performance testing. Before flight code can be tested, however, a realistic simulation of the satellite and its dynamics must be generated and validated. This includes all of the satellite control system components such as actuators used for force and torque generation and sensors used for inertial orientation reference. My primary responsibilities have included designing, integrating, and testing models for the LADEE thrusters, reaction wheels, star trackers, and rate gyroscopes.

  12. A renal transplantation model for developing countries.

    PubMed

    Rizvi, S A H; Naqvi, S A A; Zafar, M N; Hussain, Z; Hashmi, A; Hussain, M; Akhtar, S F; Ahmed, E; Aziz, T; Sultan, G; Sultan, S; Mehdi, S H; Lal, M; Ali, B; Mubarak, M; Faiq, S M

    2011-11-01

    The estimated incidence of end-stage renal disease (ESRD) in Pakistan is 100 per million population. Paucity and high costs of renal replacement therapy allows only 10% to get dialysis and 4-5% transplants. Our center, a government organization, started a dialysis and transplant program in 1980s where all services were provided free of charge to all patients. It was based on the concept of community government partnership funded by both partners. The guiding principles were equity, transparency, accountability and development of all facilities under one roof. This partnership has sustained itself for 30 years with an annual budget of $25 million in 2009. Daily 600 patients are dialyzed and weekly 10-12 receive transplants. One- and 5-year graft survival of 3000 transplants is 92% and 85%, respectively. The institute became a focus of transplantation in Pakistan and played a vital role in the campaign against transplant tourism and in promulgation of transplant law of 2007, and also helped to increase altruistic transplants in the country. This model emphasizes that in developing countries specialized centers in government sector are necessary for transplantation to progress and community support can make it available to the common man. PMID:21883911

  13. Developments in Atmosphere Revitalization Modeling and Simulation

    NASA Technical Reports Server (NTRS)

    Knox, James C.; Kittredge, Kenneth; Xoker, Robert F.; Cummings, Ramona; Gomez, Carlos F.

    2012-01-01

    "NASA's Advanced Exploration Systems (AES) program is pioneering new approaches for rapidly developing prototype systems, demonstrating key capabilities, and validating operational concepts for future human missions beyond Earth orbit" (NASA 2012). These forays beyond the confines of earth's gravity will place unprecedented demands on launch systems. They must not only blast out of earth's gravity well as during the Apollo moon missions, but also launch the supplies needed to sustain a crew over longer periods for exploration missions beyond earth's moon. Thus all spacecraft systems, including those for the separation of metabolic carbon dioxide and water from a crewed vehicle, must be minimized with respect to mass, power, and volume. Emphasis is also placed on system robustness both to minimize replacement parts and ensure crew safety when a quick return to earth is not possible. Current efforts are focused on improving the current state-of-the-art systems utilizing fixed beds of sorbent pellets by evaluating structured sorbents, seeking more robust pelletized sorbents, and examining alternate bed configurations to improve system efficiency and reliability. These development efforts combine testing of sub-scale systems and multi-physics computer simulations to evaluate candidate approaches, select the best performing options, and optimize the configuration of the selected approach, which is then implemented in a full-scale integrated atmosphere revitalization test. This paper describes the development of atmosphere revitalization models and simulations. A companion paper discusses the hardware design and sorbent screening and characterization effort in support of the Atmosphere Revitalization Recovery and Environmental Monitoring (ARREM) project within the AES program.

  14. An Integrated Professional Development Model for Effective Teaching

    ERIC Educational Resources Information Center

    Kuijpers, J. M.; Houtveen, A. A. M.; Wubbels, Th.

    2010-01-01

    This article examines the design of a professional development model that aims to improve student achievement. This model has been designed by combining and supplementing elements from school-improvement literature and existing professional development models. Existing models from two largely independent approaches to professional development of…

  15. Teachers' Development Model to Authentic Assessment by Empowerment Evaluation Approach

    ERIC Educational Resources Information Center

    Charoenchai, Charin; Phuseeorn, Songsak; Phengsawat, Waro

    2015-01-01

    The purposes of this study were 1) Study teachers authentic assessment, teachers comprehension of authentic assessment and teachers needs for authentic assessment development. 2) To create teachers development model. 3) Experiment of teachers development model. 4) Evaluate effectiveness of teachers development model. The research is divided into 4…

  16. Animal models to evaluate bacterial biofilm development.

    PubMed

    Thomsen, Kim; Trøstrup, Hannah; Moser, Claus

    2014-01-01

    Medical biofilms have attracted substantial attention especially in the past decade. Animal models are contributing significantly to understand the pathogenesis of medical biofilms. In addition, animal models are an essential tool in testing the hypothesis generated from clinical observations in patients and preclinical testing of agents showing in vitro antibiofilm effect. Here, we describe three animal models - two non-foreign body Pseudomonas aeruginosa biofilm models and a foreign body Staphylococcus aureus model. PMID:24664830

  17. Developing Friction Stir Welding Process Model for ICME Application

    NASA Astrophysics Data System (ADS)

    Yang, Yu-Ping

    2015-01-01

    A framework for developing a product involving manufacturing processes was developed with integrated computational materials engineering approach. The key component in the framework is a process modeling tool which includes a thermal model, a microstructure model, a thermo-mechanical, and a property model. Using friction stir welding (FSW) process as an example, development of the process modeling tool was introduced in detail. The thermal model and the microstructure model of FSW of steels were validated with the experiment data. The model can predict reasonable temperature and hardness distributions as observed in the experiment. The model was applied to predict residual stress and joint strength of a pipe girth weld.

  18. Development of a reburning boiler process model

    SciTech Connect

    Wu, K.T.

    1992-01-30

    The overall objective of this program is to integrate EER's expertise in boiler reburning performance evaluation into a package of analytical computer tools. Specific objectives of the program are to develop a computational capability with the following features: (1) can be used to predict the impact of gas reburning application on thermal conditions in the boiler radiant furnace, and on overall boiler performance; (2) can estimate gas reburning NO{sub x} reduction effectiveness based on specific reburning configurations and furnace/boiler configurations; (3) can be used as an analytical tool to evaluate the impact of boiler process parameters (e.g., fuel switching and changes in boiler operating conditions) on boiler thermal performance; (4) is adaptable to most boiler designs (tangential and wall fire boilers) and a variety of fuels (solid, liquid, gaseous and slurried fuels); (5) is sufficiently user friendly to be exercisable by engineers with a reasonable knowledge of boilers, and with reasonable computer skills. Here, user friendly'' means that the user will be guided by computer codes during the course of setting up individual input files for the boiler performance model.

  19. Kinetic Model Development for Lignin Pyrolysis

    SciTech Connect

    Clark, J.; Robichaud, D.; Nimlos, M.

    2012-01-01

    Lignin pyrolysis poses a significant barrier to the formation of liquid fuel products from biomass. Lignin pyrolyzes at higher temperatures than other biomass components (e.g. cellulose and hemi-cellulose) and tends to form radicals species that lead to cross-linking and ultimately char formation. A first step in the advancement of biomass-to-fuel technology is to discover the underlying mechanisms that lead to the breakdown of lignin at lower temperatures into more stable and usable products. We have investigated the thermochemistry of the various inter-linkage units found in lignin (B-O4, a-O4, B-B, B-O5, etc) using electronic structure calculations at the M06-2x/6-311++G(d,p) on a series of dimer model compounds. In addition to bond homolysis reactions, a variety of concerted elimination pathways are under investigation that tend to produce closed-shell stable products. Such a bottom-up approach could aid in the targeted development of catalysts that produce more desirable products under less severe reactor conditions.

  20. Development of orbital debris spacecraft breakup models

    NASA Astrophysics Data System (ADS)

    Tedeschi, William J.; Connell, John C.; McKnight, Darren S.

    1991-08-01

    The Defense Nuclear Agency has initiated an Orbital Debris Spacecraft Breakup Modeling Program to improve the accuracy and usefulness of satellite breakup models with an emphasis on collision-induced events. Empirical, semianalytic, and complex approaches are used in the modeling. Current results from the modeling effort are presented and discussed along with data from associated hypervelocity impact test programs. It is shown that major improvements in modeling have been made but that milestones must be achieved before the models will routinely provide accurate predictions for a wide range of collision scenarios.

  1. Instructional Technology Professional Development Evaluation: Developing a High Quality Model

    ERIC Educational Resources Information Center

    Gaytan, Jorge A.; McEwen, Beryl C.

    2010-01-01

    Background: The literature contains very few studies that focused on evaluating the impact of professional development activities on student learning. And, many of these studies failed to determine whether the professional development activities met their primary goal--to improve the learning process. Purpose: The purpose of this study was to use…

  2. SYSTEMS BIOLOGY MODEL DEVELOPMENT AND APPLICATION

    EPA Science Inventory

    System biology models holistically describe, in a quantitative fashion, the relationships between different levels of a biologic system. Relationships between individual components of a system are delineated. System biology models describe how the components of the system inter...

  3. Hypersonic Vehicle Propulsion System Simplified Model Development

    NASA Technical Reports Server (NTRS)

    Stueber, Thomas J.; Raitano, Paul; Le, Dzu K.; Ouzts, Peter

    2007-01-01

    This document addresses the modeling task plan for the hypersonic GN&C GRC team members. The overall propulsion system modeling task plan is a multi-step process and the task plan identified in this document addresses the first steps (short term modeling goals). The procedures and tools produced from this effort will be useful for creating simplified dynamic models applicable to a hypersonic vehicle propulsion system. The document continues with the GRC short term modeling goal. Next, a general description of the desired simplified model is presented along with simulations that are available to varying degrees. The simulations may be available in electronic form (FORTRAN, CFD, MatLab,...) or in paper form in published documents. Finally, roadmaps outlining possible avenues towards realizing simplified model are presented.

  4. Development of an Instructional Quality Assurance Model in Nursing Science

    ERIC Educational Resources Information Center

    Ajpru, Haruthai; Pasiphol, Shotiga; Wongwanich, Suwimon

    2011-01-01

    The purpose of this study was to develop an instructional quality assurance model in nursing science. The study was divided into 3 phases; (1) to study the information for instructional quality assurance model development (2) to develop an instructional quality assurance model in nursing science and (3) to audit and the assessment of the developed…

  5. A Neuroconstructivist Model of Past Tense Development and Processing

    ERIC Educational Resources Information Center

    Westermann, Gert; Ruh, Nicolas

    2012-01-01

    We present a neural network model of learning and processing the English past tense that is based on the notion that experience-dependent cortical development is a core aspect of cognitive development. During learning the model adds and removes units and connections to develop a task-specific final architecture. The model provides an integrated…

  6. A Social Development Practice Model for Community Development.

    ERIC Educational Resources Information Center

    Abrahams, Caryl

    1992-01-01

    The community practice model illustrates how goals of participation, empowerment, cooperation, and institutionalization are affected by inputs from human resources, program characteristics, finances, social costs, and policy requirements within the context of the social, economic, and political structure; population diversity; physical…

  7. Aqueous Solution Vessel Thermal Model Development II

    SciTech Connect

    Buechler, Cynthia Eileen

    2015-10-28

    The work presented in this report is a continuation of the work described in the May 2015 report, “Aqueous Solution Vessel Thermal Model Development”. This computational fluid dynamics (CFD) model aims to predict the temperature and bubble volume fraction in an aqueous solution of uranium. These values affect the reactivity of the fissile solution, so it is important to be able to calculate them and determine their effects on the reaction. Part A of this report describes some of the parameter comparisons performed on the CFD model using Fluent. Part B describes the coupling of the Fluent model with a Monte-Carlo N-Particle (MCNP) neutron transport model. The fuel tank geometry is the same as it was in the May 2015 report, annular with a thickness-to-height ratio of 0.16. An accelerator-driven neutron source provides the excitation for the reaction, and internal and external water cooling channels remove the heat. The model used in this work incorporates the Eulerian multiphase model with lift, wall lubrication, turbulent dispersion and turbulence interaction. The buoyancy-driven flow is modeled using the Boussinesq approximation, and the flow turbulence is determined using the k-ω Shear-Stress-Transport (SST) model. The dispersed turbulence multiphase model is employed to capture the multiphase turbulence effects.

  8. Simulation Modeling of Software Development Processes

    NASA Technical Reports Server (NTRS)

    Calavaro, G. F.; Basili, V. R.; Iazeolla, G.

    1996-01-01

    A simulation modeling approach is proposed for the prediction of software process productivity indices, such as cost and time-to-market, and the sensitivity analysis of such indices to changes in the organization parameters and user requirements. The approach uses a timed Petri Net and Object Oriented top-down model specification. Results demonstrate the model representativeness, and its usefulness in verifying process conformance to expectations, and in performing continuous process improvement and optimization.

  9. Evolving Leaders. A Model for Promoting Leadership Development in Programs.

    ERIC Educational Resources Information Center

    Palus, Charles J.; Drath, Wilfred H.

    A new model for promoting leadership development in programs emphasizes individuals' psychological development. The model, which is intended for use by individuals responsible for leadership development in organizations or by leadership development program planners/evaluators, is based on a cyclic process of three time-linked categories: readiness…

  10. DEVELOPING MEANINGFUL COHORTS FOR HUMAN EXPOSURE MODELS

    EPA Science Inventory

    This paper summarizes numerous statistical analyses focused on the U.S. Environmental Protection Agency's Consolidated Human Activity Database (CHAD), used by many exposure modelers as the basis for data on what people do and where they spend their time. In doing so, modelers ...

  11. Developing a Model of Occupational Choice.

    ERIC Educational Resources Information Center

    Egner, Joan Roos; And Others

    Review of the literature in counseling, sociology, psychology, and organizational behavior failed to yield a model satisfactory for a comprehensive research framework investigating why people choose different occupations. Rational and irrational occupational decision making models were unsatisfactory in capturing the many dimensions of the…

  12. New developments of the nuclear shell model

    NASA Astrophysics Data System (ADS)

    Poves, Alfredo

    2002-04-01

    More than fifty years ago, the independent particle model of the nucleus was proposed by M. Goeppert-Mayer and H. Jensen. The label "shell model" has since changed meaning and nowadays it applies mainly to the description of the nucleus that results of the mixing of many Slater determinants by an effective "in medium" interaction, usually limited to one and two-body terms. The advent of efficient new algorithms to solve the secular problem, together with the increase in speed and storage capacity of modern computers, has brought into the reach of large scale shell model calculations entire regions of nuclei and of nuclear phenomena traditionally considered to be out of the shell model realm. This enormous extension of its field of practical applications has occurred simultaneously with a regain of experimental interest in the nuclear spectroscopy, in particular in very neutron rich and N=Z nuclei. The shell model work in large model spaces demands a very complete understanding of the effective nuclear interaction, a basic goal of the nuclear theory. Besides, the huge increase of dimensionality that occurs when many valence orbits and valence particles are involved, is a formidable challenge for both the direct diagonalization shell model codes and for the many different approximations, based most often in physically guided truncations of the full shell model basis. In this talk I aim to transmit the effervescence of the field by highlighting the most important recent advances and applications.

  13. Modeling technology adoption in developing countries

    SciTech Connect

    Besley, T.; Case, A. )

    1993-05-01

    An analysis of technology adoption decisions by poor farmers is provided. Some possible empirical models for studying technology adoption are reviewed. The issue of theoretical consistency is dealt with in terms of the costs of such consistency, measured in data needs and model complexity, and the benefits, measured in terms of understanding the micro-economic foundations of adoption.

  14. Modeling the Development of Written Language

    ERIC Educational Resources Information Center

    Wagner, Richard K.; Puranik, Cynthia S.; Foorman, Barbara; Foster, Elizabeth; Wilson, Laura Gehron; Tschinkel, Erika; Kantor, Patricia Thatcher

    2011-01-01

    Alternative models of the structure of individual and developmental differences of written composition and handwriting fluency were tested using confirmatory factor analysis of writing samples provided by first- and fourth-grade students. For both groups, a five-factor model provided the best fit to the data. Four of the factors represented…

  15. Development of the Integrated Communication Model

    ERIC Educational Resources Information Center

    Ho, Hua-Kuo

    2008-01-01

    Human communication is a critical issue in personal life. It also should be the indispensable core element of general education curriculum in universities and colleges. Based on literature analysis and the author's clinical observation, the importance of human communication, functions of model, and often seen human communication models were…

  16. Towards a controlled sensitivity analysis of model development decisions

    NASA Astrophysics Data System (ADS)

    Clark, Martyn; Nijssen, Bart

    2016-04-01

    The current generation of hydrologic models have followed a myriad of different development paths, making it difficult for the community to test underlying hypotheses and identify a clear path to model improvement. Model comparison studies have been undertaken to explore model differences, but these studies have not been able to meaningfully attribute inter-model differences in predictive ability to individual model components because there are often too many structural and implementation differences among the models considered. As a consequence, model comparison studies to date have provided limited insight into the causes of differences in model behavior, and model development has often relied on the inspiration and experience of individual modelers rather than a systematic analysis of model shortcomings. This presentation will discuss a unified approach to process-based hydrologic modeling to enable controlled and systematic analysis of multiple model representations (hypotheses) of hydrologic processes and scaling behavior. Our approach, which we term the Structure for Unifying Multiple Modeling Alternatives (SUMMA), formulates a general set of conservation equations, providing the flexibility to experiment with different spatial representations, different flux parameterizations, different model parameter values, and different time stepping schemes. We will discuss the use of SUMMA to systematically analyze different model development decisions, focusing on both analysis of simulations for intensively instrumented research watersheds as well as simulations across a global dataset of FLUXNET sites. The intent of the presentation is to demonstrate how the systematic analysis of model shortcomings can help identify model weaknesses and inform future model development priorities.

  17. Simulation Modelling: Educational Development Roles for Learning Technologists.

    ERIC Educational Resources Information Center

    Riley, David

    2002-01-01

    Discusses computer assisted learning and simulation modeling from a United Kingdom perspective. Highlights include modeling with the DMS (Dynamic Modelling System); modeling with STELLA; learning and teaching simulation modeling; educational development roles for learning technologists; and a list of relevant Web sites. (Contains 52 references.)…

  18. Instructional Developer as Content Specialist: Three Case Studies Utilizing the Instructional Development-Operations Research Model.

    ERIC Educational Resources Information Center

    Faust, Stephen M.

    1980-01-01

    Presents a 3-phase model (content research, specification, delivery) for instructional development-operations research and describes its application in developing courses in zoology, geology, and paleontology. (MER)

  19. Development and assessment of a biotechnology workforce development center model

    NASA Astrophysics Data System (ADS)

    Huxley, Mary Pat

    Life science and biotechnology companies are the fastest growing industries in the nation, with more than 30% of these companies and close to 50% of the nation's life science workers located in California. The need for well-trained biotechnology workers continues to grow. Educational institutions and industry professionals have attempted to create the training and the workforce for the bioscience and biotechnology industry. Many have concluded that one way would be to create a multiuse training center where trainees from high school age through late adulthood could receive up-to-date training. This case study had 2 unique phases. Phase 1 consisted of examining representative stakeholder interview data for characteristics of an ideal biotechnology shared-use regional education (B-SURE) center, which served as the basis for an assessment tool, with 107 characteristics in 8 categories. This represented what an ideal center model should include. Phase 2 consisted of using this assessment tool to gather data from 6 current biotechnology regional centers to determine how these centers compared to the ideal model. Results indicated that each center was unique. Although no center met all ideal model characteristics, the 6 centers could clearly be ranked. Recommendations include refining the core characteristics, further assessing the existing and planned centers; evaluating and refining the interview instrument in Phase 1 and the assessment tool in Phase 2 by including additional stakeholders in both phases and by adding reviewers of Phase 1 transcripts; and determining a method to demonstrate a clear return on investment in a B-SURE center.

  20. Test Driven Development of Scientific Models

    NASA Technical Reports Server (NTRS)

    Clune, Thomas L.

    2014-01-01

    Test-Driven Development (TDD), a software development process that promises many advantages for developer productivity and software reliability, has become widely accepted among professional software engineers. As the name suggests, TDD practitioners alternate between writing short automated tests and producing code that passes those tests. Although this overly simplified description will undoubtedly sound prohibitively burdensome to many uninitiated developers, the advent of powerful unit-testing frameworks greatly reduces the effort required to produce and routinely execute suites of tests. By testimony, many developers find TDD to be addicting after only a few days of exposure, and find it unthinkable to return to previous practices.After a brief overview of the TDD process and my experience in applying the methodology for development activities at Goddard, I will delve more deeply into some of the challenges that are posed by numerical and scientific software as well as tools and implementation approaches that should address those challenges.

  1. Model and method for systems development

    NASA Astrophysics Data System (ADS)

    Behl, Erich; Rittel, Michael

    1988-11-01

    A method for systems development was developed with a view to the increase of productivity and quality. The basic approaches are a standard consideration of software and hardware and the rapid prototyping procedure. The methodological procedure is strongly characterized by the reuse of available concepts as well as of hardware and software components. The method is supported by a systems development environment which contains adjusted aids and automates a serres of activities.

  2. Multimedia-modeling integration development environment

    SciTech Connect

    Pelton, Mitchell A.; Hoopes, Bonnie L.

    2002-09-02

    There are many framework systems available; however, the purpose of the framework presented here is to capitalize on the successes of the Framework for Risk Analysis in Multimedia Environmental Systems (FRAMES) and Multi-media Multi-pathway Multi-receptor Risk Assessment (3MRA) methodology as applied to the Hazardous Waste Identification Rule (HWIR) while focusing on the development of software tools to simplify the module developer?s effort of integrating a module into the framework.

  3. Thermal barrier coating life prediction model development

    NASA Technical Reports Server (NTRS)

    Meier, Susan M.; Nissley, David M.; Sheffler, Keith D.; Cruse, Thomas A.

    1991-01-01

    A thermal barrier coated (TBC) turbine component design system, including an accurate TBC life prediction model, is needed to realize the full potential of available TBC engine performance and/or durability benefits. The objective of this work, which was sponsored in part by NASA, was to generate a life prediction model for electron beam - physical vapor deposited (EB-PVD) zirconia TBC. Specific results include EB-PVD zirconia mechanical and physical properties, coating adherence strength measurements, interfacial oxide growth characteristics, quantitative cyclic thermal spallation life data, and a spallation life model.

  4. Clinical Predictive Modeling Development and Deployment through FHIR Web Services

    PubMed Central

    Khalilia, Mohammed; Choi, Myung; Henderson, Amelia; Iyengar, Sneha; Braunstein, Mark; Sun, Jimeng

    2015-01-01

    Clinical predictive modeling involves two challenging tasks: model development and model deployment. In this paper we demonstrate a software architecture for developing and deploying clinical predictive models using web services via the Health Level 7 (HL7) Fast Healthcare Interoperability Resources (FHIR) standard. The services enable model development using electronic health records (EHRs) stored in OMOP CDM databases and model deployment for scoring individual patients through FHIR resources. The MIMIC2 ICU dataset and a synthetic outpatient dataset were transformed into OMOP CDM databases for predictive model development. The resulting predictive models are deployed as FHIR resources, which receive requests of patient information, perform prediction against the deployed predictive model and respond with prediction scores. To assess the practicality of this approach we evaluated the response and prediction time of the FHIR modeling web services. We found the system to be reasonably fast with one second total response time per patient prediction. PMID:26958207

  5. Clinical Predictive Modeling Development and Deployment through FHIR Web Services.

    PubMed

    Khalilia, Mohammed; Choi, Myung; Henderson, Amelia; Iyengar, Sneha; Braunstein, Mark; Sun, Jimeng

    2015-01-01

    Clinical predictive modeling involves two challenging tasks: model development and model deployment. In this paper we demonstrate a software architecture for developing and deploying clinical predictive models using web services via the Health Level 7 (HL7) Fast Healthcare Interoperability Resources (FHIR) standard. The services enable model development using electronic health records (EHRs) stored in OMOP CDM databases and model deployment for scoring individual patients through FHIR resources. The MIMIC2 ICU dataset and a synthetic outpatient dataset were transformed into OMOP CDM databases for predictive model development. The resulting predictive models are deployed as FHIR resources, which receive requests of patient information, perform prediction against the deployed predictive model and respond with prediction scores. To assess the practicality of this approach we evaluated the response and prediction time of the FHIR modeling web services. We found the system to be reasonably fast with one second total response time per patient prediction. PMID:26958207

  6. Silicon EFG process development by multiscale modeling

    NASA Astrophysics Data System (ADS)

    Müller, M.; Birkmann, B.; Mosel, F.; Westram, I.; Seidl, A.

    2010-04-01

    An overview of simulation models in use for optimizing the edge-defined film-fed growth (EFG) process of thin-walled hollow silicon tubes at WACKER SCHOTT Solar is presented. The simulations span the length scales from complete furnace models over growth simulations with a mesoscopic description of the crystalline character of silicon down to solidification simulations with atomic resolution. Results gained from one model are used as input parameters or boundary conditions on other levels. Examples for the application of these models and their impact on process design are given. These include the reduction of tube thickness variations, the control of tube deformations, residual stresses and dislocation densities and the identification of twin formation processes typical for EFG silicon.

  7. Development of large Area Covering Height Model

    NASA Astrophysics Data System (ADS)

    Jacobsen, K.

    2014-04-01

    Height information is a basic part of topographic mapping. Only in special areas frequent update of height models is required, usually the update cycle is quite lower as for horizontal map information. Some height models are available free of charge in the internet; for commercial height models a fee has to be paid. Mostly digital surface models (DSM) with the height of the visible surface are given and not the bare ground height, as required for standard mapping. Nevertheless by filtering of DSM, digital terrain models (DTM) with the height of the bare ground can be generated with the exception of dense forest areas where no height of the bare ground is available. These height models may be better as the DTM of some survey administrations. In addition several DTM from national survey administrations are classified, so as alternative the commercial or free of charge available information from internet can be used. The widely used SRTM DSM is available also as ACE-2 GDEM corrected by altimeter data for systematic height errors caused by vegetation and orientation errors. But the ACE-2 GDEM did not respect neighbourhood information. With the worldwide covering TanDEM-X height model, distributed starting 2014 by Airbus Defence and Space (former ASTRIUM) as WorldDEM, higher level of details and accuracy is reached as with other large area covering height models. At first the raw-version of WorldDEM will be available, followed by an edited version and finally as WorldDEM-DTM a height model of the bare ground. With 12 m spacing and a relative standard deviation of 1.2 m within an area of 1° x 1° an accuracy and resolution level is reached, satisfying also for larger map scales. For limited areas with the HDEM also a height model with 6 m spacing and a relative vertical accuracy of 0.5 m can be generated on demand. By bathymetric LiDAR and stereo images also the height of the sea floor can be determined if the water has satisfying transparency. Another method of getting

  8. Test Driven Development of Scientific Models

    NASA Technical Reports Server (NTRS)

    Clune, Thomas L.

    2012-01-01

    Test-Driven Development (TDD) is a software development process that promises many advantages for developer productivity and has become widely accepted among professional software engineers. As the name suggests, TDD practitioners alternate between writing short automated tests and producing code that passes those tests. Although this overly simplified description will undoubtedly sound prohibitively burdensome to many uninitiated developers, the advent of powerful unit-testing frameworks greatly reduces the effort required to produce and routinely execute suites of tests. By testimony, many developers find TDD to be addicting after only a few days of exposure, and find it unthinkable to return to previous practices. Of course, scientific/technical software differs from other software categories in a number of important respects, but I nonetheless believe that TDD is quite applicable to the development of such software and has the potential to significantly improve programmer productivity and code quality within the scientific community. After a detailed introduction to TDD, I will present the experience within the Software Systems Support Office (SSSO) in applying the technique to various scientific applications. This discussion will emphasize the various direct and indirect benefits as well as some of the difficulties and limitations of the methodology. I will conclude with a brief description of pFUnit, a unit testing framework I co-developed to support test-driven development of parallel Fortran applications.

  9. Modeling Low Impact Development Alternatives with SWIMM

    EPA Science Inventory

    The U.S. Environmental Protection Agency’s Office of Water (OW) is actively promoting the use of Low Impact Development (LID) practices to help protect and restore water quality in urban and developing areas. Such practices support the concepts of green infrastructure and sustain...

  10. A toolbox and a record for scientific model development

    NASA Technical Reports Server (NTRS)

    Ellman, Thomas

    1994-01-01

    Scientific computation can benefit from software tools that facilitate construction of computational models, control the application of models, and aid in revising models to handle new situations. Existing environments for scientific programming provide only limited means of handling these tasks. This paper describes a two pronged approach for handling these tasks: (1) designing a 'Model Development Toolbox' that includes a basic set of model constructing operations; and (2) designing a 'Model Development Record' that is automatically generated during model construction. The record is subsequently exploited by tools that control the application of scientific models and revise models to handle new situations. Our two pronged approach is motivated by our belief that the model development toolbox and record should be highly interdependent. In particular, a suitable model development record can be constructed only when models are developed using a well defined set of operations. We expect this research to facilitate rapid development of new scientific computational models, to help ensure appropriate use of such models and to facilitate sharing of such models among working computational scientists. We are testing this approach by extending SIGMA, and existing knowledge-based scientific software design tool.

  11. Development of Global Magnetosphere Models of Jupiter

    NASA Technical Reports Server (NTRS)

    Khurana, Krishan K.

    2004-01-01

    The objective of the proposal was to construct global magnetospheric models of Jupiter for the use of Jovian magnetospheric community. In the four years of the grant period we were able to achieve all of the stated science objectives. The work has resulted in: 1) A new structural model of Jovian current sheet; 2) Global thickness map of the current sheet; 3) Magnetic field models of the current sheet; 4) The global model of Jupiter's magnetospheric field including hinging and delay of the current sheet, sweepback of the magnetic field and the shielding field of the magnetopause. To accomplish our work, we assembled an exhaustive magnetic field data base from all of the spacecraft that have visited Jupiter (Pioneers 10 and 11, Voyagers 1 and 2, Ulysses and Galileo). The data were rotated into system III and JSM coordinates. We used the data at resolutions of 1 minute (for studies of the structure of the current sheet) and 10 minutes (for building the global model).

  12. A Conceptual Model of Career Development to Enhance Academic Motivation

    ERIC Educational Resources Information Center

    Collins, Nancy Creighton

    2010-01-01

    The purpose of this study was to develop, refine, and validate a conceptual model of career development to enhance the academic motivation of community college students. To achieve this end, a straw model was built from the theoretical and empirical research literature. The model was then refined and validated through three rounds of a Delphi…

  13. A Leadership Identity Development Model: Applications from a Grounded Theory

    ERIC Educational Resources Information Center

    Komives, Susan R.; Mainella, Felicia C.; Longerbeam, Susan D.; Osteen, Laura; Owen, Julie E.

    2006-01-01

    This article describes a stage-based model of leadership identity development (LID) that resulted from a grounded theory study on developing a leadership identity (Komives, Owen, Longerbeam, Mainella, & Osteen, 2005). The LID model expands on the leadership identity stages, integrates the categories of the grounded theory into the LID model, and…

  14. A Chakra-Based Model of Group Development.

    ERIC Educational Resources Information Center

    Gilchrist, Roger; Mikulas, William L.

    1993-01-01

    Describes a model for sequential stages of group development based on yogic chakra system. Compares chakra-based model with other models of group developmental stages. Using context of chakra system, specifies basic dynamic issues and leader interventions for each stage and discusses relationship of individual development to group process. (Author)

  15. RFI and SCRIMP Model Development and Verification

    NASA Technical Reports Server (NTRS)

    Loos, Alfred C.; Sayre, Jay

    2000-01-01

    Vacuum-Assisted Resin Transfer Molding (VARTM) processes are becoming promising technologies in the manufacturing of primary composite structures in the aircraft industry as well as infrastructure. A great deal of work still needs to be done on efforts to reduce the costly trial-and-error methods of VARTM processing that are currently in practice today. A computer simulation model of the VARTM process would provide a cost-effective tool in the manufacturing of composites utilizing this technique. Therefore, the objective of this research was to modify an existing three-dimensional, Resin Film Infusion (RFI)/Resin Transfer Molding (RTM) model to include VARTM simulation capabilities and to verify this model with the fabrication of aircraft structural composites. An additional objective was to use the VARTM model as a process analysis tool, where this tool would enable the user to configure the best process for manufacturing quality composites. Experimental verification of the model was performed by processing several flat composite panels. The parameters verified included flow front patterns and infiltration times. The flow front patterns were determined to be qualitatively accurate, while the simulated infiltration times over predicted experimental times by 8 to 10%. Capillary and gravitational forces were incorporated into the existing RFI/RTM model in order to simulate VARTM processing physics more accurately. The theoretical capillary pressure showed the capability to reduce the simulated infiltration times by as great as 6%. The gravity, on the other hand, was found to be negligible for all cases. Finally, the VARTM model was used as a process analysis tool. This enabled the user to determine such important process constraints as the location and type of injection ports and the permeability and location of the high-permeable media. A process for a three-stiffener composite panel was proposed. This configuration evolved from the variation of the process

  16. Modeling segregation of bidisperse granular materials: Model development

    NASA Astrophysics Data System (ADS)

    Fan, Yi; Schlick, Conor; Umbanhowar, Paul; Ottino, Julio; Lueptow, Richard

    2013-11-01

    Predicting segregation of size bidisperse granular materials is a challenging problem. In this talk, we present a theoretical model that captures the interplay between advection, segregation, and diffusion. The fluxes associated with these three driving factors depend on the underlying kinematics, whose characteristics play key roles in determining final particle segregation configurations. Unlike previous models of segregation, our model uses parameters based on kinematic measures instead of arbitrarily adjustable fitting parameters. This permits the theoretical prediction of species concentration within the entire flowing layer as particles segregate in the depth direction while they flow downhill. The model achieves quantitative agreement with both experimental and DEM simulation results when applied to quasi-two-dimensional bounded heaps, and can be readily adapted to other flow geometries. Y.F. was funded by The Dow Chemical Company. C.P.S. was supported by NSF Grant CMMI-1000469.

  17. Developing Novel Explanatory Models for Electronics Education

    ERIC Educational Resources Information Center

    Pule, Sarah; McCardle, John

    2010-01-01

    This paper explores how representations of technological concepts may be designed to help students with visual learning styles achieve successful comprehension in the field of electronics. The work accepts a wide definition of what is understood by the visualisation of a model in that it can take different external forms, but also include an…

  18. Developing Models of Caring in the Professions.

    ERIC Educational Resources Information Center

    Noddings, Nel

    Much theoretical work is being done in relational ethics, particularly the ethics of care. Models of human caring are also arising within the professions. This paper discusses feminist contributions to theories of caring, focusing on the shared premises, conflicts, and paradoxes faced by four professions (law, nursing, theology, and education),…

  19. Developing an Alternative Model for Dental Education.

    ERIC Educational Resources Information Center

    Rayborn, G. Wayne; And Others

    1996-01-01

    The restructuring of the oral health sciences program at the University of Alberta (Canada), in response to drastically reduced funding, is described. Major objectives were to reduce program cost to the university and enhance the institution's scholarly/research profile. The model, used in other countries, separates clinical from academic costs.…

  20. Administrator Training and Development: Conceptual Model.

    ERIC Educational Resources Information Center

    Boardman, Gerald R.

    A conceptual model for an individualized training program for school administrators integrates processes, characteristics, and tasks through theory training and application. Based on an application of contingency theory, it provides a system matching up administrative candidates' needs in three areas (administrative process, administrative…

  1. A Research and Development Adoption Model

    ERIC Educational Resources Information Center

    Hull, Ronald E.

    1974-01-01

    An elaboration of the adoption phase of the Clark and Guba R and D model. A brief discussion of the normative structures of the organizations and organizational boundary permeability provides the rationale for a set of suggested procedures for adoption of innovations at the school building level. (Author)

  2. Using Hybrid Modeling to Develop Innovative Activities

    ERIC Educational Resources Information Center

    Lichtman, Brenda; Avans, Diana

    2005-01-01

    This article describes a hybrid activities model that physical educators can use with students in grades four and above to create virtually a limitless array of novel games. A brief introduction to the basic theory is followed by descriptions of some hybrid games. Hybrid games are typically the result of merging two traditional sports or other…

  3. The Punctuated-Tuckman: Towards a New Group Development Model

    ERIC Educational Resources Information Center

    Hurt, Andrew C.; Trombley, Sarah M.

    2007-01-01

    Two commonly accepted theories of group development are the Tuckman model (Tuckman & Jensen, 1977) and the Punctuated-Equilibrium model (Gersick, 1988). Critiques of both are that they assume linear development and that they fail to account for outside influences. In contrast, Tubbs (2004) suggests that group development should be viewed from a…

  4. A Macro Model of Training and Development: Validation.

    ERIC Educational Resources Information Center

    Al-Khayyat, Ridha M.; Elgamal, Mahmoud A.

    1997-01-01

    A macro model of training and development includes input (training and development climate), process, and output (individual/organizational change) indicators. A test of the model with 387 Kuwaiti bank employees supported these indicators. Managers' perceptions of training and development and the organization's return on investment were…

  5. Development of a rotor wake-vortex model, volume 1

    NASA Technical Reports Server (NTRS)

    Majjigi, R. K.; Gliebe, P. R.

    1984-01-01

    Certain empirical rotor wake and turbulence relationships were developed using existing low speed rotor wave data. A tip vortex model was developed by replacing the annulus wall with a row of image vortices. An axisymmetric turbulence spectrum model, developed in the context of rotor inflow turbulence, was adapted to predicting the turbulence spectrum of the stator gust upwash.

  6. Kohlberg's Moral Development Model: Cohort Influences on Validity.

    ERIC Educational Resources Information Center

    Bechtel, Ashleah

    An overview of Kohlberg's theory of moral development is presented; three interviews regarding the theory are reported, and the author's own moral development is compared to the model; finally, a critique of the theory is addressed along with recommendations for future enhancement. Lawrence Kohlberg's model of moral development, also referred to…

  7. Vertebrate eye development as modeled in Drosophila.

    PubMed

    Wawersik, S; Maas, R L

    2000-04-12

    Pax6, a member of the paired-box family of transcription factors, is critical for oculogenesis in both vertebrates and insects. Identification of potential vertebrate Pax6 targets has been guided by studies in Drosophila, where the Pax6 homologs eyeless ( ey ) and twin of eyeless ( toy ) function within a network of genes that synergistically pattern the developing fly eye. These targets, which share homology with the fly genes sine oculis, eyes absent and dachshund, exist in mice and humans as the Six, Eya and Dach gene families. Members of these gene families are present in the developing vertebrate eye, and preliminary studies suggest that they may function in a network analogous to that in the fly. Thus, despite radically different architecture, a similar molecular scaffold underlies both vertebrate and fly eye patterning, suggesting that the considerable power of Drosophila genetics can be harnessed to study mammalian ocular development. PMID:10767315

  8. Consumer Protection, Leadership Models, and Training and Development.

    ERIC Educational Resources Information Center

    Coleman, Donald G.; Heun, Richard E.

    This paper examines several models of leadership style that are widely used in staff development workshops and seminars for managers. The discussion focuses mainly on the implications and possible dangers for training subjects of these models, which include two-factor models, such as those of Barnard and Halpin, and orthogonal grid models, such as…

  9. Update on GOCART Model Development and Applications

    NASA Technical Reports Server (NTRS)

    Kim, Dongchul

    2013-01-01

    Recent results from the GOCART and GMI models are reported. They include: Updated emission inventories for anthropogenic and volcano sources, satellite-derived vegetation index for seasonal variations of dust emission, MODIS-derived smoke AOT for assessing uncertainties of biomass-burning emissions, long-range transport of aerosol across the Pacific Ocean, and model studies on the multi-decadal trend of regional and global aerosol distributions from 1980 to 2010, volcanic aerosols, and nitrate aerosols. The document was presented at the 2013 AEROCENTER Annual Meeting held at the GSFC Visitors Center, May 31, 2013. The Organizers of the meeting are posting the talks to the public Aerocentr website, after the meeting.

  10. New Developments in Magnetostatic Cleanliness Modeling

    NASA Astrophysics Data System (ADS)

    Mehlem, K.; Wiegand, A.; Weickert, S.

    2012-05-01

    The paper describes improvements and extensions of the multiple magnetic dipole modeling method (MDM) for cleanliness verification which had been introduced by the author1 in 1977 and then applied during 3 decades to numerous international projects. The solutions of specific modeling problems which had been left unsolved so far, are described in the present paper. Special attention is given to the ambiguities of MDM solutions caused by the limited data coverage available. Constraint handling by the constraint-free NLP solver, optimal MDM sizing and multiple-point far-field compensation techniques are presented. The recent extension of the MDM method to field gradient data is formulated and demonstrated by an example. Finally, a complex MDM application (Ulysses) is presented. Finally, a short description of the MDM software GAMAG, recently introduced by the author1, is given.

  11. Great Plains ASPEN model development: gasifier model. Final topical report

    SciTech Connect

    Benjamin, B.W.

    1985-01-01

    A rigorous model of a moving-bed, dry-bottom gasifier, RGAS, has been incorporated into ASPEN. The model is designed to calculate the variables which characterize gasifier performance: (1) the composition of the outlet gas; (2) the flow of the outlet gas; (3) the temperature of the outlet gas; (4) the temperature profile of the solids (especially important in dry bottom gasifiers because of the necessity of maintaining the maximum temperature of the bed below the ash softening temperature); and (5) the rate of steam generation in the jacket (if applicable). The option of using alternative kinetic expressions has been incorporated into the model structure. Presently, RGAS can be used to simulate gasifier performance using the kinetic expressions for gasification established at West Virginia University and the University of Delaware. The models of both West Virginia University and the University of Delaware were tuned to agree with the Great Plains gasifier flowsheet. Then, several case studies were run to determine the sensitivity of each model to changes in such inputs as: (1) feed rates; (2) feed temperatures; (3) reaction parameters; and (4) heat transfer coefficient. The data from these case studies have been compared with experimental findings. For example, increasing the oxygen feed rate or increasing the temperature of the inlet gas feed both serve to increase the reactor temperature which, in turn, increases the carbon conversion and steam generation rate. On the other hand, increasing the steam feed rate does the opposite. These results agree with trends observed experimentally. 5 references.

  12. FEASIBILITY STUDY ON EXECUTIVE PROGRAM DEVELOPMENT FOR BASIN ECOSYSTEMS MODELING

    EPA Science Inventory

    The project was undertaken in order to provide a feasibility study in developing and implementing a complete executive program to interface automatically various basin-wide water quality models for use by relatively inexperienced modelers. This executive program should ultimately...

  13. FRAMES/3MRA MODEL DEVELOPMENT AND APPLICATIONS

    EPA Science Inventory

    Developed by ORD in collaboration with OSW, the Multimedia, Multi-pathway, Multi-receptor Risk Assessment (3MRA) national risk assessment methodology is designed to assess risks at a statistically sampled number of "actual" sites and organize the results into a national distribut...

  14. Staff Development; Mini Models for College Implementation.

    ERIC Educational Resources Information Center

    Peterson, Gary T., Ed.

    One hundred twenty-seven participants at a June 1975 symposium in Squaw Valley, California, made use of a prescribed problem-solving process in order to originate a number of parts of a total staff development effort for a simulated community college. The developmental stages in the process included brainstorming, needs assessment, resource…

  15. Modeling the Risks of Geothermal Development

    SciTech Connect

    Golabi, K.; Nair, K.; Rothstein, S.; Sioshansi, F.

    1980-12-16

    Geothermal energy has emerged as a promising energy source in recent years and has received serious attention from developers and potential users. Despite the advantages of this resource, such as potential cost competitiveness, reliability, public acceptance, etc., the commercial development and use of geothermal energy has been slow. Impediments to the development of this resource include technical, financial, environmental and regulatory uncertainties. Since geothermal power is unique in that the generation facility is tied to a single fuel at a single site, these uncertainties are of particular concern to utility companies. The areas of uncertainty and potential risks are well known. This paper presents a method for quantifying the relevant uncertainties and a framework for aggregating the risks through the use of submodels. The objective submodels can be combined with subjective probabilities (when sufficient data is not available) to yield a probability distribution over a single criterion (levelized busbar cost) that can be used to compare the desirability of geothermal power development with respect to other alternatives.

  16. MULTI-MEDIA MODELING : RESEARCH AND DEVELOPMENT

    EPA Science Inventory

    Developed by ORD in collaboration with OSW, the Multimedia, Multi-pathway, Multi-receptor Risk Assessment (3MRA) national risk assessment methodology is designed to assess risks at sites containing source(s) of contamination that may release contaminants to the environment. Or...

  17. Mentoring: A Model for Leadership Development?

    ERIC Educational Resources Information Center

    Stead, Valerie

    2005-01-01

    There appears to be a paucity of research on mentoring senior leaders (Hobson & Sharp, 2005) and yet a growing interest in the development of leadership through experience (Abra "et al.," 2003; McCauley "et al.," 1998). This paper therefore presents and evaluates a case study of a pilot mentoring scheme and programme for Directors of Finance…

  18. Development toward School Readiness: A Holistic Model

    ERIC Educational Resources Information Center

    Gaynor, Alan Kibbe

    2015-01-01

    A systemic analysis of early childhood development factors explains the variance in school readiness among representative U.S. 5-year-olds. The underlying theory incorporates a set of causally interactive endogenous variables that are hypothesized to be driven by the effects of three exogenous variables: parental education, immigrant status and…

  19. Model Vocational Curriculum Development. Final Report.

    ERIC Educational Resources Information Center

    Lake Stevens School District No. 4, WA.

    This guidance instrument (student four-year planning form), middle school program, and student learning objectives for all career and vocational education courses to be changed or added represent the products of a Lake Stevens School District, Washington, curriculum development project. The guidance instrument is a form to be completed by…

  20. Defining a Model for Team Leader Development.

    ERIC Educational Resources Information Center

    Knight, Stephen; And Others

    1996-01-01

    Revisions to nursing job descriptions in a hospital necessitated a leadership development program focused on reflective practice and clinical supervision. Nurses surveyed recognized improved performance in their supervisors in leadership skills and understanding of the role of senior clinical nurse. (SK)

  1. Community Work Development: A Marketing Model.

    ERIC Educational Resources Information Center

    Como, Perry; Hagner, David

    This manual is concerned with developing community-based work for persons with disabilities, particularly disabled workers in segregated settings and individuals who are considered not yet ready for or capable of work. The first part of the publication deals with the following topics: the concepts of community, work, and severe disabilities; the…

  2. Alternative Models for Funding Research and Development.

    ERIC Educational Resources Information Center

    Morrison, Edward J., Ed.

    An introduction to the "hows" of research and development (R&D) funding decisions made by the U. S. Federal government, this book contains four chapters written by separate authors. The first chapter examines the Federal role, purpose, and practices in funding R&D concluding that Federal funding of R&D is designed primarily to serve nonscientific…

  3. Development of mpi_EPIC model for global agroecosystem modeling

    SciTech Connect

    Kang, Shujiang; Wang, Dali; Jeff A. Nichols; Schuchart, Joseph; Kline, Keith L.; Wei, Yaxing; Ricciuto, Daniel M.; Wullschleger, Stan D.; Post, Wilfred M.; Izaurralde, R. Cesar

    2014-12-31

    Models that address policy-maker concerns about multi-scale effects of food and bioenergy production systems are computationally demanding. We integrated the message passing interface algorithm into the process-based EPIC model to accelerate computation of ecosystem effects. Simulation performance was further enhanced by applying the Vampir framework. When this enhanced mpi_EPIC model was tested, total execution time for a global 30-year simulation of a switchgrass cropping system was shortened to less than 0.5 hours on a supercomputer. The results illustrate that mpi_EPIC using parallel design can balance simulation workloads and facilitate large-scale, high-resolution analysis of agricultural production systems, management alternatives and environmental effects.

  4. Development of mpi_EPIC model for global agroecosystem modeling

    DOE PAGESBeta

    Kang, Shujiang; Wang, Dali; Jeff A. Nichols; Schuchart, Joseph; Kline, Keith L.; Wei, Yaxing; Ricciuto, Daniel M.; Wullschleger, Stan D.; Post, Wilfred M.; Izaurralde, R. Cesar

    2014-12-31

    Models that address policy-maker concerns about multi-scale effects of food and bioenergy production systems are computationally demanding. We integrated the message passing interface algorithm into the process-based EPIC model to accelerate computation of ecosystem effects. Simulation performance was further enhanced by applying the Vampir framework. When this enhanced mpi_EPIC model was tested, total execution time for a global 30-year simulation of a switchgrass cropping system was shortened to less than 0.5 hours on a supercomputer. The results illustrate that mpi_EPIC using parallel design can balance simulation workloads and facilitate large-scale, high-resolution analysis of agricultural production systems, management alternatives and environmentalmore » effects.« less

  5. Modeling and simulation of cement hydration kinetics and microstructure development

    SciTech Connect

    Thomas, Jeffrey J.; Biernacki, Joseph J.; Bullard, Jeffrey W.; Bishnoi, Shashank; Dolado, Jorge S.; Scherer, George W.; Luttge, Andreas

    2011-12-15

    Efforts to model and simulate the highly complex cement hydration process over the past 40 years are reviewed, covering different modeling approaches such as single particle models, mathematical nucleation and growth models, and vector and lattice-based approaches to simulating microstructure development. Particular attention is given to promising developments that have taken place in the past few years. Recent applications of molecular-scale simulation methods to understanding the structure and formation of calcium-silicate-hydrate phases, and to understanding the process of dissolution of cement minerals in water are also discussed, as these topics are highly relevant to the future development of more complete and fundamental hydration models.

  6. Probabilistic model better defines development well risks

    SciTech Connect

    Connolly, M.R.

    1996-10-14

    Probabilistic techniques to compare and rank projects, such as the drilling of development wells, often are more representative than decision tree or deterministic approaches. As opposed to traditional deterministic methods, probabilistic analysis gives decision-makers ranges of outcomes with associated probabilities of occurrence. This article analyzes the drilling of a hypothetical development well with actual field data (such as stabilized initial rates, production declines, and gas/oil ratios) to calculate probabilistic reserves, and production flow streams. Analog operating data were included to build distributions for capital and operating costs. Economics from the Monte Carlo simulation include probabilistic production flow streams and cost distributions. Results include single parameter distributions (reserves, net present value, and profitability index) and time function distributions (annual production and net cash flow).

  7. Development of a novel mouse constipation model

    PubMed Central

    Liang, Chao; Wang, Kai-Yue; Yu, Zhi; Xu, Bin

    2016-01-01

    AIM: To establish a novel mouse constipation model. METHODS: Animals were randomly divided into three groups, and intragastrically administered 0-4 °C saline (ice-cold group) or 15-20 °C saline (saline control group) daily for 14 d, or were left untreated (blank control group). Stools were collected 3-24 h after treatment to record the wet and dry weights and the stool form. Intestinal propulsion experiments were carried out and defecation time was measured for six days continuously after suspending treatments. The expressions of PGP9.5 were detected by immunohistochemistry. RESULTS: Based on the percentage of stool weight changes compared with baseline (before irritation) in 9-14 d, stool weight changes were classified into three levels. Each level shows a different body state, which is state I (no change: plus or minus 5%), state II (slightly decreased: 5%-15%) and state III (decreased: 15%-25%). In state III, between day 9-14, the stool weights decreased by 15%-25% compared with the baseline, and changed at a rate > 10% compared with blank control values, and the stools became small and dry. Additionally, intestinal functions degenerated in these animals, and PGP9.5-positive expression markedly decreased in jejunum, ileum and proximal colon myenteric plexus. CONCLUSION: Irritation with ice-cold saline is a stable, repeatable method in building constipation model in mice for exploring the pathogenesis and treatment options of constipation, and the change of stool weight and size may serve as a useful tool to judge a constipation model success or not. PMID:26973418

  8. Experiments for foam model development and validation.

    SciTech Connect

    Bourdon, Christopher Jay; Cote, Raymond O.; Moffat, Harry K.; Grillet, Anne Mary; Mahoney, James F.; Russick, Edward Mark; Adolf, Douglas Brian; Rao, Rekha Ranjana; Thompson, Kyle Richard; Kraynik, Andrew Michael; Castaneda, Jaime N.; Brotherton, Christopher M.; Mondy, Lisa Ann; Gorby, Allen D.

    2008-09-01

    A series of experiments has been performed to allow observation of the foaming process and the collection of temperature, rise rate, and microstructural data. Microfocus video is used in conjunction with particle image velocimetry (PIV) to elucidate the boundary condition at the wall. Rheology, reaction kinetics and density measurements complement the flow visualization. X-ray computed tomography (CT) is used to examine the cured foams to determine density gradients. These data provide input to a continuum level finite element model of the blowing process.

  9. Thermal barrier coating life prediction model development

    NASA Technical Reports Server (NTRS)

    Demasi, J. T.; Sheffler, K. D.

    1986-01-01

    The objective of this program is to establish a methodology to predict Thermal Barrier Coating (TBC) life on gas turbine engine components. The approach involves experimental life measurement coupled with analytical modeling of relevant degradation modes. The coating being studied is a flight qualified two layer system, designated PWA 264, consisting of a nominal ten mil layer of seven percent yttria partially stabilized zirconia plasma deposited over a nominal five mil layer of low pressure plasma deposited NiCoCrAlY. Thermal barrier coating degradation modes being investigated include: thermomechanical fatigue, oxidation, erosion, hot corrosion, and foreign object damage.

  10. Avian necrotic enteritis: Experimental models, climate change, and vaccine development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This review summarizes recent developments in disease models, pathogenesis, host immunity, risk factors, and vaccine development for Clostridium perfringens infection of poultry and necrotic enteritis (NE). The increasing trends of legislative restrictions and voluntary removal of antibiotic growth...

  11. The Wisconsin Small Business Development Center Information Service: A Model.

    ERIC Educational Resources Information Center

    Awe, Susan C.

    1986-01-01

    Presents the model of the Information Service of the Wisconsin Small Business Development Center Information Service, including the objectives and tasks necessary to develop an information service, and staffing and funding guidelines for the first two years. (EJS)

  12. Modeling of angioadaptation: insights for vascular development.

    PubMed

    Pries, Axel R; Reglin, Bettina; Secomb, Timothy W

    2011-01-01

    Vascular beds are generated by vasculogenesis and sprouting angiogenesis, and these processes have strong stochastic components. As a result, vascular patterns exhibit significant heterogeneity with respect to the topological arrangement of the individual vessel segments and the characteristics (length, number of segments) of different arterio-venous pathways. This structural heterogeneity tends to cause heterogeneous distributions of flow and oxygen availability in tissue. However, these quantities must be maintained within tolerable ranges to allow normal tissue function. This is achieved largely through adjustment of vascular flow resistance by control of vessel diameters. While short-term diameter control by changes in vascular tone in arterioles and small arteries plays an important role, in the long term an even more important role is played by structural adaptation (angioadaptation), occurring in response to metabolic and hemodynamic signals. The effectiveness, stability and robustness of this angioadaptation depend sensitively on the nature and strength of the vascular responses involved and their interactions with the network structure. Mathematical models are helpful in understanding these complex interactions, and can be used to simulate the consequences of failures in sensing or signal transmission mechanisms. For the tumor microcirculation, this strategy of combining experimental observations with theoretical models, has led to the hypothesis that dysfunctional information transport via vascular connexins is a major cause of the observed vascular pathology and increased heterogeneity in oxygen distribution. PMID:21858766

  13. Thermal barrier coating life prediction model development

    NASA Technical Reports Server (NTRS)

    Sheffler, K. D.; Demasi, J. T.

    1985-01-01

    A methodology was established to predict thermal barrier coating life in an environment simulative of that experienced by gas turbine airfoils. Specifically, work is being conducted to determine failure modes of thermal barrier coatings in the aircraft engine environment. Analytical studies coupled with appropriate physical and mechanical property determinations are being employed to derive coating life prediction model(s) on the important failure mode(s). An initial review of experimental and flight service components indicates that the predominant mode of TBC failure involves thermomechanical spallation of the ceramic coating layer. This ceramic spallation involves the formation of a dominant crack in the ceramic coating parallel to and closely adjacent to the metal-ceramic interface. Initial results from a laboratory test program designed to study the influence of various driving forces such as temperature, thermal cycle frequency, environment, and coating thickness, on ceramic coating spalling life suggest that bond coat oxidation damage at the metal-ceramic interface contributes significantly to thermomechanical cracking in the ceramic layer. Low cycle rate furnace testing in air and in argon clearly shows a dramatic increase of spalling life in the non-oxidizing environments.

  14. Biogeochemistry in Sea Ice: CICE model developments

    SciTech Connect

    Jeffery, Nicole; Hunke, Elizabeth; Elliott, Scott; Turner, Adrian

    2012-06-18

    Polar primary production unfolds in a dynamic sea ice environment, and the interactions of sea ice with ocean support and mediate this production. In spring, for example, fresh melt water contributes to the shoaling of the mixed layer enhancing ice edge blooms. In contrast, sea ice formation in the fall reduces light penetration to the upper ocean slowing primary production in marine waters. Polar biogeochemical modeling studies typically consider these types of ice-ocean interactions. However, sea ice itself is a biogeochemically active medium, contributing a significant and, possibly, essential source of primary production to polar regions in early spring and fall. Here we present numerical simulations using the Los Alamos Sea Ice Model (CICE) with prognostic salinity and sea ice biogeochemistry. This study investigates the relationship between sea ice multiphase physics and sea ice productivity. Of particular emphasis are the processes of gravity drainage, melt water flushing, and snow loading. During sea ice formation, desalination by gravity drainage facilitates nutrient exchange between ocean and ice maintaining ice algal blooms in early spring. Melt water flushing releases ice algae and nutrients to underlying waters limiting ice production. Finally, snow loading, particularly in the Southern Ocean, forces sea ice below the ocean surface driving an upward flow of nutrient rich water into the ice to the benefit of interior and freeboard communities. Incorporating ice microphysics in CICE has given us an important tool for assessing the importance of these processes for polar algal production at global scales.

  15. Developing Viable Financing Models for Space Tourism

    NASA Astrophysics Data System (ADS)

    Eilingsfeld, F.; Schaetzler, D.

    2002-01-01

    Increasing commercialization of space services and the impending release of government's control of space access promise to make space ventures more attractive. Still, many investors shy away from going into the space tourism market as long as they do not feel secure that their return expectations will be met. First and foremost, attracting investors from the capital markets requires qualifying financing models. Based on earlier research on the cost of capital for space tourism, this paper gives a brief run-through of commercial, technical and financial due diligence aspects. After that, a closer look is taken at different valuation techniques as well as alternative ways of streamlining financials. Experience from earlier ventures has shown that the high cost of capital represents a significant challenge. Thus, the sophistication and professionalism of business plans and financial models needs to be very high. Special emphasis is given to the optimization of the debt-to-equity ratio over time. The different roles of equity and debt over a venture's life cycle are explained. Based on the latter, guidelines for the design of an optimized loan structure are given. These are then applied to simulating the financial performance of a typical space tourism venture over time, including the calculation of Weighted Average Cost of Capital (WACC) and Net Present Value (NPV). Based on a concluding sensitivity analysis, the lessons learned are presented. If applied properly, these will help to make space tourism economically viable.

  16. Materials Database Development for Ballistic Impact Modeling

    NASA Technical Reports Server (NTRS)

    Pereira, J. Michael

    2007-01-01

    A set of experimental data is being generated under the Fundamental Aeronautics Program Supersonics project to help create and validate accurate computational impact models of jet engine impact events. The data generated will include material property data generated at a range of different strain rates, from 1x10(exp -4)/sec to 5x10(exp 4)/sec, over a range of temperatures. In addition, carefully instrumented ballistic impact tests will be conducted on flat plates and curved structures to provide material and structural response information to help validate the computational models. The material property data and the ballistic impact data will be generated using materials from the same lot, as far as possible. It was found in preliminary testing that the surface finish of test specimens has an effect on measured high strain rate tension response of AL2024. Both the maximum stress and maximum elongation are greater on specimens with a smoother finish. This report gives an overview of the testing that is being conducted and presents results of preliminary testing of the surface finish study.

  17. Modeling of angioadaptation: insights for vascular development

    PubMed Central

    PRIES, AXEL R.; REGLIN, BETTINA; SECOMB, TIMOTHY W.

    2016-01-01

    Vascular beds are generated by vasculogenesis and sprouting angiogenesis, and these processes have strong stochastic components. As a result, vascular patterns exhibit significant heterogeneity with respect to the topological arrangement of the individual vessel segments and the characteristics (length, number of segments) of different arterio-venous pathways. This structural heterogeneity tends to cause heterogeneous distributions of flow and oxygen availability in tissue. However, these quantities must be maintained within tolerable ranges to allow normal tissue function. This is achieved largely through adjustment of vascular flow resistance by control of vessel diameters. While short-term diameter control by changes in vascular tone in arterioles and small arteries plays an important role, in the long term an even more important role is played by structural adaptation (angioadaptation), occurring in response to metabolic and hemodynamic signals. The effectiveness, stability and robustness of this angioadaptation depend sensitively on the nature and strength of the vascular responses involved and their interactions with the network structure. Mathematical models are helpful in understanding these complex interactions, and can be used to simulate the consequences of failures in sensing or signal transmission mechanisms. For the tumor microcirculation, this strategy of combining experimental observations with theoretical models, has led to the hypothesis that dysfunctional information transport via vascular connexins is a major cause of the observed vascular pathology and increased heterogeneity in oxygen distribution. PMID:21858766

  18. Development, Evaluation, and Design Applications of an AMTEC Converter Model

    NASA Astrophysics Data System (ADS)

    Spence, Cliff A.; Schuller, Michael; Lalk, Tom R.

    2003-01-01

    Issues associated with the development of an alkali metal thermal-to-electric conversion (AMTEC) converter model that serves as an effective design tool were investigated. The requirements and performance prediction equations for the model were evaluated, and a modeling methodology was established. It was determined by defining the requirements and equations for the model and establishing a methodology that Thermal Desktop, a recently improved finite-difference software package, could be used to develop a model that serves as an effective design tool. Implementing the methodology within Thermal Desktop provides stability, high resolution, modular construction, easy-to-use interfaces, and modeling flexibility.

  19. Modeling the connection between development and evolution: Preliminary report

    SciTech Connect

    Mjolsness, E.; Reinitz, J.; Garrett, C.D.; Sharp, D.H.

    1993-07-29

    In this paper we outline a model which incorporates development processes into an evolutionary frame work. The model consists of three sectors describing development, genetics, and the selective environment. The formulation of models governing each sector uses dynamical grammars to describe processes in which state variables evolve in a quantitative fashion, and the number and type of participating biological entities can change. This program has previously been elaborated for development. Its extension to the other sectors of the model is discussed here and forms the basis for further approximations. A specific implementation of these ideas is described for an idealized model of the evolution of a multicellular organism. While this model doe not describe an actual biological system, it illustrates the interplay of development and evolution. Preliminary results of numerical simulations of this idealized model are presented.

  20. A Distributed Online Curriculum and Courseware Development Model

    ERIC Educational Resources Information Center

    Durdu, Pinar Onay; Yalabik, Nese; Cagiltay, Kursat

    2009-01-01

    A distributed online curriculum and courseware development model (DONC[superscript 2]) is developed and tested in this study. Courseware development teams which may work in different institutions who need to develop high quality, reduced cost, on time products will be the users of DONC[superscript 2]. The related features from the disciplines of…

  1. Developing a Physiologically-Based Pharmacokinetic Model Knowledgebase in Support of Provisional Model Construction

    EPA Science Inventory

    Developing physiologically-based pharmacokinetic (PBPK) models for chemicals can be resource-intensive, as neither chemical-specific parameters nor in vivo pharmacokinetic data are easily available for model construction. Previously developed, well-parameterized, and thoroughly-v...

  2. Computational Modeling Develops Ultra-Hard Steel

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Glenn Research Center's Mechanical Components Branch developed a spiral bevel or face gear test rig for testing thermal behavior, surface fatigue, strain, vibration, and noise; a full-scale, 500-horsepower helicopter main-rotor transmission testing stand; a gear rig that allows fundamental studies of the dynamic behavior of gear systems and gear noise; and a high-speed helical gear test for analyzing thermal behavior for rotorcraft. The test rig provides accelerated fatigue life testing for standard spur gears at speeds of up to 10,000 rotations per minute. The test rig enables engineers to investigate the effects of materials, heat treat, shot peen, lubricants, and other factors on the gear's performance. QuesTek Innovations LLC, based in Evanston, Illinois, recently developed a carburized, martensitic gear steel with an ultra-hard case using its computational design methodology, but needed to verify surface fatigue, lifecycle performance, and overall reliability. The Battelle Memorial Institute introduced the company to researchers at Glenn's Mechanical Components Branch and facilitated a partnership allowing researchers at the NASA Center to conduct spur gear fatigue testing for the company. Testing revealed that QuesTek's gear steel outperforms the current state-of-the-art alloys used for aviation gears in contact fatigue by almost 300 percent. With the confidence and credibility provided by the NASA testing, QuesTek is commercializing two new steel alloys. Uses for this new class of steel are limitless in areas that demand exceptional strength for high throughput applications.

  3. Modeling microstructural development during the forging of Waspaloy

    NASA Astrophysics Data System (ADS)

    Shen, Gangshu; Semiatin, S. L.; Shivpuri, Rajiv

    1995-07-01

    A model for predicting the evolution of microstructure in Waspaloy during thermomechanical proc-essing was developed in terms of dynamic recrystallization (DRX), metadynamic recrystallization, and grain growth phenomena. Three sets of experiments were conducted to develop the model: (1) preheating tests to model grain growth prior to hot deformation; (2) compression tests in a Gleeble testing machine with different deformation and cooling conditions to model DRX, metadynamic recrystallization, and short time grain growth during the post deformation dwell period and cooling; and (3) pancake and closed die forging tests conducted in a manufacturing environment to verify and refine the model. The microstructural model was combined with finite element modeling (FEM) to predict microstructure development during forging of Waspaloy. Model predictions showed good agreement with microstructures obtained in actual isothermal and hammer forgings carried out at a forging shop.

  4. Modeling microstructural development during the forging of Waspaloy

    SciTech Connect

    Shen, G.; Shivpuri, R.; Semiatin, S.L.

    1995-07-01

    A model for predicting the evolution of microstructure in Waspaloy during thermomechanical processing was developed in terms of dynamic recrystallization (DRX), metadynamic recrystallization, and grain growth phenomena. Three sets of experiments were conducted to develop the model: (1) preheating tests to model grain growth prior to hot deformation; (2) compression tests in a Gleeble testing machine with different deformation and cooling conditions to model DRX, metadynamic recrystallization, and short time grain growth during the post deformation dwell period and cooling; and (3) pancake and closed die forging tests conducted in a manufacturing environment to verify and refine the model. The microstructural model was combined with finite element modeling (FEM) to predict microstructure development during forging of Waspaloy. Model predictions showed good agreement with microstructures obtained in actual isothermal and hammer forgings carried out at a forging shop.

  5. Accident Sequence Precursor Program Large Early Release Frequency Model Development

    SciTech Connect

    Brown, T.D.; Brownson, D.A.; Duran, F.A.; Gregory, J.J.; Rodrick, E.G.

    1999-01-04

    The objectives for the ASP large early release frequency (LERF) model development work is to build a Level 2 containment response model that would capture all of the events necessary to define LERF as outlined in Regulatory Guide 1.174, can be directly interfaced with the existing Level 1 models, is technically correct, can be readily modified to incorporate new information or to represent another plant, and can be executed in SAPHIRE. The ASP LERF models being developed will meet these objectives while providing the NRC with the capability to independently assess the risk impact of plant-specific changes proposed by the utilities that change the nuclear power plants' licensing basis. Together with the ASP Level 1 models, the ASP LERF models provide the NRC with the capability of performing equipment and event assessments to determine their impact on a plant's LERF for internal events during power operation. In addition, the ASP LERF models are capable of being updated to reflect changes in information regarding the system operations and phenomenological events, and of being updated to assess the potential for early fatalities for each LERF sequence. As the ASP Level 1 models evolve to include more analysis capabilities, the LERF models will also be refined to reflect the appropriate level of detail needed to demonstrate the new capabilities. An approach was formulated for the development of detailed LERF models using the NUREG-1150 APET models as a guide. The modifications to the SAPHIRE computer code have allowed the development of these detailed models and the ability to analyze these models in a reasonable time. Ten reference LERF plant models, including six PWR models and four BWR models, which cover a wide variety of containment and nuclear steam supply systems designs, will be complete in 1999. These reference models will be used as the starting point for developing the LERF models for the remaining nuclear power plants.

  6. Modeling Breast Tumor Development with a Humanized Mouse Model.

    PubMed

    Arendt, Lisa M

    2016-01-01

    The tumor microenvironment plays a critical role in breast cancer growth and progression to metastasis. Here, we describe a method to examine stromal-epithelial interactions during tumor formation and progression utilizing human-derived mammary epithelial cells and breast stromal cells. This method outlines the isolation of each cell type from reduction mammoplasty tissue, the culture and genetic modification of both epithelial and stromal cells using lentiviral technology, and the method of humanizing and implantation of transformed epithelial cells into the cleared mammary fat pads of immunocompromised mice. This model system may be a useful tool to dissect signaling interactions that contribute to invasive tumor behavior and therapeutic resistance. PMID:27581027

  7. An Instrument Development Model for Online Surveys in Human Resource Development and Adult Education

    ERIC Educational Resources Information Center

    Strachota, Elaine M.; Conceicao, Simone C. O.; Schmidt, Steven W.

    2006-01-01

    This article describes the use of a schematic model for developing and distributing online surveys. Two empirical studies that developed and implemented online surveys to collect data to measure satisfaction in various aspects of human resource development and adult education exemplify the use of the model to conduct online survey research. The…

  8. A Model-Driven Development Method for Management Information Systems

    NASA Astrophysics Data System (ADS)

    Mizuno, Tomoki; Matsumoto, Keinosuke; Mori, Naoki

    Traditionally, a Management Information System (MIS) has been developed without using formal methods. By the informal methods, the MIS is developed on its lifecycle without having any models. It causes many problems such as lack of the reliability of system design specifications. In order to overcome these problems, a model theory approach was proposed. The approach is based on an idea that a system can be modeled by automata and set theory. However, it is very difficult to generate automata of the system to be developed right from the start. On the other hand, there is a model-driven development method that can flexibly correspond to changes of business logics or implementing technologies. In the model-driven development, a system is modeled using a modeling language such as UML. This paper proposes a new development method for management information systems applying the model-driven development method to a component of the model theory approach. The experiment has shown that a reduced amount of efforts is more than 30% of all the efforts.

  9. Development, Selection, and Validation of Tumor Growth Models

    NASA Astrophysics Data System (ADS)

    Shahmoradi, Amir; Lima, Ernesto; Oden, J. Tinsley

    In recent years, a multitude of different mathematical approaches have been taken to develop multiscale models of solid tumor growth. Prime successful examples include the lattice-based, agent-based (off-lattice), and phase-field approaches, or a hybrid of these models applied to multiple scales of tumor, from subcellular to tissue level. Of overriding importance is the predictive power of these models, particularly in the presence of uncertainties. This presentation describes our attempt at developing lattice-based, agent-based and phase-field models of tumor growth and assessing their predictive power through new adaptive algorithms for model selection and model validation embodied in the Occam Plausibility Algorithm (OPAL), that brings together model calibration, determination of sensitivities of outputs to parameter variances, and calculation of model plausibilities for model selection. Institute for Computational Engineering and Sciences.

  10. Supporting an Externally Developed Model of Education in Greenland

    ERIC Educational Resources Information Center

    Wyatt, Tasha R.

    2010-01-01

    This study investigated the adaptation process of an externally developed model of reform in Greenland's educational system. Under investigation was how reform leaders responded to the needs of the community after implementing an educational model developed in the United States by researchers at the Center for Research on Education, Diversity, and…

  11. Applying the S.O.I. Model to Curriculum Development.

    ERIC Educational Resources Information Center

    Brown, Marilyn A.

    The article discusses the use of the Structure of Intellect (SOI) model as a basis for developing thinking abilities in a variety of curriculum areas: (1) the integration of subject matter areas and SOI operations; (2) thematic lessons that sequence specific cells of the SOI model; (3) directed teaching lessons to develop student awareness of…

  12. A Model for the Development of University Curricula in Nanoelectronics

    ERIC Educational Resources Information Center

    Bruun, E.; Nielsen, I.

    2010-01-01

    Nanotechnology is having an increasing impact on university curricula in electrical engineering and in physics. Major influencers affecting developments in university programmes related to nanoelectronics are discussed and a model for university programme development is described. The model takes into account that nanotechnology affects not only…

  13. School Nurse Summer Institute: A Model for Professional Development

    ERIC Educational Resources Information Center

    Neighbors, Marianne; Barta, Kathleen

    2004-01-01

    The components of a professional development model designed to empower school nurses to become leaders in school health services is described. The model was implemented during a 3-day professional development institute that included clinical and leadership components, especially coalition building, with two follow-up sessions in the fall and…

  14. Knowledge Management Model: Practical Application for Competency Development

    ERIC Educational Resources Information Center

    Lustri, Denise; Miura, Irene; Takahashi, Sergio

    2007-01-01

    Purpose: This paper seeks to present a knowledge management (KM) conceptual model for competency development and a case study in a law service firm, which implemented the KM model in a competencies development program. Design/methodology/approach: The case study method was applied according to Yin (2003) concepts, focusing a six-professional group…

  15. Mechanistic considerations in benzene physiological model development

    SciTech Connect

    Medinsky, M.A.; Kenyon, E.M.; Seaton, M.J.; Schlosser, P.M.

    1996-12-01

    Benzene, an important industrial solvent, is also present in unleaded gasoline and cigarette smoke. The hematotoxic effects of benzene in humans are well documented and include aplastic anemia, pancytopenia, and acute myelogenous leukemia. However, the risks of leukemia at low exposure concentrations have not been established. A combination of metabolites (hydroquinone and phenol, for example) may be necessary to duplicate the hematotoxic effect of benzene, perhaps due in part to the synergistic effect of phenol on myeloperoxidase-mediated oxidation of hydroquinone to the reactive metabolite benzoquinone. Because benzene and its hydroxylated metabolites (phenol, hydroquinone, and catechol) are substrates for the same cytochrome P450 enzymes, competitive interactions among the metabolites are possible. In vivo data on metabolite formation by mice exposed to various benzene concentrations are consistent with competitive inhibition of phenol oxidation by benzene. In vitro studies of the metabolic oxidation of benzene, phenol, and hydroquinone are consistent with the mechanism of competitive interaction among the metabolites. The dosimetry of benzene and its metabolites in the target tissue, bone marrow, depends on the balance of activation processes such as enzymatic oxidation and deactivation processes such as conjugation and excretion. Phenol, the primary benzene metabolite, can undergo both oxidation and conjugation. Thus the potential exists for competition among various enzymes for phenol. Zonal localization of phase I and phase 11 enzymes in various regions of the liver acinus also impacts this competition. Biologically based dosimetry models that incorporate the important determinants of benzene flux, including interactions with other chemicals, will enable prediction of target tissue doses of benzene and metabolites at low exposure concentrations relevant for humans. 39 refs., 4 figs., 2 tabs.

  16. Mechanistic considerations in benzene physiological model development.

    PubMed Central

    Medinsky, M A; Kenyon, E M; Seaton, M J; Schlosser, P M

    1996-01-01

    Benzene, an important industrial solvent, is also present in unleaded gasoline and cigarette smoke. The hematotoxic effects of benzene in humans are well documented and include aplastic anemia, pancytopenia, and acute myelogenous leukemia. However, the risks of leukemia at low exposure concentrations have not been established. A combination of metabolites (hydroquinone and phenol, for example) may be necessary to duplicate the hematotoxic effect of benzene, perhaps due in part to the synergistic effect of phenol on myeloperoxidase-mediated oxidation of hydroquinone to the reactive metabolite benzoquinone. Because benzene and its hydroxylated metabolites (phenol, hydroquinone, and catechol) are substrates for the same cytochrome P450 enzymes, competitive interactions among the metabolites are possible. In vivo data on metabolite formation by mice exposed to various benzene concentrations are consistent with competitive inhibition of phenol oxidation by benzene. In vitro studies of the metabolic oxidation of benzene, phenol, and hydroquinone are consistent with the mechanism of competitive interaction among the metabolites. The dosimetry of benzene and its metabolites in the target tissue, bone marrow, depends on the balance of activation processes such as enzymatic oxidation and deactivation processes such as conjugation and excretion. Phenol, the primary benzene metabolite, can undergo both oxidation and conjugation. Thus the potential exists for competition among various enzymes for phenol. Zonal localization of phase I and phase II enzymes in various regions of the liver acinus also impacts this competition. Biologically based dosimetry models that incorporate the important determinants of benzene flux, including interactions with other chemicals, will enable prediction of target tissue doses of benzene and metabolites at low exposure concentrations relevant for humans. PMID:9118926

  17. DEVELOPMENT OF AN IMPROVED URBAN AIRSHED MODELING SYSTEM

    EPA Science Inventory

    A research and development effort to improve certain physical processes simulated in the Urban Airshed Model (UAM) processor and model programs, and to update the computer software is described. he UAM is an Eulerian photochemical grid model designed to simulate the relevant phys...

  18. NEW DEVELOPMENTS IN THE COMMUNITY MULTISCALE AIR QUALITY (CMAQ) MODEL

    EPA Science Inventory

    CMAQ model research and development is currently following two tracks at the Atmospheric Modeling Division of the USEPA. Public releases of the community model system for research and policy analysis is continuing on an annual interval with the latest release scheduled for Augus...

  19. Mental Models and Transformative Learning: The Key to Leadership Development?

    ERIC Educational Resources Information Center

    Johnson, Homer H.

    2008-01-01

    What separates successful leaders from unsuccessful ones is their mental models or meaning structures, not their knowledge, information, training, or experience per se. Thus the development of leaders should focus on acquisition of new mental models, models that offer more valid and useful ways for effectively dealing with the complex challenges…

  20. Developing Models of Communicative Competence: Conceptual, Statistical, and Methodological Considerations.

    ERIC Educational Resources Information Center

    Cziko, Gary A.

    The development of an empirically based model of communicative competence is discussed in terms of conceptual, statistical, and methodological considerations. A distinction is made between descriptive and working models of communicative competence. Working models attempt to show how components of communicative competence are interrelated…

  1. The Development of a Secondary School Health Assessment Model

    ERIC Educational Resources Information Center

    Sriring, Srinual; Erawan, Prawit; Sriwarom, Monoon

    2015-01-01

    The objective of this research was to: 1) involved a survey of information relating to secondary school health, 2) involved the construction of a model of health assessment and a handbook for using the model in secondary school, 3) develop an assessment model for secondary school. The research included 3 phases. (1) involved a survey of…

  2. A Dynamic Systems Theory Model of Visual Perception Development

    ERIC Educational Resources Information Center

    Coté, Carol A.

    2015-01-01

    This article presents a model for understanding the development of visual perception from a dynamic systems theory perspective. It contrasts to a hierarchical or reductionist model that is often found in the occupational therapy literature. In this proposed model vision and ocular motor abilities are not foundational to perception, they are seen…

  3. Modeling Instruction: The Impact of Professional Development on Instructional Practices

    ERIC Educational Resources Information Center

    Barlow, Angela T.; Frick, Tasha M.; Barker, Heather L.; Phelps, Amy J.

    2014-01-01

    Modeling Instruction holds the potential for transforming science instruction and improving student achievement. Key to the success of Modeling Instruction, however, is the fidelity of implementation of its curriculum. This qualitative study examined the impact of Modeling Instruction professional development on participating teachers'…

  4. Development of a Model for Whole Brain Learning of Physiology

    ERIC Educational Resources Information Center

    Eagleton, Saramarie; Muller, Anton

    2011-01-01

    In this report, a model was developed for whole brain learning based on Curry's onion model. Curry described the effect of personality traits as the inner layer of learning, information-processing styles as the middle layer of learning, and environmental and instructional preferences as the outer layer of learning. The model that was developed…

  5. Development of Bilingual/Bicultural Education Models. Final Report.

    ERIC Educational Resources Information Center

    Baratz, Joan C.; And Others

    This report discusses the development of bilingual/bicultural education models. Included is information concerning the goals of bilingual education, six models of program realization, and problems and possibilities in implementing the models. Also included are footnotes and a bibliography. The appendixes present various articles: "A Brief Survey…

  6. Design and Development of a Microscopic Model for Polarization

    ERIC Educational Resources Information Center

    Petridou, E.; Psillos, D.; Hatzikraniotis, E.; Viiri, J.

    2009-01-01

    As research shows that the knowledge and use of models and modelling by teachers is limited, particularly for predicting phenomena, we developed and applied a sequence of three representations of a simulated model focusing on polarization and specifically showing the behaviour of an atom, and forces exerted on a dipole and an insulator, when a…

  7. Simulation Model Development for Icing Effects Flight Training

    NASA Technical Reports Server (NTRS)

    Barnhart, Billy P.; Dickes, Edward G.; Gingras, David R.; Ratvasky, Thomas P.

    2003-01-01

    A high-fidelity simulation model for icing effects flight training was developed from wind tunnel data for the DeHavilland DHC-6 Twin Otter aircraft. First, a flight model of the un-iced airplane was developed and then modifications were generated to model the icing conditions. The models were validated against data records from the NASA Twin Otter Icing Research flight test program with only minimal refinements being required. The goals of this program were to demonstrate the effectiveness of such a simulator for training pilots to recognize and recover from icing situations and to establish a process for modeling icing effects to be used for future training devices.

  8. Internal migration in contemporary Nepal: models which internalize development policies.

    PubMed

    Thapa, P; Conway, D

    1983-01-01

    "A set of models is developed to assess at the interdistrict level the relative importance of economic, demographic, social and government policy determinants of internal migration in Nepal. The first 'proximate' model and the second 'structural' model estimates are generated using ordinary least squares regression and specification error is investigated by spatial autocorrelation tests of the residuals of each model in its reduced form....Finally, to formalize and evaluate empirically the linkages between the 'proximate' and 'structural' determinants, a simultaneous equation model is developed using three stage generalized least squares regression." PMID:12267240

  9. Development of the NASA Digital Astronaut Project Muscle Model

    NASA Technical Reports Server (NTRS)

    Lewandowski, Beth E.; Pennline, James A.; Thompson, W. K.; Humphreys, B. T.; Ryder, J. W.; Ploutz-Snyder, L. L.; Mulugeta, L.

    2015-01-01

    This abstract describes development work performed on the NASA Digital Astronaut Project Muscle Model. Muscle atrophy is a known physiological response to exposure to a low gravity environment. The DAP muscle model computationally predicts the change in muscle structure and function vs. time in a reduced gravity environment. The spaceflight muscle model can then be used in biomechanical models of exercise countermeasures and spaceflight tasks to: 1) develop site specific bone loading input to the DAP bone adaptation model over the course of a mission; 2) predict astronaut performance of spaceflight tasks; 3) inform effectiveness of new exercise countermeasures concepts.

  10. In situ vitrification model development and implementation plan

    SciTech Connect

    MacKinnon, R.J.; Murray, P.E.; Johnson, R.W.; Hagrman, D.L.; Slater, C.E.; Marwil, E.S.

    1990-08-01

    This document describes the In Situ Vitrification (ISV) Analysis Package being developed at the INEL to provide analytical support for (ISV) safety analysis and treatment performance predictions. Mathematical models and features which comprise this analysis package are presented and the proposed approach to model development and implementation is outlined. The objective of this document is two fold: to define preliminary design information and modeling objectives so that ISV modeling personnel can effectively modify existing models and formulate new models which are consistent with the objectives of the ISV treatability study and to provide sufficient technical information for internal and external reviewers to detect any shortcomings in model development and implementation plans. 27 refs., 17 figs., 3 tabs.

  11. Reusable Component Model Development Approach for Parallel and Distributed Simulation

    PubMed Central

    Zhu, Feng; Yao, Yiping; Chen, Huilong; Yao, Feng

    2014-01-01

    Model reuse is a key issue to be resolved in parallel and distributed simulation at present. However, component models built by different domain experts usually have diversiform interfaces, couple tightly, and bind with simulation platforms closely. As a result, they are difficult to be reused across different simulation platforms and applications. To address the problem, this paper first proposed a reusable component model framework. Based on this framework, then our reusable model development approach is elaborated, which contains two phases: (1) domain experts create simulation computational modules observing three principles to achieve their independence; (2) model developer encapsulates these simulation computational modules with six standard service interfaces to improve their reusability. The case study of a radar model indicates that the model developed using our approach has good reusability and it is easy to be used in different simulation platforms and applications. PMID:24729751

  12. Development of distribution system reliability and risk analysis models

    NASA Astrophysics Data System (ADS)

    Northcote-Green, J. E. D.; Vismor, T. D.; Brooks, C. L.

    1981-08-01

    The overall objectives of a research project were to: determine distribution reliability assessment methods currently used by the industry; develop a general outage reporting scheme suitable for a wide variety of distributing utilities (reliability model); develop a model for predicting the reliability of future system configurations (risk model); and compile a handbook of reliability assessment methods designed specifically for use by the practicing distribution engineer. Emphasis was placed on compiling and organizing reliability assessment techniques presently used by the industry. The project examined reliability evaluation from two perspectives: historical and predictive assessment. Two reliability assessment models, HISRAM - the historical reliability assessment model and PRAM - the predictive reliability assessment model were developed. Each model was tested in a utility environment by the Duquesne Light Company and the Public Service Electric and Gas Company of New Jersey. A survey of 56 diverse utilities served as a basis for examining current distribution reliability assessment practices in the electric power industry.

  13. Development and evaluation of thermal model reduction algorithms for spacecraft

    NASA Astrophysics Data System (ADS)

    Deiml, Michael; Suderland, Martin; Reiss, Philipp; Czupalla, Markus

    2015-05-01

    This paper is concerned with the topic of the reduction of thermal models of spacecraft. The work presented here has been conducted in cooperation with the company OHB AG, formerly Kayser-Threde GmbH, and the Institute of Astronautics at Technische Universität München with the goal to shorten and automatize the time-consuming and manual process of thermal model reduction. The reduction of thermal models can be divided into the simplification of the geometry model for calculation of external heat flows and radiative couplings and into the reduction of the underlying mathematical model. For simplification a method has been developed which approximates the reduced geometry model with the help of an optimization algorithm. Different linear and nonlinear model reduction techniques have been evaluated for their applicability in reduction of the mathematical model. Thereby the compatibility with the thermal analysis tool ESATAN-TMS is of major concern, which restricts the useful application of these methods. Additional model reduction methods have been developed, which account to these constraints. The Matrix Reduction method allows the approximation of the differential equation to reference values exactly expect for numerical errors. The summation method enables a useful, applicable reduction of thermal models that can be used in industry. In this work a framework for model reduction of thermal models has been created, which can be used together with a newly developed graphical user interface for the reduction of thermal models in industry.

  14. Modeling of clouds and radiation for developing parameterizations of clouds in general circulation models

    SciTech Connect

    Toon, O.B.

    1996-12-31

    We conducted modeling work in radiative transfer and cloud microphysics. Our work in radiative transfer included performance tests to other high accuracy methods and to measurements under cloudy, partial cloudy and cloud-free conditions. Our modeling efforts have been aimed to (1) develop an accurate and rapid radiative transfer model; (2) develop three-dimensional radiative transfer models; and (3) develop microphysics resolving cloud and aerosol models. We applied our models to investigate solar clear-sky model biases, investigate aerosol direct effects, investigate aerosol indirect effects, investigate microphysical properties of cirrus, investigate microphysical properties of stratus, investigate relationships between cloud properties, and investigate the effects of cloud structure.

  15. Investigating the Relationship between Students' Views of Scientific Models and Their Development of Models

    ERIC Educational Resources Information Center

    Cheng, Meng-Fei; Lin, Jang-Long

    2015-01-01

    Understanding the nature of models and engaging in modeling practice have been emphasized in science education. However, few studies discuss the relationships between students' views of scientific models and their ability to develop those models. Hence, this study explores the relationship between students' views of scientific models and their…

  16. Thermal Model Development for Ares I-X

    NASA Technical Reports Server (NTRS)

    Amundsen, Ruth M.; DelCorso, Joe

    2008-01-01

    Thermal analysis for the Ares I-X vehicle has involved extensive thermal model integration, since thermal models of vehicle elements came from several different NASA and industry organizations. Many valuable lessons were learned in terms of model integration and validation. Modeling practices such as submodel, analysis group and symbol naming were standardized to facilitate the later model integration. Upfront coordination of coordinate systems, timelines, units, symbols and case scenarios was very helpful in minimizing integration rework. A process for model integration was developed that included pre-integration runs and basic checks of both models, and a step-by-step process to efficiently integrate one model into another. Extensive use of model logic was used to create scenarios and timelines for avionics and air flow activation. Efficient methods of model restart between case scenarios were developed. Standardization of software version and even compiler version between organizations was found to be essential. An automated method for applying aeroheating to the full integrated vehicle model, including submodels developed by other organizations, was developed.

  17. The Development Model Electronic Commerce of Regional Agriculture

    NASA Astrophysics Data System (ADS)

    Kang, Jun; Cai, Lecai; Li, Hongchan

    With the developing of the agricultural information, it is inevitable trend of the development of agricultural electronic commercial affairs. On the basis of existing study on the development application model of e-commerce, combined with the character of the agricultural information, compared with the developing model from the theory and reality, a new development model electronic commerce of regional agriculture base on the government is put up, and such key issues as problems of the security applications, payment mode, sharing mechanisms, and legal protection are analyzed, etc. The among coordination mechanism of the region is discussed on, it is significance for regulating the development of agricultural e-commerce and promoting the regional economical development.

  18. Moral Education: Development of a Model. Final Report.

    ERIC Educational Resources Information Center

    Educational Testing Service, Princeton, NJ.

    The aim of this inquiry was to evaluate the existing literature on moral evaluation and development, to develop a model to clarify the concepts of moral judgement, development and commitment, and to specify their sources, structures, and interrelations. The purpose was to try to resolve whether these concepts are best understood from an…

  19. SCID: A Competency-Based Curriculum Development Model.

    ERIC Educational Resources Information Center

    Norton, Robert E.

    To provide structure for developing curriculum for Competency Based Education (CBE), an effective and efficient model, Systematic Curriculum and Instructional Development (SCID), has been devised. SCID has five phases: analysis, design, development, implementation, and evaluation. Each of 23 components involves several steps, some optional. Phase…

  20. Models of latent tuberculosis: their salient features, limitations, and development.

    PubMed

    Patel, Kamlesh; Jhamb, Sarbjit Singh; Singh, Prati Pal

    2011-07-01

    Latent tuberculosis is a subclinical condition caused by Mycobacterium tuberculosis, which affects about one-third of the population across the world. To abridge the chemotherapy of tuberculosis, it is necessary to have active drugs against latent form of M. tuberculosis. Therefore, it is imperative to devise in vitro and models of latent tuberculosis to explore potential drugs. In vitro models such as hypoxia, nutrient starvation, and multiple stresses are based on adverse conditions encountered by bacilli in granuloma. Bacilli experience oxygen depletion condition in hypoxia model, whereas the nutrient starvation model is based on deprivation of total nutrients from a culture medium. In the multiple stress model dormancy is induced by more than one type of stress. In silico mathematical models have also been developed to predict the interactions of bacilli with the host immune system and to propose structures for potential anti tuberculosis compounds. Besides these in vitro and in silico models, there are a number of in vivo animal models like mouse, guinea pig, rabbit, etc. Although they simulate human latent tuberculosis up to a certain extent but do not truly replicate human infection. All these models have their inherent merits and demerits. However, there is no perfect model for latent tuberculosis. Therefore, it is imperative to upgrade and refine existing models or develop a new model. However, battery of models will always be a better alternative to any single model as they will complement each other by overcoming their limitations. PMID:22219558

  1. Accuracy and performance of LACIE crop development models

    NASA Technical Reports Server (NTRS)

    Woolley, S. K.; Whitehead, V. S.; Stuff, R. G.; Crea, W. E. (Principal Investigator)

    1979-01-01

    Of the three principal phenological crop calendar models evaluated for LACIE, Robertson's triquadratic model which predicts the rate of progression of wheat through its biological development, was selected. Daily maximum and minimum temperatures and day length are the input variables, and the principal output is a daily increment of development through six physiological growth stages. Because wheat corresponds differently to the environment during each growth stage, five different equations are required. The estimated and observed crop development data were compared in order to establish a measure of confidence in the model and to identify consistent discrepancies that would adversely affect LACIE operation. Although the model provided reliable estimates for various wheat growing regions of the world, it was found that there are still areas in need of further model improvement or development.

  2. Developing a Causal Model from Liver Function Test Data

    NASA Astrophysics Data System (ADS)

    Inada, Masanori; Terano, Takao

    As Active Mining is a new concept among data mining and/or knowledge discovery in databases communities, in order to validate the effectiveness, it is important to carry out empirical studies using practical data. Based on the concept of Active User Reaction, this paper develops a causal model from liver function test data in a medical domain. To develop the model, we have set a problem to predict the values of ICG (indocyanine green) test from given observation data and experts' background knowledge. We therefore employ a framework of meta-learning and structural equation modeling. In this paper meta-learning means learning about mined results from multiple data-mining techniques. Structural equation modeling enables us to describe flexible models from background knowledge. The construction of the causal model contains two phases: meta-learning and the model building. The meta-learning phase utilizes both the linear regression and the neural network as data mining techniques, then examines the predictability on the given data set. Mining models are n-folded learned from the training data set. Each of the prediction accuracy of the mining models is compared using with the testing data. On the model building phase, we use structural equation modeling to develop a causal model based on results of meta-learning and background knowledge. We again compare the accuracy of the causal model with each of the mining models. Consequently we have developed the causal model, which is comprehensible and have good predictive performance, via the meta-learning phase. Through the empirical study, we have got the conclusion that the framework of meta-learning is effective in data mining in a difficult medical domain.

  3. Distributed models for operational river forecasting: research, development, and implementation

    NASA Astrophysics Data System (ADS)

    Smith, M.

    2003-04-01

    The National Weather Service (NWS) is uniquely mandated amongst federal agencies to provide river forecasts for the United States. To accomplish this mission, the NWS uses the NWS River Forecast System (NWSRFS). The NWSRFS is a collection of hydrologic, hydraulic, data collection, and forecast display algorithms employed at 13 River Forecast Centers (RFCs) throughout the US. Within the NWS, the Hydrology Lab (HL) of the Office of Hydrologic Development conducts research and development to improve the NWS models and products. Areas of current research include, snow, frozen ground, dynamic channel routing, radar and satellite precipitation estimation, uncertainty, and new approaches to rainfall runoff modeling. A prominent area of research lately has been the utility of distributed models to improve the accuracy of NWS forecasts and to provide meaningful hydrologic simulations at ungaged interior nodes. Current river forecast procedures center on lumped applications of the conceptual Sacramento Soil Moisture Accounting (SAC-SMA) model to transform rainfall to runoff. Unit hydrographs are used to convert runoff to discharge hydrographs at gaged locations. Hydrologic and hydraulic routing methods are used to route hydrographs to downstream computational points. Precipitation inputs to the models have been traditionally defined from rain gage observations. With the nationwide implementation of the Next Generation Radar platforms (NEXRAD), the NWS has precipitation estimates of unprecedented spatial and temporal resolution. In order to most effectively use these high resolution data, recent research has been devoted towards the development of distributed hydrologic models to improve the accuracy of NWS forecasts. The development of distributed models in HL is following specific scientific research and implementation strategies, each consisting of several elements. In its science strategy, HL has conducted a highly successful comparison of distributed models (Distributed

  4. A Product Development Decision Model for Cockpit Weather Information Systems

    NASA Technical Reports Server (NTRS)

    Sireli, Yesim; Kauffmann, Paul; Gupta, Surabhi; Kachroo, Pushkin

    2003-01-01

    There is a significant market demand for advanced cockpit weather information products. However, it is unclear how to identify the most promising technological options that provide the desired mix of consumer requirements by employing feasible technical systems at a price that achieves market success. This study develops a unique product development decision model that employs Quality Function Deployment (QFD) and Kano's model of consumer choice. This model is specifically designed for exploration and resolution of this and similar information technology related product development problems.

  5. A Product Development Decision Model for Cockpit Weather Information System

    NASA Technical Reports Server (NTRS)

    Sireli, Yesim; Kauffmann, Paul; Gupta, Surabhi; Kachroo, Pushkin; Johnson, Edward J., Jr. (Technical Monitor)

    2003-01-01

    There is a significant market demand for advanced cockpit weather information products. However, it is unclear how to identify the most promising technological options that provide the desired mix of consumer requirements by employing feasible technical systems at a price that achieves market success. This study develops a unique product development decision model that employs Quality Function Deployment (QFD) and Kano's model of consumer choice. This model is specifically designed for exploration and resolution of this and similar information technology related product development problems.

  6. The paradigm shift to an "open" model in drug development.

    PubMed

    Au, Regina

    2014-12-01

    The rising cost of healthcare, the rising cost for drug development, the patent cliff for Big pharma, shorter patent protection, decrease reimbursement, and the recession have made it more difficult for the pharmaceutical and biotechnology industry to develop drugs. Due to the unsustainable amount of time and money in developing a drug that will have a significant return on investment (ROI) it has become hard to sustain a robust pipeline. The industry is transforming its business model to meet these challenges. In essence a paradigm shift is occurring; the old "closed" model is giving way to a new "open" business model. PMID:27294020

  7. Hot Dry Rock Geothermal Reservoir Model Development at Los Alamos

    SciTech Connect

    Robinson, Bruce A.; Birdsell, Stephen A.

    1989-03-21

    Discrete fracture and continuum models are being developed to simulate Hot Dry Rock (HDR) geothermal reservoirs. The discrete fracture model is a two-dimensional steady state simulator of fluid flow and tracer transport in a fracture network which is generated from assumed statistical properties of the fractures. The model's strength lies in its ability to compute the steady state pressure drop and tracer response in a realistic network of interconnected fractures. The continuum approach models fracture behavior by treating permeability and porosity as functions of temperature and effective stress. With this model it is practical to model transient behavior as well as the coupled processes of fluid flow, heat transfer, and stress effects in a three-dimensional system. The model capabilities being developed will also have applications in conventional geothermal systems undergoing reinjection and in fractured geothermal reservoirs in general.

  8. Hot Dry Rock geothermal reservoir model development at Los Alamos

    SciTech Connect

    Robinson, B.A.; Birdsell, S.A.

    1989-01-01

    Discrete fracture and continuum models are being developed to simulate Hot Dry Rock (HDR) geothermal reservoirs. The discrete fracture model is a two-dimensional steady state simulator of fluid flow and tracer transport in a fracture network which is generated from assumed statistical properties of the fractures. The model's strength lies in its ability to compute the steady state pressure drop and tracer response in a realistic network of interconnected fractures. The continuum approach models fracture behavior by treating permeability and porosity as functions of temperature and effective stress. With this model it is practical to model transient behavior as well as the coupled processes of fluid flow, heat transfer, and stress effects in a three-dimensional system. The model capabilities being developed will also have applications in conventional geothermal systems undergoing reinjection and in fractured geothermal reservoirs in general. 15 refs., 7 figs.

  9. Development of a numerical simulation model of the cardiovascular system.

    PubMed

    Geertsema, A A; Rakhorst, G; Mihaylov, D; Blanksma, P K; Verkerke, G J

    1997-12-01

    A numerical simulation model of the cardiovascular system has been developed. It consists of a model of the left atrium, the left ventricle, the coronary vascular system, the aorta, the arterial system, and the venous system. The input of the complete model is the elastance (pressure/volume ratio) developed by the left ventricle. The shape of this elastance is constant in different circumstances. Left ventricular (LV) myocardial oxygen consumption and the amount of oxygen offered to the left ventricle can be calculated with the model. The model has been validated using data from a patient suffering from coronary artery disease. The measured clinical hemodynamical waveforms could be fitted to those generated by the model. With the numerical simulation model, it is possible to predict the functioning of the left ventricle under different circumstances. This makes it possible to study in vitro various pathological clinical situations. PMID:9423983

  10. Developing EPQ models for non-instantaneous deteriorating items

    NASA Astrophysics Data System (ADS)

    Ghasemi, Naser

    2015-04-01

    In this paper, the classical economic production quantity (EPQ) model is developed for non-instantaneous deteriorating items by considering a relationship between the holding cost and the ordering cycle length. Two models are developed. First, the proposed model is considered when backorders are not permitted and this condition is waived for the second case. The cost functions associated with these models are proved to be convex and an algorithm is designed to find the optimum solutions of the proposed model. Results show that the relationship between holding cost and ordering cycle length has a significant impact on the optimal lot size and total cost in the EPQ model. Numerical examples are presented to demonstrate the utility of the models.

  11. Development and testing of a mouse simulated space flight model

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald

    1987-01-01

    The development and testing of a mouse model for simulating some aspects of weightlessness that occurs during space flight, and the carrying out of immunological experiments on animals undergoing space flight is examined. The mouse model developed was an antiorthostatic, hypokinetic, hypodynamic suspension model similar to one used with rats. The study was divided into two parts. The first involved determination of which immunological parameters should be observed on animals flown during space flight or studied in the suspension model. The second involved suspending mice and determining which of those immunological parameters were altered by the suspension. Rats that were actually flown in Space Shuttle SL-3 were used to test the hypotheses.

  12. Evolutionary Development of the Simulation by Logical Modeling System (SIBYL)

    NASA Technical Reports Server (NTRS)

    Wu, Helen

    1995-01-01

    Through the evolutionary development of the Simulation by Logical Modeling System (SIBYL) we have re-engineered the expensive and complex IBM mainframe based Long-term Hardware Projection Model (LHPM) to a robust cost-effective computer based mode that is easy to use. We achieved significant cost reductions and improved productivity in preparing long-term forecasts of Space Shuttle Main Engine (SSME) hardware. The LHPM for the SSME is a stochastic simulation model that projects the hardware requirements over 10 years. SIBYL is now the primary modeling tool for developing SSME logistics proposals and Program Operating Plan (POP) for NASA and divisional marketing studies.

  13. Investigating the Relationship between Students' Views of Scientific Models and Their Development of Models

    NASA Astrophysics Data System (ADS)

    Cheng, Meng-Fei; Lin, Jang-Long

    2015-10-01

    Understanding the nature of models and engaging in modeling practice have been emphasized in science education. However, few studies discuss the relationships between students' views of scientific models and their ability to develop those models. Hence, this study explores the relationship between students' views of scientific models and their self-generated models, and also whether views of models and modeling practice may be influenced by other factors, such as science learning performance and interest. The participants were 402 ninth-grade students in Taiwan. Data were collected using the Students' Understanding of Models in Science (SUMS) survey and students' self-evaluations of their own science learning interests and performance on a Likert-scale. The students' self-developed models explaining why three different magnetic phenomena occur were also evaluated on a schema of five levels, from lower (observational and fragmented models) to higher (microscopic and coherent models).The results reveal that most students' models remained only at the level of description of observable magnetic phenomena. A small number of the students were able to visualize unseen mechanisms, but these models were fragmented. However, several students with better science learning performance were able to develop coherent microscopic models to explain the three magnetic phenomena. The analyses indicated that most sub-factors of the SUMS survey were positively correlated with students' self-developed models, science learning performance and science learning interest. This study provides implications for teaching the nature of models and modeling practice.

  14. Scripting MODFLOW model development using Python and FloPy

    USGS Publications Warehouse

    Bakker, Mark; Post, Vincent E. A.; Langevin, Christian D.; Hughes, Joseph D.; White, Jeremy; Starn, Jeffrey; Fienen, Michael N.

    2016-01-01

    Graphical user interfaces (GUIs) are commonly used to construct and postprocess numerical groundwater flow and transport models. Scripting model development with the programming language Python is presented here as an alternative approach. One advantage of Python is that there are many packages available to facilitate the model development process, including packages for plotting, array manipulation, optimization, and data analysis. For MODFLOW-based models, the FloPy package was developed by the authors to construct model input files, run the model, and read and plot simulation results. Use of Python with the available scientific packages and FloPy facilitates data exploration, alternative model evaluations, and model analyses that can be difficult to perform with GUIs. Furthermore, Python scripts are a complete, transparent, and repeatable record of the modeling process. The approach is introduced with a simple FloPy example to create and postprocess a MODFLOW model. A more complicated capture-fraction analysis with a real-world model is presented to demonstrate the types of analyses that can be performed using Python and FloPy.

  15. Modeling Teacher Professional Development Through a Telescope Making Workshop

    NASA Astrophysics Data System (ADS)

    Meredith, J. T.; Schleigh, S. P.; Lee, T. D.

    2010-08-01

    The International Year of Astronomy (IYA2009) provides a springboard to develop innovative enduring educational programming directed toward astronomy education. We examine current professional development models focusing on astronomy and discuss the need for improvement. We propose a professional development design that follows the medical field philosophy using a low cost telescope making workshop as a vehicle to test and modify the model. The workshop promotes teacher content knowledge, pedagogical content knowledge and develops skills and confidence in an inquiry, integrative lesson. This model can be shared with professional development leaders, coordinators and teachers in any topic or level of education. Professional development designs such as the proposed promote excitement and interest in astronomy and makes it possible for underserved and economically depressed regions to have opportunities to promote the values of scientific investigation, STEM education, and public awareness of astronomy.

  16. Development of a Linear Stirling Model with Varying Heat Inputs

    NASA Technical Reports Server (NTRS)

    Regan, Timothy F.; Lewandowski, Edward J.

    2007-01-01

    The linear model of the Stirling system developed by NASA Glenn Research Center (GRC) has been extended to include a user-specified heat input. Previously developed linear models were limited to the Stirling convertor and electrical load. They represented the thermodynamic cycle with pressure factors that remained constant. The numerical values of the pressure factors were generated by linearizing GRC s non-linear System Dynamic Model (SDM) of the convertor at a chosen operating point. The pressure factors were fixed for that operating point, thus, the model lost accuracy if a transition to a different operating point were simulated. Although the previous linear model was used in developing controllers that manipulated current, voltage, and piston position, it could not be used in the development of control algorithms that regulated hot-end temperature. This basic model was extended to include the thermal dynamics associated with a hot-end temperature that varies over time in response to external changes as well as to changes in the Stirling cycle. The linear model described herein includes not only dynamics of the piston, displacer, gas, and electrical circuit, but also the transient effects of the heater head thermal inertia. The linear version algebraically couples two separate linear dynamic models, one model of the Stirling convertor and one model of the thermal system, through the pressure factors. The thermal system model includes heat flow of heat transfer fluid, insulation loss, and temperature drops from the heat source to the Stirling convertor expansion space. The linear model was compared to a nonlinear model, and performance was very similar. The resulting linear model can be implemented in a variety of computing environments, and is suitable for analysis with classical and state space controls analysis techniques.

  17. The Impact of the Developmental Training Model on Staff Development in Air Force Child Development Programs

    ERIC Educational Resources Information Center

    Bird, Candace Maria Edmonds

    2010-01-01

    In an effort to standardize training delivery and to individualize staff development based on observation and reflective practice, the Air Force implemented the Developmental Training Model (DTM) in its Child Development Programs. The goal of the Developmental Training Model is to enhance high quality programs through improvements in the training…

  18. Development of Knowledge Management Model for Developing the Internal Quality Assurance in Educational Opportunity Expansion Schools

    ERIC Educational Resources Information Center

    Pradabpech, Pipat; Chantarasombat, Chalard; Sriampai, Anan

    2015-01-01

    This research for: 1) to study the current situation and problem in KM, 2) to develop the KM Model, and 3) to evaluate the finding usage of the KM Model for developing the Internal Quality Assurance of Educational Opportunity Expansion Schools. There were 3 Phases of research implementation. Phase 1: the current situation and problem in KM, was…

  19. Expanding the Professional Development School Model: Developing Collaborative Partnerships with School Counselors

    ERIC Educational Resources Information Center

    Foust, Gretchen E.; Goslee, Patricia A.

    2014-01-01

    The Professional Development School (PDS) model, a successful collaborative partnership model between university teacher education programs and P-12 schools, focuses on ''preparing future educators, providing current educators with ongoing professional development, encouraging joint school-university faculty investigation of…

  20. Plasma Modeling Enabled Technology Development Empowered by Fundamental Scattering Data

    NASA Astrophysics Data System (ADS)

    Kushner, Mark J.

    2016-05-01

    Technology development increasingly relies on modeling to speed the innovation cycle. This is particularly true for systems using low temperature plasmas (LTPs) and their role in enabling energy efficient processes with minimal environmental impact. In the innovation cycle, LTP modeling supports investigation of fundamental processes that seed the cycle, optimization of newly developed technologies, and prediction of performance of unbuilt systems for new applications. Although proof-of-principle modeling may be performed for idealized systems in simple gases, technology development must address physically complex systems that use complex gas mixtures that now may be multi-phase (e.g., in contact with liquids). The variety of fundamental electron and ion scattering, and radiation transport data (FSRD) required for this modeling increases as the innovation cycle progresses, while the accuracy required of that data depends on the intended outcome. In all cases, the fidelity, depth and impact of the modeling depends on the availability of FSRD. Modeling and technology development are, in fact, empowered by the availability and robustness of FSRD. In this talk, examples of the impact of and requirements for FSRD in the innovation cycle enabled by plasma modeling will be discussed using results from multidimensional and global models. Examples of fundamental studies and technology optimization will focus on microelectronics fabrication and on optically pumped lasers. Modeling of systems as yet unbuilt will address the interaction of atmospheric pressure plasmas with liquids. Work supported by DOE Office of Fusion Energy Science and the National Science Foundation.

  1. Multiscale Modeling in the Clinic: Drug Design and Development.

    PubMed

    Clancy, Colleen E; An, Gary; Cannon, William R; Liu, Yaling; May, Elebeoba E; Ortoleva, Peter; Popel, Aleksander S; Sluka, James P; Su, Jing; Vicini, Paolo; Zhou, Xiaobo; Eckmann, David M

    2016-09-01

    A wide range of length and time scales are relevant to pharmacology, especially in drug development, drug design and drug delivery. Therefore, multiscale computational modeling and simulation methods and paradigms that advance the linkage of phenomena occurring at these multiple scales have become increasingly important. Multiscale approaches present in silico opportunities to advance laboratory research to bedside clinical applications in pharmaceuticals research. This is achievable through the capability of modeling to reveal phenomena occurring across multiple spatial and temporal scales, which are not otherwise readily accessible to experimentation. The resultant models, when validated, are capable of making testable predictions to guide drug design and delivery. In this review we describe the goals, methods, and opportunities of multiscale modeling in drug design and development. We demonstrate the impact of multiple scales of modeling in this field. We indicate the common mathematical and computational techniques employed for multiscale modeling approaches used in pharmacometric and systems pharmacology models in drug development and present several examples illustrating the current state-of-the-art models for (1) excitable systems and applications in cardiac disease; (2) stem cell driven complex biosystems; (3) nanoparticle delivery, with applications to angiogenesis and cancer therapy; (4) host-pathogen interactions and their use in metabolic disorders, inflammation and sepsis; and (5) computer-aided design of nanomedical systems. We conclude with a focus on barriers to successful clinical translation of drug development, drug design and drug delivery multiscale models. PMID:26885640

  2. Development of a GIS Based Dust Dispersion Modeling System.

    SciTech Connect

    Rutz, Frederick C.; Hoopes, Bonnie L.; Crandall, Duard W.; Allwine, K Jerry

    2004-08-12

    With residential areas moving closer to military training sites, the effects upon the environment and neighboring civilians due to dust generated by training exercises has become a growing concern. Under a project supported by the Strategic Environmental Research and Development Program (SERDP) of the Department of Defense, a custom application named DUSTRAN is currently under development that integrates a system of EPA atmospheric dispersion models with the ArcGIS application environment in order to simulate the dust dispersion generated by a planned training maneuver. This integration between modeling system and GIS application allows for the use of real world geospatial data such as terrain, land-use, and domain size as input by the modeling system. Output generated by the modeling system, such as concentration and deposition plumes, can then be displayed upon accurate maps representing the training site. This paper discusses the development of this integration between modeling system and Arc GIS application.

  3. Agent Model Development for Assessing Climate-Induced Geopolitical Instability.

    SciTech Connect

    Boslough, Mark B.; Backus, George A.

    2005-12-01

    We present the initial stages of development of new agent-based computational methods to generate and test hypotheses about linkages between environmental change and international instability. This report summarizes the first year's effort of an originally proposed three-year Laboratory Directed Research and Development (LDRD) project. The preliminary work focused on a set of simple agent-based models and benefited from lessons learned in previous related projects and case studies of human response to climate change and environmental scarcity. Our approach was to define a qualitative model using extremely simple cellular agent models akin to Lovelock's Daisyworld and Schelling's segregation model. Such models do not require significant computing resources, and users can modify behavior rules to gain insights. One of the difficulties in agent-based modeling is finding the right balance between model simplicity and real-world representation. Our approach was to keep agent behaviors as simple as possible during the development stage (described herein) and to ground them with a realistic geospatial Earth system model in subsequent years. This work is directed toward incorporating projected climate data--including various C02 scenarios from the Intergovernmental Panel on Climate Change (IPCC) Third Assessment Report--and ultimately toward coupling a useful agent-based model to a general circulation model.3

  4. The Interaction of Courseware Development and Implementation: Functions and Models

    ERIC Educational Resources Information Center

    Mahler, William A.

    1976-01-01

    A discussion of how the interaction of design and content of curricular materials determine their possible applications. A review of functions and models is presented for interactive curriculum development for computer based instructional systems. (HB)

  5. An Integrative-Interactive Conceptual Model for Curriculum Development.

    ERIC Educational Resources Information Center

    Al-Ibrahim, Abdul Rahman H.

    1982-01-01

    The Integrative-Interactive Conceptual Model for Curriculum Development calls for curriculum reform and innovation to be cybernetic so that all aspects of curriculum planning get adequate attention. (CJ)

  6. Modeling energy-sector issues of developing and industrializing countries

    SciTech Connect

    Macal, C.M.; Cirillo, R.R.

    1983-01-01

    This paper identifies important energy-planning issues in industrializing and developing countries based on the Argonne experience in energy-planning studies for Egypt, Korea, Portugal, Argentina, and Jamaica. Modeling approaches are reviewed for applicability to these issues.

  7. CONCEPTUAL MODEL DEVELOPMENT AND INFORMATION MANAGEMENT FRAMEWORK FOR DIAGNOSTICS RESEARCH

    EPA Science Inventory

    Conceptual model development will focus on the effects of habitat alteration, nutrients,suspended and bedded sediments, and toxic chemicals on appropriate endpoints (individuals, populations, communities, ecosystems) across spatial scales (habitats, water body, watershed, region)...

  8. Project ProCEED: A Model for Developing Professional Excellence.

    ERIC Educational Resources Information Center

    Miller, Marilyn; Waddell, Michael G.

    1984-01-01

    Project ProCEED is a staff development model for promoting the type of professional excellence recommended in national educational reports. A six-month program designed and implemented by teachers and principals is examined. (DF)

  9. Development and evaluation of a dense gas plume model

    SciTech Connect

    Matthias, C.S.

    1994-12-31

    The dense gas plume model (continuous release) described in this paper has been developed using the same principles as for a dense gas puff model (instantaneous release). It is a box model for which the main goal is to predict the height H, width W, and maximum concentration C{sub b} for a steady dense plume. A secondary goal is to distribute the mass more realistically by empirically attaching Gaussian distributions in the horizontal and vertical directions. For ease of reference, the models and supporting programs will be referred to as DGM (Dense Gas Models).

  10. Flow Model Development for the Idaho National Laboratory OU 10-08 Sitewide Groundwater Model

    SciTech Connect

    Hai Huang; Swen Magnuson; Thomas Wood

    2005-09-01

    A two-dimensional (2D), steady-state groundwater flow model was developed for the Idaho National Laboratory (INL) sitewide groundwater model. A total of 224 wells inside the model domain were used to calibrate the 2D flow model. Three different calibration techniques, zonation approach, pilot point approach and coupled zonation/pilot point approach, were explored and applied during the model development. The pilot point approach allows modelers to model aquifer heterogeneities at various scales, and extract the maximum amount of data from available monitoring data, permitting the best possible representation of flow and transport at the INL.

  11. JEDI: Jobs and Economic Development Impacts Model Fact Sheet

    SciTech Connect

    S. Hendrickson; S.Tegen

    2009-12-01

    The Jobs and Economic Development Impact (JEDI) models are user-friendly tools that estimate the economic impacts of constructing and operating power generation and biofuel plants at the local(usually state) level. First developed by NREL's Wind Powering America program to model wind energy jobs and impacts, JEDI has been expanded to biofuels,concentrating solar power, coal, and natural gas power plants.

  12. GEOCHEMICAL TESTING AND MODEL DEVELOPMENT - RESIDUAL TANK WASTE TEST PLAN

    SciTech Connect

    CANTRELL KJ; CONNELLY MP

    2010-03-09

    This Test Plan describes the testing and chemical analyses release rate studies on tank residual samples collected following the retrieval of waste from the tank. This work will provide the data required to develop a contaminant release model for the tank residuals from both sludge and salt cake single-shell tanks. The data are intended for use in the long-term performance assessment and conceptual model development.

  13. Development of a Water Recovery System Resource Tracking Model

    NASA Technical Reports Server (NTRS)

    Chambliss, Joe; Stambaugh, Imelda; Sargusingh, Miriam; Shull, Sarah; Moore, Michael

    2015-01-01

    A simulation model has been developed to track water resources in an exploration vehicle using Regenerative Life Support (RLS) systems. The Resource Tracking Model (RTM) integrates the functions of all the vehicle components that affect the processing and recovery of water during simulated missions. The approach used in developing the RTM enables its use as part of a complete vehicle simulation for real time mission studies. Performance data for the components in the RTM is focused on water processing. The data provided to the model has been based on the most recent information available regarding the technology of the component. This paper will describe the process of defining the RLS system to be modeled, the way the modeling environment was selected, and how the model has been implemented. Results showing how the RLS components exchange water are provided in a set of test cases.

  14. Development of a Water Recovery System Resource Tracking Model

    NASA Technical Reports Server (NTRS)

    Chambliss, Joe; Stambaugh, Imelda; Sarguishm, Miriam; Shull, Sarah; Moore, Michael

    2014-01-01

    A simulation model has been developed to track water resources in an exploration vehicle using regenerative life support (RLS) systems. The model integrates the functions of all the vehicle components that affect the processing and recovery of water during simulated missions. The approach used in developing the model results in the RTM being a part of of a complete vehicle simulation that can be used in real time mission studies. Performance data for the variety of components in the RTM is focused on water processing and has been defined based on the most recent information available for the technology of the component. This paper will describe the process of defining the RLS system to be modeled and then the way the modeling environment was selected and how the model has been implemented. Results showing how the variety of RLS components exchange water are provided in a set of test cases.

  15. Development of a new Global RAdiation Belt model: GRAB

    NASA Astrophysics Data System (ADS)

    Sicard-Piet, Angelica; Lazaro, Didier; Maget, Vincent; Rolland, Guy; Ecoffet, Robert; Bourdarie, Sébastien; Boscher, Daniel; Standarovski, Denis

    2016-07-01

    The well known AP8 and AE8 NASA models are commonly used in the industry to specify the radiation belt environment. Unfortunately, there are some limitations in the use of these models, first due to the covered energy range, but also because in some regions of space, there are discrepancies between the predicted average values and the measurements. Therefore, our aim is to develop a radiation belt model, covering a large region of space and energy, from LEO altitudes to GEO and above, and from plasma to relativistic particles. The aim for the first version is to correct the AP8 and AE8 models where they are deficient or not defined. At geostationary, we developed ten years ago for electrons the IGE-2006 model which was proven to be more accurate than AE8, and used commonly in the industry, covering a broad energy range, from 1keV to 5MeV. From then, a proton model for geostationary orbit was also developed for material applications, followed by the OZONE model covering a narrower energy range but the whole outer electron belt, a SLOT model to asses average electron values for 2model, which provides high energy proton flux values at low altitudes. As most of these models were developed using more than a solar cycle of measurements, these measurements being checked, cross calibrated and filtered, we have no doubt that the obtained averages are more accurate than AP8 and AE8 for these particular locations. These local models were validated along different orbit with independent data sets or effect measurements. We will use a cache file system to switch between models, in order to obtain at each location in space and energy point the most reliable value. Of course, the way the model is developed is well suited to add new local developments or to include international partnership. This model will be called the GRAB model, as Global Radiation Belt model. We will present first beta version during this conference.

  16. Hypothetical model in testing integrated development of preschool children.

    PubMed

    Bala, Gustav; Katić, Ratko

    2009-06-01

    This paper provides systematic presentation of the issues related to methodology, and offers some possible solutions for analysis of different aspects of child development, especially preschool age. These issues are related to the definition, acceptance and preparation of the existing theories on development, which include analysis of the whole child's self his/her surroundings, and his/her activities. In addition, this analysis also includes some methodological problems related to sexual dimorphism, heritage-bound and surroundings-bound development, definition of the model of constructs affecting the selection of variables for evaluation of integral development, definition of the population and selection of the subject sample, determination of manifest characteristics and abilities, selection or construction of measuring instruments for their evaluation, appropriateness of the model and method of data analysis, as well as the possibility of designing the potential model of integrated development of preschool children. PMID:19662751

  17. Turbulence model development and application at Lockheed Fort Worth Company

    NASA Technical Reports Server (NTRS)

    Smith, Brian R.

    1995-01-01

    This viewgraph presentation demonstrates that computationally efficient k-l and k-kl turbulence models have been developed and implemented at Lockheed Fort Worth Company. Many years of experience have been gained applying two equation turbulence models to complex three-dimensional flows for design and analysis.

  18. Accident sequence precursor analysis level 2/3 model development

    SciTech Connect

    Lui, C.H.; Galyean, W.J.; Brownson, D.A.

    1997-02-01

    The US Nuclear Regulatory Commission`s Accident Sequence Precursor (ASP) program currently uses simple Level 1 models to assess the conditional core damage probability for operational events occurring in commercial nuclear power plants (NPP). Since not all accident sequences leading to core damage will result in the same radiological consequences, it is necessary to develop simple Level 2/3 models that can be used to analyze the response of the NPP containment structure in the context of a core damage accident, estimate the magnitude of the resulting radioactive releases to the environment, and calculate the consequences associated with these releases. The simple Level 2/3 model development work was initiated in 1995, and several prototype models have been completed. Once developed, these simple Level 2/3 models are linked to the simple Level 1 models to provide risk perspectives for operational events. This paper describes the methods implemented for the development of these simple Level 2/3 ASP models, and the linkage process to the existing Level 1 models.

  19. Generativity-Stagnation: Development of a Status Model.

    ERIC Educational Resources Information Center

    Bradley, Cheryl L.

    1997-01-01

    Reviews theoretical and empirical developments in Erik Erikson's construct of generativity-stagnation. Presents a five-category model describing styles of resolving the issue using combinations of level of involvement or active concern for the growth of self and others; and level of inclusivity or scope of caregiving concern. Discusses model in…

  20. The Various Roles of Animal Models in Understanding Human Development

    ERIC Educational Resources Information Center

    Gottlieb, Gilbert; Lickliter, Robert

    2004-01-01

    In this article, the authors take a very conservative view of the contribution of animal models to an understanding of human development. We do not think that homologies can be readily documented with even our most closely related relatives' behavior and psychological functioning. The major contribution of animal models is their provision of food…

  1. Adult Intellectual Development as Social-Cognitive Growth: A Model.

    ERIC Educational Resources Information Center

    Sinnott, Jan D.

    This paper describes a tentative model to assist in conceptualization of the dynamics of adult social-cognitive development based on Piaget's and Riegel's thought, gerontological studies, and dialectical theory. The proposed model possesses several qualities: (1) it derives from the concept of intelligence as an adaptive biological entity; (2) it…

  2. Development of a Multidisciplinary Middle School Mathematics Infusion Model

    ERIC Educational Resources Information Center

    Russo, Maria; Hecht, Deborah; Burghardt, M. David; Hacker, Michael; Saxman, Laura

    2011-01-01

    The National Science Foundation (NSF) funded project "Mathematics, Science, and Technology Partnership" (MSTP) developed a multidisciplinary instructional model for connecting mathematics to science, technology and engineering content areas at the middle school level. Specifically, the model infused mathematics into middle school curriculum…

  3. Competency Modelling for Hiring in Technical Services: Developing a Methodology.

    ERIC Educational Resources Information Center

    Coffey, James R.

    1992-01-01

    Describes the development of a model for competency at Rutgers University-Camden's library that can be used in the hiring process as a tool to evaluate job candidates for technical services positions. Interview experiences using the model, both with current employees and with prospective candidates, are discussed. (five references) (LRW)

  4. Development of operational models for space weather prediction

    NASA Astrophysics Data System (ADS)

    Liu, Siqing; Gong, Jiancun

    Since space weather prediction is currently at the stage of transition from human experience to objective forecasting methods, developing operational forecasting models becomes an important way to improve the capabilities of space weather service. As the existing theoretical models are not fully operational when it comes to space weather prediction, we carried out researches on developing operational models, considering the user needs for prediction of key elements in space environment, which have vital impacts on space assets security. We focused on solar activities, geomagnetic activities, high-energy particles, atmospheric density, plasma environment and so forth. Great progresses have been made in developing 3D dynamic asymmetric magnetopause model, plasma sheet energetic electron flux forecasting model and 400km-atmospheric density forecasting model, and also in the prediction of high-speed solar-wind streams from coronal holes and geomagnetic AE indices. Some of these models have already been running in the operational system of Space Environment Prediction Center, National Space Science Center (SEPC/NSSC). This presentation will introduce the research plans for space weather prediction in China, and current progresses of developing operational models and their applications in daily space weather services in SEPC/NSSC.

  5. Developing an Interdisciplinary Curriculum Framework for Aquatic-Ecosystem Modeling

    ERIC Educational Resources Information Center

    Saito, Laurel; Segale, Heather M.; DeAngelis, Donald L.; Jenkins, Stephen H.

    2007-01-01

    This paper presents results from a July 2005 workshop and course aimed at developing an interdisciplinary course on modeling aquatic ecosystems that will provide the next generation of practitioners with critical skills for which formal training is presently lacking. Five different course models were evaluated: (1) fundamentals/general principles…

  6. Partnership for Faith-Based Leadership Development: An Educational Model

    ERIC Educational Resources Information Center

    Fine, Janis; Gordon, Vivian Hopp; Israel, Marla Susman

    2008-01-01

    Parochial school leaders traditionally rise from the ranks of the teaching staff into the principal position, even if unprepared. Through a unique collaborative model, an outside partner and a university developed a program for formally preparing individuals to be Jewish day school leaders. The process of creating this model resulted in a…

  7. Models of Distance Education for Developing Island States.

    ERIC Educational Resources Information Center

    Meacham, David; Zubair, Shafeea

    The key to successful establishment of distance education in developing countries seems to be the initial choice of an appropriate model (a model that can be built upon the historical and cultural context, can survive in an environment of limited resources, and will be compatible with the views and ambitions of its political sponsors and clients).…

  8. Development and Validation of an Animal Susceptibility Model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An individual animal’s stress level is the summation of stresses from three areas: the environment, animal, and management. A model was developed to predict the susceptibility of an individual animal to heat stress. The model utilizes a hierarchal knowledge-based fuzzy inference system with 11 anim...

  9. Dynamic Modeling for Development and Education: From Concepts to Numbers

    ERIC Educational Resources Information Center

    Van Geert, Paul

    2014-01-01

    The general aim of the article is to teach the reader how to transform conceptual models of change, development, and learning into mathematical expressions and how to use these equations to build dynamic models by means of the widely used spreadsheet program Excel. The explanation is supported by a number of Excel files, which the reader can…

  10. A Power Development Model for Managing and Preventing Conflict.

    ERIC Educational Resources Information Center

    Cowher, Salene J.

    1996-01-01

    Describes a model for understanding and applying conflict management strategies using a personal power development theory. Adds conflict management styles to this theory to address the growing need for effective conflict management in higher education. Explains the approaches to conflict in each stage of the model and provides a case study. (RJM)

  11. A Four-Prong Model for Intellectual-Skills Development.

    ERIC Educational Resources Information Center

    Sternberg, Robert J.; Davidson, Janet E.

    1989-01-01

    A four-prong instructional model for intellectual-skills development is described. The four prongs are: familiarization, intra-group problem solving, inter-group problem solving, and individual problem solving. A psychological model of what is to be taught, the triarchic theory of human intelligence, provides the underpinning of the instructional…

  12. Modeling Mechanisms of Persisting and Resolving Delay in Language Development

    ERIC Educational Resources Information Center

    Thomas, Michael S. C.; Knowland, V. C. P.

    2014-01-01

    Purpose: In this study, the authors used neural network modeling to investigate the possible mechanistic basis of developmental language delay and to test the viability of the hypothesis that persisting delay and resolving delay lie on a mechanistic continuum with normal development. Method: The authors used a population modeling approach to study…

  13. The Development and Testing of a School Improvement Model

    ERIC Educational Resources Information Center

    Leithwood, Kenneth; Jantzi, Doris; McElheron-Hopkins, Charryn

    2006-01-01

    This multimethod study generated and tested a "best evidence" model of school improvement processes (SIP) capable of improving student achievement. Initially developed through the review of a comprehensive body of previous empirical research, the model was further refined through a 2, 5-year longitudinal study in 10 schools. A quantitative test of…

  14. Development of Water Quality Modeling in the United States

    EPA Science Inventory

    This presentation describes historical trends in water quality model development in the United States, reviews current efforts, and projects promising future directions. Water quality modeling has a relatively long history in the United States. While its origins lie in the work...

  15. Children's Conceptions of Career Choice and Attainment: Model Development

    ERIC Educational Resources Information Center

    Howard, Kimberly A. S.; Walsh, Mary E.

    2011-01-01

    This article describes a model of children's conceptions of two key career development processes: career choice and career attainment. The model of children's understanding of career choice and attainment was constructed with developmental research and theory into children's understanding of allied phenomena such as their understanding of illness,…

  16. New Models and Metaphors for Human Resource Development.

    ERIC Educational Resources Information Center

    1999

    This document contains two reports from a poster session on new ideas and models in human resource development (HRD). The first presentation, "Two-way Customer-Service Provider Cycle" (Harriet V. Lawrence, Albert K. Wiswell), discusses a two-way supply cycle model that illustrates relational issues in customer service, including needs and wants,…

  17. Benchmark Dose Software Development and Maintenance Ten Berge Cxt Models

    EPA Science Inventory

    This report is intended to provide an overview of beta version 1.0 of the implementation of a concentration-time (CxT) model originally programmed and provided by Wil ten Berge (referred to hereafter as the ten Berge model). The recoding and development described here represent ...

  18. FOLIAR WASHOFF OF PESTICIDES (FWOP) MODEL: DEVELOPMENT AND EVALUATION

    EPA Science Inventory

    The Foliar Washoff of Pesticides (FWOP) Model was developed to provide an empirical simulation of pesticide washoff from plant leaf surfaces as influenced by rainfall amount. To evaluate the technique, simulations by the FWOP Model were compared to those by the foliar washoff alg...

  19. Development, sensitivity and uncertainty analysis of LASH model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many hydrologic models have been developed to help manage natural resources all over the world. Nevertheless, most models have presented a high complexity regarding data base requirements, as well as, many calibration parameters. This has brought serious difficulties for applying them in watersheds ...

  20. The Efficacy of the Total Giftedness Development Model

    ERIC Educational Resources Information Center

    Batterjee, Adel A.

    2010-01-01

    The study objective was to apply the Total Giftedness Development Model (TGDM) among a Saudi Arabian sample and study its effectiveness. The descriptive and case study research methods were applied on a sample of 807 male students, age 5 to 18 to test the efficacy of the model. Several instruments, including The Saudi Mental Abilities Test,…

  1. The Development of Conditional Reasoning: A Mental Model Account.

    ERIC Educational Resources Information Center

    Markovits, Henry; Barrouillet, Pierre

    2002-01-01

    Proposes a variant of mental model theory which suggests that the development of conditional reasoning (if--then) can be explained by such factors as the capacity of working memory, range of knowledge available to a reasoner, and his/her ability to access this knowledge "on-line." Finds much empirical data explained by this model. (Author/SD)

  2. DEVELOPMENT OF A STATISTICAL MODEL FOR METAL-HUMIC INTERACTIONS

    EPA Science Inventory

    A statistical model for describing the distribution of binding sites in humic substances was developed. he model was applied to study the spectral titration plot generated by the lanthanide ion probe spectroscopy (LIPS) technique. his titration plot is used as a basis for studyin...

  3. Physiologically based pharmacokinetic modeling of deltamethrin: Development of a rat and human diffusion-limited model

    EPA Science Inventory

    Mirfazaelian et al. (2006) developed a physiologically based pharmacokinetic (PBPK) model for the pyrethroid pesticide deltamethrin in the rat. This model describes gastrointestinal tract absorption as a saturable process mediated by phase III efflux transporters which pump delta...

  4. Further Development of the PCRTM Model and RT Model Inter Comparison

    NASA Technical Reports Server (NTRS)

    Yang, Qiguang; Liu, Xu; Wu, Wan; Kizer, Susan

    2015-01-01

    New results for the development of the PCRTM model will be presented. The new results were used for IASI retrieval validation inter comparison and better results were obtained compare to other fast radiative transfer models.

  5. Modelling Sustainable Development Scenarios of Croatian Power System

    NASA Astrophysics Data System (ADS)

    Pašičko, Robert; Stanić, Zoran; Debrecin, Nenad

    2010-05-01

    The main objective of power system sustainable development is to provide the security of electricity supply required to underpin economic growth and increase the quality of living while minimizing adverse environmental impacts. New challenges such as deregulation, liberalization of energy markets, increased competition on energy markets, growing demands on security of supply, price insecurities and demand to cut CO2 emissions, are calling for better understanding of electrical systems modelling. Existing models are not sufficient anymore and planners will need to think differently in order to face these challenges. Such a model, on the basis on performed simulations, should enable planner to distinguish between different options and to analyze sustainability of these options. PLEXOS is an electricity market simulation model, used for modeling electrical system in Croatia since 2005. Within this paper, generation expansion scenarios until 2020 developed for Croatian Energy Strategy and modeled in PLEXOS. Development of sustainable Croatian energy scenario was analyzed in the paper - impacts of CO2 emission price and wind generation. Energy Strategy sets goal for 1200 MW from wind power plants in 2020. In order to fully understand its impacts, intermittent nature of electricity generation from wind power plant was modeled. We conclude that electrical system modelling using everyday growing models has proved to be inevitable for sustainable electrical system planning in complex environment in which power plants operate today.

  6. Development of a common data model for scientific simulations

    SciTech Connect

    Ambrosiano, J.; Butler, D.M.; Matarazzo, C.; Miller, M.; Schoof, L.

    1999-06-01

    The problem of sharing data among scientific simulation models is a difficult and persistent one. Computational scientists employ an enormous variety of discrete approximations in modeling physical processes on computers. Problems occur when models based on different representations are required to exchange data with one another, or with some other software package. Within the DOE`s Accelerated Strategic Computing Initiative (ASCI), a cross-disciplinary group called the Data Models and Formats (DMF) group, has been working to develop a common data model. The current model is comprised of several layers of increasing semantic complexity. One of these layers is an abstract model based on set theory and topology called the fiber bundle kernel (FBK). This layer provides the flexibility needed to describe a wide range of mesh-approximated functions as well as other entities. This paper briefly describes the ASCI common data model, its mathematical basis, and ASCI prototype development. These prototypes include an object-oriented data management library developed at Los Alamos called the Common Data Model Library or CDMlib, the Vector Bundle API from the Lawrence Livermore Laboratory, and the DMF API from Sandia National Laboratory.

  7. Developing a Decision Model of Sustainable Product Design and Development from Product Servicizing in Taiwan

    ERIC Educational Resources Information Center

    Huang, Yu-Chen; Tu, Jui-Che; Hung, So-Jeng

    2016-01-01

    In response to the global trend of low carbon and the concept of sustainable development, enterprises need to develop R&D for the manufacturing of energy-saving and sustainable products and low carbon products. Therefore, the purpose of this study was to construct a decision model for sustainable product design and development from product…

  8. Data assimilation as a tool for model development

    NASA Astrophysics Data System (ADS)

    Ricciuto, D. M.; King, A. W.; Gu, L.; Post, W. M.

    2012-12-01

    Terrestrial carbon cycle models are increasingly complex, yet still are far from a satisfactory representation of existing knowledge about biogeochemical processes. It is difficult to decide what the priorities should be for model improvement, especially when computing and human resources are limited. A confounding factor is that structural changes resulting from model development affect model parameter and prediction uncertainties, which are often ignored. Parameter tuning is often an implicit part of model development and may yield a new model that performs better against a few metrics. However, when parametric uncertainties are propagated through the model, it is often not possible to demonstrate any improvement has taken place. We argue that a more formalized data assimilation (DA) approach is useful not just for calibration and improving predictions, but for model development and improving process understanding. DA has demonstrated success in parameter calibration, improving and quantifying uncertainty in model predictions, and for extrapolating observations across space and time. A less explored, but perhaps even more important application, is to objectively prioritize model development tasks by using DA to reveal structural deficiencies. Here we present a case study at the Missouri Ozark flux site in which 20 parameters in the Local Terrestrial Ecosystem Carbon (LoTEC) model were calibrated against hourly 2004-2007 net ecosystem exchange (NEE) and latent heat (LE) observations using a genetic algorithm. The calibrated model was then compared with the hourly observations to identify periods in which the model-data residual is consistently 2 standard deviations outside the 95% confidence interval of the observations (i.e., times when the DA method provided a poor fit to the data). While this method does not definitively or unambiguously reveal the cause of the model-data mismatch, the time period of the anomaly provides clues linking poor model performance to

  9. The Arctic Climate Modeling Program: Professional Development for Rural Teachers

    ERIC Educational Resources Information Center

    Bertram, Kathryn Berry

    2010-01-01

    The Arctic Climate Modeling Program (ACMP) offered yearlong science, technology, engineering, and math (STEM) professional development to teachers in rural Alaska. Teacher training focused on introducing youth to workforce technologies used in Arctic research. Due to challenges in making professional development accessible to rural teachers, ACMP…

  10. Reconciling Alternative Models of Phenological Development in Winter Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    • Background and Aims Accurately representing development is essential for applying crop simulation models to investigate changes in climate, genotypes, or crop management. Development in wheat (Triticum aestivum , T. durum) is primarily driven by thermal time, but affected by vernalization and ph...

  11. The TTF Model To Explain PCK in Teacher Development.

    ERIC Educational Resources Information Center

    Veal, William R.

    This paper describes the development of pedagogical content knowledge (PCK) in secondary chemistry and physics preservice teachers. Teacher beliefs are intricately tied to how they make decisions for implementing instructional strategies, and those beliefs aid in the development of pedagogical content knowledge. A model for pedagogical content…

  12. DEVELOPMENT OF MODELING PROTOCOLS FOR USE IN DETERMINING SEDIMENT TMDLS

    EPA Science Inventory

    Modeling protocols for use in determining sediment TMDLs are being developed to provide the Office of Water, Regions and the States with assistance in determining TMDLs for sediment impaired water bodies. These protocols will supplement the protocols developed by the Office of W...

  13. Transformative Professional Development: A Model for Urban Science Education Reform

    ERIC Educational Resources Information Center

    Johnson, Carla C.; Marx, Sherry

    2009-01-01

    This study presents a model of Transformative Professional Development (TPD) for use in sustained, collaborative, professional development of teachers in urban middle school science. TPD focuses on urban science teacher change and is responsive to school climate, teacher needs, and teacher beliefs with the intention of promoting change in…

  14. Academic Talent Development Programs: A Best Practices Model

    ERIC Educational Resources Information Center

    Gagné, Françoys

    2015-01-01

    This article aims to describe how schools should structure the development of academic talent at all levels of the K-12 educational system. Adopting as its theoretical framework the "Differentiating Model of Giftedness and Talent," the author proposes (a) a formal definition of academic talent development (ATD) inspired by the principles…

  15. A Model for Developing New Residence Hall Environments

    ERIC Educational Resources Information Center

    Hubbell, Robert N.; Sherwood, Grant P.

    1973-01-01

    This paper has the function of developing a residence hall interaction model utilizing three components: environmental options, student development needs, and human interaction categories. The paper discussed ways in which residence hall staff members could effect optimal learning opportunities by matching various environmental options to…

  16. Developing Mindful Learners Model: A 21st Century Ecological Approach.

    ERIC Educational Resources Information Center

    Fluellen, Jerry

    The Developing Mindful Learners Model (DMLM), developed within the framework of Howard Gardner's multiple intelligences theory, connects three factors--content, framework, and world vision--for the purpose of helping underachieving students to become more "mindful": i.e., to become one who welcomes new ideas, considers more than one perspective,…

  17. The Highly Engaged School: A Successful Model for Professional Development

    ERIC Educational Resources Information Center

    Meyer, Bob

    2015-01-01

    Author Bob Meyer, head of the Fay School (Texas) compares professional development strategies in his school to programs in other schools, which he feels are mostly prescriptive in nature, and are based on a deficit model--focused on fixing, rather than developing--and, thus, are not always inspiring. Here Meyer describes the professional…

  18. Developing a More Effective Recruitment and Retention Model.

    ERIC Educational Resources Information Center

    Janke, Walter; Kelly, Gary

    The purpose of a project was to develop a model for more effective recruitment and retention of people of color in the Associate Degree Interior Design and Diploma Interior Design Assistant Program at Milwaukee Area Technical College (MATC), Wisconsin. During Activity One, individuals in MATC's Student Development and High School Relations…

  19. A Performance-Based Development Model for Online Faculty

    ERIC Educational Resources Information Center

    Fang, Berlin

    2007-01-01

    Faculty development in distance education does not happen in a vacuum. It is often interwoven with efforts to increase adoption of distance education programs and increase the effectiveness of online teaching. Training might not be the only way to meet these needs. This article presents a new faculty-development model, based on a systematic…

  20. Formulation of consumables management models. Development approach for the mission planning processor working model

    NASA Technical Reports Server (NTRS)

    Connelly, L. C.

    1977-01-01

    The mission planning processor is a user oriented tool for consumables management and is part of the total consumables subsystem management concept. The approach to be used in developing a working model of the mission planning processor is documented. The approach includes top-down design, structured programming techniques, and application of NASA approved software development standards. This development approach: (1) promotes cost effective software development, (2) enhances the quality and reliability of the working model, (3) encourages the sharing of the working model through a standard approach, and (4) promotes portability of the working model to other computer systems.

  1. A national model for participative management and policy development.

    PubMed

    Valentine, N M

    1996-01-01

    This article describes the virtual application of an innovative administrative model that addresses national nursing policy issues in the Department of Veterans Affairs. Using a constituency center model of organization, nurse and interdisciplinary experts in the areas of clinical, education, administration, research and informatics are drawn from throughout the country to manage projects that meet the specifications of the national nursing service strategic plan. The impetus for the development of the model, examples products developed and areas of interest explored to date, and an evaluation of the first 18 months of experience are discussed. PMID:8945258

  2. Development of Numerical Grids for UZ Flow and Transport Modeling

    SciTech Connect

    J. Hinds

    2001-12-18

    This Analysis/Model Report (AMR) describes the methods used to develop numerical grids of the unsaturated hydrogeologic system beneath Yucca Mountain. Numerical grid generation is an integral part of the development of a complex, three-dimensional (3-D) model, such as the Unsaturated-Zone Flow and Transport Model (UZ Model) of Yucca Mountain. The resulting numerical grids, developed using current geologic, hydrogeologic, and mineralogic data, provide the necessary framework to: (1) develop calibrated hydrogeologic property sets and flow fields, (2) test conceptual hypotheses of flow and transport, and (3) predict flow and transport behavior under a variety of climatic and thermal loading conditions. Revision 00 of the work described herein follows the planning and work direction outlined in the ''Development of Numerical Grids for UZ Flow and Transport Modeling'' (CRWMS M&O 1999c). The technical scope, content, and management of ICN 01 of this AMR is currently controlled by the planning document, ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' (BSC 2001a). The scope for the TBV resolution actions in this ICN is described in the ''Technical Work Plan for: Integrated Management of Technical Product Input Department'' (BSC 2001 b, Addendum B, Section 4.1). The steps involved in numerical grid development include: (1) defining the location of important calibration features, (2) determining model grid layers and fault geometry based on the Geologic Framework Model (GFM), the Integrated Site Model (ISM), and definition of hydrogeologic units (HGUs), (3) analyzing and extracting GFM and ISM data pertaining to layer contacts and property distributions, (4) discretizing and refining the two-dimensional (2-D), plan-view numerical grid, (5) generating the 3-D grid with finer resolution at the repository horizon and within the Calico Hills nonwelded (CHn) hydrogeologic unit, and (6) formulating the dual-permeability mesh. The products

  3. Modelling sustainable development planning: a multicriteria decision conferencing approach.

    PubMed

    Quaddus, M A; Siddique, M A

    2001-09-01

    Development planning is multidimensional in nature. On the one hand, it addresses economic growth, and on the other, it deals with economic development of the whole nation. Sustainable development, on the other hand, emphasizes the need for integration of economics and environment, as well as promoting intra- and intergenerational equity. While the literature deals extensively with the issues of sustainable development, it lacks a prescription of an easy-to-use, yet rigorous, methodology for it. In this paper, we offer a decision conferencing approach to sustainable development planning based on a multicriteria model. The integrated model is presented and applied to a sustainable development planning exercise in a third world country. Sample results are presented and detailed sensitivity analyses show the environmental variables that are of major concern. PMID:11697680

  4. Linking Goal-Oriented Requirements and Model-Driven Development

    NASA Astrophysics Data System (ADS)

    Pastor, Oscar; Giachetti, Giovanni

    In the context of Goal-Oriented Requirement Engineering (GORE) there are interesting modeling approaches for the analysis of complex scenarios that are oriented to obtain and represent the relevant requirements for the development of software products. However, the way to use these GORE models in an automated Model-Driven Development (MDD) process is not clear, and, in general terms, the translation of these models into the final software products is still manually performed. Therefore, in this chapter, we show an approach to automatically link GORE models and MDD processes, which has been elaborated by considering the experience obtained from linking the i * framework with an industrially applied MDD approach. The linking approach proposed is formulated by means of a generic process that is based on current modeling standards and technologies in order to facilitate its application for different MDD and GORE approaches. Special attention is paid to how this process generates appropriate model transformation mechanisms to automatically obtain MDD conceptual models from GORE models, and how it can be used to specify validation mechanisms to assure the correct model transformations.

  5. Development of an aquifer management model AQMAN3D

    USGS Publications Warehouse

    Puig, Juan Carlos; Rolon-Collazo, L. I.; Pagan-Trinidad, Ishmael

    1990-01-01

    A computer code that enables the use of the USGS Modular groundwater flow model for aquifermanagement modeling has been developed. Aquifermanagement techniques integrate groundwater flow modeling with linear quadratic optimization methods for the solution of various aquifer management problems. The model AQMAN3D, is a modified version of a previously developed two-dimensional AQMAN model. The idea of coupling the AQMAN model with the MODULAR model arose because actual groundwater flow systems behave in a three dimensional manner, therefore requiring treatment as such, and due to the widespread use of MODULAR. The use of the AQMAN3D model permits the implementation of the technique known as aquifer managementmodeling. A generalized approach to obtain an optimal solution to an aquifer management problem is proposed, and a sample test problem is presented to illustrate the use of the model. Even though the model provides the hydrologist with a new and powerful investigative tool, its applicability is limited to confined or quasiconfined systems.

  6. Development of a Stirling System Dynamic Model With Enhanced Thermodynamics

    NASA Technical Reports Server (NTRS)

    Regan, Timothy F.; Lewandowski, Edward J.

    2005-01-01

    The Stirling Convertor System Dynamic Model developed at NASA Glenn Research Center is a software model developed from first principles that includes the mechanical and mounting dynamics, the thermodynamics, the linear alternator, and the controller of a free-piston Stirling power convertor, along with the end user load. As such it represents the first detailed modeling tool for fully integrated Stirling convertor-based power systems. The thermodynamics of the model were originally a form of the isothermal Stirling cycle. In some situations it may be desirable to improve the accuracy of the Stirling cycle portion of the model. An option under consideration is to enhance the SDM thermodynamics by coupling the model with Gedeon Associates Sage simulation code. The result will be a model that gives a more accurate prediction of the performance and dynamics of the free-piston Stirling convertor. A method of integrating the Sage simulation code with the System Dynamic Model is described. Results of SDM and Sage simulation are compared to test data. Model parameter estimation and model validation are discussed.

  7. Geospatial Modelling Approach for 3d Urban Densification Developments

    NASA Astrophysics Data System (ADS)

    Koziatek, O.; Dragićević, S.; Li, S.

    2016-06-01

    With growing populations, economic pressures, and the need for sustainable practices, many urban regions are rapidly densifying developments in the vertical built dimension with mid- and high-rise buildings. The location of these buildings can be projected based on key factors that are attractive to urban planners, developers, and potential buyers. Current research in this area includes various modelling approaches, such as cellular automata and agent-based modelling, but the results are mostly linked to raster grids as the smallest spatial units that operate in two spatial dimensions. Therefore, the objective of this research is to develop a geospatial model that operates on irregular spatial tessellations to model mid- and high-rise buildings in three spatial dimensions (3D). The proposed model is based on the integration of GIS, fuzzy multi-criteria evaluation (MCE), and 3D GIS-based procedural modelling. Part of the City of Surrey, within the Metro Vancouver Region, Canada, has been used to present the simulations of the generated 3D building objects. The proposed 3D modelling approach was developed using ESRI's CityEngine software and the Computer Generated Architecture (CGA) language.

  8. Development of the Ball integrated telescope model (ITM)

    NASA Astrophysics Data System (ADS)

    Lieber, Michael D.

    2002-07-01

    As the complexity of telescope systems have increased, system engineering trades related to cost and performance issues have become correspondingly complex. The traditional methodology for end-to-end system modeling depends upon focused analysis and data handoff between disciplines - aptly termed the "bucket brigade" approach. For the last 7 years, Ball Aerospace has supported development of an integrated modeling environment for telescope performance modeling and analysis. The Integrated Telescope Model (ITM), a realization of this effort, has been used on several current large telescope programs such as the VLT, NGST, TPF and MAXIM. It permits the user to do both time simulations and analytical work in the spatial/temporal frequency domains. The individual discipline models in structural dynamics, optics, controls, signal processing, detector physics and disturbance modeling are seamlessly integrated into one cohesive model to efficiently support system level trades and analysis. The core of the model is formed by the optical toolbox implemented in MATLAB and realized in object-oriented Simulink environment. Both geometric and physical optical models can be constructed and interfaced to disturbances and detection models. The geometric approach includes ray tracing for exact modeling or sensitivity matrices for rapid execution. Spectral, transmission and polarization information is carried with each ray. The physical optics modules do wavefront propagation for analyzing diffraction effects under either with coherent or incoherent conditions. Coupling of the static offset models, quasi-static thermal deformations and structural dynamics with an optical model allows one to view the full range of disturbance effects on the resulting PSF. This paper addresses the overall model architecture, considerations and issues related to model execution speed, complexity and model resolution/validity. Example of a recent use of the model is reviewed.

  9. Clinical Strategies and Animal Models for Developing Senolytic Agents

    PubMed Central

    Kirkland, James L.; Tchkonia, Tamara

    2014-01-01

    Aging is associated with increasing predisposition to multiple chronic diseases. One fundamental aging process that is often operative at sites of the pathology underlying chronic age-related diseases is cellular senescence. Small molecule senolytic agents are being developed. For successful drug development: 1) appropriate animal models of human age-related diseases need to be devised. 2) Models have to be made in which it can be proven that beneficial phenotypic effects are actually caused through clearing senescent cells by putative senolytic agents, as opposed to “off-target” effects of these agents on non-senescent cells. 3) Models are needed to test efficacy of drugs and to uncover potential side effects of senolytic agents. Development of the optimal animal models and clinical trial paradigms for senolytic agents warrants an intensive effort, since senolytic agents, if successful in delaying, preventing, alleviating, or reversing age-related diseases as a group would be transformative. PMID:25446976

  10. Developing satellite ground control software through graphical models

    NASA Technical Reports Server (NTRS)

    Bailin, Sidney; Henderson, Scott; Paterra, Frank; Truszkowski, Walt

    1992-01-01

    This paper discusses a program of investigation into software development as graphical modeling. The goal of this work is a more efficient development and maintenance process for the ground-based software that controls unmanned scientific satellites launched by NASA. The main hypothesis of the program is that modeling of the spacecraft and its subsystems, and reasoning about such models, can--and should--form the key activities of software development; by using such models as inputs, the generation of code to perform various functions (such as simulation and diagnostics of spacecraft components) can be automated. Moreover, we contend that automation can provide significant support for reasoning about the software system at the diagram level.

  11. Development of an advanced finite difference atmospheric general circulation model

    NASA Astrophysics Data System (ADS)

    Randall, D. A.

    1994-11-01

    The essence of this research is further development of the Colorado State University (CSU) atmospheric general circulation model (AGCM). Although the CSU AGCM is currently evolving rapidly, is also being used in a variety of 'applications' in which the results of simulation performed with the model are analyzed to gain better understanding of the climate system. In parallel, a GCM development effort is also under way at UCLA. The CSU GCM was derived from the UCLA GCM of 1982, but has evolved to the point that the two models are now really quite distinct. The key distinguishing elements of the CSU model are briefly summarized. The goal of CHAMMP is 'to accelerate the development of more accurate and useful climate prediction capabilities to forecast climate change on sub-continental and smaller scales over time periods ranging from a decade to several centuries'.

  12. A Software Development Simulation Model of a Spiral Process

    NASA Technical Reports Server (NTRS)

    Mizell, Carolyn; Malone, Linda

    2007-01-01

    There is a need for simulation models of software development processes other than the waterfall because processes such as spiral development are becoming more and more popular. The use of a spiral process can make the inherently difficult job of cost and schedule estimation even more challenging due to its evolutionary nature, but this allows for a more flexible process that can better meet customers' needs. This paper will present a discrete event simulation model of spiral development that can be used to analyze cost and schedule effects of using such a process in comparison to a waterfall process.

  13. [Demo-economic models of development: evolution and recent trends].

    PubMed

    Bourcier De Carbon, P

    1983-01-01

    Among the recommendations of the 1974 World Population Conference in Bucharest was the elaboration of empirical and inductive demographic-economic models to assist in planning. 1 of the disadvantages of existing models and systems of national income accounting was that income distribution was ignored in favor of the total value of production. Demographic variables were not regarded as endogenous. By the early 1970s, the societal changes attendant on rural exodus and urban unemployment, the increasing absorption of traditional structures into the modern sector, and changes in the roles of women and young people had become obvious, and the need for new models that would reflect such changes was clear. Some macromodels designed to assist medium and long range planning were 1st elaborated in the mid 1970s; the Bachue development models were particularly promising because of their improved database. New models were developed which incorporated consumption problems based on basic needs. An increased focus on the interaction of macroeconomic variables with microsociological and demographic variables, the household and family, and employment and the labor market became necessary. The Bachue models, which had been the most successful of recent models in integrating economic and sociodemographic structures and variables, usually include 4 principal modules which cover demography and the educational system, the economy, employment, and income distribution; basic needs models include a 5th module. The Bachue models are based on a general equilibrium model subject to certain constraints, while the basic needs models are based on dynamic disequilibrium models. A major problem of the models is that technological progress is fundamentally exogenous; there is no intimate link between productivity and elevation of the educational level of the labor force. To avoid unmanageable complexity, households are reconstructed for each period on the basis of the demographic and economic data

  14. Development of a finite element model of decompressive craniectomy.

    PubMed

    Fletcher, Tim L; Kolias, Angelos G; Hutchinson, Peter J A; Sutcliffe, Michael P F

    2014-01-01

    Decompressive craniectomy (DC), an operation whereby part of the skull is removed, is used in the management of patients with brain swelling. While the aim of DC is to reduce intracranial pressure, there is the risk that brain deformation and mechanical strain associated with the operation could damage the brain tissue. The nature and extent of the resulting strain regime is poorly understood at present. Finite element (FE) models of DC can provide insight into this applied strain and hence assist in deciding on the best surgical procedures. However there is uncertainty about how well these models match experimental data, which are difficult to obtain clinically. Hence there is a need to validate any modelling approach outside the clinical setting. This paper develops an axisymmetric FE model of an idealised DC to assess the key features of such an FE model which are needed for an accurate simulation of DC. The FE models are compared with an experimental model using gelatin hydrogel, which has similar poro-viscoelastic material property characteristics to brain tissue. Strain on a central plane of the FE model and the front face of the experimental model, deformation and load relaxation curves are compared between experiment and FE. Results show good agreement between the FE and experimental models, providing confidence in applying the proposed FE modelling approach to DC. Such a model should use material properties appropriate for brain tissue and include a more realistic whole head geometry. PMID:25025666

  15. Development of a Finite Element Model of Decompressive Craniectomy

    PubMed Central

    Fletcher, Tim L.; Kolias, Angelos G.; Hutchinson, Peter J. A.; Sutcliffe, Michael P. F.

    2014-01-01

    Decompressive craniectomy (DC), an operation whereby part of the skull is removed, is used in the management of patients with brain swelling. While the aim of DC is to reduce intracranial pressure, there is the risk that brain deformation and mechanical strain associated with the operation could damage the brain tissue. The nature and extent of the resulting strain regime is poorly understood at present. Finite element (FE) models of DC can provide insight into this applied strain and hence assist in deciding on the best surgical procedures. However there is uncertainty about how well these models match experimental data, which are difficult to obtain clinically. Hence there is a need to validate any modelling approach outside the clinical setting. This paper develops an axisymmetric FE model of an idealised DC to assess the key features of such an FE model which are needed for an accurate simulation of DC. The FE models are compared with an experimental model using gelatin hydrogel, which has similar poro-viscoelastic material property characteristics to brain tissue. Strain on a central plane of the FE model and the front face of the experimental model, deformation and load relaxation curves are compared between experiment and FE. Results show good agreement between the FE and experimental models, providing confidence in applying the proposed FE modelling approach to DC. Such a model should use material properties appropriate for brain tissue and include a more realistic whole head geometry. PMID:25025666

  16. Power Management and Distribution (PMAD) Model Development: Final Report

    NASA Technical Reports Server (NTRS)

    Metcalf, Kenneth J.

    2011-01-01

    Power management and distribution (PMAD) models were developed in the early 1990's to model candidate architectures for various Space Exploration Initiative (SEI) missions. They were used to generate "ballpark" component mass estimates to support conceptual PMAD system design studies. The initial set of models was provided to NASA Lewis Research Center (since renamed Glenn Research Center) in 1992. They were developed to estimate the characteristics of power conditioning components predicted to be available in the 2005 timeframe. Early 90's component and device designs and material technologies were projected forward to the 2005 timeframe, and algorithms reflecting those design and material improvements were incorporated into the models to generate mass, volume, and efficiency estimates for circa 2005 components. The models are about ten years old now and NASA GRC requested a review of them to determine if they should be updated to bring them into agreement with current performance projections or to incorporate unforeseen design or technology advances. This report documents the results of this review and the updated power conditioning models and new transmission line models generated to estimate post 2005 PMAD system masses and sizes. This effort continues the expansion and enhancement of a library of PMAD models developed to allow system designers to assess future power system architectures and distribution techniques quickly and consistently.

  17. Three-dimensional developing flow model for photocatalytic monolith reactors

    SciTech Connect

    Hossain, Md.M.; Raupp, G.B.; Hay, S.O.; Obee, T.N.

    1999-06-01

    A first-principles mathematical model describes performance of a titania-coated honeycomb monolith photocatalytic oxidation (PCO) reactor for air purification. The single-channel, 3-D convection-diffusion-reaction model assumes steady-state operation, negligible axial dispersion, and negligible homogeneous reaction. The reactor model accounts rigorously for entrance effects arising from the developing fluid-flow field and uses a previously developed first-principles radiation-field submodel for the UV flux profile down the monolith length. The model requires specification of an intrinsic photocatalytic reaction rate dependent on local UV light intensity and local reactant concentration, and uses reaction-rate expressions and kinetic parameters determined independently using a flat-plate reactor. Model predictions matched experimental pilot-scale formaldehyde conversion measurements for a range of inlet formaldehyde concentrations, air humidity levels, monolith lengths, and for various monolith/lamp-bank configurations. This agreement was realized without benefit of any adjustable photocatalytic reactor model parameters, radiation-field submodel parameters, or kinetic submodel parameters. The model tends to systematically overpredict toluene conversion data by about 33%, which falls within the accepted limits of experimental kinetic parameter accuracy. With further validation, the model could be used in PCO reactor design and to develop quantitative energy utilization metrics.

  18. Great Plains ASPEN model development: Phosam section. Final topical report

    SciTech Connect

    Stern, S S; Kirman, J J

    1985-02-01

    An ASPEN model has been developed of the PHOSAM Section, Section 4600, of the Great Plains Gasification Plant. The bases for this model are the process description given in Section 6.18 of the Great Plains Project Management Plan and the Lummus Phosam Schematic Process Flow Diagram, Dwg. No. SKD-7102-IM-O. The ASPEN model that has been developed contains the complete set of components that are assumed to be in the gasifier effluent. The model is primarily a flowsheet simulation that will give the material and energy balance and equipment duties for a given set of process conditions. The model is unable to predict fully changes in process conditions that would result from load changes on equipment of fixed sizes, such as a rating model would predict. The model can be used to simulate the steady-state operation of the plant at or near design conditions or to design other PHOSAM units. Because of the limited amount of process information that was available, several major process assumptions had to be made in the development of the flowsheet model. Patent literature was consulted to establish the ammonia concentration in the circulating fluid. Case studies were made with the ammonia content of the feed 25% higher and 25% lower than the base feed. Results of these runs show slightly lower recoveries of ammonia with less ammonia in the feed. As expected, the duties of the Stripper and Fractionator reboilers were higher with more ammonia in the feed. 63 references.

  19. Fault model development for fault tolerant VLSI design

    NASA Astrophysics Data System (ADS)

    Hartmann, C. R.; Lala, P. K.; Ali, A. M.; Visweswaran, G. S.; Ganguly, S.

    1988-05-01

    Fault models provide systematic and precise representations of physical defects in microcircuits in a form suitable for simulation and test generation. The current difficulty in testing VLSI circuits can be attributed to the tremendous increase in design complexity and the inappropriateness of traditional stuck-at fault models. This report develops fault models for three different types of common defects that are not accurately represented by the stuck-at fault model. The faults examined in this report are: bridging faults, transistor stuck-open faults, and transient faults caused by alpha particle radiation. A generalized fault model could not be developed for the three fault types. However, microcircuit behavior and fault detection strategies are described for the bridging, transistor stuck-open, and transient (alpha particle strike) faults. The results of this study can be applied to the simulation and analysis of faults in fault tolerant VLSI circuits.

  20. Analysis of an algae-based CELSS. I - Model development

    NASA Technical Reports Server (NTRS)

    Holtzapple, Mark T.; Little, Frank E.; Makela, Merry E.; Patterson, C. O.

    1989-01-01

    A steady state chemical model and computer program have been developed for a life support system and applied to trade-off studies. The model is based on human demand for food and oxygen determined from crew metabolic needs. The model includes modules for water recycle, waste treatment, CO2 removal and treatment, and food production. The computer program calculates rates of use and material balance for food, O2, the recycle of human waste and trash, H2O, N2, and food production/supply. A simple noniterative solution for the model has been developed using the steady state rate equations for the chemical reactions. The model and program have been used in system sizing and subsystem trade-off studies of a partially closed life support system.

  1. On the Development of Parameterized Linear Analytical Longitudinal Airship Models

    NASA Technical Reports Server (NTRS)

    Kulczycki, Eric A.; Johnson, Joseph R.; Bayard, David S.; Elfes, Alberto; Quadrelli, Marco B.

    2008-01-01

    In order to explore Titan, a moon of Saturn, airships must be able to traverse the atmosphere autonomously. To achieve this, an accurate model and accurate control of the vehicle must be developed so that it is understood how the airship will react to specific sets of control inputs. This paper explains how longitudinal aircraft stability derivatives can be used with airship parameters to create a linear model of the airship solely by combining geometric and aerodynamic airship data. This method does not require system identification of the vehicle. All of the required data can be derived from computational fluid dynamics and wind tunnel testing. This alternate method of developing dynamic airship models will reduce time and cost. Results are compared to other stable airship dynamic models to validate the methods. Future work will address a lateral airship model using the same methods.

  2. Aquilegia: a new model for plant development, ecology, and evolution.

    PubMed

    Kramer, Elena M

    2009-01-01

    The lower eudicot genus Aquilegia holds enormous potential for investigating aspects of development, ecology, and evolution that are otherwise unrepresented among existing model systems. Its evolutionary history is of particular interest because it represents a phylogenetic midpoint between models such as Arabidopsis and Oryza but, at the same time, has experienced a recent adaptive radiation within the genus. To take advantage of these features, a collaborative group has developed a number of genetic and genomic resources for Aquilegia that have facilitated the study of its distinct morphology. This work has demonstrated that although the petaloid sepals of Aquilegia do not depend on B-class genes for their identity, these loci do control development of the petals, stamens, and novel staminodium. Overall, Aquilegia stands as a key example of the potential utility and speed of developing new genetic model systems. PMID:19575583

  3. Infrared model development for a high-speed imaging fuze

    NASA Astrophysics Data System (ADS)

    Garbo, Dennis L.; Olson, Eric M.; Crow, Dennis R.; Coker, Charles F.; Cunard, Donald A.

    1998-07-01

    Development and generation of high-fidelity IR scenes to support testing requirements at the Kinetic Kill Vehicle Hardware-in-the-Loop Simulator (KHILS) facility at Eglin AFB, Florida has been the mission for the Air Force Research Laboratory's (AFRL) scene generation team throughout the past ten years. During that time scene generation efforts have supported operational scenarios ranging from surveillance through terminal homing. Recent programs have required the development of IR target and background models to support the testing needs of a high-speed fuze. Development of IR models and techniques to support high-speed fuze applications required advancing the state-of-the-art in IR scene generation. This effort required the development of several target models not available from other sources. In addition, due to the unusual proximity fuze seeker configuration that utilizes a wide angle lens to encompass a full 360 degree field-of-view (FOV) and very fast frame rate requirements, normal scene generation techniques were not adequate. Hundreds of scenarios consisting of hundreds of image frames were needed to develop the fuzing algorithms. This scene generation requirement necessitated that realistic scene sequences be produced in minutes rather than hours. This paper discusses the IR model development path to generate IR scene sequences to support the algorithm development for this fuzing program. The discussion describes the process and unique modeling techniques that were implemented to build foreign target models that include fighter and bomber aircraft, low-flying cruise missiles, and helicopters. Implementation of appropriate rendering techniques to support the generation of backgrounds that include atmospherics, terrain, and sea for realistic target engagements are also discussed. Finally, a description of the process utilized in merging IR model and commercial hardware solutions to satisfy the IR scene generation requirements for this program is presented.

  4. Recent Developments on the Turbulence Modeling Resource Website (Invited)

    NASA Technical Reports Server (NTRS)

    Rumssey, Christopher L.

    2015-01-01

    The NASA Langley Turbulence Model Resource (TMR) website has been active for over five years. Its main goal of providing a one-stop, easily accessible internet site for up-to-date information on Reynolds-averaged Navier-Stokes turbulence models remains unchanged. In particular, the site strives to provide an easy way for users to verify their own implementations of widely-used turbulence models, and to compare the results from different models for a variety of simple unit problems covering a range of flow physics. Some new features have been recently added to the website. This paper documents the site's features, including recent developments, future plans, and open questions.

  5. Development and experimental verification of an intraocular scattering model

    NASA Astrophysics Data System (ADS)

    Jiang, Chong-Jhih; Jhong, Tian-Siang; Chen, Yi-Chun; Sun, Ching-Cherng

    2011-10-01

    An intraocular scattering model was constructed in human eye model and experimentally verified. According to the biometric data, the volumetric scattering in crystalline lens and diffusion at retina fundus were developed. The scattering parameters of cornea, including particle size and obscuration ratio, were varied to make the veiling luminance of the eye model matching the CIE disability glare general formula. By replacing the transparent lens with a cataractous lens, the disability glare curve of cataracts was generated and compared with that of transparent lenses. The MTF of the intraocular scattering model showed nice correspondence with the data measured by a double-pass experiment.

  6. Progress in the development of high degree potential coefficient models

    NASA Technical Reports Server (NTRS)

    Rapp, Richard H.

    1989-01-01

    A natural extension of the recent satellite derived potential coefficient models is the development of high degree (maximum 180 or 360) expansions. Such expansions are based on the combination of the satellite derived models with terrestrial gravity data and satellite altimeter data. Such models are useful for more precise geoid undulation computations, for simulation studies involving different typed of future missions (e.g., gradiometry), and as reference fields for different types of gravimetric computations. The attention is to the effect of the terrain, ellipsoidal terms, and weighting. The basic methods used for the high degree solutions are reviewed. Various correction terms are described and recent models are discussed and compared.

  7. Development and Application of Nonlinear Land-Use Regression Models

    NASA Astrophysics Data System (ADS)

    Champendal, Alexandre; Kanevski, Mikhail; Huguenot, Pierre-Emmanuel

    2014-05-01

    The problem of air pollution modelling in urban zones is of great importance both from scientific and applied points of view. At present there are several fundamental approaches either based on science-based modelling (air pollution dispersion) or on the application of space-time geostatistical methods (e.g. family of kriging models or conditional stochastic simulations). Recently, there were important developments in so-called Land Use Regression (LUR) models. These models take into account geospatial information (e.g. traffic network, sources of pollution, average traffic, population census, land use, etc.) at different scales, for example, using buffering operations. Usually the dimension of the input space (number of independent variables) is within the range of (10-100). It was shown that LUR models have some potential to model complex and highly variable patterns of air pollution in urban zones. Most of LUR models currently used are linear models. In the present research the nonlinear LUR models are developed and applied for Geneva city. Mainly two nonlinear data-driven models were elaborated: multilayer perceptron and random forest. An important part of the research deals also with a comprehensive exploratory data analysis using statistical, geostatistical and time series tools. Unsupervised self-organizing maps were applied to better understand space-time patterns of the pollution. The real data case study deals with spatial-temporal air pollution data of Geneva (2002-2011). Nitrogen dioxide (NO2) has caught our attention. It has effects on human health and on plants; NO2 contributes to the phenomenon of acid rain. The negative effects of nitrogen dioxides on plants are the reduction of the growth, production and pesticide resistance. And finally, the effects on materials: nitrogen dioxide increases the corrosion. The data used for this study consist of a set of 106 NO2 passive sensors. 80 were used to build the models and the remaining 36 have constituted

  8. Development of numerical Grids for UZ Flow and Transport Modeling

    SciTech Connect

    P. Dobson

    2004-08-31

    This report describes the methods used to develop numerical grids of the unsaturated hydrogeologic system beneath Yucca Mountain, Nevada. Numerical grid generation is an integral part of the development of the unsaturated zone (UZ) flow and transport model, a complex, three-dimensional (3-D) model of Yucca Mountain. This revision contains changes made to improve the clarity of the description of grid generation. The numerical grids, developed using current geologic, hydrogeologic, and mineralogic data, provide the necessary framework to: (1) develop calibrated hydrogeologic property sets and flow fields, (2) test conceptual hypotheses of flow and transport, and (3) predict flow and transport behavior under a variety of climatic and thermal-loading conditions. The technical scope, content, and management for the current revision of this report are described in the planning document ''Technical Work Plan for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Section 2). Grids generated and documented in this report supersede those documented in Revision 00 of this report, ''Development of Numerical Grids for UZ Flow and Transport Modeling'' (BSC 2001 [DIRS 159356]). The grids presented in this report are the same as those developed in Revision 01 (BSC 2003 [DIRS 160109]); however, the documentation of the development of the grids in Revision 02 has been updated to address technical inconsistencies and achieve greater transparency, readability, and traceability. The constraints, assumptions, and limitations associated with this report are discussed in the appropriate sections that follow.

  9. Investigation on the Practicality of Developing Reduced Thermal Models

    NASA Technical Reports Server (NTRS)

    Lombardi, Giancarlo; Yang, Kan

    2015-01-01

    Throughout the spacecraft design and development process, detailed instrument thermal models are created to simulate their on-orbit behavior and to ensure that they do not exceed any thermal limits. These detailed models, while generating highly accurate predictions, can sometimes lead to long simulation run times, especially when integrated with a spacecraft observatory model. Therefore, reduced models containing less detail are typically produced in tandem with the detailed models so that results may be more readily available, albeit less accurate. In the current study, both reduced and detailed instrument models are integrated with their associated spacecraft bus models to examine the impact of instrument model reduction on run time and accuracy. Preexisting instrument bus thermal model pairs from several projects were used to determine trends between detailed and reduced thermal models; namely, the Mirror Optical Bench (MOB) on the Gravity and Extreme Magnetism Small Explorer (GEMS) spacecraft, Advanced Topography Laser Altimeter System (ATLAS) on the Ice, Cloud, and Elevation Satellite 2 (ICESat-2), and the Neutral Mass Spectrometer (NMS) on the Lunar Atmosphere and Dust Environment Explorer (LADEE). Hot and cold cases were run for each model to capture the behavior of the models at both thermal extremes. It was found that, though decreasing the number of nodes from a detailed to reduced model brought about a reduction in the run-time, a large time savings was not observed, nor was it a linear relationship between the percentage of nodes reduced and time saved. However, significant losses in accuracy were observed with greater model reduction. It was found that while reduced models are useful in decreasing run time, there exists a threshold of reduction where, once exceeded, the loss in accuracy outweighs the benefit from reduced model runtime.

  10. Modeling of Biomass Plug Development and Propagation in Porous Media

    SciTech Connect

    Stewart, Terri L.; Kim, Dong-Shik

    2004-02-01

    Biomass accumulation and evolution in porous media were simulated using a combination of biofilm evolution model and a biofilm removal model. Theses models describe biomass plug development, removal, and propagation in biological applications such as microbial enhanced oil recovery, in situ bioremediation, and bio-barrier techniques. The biofilm evolution model includes the cell growth rate and exopolymer production kinetics. The biofilm removal model was used for describing the biomass plug propagation and channel breakthrough using Bingham yield stress of biofilm, which represents the stability of biofilm against shear stress. Network model was used to describe a porous medium. The network model consists of pore body and pore bond of which the sizes were determined based on the pore size distribution of ceramic cores. The pressure drop across the network is assumed to be generated from pore bonds only, and the cell growth and biomass accumulation took place in pore bonds. The simulation results showed that the biofilm models based on Bingham yield stress predicted the biomass accumulation and channel breakthrough well. The pressure oscillation (or, permeability oscillation) was also demonstrated well indicating the process of biomass accumulation and breakthrough channel formation. In addition, the effects of cell and biofilm sucrose concentration were significant on the biomass plug development and permeability reduction rates. The modeling elucidated some deficiencies in our knowledge of the biomass yield stress that enables us to predict the stability of biomass plug against shear stress.

  11. The development model of software product line based AOP

    NASA Astrophysics Data System (ADS)

    Yin, JingHai

    2011-10-01

    In this paper, we proposed a development model of MIS (management information system) software based aspect-oriented programming. MIS software will be the full separation of concerns, and establish corresponding platform-independent model, the dynamic weaving of aspects does not require all the static or fixed in weaver weaving in specific areas and at the same time Optimization, reducing system complexity and improve software development efficiency and speed. While the description and implementation of all aspects of the software industry chain assigned to the various levels of development team to complete, MIS can help resolve the current heavy workload of the software development process, low developing level, low software reuse rate, more duplication work of effort Problems.

  12. Computational modeling and simulation of genital tubercle development.

    PubMed

    Leung, Maxwell C K; Hutson, M Shane; Seifert, Ashley W; Spencer, Richard M; Knudsen, Thomas B

    2016-09-01

    Hypospadias is a developmental defect of urethral tube closure that has a complex etiology involving genetic and environmental factors, including anti-androgenic and estrogenic disrupting chemicals; however, little is known about the morphoregulatory consequences of androgen/estrogen balance during genital tubercle (GT) development. Computer models that predictively model sexual dimorphism of the GT may provide a useful resource to translate chemical-target bipartite networks and their developmental consequences across the human-relevant chemical universe. Here, we describe a multicellular agent-based model of genital tubercle (GT) development that simulates urethrogenesis from the sexually-indifferent urethral plate stage to urethral tube closure. The prototype model, constructed in CompuCell3D, recapitulates key aspects of GT morphogenesis controlled by SHH, FGF10, and androgen pathways through modulation of stochastic cell behaviors, including differential adhesion, motility, proliferation, and apoptosis. Proper urethral tube closure in the model was shown to depend quantitatively on SHH- and FGF10-induced effects on mesenchymal proliferation and epithelial apoptosis-both ultimately linked to androgen signaling. In the absence of androgen, GT development was feminized and with partial androgen deficiency, the model resolved with incomplete urethral tube closure, thereby providing an in silico platform for probabilistic prediction of hypospadias risk across combinations of minor perturbations to the GT system at various stages of embryonic development. PMID:27180093

  13. Contemporary murine models in preclinical astrocytoma drug development

    PubMed Central

    McNeill, Robert S.; Vitucci, Mark; Wu, Jing; Miller, C. Ryan

    2015-01-01

    Despite 6 decades of research, only 3 drugs have been approved for astrocytomas, the most common malignant primary brain tumors. However, clinical drug development is accelerating with the transition from empirical, cytotoxic therapy to precision, targeted medicine. Preclinical animal model studies are critical for prioritizing drug candidates for clinical development and, ultimately, for their regulatory approval. For decades, only murine models with established tumor cell lines were available for such studies. However, these poorly represent the genomic and biological properties of human astrocytomas, and their preclinical use fails to accurately predict efficacy in clinical trials. Newer models developed over the last 2 decades, including patient-derived xenografts, genetically engineered mice, and genetically engineered cells purified from human brains, more faithfully phenocopy the genomics and biology of human astrocytomas. Harnessing the unique benefits of these models will be required to identify drug targets, define combination therapies that circumvent inherent and acquired resistance mechanisms, and develop molecular biomarkers predictive of drug response and resistance. With increasing recognition of the molecular heterogeneity of astrocytomas, employing multiple, contemporary models in preclinical drug studies promises to increase the efficiency of drug development for specific, molecularly defined subsets of tumors. PMID:25246428

  14. Development and Validation of a 3-Dimensional CFB Furnace Model

    NASA Astrophysics Data System (ADS)

    Vepsäläinen, Arl; Myöhänen, Karl; Hyppäneni, Timo; Leino, Timo; Tourunen, Antti

    At Foster Wheeler, a three-dimensional CFB furnace model is essential part of knowledge development of CFB furnace process regarding solid mixing, combustion, emission formation and heat transfer. Results of laboratory and pilot scale phenomenon research are utilized in development of sub-models. Analyses of field-test results in industrial-scale CFB boilers including furnace profile measurements are simultaneously carried out with development of 3-dimensional process modeling, which provides a chain of knowledge that is utilized as feedback for phenomenon research. Knowledge gathered by model validation studies and up-to-date parameter databases are utilized in performance prediction and design development of CFB boiler furnaces. This paper reports recent development steps related to modeling of combustion and formation of char and volatiles of various fuel types in CFB conditions. Also a new model for predicting the formation of nitrogen oxides is presented. Validation of mixing and combustion parameters for solids and gases are based on test balances at several large-scale CFB boilers combusting coal, peat and bio-fuels. Field-tests including lateral and vertical furnace profile measurements and characterization of solid materials provides a window for characterization of fuel specific mixing and combustion behavior in CFB furnace at different loads and operation conditions. Measured horizontal gas profiles are projection of balance between fuel mixing and reactions at lower part of furnace and are used together with both lateral temperature profiles at bed and upper parts of furnace for determination of solid mixing and combustion model parameters. Modeling of char and volatile based formation of NO profiles is followed by analysis of oxidizing and reducing regions formed due lower furnace design and mixing characteristics of fuel and combustion airs effecting to formation ofNO furnace profile by reduction and volatile-nitrogen reactions. This paper presents

  15. Recent developments in animal models of drug relapse.

    PubMed

    Marchant, Nathan J; Li, Xuan; Shaham, Yavin

    2013-08-01

    Drug craving and relapse to drug use during abstinence are defining features of addiction. Evidence indicates that drug craving and relapse in humans are often provoked by acute exposure to the self-administered drug, drug-associated cues, or stress. During the last two decades, this clinical scenario has been primarily studied at the preclinical level using the classical reinstatement model. However, a single preclinical model cannot capture the complicated nature of human drug relapse. Therefore, more recently, we and others have developed several other models to study different facets of human drug relapse. In this review, we introduce and discuss recent findings from these other relapse models, including incubation of drug craving, reacquisition and resurgence models, and punishment-based and conflict-based relapse models. PMID:23374536

  16. Developing a predictive tropospheric ozone model for Tabriz

    NASA Astrophysics Data System (ADS)

    Khatibi, Rahman; Naghipour, Leila; Ghorbani, Mohammad A.; Smith, Michael S.; Karimi, Vahid; Farhoudi, Reza; Delafrouz, Hadi; Arvanaghi, Hadi

    2013-04-01

    Predictive ozone models are becoming indispensable tools by providing a capability for pollution alerts to serve people who are vulnerable to the risks. We have developed a tropospheric ozone prediction capability for Tabriz, Iran, by using the following five modeling strategies: three regression-type methods: Multiple Linear Regression (MLR), Artificial Neural Networks (ANNs), and Gene Expression Programming (GEP); and two auto-regression-type models: Nonlinear Local Prediction (NLP) to implement chaos theory and Auto-Regressive Integrated Moving Average (ARIMA) models. The regression-type modeling strategies explain the data in terms of: temperature, solar radiation, dew point temperature, and wind speed, by regressing present ozone values to their past values. The ozone time series are available at various time intervals, including hourly intervals, from August 2010 to March 2011. The results for MLR, ANN and GEP models are not overly good but those produced by NLP and ARIMA are promising for the establishing a forecasting capability.

  17. Development and testing of a mouse simulated space flight model

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, G.

    1985-01-01

    The development and testing of a mouse model for simulating some aspects of weightlessness that occur during space flight, and the carrying out of immunological flight experiments on animals was discussed. The mouse model is an antiorthostatic, hypokinetic, hypodynamic suspension model similar to the one used with rats. It is shown that this murine model yield similar results to the rat model of antiorthostatic suspension for simulating some aspects of weightlessness. It is also shown that mice suspended in this model have decreased interferon-alpha/beta production as compared to control, nonsuspended mice or to orthostatically suspended mice. It is suggested that the conditions occuring during space flight could possibly affect interferon production. The regulatory role of interferon in nonviral diseases is demonstrated including several bacterial and protozoan infections indicating the great significance of interferon in resistance to many types of infectious diseases.

  18. Dependability modeling and assessment in UML-based software development.

    PubMed

    Bernardi, Simona; Merseguer, José; Petriu, Dorina C

    2012-01-01

    Assessment of software nonfunctional properties (NFP) is an important problem in software development. In the context of model-driven development, an emerging approach for the analysis of different NFPs consists of the following steps: (a) to extend the software models with annotations describing the NFP of interest; (b) to transform automatically the annotated software model to the formalism chosen for NFP analysis; (c) to analyze the formal model using existing solvers; (d) to assess the software based on the results and give feedback to designers. Such a modeling→analysis→assessment approach can be applied to any software modeling language, be it general purpose or domain specific. In this paper, we focus on UML-based development and on the dependability NFP, which encompasses reliability, availability, safety, integrity, and maintainability. The paper presents the profile used to extend UML with dependability information, the model transformation to generate a DSPN formal model, and the assessment of the system properties based on the DSPN results. PMID:22988428

  19. Protein adsorption on nanoparticles: model development using computer simulation.

    PubMed

    Shao, Qing; Hall, Carol K

    2016-10-19

    The adsorption of proteins on nanoparticles results in the formation of the protein corona, the composition of which determines how nanoparticles influence their biological surroundings. We seek to better understand corona formation by developing models that describe protein adsorption on nanoparticles using computer simulation results as data. Using a coarse-grained protein model, discontinuous molecular dynamics simulations are conducted to investigate the adsorption of two small proteins (Trp-cage and WW domain) on a model nanoparticle of diameter 10.0 nm at protein concentrations ranging from 0.5 to 5 mM. The resulting adsorption isotherms are well described by the Langmuir, Freundlich, Temkin and Kiselev models, but not by the Elovich, Fowler-Guggenheim and Hill-de Boer models. We also try to develop a generalized model that can describe protein adsorption equilibrium on nanoparticles of different diameters in terms of dimensionless size parameters. The simulation results for three proteins (Trp-cage, WW domain, and GB3) on four nanoparticles (diameter  =  5.0, 10.0, 15.0, and 20.0 nm) illustrate both the promise and the challenge associated with developing generalized models of protein adsorption on nanoparticles. PMID:27546610

  20. A Science Plan for Development of an Arctic System Model

    NASA Astrophysics Data System (ADS)

    Hinzman, L.; Cassano, J.; Doescher, R.; Holland, M.; Mitsudera, H.; Roberts, A.; Sumi, A.; Walsh, J.

    2008-12-01

    In the last 50 years a wide variety of changes in the Arctic have been documented. Regardless of the driving forces, the combined observations and documentation suggest that the arctic system may be entering a state unprecedented in the history of civilization. The complex interplay of physical, chemical, biological and social processes interact to such a degree that it is not possible to understand future trajectories without developing holistic perspectives of the complete system. A central justification for developing an 'Arctic System Model' is to strengthen our understanding of the inter-connections among system components and related feedback processes, thereby enhancing the predictive capability required for societal planning and response to future change. A recent community workshop has identified the objectives and strategic elements that comprise a plan for Arctic System Model development and implementation. The objective encompasses our understanding of change, attribution of change, and effects of change. The plan includes the use of a limited area model, driven at the boundaries by a global model. The limited-area model approach allows for the use of computationally sophisticated algorithms and very high resolution to resolve processes parameterized in global models. The implementation strategy includes the utilization of ongoing efforts in component modeling, together with community oversight and a dedicated vehicle for the provision of coordination, support activities, and liaison with the observational and user communities.

  1. Evolving Synaptic Plasticity with an Evolutionary Cellular Development Model

    PubMed Central

    Yerushalmi, Uri; Teicher, Mina

    2008-01-01

    Since synaptic plasticity is regarded as a potential mechanism for memory formation and learning, there is growing interest in the study of its underlying mechanisms. Recently several evolutionary models of cellular development have been presented, but none have been shown to be able to evolve a range of biological synaptic plasticity regimes. In this paper we present a biologically plausible evolutionary cellular development model and test its ability to evolve different biological synaptic plasticity regimes. The core of the model is a genomic and proteomic regulation network which controls cells and their neurites in a 2D environment. The model has previously been shown to successfully evolve behaving organisms, enable gene related phenomena, and produce biological neural mechanisms such as temporal representations. Several experiments are described in which the model evolves different synaptic plasticity regimes using a direct fitness function. Other experiments examine the ability of the model to evolve simple plasticity regimes in a task -based fitness function environment. These results suggest that such evolutionary cellular development models have the potential to be used as a research tool for investigating the evolutionary aspects of synaptic plasticity and at the same time can serve as the basis for novel artificial computational systems. PMID:19002249

  2. Dependability Modeling and Assessment in UML-Based Software Development

    PubMed Central

    Bernardi, Simona; Merseguer, José; Petriu, Dorina C.

    2012-01-01

    Assessment of software nonfunctional properties (NFP) is an important problem in software development. In the context of model-driven development, an emerging approach for the analysis of different NFPs consists of the following steps: (a) to extend the software models with annotations describing the NFP of interest; (b) to transform automatically the annotated software model to the formalism chosen for NFP analysis; (c) to analyze the formal model using existing solvers; (d) to assess the software based on the results and give feedback to designers. Such a modeling→analysis→assessment approach can be applied to any software modeling language, be it general purpose or domain specific. In this paper, we focus on UML-based development and on the dependability NFP, which encompasses reliability, availability, safety, integrity, and maintainability. The paper presents the profile used to extend UML with dependability information, the model transformation to generate a DSPN formal model, and the assessment of the system properties based on the DSPN results. PMID:22988428

  3. Test Driven Development: Lessons from a Simple Scientific Model

    NASA Astrophysics Data System (ADS)

    Clune, T. L.; Kuo, K.

    2010-12-01

    In the commercial software industry, unit testing frameworks have emerged as a disruptive technology that has permanently altered the process by which software is developed. Unit testing frameworks significantly reduce traditional barriers, both practical and psychological, to creating and executing tests that verify software implementations. A new development paradigm, known as test driven development (TDD), has emerged from unit testing practices, in which low-level tests (i.e. unit tests) are created by developers prior to implementing new pieces of code. Although somewhat counter-intuitive, this approach actually improves developer productivity. In addition to reducing the average time for detecting software defects (bugs), the requirement to provide procedure interfaces that enable testing frequently leads to superior design decisions. Although TDD is widely accepted in many software domains, its applicability to scientific modeling still warrants reasonable skepticism. While the technique is clearly relevant for infrastructure layers of scientific models such as the Earth System Modeling Framework (ESMF), numerical and scientific components pose a number of challenges to TDD that are not often encountered in commercial software. Nonetheless, our experience leads us to believe that the technique has great potential not only for developer productivity, but also as a tool for understanding and documenting the basic scientific assumptions upon which our models are implemented. We will provide a brief introduction to test driven development and then discuss our experience in using TDD to implement a relatively simple numerical model that simulates the growth of snowflakes. Many of the lessons learned are directly applicable to larger scientific models.

  4. Energy standards and model codes development, adoption, implementation, and enforcement

    SciTech Connect

    Conover, D.R.

    1994-08-01

    This report provides an overview of the energy standards and model codes process for the voluntary sector within the United States. The report was prepared by Pacific Northwest Laboratory (PNL) for the Building Energy Standards Program and is intended to be used as a primer or reference on this process. Building standards and model codes that address energy have been developed by organizations in the voluntary sector since the early 1970s. These standards and model codes provide minimum energy-efficient design and construction requirements for new buildings and, in some instances, existing buildings. The first step in the process is developing new or revising existing standards or codes. There are two overall differences between standards and codes. Energy standards are developed by a consensus process and are revised as needed. Model codes are revised on a regular annual cycle through a public hearing process. In addition to these overall differences, the specific steps in developing/revising energy standards differ from model codes. These energy standards or model codes are then available for adoption by states and local governments. Typically, energy standards are adopted by or adopted into model codes. Model codes are in turn adopted by states through either legislation or regulation. Enforcement is essential to the implementation of energy standards and model codes. Low-rise residential construction is generally evaluated for compliance at the local level, whereas state agencies tend to be more involved with other types of buildings. Low-rise residential buildings also may be more easily evaluated for compliance because the governing requirements tend to be less complex than for commercial buildings.

  5. Integration of rapid product development technologies information models using STEP

    NASA Astrophysics Data System (ADS)

    Mony, Charles

    1997-01-01

    Based on the latest development in particular in CAD/CAM, rapid prototyping, reverse engineering and inspection, rapid product development involves more and more new technologies. The integration of these different systems around common and consistent information models appears now as a main issue to get the best profit from these technologies. The issue of information models to be used in this area has appeared from the beginning and several format such as the STL format were proposed to be able to communicate between these system. The number of different existing formats, the performance as well as the accuracy of these models push today to develop new standard information models and technologies. In that way, STEP is clearly identified as a main integration technology to be applied in rapid product development. STEP has already become an international standard and was adopted by main industrial sectors to build their own integration strategies. The proposed paper present the objectives and specifications of an integrated rapid product development environment based on STEP technologies. The main concept and technical contents of STEP are defined, as well as the role and application of STEP in rapid product development.

  6. Engine System Model Development for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Nelson, Karl W.; Simpson, Steven P.

    2006-01-01

    In order to design, analyze, and evaluate conceptual Nuclear Thermal Propulsion (NTP) engine systems, an improved NTP design and analysis tool has been developed. The NTP tool utilizes the Rocket Engine Transient Simulation (ROCETS) system tool and many of the routines from the Enabler reactor model found in Nuclear Engine System Simulation (NESS). Improved non-nuclear component models and an external shield model were added to the tool. With the addition of a nearly complete system reliability model, the tool will provide performance, sizing, and reliability data for NERVA-Derived NTP engine systems. A new detailed reactor model is also being developed and will replace Enabler. The new model will allow more flexibility in reactor geometry and include detailed thermal hydraulics and neutronics models. A description of the reactor, component, and reliability models is provided. Another key feature of the modeling process is the use of comprehensive spreadsheets for each engine case. The spreadsheets include individual worksheets for each subsystem with data, plots, and scaled figures, making the output very useful to each engineering discipline. Sample performance and sizing results with the Enabler reactor model are provided including sensitivities. Before selecting an engine design, all figures of merit must be considered including the overall impacts on the vehicle and mission. Evaluations based on key figures of merit of these results and results with the new reactor model will be performed. The impacts of clustering and external shielding will also be addressed. Over time, the reactor model will be upgraded to design and analyze other NTP concepts with CERMET and carbide fuel cores.

  7. Relational grounding facilitates development of scientifically useful multiscale models

    PubMed Central

    2011-01-01

    We review grounding issues that influence the scientific usefulness of any biomedical multiscale model (MSM). Groundings are the collection of units, dimensions, and/or objects to which a variable or model constituent refers. To date, models that primarily use continuous mathematics rely heavily on absolute grounding, whereas those that primarily use discrete software paradigms (e.g., object-oriented, agent-based, actor) typically employ relational grounding. We review grounding issues and identify strategies to address them. We maintain that grounding issues should be addressed at the start of any MSM project and should be reevaluated throughout the model development process. We make the following points. Grounding decisions influence model flexibility, adaptability, and thus reusability. Grounding choices should be influenced by measures, uncertainty, system information, and the nature of available validation data. Absolute grounding complicates the process of combining models to form larger models unless all are grounded absolutely. Relational grounding facilitates referent knowledge embodiment within computational mechanisms but requires separate model-to-referent mappings. Absolute grounding can simplify integration by forcing common units and, hence, a common integration target, but context change may require model reengineering. Relational grounding enables synthesis of large, composite (multi-module) models that can be robust to context changes. Because biological components have varying degrees of autonomy, corresponding components in MSMs need to do the same. Relational grounding facilitates achieving such autonomy. Biomimetic analogues designed to facilitate translational research and development must have long lifecycles. Exploring mechanisms of normal-to-disease transition requires model components that are grounded relationally. Multi-paradigm modeling requires both hyperspatial and relational grounding. PMID:21951817

  8. The Development in modeling Tibetan Plateau Land/Climate Interaction

    NASA Astrophysics Data System (ADS)

    Xue, Yongkang; Liu, Ye; li, qian; Maheswor Shrestha, Maheswor; Ma, Hsi-Yen; Cox, Peter; Sun, shufen; Koike, Toshio

    2015-04-01

    Tibetan Plateau (TP) plays an important role in influencing the continental and planetary scale climate, including East Asian and South Asian monsoon, circulation and precipitation over West Pacific and Indian Oceans. The numerical study has identified TP as the area with strongest land/atmosphere interactions over the midlatitude land. The land degradation there has also affected the monsoon precipitation in TP along the monsoon pathway. The water cycle there affects water sources for major Asian river systems, which include the Tarim, Amu Darya, Indus, Ganges, Brahmaputra, Irrawaddy, Salween, Mekong, Yellow, and Yangtze Rivers. Despite the importance of TP land process in the climate system, the TP land surface processes are poorly modeled due to lack of data available for model validation. To better understand, simulate, and project the role of Tibetan Plateau land surface processes, better parameterization of the Tibetan Land surface processes have been developed and evaluated. The recently available field measurement there and satellite observation have greatly helped this development. This paper presents these new developments and preliminary results using the newly developed biophysical/dynamic vegetation model, frozen soil model, and glacier model. In recent CMIP5 simulation, the CMIP5 models with dynamic vegetation model show poor performance in simulating the TP vegetation and climate. To better simulate the TP vegetation condition and its interaction with climate, we have developed biophysical/dynamic vegetation model, the Simplified Simple Biosphere Model version 4/Top-down Representation of Interactive Foliage and Flora Including Dynamics Model (SSiB4/TRIFFID), based on water, carbon, and energy balance. The simulated vegetation variables are updates, driven by carbon assimilation, allocation, and accumulation, as well as competition between plant functional types. The model has been validated with the station data, including those measured over the TP

  9. Model for Simulating a Spiral Software-Development Process

    NASA Technical Reports Server (NTRS)

    Mizell, Carolyn; Curley, Charles; Nayak, Umanath

    2010-01-01

    A discrete-event simulation model, and a computer program that implements the model, have been developed as means of analyzing a spiral software-development process. This model can be tailored to specific development environments for use by software project managers in making quantitative cases for deciding among different software-development processes, courses of action, and cost estimates. A spiral process can be contrasted with a waterfall process, which is a traditional process that consists of a sequence of activities that include analysis of requirements, design, coding, testing, and support. A spiral process is an iterative process that can be regarded as a repeating modified waterfall process. Each iteration includes assessment of risk, analysis of requirements, design, coding, testing, delivery, and evaluation. A key difference between a spiral and a waterfall process is that a spiral process can accommodate changes in requirements at each iteration, whereas in a waterfall process, requirements are considered to be fixed from the beginning and, therefore, a waterfall process is not flexible enough for some projects, especially those in which requirements are not known at the beginning or may change during development. For a given project, a spiral process may cost more and take more time than does a waterfall process, but may better satisfy a customer's expectations and needs. Models for simulating various waterfall processes have been developed previously, but until now, there have been no models for simulating spiral processes. The present spiral-process-simulating model and the software that implements it were developed by extending a discrete-event simulation process model of the IEEE 12207 Software Development Process, which was built using commercially available software known as the Process Analysis Tradeoff Tool (PATT). Typical inputs to PATT models include industry-average values of product size (expressed as number of lines of code

  10. Development of a Bayesian Belief Network Runway Incursion Model

    NASA Technical Reports Server (NTRS)

    Green, Lawrence L.

    2014-01-01

    In a previous paper, a statistical analysis of runway incursion (RI) events was conducted to ascertain their relevance to the top ten Technical Challenges (TC) of the National Aeronautics and Space Administration (NASA) Aviation Safety Program (AvSP). The study revealed connections to perhaps several of the AvSP top ten TC. That data also identified several primary causes and contributing factors for RI events that served as the basis for developing a system-level Bayesian Belief Network (BBN) model for RI events. The system-level BBN model will allow NASA to generically model the causes of RI events and to assess the effectiveness of technology products being developed under NASA funding. These products are intended to reduce the frequency of RI events in particular, and to improve runway safety in general. The development, structure and assessment of that BBN for RI events by a Subject Matter Expert panel are documented in this paper.

  11. Modeling, Measurements, and Fundamental Database Development for Nonequilibrium Hypersonic Aerothermodynamics

    NASA Technical Reports Server (NTRS)

    Bose, Deepak

    2012-01-01

    The design of entry vehicles requires predictions of aerothermal environment during the hypersonic phase of their flight trajectories. These predictions are made using computational fluid dynamics (CFD) codes that often rely on physics and chemistry models of nonequilibrium processes. The primary processes of interest are gas phase chemistry, internal energy relaxation, electronic excitation, nonequilibrium emission and absorption of radiation, and gas-surface interaction leading to surface recession and catalytic recombination. NASAs Hypersonics Project is advancing the state-of-the-art in modeling of nonequilibrium phenomena by making detailed spectroscopic measurements in shock tube and arcjets, using ab-initio quantum mechanical techniques develop fundamental chemistry and spectroscopic databases, making fundamental measurements of finite-rate gas surface interactions, implementing of detailed mechanisms in the state-of-the-art CFD codes, The development of new models is based on validation with relevant experiments. We will present the latest developments and a roadmap for the technical areas mentioned above

  12. Cardiac models in drug discovery and development: a review.

    PubMed

    Amanfu, Robert K; Saucerman, Jeffrey J

    2011-01-01

    Cardiovascular diseases are among the leading causes of death in the developed world. Developing novel therapies for diseases like heart failure is crucial, but this is hampered by the high attrition rate in drug development. The withdrawal of drugs at the final hurdle of approval is mostly because of their unpredictable effects on normal cardiac rhythm. The advent of cardiac computational modeling in the last 5 decades has aided the understanding of heart function significantly. Recently, these models increasingly have been applied toward designing and understanding therapies for cardiac disease. This article will discuss how cellular models of electrophysiology, cell signaling, and metabolism have been used to investigate pharmacologic therapies for cardiac diseases including arrhythmia, ischemia, and heart failure. PMID:22196160

  13. Developing a Dynamic Pharmacophore Model for HIV-1 Integrase

    SciTech Connect

    Carlson, Heather A.; Masukawa, Keven M.; Rubins, Kathleen; Bushman, Frederic; Jorgensen, William L.; Lins, Roberto; Briggs, James; Mccammon, Andy

    2000-05-11

    We present the first receptor-based pharmacophore model for HIV-1 integrase. The development of ''dynamic'' pharmacophore models is a new method that accounts for the inherent flexibility of the active site and aims to reduce the entropic penalties associated with binding a ligand. Furthermore, this new drug discovery method overcomes the limitation of an incomplete crystal structure of the target protein. A molecular dynamics (MD) simulation describes the flexibility of the uncomplexed protein. Many conformational models of the protein are saved from the MD simulations and used in a series of multi-unit search for interacting conformers (MUSIC) simulations. MUSIC is a multiple-copy minimization method, available in the BOSS program; it is used to determine binding regions for probe molecules containing functional groups that complement the active site. All protein conformations from the MD are overlaid, and conserved binding regions for the probe molecules are identified. Those conserved binding regions define the dynamic pharmacophore model. Here, the dynamic model is compared to known inhibitors of the integrase as well as a three-point, ligand-based pharmacophore model from the literature. Also, a ''static'' pharmacophore model was determined in the standard fashion, using a single crystal structure. Inhibitors thought to bind in the active site of HIV-1 integrase fit the dynamic model but not the static model. Finally, we have identified a set of compounds from the Available Chemicals Directory that fit the dynamic pharmacophore model, and experimental testing of the compounds has confirmed several new inhibitors.

  14. Development and evaluation of the offshore and coastal dispersion model

    SciTech Connect

    Hanna, S.R.; Schulman, L.L.; Paine, R.J.; Pleim, J.E.; Baer, M.

    1985-10-01

    The Offshore and Coastal Dispersion (OCD) model has been developed for the Minerals Management Service (MMS) to determine the impact of offshore and onshore emissions from point sources on the air quality of coastal regions. Constructed on the framework of the EPA guideline model MPTER, the OCD model incorporates overwater plume transport and dispersion as well as changes that occur as the plume crosses the shoreline. Hourly meteorological data are needed from both offshore and onshore locations, including wind direction and speed, mixing height, overwater air temperature and relative humidity, and the sea surface temperature. Observed turbulence intensities are preferred by the model but are not mandatory. Dispersion coefficients are proportional to turbulence intensities. A virtual source technique is used to change the rate of plume growth as the overwater plume intercepts the overland internal boundary layer. The continuous shoreline fumigation case is treated using an approach suggested by Deardorff and Willis. Calculation of plume reflection from elevated terrain follows the Rough Terrain Dispersion Model (RTDM). The OCD model and the modified EPA model used as an interim model for overwater applications by the MMS were tested with measurements from three offshore tracer experiments. The OCD model was shown to be a clear improvement over the EPA model and was officially approved by the MMS in March 1985.

  15. Developing a dynamic pharmacophore model for HIV-1 integrase.

    PubMed

    Carlson, H A; Masukawa, K M; Rubins, K; Bushman, F D; Jorgensen, W L; Lins, R D; Briggs, J M; McCammon, J A

    2000-06-01

    We present the first receptor-based pharmacophore model for HIV-1 integrase. The development of "dynamic" pharmacophore models is a new method that accounts for the inherent flexibility of the active site and aims to reduce the entropic penalties associated with binding a ligand. Furthermore, this new drug discovery method overcomes the limitation of an incomplete crystal structure of the target protein. A molecular dynamics (MD) simulation describes the flexibility of the uncomplexed protein. Many conformational models of the protein are saved from the MD simulations and used in a series of multi-unit search for interacting conformers (MUSIC) simulations. MUSIC is a multiple-copy minimization method, available in the BOSS program; it is used to determine binding regions for probe molecules containing functional groups that complement the active site. All protein conformations from the MD are overlaid, and conserved binding regions for the probe molecules are identified. Those conserved binding regions define the dynamic pharmacophore model. Here, the dynamic model is compared to known inhibitors of the integrase as well as a three-point, ligand-based pharmacophore model from the literature. Also, a "static" pharmacophore model was determined in the standard fashion, using a single crystal structure. Inhibitors thought to bind in the active site of HIV-1 integrase fit the dynamic model but not the static model. Finally, we have identified a set of compounds from the Available Chemicals Directory that fit the dynamic pharmacophore model, and experimental testing of the compounds has confirmed several new inhibitors. PMID:10841789

  16. Development of a hydraulic model of the human systemic circulation

    NASA Technical Reports Server (NTRS)

    Sharp, M. K.; Dharmalingham, R. K.

    1999-01-01

    Physical and numeric models of the human circulation are constructed for a number of objectives, including studies and training in physiologic control, interpretation of clinical observations, and testing of prosthetic cardiovascular devices. For many of these purposes it is important to quantitatively validate the dynamic response of the models in terms of the input impedance (Z = oscillatory pressure/oscillatory flow). To address this need, the authors developed an improved physical model. Using a computer study, the authors first identified the configuration of lumped parameter elements in a model of the systemic circulation; the result was a good match with human aortic input impedance with a minimum number of elements. Design, construction, and testing of a hydraulic model analogous to the computer model followed. Numeric results showed that a three element model with two resistors and one compliance produced reasonable matching without undue complication. The subsequent analogous hydraulic model included adjustable resistors incorporating a sliding plate to vary the flow area through a porous material and an adjustable compliance consisting of a variable-volume air chamber. The response of the hydraulic model compared favorably with other circulation models.

  17. Development of a finger biomechanical model and its considerations.

    PubMed

    Fok, Kim Seng; Chou, Siaw Meng

    2010-03-01

    The development of a biomechanical model for a human finger is faced with many challenges, such as extensor mechanism complexity, statistical indeterminacy and suitability of computational processes. Motivation for this work was to develop a computer model that is able to predict the internal loading patterns of tendons and joint surfaces experienced by the human finger, while mitigating these challenges. Proposed methodology was based on a non-linear optimising mathematical technique with a criterion of boundary conditions and equality equations, maximised against unknown parameters to reduce statistical indeterminacy. Initial validation was performed via the simulation of one dynamic and two static postures case studies. Past models and experiments were used, based on published literature, to verify the proposed model's methodology and results. The feasibility of the proposed methodology was deemed satisfactory as the simulated results were concordant with in-vivo results for the extrinsic flexors. PMID:19962148

  18. Forecasting in foodservice: model development, testing, and evaluation.

    PubMed

    Miller, J L; Thompson, P A; Orabella, M M

    1991-05-01

    This study was designed to develop, test, and evaluate mathematical models appropriate for forecasting menu-item production demand in foodservice. Data were collected from residence and dining hall foodservices at Ohio State University. Objectives of the study were to collect, code, and analyze the data; develop and test models using actual operation data; and compare forecasting results with current methods in use. Customer count was forecast using deseasonalized simple exponential smoothing. Menu-item demand was forecast by multiplying the count forecast by a predicted preference statistic. Forecasting models were evaluated using mean squared error, mean absolute deviation, and mean absolute percentage error techniques. All models were more accurate than current methods. A broad spectrum of forecasting techniques could be used by foodservice managers with access to a personal computer and spread-sheet and database-management software. The findings indicate that mathematical forecasting techniques may be effective in foodservice operations to control costs, increase productivity, and maximize profits. PMID:2019699

  19. Modeling Regulatory Networks to Understand Plant Development: Small Is Beautiful

    PubMed Central

    Middleton, Alistair M.; Farcot, Etienne; Owen, Markus R.; Vernoux, Teva

    2012-01-01

    We now have unprecedented capability to generate large data sets on the myriad genes and molecular players that regulate plant development. Networks of interactions between systems components can be derived from that data in various ways and can be used to develop mathematical models of various degrees of sophistication. Here, we discuss why, in many cases, it is productive to focus on small networks. We provide a brief and accessible introduction to relevant mathematical and computational approaches to model regulatory networks and discuss examples of small network models that have helped generate new insights into plant biology (where small is beautiful), such as in circadian rhythms, hormone signaling, and tissue patterning. We conclude by outlining some of the key technical and modeling challenges for the future. PMID:23110896

  20. Modeling and managing risk early in software development

    NASA Technical Reports Server (NTRS)

    Briand, Lionel C.; Thomas, William M.; Hetmanski, Christopher J.

    1993-01-01

    In order to improve the quality of the software development process, we need to be able to build empirical multivariate models based on data collectable early in the software process. These models need to be both useful for prediction and easy to interpret, so that remedial actions may be taken in order to control and optimize the development process. We present an automated modeling technique which can be used as an alternative to regression techniques. We show how it can be used to facilitate the identification and aid the interpretation of the significant trends which characterize 'high risk' components in several Ada systems. Finally, we evaluate the effectiveness of our technique based on a comparison with logistic regression based models.

  1. Modeling regulatory networks to understand plant development: small is beautiful.

    PubMed

    Middleton, Alistair M; Farcot, Etienne; Owen, Markus R; Vernoux, Teva

    2012-10-01

    We now have unprecedented capability to generate large data sets on the myriad genes and molecular players that regulate plant development. Networks of interactions between systems components can be derived from that data in various ways and can be used to develop mathematical models of various degrees of sophistication. Here, we discuss why, in many cases, it is productive to focus on small networks. We provide a brief and accessible introduction to relevant mathematical and computational approaches to model regulatory networks and discuss examples of small network models that have helped generate new insights into plant biology (where small is beautiful), such as in circadian rhythms, hormone signaling, and tissue patterning. We conclude by outlining some of the key technical and modeling challenges for the future. PMID:23110896

  2. Development of task network models of human performance in microgravity

    NASA Technical Reports Server (NTRS)

    Diaz, Manuel F.; Adam, Susan

    1992-01-01

    This paper discusses the utility of task-network modeling for quantifying human performance variability in microgravity. The data are gathered for: (1) improving current methodologies for assessing human performance and workload in the operational space environment; (2) developing tools for assessing alternative system designs; and (3) developing an integrated set of methodologies for the evaluation of performance degradation during extended duration spaceflight. The evaluation entailed an analysis of the Remote Manipulator System payload-grapple task performed on many shuttle missions. Task-network modeling can be used as a tool for assessing and enhancing human performance in man-machine systems, particularly for modeling long-duration manned spaceflight. Task-network modeling can be directed toward improving system efficiency by increasing the understanding of basic capabilities of the human component in the system and the factors that influence these capabilities.

  3. Use of Animal Models to Develop Antiaddiction Medications

    PubMed Central

    Gardner, Eliot L.

    2008-01-01

    Although addiction is a uniquely human phenomenon, some of its pathognomonic features can be modeled at the animal level. Such features include the euphoric “high” produced by acute administration of addictive drugs; the dysphoric “crash” produced by acute withdrawal, drug-seeking, and drug-taking behaviors; and relapse to drug-seeking behavior after achieving successful abstinence. Animal models exist for each of these features. In this review, I focus on various animal models of addiction and how they can be used to search for clinically effective antiaddiction medications. I conclude by noting some of the new and novel medications that have been developed preclinically using such models and the hope for further developments along such lines. PMID:18803910

  4. Basic Concepts in Population Modeling, Simulation, and Model-Based Drug Development

    PubMed Central

    Mould, D R; Upton, R N

    2012-01-01

    Modeling is an important tool in drug development; population modeling is a complex process requiring robust underlying procedures for ensuring clean data, appropriate computing platforms, adequate resources, and effective communication. Although requiring an investment in resources, it can save time and money by providing a platform for integrating all information gathered on new therapeutic agents. This article provides a brief overview of aspects of modeling and simulation as applied to many areas in drug development. PMID:23835886

  5. A Model for Effective Professional Development of Formal Science Educators

    NASA Astrophysics Data System (ADS)

    Bleacher, L.; Jones, A. P.; Farrell, W. M.

    2015-12-01

    The Lunar Workshops for Educators (LWE) series was developed by the Lunar Reconnaissance Orbiter (LRO) education team in 2010 to provide professional development on lunar science and exploration concepts for grades 6-9 science teachers. Over 300 educators have been trained to date. The LWE model incorporates best practices from pedagogical research of science education, thoughtful integration of scientists and engineer subject matter experts for both content presentations and informal networking with educators, access to NASA-unique facilities, hands-on and data-rich activities aligned with education standards, exposure to the practice of science, tools for addressing common misconceptions, follow-up with participants, and extensive evaluation. Evaluation of the LWE model via pre- and post-assessments, daily workshop surveys, and follow-up surveys at 6-month and 1-year intervals indicate that the LWE are extremely effective in increasing educators' content knowledge, confidence in incorporating content into the classroom, understanding of the practice of science, and ability to address common student misconceptions. In order to address the efficacy of the LWE model for other science content areas, the Dynamic Response of Environments at Asteroids, the Moon, and moons of Mars (DREAM2) education team, funded by NASA's Solar System Exploration Research Virtual Institute, developed and ran a pilot workshop called Dream2Explore at NASA's Goddard Space Flight Center in June, 2015. Dream2Explore utilized the LWE model, but incorporated content related to the science and exploration of asteroids and the moons of Mars. Evaluation results indicate that the LWE model was effectively used for educator professional development on non-lunar content. We will present more detail on the LWE model, evaluation results from the Dream2Explore pilot workshop, and suggestions for the application of the model with other science content for robust educator professional development.

  6. A Model for Effective Professional Development of Formal Science Educators

    NASA Technical Reports Server (NTRS)

    Bleacher, L. V.; Jones, A. J. P.; Farrell, W. M.

    2015-01-01

    The Lunar Workshops for Educators (LWE) series was developed by the Lunar Reconnaissance Orbiter (LRO) education team in 2010 to provide professional development on lunar science and exploration concepts for grades 6-9 science teachers. Over 300 educators have been trained to date. The LWE model incorporates best practices from pedagogical research of science education, thoughtful integration of scientists and engineer subject matter experts for both content presentations and informal networking with educators, access to NASA-unique facilities, hands-on and data-rich activities aligned with education standards, exposure to the practice of science, tools for addressing common misconceptions, follow-up with participants, and extensive evaluation. Evaluation of the LWE model via pre- and post-assessments, daily workshop surveys, and follow-up surveys at 6-month and 1-year intervals indicate that the LWE are extremely effective in increasing educators' content knowledge, confidence in incorporating content into the classroom, understanding of the practice of science, and ability to address common student misconceptions. In order to address the efficacy of the LWE model for other science content areas, the Dynamic Response of Environments at Asteroids, the Moon, and moons of Mars (DREAM2) education team, funded by NASA's Solar System Exploration Research Virtual Institute, developed and ran a pilot workshop called Dream2Explore at NASA's Goddard Space Flight Center in June, 2015. Dream2Explore utilized the LWE model, but incorporated content related to the science and exploration of asteroids and the moons of Mars. Evaluation results indicate that the LWE model was effectively used for educator professional development on non-lunar content. We will present more detail on the LWE model, evaluation results from the Dream2Explore pilot workshop, and suggestions for the application of the model with other science content for robust educator professional development.

  7. Developing Generic Dynamic Models for the 2030 Eastern Interconnection Grid

    SciTech Connect

    Kou, Gefei; Hadley, Stanton W; Markham, Penn N; Liu, Yilu

    2013-12-01

    The Eastern Interconnection Planning Collaborative (EIPC) has built three major power flow cases for the 2030 Eastern Interconnection (EI) based on various levels of energy/environmental policy conditions, technology advances, and load growth. Using the power flow cases, this report documents the process of developing the generic 2030 dynamic models using typical dynamic parameters. The constructed model was validated indirectly using the synchronized phasor measurements by removing the wind generation temporarily.

  8. Development of an Ingestion Pathway Model for AXAIRQ

    SciTech Connect

    Simpkins, A.A.

    1999-01-13

    AXAIRQ is a dose mode code used for prospective accident assessment at the Savannah River Site and is primarily used to show regulatory compliance. For completeness of pathway analysis, an ingestion model, AXINGST, has been developed for use with, and incorporation in, AXAIRQ. Currently available ingestion models were referenced as a basis for AXINGST. AXINGST calculates a conservative ingestion dose following an atmospheric release of radionuclides and includes site specific variables where applicable.

  9. Conceptual development: an adaptive resonance theory model of polysemy

    NASA Astrophysics Data System (ADS)

    Dunbar, George L.

    1997-04-01

    Adaptive Resonance Theory provides a model of pattern classification that addresses the plasticity--stability dilemma and allows a neural network to detect when to construct a new category without the assistance of a supervisor. We show that Adaptive Resonance Theory can be applied to the study of natural concept development. Specifically, a model is presented which is able to categorize different usages of a common noun and group the polysemous senses appropriately.

  10. Viscoplastic Model Development with an Eye Toward Characterization

    NASA Technical Reports Server (NTRS)

    Freed, Alan D.; Walker, Kevin P.

    1995-01-01

    A viscoplastic theory is developed that reduces analytically to creep theory under steady-state conditions. A viscoplastic model is constructed within this theoretical framework by defining material functions that have close ties to the physics of inelasticity. As a consequence, this model is easily characterized-only steady-state creep data, monotonic stress-strain curves, and saturated stress-strain hysteresis loops are required.

  11. Improving Predictive Modeling in Pediatric Drug Development: Pharmacokinetics, Pharmacodynamics, and Mechanistic Modeling

    SciTech Connect

    Slikker, William; Young, John F.; Corley, Rick A.; Dorman, David C.; Conolly, Rory B.; Knudsen, Thomas; Erstad, Brian L.; Luecke, Richard H.; Faustman, Elaine M.; Timchalk, Chuck; Mattison, Donald R.

    2005-07-26

    A workshop was conducted on November 18?19, 2004, to address the issue of improving predictive models for drug delivery to developing humans. Although considerable progress has been made for adult humans, large gaps remain for predicting pharmacokinetic/pharmacodynamic (PK/PD) outcome in children because most adult models have not been tested during development. The goals of the meeting included a description of when, during development, infants/children become adultlike in handling drugs. The issue of incorporating the most recent advances into the predictive models was also addressed: both the use of imaging approaches and genomic information were considered. Disease state, as exemplified by obesity, was addressed as a modifier of drug pharmacokinetics and pharmacodynamics during development. Issues addressed in this workshop should be considered in the development of new predictive and mechanistic models of drug kinetics and dynamics in the developing human.

  12. Multiscale mechanistic modeling in pharmaceutical research and development.

    PubMed

    Kuepfer, Lars; Lippert, Jörg; Eissing, Thomas

    2012-01-01

    Discontinuation of drug development projects due to lack of efficacy or adverse events is one of the main cost drivers in pharmaceutical research and development (R&D). Investments have to be written-off and contribute to the total costs of a successful drug candidate receiving marketing authorization and allowing return on invest. A vital risk for pharmaceutical innovator companies is late stage clinical failure since costs for individual clinical trials may exceed the one billion Euro threshold. To guide investment decisions and to safeguard maximum medical benefit and safety for patients recruited in clinical trials, it is therefore essential to understand the clinical consequences of all information and data generated. The complexity of the physiological and pathophysiological processes and the sheer amount of information available overcharge the mental capacity of any human being and prevent a prediction of the success in clinical development. A rigorous integration of knowledge, assumption, and experimental data into computational models promises a significant improvement of the rationalization of decision making in pharmaceutical industry. We here give an overview of the current status of modeling and simulation in pharmaceutical R&D and outline the perspectives of more recent developments in mechanistic modeling. Specific modeling approaches for different biological scales ranging from intracellular processes to whole organism physiology are introduced and an example for integrative multiscale modeling of therapeutic efficiency in clinical oncology trials is showcased. PMID:22161351

  13. Results from Development of Model Specifications for Multifamily Energy Retrofits

    SciTech Connect

    Brozyna, K.

    2012-08-01

    Specifications, modeled after CSI MasterFormat, provide the trade contractors and builders with requirements and recommendations on specific building materials, components and industry practices that comply with the expectations and intent of the requirements within the various funding programs associated with a project. The goal is to create a greater level of consistency in execution of energy efficiency retrofits measures across the multiple regions a developer may work. IBACOS and Mercy Housing developed sample model specifications based on a common building construction type that Mercy Housing encounters.

  14. Results From Development of Model Specifications for Multifamily Energy Retrofits

    SciTech Connect

    Brozyna, Kevin

    2012-08-01

    Specifications, modeled after CSI MasterFormat, provide the trade contractors and builders with requirements and recommendations on specific building materials, components and industry practices that comply with the expectations and intent of the requirements within the various funding programs associated with a project. The goal is to create a greater level of consistency in execution of energy efficiency retrofits measures across the multiple regions a developer may work. IBACOS and Mercy Housing developed sample model specifications based on a common building construction type that Mercy Housing encounters.

  15. SpaceWire model development technology for satellite architecture.

    SciTech Connect

    Eldridge, John M.; Leemaster, Jacob Edward; Van Leeuwen, Brian P.

    2011-09-01

    Packet switched data communications networks that use distributed processing architectures have the potential to simplify the design and development of new, increasingly more sophisticated satellite payloads. In addition, the use of reconfigurable logic may reduce the amount of redundant hardware required in space-based applications without sacrificing reliability. These concepts were studied using software modeling and simulation, and the results are presented in this report. Models of the commercially available, packet switched data interconnect SpaceWire protocol were developed and used to create network simulations of data networks containing reconfigurable logic with traffic flows for timing system distribution.

  16. Infrastructure development assistance modeling for nuclear power plant

    SciTech Connect

    Park, J. H.; Hwang, K.; Park, K. M.; Kim, S. W.; Lee, S. M.

    2012-07-01

    The purpose of this paper is to develop a model, a general frame to be utilized in assisting newcomer countries to start a nuclear power program. A nuclear power plant project involves technical complexity and high level of investment with long duration. Considering newcomers are mostly developing countries that lack the national infrastructure, key infrastructure issues may constitute the principal constraints to the development of a nuclear power program. In this regard, it is important to provide guidance and support to set up an appropriate infrastructure when we help them with the first launch of nuclear power plant project. To date, as a sole nuclear power generation company, KHNP has been invited many times to mentor or assist newcomer countries for their successful start of a nuclear power program since Republic of Korea is an exemplary case of a developing country which began nuclear power program from scratch and became a major world nuclear energy country in a short period of time. Through hosting events organized to aid newcomer countries' initiation of nuclear power projects, difficulties have been recognized. Each event had different contents according to circumstances because they were held as an unstructured and one-off thing. By developing a general model, we can give more adequate and effective aid in an efficient way. In this paper, we created a model to identify necessary infrastructures at the right stage, which was mainly based on a case of Korea. Taking into account the assistance we received from foreign companies and our own efforts for technological self-reliance, we have developed a general time table and specified activities required to do at each stage. From a donor's perspective, we explored various ways to help nuclear infrastructure development including technical support programs, training courses, and participating in IAEA technical cooperation programs on a regular basis. If we further develop the model, the next task would be to

  17. Development of a causal model for elder mistreatment.

    PubMed

    Pickering, Carolyn E Ziminski; Phillips, Linda R

    2014-01-01

    Elder mistreatment (EM) is an act committed by a person in a trusted relationship with an elderly person. Through the process of theory synthesis, a new model was developed, which explains the development of aggression (physical and verbal) toward elders by adult children in EM. The proposed model is set within the context of intimate partner violence and emphasizes that rather than arising in caregiving, aggression may be evident in the pre-caregiving relationship and continue into caregiving situations. An understanding of the causal origins of EM is essential in designing intervention to help families have healthy relationships. PMID:24547693

  18. Numerical modelling of river morphodynamics: Latest developments and remaining challenges

    NASA Astrophysics Data System (ADS)

    Siviglia, Annunziato; Crosato, Alessandra

    2016-07-01

    Numerical morphodynamic models provide scientific frameworks for advancing our understanding of river systems. The research on involved topics is an important and socially relevant undertaking regarding our environment. Nowadays numerical models are used for different purposes, from answering questions about basic morphodynamic research to managing complex river engineering problems. Due to increasing computer power and the development of advanced numerical techniques, morphodynamic models are now more and more used to predict the bed patterns evolution to a broad spectrum of spatial and temporal scales. The development and the success of application of such models are based upon a wide range of disciplines from applied mathematics for the numerical solution of the equations to geomorphology for the physical interpretation of the results. In this light we organized this special issue (SI) soliciting multidisciplinary contributions which encompass any aspect needed for the development and applications of such models. Most of the papers in the SI stem from contributions to session HS9.5/GM7.11 on numerical modelling and experiments in river morphodynamics at the European Geosciences Union (EGU) General Assembly held in Vienna, April 27th to May 2nd 2014.

  19. The Development and Application of an Integrated VAR Process Model

    NASA Astrophysics Data System (ADS)

    Ballantyne, A. Stewart

    2016-07-01

    The VAR ingot has been the focus of several modelling efforts over the years with the result that the thermal regime in the ingot can be simulated quite realistically. Such models provide important insight into solidification of the ingot but present some significant challenges to the casual user such as a process engineer. To provide the process engineer with a tool to assist in the development of a melt practice, a comprehensive model of the complete VAR process has been developed. A radiation heat transfer simulation of the arc has been combined with electrode and ingot models to develop a platform which accepts typical operating variables (voltage, current, and gap) together with process parameters (electrode size, crucible size, orientation, water flow, etc.) as input data. The output consists of heat flow distributions and solidification parameters in the form of text, comma-separated value, and visual toolkit files. The resulting model has been used to examine the relationship between the assumed energy distribution in the arc and the actual energy flux which arrives at the ingot top surface. Utilizing heat balance information generated by the model, the effects of electrode-crucible orientation and arc gap have been explored with regard to the formation of ingot segregation defects.

  20. Developing an Empirical Model for Jet-Surface Interaction Noise

    NASA Technical Reports Server (NTRS)

    Brown, Clif

    2014-01-01

    The process of developing an empirical model for jet-surface interaction noise is described and the resulting model evaluated. Jet-surface interaction noise is generated when the high-speed engine exhaust from modern tightly integrated or conventional high-bypass ratio engine aircraft strikes or flows over the airframe surfaces. An empirical model based on an existing experimental database is developed for use in preliminary design system level studies where computation speed and range of configurations is valued over absolute accuracy to select the most promising (or eliminate the worst) possible designs. The model developed assumes that the jet-surface interaction noise spectra can be separated from the jet mixing noise and described as a parabolic function with three coefficients: peak amplitude, spectral width, and peak frequency. These coefficients are t to functions of surface length and distance from the jet lipline to form a characteristic spectra which is then adjusted for changes in jet velocity and/or observer angle using scaling laws from published theoretical and experimental work. The resulting model is then evaluated for its ability to reproduce the characteristic spectra and then for reproducing spectra measured at other jet velocities and observer angles; successes and limitations are discussed considering the complexity of the jet-surface interaction noise versus the desire for a model that is simple to implement and quick to execute.

  1. Developing an Empirical Model for Jet-Surface Interaction Noise

    NASA Technical Reports Server (NTRS)

    Brown, Clifford A.

    2014-01-01

    The process of developing an empirical model for jet-surface interaction noise is described and the resulting model evaluated. Jet-surface interaction noise is generated when the high-speed engine exhaust from modern tightly integrated or conventional high-bypass ratio engine aircraft strikes or flows over the airframe surfaces. An empirical model based on an existing experimental database is developed for use in preliminary design system level studies where computation speed and range of configurations is valued over absolute accuracy to select the most promising (or eliminate the worst) possible designs. The model developed assumes that the jet-surface interaction noise spectra can be separated from the jet mixing noise and described as a parabolic function with three coefficients: peak amplitude, spectral width, and peak frequency. These coefficients are fit to functions of surface length and distance from the jet lipline to form a characteristic spectra which is then adjusted for changes in jet velocity and/or observer angle using scaling laws from published theoretical and experimental work. The resulting model is then evaluated for its ability to reproduce the characteristic spectra and then for reproducing spectra measured at other jet velocities and observer angles; successes and limitations are discussed considering the complexity of the jet-surface interaction noise versus the desire for a model that is simple to implement and quick to execute.

  2. Computer Based Learning in FE. A Staff Development Model. A Staff Development Publication.

    ERIC Educational Resources Information Center

    Further Education Unit, London (England).

    This booklet describes the development and content of a model staff development pack for use in training teachers to incorporate the techniques of computer-based learning into their subject teaching. The guide consists of three parts. Part 1 outlines the aims and objectives, content, and use of the pack. Described next are seven curriculum samples…

  3. DEVELOPMENT OF A PHYSIOLOGICALLY BASED PHARMACOKINETIC MODEL FOR DELTAMETHRIN IN DEVELOPING SPRAGUE-DAWLEY RATS

    EPA Science Inventory

    This work describes the development of a physiologically based pharmacokinetic (PBPK) model of deltamethrin, a type II pyrethroid, in the developing male Sprague-Dawley rat. Generalized Michaelis-Menten equations were used to calculate metabolic rate constants and organ weights ...

  4. Fieldwork Using the Professional Development Schools Model: Developing a Social Justice Orientation and Multicultural Competency

    ERIC Educational Resources Information Center

    Cook, Amy L.; Krell, Megan M.; Hayden, Laura A.; Gracia, Robert; Denitzio, Kari

    2016-01-01

    Practicum fieldwork was conducted in an urban high school setting using a Professional Development Schools (PDS) model, with a focus on multicultural and social justice counseling competencies (MSJCC). Interpretative phenomenological analysis was used to analyze the journal responses of 16 counseling students to ascertain MSJCC development during…

  5. Time dependent patient no-show predictive modelling development.

    PubMed

    Huang, Yu-Li; Hanauer, David A

    2016-05-01

    Purpose - The purpose of this paper is to develop evident-based predictive no-show models considering patients' each past appointment status, a time-dependent component, as an independent predictor to improve predictability. Design/methodology/approach - A ten-year retrospective data set was extracted from a pediatric clinic. It consisted of 7,291 distinct patients who had at least two visits along with their appointment characteristics, patient demographics, and insurance information. Logistic regression was adopted to develop no-show models using two-thirds of the data for training and the remaining data for validation. The no-show threshold was then determined based on minimizing the misclassification of show/no-show assignments. There were a total of 26 predictive model developed based on the number of available past appointments. Simulation was employed to test the effective of each model on costs of patient wait time, physician idle time, and overtime. Findings - The results demonstrated the misclassification rate and the area under the curve of the receiver operating characteristic gradually improved as more appointment history was included until around the 20th predictive model. The overbooking method with no-show predictive models suggested incorporating up to the 16th model and outperformed other overbooking methods by as much as 9.4 per cent in the cost per patient while allowing two additional patients in a clinic day. Research limitations/implications - The challenge now is to actually implement the no-show predictive model systematically to further demonstrate its robustness and simplicity in various scheduling systems. Originality/value - This paper provides examples of how to build the no-show predictive models with time-dependent components to improve the overbooking policy. Accurately identifying scheduled patients' show/no-show status allows clinics to proactively schedule patients to reduce the negative impact of patient no-shows. PMID:27142954

  6. Drug discovery and development for neglected diseases: the DNDi model.

    PubMed

    Chatelain, Eric; Ioset, Jean-Robert

    2011-01-01

    New models of drug discovery have been developed to overcome the lack of modern and effective drugs for neglected diseases such as human African trypanosomiasis (HAT; sleeping sickness), leishmaniasis, and Chagas disease, which have no financial viability for the pharmaceutical industry. With the purpose of combining the skills and research capacity in academia, pharmaceutical industry, and contract researchers, public-private partnerships or product development partnerships aim to create focused research consortia that address all aspects of drug discovery and development. These consortia not only emulate the projects within pharmaceutical and biotechnology industries, eg, identification and screening of libraries, medicinal chemistry, pharmacology and pharmacodynamics, formulation development, and manufacturing, but also use and strengthen existing capacity in disease-endemic countries, particularly for the conduct of clinical trials. The Drugs for Neglected Diseases initiative (DNDi) has adopted a model closely related to that of a virtual biotechnology company for the identification and optimization of drug leads. The application of this model to the development of drug candidates for the kinetoplastid infections of HAT, Chagas disease, and leishmaniasis has already led to the identification of new candidates issued from DNDi's own discovery pipeline. This demonstrates that the model DNDi has been implementing is working but its DNDi, neglected diseases sustainability remains to be proven. PMID:21552487

  7. Archetype Model-Driven Development Framework for EHR Web System

    PubMed Central

    Kimura, Eizen; Ishihara, Ken

    2013-01-01

    Objectives This article describes the Web application framework for Electronic Health Records (EHRs) we have developed to reduce construction costs for EHR sytems. Methods The openEHR project has developed clinical model driven architecture for future-proof interoperable EHR systems. This project provides the specifications to standardize clinical domain model implementations, upon which the ISO/CEN 13606 standards are based. The reference implementation has been formally described in Eiffel. Moreover C# and Java implementations have been developed as reference. While scripting languages had been more popular because of their higher efficiency and faster development in recent years, they had not been involved in the openEHR implementations. From 2007, we have used the Ruby language and Ruby on Rails (RoR) as an agile development platform to implement EHR systems, which is in conformity with the openEHR specifications. Results We implemented almost all of the specifications, the Archetype Definition Language parser, and RoR scaffold generator from archetype. Although some problems have emerged, most of them have been resolved. Conclusions We have provided an agile EHR Web framework, which can build up Web systems from archetype models using RoR. The feasibility of the archetype model to provide semantic interoperability of EHRs has been demonstrated and we have verified that that it is suitable for the construction of EHR systems. PMID:24523991

  8. Development of the research lifecycle model for library services

    PubMed Central

    Vaughan, KTL; Lerner, Rachel C.; McElfresh, Karen R.; Pavlech, Laura; Romito, David; Reeves, Laurie H.; Morris, Erin N.

    2013-01-01

    Question: Can the niche services of individual librarians across multiple libraries be developed into a suite of standard services available to all scientists that support the entire research lifecycle? Setting: Services at a large, research-intensive state university campus are described. Method: Initial data were collected via concept mapping by librarians. Additional data were collected at conferences and meetings through interactive poster presentations. Main Results: Services of interest to scientists for each of the stages in the research lifecycle were developed by the team to reflect the wide range of strengths of team members in aggregate. Conclusion: Input from researchers was the most effective tool for developing the model. A flexible research lifecycle model can be developed to match the needs of different service groups and the skills of different librarians. PMID:24163603

  9. Zebrafish Models of Human Liver Development and Disease

    PubMed Central

    Wilkins, Benjamin J.; Pack, Michael

    2016-01-01

    The liver performs a large number of essential synthetic and regulatory functions that are acquired during fetal development and persist throughout life. Their disruption underlies a diverse group of heritable and acquired diseases that affect both pediatric and adult patients. Although experimental analyses used to study liver development and disease are typically performed in cell culture models or rodents, the zebrafish is increasingly used to complement discoveries made in these systems. Forward and reverse genetic analyses over the past two decades have shown that the molecular program for liver development is largely conserved between zebrafish and mammals, and that the zebrafish can be used to model heritable human liver disorders. Recent work has demonstrated that zebrafish can also be used to study the mechanistic basis of acquired liver diseases. Here, we provide a comprehensive summary of how the zebrafish has contributed to our understanding of human liver development and disease. PMID:23897685

  10. An integrated mathematical model of the human cardiopulmonary system: model development.

    PubMed

    Albanese, Antonio; Cheng, Limei; Ursino, Mauro; Chbat, Nicolas W

    2016-04-01

    Several cardiovascular and pulmonary models have been proposed in the last few decades. However, very few have addressed the interactions between these two systems. Our group has developed an integrated cardiopulmonary model (CP Model) that mathematically describes the interactions between the cardiovascular and respiratory systems, along with their main short-term control mechanisms. The model has been compared with human and animal data taken from published literature. Due to the volume of the work, the paper is divided in two parts. The present paper is on model development and normophysiology, whereas the second is on the model's validation on hypoxic and hypercapnic conditions. The CP Model incorporates cardiovascular circulation, respiratory mechanics, tissue and alveolar gas exchange, as well as short-term neural control mechanisms acting on both the cardiovascular and the respiratory functions. The model is able to simulate physiological variables typically observed in adult humans under normal and pathological conditions and to explain the underlying mechanisms and dynamics. PMID:26683899

  11. Phenotypic Models of Evolution and Development: Geometry as Destiny

    PubMed Central

    Francois, Paul; Siggia, Eric D.

    2012-01-01

    Quantitative models of development that consider all relevant genes typically are difficult to fit to embryonic data alone and have many redundant parameters. Computational evolution supplies models of phenotype with relatively few variables and parameters that allows the patterning dynamics to be reduced to a geometrical picture for how the state of a cell moves. The clock and wavefront model, that defines the phenotype of somitogenesis, can be represented as a sequence of two discrete dynamical transitions (bifurcations). The expression-time to space map for Hox genes and the posterior dominance rule are phenotypes that naturally follow from computational evolution without considering the genetics of Hox regulation. PMID:23026724

  12. Development of a Validated Model of Ground Coupling

    SciTech Connect

    Metz, P. D.

    1980-01-01

    A research program at Brookhaven National Laboratory (BNL) studies ground coupling, the use of the earth as a heat source/sink or storage element for solar heat pump space conditioning systems. This paper outlines the analytical and experimental research to date toward the development of an experimentally validated model of ground coupling and based on experimental results from December, 1978 to September, 1979, expores sensitivity of present model predictions to variations in thermal conductivity and other factors. Ways in which the model can be further refined are discussed.

  13. Development, validation and application of numerical space environment models

    NASA Astrophysics Data System (ADS)

    Honkonen, Ilja

    2013-10-01

    Currently the majority of space-based assets are located inside the Earth's magnetosphere where they must endure the effects of the near-Earth space environment, i.e. space weather, which is driven by the supersonic flow of plasma from the Sun. Space weather refers to the day-to-day changes in the temperature, magnetic field and other parameters of the near-Earth space, similarly to ordinary weather which refers to changes in the atmosphere above ground level. Space weather can also cause adverse effects on the ground, for example, by inducing large direct currents in power transmission systems. The performance of computers has been growing exponentially for many decades and as a result the importance of numerical modeling in science has also increased rapidly. Numerical modeling is especially important in space plasma physics because there are no in-situ observations of space plasmas outside of the heliosphere and it is not feasible to study all aspects of space plasmas in a terrestrial laboratory. With the increasing number of computational cores in supercomputers, the parallel performance of numerical models on distributed memory hardware is also becoming crucial. This thesis consists of an introduction, four peer reviewed articles and describes the process of developing numerical space environment/weather models and the use of such models to study the near-Earth space. A complete model development chain is presented starting from initial planning and design to distributed memory parallelization and optimization, and finally testing, verification and validation of numerical models. A grid library that provides good parallel scalability on distributed memory hardware and several novel features, the distributed cartesian cell-refinable grid (DCCRG), is designed and developed. DCCRG is presently used in two numerical space weather models being developed at the Finnish Meteorological Institute. The first global magnetospheric test particle simulation based on the

  14. Development of mathematical models for solid state switching devices

    NASA Technical Reports Server (NTRS)

    Raburn, W. D.; Kim, J. C.

    1980-01-01

    Models are developed for two types of remote power controllers (RPC). The models give the equations for the currents and voltages for all elements of passive loads as a function of time for both turn-on and turn-off. It is shown that the RPC can be considered as a combination of current and voltage sources. Equations are given for these sources which are essentially independent of the load being turned on and off. Experimental results are given for several types of loads and comparisons are made with the results obtained using the models.

  15. Development of a worldwide model for Flayer-produced scintillation

    NASA Technical Reports Server (NTRS)

    Fremouw, E. J.; Rino, C. L.

    1971-01-01

    An empirical approach to modeling the electron-density irregularities in the F layer of the earth's ionosphere that are primarily responsible for scintillation of transatmospheric VHF-UHF signals has been devised and tested. The work was directed toward two major goals: first, development of a worldwide model for describing the rms fluctuation in signal strength to be expected on an arbitrary satellite-to-earth communication link under average ionospheric conditions; and, second, investigation of the feasibility of similar modeling for description of the complete first-order distribution of signal strength.

  16. Recent developments in experimental animal models of Henipavirus infection.

    PubMed

    Rockx, Barry

    2014-07-01

    Hendra (HeV) and Nipah (NiV) viruses (genus Henipavirus (HNV; family Paramyxoviridae) are emerging zoonotic agents that can cause severe respiratory distress and acute encephalitis in humans. Given the lack of effective therapeutics and vaccines for human use, these viruses are considered as public health concerns. Several experimental animal models of HNV infection have been developed in recent years. Here, we review the current status of four of the most promising experimental animal models (mice, hamsters, ferrets, and African green monkeys) and their suitability for modeling the clinical disease, transmission, pathogenesis, prevention, and treatment for HNV infection in humans. PMID:24488776

  17. Developing robotic behavior using a genetic programming model

    SciTech Connect

    Pryor, R.J.

    1998-01-01

    This report describes the methodology for using a genetic programming model to develop tracking behaviors for autonomous, microscale robotic vehicles. The use of such vehicles for surveillance and detection operations has become increasingly important in defense and humanitarian applications. Through an evolutionary process similar to that found in nature, the genetic programming model generates a computer program that when downloaded onto a robotic vehicle`s on-board computer will guide the robot to successfully accomplish its task. Simulations of multiple robots engaged in problem-solving tasks have demonstrated cooperative behaviors. This report also discusses the behavior model produced by genetic programming and presents some results achieved during the study.

  18. New Developments in Eclipsing Binary Light Curve Modeling

    NASA Astrophysics Data System (ADS)

    Milone, E. F.; Stagg, C. R.

    1994-03-01

    The light curve modeling of binary stars has continued to evolve since its founding by Henry Norris Russell (see Russell and Merrill 1952 and citations therein) nearly a century ago, accelerated in the 1950s by Kopal's introduction of Roche geometry into models and by the development of synthetic light curve computer code in the 1970's. Improved physics and the use of more kinds of observational input are providing another round of important advances that promise to enlarge our knowledge of both binary stars and ensembles containing them. Here we discuss the newer horizons of light curve modeling and the steps being taken toward them.

  19. Developing a Physiologically-Based Pharmacokinetic Model Knowledgebase in Support of Provisional Model Construction.

    PubMed

    Lu, Jingtao; Goldsmith, Michael-Rock; Grulke, Christopher M; Chang, Daniel T; Brooks, Raina D; Leonard, Jeremy A; Phillips, Martin B; Hypes, Ethan D; Fair, Matthew J; Tornero-Velez, Rogelio; Johnson, Jeffre; Dary, Curtis C; Tan, Yu-Mei

    2016-02-01

    Developing physiologically-based pharmacokinetic (PBPK) models for chemicals can be resource-intensive, as neither chemical-specific parameters nor in vivo pharmacokinetic data are easily available for model construction. Previously developed, well-parameterized, and thoroughly-vetted models can be a great resource for the construction of models pertaining to new chemicals. A PBPK knowledgebase was compiled and developed from existing PBPK-related articles and used to develop new models. From 2,039 PBPK-related articles published between 1977 and 2013, 307 unique chemicals were identified for use as the basis of our knowledgebase. Keywords related to species, gender, developmental stages, and organs were analyzed from the articles within the PBPK knowledgebase. A correlation matrix of the 307 chemicals in the PBPK knowledgebase was calculated based on pharmacokinetic-relevant molecular descriptors. Chemicals in the PBPK knowledgebase were ranked based on their correlation toward ethylbenzene and gefitinib. Next, multiple chemicals were selected to represent exact matches, close analogues, or non-analogues of the target case study chemicals. Parameters, equations, or experimental data relevant to existing models for these chemicals and their analogues were used to construct new models, and model predictions were compared to observed values. This compiled knowledgebase provides a chemical structure-based approach for identifying PBPK models relevant to other chemical entities. Using suitable correlation metrics, we demonstrated that models of chemical analogues in the PBPK knowledgebase can guide the construction of PBPK models for other chemicals. PMID:26871706

  20. Developing a Physiologically-Based Pharmacokinetic Model Knowledgebase in Support of Provisional Model Construction

    PubMed Central

    Grulke, Christopher M.; Chang, Daniel T.; Brooks, Raina D.; Leonard, Jeremy A.; Phillips, Martin B.; Hypes, Ethan D.; Fair, Matthew J.; Tornero-Velez, Rogelio; Johnson, Jeffre; Dary, Curtis C.; Tan, Yu-Mei

    2016-01-01

    Developing physiologically-based pharmacokinetic (PBPK) models for chemicals can be resource-intensive, as neither chemical-specific parameters nor in vivo pharmacokinetic data are easily available for model construction. Previously developed, well-parameterized, and thoroughly-vetted models can be a great resource for the construction of models pertaining to new chemicals. A PBPK knowledgebase was compiled and developed from existing PBPK-related articles and used to develop new models. From 2,039 PBPK-related articles published between 1977 and 2013, 307 unique chemicals were identified for use as the basis of our knowledgebase. Keywords related to species, gender, developmental stages, and organs were analyzed from the articles within the PBPK knowledgebase. A correlation matrix of the 307 chemicals in the PBPK knowledgebase was calculated based on pharmacokinetic-relevant molecular descriptors. Chemicals in the PBPK knowledgebase were ranked based on their correlation toward ethylbenzene and gefitinib. Next, multiple chemicals were selected to represent exact matches, close analogues, or non-analogues of the target case study chemicals. Parameters, equations, or experimental data relevant to existing models for these chemicals and their analogues were used to construct new models, and model predictions were compared to observed values. This compiled knowledgebase provides a chemical structure-based approach for identifying PBPK models relevant to other chemical entities. Using suitable correlation metrics, we demonstrated that models of chemical analogues in the PBPK knowledgebase can guide the construction of PBPK models for other chemicals. PMID:26871706

  1. Further Developments on the Geothermal System Scoping Model: Preprint

    SciTech Connect

    Antkowiak, M.; Sargent, R.; Geiger, J. W.

    2010-07-01

    This paper discusses further developments and refinements for the uses of the Geothermal System Scoping Model in an effort to provide a means for performing a variety of trade-off analyses of surface and subsurface parameters, sensitivity analyses, and other systems engineering studies in order to better inform R&D direction and investment for the development of geothermal power into a major contributor to the U.S. energy supply.

  2. DEVELOPMENT OF A FLEXIBLE, MULTIZONE, MULTIFAMILY BUILDING SIMULATION MODEL

    SciTech Connect

    Malhotra, Mini; Im, Piljae

    2012-01-01

    Weatherization of multifamily buildings is gaining increased attention in the U.S. Available energy audit tools for multifamily buildings were found to need desirable improvements. On the wish list of field experts for enhanced features was the basic ability to model multizone buildings (i.e., one thermal zone per dwelling unit) with simplified user inputs, which allows a better analysis of decentralized and centralized HVAC and domestic hot water systems of multifamily buildings without having to create detailed building models. To address the desired capabilities, development of an enhanced energy audit tool was begun in 2011. The tool is a strategically structured, flexible, one-zone-per-unit, DOE-2.1e model coupled with a simplified user interface to model small to large multifamily buildings with decentralized or centralized systems and associated energy measures. This paper describes the modeling concept and its implementation.

  3. Development of a recursion RNG-based turbulence model

    NASA Technical Reports Server (NTRS)

    Zhou, YE; Vahala, George; Thangam, S.

    1993-01-01

    Reynolds stress closure models based on the recursion renormalization group theory are developed for the prediction of turbulent separated flows. The proposed model uses a finite wavenumber truncation scheme to account for the spectral distribution of energy. In particular, the model incorporates effects of both local and nonlocal interactions. The nonlocal interactions are shown to yield a contribution identical to that from the epsilon-renormalization group (RNG), while the local interactions introduce higher order dispersive effects. A formal analysis of the model is presented and its ability to accurately predict separated flows is analyzed from a combined theoretical and computational stand point. Turbulent flow past a backward facing step is chosen as a test case and the results obtained based on detailed computations demonstrate that the proposed recursion -RNG model with finite cut-off wavenumber can yield very good predictions for the backstep problem.

  4. Models for Curricular Materials Development: Combining Applied Development Processes with Theory

    NASA Astrophysics Data System (ADS)

    Appleton, James; Lawrenz, Frances; Craft, Elaine; Cudmore, Wynn; Hall, Jim; Waintraub, Jack

    2007-12-01

    Developing curricular materials for technical and vocational education is particularly challenging because of the comprehensive requirements for technical education and the rapidity with which technical positions are evolving. Well-educated employees are expected to have general communication, reasoning, problem-solving, and behavioral skills in addition to occupation-specific technical knowledge. Furthermore, technical and vocational education materials must meet the needs of various contexts each with its own unique array of factors which must be accommodated. To assist in the process of materials development, this paper presents a comprehensive and contextualized model as a guide for curricular developers. This model was formed through the synthesis of two theoretical and four applied models, with the outline of the applied models occurring as part of a national evaluation of the National Science Foundation's Advanced Technological Education Program. Examples illuminating the elements of the template are provided.

  5. The Big Bang Model: Its Origin and Development

    NASA Astrophysics Data System (ADS)

    Alpher, Ralph A.

    The current Big Bang Model had its origin in Einstein's attempt to model a static cosmos, based on his general theory of relativity. Friedmann and Lemaitre, as well as de Sitter, further developed the model to cover other options, including nonstatic behavior. Lemaitre in the 1930s and, particularly, Gamow in 1946 first put physics into the nonstatic model. By 1946 there had been significant developments in the mathematics of the model due to Robertson, Walker, Tolman and many others. The Hubble law had given an essential observational basis for the Big Bang, as did the attribution of cosmic significance to element abundances by Goldschmidt. Following early suggestions by George Gamow, the first attempt to explain nucleosynthesis in a hot, dense, early universe was done by Alpher, Bethe and Gamow in 1948, a paper whose principal importance was that it suggested that the early universe was in fact hot and dense, and that hydrogen and helium and perhaps other light elements were primeval. In that same year Alpher and Herman first predicted a cosmic background radiation at 5 kelvin as an essential feature of the model. The Hubble expansion rate, the primordial and stellar abundances of the elements, and the cosmic microwave background are major pillars today for the Big Bang model.

  6. Using cognitive models to develop quality multiple-choice questions.

    PubMed

    Pugh, Debra; De Champlain, Andre; Gierl, Mark; Lai, Hollis; Touchie, Claire

    2016-08-01

    With the recent interest in competency-based education, educators are being challenged to develop more assessment opportunities. As such, there is increased demand for exam content development, which can be a very labor-intense process. An innovative solution to this challenge has been the use of automatic item generation (AIG) to develop multiple-choice questions (MCQs). In AIG, computer technology is used to generate test items from cognitive models (i.e. representations of the knowledge and skills that are required to solve a problem). The main advantage yielded by AIG is the efficiency in generating items. Although technology for AIG relies on a linear programming approach, the same principles can also be used to improve traditional committee-based processes used in the development of MCQs. Using this approach, content experts deconstruct their clinical reasoning process to develop a cognitive model which, in turn, is used to create MCQs. This approach is appealing because it: (1) is efficient; (2) has been shown to produce items with psychometric properties comparable to those generated using a traditional approach; and (3) can be used to assess higher order skills (i.e. application of knowledge). The purpose of this article is to provide a novel framework for the development of high-quality MCQs using cognitive models. PMID:26998566

  7. Development and Validation of a Mass Casualty Conceptual Model

    PubMed Central

    Culley, Joan M.; Effken, Judith A.

    2012-01-01

    Purpose To develop and validate a conceptual model that provides a framework for the development and evaluation of information systems for mass casualty events. Design The model was designed based on extant literature and existing theoretical models. A purposeful sample of 18 experts validated the model. Open-ended questions, as well as a 7-point Likert scale, were used to measure expert consensus on the importance of each construct and its relationship in the model and the usefulness of the model to future research. Methods Computer-mediated applications were used to facilitate a modified Delphi technique through which a panel of experts provided validation for the conceptual model. Rounds of questions continued until consensus was reached, as measured by an interquartile range (no more than 1 scale point for each item); stability (change in the distribution of responses less than 15% between rounds); and percent agreement (70% or greater) for indicator questions. Findings Two rounds of the Delphi process were needed to satisfy the criteria for consensus or stability related to the constructs, relationships, and indicators in the model. The panel reached consensus or sufficient stability to retain all 10 constructs, 9 relationships, and 39 of 44 indicators. Experts viewed the model as useful (mean of 5.3 on a 7-point scale). Conclusions Validation of the model provides the first step in understanding the context in which mass casualty events take place and identifying variables that impact outcomes of care. Clinical Relevance This study provides a foundation for understanding the complexity of mass casualty care, the roles that nurses play in mass casualty events, and factors that must be considered in designing and evaluating information-communication systems to support effective triage under these conditions. PMID:20487188

  8. Physiologically Based Pharmacokinetic Modeling in Pediatric Oncology Drug Development.

    PubMed

    Rioux, Nathalie; Waters, Nigel J

    2016-07-01

    Childhood cancer represents more than 100 rare and ultra-rare diseases, with an estimated 12,400 new cases diagnosed each year in the United States. As such, this much smaller patient population has led to pediatric oncology drug development lagging behind that for adult cancers. Developing drugs for pediatric malignancies also brings with it a number of unique trial design considerations, including flexible enrollment approaches, age-appropriate formulation, acceptable sampling schedules, and balancing the need for age-stratified dosing regimens, given the smaller patient populations. The regulatory landscape for pediatric pharmacotherapy has evolved with U.S. Food and Drug Administration (FDA) legislation such as the 2012 FDA Safety and Innovation Act. In parallel, regulatory authorities have recommended the application of physiologically based pharmacokinetic (PBPK) modeling, for example, in the recently issued FDA Strategic Plan for Accelerating the Development of Therapies for Pediatric Rare Diseases. PBPK modeling provides a quantitative and systems-based framework that allows the effects of intrinsic and extrinsic factors on drug exposure to be modeled in a mechanistic fashion. The application of PBPK modeling in drug development for pediatric cancers is relatively nascent, with several retrospective analyses of cytotoxic therapies, and latterly for targeted agents such as obatoclax and imatinib. More recently, we have employed PBPK modeling in a prospective manner to inform the first pediatric trials of pinometostat and tazemetostat in genetically defined populations (mixed lineage leukemia-rearranged and integrase interactor-1-deficient sarcomas, respectively). In this review, we evaluate the application of PBPK modeling in pediatric cancer drug development and discuss the important challenges that lie ahead in this field. PMID:26936973

  9. Development and Application of Water Quality Classification Models

    NASA Astrophysics Data System (ADS)

    Akbar, Tahir Ali

    Though surface water quality is a dynamic quantity; factors, such as increase in population, changes in climate, and anthropogenic activities impose more variability in recent times. The main objectives of this thesis were to: (i) develop models for classification of raw surface water quality, (ii) analyze the spatial patterns and temporal trends of surface water quality, (iii) obtain exceedances of parameters in each class; and (iv) develop remote sensing based models for Canadian Water Quality Index (CWQI) and turbidity. A methodology was developed using principal component analysis (PCA) and clustering techniques on the basis of 19 water quality parameters for 18 lakes of Alberta. Three principal components (PCs) were indicators of hardness, salinity and biological activities for lakes. The surface water quality showed deterioration as the cluster number increased from 1 to 5. The most deteriorated quality of water was found in Cardinal Lake, Moonshine Lake, Winagami Lake, Miquelon Lake and Saskatoon Lake. A total exceedance model was developed for clusterization of surface water quality for 12 major rivers of Alberta. The PCs were the indicators of watershed geology, mineralization and anthropogenic activities related to land use/cover for rivers. The clusters showed a strong relationship with CWQI classes. Snow melting deteriorated the surface water quality of rivers due to anthropogenic activities from different land uses/covers. There was increasing trend for the mean exceedance of the parameters as the cluster number increased from low to high. Empirical models were developed for Canadian Water Quality Index and turbidity using 31 scenes of Landsat-5 TM satellite data for the Bow River. The significant models were 14 for CWQI and 12 for turbidity. 100% matching was found for 72% and 83% of data in best-fit models for CWQI and turbidity respectively. The variation in the Bow River water quality was due to climatic changes and irrigation.

  10. Development of an Integrated Water and Wind Erosion Model

    NASA Astrophysics Data System (ADS)

    Flanagan, D. C.; Ascough, J. C.; Wagner, L. E.; Geter, W. F.

    2006-12-01

    Prediction technologies for soil erosion by the forces of wind or water have largely been developed independently from one another, especially within the United States. Much of this has been due to the initial creation of equations and models which were empirical in nature (i.e., Universal Soil Loss Equation, Wind Erosion Equation) and based upon separate water erosion or wind erosion plot and field measurements. Additionally, institutional organizations in place typically divided research efforts and funding to unique wind or water erosion research and modeling projects. However, during the past 20 years computer technologies and erosion modeling have progressed to the point where it is now possible to merge physical process-based computer simulation models into an integrated water and wind erosion prediction system. In a physically- based model, many of the processes which must be simulated for wind and water erosion computations are the same, e.g., climate, water balance, runoff, plant growth, etc. Model components which specifically deal with the wind or water detachment, transport and deposition processes are those that must differ, as well as any necessary parameterization of input variables (e.g., adjusted soil erodibilities, critical shear stresses, etc.) for those components. This presentation describes current efforts towards development of a combined wind and water erosion model, based in part upon technologies present in the Water Erosion Prediction Project (WEPP) and the Wind Erosion Prediction System (WEPS) models. Initial efforts during the past two years have resulted in modular modeling components that allow for prediction of infiltration, surface runoff, and water erosion at a hillslope scale within an Object Modeling System. Additional components currently in development include wind detachment at a single field point, continuous water balance, and unified plant growth. Challenges in this project are many, and include adequate field

  11. Model-based development of neuroprosthesis for paraplegic patients.

    PubMed Central

    Riener, R

    1999-01-01

    In paraplegic patients with upper motor neuron lesions the signal path from the central nervous system to the muscles is interrupted. Functional electrical stimulation applied to the lower motor neurons can replace the lacking signals. A so-called neuroprosthesis may be used to restore motor function in paraplegic patients on the basis of functional electrical stimulation. However, the control of multiple joints is difficult due to the complexity, nonlinearity, and time-variance of the system involved. Furthermore, effects such as muscle fatigue, spasticity, and limited force in the stimulated muscle further complicate the control task. Mathematical models of the human musculoskeletal system can support the development of neuroprosthesis. In this article a detailed overview of the existing work in the literature is given and two examples developed by the author are presented that give an insight into model-based development of neuroprosthesis for paraplegic patients. It is shown that modelling the musculoskeletal system can provide better understanding of muscular force production and movement coordination principles. Models can also be used to design and test stimulation patterns and feedback control strategies. Additionally, model components can be implemented in a controller to improve control performance. Eventually, the use of musculoskeletal models for neuroprosthesis design may help to avoid internal disturbances such as fatigue and optimize muscular force output. Furthermore, better controller quality can be obtained than in previous empirical approaches. In addition, the number of experimental tests to be performed with human subjects can be reduced. It is concluded that mathematical models play an increasing role in the development of reliable closed-loop controlled, lower extremity neuroprostheses. PMID:10382222

  12. Developing natural resource models using the object modeling system: feasibility and challenges

    NASA Astrophysics Data System (ADS)

    Ahuja, L. R.; Ascough, J. C., II; David, O.

    2005-08-01

    Current challenges in natural resource management have created demand for integrated, flexible, and easily parameterized hydrologic models. Most of these monolithic models are not modular, thus modifications (e.g., changes in process representation) require considerable time, effort, and expense. In this paper, the feasibility and challenges of using the Object Modeling System (OMS) for natural resource model development will be explored. The OMS is a Java-based modeling framework that facilitates simulation model development, evaluation, and deployment. In general, the OMS consists of a library of science, control, and database modules and a means to assemble the selected modules into an application-specific modeling package. The framework is supported by data dictionary, data retrieval, GIS, graphical visualization, and statistical analysis utility modules. Specific features of the OMS that will be discussed include: 1) how to reduce duplication of effort in natural resource modeling; 2) how to make natural resource models easier to build, apply, and evaluate; 3) how to facilitate long-term maintainability of existing and new natural resource models; and 4) how to improve the quality of natural resource model code and ensure credibility of model implementations. Examples of integrating a simple water balance model and a large monolithic model into the OMS will be presented.

  13. Development of Groundwater Modeling Capacity in Mongolia: Keys to Success

    NASA Astrophysics Data System (ADS)

    Anderson, M. T.; Valder, J. F.; Carter, J. M.

    2015-12-01

    Ulaanbaatar, the capital city of Mongolia, is totally dependent on groundwater for its municipal and industrial water supply. Water is drawn from a network of shallow wells in an alluvial aquifer along the Tuul River. Evidence, however, suggests that current water use and especially the projected water demand from a rapidly growing urban population, is not sustainable from existing water sources. In response, the Mongolia Ministry of Environment and the Mongolian Fresh Water Institute requested technical assistance on groundwater modeling through the U.S. Army Corps of Engineers to the U.S. Geological Survey (USGS). Scientists from the USGS-SD Water Science Center provided a workshop to Mongolian water experts on basic principles of groundwater modeling using MODFLOW. The purpose of the workshop was to bring together representatives from the Government of Mongolia, local universities, technical experts, and other key stakeholders to build in-country capacity in hydrogeology and groundwater modeling. A preliminary steady-state groundwater flow model was developed to simulate groundwater conditions in the Tuul River Basin and for use in water use decision-making. The model consisted of 2 layers, 226 rows, and 260 columns with uniform 500 meter grid spacing. The upper model layer represented the alluvial aquifer and the lower layer represented the underlying bedrock, which includes areas characterized by permafrost. Estimated groundwater withdrawal was 180 m3/day, and estimated recharge was 114 mm/yr. The model will be modified and updated by Mongolian scientists as more data are available. Ultimately the model will be used to assist managers in developing a sustainable water supply, for current use and changing climate scenarios. A key to success was developing in-country technical capacity and partnerships with the Mongolian University of Science and Technology, Mongolian Freshwater Institute, a non-profit organization, UNESCO, and the government of Mongolia.

  14. Experimental development based on mapping rule between requirements analysis model and web framework specific design model.

    PubMed

    Okuda, Hirotaka; Ogata, Shinpei; Matsuura, Saeko

    2013-12-01

    Model Driven Development is a promising approach to develop high quality software systems. We have proposed a method of model-driven requirements analysis using Unified Modeling Language (UML). The main feature of our method is to automatically generate a Web user interface prototype from UML requirements analysis model so that we can confirm validity of input/output data for each page and page transition on the system by directly operating the prototype. We proposes a mapping rule in which design information independent of each web application framework implementation is defined based on the requirements analysis model, so as to improve the traceability to the final product from the valid requirements analysis model. This paper discusses the result of applying our method to the development of a Group Work Support System that is currently running in our department. PMID:23565356

  15. Mechanistic systems modeling to guide drug discovery and development

    PubMed Central

    Schmidt, Brian J.; Papin, Jason A.; Musante, Cynthia J.

    2013-01-01

    A crucial question that must be addressed in the drug development process is whether the proposed therapeutic target will yield the desired effect in the clinical population. Pharmaceutical and biotechnology companies place a large investment on research and development, long before confirmatory data are available from human trials. Basic science has greatly expanded the computable knowledge of disease processes, both through the generation of large omics data sets and a compendium of studies assessing cellular and systemic responses to physiologic and pathophysiologic stimuli. Given inherent uncertainties in drug development, mechanistic systems models can better inform target selection and the decision process for advancing compounds through preclinical and clinical research. PMID:22999913

  16. Tabulated Combustion Model Development For Non-Premixed Flames

    NASA Astrophysics Data System (ADS)

    Kundu, Prithwish

    Turbulent non-premixed flames play a very important role in the field of engineering ranging from power generation to propulsion. The coupling of fluid mechanics and complicated combustion chemistry of fuels pose a challenge for the numerical modeling of these type of problems. Combustion modeling in Computational Fluid Dynamics (CFD) is one of the most important tools used for predictive modeling of complex systems and to understand the basic fundamentals of combustion. Traditional combustion models solve a transport equation of each species with a source term. In order to resolve the complex chemistry accurately it is important to include a large number of species. However, the computational cost is generally proportional to the cube of number of species. The presence of a large number of species in a flame makes the use of CFD computationally expensive and beyond reach for some applications or inaccurate when solved with simplified chemistry. For highly turbulent flows, it also becomes important to incorporate the effects of turbulence chemistry interaction (TCI). The aim of this work is to develop high fidelity combustion models based on the flamelet concept and to significantly advance the existing capabilities. A thorough investigation of existing models (Finite-rate chemistry and Representative Interactive Flamelet (RIF)) and comparative study of combustion models was done initially on a constant volume combustion chamber with diesel fuel injection. The CFD modeling was validated with experimental results and was also successfully applied to a single cylinder diesel engine. The effect of number of flamelets on the RIF model and flamelet initialization strategies were studied. The RIF model with multiple flamelets is computationally expensive and a model was proposed on the frame work of RIF. The new model was based on tabulated chemistry and incorporated TCI effects. A multidimensional tabulated chemistry database generation code was developed based on the 1

  17. Development of an integrated water and wind erosion model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prediction technologies for soil erosion by the forces of wind or water have largely been developed independently from one another, especially within the United States. Much of this has been due to the initial creation of equations and models which were empirical in nature (i.e., Universal Soil Loss...

  18. Some Instructional Implications from a Mathematical Model of Cognitive Development.

    ERIC Educational Resources Information Center

    Mierkiewicz, Diane B.

    Cognitive development and various educational implications are discussed in terms of Donald Saari's model of the interaction of a learner and the enviroment and the constraints imposed by the inefficiency of the learner's cognitive system. Saari proposed a hierarchical system of cognitive structures such that the relationships between structures…

  19. Professional Development Schools: A Model for Preparing School Counselor Trainees

    ERIC Educational Resources Information Center

    Brooks, Michael; Steen, Sam; Williams, Franklyn

    2009-01-01

    This article discusses a training model, based on The Education Trust, The American School Counselor Association, and The Holmes Partnership, consisting of school counselor trainees completing their clinical experiences in a Professional Development School. A case study demonstrating the role of the school counselor is presented along with…

  20. Development of a pheromone elution rate physical model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A first principle modeling approach is applied to available data describing the elution of semiochemicals from pheromone dispensers. These data include field data for 27 products developed by several manufacturers, including homemade devices, as well as laboratory data collected on three semiochemi...