Science.gov

Sample records for femo cofactor maturation

  1. Purification and characterization of a FeMo cofactor-deficient MoFe protein.

    PubMed

    Gavini, N; Ma, L; Watt, G; Burgess, B K

    1994-10-01

    Previous studies have shown that the nifH gene product is required for FeMo cofactor biosynthesis and insertion and that a delta nifH strain of Azotobacter vinelandii designated DJ54 accumulates a FeMo cofactor-deficient MoFe protein that is distinct from the FeMo cofactor-deficient protein synthesis by Nif B-, N-, or E- strains [Tal, S., Chun, T., Gavini, N., & Burgess, B. K. (1991) J. Biol. Chem. 266, 10654-10657]. Here we report the purification and activation of the MoFe protein from DJ54. The purified protein is an alpha 2 beta 2 tetramer that is indistinguishable from the wild-type MoFe protein by the criteria of SDS-polyacrylamide gel electrophoresis, native gel electrophoresis, and two-dimensional gel electrophoresis. It binds normally to its redox partner, the Fe protein, by the criterion of chemical cross-linking. It does not contain FeMo cofactor and does not catalyze significant C2H2 reduction or reduction-independent MgATP hydrolysis. It can, however, be activated with FeMo cofactor following the addition of the Fe protein and MgATP when an additional required component(s) is supplied by cell-free extracts from a delta nifD strain of A. vinelandii. The purified DJ54 MoFe protein does contain P-clusters by the criteria of metal analysis, CD spectroscopy, cluster extrusion, and electrochemical reduction of the POX state. In the presence of dithionite it exhibits an axial S = 1/2 EPR signal that integrates to 0.1-0.3 spin per alpha 2 beta 2 tetramer.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7918402

  2. FeMo cofactor synthesis by a nifH mutant with altered MgATP reactivity.

    PubMed

    Gavini, N; Burgess, B K

    1992-10-15

    We have characterized a Nif- mutant of Azotobacter vinelandii, designated UW91 (Shah, V. K., Davis, L. C., Gordon, J. K., Orme-Johnson, W. H., and Brill, W. J. (1973) Biochim. Biophys. Acta 292, 246-255). The specific Fe protein mutation giving rise to the Nif- phenotype was shown by DNA sequencing and site-directed mutagenesis to be the substitution of a conserved alanine at position 157 by a serine. The UW91 Fe protein was purified and shown to have a normal [4Fe-4S] cluster and normal MgATP binding activity. The substitution of alanine 157 by serine, however, prevents the MgATP-induced conformational change that occurs for the wild-type Fe protein, prevents MgATP hydrolysis, and prevents productive electron transfer to the MoFe protein. The UW91 Fe protein does bind to the MoFe protein to give a normal cross-linking pattern; however, it does not compete very successfully with wild-type Fe protein in an activity assay. The UW91 MoFe protein was also purified and characterized and shown to be indistinguishable from the wild-type protein. Thus, the substitution of Fe protein residue alanine 157 by serine does not change the Fe protein's ability to function in FeMo cofactor biosynthesis or insertion. This demonstrates that these events do not require the MgATP-induced conformational change, MgATP hydrolysis, or productive electron transfer to the MoFe protein. PMID:1400428

  3. Sulphur shuttling across a chaperone during molybdenum cofactor maturation

    NASA Astrophysics Data System (ADS)

    Arnoux, Pascal; Ruppelt, Christian; Oudouhou, Flore; Lavergne, Jérôme; Siponen, Marina I.; Toci, René; Mendel, Ralf R.; Bittner, Florian; Pignol, David; Magalon, Axel; Walburger, Anne

    2015-02-01

    Formate dehydrogenases (FDHs) are of interest as they are natural catalysts that sequester atmospheric CO2, generating reduced carbon compounds with possible uses as fuel. FDHs activity in Escherichia coli strictly requires the sulphurtransferase EcFdhD, which likely transfers sulphur from IscS to the molybdenum cofactor (Mo-bisPGD) of FDHs. Here we show that EcFdhD binds Mo-bisPGD in vivo and has submicromolar affinity for GDP—used as a surrogate of the molybdenum cofactor’s nucleotide moieties. The crystal structure of EcFdhD in complex with GDP shows two symmetrical binding sites located on the same face of the dimer. These binding sites are connected via a tunnel-like cavity to the opposite face of the dimer where two dynamic loops, each harbouring two functionally important cysteine residues, are present. On the basis of structure-guided mutagenesis, we propose a model for the sulphuration mechanism of Mo-bisPGD where the sulphur atom shuttles across the chaperone dimer.

  4. Distinct Domains of the GATA-1 Cofactor FOG-1 Differentially Influence Erythroid versus Megakaryocytic Maturation

    PubMed Central

    Cantor, Alan B.; Katz, Samuel G.; Orkin, Stuart H.

    2002-01-01

    FOG family zinc finger proteins play essential roles in development through physical interaction with GATA factors. FOG-1, like its interacting partner GATA-1, is required for normal differentiation of erythroid and megakaryocytic cells. Here, we have developed a functional assay for FOG-1 based on its ability to rescue erythroid and megakaryocytic maturation of a genetically engineered FOG-1−/− cell line. We demonstrate that interaction through only one of FOG-1's four GATA-binding zinc fingers is sufficient for rescue, providing evidence against a model in which FOG-1 acts to bridge multiple GATA-binding DNA elements. Importantly, we find that distinct regions of FOG-1 differentially influence erythroid versus megakaryocyte maturation. As such, we propose that FOG-1 may modulate the fate of a bipotential erythroid/megakaryocytic precursor cell. PMID:12024038

  5. In vitro synthesis of the iron-molybdenum cofactor and maturation of the nif-encoded apodinitrogenase. Effect of substitution of VNFH for NIFH.

    PubMed

    Chatterjee, R; Allen, R M; Ludden, P W; Shah, V K

    1997-08-22

    NIFH (the nifH gene product) has several functions in the nitrogenase enzyme system. In addition to reducing dinitrogenase during nitrogenase turnover, NIFH functions in the biosynthesis of the iron-molybdenum cofactor (FeMo-co), and in the processing of alpha2beta2 apodinitrogenase 1 (a catalytically inactive form of dinitrogenase 1 that lacks the FeMo-co) to the FeMo-co-activatable alpha2beta2gamma2 form. The molybdenum-independent nitrogenase 2 (vnf-encoded) has a distinct dinitrogenase reductase protein, VNFH. We investigated the ability of VNFH to function in the in vitro biosynthesis of FeMo-co and in the maturation of apodinitrogenase 1. VNFH can replace NIFH in both the biosynthesis of FeMo-co and in the maturation of apodinitrogenase 1. These results suggest that the dinitrogenase reductase proteins do not specify the heterometal incorporated into the cofactors of the respective nitrogenase enzymes. The specificity for the incorporation of molybdenum into FeMo-co was also examined using the in vitro FeMo-co synthesis assay system. PMID:9261182

  6. GATA4 mediates gene repression in the mature mouse small intestine through interactions with Friend of GATA (FOG) cofactors

    PubMed Central

    Beuling, Eva; Bosse, Tjalling; aan de Kerk, Daniel J.; Piaseckyj, Christina M.; Fujiwara, Yuko; Katz, Samuel G.; Orkin, Stuart H.; Grand, Richard J.; Krasinski, Stephen D.

    2008-01-01

    GATA4, a transcription factor expressed in the proximal small intestine but not in the distal ileum, maintains proximal-distal distinctions by multiple processes involving gene repression, gene activation, and cell fate determination. Friend of GATA (FOG) is an evolutionarily conserved family of cofactors whose members physically associate with GATA factors and mediate GATA-regulated repression in multiple tissues. Using a novel, inducible, intestine-specific Gata4 knock-in model in mice, in which wild-type GATA4 is specifically inactivated in the small intestine, but a GATA4 mutant that does not bind FOG cofactors (GATA4ki) continues to be expressed, we found that ileal-specific genes were significantly induced in the proximal small intestine (P<0.01); in contrast, genes restricted to proximal small intestine and cell lineage markers were unaffected, indicating that GATA4-FOG interactions contribute specifically to the repression function of GATA4 within this organ. Fog1 mRNA displayed a proximal-distal pattern that parallels that of Gata4, and FOG1 protein was co-expressed with GATA4 in intestinal epithelial cells, implicating FOG1 as the likely mediator of GATA4 function in the small intestine. Our data are the first to indicate FOG function and expression in the mammalian small intestine. PMID:18692040

  7. Rubredoxin-related Maturation Factor Guarantees Metal Cofactor Integrity during Aerobic Biosynthesis of Membrane-bound [NiFe] Hydrogenase*

    PubMed Central

    Fritsch, Johannes; Siebert, Elisabeth; Priebe, Jacqueline; Zebger, Ingo; Lendzian, Friedhelm; Teutloff, Christian; Friedrich, Bärbel; Lenz, Oliver

    2014-01-01

    The membrane-bound [NiFe] hydrogenase (MBH) supports growth of Ralstonia eutropha H16 with H2 as the sole energy source. The enzyme undergoes a complex biosynthesis process that proceeds during cell growth even at ambient O2 levels and involves 14 specific maturation proteins. One of these is a rubredoxin-like protein, which is essential for biosynthesis of active MBH at high oxygen concentrations but dispensable under microaerobic growth conditions. To obtain insights into the function of HoxR, we investigated the MBH protein purified from the cytoplasmic membrane of hoxR mutant cells. Compared with wild-type MBH, the mutant enzyme displayed severely decreased hydrogenase activity. Electron paramagnetic resonance and infrared spectroscopic analyses revealed features resembling those of O2-sensitive [NiFe] hydrogenases and/or oxidatively damaged protein. The catalytic center resided partially in an inactive Niu-A-like state, and the electron transfer chain consisting of three different Fe-S clusters showed marked alterations compared with wild-type enzyme. Purification of HoxR protein from its original host, R. eutropha, revealed only low protein amounts. Therefore, recombinant HoxR protein was isolated from Escherichia coli. Unlike common rubredoxins, the HoxR protein was colorless, rather unstable, and essentially metal-free. Conversion of the atypical iron-binding motif into a canonical one through genetic engineering led to a stable reddish rubredoxin. Remarkably, the modified HoxR protein did not support MBH-dependent growth at high O2. Analysis of MBH-associated protein complexes points toward a specific interaction of HoxR with the Fe-S cluster-bearing small subunit. This supports the previously made notion that HoxR avoids oxidative damage of the metal centers of the MBH, in particular the unprecedented Cys6[4Fe-3S] cluster. PMID:24448806

  8. Radical S-Adenosyl-l-methionine Chemistry in the Synthesis of Hydrogenase and Nitrogenase Metal Cofactors*

    PubMed Central

    Byer, Amanda S.; Shepard, Eric M.; Peters, John W.; Broderick, Joan B.

    2015-01-01

    Nitrogenase, [FeFe]-hydrogenase, and [Fe]-hydrogenase enzymes perform catalysis at metal cofactors with biologically unusual non-protein ligands. The FeMo cofactor of nitrogenase has a MoFe7S9 cluster with a central carbon, whereas the H-cluster of [FeFe]-hydrogenase contains a 2Fe subcluster coordinated by cyanide and CO ligands as well as dithiomethylamine; the [Fe]-hydrogenase cofactor has CO and guanylylpyridinol ligands at a mononuclear iron site. Intriguingly, radical S-adenosyl-l-methionine enzymes are vital for the assembly of all three of these diverse cofactors. This minireview presents and discusses the current state of knowledge of the radical S-adenosylmethionine enzymes required for synthesis of these remarkable metal cofactors. PMID:25477518

  9. In vitro biosynthesis of iron-molybdenum cofactor and maturation of the nif-encoded apodinitrogenase. Effect of substitution for NifH with site-specifically altered forms of NifH.

    PubMed

    Rangaraj, P; Ryle, M J; Lanzilotta, W N; Ludden, P W; Shah, V K

    1999-07-01

    NifH has three different roles in the nitrogenase enzyme system. Apart from serving as the physiological electron donor to dinitrogenase, NifH is involved in iron-molybdenum cofactor (FeMo-co) biosynthesis and in maturation of the FeMo-co-deficient form of apodinitrogenase to a FeMo-co-activable form (apodinitrogenase maturation). The exact roles of NifH in these processes are not well understood. In the present study, the features of NifH required for the aforementioned processes have been investigated by the use of site-specifically altered forms of the enzyme. The ability of six altered forms of NifH inactive in substrate reduction (K15R, D39N, D43N, L127Delta, D129E, and F135Y) to function in in vitro FeMo-co synthesis and apodinitrogenase maturation reactions was investigated. We report that the ability of NifH to bind and not hydrolyze MgATP is required for it to function in these processes. We also present evidence that the ability of NifH to function in these processes is not dictated by the properties known to be required for its function in electron transfer to dinitrogenase. Evidence toward the existence of separate, overlapping sites on NifH for each of its functions (substrate reduction, FeMo-co biosynthesis, and apodinitrogenase maturation) is presented. PMID:10391920

  10. The Fe-V Cofactor of Vanadium Nitrogenase Contains an Interstitial Carbon Atom.

    PubMed

    Rees, Julian A; Bjornsson, Ragnar; Schlesier, Julia; Sippel, Daniel; Einsle, Oliver; DeBeer, Serena

    2015-11-01

    The first direct evidence is provided for the presence of an interstitial carbide in the Fe-V cofactor of Azotobacter vinelandii vanadium nitrogenase. As for our identification of the central carbide in the Fe-Mo cofactor, we employed Fe Kβ valence-to-core X-ray emission spectroscopy and density functional theory calculations, and herein report the highly similar spectra of both variants of the cofactor-containing protein. The identification of an analogous carbide, and thus an atomically homologous active site in vanadium nitrogenase, highlights the importance and influence of both the interstitial carbide and the identity of the heteroatom on the electronic structure and catalytic activity of the enzyme. PMID:26376620

  11. Molybdenum cofactor deficiency.

    PubMed

    Atwal, Paldeep S; Scaglia, Fernando

    2016-01-01

    Molybdenum cofactor deficiency (MoCD) is a severe autosomal recessive inborn error of metabolism first described in 1978. It is characterized by a neonatal presentation of intractable seizures, feeding difficulties, severe developmental delay, microcephaly with brain atrophy and coarse facial features. MoCD results in deficiency of the molybdenum cofactor dependent enzymes sulfite oxidase, xanthine dehydrogenase, aldehyde oxidase and mitochondrial amidoxime reducing component. The resultant accumulation of sulfite, taurine, S-sulfocysteine and thiosulfate contributes to the severe neurological impairment. Recently, initial evidence has demonstrated early treatment with cyclic PMP can turn MoCD type A from a previously neonatal lethal condition with only palliative options, to near normal neurological outcomes in affected patients. We review MoCD and focus on describing the currently published evidence of this exciting new therapeutic option for MoCD type A caused by pathogenic variants in MOCD1. PMID:26653176

  12. Cofactor squelching: Artifact or fact?

    PubMed

    Schmidt, Søren Fisker; Larsen, Bjørk Ditlev; Loft, Anne; Mandrup, Susanne

    2016-07-01

    Cofactor squelching is the term used to describe competition between transcription factors (TFs) for a limited amount of cofactors in a cell with the functional consequence that TFs in a given cell interfere with the activity of each other. Since cofactor squelching was proposed based primarily on reporter assays some 30 years ago, it has remained controversial, and the idea that it could be a physiologically relevant mechanism for transcriptional repression has not received much support. However, recent genome-wide studies have demonstrated that signal-dependent TFs are very often absent from the enhancers that are acutely repressed by those signals, which is consistent with an indirect mechanism of repression such as squelching. Here we review these recent studies in the light of the classical studies of cofactor squelching, and we discuss how TF cooperativity in so-called hotspots and super-enhancers may sensitize these to cofactor squelching. PMID:27273739

  13. The DUF59 Containing Protein SufT Is Involved in the Maturation of Iron-Sulfur (FeS) Proteins during Conditions of High FeS Cofactor Demand in Staphylococcus aureus.

    PubMed

    Mashruwala, Ameya A; Bhatt, Shiven; Poudel, Saroj; Boyd, Eric S; Boyd, Jeffrey M

    2016-08-01

    Proteins containing DUF59 domains have roles in iron-sulfur (FeS) cluster assembly and are widespread throughout Eukarya, Bacteria, and Archaea. However, the function(s) of this domain is unknown. Staphylococcus aureus SufT is composed solely of a DUF59 domain. We noted that sufT is often co-localized with sufBC, which encode for the Suf FeS cluster biosynthetic machinery. Phylogenetic analyses indicated that sufT was recruited to the suf operon, suggesting a role for SufT in FeS cluster assembly. A S. aureus ΔsufT mutant was defective in the assembly of FeS proteins. The DUF59 protein Rv1466 from Mycobacterium tuberculosis partially corrected the phenotypes of a ΔsufT mutant, consistent with a widespread role for DUF59 in FeS protein maturation. SufT was dispensable for FeS protein maturation during conditions that imposed a low cellular demand for FeS cluster assembly. In contrast, the role of SufT was maximal during conditions imposing a high demand for FeS cluster assembly. SufT was not involved in the repair of FeS clusters damaged by reactive oxygen species or in the physical protection of FeS clusters from oxidants. Nfu is a FeS cluster carrier and nfu displayed synergy with sufT. Furthermore, introduction of nfu upon a multicopy plasmid partially corrected the phenotypes of the ΔsufT mutant. Biofilm formation and exoprotein production are critical for S. aureus pathogenesis and vancomycin is a drug of last-resort to treat staphylococcal infections. Defective FeS protein maturation resulted in increased biofilm formation, decreased production of exoproteins, increased resistance to vancomycin, and the appearance of phenotypes consistent with vancomycin-intermediate resistant S. aureus. We propose that SufT, and by extension the DUF59 domain, is an accessory factor that functions in the maturation of FeS proteins. In S. aureus, the involvement of SufT is maximal during conditions of high demand for FeS proteins. PMID:27517714

  14. The DUF59 Containing Protein SufT Is Involved in the Maturation of Iron-Sulfur (FeS) Proteins during Conditions of High FeS Cofactor Demand in Staphylococcus aureus

    PubMed Central

    Bhatt, Shiven; Poudel, Saroj; Boyd, Eric S.; Boyd, Jeffrey M.

    2016-01-01

    Proteins containing DUF59 domains have roles in iron-sulfur (FeS) cluster assembly and are widespread throughout Eukarya, Bacteria, and Archaea. However, the function(s) of this domain is unknown. Staphylococcus aureus SufT is composed solely of a DUF59 domain. We noted that sufT is often co-localized with sufBC, which encode for the Suf FeS cluster biosynthetic machinery. Phylogenetic analyses indicated that sufT was recruited to the suf operon, suggesting a role for SufT in FeS cluster assembly. A S. aureus ΔsufT mutant was defective in the assembly of FeS proteins. The DUF59 protein Rv1466 from Mycobacterium tuberculosis partially corrected the phenotypes of a ΔsufT mutant, consistent with a widespread role for DUF59 in FeS protein maturation. SufT was dispensable for FeS protein maturation during conditions that imposed a low cellular demand for FeS cluster assembly. In contrast, the role of SufT was maximal during conditions imposing a high demand for FeS cluster assembly. SufT was not involved in the repair of FeS clusters damaged by reactive oxygen species or in the physical protection of FeS clusters from oxidants. Nfu is a FeS cluster carrier and nfu displayed synergy with sufT. Furthermore, introduction of nfu upon a multicopy plasmid partially corrected the phenotypes of the ΔsufT mutant. Biofilm formation and exoprotein production are critical for S. aureus pathogenesis and vancomycin is a drug of last-resort to treat staphylococcal infections. Defective FeS protein maturation resulted in increased biofilm formation, decreased production of exoproteins, increased resistance to vancomycin, and the appearance of phenotypes consistent with vancomycin-intermediate resistant S. aureus. We propose that SufT, and by extension the DUF59 domain, is an accessory factor that functions in the maturation of FeS proteins. In S. aureus, the involvement of SufT is maximal during conditions of high demand for FeS proteins. PMID:27517714

  15. Autonomous Filling of Grain-Boundary Cavities during Creep Loading in Fe-Mo Alloys

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Fang, H.; Gramsma, M. E.; Kwakernaak, C.; Sloof, W. G.; Tichelaar, F. D.; Kuzmina, M.; Herbig, M.; Raabe, D.; Brück, E.; van der Zwaag, S.; van Dijk, N. H.

    2016-07-01

    We have investigated the autonomous repair of creep damage by site-selective precipitation in a binary Fe-Mo alloy (6.2 wt pct Mo) during constant-stress creep tests at temperatures of 813 K, 823 K, and 838 K (540 °C, 550 °C, and 565 °C). Scanning electron microscopy studies on the morphology of the creep-failed samples reveal irregularly formed deposits that show a close spatial correlation with the creep cavities, indicating the filling of creep cavities at grain boundaries by precipitation of the Fe2Mo Laves phase. Complementary transmission electron microscopy and atom probe tomography have been used to characterize the precipitation mechanism and the segregation at grain boundaries in detail.

  16. Genetics Home Reference: molybdenum cofactor deficiency

    MedlinePlus

    ... molybdenum, is essential to the function of several enzymes. These enzymes help break down (metabolize) different substances in the ... molybdenum cofactor biosynthesis. Without the cofactor, the metabolic enzymes that rely on it cannot function. The resulting ...

  17. FEMO, A FLOW AND ENRICHMENT MONITOR FOR VERIFYING COMPLIANCE WITH INTERNATIONAL SAFEGUARDS REQUIREMENTS AT A GAS CENTRIFUGE ENRICHMENT FACILITY

    SciTech Connect

    Gunning, John E; Laughter, Mark D; March-Leuba, Jose A

    2008-01-01

    A number of countries have received construction licenses or are contemplating the construction of large-capacity gas centrifuge enrichment plants (GCEPs). The capability to independently verify nuclear material flows is a key component of international safeguards approaches, and the IAEA does not currently have an approved method to continuously monitor the mass flow of 235U in uranium hexafluoride (UF6) gas streams. Oak Ridge National Laboratory is investigating the development of a flow and enrichment monitor, or FEMO, based on an existing blend-down monitoring system (BDMS). The BDMS was designed to continuously monitor both 235U mass flow and enrichment of UF6 streams at the low pressures similar to those which exists at GCEPs. BDMSs have been installed at three sites-the first unit has operated successfully in an unattended environment for approximately 10 years. To be acceptable to GCEP operators, it is essential that the instrument be installed and maintained without interrupting operations. A means to continuously verify flow as is proposed by FEMO will likely be needed to monitor safeguards at large-capacity plants. This will enable the safeguards effectiveness that currently exists at smaller plants to be maintained at the larger facilities and also has the potential to reduce labor costs associated with inspections at current and future plants. This paper describes the FEMO design requirements, operating capabilities, and development work required before field demonstration.

  18. Microstructure and corrosion resistance of Fe/Mo composite amorphous coatings prepared by air plasma spraying

    NASA Astrophysics Data System (ADS)

    Jiang, Chao-ping; Xing, Ya-zhe; Zhang, Feng-ying; Hao, Jian-min

    2012-07-01

    Fe/Mo composite coatings were prepared by air plasma spraying (APS) using Fe-based and Mo-based amorphous and nanocrystalline mixed powders. Microstructural studies show that the composite coatings present a layered structure with low porosity due to adding the self-bonded Mo-based alloy. Corrosion behaviors of the composite coatings, the Fe-based coatings and the Mo-based coatings were investigated by electrochemical measurements and salt spray tests. Electrochemical results show that the composite coatings exhibit a lower polarization current density and higher corrosion potentials than the Fe-based coating when tested in 3.5wt% NaCl solutions, indicating superior corrosion resistance compared with the Fe-based coating. Also with the increase in addition of the Mo-based alloy, a raised corrosion resistance, inferred by an increase in corrosion potential and a decrease in polarization current density, can be found. The results of salt spray tests again show that the corrosion resistance is enhanced by adding the Mo-based alloy, which helps to reduce the porosity of the composite coatings and enhance the stability of the passive films.

  19. Cofactor engineering for advancing chemical biotechnology.

    PubMed

    Wang, Yipeng; San, Ka-Yiu; Bennett, George N

    2013-12-01

    Cofactors provide redox carriers for biosynthetic reactions, catabolic reactions and act as important agents in transfer of energy for the cell. Recent advances in manipulating cofactors include culture conditions or additive alterations, genetic modification of host pathways for increased availability of desired cofactor, changes in enzyme cofactor specificity, and introduction of novel redox partners to form effective circuits for biochemical processes and biocatalysts. Genetic strategies to employ ferredoxin, NADH and NADPH most effectively in natural or novel pathways have improved yield and efficiency of large-scale processes for fuels and chemicals and have been demonstrated with a variety of microbial organisms. PMID:23611567

  20. Molybdenum cofactor and human disease.

    PubMed

    Schwarz, Guenter

    2016-04-01

    Four molybdenum-dependent enzymes are known in humans, each harboring a pterin-based molybdenum cofactor (Moco) in the active site. They catalyze redox reactions using water as oxygen acceptor or donator. Moco is synthesized by a conserved biosynthetic pathway. Moco deficiency results in a severe inborn error of metabolism causing often early childhood death. Disease-causing symptoms mainly go back to the lack of sulfite oxidase (SO) activity, an enzyme in cysteine catabolism. Besides their name-giving functions, Mo-enzymes have been recognized to catalyze novel reactions, including the reduction of nitrite to nitric oxide. In this review we cover the biosynthesis of Moco, key features of Moco-enzymes and focus on their deficiency. Underlying disease mechanisms as well as treatment options will be discussed. PMID:27055119

  1. The Inflammatory Response to Femoral Arterial Closure Devices: A Randomized Comparison Among FemoStop, AngioSeal, and Perclose

    SciTech Connect

    Jensen, Jens Saleh, Nawzad; Jensen, Ulf; Svane, Bertil; Joensson, Anders; Tornvall, Per

    2008-07-15

    The objectives of this study were to investigate whether the systemic inflammatory response differs, in patients undergoing coronary angiography, among the arterial closure devices FemoStop, AngioSeal, and Perclose. The study is a prospective and randomized study. We measured pre- and postprocedural C-reactive protein (CRP), fibrinogen, and interleukin-6 (IL-6) plasma levels and collected clinical and procedural data on 77 patients who underwent coronary angiography because of stable angina pectoris. Patients were randomized to the following device: FemoStop (mechanical compression), AngioSeal (anchor and collagen sponge), or Perclose (nonabsorbable suture). No patient group experienced an increased incidence of vascular complications. There were no differences among the three groups regarding CRP, fibrinogen, or IL-6 values before or after coronary angiography. IL-6 levels increased 6 h after the procedure in all groups (p < 0.01), however, the increase did not differ among the groups. After 30 days there were no increased values of CRP or fibrinogen. We conclude that the femoral arterial closure devices AngioSeal and Perclose do not enhance an inflammatory response after a diagnostic coronary angiography, measured by CRP, fibrinogen, and IL-6, compared to femoral arterial closure using a mechanical compression device.

  2. Ab initio study of energetics and magnetism of sigma phase in Co-Mo and Fe-Mo systems

    NASA Astrophysics Data System (ADS)

    Pavlů, J.; Vřešťál, J.; Šob, M.

    2016-02-01

    We analyse, from first-principles, the energetics and magnetic ordering of sigma phases in Co-Mo and Fe-Mo systems. Total energy differences between the sigma phase and Standard Element Reference (SER) structures are calculated in the whole concentration range at equilibrium volumes by means of the linear muffin-tin orbitals method in the atomic-sphere approximation (LMTO-ASA), the full-potential linearised augmented-plane waves (FLAPW) method and the pseudopotential approach. They are compared with the enthalpy of formation of sigma phase obtained from the phase equilibria calculations at higher temperature based on the semiempirical CALPHAD (CALculation of PHAse Diagram) method. It turns out that the binary sigma phases are more stable than the weighted average of the sigma phase of elemental constituents and that this stability for Fe-Mo is higher than for Co-Mo. On the other hand it was found that the binary sigma phases do not exhibit any stability with respect to the weighted average of the SER structures. The magnetic configurations in all systems are investigated and the stabilizing effect of magnetic order in sigma phase at 0 K is presented. It turns out that the atomic magnetic moment strongly depends on the type of occupied sublattice and total composition of the alloy.

  3. Properties of a reaction-bonded β-SiAlON ceramic doped with an FeMo alloy for application to molten aluminum environments

    NASA Astrophysics Data System (ADS)

    Li, Yan-jun; Yu, Hai-liang; Jin, Hai-yun; Shi, Zhong-qi; Qiao, Guan-jun; Jin, Zhi-hao

    2015-05-01

    An FeMo-alloy-doped β-SiAlON (FeMo/β-SiAlON) composite was fabricated via a reaction-bonding method using raw materials of Si, Al2O3, AlN, FeMo, and Sm2O3. The effects of FeMo on the microstructure and mechanical properties of the composite were investigated. Some properties of the composite, including its bending strength at 700°C and after oxidization at 700°C for 24 h in air, thermal shock resistance and corrosion resistance to molten aluminum, were also evaluated. The results show that the density, toughness, bending strength, and thermal shock resistance of the composite are obviously improved with the addition of an FeMo alloy. In addition, other properties of the composite such as its high-temperature strength and oxidized strength are also improved by the addition of FeMo alloy, and its corrosion resistance to molten aluminum is maintained. These findings indicate that the developed FeMo/β-SiAlON composite exhibits strong potential for application to molten aluminum environments.

  4. Co-factor activated recombinant adenovirus proteinases

    DOEpatents

    Anderson, Carl W.; Mangel, Walter F.

    1996-08-06

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying said peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described.

  5. Co-factor activated recombinant adenovirus proteinases

    DOEpatents

    Anderson, C.W.; Mangel, W.F.

    1996-08-06

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying the peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described. 29 figs.

  6. Cofactor modification analysis: a computational framework to identify cofactor specificity engineering targets for strain improvement.

    PubMed

    Lakshmanan, Meiyappan; Chung, Bevan Kai-Sheng; Liu, Chengcheng; Kim, Seon-Won; Lee, Dong-Yup

    2013-12-01

    Cofactors, such as NAD(H) and NADP(H), play important roles in energy transfer within the cells by providing the necessary redox carriers for a myriad of metabolic reactions, both anabolic and catabolic. Thus, it is crucial to establish the overall cellular redox balance for achieving the desired cellular physiology. Of several methods to manipulate the intracellular cofactor regeneration rates, altering the cofactor specificity of a particular enzyme is a promising one. However, the identification of relevant enzyme targets for such cofactor specificity engineering (CSE) is often very difficult and labor intensive. Therefore, it is necessary to develop more systematic approaches to find the cofactor engineering targets for strain improvement. Presented herein is a novel mathematical framework, cofactor modification analysis (CMA), developed based on the well-established constraints-based flux analysis, for the systematic identification of suitable CSE targets while exploring the global metabolic effects. The CMA algorithm was applied to E. coli using its genome-scale metabolic model, iJO1366, thereby identifying the growth-coupled cofactor engineering targets for overproducing four of its native products: acetate, formate, ethanol, and lactate, and three non-native products: 1-butanol, 1,4-butanediol, and 1,3-propanediol. Notably, among several target candidates for cofactor engineering, glyceraldehyde-3-phosphate dehydrogenase (GAPD) is the most promising enzyme; its cofactor modification enhanced both the desired product and biomass yields significantly. Finally, given the identified target, we further discussed potential mutational strategies for modifying cofactor specificity of GAPD in E. coli as suggested by in silico protein docking experiments. PMID:24372035

  7. Structural Framework for Metal Incorporation during Molybdenum Cofactor Biosynthesis.

    PubMed

    Kasaragod, Vikram Babu; Schindelin, Hermann

    2016-05-01

    The molybdenum cofactor (Moco) is essential for the catalytic activity of all molybdenum-containing enzymes with the exception of nitrogenase. Moco biosynthesis follows an evolutionarily highly conserved pathway and genetic deficiencies in the corresponding human enzymes result in Moco deficiency, which manifests itself in severe neurological symptoms and death in childhood. In humans the final steps of Moco biosynthesis are catalyzed by gephyrin, specifically the penultimate adenylation of molybdopterin (MPT) by its N-terminal G domain (GephG) and the final metal incorporation by its C-terminal E domain (GephE). To better understand the poorly defined molecular framework of this final step, we determined high-resolution crystal structures of GephE in the apo state and in complex with ADP, AMP, and molybdate. Our data provide novel insights into the catalytic steps leading to final Moco maturation, namely deadenylation as well as molybdate binding and insertion. PMID:27112598

  8. Determination of ligand binding constants for the iron-molybdenum cofactor of nitrogenase: monomers, multimers, and cooperative behavior.

    PubMed

    Frank, P; Angove, H C; Burgess, B K; Hodgson, K O

    2001-09-01

    Equilibrium titrations in N-methylformamide (NMF) of G-25 gel filtered (ox)-state FeMo cofactor [FeMoco(ox)] from Azotobacter vinelandii nitrogenase were carried out using sodium ethanethiolate and followed using UV/Vis absorption spectroscopy. For Fe-Moco(ox), a non-linear least squares (NLLSQ) fit to the data indicated a strong equilibrium thiolate-binding step with Keq = 1.3+/-0.2x10(6) M(-1). With 245 molar excess imidazole, cooperative binding of three ethanethiolates was observed. The best NLLSQ fit gave Keq=2.0+/-0.1x10(5) M(-2) and a Hill coefficient n=2.0+/-0.3. A Scatchard plot of these data was concave upward, indicating positive cooperativity. The fit to previously published data involving benzenethiol titration of the one-electron reduced (semi-reduced) cofactor, FeMoco(sr), as followed by EPR required a model that included both a sub-stoichiometric ratio of thiol to FeMoco(sr) and about five cooperative ligand binding sites. These constraints were met by modeling FeMoco(sr) as an aggregate, with fewer thiol binding sites than FeMoco(sr) units. The best fit model was that of FeMoco(sr) as a dodecamer with five cooperative benzenethiol binding sites, yielding a thiol binding constant of 3.32+/-0.09x10(4) M(-4.8) and a Hill coefficient n=4.8+/-0.6. The results of all the other published ligand titrations of FeMoco(sr) were similarly analyzed successfully in terms of equilibrium models that include both cooperative ligand binding and dimer-level aggregation. A possible structural model for FeMoco aggregation in NMF solution is proposed. PMID:11681702

  9. Molybdenum Enzymes, Cofactors, and Model Systems.

    ERIC Educational Resources Information Center

    Burgmayer, S. J. N; Stiefel, E. I.

    1985-01-01

    Discusses: (l) molybdoenzymes (examining their distribution and metabolic role, composition and redox strategy, cofactors, substrate reactions, and mechanistic possibilities); (2) structural information on molybdenum (Mo) centers; (3) modeling studies (Mo-co models, nitrogenase models, and the MO-S duo); and (4) the copper-molybdenum antagonism.…

  10. Cofactor binding protects flavodoxin against oxidative stress.

    PubMed

    Lindhoud, Simon; van den Berg, Willy A M; van den Heuvel, Robert H H; Heck, Albert J R; van Mierlo, Carlo P M; van Berkel, Willem J H

    2012-01-01

    In organisms, various protective mechanisms against oxidative damaging of proteins exist. Here, we show that cofactor binding is among these mechanisms, because flavin mononucleotide (FMN) protects Azotobacter vinelandii flavodoxin against hydrogen peroxide-induced oxidation. We identify an oxidation sensitive cysteine residue in a functionally important loop close to the cofactor, i.e., Cys69. Oxidative stress causes dimerization of apoflavodoxin (i.e., flavodoxin without cofactor), and leads to consecutive formation of sulfinate and sulfonate states of Cys69. Use of 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) reveals that Cys69 modification to a sulfenic acid is a transient intermediate during oxidation. Dithiothreitol converts sulfenic acid and disulfide into thiols, whereas the sulfinate and sulfonate forms of Cys69 are irreversible with respect to this reagent. A variable fraction of Cys69 in freshly isolated flavodoxin is in the sulfenic acid state, but neither oxidation to sulfinic and sulfonic acid nor formation of intermolecular disulfides is observed under oxidising conditions. Furthermore, flavodoxin does not react appreciably with NBD-Cl. Besides its primary role as redox-active moiety, binding of flavin leads to considerably improved stability against protein unfolding and to strong protection against irreversible oxidation and other covalent thiol modifications. Thus, cofactors can protect proteins against oxidation and modification. PMID:22829943

  11. Enzymatic regeneration of adenosine triphosphate cofactor

    NASA Technical Reports Server (NTRS)

    Marshall, D. L.

    1974-01-01

    Regenerating adenosine triphosphate (ATP) from adenosine diphosphate (ADP) by enzymatic process which utilizes carbamyl phosphate as phosphoryl donor is technique used to regenerate expensive cofactors. Process allows complex enzymatic reactions to be considered as candidates for large-scale continuous processes.

  12. A survey of synthetic nicotinamide cofactors in enzymatic processes.

    PubMed

    Paul, Caroline E; Hollmann, Frank

    2016-06-01

    Synthetic nicotinamide cofactors are analogues of the natural cofactors used by oxidoreductases as redox intermediates. Their ability to be fine-tuned makes these biomimetics an attractive alternative to the natural cofactors in terms of stability, reactivity, and cost. The following mini-review focuses on the current state of the art of those biomimetics in enzymatic processes. PMID:27094184

  13. DNA Triplexes That Bind Several Cofactor Molecules.

    PubMed

    Vollmer, Sven; Richert, Clemens

    2015-12-14

    Cofactors are critical for energy-consuming processes in the cell. Harnessing such processes for practical applications requires control over the concentration of cofactors. We have recently shown that DNA triplex motifs with a designed binding site can be used to capture and release nucleotides with low micromolar dissociation constants. In order to increase the storage capacity of such triplex motifs, we have explored the limits of ligand binding through designed cavities in the oligopurine tract. Oligonucleotides with up to six non-nucleotide bridges between purines were synthesized and their ability to bind ATP, cAMP or FAD was measured. Triplex motifs with several single-nucleotide binding sites were found to bind purines more tightly than triplexes with one large binding site. The optimized triplex consists of 59 residues and four C3-bridges. It can bind up to four equivalents of ligand with apparent Kd values of 52 µM for ATP, 9 µM for FAD, and 2 µM for cAMP. An immobilized version fuels bioluminescence via release of ATP at body temperature. These results show that motifs for high-density capture, storage and release of energy-rich biomolecules can be constructed from synthetic DNA. PMID:26561335

  14. The Influence of Oxygen on [NiFe]–Hydrogenase Cofactor Biosynthesis and How Ligation of Carbon Monoxide Precedes Cyanation

    PubMed Central

    Stripp, Sven T.; Lindenstrauss, Ute; Granich, Claudia; Sawers, R. Gary; Soboh, Basem

    2014-01-01

    The class of [NiFe]–hydrogenases is characterized by a bimetallic cofactor comprising low–spin nickel and iron ions, the latter of which is modified with a single carbon monoxide (CO) and two cyanide (CN−) molecules. Generation of these ligands in vivo requires a complex maturation apparatus in which the HypC–HypD complex acts as a ‘construction site’ for the Fe–(CN)2CO portion of the cofactor. The order of addition of the CO and CN– ligands determines the ultimate structure and catalytic efficiency of the cofactor; however much debate surrounds the succession of events. Here, we present an FT–IR spectroscopic analysis of HypC–HypD isolated from a hydrogenase–competent wild–type strain of Escherichia coli. In contrast to previously reported samples, HypC–HypD showed spectral contributions indicative of an electron–rich Fe–CO cofactor, at the same time lacking any Fe–CN– signatures. This immature iron site binds external CO and undergoes oxidative damage when in contact with O2. Binding of CO protects the site against loss of spectral features associated with O2 damage. Our findings strongly suggest that CO ligation precedes cyanation in vivo. Furthermore, the results provide a rationale for the deleterious effects of O2 on in vivo cofactor biosynthesis. PMID:25211029

  15. Catalysis in Enzymatic Decarboxylations: Comparison of Selected Cofactor-dependent and Cofactor-independent Examples

    PubMed Central

    Jordan, Frank; Patel, Hetalben

    2013-01-01

    This review is focused on three types of enzymes decarboxylating very different substrates: (1) Thiamin diphosphate (ThDP)-dependent enzymes reacting with 2-oxo acids; (2) Pyridoxal phosphate (PLP)-dependent enzymes reacting with α-amino acids; and (3) An enzyme with no known co-factors, orotidine 5'-monophosphate decarboxylase (OMPDC). While the first two classes have been much studied for many years, during the past decade studies of both classes have revealed novel mechanistic insight challenging accepted understanding. The enzyme OMPDC has posed a challenge to the enzymologist attempting to explain a 1017-fold rate acceleration in the absence of cofactors or even metal ions. A comparison of the available evidence on the three types of decarboxylases underlines some common features and more differences. The field of decarboxylases remains an interesting and challenging one for the mechanistic enzymologist notwithstanding the large amount of information already available. PMID:23914308

  16. Control of p97 function by cofactor binding.

    PubMed

    Buchberger, Alexander; Schindelin, Hermann; Hänzelmann, Petra

    2015-09-14

    p97 (also known as Cdc48, Ter94, and VCP) is an essential, abundant and highly conserved ATPase driving the turnover of ubiquitylated proteins in eukaryotes. Even though p97 is involved in highly diverse cellular pathways and processes, it exhibits hardly any substrate specificity on its own. Instead, it relies on a large number of regulatory cofactors controlling substrate specificity and turnover. The complexity as well as temporal and spatial regulation of the interactions between p97 and its cofactors is only beginning to be understood at the molecular level. Here, we give an overview on the structural framework of p97 interactions with its cofactors, the emerging principles underlying the assembly of complexes with different cofactors, and the pathogenic effects of disease-associated p97 mutations on cofactor binding. PMID:26320413

  17. The role of FeS clusters for molybdenum cofactor biosynthesis and molybdoenzymes in bacteria

    PubMed Central

    Yokoyama, Kenichi; Leimkühler, Silke

    2016-01-01

    Molybdenum is the only second row transition metal essential for biological systems, which is biologically available as molybdate ion. In eukarya, bacteria and archaea, molybdenum is bound to either to a tricyclic pyranopterin, thereby forming the molybdenum cofactor (Moco), or in some bacteria to the FeS cluster based iron-molybdenum cofactor (FeMoco), which forms the active site of nitrogenase. To date more than 50 Moco-containing enzymes have been purified and biochemically or structurally characterized. The physiological role of molybdenum in these enzymes is fundamental to organisms, since the reactions include the catalysis of key steps in carbon, nitrogen and sulfur metabolism. The catalyzed reactions are in most cases oxo-transfer reactions or the hydroxylation of carbon centers. The biosynthesis of Moco has been intensively studied, in addition to its insertion into molybdoenzymes. In particular, a link between the biosynthesis and maturation of molybdoenzymes and the biosynthesis and distribution of FeS clusters has been identified in the last years: 1) The synthesis of the first intermediate in Moco biosynthesis requires an FeS-cluster containing protein, 2) The sulfurtransferase for the dithiolene group in Moco is common also for the synthesis of FeS clusters, thiamin and thiolated tRNAs, 3) the modification of the active site with a sulfur atom additionally involves a sulfurtransferase, 4) most molybdoenzymes in bacteria require FeS clusters as additional redox active cofactors. In this review we will focus on the biosynthesis of the molybdenum cofactor in bacteria, its modification and insertion into molybdoenzymes, with an emphasis to its link to FeS cluster biosynthesis and sulfur transfer. PMID:25268953

  18. Protein acetylation in metabolism - metabolites and cofactors.

    PubMed

    Menzies, Keir J; Zhang, Hongbo; Katsyuba, Elena; Auwerx, Johan

    2016-01-01

    Reversible acetylation was initially described as an epigenetic mechanism regulating DNA accessibility. Since then, this process has emerged as a controller of histone and nonhistone acetylation that integrates key physiological processes such as metabolism, circadian rhythm and cell cycle, along with gene regulation in various organisms. The widespread and reversible nature of acetylation also revitalized interest in the mechanisms that regulate lysine acetyltransferases (KATs) and deacetylases (KDACs) in health and disease. Changes in protein or histone acetylation are especially relevant for many common diseases including obesity, diabetes mellitus, neurodegenerative diseases and cancer, as well as for some rare diseases such as mitochondrial diseases and lipodystrophies. In this Review, we examine the role of reversible acetylation in metabolic control and how changes in levels of metabolites or cofactors, including nicotinamide adenine dinucleotide, nicotinamide, coenzyme A, acetyl coenzyme A, zinc and butyrate and/or β-hydroxybutyrate, directly alter KAT or KDAC activity to link energy status to adaptive cellular and organismal homeostasis. PMID:26503676

  19. Enzyme cofactors: Double-edged sword for catalysis

    NASA Astrophysics Data System (ADS)

    Ivanov, Ivaylo

    2013-01-01

    The metal cofactors responsible for the activity of CDK2 -- a representative member of the kinase superfamily of enzymes -- have now been shown to also have inhibitory effects during the catalytic cycle.

  20. Neutrino mass matrices with two vanishing elements/cofactors

    NASA Astrophysics Data System (ADS)

    Dev, S.; Singh, Lal; Raj, Desh

    2015-08-01

    We study the phenomenological implications of the recent neutrino data for class B of two texture zeros and two vanishing cofactors for Majorana neutrinos in the flavor basis. We find that the classes () of two texture zeros and the classes () of two vanishing cofactors have similar predictions for neutrino oscillation parameters for the same mass hierarchy. Similar predictions for the classes () of two texture zeros and classes () of two vanishing cofactors are expected. However, a preference for a shift in the quadrant of the Dirac-type CP-violating phase () in contrast to the earlier analysis has been predicted for a relatively large value of the reactor neutrino mixing angle () for class B of two texture zeros and two vanishing cofactors for an inverted mass spectrum. No such shift in the quadrant of has been found for the normal mass spectrum.

  1. Ascorbate as a Co-Factor for Fe- and 2-Oxoglutarate Dependent Dioxygenases: Physiological Activity in Tumor Growth and Progression

    PubMed Central

    Kuiper, Caroline; Vissers, Margreet C. M.

    2014-01-01

    Ascorbate is a specific co-factor for a large family of enzymes known as the Fe- and 2-oxoglutarate-dependent dioxygenases. These enzymes are found throughout biology and catalyze the addition of a hydroxyl group to various substrates. The proline hydroxylase that is involved in collagen maturation is well known, but in recent times many new enzymes and functions have been uncovered, including those involved in epigenetic control and hypoxia-inducible factor (HIF) regulation. These discoveries have provided crucial mechanistic insights into how ascorbate may affect tumor biology. In particular, there is growing evidence that HIF-1-dependent tumor progression may be inhibited by increasing tumor ascorbate levels. However, rigorous clinical intervention studies are lacking. This review will explore the physiological role of ascorbate as an enzyme co-factor and how this mechanism relates to cancer biology and treatment. The use of ascorbate in cancer should be informed by clinical studies based on such mechanistic hypotheses. PMID:25540771

  2. Functional expression of the FeMo-cofactor-specific biosynthetic genes nifEN as a NifE-N fusion protein synthesizing unit in Azotobacter vinelandii.

    PubMed

    Suh, Man Hee; Pulakat, Lakshmi; Gavini, Nara

    2002-11-29

    The nifEN encodes an E2N2 tetrameric metalloprotein complex that serves as scaffold for assembly of the FeMo cofactor of nitrogenase. In most diazotrophs, the NifE and NifN are translated as separate polypeptides and then assembled into tetrameric E2N2 complex. However, in Anabaena variabilis which has two nif clusters that encode two different NifEN complexes, the NifEN2 is encoded by a single nifE-N like gene, which has high homology to the NifE at amino-terminus and to the NifN at the carboxy-terminus. These observations implied that a metalloprotein like NifEN can accommodate large variations in their amino acid composition and also in the way they are synthesized (as two separate proteins or as a single protein) and yet remain functional. In Azotobacter vinelandii NifE and NifN are synthesized separately. To test whether NifEN could retain its functionality when encoded by a single gene, we generated a translational fusion of the nifE and nifN genes of A. vinelandii that could encode a large NifE-N fusion protein. When expressed in the nifEN-minus strain of A. vinelandii, the nifE-N gene fusion could complement the NifEN function. Western blot analysis by using polyclonal NifEN antibodies revealed that the complementing nifEN product is a large NifE-N fusion protein unit. The fact that the gene fusion of nifE-N specifies a functional NifE-N fusion protein reflects that these metalloproteins can accommodate a wide range of flexibility in their gene organization, structure, and assembly. PMID:12437975

  3. Cofactor Engineering for Enhancing the Flux of Metabolic Pathways

    PubMed Central

    Akhtar, M. Kalim; Jones, Patrik R.

    2014-01-01

    The manufacture of a diverse array of chemicals is now possible with biologically engineered strains, an approach that is greatly facilitated by the emergence of synthetic biology. This is principally achieved through pathway engineering in which enzyme activities are coordinated within a genetically amenable host to generate the product of interest. A great deal of attention is typically given to the quantitative levels of the enzymes with little regard to their overall qualitative states. This highly constrained approach fails to consider other factors that may be necessary for enzyme functionality. In particular, enzymes with physically bound cofactors, otherwise known as holoenzymes, require careful evaluation. Herein, we discuss the importance of cofactors for biocatalytic processes and show with empirical examples why the synthesis and integration of cofactors for the formation of holoenzymes warrant a great deal of attention within the context of pathway engineering. PMID:25221776

  4. Market maturity

    SciTech Connect

    Meade, B.; Bowden, S.; Ellis, M

    1995-02-01

    The power sector in the Philipines provides one of the most mature independent power markets in Asia. Over the past five years, National Power Corp. (NPC), the government owned utility, has actively invited the power sector into power generation. Distribution has remained in the hands of private and rural cooperative utilities. Private utilities have been operating as full requirements customers of NPC while the growth in capacity additions by independent power producers (IPPs) has outpaced NPC`s for the second year in a row. With a recovering economy and regulatory reform proceeding, the outlook for independent power remains strong through the end of the decade. The Philipine Congress is now reviewing draft legislation that will decentralize NPC and begin the process of privatization and market-based reforms throughout the country`s power sector.

  5. Pterin chemistry and its relationship to the molybdenum cofactor

    PubMed Central

    Basu, Partha; Burgmayer, Sharon J.N.

    2011-01-01

    The molybdenum cofactor is composed of a molybdenum coordinated by one or two rather complicated ligands known as either molybdopterin or pyranopterin. Pterin is one of a large family of bicyclic N-heterocycles called pteridines. Such molecules are widely found in Nature, having various forms to perform a variety of biological functions. This article describes the basic nomenclature of pterin, their biological roles, structure, chemical synthesis and redox reactivity. In addition, the biosynthesis of pterins and current models of the molybdenum cofactor are discussed. PMID:21607119

  6. Tunable low-field magnetoresistance in Sr2FeMoO6 ceramics using organic glycerin to modify grain boundaries and Fe/Mo ordering

    NASA Astrophysics Data System (ADS)

    Wang, J.-F.; Zhang, J.; Hu, B.; Gu, Z.-B.; Zhang, S.-T.

    2014-11-01

    A simple and efficient post-treatment method has been developed to tune the low-field magnetoresistance (LFMR) of Sr2FeMoO6 (SFMO) ceramics. SFMO ceramics, with initial 10% Fe/Mo anitsite defects (ASD), were prepared and soaked in a glycerin/water mixture (v/v, 1/19) for 0-24 h at room temperature; such post-treatment leads to SrMoO4 precipitating, which affects both the grain boundary (GB) strength and the ASD content. By controlling the soaking time the negative effect of ASD and the positive effect of GB on LFMR can be controlled, thus the LFMR can be tuned. When the soaking time is no longer than 6 h, the precipitated SrMoO4 influences the effects of ASD negligibly, but greatly improves the effects of GB, with LFMR enhancements of ~2 times obtained. However, longer soaking times result in an abrupt increase in ASD content; its negative effect is dominant and can offset the increasingly positive effect of GB, so LFMR is suppressed. Our work may provide a new method of using organic materials to manipulate the transport properties of double perovskite ceramics.

  7. UV/V IS/NIR spectrum of β-carotene incorporated in lipid bilayers. FE-MO calculations and comparison with experiment

    NASA Astrophysics Data System (ADS)

    Kolev, V. D.

    1984-03-01

    When incorporated in the bilayers of lipid vesicles, β-carotene shows an additional absorption band at 520-540 nm which is not observed in non-polar solvents. A widely distributed opinion attributes the new band to aggregates of the pigment, but conclusive evidence for this suggestion has not been given. Since the spectral properties of carotenoids in biological and artificial membranes are essential for understanding their functions in photosynthesis, an attempt is undertaken in this paper to obtain theoretical expressions for the parameters of the π-electron transitions using the FE-MO model of the long conjugated chromophore axis of β-carotene. The calculated values of the characteristic wavelengths and oscillator strengths are in good agreement with experimental data. As a band at 535 nm presents in the theoretical spectrum, it is suggested another mechanism of the origin of the long-wavelength band, namely, well oriented β-carotene monomers interacting with the neighbouring lipid molecules in the bilayer.

  8. Structural Basis for Cofactor-Independent Dioxygenation in Vancomycin Biosynthesis

    SciTech Connect

    Widboom,P.; Fielding, E.; Liu, Y.; Bruner, S.

    2007-01-01

    Enzyme-catalyzed oxidations are some of the most common transformations in primary and secondary metabolism. The vancomycin biosynthetic enzyme DpgC belongs to a small class of oxygenation enzymes that are not dependent on an accessory cofactor or metal ion1. The detailed mechanism of cofactor-independent oxygenases has not been established. Here we report the first structure of an enzyme of this oxygenase class in complex with a bound substrate mimic. The use of a designed, synthetic substrate analogue allows unique insights into the chemistry of oxygen activation. The structure confirms the absence of cofactors, and electron density consistent with molecular oxygen is present adjacent to the site of oxidation on the substrate. Molecular oxygen is bound in a small hydrophobic pocket and the substrate provides the reducing power to activate oxygen for downstream chemical steps. Our results resolve the unique and complex chemistry of DpgC, a key enzyme in the biosynthetic pathway of an important class of antibiotics. Furthermore, mechanistic parallels exist between DpgC and cofactor-dependent flavoenzymes, providing information regarding the general mechanism of enzymatic oxygen activation.

  9. Cofactor Trapping, a New Method To Produce Flavin Mononucleotide ▿

    PubMed Central

    Krauss, Ulrich; Svensson, Vera; Wirtz, Astrid; Knieps-Grünhagen, Esther; Jaeger, Karl-Erich

    2011-01-01

    We have purified flavin mononucleotide (FMN) from a flavoprotein-overexpressing Escherichia coli strain by cofactor trapping. This approach uses an overexpressed flavoprotein to trap FMN, which is thus removed from the cascade regulating FMN production in E. coli. This, in turn, allows the isolation of highly pure FMN. PMID:21131527

  10. New artificial fluoro-cofactor of hydride transfer with novel fluorescence assay for redox biocatalysis.

    PubMed

    Zhang, Lei; Yuan, Jun; Xu, Yufang; Zhang, Y-H Percival; Qian, Xuhong

    2016-05-11

    A new artificial fluoro-cofactor was developed for the replacement of natural cofactors NAD(P), exhibiting a high hydride transfer ability. More importantly, we established a new and fast screening method for the evaluation of the properties of artificial cofactors based on the fluorescence assay and visible color change. PMID:27100122

  11. Efficiently Communicating Rich Heterogeneous Geospatial Data from the FeMO2008 Dive Cruise with FlashMap on EarthRef.org

    NASA Astrophysics Data System (ADS)

    Minnett, R. C.; Koppers, A. A.; Staudigel, D.; Staudigel, H.

    2008-12-01

    the web without losing scalability and control of the base maps. Our Flash-based application is fully compatible with KML (Keyhole Markup Language) 2.2, the most recent iteration of KML, allowing users with existing Google Earth KML files to effortlessly display their geospatial content embedded in a web page. As a test case for FlashMap, the annual Iron-Oxidizing Microbial Observatory (FeMO) dive cruise to the Loihi Seamount, in conjunction with data available from ongoing and published FeMO laboratory studies, showcases the flexibility of this single web-based application. With a KML 2.2 compatible web-service providing the content, any database can display results in FlashMap. The user can then hide and show multiple layers of content, potentially from several data sources, and rapidly digest a vast quantity of information to narrow the search results. This flexibility gives experienced users the ability to drill down to exactly the record they are looking for (SERC at Carleton College's educational application of FlashMap at http://serc.carleton.edu/sp/erese/activities/22223.html) and allows users familiar with Google Earth the ability to load and view geospatial data content within a browser from any computer with an internet connection.

  12. Remaining challenges in cellular flavin cofactor homeostasis and flavoprotein biogenesis

    NASA Astrophysics Data System (ADS)

    Giancaspero, Teresa Anna; Colella, Matilde; Brizio, Carmen; Difonzo, Graziana; Fiorino, Giuseppina Maria; Leone, Piero; Brandsch, Roderich; Bonomi, Francesco; Iametti, Stefania; Barile, Maria

    2015-04-01

    The primary role of the water-soluble vitamin B2 (riboflavin) in cell biology is connected with its conversion into FMN and FAD, the cofactors of a large number of dehydrogenases, oxidases and reductases involved in energetic metabolism, epigenetics, protein folding, as well as in a number of diverse regulatory processes. The problem of localisation of flavin cofactor synthesis events and in particular of the FAD synthase (EC 2.7.7.2) in HepG2 cells is addressed here by confocal microscopy in the frame of its relationships with kinetics of FAD synthesis and delivery to client apo-flavoproteins. FAD synthesis catalysed by recombinant isoform 2 of FADS occurs via an ordered bi-bi mechanism in which ATP binds prior to FMN, and pyrophosphate is released before FAD. Spectrophotometric continuous assays of the reconstitution rate of apo-D-aminoacid oxidase with its cofactor, allowed us to propose that besides its FAD synthesising activity, hFADS is able to operate as a FAD "chaperone". The physical interaction between FAD forming enzyme and its clients was further confirmed by dot blot and immunoprecipitation experiments carried out testing as a client either a nuclear or a mitochondrial enzyme that is lysine specific demethylase 1 (LSD1, EC 1.-.-.-) and dimethylglycine dehydrogenase (Me2GlyDH, EC 1.5.8.4), respectively which carry out similar reactions of oxidative demethylation, assisted by tetrahydrofolate used to form 5,10-methylene-tetrahydrofolate. A direct transfer of the cofactor from hFADS2 to apo-dimethyl glycine dehydrogenase was also demonstrated. Thus, FAD synthesis and delivery to these enzymes are crucial processes for bioenergetics and nutri-epigenetics of liver cells.

  13. Nicotinamide Cofactors Suppress Active-Site Labeling of Aldehyde Dehydrogenases.

    PubMed

    Stiti, Naim; Chandrasekar, Balakumaran; Strubl, Laura; Mohammed, Shabaz; Bartels, Dorothea; van der Hoorn, Renier A L

    2016-06-17

    Active site labeling by (re)activity-based probes is a powerful chemical proteomic tool to globally map active sites in native proteomes without using substrates. Active site labeling is usually taken as a readout for the active state of the enzyme because labeling reflects the availability and reactivity of active sites, which are hallmarks for enzyme activities. Here, we show that this relationship holds tightly, but we also reveal an important exception to this rule. Labeling of Arabidopsis ALDH3H1 with a chloroacetamide probe occurs at the catalytic Cys, and labeling is suppressed upon nitrosylation and oxidation, and upon treatment with other Cys modifiers. These experiments display a consistent and strong correlation between active site labeling and enzymatic activity. Surprisingly, however, labeling is suppressed by the cofactor NAD(+), and this property is shared with other members of the ALDH superfamily and also detected for unrelated GAPDH enzymes with an unrelated hydantoin-based probe in crude extracts of plant cell cultures. Suppression requires cofactor binding to its binding pocket. Labeling is also suppressed by ALDH modulators that bind at the substrate entrance tunnel, confirming that labeling occurs through the substrate-binding cavity. Our data indicate that cofactor binding adjusts the catalytic Cys into a conformation that reduces the reactivity toward chloroacetamide probes. PMID:26990764

  14. MYC Cofactors: Molecular Switches Controlling Diverse Biological Outcomes

    PubMed Central

    Hann, Stephen R.

    2014-01-01

    The transcription factor MYC has fundamental roles in proliferation, apoptosis, tumorigenesis, and stem cell pluripotency. Over the last 30 years extensive information has been gathered on the numerous cofactors that interact with MYC and the target genes that are regulated by MYC as a means of understanding the molecular mechanisms controlling its diverse roles. Despite significant advances and perhaps because the amount of information learned about MYC is overwhelming, there has been little consensus on the molecular functions of MYC that mediate its critical biological roles. In this perspective, the major MYC cofactors that regulate the various transcriptional activities of MYC, including canonical and noncanonical transactivation and transcriptional repression, will be reviewed and a model of how these transcriptional mechanisms control MYC-mediated proliferation, apoptosis, and tumorigenesis will be presented. The basis of the model is that a variety of cofactors form dynamic MYC transcriptional complexes that can switch the molecular and biological functions of MYC to yield a diverse range of outcomes in a cell-type- and context-dependent fashion. PMID:24939054

  15. Constraints on texture zero and cofactor zero models for neutrino mass

    SciTech Connect

    Whisnant, K.; Liao, Jiajun; Marfatia, D.

    2014-06-24

    Imposing a texture or cofactor zero on the neutrino mass matrix reduces the number of independent parameters from nine to seven. Since five parameters have been measured, only two independent parameters would remain in such models. We find the allowed regions for single texture zero and single cofactor zero models. We also find strong similarities between single texture zero models with one mass hierarchy and single cofactor zero models with the opposite mass hierarchy. We show that this correspondence can be generalized to texture-zero and cofactor-zero models with the same homogeneous costraints on the elements and cofactors.

  16. Remaining challenges in cellular flavin cofactor homeostasis and flavoprotein biogenesis

    PubMed Central

    Giancaspero, Teresa A.; Colella, Matilde; Brizio, Carmen; Difonzo, Graziana; Fiorino, Giuseppina M.; Leone, Piero; Brandsch, Roderich; Bonomi, Francesco; Iametti, Stefania; Barile, Maria

    2015-01-01

    The primary role of the water-soluble vitamin B2 (riboflavin) in cell biology is connected with its conversion into FMN and FAD, the cofactors of a large number of dehydrogenases, oxidases and reductases involved in a broad spectrum of biological activities, among which energetic metabolism and chromatin remodeling. Subcellular localisation of FAD synthase (EC 2.7.7.2, FADS), the second enzyme in the FAD forming pathway, is addressed here in HepG2 cells by confocal microscopy, in the frame of its relationships with kinetics of FAD synthesis and delivery to client apo-flavoproteins. FAD synthesis catalyzed by recombinant isoform 2 of FADS occurs via an ordered bi-bi mechanism in which ATP binds prior to FMN, and pyrophosphate is released before FAD. Spectrophotometric continuous assays of the reconstitution rate of apo-D-aminoacid oxidase with its cofactor, allowed us to propose that besides its FAD synthesizing activity, hFADS is able to operate as a FAD “chaperone.” The physical interaction between FAD forming enzyme and its clients was further confirmed by dot blot and immunoprecipitation experiments carried out testing as a client either a nuclear lysine-specific demethylase 1 (LSD1) or a mitochondrial dimethylglycine dehydrogenase (Me2GlyDH, EC 1.5.8.4). Both enzymes carry out similar reactions of oxidative demethylation, in which tetrahydrofolate is converted into 5,10-methylene-tetrahydrofolate. A direct transfer of the cofactor from hFADS2 to apo-dimethyl glycine dehydrogenase was also demonstrated. Thus, FAD synthesis and delivery to these enzymes are crucial processes for bioenergetics and nutri-epigenetics of liver cells. PMID:25954742

  17. Remaining challenges in cellular flavin cofactor homeostasis and flavoprotein biogenesis.

    PubMed

    Giancaspero, Teresa A; Colella, Matilde; Brizio, Carmen; Difonzo, Graziana; Fiorino, Giuseppina M; Leone, Piero; Brandsch, Roderich; Bonomi, Francesco; Iametti, Stefania; Barile, Maria

    2015-01-01

    The primary role of the water-soluble vitamin B2 (riboflavin) in cell biology is connected with its conversion into FMN and FAD, the cofactors of a large number of dehydrogenases, oxidases and reductases involved in a broad spectrum of biological activities, among which energetic metabolism and chromatin remodeling. Subcellular localisation of FAD synthase (EC 2.7.7.2, FADS), the second enzyme in the FAD forming pathway, is addressed here in HepG2 cells by confocal microscopy, in the frame of its relationships with kinetics of FAD synthesis and delivery to client apo-flavoproteins. FAD synthesis catalyzed by recombinant isoform 2 of FADS occurs via an ordered bi-bi mechanism in which ATP binds prior to FMN, and pyrophosphate is released before FAD. Spectrophotometric continuous assays of the reconstitution rate of apo-D-aminoacid oxidase with its cofactor, allowed us to propose that besides its FAD synthesizing activity, hFADS is able to operate as a FAD "chaperone." The physical interaction between FAD forming enzyme and its clients was further confirmed by dot blot and immunoprecipitation experiments carried out testing as a client either a nuclear lysine-specific demethylase 1 (LSD1) or a mitochondrial dimethylglycine dehydrogenase (Me2GlyDH, EC 1.5.8.4). Both enzymes carry out similar reactions of oxidative demethylation, in which tetrahydrofolate is converted into 5,10-methylene-tetrahydrofolate. A direct transfer of the cofactor from hFADS2 to apo-dimethyl glycine dehydrogenase was also demonstrated. Thus, FAD synthesis and delivery to these enzymes are crucial processes for bioenergetics and nutri-epigenetics of liver cells. PMID:25954742

  18. Design of dinuclear manganese cofactors for bacterial reaction centers.

    PubMed

    Olson, Tien L; Espiritu, Eduardo; Edwardraja, Selvakumar; Simmons, Chad R; Williams, JoAnn C; Ghirlanda, Giovanna; Allen, James P

    2016-05-01

    A compelling target for the design of electron transfer proteins with novel cofactors is to create a model for the oxygen-evolving complex, a Mn4Ca cluster, of photosystem II. A mononuclear Mn cofactor can be added to the bacterial reaction center, but the addition of multiple metal centers is constrained by the native protein architecture. Alternatively, metal centers can be incorporated into artificial proteins. Designs for the addition of dinuclear metal centers to four-helix bundles resulted in three artificial proteins with ligands for one, two, or three dinuclear metal centers able to bind Mn. The three-dimensional structure determined by X-ray crystallography of one of the Mn-proteins confirmed the design features and revealed details concerning coordination of the Mn center. Electron transfer between these artificial Mn-proteins and bacterial reaction centers was investigated using optical spectroscopy. After formation of a light-induced, charge-separated state, the experiments showed that the Mn-proteins can donate an electron to the oxidized bacteriochlorophyll dimer of modified reaction centers, with the Mn-proteins having additional metal centers being more effective at this electron transfer reaction. Modeling of the structure of the Mn-protein docked to the reaction center showed that the artificial protein likely binds on the periplasmic surface similarly to cytochrome c2, the natural secondary donor. Combining reaction centers with exogenous artificial proteins provides the opportunity to create ligands and investigate the influence of inhomogeneous protein environments on multinuclear redox-active metal centers. This article is part of a Special Issue entitled Biodesign for Bioenergetics - the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson. PMID:26392146

  19. NifX and NifEN exchange NifB cofactor and the VK-cluster, a newly isolated intermediate of the iron-molybdenum cofactor biosynthetic pathway.

    PubMed

    Hernandez, Jose A; Igarashi, Robert Y; Soboh, Basem; Curatti, Leonardo; Dean, Dennis R; Ludden, Paul W; Rubio, Luis M

    2007-01-01

    The iron-molybdenum cofactor of nitrogenase (FeMo-co) is synthesized in a multistep process catalysed by several Nif proteins and is finally inserted into a pre-synthesized apo-dinitrogenase to generate mature dinitrogenase protein. The NifEN complex serves as scaffold for some steps of this synthesis, while NifX belongs to a family of small proteins that bind either FeMo-co precursors or FeMo-co during cofactor synthesis. In this work, the binding of FeMo-co precursors and their transfer between purified Azotobacter vinelandii NifX and NifEN proteins was studied to shed light on the role of NifX on FeMo-co synthesis. Purified NifX binds NifB cofactor (NifB-co), a precursor to FeMo-co, with high affinity and is able to transfer it to the NifEN complex. In addition, NifEN and NifX exchange another [Fe-S] cluster that serves as a FeMo-co precursor, and we have designated it as the VK-cluster. In contrast to NifB-co, the VK-cluster is electronic paramagnetic resonance (EPR)-active in the reduced and the oxidized states. The NifX/VK-cluster complex is unable to support in vitro FeMo-co synthesis in the absence of NifEN because further processing of the VK-cluster into FeMo-co requires the simultaneous activities of NifEN and NifH. Our in vitro studies suggest that the role of NifX in vivo is to serve as transient reservoir of FeMo-co precursors and thus help control their flux during FeMo-co synthesis. PMID:17163967

  20. Effect of Aptamer Binding on the Electron-Transfer Properties of Redox Cofactors.

    PubMed

    Emahi, Ismaila; Gruenke, Paige R; Baum, Dana A

    2015-12-01

    In vitro selection or SELEX has allowed for the identification of functional nucleic acids (FNAs) that can potentially mimic and replace protein enzymes. These FNAs likely interact with cofactors, just like enzymes bind cofactors in their active sites. Investigating how FNA binding affects cofactor properties is important for understanding how an active site is formed and for developing useful enzyme mimics. Oxidoreductase enzymes contain cofactors in their active sites that allow the enzymes to do redox chemistry. In certain applications, these redox cofactors act as electron-transfer shuttles that transport electrons between the enzymes' active sites and electrode surfaces. Three redox cofactors commonly found in oxidoreductases are flavin adenine dinucleotide, nicotinamide adenine dinucleotide (NAD(+)), and pyrroloquinoline quinone (PQQ). We are interested in investigating how DNA aptamers that bind these cofactors influence the cofactors' redox abilities and if these aptamer-cofactor complexes could serve as redox catalysts. We employed cyclic voltammetry and amperometry to study the electrochemical properties of NAD(+) and PQQ when bound to DNA aptamers. Our results suggest that the aptamers provide a stable environment for the cofactor to participate in redox reactions, although enhanced redox activity was not observed. This work provides a foundation for the development of new FNAs capable of redox activity. PMID:26498628

  1. Exercise–induced Anaphylaxis: the Role of Cofactors

    PubMed Central

    Zogaj, Dukagjin; Ibranji, Alkerta; Hoxha, Mehmet

    2014-01-01

    Introduction: Anaphylaxis is a dramatic clinical emergency. It is a very severe, life-threatening generalized or systemic hypersensitivity reaction. Based on immunologic mechanism the anaphylaxis is divided in IgE, IgG, complement, or immune complexes-mediated vs non allergic anaphylaxis. There are a lot of etiologic factors of anaphylaxis, but the three principal immunologic triggers are drugs, insect stings, and foods. Regarding the clinical severity there are several proposed grading systems. The diagnosis of anaphylaxis is mainly clinical. Discussion: The anaphylaxis markers measured in clinical laboratories are total tryptase and histamine. There are some conditions that modulate the onset of anaphylaxis, acting as co- or augmentation factors, which significantly lower the allergen dose necessary for triggering anaphylaxis. The well-documented cofactors of anaphylaxis are physical exercise, alcohol consumption, some foods, co-administration of nonsteroidal anti-inflammatory drugs (NSAID), and concomitant infectious diseases. Development of anaphylaxis depends on the sensitization pattern, the proportion of the involved immunoglobulin classes, characteristics of the allergen, the proportion of the involved immunoglobulin classes, the avidity and affinity of immunoglobulins to bind an allergen, the route of allergen application, and, last but not least, the presence of cofactors of anaphylaxis. Conclusion: Anaphylaxis remains a continuous challenge for the diagnosis and treatment. The adequate management of anaphylaxis requires rapid diagnosis, implementation of primary and secondary prevention measures, and immediate administration of subcutaneous epinephrine. PMID:25685088

  2. Cervical cancer: is herpes simplex virus type II a cofactor?

    PubMed Central

    Jones, C

    1995-01-01

    In many ways, cervical cancer behaves as a sexually transmitted disease. The major risk factors are multiple sexual partners and early onset of sexual activity. Although high-risk types of human papillomaviruses (HPV) play an important role in the development of nearly all cases of cervical cancer, other sexually transmitted infectious agents may be cofactors. Herpes simplex virus type 2 (HSV-2) is transmitted primarily by sexual contact and therefore has been implicated as a risk factor. Several independent studies suggest that HSV-2 infections correlate with a higher than normal incidence of cervical cancer. In contrast, other epidemiological studies have concluded that infection with HSV-2 is not a major risk factor. Two separate transforming domains have been identified within the HSV-2 genome, but continued viral gene expression apparently is not necessary for neoplastic transformation. HSV infections lead to unscheduled cellular DNA synthesis, chromosomal amplifications, and mutations. These observations suggest that HSV-2 is not a typical DNA tumor virus. It is hypothesized that persistent or abortive infections induce permanent genetic alterations that interfere with differentiation of cervical epithelium and subsequently induce abnormal proliferation. Thus, HSV-2 may be a cofactor in some but not all cases of cervical cancer. PMID:8665469

  3. Insights into Hydrocarbon Formation by Nitrogenase Cofactor Homologs

    PubMed Central

    Lee, Chi Chung; Hu, Yilin

    2015-01-01

    ABSTRACT The L-cluster is an all-iron homolog of nitrogenase cofactors. Driven by europium(II) diethylenetriaminepentaacetate [Eu(II)-DTPA], the isolated L-cluster is capable of ATP-independent reduction of CO and CN− to C1 to C4 and C1 to C6 hydrocarbons, respectively. Compared to its cofactor homologs, the L-cluster generates considerably more CH4 from the reduction of CO and CN−, which could be explained by the presence of a “free” Fe atom that is “unmasked” by homocitrate as an additional site for methanation. Moreover, the elevated CH4 formation is accompanied by a decrease in the amount of longer hydrocarbons and/or the lengths of the hydrocarbon products, illustrating a competition between CH4 formation/release and C−C coupling/chain extension. These observations suggest the possibility of designing simpler synthetic clusters for hydrocarbon formation while establishing the L-cluster as a platform for mechanistic investigations of CO and CN− reduction without complications originating from the heterometal and homocitrate components. PMID:25873377

  4. HMGB1 is a cofactor in mammalian base excision repair.

    PubMed

    Prasad, Rajendra; Liu, Yuan; Deterding, Leesa J; Poltoratsky, Vladimir P; Kedar, Padmini S; Horton, Julie K; Kanno, Shin-Ichiro; Asagoshi, Kenjiro; Hou, Esther W; Khodyreva, Svetlana N; Lavrik, Olga I; Tomer, Kenneth B; Yasui, Akira; Wilson, Samuel H

    2007-09-01

    Deoxyribose phosphate (dRP) removal by DNA polymerase beta (Pol beta) is a pivotal step in base excision repair (BER). To identify BER cofactors, especially those with dRP lyase activity, we used a Pol beta null cell extract and BER intermediate as bait for sodium borohydride crosslinking. Mass spectrometry identified the high-mobility group box 1 protein (HMGB1) as specifically interacting with the BER intermediate. Purified HMGB1 was found to have weak dRP lyase activity and to stimulate AP endonuclease and FEN1 activities on BER substrates. Coimmunoprecipitation experiments revealed interactions of HMGB1 with known BER enzymes, and GFP-tagged HMGB1 was found to accumulate at sites of oxidative DNA damage in living cells. HMGB1(-/-) mouse cells were slightly more resistant to MMS than wild-type cells, probably due to the production of fewer strand-break BER intermediates. The results suggest HMGB1 is a BER cofactor capable of modulating BER capacity in cells. PMID:17803946

  5. Mass spectrometry locates local and allosteric conformational changes that occur on cofactor binding

    NASA Astrophysics Data System (ADS)

    Beveridge, Rebecca; Migas, Lukasz G.; Payne, Karl A. P.; Scrutton, Nigel S.; Leys, David; Barran, Perdita E.

    2016-07-01

    Fdc1 is a decarboxylase enzyme that requires the novel prenylated FMN cofactor for activity. Here, we use it as an exemplar system to show how native top-down and bottom-up mass spectrometry can measure the structural effect of cofactor binding by a protein. For Fdc1Ubix, the cofactor confers structural stability to the enzyme. IM-MS shows the holo protein to exist in four closely related conformational families, the populations of which differ in the apo form; the two smaller families are more populated in the presence of the cofactor and depopulated in its absence. These findings, supported by MD simulations, indicate a more open structure for the apo form. HDX-MS reveals that while the dominant structural changes occur proximal to the cofactor-binding site, rearrangements on cofactor binding are evident throughout the protein, predominantly attributable to allosteric conformational tightening, consistent with IM-MS data.

  6. Manual control of catalytic reactions: Reactions by an apoenzyme gel and a cofactor gel

    PubMed Central

    Kobayashi, Yuichiro; Takashima, Yoshinori; Hashidzume, Akihito; Yamaguchi, Hiroyasu; Harada, Akira

    2015-01-01

    Enzymes play a vital role in catalysing almost all chemical reactions that occur in biological systems. Some enzymes must form complexes with non-protein molecules called cofactors to express catalytic activities. Although the control of catalytic reactions via apoenzyme–cofactor complexes has attracted significant attention, the reports have been limited to the microscale. Here, we report a system to express catalytic activity by adhesion of an apoenzyme gel and a cofactor gel. The apoenzyme and cofactor gels act as catalysts when they form a gel assembly, but they lose catalytic ability upon manual dissociation. We successfully construct a system with switchable catalytic activity via adhesion and separation of the apoenzyme gel with the cofactor gel. We expect that this methodology can be applied to regulate the functional activities of enzymes that bear cofactors in their active sites, such as the oxygen transport of haemoglobin or myoglobin and the electron transport of cytochromes. PMID:26537172

  7. Manual control of catalytic reactions: Reactions by an apoenzyme gel and a cofactor gel

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yuichiro; Takashima, Yoshinori; Hashidzume, Akihito; Yamaguchi, Hiroyasu; Harada, Akira

    2015-11-01

    Enzymes play a vital role in catalysing almost all chemical reactions that occur in biological systems. Some enzymes must form complexes with non-protein molecules called cofactors to express catalytic activities. Although the control of catalytic reactions via apoenzyme-cofactor complexes has attracted significant attention, the reports have been limited to the microscale. Here, we report a system to express catalytic activity by adhesion of an apoenzyme gel and a cofactor gel. The apoenzyme and cofactor gels act as catalysts when they form a gel assembly, but they lose catalytic ability upon manual dissociation. We successfully construct a system with switchable catalytic activity via adhesion and separation of the apoenzyme gel with the cofactor gel. We expect that this methodology can be applied to regulate the functional activities of enzymes that bear cofactors in their active sites, such as the oxygen transport of haemoglobin or myoglobin and the electron transport of cytochromes.

  8. Mass spectrometry locates local and allosteric conformational changes that occur on cofactor binding

    PubMed Central

    Beveridge, Rebecca; Migas, Lukasz G.; Payne, Karl A. P.; Scrutton, Nigel S.; Leys, David; Barran, Perdita E.

    2016-01-01

    Fdc1 is a decarboxylase enzyme that requires the novel prenylated FMN cofactor for activity. Here, we use it as an exemplar system to show how native top-down and bottom-up mass spectrometry can measure the structural effect of cofactor binding by a protein. For Fdc1Ubix, the cofactor confers structural stability to the enzyme. IM–MS shows the holo protein to exist in four closely related conformational families, the populations of which differ in the apo form; the two smaller families are more populated in the presence of the cofactor and depopulated in its absence. These findings, supported by MD simulations, indicate a more open structure for the apo form. HDX-MS reveals that while the dominant structural changes occur proximal to the cofactor-binding site, rearrangements on cofactor binding are evident throughout the protein, predominantly attributable to allosteric conformational tightening, consistent with IM–MS data. PMID:27418477

  9. Mature Teachers Matter

    ERIC Educational Resources Information Center

    Berl, Patricia Scallan

    2005-01-01

    In this article, the author discusses the consequences of losing mature teachers due to voluntary separation or retirement and the mindset of a mature teacher that is different from younger teachers in a number of ways. Mature teachers are colleagues over 45 years of age possessing significant experience in the field. Future trends in teacher…

  10. Characterization of transcriptional regulatory domains of ankyrin repeat cofactor-1

    SciTech Connect

    Zhang, Aihua; Li, Chia-Wei; Chen, J. Don . E-mail: chenjd@umdnj.edu

    2007-07-13

    The ankyrin repeats cofactor-1 (ANCO-1) was recently identified as a p160 coactivator-interacting protein that may inhibit transcriptional activity of nuclear receptors. Here, we have characterized the transcriptional regulatory domains of ANCO-1. Two intrinsic repression domains (RD) were identified: an N-terminal RD1 at residues 318-611 and a C-terminal RD2 at 2369-2663. ANCO-1 also contains an activation domain (AD) capable of stimulating transcription in both mammalian and yeast cells. The minimal AD was delimited to a 70-amino acid region at residues 2076-2145. Overall, full-length ANCO-1 exhibited transcriptional repressor activity, suggesting that RD domains may suppress the AD activity. We further demonstrated that ANCO-1 silencing by siRNA enhanced progesterone receptor-mediated transcription. Together, these results indicate that the transcriptional potential of ANCO-1 may be modulated by a combination of repression and activation signals.

  11. Spontaneous Formation of RNA Strands, Peptidyl RNA, and Cofactors

    PubMed Central

    Jauker, Mario; Griesser, Helmut; Richert, Clemens

    2015-01-01

    How the biochemical machinery evolved from simple precursors is an open question. Here we show that ribonucleotides and amino acids condense to peptidyl RNAs in the absence of enzymes under conditions established for genetic copying. Untemplated formation of RNA strands that can encode genetic information, formation of peptidyl chains linked to RNA, and formation of the cofactors NAD+, FAD, and ATP all occur under the same conditions. In the peptidyl RNAs, the peptide chains are phosphoramidate-linked to a ribonucleotide. Peptidyl RNAs with long peptide chains were selected from an initial pool when a lipophilic phase simulating the interior of membranes was offered, and free peptides were released upon acidification. Our results show that key molecules of genetics, catalysis, and metabolism can emerge under the same conditions, without a mineral surface, without an enzyme, and without the need for chemical pre-activation. PMID:26435376

  12. Spatially Organized Enzymes Drive Cofactor-Coupled Cascade Reactions.

    PubMed

    Ngo, Tien Anh; Nakata, Eiji; Saimura, Masayuki; Morii, Takashi

    2016-03-01

    We report the construction of an artificial enzyme cascade based on the xylose metabolic pathway. Two enzymes, xylose reductase and xylitol dehydrogenase, were assembled at specific locations on DNA origami by using DNA-binding protein adaptors with systematic variations in the interenzyme distances and defined numbers of enzyme molecules. The reaction system, which localized the two enzymes in close proximity to facilitate transport of reaction intermediates, resulted in significantly higher yields of the conversion of xylose into xylulose through the intermediate xylitol with recycling of the cofactor NADH. Analysis of the initial reaction rate, regenerated amount of NADH, and simulation of the intermediates' diffusion indicated that the intermediates diffused to the second enzyme by Brownian motion. The efficiency of the cascade reaction with the bimolecular transport of xylitol and NAD(+) likely depends more on the interenzyme distance than that of the cascade reaction with unimolecular transport between two enzymes. PMID:26881296

  13. Mechanistic Contributions of Biological Cofactors in Islet Amyloid Polypeptide Amyloidogenesis

    PubMed Central

    Nguyen, Phuong Trang; Andraka, Nagore; De Carufel, Carole Anne; Bourgault, Steve

    2015-01-01

    Type II diabetes mellitus is associated with the deposition of fibrillar aggregates in pancreatic islets. The major protein component of islet amyloids is the glucomodulatory hormone islet amyloid polypeptide (IAPP). Islet amyloid fibrils are virtually always associated with several biomolecules, including apolipoprotein E, metals, glycosaminoglycans, and various lipids. IAPP amyloidogenesis has been originally perceived as a self-assembly homogeneous process in which the inherent aggregation propensity of the peptide and its local concentration constitute the major driving forces to fibrillization. However, over the last two decades, numerous studies have shown a prominent role of amyloid cofactors in IAPP fibrillogenesis associated with the etiology of type II diabetes. It is increasingly evident that the biochemical microenvironment in which IAPP amyloid formation occurs and the interactions of the polypeptide with various biomolecules not only modulate the rate and extent of aggregation, but could also remodel the amyloidogenesis process as well as the structure, toxicity, and stability of the resulting fibrils. PMID:26576436

  14. EPR monitored redox titration of the cofactors of Saccharomyces cerevisiae Nar1.

    PubMed

    Hagedoorn, Peter-Leon; van der Weel, Laura; Hagen, Wilfred R

    2014-01-01

    Electron Paramagnetic Resonance (EPR) monitored redox titrations are a powerful method to determine the midpoint potential of cofactors in proteins and to identify and quantify the cofactors in their detectable redox state. The technique is complementary to direct electrochemistry (voltammetry) approaches, as it does not offer information on electron transfer rates, but does establish the identity and redox state of the cofactors in the protein under study. The technique is widely applicable to any protein containing an electron paramagnetic resonance (EPR) detectable cofactor. A typical titration requires 2 ml protein with a cofactor concentration in the range of 1-100 µM. The protein is titrated with a chemical reductant (sodium dithionite) or oxidant (potassium ferricyanide) in order to poise the sample at a certain potential. A platinum wire and a Ag/AgCl reference electrode are connected to a voltmeter to measure the potential of the protein solution A set of 13 different redox mediators is used to equilibrate between the redox cofactors of the protein and the electrodes. Samples are drawn at different potentials and the Electron Paramagnetic Resonance spectra, characteristic for the different redox cofactors in the protein, are measured. The plot of the signal intensity versus the sample potential is analyzed using the Nernst equation in order to determine the midpoint potential of the cofactor. PMID:25490157

  15. Dynamics of Protein Folding and Cofactor Binding Monitored by Single-Molecule Force Spectroscopy

    PubMed Central

    Cao, Yi; Li, Hongbin

    2011-01-01

    Many proteins in living cells require cofactors to carry out their biological functions. To reach their functional states, these proteins need to fold into their unique three-dimensional structures in the presence of their cofactors. Two processes, folding of the protein and binding of cofactors, intermingle with each other, making the direct elucidation of the folding mechanism of proteins in the presence of cofactors challenging. Here we use single-molecule atomic force microscopy to directly monitor the folding and cofactor binding dynamics of an engineered metal-binding protein G6-53 at the single-molecule level. Using the mechanical stability of different conformers of G6-53 as sensitive probes, we directly identified different G6-53 conformers (unfolded, apo- and Ni2+-bound) populated along the folding pathway of G6-53 in the presence of its cofactor Ni2+. By carrying out single-molecule atomic force microscopy refolding experiments, we monitored kinetic evolution processes of these different conformers. Our results suggested that the majority of G6-53 folds through a binding-after-folding mechanism, whereas a small fraction follows a binding-before-folding pathway. Our study opens an avenue to utilizing force spectroscopy techniques to probe the folding dynamics of proteins in the presence of cofactors at the single-molecule level, and we anticipated that this method can be used to study a wide variety of proteins requiring cofactors for their function. PMID:22004755

  16. Nuclear Receptor Cofactors in PPARγ-Mediated Adipogenesis and Adipocyte Energy Metabolism

    PubMed Central

    Powell, Emily; Kuhn, Peter; Xu, Wei

    2007-01-01

    Transcriptional cofactors are integral to the proper function and regulation of nuclear receptors. Members of the peroxisome proliferator-activated receptor (PPAR) family of nuclear receptors are involved in the regulation of lipid and carbohydrate metabolism. They modulate gene transcription in response to a wide variety of ligands, a process that is mediated by transcriptional coactivators and corepressors. The mechanisms by which these cofactors mediate transcriptional regulation of nuclear receptor function are still being elucidated. The rapidly increasing array of cofactors has brought into focus the need for a clear understanding of how these cofactors interact in ligand- and cell-specific manners. This review highlights the differential effects of the assorted cofactors regulating the transcriptional action of PPARγ and summarizes the recent advances in understanding the physiological functions of corepressors and coactivators. PMID:17389765

  17. Cone Early Maturity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hop cone early maturity is thought to be caused by diffuse infections of cone, just prior to harvest, by Podosphaera macularis. The disease is best managed by limiting the amount of leaf infection by P. macularis prior to bloom. The yield and quality reductions associated with Hop cone early matur...

  18. Identification and characterization of functional homologs of nitrogenase cofactor biosynthesis protein NifB from methanogens

    PubMed Central

    Fay, Aaron W.; Wiig, Jared A.; Lee, Chi Chung; Hu, Yilin

    2015-01-01

    Nitrogenase biosynthesis protein NifB catalyzes the radical S-adenosyl-L-methionine (SAM)-dependent insertion of carbide into the M cluster, the cofactor of the molybdenum nitrogenase from Azotobacter vinelandii. Here, we report the identification and characterization of two naturally “truncated” homologs of NifB from Methanosarcina acetivorans (NifBMa) and Methanobacterium thermoautotrophicum (NifBMt), which contain a SAM-binding domain at the N terminus but lack a domain toward the C terminus that shares homology with NifX, an accessory protein in M cluster biosynthesis. NifBMa and NifBMt are monomeric proteins containing a SAM-binding [Fe4S4] cluster (designated the SAM cluster) and a [Fe4S4]-like cluster pair (designated the K cluster) that can be processed into an [Fe8S9] precursor to the M cluster (designated the L cluster). Further, the K clusters in NifBMa and NifBMt can be converted to L clusters upon addition of SAM, which corresponds to their ability to heterologously donate L clusters to the biosynthetic machinery of A. vinelandii for further maturation into the M clusters. Perhaps even more excitingly, NifBMa and NifBMt can catalyze the removal of methyl group from SAM and the abstraction of hydrogen from this methyl group by 5′-deoxyadenosyl radical that initiates the radical-based incorporation of methyl-derived carbide into the M cluster. The successful identification of NifBMa and NifBMt as functional homologs of NifB not only enabled classification of a new subset of radical SAM methyltransferases that specialize in complex metallocluster assembly, but also provided a new tool for further characterization of the distinctive, NifB-catalyzed methyl transfer and conversion to an iron-bound carbide. PMID:26627238

  19. Characterization of a Radical Intermediate in Lipoyl Cofactor Biosynthesis.

    PubMed

    Lanz, Nicholas D; Rectenwald, Justin M; Wang, Bo; Kakar, Elizabeth S; Laremore, Tatiana N; Booker, Squire J; Silakov, Alexey

    2015-10-21

    Lipoyl synthase (LipA) catalyzes the final step in the biosynthesis of the lipoyl cofactor, the insertion of two sulfur atoms at C6 and C8 of an n-octanoyl chain. LipA is a member of the radical S-adenosylmethionine (SAM) superfamily of enzymes and uses two [4Fe-4S] clusters to catalyze its transformation. One cluster binds in contact with SAM and donates the requisite electron for the reductive cleavage of SAM to generate two 5'-deoxyadenosyl 5'-radicals, which abstract hydrogen atoms from C6 and C8 of the substrate. By contrast, the second, auxiliary [4Fe-4S] cluster, has been hypothesized to serve as the sulfur donor in the reaction. Such a sacrificial role for an iron-sulfur cluster during catalysis has not been universally accepted. Use of a conjugated 2,4-hexadienoyl-containing substrate analogue has allowed the substrate radical to be trapped and characterized by continuous-wave and pulsed electron paramagnetic resonance methods. Here we report the observation of a (57)Fe hyperfine coupling interaction with the paramagnetic signal, which indicates that the iron-sulfur cluster of LipA and its substrate are within bonding distance. PMID:26390103

  20. Relocalization of human chromatin remodeling cofactor TIP48 in mitosis

    SciTech Connect

    Sigala, Barbara; Edwards, Mina; Puri, Teena; Tsaneva, Irina R. . E-mail: tsaneva@biochem.ucl.ac.uk

    2005-11-01

    TIP48 is a highly conserved eukaryotic AAA{sup +} protein which is an essential cofactor for several complexes involved in chromatin acetylation and remodeling, transcriptional and developmental regulation and nucleolar organization and trafficking. We show that TIP48 abundance in HeLa cells did not change during the cell cycle, nor did its distribution in various biochemical fractions. However, we observed distinct changes in the subcellular localization of TIP48 during M phase using immunofluorescence microscopy. Our studies demonstrate that in interphase cells TIP48 was found mainly in the nucleus and exhibited a distinct localization in the nuclear periphery. As the cells entered mitosis, TIP48 was excluded from the condensing chromosomes but showed association with the mitotic apparatus. During anaphase, some TIP48 was detected in the centrosome colocalizing with tubulin but the strongest staining appeared in the mitotic equator associated with the midzone central spindle. Accumulation of TIP48 in the midzone and the midbody was observed in late telophase and cytokinesis. This redeployment of TIP48 during anaphase and cytokinesis was independent of microtubule assembly. The relocation of endogenous TIP48 to the midzone/midbody under physiological conditions suggests a novel and distinct function for TIP48 in mitosis and possible involvement in the exit of mitosis.

  1. MTR4, a putative RNA helicase and exosome co-factor, is required for proper rRNA biogenesis and development in Arabidopsis thaliana.

    PubMed

    Lange, Heike; Sement, François M; Gagliardi, Dominique

    2011-10-01

    The exosome is a conserved protein complex that is responsible for essential 3'→5' RNA degradation in both the nucleus and the cytosol. It is composed of a nine-subunit core complex to which co-factors confer both RNA substrate recognition and ribonucleolytic activities. Very few exosome co-factors have been identified in plants. Here, we have characterized a putative RNA helicase, AtMTR4, that is involved in the degradation of several nucleolar exosome substrates in Arabidopsis thaliana. We show that AtMTR4, rather than its closely related protein HEN2, is required for proper rRNA biogenesis in Arabidopsis. AtMTR4 is mostly localized in the nucleolus, a subcellular compartmentalization that is shared with another exosome co-factor, RRP6L2. AtMTR4 and RRP6L2 cooperate in several steps of rRNA maturation and surveillance, such as processing the 5.8S rRNA and removal of rRNA maturation by-products. Interestingly, degradation of the Arabidopsis 5' external transcribed spacer (5' ETS) requires cooperation of both the 5'→3' and 3'→5' exoribonucleolytic pathways. Accumulating AtMTR4 targets give rise to illegitimate small RNAs; however, these do not affect rRNA metabolism or contribute to the phenotype of mtr4 mutants. Plants lacking AtMTR4 are viable but show several developmental defects, including aberrant vein patterning and pointed first leaves. The mtr4 phenotype resembles that of several ribosomal protein and nucleolin mutants, and may be explained by delayed ribosome biogenesis, as we observed a reduced rate of rRNA accumulation in mtr4 mutants. Taken together, these data link AtMTR4 with rRNA biogenesis and development in Arabidopsis. PMID:21682783

  2. Elicitors and co-factors in food-induced anaphylaxis in adults

    PubMed Central

    2013-01-01

    Food-induced anaphylaxis (FIA) in adults is often insufficiently diagnosed. One reason is related to the presence of co-factors like exercise, alcohol, additives and non-steroidal anti-inflammatory drugs. The objective of this analysis was to retrospectively investigate the role of co-factors in patients with FIA. 93 adult patients with suspected FIA underwent double-blind, placebo-controlled food challenges with suspected allergens and co-factors. The elicitors of anaphylaxis were identified in 44/93 patients. 27 patients reacted to food allergens upon challenge, 15 patients reacted only when a co-factor was co-exposed with the allergen. The most common identified allergens were celery (n = 7), soy, wheat (n = 4 each) and lupine (n = 3). Among the co-factors food additives (n = 8) and physical exercise (n = 6) were most frequent. In 10 patients more than one co-factor and/or more than one food allergen was necessary to elicit a positive reaction. The implementation of co-factors into the challenge protocol increases the identification rate of elicitors in adult food anaphylactic patients. PMID:24262093

  3. Protein-mediated assembly of succinate dehydrogenase and its cofactors.

    PubMed

    Van Vranken, Jonathan G; Na, Un; Winge, Dennis R; Rutter, Jared

    2015-01-01

    Succinate dehydrogenase (or complex II; SDH) is a heterotetrameric protein complex that links the tribarboxylic acid cycle with the electron transport chain. SDH is composed of four nuclear-encoded subunits that must translocate independently to the mitochondria and assemble into a mature protein complex embedded in the inner mitochondrial membrane. Recently, it has become clear that failure to assemble functional SDH complexes can result in cancer and neurodegenerative syndromes. The effort to thoroughly elucidate the SDH assembly pathway has resulted in the discovery of four subunit-specific assembly factors that aid in the maturation of individual subunits and support the assembly of the intact complex. This review will focus on these assembly factors and assess the contribution of each factor to the assembly of SDH. Finally, we propose a model of the SDH assembly pathway that incorporates all extant data. PMID:25488574

  4. Protein-mediated assembly of succinate dehydrogenase and its cofactors

    PubMed Central

    Van Vranken, Jonathan G.; Na, Un; Winge, Dennis R.; Rutter, Jared

    2015-01-01

    Succinate dehydrogenase (or Complex II; SDH) is a heterotetrameric protein complex that links the tribarboxylic acid cycle with the electron transport chain. SDH is composed of four nuclear-encoded subunits that must translocate independently to the mitochondria and assemble into a mature protein complex embedded in the inner mitochondrial membrane. Recently, it has become clear that failure to assemble functional SDH complexes can result in cancer and neurodegenerative syndromes. The effort to thoroughly elucidate the SDH assembly pathway has resulted in the discovery of four subunit-specific assembly factors that aid in the maturation of individual subunits and support the assembly of the intact complex. This review will focus on these assembly factors and assess the contribution of each factor to the assembly of SDH. Finally, we propose a model of the SDH assembly pathway that incorporates all extant data. PMID:25488574

  5. Biosynthesis of the iron-molybdenum cofactor and the molybdenum cofactor in Klebsiella pneumoniae: effect of sulfur source.

    PubMed Central

    Ugalde, R A; Imperial, J; Shah, V K; Brill, W J

    1985-01-01

    NifQ- and Mol- mutants of Klebsiella pneumoniae show an elevated molybdenum requirement for nitrogen fixation. Substitution of cystine for sulfate as the sulfur source in the medium reduced the molybdenum requirement of these mutants to levels required by the wild type. Cystine also increased the intracellular molybdenum accumulation of NifQ- and Mol- mutants. Cystine did not affect the molybdenum requirement or accumulation in wild-type K. pneumoniae. Sulfate transport and metabolism in K. pneumoniae were repressed by cystine. However, the effect of cystine on the molybdenum requirement could not be explained by an interaction between sulfate and molybdate at the transport level. Cystine increased the molybdenum requirement of Mol- mutants for nitrate reductase activity by at least 100-fold. Cystine had the same effect on the molybdenum requirement for nitrate reductase activity in Escherichia coli ChlD- mutants. This shows that cystine does not have a generalized effect on molybdenum metabolism. Millimolar concentrations of molybdate inhibited nitrogenase and nitrate reductase derepression with sulfate as the sulfur source, but not with cystine. The inhibition was the result of a specific antagonism of sulfate metabolism by molybdate. The effects of nifQ and mol mutations on nitrogenase could be suppressed either by the addition of cystine or by high concentrations of molybdate. This suggests that a sulfur donor and molybdenum interact at an early step in the biosynthesis of the iron-molybdenum cofactor. This interaction might occur nonenzymatically when the levels of the reactants are high. PMID:3905765

  6. Biosynthesis of the iron-molybdenum cofactor and the molybdenum cofactor in Klebsiella pneumoniae: effect of sulfur source

    SciTech Connect

    Ugalde, R.A.; Imperial, J.; Shah, V.K.; Brill, W.J.

    1985-12-01

    NifQ/sup -/ and Mol/sup -/ mutants of Klebsiella pneumoniae show an elevated molybdenum requirement for nitrogen fixation. Substitution of cystine for sulfate as the sulfur source in the medium reduced the molybdenum requirement of these mutants to levels required by the wild type. Cystine also increased the intracellular molybdenum accumulation of NifQ/sup -/ and Mol/sup -/ mutants. Cystine did not affect the molybdenum requirement or accumulation in wild-type K. pneumoniae. Sulfate transport and metabolism in K. pneumoniae were repressed by cystine. However, the effect of cystine on the molybdenum requirement could not be explained by an interaction between sulfate and molybdate at the transport level. The data show that cystine does not have a generalized effect on molybdenum metabolism. Millimolar concentrations of molybdate inhibited nitrogenase and nitrate reductase derepression with sulfate as the sulfur source, but not with cystine. The inhibition was the result of a specific antagonism of sulfate metabolism by molybdate. This study suggests that a sulfur donor and molybdenum interact at an early step in the biosynthesis of the iron-molybdenum cofactor. This interaction might occur nonenzymatically when the levels of the reactants are high.

  7. In vitro synthesis of the iron-molybdenum cofactor of nitrogenase from iron, sulfur, molybdenum, and homocitrate using purified proteins.

    PubMed

    Curatti, Leonardo; Hernandez, Jose A; Igarashi, Robert Y; Soboh, Basem; Zhao, Dehua; Rubio, Luis M

    2007-11-01

    Biological nitrogen fixation, the conversion of atmospheric N2 to NH3, is an essential process in the global biogeochemical cycle of nitrogen that supports life on Earth. Most of the biological nitrogen fixation is catalyzed by the molybdenum nitrogenase, which contains at its active site one of the most complex metal cofactors known to date, the iron-molybdenum cofactor (FeMo-co). FeMo-co is composed of 7Fe, 9S, Mo, R-homocitrate, and one unidentified light atom. Here we demonstrate the complete in vitro synthesis of FeMo-co from Fe(2+), S(2-), MoO4(2-), and R-homocitrate using only purified Nif proteins. This synthesis provides direct biochemical support to the current model of FeMo-co biosynthesis. A minimal in vitro system, containing NifB, NifEN, and NifH proteins, together with Fe(2+), S(2-), MoO4(2-), R-homocitrate, S-adenosyl methionine, and Mg-ATP, is sufficient for the synthesis of FeMo-co and the activation of apo-dinitrogenase under anaerobic-reducing conditions. This in vitro system also provides a biochemical approach to further study the function of accessory proteins involved in nitrogenase maturation (as shown here for NifX and NafY). The significance of these findings in the understanding of the complete FeMo-co biosynthetic pathway and in the study of other complex Fe-S cluster biosyntheses is discussed. PMID:17978192

  8. A cofactor approach to copper-dependent catalytic antibodies

    PubMed Central

    Nicholas, Kenneth M.; Wentworth, Paul; Harwig, Curtis W.; Wentworth, Anita D.; Shafton, Asher; Janda, Kim D.

    2002-01-01

    A strategy for the preparation of semisynthetic copper(II)-based catalytic metalloproteins is described in which a metal-binding bis-imidazole cofactor is incorporated into the combining site of the aldolase antibody 38C2. Antibody 38C2 features a large hydrophobic-combining site pocket with a highly nucleophilic lysine residue, LysH93, that can be covalently modified. A comparison of several lactone and anhydride reagents shows that the latter are the most effective and general derivatizing agents for the 38C2 Lys residue. A bis-imidazole anhydride (5) was efficiently prepared from N-methyl imidazole. The 38C2–5-Cu conjugate was prepared by either (i) initial derivatization of 38C2 with 5 followed by metallation with CuCl2, or (ii) precoordination of 5 with CuCl2 followed by conjugation with 38C2. The resulting 38C2–5-Cu conjugate was an active catalyst for the hydrolysis of the coordinating picolinate ester 11, following Michaelis–Menten kinetics [kcat(11) = 2.3 min−1 and Km(11) 2.2 mM] with a rate enhancement [kcat(11)kuncat(11)] of 2.1 × 105. Comparison of the second-order rate constants of the modified 38C2 and the Cu(II)-bis-imidazolyl complex k(6-CuCl2) gives a rate enhancement of 3.5 × 104 in favor of the antibody complex with an effective molarity of 76.7 M, revealing a significant catalytic benefit to the binding of the bis-imidazolyl ligand into 38C2. PMID:11880619

  9. HIV-1 evades innate immune recognition through specific cofactor recruitment

    NASA Astrophysics Data System (ADS)

    Rasaiyaah, Jane; Tan, Choon Ping; Fletcher, Adam J.; Price, Amanda J.; Blondeau, Caroline; Hilditch, Laura; Jacques, David A.; Selwood, David L.; James, Leo C.; Noursadeghi, Mahdad; Towers, Greg J.

    2013-11-01

    Human immunodeficiency virus (HIV)-1 is able to replicate in primary human macrophages without stimulating innate immunity despite reverse transcription of genomic RNA into double-stranded DNA, an activity that might be expected to trigger innate pattern recognition receptors. We reasoned that if correctly orchestrated HIV-1 uncoating and nuclear entry is important for evasion of innate sensors then manipulation of specific interactions between HIV-1 capsid and host factors that putatively regulate these processes should trigger pattern recognition receptors and stimulate type 1 interferon (IFN) secretion. Here we show that HIV-1 capsid mutants N74D and P90A, which are impaired for interaction with cofactors cleavage and polyadenylation specificity factor subunit 6 (CPSF6) and cyclophilins (Nup358 and CypA), respectively, cannot replicate in primary human monocyte-derived macrophages because they trigger innate sensors leading to nuclear translocation of NF-κB and IRF3, the production of soluble type 1 IFN and induction of an antiviral state. Depletion of CPSF6 with short hairpin RNA expression allows wild-type virus to trigger innate sensors and IFN production. In each case, suppressed replication is rescued by IFN-receptor blockade, demonstrating a role for IFN in restriction. IFN production is dependent on viral reverse transcription but not integration, indicating that a viral reverse transcription product comprises the HIV-1 pathogen-associated molecular pattern. Finally, we show that we can pharmacologically induce wild-type HIV-1 infection to stimulate IFN secretion and an antiviral state using a non-immunosuppressive cyclosporine analogue. We conclude that HIV-1 has evolved to use CPSF6 and cyclophilins to cloak its replication, allowing evasion of innate immune sensors and induction of a cell-autonomous innate immune response in primary human macrophages.

  10. Sucrose Octasulfate Selectively Accelerates Thrombin Inactivation by Heparin Cofactor II*

    PubMed Central

    Sarilla, Suryakala; Habib, Sally Y.; Kravtsov, Dmitri V.; Matafonov, Anton; Gailani, David; Verhamme, Ingrid M.

    2010-01-01

    Inactivation of thrombin (T) by the serpins heparin cofactor II (HCII) and antithrombin (AT) is accelerated by a heparin template between the serpin and thrombin exosite II. Unlike AT, HCII also uses an allosteric interaction of its NH2-terminal segment with exosite I. Sucrose octasulfate (SOS) accelerated thrombin inactivation by HCII but not AT by 2000-fold. SOS bound to two sites on thrombin, with dissociation constants (KD) of 10 ± 4 μm and 400 ± 300 μm that were not kinetically resolvable, as evidenced by single hyperbolic SOS concentration dependences of the inactivation rate (kobs). SOS bound HCII with KD 1.45 ± 0.30 mm, and this binding was tightened in the T·SOS·HCII complex, characterized by Kcomplex of ∼0.20 μm. Inactivation data were incompatible with a model solely depending on HCII·SOS but fit an equilibrium linkage model employing T·SOS binding in the pathway to higher order complex formation. Hirudin-(54–65)(SO3−) caused a hyperbolic decrease of the inactivation rates, suggesting partial competitive binding of hirudin-(54–65)(SO3−) and HCII to exosite I. Meizothrombin(des-fragment 1), binding SOS with KD = 1600 ± 300 μm, and thrombin were inactivated at comparable rates, and an exosite II aptamer had no effect on the inactivation, suggesting limited exosite II involvement. SOS accelerated inactivation of meizothrombin 1000-fold, reflecting the contribution of direct exosite I interaction with HCII. Thrombin generation in plasma was suppressed by SOS, both in HCII-dependent and -independent processes. The ex vivo HCII-dependent process may utilize the proposed model and suggests a potential for oversulfated disaccharides in controlling HCII-regulated thrombin generation. PMID:20053992

  11. HIV-1 evades innate immune recognition through specific cofactor recruitment.

    PubMed

    Rasaiyaah, Jane; Tan, Choon Ping; Fletcher, Adam J; Price, Amanda J; Blondeau, Caroline; Hilditch, Laura; Jacques, David A; Selwood, David L; James, Leo C; Noursadeghi, Mahdad; Towers, Greg J

    2013-11-21

    Human immunodeficiency virus (HIV)-1 is able to replicate in primary human macrophages without stimulating innate immunity despite reverse transcription of genomic RNA into double-stranded DNA, an activity that might be expected to trigger innate pattern recognition receptors. We reasoned that if correctly orchestrated HIV-1 uncoating and nuclear entry is important for evasion of innate sensors then manipulation of specific interactions between HIV-1 capsid and host factors that putatively regulate these processes should trigger pattern recognition receptors and stimulate type 1 interferon (IFN) secretion. Here we show that HIV-1 capsid mutants N74D and P90A, which are impaired for interaction with cofactors cleavage and polyadenylation specificity factor subunit 6 (CPSF6) and cyclophilins (Nup358 and CypA), respectively, cannot replicate in primary human monocyte-derived macrophages because they trigger innate sensors leading to nuclear translocation of NF-κB and IRF3, the production of soluble type 1 IFN and induction of an antiviral state. Depletion of CPSF6 with short hairpin RNA expression allows wild-type virus to trigger innate sensors and IFN production. In each case, suppressed replication is rescued by IFN-receptor blockade, demonstrating a role for IFN in restriction. IFN production is dependent on viral reverse transcription but not integration, indicating that a viral reverse transcription product comprises the HIV-1 pathogen-associated molecular pattern. Finally, we show that we can pharmacologically induce wild-type HIV-1 infection to stimulate IFN secretion and an antiviral state using a non-immunosuppressive cyclosporine analogue. We conclude that HIV-1 has evolved to use CPSF6 and cyclophilins to cloak its replication, allowing evasion of innate immune sensors and induction of a cell-autonomous innate immune response in primary human macrophages. PMID:24196705

  12. Data Product Maturity

    Atmospheric Science Data Center

    2013-03-25

    ... document, maturity levels are provided separately for each scientific data set (SDS) included with the data files. The data product ... indiscriminate use of these data products as the basis for research findings, journal publications, and/or presentations.   ...

  13. INFLUENCE OF SUBSTRATE-COFACTOR RATIOS ON PARTIALLY PURIFIED INORGANIC PYROPHOSPHATASE ACTIVITY AT ELEVATED TEMPERATURES.

    PubMed

    MATHEMEIER, P F; MORITA, R Y

    1964-12-01

    Mathemeier, Paul F. (Oregon State University, Corvallis), and Richard Y. Morita. Influence of substrate-cofactor ratios on partially purified inorganic pyrophosphatase activity at elevated temperatures. J. Bacteriol. 88:1661-1666. 1964.-Inorganic pyrophosphatase of Bacillus stearothermophilus was studied for optimal substrate-cofactor ratios at 60 to 100 C. Mg(++) was the primary cofactor, and Co(++) resulted in 50% enzyme activity at 60 C. The pH optima differed for the Mg(++) activated and Co(++) activated pyrophosphatase. At 80 C and above, Co(++) replaced Mg(++) as the optimal cofactor in the enzyme reaction. The optimal ratio of pyrophosphate to Mg(++) varied from 2 to 0.25, dependent on enzyme concentration. The optimal pyrophosphate-cobalt ratio was constant at 1.0. The enzyme catalyzed appreciable pyrophosphate hydrolysis at 95 C. PMID:14240954

  14. Mouse model for molybdenum cofactor deficiency type B recapitulates the phenotype observed in molybdenum cofactor deficient patients.

    PubMed

    Jakubiczka-Smorag, Joanna; Santamaria-Araujo, Jose Angel; Metz, Imke; Kumar, Avadh; Hakroush, Samy; Brueck, Wolfgang; Schwarz, Guenter; Burfeind, Peter; Reiss, Jochen; Smorag, Lukasz

    2016-07-01

    Molybdenum cofactor (MoCo) deficiency is a rare, autosomal-recessive disorder, mainly caused by mutations in MOCS1 (MoCo deficiency type A) or MOCS2 (MoCo deficiency type B) genes; the absence of active MoCo results in a deficiency in all MoCo-dependent enzymes. Patients with MoCo deficiency present with neonatal seizures, feeding difficulties, severe developmental delay, brain atrophy and early childhood death. Although substitution therapy with cyclic pyranopterin monophosphate (cPMP) has been successfully used in both Mocs1 knockout mice and in patients with MoCo deficiency type A, there is currently no Mocs2 knockout mouse and no curative therapy for patients with MoCo deficiency type B. Therefore, we generated and characterized a Mocs2-null mouse model of MoCo deficiency type B. Expression analyses of Mocs2 revealed a ubiquitous expression pattern; however, at the cellular level, specific cells show prominent Mocs2 expression, e.g., neuronal cells in cortex, hippocampus and brainstem. Phenotypic analyses demonstrated that Mocs2 knockout mice failed to thrive and died within 11 days after birth. None of the tested MoCo-dependent enzymes were active in Mocs2-deficient mice, leading to elevated concentrations of purines, such as hypoxanthine and xanthine, and non-detectable levels of uric acid in the serum and urine. Moreover, elevated concentrations of S-sulfocysteine were measured in the serum and urine. Increased levels of xanthine resulted in bladder and kidney stone formation, whereas increased concentrations of toxic sulfite triggered neuronal apoptosis. In conclusion, Mocs2-deficient mice recapitulate the severe phenotype observed in humans and can now serve as a model for preclinical therapeutic approaches for MoCo deficiency type B. PMID:27138983

  15. The glmS Ribozyme Cofactor is a General Acid-Base Catalyst

    PubMed Central

    Viladoms, Julia; Fedor, Martha J.

    2012-01-01

    The glmS ribozyme is the first natural self-cleaving ribozyme known to require a cofactor. The D-glucosamine-6-phosphate (GlcN6P) cofactor has been proposed to serve as a general acid, but its role in the catalytic mechanism has not been established conclusively. We surveyed GlcN6P-like molecules for their ability to support self-cleavage of the glmS ribozyme and found a strong correlation between the pH dependence of the cleavage reaction and the intrinsic acidity of the cofactors. For cofactors with low binding affinities the contribution to rate enhancement was proportional to their intrinsic acidity. This linear free-energy relationship between cofactor efficiency and acid dissociation constants is consistent with a mechanism in which the cofactors participate directly in the reaction as general acid-base catalysts. A high value for the Brønsted coefficient (β ~ 0.7) indicates that a significant amount of proton transfer has already occurred in the transition state. The glmS ribozyme is the first self-cleaving RNA to use an exogenous acid-base catalyst. PMID:23113700

  16. Multibody cofactor and substrate molecular recognition in the myo-inositol monophosphatase enzyme.

    PubMed

    Ferruz, Noelia; Tresadern, Gary; Pineda-Lucena, Antonio; De Fabritiis, Gianni

    2016-01-01

    Molecular recognition is rarely a two-body protein-ligand problem, as it often involves the dynamic interplay of multiple molecules that together control the binding process. Myo-inositol monophosphatase (IMPase), a drug target for bipolar disorder, depends on 3 Mg(2+) ions as cofactor for its catalytic activity. Although the crystallographic pose of the pre-catalytic complex is well characterized, the binding process by which substrate, cofactor and protein cooperate is essentially unknown. Here, we have characterized cofactor and substrate cooperative binding by means of large-scale molecular dynamics. Our study showed the first and second Mg(2+) ions identify the binding pocket with fast kinetics whereas the third ion presents a much higher energy barrier. Substrate binding can occur in cooperation with cofactor, or alone to a binary or ternary cofactor-IMPase complex, although the last scenario occurs several orders of magnitude faster. Our atomic description of the three-body mechanism offers a particularly challenging example of pathway reconstruction, and may prove particularly useful in realistic contexts where water, ions, cofactors or other entities cooperate and modulate the binding process. PMID:27440438

  17. Effects of the cofactor binding sites on the activities of secondary alcohol dehydrogenase (SADH).

    PubMed

    Wang, Tao; Chen, Xiangjun; Han, Jun; Ma, Sichun; Wang, Jianmei; Li, Xufeng; Zhang, Hui; Liu, Zhibin; Yang, Yi

    2016-07-01

    SADHs from Thermoanaerobacter ethanolicus are enzymes that, together with various cofactors, catalyze the reversible reduction of carbonyl compounds to their corresponding alcohols. To explore how cofactors bind to SADH, TeSADH was cloned in this study, and Ser(199) and Arg(200) were replaced by Tyr and Asp, respectively. Both sites were expected to be inside or adjacent to the cofactor-binding domain according to computational a prediction. Analysis of TeSADH activities revealed that the enzymatic efficiency (kcat/Km) of the S199Y mutant was noticeably enhanced using by NADH, NADPH as cofactors, and similar with that of wild-type using by NADP(+), NAD(+). Conversely, the activity of the R200D mutant significantly decreased with all cofactors. Furthermore, in yeast, the S199Y mutant substantially elevated the ethanol concentration compared with the wild type. Molecular dynamics simulation results indicated the H-bonding network between TeSADH and the cofactors was stronger for the S199Y mutant and the binding energy was simultaneously increased. Moreover, the fluorescence results indicated the S199Y mutant exhibited an increased preference for NAD(P)H, binding with NAD(P)H more compactly compared with wild type. PMID:27016086

  18. The glmS ribozyme cofactor is a general acid-base catalyst.

    PubMed

    Viladoms, Júlia; Fedor, Martha J

    2012-11-21

    The glmS ribozyme is the first natural self-cleaving ribozyme known to require a cofactor. The d-glucosamine-6-phosphate (GlcN6P) cofactor has been proposed to serve as a general acid, but its role in the catalytic mechanism has not been established conclusively. We surveyed GlcN6P-like molecules for their ability to support self-cleavage of the glmS ribozyme and found a strong correlation between the pH dependence of the cleavage reaction and the intrinsic acidity of the cofactors. For cofactors with low binding affinities, the contribution to rate enhancement was proportional to their intrinsic acidity. This linear free-energy relationship between cofactor efficiency and acid dissociation constants is consistent with a mechanism in which the cofactors participate directly in the reaction as general acid-base catalysts. A high value for the Brønsted coefficient (β ~ 0.7) indicates that a significant amount of proton transfer has already occurred in the transition state. The glmS ribozyme is the first self-cleaving RNA to use an exogenous acid-base catalyst. PMID:23113700

  19. Multibody cofactor and substrate molecular recognition in the myo-inositol monophosphatase enzyme

    PubMed Central

    Ferruz, Noelia; Tresadern, Gary; Pineda-Lucena, Antonio; De Fabritiis, Gianni

    2016-01-01

    Molecular recognition is rarely a two-body protein-ligand problem, as it often involves the dynamic interplay of multiple molecules that together control the binding process. Myo-inositol monophosphatase (IMPase), a drug target for bipolar disorder, depends on 3 Mg2+ ions as cofactor for its catalytic activity. Although the crystallographic pose of the pre-catalytic complex is well characterized, the binding process by which substrate, cofactor and protein cooperate is essentially unknown. Here, we have characterized cofactor and substrate cooperative binding by means of large-scale molecular dynamics. Our study showed the first and second Mg2+ ions identify the binding pocket with fast kinetics whereas the third ion presents a much higher energy barrier. Substrate binding can occur in cooperation with cofactor, or alone to a binary or ternary cofactor-IMPase complex, although the last scenario occurs several orders of magnitude faster. Our atomic description of the three-body mechanism offers a particularly challenging example of pathway reconstruction, and may prove particularly useful in realistic contexts where water, ions, cofactors or other entities cooperate and modulate the binding process. PMID:27440438

  20. A conserved haem redox and trafficking pathway for cofactor attachment

    PubMed Central

    Richard-Fogal, Cynthia L; Frawley, Elaine R; Bonner, Eric R; Zhu, Huifen; San Francisco, Brian; Kranz, Robert G

    2009-01-01

    A pathway for cytochrome c maturation (Ccm) in bacteria, archaea and eukaryotes (mitochondria) requires the genes encoding eight membrane proteins (CcmABCDEFGH). The CcmABCDE proteins are proposed to traffic haem to the cytochrome c synthetase (CcmF/H) for covalent attachment to cytochrome c by unknown mechanisms. For the first time, we purify pathway complexes with trapped haem to elucidate the molecular mechanisms of haem binding, trafficking and redox control. We discovered an early step in trafficking that involves oxidation of haem (to Fe3+), yet the final attachment requires reduced haem (Fe2+). Surprisingly, CcmF is a cytochrome b with a haem never before realized, and in vitro, CcmF functions as a quinol:haem oxidoreductase. Thus, this ancient pathway has conserved and orchestrated mechanisms for trafficking, storing and reducing haem, which assure its use for cytochrome c synthesis even in limiting haem (iron) environments and reducing haem in oxidizing environments. PMID:19629033

  1. Investigation into the nature of substrate binding to the dipyrromethane cofactor of Escherichia coli porphobilinogen deaminase

    SciTech Connect

    Warren, M.J.; Jordan, P.M.

    1988-12-13

    The formation of the dipyrromethane cofactor of Escherichia coli porphobilinogen deaminase was shown to depend on the presence of 5-aminolevulinic acid. A hemA/sup -/ mutant formed inactive deaminase when grown in the absence of 5-aminolevulinic acid since this strain was unable to biosynthesize the dipyrromethane cofactor. The mutant formed normal levels of deaminase, however, when grown in the presence of 5-aminolevulinic acid. Porphobilinogen, the substrate, interacts with the free ..cap alpha..-position of the dipyrromethane cofactor to give stable enzyme-intermediate complexes. Experiments with regiospecifically labeled intermediate complexes have shown that, in the absence of further substrate molecules, the complexes are interconvertible by the exchange of the terminal pyrrole ring of each complex. The formation of enzyme-intermediate complexes is accompanied by the exposure of a cysteine residue, suggesting that substantial conformational changes occur on binding substrate. Specific labeling of the dipyrromethane cofactor by growth of the E. coli in the presence of 5-amino(5-/sup 14/C)levulinic acid has confirmed that the cofactor is not subject to catalytic turnover. Experiments with the ..cap alpha..-substituted substrate analogue ..cap alpha..-bromoporphobilinogen have provided further evidence that the cofactor is responsible for the covalent binding of the substrate at the catalytic site. On the basis of these cummulative findings, it has been possible to construct a mechanistic scheme for the deaminase reaction involving a single catalytic site which is able to catalyze the addition or removal of either NH/sub 3/ or H/sub 2/O. The role of the cofactor both as a primer and as a means for regulating the number of substrates bound in each catalytic cycle is discussed.

  2. Jealousy and Moral Maturity.

    ERIC Educational Resources Information Center

    Mathes, Eugene W.; Deuger, Donna J.

    Jealousy may be perceived as either good or bad depending upon the moral maturity of the individual. To investigate this conclusion, a study was conducted testing two hypothesis: a positive relationship exists between conventional moral reasoning (reference to norms and laws) and the endorsement and level of jealousy; and a negative relationship…

  3. Cofactor dependence and isotype distribution of anticardiolipin antibodies in viral infections

    PubMed Central

    Guglielmone, H; Vitozzi, S; Elbarcha, O; Fernandez, E

    2001-01-01

    BACKGROUND—Antibodies to cardiolipin (aCLs) are often detected in patients with autoimmune disorders or infectious diseases.
OBJECTIVE—To investigate the distribution of aCL isotypes and requirement of protein cofactor in viral infections in order to establish the importance, if any, of these antibodies in these infectious diseases.
PATIENTS AND METHODS—The isotype distribution of aCLs in the sera from 160 patients with infection caused by HIV-1 (n=40), hepatitis A virus (n=40), hepatitis B virus (n=40), or hepatitis C virus (n=40) was studied by standardised enzyme linked immunosorbent assay (ELISA) in the presence and absence of protein cofactor (mainly β2-glycoprotein I). Serum samples from healthy volunteers and patients with syphilis and antiphospholipid syndrome were also included and served as negative and positive control groups respectively.
RESULTS—The prevalence of one or more aCL isotypes in serum of patients with HIV-1, hepatitis A virus, hepatitis B virus, or hepatitis C virus infection was 47%, 92%, 42%, and 17% respectively (principally IgM and/or IgA). Most of these antibodies were mainly cofactor independent.
CONCLUSIONS—The presence of aCLs in viral infections is principally cofactor independent, suggesting that cofactor dependence of the aCLs should be assessed to distinguish subjects most likely to suffer from clinical symptoms observed in the presence of these antibodies.

 PMID:11302873

  4. A new cofactor in prokaryotic enzyme: Tryptophan tryptophylquinone as the redox prosthetic group in methylamine dehydrogenase

    SciTech Connect

    McIntire, W.S. Univ. of California, San Francisco ); Wemmer, D.E. ); Chistoserdov, A.; Lidstrom, M.E. )

    1991-05-10

    Methylamine dehydrogenase (MADH), an {alpha}{sub 2}{beta}{sub 2} enzyme from numerous methylotrophic soil bacteria, contains a novel quinonoid redox prosthetic group that is covalently bound to its small {beta} subunit through two amino acyl residues. A comparison of the amino acid sequence deduced from the gene sequence of the small subunit for the enzyme from Methylobacterium extorquens AM1 with the published amino acid sequence obtained by Edman degradation method, allowed the identification of the amino acyl constituents of the cofactor as two tryptophyl residues. This information was crucial for interpreting {sup 1}H and {sup 13}C nuclear magnetic resonance, and mass spectral data collected for the semicarbazide- and carboxymethyl-derivatized bis(tripeptidyl)-cofactor of MADH from bacterium W3A1. The cofactor is composed of two cross-linked tryptophyl residues. Although there are many possible isomers, only one is consistent with all the data: The first tryptophyl residue in the peptide sequence exists as an indole-6,7-dione, and is attached at its 4 position to the 2 position of the second, otherwise unmodified, indole side group. Contrary to earlier reports, the cofactor of MADH is not 2,7,9-tricarboxypyrroloquinoline quinone (PQQ), a derivative thereof, of pro-PQQ. This appears to be the only example of two cross-linked, modified amino acyl residues having a functional role in the active site of an enzyme, in the absence of other cofactors or metal ions.

  5. Chemomimetic biocatalysis: exploiting the synthetic potential of cofactor-dependent enzymes to create new catalysts.

    PubMed

    Prier, Christopher K; Arnold, Frances H

    2015-11-11

    Despite the astonishing breadth of enzymes in nature, no enzymes are known for many of the valuable catalytic transformations discovered by chemists. Recent work in enzyme design and evolution, however, gives us good reason to think that this will change. We describe a chemomimetic biocatalysis approach that draws from small-molecule catalysis and synthetic chemistry, enzymology, and molecular evolution to discover or create enzymes with non-natural reactivities. We illustrate how cofactor-dependent enzymes can be exploited to promote reactions first established with related chemical catalysts. The cofactors can be biological, or they can be non-biological to further expand catalytic possibilities. The ability of enzymes to amplify and precisely control the reactivity of their cofactors together with the ability to optimize non-natural reactivity by directed evolution promises to yield exceptional catalysts for challenging transformations that have no biological counterparts. PMID:26502343

  6. Catalytic reduction of CN−, CO and CO2 by nitrogenase cofactors in lanthanide-driven reactions**

    PubMed Central

    Lee, Chi Chung

    2014-01-01

    Nitrogenase cofactors can be extracted into an organic solvent and added in an adenosine triphosphate (ATP)-free, organic solvent-based reaction medium to catalyze the reduction of cyanide (CN−), carbon monoxide (CO) and carbon dioxide (CO2) when samarium (II) iodide (SmI2) and 2,6-lutidinium triflate (Lut-H) are supplied as a reductant and a proton source, respectively. Driven by SmI2, the cofactors not only catalytically reduce CN− or CO to C1-C4 hydrocarbons, but also catalytically reduce CO2 to CO and C1-C3 hydrocarbons. The observation of C-C coupling from CO2 reveals a unique, Fischer-Tropsch-like reaction with an atypical carbonaceous substrate; whereas the achievement of catalytic turnover of CN−, CO and CO2 by isolated cofactors suggests the possibility to develop nitrogenase-based electrocatalysts for hydrocarbon production from these carbon-containing compounds. PMID:25420957

  7. Catalytic reduction of CN-, CO, and CO2 by nitrogenase cofactors in lanthanide-driven reactions.

    PubMed

    Lee, Chi Chung; Hu, Yilin; Ribbe, Markus W

    2015-01-19

    Nitrogenase cofactors can be extracted into an organic solvent to catalyze the reduction of cyanide (CN(-)), carbon monoxide (CO), and carbon dioxide (CO2) without using adenosine triphosphate (ATP), when samarium(II) iodide (SmI2) and 2,6-lutidinium triflate (Lut-H) are employed as a reductant and a proton source, respectively. Driven by SmI2, the cofactors catalytically reduce CN(-) or CO to C1-C4 hydrocarbons, and CO2 to CO and C1-C3 hydrocarbons. The C-C coupling from CO2 indicates a unique Fischer-Tropsch-like reaction with an atypical carbonaceous substrate, whereas the catalytic turnover of CN(-), CO, and CO2 by isolated cofactors suggests the possibility to develop nitrogenase-based electrocatalysts for the production of hydrocarbons from these carbon-containing compounds. PMID:25420957

  8. The Fe–V Cofactor of Vanadium Nitrogenase Contains an Interstitial Carbon Atom

    PubMed Central

    Rees, Julian A; Bjornsson, Ragnar; Schlesier, Julia; Sippel, Daniel; Einsle, Oliver; DeBeer, Serena

    2015-01-01

    The first direct evidence is provided for the presence of an interstitial carbide in the Fe–V cofactor of Azotobacter vinelandii vanadium nitrogenase. As for our identification of the central carbide in the Fe–Mo cofactor, we employed Fe Kβ valence-to-core X-ray emission spectroscopy and density functional theory calculations, and herein report the highly similar spectra of both variants of the cofactor-containing protein. The identification of an analogous carbide, and thus an atomically homologous active site in vanadium nitrogenase, highlights the importance and influence of both the interstitial carbide and the identity of the heteroatom on the electronic structure and catalytic activity of the enzyme. PMID:26376620

  9. Anthocyanin copigmentation and color of wine: The effect of naturally obtained hydroxycinnamic acids as cofactors.

    PubMed

    Bimpilas, Andreas; Panagopoulou, Marilena; Tsimogiannis, Dimitrios; Oreopoulou, Vassiliki

    2016-04-15

    Copigmentation of anthocyanins accounts for over 30% of fresh red wine color, while during storage, the color of polymeric pigments formed between anthocyanins and proanthocyanidins predominates. Rosmarinic acid and natural extracts rich in hydroxycinnamic acids, obtained from aromatic plants (Origanum vulgare and Satureja thymbra), were examined as cofactors to fresh Merlot wine and the effect on anthocyanin copigmentation and wine color was studied during storage for 6months. An increase of the copigmented anthocyanins that enhanced color intensity by 15-50% was observed, confirming the ability of complex hydroxycinnamates to form copigments. The samples with added cofactors retained higher percentages of copigmented anthocyanins and higher color intensity, compared to the control wine, up to 3 months. However, the change in the equilibrium between monomeric and copigmented anthocyanins that was induced by added cofactors, did not affect the rate of polymerization reactions during storage. PMID:26616922

  10. Modulation of heparin cofactor II activity by histidine-rich glycoprotein and platelet factor 4.

    PubMed Central

    Tollefsen, D M; Pestka, C A

    1985-01-01

    Heparin cofactor II is a plasma protein that inhibits thrombin rapidly in the presence of either heparin or dermatan sulfate. We have determined the effects of two glycosaminoglycan-binding proteins, i.e., histidine-rich glycoprotein and platelet factor 4, on these reactions. Inhibition of thrombin by heparin cofactor II and heparin was completely prevented by purified histidine-rich glycoprotein at the ratio of 13 micrograms histidine-rich glycoprotein/microgram heparin. In contrast, histidine-rich glycoprotein had no effect on inhibition of thrombin by heparin cofactor II and dermatan sulfate at ratios of less than or equal to 128 micrograms histidine-rich glycoprotein/microgram dermatan sulfate. Removal of 85-90% of the histidine-rich glycoprotein from plasma resulted in a fourfold reduction in the amount of heparin required to prolong the thrombin clotting time from 14 s to greater than 180 s but had no effect on the amount of dermatan sulfate required for similar anti-coagulant activity. In contrast to histidine-rich glycoprotein, purified platelet factor 4 prevented inhibition of thrombin by heparin cofactor II in the presence of either heparin or dermatan sulfate at the ratio of 2 micrograms platelet factor 4/micrograms glycosaminoglycan. Furthermore, the supernatant medium from platelets treated with arachidonic acid to cause secretion of platelet factor 4 prevented inhibition of thrombin by heparin cofactor II in the presence of heparin or dermatan sulfate. We conclude that histidine-rich glycoprotein and platelet factor 4 can regulate the antithrombin activity of heparin cofactor II. Images PMID:3838317

  11. The phylogenomic roots of modern biochemistry: origins of proteins, cofactors and protein biosynthesis.

    PubMed

    Caetano-Anollés, Gustavo; Kim, Kyung Mo; Caetano-Anollés, Derek

    2012-02-01

    The complexity of modern biochemistry developed gradually on early Earth as new molecules and structures populated the emerging cellular systems. Here, we generate a historical account of the gradual discovery of primordial proteins, cofactors, and molecular functions using phylogenomic information in the sequence of 420 genomes. We focus on structural and functional annotations of the 54 most ancient protein domains. We show how primordial functions are linked to folded structures and how their interaction with cofactors expanded the functional repertoire. We also reveal protocell membranes played a crucial role in early protein evolution and show translation started with RNA and thioester cofactor-mediated aminoacylation. Our findings allow elaboration of an evolutionary model of early biochemistry that is firmly grounded in phylogenomic information and biochemical, biophysical, and structural knowledge. The model describes how primordial α-helical bundles stabilized membranes, how these were decorated by layered arrangements of β-sheets and α-helices, and how these arrangements became globular. Ancient forms of aminoacyl-tRNA synthetase (aaRS) catalytic domains and ancient non-ribosomal protein synthetase (NRPS) modules gave rise to primordial protein synthesis and the ability to generate a code for specificity in their active sites. These structures diversified producing cofactor-binding molecular switches and barrel structures. Accretion of domains and molecules gave rise to modern aaRSs, NRPS, and ribosomal ensembles, first organized around novel emerging cofactors (tRNA and carrier proteins) and then more complex cofactor structures (rRNA). The model explains how the generation of protein structures acted as scaffold for nucleic acids and resulted in crystallization of modern translation. PMID:22210458

  12. Pyruvate decarboxylase from Zymomonas mobilis. Structure and re-activation of apoenzyme by the cofactors thiamin diphosphate and magnesium ion.

    PubMed Central

    Diefenbach, R J; Duggleby, R G

    1991-01-01

    To study the mechanism of re-activation of Zymomonas mobilis pyruvate decarboxylase apoenzyme by its cofactors thiamin diphosphate and Mg2+, cofactor-free enzyme was prepared by dialysis against 1 mM-dipicolinic acid at pH 8.2. This apoenzyme was then used in a series of experiments that included determination of: (a) the affinity towards one cofactor when the other was present at saturating concentrations; (b) cofactor-binding rates by measuring the quenching of tryptophan fluorescence on the apoenzyme; (c) the effect of replacement of cofactors with various analogues; (d) the stoichiometry of bound cofactors in holoenzyme; and (e) the molecular mass of apoenzyme by gel filtration. The results of these experiments form the basis for a proposed model for the re-activation of Z. mobilis pyruvate decarboxylase apoenzyme by its cofactors. In this model there exists two alterative but equivalent pathways for cofactor binding. In each pathway the first step is an independent reversible binding of either thiamin diphosphate (Kd 187 microM) or Mg2+ (Kd 1.31 mM) to free apoenzyme. When both cofactors are present, the second cofactor-binding step to form active holoenzyme is a slow quasi-irreversible step. This second binding step is a co-operative process for both thiamin diphosphate (Kd 0.353 microM) and Mg2+ (Kd 2.47 microM). Both the apo- and the holo-enzyme have a tetrameric subunit structure, with cofactors binding in a 1:1 ratio with each subunit. PMID:2049073

  13. Vocational Maturity and Self Concepts.

    ERIC Educational Resources Information Center

    Helbing, Hans

    The relationship between separate dimensions of vocational maturity and different self-concept and identity variables were examined. Subjects were Dutch students, age 14-18 years. The vocational maturity dimensions were measured by Dutch adaptations of American vocational maturity scales. Instruments for self-concept and identity measurement were…

  14. A Socioanalytic Model of Maturity

    ERIC Educational Resources Information Center

    Hogan, Robert; Roberts, Brent W.

    2004-01-01

    K0 describes a point of view on maturity that departs from earlier treatments in two ways. First, it rejects the popular assumption from humanistic psychology that maturity is a function of self-actualization and stipulates that maturity is related to certain performance capacities--namely, the ability to form lasting relationships and to achieve…

  15. New cofactor supports α,β-unsaturated acid decarboxylation via 1,3-dipolar cycloaddition

    PubMed Central

    Payne, Karl A.P.; White, Mark D.; Fisher, Karl; Khara, Basile; Bailey, Samuel S.; Parker, David; Rattray, Nicholas J.W.; Trivedi, Drupad K.; Goodacre, Royston; Beveridge, Rebecca; Barran, Perdita; Rigby, Stephen E.J.; Scrutton, Nigel S.; Hay, Sam; Leys, David

    2016-01-01

    The ubiD/ubiX or the homologous fdc/pad genes have been implicated in the non-oxidative reversible decarboxylation of aromatic substrates, and play a pivotal role in bacterial ubiquinone biosynthesis1–3 or microbial biodegradation of aromatic compounds4–6 respectively. Despite biochemical studies on individual gene products, the composition and co-factor requirement of the enzyme responsible for in vivo decarboxylase activity remained unclear7–9. We show Fdc is solely responsible for (de)carboxylase activity, and that it requires a new type of cofactor: a prenylated flavin synthesised by the associated UbiX/Pad10. Atomic resolution crystal structures reveal two distinct isomers of the oxidized cofactor can be observed: an isoalloxazine N5-iminium adduct and a N5 secondary ketimine species with drastically altered ring structure, both having azomethine ylide character. Substrate binding positions the dipolarophile enoic acid group directly above the azomethine ylide group. The structure of a covalent inhibitor-cofactor adduct suggests 1,3-dipolar cycloaddition chemistry supports reversible decarboxylation in these enzymes. While 1,3-dipolar cycloaddition is commonly used in organic chemistry11–12, we propose this presents the first example of an enzymatic 1,3-dipolar cycloaddition reaction. Our model for Fdc/UbiD catalysis offers new routes in alkene hydrocarbon production or aryl (de)carboxylation. PMID:26083754

  16. Nicotinamide cofactor ratios in engineered strains of Clostridium thermocellum and Thermoanaerobacterium saccharolyticum.

    PubMed

    Beri, Dhananjay; Olson, Daniel G; Holwerda, Evert K; Lynd, Lee R

    2016-06-01

    Clostridium thermocellum and Thermoanaerobacterium saccharolyticum are bacteria under investigation for production of biofuels from plant biomass. Thermoanaerobacterium saccharolyticum has been engineered to produce ethanol at high yield (>90% of theoretical) and titer (>70 g/l). Efforts to engineer C. thermocellum have not, to date, been as successful, and efforts are underway to transfer the ethanol production pathway from T. saccharolyticum to C. thermocellum One potential challenge in transferring metabolic pathways is the possibility of incompatible levels of nicotinamide cofactors. These cofactors (NAD(+), NADH, NADP(+) and NADPH) and their oxidation state are important in the context of microbial redox metabolism. In this study we directly measured the concentrations and reduced oxidized ratios of these cofactors in a number of strains of C. thermocellum and T. saccharolyticum by using acid/base extraction and enzymatic assays. We found that cofactor ratios are maintained in a fairly narrow range, regardless of the metabolic network modifications considered. We have found that the ratios are similar in both organisms, which is a relevant observation in the context of transferring the T. saccharolyticum ethanol production pathway to C. thermocellum. PMID:27190292

  17. Protein cofactor competition regulates the action of a multifunctional RNA helicase in different pathways

    PubMed Central

    Heininger, Annika U.; Hackert, Philipp; Andreou, Alexandra Z.; Boon, Kum-Loong; Memet, Indira; Prior, Mira; Clancy, Anne; Schmidt, Bernhard; Urlaub, Henning; Schleiff, Enrico; Sloan, Katherine E.; Deckers, Markus; Lührmann, Reinhard; Enderlein, Jörg; Klostermeier, Dagmar; Rehling, Peter; Bohnsack, Markus T.

    2016-01-01

    ABSTRACT A rapidly increasing number of RNA helicases are implicated in several distinct cellular processes, however, the modes of regulation of multifunctional RNA helicases and their recruitment to different target complexes have remained unknown. Here, we show that the distribution of the multifunctional DEAH-box RNA helicase Prp43 between its diverse cellular functions can be regulated by the interplay of its G-patch protein cofactors. We identify the orphan G-patch protein Cmg1 (YLR271W) as a novel cofactor of Prp43 and show that it stimulates the RNA binding and ATPase activity of the helicase. Interestingly, Cmg1 localizes to the cytoplasm and to the intermembrane space of mitochondria and its overexpression promotes apoptosis. Furthermore, our data reveal that different G-patch protein cofactors compete for interaction with Prp43. Changes in the expression levels of Prp43-interacting G-patch proteins modulate the cellular localization of Prp43 and G-patch protein overexpression causes accumulation of the helicase in the cytoplasm or nucleoplasm. Overexpression of several G-patch proteins also leads to defects in ribosome biogenesis that are consistent with withdrawal of the helicase from this pathway. Together, these findings suggest that the availability of cofactors and the sequestering of the helicase are means to regulate the activity of multifunctional RNA helicases and their distribution between different cellular processes. PMID:26821976

  18. Photosensitivity syndrome brings to light a new transcription-coupled DNA repair cofactor.

    PubMed

    Cleaver, James E

    2012-05-01

    Three teams have applied whole-exome and proteome methods to identify a new cofactor of human RNA polymerase II that is required for the recovery of transcription on damaged templates. The identification of this new factor raises questions about the causal relationships between molecular mechanisms of transcription regulation and excision repair and developmental and neurological disease and nonmalignant skin photosensitivity. PMID:22538718

  19. Tetrahydropterin as a possible natural cofactor in the drosophila phenylalanine hydroxylation system

    SciTech Connect

    Bel, Y.; Jacobson, K.B.; Ferre, J. . Dept. of Genetics; Oak Ridge National Lab., TN; Valencia Univ. . Dept. of Genetics)

    1989-01-01

    The aim of the present work is the study of phenylalanine hydroxylase (PH) activity of Drosophila melanogaster wild type with different cofactors: the two natural occurring tetrahydropteridines (BH{sub 4} and PH{sub 4}) and the synthetic 6,7-dimethyltetrahydropterin (DMPH{sub 4}), as well as the determination of this activity at different developmental stages. 7 refs., 2 figs.

  20. Protein cofactor competition regulates the action of a multifunctional RNA helicase in different pathways.

    PubMed

    Heininger, Annika U; Hackert, Philipp; Andreou, Alexandra Z; Boon, Kum-Loong; Memet, Indira; Prior, Mira; Clancy, Anne; Schmidt, Bernhard; Urlaub, Henning; Schleiff, Enrico; Sloan, Katherine E; Deckers, Markus; Lührmann, Reinhard; Enderlein, Jörg; Klostermeier, Dagmar; Rehling, Peter; Bohnsack, Markus T

    2016-01-01

    A rapidly increasing number of RNA helicases are implicated in several distinct cellular processes, however, the modes of regulation of multifunctional RNA helicases and their recruitment to different target complexes have remained unknown. Here, we show that the distribution of the multifunctional DEAH-box RNA helicase Prp43 between its diverse cellular functions can be regulated by the interplay of its G-patch protein cofactors. We identify the orphan G-patch protein Cmg1 (YLR271W) as a novel cofactor of Prp43 and show that it stimulates the RNA binding and ATPase activity of the helicase. Interestingly, Cmg1 localizes to the cytoplasm and to the intermembrane space of mitochondria and its overexpression promotes apoptosis. Furthermore, our data reveal that different G-patch protein cofactors compete for interaction with Prp43. Changes in the expression levels of Prp43-interacting G-patch proteins modulate the cellular localization of Prp43 and G-patch protein overexpression causes accumulation of the helicase in the cytoplasm or nucleoplasm. Overexpression of several G-patch proteins also leads to defects in ribosome biogenesis that are consistent with withdrawal of the helicase from this pathway. Together, these findings suggest that the availability of cofactors and the sequestering of the helicase are means to regulate the activity of multifunctional RNA helicases and their distribution between different cellular processes. PMID:26821976

  1. Engineering the Assembly of Heme Cofactors in Man-Made Proteins

    PubMed Central

    2015-01-01

    Timely ligation of one or more chemical cofactors at preselected locations in proteins is a critical preamble for catalysis in many natural enzymes, including the oxidoreductases and allied transport and signaling proteins. Likewise, ligation strategies must be directly addressed when designing oxidoreductase and molecular transport functions in man-made, first-principle protein constructs intended to operate in vitro or in vivo. As one of the most common catalytic cofactors in biology, we have chosen heme B, along with its chemical analogues, to determine the kinetics and barriers to cofactor incorporation and bishistidine ligation in a range of 4-α-helix proteins. We compare five elementary synthetic designs (maquettes) and the natural cytochrome b562 that differ in oligomeric forms, apo- and holo-tertiary structural stability; qualities that we show can either assist or hinder assembly. The cofactor itself also imposes an assembly barrier if amphiphilicity ranges toward too hydrophobic or hydrophilic. With progressive removal of identified barriers, we achieve maquette assembly rates as fast as native cytochrome b562, paving the way to in vivo assembly of man-made hemoprotein maquettes and integration of artificial proteins into enzymatic pathways. PMID:24495285

  2. A NADH-accepting imine reductase variant: Immobilization and cofactor regeneration by oxidative deamination.

    PubMed

    Gand, Martin; Thöle, Christian; Müller, Hubertus; Brundiek, Henrike; Bashiri, Ghader; Höhne, Matthias

    2016-07-20

    Engineering cofactor specificity of enzymes is a promising approach that can expand the application of enzymes for biocatalytic production of industrially relevant chemicals. Until now, only NADPH-dependent imine reductases (IREDs) are known. This limits their applications to reactions employing whole cells as a cost-efficient cofactor regeneration system. For applications of IREDs as cell-free catalysts, (i) we created an IRED variant showing an improved activity for NADH. With rational design we were able to identify four residues in the (R)-selective IRED from Streptomyces GF3587 (IR-Sgf3587), which coordinate the 2'-phosphate moiety of the NADPH cofactor. From a set of 15 variants, the highest NADH activity was caused by the single amino acid exchange K40A resulting in a 3-fold increased acceptance of NADH. (ii) We showed its applicability using an immobilisate obtained either from purified enzyme or from lysate using the EziG(™) carriers. Applying the variant and NADH, we reached 88% conversion in a preparative scale biotransformation when employing 4% (w/v) 2-methylpyrroline. (iii) We demonstrated a one-enzyme cofactor regeneration approach using the achiral amine N-methyl-3-aminopentanone as a hydrogen donor co-substrate. PMID:27164259

  3. Cellular Cofactors of Lentiviral Integrase: From Target Validation to Drug Discovery

    PubMed Central

    Taltynov, Oliver; Desimmie, Belete A.; Demeulemeester, Jonas; Christ, Frauke; Debyser, Zeger

    2012-01-01

    To accomplish their life cycle, lentiviruses make use of host proteins, the so-called cellular cofactors. Interactions between host cell and viral proteins during early stages of lentiviral infection provide attractive new antiviral targets. The insertion of lentiviral cDNA in a host cell chromosome is a step of no return in the replication cycle, after which the host cell becomes a permanent carrier of the viral genome and a producer of lentiviral progeny. Integration is carried out by integrase (IN), an enzyme playing also an important role during nuclear import. Plenty of cellular cofactors of HIV-1 IN have been proposed. To date, the lens epithelium-derived growth factor (LEDGF/p75) is the best studied cofactor of HIV-1 IN. Moreover, small molecules that block the LEDGF/p75-IN interaction have recently been developed for the treatment of HIV infection. The nuclear import factor transportin-SR2 (TRN-SR2) has been proposed as another interactor of HIV IN-mediating nuclear import of the virus. Using both proteins as examples, we will describe approaches to be taken to identify and validate novel cofactors as new antiviral targets. Finally, we will highlight recent advances in the design and the development of small-molecule inhibitors binding to the LEDGF/p75-binding pocket in IN (LEDGINs). PMID:22928108

  4. A modular system for regeneration of NAD cofactors using graphite particles modified with hydrogenase and diaphorase moieties.

    PubMed

    Reeve, Holly A; Lauterbach, Lars; Ash, Philip A; Lenz, Oliver; Vincent, Kylie A

    2012-02-01

    Pyrolytic graphite particles modified with hydrogenase and an NAD(+)/NADH cycling enzyme provide a modular heterogeneous catalyst system for regeneration of oxidised or reduced nicotinamide cofactors using H(2) and H(+) as electron source or sink. Particles can be tuned for cofactor supply under different conditions by appropriate choice of hydrogenase. PMID:21986817

  5. Structural basis of the cofactor function of denatured albumin in plasminogen activation by tissue-type plasminogen activator.

    PubMed

    Galántai, Rita; Módos, Károly; Fidy, Judit; Kolev, Krasimir; Machovich, Raymund

    2006-03-17

    Certain denatured proteins function as cofactors in the activation of plasminogen by tissue-type plasminogen activator. The present study approached the structural requirements for the cofactor activity of a model protein (human serum albumin). Heat denaturation of 100-230 microM albumin (80 degrees C and 60-90 min) reproducibly yielded aggregates with radius in the range of 10-150 nm. The major determinant of the cofactor potency was the size of the aggregates. The increase of particle size correlated with the cofactor activity, and there was a minimal requirement for the size of the cofactor (about 10 nm radius). Similar to other proteins, the molecular aggregates with cofactor function contained a significant amount of antiparallel intermolecular beta-sheets. Plasmin pre-digestion increased the cofactor efficiency (related to C-terminal lysine exposure) and did not affect profoundly the structure of the aggregates, suggesting a long-lasting and even a self-augmenting cofactor function of the denatured protein. PMID:16438933

  6. Mono and Dual Cofactor Dependence of Human Cystathionine β-Synthase Enzyme Variants In Vivo and In Vitro

    PubMed Central

    Dimster-Denk, Dago; Tripp, Katherine W.; Marini, Nicholas J.; Marqusee, Susan; Rine, Jasper

    2013-01-01

    Any two individuals differ from each other by an average of 3 million single-nucleotide polymorphisms. Some polymorphisms have a functional impact on cofactor-using enzymes and therefore represent points of possible therapeutic intervention through elevated-cofactor remediation. Because most known disease-causing mutations affect protein stability, we evaluated how the in vivo impact caused by single amino acid substitutions in a prototypical enzyme of this type compared with physical characteristics of the variant enzymes in vitro. We focused on cystathionine β-synthase (CBS) because of its clinical relevance in homocysteine metabolism and because some variants of the enzyme are clinically responsive to increased levels of its B6 cofactor. Single amino-acid substitutions throughout the CBS protein caused reduced function in vivo, and a subset of these altered sensitivity to limiting B6-cofactor. Some of these B6-sensitive substitutions also had altered sensitivity to limiting heme, another CBS cofactor. Limiting heme resulted in reduced incorporation of heme into these variants, and subsequently increased protease sensitivity of the enzyme in vitro. We hypothesize that these alleles caused a modest, yet significant, destabilization of the native state of the protein, and that the functional impact of the amino acid substitutions caused by these alleles can be influenced by cofactor(s) even when the affected amino acid is distant from the cofactor binding site. PMID:23934999

  7. A Conserved Acidic Residue in Phenylalanine Hydroxylase Contributes to Cofactor Affinity and Catalysis

    PubMed Central

    2015-01-01

    The catalytic domains of aromatic amino acid hydroxylases (AAAHs) contain a non-heme iron coordinated to a 2-His-1-carboxylate facial triad and two water molecules. Asp139 from Chromobacterium violaceum PAH (cPAH) resides within the second coordination sphere and contributes key hydrogen bonds with three active site waters that mediate its interaction with an oxidized form of the cofactor, 7,8-dihydro-l-biopterin, in crystal structures. To determine the catalytic role of this residue, various point mutants were prepared and characterized. Our isothermal titration calorimetry (ITC) analysis of iron binding implies that polarity at position 139 is not the sole criterion for metal affinity, as binding studies with D139E suggest that the size of the amino acid side chain also appears to be important. High-resolution crystal structures of the mutants reveal that Asp139 may not be essential for holding the bridging water molecules together, because many of these waters are retained even in the Ala mutant. However, interactions via the bridging waters contribute to cofactor binding at the active site, interactions for which charge of the residue is important, as the D139N mutant shows a 5-fold decrease in its affinity for pterin as revealed by ITC (compared to a 16-fold loss of affinity in the case of the Ala mutant). The Asn and Ala mutants show a much more pronounced defect in their kcat values, with nearly 16- and 100-fold changes relative to that of the wild type, respectively, indicating a substantial role of this residue in stabilization of the transition state by aligning the cofactor in a productive orientation, most likely through direct binding with the cofactor, supported by data from molecular dynamics simulations of the complexes. Our results indicate that the intervening water structure between the cofactor and the acidic residue masks direct interaction between the two, possibly to prevent uncoupled hydroxylation of the cofactor before the arrival of

  8. Metabolic Impact of Redox Cofactor Perturbations on the Formation of Aroma Compounds in Saccharomyces cerevisiae

    PubMed Central

    Sanchez, Isabelle; Dequin, Sylvie; Camarasa, Carole

    2015-01-01

    Redox homeostasis is a fundamental requirement for the maintenance of metabolism, energy generation, and growth in Saccharomyces cerevisiae. The redox cofactors NADH and NADPH are among the most highly connected metabolites in metabolic networks. Changes in their concentrations may induce widespread changes in metabolism. Redox imbalances were achieved with a dedicated biological tool overexpressing native NADH-dependent or engineered NADPH-dependent 2,3-butanediol dehydrogenase, in the presence of acetoin. We report that targeted perturbation of the balance of cofactors (NAD+/NADH or, to a lesser extent, NADP+/NADPH) significantly affected the production of volatile compounds. In most cases, variations in the redox state of yeasts modified the formation of all compounds from the same biochemical pathway (isobutanol, isoamyl alcohol, and their derivatives) or chemical class (ethyl esters), irrespective of the cofactors. These coordinated responses were found to be closely linked to the impact of redox status on the availability of intermediates of central carbon metabolism. This was the case for α-keto acids and acetyl coenzyme A (acetyl-CoA), which are precursors for the synthesis of many volatile compounds. We also demonstrated that changes in the availability of NADH selectively affected the synthesis of some volatile molecules (e.g., methionol, phenylethanol, and propanoic acid), reflecting the specific cofactor requirements of the dehydrogenases involved in their formation. Our findings indicate that both the availability of precursors from central carbon metabolism and the accessibility of reduced cofactors contribute to cell redox status modulation of volatile compound formation. PMID:26475113

  9. Metabolic Impact of Redox Cofactor Perturbations on the Formation of Aroma Compounds in Saccharomyces cerevisiae.

    PubMed

    Bloem, Audrey; Sanchez, Isabelle; Dequin, Sylvie; Camarasa, Carole

    2016-01-01

    Redox homeostasis is a fundamental requirement for the maintenance of metabolism, energy generation, and growth in Saccharomyces cerevisiae. The redox cofactors NADH and NADPH are among the most highly connected metabolites in metabolic networks. Changes in their concentrations may induce widespread changes in metabolism. Redox imbalances were achieved with a dedicated biological tool overexpressing native NADH-dependent or engineered NADPH-dependent 2,3-butanediol dehydrogenase, in the presence of acetoin. We report that targeted perturbation of the balance of cofactors (NAD(+)/NADH or, to a lesser extent, NADP(+)/NADPH) significantly affected the production of volatile compounds. In most cases, variations in the redox state of yeasts modified the formation of all compounds from the same biochemical pathway (isobutanol, isoamyl alcohol, and their derivatives) or chemical class (ethyl esters), irrespective of the cofactors. These coordinated responses were found to be closely linked to the impact of redox status on the availability of intermediates of central carbon metabolism. This was the case for α-keto acids and acetyl coenzyme A (acetyl-CoA), which are precursors for the synthesis of many volatile compounds. We also demonstrated that changes in the availability of NADH selectively affected the synthesis of some volatile molecules (e.g., methionol, phenylethanol, and propanoic acid), reflecting the specific cofactor requirements of the dehydrogenases involved in their formation. Our findings indicate that both the availability of precursors from central carbon metabolism and the accessibility of reduced cofactors contribute to cell redox status modulation of volatile compound formation. PMID:26475113

  10. Selective androgen receptor modulator activity of a steroidal antiandrogen TSAA-291 and its cofactor recruitment profile.

    PubMed

    Hikichi, Yukiko; Yamaoka, Masuo; Kusaka, Masami; Hara, Takahito

    2015-10-15

    Selective androgen receptor modulators (SARMs) specifically bind to the androgen receptor and exert agonistic or antagonistic effects on target organs. In this study, we investigated the SARM activity of TSAA-291, previously known as a steroidal antiandrogen, in mice because TSAA-291 was found to possess partial androgen receptor agonist activity in reporter assays. In addition, to clarify the mechanism underlying its tissue selectivity, we performed comprehensive cofactor recruitment analysis of androgen receptor using TSAA-291 and dihydrotestosterone (DHT), an endogenous androgen. The androgen receptor agonistic activity of TSAA-291 was more obvious in reporter assays using skeletal muscle cells than in those using prostate cells. In castrated mice, TSAA-291 increased the weight of the levator ani muscle without increasing the weight of the prostate and seminal vesicle. Comprehensive cofactor recruitment analysis via mammalian two-hybrid methods revealed that among a total of 112 cofactors, 12 cofactors including the protein inhibitor of activated STAT 1 (PIAS1) were differently recruited to androgen receptor in the presence of TSAA-291 and DHT. Prostate displayed higher PIAS1 expression than skeletal muscle. Forced expression of the PIAS1 augmented the transcriptional activity of the androgen receptor, and silencing of PIAS1 by siRNAs suppressed the secretion of prostate-specific antigen, an androgen responsive marker. Our results demonstrate that TSAA-291 has SARM activity and suggest that TSAA-291 may induce different conformational changes of the androgen receptor and recruitment profiles of cofactors such as PIAS1, compared with DHT, to exert tissue-specific activity. PMID:26335395

  11. CFD - Mature Technology?

    NASA Technical Reports Server (NTRS)

    Kwak, Dochan

    2005-01-01

    Over the past 30 years, numerical methods and simulation tools for fluid dynamic problems have advanced as a new discipline, namely, computational fluid dynamics (CFD). Although a wide spectrum of flow regimes are encountered in many areas of science and engineering, simulation of compressible flow has been the major driver for developing computational algorithms and tools. This is probably due to a large demand for predicting the aerodynamic performance characteristics of flight vehicles, such as commercial, military, and space vehicles. As flow analysis is required to be more accurate and computationally efficient for both commercial and mission-oriented applications (such as those encountered in meteorology, aerospace vehicle development, general fluid engineering and biofluid analysis) CFD tools for engineering become increasingly important for predicting safety, performance and cost. This paper presents the author's perspective on the maturity of CFD, especially from an aerospace engineering point of view.

  12. Impact of cofactor-binding loop mutations on thermotolerance and activity of E. coli transketolase.

    PubMed

    Morris, P; Rios-Solis, L; García-Arrazola, R; Lye, G J; Dalby, P A

    2016-07-01

    Improvement of thermostability in engineered enzymes can allow biocatalysis on substrates with poor aqueous solubility. Denaturation of the cofactor-binding loops of Escherichia coli transketolase (TK) was previously linked to the loss of enzyme activity under conditions of high pH or urea. Incubation at temperatures just below the thermal melting transition, above which the protein aggregates, was also found to anneal the enzyme to give an increased specific activity. The potential role of cofactor-binding loop instability in this process remained unclear. In this work, the two cofactor-binding loops (residues 185-192 and 382-392) were progressively mutated towards the equivalent sequence from the thermostable Thermus thermophilus TK and variants assessed for their impact on both thermostability and activity. Cofactor-binding loop 2 variants had detrimental effects on specific activity at elevated temperatures, whereas the H192P mutation in cofactor-binding loop 1 resulted in a two-fold improved stability to inactivation at elevated temperatures, and increased the critical onset temperature for aggregation. The specific activity of H192P was 3-fold and 19-fold higher than that for wild-type at 60°C and 65°C respectively, and also remained 2.7-4 fold higher after re-cooling from pre-incubations at either 55°C or 60°C for 1h. Interestingly, H192P was also 2-times more active than wild-type TK at 25°C. Optimal activity was achieved at 60°C for H192P compared to 55°C for wild type. These results show that cofactor-binding loop 1, plays a pivotal role in partial denaturation and aggregation at elevated temperatures. Furthermore, a single rigidifying mutation within this loop can significantly improve the enzyme specific activity, as well as the stability to thermal denaturation and aggregation, to give an increased temperature optimum for activity. PMID:27233131

  13. Host co-factors of the retrovirus-like transposon Ty1

    PubMed Central

    2012-01-01

    Background Long-terminal repeat (LTR) retrotransposons have complex modes of mobility involving reverse transcription of their RNA genomes in cytoplasmic virus-like particles (VLPs) and integration of the cDNA copies into the host genome. The limited coding capacity of retrotransposons necessitates an extensive reliance on host co-factors; however, it has been challenging to identify co-factors that are required for endogenous retrotransposon mobility because retrotransposition is such a rare event. Results To circumvent the low frequency of Ty1 LTR-retrotransposon mobility in Saccharomyces cerevisiae, we used iterative synthetic genetic array (SGA) analysis to isolate host mutations that reduce retrotransposition. Query strains that harbor a chromosomal Ty1his3AI reporter element and either the rtt101Δ or med1Δ mutation, both of which confer a hypertransposition phenotype, were mated to 4,847 haploid ORF deletion strains. Retrotransposition was measured in the double mutant progeny, and a set of 275 ORF deletions that suppress the hypertransposition phenotypes of both rtt101Δ and med1Δ were identified. The corresponding set of 275 retrotransposition host factors (RHFs) includes 45 previously identified Ty1 or Ty3 co-factors. More than half of the RHF genes have statistically robust human homologs (E < 1 x 10-10). The level of unintegrated Ty1 cDNA in 181 rhfΔ single mutants was altered <2-fold, suggesting that the corresponding co-factors stimulate retrotransposition at a step after cDNA synthesis. However, deletion of 43 RHF genes, including specific ribosomal protein and ribosome biogenesis genes and RNA degradation, modification and transport genes resulted in low Ty1 cDNA levels. The level of Ty1 Gag but not RNA was reduced in ribosome biogenesis mutants bud21Δ, hcr1Δ, loc1Δ, and puf6Δ. Conclusion Ty1 retrotransposition is dependent on multiple co-factors acting at different steps in the replication cycle. Human orthologs of these RHFs are

  14. What can molecular modelling bring to the design of artificial inorganic cofactors?

    PubMed

    Muñoz Robles, Victor; Ortega-Carrasco, Elisabeth; González Fuentes, Eric; Lledós, Agustí; Maréchal, Jean-Didier

    2011-01-01

    In recent years, the development of synthetic metalloenzymes based on the insertion of inorganic catalysts into biological macromolecules has become a vivid field of investigation. The success of the design of these composites is highly dependent on an atomic understanding of the recognition process between inorganic and biological entities. Despite facing several challenging complexities, molecular modelling techniques could be particularly useful in providing such knowledge. This study aims to discuss how the prediction of the structural and energetic properties of the host-cofactor interactions can be performed by computational means. To do so, we designed a protocol that combines several methodologies like protein-ligand dockings and QM/MM techniques. The overall approach considers fundamental bioinorganic questions like the participation of the amino acids of the receptor to the first coordination sphere of the metal, the impact of the receptor/cofactor flexibility on the structure of the complex, the cost of inserting the inorganic catalyst in place of the natural ligand/substrate into the host and how experimental knowledge can improve or invalidate a theoretical model. As a real case system, we studied an artificial metalloenzyme obtained by the insertion of a Fe(Schiff base) moiety into the heme oxygenase of Corynebacterium diphtheriae. The experimental structure of this species shows a distorted cofactor leading to an unusual octahedral configuration of the iron with two proximal residues chelating the metal and no external ligand. This geometry is far from the conformation adopted by similar cofactors in other hosts and shows that a fine tuning exists between the coordination environment of the metal, the deformability of its organic ligand and the conformational adaptability of the receptor. In a field where very little structural information is yet available, this work should help in building an initial molecular modelling framework for the discovery

  15. The MoxR ATPase RavA and Its Cofactor ViaA Interact with the NADH:Ubiquinone Oxidoreductase I in Escherichia coli

    PubMed Central

    Wong, Keith S.; Snider, Jamie D.; Graham, Chris; Greenblatt, Jack F.; Emili, Andrew; Babu, Mohan; Houry, Walid A.

    2014-01-01

    MoxR ATPases are widespread throughout bacteria and archaea. The experimental evidence to date suggests that these proteins have chaperone-like roles in facilitating the maturation of dedicated protein complexes that are functionally diverse. In Escherichia coli, the MoxR ATPase RavA and its putative cofactor ViaA are found to exist in early stationary-phase cells at 37°C at low levels of about 350 and 90 molecules per cell, respectively. Both proteins are predominantly localized to the cytoplasm, but ViaA was also unexpectedly found to localize to the cell membrane. Whole genome microarrays and synthetic lethality studies both indicated that RavA-ViaA are genetically linked to Fe-S cluster assembly and specific respiratory pathways. Systematic analysis of mutant strains of ravA and viaA indicated that RavA-ViaA sensitizes cells to sublethal concentrations of aminoglycosides. Furthermore, this effect was dependent on RavA's ATPase activity, and on the presence of specific subunits of NADH:ubiquinone oxidoreductase I (Nuo Complex, or Complex I). Importantly, both RavA and ViaA were found to physically interact with specific Nuo subunits. We propose that RavA-ViaA facilitate the maturation of the Nuo complex. PMID:24454883

  16. Transcriptional Landscape of Cardiomyocyte Maturation

    PubMed Central

    Uosaki, Hideki; Cahan, Patrick; Lee, Dong I.; Wang, Songnan; Miyamoto, Matthew; Fernandez, Laviel; Kass, David A.; Kwon, Chulan

    2015-01-01

    SUMMARY Decades of progress in developmental cardiology has advanced our understanding of the early aspects of heart development, including cardiomyocyte (CM) differentiation. However, control of CM maturation which is subsequently required to generate adult myocytes, remains elusive. Here, we analyzed over 200 microarray datasets from early embryonic to adult hearts and identified a large number of genes whose expression shifts gradually and continuously during maturation. We generated an atlas of integrated gene expression, biological pathways, transcriptional regulators, and gene regulatory networks (GRNs), which show discrete sets of key transcriptional regulators and pathways activated or suppressed during CM maturation. We developed a GRN-based program named MatStatCM that indexes CM maturation status. MatStatCM reveals that pluripotent stem cell-derived CMs mature early in culture, but are arrested at the late embryonic stage with aberrant regulation of key transcription factors. Our study provides a foundation for understanding CM maturation. PMID:26586429

  17. Ca cofactor of the water-oxidation complex: Evidence for a Mn/Ca heteronuclear cluster

    SciTech Connect

    Cinco, Roehl M.; Robblee, John H.; Messinger, Johannes; Fernandez, Carmen; McFarlane, Karen L.; Pizarro, Shelly A.; Sauer, Ken; Yachandra, Vittal K.

    2001-07-25

    Calcium and chloride are necessary cofactors for the proper function of the oxygen-evolving complex (OEC) of Photosystem II (PS II). Located in the thylakoid membranes of green plants, cyanobacteria and algae, PS II and the OEC catalyze the light-driven oxidation of water into dioxygen (released into the biosphere), protons and electrons for carbon fixation. The actual chemistry of water oxidation is performed by a cluster of four manganese atoms, along with the requisite cofactors Ca{sup 2+} and Cl{sup -}. While the Mn complex has been extensively studied by X-ray absorption techniques, comparatively less is known about the Ca{sup 2+} cofactor. The fewer number of studies on the Ca{sup 2+} cofactor have sometimes relied on substituting the native cofactor with strontium or other metals, and have stirred some debate about the structure of the binding site. past efforts using Mn EXAFS on Sr-substituted PSII are suggestive of a close link between the Mn cluster and Sr, within 3.5 {angstrom}. The most recent published study using Sr EXAFS on similar samples confirms this finding of a 3.5 {angstrom} distance between Mn and Sr. This finding was base3d on a second Fourier peak (R {approx} 3 {angstrom}) in the Sr EXAFS from functional samples, but is absent from inactive, hydroxylamine-treated PS II. This Fourier peak II was found to fit best to two Mn at 3.5 {angstrom} rather than lighter atoms (carbon). Nevertheless, other experiments have given contrary results. They wanted to extend the technique by using polarized Sr EXAFS on layered Sr-substituted samples, to provide important angle information. Polarized EXAFS involves collecting spectra for different incident angles ({theta}) between the membrane normal of the layered sample and the X-ray electric field vector. Dichroism in the EXAFS can occur, depending on how the particular absorber-backscatterer (A-B) vector is aligned with the electric field. Through analysis of the dichroism, they extract the average number

  18. SRF regulates craniofacial development through selective recruitment of MRTF cofactors by PDGF signaling

    PubMed Central

    Vasudevan, Harish N.; Soriano, Philippe

    2014-01-01

    Summary Receptor tyrosine kinase signaling is critical for mammalian craniofacial development, but the key downstream transcriptional effectors remain unknown. We demonstrate that SRF is induced by both PDGF and FGF signaling in mouse embryonic palatal mesenchyme cells, and Srf neural crest conditional mutants exhibit facial clefting accompanied by proliferation and migration defects. Srf and Pdgfra mutants interact genetically in craniofacial development, but Srf and Fgfr1 mutants do not. This signal specificity is recapitulated at the level of cofactor activation: while both PDGF and FGF target gene promoters show enriched genome-wide overlap with SRF ChIP-seq peaks, PDGF selectively activates a network of MRTF-dependent cytoskeletal genes. Collectively, our results identify a novel role for SRF in proliferation and migration during craniofacial development and delineate a mechanism of receptor tyrosine kinase specificity mediated through differential cofactor usage, leading to a unique PDGF-responsive SRF-driven transcriptional program in the midface. PMID:25453829

  19. Dynamic Determination of Active-Site Reactivity in Semiquinone Photolyase by the Cofactor Photoreduction

    PubMed Central

    2015-01-01

    Photolyase contains a flavin cofactor in a fully reduced form as its functional state to repair ultraviolet-damaged DNA upon blue light absorption. However, after purification, the cofactor exists in its oxidized or neutral semiquinone state. Such oxidization eliminates the repair function, but it can be reverted by photoreduction, a photoinduced process with a series of electron-transfer (ET) reactions. With femtosecond absorption spectroscopy and site-directed mutagenesis, we completely recharacterized such photoreduction dynamics in the semiquinone state. Comparing with all previous studies, we identified a new intramolecular ET pathway, determined stretched ET behaviors, refined all ET time scales, and finally evaluated the driving forces and reorganization energies for eight elementary ET reactions. Combined with the oxidized-state photoreduction dynamics, we elucidated the different active-site properties of the reduction ability and structural flexibility in the oxidized and semiquinone states, leading to the dramatically different ET dynamics and photoreduction efficiency in the two states. PMID:24803991

  20. Ligand binding to the FeMo-cofactor: structures of CO-bound and reactivated nitrogenase

    PubMed Central

    Spatzal, Thomas; Perez, Kathryn A.; Einsle, Oliver; Howard, James B.; Rees, Douglas C.

    2014-01-01

    The mechanism of nitrogenase remains enigmatic, with a major unresolved issue concerning how inhibitors and substrates bind to the active site. We report a crystal structure of carbon monoxide (CO) inhibited nitrogenase MoFe-protein at 1.50 Å resolution, revealing a CO molecule bridging Fe2 and Fe6 of the FeMo-cofactor. The μ2 binding geometry is achieved by replacing a belt-sulfur atom (S2B) and highlights the generation of a reactive iron species uncovered by the displacement of sulfur. The CO inhibition is fully reversible as established by regain of enzyme activity and reappearance of S2B in the 1.43 Å resolution structure of the reactivated enzyme. The substantial and reversible reorganization of the FeMo-cofactor accompanying CO binding was unanticipated and provides insights into a catalytically competent state of nitrogenase. PMID:25258081

  1. Maturational and Non-Maturational Factors in Heritage Language Acquisition

    ERIC Educational Resources Information Center

    Moon, Ji Hye

    2012-01-01

    This dissertation aims to understand the maturational and non-maturational aspects of early bilingualism and language attrition in heritage speakers who have acquired their L1 incompletely in childhood. The study highlights the influential role of age and input dynamics in early L1 development, where the timing of reduction in L1 input and the…

  2. The History of the Discovery of the Molybdenum Cofactor and Novel Aspects of its Biosynthesis in Bacteria.

    PubMed

    Leimkühler, Silke; Wuebbens, Margot M; Rajagopalan, K V

    2011-05-01

    Biosynthesis of the molybdenum cofactor in bacteria is described with a detailed analysis of each individual reaction leading to the formation of stable intermediates during the synthesis of molybdopterin from GTP. As a starting point, the discovery of molybdopterin and the elucidation of its structure through the study of stable degradation products are described. Subsequent to molybdopterin synthesis, the molybdenum atom is added to the molybdopterin dithiolene group to form the molybdenum cofactor. This cofactor is either inserted directly into specific molybdoenzymes or is further modified by the addition of nucleotides to the molybdopterin phosphate group or the replacement of ligands at the molybdenum center. PMID:21528011

  3. DEAH-RHA helicase•Znf cofactor systems in kinetoplastid RNA editing and evolutionarily distant RNA processes

    PubMed Central

    Cruz-Reyes, Jorge; Mooers, Blaine H.M.; Abu-Adas, Zakaria; Kumar, Vikas; Gulati, Shelly

    2016-01-01

    Multi-zinc finger proteins are an emerging class of cofactors in DEAH-RHA RNA helicases across highly divergent eukaryotic lineages. DEAH-RHA helicase•zinc finger cofactor partnerships predate the split of kinetoplastid protozoa, which include several human pathogens, from other eukaryotic lineages 100–400 Ma. Despite a long evolutionary history, the prototypical DEAH-RHA domains remain highly conserved. This short review focuses on a recently identified DEAH-RHA helicase•zinc finger cofactor system in kinetoplastid RNA editing, and its potential functional parallels with analogous systems in embryogenesis control in nematodes and antivirus protection in humans. PMID:27540585

  4. Biosynthesis of flavin cofactors in man: implications in health and disease.

    PubMed

    Barile, Maria; Giancaspero, Teresa Anna; Brizio, Carmen; Panebianco, Concetta; Indiveri, Cesare; Galluccio, Michele; Vergani, Lodovica; Eberini, Ivano; Gianazza, Elisabetta

    2013-01-01

    The primary role of the water-soluble vitamin B2, i.e. riboflavin, in cell biology is connected with its conversion into FMN and FAD, the cofactors of a large number of dehydrogenases, reductases and oxidases involved in energetic metabolism, redox homeostasis and protein folding as well as in diverse regulatory events. Deficiency of riboflavin in men and experimental animal models has been linked to several diseases, including neuromuscular and neurological disorders and cancer. Riboflavin at pharmacological doses has been shown to play unexpected and incompletely understood regulatory roles. Besides a summary on riboflavin uptake and a survey on riboflavin-related diseases, the main focus of this review is on discovery and characterization of FAD synthase (EC 2.7.7.2) and other components of the cellular networks that ensure flavin cofactor homeostasis.Special attention is devoted to the problem of sub-cellular compartmentalization of cofactor synthesis in eukaryotes, made possible by the existence of different FAD synthase isoforms and specific molecular components involved in flavin trafficking across sub-cellular membranes.Another point addressed in this review is the mechanism of cofactor delivery to nascent apo-proteins, especially those localized into mitochondria, where they integrate FAD in a process that involves additional mitochondrial protein(s) still to be identified. Further efforts are necessary to elucidate the role of riboflavin/FAD network in human pathologies and to exploit the structural differences between human and microbial/fungal FAD synthase as the rational basis for developing novel antibiotic/antimycotic drugs. PMID:23116402

  5. Co-Factor Binding Confers Substrate Specificity to Xylose Reductase from Debaryomyces hansenii

    PubMed Central

    Singh, Appu Kumar; Mondal, Alok K.; Kumaran, S.

    2012-01-01

    Binding of substrates into the active site, often through complementarity of shapes and charges, is central to the specificity of an enzyme. In many cases, substrate binding induces conformational changes in the active site, promoting specific interactions between them. In contrast, non-substrates either fail to bind or do not induce the requisite conformational changes upon binding and thus no catalysis occurs. In principle, both lock and key and induced-fit binding can provide specific interactions between the substrate and the enzyme. In this study, we present an interesting case where cofactor binding pre-tunes the active site geometry to recognize only the cognate substrates. We illustrate this principle by studying the substrate binding and kinetic properties of Xylose Reductase from Debaryomyces hansenii (DhXR), an AKR family enzyme which catalyzes the reduction of carbonyl substrates using NADPH as co-factor. DhXR reduces D-xylose with increased specificity and shows no activity towards “non-substrate” sugars like L-rhamnose. Interestingly, apo-DhXR binds to D-xylose and L-rhamnose with similar affinity (Kd∼5.0–10.0 mM). Crystal structure of apo-DhXR-rhamnose complex shows that L-rhamnose is bound to the active site cavity. L-rhamnose does not bind to holo-DhXR complex and thus, it cannot competitively inhibit D-xylose binding and catalysis even at 4–5 fold molar excess. Comparison of Kd values with Km values reveals that increased specificity for D-xylose is achieved at the cost of moderately reduced affinity. The present work reveals a latent regulatory role for cofactor binding which was previously unknown and suggests that cofactor induced conformational changes may increase the complimentarity between D-xylose and active site similar to specificity achieved through induced-fit mechanism. PMID:23049810

  6. Human Immunodeficiency Virus Immune Cell Receptors, Coreceptors, and Cofactors: Implications for Prevention and Treatment.

    PubMed

    Woodham, Andrew W; Skeate, Joseph G; Sanna, Adriana M; Taylor, Julia R; Da Silva, Diane M; Cannon, Paula M; Kast, W Martin

    2016-07-01

    In the last three decades, extensive research on human immunodeficiency virus (HIV) has highlighted its capability to exploit a variety of strategies to enter and infect immune cells. Although CD4(+) T cells are well known as the major HIV target, with infection occurring through the canonical combination of the cluster of differentiation 4 (CD4) receptor and either the C-C chemokine receptor type 5 (CCR5) or C-X-C chemokine receptor type 4 (CXCR4) coreceptors, HIV has also been found to enter other important immune cell types such as macrophages, dendritic cells, Langerhans cells, B cells, and granulocytes. Interestingly, the expression of distinct cellular cofactors partially regulates the rate in which HIV infects each distinct cell type. Furthermore, HIV can benefit from the acquisition of new proteins incorporated into its envelope during budding events. While several publications have investigated details of how HIV manipulates particular cell types or subtypes, an up-to-date comprehensive review on HIV tropism for different immune cells is lacking. Therefore, this review is meant to focus on the different receptors, coreceptors, and cofactors that HIV exploits to enter particular immune cells. Additionally, prophylactic approaches that have targeted particular molecules associated with HIV entry and infection of different immune cells will be discussed. Unveiling the underlying cellular receptors and cofactors that lead to HIV preference for specific immune cell populations is crucial in identifying novel preventative/therapeutic targets for comprehensive strategies to eliminate viral infection. PMID:27410493

  7. The Mtm1p carrier and pyridoxal 5′-phosphate cofactor trafficking in yeast mitochondria *

    PubMed Central

    Whittaker, Mei M.; Penmatsa, Aravind; Whittaker, James W.

    2015-01-01

    Biochemical communication between the cytoplasmic and mitochondrial subsystems of the cell depends on solute carriers in the mitochondrial inner membrane that transport metabolites between the two compartments. We have expressed and purified a yeast mitochondrial carrier protein (Mtm1p, YGR257cp), originally identified as a manganese ion carrier, for biochemical characterization aimed at resolving its function. High affinity, stoichiometric pyridoxal 5′-phosphate (PLP) cofactor binding was characterized by fluorescence titration and calorimetry, and the biochemical effects of mtm1 gene deletion on yeast mitochondria were investigated. The PLP status of the mitochondrial proteome (the mitochondrial ‘PLP-ome’) was probed by immunoblot analysis of mitochondria isolated from wild type (MTM1+) and knockout (MTM1−) yeast, revealing depletion of mitochondrial PLP in the latter. A direct activity assay of the enzyme catalyzing the first committed step of heme biosynthesis, the PLP-dependent mitochondrial enzyme 5-aminolevulinate synthase, extends these results, providing a specific example of PLP cofactor limitation. Together, these experiments support a role for Mtm1p in mitochondrial PLP trafficking and highlight the link between PLP cofactor transport and iron metabolism, a remarkable illustration of metabolic integration. PMID:25637770

  8. Developmental expression patterns of candidate cofactors for vertebrate six family transcription factors.

    PubMed

    Neilson, Karen M; Pignoni, Francesca; Yan, Bo; Moody, Sally A

    2010-12-01

    Six family transcription factors play important roles in craniofacial development. Their transcriptional activity can be modified by cofactor proteins. Two Six genes and one cofactor gene (Eya1) are involved in the human Branchio-otic (BO) and Branchio-otic-renal (BOR) syndromes. However, mutations in Six and Eya genes only account for approximately half of these patients. To discover potential new causative genes, we searched the Xenopus genome for orthologues of Drosophila cofactor proteins that interact with the fly Six-related factor, SO. We identified 33 Xenopus genes with high sequence identity to 20 of the 25 fly SO-interacting proteins. We provide the developmental expression patterns of the Xenopus orthologues for 11 of the fly genes, and demonstrate that all are expressed in developing craniofacial tissues with at least partial overlap with Six1/Six2. We speculate that these genes may function as Six-interacting partners with important roles in vertebrate craniofacial development and perhaps congenital syndromes. PMID:21089078

  9. Live Cell Discovery of Microbial Vitamin Transport and Enzyme-Cofactor Interactions.

    PubMed

    Anderson, Lindsey N; Koech, Phillip K; Plymale, Andrew E; Landorf, Elizabeth V; Konopka, Allan; Collart, Frank R; Lipton, Mary S; Romine, Margaret F; Wright, Aaron T

    2016-02-19

    The rapid completion of microbial genomes is inducing a conundrum in functional gene discovery. Novel methods are needed to shorten the gap between characterizing a microbial genome and experimentally validating bioinformatically predicted functions. Of particular importance are transport mechanisms, which shuttle nutrients such as B vitamins and metabolites across cell membranes and are required for the survival of microbes ranging from members of environmental microbial communities to pathogens. Methods to accurately assign function and specificity for a wide range of experimentally unidentified and/or predicted membrane-embedded transport proteins, along with characterization of intracellular enzyme-cofactor associations, are needed to enable a significantly improved understanding of microbial biochemistry and physiology, microbial interactions, and microbial responses to perturbations. Chemical probes derived from B vitamins B1, B2, and B7 have allowed us to experimentally address the aforementioned needs by identifying B vitamin transporters and intracellular enzyme-cofactor associations through live cell labeling of the filamentous anoxygenic photoheterotroph, Chloroflexus aurantiacus J-10-fl, known to employ mechanisms for both B vitamin biosynthesis and environmental salvage. Our probes provide a unique opportunity to directly link cellular activity and protein function back to ecosystem and/or host dynamics by identifying B vitamin transport and cofactor-dependent interactions required for survival. PMID:26669591

  10. Developmental expression patterns of candidate co-factors for vertebrate Six family transcription factors

    PubMed Central

    Neilson, Karen M.; Pignoni, Francesca; Yan, Bo; Moody, Sally A.

    2010-01-01

    Six family transcription factors play important roles in craniofacial development. Their transcriptional activity can be modified by co-factor proteins. Two Six genes and one co-factor gene (Eya1) are involved in the human Branchio-otic (BO) and Branchio-otic-renal (BOR) syndromes. However, mutations in Six and Eya genes only account for about half of these patients. To discover potential new causative genes, we searched the Xenopus genome for orthologues of Drosophila co-factor proteins that interact with the fly Six-related factor, SO. We identified 33 Xenopus genes with high sequence identity to 20 of the 25 fly SO-interacting proteins. We provide the developmental expression patterns of the Xenopus orthologues for 11 of the fly genes, and demonstrate that all are expressed in developing craniofacial tissues with at least partial overlap with Six1/Six2. We speculate that these genes may function as Six-interacting partners with important roles in vertebrate craniofacial development and perhaps congenital syndromes. PMID:21089078

  11. Functional and structural characterization of an unusual cofactor-independent oxygenase.

    PubMed

    Baas, Bert-Jan; Poddar, Harshwardhan; Geertsema, Edzard M; Rozeboom, Henriette J; de Vries, Marcel P; Permentier, Hjalmar P; Thunnissen, Andy-Mark W H; Poelarends, Gerrit J

    2015-02-10

    The vast majority of characterized oxygenases use bound cofactors to activate molecular oxygen to carry out oxidation chemistry. Here, we show that an enzyme of unknown activity, RhCC from Rhodococcus jostii RHA1, functions as an oxygenase, using 4-hydroxyphenylenolpyruvate as a substrate. This unique and complex reaction yields 3-hydroxy-3-(4-hydroxyphenyl)-pyruvate, 4-hydroxybenzaldehyde, and oxalic acid as major products. Incubations with H2(18)O, (18)O2, and a substrate analogue suggest that this enzymatic oxygenation reaction likely involves a peroxide anion intermediate. Analysis of sequence similarity and the crystal structure of RhCC (solved at 1.78 Å resolution) reveal that this enzyme belongs to the tautomerase superfamily. Members of this superfamily typically catalyze tautomerization, dehalogenation, or decarboxylation reactions rather than oxygenation reactions. The structure shows the absence of cofactors, establishing RhCC as a rare example of a redox-metal- and coenzyme-free oxygenase. This sets the stage to study the mechanistic details of cofactor-independent oxygen activation in the unusual context of the tautomerase superfamily. PMID:25565350

  12. Substrate Recognition and Catalysis by the Cofactor-Independent Dioxygenase DpgC+

    SciTech Connect

    Fielding,E.; Widboom, P.; Bruner, S.

    2007-01-01

    The enzyme DpgC belongs to a small class of oxygenases not dependent on accessory cofactors for activity. DpgC is in the biosynthetic pathway for the nonproteinogenic amino acid 3, 5-dihydroxyphenylglycine in actinomycetes bacteria responsible for the production of the vancomycin/teicoplanin family of antibiotic natural products. The X-ray structure of DpgC confirmed the absence of cofactors and defined a novel hydrophobic dioxygen binding pocket adjacent to a bound substrate analogue. In this paper, the role specific amino acids play in substrate recognition and catalysis is examined through biochemical and structural characterization of site-specific enzyme mutations and alternate substrates. The results establish the importance of three amino acids, Arg254, Glu299, and Glu189, in the chemistry of DpgC. Arg254 and Glu189 join to form a specific contact with one of the phenolic hydroxyls of the substrate, and this interaction plays a key role in both substrate recognition and catalysis. The X-ray crystal structure of Arg254Lys was determined to address the role this residue plays in the chemistry. In addition, characterization of alternate substrate analogues demonstrates the presence and position of phenol groups are necessary for both enzyme recognition and downstream oxidation chemistry. Overall, this work defines the mechanism of substrate recognition and specificity by the cofactor-independent dioxygenase DpgC.

  13. A network analysis of cofactor-protein interactions for analyzing associations between human nutrition and diseases.

    PubMed

    Scott-Boyer, Marie Pier; Lacroix, Sébastien; Scotti, Marco; Morine, Melissa J; Kaput, Jim; Priami, Corrado

    2016-01-01

    The involvement of vitamins and other micronutrients in intermediary metabolism was elucidated in the mid 1900's at the level of individual biochemical reactions. Biochemical pathways remain the foundational knowledgebase for understanding how micronutrient adequacy modulates health in all life stages. Current daily recommended intakes were usually established on the basis of the association of a single nutrient to a single, most sensitive adverse effect and thus neglect interdependent and pleiotropic effects of micronutrients on biological systems. Hence, the understanding of the impact of overt or sub-clinical nutrient deficiencies on biological processes remains incomplete. Developing a more complete view of the role of micronutrients and their metabolic products in protein-mediated reactions is of importance. We thus integrated and represented cofactor-protein interaction data from multiple and diverse sources into a multi-layer network representation that links cofactors, cofactor-interacting proteins, biological processes, and diseases. Network representation of this information is a key feature of the present analysis and enables the integration of data from individual biochemical reactions and protein-protein interactions into a systems view, which may guide strategies for targeted nutritional interventions aimed at improving health and preventing diseases. PMID:26777674

  14. Metal Cofactors in the Structure and Activity of the Fowlpox Resolvase

    PubMed Central

    Culyba, Matthew J.; Hwang, Young; Hu, Jimmy Yan; Minkah, Nana; Ocwieja, Karen E.; Bushman, Frederic D.

    2010-01-01

    Poxvirus DNA replication generates linear concatemers containing many copies of the viral genome with inverted repeat sequences at the junctions between monomers. The inverted repeats refold to generate Holliday junctions, which are cleaved by the virus-encoded resolvase enzyme to form unit-length genomes. Here we report studies of the influence of metal cofactors on the activity and structure of the resolvase of fowlpox virus (FPV), which provides a tractable model for in vitro studies. Small molecule inhibitors of related enzymes bind simultaneously to metal cofactors and nearby surface amino-acid residues, so understanding enzyme-cofactor interactions is important for the design of antiviral agents. Analysis of inferred active site residues (D7, E60, K102, D132, D135) by mutagenesis and metal rescue experiments specified residues that contribute to binding metal ions, and that multiple binding sites are probably involved. Differential electrophoretic analysis was used to map the conformation of the DNA junction when bound by resolvase. For the wild-type complex in the presence of EDTA or Ca2+, migration was consistent with the DNA arms arranged in near tetrahedral geometry. However, the D7N active site mutant resolvase held the arms in a more planar arrangement in EDTA, Ca2+ or Mg2+ conditions, implicating metal-dependent contacts at the active site in the larger architecture of the complex. These data show how divalent metals dictate the conformation of FPV resolvase/ DNA complexes and subsequent DNA cleavage. PMID:20380839

  15. Biochemical Characterization of Molybdenum Cofactor-free Nitrate Reductase from Neurospora crassa*

    PubMed Central

    Ringel, Phillip; Krausze, Joern; van den Heuvel, Joop; Curth, Ute; Pierik, Antonio J.; Herzog, Stephanie; Mendel, Ralf R.; Kruse, Tobias

    2013-01-01

    Nitrate reductase (NR) is a complex molybdenum cofactor (Moco)-dependent homodimeric metalloenzyme that is vitally important for autotrophic organism as it catalyzes the first and rate-limiting step of nitrate assimilation. Beside Moco, eukaryotic NR also binds FAD and heme as additional redox active cofactors, and these are involved in electron transfer from NAD(P)H to the enzyme molybdenum center where reduction of nitrate to nitrite takes place. We report the first biochemical characterization of a Moco-free eukaryotic NR from the fungus Neurospora crassa, documenting that Moco is necessary and sufficient to induce dimer formation. The molybdenum center of NR reconstituted in vitro from apo-NR and Moco showed an EPR spectrum identical to holo-NR. Analysis of mutants unable to bind heme or FAD revealed that insertion of Moco into NR occurs independent from the insertion of any other NR redox cofactor. Furthermore, we showed that at least in vitro the active site formation of NR is an autonomous process. PMID:23539622

  16. A network analysis of cofactor-protein interactions for analyzing associations between human nutrition and diseases

    PubMed Central

    Scott-Boyer, Marie Pier; Lacroix, Sébastien; Scotti, Marco; Morine, Melissa J.; Kaput, Jim; Priami, Corrado

    2016-01-01

    The involvement of vitamins and other micronutrients in intermediary metabolism was elucidated in the mid 1900’s at the level of individual biochemical reactions. Biochemical pathways remain the foundational knowledgebase for understanding how micronutrient adequacy modulates health in all life stages. Current daily recommended intakes were usually established on the basis of the association of a single nutrient to a single, most sensitive adverse effect and thus neglect interdependent and pleiotropic effects of micronutrients on biological systems. Hence, the understanding of the impact of overt or sub-clinical nutrient deficiencies on biological processes remains incomplete. Developing a more complete view of the role of micronutrients and their metabolic products in protein-mediated reactions is of importance. We thus integrated and represented cofactor-protein interaction data from multiple and diverse sources into a multi-layer network representation that links cofactors, cofactor-interacting proteins, biological processes, and diseases. Network representation of this information is a key feature of the present analysis and enables the integration of data from individual biochemical reactions and protein-protein interactions into a systems view, which may guide strategies for targeted nutritional interventions aimed at improving health and preventing diseases. PMID:26777674

  17. Rapid X-ray Photoreduction of Dimetal-Oxygen Cofactors in Ribonucleotide Reductase

    PubMed Central

    Sigfridsson, Kajsa G. V.; Chernev, Petko; Leidel, Nils; Popović-Bijelić, Ana; Gräslund, Astrid; Haumann, Michael

    2013-01-01

    Prototypic dinuclear metal cofactors with varying metallation constitute a class of O2-activating catalysts in numerous enzymes such as ribonucleotide reductase. Reliable structures are required to unravel the reaction mechanisms. However, protein crystallography data may be compromised by x-ray photoreduction (XRP). We studied XPR of Fe(III)Fe(III) and Mn(III)Fe(III) sites in the R2 subunit of Chlamydia trachomatis ribonucleotide reductase using x-ray absorption spectroscopy. Rapid and biphasic x-ray photoreduction kinetics at 20 and 80 K for both cofactor types suggested sequential formation of (III,II) and (II,II) species and similar redox potentials of iron and manganese sites. Comparing with typical x-ray doses in crystallography implies that (II,II) states are reached in <1 s in such studies. First-sphere metal coordination and metal-metal distances differed after chemical reduction at room temperature and after XPR at cryogenic temperatures, as corroborated by model structures from density functional theory calculations. The inter-metal distances in the XPR-induced (II,II) states, however, are similar to R2 crystal structures. Therefore, crystal data of initially oxidized R2-type proteins mostly contain photoreduced (II,II) cofactors, which deviate from the native structures functional in O2 activation, explaining observed variable metal ligation motifs. This situation may be remedied by novel femtosecond free electron-laser protein crystallography techniques. PMID:23400774

  18. Intracellular trafficking of the pyridoxal cofactor. Implications for health and metabolic disease.

    PubMed

    Whittaker, James W

    2016-02-15

    The importance of the vitamin B6-derived pyridoxal cofactor for human health has been established through more than 70 years of intensive biochemical research, revealing its fundamental roles in metabolism. B6 deficiency, resulting from nutritional limitation or impaired uptake from dietary sources, is associated with epilepsy, neuromuscular disease and neurodegeneration. Hereditary disorders of B6 processing are also known, and genetic defects in pathways involved in transport of B6 into the cell and its transformation to the pyridoxal-5'-phosphate enzyme cofactor can contribute to cardiovascular disease by interfering with homocysteine metabolism and the biosynthesis of vasomodulatory polyamines. Compared to the processes involved in cellular uptake and processing of the B6 vitamers, trafficking of the PLP cofactor across intracellular membranes is very poorly understood, even though the availability of PLP within subcellular compartments (particularly the mitochondrion) may have important health implications. The aim of this review is to concisely summarize the state of current knowledge of intracellular trafficking of PLP and to identify key directions for future research. PMID:26619753

  19. Catalysis-dependent selenium incorporation and migration in the nitrogenase active site iron-molybdenum cofactor

    PubMed Central

    Spatzal, Thomas; Perez, Kathryn A; Howard, James B; Rees, Douglas C

    2015-01-01

    Dinitrogen reduction in the biological nitrogen cycle is catalyzed by nitrogenase, a two-component metalloenzyme. Understanding of the transformation of the inert resting state of the active site FeMo-cofactor into an activated state capable of reducing dinitrogen remains elusive. Here we report the catalysis dependent, site-selective incorporation of selenium into the FeMo-cofactor from selenocyanate as a newly identified substrate and inhibitor. The 1.60 Å resolution structure reveals selenium occupying the S2B site of FeMo-cofactor in the Azotobacter vinelandii MoFe-protein, a position that was recently identified as the CO-binding site. The Se2B-labeled enzyme retains substrate reduction activity and marks the starting point for a crystallographic pulse-chase experiment of the active site during turnover. Through a series of crystal structures obtained at resolutions of 1.32–1.66 Å, including the CO-inhibited form of Av1-Se2B, the exchangeability of all three belt-sulfur sites is demonstrated, providing direct insights into unforeseen rearrangements of the metal center during catalysis. DOI: http://dx.doi.org/10.7554/eLife.11620.001 PMID:26673079

  20. Stepwise isotope editing of [FeFe]-hydrogenases exposes cofactor dynamics.

    PubMed

    Senger, Moritz; Mebs, Stefan; Duan, Jifu; Wittkamp, Florian; Apfel, Ulf-Peter; Heberle, Joachim; Haumann, Michael; Stripp, Sven Timo

    2016-07-26

    The six-iron cofactor of [FeFe]-hydrogenases (H-cluster) is the most efficient H2-forming catalyst in nature. It comprises a diiron active site with three carbon monoxide (CO) and two cyanide (CN(-)) ligands in the active oxidized state (Hox) and one additional CO ligand in the inhibited state (Hox-CO). The diatomic ligands are sensitive reporter groups for structural changes of the cofactor. Their vibrational dynamics were monitored by real-time attenuated total reflection Fourier-transform infrared spectroscopy. Combination of (13)CO gas exposure, blue or red light irradiation, and controlled hydration of three different [FeFe]-hydrogenase proteins produced 8 Hox and 16 Hox-CO species with all possible isotopic exchange patterns. Extensive density functional theory calculations revealed the vibrational mode couplings of the carbonyl ligands and uniquely assigned each infrared spectrum to a specific labeling pattern. For Hox-CO, agreement between experimental and calculated infrared frequencies improved by up to one order of magnitude for an apical CN(-) at the distal iron ion of the cofactor as opposed to an apical CO. For Hox, two equally probable isomers with partially rotated ligands were suggested. Interconversion between these structures implies dynamic ligand reorientation at the H-cluster. Our experimental protocol for site-selective (13)CO isotope editing combined with computational species assignment opens new perspectives for characterization of functional intermediates in the catalytic cycle. PMID:27432985

  1. EPR Spectroscopic Studies of [FeFe]-Hydrogenase Maturation

    PubMed Central

    Suess, Daniel L. M.

    2015-01-01

    Proton reduction and H2 oxidation are key elementary reactions for solar fuel production. Hydrogenases interconvert H+ and H2 with remarkable efficiency and have therefore received much attention in this context. For [FeFe]-hydrogenases, catalysis occurs at a unique cofactor called the H-cluster. In this article, we discuss ways in which EPR spectroscopy has elucidated aspects of the bioassembly of the H-cluster, with a focus on four case studies: EPR spectroscopic identification of a radical en route to the CO and CN− ligands of the H-cluster, tracing 57Fe from the maturase HydG into the H-cluster, characterization of the auxiliary Fe–S cluster in HydG, and isotopic labeling of the CN− ligands of HydA for electronic structure studies of its Hox state. Advances in cell-free maturation protocols have enabled several of these mechanistic studies, and understanding H-cluster maturation may in turn provide insights leading to improvements in hydrogenase production for biotechnological applications. PMID:26508821

  2. The Mature Athlete

    PubMed Central

    McCarthy, Moira M.; Hannafin, Jo A.

    2014-01-01

    Context: Aging changes the biology, healing capacity, and biomechanical function of tendons and ligaments and results in common clinical pathologies that present to orthopedic surgeons, primary care physicians, physical therapists, and athletic trainers. A better understanding of the age-related changes in these connective tissues will allow better patient care. Evidence Acquisition: The PubMed database was searched in December 2012 for English-language articles pertaining to age-related changes in tendons and ligaments. Level of Evidence: Level 5. Results: The mature athlete faces challenges associated with age-dependent changes in the rotator cuff, Achilles tendon, lateral humeral epicondylar tendons, quadriceps tendon, and patellar tendon. The anterior cruciate ligament and the medial collateral ligament are the most studied intra-articular and extra-articular ligaments, and both are associated with age-dependent changes. Conclusion: Tendons and ligaments are highly arranged connective tissue structures that maintain joint motion and joint stability. These structures are subject to vascular and compositional changes with increasing age that alter their mechanotransduction, biology, healing capacity, and biomechanical function. Emerging research into the etiology of age-dependent changes will provide further information to help combat the age-related clinical complications associated with the injuries that occur to tendons and ligaments. PMID:24427441

  3. Career Maturity of Welfare Recipients.

    ERIC Educational Resources Information Center

    Beckman, Carol M.

    To investigate the career maturity of welfare recipients, this thesis examines six independent variables: (1) race; (2) sex; (3) age; (4) level of formal education; (5) general intelligence; and (6) locus of control. Scales taken from the Career Maturity Inventory served as the dependent variables. The sample consisted of 83 welfare recipients who…

  4. Photo-cycle dynamics of LOV1-His domain of phototropin from Chlamydomonas reinhardtii with roseoflavin monophosphate cofactor

    NASA Astrophysics Data System (ADS)

    Tyagi, A.; Penzkofer, A.; Mathes, T.; Hegemann, P.

    2010-09-01

    The wild-type phototropin protein phot from the green alga Chlamydomonas reinhardtii consists of two N-terminal LOV domains LOV1 and LOV2 with flavin mononucleotide (FMN) cofactor and a C-terminal serine-threonine kinase domain. It controls multiple steps in the sexual lifecycle of the alga. Here the LOV1-His domain of phot with modified cofactor is studied. FMN is replaced by roseoflavin monophosphate (8-dimethylamino-8-demethyl-FMN, RoFMN). The modified LOV1 domain is called RoLOV1. The photo-dynamics consequences of the cofactor change are studied. The absorption, emission, and photo-cyclic behaviour of LOV1-His and RoLOV1-His are compared. A spectroscopic characterisation of the cofactors FMN and RoFMN (roseoflavin) is given.

  5. 2-Chloro-1,4-Dimethoxybenzene as a Novel Catalytic Cofactor for Oxidation of Anisyl Alcohol by Lignin Peroxidase

    PubMed Central

    Teunissen, Pauline J. M.; Field, Jim A.

    1998-01-01

    2-Chloro-1,4-dimethoxybenzene (2Cl-14DMB) is a natural compound produced de novo by several white rot fungi. This chloroaromatic metabolite was identified as a cofactor superior to veratryl alcohol (VA) in the oxidation of anisyl alcohol (AA) by lignin peroxidase (LiP). Our results reveal that good LiP substrates, such as VA and tryptophan, are comparatively poor cofactors in the oxidation of AA. Furthermore, we show that a good cofactor does not necessarily serve a role in protecting LiP against H2O2 inactivation. 2Cl-14DMB was not a direct mediator of AA oxidation, since increasing AA concentrations did not inhibit the oxidation of 2Cl-14DMB at all. However, the high molar ratio of anisaldehyde formed to 2Cl-14DMB consumed, up to 13:1, indicates that a mechanism which recycles the cofactor is present. PMID:16349526

  6. Genes for the dimerization cofactor of hepatocyte nuclear factor-1[alpha] (DCOH) are on human and murine chromsomes 10

    SciTech Connect

    Milatovich, A.; Mendel, D.B.; Crabtree, G.R.; Francke, U. )

    1993-04-01

    Hepatocyte nuclear factor-1[alpha] (HNF-1[alpha]; gene symbol, TCF1) forms dimers with itself as well as with HNF-1[beta] and regulates the expression of several liver-specific genes. Recently, a dimerization cofactor of hepatocyte nuclear factor-1[alpha], called DCOH, has been identified. Here, the authors report the chromosomal localization of the genes for this cofactor to chromosomes 10 in both humans and mice by Southern blot analyses of somatic cell hybrids. 25 refs., 1 fig., 2 tabs.

  7. Predictive Capability Maturity Model (PCMM).

    SciTech Connect

    Swiler, Laura Painton; Knupp, Patrick Michael; Urbina, Angel

    2010-10-01

    Predictive Capability Maturity Model (PCMM) is a communication tool that must include a dicussion of the supporting evidence. PCMM is a tool for managing risk in the use of modeling and simulation. PCMM is in the service of organizing evidence to help tell the modeling and simulation (M&S) story. PCMM table describes what activities within each element are undertaken at each of the levels of maturity. Target levels of maturity can be established based on the intended application. The assessment is to inform what level has been achieved compared to the desired level, to help prioritize the VU activities & to allocate resources.

  8. Cerebellar mature teratoma in adulthood.

    PubMed

    Zavanone, M; Alimehmeti, R; Campanella, R; Ram-Pini, P; Locatelli, M; Egidi, M; Righini, A; Bauer, D

    2002-03-01

    Mature teratoma of the posterior cranial fossa in adults is extremely rare. We report a particularly rare case of medio-lateral cerebellar mature teratoma that became symptomatic in a middle-aged man. The CT revealed the lesion of heterogeneous density with calcifications in the solid medial portion. Only the MRI could reliably define the borders of the cystic component extending into the left cerebellar lobe. Histologically the presence of fully matured representative tissues of the 3 germ layers ensured the diagnosis of mature teratoma. We suggest that the cyst formation from progressive latent hemorrhage and/or secretion from the gland cells of the tumor, may be responsible for the clinical decompensation even in adulthood. PMID:12118223

  9. Communication between Thiamin Cofactors in the Escherichia coli Pyruvate Dehydrogenase Complex E1 Component Active Centers

    PubMed Central

    Nemeria, Natalia S.; Arjunan, Palaniappa; Chandrasekhar, Krishnamoorthy; Mossad, Madouna; Tittmann, Kai; Furey, William; Jordan, Frank

    2010-01-01

    Kinetic, spectroscopic, and structural analysis tested the hypothesis that a chain of residues connecting the 4′-aminopyrimidine N1′ atoms of thiamin diphosphates (ThDPs) in the two active centers of the Escherichia coli pyruvate dehydrogenase complex E1 component provides a signal transduction pathway. Substitution of the three acidic residues (Glu571, Glu235, and Glu237) and Arg606 resulted in impaired binding of the second ThDP, once the first active center was filled, suggesting a pathway for communication between the two ThDPs. 1) Steady-state kinetic and fluorescence quenching studies revealed that upon E571A, E235A, E237A, and R606A substitutions, ThDP binding in the second active center was affected. 2) Analysis of the kinetics of thiazolium C2 hydrogen/deuterium exchange of enzyme-bound ThDP suggests half-of-the-sites reactivity for the E1 component, with fast (activated site) and slow exchanging sites (dormant site). The E235A and E571A variants gave no evidence for the slow exchanging site, indicating that only one of two active sites is filled with ThDP. 3) Titration of the E235A and E237A variants with methyl acetylphosphonate monitored by circular dichroism suggested that only half of the active sites were filled with a covalent predecarboxylation intermediate analog. 4) Crystal structures of E235A and E571A in complex with ThDP revealed the structural basis for the spectroscopic and kinetic observations and showed that either substitution affects cofactor binding, despite the fact that Glu235 makes no direct contact with the cofactor. The role of the conserved Glu571 residue in both catalysis and cofactor orientation is revealed by the combined results for the first time. PMID:20106967

  10. Reactions of the oxidized organic cofactor in copper-depleted bovine serum amine oxidase.

    PubMed Central

    Agostinelli, E; De Matteis, G; Sinibaldi, A; Mondovì, B; Morpurgo, L

    1997-01-01

    A novel copper-depleted bovine serum amine oxidase (BSAO), in which about half the molecules contained the organic cofactor in the oxidized form, was prepared by adding a reductant in anaerobic conditions to the cyanide-reacted protein. The CuI-semiquinone formed in these conditions reoxidizes after the removal of copper. The inactive derivative was reduced by benzylamine at approx. 1/1000 the rate of BSAO. The pseudo-first-order reaction was preceded by the formation of a protein-benzylamine complex with dissociation constant, Kd, of 4.9+/-0.5 mM, similar to the Km of BSAO (2.2 mM). Also the reactions with phenylhydrazine and benzohydrazide were considerably slower than in holo-BSAO, whereas the reactions with p-pyridine-2-ylphenylacetohydrazide, containing a longer aromatic tail, and semicarbazide, lacking an aromatic moiety, were less severely affected. Removal of copper had no effect on the optical spectra of BSAO and of most adducts, containing the cofactor in quinol form, showing that copper is bound to neither the oxidized nor the reduced cofactor. Benzylhydrazine did not produce optical effects but was tightly bound, as inferred from its inhibitory effect on reaction with other molecules. Substrate and inhibitors might bind a hydrophobic pocket at some distance from the quinone, probably near the protein surface, with their affinity depending on the hydrophobic character and pKa. The binding, which is not greatly influenced by copper removal, probably induces a copper-dependent change of conformation, 'opening' a pathway to the active site buried in the protein interior. PMID:9182709

  11. Investigation of molybdenum cofactor deficiency due to MOCS2 deficiency in a newborn baby

    PubMed Central

    Edwards, Matthew; Roeper, Juliane; Allgood, Catherine; Chin, Raymond; Santamaria, Jose; Wong, Flora; Schwarz, Guenter; Whitehall, John

    2015-01-01

    Background Molybdenum cofactor deficiency (MOCD) is a severe autosomal recessive neonatal metabolic disease that causes seizures and death or severe brain damage. Symptoms, signs and cerebral images can resemble those attributed to intrapartum hypoxia. In humans, molybdenum cofactor (MOCO) has been found to participate in four metabolic reactions: aldehyde dehydrogenase (or oxidase), xanthine oxidoreductase (or oxidase) and sulfite oxidase, and some of the components of molybdenum cofactor synthesis participate in amidoxime reductase. A newborn girl developed refractory seizures, opisthotonus, exaggerated startle reflexes and vomiting on the second day of life. Treatment included intravenous fluid, glucose supplementation, empiric antibiotic therapy and anticonvulsant medication. Her encephalopathy progressed, and she was given palliative care and died aged 1 week. There were no dysmorphic features, including ectopia lentis but ultrasonography revealed a thin corpus callosum. Objectives The aim of this study is to provide etiology, prognosis and genetic counseling. Methods Biochemical analysis of urine, blood, Sanger sequencing of leukocyte DNA, and analysis of the effect of the mutation on protein expression. Results Uric acid level was low in blood, and S-sulfo-L-cysteine and xanthine were elevated in urine. Compound Z was detected in urine. Two MOCS2 gene mutations were identified: c.501 + 2delT, which disrupts a conserved splice site sequence, and c.419C > T (pS140F). Protein expression studies confirmed that the p.S140F substitution was pathogenic. The parents were shown to be heterozygous carriers. Conclusions Mutation analysis confirmed that the MOCD in this family could not be treated with cPMP infusion, and enabled prenatal diagnosis and termination of a subsequent affected pregnancy. PMID:25709896

  12. Dimeric human sulfotransferase 1B1 displays cofactor-dependent subunit communication

    PubMed Central

    Tibbs, Zachary E; Falany, Charles N

    2015-01-01

    The cytosolic sulfotransferases (SULTs) are dimeric enzymes that catalyze the transformation of hydrophobic drugs and hormones into hydrophilic sulfate esters thereby providing the body with an important pathway for regulating small molecule activity and excretion. While SULT dimerization is highly conserved, the necessity for the interaction has not been established. To perform its function, a SULT must efficiently bind the universal sulfate donor, 3′-phosphoadenosine-5′-phosphosulfate (PAPS), and release the byproduct, 3′, 5′-diphosphoadenosine (PAP), following catalysis. We hypothesize this efficient binding and release of PAPS/PAP may be connected to SULT dimerization. To allow for the visualization of dynamic protein interactions critical for addressing this hypothesis and to generate kinetically testable hypotheses, molecular dynamic simulations (MDS) of hSULT1B1 were performed with PAPS and PAP bound to each dimer subunit in various combinations. The results suggest the dimer subunits may possess the capability of communicating with one another in a manner dependent on the presence of the cofactor. PAP or PAPS binding to a single side of the dimer results in decreased backbone flexibility of both the bound and unbound subunits, implying the dimer subunits may not act independently. Further, binding of PAP to one subunit of the dimer and PAPS to the other caused increased flexibility in the subunit bound to the inactive cofactor (PAP). These results suggest SULT dimerization may be important in maintaining cofactor binding/release properties of SULTs and provide hypothetical explanations for SULT half-site reactivity and substrate inhibition, which can be analyzed in vitro. PMID:26236487

  13. Non-racemic Antifolates Stereo-selectively Recruit Alternate Cofactors and Overcome Resistance in S. aureus

    PubMed Central

    Keshipeddy, Santosh; Reeve, Stephanie M.; Anderson, Amy C.; Wright, Dennis L.

    2016-01-01

    While antifolates such as Bactrim (trimethoprim-sulfamethoxazole; TMP-SMX) continue to play an important role in treating community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA), resistance-conferring mutations, specifically F98Y of dihydrofolate reductase (DHFR), have arisen and compromise continued use. In an attempt to extend the lifetime of this important class, we have developed a class of propargyl-linked antifolates (PLAs) that exhibit potent inhibition of the enzyme and bacterial strains. Probing the role of the configuration at the single propargylic stereocenter in these inhibitors required us to develop a new approach to non-racemic 3-aryl-1-butyne building blocks by the pairwise use of asymmetric conjugate addition and aldehyde dehydration protocols. Using this new route, a series of non-racemic PLA inhibitors was prepared and shown to possess potent enzyme inhibition (IC50 values < 50 nM), antibacterial effects (several with MIC values < 1 µg/mL) and to form stable ternary complexes with both wild-type and resistant mutants. Unexpectedly, crystal structures of a pair of individual enantiomers in the wild-type DHFR revealed that the single change in configuration of the stereocenter drove the selection of an alternative NADPH cofactor, with the minor α-anomer appearing with R-27. Remarkably, this cofactor switching becomes much more prevalent when the F98Y mutation is present. The observation of cofactor site plasticity leads to a postulate for the structural basis of TMP resistance in DHFR and also suggests design strategies that can be used to target these resistant enzymes. PMID:26098608

  14. Defining efficient enzyme-cofactor pairs for bioorthogonal profiling of protein methylation

    SciTech Connect

    Islam, Kabirul; Chen, Yuling; Wu, Hong; Bothwell, Ian R.; Blum, Gil J.; Zeng, Hong; Dong, Aiping; Zheng, Weihong; Min, Jinrong; Deng, Haiteng; Luo, Minkui

    2013-11-18

    Protein methyltransferase (PMT)-mediated posttranslational modification of histone and nonhistone substrates modulates stability, localization, and interacting partners of target proteins in diverse cellular contexts. These events play critical roles in normal biological processes and are frequently deregulated in human diseases. In the course of identifying substrates of individual PMTs, bioorthogonal profiling of protein methylation (BPPM) has demonstrated its merits. In this approach, specific PMTs are engineered to process S-adenosyl-L-methionine (SAM) analogs as cofactor surrogates and label their substrates with distinct chemical modifications for target elucidation. Despite the proof-of-concept advancement of BPPM, few efforts have been made to explore its generality. With two cancer-relevant PMTs, EuHMT1 (GLP1/KMT1D) and EuHMT2 (G9a/KMT1C), as models, we defined the key structural features of engineered PMTs and matched SAM analogs that can render the orthogonal enzyme–cofactor pairs for efficient catalysis. Here we have demonstrated that the presence of sulfonium-β-sp2 carbon and flexible, medium-sized sulfonium-δ-substituents are crucial for SAM analogs as BPPM reagents. The bulky cofactors can be accommodated by tailoring the conserved Y1211/Y1154 residues and nearby hydrophobic cavities of EuHMT1/2. Profiling proteome-wide substrates with BPPM allowed identification of >500 targets of EuHMT1/2 with representative targets validated using native EuHMT1/2 and SAM. This finding indicates that EuHMT1/2 may regulate many cellular events previously unrecognized to be modulated by methylation. The present work, therefore, paves the way to a broader application of the BPPM technology to profile methylomes of diverse PMTs and elucidate their downstream functions.

  15. JadR*-mediated feed-forward regulation of cofactor supply in jadomycin biosynthesis.

    PubMed

    Zhang, Yanyan; Pan, Guohui; Zou, Zhengzhong; Fan, Keqiang; Yang, Keqian; Tan, Huarong

    2013-11-01

    Jadomycin production is under complex regulation in Streptomyces venezuelae. Here, another cluster-situated regulator, JadR*, was shown to negatively regulate jadomycin biosynthesis by binding to four upstream regions of jadY, jadR1, jadI and jadE in jad gene cluster respectively. The transcriptional levels of four target genes of JadR* increased significantly in ΔjadR*, confirming that these genes were directly repressed by JadR*. Jadomycin B (JdB) and its biosynthetic intermediates 2,3-dehydro-UWM6 (DHU), dehydrorabelomycin (DHR) and jadomycin A (JdA) modulated the DNA-binding activities of JadR* on the jadY promoter, with DHR giving the strongest dissociation effects. Direct interactions between JadR* and these ligands were further demonstrated by surface plasmon resonance, which showed that DHR has the highest affinity for JadR*. However, only DHU and DHR could induce the expression of jadY and jadR* in vivo. JadY is the FMN/FAD reductase supplying cofactors FMNH₂/FADH₂ for JadG, an oxygenase, that catalyses the conversion of DHR to JdA. Therefore, our results revealed that JadR* and early pathway intermediates, particularly DHR, regulate cofactor supply by a convincing case of a feed-forward mechanism. Such delicate regulation of expression of jadY could ensure a timely supply of cofactors FMNH₂/FADH₂ for jadomycin biosynthesis, and avoid unnecessary consumption of NAD(P)H. PMID:24112541

  16. 7 CFR 51.3746 - Mature.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Standards for Grades of Honey Dew and Honey Ball Type Melons Definitions § 51.3746 Mature. Mature means that the melon has reached the stage of maturity which will insure the proper completion of the...

  17. 7 CFR 51.3746 - Mature.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., CERTIFICATION, AND STANDARDS) United States Standards for Grades of Honey Dew and Honey Ball Type Melons Definitions § 51.3746 Mature. Mature means that the melon has reached the stage of maturity which will...

  18. 7 CFR 51.3746 - Mature.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Standards for Grades of Honey Dew and Honey Ball Type Melons Definitions § 51.3746 Mature. Mature means that the melon has reached the stage of maturity which will insure the proper completion of the...

  19. 7 CFR 51.3746 - Mature.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., CERTIFICATION, AND STANDARDS) United States Standards for Grades of Honey Dew and Honey Ball Type Melons Definitions § 51.3746 Mature. Mature means that the melon has reached the stage of maturity which will...

  20. 7 CFR 51.3746 - Mature.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Standards for Grades of Honey Dew and Honey Ball Type Melons Definitions § 51.3746 Mature. Mature means that the melon has reached the stage of maturity which will insure the proper completion of the...

  1. Substrate, product, and cofactor: The extraordinarily flexible relationship between the CDE superfamily and heme.

    PubMed

    Celis, Arianna I; DuBois, Jennifer L

    2015-05-15

    PFam Clan 0032, also known as the CDE superfamily, is a diverse group of at least 20 protein families sharing a common α,β-barrel domain. Of these, six different groups bind heme inside the barrel's interior, using it alternately as a cofactor, substrate, or product. Focusing on these six, an integrated picture of structure, sequence, taxonomy, and mechanism is presented here, detailing how a single structural motif might be able to mediate such an array of functions with one of nature's most important small molecules. PMID:25778630

  2. Substituted quinoline quinones as surrogates for the PQQ cofactor: an electrochemical and computational study.

    PubMed

    Dorfner, Walter L; Carroll, Patrick J; Schelter, Eric J

    2015-04-17

    Pyrroloquinoline quinones (PQQ) are important cofactors that shuttle redox equivalents in diverse metalloproteins. Quinoline 7,8-quinones have been synthesized and characterized as surrogates for PQQ to elucidate redox energetics within metalloenzyme active sites. The quinoline 7,8-quinones were accessed using polymer-supported iodoxybenzoic acid and the compounds evaluated using solution electrochemistry. Together with a family of quinones, the products were evaluated computationally and used to generate a predictive correlation between a computed ΔG and the experimental reduction potentials. PMID:25826406

  3. Electronic structural flexibility of heterobimetallic Mn/Fe cofactors: R2lox and R2c proteins.

    PubMed

    Shafaat, Hannah S; Griese, Julia J; Pantazis, Dimitrios A; Roos, Katarina; Andersson, Charlotta S; Popović-Bijelić, Ana; Gräslund, Astrid; Siegbahn, Per E M; Neese, Frank; Lubitz, Wolfgang; Högbom, Martin; Cox, Nicholas

    2014-09-24

    The electronic structure of the Mn/Fe cofactor identified in a new class of oxidases (R2lox) described by Andersson and Högbom [Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 5633] is reported. The R2lox protein is homologous to the small subunit of class Ic ribonucleotide reductase (R2c) but has a completely different in vivo function. Using multifrequency EPR and related pulse techniques, it is shown that the cofactor of R2lox represents an antiferromagnetically coupled Mn(III)/Fe(III) dimer linked by a μ-hydroxo/bis-μ-carboxylato bridging network. The Mn(III) ion is coordinated by a single water ligand. The R2lox cofactor is photoactive, converting into a second form (R2loxPhoto) upon visible illumination at cryogenic temperatures (77 K) that completely decays upon warming. This second, unstable form of the cofactor more closely resembles the Mn(III)/Fe(III) cofactor seen in R2c. It is shown that the two forms of the R2lox cofactor differ primarily in terms of the local site geometry and electronic state of the Mn(III) ion, as best evidenced by a reorientation of its unique (55)Mn hyperfine axis. Analysis of the metal hyperfine tensors in combination with density functional theory (DFT) calculations suggests that this change is triggered by deprotonation of the μ-hydroxo bridge. These results have important consequences for the mixed-metal R2c cofactor and the divergent chemistry R2lox and R2c perform. PMID:25153930

  4. FAD synthesis and degradation in the nucleus create a local flavin cofactor pool.

    PubMed

    Giancaspero, Teresa Anna; Busco, Giovanni; Panebianco, Concetta; Carmone, Claudia; Miccolis, Angelica; Liuzzi, Grazia Maria; Colella, Matilde; Barile, Maria

    2013-10-01

    FAD is a redox cofactor ensuring the activity of many flavoenzymes mainly located in mitochondria but also relevant for nuclear redox activities. The last enzyme in the metabolic pathway producing FAD is FAD synthase (EC 2.7.7.2), a protein known to be localized both in cytosol and in mitochondria. FAD degradation to riboflavin occurs via still poorly characterized enzymes, possibly belonging to the NUDIX hydrolase family. By confocal microscopy and immunoblotting experiments, we demonstrate here the existence of FAD synthase in the nucleus of different experimental rat models. HPLC experiments demonstrated that isolated rat liver nuclei contain ∼300 pmol of FAD·mg(-1) protein, which was mainly protein-bound FAD. A mean FAD synthesis rate of 18.1 pmol·min(-1)·mg(-1) protein was estimated by both HPLC and continuous coupled enzymatic spectrophotometric assays. Rat liver nuclei were also shown to be endowed with a FAD pyrophosphatase that hydrolyzes FAD with an optimum at alkaline pH and is significantly inhibited by adenylate-containing nucleotides. The coordinate activity of these FAD forming and degrading enzymes provides a potential mechanism by which a dynamic pool of flavin cofactor is created in the nucleus. These data, which significantly add to the biochemical comprehension of flavin metabolism and its subcellular compartmentation, may also provide the basis for a more detailed comprehension of the role of flavin homeostasis in biologically and clinically relevant epigenetic events. PMID:23946482

  5. FAD Synthesis and Degradation in the Nucleus Create a Local Flavin Cofactor Pool*

    PubMed Central

    Giancaspero, Teresa Anna; Busco, Giovanni; Panebianco, Concetta; Carmone, Claudia; Miccolis, Angelica; Liuzzi, Grazia Maria; Colella, Matilde; Barile, Maria

    2013-01-01

    FAD is a redox cofactor ensuring the activity of many flavoenzymes mainly located in mitochondria but also relevant for nuclear redox activities. The last enzyme in the metabolic pathway producing FAD is FAD synthase (EC 2.7.7.2), a protein known to be localized both in cytosol and in mitochondria. FAD degradation to riboflavin occurs via still poorly characterized enzymes, possibly belonging to the NUDIX hydrolase family. By confocal microscopy and immunoblotting experiments, we demonstrate here the existence of FAD synthase in the nucleus of different experimental rat models. HPLC experiments demonstrated that isolated rat liver nuclei contain ∼300 pmol of FAD·mg−1 protein, which was mainly protein-bound FAD. A mean FAD synthesis rate of 18.1 pmol·min−1·mg−1 protein was estimated by both HPLC and continuous coupled enzymatic spectrophotometric assays. Rat liver nuclei were also shown to be endowed with a FAD pyrophosphatase that hydrolyzes FAD with an optimum at alkaline pH and is significantly inhibited by adenylate-containing nucleotides. The coordinate activity of these FAD forming and degrading enzymes provides a potential mechanism by which a dynamic pool of flavin cofactor is created in the nucleus. These data, which significantly add to the biochemical comprehension of flavin metabolism and its subcellular compartmentation, may also provide the basis for a more detailed comprehension of the role of flavin homeostasis in biologically and clinically relevant epigenetic events. PMID:23946482

  6. Heterogeneity in maple syrup urine disease: aspects of cofactor requirement and complementation in cultured fibroblasts.

    PubMed

    Singh, S; Willers, I; Goedde, H W

    1977-04-01

    Fibroblast strains derived from six patients with maple syrup urine disease have been investigated for their requirements of the cofactors NAD, CoASH, Mg++ and TPP in comparison with 10 normal control strains. The reconstitution of the decarboxylase function of branched chain alpha-keto acid (BCKA) dehydrogenase complex in lysed cells was studied with respect to the substrates alpha-keto-isocaproic acid, alpha-keto-isovaleric acid, and alpha-keto-beta-methylvaleric acid (KIC, KIVA, MEVA). The enzyme activity of all normal control strains for the substrates KIC and KIVA was not reconstituted by TPP + Mg++ alone, but CoASH + NAD could reconstitute the enzyme activity with KIC and KIVA in different degrees. Only two control strains were tested with MEVA as substrate, and these showed in contrast that TPP + Mg++ could partly reconstitute the enzyme activity. In contrast to the relative homogeneity in the reconstitution profiles of normal strains, the five classical and one intermittent MSUD strains showed heterogeneity in cofactor requirements. Complementation analysis using heterokaryons prepared from fibroblasts of four patients with classical MSUD and one patient with intermittent MSUD showed, in contrast to experiments with normal controls, a partial amelioration of the defect in two combinations; it is suggested that the defect in these strains is located at different functional subunits of the multienzyme complex. PMID:192504

  7. Can cofactor-binding sites in proteins be flexible? Desulfovibrio desulfuricans flavodoxin binds FMN dimer.

    PubMed

    Muralidhara, B K; Wittung-Stafshede, Pernilla

    2003-11-11

    Flavodoxins catalyze redox reactions using the isoalloxazine moiety of the flavin mononucleotide (FMN) cofactor stacked between two aromatic residues located in two peptide loops. At high FMN concentrations that favor stacked FMN dimers in solution, isothermal titration calorimetric studies show that these dimers bind strongly to apo-flavodoxin from Desulfovibrio desulfuricans (30 degrees C, 20 mM Hepes, pH 7, K(D) = 5.8 microM). Upon increasing the temperature so the FMN dimers dissociate (as shown by (1)H NMR), only one-to-one (FMN-to-protein) binding is observed. Calorimetric titrations result in one-to-one binding also in the presence of phosphate or sulfate (30 degrees C, 13 mM anion, pH 7, K(D) = 0.4 microM). FMN remains dimeric in the presence of phosphate and sulfate, suggesting that specific binding of a divalent anion to the phosphate-binding site triggers ordering of the peptide loops so only one isoalloxazine can fit. Although the physiological relevance of FMN and other nucleotides as dimers has not been explored, our study shows that high-affinity binding to proteins of such dimers can occur in vitro. This emphasizes that the cofactor-binding site in flavodoxin is more flexible than previously expected. PMID:14596623

  8. Thermal unfolding of Apo and Holo Desulfovibrio desulfuricans flavodoxin: cofactor stabilizes folded and intermediate states.

    PubMed

    Muralidhara, B K; Wittung-Stafshede, Pernilla

    2004-10-12

    We here compare thermal unfolding of the apo and holo forms of Desulfovibrio desulfuricans flavodoxin, which noncovalently binds a flavin mononucleotide (FMN) cofactor. In the case of the apo form, fluorescence and far-UV circular dichroism (CD) detected transitions are reversible but do not overlap (T(m) of 50 and 60 degrees C, respectively, pH 7). The thermal transitions for the holo form follow the same pattern but occur at higher temperatures (T(m) of 60 and 67 degrees C for fluorescence and CD transitions, respectively, pH 7). The holoprotein transitions are also reversible and exhibit no protein concentration dependence (above 10 microM), indicating that the FMN remains bound to the polypeptide throughout. Global analysis shows that the thermal reactions for both apo and holo forms proceed via an equilibrium intermediate that has approximately 90% nativelike secondary structure and significant enthalpic stabilization relative to the unfolded states. Incubation of unfolded holoflavodoxin at high temperatures results in FMN dissociation. Rebinding of FMN at these conditions is nominal, and therefore, cooling of holoprotein heated to 95 degrees C follows the refolding pathway of the apo form. However, FMN readily rebinds to the apoprotein at lower temperatures. We conclude that (1) a three-state thermal unfolding behavior appears to be conserved among long- and short-chain, as well as apo and holo forms of, flavodoxins and (2) flavodoxin's thermal stability (in both native and intermediate states) is augmented by the presence of the FMN cofactor. PMID:15461458

  9. PRIC295, a Nuclear Receptor Coactivator, Identified from PPARα-Interacting Cofactor Complex

    PubMed Central

    Pyper, Sean R.; Viswakarma, Navin; Jia, Yuzhi; Zhu, Yi-Jun; Fondell, Joseph D.; Reddy, Janardan K.

    2010-01-01

    The peroxisome proliferator-activated receptor-α (PPARα) plays a key role in lipid metabolism and energy combustion. Chronic activation of PPARα in rodents leads to the development of hepatocellular carcinomas. The ability of PPARα to induce expression of its target genes depends on Mediator, an evolutionarily conserved complex of cofactors and, in particular, the subunit 1 (Med1) of this complex. Here, we report the identification and characterization of PPARα-interacting cofactor (PRIC)-295 (PRIC295), a novel coactivator protein, and show that it interacts with the Med1 and Med24 subunits of the Mediator complex. PRIC295 contains 10 LXXLL signature motifs that facilitate nuclear receptor binding and interacts with PPARα and five other members of the nuclear receptor superfamily in a ligand-dependent manner. PRIC295 enhances the transactivation function of PPARα, PPARγ, and ERα. These data demonstrate that PRIC295 interacts with nuclear receptors such as PPARα and functions as a transcription coactivator under in vitro conditions and may play an important role in mediating the effects in vivo as a member of the PRIC complex with Med1 and Med24. PMID:20885938

  10. Chemical nature and reaction mechanisms of the molybdenum cofactor of xanthine oxidoreductase.

    PubMed

    Okamoto, Ken; Kusano, Teruo; Nishino, Takeshi

    2013-01-01

    Xanthine oxidoreductase (XOR), a complex flavoprotein, catalyzes the metabolic reactions leading from hypoxanthine to xanthine and from xanthine to urate, and both reactions take place at the molybdenum cofactor. The enzyme is a target of drugs for therapy of gout or hyperuricemia. We review the chemical nature and reaction mechanisms of the molybdenum cofactor of XOR, focusing on molybdenum-dependent reactions of actual or potential medical importance, including nitric oxide (NO) synthesis. It is now generally accepted that XOR transfers the water-exchangeable -OH ligand of the molybdenum atom to the substrate. The hydroxyl group at OH-Mo(IV) can be replaced by urate, oxipurinol and FYX-051 derivatives and the structures of these complexes have been determined by xray crystallography under anaerobic conditions. Although formation of NO from nitrite or formation of xanthine from urate by XOR ischemically feasible, it is not yet clear whether these reactions have any physiological significance since the reactions are catalyzed at a slow rate even under anaerobic conditions. PMID:23116398

  11. Correlation of active site metal content in human diamine oxidase with trihydroxyphenylalanine quinone cofactor biogenesis .

    PubMed

    McGrath, Aaron P; Caradoc-Davies, Tom; Collyer, Charles A; Guss, J Mitchell

    2010-09-28

    Copper-containing amine oxidases (CAOs) require a protein-derived topaquinone cofactor (TPQ) for activity. TPQ biogenesis is a self-processing reaction requiring the presence of copper and molecular oxygen. Recombinant human diamine oxidase (hDAO) was heterologously expressed in Drosophila S2 cells, and analysis indicates that the purified hDAO contains substoichiometric amounts of copper and TPQ. The crystal structure of a complex of an inhibitor, aminoguanidine, and hDAO at 2.05 Å resolution shows that the aminoguanidine forms a covalent adduct with the TPQ and that the site is ∼75% occupied. Aminoguanidine is a potent inhibitor of hDAO with an IC(50) of 153 ± 9 nM. The structure indicates that the catalytic metal site, normally occupied by copper, is fully occupied. X-ray diffraction data recorded below the copper edge, between the copper and zinc edges, and above the zinc edge have been used to show that the metal site is occupied approximately 75% by copper and 25% by zinc and the formation of the TPQ cofactor is correlated with copper occupancy. PMID:20722416

  12. Bienzymatic Sequential Reaction on Microgel Particles and Their Cofactor Dependent Applications.

    PubMed

    Dubey, Nidhi C; Tripathi, Bijay P; Müller, Martin; Stamm, Manfred; Ionov, Leonid

    2016-05-01

    We report, the preparation and characterization of bioconjugates, wherein enzymes pyruvate kinase (Pk) and l-lactic dehydrogenase (Ldh) were covalently bound to poly(N-isopropylacrylamide)-poly(ethylenimine) (PNIPAm-PEI) microgel support using glutaraldehyde (GA) as the cross-linker. The effects of different arrangements of enzymes on the microgels were investigated for the enzymatic behavior and to obtain maximum Pk-Ldh sequential reaction. The dual enzyme bioconjugates prepared by simultaneous addition of both the enzymes immobilized on the same microgel particles (PL), and PiLi, that is, dual enzyme bioconjugate obtained by combining single-enzyme bioconjugates (immobilized pyruvate kinase (Pi) and immobilized lactate dehydrogenase (Li)), were used to study the effect of the assembly of dual enzymes systems on the microgels. The kinetic parameters (Km, kcat), reaction parameters (temperature, pH), stability (thermal and storage), and cofactor dependent applications were studied for the dual enzymes conjugates. The kinetic results indicated an improved turn over number (kcat) for PL, while the kcat and catalytic efficiency was significantly decreased in case of PiLi. For cofactor dependent application, in which the ability of ADP monitoring and ATP synthesis by the conjugates were studied, the activity of PL was found to be nearly 2-fold better than that of PiLi. These results indicated that the influence of spacing between the enzymes is an important factor in optimization of multienzyme immobilization on the support. PMID:27010819

  13. Epitope mapping of 10 monoclonal antibodies against the pig analogue of human membrane cofactor protein (MCP)

    PubMed Central

    PéRez De La Lastra, J M; Van Den Berg, C W; Bullido, R; Almazán, F; Domínguez, J; Llanes, D; Morgan, B P

    1999-01-01

    Pig membrane cofactor protein (MCP; CD46) is a 50 000–60 000 MW glycoprotein that is expressed on a wide variety of cells, including erythrocytes. Pig MCP has cofactor activity for factor I-mediated cleavage of C3b and is an efficient regulator of the classical and alternative pathway of human and pig complement. A panel of 10 monoclonal antibodies (mAbs) was collected from two different laboratories; all of these mAbs were raised against pig leucocytes and all recognized the same complex banding pattern on sodium dodecyl sulphate–polyacrylamide gel electrophoresis (SDS–PAGE) of erythrocyte membranes. All were shown to be reactive with pig MCP and were divided into four groups of mutually competitive antibodies based on competition studies for membrane-bound MCP and for soluble MCP, the latter by surface plasmon resonance (SPR) analysis. The antigenic properties of membrane-bound and soluble MCP were similar, although some interesting differences were revealed. None of the 10 mAbs were cross-reactive with human MCP and only one showed cross-reactivity with leucocytes from a panel of large mammals – a weak cross-reactivity with a subset of dog leucocytes. All antibodies in one of the epitope groups and some in a second epitope group were able to block the functional activity of pig MCP, as measured by inhibition of MCP-catalysed C3 degradation by factor I. PMID:10233756

  14. Conjugated Cofactor Enables Efficient Temperature-Independent Electronic Transport Across ∼6 nm Long Halorhodopsin.

    PubMed

    Mukhopadhyay, Sabyasachi; Dutta, Sansa; Pecht, Israel; Sheves, Mordechai; Cahen, David

    2015-09-01

    We observe temperature-independent electron transport, characteristic of tunneling across a ∼6 nm thick Halorhodopsin (phR) monolayer. phR contains both retinal and a carotenoid, bacterioruberin, as cofactors, in a trimeric protein-chromophore complex. This finding is unusual because for conjugated oligo-imine molecular wires a transition from temperature-independent to -dependent electron transport, ETp, was reported at ∼4 nm wire length. In the ∼6 nm long phR, the ∼4 nm 50-carbon conjugated bacterioruberin is bound parallel to the α-helices of the peptide backbone. This places bacterioruberin's ends proximal to the two electrodes that contact the protein; thus, coupling to these electrodes may facilitate the activation-less current across the contacts. Oxidation of bacterioruberin eliminates its conjugation, causing the ETp to become temperature dependent (>180 K). Remarkably, even elimination of the retinal-protein covalent bond, with the fully conjugated bacterioruberin still present, leads to temperature-dependent ETp (>180 K). These results suggest that ETp via phR is cooperatively affected by both retinal and bacterioruberin cofactors. PMID:26301971

  15. NAD(+)-independent aldehyde oxidase catalyzes cofactor balanced 3-hydroxypropionic acid production in Klebsiella pneumoniae.

    PubMed

    Li, Ying; Liu, Luo; Tian, Pingfang

    2014-11-01

    The limiting step for biosynthesis of 3-hydroxypropionic acid (3-HP) in Klebsiella pneumoniae is the conversion of 3-hydroxypropionaldehyde (3-HPA) to 3-HP. This reaction is catalyzed by aldehyde dehydrogenase (ALDH) with NAD(+) as a cofactor. Although NAD(+)-dependent ALDH overexpression facilitates 3-HP biosynthesis, ALDH activity decreases and 3-HP stops accumulation when NAD(+) is exhausted. Here, we show that an NAD(+)-independent aldehyde oxidase (AOX) from Pseudomonas sp. AIU 362 holds promise for cofactor-balanced 3-HP production in K. pneumoniae. The AOX coding gene, alod, was heterologously expressed in E. coli and K. pneumoniae, and their respective crude cell extracts showed 38.1 U/mg and 16.6 U/mg activities toward propionaldehyde. The recombinant K. pneumoniae expressing alod showed 13.7 U/mg activity toward 3-HPA; K m and V max were 6.7 mM and 42 μM/min/mg, respectively. In shake-flask cultures, the recombinant K. pneumoniae strain produced 0.89 g 3-HP/l, twice that of the control. Moreover, it produced 3 g 3-HP/l during 24 h fed-batch cultivation in a 5 l bioreactor. The results indicate that AOX can efficiently convert 3-HPA into 3-HP. PMID:24980850

  16. TFPI cofactor function of protein S: essential role of the protein S SHBG-like domain

    PubMed Central

    Reglińska-Matveyev, Natalia; Andersson, Helena M.; Rezende, Suely M.; Dahlbäck, Björn; Crawley, James T. B.; Lane, David A.; Ahnström, Josefin

    2014-01-01

    Protein S is a cofactor for tissue factor pathway inhibitor (TFPI), accelerating the inhibition of activated factor X (FXa). TFPI Kunitz domain 3 residue Glu226 is essential for enhancement of TFPI by protein S. To investigate the complementary functional interaction site on protein S, we screened 44 protein S point, composite or domain swap variants spanning the whole protein S molecule for their TFPI cofactor function using a thrombin generation assay. Of these variants, two protein S/growth arrest–specific 6 chimeras, with either the whole sex hormone–binding globulin (SHBG)-like domain (Val243-Ser635; chimera III) or the SHBG laminin G-type 1 subunit (Ser283-Val459; chimera I), respectively, substituted by the corresponding domain in growth arrest–specific 6, were unable to enhance TFPI. The importance of the protein S SHBG-like domain (and its laminin G-type 1 subunit) for binding and enhancement of TFPI was confirmed in FXa inhibition assays and using surface plasmon resonance. In addition, protein S bound to C4b binding protein showed greatly reduced enhancement of TFPI-mediated inhibition of FXa compared with free protein S. We show that binding of TFPI to the protein S SHBG-like domain enables TFPI to interact optimally with FXa on a phospholipid membrane. PMID:24740810

  17. Chemical Nature and Reaction Mechanisms of the Molybdenum Cofactor of Xanthine Oxidoreductase

    PubMed Central

    Okamoto, Ken; Kusano, Teruo; Nishino, Takeshi

    2013-01-01

    Xanthine oxidoreductase (XOR), a complex flavoprotein, catalyzes the metabolic reactions leading from hypoxanthine to xanthine and from xanthine to urate, and both reactions take place at the molybdenum cofactor. The enzyme is a target of drugs for therapy of gout or hyperuricemia. We review the chemical nature and reaction mechanisms of the molybdenum cofactor of XOR, focusing on molybdenum-dependent reactions of actual or potential medical importance, including nitric oxide (NO) synthesis. It is now generally accepted that XOR transfers the water-exchangeable -OH ligand of the molybdenum atom to the substrate. The hydroxyl group at OH-Mo(IV) can be replaced by urate, oxipurinol and FYX-051 derivatives and the structures of these complexes have been determined by x-ray crystallography under anaerobic conditions. Although formation of NO from nitrite or formation of xanthine from urate by XOR is chemically feasible, it is not yet clear whether these reactions have any physiological significance since the reactions are catalyzed at a slow rate even under anaerobic conditions. PMID:23116398

  18. Crystallization and preliminary crystallographic analysis of molybdenum-cofactor biosynthesis protein C from Thermus thermophilus

    SciTech Connect

    Kanaujia, Shankar Prasad; Ranjani, Chellamuthu Vasuki; Jeyakanthan, Jeyaraman; Baba, Seiki; Chen, Lirong; Liu, Zhi-Jie; Wang, Bi-Cheng; Nishida, Masami; Ebihara, Akio; Shinkai, Akeo; Kuramitsu, Seiki; Shiro, Yoshitsugu; Sekar, Kanagaraj; Yokoyama, Shigeyuki

    2010-12-03

    The Gram-negative aerobic eubacterium Thermus thermophilus is an extremely important thermophilic microorganism that was originally isolated from a thermal vent environment in Japan. The molybdenum cofactor in this organism is considered to be an essential component required by enzymes that catalyze diverse key reactions in the global metabolism of carbon, nitrogen and sulfur. The molybdenum-cofactor biosynthesis protein C derived from T. thermophilus was crystallized in two different space groups. Crystals obtained using the first crystallization condition belong to the monoclinic space group P2{sub 1}, with unit-cell parameters a = 64.81, b = 109.84, c = 115.19 {angstrom}, {beta} = 104.9{sup o}; the crystal diffracted to a resolution of 1.9 {angstrom}. The other crystal form belonged to space group R32, with unit-cell parameters a = b = 106.57, c = 59.25 {angstrom}, and diffracted to 1.75 {angstrom} resolution. Preliminary calculations reveal that the asymmetric unit contains 12 monomers and one monomer for the crystals belonging to space group P2{sub 1} and R32, respectively.

  19. Role of HOXA9 in leukemia: dysregulation, cofactors and essential targets

    PubMed Central

    Collins, Cailin T.; Hess, Jay L.

    2015-01-01

    HOXA9 is a homeodomain-containing transcription factor that plays an important role in hematopoietic stem cell expansion and is commonly deregulated in acute leukemias. A variety of upstream genetic alterations in acute myeloid leukemia (AML) lead to overexpression of HOXA9, which is a strong predictor of poor prognosis. In many cases, HOXA9 has been shown to be necessary for maintaining leukemic transformation, however the molecular mechanisms through which it promotes leukemogenesis remain elusive. Recent work has established that HOXA9 regulates downstream gene expression through binding at promoter distal enhancers along with a subset of cell-specific cofactor and collaborator proteins. Increasing efforts are being made to identify both the critical cofactors and target genes required for maintaining transformation in HOXA9-overexpressing leukemias. With continued advances in understanding HOXA9-mediated transformation, there is a wealth of opportunity for developing novel therapeutics that would be applicable for the greater than 50% of AML with overexpression of HOXA9. PMID:26028034

  20. Structural insights into a protein-bound iron-molybdenum cofactor precursor

    PubMed Central

    Corbett, Mary C.; Hu, Yilin; Fay, Aaron W.; Ribbe, Markus W.; Hedman, Britt; Hodgson, Keith O.

    2006-01-01

    The iron-molybdenum cofactor (FeMoco) of the nitrogenase MoFe protein is a highly complex metallocluster that provides the catalytically essential site for biological nitrogen fixation. FeMoco is assembled outside the MoFe protein in a stepwise process requiring several components, including NifB-co, an iron- and sulfur-containing FeMoco precursor, and NifEN, an intermediary assembly protein on which NifB-co is presumably converted to FeMoco. Through the comparison of Azotobacter vinelandii strains expressing the NifEN protein in the presence or absence of the nifB gene, the structure of a NifEN-bound FeMoco precursor has been analyzed by x-ray absorption spectroscopy. The results provide physical evidence to support a mechanism for FeMoco biosynthesis. The NifEN-bound precursor is found to be a molybdenum-free analog of FeMoco and not one of the more commonly suggested cluster types based on a standard [4Fe–4S] architecture. A facile scheme by which FeMoco and alternative, non-molybdenum-containing nitrogenase cofactors are constructed from this common precursor is presented that has important implications for the biosynthesis and biomimetic chemical synthesis of FeMoco. PMID:16423898

  1. Global analysis of induced transcription factors and cofactors identifies Tfdp2 as an essential coregulator during terminal erythropoiesis.

    PubMed

    Chen, Cynthia; Lodish, Harvey F

    2014-06-01

    Key transcriptional regulators of terminal erythropoiesis, such as GATA-binding factor 1 (GATA1) and T-cell acute lymphocytic leukemia protein 1 (TAL1), have been well characterized, but transcription factors and cofactors and their expression modulations have not yet been explored on a global scale. Here, we use global gene expression analysis to identify 28 transcription factors and 19 transcriptional cofactors induced during terminal erythroid differentiation whose promoters are enriched for binding by GATA1 and TAL1. Utilizing protein-protein interaction databases to identify cofactors for each transcription factor, we pinpoint several co-induced pairs, of which E2f2 and its cofactor transcription factor Dp-2 (Tfdp2) were the most highly induced. TFDP2 is a critical cofactor required for proper cell cycle control and gene expression. GATA1 and TAL1 are bound to the regulatory regions of Tfdp2 and upregulate its expression and knockdown of Tfdp2 results in significantly reduced rates of proliferation as well as reduced upregulation of many erythroid-important genes. Loss of Tfdp2 also globally inhibits the normal downregulation of many E2F2 target genes, including those that regulate the cell cycle, causing cells to accumulate in S phase and resulting in increased erythrocyte size. Our findings highlight the importance of TFDP2 in coupling the erythroid cell cycle with terminal differentiation and validate this study as a resource for future work on elucidating the role of diverse transcription factors and coregulators in erythropoiesis. PMID:24607859

  2. Cheese maturity assessment using ultrasonics.

    PubMed

    Benedito, J; Carcel, J; Clemente, G; Mulet, A

    2000-02-01

    The relationship between Mahon cheese maturity and ultrasonic velocity was examined. Moisture and textural properties were used as maturity indicators. The ultrasonic velocity of the cheese varied between 1630 and 1740 m/s, increasing with the curing time mainly because of loss of water, which also produced an increase of the textural properties. Because of the nature of low-intensity ultrasonics, velocity was better related to those textural parameters that involved small displacements. Ultrasonic velocity decreased with increasing temperature because of the negative temperature coefficient of the ultrasonic velocity of fat and the melting of fat. These results highlight the potential use of ultrasonic velocity measurements to rapidly and nondestructively assess cheese maturity. PMID:10714857

  3. Crystal structure of the NADP+-dependent aldehyde dehydrogenase from Vibrio harveyi: structural implications for cofactor specificity and affinity.

    PubMed Central

    Ahvazi, B; Coulombe, R; Delarge, M; Vedadi, M; Zhang, L; Meighen, E; Vrielink, A

    2000-01-01

    Aldehyde dehydrogenase from the bioluminescent bacterium, Vibrio harveyi, catalyses the oxidation of long-chain aliphatic aldehydes to acids. The enzyme is unique compared with other forms of aldehyde dehydrogenase in that it exhibits a very high specificity and affinity for the cofactor NADP(+). Structural studies of this enzyme and comparisons with other forms of aldehyde dehydrogenase provide the basis for understanding the molecular features that dictate these unique properties and will enhance our understanding of the mechanism of catalysis for this class of enzyme. The X-ray structure of aldehyde dehydrogenase from V. harveyi has been solved to 2.5-A resolution as a partial complex with the cofactor NADP(+) and to 2. 1-A resolution as a fully bound 'holo' complex. The cofactor preference exhibited by different forms of the enzyme is predominantly determined by the electrostatic environment surrounding the 2'-hydroxy or the 2'-phosphate groups of the adenosine ribose moiety of NAD(+) or NADP(+), respectively. In the NADP(+)-dependent structures the presence of a threonine and a lysine contribute to the cofactor specificity. In the V. harveyi enzyme an arginine residue (Arg-210) contributes to the high cofactor affinity through a pi stacking interaction with the adenine ring system of the cofactor. Further differences between the V. harveyi enzyme and other aldehyde dehydrogenases are seen in the active site, in particular a histidine residue which is structurally conserved with phosphorylating glyceraldehyde-3-phosphate dehydrogenase. This may suggest an alternative mechanism for activation of the reactive cysteine residue for nucleophilic attack. PMID:10903148

  4. Structural basis for double cofactor specificity in a new formate dehydrogenase from the acidobacterium Granulicella mallensis MP5ACTX8.

    PubMed

    Fogal, Stefano; Beneventi, Elisa; Cendron, Laura; Bergantino, Elisabetta

    2015-11-01

    Formate dehydrogenases (FDHs) are considered particularly useful enzymes in biocatalysis when the regeneration of the cofactor NAD(P)H is required, that is, in chiral synthesis with dehydrogenases. Their utilization is however limited to the recycling of NAD(+), since all (apart one) of the FDHs characterized so far are strictly specific for this cofactor, and this is a major drawback for their otherwise wide applicability. Despite the many attempts performed to modify cofactor specificity by protein engineering different NAD(+)-dependent FDHs, in the general practice, glucose or phosphite dehydrogenases are chosen for the recycling of NADP(+). We report on the functional and structural characterization of a new FDH, GraFDH, identified by mining the genome of the extremophile prokaryote Granulicella mallensis MP5ACTX8. The new enzyme displays a valuable stability in the presence of many organic cosolvents as well as double cofactor specificity, with NADP(+) preferred over NAD(+) at acidic pH values, at which it also shows the highest stability. The quite low affinities for both cofactors as well as for the substrate formate indicate, however, that the native enzyme requires optimization to be applied as biocatalytic tool. We also determined the crystal structure of GraFDH both as apoprotein and as holoprotein, either in complex with NAD(+) or NADP(+). Noticeably, the latter represents the first structure of an FDH enzyme in complex with NADP(+). This fine picture of the structural determinants involved in cofactor selectivity will possibly boost protein engineering of the new enzyme or other homolog FDHs in view of their biocatalytic exploitation for NADP(+) recycling. PMID:26104866

  5. Exogenous cofactors for the improvement of bioremoval and biotransformation of sulfamethoxazole by Alcaligenes faecalis.

    PubMed

    Zhang, Yi-Bi; Zhou, Jiao; Xu, Qiu-Man; Cheng, Jing-Sheng; Luo, Yu-Lu; Yuan, Ying-Jin

    2016-09-15

    Sulfamethoxazole (SMX), an extensively prescribed or administered antibiotic pharmaceutical product, is usually detected in aquatic environments, because of its incomplete metabolism and elimination. This study investigated the effects of exogenous cofactors on the bioremoval and biotransformation of SMX by Alcaligenes faecalis. High concentration (100mg·L(-1)) of exogenous vitamin C (VC), vitamin B6 (VB6) and oxidized glutathione (GSSG) enhanced SMX bioremoval, while the additions of vitamin B2 (VB2) and vitamin B12 (VB12) did not significantly alter the SMX removal efficiency. Globally, cellular growth of A. faecalis and SMX removal both initially increased and then gradually decreased, indicating that SMX bioremoval is likely dependent on the primary biomass activity of A. faecalis. The decreases in the SMX removal efficiency indicated that some metabolites of SMX might be transformed into parent compound at the last stage of incubation. Two transformation products of SMX, N-hydroxy sulfamethoxazole (HO-SMX) and N4-acetyl sulfamethoxazole (Ac-SMX), were identified by a high-performance liquid chromatograph coupled with mass spectrometer. High concentrations of VC, nicotinamide adenine dinucleotide hydrogen (NADH, 7.1mg·L(-1)), and nicotinamide adenine dinucleotide (NAD(+), 6.6mg·L(-1)), and low concentrations of reduced glutathione (GSH, 0.1 and 10mg·L(-1)) and VB2 (1mg·L(-1)) remarkably increased the formation of HO-SMX, while VB12 showed opposite effects on HO-SMX formation. In addition, low concentrations of GSH and NADH enhanced Ac-SMX formation by the addition of A. faecalis, whereas cofactors (VC, VB2, VB12, NAD(+), and GSSG) had no obvious impact on the formation of Ac-SMX compared with the controls. The levels of Ac-SMX were stable when biomass of A. faecalis gradually decreased, indicating the direct effect of biomass on the formation of Ac-SMX by A. faecalis. In sum, these results help us understand the roles played by exogenous cofactors in

  6. The People Capability Maturity Model

    ERIC Educational Resources Information Center

    Wademan, Mark R.; Spuches, Charles M.; Doughty, Philip L.

    2007-01-01

    The People Capability Maturity Model[R] (People CMM[R]) advocates a staged approach to organizational change. Developed by the Carnegie Mellon University Software Engineering Institute, this model seeks to bring discipline to the people side of management by promoting a structured, repeatable, and predictable approach for improving an…

  7. Enticing Mature Females into College.

    ERIC Educational Resources Information Center

    Loseth, Lexie; Moreau, Linda

    Following a review of the literature on mature female students, this paper examines enrollment trends in a selection of colleges in Alberta (Canada) and presents the findings of a survey of returning women students at Red Deer College. The literature review highlights factors related to the personal and professional development of women graduates…

  8. Adolescent Maturation in Transitioning Cultures.

    ERIC Educational Resources Information Center

    Mulroy, Kevin; Palacios, Anna; Reid, Robert E.

    This is a theoretical study of adolescent maturation within a cultural context. Personality development and disintegration due to the pressure of a dominant culture on a minority culture is considered. An attempt is made to understand how teachers might assist students to work out their psychological growth by story telling. The need for cultural…

  9. Motivational Maturity and Helping Behavior

    ERIC Educational Resources Information Center

    Haymes, Michael; Green, Logan

    1977-01-01

    Maturity in conative development (type of motivation included in Maslow's needs hierarchy) was found to be predictive of helping behavior in middle class white male college students. The effects of safety and esteem needs were compared, and the acceptance of responsibility was also investigated. (GDC)

  10. Chyloabdomen in a mature cat.

    PubMed Central

    Nelson, K L

    2001-01-01

    A mature, castrated male cat presented with progressive lethargy and a severely distended abdomen. Abdominal radiographs, abdominocentesis, and evaluation of the fluid obtained led to a diagnosis of chyloabdomen. The underlying pathology, etiology, diagnosis, and treatment associated with this disease are discussed. PMID:11360862

  11. Mature Cystic Teratoma of Liver

    PubMed Central

    Gupta, Richa; Bansal, Kalpana; Manchanda, Vivek

    2013-01-01

    A four-year-old boy presented with constipation and mild abdominal distention for one year. Radiologic investigations showed a multiloculated cystic lesion in the caudate lobe of liver with focal calcification in the wall. The child underwent laparotomy with marsupialization of the cystic lesion. Histopathologic examination showed mature teratoma of liver. PMID:24040591

  12. Direct stimulation of transcription by negative cofactor 2 (NC2) through TATA-binding protein (TBP)

    PubMed Central

    Cang, Yong; Prelich, Gregory

    2002-01-01

    Negative cofactor 2 (NC2) is an evolutionarily conserved transcriptional regulator that was originally identified as an inhibitor of basal transcription. Its inhibitory mechanism has been extensively characterized; NC2 binds to the TATA-binding protein (TBP), blocking the recruitment of TFIIA and TFIIB, and thereby inhibiting preinitiation complex assembly. NC2 is also required for expression of many yeast genes in vivo and stimulates TATA-less transcription in a Drosophila in vitro transcription system, but the mechanism responsible for the NC2-mediated stimulation of transcription is not understood. Here we establish that yeast NC2 can directly stimulate activated transcription from TATA-driven promoters both in vivo and in vitro, and moreover that this positive role requires the same surface of TBP that mediates the NC2 repression activity. On the basis of these results, we propose a model to explain how NC2 can mediate both repression and activation through the same surface of TBP. PMID:12237409

  13. Small Cofactors May Assist Protein Emergence from RNA World: Clues from RNA-Protein Complexes

    PubMed Central

    Shen, Liang; Ji, Hong-Fang

    2011-01-01

    It is now widely accepted that at an early stage in the evolution of life an RNA world arose, in which RNAs both served as the genetic material and catalyzed diverse biochemical reactions. Then, proteins have gradually replaced RNAs because of their superior catalytic properties in catalysis over time. Therefore, it is important to investigate how primitive functional proteins emerged from RNA world, which can shed light on the evolutionary pathway of life from RNA world to the modern world. In this work, we proposed that the emergence of most primitive functional proteins are assisted by the early primitive nucleotide cofactors, while only a minority are induced directly by RNAs based on the analysis of RNA-protein complexes. Furthermore, the present findings have significant implication for exploring the composition of primitive RNA, i.e., adenine base as principal building blocks. PMID:21789260

  14. Enzymatic aminoacylation of single-stranded RNA with an RNA cofactor.

    PubMed Central

    Musier-Forsyth, K; Scaringe, S; Usman, N; Schimmel, P

    1991-01-01

    A chemically synthesized single-stranded ribonucleotide tridecamer derived from the 3' end of Escherichia coli alanine tRNA can be charged with alanine in the presence of short complementary RNA oligonucleotides that form duplexes with the 3' fragment. Complementary 5' oligomers of 9, 8, 6, and 4 nucleotides all confer charging of the 3' fragment. Furthermore, in the presence of limiting 5' oligomer, greater than stoichiometric amounts of the single-stranded 3' acceptor fragment can be aminoacylated. This is due to a reiterative process of transient duplex formation followed by charging, dissociation of the 5' oligomer, and then rebinding to an uncharged single-stranded ribotridecamer so as to create another transient duplex substrate. Thus, a short RNA oligomer serves as a cofactor for a charging enzyme, and it thereby makes possible the aminoacylation of single-stranded RNA. These results expand possibilities for flexible routes to the development of early charging and coding systems. Images PMID:1986368

  15. HEB and E2A function as SMAD/FOXH1 cofactors.

    PubMed

    Yoon, Se-Jin; Wills, Andrea E; Chuong, Edward; Gupta, Rakhi; Baker, Julie C

    2011-08-01

    Nodal signaling, mediated through SMAD transcription factors, is necessary for pluripotency maintenance and endoderm commitment. We identified a new motif, termed SMAD complex-associated (SCA), that is bound by SMAD2/3/4 and FOXH1 in human embryonic stem cells (hESCs) and derived endoderm. We demonstrate that two basic helix-loop-helix (bHLH) proteins-HEB and E2A-bind the SCA motif at regions overlapping SMAD2/3 and FOXH1. Furthermore, we show that HEB and E2A associate with SMAD2/3 and FOXH1, suggesting they form a complex at critical target regions. This association is biologically important, as E2A is critical for mesendoderm specification, gastrulation, and Nodal signal transduction in Xenopus tropicalis embryos. Taken together, E proteins are novel Nodal signaling cofactors that associate with SMAD2/3 and FOXH1 and are necessary for mesendoderm differentiation. PMID:21828274

  16. Viral infection and aging as cofactors for the development of pulmonary fibrosis

    PubMed Central

    Naik, Payal K; Moore, Bethany B

    2011-01-01

    Idiopathic pulmonary fibrosis (IPF) is a disease of unknown origin and progression that primarily affects older adults. Accumulating clinical and experimental evidence suggests that viral infections may play a role, either as agents that predispose the lung to fibrosis or exacerbate existing fibrosis. In particular, herpesviruses have been linked with IPF. This article summarizes the evidence for and against viral cofactors in IPF pathogenesis. In addition, we review mechanistic studies in animal models that highlight the fibrotic potential of viral infection, and explore the different mechanisms that might be responsible. We also review early evidence to suggest that the aged lung may be particularly susceptible to viral-induced fibrosis and make recommendations for future research directions. PMID:21128751

  17. Constrained spin-density dynamics of an iron-sulfur complex: Ferredoxin cofactor

    NASA Astrophysics Data System (ADS)

    Ali, Md. Ehesan; Nair, Nisanth N.; Staemmler, Volker; Marx, Dominik

    2012-06-01

    The computation of antiferromagnetic exchange coupling constants J by means of efficient density-based approaches requires in practice to take care of both spin projection to approximate the low spin ground state and proper localization of the magnetic orbitals at the transition metal centers. This is demonstrated here by a combined approach where the extended broken-symmetry (EBS) technique is employed to include the former aspect, while spin density constraints are applied to ensure the latter. This constrained EBS (CEBS) approach allows us to carry out ab initio molecular dynamics on a spin-projected low spin potential energy surface that is generated on-the-fly by propagating two coupled determinants and thereby accessing the antiferromagnetic coupling along the trajectory. When applied to the prototypical model of the oxidized [2Fe-2S] cofactor in Ferredoxins, [Fe2S2(SH)4]2-, at room temperature, CEBS leads to remarkably good results for geometrical structures and coupling constants J.

  18. Income poverty, poverty co-factors, and the adjustment of children in elementary school.

    PubMed

    Ackerman, Brian P; Brown, Eleanor D

    2006-01-01

    Since 1990, there have been great advances in how developmental researchers construct poverty. These advances are important because they may help inform social policy at many levels and help frame how American culture constructs poverty for children, both symbolically and in the opportunities children and families get to escape from poverty. Historically, developmental perspectives have embodied social address and main effects models, snapshot views of poverty effects at single points in time, and a rather narrow focus on income as the symbolic marker of the ecology of disadvantage. More recent views, in contrast, emphasize the diverse circumstances of disadvantaged families and diverse outcomes of disadvantaged children, the multiple sources of risk and the multiple determinants of poor outcomes for these children, dynamic aspects of that ecology, and change as well as continuity in outcome trajectories. The advances also consist of more powerful frames for understanding the ecology of disadvantage and the risk it poses for child outcomes. Most developmental researchers still tend to frame causal variables ultimately in terms of the dichotomy between social causation and social selection views, with a primary emphasis on the former. In part, this framing has reflected limitations of sample size and design, because the theoretical and empirical power of reciprocal selection models is clear (Kim et al., 2003). The conceptual advances that prompt such models include widespread acknowledgement of third variable problems in interpreting effects, of the clear need for multivariate approaches, and the need to pursue mechanisms and moderators of the relations between causal candidates and child outcomes. In the context of these advances, one of the core goals of our research program has been to construct robust representations of environmental adversity for disadvantaged families. Most of our research focuses on contextual co-factors at a family level (e.g., maternal

  19. Immunization with anticardiolipin cofactor (beta-2-glycoprotein I) induces experimental antiphospholipid syndrome in naive mice.

    PubMed

    Blank, M; Faden, D; Tincani, A; Kopolovic, J; Goldberg, I; Gilburd, B; Allegri, F; Balestrieri, G; Valesini, G; Shoenfeld, Y

    1994-08-01

    Beta-2-GPI is a 50 kDa glycoprotein which is known to be a serum co-factor, with a role in determining the binding of pathogenic anticardiolipin antibodies to phospholipids. Immunization of naive mice with beta-2-GPI resulted in elevated levels of antibodies directed against negatively charged phospholipids (cardiolipin, phosphotidylserine, phosphatidylinositol). The presence of increased titres of antiphospholipid antibodies in the sera of the mice was later followed by prolonged activated partial thromboplastin time (APTT), thrombocytopenia, and when the mice were mated, by a high percentage of fetal resorptions in the uterus. These data point to the ability of beta-2-GPI to induce pathogenic anti-cardiolipin antibodies following active immunization. PMID:7980847

  20. Cofactor Strap regulates oxidative phosphorylation and mitochondrial p53 activity through ATP synthase

    PubMed Central

    Maniam, S; Coutts, A S; Stratford, M R; McGouran, J; Kessler, B; La Thangue, N B

    2015-01-01

    Metabolic reprogramming is a hallmark of cancer cells. Strap (stress-responsive activator of p300) is a novel TPR motif OB-fold protein that contributes to p53 transcriptional activation. We show here that, in addition to its established transcriptional role, Strap is localised at mitochondria where one of its key interaction partners is ATP synthase. Significantly, the interaction between Strap and ATP synthase downregulates mitochondrial ATP production. Under glucose-limiting conditions, cancer cells are sensitised by mitochondrial Strap to apoptosis, which is rescued by supplementing cells with an extracellular source of ATP. Furthermore, Strap augments the apoptotic effects of mitochondrial p53. These findings define Strap as a dual regulator of cellular reprogramming: first as a nuclear transcription cofactor and second in the direct regulation of mitochondrial respiration. PMID:25168243

  1. Crystal Structures of Phosphite Dehydrogenase Provide Insights into Nicotinamide Cofactor Regeneration

    SciTech Connect

    Zou, Yaozhong; Zhang, Houjin; Brunzelle, Joseph S.; Johannes, Tyler W.; Woodyer, Ryan; Hung, John E.; Nair, Nikhil; van der Donk, Wilfred A.; Zhao, Huimin; Nair, Satish K.

    2012-08-21

    The enzyme phosphite dehydrogenase (PTDH) catalyzes the NAD{sup +}-dependent conversion of phosphite to phosphate and represents the first biological catalyst that has been shown to conduct the enzymatic oxidation of phosphorus. Despite investigation for more than a decade into both the mechanism of its unusual reaction and its utility in cofactor regeneration, there has been a lack of any structural data for PTDH. Here we present the cocrystal structure of an engineered thermostable variant of PTDH bound to NAD{sup +} (1.7 {angstrom} resolution), as well as four other cocrystal structures of thermostable PTDH and its variants with different ligands (all between 1.85 and 2.3 {angstrom} resolution). These structures provide a molecular framework for understanding prior mutational analysis and point to additional residues, located in the active site, that may contribute to the enzymatic activity of this highly unusual catalyst.

  2. RNA with iron(II) as a cofactor catalyses electron transfer

    NASA Astrophysics Data System (ADS)

    Hsiao, Chiaolong; Chou, I.-Chun; Okafor, C. Denise; Bowman, Jessica C.; O'Neill, Eric B.; Athavale, Shreyas S.; Petrov, Anton S.; Hud, Nicholas V.; Wartell, Roger M.; Harvey, Stephen C.; Williams, Loren Dean

    2013-06-01

    Mg2+ is essential for RNA folding and catalysis. However, for the first 1.5 billion years of life on Earth RNA inhabited an anoxic Earth with abundant and benign Fe2+. We hypothesize that Fe2+ was an RNA cofactor when iron was abundant, and was substantially replaced by Mg2+ during a period known as the ‘great oxidation’, brought on by photosynthesis. Here, we demonstrate that reversing this putative metal substitution in an anoxic environment, by removing Mg2+ and replacing it with Fe2+, expands the catalytic repertoire of RNA. Fe2+ can confer on some RNAs a previously uncharacterized ability to catalyse single-electron transfer. We propose that RNA function, in analogy with protein function, can be understood fully only in the context of association with a range of possible metals. The catalysis of electron transfer, requisite for metabolic activity, may have been attenuated in RNA by photosynthesis and the rise of O2.

  3. A model for cofactor use during HIV-1 reverse transcription and nuclear entry.

    PubMed

    Hilditch, Laura; Towers, Greg J

    2014-02-01

    Lentiviruses have evolved to infect and replicate in a variety of cell types in vivo whilst avoiding the powerful inhibitory activities of restriction factors or cell autonomous innate immune responses. In this review we offer our opinions on how HIV-1 uses a series of host proteins as cofactors for infection. We present a model that may explain how the capsid protein has a fundamental role in the early part of the viral lifecycle by utilising cyclophilin A (CypA), cleavage and polyadenylation specificity factor-6 (CPSF6), Nup358 and TNPO3 to orchestrate a coordinated process of DNA synthesis, capsid uncoating and integration targeting that evades innate responses and promotes integration into preferred areas of chromatin. PMID:24525292

  4. Epstein-Barr virus uses HLA class II as a cofactor for infection of B lymphocytes.

    PubMed Central

    Li, Q; Spriggs, M K; Kovats, S; Turk, S M; Comeau, M R; Nepom, B; Hutt-Fletcher, L M

    1997-01-01

    Infection of B lymphocytes by Epstein-Barr virus (EBV) requires attachment of virus via binding of viral glycoprotein gp350 to CD21 on the cell surface. Penetration of the cell membrane additionally involves a complex of three glycoproteins, gH, gL, and gp42. Glycoprotein gp42 binds to HLA-DR. Interference with this interaction with a soluble form of gp42, with a monoclonal antibody (MAb) to gp42, or with a MAb to HLA-DR inhibited virus infection. It was not possible to superinfect cells that failed to express HLA-DR unless expression was restored by transfection or creation of hybrid cell lines with complementing deficiencies in expression of HLA class II. HLA class II molecules thus serve as cofactors for infection of human B cells. PMID:9151859

  5. Interaction of the Human Adenovirus Proteinase with Its 11-Amino Acid Cofactor pVIc†

    PubMed Central

    Baniecki, Mary Lynn; McGrath, William J.; McWhirter, Sarah M.; Li, Caroline; Toledo, Diana L.; Pellicena, Patricia; Barnard, Dale L.; Thorn, Kurt S.; Mangel, Walter F.

    2010-01-01

    The interaction of the human adenovirus proteinase (AVP) and AVP–NA complexes with the 11-amino acid cofactor pVIc was characterized. The equilibrium dissociation constant for the binding of pVIc to AVP was 4.4 μM. The binding of AVP to 12-mer single-stranded DNA decreased the Kd for the binding of pVIc to AVP to 0.09 μM. The pVIc–AVP complex hydrolyzed the substrate with a Michaelis constant (Km) of 3.7 μM and a catalytic rate constant (kcat) of 1.1 s−1 In the presence of DNA, the Km increased less than 2-fold, and the kcat increased 3-fold. Alanine-scanning mutagenesis was performed to determine the contribution of individual pVIc side chains in the binding and stimulation of AVP. Two amino acid residues, Gly1′ and Phe11′, were the major determinants in the binding of pVIc to AVP, while Val2′ and Phe11′ were the major determinants in stimulating enzyme activity. Binding of AVP to DNA greatly suppressed the effects of the alanine substitutions on the binding of mutant pVIcs to AVP. Binding of either or both of the cofactors, pVIc or the viral DNA, to AVP did not dramatically alter its secondary structure as determined by vacuum ultraviolet circular dichroism. pVIc, when added to Hep-2 cells infected with adenovirus serotype 5, inhibited the synthesis of infectious virus, presumably by prematurely activating the proteinase so that it cleaved virion precursor proteins before virion assembly, thereby aborting the infection. PMID:11591154

  6. Molybdenum cofactor and isolated sulphite oxidase deficiencies: Clinical and molecular spectrum among Egyptian patients

    PubMed Central

    Zaki, Maha S.; Selim, Laila; EL-Bassyouni, Hala T.; Issa, Mahmoud Y.; Mahmoud, Iman; Ismail, Samira; Girgis, Mariane; Sadek, Abdelrahim A.; Gleeson, Joseph G.; Abdel Hamid, Mohamed S.

    2016-01-01

    Aim Molybdenum cofactor deficiency (MoCD) and Sulfite oxidase deficiency (SOD) are rare autosomal recessive conditions of sulfur-containing amino acid metabolism with overlapping clinical features and emerging therapies. The clinical phenotype is indistinguishable and they can only be differentiated biochemically. MOCS1, MOCS2, MOCS3, and GPRN genes contribute to the synthesis of molybdenum cofactor, and SUOX gene encodes sulfite oxidase. The aim of this study was to elucidate the clinical, radiological, biochemical and molecular findings in patients with SOD and MoCD. Methods Detailed clinical and radiological assessment of 9 cases referred for neonatal encephalopathy with hypotonia, microcephaly, and epilepsy led to a consideration of disorders of sulfur-containing amino acid metabolism. The diagnosis of six with MoCD and three with SOD was confirmed by biochemical tests, targeted sequencing, and whole exome sequencing where suspicion of disease was lower. Results Novel SUOX mutations were detected in 3 SOD cases and a novel MOCS2 mutation in 1 MoCD case. Most patients presented in the first 3 months of life with intractable tonic–clonic seizures, axial hypotonia, limb hypertonia, exaggerated startle response, feeding difficulties, and progressive cystic encephalomalacia on brain imaging. A single patient with MoCD had hypertrophic cardiomyopathy, hitherto unreported with these diseases. Interpretation Our results emphasize that intractable neonatal seizures, spasticity, and feeding difficulties can be important early signs for these disorders. Progressive microcephaly, intellectual disability and specific brain imaging findings in the first year were additional diagnostic aids. These clinical cues can be used to minimize delays in diagnosis, especially since promising treatments are emerging for MoCD type A. PMID:27289259

  7. Transport Proteins Regulate the Flux of Metabolites and Cofactors Across the Membrane of Plant Peroxisomes

    PubMed Central

    Linka, Nicole; Esser, Christian

    2012-01-01

    In land plants, peroxisomes play key roles in various metabolic pathways, including the most prominent examples, that is lipid mobilization and photorespiration. Given the large number of substrates that are exchanged across the peroxisomal membrane, a wide spectrum of metabolite and cofactor transporters is required and needs to be efficiently coordinated. These peroxisomal transport proteins are a prerequisite for metabolic reactions inside plant peroxisomes. The entire peroxisomal “permeome” is closely linked to the adaption of photosynthetic organisms during land plant evolution to fulfill and optimize their new metabolic demands in cells, tissues, and organs. This review assesses for the first time the distribution of these peroxisomal transporters within the algal and plant species underlining their evolutionary relevance. Despite the importance of peroxisomal transporters, the majority of these proteins, however, are still unknown at the molecular level in plants as well as in other eukaryotic organisms. Four transport proteins have been recently identified and functionally characterized in Arabidopsis so far: one transporter for the import of fatty acids and three carrier proteins for the uptake of the cofactors ATP and NAD into plant peroxisomes. The transport of the three substrates across the peroxisomal membrane is essential for the degradation of fatty acids and fatty acids-related compounds via β-oxidation. This metabolic pathway plays multiple functions for growth and development in plants that have been crucial in land plant evolution. In this review, we describe the current state of their physiological roles in Arabidopsis and discuss novel features in their putative transport mechanisms. PMID:22645564

  8. Structure of the biliverdin cofactor in the Pfr state of bathy and prototypical phytochromes.

    PubMed

    Salewski, Johannes; Escobar, Francisco Velazquez; Kaminski, Steve; von Stetten, David; Keidel, Anke; Rippers, Yvonne; Michael, Norbert; Scheerer, Patrick; Piwowarski, Patrick; Bartl, Franz; Frankenberg-Dinkel, Nicole; Ringsdorf, Simone; Gärtner, Wolfgang; Lamparter, Tilman; Mroginski, Maria Andrea; Hildebrandt, Peter

    2013-06-01

    Phytochromes act as photoswitches between the red- and far-red absorbing parent states of phytochromes (Pr and Pfr). Plant phytochromes display an additional thermal conversion route from the physiologically active Pfr to Pr. The same reaction pattern is found in prototypical biliverdin-binding bacteriophytochromes in contrast to the reverse thermal transformation in bathy bacteriophytochromes. However, the molecular origin of the different thermal stabilities of the Pfr states in prototypical and bathy bacteriophytochromes is not known. We analyzed the structures of the chromophore binding pockets in the Pfr states of various bathy and prototypical biliverdin-binding phytochromes using a combined spectroscopic-theoretical approach. For the Pfr state of the bathy phytochrome from Pseudomonas aeruginosa, the very good agreement between calculated and experimental Raman spectra of the biliverdin cofactor is in line with important conclusions of previous crystallographic analyses, particularly the ZZEssa configuration of the chromophore and its mode of covalent attachment to the protein. The highly homogeneous chromophore conformation seems to be a unique property of the Pfr states of bathy phytochromes. This is in sharp contrast to the Pfr states of prototypical phytochromes that display conformational equilibria between two sub-states exhibiting small structural differences at the terminal methine bridges A-B and C-D. These differences may mainly root in the interactions of the cofactor with the highly conserved Asp-194 that occur via its carboxylate function in bathy phytochromes. The weaker interactions via the carbonyl function in prototypical phytochromes may lead to a higher structural flexibility of the chromophore pocket opening a reaction channel for the thermal (ZZE → ZZZ) Pfr to Pr back-conversion. PMID:23603902

  9. Substrate and Cofactor Range Differences of Two Cysteine Dioxygenases from Ralstonia eutropha H16

    PubMed Central

    Wenning, Leonie; Stöveken, Nadine; Wübbeler, Jan Hendrik

    2015-01-01

    Cysteine dioxygenases (Cdos), which catalyze the sulfoxidation of cysteine to cysteine sulfinic acid (CSA), have been extensively studied in eukaryotes because of their roles in several diseases. In contrast, only a few prokaryotic enzymes of this type have been investigated. In Ralstonia eutropha H16, two Cdo homologues (CdoA and CdoB) have been identified previously. In vivo studies showed that Escherichia coli cells expressing CdoA could convert 3-mercaptopropionate (3MP) to 3-sulfinopropionate (3SP), whereas no 3SP could be detected in cells expressing CdoB. The objective of this study was to confirm these findings and to study both enzymes in detail by performing an in vitro characterization. The proteins were heterologously expressed and purified to apparent homogeneity by immobilized metal chelate affinity chromatography (IMAC). Subsequent analysis of the enzyme activities revealed striking differences with regard to their substrate ranges and their specificities for the transition metal cofactor, e.g., CdoA catalyzed the sulfoxidation of 3MP to a 3-fold-greater extent than the sulfoxidation of cysteine, whereas CdoB converted only cysteine. Moreover, the dependency of the activities of the Cdos from R. eutropha H16 on the metal cofactor in the active center could be demonstrated. The importance of CdoA for the metabolism of the sulfur compounds 3,3′-thiodipropionic acid (TDP) and 3,3′-dithiodipropionic acid (DTDP) by further converting their degradation product, 3MP, was confirmed. Since 3MP can also function as a precursor for polythioester (PTE) synthesis in R. eutropha H16, deletion of cdoA might enable increased synthesis of PTEs. PMID:26590284

  10. Identification of a cyclic nucleotide as a cryptic intermediate in molybdenum cofactor biosynthesis.

    PubMed

    Hover, Bradley M; Loksztejn, Anna; Ribeiro, Anthony A; Yokoyama, Kenichi

    2013-05-01

    The molybdenum cofactor (Moco) is a redox cofactor found in all kingdoms of life, and its biosynthesis is essential for survival of many organisms, including humans. The first step of Moco biosynthesis is a unique transformation of guanosine 5'-triphosphate (GTP) into cyclic pyranopterin monophosphate (cPMP). In bacteria, MoaA and MoaC catalyze this transformation, although the specific functions of these enzymes were not fully understood. Here, we report the first isolation and structural characterization of a product of MoaA. This molecule was isolated under anaerobic conditions from a solution of MoaA incubated with GTP, S-adenosyl-L-methionine, and sodium dithionite in the absence of MoaC. Structural characterization by chemical derivatization, MS, and NMR spectroscopy suggested the structure of this molecule to be (8S)-3',8-cyclo-7,8-dihydroguanosine 5'-triphosphate (3',8-cH2GTP). The isolated 3',8-cH2GTP was converted to cPMP by MoaC or its human homologue, MOCS1B, with high specificities (Km < 0.060 μM and 0.79 ± 0.24 μM for MoaC and MOCS1B, respectively), suggesting the physiological relevance of 3',8-cH2GTP. These observations, in combination with some mechanistic studies of MoaA, unambiguously demonstrate that MoaA catalyzes a unique radical C-C bond formation reaction and that, in contrast to previous proposals, MoaC plays a major role in the complex rearrangement to generate the pyranopterin ring. PMID:23627491

  11. On reversible H2 loss upon N2 binding to FeMo-cofactor of nitrogenase

    PubMed Central

    Yang, Zhi-Yong; Khadka, Nimesh; Lukoyanov, Dmitriy; Hoffman, Brian M.; Dean, Dennis R.; Seefeldt, Lance C.

    2013-01-01

    Nitrogenase is activated for N2 reduction by the accumulation of four electrons/protons on its active site FeMo-cofactor, yielding a state, designated as E4, which contains two iron-bridging hydrides [Fe–H–Fe]. A central puzzle of nitrogenase function is an apparently obligatory formation of one H2 per N2 reduced, which would “waste” two reducing equivalents and four ATP. We recently presented a draft mechanism for nitrogenase that provides an explanation for obligatory H2 production. In this model, H2 is produced by reductive elimination of the two bridging hydrides of E4 during N2 binding. This process releases H2, yielding N2 bound to FeMo-cofactor that is doubly reduced relative to the resting redox level, and thereby is activated to promptly generate bound diazene (HN=NH). This mechanism predicts that during turnover under D2/N2, the reverse reaction of D2 with the N2-bound product of reductive elimination would generate dideutero-E4 [E4(2D)], which can relax with loss of HD to the state designated E2, with a single deuteride bridge [E2(D)]. Neither of these deuterated intermediate states could otherwise form in H2O buffer. The predicted E2(D) and E4(2D) states are here established by intercepting them with the nonphysiological substrate acetylene (C2H2) to generate deuterated ethylenes (C2H3D and C2H2D2). The demonstration that gaseous H2/D2 can reduce a substrate other than H+ with N2 as a cocatalyst confirms the essential mechanistic role for H2 formation, and hence a limiting stoichiometry for biological nitrogen fixation of eight electrons/protons, and provides direct experimental support for the reductive elimination mechanism. PMID:24062454

  12. Semiquinone-induced Maturation of Bacillus anthracis Ribonucleotide Reductase by a Superoxide Intermediate*

    PubMed Central

    Berggren, Gustav; Duraffourg, Nicolas; Sahlin, Margareta; Sjöberg, Britt-Marie

    2014-01-01

    Ribonucleotide reductases (RNRs) catalyze the conversion of ribonucleotides to deoxyribonucleotides, and represent the only de novo pathway to provide DNA building blocks. Three different classes of RNR are known, denoted I-III. Class I RNRs are heteromeric proteins built up by α and β subunits and are further divided into different subclasses, partly based on the metal content of the β-subunit. In subclass Ib RNR the β-subunit is denoted NrdF, and harbors a manganese-tyrosyl radical cofactor. The generation of this cofactor is dependent on a flavodoxin-like maturase denoted NrdI, responsible for the formation of an active oxygen species suggested to be either a superoxide or a hydroperoxide. Herein we report on the magnetic properties of the manganese-tyrosyl radical cofactor of Bacillus anthracis NrdF and the redox properties of B. anthracis NrdI. The tyrosyl radical in NrdF is stabilized through its interaction with a ferromagnetically coupled manganese dimer. Moreover, we show through a combination of redox titration and protein electrochemistry that in contrast to hitherto characterized NrdIs, the B. anthracis NrdI is stable in its semiquinone form (NrdIsq) with a difference in electrochemical potential of ∼110 mV between the hydroquinone and semiquinone state. The under anaerobic conditions stable NrdIsq is fully capable of generating the oxidized, tyrosyl radical-containing form of Mn-NrdF when exposed to oxygen. This latter observation strongly supports that a superoxide radical is involved in the maturation mechanism, and contradicts the participation of a peroxide species. Additionally, EPR spectra on whole cells revealed that a significant fraction of NrdI resides in its semiquinone form in vivo, underscoring that NrdIsq is catalytically relevant. PMID:25262022

  13. Effects of sexual maturation and feeding level on fatty acid metabolism gene expression in muscle, liver, and visceral adipose tissue of diploid and triploid rainbow trout, Oncorhynchus mykiss.

    PubMed

    Manor, Meghan L; Cleveland, Beth M; Weber, Gregory M; Kenney, P Brett

    2015-01-01

    In many cultured fish species, such as salmonids, gonadal development occurs at the expense of stored energy and nutrients, including lipids. However, mechanisms regulating nutrient repartitioning during sexual maturation are not well understood. This study compared sexually maturing diploid (2N) and sterile triploid (3N) female rainbow trout to investigate effects of sexual maturation on expression of 35 genes involved in fatty acid metabolism, including genes within fatty acid synthesis, β-oxidation, and cofactors of the mTOR and PPAR signaling pathways, in liver, white muscle, and visceral adipose tissue. Diploid fish were fed at different rations (0.25% and 0.50% tank biomass, and satiation) to determine effects of ration on gene expression. Gene expression was affected by ration level only in white muscle; erk and acat2 had higher expression in fish fed higher rations. On the other hand, sexual maturation affected gene expression across all three tissue types. Data indicate 2N fish have higher expression of β-oxidation genes within white muscle and within visceral adipose tissue. These findings support enhanced fatty acid mobilization within these tissues during sexual maturation. Higher expression of fatty acid synthesis genes in 3N female liver is associated with higher expression of mTOR cofactors and pparγ, which reflects continued deposition of lipids in these fish. Furthermore, greater expression of genes involved in β-oxidation pathways across ration levels in 2N females suggests that sexual maturation and the associated maturation-related signals are stronger regulators of lipid metabolism-related genes rather the rations applied in the current study. PMID:25242626

  14. Characterization of an Additional Binding Surface on the p97 N-Terminal Domain Involved in Bipartite Cofactor Interactions.

    PubMed

    Hänzelmann, Petra; Schindelin, Hermann

    2016-01-01

    The type II AAA ATPase p97 interacts with a large number of cofactors that regulate its function by recruiting it to different cellular pathways. Most of the cofactors interact with the N-terminal (N) domain of p97, either via ubiquitin-like domains or short linear binding motifs. While some linear binding motifs form α helices, another group features short stretches of unstructured hydrophobic sequences as found in the so-called SHP (BS1, binding segment 1) motif. Here we present the crystal structure of a SHP-binding motif in complex with p97, which reveals a so far uncharacterized binding site on the p97 N domain that is different from the conserved binding surface of all other known p97 cofactors. This finding explains how cofactors like UFD1/NPL4 and p47 can utilize a bipartite binding mechanism to interact simultaneously with the same p97 monomer via their ubiquitin-like domain and SHP motif. PMID:26712280

  15. An Ancient Fingerprint Indicates the Common Ancestry of Rossmann-Fold Enzymes Utilizing Different Ribose-Based Cofactors.

    PubMed

    Laurino, Paola; Tóth-Petróczy, Ágnes; Meana-Pañeda, Rubén; Lin, Wei; Truhlar, Donald G; Tawfik, Dan S

    2016-03-01

    Nucleoside-based cofactors are presumed to have preceded proteins. The Rossmann fold is one of the most ancient and functionally diverse protein folds, and most Rossmann enzymes utilize nucleoside-based cofactors. We analyzed an omnipresent Rossmann ribose-binding interaction: a carboxylate side chain at the tip of the second β-strand (β2-Asp/Glu). We identified a canonical motif, defined by the β2-topology and unique geometry. The latter relates to the interaction being bidentate (both ribose hydroxyls interacting with the carboxylate oxygens), to the angle between the carboxylate and the ribose, and to the ribose's ring configuration. We found that this canonical motif exhibits hallmarks of divergence rather than convergence. It is uniquely found in Rossmann enzymes that use different cofactors, primarily SAM (S-adenosyl methionine), NAD (nicotinamide adenine dinucleotide), and FAD (flavin adenine dinucleotide). Ribose-carboxylate bidentate interactions in other folds are not only rare but also have a different topology and geometry. We further show that the canonical geometry is not dictated by a physical constraint--geometries found in noncanonical interactions have similar calculated bond energies. Overall, these data indicate the divergence of several major Rossmann-fold enzyme classes, with different cofactors and catalytic chemistries, from a common pre-LUCA (last universal common ancestor) ancestor that possessed the β2-Asp/Glu motif. PMID:26938925

  16. Substitutions at the cofactor phosphate-binding site of a clostridial alcohol dehydrogenase lead to unexpected changes in substrate specificity.

    PubMed

    Maddock, Danielle J; Patrick, Wayne M; Gerth, Monica L

    2015-08-01

    Changing the cofactor specificity of an enzyme from nicotinamide adenine dinucleotide 2'-phosphate (NADPH) to the more abundant NADH is a common strategy for increasing overall enzyme efficiency in microbial metabolic engineering. The aim of this study was to switch the cofactor specificity of the primary-secondary alcohol dehydrogenase from Clostridium autoethanogenum, a bacterium with considerable promise for the bio-manufacturing of fuels and other petrochemicals, from strictly NADPH-dependent to NADH-dependent. We used insights from a homology model to build a site-saturation library focussed on residue S199, the position deemed most likely to disrupt binding of the 2'-phosphate of NADPH. Although the CaADH(S199X) library did not yield any NADH-dependent enzymes, it did reveal that substitutions at the cofactor phosphate-binding site can cause unanticipated changes in the substrate specificity of the enzyme. Using consensus-guided site-directed mutagenesis, we were able to create an enzyme that was stringently NADH-dependent, albeit with a concomitant reduction in activity. This study highlights the role that distal residues play in substrate specificity and the complexity of enzyme-cofactor interactions. PMID:26034298

  17. Substitutions at the cofactor phosphate-binding site of a clostridial alcohol dehydrogenase lead to unexpected changes in substrate specificity

    PubMed Central

    Maddock, Danielle J.; Patrick, Wayne M.; Gerth, Monica L.

    2015-01-01

    Changing the cofactor specificity of an enzyme from nicotinamide adenine dinucleotide 2′-phosphate (NADPH) to the more abundant NADH is a common strategy for increasing overall enzyme efficiency in microbial metabolic engineering. The aim of this study was to switch the cofactor specificity of the primary–secondary alcohol dehydrogenase from Clostridium autoethanogenum, a bacterium with considerable promise for the bio-manufacturing of fuels and other petrochemicals, from strictly NADPH-dependent to NADH-dependent. We used insights from a homology model to build a site-saturation library focussed on residue S199, the position deemed most likely to disrupt binding of the 2′-phosphate of NADPH. Although the CaADH(S199X) library did not yield any NADH-dependent enzymes, it did reveal that substitutions at the cofactor phosphate-binding site can cause unanticipated changes in the substrate specificity of the enzyme. Using consensus-guided site-directed mutagenesis, we were able to create an enzyme that was stringently NADH-dependent, albeit with a concomitant reduction in activity. This study highlights the role that distal residues play in substrate specificity and the complexity of enzyme–cofactor interactions. PMID:26034298

  18. Engineering a d-lactate dehydrogenase that can super-efficiently utilize NADPH and NADH as cofactors

    PubMed Central

    Meng, Hengkai; Liu, Pi; Sun, Hongbing; Cai, Zhen; Zhou, Jie; Lin, Jianping; Li, Yin

    2016-01-01

    Engineering the cofactor specificity of a natural enzyme often results in a significant decrease in its activity on original cofactor. Here we report that a NADH-dependent dehydrogenase (d-LDH) from Lactobacillus delbrueckii 11842 can be rationally engineered to efficiently use both NADH and NADPH as cofactors. Point mutations on three amino acids (D176S, I177R, F178T) predicted by computational analysis resulted in a modified enzyme designated as d-LDH*. The Kcat/Km of the purified d-LDH* on NADPH increased approximately 184-fold while the Kcat/Km on NADH also significantly increased, showing for the first time that a rationally engineered d-LDH could exhibit comparable activity on both NADPH and NADH. Further kinetic analysis revealed that the enhanced affinity with NADH or NADPH and the significant increased Kcat of d-LDH* resulted in the significant increase of d-LDH* activity on both NADPH and NADH. This study thus demonstrated that the cofactor specificity of dehydrogenase can be broadened by using targeted engineering approach, and the engineered enzyme can efficiently function in NADH-rich, or NADPH-rich, or NADH and NADPH-rich environment. PMID:27109778

  19. An Ancient Fingerprint Indicates the Common Ancestry of Rossmann-Fold Enzymes Utilizing Different Ribose-Based Cofactors

    PubMed Central

    Laurino, Paola; Tóth-Petróczy, Ágnes; Meana-Pañeda, Rubén; Lin, Wei; Truhlar, Donald G.; Tawfik, Dan S.

    2016-01-01

    Nucleoside-based cofactors are presumed to have preceded proteins. The Rossmann fold is one of the most ancient and functionally diverse protein folds, and most Rossmann enzymes utilize nucleoside-based cofactors. We analyzed an omnipresent Rossmann ribose-binding interaction: a carboxylate side chain at the tip of the second β-strand (β2-Asp/Glu). We identified a canonical motif, defined by the β2-topology and unique geometry. The latter relates to the interaction being bidentate (both ribose hydroxyls interacting with the carboxylate oxygens), to the angle between the carboxylate and the ribose, and to the ribose’s ring configuration. We found that this canonical motif exhibits hallmarks of divergence rather than convergence. It is uniquely found in Rossmann enzymes that use different cofactors, primarily SAM (S-adenosyl methionine), NAD (nicotinamide adenine dinucleotide), and FAD (flavin adenine dinucleotide). Ribose-carboxylate bidentate interactions in other folds are not only rare but also have a different topology and geometry. We further show that the canonical geometry is not dictated by a physical constraint—geometries found in noncanonical interactions have similar calculated bond energies. Overall, these data indicate the divergence of several major Rossmann-fold enzyme classes, with different cofactors and catalytic chemistries, from a common pre-LUCA (last universal common ancestor) ancestor that possessed the β2-Asp/Glu motif. PMID:26938925

  20. Studies by electron-paramagnetic-resonance spectroscopy of the environment of the metal in the molybdenum cofactor of molybdenum-containing enzymes.

    PubMed Central

    Hawkes, T R; Bray, R C

    1984-01-01

    The molybdenum cofactor prepared by denaturing xanthine oxidase by heat treatment or other methods was partially purified by anaerobic gel filtration in the presence of sodium dithionite, with little loss of activity. A range of products with different elution volumes was obtained. This behaviour is apparently related to association of the molybdenum cofactor with various residual peptides. E.p.r. signals from molybdenum (V) in the active cofactor, present either in crude preparations or in purified fractions, may be generated in dimethyl sulphoxide solution by controlled oxidation carried out on the molybdenum cofactor alone or in the presence of added thiols. The g-values of the spectra suggest that in the oxidized cofactor molybdenum has one terminal oxygen ligand and four ligands from thiolate groups. It is proposed that two of these are from the organic part of the cofactor and two from cysteine residues in the protein or in residual peptides. A signal generated in high yield with little loss of cofactor activity in the presence of thiophenol has g parallel = 2.0258 and g = 1.9793. It is suggested that in this species two cysteine residues have been replaced by two thiophenol molecules. The possible usefulness of the thiophenol complex in further purification of the molybdenum cofactor is discussed. PMID:6091619

  1. Determinants of Cofactor Specificity for the Glucose-6-Phosphate Dehydrogenase from Escherichia coli: Simulation, Kinetics and Evolutionary Studies.

    PubMed

    Fuentealba, Matias; Muñoz, Rodrigo; Maturana, Pablo; Krapp, Adriana; Cabrera, Ricardo

    2016-01-01

    Glucose 6-Phosphate Dehydrogenases (G6PDHs) from different sources show varying specificities towards NAD+ and NADP+ as cofactors. However, it is not known to what extent structural determinants of cofactor preference are conserved in the G6PDH family. In this work, molecular simulations, kinetic characterization of site-directed mutants and phylogenetic analyses were used to study the structural basis for the strong preference towards NADP+ shown by the G6PDH from Escherichia coli. Molecular Dynamics trajectories of homology models showed a highly favorable binding energy for residues K18 and R50 when interacting with the 2'-phosphate of NADP+, but the same residues formed no observable interactions in the case of NAD+. Alanine mutants of both residues were kinetically characterized and analyzed with respect to the binding energy of the transition state, according to the kcat/KM value determined for each cofactor. Whereas both residues contribute to the binding energy of NADP+, only R50 makes a contribution (about -1 kcal/mol) to NAD+ binding. In the absence of both positive charges the enzyme was unable to discriminate NADP+ from NAD+. Although kinetic data is sparse, the observed distribution of cofactor preferences within the phylogenetic tree is sufficient to rule out the possibility that the known NADP+-specific G6PDHs form a monophyletic group. While the β1-α1 loop shows no strict conservation of K18, (rather, S and T seem to be more frequent), in the case of the β2-α2 loop, different degrees of conservation are observed for R50. Noteworthy is the fact that a K18T mutant is indistinguishable from K18A in terms of cofactor preference. We conclude that the structural determinants for the strict discrimination against NAD+ in the case of the NADP+-specific enzymes have evolved independently through different means during the evolution of the G6PDH family. We further suggest that other regions in the cofactor binding pocket, besides the β1-α1 and β2-α2

  2. Determinants of Cofactor Specificity for the Glucose-6-Phosphate Dehydrogenase from Escherichia coli: Simulation, Kinetics and Evolutionary Studies

    PubMed Central

    Fuentealba, Matias; Muñoz, Rodrigo; Maturana, Pablo; Krapp, Adriana; Cabrera, Ricardo

    2016-01-01

    Glucose 6-Phosphate Dehydrogenases (G6PDHs) from different sources show varying specificities towards NAD+ and NADP+ as cofactors. However, it is not known to what extent structural determinants of cofactor preference are conserved in the G6PDH family. In this work, molecular simulations, kinetic characterization of site-directed mutants and phylogenetic analyses were used to study the structural basis for the strong preference towards NADP+ shown by the G6PDH from Escherichia coli. Molecular Dynamics trajectories of homology models showed a highly favorable binding energy for residues K18 and R50 when interacting with the 2'-phosphate of NADP+, but the same residues formed no observable interactions in the case of NAD+. Alanine mutants of both residues were kinetically characterized and analyzed with respect to the binding energy of the transition state, according to the kcat/KM value determined for each cofactor. Whereas both residues contribute to the binding energy of NADP+, only R50 makes a contribution (about -1 kcal/mol) to NAD+ binding. In the absence of both positive charges the enzyme was unable to discriminate NADP+ from NAD+. Although kinetic data is sparse, the observed distribution of cofactor preferences within the phylogenetic tree is sufficient to rule out the possibility that the known NADP+-specific G6PDHs form a monophyletic group. While the β1-α1 loop shows no strict conservation of K18, (rather, S and T seem to be more frequent), in the case of the β2-α2 loop, different degrees of conservation are observed for R50. Noteworthy is the fact that a K18T mutant is indistinguishable from K18A in terms of cofactor preference. We conclude that the structural determinants for the strict discrimination against NAD+ in the case of the NADP+-specific enzymes have evolved independently through different means during the evolution of the G6PDH family. We further suggest that other regions in the cofactor binding pocket, besides the β1-α1 and β2-α2

  3. Maturation of the adolescent brain

    PubMed Central

    Arain, Mariam; Haque, Maliha; Johal, Lina; Mathur, Puja; Nel, Wynand; Rais, Afsha; Sandhu, Ranbir; Sharma, Sushil

    2013-01-01

    Adolescence is the developmental epoch during which children become adults – intellectually, physically, hormonally, and socially. Adolescence is a tumultuous time, full of changes and transformations. The pubertal transition to adulthood involves both gonadal and behavioral maturation. Magnetic resonance imaging studies have discovered that myelinogenesis, required for proper insulation and efficient neurocybernetics, continues from childhood and the brain’s region-specific neurocircuitry remains structurally and functionally vulnerable to impulsive sex, food, and sleep habits. The maturation of the adolescent brain is also influenced by heredity, environment, and sex hormones (estrogen, progesterone, and testosterone), which play a crucial role in myelination. Furthermore, glutamatergic neurotransmission predominates, whereas gamma-aminobutyric acid neurotransmission remains under construction, and this might be responsible for immature and impulsive behavior and neurobehavioral excitement during adolescent life. The adolescent population is highly vulnerable to driving under the influence of alcohol and social maladjustments due to an immature limbic system and prefrontal cortex. Synaptic plasticity and the release of neurotransmitters may also be influenced by environmental neurotoxins and drugs of abuse including cigarettes, caffeine, and alcohol during adolescence. Adolescents may become involved with offensive crimes, irresponsible behavior, unprotected sex, juvenile courts, or even prison. According to a report by the Centers for Disease Control and Prevention, the major cause of death among the teenage population is due to injury and violence related to sex and substance abuse. Prenatal neglect, cigarette smoking, and alcohol consumption may also significantly impact maturation of the adolescent brain. Pharmacological interventions to regulate adolescent behavior have been attempted with limited success. Since several factors, including age, sex

  4. Shared-intermediates in the biosynthesis of thio-cofactors: Mechanism and functions of cysteine desulfurases and sulfur acceptors.

    PubMed

    Black, Katherine A; Dos Santos, Patricia C

    2015-06-01

    Cysteine desulfurases utilize a PLP-dependent mechanism to catalyze the first step of sulfur mobilization in the biosynthesis of sulfur-containing cofactors. Sulfur activation and integration into thiocofactors involve complex mechanisms and intricate biosynthetic schemes. Cysteine desulfurases catalyze sulfur-transfer reactions from l-cysteine to sulfur acceptor molecules participating in the biosynthesis of thio-cofactors, including Fe-S clusters, thionucleosides, thiamin, biotin, and molybdenum cofactor. The proposed mechanism of cysteine desulfurases involves the PLP-dependent cleavage of the C-S bond from l-cysteine via the formation of a persulfide enzyme intermediate, which is considered the hallmark step in sulfur mobilization. The subsequent sulfur transfer reaction varies with the class of cysteine desulfurase and sulfur acceptor. IscS serves as a mecca for sulfur incorporation into a network of intertwined pathways for the biosynthesis of thio-cofactors. The involvement of a single enzyme interacting with multiple acceptors, the recruitment of shared-intermediates partaking roles in multiple pathways, and the participation of Fe-S enzymes denote the interconnectivity of pathways involving sulfur trafficking. In Bacillus subtilis, the occurrence of multiple cysteine desulfurases partnering with dedicated sulfur acceptors partially deconvolutes the routes of sulfur trafficking and assigns specific roles for these enzymes. Understanding the roles of promiscuous vs. dedicated cysteine desulfurases and their partnership with shared-intermediates in the biosynthesis of thio-cofactors will help to map sulfur transfer events across interconnected pathways and to provide insight into the hierarchy of sulfur incorporation into biomolecules. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases. PMID:25447671

  5. Maturity model for enterprise interoperability

    NASA Astrophysics Data System (ADS)

    Guédria, Wided; Naudet, Yannick; Chen, David

    2015-01-01

    Historically, progress occurs when entities communicate, share information and together create something that no one individually could do alone. Moving beyond people to machines and systems, interoperability is becoming a key factor of success in all domains. In particular, interoperability has become a challenge for enterprises, to exploit market opportunities, to meet their own objectives of cooperation or simply to survive in a growing competitive world where the networked enterprise is becoming a standard. Within this context, many research works have been conducted over the past few years and enterprise interoperability has become an important area of research, ensuring the competitiveness and growth of European enterprises. Among others, enterprises have to control their interoperability strategy and enhance their ability to interoperate. This is the purpose of the interoperability assessment. Assessing interoperability maturity allows a company to know its strengths and weaknesses in terms of interoperability with its current and potential partners, and to prioritise actions for improvement. The objective of this paper is to define a maturity model for enterprise interoperability that takes into account existing maturity models while extending the coverage of the interoperability domain. The assessment methodology is also presented. Both are demonstrated with a real case study.

  6. 7 CFR 51.2651 - Mature.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., CERTIFICATION, AND STANDARDS) United States Standards for Grades for Sweet Cherries 1 Definitions § 51.2651 Mature. Mature means that the cherries have reached the stage of growth which will insure the...

  7. Young Children's Social Maturity and Their Drawings

    ERIC Educational Resources Information Center

    Hendrickson, Norejane J.; And Others

    1974-01-01

    The relationship between preschool children's level of social maturity and their drawing expressions was tested; findings stregthened the contention that the drawings of preschoolers are not appropriate indicators of their social maturity. (SDH)

  8. Increased isobutanol production in Saccharomyces cerevisiae by eliminating competing pathways and resolving cofactor imbalance

    PubMed Central

    2013-01-01

    Background Isobutanol is an important target for biorefinery research as a next-generation biofuel and a building block for commodity chemical production. Metabolically engineered microbial strains to produce isobutanol have been successfully developed by introducing the Ehrlich pathway into bacterial hosts. Isobutanol-producing baker’s yeast (Saccharomyces cerevisiae) strains have been developed following the strategy with respect to its advantageous characteristics for cost-effective isobutanol production. However, the isobutanol yields and titers attained by the developed strains need to be further improved through engineering of S. cerevisiae metabolism. Results Two strategies including eliminating competing pathways and resolving the cofactor imbalance were applied to improve isobutanol production in S. cerevisiae. Isobutanol production levels were increased in strains lacking genes encoding members of the pyruvate dehydrogenase complex such as LPD1, indicating that the pyruvate supply for isobutanol biosynthesis is competing with acetyl-CoA biosynthesis in mitochondria. Isobutanol production was increased by overexpression of enzymes responsible for transhydrogenase-like shunts such as pyruvate carboxylase, malate dehydrogenase, and malic enzyme. The integration of a single gene deletion lpd1Δ and the activation of the transhydrogenase-like shunt further increased isobutanol levels. In a batch fermentation test at the 50-mL scale from 100 g/L glucose using the two integrated strains, the isobutanol titer reached 1.62 ± 0.11 g/L and 1.61 ± 0.03 g/L at 24 h after the start of fermentation, which corresponds to the yield at 0.016 ± 0.001 g/g glucose consumed and 0.016 ± 0.0003 g/g glucose consumed, respectively. Conclusions These results demonstrate that downregulation of competing pathways and metabolic functions for resolving the cofactor imbalance are promising strategies to construct S. cerevisiae strains that effectively produce

  9. Induction of Bulb Maturity of Ornithogalum Thyrsoides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The influence of bulb maturity at bulb harvest on growth and flowering response of Ornithogalum thyrsoides Jacq. ‘Chesapeake Starlight’ was investigated. Experiments were designed to determine if bulb maturity can be induced by bulb storage temperatures and whether bulb maturity can be evaluated by...

  10. An integrated systems biology approach identifies positive cofactor 4 as a factor that increases reprogramming efficiency

    PubMed Central

    Jo, Junghyun; Hwang, Sohyun; Kim, Hyung Joon; Hong, Soomin; Lee, Jeoung Eun; Lee, Sung-Geum; Baek, Ahmi; Han, Heonjong; Lee, Jin Il; Lee, Insuk; Lee, Dong Ryul

    2016-01-01

    Spermatogonial stem cells (SSCs) can spontaneously dedifferentiate into embryonic stem cell (ESC)-like cells, which are designated as multipotent SSCs (mSSCs), without ectopic expression of reprogramming factors. Interestingly, SSCs express key pluripotency genes such as Oct4, Sox2, Klf4 and Myc. Therefore, molecular dissection of mSSC reprogramming may provide clues about novel endogenous reprogramming or pluripotency regulatory factors. Our comparative transcriptome analysis of mSSCs and induced pluripotent stem cells (iPSCs) suggests that they have similar pluripotency states but are reprogrammed via different transcriptional pathways. We identified 53 genes as putative pluripotency regulatory factors using an integrated systems biology approach. We demonstrated a selected candidate, Positive cofactor 4 (Pc4), can enhance the efficiency of somatic cell reprogramming by promoting and maintaining transcriptional activity of the key reprograming factors. These results suggest that Pc4 has an important role in inducing spontaneous somatic cell reprogramming via up-regulation of key pluripotency genes. PMID:26740582

  11. A regulatory role of NAD redox status on flavin cofactor homeostasis in S. cerevisiae mitochondria.

    PubMed

    Giancaspero, Teresa Anna; Locato, Vittoria; Barile, Maria

    2013-01-01

    Flavin adenine dinucleotide (FAD) and nicotinamide adenine dinucleotide (NAD) are two redox cofactors of pivotal importance for mitochondrial functionality and cellular redox balance. Despite their relevance, the mechanism by which intramitochondrial NAD(H) and FAD levels are maintained remains quite unclear in Saccharomyces cerevisiae. We investigated here the ability of isolated mitochondria to degrade externally added FAD and NAD (in both its reduced and oxidized forms). A set of kinetic experiments demonstrated that mitochondrial FAD and NAD(H) destroying enzymes are different from each other and from the already characterized NUDIX hydrolases. We studied here, in some detail, FAD pyrophosphatase (EC 3.6.1.18), which is inhibited by NAD(+) and NADH according to a noncompetitive inhibition, with Ki values that differ from each other by an order of magnitude. These findings, together with the ability of mitochondrial FAD pyrophosphatase to metabolize endogenous FAD, presumably deriving from mitochondrial holoflavoproteins destined to degradation, allow for proposing a novel possible role of mitochondrial NAD redox status in regulating FAD homeostasis and/or flavoprotein degradation in S. cerevisiae. PMID:24078860

  12. Climate change as an unexpected co-factor promoting coral eating seastar (Acanthaster planci) outbreaks

    PubMed Central

    Uthicke, S.; Logan, M.; Liddy, M.; Francis, D.; Hardy, N.; Lamare, M.

    2015-01-01

    Coral reefs face a crisis due to local and global anthropogenic stressors. A large proportion of the ~50% coral loss on the Great Barrier Reef has been attributed to outbreaks of the crown-of-thorns-seastar (COTS). A widely assumed cause of primary COTS outbreaks is increased larval survivorship due to higher food availability, linked with anthropogenic runoff . Our experiment using a range of algal food concentrations at three temperatures representing present day average and predicted future increases, demonstrated a strong influence of food concentration on development is modulated by temperature. A 2°C increase in temperature led to a 4.2–4.9 times (at Day 10) or 1.2–1.8 times (Day 17) increase in late development larvae. A model indicated that food was the main driver, but that temperature was an important modulator of development. For instance, at 5000 cells ml−1 food, a 2°C increase may shorten developmental time by 30% and may increase the probability of survival by 240%. The main contribution of temperature is to ‘push' well-fed larvae faster to settlement. We conclude that warmer sea temperature is an important co-factor promoting COTS outbreaks. PMID:25672480

  13. Glucosamine and Glucosamine-6-phosphate Derivatives: Catalytic Cofactor Analogs for the glmS Ribozyme

    PubMed Central

    Posakony, Jeffrey J.; Ferré-D'Amaré, Adrian R.

    2013-01-01

    Two analogues of glucosamine-6-phosphate (GlcN6P, 1) and five of glucosamine (GlcN, 2) were prepared for evaluation as catalytic cofactor of the glmS ribozyme, a bacterial gene-regulatory RNA that controls cell wall biosynthesis. Glucosamine and allosamine with 3-azido substitutions were prepared by SN2 reactions of the respective 1,2,4,6-protected sugars; final acidic hydrolysis afforded the fully deprotected compounds as their TFA salts. A 6-phospho-2-aminoglucolactam (31) was prepared from glucosamine in a 13-step synthesis, which included a late-stage POCl3-phosphorylation. A simple and widely applicable 2-step procedure with the triethylsilyl (TES) protecting group was developed to selectively expose the 6-OH group in N-protected glucosamine analogs, which provided another route to chemical phosphorylation. Mitsunobu chemistry afforded 6-cyano (35) and 6-azido (36) analogues of GlcN-(Cbz) and the selectivity for the 6-position was confirmed by NMR (COSY, HMBC, HMQC) experiments. Compound 36 was converted to the fully deprotected 6-azido-GlcN (37) and 2,6-diaminoglucose (38) analogs. A 2-hydroxylamino glucose (42) analogue was prepared via an oxaziridine (41). Enzymatic phosphorylation of 42 and chemical phosphorylation of its 6-OH precursor (43) were possible, but 42 and the 6-phospho product (44) were unstable under neutral or basic conditions. Chemical phosphorylation of the previously described 2-guanidinyl-glucose (46) afforded its 6-phospho analogue (49) after final deprotection. PMID:23578404

  14. Tubulin cofactor B regulates microtubule densities during microglia transition to the reactive states

    SciTech Connect

    Fanarraga, M.L.

    2009-02-01

    Microglia are highly dynamic cells of the CNS that continuously survey the welfare of the neural parenchyma and play key roles modulating neurogenesis and neuronal cell death. In response to injury or pathogen invasion parenchymal microglia transforms into a more active cell that proliferates, migrates and behaves as a macrophage. The acquisition of these extra skills implicates enormous modifications of the microtubule and actin cytoskeletons. Here we show that tubulin cofactor B (TBCB), which has been found to contribute to various aspects of microtubule dynamics in vivo, is also implicated in microglial cytoskeletal changes. We find that TBCB is upregulated in post-lesion reactive parenchymal microglia/macrophages, in interferon treated BV-2 microglial cells, and in neonate amoeboid microglia where the microtubule densities are remarkably low. Our data demonstrate that upon TBCB downregulation both, after microglia differentiation to the ramified phenotype in vivo and in vitro, or after TBCB gene silencing, microtubule densities are restored in these cells. Taken together these observations support the view that TBCB functions as a microtubule density regulator in microglia during activation, and provide an insight into the understanding of the complex mechanisms controlling microtubule reorganization during microglial transition between the amoeboid, ramified, and reactive phenotypes.

  15. Engineering of cofactor regeneration enhances (2S,3S)-2,3-butanediol production from diacetyl

    PubMed Central

    Wang, Yu; Li, Lixiang; Ma, Cuiqing; Gao, Chao; Tao, Fei; Xu, Ping

    2013-01-01

    (2S,3S)-2,3-Butanediol ((2S,3S)-2,3-BD) is a potentially valuable liquid fuel and an excellent building block in asymmetric synthesis. In this study, cofactor engineering was applied to improve the efficiency of (2S,3S)-2,3-BD production and simplify the product purification. Two NADH regeneration enzymes, glucose dehydrogenase and formate dehydrogenase (FDH), were introduced into Escherichia coli with 2,3-BD dehydrogenase, respectively. Introduction of FDH resulted in higher (2S,3S)-2,3-BD concentration, productivity and yield from diacetyl, and large increase in the intracellular NADH concentration. In fed-batch bioconversion, the final titer, productivity and yield of (2S,3S)-2,3-BD on diacetyl reached 31.7 g/L, 2.3 g/(L·h) and 89.8%, the highest level of (2S,3S)-2,3-BD production thus far. Moreover, cosubstrate formate was almost totally converted to carbon dioxide and no organic acids were produced. The biocatalytic process presented should be a promising route for biotechnological production of NADH-dependent microbial metabolites. PMID:24025762

  16. Dynamic interplay between nitration and phosphorylation of tubulin cofactor B in the control of microtubule dynamics

    PubMed Central

    Rayala, Suresh K.; Martin, Emil; Sharina, Iraida G.; Molli, Poonam R.; Wang, Xiaoping; Jacobson, Raymond; Murad, Ferid; Kumar, Rakesh

    2007-01-01

    Tubulin cofactor B (TCoB) plays an important role in microtubule dynamics by facilitating the dimerization of α- and β-tubulin. Recent evidence suggests that p21-activated kinase 1 (Pak1), a major signaling nodule in eukaryotic cells, phosphorylates TCoB on Ser-65 and Ser-128 and plays an essential role in microtubule regrowth. However, to date, no upstream signaling molecules have been identified to antagonize the functions of TCoB, which might help in maintaining the equilibrium of microtubules. Here, we discovered that TCoB is efficiently nitrated, mainly on Tyr-64 and Tyr-98, and nitrated-TCoB attenuates the synthesis of new microtubules. In addition, we found that nitration of TCoB antagonizes signaling-dependent phosphorylation of TCoB, whereas optimal nitration of TCoB requires the presence of functional Pak1 phosphorylation sites, thus providing a feedback mechanism to regulate phosphorylation-dependent MT regrowth. Together these findings identified TCoB as the third cytoskeleton protein to be nitrated and suggest a previously undescribed mechanism, whereby growth factor signaling may coordinately integrate nitric oxide signaling in the regulation of microtubule dynamics. PMID:18048340

  17. Structural Investigation of the GlmS Ribozyme Bound to Its Catalytic Cofactor

    SciTech Connect

    Cochrane,J.; Lipchock, S.; Strobel, S.

    2007-01-01

    The GlmS riboswitch is located in the 5'-untranslated region of the gene encoding glucosamine-6-phosphate (GlcN6P) synthetase. The GlmS riboswitch is a ribozyme with activity triggered by binding of the metabolite GlcN6P. Presented here is the structure of the GlmS ribozyme (2.5 {angstrom} resolution) with GlcN6P bound in the active site. The GlmS ribozyme adopts a compact double pseudoknot tertiary structure, with two closely packed helical stacks. Recognition of GlcN6P is achieved through coordination of the phosphate moiety by two hydrated magnesium ions as well as specific nucleobase contacts to the GlcN6P sugar ring. Comparison of this activator bound and the previously published apoenzyme complex supports a model in which GlcN6P does not induce a conformational change in the RNA, as is typical of other riboswitches, but instead functions as a catalytic cofactor for the reaction. This demonstrates that RNA, like protein enzymes, can employ the chemical diversity of small molecules to promote catalytic activity.

  18. Candida albicans adapts to host copper during infection by swapping metal cofactors for superoxide dismutase

    PubMed Central

    Li, Cissy X.; Gleason, Julie E.; Zhang, Sean X.; Bruno, Vincent M.; Cormack, Brendan P.; Culotta, Valeria Cizewski

    2015-01-01

    Copper is both an essential nutrient and potentially toxic metal, and during infection the host can exploit Cu in the control of pathogen growth. Here we describe a clever adaptation to Cu taken by the human fungal pathogen Candida albicans. In laboratory cultures with abundant Cu, C. albicans expresses a Cu-requiring form of superoxide dismutase (Sod1) in the cytosol; but when Cu levels decline, cells switch to an alternative Mn-requiring Sod3. This toggling between Cu- and Mn-SODs is controlled by the Cu-sensing regulator Mac1 and ensures that C. albicans maintains constant SOD activity for cytosolic antioxidant protection despite fluctuating Cu. This response to Cu is initiated during C. albicans invasion of the host where the yeast is exposed to wide variations in Cu. In a murine model of disseminated candidiasis, serum Cu was seen to progressively rise over the course of infection, but this heightened Cu response was not mirrored in host tissue. The kidney that serves as the major site of fungal infection showed an initial rise in Cu, followed by a decline in the metal. C. albicans adjusted its cytosolic SODs accordingly and expressed Cu-Sod1 at early stages of infection, followed by induction of Mn-Sod3 and increases in expression of CTR1 for Cu uptake. Together, these studies demonstrate that fungal infection triggers marked fluctuations in host Cu and C. albicans readily adapts by modulating Cu uptake and by exchanging metal cofactors for antioxidant SODs. PMID:26351691

  19. Membrane cofactor protein (MCP or CD46) is a cellular pilus receptor for pathogenic Neisseria.

    PubMed

    Källström, H; Liszewski, M K; Atkinson, J P; Jonsson, A B

    1997-08-01

    Pili of Neisseria gonorrhoeae and Neisseria meningitidis mediate binding of the bacteria to human cell-surface receptors. We found that purified pili bound to a 55- to 60-kDa doublet band on SDS-PAGE of separated human epithelial cell extracts. This is a migration pattern typical of membrane cofactor protein (MCP or CD46). MCP is a widely distributed human complement regulatory protein. Attachment of the bacteria to epithelial cells was blocked by polyclonal and monoclonal antibodies directed against MCP, suggesting that this complement regulator is a receptor for piliated Neisseria. We proved this hypothesis by demonstrating that piliated, but not non-piliated, gonococci bound to CHO cells transfected with human MCP-cDNA. We also demonstrated a direct interaction between purified recombinant MCP and piliated Neisseria. Finally, recombinant MCP protein produced in E. coli inhibited attachment of the bacteria to target cells. Taken together, our data show that MCP is a human cell-surface receptor for piliated pathogenic Neisseria. PMID:9379894

  20. Controlled protonation of iron-molybdenum cofactor by nitrogenase: a structural and theoretical analysis.

    PubMed Central

    Durrant, M C

    2001-01-01

    Qualitative molecular modelling has been used to identify possible routes for transfer of protons from the surface of the nitrogenase protein to the iron-molybdenum cofactor (FeMoco) and to substrates during catalysis. Three proton-transfer routes have been identified; a water-filled channel running from the protein exterior to the homocitrate ligand of FeMoco, and two hydrogen-bonded chains to specific FeMoco sulphur atoms. It is suggested that the water channel is used for multiple proton deliveries to the substrate, as well as in diffusion of products and substrates between FeMoco and the bulk solvent, whereas the two hydrogen-bonded chains each allow a single proton to be added to, and subsequently depart from, FeMoco during the catalytic cycle. Possible functional differences in the proton-transfer channels are discussed in terms of assessment of the protein environment and specific hydrogen-bonding effects. The implications of these observations are discussed in terms of the suppression of wasteful production of dihydrogen by nitrogenase and the Lowe-Thorneley scheme for dinitrogen reduction. PMID:11311117

  1. β2-Glycoprotein I Is a Cofactor for t-PA–Mediated Plasminogen Activation

    PubMed Central

    Bu, Chunya; Gao, Lei; Xie, Weidong; Zhang, Jainwei; He, Yuhong; Cai, Guoping; McCrae, Keith R

    2010-01-01

    Regulation of the conversion of plasminogen to plasmin by tissue-type plasminogen activator (t-PA) is critical in the control of fibrin deposition. While several plasminogen activators have been described, soluble plasma cofactors that stimulate fibrinolysis have not been characterized. Here, we report that the abundant plasma glycoprotein, β2-glycoprotein I (β2GPI), stimulates t-PA–dependent plasminogen activation in the fluid phase and within a fibrin gel. The region within β2GPI responsible for stimulating t-PA activity is at least partially contained within β2GPI domain V. β2GPI bound t-PA with high affinity (Kd ~ 20 nM), stimulated t-PA amidolytic activity, and caused an overall 20-fold increase in the catalytic efficiency (kcat/Km) of t-PA–mediated conversion of Glu-plasminogen to plasmin. Moreover, depletion of β2GPI from plasma led to diminished rates of clot lysis, with restoration of normal lysis rates following β2GPI repletion. Finally, stimulation of t-PA–mediated plasminogen activity by β2GPI was inhibited by monoclonal anti-β2GPI antibodies, as well as by anti-β2GPI antibodies from patients with antiphospholipid syndrome (APS). These findings suggest that β2GPI may be an endogenous regulator of fibrinolysis. Impairment of β2GPI-stimulated fibrinolysis by anti-β2GPI antibodies may contribute to the development of thrombosis in patients with APS. PMID:19180513

  2. Cuticle Integrity and Biogenic Amine Synthesis in Caenorhabditis elegans Require the Cofactor Tetrahydrobiopterin (BH4)

    PubMed Central

    Loer, Curtis M.; Calvo, Ana C.; Watschinger, Katrin; Werner-Felmayer, Gabriele; O’Rourke, Delia; Stroud, Dave; Tong, Amy; Gotenstein, Jennifer R.; Chisholm, Andrew D.; Hodgkin, Jonathan; Werner, Ernst R.; Martinez, Aurora

    2015-01-01

    Tetrahydrobiopterin (BH4) is the natural cofactor of several enzymes widely distributed among eukaryotes, including aromatic amino acid hydroxylases (AAAHs), nitric oxide synthases (NOSs), and alkylglycerol monooxygenase (AGMO). We show here that the nematode Caenorhabditis elegans, which has three AAAH genes and one AGMO gene, contains BH4 and has genes that function in BH4 synthesis and regeneration. Knockout mutants for putative BH4 synthetic enzyme genes lack the predicted enzymatic activities, synthesize no BH4, and have indistinguishable behavioral and neurotransmitter phenotypes, including serotonin and dopamine deficiency. The BH4 regeneration enzymes are not required for steady-state levels of biogenic amines, but become rate limiting in conditions of reduced BH4 synthesis. BH4-deficient mutants also have a fragile cuticle and are generally hypersensitive to exogenous agents, a phenotype that is not due to AAAH deficiency, but rather to dysfunction in the lipid metabolic enzyme AGMO, which is expressed in the epidermis. Loss of AGMO or BH4 synthesis also specifically alters the sensitivity of C. elegans to bacterial pathogens, revealing a cuticular function for AGMO-dependent lipid metabolism in host–pathogen interactions. PMID:25808955

  3. Mitochondrial cofactors in experimental Huntington's disease: behavioral, biochemical and histological evaluation.

    PubMed

    Mehrotra, Arpit; Sandhir, Rajat

    2014-03-15

    The present study was carried out to evaluate the beneficial effect of mitochondrial cofactors; alpha-lipoic acid (ALA) and acetyl-l-carnitine (ALCAR) in 3-nitropropionic acid (3-NP) induced experimental model of Huntington's disease (HD). HD was developed by administering sub-chronic doses of 3-NP, intraperitoneally, twice daily for 17 days. The animals were assessed for their behavioral performance in terms of motor (spontaneous locomotor activity, narrow beam walk test, footprint analysis and rotarod test) and cognitive (elevated plus maze and T-maze tests) functions. 3-NP treated animals showed impairment in motor coordination such as decreased stride length, increased distance between inner toes, and increased gait angle. Increased transfer latency on elevated plus maze and T-maze tasks revealed cognition deficits in 3-NP treated animals. Increased lipid peroxidation and concomitant decrease in thiol levels were also observed. 3-NP administration also induced histopathological changes in terms of enhanced striatal lesion volume, presence of pyknotic nuclei and astrogliosis. However, combined supplementation with ALA+ALCAR to 3-NP administered animals for 21 days was able to efficiently improve behavioral deficits, attenuate oxidative stress and histological changes, suggesting a putative role of these two supplements if given together in ameliorating 3-NP induced impairments and thus could be engaged in managing HD. PMID:24393741

  4. Dual utilization of NADPH and NADH cofactors enhances xylitol production in engineered Saccharomyces cerevisiae.

    PubMed

    Jo, Jung-Hyun; Oh, Sun-Young; Lee, Hyeun-Soo; Park, Yong-Cheol; Seo, Jin-Ho

    2015-12-01

    Xylitol, a natural sweetener, can be produced by hydrogenation of xylose in hemicelluloses. In microbial processes, utilization of only NADPH cofactor limited commercialization of xylitol biosynthesis. To overcome this drawback, Saccharomyces cerevisiae D452-2 was engineered to express two types of xylose reductase (XR) with either NADPH-dependence or NADH-preference. Engineered S. cerevisiae DWM expressing both the XRs exhibited higher xylitol productivity than the yeast strain expressing NADPH-dependent XR only (DWW) in both batch and glucose-limited fed-batch cultures. Furthermore, the coexpression of S. cerevisiae ZWF1 and ACS1 genes in the DWM strain increased intracellular concentrations of NADPH and NADH and improved maximum xylitol productivity by 17%, relative to that for the DWM strain. Finally, the optimized fed-batch fermentation of S. cerevisiae DWM-ZWF1-ACS1 resulted in 196.2 g/L xylitol concentration, 4.27 g/L h productivity and almost the theoretical yield. Expression of the two types of XR utilizing both NADPH and NADH is a promising strategy to meet the industrial demands for microbial xylitol production. PMID:26470683

  5. Adenine, a hairpin ribozyme cofactor--high-pressure and competition studies.

    PubMed

    Ztouti, Myriam; Kaddour, Hussein; Miralles, Francisco; Simian, Christophe; Vergne, Jacques; Hervé, Guy; Maurel, Marie-Christine

    2009-05-01

    The RNA world hypothesis assumes that life arose from ancestral RNA molecules, which stored genetic information and catalyzed chemical reactions. Although RNA catalysis was believed to be restricted to phosphate chemistry, it is now established that the RNA has much wider catalytic capacities. In this respect, we devised, in a previous study, two hairpin ribozymes (adenine-dependent hairpin ribozyme 1 and adenine-dependent hairpin ribozyme 2) that require adenine as cofactor for their reversible self-cleavage. We have now used high hydrostatic pressure to investigate the role of adenine in the catalytic activity of adenine-dependent hairpin ribozyme 1. High-pressure studies are of interest because they make it possible to determine the volume changes associated with the reactions, which in turn reflect the conformational modifications and changes in hydration involved in the catalytic mechanism. They are also relevant in the context of piezophilic organisms, as well as in relation to the extreme conditions that prevailed at the origin of life. Our results indicate that the catalytic process involves a transition state whose formation is accompanied by a positive activation volume and release of water molecules. In addition, competition experiments with adenine analogs strongly suggest that exogenous adenine replaces the adenine present at the catalytic site of the wild-type hairpin ribozyme. PMID:19476496

  6. A Peptide of Heparin Cofactor II Inhibits Endotoxin-Mediated Shock and Invasive Pseudomonas aeruginosa Infection

    PubMed Central

    Kalle, Martina; Papareddy, Praveen; Kasetty, Gopinath; van der Plas, Mariena J. A.; Mörgelin, Matthias; Malmsten, Martin; Schmidtchen, Artur

    2014-01-01

    Sepsis and septic shock remain important medical problems with high mortality rates. Today's treatment is based mainly on using antibiotics to target the bacteria, without addressing the systemic inflammatory response, which is a major contributor to mortality in sepsis. Therefore, novel treatment options are urgently needed to counteract these complex sepsis pathologies. Heparin cofactor II (HCII) has recently been shown to be protective against Gram-negative infections. The antimicrobial effects were mapped to helices A and D of the molecule. Here we show that KYE28, a 28 amino acid long peptide representing helix D of HCII, is antimicrobial against the Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa, the Gram-positive Bacillus subtilis and Staphylococcus aureus, as well as the fungus Candida albicans. Moreover, KYE28 binds to LPS and thereby reduces LPS-induced pro-inflammatory responses by decreasing NF-κB/AP-1 activation in vitro. In mouse models of LPS-induced shock, KYE28 significantly enhanced survival by dampening the pro-inflammatory cytokine response. Finally, in an invasive Pseudomonas infection model, the peptide inhibited bacterial growth and reduced the pro-inflammatory response, which lead to a significant reduction of mortality. In summary, the peptide KYE28, by simultaneously targeting bacteria and LPS-induced pro-inflammatory responses represents a novel therapeutic candidate for invasive infections. PMID:25047075

  7. A monovalent cation acts as structural and catalytic cofactor in translational GTPases

    PubMed Central

    Kuhle, Bernhard; Ficner, Ralf

    2014-01-01

    Translational GTPases are universally conserved GTP hydrolyzing enzymes, critical for fidelity and speed of ribosomal protein biosynthesis. Despite their central roles, the mechanisms of GTP-dependent conformational switching and GTP hydrolysis that govern the function of trGTPases remain poorly understood. Here, we provide biochemical and high-resolution structural evidence that eIF5B and aEF1A/EF-Tu bound to GTP or GTPγS coordinate a monovalent cation (M+) in their active site. Our data reveal that M+ ions form constitutive components of the catalytic machinery in trGTPases acting as structural cofactor to stabilize the GTP-bound “on” state. Additionally, the M+ ion provides a positive charge into the active site analogous to the arginine-finger in the Ras-RasGAP system indicating a similar role as catalytic element that stabilizes the transition state of the hydrolysis reaction. In sequence and structure, the coordination shell for the M+ ion is, with exception of eIF2γ, highly conserved among trGTPases from bacteria to human. We therefore propose a universal mechanism of M+-dependent conformational switching and GTP hydrolysis among trGTPases with important consequences for the interpretation of available biochemical and structural data. PMID:25225612

  8. A possible prebiotic origin on volcanic islands of oligopyrrole-type photopigments and electron transfer cofactors.

    PubMed

    Fox, Stefan; Strasdeit, Henry

    2013-06-01

    Tetrapyrroles are essential to basic biochemical processes such as electron transfer and photosynthesis. However, it is not known whether these evolutionary old molecules have a prebiotic origin. We have serendipitously obtained pyrroles, which are the corresponding monomers, in laboratory experiments that simulated the interaction of amino acid-containing seawater with molten lava. The thermal pyrrole formation from amino acids, which so far has only been reported for special cases, can be explained by the observation that the amino acids become metal bonded, for example in (CaCl2)3(Hala)2·6H2O (Hala=DL-alanine), when the seawater evaporates. At a few hundred degrees Celsius, sea salt crusts also release hydrochloric acid (HCl). On primordial volcanic islands, the volatile pyrroles and HCl must have condensed at cooler locations, for example, in rock pools. There, pyrrole oligomerization may have occurred. To study this possibility, we added formaldehyde and nitrite, two species for which plausible prebiotic sources are known, to 2,4-diethylpyrrole and HCl. We found that even at high dilution conjugated (oxidized) oligomers, including octaethylporphyrin and other cyclic and open-chain tetrapyrroles, were formed. All experiments were conducted under rigorously oxygen-free conditions. Our results suggest that primitive versions of present-day biological cofactors such as chlorophylls, bilins, and heme were spontaneously abiotically synthesized on primordial volcanic islands and thus may have been available to the first protocells. PMID:23742230

  9. A novel cofactor-binding mode in bacterial IMP dehydrogenases explains inhibitor selectivity

    DOE PAGESBeta

    Makowska-Grzyska, Magdalena; Kim, Youngchang; Maltseva, Natalia; Osipiuk, Jerzy; Gu, Minyi; Zhang, Minjia; Mandapati, Kavitha; Gollapalli, Deviprasad R.; Gorla, Suresh Kumar; Hedstrom, Lizbeth; et al

    2015-01-09

    The steadily rising frequency of emerging diseases and antibiotic resistance creates an urgent need for new drugs and targets. Inosine 5'-monophosphate dehydrogenase (IMP dehydrogenase or IMPDH) is a promising target for the development of new antimicrobial agents. IMPDH catalyzes the oxidation of IMP to XMP with the concomitant reduction of NAD+, which is the pivotal step in the biosynthesis of guanine nucleotides. Potent inhibitors of bacterial IMPDHs have been identified that bind in a structurally distinct pocket that is absent in eukaryotic IMPDHs. The physiological role of this pocket was not understood. Here, we report the structures of complexes withmore » different classes of inhibitors of Bacillus anthracis, Campylobacter jejuni, and Clostridium perfringens IMPDHs. These structures in combination with inhibition studies provide important insights into the interactions that modulate selectivity and potency. We also present two structures of the Vibrio cholerae IMPDH in complex with IMP/NAD+ and XMP/NAD+. In both structures, the cofactor assumes a dramatically different conformation than reported previously for eukaryotic IMPDHs and other dehydrogenases, with the major change observed for the position of the NAD+ adenosine moiety. More importantly, this new NAD+-binding site involves the same pocket that is utilized by the inhibitors. Thus, the bacterial IMPDH-specific NAD+-binding mode helps to rationalize the conformation adopted by several classes of prokaryotic IMPDH inhibitors. As a result, these findings offer a potential strategy for further ligand optimization.« less

  10. A Regulatory Role of NAD Redox Status on Flavin Cofactor Homeostasis in S. cerevisiae Mitochondria

    PubMed Central

    Giancaspero, Teresa Anna; Barile, Maria

    2013-01-01

    Flavin adenine dinucleotide (FAD) and nicotinamide adenine dinucleotide (NAD) are two redox cofactors of pivotal importance for mitochondrial functionality and cellular redox balance. Despite their relevance, the mechanism by which intramitochondrial NAD(H) and FAD levels are maintained remains quite unclear in Saccharomyces cerevisiae. We investigated here the ability of isolated mitochondria to degrade externally added FAD and NAD (in both its reduced and oxidized forms). A set of kinetic experiments demonstrated that mitochondrial FAD and NAD(H) destroying enzymes are different from each other and from the already characterized NUDIX hydrolases. We studied here, in some detail, FAD pyrophosphatase (EC 3.6.1.18), which is inhibited by NAD+ and NADH according to a noncompetitive inhibition, with Ki values that differ from each other by an order of magnitude. These findings, together with the ability of mitochondrial FAD pyrophosphatase to metabolize endogenous FAD, presumably deriving from mitochondrial holoflavoproteins destined to degradation, allow for proposing a novel possible role of mitochondrial NAD redox status in regulating FAD homeostasis and/or flavoprotein degradation in S. cerevisiae. PMID:24078860

  11. Biochemical establishment and characterization of EncM's flavin-N5-oxide cofactor

    PubMed Central

    Teufel, Robin; Stull, Frederick; Meehan, Michael J.; Michaudel, Quentin; Dorrestein, Pieter C.; Palfey, Bruce; Moore, Bradley S.

    2016-01-01

    The ubiquitous flavin-dependent monooxygenases commonly catalyze oxygenation reactions by means of a transient C4a-peroxyflavin. A recent study, however, suggested an unprecedented flavin-oxygenating species - proposed as the flavin-N5-oxide (FlN5[O]) - as key to an oxidative Favorskii-type rearrangement in the biosynthesis of the bacterial polyketide antibiotic enterocin. This stable superoxidized flavin is covalently tethered to the enzyme EncM and converted into FADH2 (Flred) during substrate turnover. Subsequent reaction of Flred with molecular oxygen restores the postulated FlN5[O] via an unknown pathway. Here we provide direct evidence for the FlN5[O] species via isotope labeling, proteolytic digestion, and high-resolution tandem mass spectrometry of EncM. We propose that formation of this species occurs by hydrogen-transfer from Flred to molecular oxygen, allowing radical coupling of the formed protonated superoxide and anionic flavin semiquinone at N5, before elimination of water affords the FlN5[O] cofactor. Further biochemical and spectroscopic investigations reveal important features of the FlN5[O] species and the EncM catalytic mechanism. We speculate that flavin-N5-oxides may be intermediates or catalytically active species in other flavoproteins that form the anionic semiquinone and promote access of oxygen to N5. PMID:26067765

  12. Candida albicans adapts to host copper during infection by swapping metal cofactors for superoxide dismutase.

    PubMed

    Li, Cissy X; Gleason, Julie E; Zhang, Sean X; Bruno, Vincent M; Cormack, Brendan P; Culotta, Valeria Cizewski

    2015-09-22

    Copper is both an essential nutrient and potentially toxic metal, and during infection the host can exploit Cu in the control of pathogen growth. Here we describe a clever adaptation to Cu taken by the human fungal pathogen Candida albicans. In laboratory cultures with abundant Cu, C. albicans expresses a Cu-requiring form of superoxide dismutase (Sod1) in the cytosol; but when Cu levels decline, cells switch to an alternative Mn-requiring Sod3. This toggling between Cu- and Mn-SODs is controlled by the Cu-sensing regulator Mac1 and ensures that C. albicans maintains constant SOD activity for cytosolic antioxidant protection despite fluctuating Cu. This response to Cu is initiated during C. albicans invasion of the host where the yeast is exposed to wide variations in Cu. In a murine model of disseminated candidiasis, serum Cu was seen to progressively rise over the course of infection, but this heightened Cu response was not mirrored in host tissue. The kidney that serves as the major site of fungal infection showed an initial rise in Cu, followed by a decline in the metal. C. albicans adjusted its cytosolic SODs accordingly and expressed Cu-Sod1 at early stages of infection, followed by induction of Mn-Sod3 and increases in expression of CTR1 for Cu uptake. Together, these studies demonstrate that fungal infection triggers marked fluctuations in host Cu and C. albicans readily adapts by modulating Cu uptake and by exchanging metal cofactors for antioxidant SODs. PMID:26351691

  13. A Novel Cofactor-binding Mode in Bacterial IMP Dehydrogenases Explains Inhibitor Selectivity*

    PubMed Central

    Makowska-Grzyska, Magdalena; Kim, Youngchang; Maltseva, Natalia; Osipiuk, Jerzy; Gu, Minyi; Zhang, Minjia; Mandapati, Kavitha; Gollapalli, Deviprasad R.; Gorla, Suresh Kumar; Hedstrom, Lizbeth; Joachimiak, Andrzej

    2015-01-01

    The steadily rising frequency of emerging diseases and antibiotic resistance creates an urgent need for new drugs and targets. Inosine 5′-monophosphate dehydrogenase (IMP dehydrogenase or IMPDH) is a promising target for the development of new antimicrobial agents. IMPDH catalyzes the oxidation of IMP to XMP with the concomitant reduction of NAD+, which is the pivotal step in the biosynthesis of guanine nucleotides. Potent inhibitors of bacterial IMPDHs have been identified that bind in a structurally distinct pocket that is absent in eukaryotic IMPDHs. The physiological role of this pocket was not understood. Here, we report the structures of complexes with different classes of inhibitors of Bacillus anthracis, Campylobacter jejuni, and Clostridium perfringens IMPDHs. These structures in combination with inhibition studies provide important insights into the interactions that modulate selectivity and potency. We also present two structures of the Vibrio cholerae IMPDH in complex with IMP/NAD+ and XMP/NAD+. In both structures, the cofactor assumes a dramatically different conformation than reported previously for eukaryotic IMPDHs and other dehydrogenases, with the major change observed for the position of the NAD+ adenosine moiety. More importantly, this new NAD+-binding site involves the same pocket that is utilized by the inhibitors. Thus, the bacterial IMPDH-specific NAD+-binding mode helps to rationalize the conformation adopted by several classes of prokaryotic IMPDH inhibitors. These findings offer a potential strategy for further ligand optimization. PMID:25572472

  14. Probing protonation sites of isolated flavins using IR spectroscopy: from lumichrome to the cofactor flavin mononucleotide.

    PubMed

    Langer, Judith; Günther, Alan; Seidenbecher, Sophie; Berden, Giel; Oomens, Jos; Dopfer, Otto

    2014-08-25

    Infrared spectra of the isolated protonated flavin molecules lumichrome, lumiflavin, riboflavin (vitamin B2), and the biologically important cofactor flavin mononucleotide are measured in the fingerprint region (600-1850 cm(-1)) by means of IR multiple-photon dissociation (IRMPD) spectroscopy. Using density functional theory calculations, the geometries, relative energies, and linear IR absorption spectra of several low-energy isomers are calculated. Comparison of the calculated IR spectra with the measured IRMPD spectra reveals that the N10 substituent on the isoalloxazine ring influences the protonation site of the flavin. Lumichrome, with a hydrogen substituent, is only stable as the N1-protonated tautomer and protonates at N5 of the pyrazine ring. The presence of the ribityl unit in riboflavin leads to protonation at N1 of the pyrimidinedione moiety, and methyl substitution in lumiflavin stabilizes the tautomer that is protonated at O2. In contrast, flavin mononucleotide exists as both the O2- and N1-protonated tautomers. The frequencies and relative intensities of the two C=O stretch vibrations in protonated flavins serve as reliable indicators for their protonation site. PMID:24895155

  15. In vitro synthesis of the iron-molybdenum cofactor of nitrogenase.

    PubMed

    Shah, V K; Imperial, J; Ugalde, R A; Ludden, P W; Brill, W J

    1986-03-01

    Molybdate- and ATP-dependent in vitro synthesis of the iron-molybdenum cofactor (FeMo-co) of nitrogenase requires the protein products of at least the nifB, nifN, and nifE genes. Extracts of FeMo-co-negative mutants of Klebsiella pneumoniae and Azotobacter vinelandii with lesions in different genes can be complemented for FeMo-co synthesis. Both K. pneumoniae and A. vinelandii dinitrogenase (component I) deficient in FeMo-co can be activated by FeMo-co synthesized in vitro. Properties of the partially purified dinitrogenase activated by FeMo-co synthesized in vitro were comparable to those of dinitrogenase from the wild-type organism; e.g., ratios of acetylene- to nitrogen-reduction activities, as well as those of acetylene reduction activities to EPR spectrum peak height at g = 3.65, were very similar. A. vinelandii mutants UW45 and CA30 have mutations in a gene functionally equivalent to nifB of K. pneumoniae. PMID:3006060

  16. Purification and characterization of iron-cofactored superoxide dismutase from Enteromorpha linza

    NASA Astrophysics Data System (ADS)

    Lü, Mingsheng; Cai, Ruanhong; Wang, Shujun; Liu, Zhaopu; Jiao, Yuliang; Fang, Yaowei; Zhang, Xiaoxin

    2013-11-01

    A superoxide dismutase was purified from Enteromorpha linza using a simple and safe procedure, which comprised phosphate buffer extraction, ammonium sulphate precipitation, ion exchange chromatography on Q-sepharose column, and gel filtration chromatography on Superdex 200 10/300GL. The E. linza superoxide dismutase ( ElSOD) was purified 103.6-fold, and a yield of 19.1% and a specific activity of 1 750 U/mg protein were obtained. The SDS-PAGE exhibited ElSOD a single band near 23 kDa and the gel filtration study showed ElSOD's molecular weight is near 46 kDa in nondenatured condition, indicating it's a homodimeric protein. El SOD is an iron-cofactored superoxide dismutase (Fe-SOD) because it was inhibited by hydrogen peroxide, insensitive to potassium cyanide. The optimal temperature for its maximal enzyme activity was 35°C, and it still had 29.8% relative activity at 0°C, then ElSOD can be classified as a cold-adapted enzyme. ElSOD was stable when temperature was below 40°C or the pH was within the range of 5-10. The first 11 N-terminal amino acids of ElSOD were ALELKAPPYEL, comparison of its N-terminal sequence with other Fe-SOD N-terminal sequences at the same position suggests it is possibly a chloroplastic Fe-SOD.

  17. Complete catalytic cycle of cofactor-independent phosphoglycerate mutase involves a spring-loaded mechanism.

    PubMed

    Roychowdhury, Amlan; Kundu, Anirban; Bose, Madhuparna; Gujar, Akanksha; Mukherjee, Somnath; Das, Amit Kumar

    2015-03-01

    Cofactor-independent phosphoglycerate mutase (iPGM), an important enzyme in glycolysis and gluconeogenesis, catalyses the isomerization of 2- and 3-phosphoglycerates by an Mn(2+)-dependent phospho-transfer mechanism via a phospho-enzyme intermediate. Crystal structures of bi-domain iPGM from Staphylococcus aureus, together with substrate-bound forms, have revealed a new conformation of the enzyme, representing an intermediate state of domain movement. The substrate-binding site and the catalytic site are present in two distinct domains in the intermediate form. X-ray crystallography complemented by simulated dynamics has enabled delineation of the complete catalytic cycle, which includes binding of the substrate, followed by its positioning into the catalytic site, phospho-transfer and finally product release. The present work describes a novel mechanism of domain movement controlled by a hydrophobic patch that is exposed on domain closure and acts like a spring to keep the protein in open conformation. Domain closing occurs after substrate binding, and is essential for phospho-transfer, whereas the open conformation is a prerequisite for efficient substrate binding and product dissociation. A new model of catalysis has been proposed by correlating the hinge-bending motion with the phospho-transfer mechanism. PMID:25611430

  18. Sexual maturation of female Saguinus oedipus oedipus

    SciTech Connect

    Tardif, S.D.

    1982-01-01

    This study is an examination of the process of female sexual maturation in the cotton-top tamarin, Saguinus oedipus oedipus, a South-American primate of the family, Callitrichidae. Two types of questions are addressed. The first question is whether the type of social grouping in which a young female lives affects the rate of her sexual maturation. Specifically, is there a difference between the maturation rate of a female housed with a strange adult male and a female housed with her natal group (i.e., her parents and various siblings). Second, the effect of sexual maturation on various social interactions is examined. Specifically are male-female interactions in mated pairs and mother-daughter interactions in natal groups changed by the sexual maturation of the young females. The mother's presence was not related to the daughter's maturation age. However, whether the natal group, as a whole, inhibited maturation, or unrelated males accelerated maturation, or both, remains unknown. Most of the behavioral interactions involving maturing females were unchanged by maturation. There was some indication that certain behaviors were affected by maturation, but only if a strange unrelated male was present.

  19. Secretory production of an FAD cofactor-containing cytosolic enzyme (sorbitol-xylitol oxidase from Streptomyces coelicolor) using the twin-arginine translocation (Tat) pathway of Corynebacterium glutamicum.

    PubMed

    Scheele, Sandra; Oertel, Dan; Bongaerts, Johannes; Evers, Stefan; Hellmuth, Hendrik; Maurer, Karl-Heinz; Bott, Michael; Freudl, Roland

    2013-03-01

    Carbohydrate oxidases are biotechnologically interesting enzymes that require a tightly or covalently bound cofactor for activity. Using the industrial workhorse Corynebacterium glutamicum as the expression host, successful secretion of a normally cytosolic FAD cofactor-containing sorbitol-xylitol oxidase from Streptomyces coelicolor was achieved by using the twin-arginine translocation (Tat) protein export machinery for protein translocation across the cytoplasmic membrane. Our results demonstrate for the first time that, also for cofactor-containing proteins, a secretory production strategy is a feasible and promising alternative to conventional intracellular expression strategies. PMID:23163932

  20. Secretory production of an FAD cofactor-containing cytosolic enzyme (sorbitol–xylitol oxidase from Streptomyces coelicolor) using the twin-arginine translocation (Tat) pathway of Corynebacterium glutamicum

    PubMed Central

    Scheele, Sandra; Oertel, Dan; Bongaerts, Johannes; Evers, Stefan; Hellmuth, Hendrik; Maurer, Karl-Heinz; Bott, Michael; Freudl, Roland

    2013-01-01

    Carbohydrate oxidases are biotechnologically interesting enzymes that require a tightly or covalently bound cofactor for activity. Using the industrial workhorse Corynebacterium glutamicum as the expression host, successful secretion of a normally cytosolic FAD cofactor-containing sorbitol–xylitol oxidase from Streptomyces coelicolor was achieved by using the twin-arginine translocation (Tat) protein export machinery for protein translocation across the cytoplasmic membrane. Our results demonstrate for the first time that, also for cofactor-containing proteins, a secretory production strategy is a feasible and promising alternative to conventional intracellular expression strategies. PMID:23163932

  1. Transcriptional cofactors exhibit differential preference toward peroxisome proliferator-activated receptors alpha and delta in uterine cells.

    PubMed

    Lim, Hyunjung J; Moon, Irene; Han, Kyuyong

    2004-06-01

    We previously showed that peroxisome proliferator-activated receptor delta (PPARdelta) is crucial for embryo implantation as a receptor for cyclooxygenase-2-derived prostacyclin in mice. PPARs belong to the nuclear receptor superfamily. They form heterodimer with a retinoid X receptor, recruit transcriptional cofactors, and bind to a specific recognition element for regulation of target genes. Although cofactors are generally shared by various nuclear receptors, some are involved in cell-specific events. The objective of this investigation was to examine interactions of transcriptional cofactors with PPARdelta in uterine cells for its effectiveness in regulating gene expression. We chose two uterine cellular systems: periimplantation mouse uterus and AN(3)CA human uterine cell line. As examined by in situ hybridization, steroid receptor coactivator (SRC)-2, SRC-3, PPAR-interacting protein, receptor-interacting protein 140 (RIP140), nuclear receptor corepressor (N-CoR), and silencing mediator for retinoid and thyroid hormone receptor (SMRT) exhibit overlapping expression with that of PPARdelta in the periimplantation mouse uterus. Glutathione-S-transferase (GST) pull-down assays show that PPARdelta physically interacts with SRC 1-3, RIP140, PPAR-binding protein, N-CoR, and SMRT in the absence of ligands, suggesting their potent interactions with PPARdelta. Transient transfection assays in AN(3)CA cells show that among members of the SRC family, only SRC-2 serves as a true coactivator for PPARdelta, whereas all SRC members could enhance PPARalpha-induced transcriptional activation. Interestingly, N-CoR and SMRT potently repress PPARdelta-induced transcriptional activation but fail to repress PPARalpha activity. RIP140 is effective in repressing basal and PPAR-induced transcriptional activation. Collectively, the results suggest that gene regulation by PPARdelta in the uterine cells uniquely responds to SRC-2, N-CoR, SMRT, or RIP140, and these interactions may be

  2. DNA polymorphism-diet-cofactor-development hypothesis and the gene-teratogen model for schizophrenia and other developmental disorders.

    PubMed

    Johnson, W G

    1999-08-20

    Three problems in identifying genes causing schizophrenia and other developmental disorders may be locus heterogeneity, high disease allele frequency, and unknown mode of inheritance. The DNA polymorphism-diet-cofactor-development (DDCD) hypothesis addresses the first two. The gene-teratogen model addresses the third. The DDCD hypothesis is that schizophrenia results in part from brain abnormality in utero from the aggregate effect of multiple mutations of small effect of genes related to important cofactors (e.g., folate, cobalamin, or pyridoxine) potentiated by maternal dietary deficiency of these cofactors and by pregnancy. The effect results from insufficiency of the cofactors and from resulting effects such as impaired DNA synthesis, immune deficiency, effects on niacin and serotonin metabolism, and teratogens, e.g., hyperhomocysteinemia. The hypothesis addresses all of the unusual features of schizophrenia: e.g., decreased brain gray matter, birth-month effect, geographical differences, socioeconomic predilection, association with obstetrical abnormalities, decreased incidence of rheumatoid arthritis, and association with famine and viral epidemics. In the gene-teratogen model, a teratogenic effect in utero produces a developmental disorder through a teratogenic locus and a modifying or specificity locus, as well as through environmental factors. An example is the major intrauterine effect seen in offspring of phenylketonuric mothers. Thus, the mode of inheritance of genes acting prenatally may in some cases be fundamentally different from that of genes acting postnatally. The model is interesting because it is simple and because teratogenic loci will be difficult to locate by conventional linkage mapping techniques due to misspecification of the affection status of both mother and affected children. A new study design is suggested for identifying teratogenic loci. PMID:10402496

  3. Catalytic mechanism of cofactor-free dioxygenases and how they circumvent spin-forbidden oxygenation of their substrates.

    PubMed

    Hernández-Ortega, Aitor; Quesne, Matthew G; Bui, Soi; Heyes, Derren J; Steiner, Roberto A; Scrutton, Nigel S; de Visser, Sam P

    2015-06-17

    Dioxygenases catalyze a diverse range of biological reactions by incorporating molecular oxygen into organic substrates. Typically, they use transition metals or organic cofactors for catalysis. Bacterial 1-H-3-hydroxy-4-oxoquinaldine-2,4-dioxygenase (HOD) catalyzes the spin-forbidden transfer of dioxygen to its N-heteroaromatic substrate in the absence of any cofactor. We combined kinetics, spectroscopic and computational approaches to establish a novel reaction mechanism. The present work gives insight into the rate limiting steps in the reaction mechanism, the effect of first-coordination sphere amino acids as well as electron-donating/electron-withdrawing substituents on the substrate. We highlight the role of active site residues Ser101/Trp160/His251 and their involvement in the reaction mechanism. The work shows, for the first time, that the reaction is initiated by triplet dioxygen and its binding to deprotonated substrate and only thereafter a spin state crossing to the singlet spin state occurs. As revealed by steady- and transient-state kinetics the oxygen-dependent steps are rate-limiting, whereas Trp160 and His251 are essential residues for catalysis and contribute to substrate positioning and activation, respectively. Computational modeling further confirms the experimental observations and rationalizes the electron transfer pathways, and the effect of substrate and substrate binding pocket residues. Finally, we make a direct comparison with iron-based dioxygenases and explain the mechanistic and electronic differences with cofactor-free dioxygenases. Our multidisciplinary study confirms that the oxygenation reaction can take place in absence of any cofactor by a unique mechanism in which the specially designed fit-for-purpose active-site architecture modulates substrate reactivity toward oxygen. PMID:25988744

  4. In silico model-driven cofactor engineering strategies for improving the overall NADP(H) turnover in microbial cell factories.

    PubMed

    Lakshmanan, Meiyappan; Yu, Kai; Koduru, Lokanand; Lee, Dong-Yup

    2015-10-01

    Optimizing the overall NADPH turnover is one of the key challenges in various value-added biochemical syntheses. In this work, we first analyzed the NADPH regeneration potentials of common cell factories, including Escherichia coli, Saccharomyces cerevisiae, Bacillus subtilis, and Pichia pastoris across multiple environmental conditions and determined E. coli and glycerol as the best microbial chassis and most suitable carbon source, respectively. In addition, we identified optimal cofactor specificity engineering (CSE) enzyme targets, whose cofactors when switched from NAD(H) to NADP(H) improve the overall NADP(H) turnover. Among several enzyme targets, glyceraldehyde-3-phosphate dehydrogenase was recognized as a global candidate since its CSE improved the NADP(H) regeneration under most of the conditions examined. Finally, by analyzing the protein structures of all CSE enzyme targets via homology modeling, we established that the replacement of conserved glutamate or aspartate with serine in the loop region could change the cofactor dependence from NAD(H) to NADP(H). PMID:26254041

  5. Methylfolate modulates potassium evoked neuro-secretion: evidence for a role at the pteridine cofactor level of tyrosine 3-hydroxylase.

    PubMed

    Lucock, M D; Green, M; Levene, M I

    1995-06-01

    We have previously shown that 5-methyltetrahydrofolate influences neuro-secretion. The present study more precisely characterises the processes involved and considers one probable site of action. Focusing on the tyrosine-noradrenalin axis in cerebellum we showed 5-methyltetrahydrofolate causes a significant reduction in the apparent K+ evoked secretion of noradrenalin to only 12.9% of control release. Evidence supports the idea that this could actually be due to increased synthesis leading to; depletion of reserves, possibly through leakage, exocytotic inhibition via activation of presynaptic receptors or end product inhibition by noradrenalin at the pteridine cofactor level of tyrosine hydroxylase: a) concomitant decreased measurement of perfusate and intracellular tyrosine with released noradrenalin following 5-methyltetrahydrofolate treatment supports the idea of increased transmitter turn over; b) kinetic studies indicate that at saturating concentrations of tyrosine and in the presence of an inhibitor of L-DOPA decarboxylase, 5-methyltetrahydrofolate partially duplicates the rate limiting behaviour of a synthetic pteridine cofactor--DL,2-amino-4-hydroxy-6,7,dimethyltetrahydropteridine. We debate whether, in vivo, CSF 5-methyltetrahydrofolate might interact at the tetrahydrobiopterin cofactor level of tyrosine hydroxylase and other aromatic amino-acid hydroxylases. PMID:7566370

  6. Kinetics of Nif gene expression in a nitrogen-fixing bacterium.

    PubMed

    Poza-Carrión, César; Jiménez-Vicente, Emilio; Navarro-Rodríguez, Mónica; Echavarri-Erasun, Carlos; Rubio, Luis M

    2014-02-01

    Nitrogen fixation is a tightly regulated trait. Switching from N2 fixation-repressing conditions to the N2-fixing state is carefully controlled in diazotrophic bacteria mainly because of the high energy demand that it imposes. By using quantitative real-time PCR and quantitative immunoblotting, we show here how nitrogen fixation (nif) gene expression develops in Azotobacter vinelandii upon derepression. Transient expression of the transcriptional activator-encoding gene, nifA, was followed by subsequent, longer-duration waves of expression of the nitrogenase biosynthetic and structural genes. Importantly, expression timing, expression levels, and NifA dependence varied greatly among the nif operons. Moreover, the exact concentrations of Nif proteins and their changes over time were determined for the first time. Nif protein concentrations were exquisitely balanced, with FeMo cofactor biosynthetic proteins accumulating at levels 50- to 100-fold lower than those of the structural proteins. Mutants lacking nitrogenase structural genes or impaired in FeMo cofactor biosynthesis showed overenhanced responses to derepression that were proportional to the degree of nitrogenase activity impairment, consistent with the existence of at least two negative-feedback regulatory mechanisms. The first such mechanism responded to the levels of fixed nitrogen, whereas the second mechanism appeared to respond to the levels of the mature NifDK component. Altogether, these findings provide a framework to engineer N2 fixation in nondiazotrophs. PMID:24244007

  7. Kinetics of nif Gene Expression in a Nitrogen-Fixing Bacterium

    PubMed Central

    Poza-Carrión, César; Jiménez-Vicente, Emilio; Navarro-Rodríguez, Mónica; Echavarri-Erasun, Carlos

    2014-01-01

    Nitrogen fixation is a tightly regulated trait. Switching from N2 fixation-repressing conditions to the N2-fixing state is carefully controlled in diazotrophic bacteria mainly because of the high energy demand that it imposes. By using quantitative real-time PCR and quantitative immunoblotting, we show here how nitrogen fixation (nif) gene expression develops in Azotobacter vinelandii upon derepression. Transient expression of the transcriptional activator-encoding gene, nifA, was followed by subsequent, longer-duration waves of expression of the nitrogenase biosynthetic and structural genes. Importantly, expression timing, expression levels, and NifA dependence varied greatly among the nif operons. Moreover, the exact concentrations of Nif proteins and their changes over time were determined for the first time. Nif protein concentrations were exquisitely balanced, with FeMo cofactor biosynthetic proteins accumulating at levels 50- to 100-fold lower than those of the structural proteins. Mutants lacking nitrogenase structural genes or impaired in FeMo cofactor biosynthesis showed overenhanced responses to derepression that were proportional to the degree of nitrogenase activity impairment, consistent with the existence of at least two negative-feedback regulatory mechanisms. The first such mechanism responded to the levels of fixed nitrogen, whereas the second mechanism appeared to respond to the levels of the mature NifDK component. Altogether, these findings provide a framework to engineer N2 fixation in nondiazotrophs. PMID:24244007

  8. Dual Posttranscriptional Regulation via a Cofactor-Responsive mRNA Leader

    PubMed Central

    Patterson-Fortin, Laura M.; Vakulskas, Christopher A.; Yakhnin, Helen; Babitzke, Paul; Romeo, Tony

    2013-01-01

    Riboswitches are cis-acting mRNA elements that regulate gene expression in response to ligand binding. Recently, a class of riboswitches was proposed to respond to the molybdenum cofactor (Moco), which serves as a redox center for metabolic enzymes. The 5′ leader of the Escherichia coli moaABCDE transcript exemplifies this candidate riboswitch class. This mRNA encodes enzymes for Moco biosynthesis, and moaA expression is feedback inhibited by Moco. Previous RNA-seq analyses showed that moaA mRNA copurified with the RNA binding protein CsrA (carbon storage regulator), suggesting that CsrA binds to this RNA in vivo. Among its global regulatory roles, CsrA represses stationary phase metabolism and activates central carbon metabolism. Here, we used gel mobility shift analysis to determine that CsrA binds specifically and with high affinity to the moaA 5′ mRNA leader. Northern blotting and studies with a series of chromosomal lacZ reporter fusions showed that CsrA posttranscriptionally activates moaA expression without altering moaA mRNA levels, indicative of translation control. Deletion analyses, nucleotide replacement studies and footprinting with CsrA-FeBABE identified two sites for CsrA binding. Toeprinting assays suggested that CsrA binding causes changes in moaA RNA structure. We propose that the moaA mRNA leader forms an aptamer, which serves as a target of posttranscriptional regulation by at least two different factors, Moco and the protein CsrA. While we are not aware of similar dual posttranscriptional regulatory mechanisms, additional examples are likely to emerge. PMID:23274138

  9. Cofactors involved in light-driven charge separation in photosystem I identified by subpicosecond infrared spectroscopy.

    PubMed

    Di Donato, Mariangela; Stahl, Andreas D; van Stokkum, Ivo H M; van Grondelle, Rienk; Groot, Marie-Louise

    2011-02-01

    Photosystem I is one of the key players in the conversion of solar energy into chemical energy. While the chlorophyll dimer P(700) has long been identified as the primary electron donor, the components involved in the primary charge separation process in PSI remain undetermined. Here, we have studied the charge separation dynamics in Photosystem I trimers from Synechococcus elongatus by femtosecond vis-pump/mid-infrared-probe spectroscopy upon excitation at 700, 710, and 715 nm. Because of the high specificity of the infrared region for the redox state and small differences in the molecular structure of pigments, we were able to clearly identify specific marker bands indicating chlorophyll (Chl) oxidation. Magnitudes of chlorophyll cation signals are observed to increase faster than the time resolution of the experiment (~0.2 ps) upon both excitation conditions: 700 nm and selective red excitation. Two models, involving either ultrafast charge separation or charge transfer character of the red pigments in PSI, are discussed to explain this observation. A further increase in the magnitudes of cation signals on a subpicosecond time scale (0.8-1 ps) indicates the formation of the primary radical pair. Evolution in the cation region with time constants of 7 and 40 ps reveals the formation of the secondary radical pair, involving a secondary electron donor. Modeling of the data allows us to extract the spectra of the two radical pairs, which have IR signatures consistent with A+A₀- and P₇₀₀+A₁-. We conclude that the cofactor chlorophyll A acts as the primary donor in PSI. The existence of an equilibrium between the two radical pairs we interpret as concerted hole/electron transfer between the pairs of electron donors and acceptors, until after 40 ps, relaxation leads to a full population of the P₇₀₀+A₁. radical pair. PMID:21155543

  10. Roles of nucleic acid substrates and cofactors in the vhs protein activity of pseudorabies virus.

    PubMed

    Liu, Ya-Fen; Tsai, Pei-Yun; Lin, Fong-Yuan; Lin, Kuan-Hsun; Chang, Tien-Jye; Lin, Hui-Wen; Chulakasian, Songkhla; Hsu, Wei-Li

    2015-01-01

    Pseudorabies virus (PrV) belongs to the α-herpesvirinae of which human simplex virus (HSV) is the prototype virus. One of the hallmarks of HSV infection is shutoff of protein synthesis that is mediated by various viral proteins including vhs (virion host shutoff), which is encoded by the UL41 gene. However, the function of PrV vhs is poorly understood. Due to the low sequence similarity (39.3%) between the HSV and PrV UL41 proteins, vhs might not share the same biochemistry characteristics. The purpose of this study was to characterize the nuclease activity of the PrV vhs protein with respect to substrate specificity, its requirements in terms of cofactors, and the protein regions, as well as key amino acids, which contribute to vhs activity. Our results indicated that, similar to HSV vhs, PrV vhs is able to degrade ssRNA and mRNA. However, PrV vhs also targeted rRNA for degradation, which is novel compared to the HSV-1 vhs. Activity assays indicated that Mg(2+) alone enhances RNA degradation mediated by PrV vhs, while K(+) and ATP are not sufficient to induce activity. Finally, we demonstrated that each of the four highly conserved functional boxes of PrV vhs contributes to RNA degradation and that, in particular, residues 152, 169, 171, 172, 173 343, 345, 352 and 356, which are conserved among α-herpesviruses, are key amino acids needed for PrV vhs ribonuclease activity. PMID:26704628

  11. Molybdate uptake by Agrobacterium tumefaciens correlates with the cellular molybdenum cofactor status.

    PubMed

    Hoffmann, Marie-Christine; Ali, Koral; Sonnenschein, Marleen; Robrahn, Laura; Strauss, Daria; Narberhaus, Franz; Masepohl, Bernd

    2016-09-01

    Many enzymes require the molybdenum cofactor, Moco. Under Mo-limiting conditions, the high-affinity ABC transporter ModABC permits molybdate uptake and Moco biosynthesis in bacteria. Under Mo-replete conditions, Escherichia coli represses modABC transcription by the one-component regulator, ModE, consisting of a DNA-binding and a molybdate-sensing domain. Instead of a full-length ModE protein, many bacteria have a shorter ModE protein, ModE(S) , consisting of a DNA-binding domain only. Here, we asked how such proteins sense the intracellular molybdenum status. We show that the Agrobacterium tumefaciens ModE(S) protein Atu2564 is essential for modABC repression. ModE(S) binds two Mo-boxes in the modA promoter as shown by electrophoretic mobility shift assays. Northern analysis revealed cotranscription of modE(S) with the upstream gene, atu2565, which was dispensable for ModE(S) activity. To identify genes controlling ModE(S) function, we performed transposon mutagenesis. Tn5 insertions resulting in derepressed modA transcription mapped to the atu2565-modE(S) operon and several Moco biosynthesis genes. We conclude that A. tumefaciens ModE(S) activity responds to Moco availability rather than to molybdate concentration directly, as is the case for E. coli ModE. Similar results in Sinorhizobium meliloti suggest that Moco dependence is a common feature of ModE(S) regulators. PMID:27196733

  12. A novel cofactor-binding mode in bacterial IMP dehydrogenases explains inhibitor selectivity

    SciTech Connect

    Makowska-Grzyska, Magdalena; Kim, Youngchang; Maltseva, Natalia; Osipiuk, Jerzy; Gu, Minyi; Zhang, Minjia; Mandapati, Kavitha; Gollapalli, Deviprasad R.; Gorla, Suresh Kumar; Hedstrom, Lizbeth; Joachimiak, Andrzej

    2015-01-09

    The steadily rising frequency of emerging diseases and antibiotic resistance creates an urgent need for new drugs and targets. Inosine 5'-monophosphate dehydrogenase (IMP dehydrogenase or IMPDH) is a promising target for the development of new antimicrobial agents. IMPDH catalyzes the oxidation of IMP to XMP with the concomitant reduction of NAD+, which is the pivotal step in the biosynthesis of guanine nucleotides. Potent inhibitors of bacterial IMPDHs have been identified that bind in a structurally distinct pocket that is absent in eukaryotic IMPDHs. The physiological role of this pocket was not understood. Here, we report the structures of complexes with different classes of inhibitors of Bacillus anthracis, Campylobacter jejuni, and Clostridium perfringens IMPDHs. These structures in combination with inhibition studies provide important insights into the interactions that modulate selectivity and potency. We also present two structures of the Vibrio cholerae IMPDH in complex with IMP/NAD+ and XMP/NAD+. In both structures, the cofactor assumes a dramatically different conformation than reported previously for eukaryotic IMPDHs and other dehydrogenases, with the major change observed for the position of the NAD+ adenosine moiety. More importantly, this new NAD+-binding site involves the same pocket that is utilized by the inhibitors. Thus, the bacterial IMPDH-specific NAD+-binding mode helps to rationalize the conformation adopted by several classes of prokaryotic IMPDH inhibitors. As a result, these findings offer a potential strategy for further ligand optimization.

  13. Taspase1 processing alters TFIIA cofactor properties in the regulation of TFIID

    PubMed Central

    Malecová, Barbora; Caputo, Valentina S; Lee, Diane F; Hsieh, James J; Oelgeschläger, Thomas

    2015-01-01

    TFIIA is an important positive regulator of TFIID, the primary promoter recognition factor of the basal RNA polymerase II transcription machinery. TFIIA antagonises negative TFIID regulators such as negative cofactor 2 (NC2), promotes specific binding of the TBP subunit of TFIID to TATA core promoter sequence elements and stimulates the interaction of TBP-associated factors (TAFs) in the TFIID complex with core promoter elements located downstream of TATA, such as the initiator element (INR). Metazoan TFIIA consists of 3 subunits, TFIIAα (35 kDa), β (19 kDa) and γ (12 kDa). TFIIAα and β subunits are encoded by a single gene and result from site-specific cleavage of a 55 kDa TFIIA(α/β) precursor protein by the protease Taspase1. Metazoan cells have been shown to contain variable amounts of TFIIA (55/12 kDa) and Taspase1-processed TFIIA (35/19/12 kDa) depending on cell type, suggesting distinct gene-specific roles of unprocessed and Taspase1-processed TFIIA. How precisely Taspase1 processing affects TFIIA functions is not understood. Here we report that Taspase1 processing alters TFIIA interactions with TFIID and the conformation of TFIID/TFIIA promoter complexes. We further show that Taspase1 processing induces increased sensitivity of TFIID/TFIIA complexes to the repressor NC2, which is counteracted by the presence of an INR core promoter element. Our results provide first evidence that Taspase1 processing affects TFIIA regulation of TFIID and suggest that Taspase1 processing of TFIIA is required to establish INR-selective core promoter activity in the presence of NC2. PMID:25996597

  14. [Sulfite oxidase activity deficiency caused by cofactor molybdenum deficiency: A case of early severe encephalopathy].

    PubMed

    Durousset, C; Gay, C; Magnin, S; Acquaviva, C; Patural, H

    2016-03-01

    Neonatal seizure incidence is approximately 3.5/1000 live births. Inborn metabolic diseases account for approximately 1-4% of neonatal seizure cases. Among them, the catabolism anomaly of sulfite to sulfate caused by sulfite oxidase or cofactor molybdenum deficiency (MoCD) is a rare metabolic disorder in which neurological damage is similar to that found in neonatal asphyxia. We report the case of a newborn child with a MoCD. Born of related parents, this child had intrauterine growth retardation predominating on size diagnosed in the third trimester of pregnancy. After an uneventful birth, he presented convulsions at the 12th hour of life, confirmed by an electroencephalogram. Anticonvulsants and adjuvant treatments were ineffective; the child then required intubation at day 5 of life. The initial biological assessment found an elevated blood lactate level and the chromatography of amino acids showed a significant decrease of cystine and the abnormal presence of sulfocysteine, suggestive of a lack of sulfite oxidase activity. The uric acid level measured secondarily was low, suggesting a MoCD. Brain MRI was performed at day 5 for diffuse ischemic injury of different ages. After limiting acute care, the child died at day 14 of life. The genetic study of the child found a homozygous mutation c.564+1G>A in the MOCS2 gene, confirming the diagnosis of MoCD, present in the heterozygous state in both parents. Investigations in a logical sequence quickly suggested the MoCD diagnosis in presence of a low plasma concentration of cysteine, the abnormal presence of sulfocysteine, and low uric acid levels. The diagnosis of sulfite oxidase deficiency was made. Until now, no treatment has proven effective but a new treatment appears to be effective in cases with a MOCS1 mutation. PMID:26775885

  15. Basal core promoters control the equilibrium between negative cofactor 2 and preinitiation complexes in human cells

    PubMed Central

    2010-01-01

    Background The general transcription factor TFIIB and its antagonist negative cofactor 2 (NC2) are hallmarks of RNA polymerase II (RNAPII) transcription. Both factors bind TATA box-binding protein (TBP) at promoters in a mutually exclusive manner. Dissociation of NC2 is thought to be followed by TFIIB association and subsequent preinitiation complex formation. TFIIB dissociates upon RNAPII promoter clearance, thereby providing a specific measure for steady-state preinitiation complex levels. As yet, genome-scale promoter mapping of human TFIIB has not been reported. It thus remains elusive how human core promoters contribute to preinitiation complex formation in vivo. Results We compare target genes of TFIIB and NC2 in human B cells and analyze associated core promoter architectures. TFIIB occupancy is positively correlated with gene expression, with the vast majority of promoters being GC-rich and lacking defined core promoter elements. TATA elements, but not the previously in vitro defined TFIIB recognition elements, are enriched in some 4 to 5% of the genes. NC2 binds to a highly related target gene set. Nonetheless, subpopulations show strong variations in factor ratios: whereas high TFIIB/NC2 ratios select for promoters with focused start sites and conserved core elements, high NC2/TFIIB ratios correlate to multiple start-site promoters lacking defined core elements. Conclusions TFIIB and NC2 are global players that occupy active genes. Preinitiation complex formation is independent of core elements at the majority of genes. TATA and TATA-like elements dictate TFIIB occupancy at a subset of genes. Biochemical data support a model in which preinitiation complex but not TBP-NC2 complex formation is regulated. PMID:20230619

  16. Serotype-Specific Structural Differences in the Protease-Cofactor Complexes of the Dengue Virus Family

    SciTech Connect

    Chandramouli, Sumana; Joseph, Jeremiah S.; Daudenarde, Sophie; Gatchalian, Jovylyn; Cornillez-Ty, Cromwell; Kuhn, Peter

    2010-03-04

    With an estimated 40% of the world population at risk, dengue poses a significant threat to human health, especially in tropical and subtropical regions. Preventative and curative efforts, such as vaccine development and drug discovery, face additional challenges due to the occurrence of four antigenically distinct serotypes of the causative dengue virus (DEN1 to -4). Complex immune responses resulting from repeat assaults by the different serotypes necessitate simultaneous targeting of all forms of the virus. One of the promising targets for drug development is the highly conserved two-component viral protease NS2B-NS3, which plays an essential role in viral replication by processing the viral precursor polyprotein into functional proteins. In this paper, we report the 2.1-{angstrom} crystal structure of the DEN1 NS2B hydrophilic core (residues 49 to 95) in complex with the NS3 protease domain (residues 1 to 186) carrying an internal deletion in the N terminus (residues 11 to 20). While the overall folds within the protease core are similar to those of DEN2 and DEN4 proteases, the conformation of the cofactor NS2B is dramatically different from those of other flaviviral apoprotease structures. The differences are especially apparent within its C-terminal region, implicated in substrate binding. The structure reveals for the first time serotype-specific structural elements in the dengue virus family, with the reported alternate conformation resulting from a unique metal-binding site within the DEN1 sequence. We also report the identification of a 10-residue stretch within NS3pro that separates the substrate-binding function from the catalytic turnover rate of the enzyme. Implications for broad-spectrum drug discovery are discussed.

  17. Pain perception development and maturation.

    PubMed

    Simons, Sinno H P; Tibboel, Dick

    2006-08-01

    Newborn infants are not small adults. The pharmacokinetics and dynamics of analgesic drugs are immature at birth. Volumes of distribution, drug clearances, side-effects and drug efficacy all differ in newborns as compared to adults. Interestingly, these parameters develop before birth and during the postnatal period, reaching adult values after a period of months or years. This means that clinicians should anticipate on pharmacokinetic/pharmacodynamic (PK/PD) changes in newborns with increasing post-conceptual age. The ability to perceive pain might also be immature at birth. Lower pain thresholds due to the absence of inhibitory descending spinothalamic fibers and a not yet fully developed cortical pain memory system are points of interest for our understanding of differences in pain perception in the newborn infant. Although this is a relatively unexplored area of research in humans, we will discuss the maturation and development of neonatal pain experience and perception in this paper. PMID:16621747

  18. Maturation of the MOUTh Intervention

    PubMed Central

    Jablonski-Jaudon, Rita A.; Kolanowski, Ann M.; Winstead, Vicki; Jones-Townsend, Corteza; Azuero, Andres

    2016-01-01

    The purpose of the current article is to describe a personalized practice originally conceived as a way to prevent and minimize care-resistant behavior to provide mouth care to older adult with dementia. The original intervention, Managing Oral Hygiene Using Threat Reduction Strategies (MOUTh), matured during the clinical trial study into a relationship-centered intervention with emphasis on developing strategies that support residents behavioral health and staff involved in care. Relationships that were initially pragmatic (i.e., focused on the task of completing mouth care) developed into more personal and responsive relationships that involved deeper engagement between mouth care providers and nursing home (NH) residents. Mouth care was accomplished and completed in a manner enjoyable to NH residents and mouth care providers. The MOUTh intervention may also concurrently affirm the dignity and personhood of the care recipient because of its emphasis on connecting with older adults. PMID:26934969

  19. Cofactor-Activated Phosphorylation Is Required for Inhibition of Cortical Neuron Differentiation by Groucho/TLE1

    PubMed Central

    Buscarlet, Manuel; Hermann, Robert; Lo, Rita; Tang, Yeman; Joachim, Kerline; Stifani, Stefano

    2009-01-01

    Background Transcriptional co-repressors of the Groucho/transducin-like Enhancer of split (Gro/TLE) family regulate the expression of a variety of genes and are involved in numerous developmental processes in both invertebrate and vertebrate species. More specifically, Gro/TLE1 participates in mechanisms that inhibit/delay the differentiation of cerebral cortex neural progenitor cells into neurons during mammalian forebrain development. The anti-neurogenic function of Gro/TLE1 depends on the formation of protein complexes with specific DNA-binding transcription factors that engage Gro/TLE1 through WRP(W/Y) sequences. Interaction with those transcription partners results in Gro/TLE1 recruitment to selected DNA sites and causes increased Gro/TLE1 phosphorylation. The physiological significance of the latter event, termed “cofactor-activated phosphorylation,” had not been determined. Therefore, this study aimed at clarifying the role of cofactor-activated phosphorylation in the anti-neurogenic function of Gro/TLE1. Methods and Principal Findings A combination of site-directed mutagenesis, mass spectrometry, biochemistry, primary cell culture, and immunocytochemical assays was utilized to characterize point mutations of Ser-286, a residue that is phosphorylated in vivo and is located within the serine/proline-rich (SP) domain of Gro/TLE1. Mutation of Ser-286 to alanine or glutamic acid does not perturb the interaction of Gro/TLE1 with DNA-binding partners, including the basic helix-loop-helix transcription factor Hes1, a prototypical anti-neurogenic WRP(W/Y) motif protein. Ser-286 mutations do not prevent the recruitment of Gro/TLE1 to DNA, but they impair cofactor-activated phosphorylation and weaken the interaction of Gro/TLE1 with chromatin. These effects are correlated with an impairment of the anti-neurogenic activity of Gro/TLE1. Similar results were obtained when mutations of Ser-289 and Ser-298, which are also located within the SP domain of Gro/TLE1, were

  20. Optimizing IV and V for Mature Organizations

    NASA Technical Reports Server (NTRS)

    Fuhman, Christopher

    2003-01-01

    NASA is intending for its future software development agencies to have at least a Level 3 rating in the Carnegie Mellon University Capability Maturity Model (CMM). The CMM has built-in Verification and Validation (V&V) processes that support higher software quality. Independent Verification and Validation (IV&V) of software developed by mature agencies can be therefore more effective than for software developed by less mature organizations. How is Independent V&V different with respect to the maturity of an organization? Knowing a priori the maturity of an organization's processes, how can IV&V planners better identify areas of need choose IV&V activities, etc? The objective of this research is to provide a complementary set of guidelines and criteria to assist the planning of IV&V activities on a project using a priori knowledge of the measurable levels of maturity of the organization developing the software.

  1. Mechanistic Investigation of cPMP Synthase in Molybdenum Cofactor Biosynthesis Using an Uncleavable Substrate Analogue

    PubMed Central

    Hover, Bradley M.; Lilla, Edward A.; Yokoyama, Kenichi

    2016-01-01

    Molybdenum cofactor (Moco) is essential for all kingdoms of life, plays central roles in various biological processes, and must be biosynthesized de novo. During its biosynthesis, the characteristic pyranopterin ring is constructed by a complex rearrangement of guanosine 5′-triphosphate (GTP) into cyclic pyranopterin monophosphate (cPMP) through the action of two enzymes, MoaA and MoaC. Recent studies revealed that MoaC catalyzes the majority of the transformation and produces cPMP from a unique cyclic nucleotide, 3′,8-cyclo-7,8-dihydro-GTP (3′,8-cH2GTP). However, the mechanism by which MoaC catalyzes this complex rearrangement is largely unexplored. Here, we report the mechanistic characterization of MoaC using an uncleavable substrate analogue, 3′,8-cH2GMP[CH2]PP, as a probe to investigate the timing of cyclic phosphate formation. Using partially active MoaC variants, 3′,8-cH2GMP[CH2]PP was found to be accepted by MoaC as a substrate and was converted to an analogue of the previously described MoaC reaction intermediate, suggesting that the early stage of catalysis proceeds without cyclic phosphate formation. In contrast, when it was incubated with wt-MoaC, 3′,8-cH2GMP[CH2]PP caused mechanism-based inhibition. Detailed characterization of the inhibited MoaC suggested that 3′,8-cH2GMP[CH2]PP is mainly converted to a molecule (compound Y) with an acid-labile triaminopyrimidinone base without an established pyranopterin structure. MS analysis of MoaC treated with 3′,8-cH2GMP[CH2]PP provided strong evidence that compound Y forms a tight complex with MoaC likely through a covalent linkage. These observations are consistent with a mechanism in which cyclic phosphate ring formation proceeds in concert with the pterin ring formation. This mechanism would provide a thermodynamic driving force to complete the formation of the unique tetracyclic structure of cPMP. PMID:26575208

  2. Serine 1179 Phosphorylation of Endothelial Nitric Oxide Synthase Increases Superoxide Generation and Alters Cofactor Regulation

    PubMed Central

    Harbeck, Mark C.; He, Donghong; Xie, Lishi; Chen, Weiguo

    2015-01-01

    Endothelial nitric oxide synthase (eNOS) is responsible for maintaining systemic blood pressure, vascular remodeling and angiogenesis. In addition to producing NO, eNOS can also generate superoxide (O2-.) in the absence of the cofactor tetrahydrobiopterin (BH4). Previous studies have shown that bovine eNOS serine 1179 (Serine 1177/human) phosphorylation critically modulates NO synthesis. However, the effect of serine 1179 phosphorylation on eNOS superoxide generation is unknown. Here, we used the phosphomimetic form of eNOS (S1179D) to determine the effect of S1179 phosphorylation on superoxide generating activity, and its sensitivity to regulation by BH4, Ca2+, and calmodulin (CAM). S1179D eNOS exhibited significantly increased superoxide generating activity and NADPH consumption compared to wild-type eNOS (WT eNOS). The superoxide generating activities of S1179D eNOS and WT eNOS did not differ significantly in their sensitivity to regulation by either Ca2+ or CaM. The sensitivity of the superoxide generating activity of S1179D eNOS to inhibition by BH4 was significantly reduced compared to WT eNOS. In eNOS-overexpressing 293 cells, BH4 depletion with 10mM DAHP for 48 hours followed by 50ng/ml VEGF for 30 min to phosphorylate eNOS S1179 increased ROS accumulation compared to DAHP-only treated cells. Meanwhile, MTT assay indicated that overexpression of eNOS in HEK293 cells decreased cellular viability compared to control cells at BH4 depletion condition (P<0.01). VEGF-mediated Serine 1179 phosphorylation further decreased the cellular viability in eNOS-overexpressing 293 cells (P<0.01). Our data demonstrate that eNOS serine 1179 phosphorylation, in addition to enhancing NO production, also profoundly affects superoxide generation: S1179 phosphorylation increases superoxide production while decreasing sensitivity to the inhibitory effect of BH4 on this activity. PMID:26560496

  3. Hydrogen Activation by Biomimetic [NiFe]-Hydrogenase Model Containing Protected Cyanide Cofactors

    PubMed Central

    Manor, Brian C.; Rauchfuss, Thomas B.

    2013-01-01

    Described are experiments that allow incorporation of cyanide cofactors and hydride substrate into active site models [NiFe]-hydrogenases (H2ases). Complexes of the type (CO)2(CN)2Fe(pdt)Ni(dxpe), (dxpe = dppe, 1; dxpe = dcpe, 2) bind the Lewis acid B(C6F5)3 (BArF3) to give the adducts (CO)2(CNBArF3)2Fe(pdt)Ni(dxpe), (1(BArF3)2, 2(BArF3)2). Upon decarbonylation using amine oxides, these adducts react with H2 to give hydrido derivatives Et4N[(CO)(CNBArF3)2Fe(H)(pdt)Ni(dxpe)], (dxpe = dppe, Et4N[H3(BArF3)2]; dxpe = dcpe, Et4N[H4(BArF3)2]). Crystallographic analysis shows that Et4N[H3(BArF3)2] generally resembles the active site of the enzyme in the reduced, hydride-containing states (Ni-C/R). The Fe-H…Ni center is unsymmetrical with rFe-H = 1.51(3) and rNi-H = 1.71(3) Å. Both crystallographic and 19F NMR analysis show that the CNBArF3− ligands occupy basal and apical sites. Unlike cationic Ni-Fe hydrides, [H3(BArF3)2]− and [H4(BArF3)2]− oxidize at mild potentials, near the Fc+/0 couple. Electrochemical measurements indicate that in the presence of base, [H3(BArF3)2]− catalyzes the oxidation of H2. NMR evidence indicates dihydrogen bonding between these anionic hydrides and ammonium salts, which is relevant to the mechanism of hydrogenogenesis. In the case of Et4N[H3(BArF3)2], strong acids such as HCl induce H2 release to give the chloride Et4N[(CO)(CNBArF3)2Fe(pdt)(Cl)Ni(dppe)]. PMID:23899049

  4. Iron as a Cofactor That Limits the Promotion of Cyanobacteria in Lakes Across a Tropic Gradient

    NASA Astrophysics Data System (ADS)

    Sorichetti, R. J.; Creed, I. F.; Trick, C. G.

    2014-12-01

    used by cyanobacteria. These findings suggest that Fe serves as a possible cofactor that maintains cyanobacterial levels across a lake trophic gradient and that cyanobacteria invoke a similar Fe-scavenging system to overcome Fe limitation in lakes of all trophic status.

  5. The tightly bound calcium of MauG is required for tryptophan tryptophylquinone cofactor biosynthesis

    PubMed Central

    Shin, Sooim; Feng, Manliang; Chen, Yan; Jensen, Lyndal M. R.; Tachikawa, Hiroyasu; Wilmot, Carrie M.; Liu, Aimin; Davidson, Victor L.

    2010-01-01

    The diheme enzyme MauG catalyzes a six-electron oxidation required for posttranslational modification of a precursor of methylamine dehydrogenase (preMADH) to complete the biosynthesis of its protein-derived tryptophan tryptophylquinone (TTQ) cofactor. The crystal structure of the MauG-preMADH complex revealed the presence of a Ca2+ in proximity to the two hemes [Jensen, L.M.R., Sanishvili, R., Davidson, V.L. & Wilmot, C.M. (2010) Science 327, 1392–1394]. This Ca2+ did not readily dissociate; however after extensive treatment with EGTA or EDTA MauG was no longer able to catalyze TTQ biosynthesis and exhibited altered absorption and resonance Raman spectra. The changes in spectral features are consistent with Ca2+-dependent changes in heme spin-state and conformation. Addition of H2O2 to the Ca2+-depleted MauG did not yield spectral changes characteristic of formation of the bis-Fe(IV) state which is stabilized in native MauG. After addition of Ca2+ to the Ca2+-depleted MauG, full TTQ biosynthesis activity and reactivity towards H2O2 was restored, and the spectral properties returned to those of native MauG. Kinetic and equilibrium studies of Ca2+ binding to Ca2+-depleted MauG indicated a two-step mechanism. Ca2+ initially reversibly binds to Ca2+-depleted MauG (Kd = 22.4 μM) and is followed by a relatively slow (k = 1.4 × 10−3 s−1) but highly favorable (Keq = 4.2) conformational change, yielding an apparent equilibrium Kd,eq value of 5.3 μM. The circular dichroism spectra of native and Ca2+-depleted MauG were essentially the same, consistent with Ca2+-induced conformational changes involving domain or loop movements rather than general unfolding or alteration of secondary structure. These results are discussed in the context of the structures of MauG and heme-containing peroxidases. PMID:21128656

  6. Production of shikimic acid from Escherichia coli through chemically inducible chromosomal evolution and cofactor metabolic engineering

    PubMed Central

    2014-01-01

    Background Shikimic acid (SA) produced from the seeds of Chinese star anise (Illicium verum) is a key intermediate for the synthesis of neuraminidase inhibitors such as oseltamivir (Tamiflu®), an anti-influenza drug. However, plants cannot deliver a stable supply of SA. To avoid the resulting shortages and price fluctuations, a stable source of affordable SA is required. Although recent achievements in metabolic engineering of Escherichia coli strains have significantly increased SA productivity, commonly-used plasmid-based expression systems are prone to genetic instability and require constant selective pressure to ensure plasmid maintenance. Cofactors also play an important role in the biosynthesis of different fermentation products. In this study, we first constructed an E. coli SA production strain that carries no plasmid or antibiotic marker. We then investigated the effect of endogenous NADPH availability on SA production. Results The pps and csrB genes were first overexpressed by replacing their native promoter and integrating an additional copy of the genes in a double gene knockout (aroK and aroL) of E. coli. The aroG fbr , aroB, aroE and tktA gene cluster was integrated into the above E. coli chromosome by direct transformation. The gene copy number was then evolved to the desired value by triclosan induction. The resulting strain, E. coli SA110, produced 8.9-fold more SA than did the parental strain E. coli (ΔaroKΔaroL). Following qRT-PCR analysis, another copy of the tktA gene under the control of the 5Ptac promoter was inserted into the chromosome of E. coli SA110 to obtain the more productive strain E. coli SA110. Next, the NADPH availability was increased by overexpressing the pntAB or nadK genes, which further enhanced SA production. The final strain, E. coli SA116, produced 3.12 g/L of SA with a yield on glucose substrate of 0.33 mol/mol. Conclusion An SA-producing E. coli strain that carries neither a plasmid nor an antibiotic marker was

  7. Mechanistic Investigation of cPMP Synthase in Molybdenum Cofactor Biosynthesis Using an Uncleavable Substrate Analogue.

    PubMed

    Hover, Bradley M; Lilla, Edward A; Yokoyama, Kenichi

    2015-12-15

    Molybdenum cofactor (Moco) is essential for all kingdoms of life, plays central roles in various biological processes, and must be biosynthesized de novo. During its biosynthesis, the characteristic pyranopterin ring is constructed by a complex rearrangement of guanosine 5'-triphosphate (GTP) into cyclic pyranopterin monophosphate (cPMP) through the action of two enzymes, MoaA and MoaC. Recent studies revealed that MoaC catalyzes the majority of the transformation and produces cPMP from a unique cyclic nucleotide, 3',8-cyclo-7,8-dihydro-GTP (3',8-cH2GTP). However, the mechanism by which MoaC catalyzes this complex rearrangement is largely unexplored. Here, we report the mechanistic characterization of MoaC using an uncleavable substrate analogue, 3',8-cH2GMP[CH2]PP, as a probe to investigate the timing of cyclic phosphate formation. Using partially active MoaC variants, 3',8-cH2GMP[CH2]PP was found to be accepted by MoaC as a substrate and was converted to an analogue of the previously described MoaC reaction intermediate, suggesting that the early stage of catalysis proceeds without cyclic phosphate formation. In contrast, when it was incubated with wt-MoaC, 3',8-cH2GMP[CH2]PP caused mechanism-based inhibition. Detailed characterization of the inhibited MoaC suggested that 3',8-cH2GMP[CH2]PP is mainly converted to a molecule (compound Y) with an acid-labile triaminopyrimidinone base without an established pyranopterin structure. MS analysis of MoaC treated with 3',8-cH2GMP[CH2]PP provided strong evidence that compound Y forms a tight complex with MoaC likely through a covalent linkage. These observations are consistent with a mechanism in which cyclic phosphate ring formation proceeds in concert with the pterin ring formation. This mechanism would provide a thermodynamic driving force to complete the formation of the unique tetracyclic structure of cPMP. PMID:26575208

  8. Differential Deployment of REST and CoREST Promotes Glial Subtype Specification and Oligodendrocyte Lineage Maturation

    PubMed Central

    Gokhan, Solen; Zheng, Deyou; Bergman, Aviv; Mehler, Mark F.

    2009-01-01

    Background The repressor element-1 (RE1) silencing transcription factor/neuron-restrictive silencer factor (REST/NRSF) is a master transcriptional regulator that binds to numerous genomic RE1 sites where it acts as a molecular scaffold for dynamic recruitment of modulatory and epigenetic cofactors, including corepressor for element-1-silencing transcription factor (CoREST). CoREST also acts as a hub for various cofactors that play important roles in epigenetic remodeling and transcriptional regulation. While REST can recruit CoREST to its macromolecular complex, CoREST complexes also function at genomic sites independently of REST. REST and CoREST perform a broad array of context-specific functions, which include repression of neuronal differentiation genes in neural stem cells (NSCs) and other non-neuronal cells as well as promotion of neurogenesis. Despite their involvement in multiple aspects of neuronal development, REST and CoREST are not believed to have any direct modulatory roles in glial cell maturation. Methodology/Principal Findings We challenged this view by performing the first study of REST and CoREST in NSC-mediated glial lineage specification and differentiation. Utilizing ChIP on chip (ChIP-chip) assays, we identified distinct but overlapping developmental stage-specific profiles for REST and CoREST target genes during astrocyte (AS) and oligodendrocyte (OL) lineage specification and OL lineage maturation and myelination, including many genes not previously implicated in glial cell biology or linked to REST and CoREST regulation. Amongst these factors are those implicated in macroglial (AS and OL) cell identity, maturation, and maintenance, such as members of key developmental signaling pathways and combinatorial transcription factor codes. Conclusions/Significance Our results imply that REST and CoREST modulate not only neuronal but also glial lineage elaboration. These factors may therefore mediate critical developmental processes including the

  9. Motivational maturity and helping behavior.

    PubMed

    Haymes, M; Green, L

    1977-12-01

    This study was undertaken to examine the independent influences of conative development (the Maslow needs hierarchy) upon behavioral aspects of prosocial orientations. It provides a behavioral demonstration of conative effects in a helping paradigm, among college-age men. A comparison of the conative data across the ages of 15-22 provided a cross-sectional view of conative development itself. Conative maturity was found to be predictive of greater helping among college-age men. Situational demands were demonstrated which tended to mask, but not override, these predispositional influences on helping. The cross-sectional data on conative development point to probable movement to early esteem concerns among high school men who have reached the conative level of love and belonging. On the other hand, the stability across the years of 15-22 of proportion of safety concerns suggests fixation of such concerns in those exhibiting them in high school. Results are discussed in terms of conative growth for development of prosocial orientations. PMID:24408562

  10. Smart Grid Interoperability Maturity Model

    SciTech Connect

    Widergren, Steven E.; Levinson, Alex; Mater, J.; Drummond, R.

    2010-04-28

    The integration of automation associated with electricity resources (including transmission and distribution automation and demand-side resources operated by end-users) is key to supporting greater efficiencies and incorporating variable renewable resources and electric vehicles into the power system. The integration problems faced by this community are analogous to those faced in the health industry, emergency services, and other complex communities with many stakeholders. To highlight this issue and encourage communication and the development of a smart grid interoperability community, the GridWise Architecture Council (GWAC) created an Interoperability Context-Setting Framework. This "conceptual model" has been helpful to explain the importance of organizational alignment in addition to technical and informational interface specifications for "smart grid" devices and systems. As a next step to building a community sensitive to interoperability, the GWAC is investigating an interoperability maturity model (IMM) based on work done by others to address similar circumstances. The objective is to create a tool or set of tools that encourages a culture of interoperability in this emerging community. The tools would measure status and progress, analyze gaps, and prioritize efforts to improve the situation.

  11. Egg maturation dynamics of Homalodisca vitripennis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The egg maturation dynamics of holometabolous insects are particularly well studied compared to those of hemimetabolous insects. The wealth of knowledge produced from studies on holometabolous insects has allowed researchers to test for correlations between egg maturation schedule and specific life...

  12. New definitions for cotton fiber maturity ratio

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton fiber maturity affects fiber physical, mechanical, and chemical properties, as well as the processability and qualities of yarn and fabrics. New definitions of cotton fiber maturity ratio are introduced. The influences of sampling, sample preparation, measurement method, and correlations am...

  13. Biased experimental fineness and maturity results

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In Part I of this series, models were developed and computer simulations were performed to understand the variability in coefficients of determination (R2) between fineness and maturity, micronaire and fineness, and micronaire and maturity of cotton. Part II concentrated on derivation and testing of...

  14. 7 CFR 51.767 - Mature.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies may be obtained from, Florida Department of Citrus... Mature. Mature shall have the same meaning assigned the term in the Florida Citrus Code, Chapter 601, 1995 Edition, and the Official Rules Affecting the Florida Citrus Industry, in effect as of February...

  15. 7 CFR 51.1823 - Mature.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...(a) and 1 CFR part 51. Copies may be obtained from, Florida Department of Citrus, Post Office Box 148... Mature. Mature shall have the same meaning assigned the term in the Florida Citrus Code, Chapter 601, 1995 Edition, and the Official Rules Affecting the Florida Citrus Industry, in effect as of February...

  16. 7 CFR 51.767 - Mature.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies may be obtained from, Florida Department of Citrus... Mature. Mature shall have the same meaning assigned the term in the Florida Citrus Code, Chapter 601, 1995 Edition, and the Official Rules Affecting the Florida Citrus Industry, in effect as of February...

  17. 7 CFR 51.1158 - Mature.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...(a) and 1 CFR part 51. Copies may be obtained from, Florida Department of Citrus, Post Office Box 148... § 51.1158 Mature. Mature shall have the same meaning assigned the term in the Florida Citrus Code, Chapter 601, 1995 Edition, and the Official Rules Affecting the Florida Citrus Industry, in effect as...

  18. 7 CFR 51.1158 - Mature.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...(a) and 1 CFR part 51. Copies may be obtained from, Florida Department of Citrus, Post Office Box 148... § 51.1158 Mature. Mature shall have the same meaning assigned the term in the Florida Citrus Code, Chapter 601, 1995 Edition, and the Official Rules Affecting the Florida Citrus Industry, in effect as...

  19. 7 CFR 51.1823 - Mature.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...(a) and 1 CFR part 51. Copies may be obtained from, Florida Department of Citrus, Post Office Box 148... Mature. Mature shall have the same meaning assigned the term in the Florida Citrus Code, Chapter 601, 1995 Edition, and the Official Rules Affecting the Florida Citrus Industry, in effect as of February...

  20. The FMI: Dimensions of Follower Maturity

    ERIC Educational Resources Information Center

    Moore, Loren I.

    1976-01-01

    The Follower Maturity Index (FMI) is an instrument derived from leadership theory and based on observations of verbal and nonverbal behavior of followers in task groups. Dimensions of follower maturity--achievement, responsibility, experience, activity, dependence, variety, interests, perspective, position, and awareness--are discussed. For…

  1. Canopy temperature and maturity in cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Heat units are a widely used indicator of maturity in cotton. It is generally assumed that it takes approximately 2200°F (1222°C) heat units for a cotton plant on the South High Plains of Texas to mature. This value is based on a typical planting date of May 15 with ample irrigation. As water for c...

  2. Motivation and Maturity Patterns in Marital Success.

    ERIC Educational Resources Information Center

    McClelland, David C.; And Others

    1978-01-01

    Married couples rated their marital satisfaction and played interpersonal competitive games which revealed the success with which they interacted. Younger husbands who scored more maturely on the Stewart measure of psychosocial maturity belonged to more successful marriages, as did college-educated wives who showed less immaturity and more phallic…

  3. 7 CFR 51.312 - Mature.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., CERTIFICATION, AND STANDARDS) United States Standards for Grades of Apples Definitions § 51.312 Mature. “Mature” means that the apples have reached the stage of development which will insure the proper completion of the ripening process. Before a mature apple becomes overripe it will show varying degrees of...

  4. 7 CFR 51.312 - Mature.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., CERTIFICATION, AND STANDARDS) United States Standards for Grades of Apples Definitions § 51.312 Mature. “Mature” means that the apples have reached the stage of development which will insure the proper completion of the ripening process. Before a mature apple becomes overripe it will show varying degrees of...

  5. Thinned Mature Deciduous Forest Silvopastures for Appalachia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Little information is available on effective management and utilization of silvopastures developed from the ubiquitous mature woodlots which comprise 40-50% of small Appalachian farm acreage. We thinned a white oak dominated mature second growth forested area establishing two 0.5 ha, eight-paddock,...

  6. Effects of glucose metabolism during in vitro maturation on cytoplasmic maturation of mouse oocytes.

    PubMed

    Xie, Hong-Li; Wang, Yan-Bo; Jiao, Guang-Zhong; Kong, De-Ling; Li, Qing; Li, Hong; Zheng, Liang-Liang; Tan, Jing-He

    2016-01-01

    Although there are many reports on the effect of glucose metabolism on oocyte nuclear maturation, there are few studies on its effect on ooplasmic maturation. By manipulating glucose metabolism pathways using a maturation medium that could support oocyte nuclear maturation but only a limited blastocyst formation without glucose, this study determined effects of glucose metabolism pathways on ooplasmic maturation. During maturation of cumulus-oocyte-complexes (COCs) with glucose, the presence of PPP inhibitor, DHEA or glycolysis inhibitor, iodoacetate significantly decreased blastocyst rates, intraoocyte glutathione and ATP. While blastocyst rates, GSH/GSSG ratio and NADPH were higher, ROS was lower significantly in COCs matured with iodoacetate than with DHEA. Fructose-6-phosphate overcame the inhibitory effect of DHEA on PPP. During maturation of COCs with pyruvate, electron transport inhibitor, rotenone or monocarboxylate transfer inhibitor, 4-CIN significantly decreased blastocyst rates. Cumulus-denuded oocytes had a limited capacity to use glucose or lactate, but they could use pyruvate to support maturation. In conclusion, whereas glycolysis promoted ooplasmic maturation mainly by supplying energy, PPP facilitated ooplasmic maturation to a greater extent by both reducing oxidative stress and supplying energy through providing fructose-6-phosphate for glycolysis. Pyruvate was transferred by monocarboxylate transporters and utilized through mitochondrial electron transport to sustain ooplasmic maturation. PMID:26857840

  7. Effects of glucose metabolism during in vitro maturation on cytoplasmic maturation of mouse oocytes

    PubMed Central

    Xie, Hong-Li; Wang, Yan-Bo; Jiao, Guang-Zhong; Kong, De-Ling; Li, Qing; Li, Hong; Zheng, Liang-Liang; Tan, Jing-He

    2016-01-01

    Although there are many reports on the effect of glucose metabolism on oocyte nuclear maturation, there are few studies on its effect on ooplasmic maturation. By manipulating glucose metabolism pathways using a maturation medium that could support oocyte nuclear maturation but only a limited blastocyst formation without glucose, this study determined effects of glucose metabolism pathways on ooplasmic maturation. During maturation of cumulus-oocyte-complexes (COCs) with glucose, the presence of PPP inhibitor, DHEA or glycolysis inhibitor, iodoacetate significantly decreased blastocyst rates, intraoocyte glutathione and ATP. While blastocyst rates, GSH/GSSG ratio and NADPH were higher, ROS was lower significantly in COCs matured with iodoacetate than with DHEA. Fructose-6-phosphate overcame the inhibitory effect of DHEA on PPP. During maturation of COCs with pyruvate, electron transport inhibitor, rotenone or monocarboxylate transfer inhibitor, 4-CIN significantly decreased blastocyst rates. Cumulus-denuded oocytes had a limited capacity to use glucose or lactate, but they could use pyruvate to support maturation. In conclusion, whereas glycolysis promoted ooplasmic maturation mainly by supplying energy, PPP facilitated ooplasmic maturation to a greater extent by both reducing oxidative stress and supplying energy through providing fructose-6-phosphate for glycolysis. Pyruvate was transferred by monocarboxylate transporters and utilized through mitochondrial electron transport to sustain ooplasmic maturation. PMID:26857840

  8. Spectroscopic Studies of Single and Double Variants of M Ferritin: Lack of Conversion of a Biferrous Substrate Site into a Cofactor Site for O2 Activation

    PubMed Central

    2015-01-01

    Ferritin has a binuclear non-heme iron active site that functions to oxidize iron as a substrate for formation of an iron mineral core. Other enzymes of this class have tightly bound diiron cofactor sites that activate O2 to react with substrate. Ferritin has an active site ligand set with 1-His/4-carboxylate/1-Gln rather than the 2-His/4-carboxylate set of the cofactor site. This ligand variation has been thought to make a major contribution to this biferrous substrate rather than cofactor site reactivity. However, the Q137E/D140H double variant of M ferritin, has a ligand set that is equivalent to most of the diiron cofactor sites, yet did not rapidly react with O2 or generate the peroxy intermediate observed in the cofactor sites. Therefore, in this study, a combined spectroscopic methodology of circular dichroism (CD)/magnetic CD (MCD)/variable temperature, variable field (VTVH) MCD has been applied to evaluate the factors required for the rapid O2 activation observed in cofactor sites. This methodology defines the coordination environment of each iron and the bridging ligation of the biferrous active sites in the double and corresponding single variants of frog M ferritin. Based on spectral changes, the D140H single variant has the new His ligand binding, and the Q137E variant has the new carboxylate forming a μ-1,3 bridge. The spectra for the Q137E/D140H double variant, which has the cofactor ligand set, however, reflects a site that is more coordinately saturated than the cofactor sites in other enzymes including ribonucleotide reductase, indicating the presence of additional water ligation. Correlation of this double variant and the cofactor sites to their O2 reactivities indicates that electrostatic and steric changes in the active site and, in particular, the hydrophobic nature of a cofactor site associated with its second sphere protein environment, make important contributions to the activation of O2 by the binuclear non-heme iron enzymes. PMID

  9. Structural basis for cofactor-independent dioxygenation of N-heteroaromatic compounds at the [alpha/beta]-hydrolase fold

    SciTech Connect

    Steiner, Roberto A.; Janssen, Helge J.; Roversi, Pietro; Oakley, Aaron J.; Fetzner, Susanne

    2010-03-12

    Enzymatic catalysis of oxygenation reactions in the absence of metal or organic cofactors is a considerable biochemical challenge. The CO-forming 1-H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase (HOD) from Arthrobacter nitroguajacolicus Rue61a and 1-H-3-hydroxy-4-oxoquinoline 2,4-dioxygenase (QDO) from Pseudomonas putida 33/1 are homologous cofactor-independent dioxygenases involved in the breakdown of N-heteroaromatic compounds. To date, they are the only dioxygenases suggested to belong to the {alpha}/{beta}-hydrolase fold superfamily. Members of this family typically catalyze hydrolytic processes rather than oxygenation reactions. We present here the crystal structures of both HOD and QDO in their native state as well as the structure of HOD in complex with its natural 1-H-3-hydroxy-4-oxoquinaldine substrate, its N-acetylanthranilate reaction product, and chloride as dioxygen mimic. HOD and QDO are structurally very similar. They possess a classical {alpha}/{beta}-hydrolase fold core domain additionally equipped with a cap domain. Organic substrates bind in a preorganized active site with an orientation ideally suited for selective deprotonation of their hydroxyl group by a His/Asp charge-relay system affording the generation of electron-donating species. The 'oxyanion hole' of the {alpha}/{beta}-hydrolase fold, typically employed to stabilize the tetrahedral intermediate in ester hydrolysis reactions, is utilized here to host and control oxygen chemistry, which is proposed to involve a peroxide anion intermediate. Product release by proton back transfer from the catalytic histidine is driven by minimization of intramolecular charge repulsion. Structural and kinetic data suggest a nonnucleophilic general-base mechanism. Our analysis provides a framework to explain cofactor-independent dioxygenation within a protein architecture generally employed to catalyze hydrolytic reactions.

  10. Structural basis for cofactor-independent dioxygenation of N-heteroaromatic compounds at the α/β-hydrolase fold

    PubMed Central

    Steiner, Roberto A.; Janssen, Helge J.; Roversi, Pietro; Oakley, Aaron J.; Fetzner, Susanne

    2010-01-01

    Enzymatic catalysis of oxygenation reactions in the absence of metal or organic cofactors is a considerable biochemical challenge. The CO-forming 1-H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase (HOD) from Arthrobacter nitroguajacolicus Rü61a and 1-H-3-hydroxy-4-oxoquinoline 2,4-dioxygenase (QDO) from Pseudomonas putida 33/1 are homologous cofactor-independent dioxygenases involved in the breakdown of N-heteroaromatic compounds. To date, they are the only dioxygenases suggested to belong to the α/β-hydrolase fold superfamily. Members of this family typically catalyze hydrolytic processes rather than oxygenation reactions. We present here the crystal structures of both HOD and QDO in their native state as well as the structure of HOD in complex with its natural 1-H-3-hydroxy-4-oxoquinaldine substrate, its N-acetylanthranilate reaction product, and chloride as dioxygen mimic. HOD and QDO are structurally very similar. They possess a classical α/β-hydrolase fold core domain additionally equipped with a cap domain. Organic substrates bind in a preorganized active site with an orientation ideally suited for selective deprotonation of their hydroxyl group by a His/Asp charge-relay system affording the generation of electron-donating species. The “oxyanion hole” of the α/β-hydrolase fold, typically employed to stabilize the tetrahedral intermediate in ester hydrolysis reactions, is utilized here to host and control oxygen chemistry, which is proposed to involve a peroxide anion intermediate. Product release by proton back transfer from the catalytic histidine is driven by minimization of intramolecular charge repulsion. Structural and kinetic data suggest a nonnucleophilic general-base mechanism. Our analysis provides a framework to explain cofactor-independent dioxygenation within a protein architecture generally employed to catalyze hydrolytic reactions. PMID:20080731

  11. Interaction between the transcription factor SPBP and the positive cofactor RNF4. An interplay between protein binding zinc fingers.

    PubMed

    Lyngsø, C; Bouteiller, G; Damgaard, C K; Ryom, D; Sanchez-Muñoz, S; Nørby, P L; Bonven, B J; Jørgensen, P

    2000-08-25

    The activator of stromelysin 1 gene transcription, SPBP, interacts with the RING finger protein RNF4. Both proteins are ubiquitously expressed and localized in the nucleus. RNF4 facilitates accumulation of specific SPBP-DNA complexes in vitro and acts as a positive cofactor in SPBP-mediated transactivation. SPBP harbors an internal zinc finger of the PHD/LAP type. This domain can form intra-chain protein-protein contacts in SPBP resulting in negative modulation of SPBP-RNF4 interaction. PMID:10849425

  12. Structural evidence for the partially oxidized dipyrromethene and dipyrromethanone forms of the cofactor of porphobilinogen deaminase: structures of the Bacillus megaterium enzyme at near-atomic resolution

    SciTech Connect

    Azim, N.; Deery, E.; Warren, M. J.; Wolfenden, B. A. A.; Erskine, P.; Cooper, J. B. Coker, A.; Wood, S. P.; Akhtar, M.

    2014-03-01

    The enzyme porphobilinogen deaminase (PBGD; hydroxymethylbilane synthase; EC 2.5.1.61) catalyses a key early step in the biosynthesis of tetrapyrroles in which four molecules of the monopyrrole porphobilinogen are condensed to form a linear tetrapyrrole. Two near-atomic resolution structures of PBGD from B. megaterium are reported that demonstrate the time-dependent accumulation of partially oxidized forms of the cofactor, including one that possesses a tetrahedral C atom in the terminal pyrrole ring. The enzyme porphobilinogen deaminase (PBGD; hydroxymethylbilane synthase; EC 2.5.1.61) catalyses an early step of the tetrapyrrole-biosynthesis pathway in which four molecules of the monopyrrole porphobilinogen are condensed to form a linear tetrapyrrole. The enzyme possesses a dipyrromethane cofactor, which is covalently linked by a thioether bridge to an invariant cysteine residue (Cys241 in the Bacillus megaterium enzyme). The cofactor is extended during the reaction by the sequential addition of the four substrate molecules, which are released as a linear tetrapyrrole product. Expression in Escherichia coli of a His-tagged form of B. megaterium PBGD has permitted the X-ray analysis of the enzyme from this species at high resolution, showing that the cofactor becomes progressively oxidized to the dipyrromethene and dipyrromethanone forms. In previously solved PBGD structures, the oxidized cofactor is in the dipyromethenone form, in which both pyrrole rings are approximately coplanar. In contrast, the oxidized cofactor in the B. megaterium enzyme appears to be in the dipyrromethanone form, in which the C atom at the bridging α-position of the outer pyrrole ring is very clearly in a tetrahedral configuration. It is suggested that the pink colour of the freshly purified protein is owing to the presence of the dipyrromethene form of the cofactor which, in the structure reported here, adopts the same conformation as the fully reduced dipyrromethane form.

  13. Salt restrains maturation in subsalt plays

    SciTech Connect

    Mello, U.T. ); Anderson, R.N.; Karner, G.D. . Lamont-Doherty Earth Observatory)

    1994-01-31

    The thermal positive anomaly associated with the top of salt diapirs has attracted significant attention in modifying the temperature structure and history of a sedimentary basin. Here the authors explore the role of the negative thermal anomaly beneath salt in modifying the maturation history of the source rocks in subsalt sediments. Organic matter maturation is believed to follow temperature dependent chemical reactions. Therefore, any temperature anomaly associated with salt masses affects the nearby maturation of potential source rocks. The level of maturity of source rocks close to salt diapirs will differ from that predicted based on regional trends. The impact of the thermal anomaly on a given point will depend on the duration and distance of the thermal anomaly to this particular point. Consequently, the maturation history of source rocks in salt basins is closely related to the salt motion history, implying that a transient thermal analysis is necessary to evaluate the sure impact on maturation of the thermal anomalies associated with salt diapirism. The paper describes vitrinite kinetics, salt in evolving basins, correlation of salt and temperature, salt dome heat drains, and restrained maturation.

  14. Protein syntehsis during soybean seed maturation

    SciTech Connect

    Rosenberg, L.A.; Rinne, R.W.

    1987-04-01

    The authors previous work has demonstrated that physiological and biochemical changes specifically associated with soybean seed maturation can be separated from events associated with seed development. The objective of this study was to determine if soybean seed metabolism is altered during maturation drying at the level of protein synthesis. Seed harvested 35 days after flowering (0% seedling growth) were induced to mature (100% seedling growth) through controlled dehydration. Proteins labeled with (/sup 35/S)-methionine were extracted and analyzed by 1-D PAGE coupled with autoradiography and densitometry. Results show a 31 kD and 128 kD polypeptide synthesized de novo during dehydration and precocious maturation. The same two polypeptides are synthesized during natural dehydration and maturation (>60 days after flowering). Furthermore, these polypeptides persist during rehydration and germination of both precociously and naturally matured seed, but specifically disappear during early seedling growth. The authors are currently investigating the role of protein synthesis during soybean seed maturation and if it is required for establishment of a soybean seedling.

  15. Paraoxonase 1 and HDL maturation.

    PubMed

    Gugliucci, Alejandro; Menini, Teresita

    2015-01-15

    Understanding the kinetics and function of paraoxonase 1 (PON1) is becoming an important issue in atherosclerosis. Low PON1 activity has been consistently linked with an increased risk of major cardiovascular events in the setting of secondary prevention of coronary artery disease. Recent studies have shown that there is a specific interaction of myeloperoxidase (MPO)-apoAI-PON1 on HDL surface that seems to be germane to atherogenesis. MPO specifically inhibits PON1 and PON1 mitigates MPO effects. Surprisingly, very little is known about the routes by which PON1 gets integrated into HDL or its fate during HDL remodeling in the intravascular space. We have developed a method that assesses PON1 activity in the individual HDL subclasses with the aid of which we have shown that PON1 is present across the HDL particle range and preferentially in HDL3, confirming data from ultracentrifugation (UC) studies. Upon HDL maturation ex vivo PON1 is activated and it shows a flux to both smaller and larger HDL particles as well as to VLDL and sdLDL. At the same time apoE, AI and AII are shifted across particle sizes. PON1 activation and flux across HDL particles are blocked by CETP and LCAT inhibitors. In a group of particles with such a complex biology as HDL, knowledge of the interaction between apo-lipoproteins, lipids and enzymes is key for an increased understanding of the yet multiple unknown features of its function. Solving the HDL paradox will necessitate the development of techniques to explore HDL function that are practical and well adapted to clinical studies and eventually become useful in patient monitoring. The confluence of proteomic, functional studies, HDL subclasses, PON1 assays and zymogram will yield data to draw a more elaborate and comprehensive picture of the function of HDL. It must be noted that all these studies are static and conducted in the fasting state. The crucial phase will be achieved when human kinetic studies (both in the fasting and post

  16. Sexual maturity in western Atlantic bluefin tuna.

    PubMed

    Heinisch, Gilad; Rosenfeld, Hanna; Knapp, Jessica M; Gordin, Hillel; Lutcavage, Molly E

    2014-01-01

    We introduce a novel endocrine approach for assessing the unresolved matter of the timing of sexual maturation in western Atlantic bluefin tuna (ABFT), a highly migratory population whose status remains uncertain. Ratios of follicle stimulating hormone to luteinizing hormone, a sexual maturity indicator, in all ABFT ≥ 134 cm curved fork length (CFL) were <0.4, similar to Mediterranean spawners, indicating that western ABFT mature at considerably smaller sizes and at a much younger age than currently assumed (≥ 185 cm CFL). PMID:25431301

  17. Delayed visual maturation and lead pollution.

    PubMed

    Gulson, B L; Yui, L A; Howarth, D

    1998-12-11

    Three children were born in the Broken Hill Australia lead mining community with delayed visual maturation of the optic nerve (blindness) within a period of 19 months. Because of the association with the lead pollution, the delayed visual maturation was attributed to lead exposure of the fetus during pregnancy. Lead isotopic analyses of the shed deciduous teeth from the three children demonstrate that they were not exposed to increased levels of lead from a mining or any other source during pregnancy and the etiology of the delayed visual maturation must be sought elsewhere. PMID:9926437

  18. DNAJC21 Mutations Link a Cancer-Prone Bone Marrow Failure Syndrome to Corruption in 60S Ribosome Subunit Maturation.

    PubMed

    Tummala, Hemanth; Walne, Amanda J; Williams, Mike; Bockett, Nicholas; Collopy, Laura; Cardoso, Shirleny; Ellison, Alicia; Wynn, Rob; Leblanc, Thierry; Fitzgibbon, Jude; Kelsell, David P; van Heel, David A; Payne, Elspeth; Plagnol, Vincent; Dokal, Inderjeet; Vulliamy, Tom

    2016-07-01

    A substantial number of individuals with bone marrow failure (BMF) present with one or more extra-hematopoietic abnormality. This suggests a constitutional or inherited basis, and yet many of them do not fit the diagnostic criteria of the known BMF syndromes. Through exome sequencing, we have now identified a subgroup of these individuals, defined by germline biallelic mutations in DNAJC21 (DNAJ homolog subfamily C member 21). They present with global BMF, and one individual developed a hematological cancer (acute myeloid leukemia) in childhood. We show that the encoded protein associates with rRNA and plays a highly conserved role in the maturation of the 60S ribosomal subunit. Lymphoblastoid cells obtained from an affected individual exhibit increased sensitivity to the transcriptional inhibitor actinomycin D and reduced amounts of rRNA. Characterization of mutations revealed impairment in interactions with cofactors (PA2G4, HSPA8, and ZNF622) involved in 60S maturation. DNAJC21 deficiency resulted in cytoplasmic accumulation of the 60S nuclear export factor PA2G4, aberrant ribosome profiles, and increased cell death. Collectively, these findings demonstrate that mutations in DNAJC21 cause a cancer-prone BMF syndrome due to corruption of early nuclear rRNA biogenesis and late cytoplasmic maturation of the 60S subunit. PMID:27346687

  19. Host Cofactors and Pharmacologic Ligands Share an Essential Interface in HIV-1 Capsid That Is Lost upon Disassembly

    PubMed Central

    McEwan, William A.; Fletcher, Adam J.; Essig, Sebastian; Chin, Jason W.; Halambage, Upul D.; Aiken, Christopher; James, Leo C.

    2014-01-01

    The HIV-1 capsid is involved in all infectious steps from reverse transcription to integration site selection, and is the target of multiple host cell and pharmacologic ligands. However, structural studies have been limited to capsid monomers (CA), and the mechanistic basis for how these ligands influence infection is not well understood. Here we show that a multi-subunit interface formed exclusively within CA hexamers mediates binding to linear epitopes within cellular cofactors NUP153 and CPSF6, and is competed for by the antiretroviral compounds PF74 and BI-2. Each ligand is anchored via a shared phenylalanine-glycine (FG) motif to a pocket within the N-terminal domain of one monomer, and all but BI-2 also make essential interactions across the N-terminal domain: C-terminal domain (NTD:CTD) interface to a second monomer. Dissociation of hexamer into CA monomers prevents high affinity interaction with CPSF6 and PF74, and abolishes binding to NUP153. The second interface is conformationally dynamic, but binding of NUP153 or CPSF6 peptides is accommodated by only one conformation. NUP153 and CPSF6 have overlapping binding sites, but each makes unique CA interactions that, when mutated selectively, perturb cofactor dependency. These results reveal that multiple ligands share an overlapping interface in HIV-1 capsid that is lost upon viral disassembly. PMID:25356722

  20. Direct evidence for a peroxide intermediate and a reactive enzyme-substrate-dioxygen configuration in a cofactor-free oxidase.

    PubMed

    Bui, Soi; von Stetten, David; Jambrina, Pablo G; Prangé, Thierry; Colloc'h, Nathalie; de Sanctis, Daniele; Royant, Antoine; Rosta, Edina; Steiner, Roberto A

    2014-12-01

    Cofactor-free oxidases and oxygenases promote and control the reactivity of O2 with limited chemical tools at their disposal. Their mechanism of action is not completely understood and structural information is not available for any of the reaction intermediates. Near-atomic resolution crystallography supported by in crystallo Raman spectroscopy and QM/MM calculations showed unambiguously that the archetypical cofactor-free uricase catalyzes uric acid degradation via a C5(S)-(hydro)peroxide intermediate. Low X-ray doses break specifically the intermediate C5-OO(H) bond at 100 K, thus releasing O2 in situ, which is trapped above the substrate radical. The dose-dependent rate of bond rupture followed by combined crystallographic and Raman analysis indicates that ionizing radiation kick-starts both peroxide decomposition and its regeneration. Peroxidation can be explained by a mechanism in which the substrate radical recombines with superoxide transiently produced in the active site. PMID:25314114

  1. Direct Evidence for a Peroxide Intermediate and a Reactive Enzyme–Substrate–Dioxygen Configuration in a Cofactor-free Oxidase**

    PubMed Central

    Bui, Soi; von Stetten, David; Jambrina, Pablo G; Prangé, Thierry; Colloc'h, Nathalie; de Sanctis, Daniele; Royant, Antoine; Rosta, Edina; Steiner, Roberto A

    2014-01-01

    Cofactor-free oxidases and oxygenases promote and control the reactivity of O2 with limited chemical tools at their disposal. Their mechanism of action is not completely understood and structural information is not available for any of the reaction intermediates. Near-atomic resolution crystallography supported by in crystallo Raman spectroscopy and QM/MM calculations showed unambiguously that the archetypical cofactor-free uricase catalyzes uric acid degradation via a C5(S)-(hydro)peroxide intermediate. Low X-ray doses break specifically the intermediate C5=OO(H) bond at 100 K, thus releasing O2 in situ, which is trapped above the substrate radical. The dose-dependent rate of bond rupture followed by combined crystallographic and Raman analysis indicates that ionizing radiation kick-starts both peroxide decomposition and its regeneration. Peroxidation can be explained by a mechanism in which the substrate radical recombines with superoxide transiently produced in the active site. PMID:25314114

  2. Involvement of the Cohesin Cofactor PDS5 (SPO76) During Meiosis and DNA Repair in Arabidopsis thaliana

    PubMed Central

    Pradillo, Mónica; Knoll, Alexander; Oliver, Cecilia; Varas, Javier; Corredor, Eduardo; Puchta, Holger; Santos, Juan L.

    2015-01-01

    Maintenance and precise regulation of sister chromatid cohesion is essential for faithful chromosome segregation during mitosis and meiosis. Cohesin cofactors contribute to cohesin dynamics and interact with cohesin complexes during cell cycle. One of these, PDS5, also known as SPO76, is essential during mitosis and meiosis in several organisms and also plays a role in DNA repair. In yeast, the complex Wapl-Pds5 controls cohesion maintenance and colocalizes with cohesin complexes into chromosomes. In Arabidopsis, AtWAPL proteins are essential during meiosis, however, the role of AtPDS5 remains to be ascertained. Here we have isolated mutants for each of the five AtPDS5 genes (A–E) and obtained, after different crosses between them, double, triple, and even quadruple mutants (Atpds5a Atpds5b Atpds5c Atpds5e). Depletion of AtPDS5 proteins has a weak impact on meiosis, but leads to severe effects on development, fertility, somatic homologous recombination (HR) and DNA repair. Furthermore, this cohesin cofactor could be important for the function of the AtSMC5/AtSMC6 complex. Contrarily to its function in other species, our results suggest that AtPDS5 is dispensable during the meiotic division of Arabidopsis, although it plays an important role in DNA repair by HR. PMID:26648949

  3. RNase P: role of distinct protein cofactors in tRNA substrate recognition and RNA-based catalysis

    PubMed Central

    Sharin, Ela; Schein, Aleks; Mann, Hagit; Ben-Asouli, Yitzhak; Jarrous, Nayef

    2005-01-01

    The Escherichia coli ribonuclease P (RNase P) has a protein component, termed C5, which acts as a cofactor for the catalytic M1 RNA subunit that processes the 5′ leader sequence of precursor tRNA. Rpp29, a conserved protein subunit of human RNase P, can substitute for C5 protein in reconstitution assays of M1 RNA activity. To better understand the role of the former protein, we compare the mode of action of Rpp29 to that of the C5 protein in activation of M1 RNA. Enzyme kinetic analyses reveal that complexes of M1 RNA–Rpp29 and M1 RNA–C5 exhibit comparable binding affinities to precursor tRNA but different catalytic efficiencies. High concentrations of substrate impede the activity of the former complex. Rpp29 itself exhibits high affinity in substrate binding, which seems to reduce the catalytic efficiency of the reconstituted ribonucleoprotein. Rpp29 has a conserved C-terminal domain with an Sm-like fold that mediates interaction with M1 RNA and precursor tRNA and can activate M1 RNA. The results suggest that distinct protein folds in two unrelated protein cofactors can facilitate transition from RNA- to ribonucleoprotein-based catalysis by RNase P. PMID:16155184

  4. Structure of a putative molybdenum-cofactor biosynthesis protein C (MoaC) from Sulfolobus tokodaii (ST0472)

    SciTech Connect

    Yoshida, Hiromi; Yamada, Mitsugu; Kuramitsu, Seiki; Kamitori, Shigehiro

    2008-07-01

    The crystal structure of a putative molybdenum-cofactor biosynthesis protein C (MoaC) from S. tokodaii (ST0472) was determined at 2.2 Å resolution. The crystal structure of a putative molybdenum-cofactor (Moco) biosynthesis protein C (MoaC) from Sulfolobus tokodaii (ST0472) was determined at 2.2 Å resolution. The crystal belongs to the monoclinic space group C2, with unit-cell parameters a = 123.31, b = 78.58, c = 112.67 Å, β = 118.1°. The structure was solved by molecular replacement using the structure of Escherichia coli MoaC as the probe model. The asymmetric unit is composed of a hexamer arranged as a trimer of dimers with noncrystallographic 32 symmetry. The structure of ST0472 is very similar to that of E. coli MoaC; however, in the ST0472 protein an additional loop formed by the insertion of seven residues participates in intermonomer interactions and the new structure also reveals the formation of an interdimer β-sheet. These features may contribute to the stability of the oligomeric state.

  5. The Biosynthesis of Thiol- and Thioether-containing Cofactors and Secondary Metabolites Catalyzed by Radical S-Adenosylmethionine Enzymes*

    PubMed Central

    Jarrett, Joseph T.

    2015-01-01

    Sulfur atoms are present as thiol and thioether functional groups in amino acids, coenzymes, cofactors, and various products of secondary metabolic pathways. The biosynthetic pathways for several sulfur-containing biomolecules require the substitution of sulfur for hydrogen at unreactive aliphatic or electron-rich aromatic carbon atoms. Examples discussed in this review include biotin, lipoic acid, methylthioether modifications found in some nucleic acids and proteins, and thioether cross-links found in peptide natural products. Radical S-adenosyl-l-methionine (SAM) enzymes use an iron-sulfur cluster to catalyze the reduction of SAM to methionine and a highly reactive 5′-deoxyadenosyl radical; this radical can abstract hydrogen atoms at unreactive positions, facilitating the introduction of a variety of functional groups. Radical SAM enzymes that catalyze sulfur insertion reactions contain a second iron-sulfur cluster that facilitates the chemistry, either by donating the cluster's endogenous sulfide or by binding and activating exogenous sulfide or sulfur-containing substrates. The use of radical chemistry involving iron-sulfur clusters is an efficient anaerobic route to the generation of carbon-sulfur bonds in cofactors, secondary metabolites, and other natural products. PMID:25477512

  6. Nuclear Enrichment of Folate Cofactors and Methylenetetrahydrofolate Dehydrogenase 1 (MTHFD1) Protect de Novo Thymidylate Biosynthesis during Folate Deficiency*

    PubMed Central

    Field, Martha S.; Kamynina, Elena; Agunloye, Olufunmilayo C.; Liebenthal, Rebecca P.; Lamarre, Simon G.; Brosnan, Margaret E.; Brosnan, John T.; Stover, Patrick J.

    2014-01-01

    Folate-mediated one-carbon metabolism is a metabolic network of interconnected pathways that is required for the de novo synthesis of three of the four DNA bases and the remethylation of homocysteine to methionine. Previous studies have indicated that the thymidylate synthesis and homocysteine remethylation pathways compete for a limiting pool of methylenetetrahydrofolate cofactors and that thymidylate biosynthesis is preserved in folate deficiency at the expense of homocysteine remethylation, but the mechanisms are unknown. Recently, it was shown that thymidylate synthesis occurs in the nucleus, whereas homocysteine remethylation occurs in the cytosol. In this study we demonstrate that methylenetetrahydrofolate dehydrogenase 1 (MTHFD1), an enzyme that generates methylenetetrahydrofolate from formate, ATP, and NADPH, functions in the nucleus to support de novo thymidylate biosynthesis. MTHFD1 translocates to the nucleus in S-phase MCF-7 and HeLa cells. During folate deficiency mouse liver MTHFD1 levels are enriched in the nucleus >2-fold at the expense of levels in the cytosol. Furthermore, nuclear folate levels are resistant to folate depletion when total cellular folate levels are reduced by >50% in mouse liver. The enrichment of folate cofactors and MTHFD1 protein in the nucleus during folate deficiency in mouse liver and human cell lines accounts for previous metabolic studies that indicated 5,10-methylenetetrahydrofolate is preferentially directed toward de novo thymidylate biosynthesis at the expense of homocysteine remethylation during folate deficiency. PMID:25213861

  7. Nickel-pincer cofactor biosynthesis involves LarB-catalyzed pyridinium carboxylation and LarE-dependent sacrificial sulfur insertion.

    PubMed

    Desguin, Benoît; Soumillion, Patrice; Hols, Pascal; Hausinger, Robert P

    2016-05-17

    The lactate racemase enzyme (LarA) of Lactobacillus plantarum harbors a (SCS)Ni(II) pincer complex derived from nicotinic acid. Synthesis of the enzyme-bound cofactor requires LarB, LarC, and LarE, which are widely distributed in microorganisms. The functions of the accessory proteins are unknown, but the LarB C terminus resembles aminoimidazole ribonucleotide carboxylase/mutase, LarC binds Ni and could act in Ni delivery or storage, and LarE is a putative ATP-using enzyme of the pyrophosphatase-loop superfamily. Here, we show that LarB carboxylates the pyridinium ring of nicotinic acid adenine dinucleotide (NaAD) and cleaves the phosphoanhydride bond to release AMP. The resulting biscarboxylic acid intermediate is transformed into a bisthiocarboxylic acid species by two single-turnover reactions in which sacrificial desulfurization of LarE converts its conserved Cys176 into dehydroalanine. Our results identify a previously unidentified metabolic pathway from NaAD using unprecedented carboxylase and sulfur transferase reactions to form the organic component of the (SCS)Ni(II) pincer cofactor of LarA. In species where larA is absent, this pathway could be used to generate a pincer complex in other enzymes. PMID:27114550

  8. Spectroscopic Definition of the Ferroxidase Site in M Ferritin: Comparison of Binuclear Substrate vs. Cofactor Active Sites

    PubMed Central

    Schwartz, Jennifer K.; Liu, Xiaofeng S.; Tosha, Takehiko; Theil, Elizabeth C.; Solomon, Edward I.

    2008-01-01

    Maxi ferritins, 24 subunit protein nanocages, are essential in humans, plants, bacteria, and other animals for the concentration and storage of iron as hydrated ferric oxide, while minimizing free radical generation or use by pathogens. Formation of the precursors to these ferric oxides is catalyzed at a non-heme biferrous substrate site, which has some parallels with the cofactor sites in other biferrous enzymes. A combination of circular dichroism (CD), magnetic circular dichroism (MCD), and variable-temperature, variable-field MCD (VTVH MCD) has been used to probe Fe(II) binding to the substrate active site in frog M ferritin. These data determined that the active site within each subunit consists of two inequivalent five-coordinate (5C) ferrous centers that are weakly anti-ferromagnetically coupled, consistent with a μ-1,3 carboxylate bridge. The active site ligand set is unusual and likely includes a terminal water bound to each Fe(II) center. The Fe(II) ions bind to the active sites in a concerted manner, and cooperativity among the sites in each subunit is observed, potentially providing a mechanism for the control of ferritin iron loading. Differences in geometric and electronic structure – including a weak ligand field, availability of two water ligands at the biferrous substrate site, and the single carboxylate bridge in ferritin – coincide with the divergent reaction pathways observed between this substrate site and the previously studied cofactor active sites. PMID:18576633

  9. The vanadium-iron protein of vanadium nitrogenase from Azotobacter chroococcum contains an iron-vanadium cofactor.

    PubMed Central

    Smith, B E; Eady, R R; Lowe, D J; Gormal, C

    1988-01-01

    N-Methylformamide extracts of acid-treated precipitated VFe protein of the V-nitrogenase of Azotobacter chroococcum are yellow-brown in colour and contain vanadium, iron and acid-labile sulphur in the approximate proportions 1:6:5. E.p.r. spectra of the extracts exhibit a weak signal with g values near 4.5, 3.6 and 2.0 characteristic of an S = 3/2 metal-containing centre. The N-methylformamide extracts activated the MoFe protein polypeptides from mutants of nitrogen-fixing bacteria unable to synthesize FeMoco, the active centre of Mo-nitrogenase. The active hybrid protein exhibited the characteristic substrate-reducing phenotype associated with the VFe protein except that it could not reduce N2 to NH3. The above data are interpreted as demonstrating the existence of an iron- and vanadium-containing cofactor, FeVaco, within the VFe protein. It is suggested that nitrogen fixation requires specific interactions between FeVaco or FeMoco and their respective polypeptides. The biosynthesis of these cofactors is discussed. PMID:2833236

  10. 7 CFR 51.1218 - Mature.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., CERTIFICATION, AND STANDARDS) United States Standards for Grades of Peaches Definitions § 51.1218 Mature. “Mature” means that the peach has reached the stage of growth which will ensure a proper completion of...

  11. 7 CFR 51.1218 - Mature.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., CERTIFICATION, AND STANDARDS) United States Standards for Grades of Peaches Definitions § 51.1218 Mature. “Mature” means that the peach has reached the stage of growth which will ensure a proper completion of...

  12. Quantifying Semantic Linguistic Maturity in Children.

    PubMed

    Hansson, Kristina; Bååth, Rasmus; Löhndorf, Simone; Sahlén, Birgitta; Sikström, Sverker

    2016-10-01

    We propose a method to quantify semantic linguistic maturity (SELMA) based on a high dimensional semantic representation of words created from the co-occurrence of words in a large text corpus. The method was applied to oral narratives from 108 children aged 4;0-12;10. By comparing the SELMA measure with maturity ratings made by human raters we found that SELMA predicted the rating of semantic maturity made by human raters over and above the prediction made using a child's age and number of words produced. We conclude that the semantic content of narratives changes in a predictable pattern with children's age and argue that SELMA is a measure quantifying semantic linguistic maturity. The study opens up the possibility of using quantitative measures for studying the development of semantic representation in children's narratives, and emphasizes the importance of word co-occurrences for understanding the development of meaning. PMID:26440529

  13. Structure, Function and Dynamics in Adenovirus Maturation

    PubMed Central

    Mangel, Walter F.; San Martín, Carmen

    2014-01-01

    Here we review the current knowledge on maturation of adenovirus, a non-enveloped icosahedral eukaryotic virus. The adenovirus dsDNA genome fills the capsid in complex with a large amount of histone-like viral proteins, forming the core. Maturation involves proteolytic cleavage of several capsid and core precursor proteins by the viral protease (AVP). AVP uses a peptide cleaved from one of its targets as a “molecular sled” to slide on the viral genome and reach its substrates, in a remarkable example of one-dimensional chemistry. Immature adenovirus containing the precursor proteins lacks infectivity because of its inability to uncoat. The immature core is more compact and stable than the mature one, due to the condensing action of unprocessed core polypeptides; shell precursors underpin the vertex region and the connections between capsid and core. Maturation makes the virion metastable, priming it for stepwise uncoating by facilitating vertex release and loosening the condensed genome and its attachment to the icosahedral shell. The packaging scaffold protein L1 52/55k is also a substrate for AVP. Proteolytic processing of L1 52/55k disrupts its interactions with other virion components, providing a mechanism for its removal during maturation. Finally, possible roles for maturation of the terminal protein are discussed. PMID:25421887

  14. Structure, function and dynamics in adenovirus maturation

    SciTech Connect

    Mangel, Walter F.; San Martín, Carmen

    2014-11-21

    Here we review the current knowledge on maturation of adenovirus, a non-enveloped icosahedral eukaryotic virus. The adenovirus dsDNA genome fills the capsid in complex with a large amount of histone-like viral proteins, forming the core. Maturation involves proteolytic cleavage of several capsid and core precursor proteins by the viral protease (AVP). AVP uses a peptide cleaved from one of its targets as a “molecular sled” to slide on the viral genome and reach its substrates, in a remarkable example of one-dimensional chemistry. Immature adenovirus containing the precursor proteins lacks infectivity because of its inability to uncoat. The immature core is more compact and stable than the mature one, due to the condensing action of unprocessed core polypeptides; shell precursors underpin the vertex region and the connections between capsid and core. Maturation makes the virion metastable, priming it for stepwise uncoating by facilitating vertex release and loosening the condensed genome and its attachment to the icosahedral shell. The packaging scaffold protein L1 52/55k is also a substrate for AVP. Proteolytic processing of L1 52/55k disrupts its interactions with other virion components, providing a mechanism for its removal during maturation. In conclusion, possible roles for maturation of the terminal protein are discussed.

  15. Structure, function and dynamics in adenovirus maturation

    DOE PAGESBeta

    Mangel, Walter F.; San Martín, Carmen

    2014-11-21

    Here we review the current knowledge on maturation of adenovirus, a non-enveloped icosahedral eukaryotic virus. The adenovirus dsDNA genome fills the capsid in complex with a large amount of histone-like viral proteins, forming the core. Maturation involves proteolytic cleavage of several capsid and core precursor proteins by the viral protease (AVP). AVP uses a peptide cleaved from one of its targets as a “molecular sled” to slide on the viral genome and reach its substrates, in a remarkable example of one-dimensional chemistry. Immature adenovirus containing the precursor proteins lacks infectivity because of its inability to uncoat. The immature core ismore » more compact and stable than the mature one, due to the condensing action of unprocessed core polypeptides; shell precursors underpin the vertex region and the connections between capsid and core. Maturation makes the virion metastable, priming it for stepwise uncoating by facilitating vertex release and loosening the condensed genome and its attachment to the icosahedral shell. The packaging scaffold protein L1 52/55k is also a substrate for AVP. Proteolytic processing of L1 52/55k disrupts its interactions with other virion components, providing a mechanism for its removal during maturation. In conclusion, possible roles for maturation of the terminal protein are discussed.« less

  16. Effect of hemiplegia on skeletal maturation.

    PubMed

    Roberts, C D; Vogtle, L; Stevenson, R D

    1994-11-01

    Children with cerebral palsy have been reported to have poor growth and delayed skeletal maturation, but it is unclear whether these effects are related to the underlying brain injury or to concomitant malnutrition. This study was designed to evaluate the effects of hemiplegic cerebral palsy on skeletal maturation and growth, with the unaffected side used as each subject's control. Bilateral hand-wrist radiographs were obtained for 19 children with spastic hemiplegia. Skeletal maturation was determined in a blinded fashion with the Fels method. The skeletal age of the affected (hemiplegic) side was less than that of the unaffected (control) side in all 19 subjects; the mean difference in skeletal age was 7.3 months (p < 0.001). The delay in skeletal maturation of the affected side correlated linearly with age and upper extremity function. These findings show that brain injury results in delayed skeletal maturation independent of malnutrition. This effect on skeletal maturation may explain, in part, the reason that some children with cerebral palsy grow poorly. PMID:7965443

  17. Review of Sexual Maturity in the Minipig.

    PubMed

    Howroyd, Paul C; Peter, Birgit; de Rijk, Eveline

    2016-06-01

    It is important to know whether the animals used in toxicology studies are sexually mature. As minipigs are being used increasingly in toxicity studies, we reviewed published data on the age of sexual maturity in the minipig. Maturity in females was assessed on the basis either of normal cycles of progesterone secretion or of the histological presence of corpora lutea and, in males, was assessed on the histological appearance of the seminiferous tubules and epididymides. In female Göttingen minipigs, the first progesterone peak was at 3.7 to 4.2 or 6.1 to 6.5 months of age. These animals were in the presence of a boar. In female Göttingen minipigs in toxicology studies, which were not in the presence of a boar, at least 1 corpus luteum in the ovaries was present in only 50% of the females by 6.5 months of age, while all were mature by 7.7 months of age. Histological maturity in the male Yucatan minipig is reported to be attained at about 4.4 months old, but in male Göttingen minipigs at about 2 months old, although the definition of maturity may have been different in the 2 studies. PMID:27102651

  18. Color back projection for fruit maturity evaluation

    NASA Astrophysics Data System (ADS)

    Zhang, Dong; Lee, Dah-Jye; Desai, Alok

    2013-12-01

    In general, fruits and vegetables such as tomatoes and dates are harvested before they fully ripen. After harvesting, they continue to ripen and their color changes. Color is a good indicator of fruit maturity. For example, tomatoes change color from dark green to light green and then pink, light red, and dark red. Assessing tomato maturity helps maximize its shelf life. Color is used to determine the length of time the tomatoes can be transported. Medjool dates change color from green to yellow, and the orange, light red and dark red. Assessing date maturity helps determine the length of drying process to help ripen the dates. Color evaluation is an important step in the processing and inventory control of fruits and vegetables that directly affects profitability. This paper presents an efficient color back projection and image processing technique that is designed specifically for real-time maturity evaluation of fruits. This color processing method requires very simple training procedure to obtain the frequencies of colors that appear in each maturity stage. This color statistics is used to back project colors to predefined color indexes. Fruit maturity is then evaluated by analyzing the reprojected color indexes. This method has been implemented and used for commercial production.

  19. Maturation processing and characterization of streptopain.

    PubMed

    Chen, Chiu-Yueh; Luo, Shih-Chi; Kuo, Chih-Feng; Lin, Yee-Shin; Wu, Jiunn-Jong; Lin, Ming T; Liu, Ching-Chuan; Jeng, Wen-Yih; Chuang, Woei-Jer

    2003-05-01

    Streptopain is a cysteine protease expressed by Streptococcus pyogenes. To study the maturation mechanism of streptopain, wild-type and Q186N, C192S, H340R, N356D and W357A mutant proteins were expressed in Escherichia coli and purified to homogeneity. Proteolytic analyses showed that the maturation of prostreptococcal pyrogenic exotoxin B zymogen (pro-SPE B) involves eight intermediates with a combination of cis- and trans-processing. Based on the sequences of these intermediates, the substrate specificity of streptopain favors a hydrophobic residue at the P2 site. The relative autocatalytic rates of these mutants exhibited the order Q186N > W357A > N356D, C192S, H340R. Interestingly, the N356D mutant containing protease activity could not be converted into the 28-kDa form by autoprocessing. This observation suggested that Asn(356) might involve the cis-processing of the propeptide. In addition, the maturation rates of pro-SPE B with trypsin and plasmin were 10- and 60-fold slower than that with active mature streptopain. These findings indicate that active mature streptopain likely plays the most important role in the maturation of pro-SPE B under physiological conditions. PMID:12621045

  20. Chaperonin Cofactors, Cpn10 and Cpn20, of Green Algae and Plants Function as Hetero-oligomeric Ring Complexes*♦

    PubMed Central

    Tsai, Yi-Chin C.; Mueller-Cajar, Oliver; Saschenbrecker, Sandra; Hartl, F. Ulrich; Hayer-Hartl, Manajit

    2012-01-01

    The chloroplast chaperonin system of plants and green algae is a curiosity as both the chaperonin cage and its lid are encoded by multiple genes, in contrast to the single genes encoding the two components of the bacterial and mitochondrial systems. In the green alga Chlamydomonas reinhardtii (Cr), three genes encode chaperonin cofactors, with cpn10 encoding a single ∼10-kDa domain and cpn20 and cpn23 encoding tandem cpn10 domains. Here, we characterized the functional interaction of these proteins with the Escherichia coli chaperonin, GroEL, which normally cooperates with GroES, a heptamer of ∼10-kDa subunits. The C. reinhardtii cofactor proteins alone were all unable to assist GroEL-mediated refolding of bacterial ribulose-bisphosphate carboxylase/oxygenase but gained this ability when CrCpn20 and/or CrCpn23 was combined with CrCpn10. Native mass spectrometry indicated the formation of hetero-oligomeric species, consisting of seven ∼10-kDa domains. The cofactor “heptamers” interacted with GroEL and encapsulated substrate protein in a nucleotide-dependent manner. Different hetero-oligomer arrangements, generated by constructing cofactor concatamers, indicated a preferential heptamer configuration for the functional CrCpn10-CrCpn23 complex. Formation of heptamer Cpn10/Cpn20 hetero-oligomers was also observed with the Arabidopsis thaliana (At) cofactors, which functioned with the chloroplast chaperonin, AtCpn60α7β7. It appears that hetero-oligomer formation occurs more generally for chloroplast chaperonin cofactors, perhaps adapting the chaperonin system for the folding of specific client proteins. PMID:22518837

  1. Geometric and Electronic Structure of the Mn(IV)Fe(III) Cofactor in Class Ic Ribonucleotide Reductase: Correlation to the Class Ia Binuclear Non-Heme Iron Enzyme

    PubMed Central

    Kwak, Yeonju; Jiang, Wei; Dassama, Laura M.K.; Park, Kiyoung; Bell, Caleb B.; Liu, Lei V.; Wong, Shaun D.; Saito, Makina; Kobayashi, Yasuhiro; Kitao, Shinji; Seto, Makoto; Yoda, Yoshitaka; Alp, E. Ercan; Zhao, Jiyong; Bollinger, J Martin; Krebs, Carsten; Solomon, Edward I.

    2013-01-01

    The class Ic ribonucleotide reductase (RNR) from Chlamydia trachomatis (Ct) utilizes a Mn/Fe hetero-binuclear cofactor, rather than the Fe/Fe cofactor found in the β (R2) subunit of the class Ia enzymes, to react with O2. This reaction produces a stable MnIVFeIII cofactor that initiates a radical, which transfers to the adjacent α (R1) subunit and reacts with the substrate. We have studied the MnIVFeIII cofactor using nuclear resonance vibrational spectroscopy (NRVS) and absorption (Abs) / circular dichroism (CD) / magnetic CD (MCD) / variable temperature, variable field (VTVH) MCD spectroscopies to obtain detailed insight into its geometric/electronic structure and to correlate structure with reactivity; NRVS focuses on the FeIII, whereas MCD reflects the spin-allowed transitions mostly on the MnIV. We have evaluated 18 systematically varied structures. Comparison of the simulated NRVS spectra to the experimental data shows that the cofactor has one carboxylate bridge, with MnIV at the site proximal to Phe127. Abs/CD/MCD/VTVH MCD data exhibit 12 transitions that are assigned as d-d, and oxo and OH− to metal charge transfer (CT) transitions. Assignments are based on MCD/Abs intensity ratios, transition energies, polarizations, and derivative-shaped pseudo-A term CT transitions. Correlating these results with TD-DFT calculations defines the MnIVFeIII cofactor as having a µ-oxo, µ-hydroxo core and a terminal hydroxo ligand on the MnIV. From DFT calculations, the MnIV at site 1 is necessary to tune the redox potential to a value similar to that of the tyrosine radical in class Ia RNR, and the OH− terminal ligand on this MnIV provides a high proton affinity that could gate radical translocation to the α (R1) subunit. PMID:24131208

  2. The contribution of a covalently bound cofactor to the folding and thermodynamic stability of an integral membrane protein.

    PubMed

    Curnow, Paul; Booth, Paula J

    2010-11-01

    The factors controlling the stability, folding, and dynamics of integral membrane proteins are not fully understood. The high stability of the membrane protein bacteriorhodopsin (bR), an archetypal member of the rhodopsin photoreceptor family, has been ascribed to its covalently bound retinal cofactor. We investigate here the role of this cofactor in the thermodynamic stability and folding kinetics of bR. Multiple spectroscopic probes were used to determine the kinetics and energetics of protein folding in mixed lipid/detergent micelles in the presence and absence of retinal. The presence of retinal increases extrapolated values for the overall unfolding free energy from 6.3 ± 0.4 kcal mol(-1) to 23.4 ± 1.5 kcal mol(-1) at zero denaturant, suggesting that the cofactor contributes 17.1 kcal mol(-1) towards the overall stability of bR. In addition, the cooperativity of equilibrium unfolding curves is markedly reduced in the absence of retinal with overall m-values decreasing from 31.0 ± 2.0 kcal mol(-1) to 10.9 ± 1.0 kcal mol(-1), indicating that the folded state of the apoprotein is less compact than the equivalent for the holoprotein. This change in the denaturant response means that the difference in the unfolding free energy at a denaturant concentration midway between the two unfolding curves is only ca 3-6 kcal mol(-1). Kinetic data show that the decrease in stability upon removal of retinal is associated with an increase in the apparent intrinsic rate constant of unfolding, k(u)(H2O), from ~1 × 10(-16) s(-1) to ~1 × 10(-4) s(-1) at 25 °C. This correlates with a decrease in the unfolding activation energy by 16.3 kcal mol(-1) in the apoprotein, extrapolated to zero SDS. These results suggest that changes in bR stability induced by retinal binding are mediated solely by changes in the activation barrier for unfolding. The results are consistent with a model in which bR is kinetically stabilized via a very slow rate of unfolding arising from protein

  3. Comparison of maturity based on steroid and vanadyl porphyrin parameters: A new vanadyl porphyrin maturity parameter for higher maturities

    SciTech Connect

    Sundararaman, P. ); Moldowan, J.M. )

    1993-03-01

    Correlations are demonstrated between steriod maturity parameters and the porphyrin maturity parameter (PMP) which is based on the ratio of specific vanadyl porphyrins C[sub 28]E/(C[sub 28]E + C[sub 32]D) measured by HPLC. Measurements from a global selection of >100 rock extracts and oils show that PMP parallels changes in the C[sub 29]-sterane 20S/(20S + 20R) and tri/(tri + mono) aromatic steroid ratios, and that all three parameters appear to attain their maximum values at similar maturity levels. The triaromatic steroid side chain cracking parameter, TA I/(I + II), reaches approximately 20% of its maximum value when PMP has reached 100%. These results suggest that PMP is effective in the early to peak portion of the oil window. A new parameter, PMP-2, based on changes in the relative concentrations of two peaks in the HPLC fingerprint (vanadyl [open quotes]etio[close quotes] porphyrins), appears effective in assessing the maturity of source rocks beyond peak oil generation. In combination with PMP this parameter extends the effective range of vanadyl porphyrins parameters to higher maturities as demonstrated by a suite of oils from the Oriente Basin, Ecuador, South America. 22 refs., 6 figs., 1 tab.

  4. Source rock maturation, San Juan sag

    SciTech Connect

    Gries, R.R.; Clayton, J.L.

    1989-09-01

    Kinetic modeling for thermal histories was simulated for seven wells in the San Juan sag honoring measured geochemical data. Wells in the area of Del Norte field (Sec. 9, T40N, R5E), where minor production has been established from an igneous sill reservoir, show that the Mancos Shale source rocks are in the mature oil generation window as a combined result of high regional heat flow and burial by approximately 2,700 m of Oligocene volcanic rocks. Maturation was relatively recent for this area and insignificant during Laramide subsidence. In the vicinity of Gramps field (Sec. 24, T33N, R2E) on the southwest flank of the San Juan sag, these same source rocks are exposed due to erosion of the volcanic cover but appear to have undergone a similar maturation history. At the north and south margins of the sag, two wells (Champlin 34A-13, Sec. 13, T35N, R4.5E; and Champlin 24A-1, Sec. 1, T44N, R5E) were analyzed and revealed that although the regional heat flow was probably similar to other wells, the depth of burial was insufficient to cause maturation (except where intruded by thick igneous sills that caused localized maturation). The Meridian Oil 23-17 South Fork well (Sec. 17, T39N, R4E) was drilled in a deeper part of the San Juan sag, and source rocks were intruded by numerous igneous sills creating a complex maturation history that includes overmature rocks in the lowermost Mancos Shale, possible CO{sub 2} generation from the calcareous Niobrara Member of the Mancos Shale, and mature source rocks in the upper Mancos Shale.

  5. The crystal structure of escherichia coli MoaB suggests a probable role in molybdenum cofactor synthesis.

    SciTech Connect

    Sanishvili, R.; Beasley, S.; Skarina, T; Glesne, D; Joachimiak, A; Edwards, A; Savchenko, A.; Univ. Health Network; Univ. of Toronto

    2004-10-01

    The crystal structure of Escherichia coli MoaB was determined by multiwavelength anomalous diffraction phasing and refined at 1.6 Angstrom resolution. The molecule displayed a modified Rossman fold. MoaB is assembled into a hexamer composed of two trimers. The monomers have high structural similarity with two proteins, MogA and MoeA, from the molybdenum cofactor synthesis pathway in E. Coli, as well as with domains of mammalian gephyrin and plant Cnx1, which are also involved in molybdopterin synthesis. Structural comparison between these proteins and the amino acid conservation patterns revealed a putative active site in MoaB. The structural analysis of this site allowed to advance several hypothesis which can be tested in further studies.

  6. Identification by mutational analysis of four critical residues in the molybdenum cofactor domain of eukaryotic nitrate reductase.

    PubMed

    Meyer, C; Gonneau, M; Caboche, M; Rouzé, P

    1995-08-21

    The nucleotide sequence of the nitrate reductase (NR) molybdenum cofactor (MoCo) domain was determined in four Nicotiana plumbaginifolia mutants affected in the NR apoenzyme gene. In each case, missense mutations were found in the MoCo domain which affected amino acids that were conserved not only among eukaryotic NRs but also in animal sulfite oxidase sequences. Moreover an abnormal NR molecular mass was observed in three mutants, suggesting that the integrity of the MoCo domain is essential for a proper assembly of holo-NR. These data allowed to pinpoint critical residues in the NR MoCo domain necessary for the enzyme activity but also important for its quaternary structure. PMID:7656976

  7. In situ chemichromic studies of interactions between a lutetium bis-octaalkyl-substituted phthalocyanine and selected biological cofactors

    PubMed Central

    Pal, C.; Cammidge, A. N.; Cook, M. J.; Sosa-Sanchez, J. L.; Sharma, A. K.; Ray, A. K.

    2012-01-01

    Spin-coated films, approximately 100 nm thick, of a newly synthesized bis[octakis(octyl)phthalocyaninato] lutetium(III) complex on ultrasonically cleaned glass substrates exhibit pronounced chemichromic behaviour with potential application in healthcare. In situ kinetic optical absorption spectroscopic measurements show that the phthalocyanine Q-band is red shifted by 60 nm upon oxidation arising from exposure to bromine vapour. Recovery to the original state is achieved by the treatment of the oxidized films with nicotinamide adenine dinucleotide and l-ascorbic acid (vitamin C) in an aqueous solution containing 1.5 M lithium perchlorate. The neutralization process is found to be governed by first-order kinetics. The linear increase of the reduction rate with increasing concentration of cofactors provides a basis for calibration of analyte concentrations ranging from 3.5 mM down to 0.03 mM. PMID:21676969

  8. Controlling Electron Transfer between the Two Cofactor Chains of Photosystem I by the Redox State of One of Their Components

    PubMed Central

    Santabarbara, Stefano; Bullock, Bradford; Rappaport, Fabrice; Redding, Kevin E.

    2015-01-01

    Two functional electron transfer (ET) chains, related by a pseudo-C2 symmetry, are present in the reaction center of photosystem I (PSI). Due to slight differences in the environment around the cofactors of the two branches, there are differences in both the kinetics of ET and the proportion of ET that occurs on the two branches. The strongest evidence that this is indeed the case relied on the observation that the oxidation rates of the reduced phylloquinone (PhQ) cofactor differ by an order of magnitude. Site-directed mutagenesis of residues involved in the respective PhQ-binding sites resulted in a specific alteration of the rates of semiquinone oxidation. Here, we show that the PsaA-F689N mutation results in an ∼100-fold decrease in the observed rate of PhQA− oxidation. This is the largest change of PhQA− oxidation kinetics observed so far for a single-point mutation, resulting in a lifetime that exceeds that of the terminal electron donor, P700+. This situation allows a second photochemical charge separation event to be initiated before PhQA− has decayed, thereby mimicking in PSI a situation that occurs in type II reaction centers. The results indicate that the presence of PhQA− does not impact the overall quantum yield and leads to an almost complete redistribution of the fractional utilization of the two functional ET chains, in favor of the one that does not bear the charged species. The evolutionary implications of these results are also briefly discussed. PMID:25809266

  9. p53 Transactivation and the Impact of Mutations, Cofactors and Small Molecules Using a Simplified Yeast-Based Screening System

    PubMed Central

    Bisio, Alessandra; Lion, Mattia; Jordan, Jennifer; Fronza, Gilberto; Menichini, Paola; Resnick, Michael A.; Inga, Alberto

    2011-01-01

    Background The p53 tumor suppressor, which is altered in most cancers, is a sequence-specific transcription factor that is able to modulate the expression of many target genes and influence a variety of cellular pathways. Inactivation of the p53 pathway in cancer frequently occurs through the expression of mutant p53 protein. In tumors that retain wild type p53, the pathway can be altered by upstream modulators, particularly the p53 negative regulators MDM2 and MDM4. Methodology/Principal Findings Given the many factors that might influence p53 function, including expression levels, mutations, cofactor proteins and small molecules, we expanded our previously described yeast-based system to provide the opportunity for efficient investigation of their individual and combined impacts in a miniaturized format. The system integrates i) variable expression of p53 proteins under the finely tunable GAL1,10 promoter, ii) single copy, chromosomally located p53-responsive and control luminescence reporters, iii) enhanced chemical uptake using modified ABC-transporters, iv) small-volume formats for treatment and dual-luciferase assays, and v) opportunities to co-express p53 with other cofactor proteins. This robust system can distinguish different levels of expression of WT and mutant p53 as well as interactions with MDM2 or 53BP1. Conclusions/Significance We found that the small molecules Nutlin and RITA could both relieve the MDM2-dependent inhibition of WT p53 transactivation function, while only RITA could impact p53/53BP1 functional interactions. PRIMA-1 was ineffective in modifying the transactivation capacity of WT p53 and missense p53 mutations. This dual-luciferase assay can, therefore, provide a high-throughput assessment tool for investigating a matrix of factors that can influence the p53 network, including the effectiveness of newly developed small molecules, on WT and tumor-associated p53 mutants as well as interacting proteins. PMID:21674059

  10. Structural basis of thermal stability of the tungsten cofactor synthesis protein MoaB from Pyrococcus furiosus.

    PubMed

    Havarushka, Nastassia; Fischer-Schrader, Katrin; Lamkemeyer, Tobias; Schwarz, Guenter

    2014-01-01

    Molybdenum and tungsten cofactors share a similar pterin-based scaffold, which hosts an ene-dithiolate function being essential for the coordination of either molybdenum or tungsten. The biosynthesis of both cofactors involves a multistep pathway, which ends with the activation of the metal binding pterin (MPT) by adenylylation before the respective metal is incorporated. In the hyperthermophilic organism Pyrococcus furiosus, the hexameric protein MoaB (PfuMoaB) has been shown to catalyse MPT-adenylylation. Here we determined the crystal structure of PfuMoaB at 2.5 Å resolution and identified key residues of α3-helix mediating hexamer formation. Given that PfuMoaB homologues from mesophilic organisms form trimers, we investigated the impact on PfuMoaB hexamerization on thermal stability and activity. Using structure-guided mutagenesis, we successfully disrupted the hexamer interface in PfuMoaB. The resulting PfuMoaB-H3 variant formed monomers, dimers and trimers as determined by size exclusion chromatography. Circular dichroism spectroscopy as well as chemical cross-linking coupled to mass spectrometry confirmed a wild-type-like fold of the protomers as well as inter-subunits contacts. The melting temperature of PfuMoaB-H3 was found to be reduced by more than 15 °C as determined by differential scanning calorimetry, thus demonstrating hexamerization as key determinant for PfuMoaB thermal stability. Remarkably, while a loss of activity at temperatures higher than 50 °C was observed in the PfuMoaB-H3 variant, at lower temperatures, we determined a significantly increased catalytic activity. The latter suggests a gain in conformational flexibility caused by the disruption of the hexamerization interface. PMID:24465852

  11. Fluorescent probes for tracking the transfer of iron-sulfur cluster and other metal cofactors in biosynthetic reaction pathways.

    PubMed

    Vranish, James N; Russell, William K; Yu, Lusa E; Cox, Rachael M; Russell, David H; Barondeau, David P

    2015-01-14

    Iron-sulfur (Fe-S) clusters are protein cofactors that are constructed and delivered to target proteins by elaborate biosynthetic machinery. Mechanistic insights into these processes have been limited by the lack of sensitive probes for tracking Fe-S cluster synthesis and transfer reactions. Here we present fusion protein- and intein-based fluorescent labeling strategies that can probe Fe-S cluster binding. The fluorescence is sensitive to different cluster types ([2Fe-2S] and [4Fe-4S] clusters), ligand environments ([2Fe-2S] clusters on Rieske, ferredoxin (Fdx), and glutaredoxin), and cluster oxidation states. The power of this approach is highlighted with an extreme example in which the kinetics of Fe-S cluster transfer reactions are monitored between two Fdx molecules that have identical Fe-S spectroscopic properties. This exchange reaction between labeled and unlabeled Fdx is catalyzed by dithiothreitol (DTT), a result that was confirmed by mass spectrometry. DTT likely functions in a ligand substitution reaction that generates a [2Fe-2S]-DTT species, which can transfer the cluster to either labeled or unlabeled Fdx. The ability to monitor this challenging cluster exchange reaction indicates that real-time Fe-S cluster incorporation can be tracked for a specific labeled protein in multicomponent assays that include several unlabeled Fe-S binding proteins or other chromophores. Such advanced kinetic experiments are required to untangle the intricate networks of transfer pathways and the factors affecting flux through branch points. High sensitivity and suitability with high-throughput methodology are additional benefits of this approach. We anticipate that this cluster detection methodology will transform the study of Fe-S cluster pathways and potentially other metal cofactor biosynthetic pathways. PMID:25478817

  12. Photocatalytic Reduction of Artificial and Natural Nucleotide Co-factors with a Chlorophyll-Like Tin-Dihydroporphyrin Sensitizer

    PubMed Central

    2013-01-01

    An efficient photocatalytic two-electron reduction and protonation of nicotine amide adenine dinucleotide (NAD+), as well as the synthetic nucleotide co-factor analogue N-benzyl-3-carbamoyl-pyridinium (BNAD+), powered by photons in the long-wavelength region of visible light (λirr > 610 nm), is demonstrated for the first time. This functional artificial photosynthetic counterpart of the complete energy-trapping and solar-to-fuel conversion primary processes occurring in natural photosystem I (PS I) is achieved with a robust water-soluble tin(IV) complex of meso-tetrakis(N-methylpyridinium)-chlorin acting as the light-harvesting sensitizer (threshold wavelength of λthr = 660 nm). In buffered aqueous solution, this chlorophyll-like compound photocatalytically recycles a rhodium hydride complex of the type [Cp*Rh(bpy)H]+, which is able to mediate regioselective hydride transfer processes. Different one- and two-electron donors are tested for the reductive quenching of the irradiated tin complex to initiate the secondary dark reactions leading to nucleotide co-factor reduction. Very promising conversion efficiencies, quantum yields, and excellent photosensitizer stabilities are observed. As an example of a catalytic dark reaction utilizing the reduction equivalents of accumulated NADH, an enzymatic process for the selective transformation of aldehydes with alcohol dehydrogenase (ADH) coupled to the primary photoreactions of the system is also demonstrated. A tentative reaction mechanism for the transfer of two electrons and one proton from the reductively quenched tin chlorin sensitizer to the rhodium co-catalyst, acting as a reversible hydride carrier, is proposed. PMID:24073596

  13. Cdc37-Hsp90 Complexes Are Responsive to Nucleotide-induced Conformational Changes and Binding of Further Cofactors*

    PubMed Central

    Gaiser, Andreas M.; Kretzschmar, Anja; Richter, Klaus

    2010-01-01

    Hsp90 is an ATP-dependent molecular chaperone, which facilitates the activation and stabilization of hundreds of client proteins in cooperation with a defined set of cofactors. Many client proteins are protein kinases, which are activated and stabilized by Hsp90 in cooperation with the kinase-specific co-chaperone Cdc37. Other Hsp90 co-chaperones, like the ATPase activator Aha1, also are implicated in kinase activation, and it is not yet clear how Cdc37 is integrated into Hsp90 co-chaperone complexes. Here, we studied the interaction between Cdc37, Hsp90, and other Hsp90 co-chaperones from the nematode Caenorhabditis elegans. Nematode Cdc37 binds with high affinity to Hsp90 and strongly inhibits the ATPase activity. In contrast to the human Hsp90 system, we observed binding of Cdc37 to open and closed Hsp90 conformations, potentially reflecting two different binding modes. Using a novel ultracentrifugation setup, which allows accurate analysis of multifactorial protein complexes, we show that cooperative and competitive interactions exist between other co-chaperones and Cdc37-Hsp90 complexes in the C. elegans system. We observed strong competitive interactions between Cdc37 and the co-chaperones p23 and Sti1, whereas the binding of the phosphatase Pph5 and the ATPase activator Aha1 to Cdc37-Hsp90 complexes is possible. The ternary Aha1-Cdc37-Hsp90 complex is disrupted by the nucleotide-induced closing reaction at the N terminus of Hsp90. This implies a carefully regulated exchange process of cofactors during the chaperoning of kinase clients by Hsp90. PMID:20880838

  14. Association of erythrocytes antioxidant enzymes and their cofactors with markers of oxidative stress in patients with sickle cell anemia

    PubMed Central

    Al-Naama, Lamia M.; Hassan, Mea'ad K.; Mehdi, Jawad K.

    2015-01-01

    Background: Sickle cell anemia (SCA) is an inherited blood disease with known complications as a result of certain pathophysiological dysfunctions. It has been suggested that an increase in oxidative stress contributes to the incidence of these changes. Objectives: This study investigated the oxidant/antioxidant status of patients with SCA, and evaluated the effect of SCA on antioxidant enzymes and their cofactors. Methods: The study included 42 patients with SCA (in steady state), and a control group of 50 age-matched individuals without SCA. Serum malondialdehyde (MDA), copper, zinc, ferritin and iron levels, red blood cell (RBC) superoxide dismutase (SOD) and catalase levels were measured for the SCA and control groups. Results: Significantly lower levels of antioxidant enzymes (RBC SOD and catalase) and higher serum MDA levels (biomarker of oxidative stress) were found in SCA patients compared to the control group (all p < 0.001). Increased levels of serum ferritin, iron and copper and decreased zinc concentrations were also found in the SCA patients compared to the control group (all p < 0.001). In the SCA group, there were significant negative correlations between MDA levels and RBC SOD, RBC catalase, and serum zinc levels (p < 0.01), while a significant positive correlation between MDA with serum copper and iron levels (p < 0.01) was observed. Conclusion: SCA is associated with alterations in markers of oxidative stress including an increased MDA level, decreased antioxidant enzyme levels, and altered levels of enzyme cofactors (zinc, copper, and iron). This suggests that these antioxidant enzymes could be used as effective therapeutic targets for the treatment of this disease and supplementation of patients with substances with antioxidant properties may reduce the complications of this disease. PMID:26835411

  15. Molybdenum cofactor deficiency causes translucent integument, male-biased lethality, and flaccid paralysis in the silkworm Bombyx mori.

    PubMed

    Fujii, Tsuguru; Yamamoto, Kimiko; Banno, Yutaka

    2016-06-01

    Uric acid accumulates in the epidermis of Bombyx mori larvae and renders the larval integument opaque and white. Yamamoto translucent (oya) is a novel spontaneous mutant with a translucent larval integument and unique phenotypic characteristics, such as male-biased lethality and flaccid larval paralysis. Xanthine dehydrogenase (XDH) that requires a molybdenum cofactor (MoCo) for its activity is a key enzyme for uric acid synthesis. It has been observed that injection of a bovine xanthine oxidase, which corresponds functionally to XDH and contains its own MoCo activity, changes the integuments of oya mutants from translucent to opaque and white. This finding suggests that XDH/MoCo activity might be defective in oya mutants. Our linkage analysis identified an association between the oya locus and chromosome 23. Because XDH is not linked to chromosome 23 in B. mori, MoCo appears to be defective in oya mutants. In eukaryotes, MoCo is synthesized by a conserved biosynthesis pathway governed by four loci (MOCS1, MOCS2, MOCS3, and GEPH). Through a candidate gene approach followed by sequence analysis, a 6-bp deletion was detected in an exon of the B. mori molybdenum cofactor synthesis-step 1 gene (BmMOCS1) in the oya strain. Moreover, recombination was not observed between the oya and BmMOCS1 loci. These results indicate that the BmMOCS1 locus is responsible for the oya locus. Finally, we discuss the potential cause of male-biased lethality and flaccid paralysis observed in the oya mutants. PMID:27041280

  16. Controlling electron transfer between the two cofactor chains of photosystem I by the redox state of one of their components.

    PubMed

    Santabarbara, Stefano; Bullock, Bradford; Rappaport, Fabrice; Redding, Kevin E

    2015-03-24

    Two functional electron transfer (ET) chains, related by a pseudo-C2 symmetry, are present in the reaction center of photosystem I (PSI). Due to slight differences in the environment around the cofactors of the two branches, there are differences in both the kinetics of ET and the proportion of ET that occurs on the two branches. The strongest evidence that this is indeed the case relied on the observation that the oxidation rates of the reduced phylloquinone (PhQ) cofactor differ by an order of magnitude. Site-directed mutagenesis of residues involved in the respective PhQ-binding sites resulted in a specific alteration of the rates of semiquinone oxidation. Here, we show that the PsaA-F689N mutation results in an ∼100-fold decrease in the observed rate of PhQA(-) oxidation. This is the largest change of PhQA(-) oxidation kinetics observed so far for a single-point mutation, resulting in a lifetime that exceeds that of the terminal electron donor, P700(+). This situation allows a second photochemical charge separation event to be initiated before PhQA(-) has decayed, thereby mimicking in PSI a situation that occurs in type II reaction centers. The results indicate that the presence of PhQA(-) does not impact the overall quantum yield and leads to an almost complete redistribution of the fractional utilization of the two functional ET chains, in favor of the one that does not bear the charged species. The evolutionary implications of these results are also briefly discussed. PMID:25809266

  17. Structural Basis of Thermal Stability of the Tungsten Cofactor Synthesis Protein MoaB from Pyrococcus furiosus

    PubMed Central

    Havarushka, Nastassia; Fischer-Schrader, Katrin; Lamkemeyer, Tobias; Schwarz, Guenter

    2014-01-01

    Molybdenum and tungsten cofactors share a similar pterin-based scaffold, which hosts an ene-dithiolate function being essential for the coordination of either molybdenum or tungsten. The biosynthesis of both cofactors involves a multistep pathway, which ends with the activation of the metal binding pterin (MPT) by adenylylation before the respective metal is incorporated. In the hyperthermophilic organism Pyrococcus furiosus, the hexameric protein MoaB (PfuMoaB) has been shown to catalyse MPT-adenylylation. Here we determined the crystal structure of PfuMoaB at 2.5 Å resolution and identified key residues of α3-helix mediating hexamer formation. Given that PfuMoaB homologues from mesophilic organisms form trimers, we investigated the impact on PfuMoaB hexamerization on thermal stability and activity. Using structure-guided mutagenesis, we successfully disrupted the hexamer interface in PfuMoaB. The resulting PfuMoaB-H3 variant formed monomers, dimers and trimers as determined by size exclusion chromatography. Circular dichroism spectroscopy as well as chemical cross-linking coupled to mass spectrometry confirmed a wild-type-like fold of the protomers as well as inter-subunits contacts. The melting temperature of PfuMoaB-H3 was found to be reduced by more than 15°C as determined by differential scanning calorimetry, thus demonstrating hexamerization as key determinant for PfuMoaB thermal stability. Remarkably, while a loss of activity at temperatures higher than 50°C was observed in the PfuMoaB-H3 variant, at lower temperatures, we determined a significantly increased catalytic activity. The latter suggests a gain in conformational flexibility caused by the disruption of the hexamerization interface. PMID:24465852

  18. Maturity Model for Advancing Smart Grid Interoperability

    SciTech Connect

    Knight, Mark; Widergren, Steven E.; Mater, J.; Montgomery, Austin

    2013-10-28

    Abstract—Interoperability is about the properties of devices and systems to connect and work properly. Advancing interoperability eases integration and maintenance of the resulting interconnection. This leads to faster integration, lower labor and component costs, predictability of projects and the resulting performance, and evolutionary paths for upgrade. When specifications are shared and standardized, competition and novel solutions can bring new value streams to the community of stakeholders involved. Advancing interoperability involves reaching agreement for how things join at their interfaces. The quality of the agreements and the alignment of parties involved in the agreement present challenges that are best met with process improvement techniques. The GridWise® Architecture Council (GWAC) sponsored by the United States Department of Energy is supporting an effort to use concepts from capability maturity models used in the software industry to advance interoperability of smart grid technology. An interoperability maturity model has been drafted and experience is being gained through trials on various types of projects and community efforts. This paper describes the value and objectives of maturity models, the nature of the interoperability maturity model and how it compares with other maturity models, and experiences gained with its use.

  19. The DyP-type peroxidase DtpA is a Tat-substrate required for GlxA maturation and morphogenesis in Streptomyces.

    PubMed

    Petrus, Marloes L C; Vijgenboom, Erik; Chaplin, Amanda K; Worrall, Jonathan A R; van Wezel, Gilles P; Claessen, Dennis

    2016-01-01

    The filamentous bacterium Streptomyces lividans depends on the radical copper oxidase GlxA for the formation of reproductive aerial structures and, in liquid environments, for the formation of pellets. Incorporation of copper into the active site is essential for the formation of a cross-linked tyrosyl-cysteine cofactor, which is needed for enzymatic activity. In this study, we show a crucial link between GlxA maturation and a group of copper-related proteins including the chaperone Sco and a novel DyP-type peroxidase hereinafter called DtpA. Under copper-limiting conditions, the sco and dtpA deletion mutants are blocked in aerial growth and pellet formation, similarly to a glxA mutant. Western blot analysis showed that GlxA maturation is perturbed in the sco and dtpA mutants, but both maturation and morphology can by rescued by increasing the bioavailability of copper. DtpA acts as a peroxidase in the presence of GlxA and is a substrate for the twin-arginine translocation (Tat) translocation pathway. In agreement, the maturation status of GlxA is also perturbed in tat mutants, which can be compensated for by the addition of copper, thereby partially restoring their morphological defects. Our data support a model wherein a copper-trafficking pathway and Tat-dependent secretion of DtpA link to the GlxA-dependent morphogenesis pathway. PMID:26740586

  20. The DyP-type peroxidase DtpA is a Tat-substrate required for GlxA maturation and morphogenesis in Streptomyces

    PubMed Central

    Petrus, Marloes L. C.; Chaplin, Amanda K.; Worrall, Jonathan A. R.; van Wezel, Gilles P.

    2016-01-01

    The filamentous bacterium Streptomyces lividans depends on the radical copper oxidase GlxA for the formation of reproductive aerial structures and, in liquid environments, for the formation of pellets. Incorporation of copper into the active site is essential for the formation of a cross-linked tyrosyl-cysteine cofactor, which is needed for enzymatic activity. In this study, we show a crucial link between GlxA maturation and a group of copper-related proteins including the chaperone Sco and a novel DyP-type peroxidase hereinafter called DtpA. Under copper-limiting conditions, the sco and dtpA deletion mutants are blocked in aerial growth and pellet formation, similarly to a glxA mutant. Western blot analysis showed that GlxA maturation is perturbed in the sco and dtpA mutants, but both maturation and morphology can by rescued by increasing the bioavailability of copper. DtpA acts as a peroxidase in the presence of GlxA and is a substrate for the twin-arginine translocation (Tat) translocation pathway. In agreement, the maturation status of GlxA is also perturbed in tat mutants, which can be compensated for by the addition of copper, thereby partially restoring their morphological defects. Our data support a model wherein a copper-trafficking pathway and Tat-dependent secretion of DtpA link to the GlxA-dependent morphogenesis pathway. PMID:26740586

  1. Need for speed: Sexual maturation precedes social maturation in gray mouse lemurs.

    PubMed

    Hohenbrink, Sarah; Zimmermann, Elke; Radespiel, Ute

    2015-10-01

    The life history of mammals underlies a fast-slow continuum, ranging from "slow" species with large body size, delayed sexual maturation, low fertility, and long lifespan, to "fast" species showing the opposite traits. Primates fall into the "slow" category, considering their relatively low offspring numbers and delayed juvenile development. However, social and sexual maturation processes do not necessarily have to be completed simultaneously. The comparison of the timeframes for sexual and social maturation is largely lacking for primates, with the prominent exception of humans. Here, we compare both maturation processes in a basal primate, the gray mouse lemur, which ranges in many aspects at the fast end of the slow-fast life history continuum among primates. We compared the patterns and frequencies of various social and solitary behaviors in young adults (YA, 12-13 months old) and older individuals (A, ≥2 years) of both sexes outside estrus. Observations were conducted during mix-sexed dyadic encounter experiments under controlled captive conditions (eight dyads per age class). Results indicate that although all young adults were sexually mature, social maturation was not yet completed in all behavioral domains: Age-dependent differences were found in the number of playing dyads, female marking behavior, female aggression, and social tolerance. Thus, this study provides a first indication that social maturation lags behind sexual maturation in an ancestral nocturnal primate model, indicating that these two developmental schemes may have been decoupled early and throughout the primate lineage. PMID:26119105

  2. A rapid measurement for cotton breeders of maturity and fineness from developing and mature fibers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fiber’s maturity and fineness are important fiber properties that can impact the fiber’s downstream processing and the quality of yarn and fabric. The Cottonscope is a new instrument that simultaneously measures the fiber’s maturity and fineness using a very small amount of fiber sample. Previ...

  3. Genome-wide association mapping of flowering time and maturity dates in early mature soybean germplasm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean (Glycine max L. Merr.) is a photoperiod-sensitive and short-day major crop grown worldwide. Days to flowering (DTF) and maturity (DTM) are two traits affecting soybean adaptability and yield. Some genes conditioning soybean flowering and maturity have been recently characterized. However, ...

  4. Stacking the odds for Golgi cisternal maturation

    PubMed Central

    Mani, Somya; Thattai, Mukund

    2016-01-01

    What is the minimal set of cell-biological ingredients needed to generate a Golgi apparatus? The compositions of eukaryotic organelles arise through a process of molecular exchange via vesicle traffic. Here we statistically sample tens of thousands of homeostatic vesicle traffic networks generated by realistic molecular rules governing vesicle budding and fusion. Remarkably, the plurality of these networks contain chains of compartments that undergo creation, compositional maturation, and dissipation, coupled by molecular recycling along retrograde vesicles. This motif precisely matches the cisternal maturation model of the Golgi, which was developed to explain many observed aspects of the eukaryotic secretory pathway. In our analysis cisternal maturation is a robust consequence of vesicle traffic homeostasis, independent of the underlying details of molecular interactions or spatial stacking. This architecture may have been exapted rather than selected for its role in the secretion of large cargo. DOI: http://dx.doi.org/10.7554/eLife.16231.001 PMID:27542195

  5. HIV-1 Assembly, Budding, and Maturation

    PubMed Central

    Sundquist, Wesley I.; Kräusslich, Hans-Georg

    2012-01-01

    A defining property of retroviruses is their ability to assemble into particles that can leave producer cells and spread infection to susceptible cells and hosts. Virion morphogenesis can be divided into three stages: assembly, wherein the virion is created and essential components are packaged; budding, wherein the virion crosses the plasma membrane and obtains its lipid envelope; and maturation, wherein the virion changes structure and becomes infectious. All of these stages are coordinated by the Gag polyprotein and its proteolytic maturation products, which function as the major structural proteins of the virus. Here, we review our current understanding of the mechanisms of HIV-1 assembly, budding, and maturation, starting with a general overview and then providing detailed descriptions of each of the different stages of virion morphogenesis. PMID:22762019

  6. Calcium ion currents mediating oocyte maturation events

    PubMed Central

    Tosti, Elisabetta

    2006-01-01

    During maturation, the last phase of oogenesis, the oocyte undergoes several changes which prepare it to be ovulated and fertilized. Immature oocytes are arrested in the first meiotic process prophase, that is morphologically identified by a germinal vesicle. The removal of the first meiotic block marks the initiation of maturation. Although a large number of molecules are involved in complex sequences of events, there is evidence that a calcium increase plays a pivotal role in meiosis re-initiation. It is well established that, during this process, calcium is released from the intracellular stores, whereas less is known on the role of external calcium entering the cell through the plasma membrane ion channels. This review is focused on the functional role of calcium currents during oocyte maturation in all the species, from invertebrates to mammals. The emerging role of specific L-type calcium channels will be discussed. PMID:16684344

  7. Viral and host control of cytomegalovirus maturation

    PubMed Central

    Tandon, Ritesh; Mocarski, Edward S.

    2012-01-01

    Maturation in herpesviruses initiates in the nucleus of the infected cell with encapsidation of viral DNA to form nucleocapsids and concludes with envelopment in the cytoplasm to form infectious virions that egress the cell. The entire process of virus maturation is orchestrated by protein-protein interactions and enzymatic activities of viral and host origin. Viral tegument proteins play important roles in maintaining the structural stability of capsids and directing the acquisition of virus envelope. Envelopment occurs at modified host membranes and exploits host vesicular trafficking. In this review, we summarize the current knowledge and concepts in human cytomegalovirus (HCMV) maturation and their parallels in other herpesviruses with an emphasis on viral and host factors regulating this process. PMID:22633075

  8. Stacking the odds for Golgi cisternal maturation.

    PubMed

    Mani, Somya; Thattai, Mukund

    2016-01-01

    What is the minimal set of cell-biological ingredients needed to generate a Golgi apparatus? The compositions of eukaryotic organelles arise through a process of molecular exchange via vesicle traffic. Here we statistically sample tens of thousands of homeostatic vesicle traffic networks generated by realistic molecular rules governing vesicle budding and fusion. Remarkably, the plurality of these networks contain chains of compartments that undergo creation, compositional maturation, and dissipation, coupled by molecular recycling along retrograde vesicles. This motif precisely matches the cisternal maturation model of the Golgi, which was developed to explain many observed aspects of the eukaryotic secretory pathway. In our analysis cisternal maturation is a robust consequence of vesicle traffic homeostasis, independent of the underlying details of molecular interactions or spatial stacking. This architecture may have been exapted rather than selected for its role in the secretion of large cargo. PMID:27542195

  9. An unexpected twist in viral capsid maturation

    SciTech Connect

    Gertsman, Ilya; Gan, Lu; Guttman, Miklos; Lee, Kelly; Speir, Jeffrey A.; Duda, Robert L.; Hendrix, Roger W.; Komives, Elizabeth A.; Johnson, John E.

    2009-04-14

    Lambda-like double-stranded (ds) DNA bacteriophage undergo massive conformational changes in their capsid shell during the packaging of their viral genomes. Capsid shells are complex organizations of hundreds of protein subunits that assemble into intricate quaternary complexes that ultimately are able to withstand over 50 atm of pressure during genome packaging. The extensive integration between subunits in capsids requires the formation of an intermediate complex, termed a procapsid, from which individual subunits can undergo the necessary refolding and structural rearrangements needed to transition to the more stable capsid. Although various mature capsids have been characterized at atomic resolution, no such procapsid structure is available for a dsDNA virus or bacteriophage. Here we present a procapsid X-ray structure at 3.65 {angstrom} resolution, termed prohead II, of the lambda-like bacteriophage HK97, the mature capsid structure of which was previously solved to 3.44 {angstrom}. A comparison of the two largely different capsid forms has unveiled an unprecedented expansion mechanism that describes the transition. Crystallographic and hydrogen/deuterium exchange data presented here demonstrate that the subunit tertiary structures are significantly different between the two states, with twisting and bending motions occurring in both helical and -sheet regions. We also identified subunit interactions at each three-fold axis of the capsid that are maintained throughout maturation. The interactions sustain capsid integrity during subunit refolding and provide a fixed hinge from which subunits undergo rotational and translational motions during maturation. Previously published calorimetric data of a closely related bacteriophage, P22, showed that capsid maturation was an exothermic process that resulted in a release of 90 kJ mol{sup -1} of energy. We propose that the major tertiary changes presented in this study reveal a structural basis for an exothermic

  10. Examination of potential measures of vine maturity in potato

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant maturity is a complex physiological trait. The criteria used to characterize plant maturity are not universal among crop plants. In potato, vine characteristics are typically used to estimate plant maturity. This study investigates several reported measures of vine maturity in potato cultivars...

  11. Posttesticular sperm maturation, infertility, and hypercholesterolemia

    PubMed Central

    Whitfield, Marjorie; Pollet-Villard, Xavier; Levy, Rachel; Drevet, Joël R; Saez, Fabrice

    2015-01-01

    Cholesterol is a key molecule in the mammalian physiology of especial particular importance for the reproductive system as it is the common precursor for steroid hormone synthesis. Cholesterol is also a recognized modulator of sperm functions, not only at the level of gametogenesis. Cholesterol homeostasis regulation is crucial for posttesticular sperm maturation, and imbalanced cholesterol levels may particularly affect these posttesticular events. Metabolic lipid disorders (dyslipidemia) affect male fertility but are most of the time studied from the angle of endocrine/testicular consequences. This review will focus on the deleterious effects of a particular dyslipidemia, i.e., hypercholesterolemia, on posttesticular maturation of mammalian spermatozoa. PMID:26067871

  12. The Maturely, Immature Orientale Impact Basin

    NASA Astrophysics Data System (ADS)

    Cahill, J. T.; Lawrence, D. J.; Stickle, A. M.; Delen, O.; Patterson, G.; Greenhagen, B. T.

    2015-12-01

    Lunar surface maturity is consistently examined using the NIR optical maturity parameter (OMAT) [1]. However, the NIR only provides a perspective of the upper microns of the lunar surface. Recent studies of Lunar Prospector (LP) and Lunar Reconnaissance Orbiter data sets are now demonstrating additional measures of maturity with sensitivities to greater depths (~2 m) in the regolith. These include thermal infrared, S-band radar, and epithermal neutron data sets [2-4]. Interestingly, each of these parameters is directly comparable to OMAT despite each measuring slightly different aspects of the regolith. This is demonstrated by Lawrence et al. [3] where LP-measured non-polar highlands epithermal neutrons trend well with albedo, OMAT, and the Christensen Feature (CF). Lawrence et al. [3] used these data to derive and map highlands hydrogen (H) which is dominantly a function of H-implantation. With this in mind, areas of enriched-H are mature, while areas of depleted H are immature. Surface roughness as measured by S-band radar [4], also provides a measure of maturity. In this case, the circular polarization ratio (CPR) is high when rough and immature, and low when smooth and mature. Knowing this, one can recognize areas in the non-polar lunar highlands that show contradictory measures of maturity. For example, while many lunar localities show consistently immature albedo, OMAT, CF, CPR, and H concentrations (e.g., Tycho), others do not. Orientale basin is the most prominent example, shown to have immature CPR, CF, and H concentrations despite a relatively mature albedo and OMAT values as well as an old age determination (~3.8 Ga). To better understand how the lunar regolith is weathering in the upper 1-2 m of regolith with time we examine the Orientale basin relative to other highlands regions. [1] Lucey et al. (2000) JGR, 105, 20377; [2] Lucey et al. (2013) LPSC, 44, 2890; [3] Lawrence et al. (2015) Icarus, j.icarus.2015.01.005; [4] Neish et al. (2013) JGR, 118

  13. Tubulin cofactors and Arl2 are cage-like chaperones that regulate the soluble αβ-tubulin pool for microtubule dynamics

    PubMed Central

    Nithianantham, Stanley; Le, Sinh; Seto, Elbert; Jia, Weitao; Leary, Julie; Corbett, Kevin D; Moore, Jeffrey K; Al-Bassam, Jawdat

    2015-01-01

    Microtubule dynamics and polarity stem from the polymerization of αβ-tubulin heterodimers. Five conserved tubulin cofactors/chaperones and the Arl2 GTPase regulate α- and β-tubulin assembly into heterodimers and maintain the soluble tubulin pool in the cytoplasm, but their physical mechanisms are unknown. Here, we reconstitute a core tubulin chaperone consisting of tubulin cofactors TBCD, TBCE, and Arl2, and reveal a cage-like structure for regulating αβ-tubulin. Biochemical assays and electron microscopy structures of multiple intermediates show the sequential binding of αβ-tubulin dimer followed by tubulin cofactor TBCC onto this chaperone, forming a ternary complex in which Arl2 GTP hydrolysis is activated to alter αβ-tubulin conformation. A GTP-state locked Arl2 mutant inhibits ternary complex dissociation in vitro and causes severe defects in microtubule dynamics in vivo. Our studies suggest a revised paradigm for tubulin cofactors and Arl2 functions as a catalytic chaperone that regulates soluble αβ-tubulin assembly and maintenance to support microtubule dynamics. DOI: http://dx.doi.org/10.7554/eLife.08811.001 PMID:26208336

  14. A Mycobacterium tuberculosis ligand-binding Mn/Fe protein reveals a new cofactor in a remodeled R2-protein scaffold

    PubMed Central

    Andersson, Charlotta S.; Högbom, Martin

    2009-01-01

    Chlamydia trachomatis R2c is the prototype for a recently discovered group of ribonucleotide reductase R2 proteins that use a heterodinuclear Mn/Fe redox cofactor for radical generation and storage. Here, we show that the Mycobacterium tuberculosis protein Rv0233, an R2 homologue and a potential virulence factor, contains the heterodinuclear manganese/iron-carboxylate cofactor but displays a drastic remodeling of the R2 protein scaffold into a ligand-binding oxidase. The first structural characterization of the heterodinuclear cofactor shows that the site is highly specific for manganese and iron in their respective positions despite a symmetric arrangement of coordinating residues. In this protein scaffold, the Mn/Fe cofactor supports potent 2-electron oxidations as revealed by an unprecedented tyrosine-valine crosslink in the active site. This wolf in sheep's clothing defines a distinct functional group among R2 homologues and may represent a structural and functional counterpart of the evolutionary ancestor of R2s and bacterial multicomponent monooxygenases. PMID:19321420

  15. Tubulin cofactors and Arl2 are cage-like chaperones that regulate the soluble αβ-tubulin pool for microtubule dynamics.

    PubMed

    Nithianantham, Stanley; Le, Sinh; Seto, Elbert; Jia, Weitao; Leary, Julie; Corbett, Kevin D; Moore, Jeffrey K; Al-Bassam, Jawdat

    2015-01-01

    Microtubule dynamics and polarity stem from the polymerization of αβ-tubulin heterodimers. Five conserved tubulin cofactors/chaperones and the Arl2 GTPase regulate α- and β-tubulin assembly into heterodimers and maintain the soluble tubulin pool in the cytoplasm, but their physical mechanisms are unknown. Here, we reconstitute a core tubulin chaperone consisting of tubulin cofactors TBCD, TBCE, and Arl2, and reveal a cage-like structure for regulating αβ-tubulin. Biochemical assays and electron microscopy structures of multiple intermediates show the sequential binding of αβ-tubulin dimer followed by tubulin cofactor TBCC onto this chaperone, forming a ternary complex in which Arl2 GTP hydrolysis is activated to alter αβ-tubulin conformation. A GTP-state locked Arl2 mutant inhibits ternary complex dissociation in vitro and causes severe defects in microtubule dynamics in vivo. Our studies suggest a revised paradigm for tubulin cofactors and Arl2 functions as a catalytic chaperone that regulates soluble αβ-tubulin assembly and maintenance to support microtubule dynamics. PMID:26208336

  16. Structural Change of a Cofactor Binding Site of Flavoprotein Detected by Single-Protein Fluorescence Spectroscopy at 1.5 K

    SciTech Connect

    Fujiyoshi, Satoru; Hirano, Mitsuharu; Matsushita, Michio; Iseki, Mineo; Watanabe, Masakatsu

    2011-02-18

    The visible fluorescence spectrum of single flavoprotein at a temperature of 1.5 K has been measured by one-photon excitation. The flavoprotein studied was a photoswitchable enzyme, photoactivated adenylyl cyclase. The time course of the spectrum revealed a structural change occurring at a rate of 10{sup -3} s{sup -1} around hydrogen bonds at the flavin cofactor binding site.

  17. Nfu facilitates the maturation of iron-sulfur proteins and participates in virulence in Staphylococcus aureus

    PubMed Central

    Mashruwala, Ameya A.; Pang, Yun Y.; Rosario-Cruz, Zuelay; Chahal, Harsimranjit K.; Benson, Meredith A.; Anzaldi-Mike, Laura L.; Skaar, Eric P.; Torres, Victor J.; Nauseef, William M.; Boyd, Jeffrey M.

    2015-01-01

    Summary The acquisition and metabolism of iron (Fe) by the human pathogen Staphylococcus aureus is critical for disease progression. S. aureus requires Fe to synthesize inorganic cofactors called iron-sulfur (Fe-S) clusters, which are required for functional Fe-S proteins. In this study we investigated the mechanisms utilized by S. aureus to metabolize Fe-S clusters. We identified that S. aureus utilizes the Suf biosynthetic system to synthesize Fe-S clusters and we provide genetic evidence suggesting that the sufU and sufB gene products are essential. Additional biochemical and genetic analyses identified Nfu as a Fe-S cluster carrier, which aids in the maturation of Fe-S proteins. We find that deletion of the nfu gene negatively impacts staphylococcal physiology and pathogenicity. A nfu mutant accumulates both increased intracellular non-incorporated Fe and endogenous reactive oxygen species (ROS) resulting in DNA damage. In addition, a strain lacking Nfu is sensitive to exogenously supplied ROS and reactive nitrogen species. Congruous with ex vivo findings, a nfu mutant strain is more susceptible to oxidative killing by human polymorphonuclear leukocytes and displays decreased tissue colonization in a murine model of infection. We conclude that Nfu is necessary for staphylococcal pathogenesis and establish Fe-S cluster metabolism as an attractive antimicrobial target. PMID:25388433

  18. Metabolic Profiles in Ovine Carotid Arteries with Developmental Maturation and Long-Term Hypoxia

    PubMed Central

    Goyal, Ravi; Longo, Lawrence D.

    2015-01-01

    Background Long-term hypoxia (LTH) is an important stressor related to health and disease during development. At different time points from fetus to adult, we are exposed to hypoxic stress because of placental insufficiency, high-altitude residence, smoking, chronic anemia, pulmonary, and heart disorders, as well as cancers. Intrauterine hypoxia can lead to fetal growth restriction and long-term sequelae such as cognitive impairments, hypertension, cardiovascular disorders, diabetes, and schizophrenia. Similarly, prolonged hypoxic exposure during adult life can lead to acute mountain sickness, chronic fatigue, chronic headache, cognitive impairment, acute cerebral and/or pulmonary edema, and death. Aim LTH also can lead to alteration in metabolites such as fumarate, 2-oxoglutarate, malate, and lactate, which are linked to epigenetic regulation of gene expression. Importantly, during the intrauterine life, a fetus is under a relative hypoxic environment, as compared to newborn or adult. Thus, the changes in gene expression with development from fetus to newborn to adult may be as a consequence of underlying changes in the metabolic profile because of the hypoxic environment along with developmental maturation. To examine this possibility, we examined the metabolic profile in carotid arteries from near-term fetus, newborn, and adult sheep in both normoxic and long-term hypoxic acclimatized groups. Results Our results demonstrate that LTH differentially regulated glucose metabolism, mitochondrial metabolism, nicotinamide cofactor metabolism, oxidative stress and antioxidants, membrane lipid hydrolysis, and free fatty acid metabolism, each of which may play a role in genetic-epigenetic regulation. PMID:26110419

  19. Vampire bat salivary plasminogen activator exhibits a strict and fastidious requirement for polymeric fibrin as its cofactor, unlike human tissue-type plasminogen activator. A kinetic analysis.

    PubMed

    Bergum, P W; Gardell, S J

    1992-09-01

    The vampire bat salivary plasminogen activator (BatPA) is virtually inactive toward Glu-plasminogen in the absence of a fibrin-like cofactor, unlike human tissue-type plasminogen activator (tPA) (the kcat/Km values were 4 and 470 M-1 s-1, respectively). In the presence of fibrin II, tPA and BatPA activated Glu-plasminogen with comparable catalytic efficiencies (158,000 and 174,000 M-1 s-1, respectively). BatPA's cofactor requirement was partially satisfied by polymeric fibrin I (54,000 M-1 s-1), but monomeric fibrin I was virtually ineffective (970 M-1 s-1). By comparison, a variety of monomeric and polymeric fibrin-like species markedly enhanced tPA-mediated activation of Glu-plasminogen. Fragment X polymer was 2-fold better but 9-fold worse as cofactor for tPA and BatPA, respectively, relative to fibrin II. Fibrinogen, devoid of plasminogen, was a 10-fold better cofactor for tPA than fibrinogen rigorously depleted of plasminogen, Factor XIII, and fibronectin; the enhanced stimulatory effect of the less-purified fibrinogen was apparently due to the presence of Factor XIII. By contrast, the two fibrinogen preparations were equally poor cofactors of BatPA-mediated activation of Glu-plasminogen. BatPA possessed only 23 and 4% of the catalytic efficiencies of tPA and two-chain tPA, respectively, in hydrolyzing the chromogenic substrate Spectrozyme tPA. However in the presence of fibrin II, BatPA and tPA exhibited similar kcat/Km values for the hydrolysis of Spectrozyme tPA. Our data revealed that BatPA, unlike tPA, displayed a strict and fastidious requirement for polymeric fibrin I or II. Consequently, BatPA may preferentially promote plasmin generation during a narrow temporal window of fibrin formation and dissolution. PMID:1387641

  20. Using measurable physical characteristics to forecast beef heifer maturity: the identification of a maturity index.

    PubMed

    Stockton, M C; Wilson, R K; Feuz, D M; Stalker, L A; Funston, R N

    2013-09-01

    A target BW is often used to estimate sexual maturity in beef heifers. The target BW, a percentage of mature BW, is generally an average for the breed, herd, or both. Heifer development is done in groups or herds, and not all heifers respond similarly to the same development regimen. Generally, heifers fed at a higher plane of nutrition gain more BW and tend to have increased pregnancy rates, but this usually increases feed costs. Therefore, determining when increased feed costs exceed the economic gains resulting from greater conception rates is critical and requires the inclusion of economic information and relationships. This research focused on the individual heifer as the decision point, and identification of the individual heifer target BW was based on clearly defined biological relationships observed before breeding. These relationships were captured in a maturity index (MI) identified through a series of steps and guided by current, accepted knowledge of heifer growth and development. Using an in-sample mean absolute percent error comparison, it was determined the MI was more accurate than the current group or herd methods in forecasting actual maturity and target BW. Maturity index demonstrated the flexibility in achieving similar maturities with beef heifers of varying characteristics using alternative nutritional programs. The MI was also the only significant predictor of first pregnancy. These results allow for more precision in determining sexual maturity and probability of first pregnancy in beef heifers and serve as the basis for future studies in determining profit differences among heifers. PMID:23825325

  1. 7 CFR 51.888 - Maturity requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 5 U.S.C. 552(a) and 1 CFR part 51. Copies may be obtained from, in the case of Arizona maturity..., Standardization Section, Room 2065-S, 14th and Independence Avenue, Washington, DC 20250 or at the National....5 Cardinal, Emperor, Perlette, Ribier, Olivette Blanche, Rish Baba, Red Malaga, and...

  2. 7 CFR 51.888 - Maturity requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 5 U.S.C. 552(a) and 1 CFR part 51. Copies may be obtained from, in the case of Arizona maturity..., Standardization Section, Room 2065-S, 14th and Independence Avenue, Washington, DC 20250 or at the National....5 Cardinal, Emperor, Perlette, Ribier, Olivette Blanche, Rish Baba, Red Malaga, and...

  3. Depressive Symptomatology among Very Early Maturing Girls.

    ERIC Educational Resources Information Center

    Rierdan, Jill; Koff, Elissa

    1991-01-01

    The relationship between very early menarche and depression was studied in a sample of 488 girls (336 sixth graders and 152 seventh graders), less than 10 percent of whom were very early maturers. Very early menarche was associated with higher levels of depression than was more normative development. (SLD)

  4. Teaching Copywriting Students about the Mature Market.

    ERIC Educational Resources Information Center

    Drewniany, Bonnie

    Advertising educators have a responsibility to make students aware of the importance of the mature market (older people) and to teach them methods to reach this group. An assignment in a copywriting class asked students to write and design ads to promote blue jeans to adults over 50. The assignment accomplished three things: (1) helped students…

  5. Vaccinia Virus Infection Requires Maturation of Macropinosomes.

    PubMed

    Rizopoulos, Zaira; Balistreri, Giuseppe; Kilcher, Samuel; Martin, Caroline K; Syedbasha, Mohammedyaseen; Helenius, Ari; Mercer, Jason

    2015-08-01

    The prototypic poxvirus, vaccinia virus (VACV), occurs in two infectious forms, mature virions (MVs) and extracellular virions (EVs). Both enter HeLa cells by inducing macropinocytic uptake. Using confocal microscopy, live-cell imaging, targeted RNAi screening and perturbants of endosome maturation, we analyzed the properties and maturation pathway of the macropinocytic vacuoles containing VACV MVs in HeLa cells. The vacuoles first acquired markers of early endosomes [Rab5, early endosome antigen 1 and phosphatidylinositol(3)P]. Prior to release of virus cores into the cytoplasm, they contained markers of late endosomes and lysosomes (Rab7a, lysosome-associated membrane protein 1 and sorting nexin 3). RNAi screening of endocytic cell factors emphasized the importance of late compartments for VACV infection. Follow-up perturbation analysis showed that infection required Rab7a and PIKfyve, confirming that VACV is a late-penetrating virus dependent on macropinosome maturation. VACV EV infection was inhibited by depletion of many of the same factors, indicating that both infectious particle forms share the need for late vacuolar conditions for penetration. PMID:25869659

  6. Thermal maturity of carboniferous strata, Ouachita Mountains

    SciTech Connect

    Houseknecht, D.W.; Matthews, S.M.

    1985-03-01

    The Ouachita Mountains, a relatively untested, potential hydrocarbon province, contain a thick Paleozoic section of apparently favorable source beds, reservoir beds, and trap configurations. To estimate the thermal maturity of these strata, vitrinite reflectance was measured on 89 samples collected mostly from Carboniferous rocks from throughout the Ouachita outcrop area.

  7. Young Carers: Mature before Their Time

    ERIC Educational Resources Information Center

    Charles, Grant; Stainton, Tim; Marshall, Sheila

    2009-01-01

    There is a population of remarkable young people who may go unnoticed due to the absence of overt acting out behaviors. Often mature beyond their age, they are forced by family situations to assume care-giving roles which are usually the responsibility of parents and elders. Being placed prematurely in adult caring roles potentially may have both…

  8. 7 CFR 989.213 - Maturity dockage.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... between handler and tenderer, Natural (sun-dried) Seedless, Golden Seedless, Dipped Seedless, Monukka... dockage table applicable to lots of Natural (sun-dried) Seedless, Golden Seedless, Dipped Seedless... dockage factor for the preceding increment. (c) Maturity dockage table applicable to lots of Natural...

  9. 7 CFR 989.213 - Maturity dockage.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... between handler and tenderer, Natural (sun-dried) Seedless, Golden Seedless, Dipped Seedless, Monukka... dockage table applicable to lots of Natural (sun-dried) Seedless, Golden Seedless, Dipped Seedless... dockage factor for the preceding increment. (c) Maturity dockage table applicable to lots of Natural...

  10. 7 CFR 989.213 - Maturity dockage.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... between handler and tenderer, Natural (sun-dried) Seedless, Golden Seedless, Dipped Seedless, Monukka... dockage table applicable to lots of Natural (sun-dried) Seedless, Golden Seedless, Dipped Seedless... dockage factor for the preceding increment. (c) Maturity dockage table applicable to lots of Natural...

  11. 7 CFR 51.1313 - Mature.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., CERTIFICATION, AND STANDARDS) United States Standards for Winter Pears 1 Definitions § 51.1313 Mature. (a... also be given. (1) The following terms should be used for describing the ground color: Green, Light Green, Yellowish Green, and Yellow. (2) The following terms should be used for describing the...

  12. 7 CFR 51.1272 - Mature.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., CERTIFICATION, AND STANDARDS) United States Standards for Summer and Fall Pears 1 Definitions § 51.1272 Mature... also be given. (1) The following terms should be used for describing the ground color: Green, Light Green, Yellowish Green, and Yellow. (2) The following terms should be used for describing the...

  13. 24 CFR 200.82 - Maturity.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 2 2010-04-01 2010-04-01 false Maturity. 200.82 Section 200.82 Housing and Urban Development Regulations Relating to Housing and Urban Development (Continued) OFFICE OF ASSISTANT SECRETARY FOR HOUSING-FEDERAL HOUSING COMMISSIONER, DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT GENERAL INTRODUCTION TO FHA...

  14. 7 CFR 1421.101 - Maturity dates.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 10 2012-01-01 2012-01-01 false Maturity dates. 1421.101 Section 1421.101 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT OF... ASSISTANCE LOANS AND LOAN DEFICIENCY PAYMENTS FOR 2008 THROUGH 2012 Marketing Assistance Loans §...

  15. Prenatal Antecedents of Newborn Neurological Maturation

    ERIC Educational Resources Information Center

    DiPietro, Janet A.; Kivlighan, Katie T.; Costigan, Kathleen A.; Rubin, Suzanne E.; Shiffler, Dorothy E.; Henderson, Janice L.; Pillion, Joseph P.

    2010-01-01

    Fetal neurobehavioral development was modeled longitudinally using data collected at weekly intervals from 24 to 38 weeks gestation in a sample of 112 healthy pregnancies. Predictive associations between 3 measures of fetal neurobehavioral functioning and their developmental trajectories to neurological maturation in the first weeks after birth…

  16. 7 CFR 51.1823 - Mature.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Director of the Federal Register in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies may be... assigned the term in the Florida Citrus Code, Chapter 601, 1995 Edition, and the Official Rules Affecting the Florida Citrus Industry, in effect as of February 12, 1995. These tangerine maturity...

  17. 7 CFR 51.1823 - Mature.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Director of the Federal Register in accordance with 5 U.S.C. 552(a) and 1 CFR Part 51. Copies may be... assigned the term in the Florida Citrus Code, Chapter 601, 1995 Edition, and the Official Rules Affecting the Florida Citrus Industry, in effect as of February 12, 1995. These tangerine maturity...

  18. 7 CFR 51.767 - Mature.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... approved by the Director of the Federal Register in accordance with 5 U.S.C. 552(a) and 1 CFR part 51... assigned the term in the Florida Citrus Code, Chapter 601, 1995 Edition, and the Official Rules Affecting the Florida Citrus Industry, in effect as of February 12, 1995. These grapefruit maturity...

  19. 7 CFR 51.767 - Mature.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... approved by the Director of the Federal Register in accordance with 5 U.S.C. 552(a) and 1 CFR part 51... assigned the term in the Florida Citrus Code, Chapter 601, 1995 Edition, and the Official Rules Affecting the Florida Citrus Industry, in effect as of February 12, 1995. These grapefruit maturity...

  20. 7 CFR 51.1823 - Mature.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Director of the Federal Register in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies may be... assigned the term in the Florida Citrus Code, Chapter 601, 1995 Edition, and the Official Rules Affecting the Florida Citrus Industry, in effect as of February 12, 1995. These tangerine maturity...

  1. Neuropsychological and Early Maturational Correlates of Intelligence.

    ERIC Educational Resources Information Center

    Denno, Deborah J.

    A study designed to examine biological, sociological, and early maturational correlates of intelligence collected data prospectively, from birth to 15 years of age, on a sample of 987 black children. Multiple indicators of eight independent and three dependent variables were tested in a structural equation model. Altogether, clear sex differences…

  2. The Measurement of Cognitive Vocational Maturity

    ERIC Educational Resources Information Center

    Westbrook, Bert W.; Parry-Hill, Joseph W., Jr.

    1973-01-01

    Describes an instrument designed to measure an individual's level of cognitive vocational maturity in six areas: Fields of Work, Job Selection, Work Conditions, Education Required, Attributes Required, and Duties. When vocational choices were in agreement with field of interest and ability level, scores on the subtests were higher. Mean scores on…

  3. Field Instruction and the Mature Student

    ERIC Educational Resources Information Center

    Fox, Raymond

    2004-01-01

    As increasing numbers of mature students enter schools of social work, it is a challenge and an obligation for field instructors to discover ways to recruit and sustain them in the educational endeavor. Building upon three theoretical perspectives--Freire's pedagogy of the oppressed, Knowles's andragogy, and Schon's reflective learning and…

  4. Sperm Proteome Maturation in the Mouse Epididymis

    PubMed Central

    Skerget, Sheri; Rosenow, Matthew A.; Petritis, Konstantinos; Karr, Timothy L.

    2015-01-01

    In mammals, transit through the epididymis, which involves the acquisition, loss and modification of proteins, is required to confer motility and fertilization competency to sperm. The overall dynamics of maturation is poorly understood, and a systems level understanding of the complex maturation process will provide valuable new information about changes occurring during epididymal transport. We report the proteomes of sperm collected from the caput, corpus and cauda segments of the mouse epididymis, identifying 1536, 1720 and 1234 proteins respectively. This study identified 765 proteins that are present in sperm obtained from all three segments. We identified 1766 proteins that are potentially added (732) or removed (1034) from sperm during epididymal transit. Phenotypic analyses of the caput, corpus and cauda sperm proteomes identified 60 proteins that have known sperm phenotypes when mutated, or absent from sperm. Our analysis indicates that as much as one-third of proteins with known sperm phenotypes are added to sperm during epididymal transit. GO analyses revealed that cauda sperm are enriched for specific functions including sperm-egg recognition and motility, consistent with the observation that sperm acquire motility and fertilization competency during transit through the epididymis. In addition, GO analyses revealed that the immunity protein profile of sperm changes during sperm maturation. Finally, we identified components of the 26S proteasome, the immunoproteasome, and a proteasome activator in mature sperm. PMID:26556802

  5. Career Maturity: A Priority for Secondary Education

    ERIC Educational Resources Information Center

    Gonzalez, Manuel Alvarez

    2008-01-01

    This study reviews the current state of career maturity in secondary education--a period of education which is critical for development of this construct, when students are faced with ongoing academic and occupational decisions over the course of their studies. This paper is organized in three parts: first we focus on the concept, models,…

  6. 7 CFR 51.1313 - Mature.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Mature. 51.1313 Section 51.1313 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF 1946 FRESH FRUITS, VEGETABLES AND...

  7. 7 CFR 51.1272 - Mature.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Mature. 51.1272 Section 51.1272 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF 1946 FRESH FRUITS, VEGETABLES AND...

  8. Elevated Social Anxiety among Early Maturing Girls

    ERIC Educational Resources Information Center

    Blumenthal, Heidemarie; Leen-Feldner, Ellen W.; Babson, Kimberly A.; Gahr, Jessica L.; Trainor, Casey D.; Frala, Jamie L.

    2011-01-01

    Adolescence is a key period in terms of the development of anxiety psychopathology. An emerging literature suggests that early pubertal maturation is associated with enhanced vulnerability for anxiety symptomatology, although few studies have examined this association with regard to social anxiety. Accordingly, the current study was designed to…

  9. Gene expression associated with tuber periderm maturation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Potato periderm maturation and associated resistance to tuber excoriation, i.e. skinning injury, is of scientific and agricultural importance because of the losses created by shrinkage, tuber market quality defects and infections. The cells and cellular changes responsible for the development of re...

  10. Bluetongue virus capsid assembly and maturation.

    PubMed

    Mohl, Bjorn-Patrick; Roy, Polly

    2014-08-01

    Maturation is an intrinsic phase of the viral life cycle and is often intertwined with egress. In this review we focus on orbivirus maturation by using Bluetongue virus (BTV) as a representative. BTV, a member of the genus Orbivirus within the family Reoviridae, has over the last three decades been subjected to intense molecular study and is thus one of the best understood viruses. BTV is a non-enveloped virus comprised of two concentric protein shells that encapsidate 10 double-stranded RNA genome segments. Upon cell entry, the outer capsid is shed, releasing the core which does not disassemble into the cytoplasm. The polymerase complex within the core then synthesizes transcripts from each genome segment and extrudes these into the cytoplasm where they act as templates for protein synthesis. Newly synthesized ssRNA then associates with the replicase complex prior to encapsidation by inner and outer protein layers of core within virus-triggered inclusion bodies. Maturation of core occurs outside these inclusion bodies (IBs) via the addition of the outer capsid proteins, which appears to be coupled to a non-lytic, exocytic pathway during early infection. Similar to the enveloped viruses, BTV hijacks the exocytosis and endosomal sorting complex required for trafficking (ESCRT) pathway via a non-structural glycoprotein. This exquisitely detailed understanding is assembled from a broad array of assays, spanning numerous and diverse in vitro and in vivo studies. Presented here are the detailed insights of BTV maturation and egress. PMID:25196482

  11. 24 CFR 200.82 - Maturity.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 2 2011-04-01 2011-04-01 false Maturity. 200.82 Section 200.82 Housing and Urban Development Regulations Relating to Housing and Urban Development (Continued) OFFICE OF ASSISTANT SECRETARY FOR HOUSING-FEDERAL HOUSING COMMISSIONER, DEPARTMENT OF HOUSING AND URBAN...

  12. Job Search Manual for Mature Workers.

    ERIC Educational Resources Information Center

    Merrill, Fred L.

    This document is designed to help mature persons find the "right" professional, managerial, or technical jobs. Section 1 introduces the materials. Section 2 shows job seekers how to write a general statement that defines the nature of the position desired and how to assess their skills, abilities, interests, work values, and personal qualities…

  13. Late Maturation of Auditory Perceptual Learning

    ERIC Educational Resources Information Center

    Huyck, Julia Jones; Wright, Beverly A.

    2011-01-01

    Adults can improve their performance on many perceptual tasks with training, but when does the response to training become mature? To investigate this question, we trained 11-year-olds, 14-year-olds and adults on a basic auditory task (temporal-interval discrimination) using a multiple-session training regimen known to be effective for adults. The…

  14. Evaluating Hass Avocado Maturity Using Hyperspectral Imaging

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The maturity of avocado fruit is usually assessed by measuring its dry matter content(DM), which is a destructive and time consuming process. The aim of this study is tointroduce a non-destructive and quick technique that can estimate the DM content of an avocado fruit. 'Hass' avocado fruits at diff...

  15. 7 CFR 51.312 - Mature.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Standards for Grades of Apples Definitions § 51.312 Mature. “Mature” means that the apples have reached the... apple becomes overripe it will show varying degrees of firmness, depending upon the stage of the ripening process. The following terms are used for describing different stages of firmness of apples:...

  16. 7 CFR 51.312 - Mature.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Standards for Grades of Apples Definitions § 51.312 Mature. “Mature” means that the apples have reached the... apple becomes overripe it will show varying degrees of firmness, depending upon the stage of the ripening process. The following terms are used for describing different stages of firmness of apples:...

  17. 7 CFR 51.312 - Mature.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Standards for Grades of Apples Definitions § 51.312 Mature. “Mature” means that the apples have reached the... apple becomes overripe it will show varying degrees of firmness, depending upon the stage of the ripening process. The following terms are used for describing different stages of firmness of apples:...

  18. Adolescent Naturalistic Conceptions of Moral Maturity

    ERIC Educational Resources Information Center

    Hardy, Sam A.; Walker, Lawrence J.; Olsen, Joseph A.; Skalski, Jonathan E.; Basinger, Jason C.

    2011-01-01

    Understanding lay conceptions of morality is important not only because they can guide moral psychology theory but also because they may play a role in everyday moral functioning. Thus, the purpose of this study was to examine adolescent conceptions of moral maturity. Study 1 (200 adolescents 12-18 years) involved a free-listing procedure to…

  19. 7 CFR 989.213 - Maturity dockage.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... between handler and tenderer, Natural (sun-dried) Seedless, Golden Seedless, Dipped Seedless, Monukka... dockage table applicable to lots of Natural (sun-dried) Seedless, Golden Seedless, Dipped Seedless... dockage factor for the preceding increment. (c) Maturity dockage table applicable to lots of Natural...

  20. 7 CFR 989.213 - Maturity dockage.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... between handler and tenderer, Natural (sun-dried) Seedless, Golden Seedless, Dipped Seedless, Monukka... dockage table applicable to lots of Natural (sun-dried) Seedless, Golden Seedless, Dipped Seedless... dockage factor for the preceding increment. (c) Maturity dockage table applicable to lots of Natural...

  1. Histology of salmonid testes during maturation.

    PubMed

    Dziewulska, Katarzyna; Domagała, Józef

    2003-03-01

    The commonly applied classification systems of fish gonad maturity divide the maturation process into certain stages. However, the scales do not entirely reflect the continuity of the maturation process. Based on light microscope observations, the paper describes a comprehensive pattern of testicular transformations during maturation. The study was carried out on precocious underyearling and 1-year-old males of sea trout (Salmo trutta m. trutta L.), 1-year-old males of salmon (Salmo salar L.), and males of brown trout (Salmo trutta m. fario L.) aged from 7 months to 4 years. A total of 821 gonads collected during all seasons of the year were examined. The fish were fixed in Bouin's fluid. Histological slides of the mid-part of the gonad were made using the standard paraffin technique. The 3-6 microm sections were stained with Heidenhain haematoxylin. Histological changes of testes during maturation were similar in the three species studied. Immature and resting gonads contained type A spermatogonia in lobules only. The appearance of cystic structures containing type B spermatogonia in the lobules signalled the beginning of the sexual cycle in male gonads. Type B spermatogonia underwent synchronous mitotic divisions resulting in an increase in the total number of spermatogonia. As the spermatogenesis continued, the gonads showed a gradual increase in the number of cysts containing cells at all the spermatogenetic stages: type B spermatogonia, primary and secondary spermatocytes, spermatids, and spermatozoa. The well-formed spermatozoa were released to the lobule lumen once the Sertoli cells and spermatozoa connections broke up and the cyst disappeared. This was a continuous process observed throughout the spawning season. The spermatozoa were moved to the efferent duct. While some of the germ cells were completing spermatogenesis, the lobules contained less and less cysts with type B spermatogonia, primary and secondary spermatocytes, and spermatids; eventually all

  2. Releasing the brakes in coagulation Factor IXa by co-operative maturation of the substrate-binding site.

    PubMed

    Kristensen, Line Hyltoft; Olsen, Ole H; Blouse, Grant E; Brandstetter, Hans

    2016-08-01

    Coagulation Factor IX is positioned at the merging point of the intrinsic and extrinsic blood coagulation cascades. Factor IXa (activated Factor IX) serves as the trigger for amplification of coagulation through formation of the so-called Xase complex, which is a ternary complex of Factor IXa, its substrate Factor X and the cofactor Factor VIIIa on the surface of activated platelets. Within the Xase complex the substrate turnover by Factor IXa is enhanced 200000-fold; however, the mechanistic and structural basis for this dramatic enhancement remains only partly understood. A multifaceted approach using enzymatic, biophysical and crystallographic methods to evaluate a key set of activity-enhanced Factor IXa variants has demonstrated a delicately balanced bidirectional network. Essential molecular interactions across multiple regions of the Factor IXa molecule co-operate in the maturation of the active site. This maturation is specifically facilitated by long-range communication through the Ile(212)-Ile(213) motif unique to Factor IXa and a flexibility of the 170-loop that is further dependent on the conformation in the Cys(168)-Cys(182) disulfide bond. Ultimately, the network consists of compensatory brakes (Val(16) and Ile(213)) and accelerators (Tyr(99) and Phe(174)) that together allow for a subtle fine-tuning of enzymatic activity. PMID:27208168

  3. A Drosophila model to image phagosome maturation.

    PubMed

    Shandala, Tetyana; Lim, Chiaoxin; Sorvina, Alexandra; Brooks, Douglas A

    2013-01-01

    Phagocytosis involves the internalization of extracellular material by invagination of the plasma membrane to form intracellular vesicles called phagosomes, which have functions that include pathogen degradation. The degradative properties of phagosomes are thought to be conferred by sequential fusion with endosomes and lysosomes; however, this maturation process has not been studied in vivo. We employed Drosophila hemocytes, which are similar to mammalian professional macrophages, to establish a model of phagosome maturation. Adult Drosophila females, carrying transgenic Rab7-GFP endosome and Lamp1-GFP lysosome markers, were injected with E. coli DH5α and the hemocytes were collected at 15, 30, 45 and 60 minutes after infection. In wild-type females, E. coli were detected within enlarged Rab7-GFP positive phagosomes at 15 to 45 minutes after infection; and were also observed in enlarged Lamp1-GFP positive phagolysosomes at 45 minutes. Two-photon imaging of hemocytes in vivo confirmed this vesicle morphology, including enlargement of Rab7-GFP and Lamp1-GFP structures that often appeared to protrude from hemocytes. The interaction of endosomes and lysosomes with E. coli phagosomes observed in Drosophila hemocytes was consistent with that previously described for phagosome maturation in human ex vivo macrophages. We also tested our model as a tool for genetic analysis using 14-3-3e mutants, and demonstrated altered phagosome maturation with delayed E. coli internalization, trafficking and/or degradation. These findings demonstrate that Drosophila hemocytes provide an appropriate, genetically amenable, model for analyzing phagosome maturation ex vivo and in vivo. PMID:24709696

  4. An Unexpected Twist in Viral Capsid Maturation

    PubMed Central

    Gertsman, Ilya; Gan, Lu; Guttman, Miklos; Lee, Kelly; Speir, Jeffrey A.; Duda, Robert L.; Hendrix, Roger W.; Komives, Elizabeth A.; Johnson, John E.

    2009-01-01

    Lambda-like dsDNA bacteriophage undergo massive conformational changes in their capsid shell during the packaging of their viral genomes. Capsid shells are complex organizations of hundreds of protein subunits that assemble into intricate quaternary complexes that ultimately are able to withstand over 50 atm. of pressure during genome packaging1. The extensive integration between subunits in capsids is unlikely to form in a single assembly step, therefore requiring formation of an intermediate complex, termed a procapsid, from which individual subunits can undergo the necessary refolding and structural rearrangements needed to transition to the more stable capsid. Though various mature capsids have been characterized at atomic resolution, no such procapsid structure is available for a dsDNA virus or bacteriophage that undergoes large scale conformational changes. We present a procapsid x-ray structure at 3.65Å resolution, termed Prohead II, of the lambda like bacteriophage HK97, whose mature capsid structure was previously solved to 3.44 Å2. A comparison of the two largely different capsid forms has unveiled an unprecedented expansion mechanism that describes the transition. Crystallographic and Hydrogen/Deuterium exchange data presented here demonstrates that the subunit tertiary structures are significantly different between the two states, with twisting and bending motions occurring in both helical and β-sheet regions. We have also discovered conserved subunit interactions at each 3-fold of the virus capsid, from which capsid subunits maintain their integrity during refolding, facilitating the rotational and translational motions of maturation. Calormetric data of a closely related bacteriophage, P22, showed that capsid maturation was an exothermic process that resulted in a release of 90KJ/mol of energy3. We propose the major tertiary changes presented in this study reveal a structural basis for an exothermic maturation process likely present in many ds

  5. Maturation of Rhizobium leguminosarum Hydrogenase in the Presence of Oxygen Requires the Interaction of the Chaperone HypC and the Scaffolding Protein HupK*

    PubMed Central

    Albareda, Marta; Pacios, Luis F.; Manyani, Hamid; Rey, Luis; Brito, Belén; Imperial, Juan; Ruiz-Argüeso, Tomás; Palacios, Jose M.

    2014-01-01

    [NiFe] hydrogenases are key enzymes for the energy and redox metabolisms of different microorganisms. Synthesis of these metalloenzymes involves a complex series of biochemical reactions catalyzed by a plethora of accessory proteins, many of them required to synthesize and insert the unique NiFe(CN)2CO cofactor. HypC is an accessory protein conserved in all [NiFe] hydrogenase systems and involved in the synthesis and transfer of the Fe(CN)2CO cofactor precursor. Hydrogenase accessory proteins from bacteria-synthesizing hydrogenase in the presence of oxygen include HupK, a scaffolding protein with a moderate sequence similarity to the hydrogenase large subunit and proposed to participate as an intermediate chaperone in the synthesis of the NiFe cofactor. The endosymbiotic bacterium Rhizobium leguminosarum contains a single hydrogenase system that can be expressed under two different physiological conditions: free-living microaerobic cells (∼12 μm O2) and bacteroids from legume nodules (∼10–100 nm O2). We have used bioinformatic tools to model HupK structure and interaction of this protein with HypC. Site-directed mutagenesis at positions predicted as critical by the structural analysis have allowed the identification of HupK and HypC residues relevant for the maturation of hydrogenase. Mutant proteins altered in some of these residues show a different phenotype depending on the physiological condition tested. Modeling of HypC also predicts the existence of a stable HypC dimer whose presence was also demonstrated by immunoblot analysis. This study widens our understanding on the mechanisms for metalloenzyme biosynthesis in the presence of oxygen. PMID:24942742

  6. Comparative genotoxicity of 3-hydroxyanthranilic acid and anthranilic acid in the presence of a metal cofactor Cu (II) in vitro.

    PubMed

    Gadupudi, Gopi S; Chung, King-Thom

    2011-12-24

    Several clinical studies have reported that an increase in excretion of tryptophan metabolites 3-hydroxyanthranilic acid (3-OHAA), anthranilic acid (AA) and other metabolites in the urine of bladder cancer patients are implicated to play a role in the etiology of bladder cancer; however the mechanisms involved are unknown. The present study compares the genotoxicity of tryptophan metabolites AA and 3-OHAA to cause mutagenesis in vitro. The DNA damage effects of tryptophan metabolites were analyzed using plasmid relaxation assay performed with AA and 3-OHAA at various concentrations between 50μM and 400μM in the presence of plasmid DNA pSP-72. Both AA and 3-OHAA did not show any plasmid relaxation activity when tested alone. However, 3-OHAA in the presence of metal cofactor Cu (II) induced plasmid relaxation by causing nicks in the plasmid. This effect was not observed in the presence of other metal cofactors Fe (II) and Mn (III). Cu (II) at increasing concentrations between 5μM and 20μM and in the presence of 100μM 3-OHAA showed an apparent dose-response in causing DNA strand breaks. The Cu (II) mediated mutagenic activation of 3-OHAA was further investigated using Ames Salmonella/microsome mutagenicity assay with reactive oxygen species (ROS) sensitive tester strain Salmonella TA102. When 100μg of 3-OHAA per plate was incubated with Cu (II) a significant increase in TA102 revertants was observed with an increase in the concentration of Cu (II) from 2.5μg to 50μg. In contrast, AA with Cu (II) at such low concentration was unable to cause any significant increase in number of the TA102 revertants. This evidence for mutagenicity with only 3-OHAA and Cu (II) but not AA suggests the presence of hydroxyl group at ortho position to amino group in 3-OHAA structurally, is critical in reacting with Cu (II) to generate genotoxicity. PMID:22015263

  7. Enhanced Stability of the Fe(II)/Mn(II) State in a Synthetic Model of Heterobimetallic Cofactor Assembly.

    PubMed

    Kerber, William D; Goheen, Joshua T; Perez, Kaitlyn A; Siegler, Maxime A

    2016-01-19

    Heterobimetallic Mn/Fe cofactors are found in the R2 subunit of class Ic ribonucleotide reductases (R2c) and R2-like ligand binding oxidases (R2lox). Selective cofactor assembly is due at least in part to the thermodynamics of M(II) binding to the apoprotein. We report here equilibrium studies of Fe(II)/Mn(II) discrimination in the biomimetic model system H5(F-HXTA) (5-fluoro-2-hydroxy-1,3-xylene-α,α'-diamine-N,N,N',N'-tetraacetic acid). The homobimetallic F-HXTA complexes [Fe(H2O)6][1]2·14H2O and [Mn(H2O)6][2]2·14H2O (1 = [Fe(II)2(F-HXTA)(H2O)4](-); 2 = [Mn(II)2(F-HXTA)(H2O)4](-)) were characterized by single crystal X-ray diffraction. NMR data show that 1 retains its structure in solution (2 is NMR silent). Metal exchange is facile, and the heterobimetallic complex [Fe(II)Mn(II)(F-HXTA)(H2O)4](-) (3) is formed from mixtures of 1 and 2. (19)F NMR was used to quantify 1 and 3 in the presence of excess M(II)(aq) at various metal ratios, and equilibrium constants for Fe(II)/Mn(II) discrimination were calculated from these data. Fe(II) is preferred over Mn(II) with K1 = 182 ± 13 for complete replacement (2 ⇌ 1). This relatively modest preference is attributed to a hard-soft acid-base mismatch between the divalent cations and the polycarboxylate ligand. The stepwise constants for replacement are K2 = 20.1 ± 1.3 (2 ⇌ 3) and K3 = 9.1 ± 1.1 (3 ⇌ 1). K2 > K3 demonstrates enhanced stability of the heterobimetallic state beyond what is expected for simple Mn(II) → Fe(II) replacement. The relevance to Fe(II)/Mn(II) discrimination in R2c and R2lox proteins is discussed. PMID:26709740

  8. X-ray absorption spectroscopy on the calcium cofactor to the manganese cluster in photosynthetic oxygen evolution

    SciTech Connect

    Cinco, Roehl M.

    1999-12-16

    Along with Mn, calcium and chloride ions are necessary cofactors for oxygen evolution in Photosystem II (PS II). To further test and verify whether Ca is close to the Mn cluster, the authors substituted strontium for Ca and probed from the Sr point of view for any nearby Mn. The extended X-ray absorption fine structure (EXAFS) of Sr-reactivated PS II indicates major differences between the intact and NH{sub 2}OH-treated samples. In intact samples, the Fourier transform of the Sr EXAFS shows a Fourier peak that is missing in inactive samples. This peak II is best simulated by two Mn neighbors at a distance of 3.5 Angstrom, confirming the proximity of Ca (Sr) cofactor to the Mn cluster. In addition, polarized Sr EXAFS on oriented Sr-reactivated samples shows this peak II is dichroic: large magnitude at 10 degrees (angle between the PS II membrane normal and the x-ray electric field vector) and small at 80 degrees. Analysis of the dichroism yields the relative angle between the Sr-Mn vector and membrane normal (23 degrees {+-} 4 degrees), and the isotropic coordination number for these layered samples. X-ray absorption spectroscopy has also been employed to assess the degree of similarity between the manganese cluster in PS II and a family of synthetic manganese complexes containing the distorted cubane [Mn{sub 4}O{sub 3}X] core (X = benzoate, acetate, methoxide, hydroxide, azide, fluoride, chloride or bromide). In addition, Mn{sub 4}O{sub 3}Cl complexes containing three or six terminal Cl ligands at three of the Mn were included in this study. The EXAFS method detects the small changes in the core structures as X is varied in this series, and serves to exclude these distorted cubanes of C3v symmetry as a topological model for the Mn catalytic cluster. The sulfur K-edge x-ray absorption near-edge structure (XANES) spectra for the amino acids cysteine, methionine, their corresponding oxidized forms cystine and methionine sulfoxide, and glutathione show distinct

  9. Formation of Aerobic Granular Sludge in Sequencing Batch Reactor: Comparison of Different Divalent Metal Ions as Cofactors

    NASA Astrophysics Data System (ADS)

    Liu, Lin; Gao, Dawen; Zhang, Min

    2010-11-01

    The two sequencing batch reactors (SBRs) were operated to investigate the different effect of Ca2+ and Mg2+ augmentation on aerobic granulation. R1 was augmented with Ca2+ at 40 mg/L, while Mg+ was added to R2 with 40 mg/L. Results indicated that R1 had a faster granulation process, and aerobic granulation reached the steady state after 60 cycles in R1 but 80 cycles in R2. The mean diameter of the mature granules in R1 was 1.6 mm which was consistently larger than that (0.8 mm) in R2, and aerobic granules in R1 also showed a higher physical strength. However, the mature granules in R2 had the higher production yield of polysaccharides and proteins, and aerobic granules in R2 experienced a faster substrate biodegradation. Microbial and genetic characteristics in mature granules were analyzed using polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE) techniques. The results revealed that Mg2+ addition led to higher microbial diversity in mature granules. In addition, the uncultured bacterium (AB447697) was major specie in R1, and β-proteobacterium was dominant in R2.

  10. Leveraging People-Related Maturity Issues for Achieving Higher Maturity and Capability Levels

    NASA Astrophysics Data System (ADS)

    Buglione, Luigi

    During the past 20 years Maturity Models (MM) become a buzzword in the ICT world. Since the initial Crosby's idea in 1979, plenty of models have been created in the Software & Systems Engineering domains, addressing various perspectives. By analyzing the content of the Process Reference Models (PRM) in many of them, it can be noticed that people-related issues have little weight in the appraisals of the capabilities of organizations while in practice they are considered as significant contributors in traditional process and organizational performance appraisals, as stressed instead in well-known Performance Management models such as MBQA, EFQM and BSC. This paper proposes some ways for leveraging people-related maturity issues merging HR practices from several types of maturity models into the organizational Business Process Model (BPM) in order to achieve higher organizational maturity and capability levels.

  11. Transcriptional Programs Controlling Perinatal Lung Maturation

    PubMed Central

    Xu, Yan; Wang, Yanhua; Besnard, Valérie; Ikegami, Machiko; Wert, Susan E.; Heffner, Caleb; Murray, Stephen A.; Donahue, Leah Rae; Whitsett, Jeffrey A.

    2012-01-01

    The timing of lung maturation is controlled precisely by complex genetic and cellular programs. Lung immaturity following preterm birth frequently results in Respiratory Distress Syndrome (RDS) and Broncho-Pulmonary Dysplasia (BPD), which are leading causes of mortality and morbidity in preterm infants. Mechanisms synchronizing gestational length and lung maturation remain to be elucidated. In this study, we designed a genome-wide mRNA expression time-course study from E15.5 to Postnatal Day 0 (PN0) using lung RNAs from C57BL/6J (B6) and A/J mice that differ in gestational length by ∼30 hr (B6maturation. We identified both temporal and strain dependent gene expression patterns during lung maturation. For time dependent changes, cell adhesion, vasculature development, and lipid metabolism/transport were major bioprocesses induced during the saccular stage of lung development at E16.5–E17.5. CEBPA, PPARG, VEGFA, CAV1 and CDH1 were found to be key signaling and transcriptional regulators of these processes. Innate defense/immune responses were induced at later gestational ages (E18.5–20.5), STAT1, AP1, and EGFR being important regulators of these responses. Expression of RNAs associated with the cell cycle and chromatin assembly was repressed during prenatal lung maturation and was regulated by FOXM1, PLK1, chromobox, and high mobility group families of transcription factors. Strain dependent lung mRNA expression differences peaked at E18.5. At this time, mRNAs regulating surfactant and innate immunity were more abundantly expressed in lungs of B6 (short gestation) than in A/J (long gestation) mice, while expression of genes involved in chromatin assembly and histone modification were expressed at lower levels in B6 than in A/J mice. The present study systemically mapped key regulators, bioprocesses

  12. DNA sequence and genetic analysis of the Rhodobacter capsulatus nifENX gene region: homology between NifX and NifB suggests involvement of NifX in processing of the iron-molybdenum cofactor.

    PubMed

    Moreno-Vivian, C; Schmehl, M; Masepohl, B; Arnold, W; Klipp, W

    1989-04-01

    Rhodobacter capsulatus genes homologous to Klebsiella pneumoniae nifE, nifN and nifX were identified by DNA sequence analysis of a 4282 bp fragment of nif region A. Four open reading frames coding for a 51,188 (NifE), a 49,459 (NifN), a 17,459 (NifX) and a 17,472 (ORF4) dalton protein were detected. A typical NifA activated consensus promoter and two imperfect putative NifA binding sites were located in the 377 bp sequence in front of the nifE coding region. Comparison of the deduced amino acid sequences of R. capsulatus NifE and NifN revealed homologies not only to analogous gene products of other organisms but also to the alpha and beta subunits of the nitrogenase iron-molybdenum protein. In addition, the R. capsulatus nifE and nifN proteins shared considerable homology with each other. The map position of nifX downstream of nifEN corresponded in R. capsulatus and K. pneumoniae and the deduced molecular weights of both proteins were nearly identical. Nevertheless, R. capsulatus NifX was more related to the C-terminal end of NifY from K. pneumoniae than to NifX. A small domain of approximately 33 amino acid residues showing the highest degree of homology between NifY and NifX was also present in all nifB proteins analyzed so far. This homology indicated an evolutionary relationship of nifX, nifY and nifB and also suggested that NifX and NifY might play a role in maturation and/or stability of the iron-molybdenum cofactor. The open reading frame (ORF4) downstream of nifX in R. capsulatus is also present in Azotobacter vinelandii but not in K. pneumoniae.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2747620

  13. Sample preparation workflow for the liquid chromatography tandem mass spectrometry based analysis of nicotinamide adenine dinucleotide phosphate cofactors in yeast.

    PubMed

    Ortmayr, Karin; Nocon, Justyna; Gasser, Brigitte; Mattanovich, Diethard; Hann, Stephan; Koellensperger, Gunda

    2014-08-01

    The accurate quantification of the highly unstable intracellular cofactor nicotinamide adenine dinucleotide phosphate in its oxidized and reduced forms demands a thorough evaluation of the analytical workflow and dedicated methods reflecting their solution chemistry as well as the biological importance of their ratio. In this work, we present a workflow for the analysis of intracellular levels of oxidized and reduced nicotinamide adenine dinucleotide phosphate in the yeast Pichia pastoris, including hot aqueous extraction, chromatographic separation in reversed-phase conditions employing a 100% wettable stationary phase, and subsequent tandem mass spectrometric analysis. A thorough evaluation and optimization of the sample preparation procedure resulted in excellent biological repeatabilities (on average <10%, N = 3) without employing an internal standardization approach. As a consequence, the methodology proved to be appropriate for the relative assessment of intracellular levels of oxidized and reduced nicotinamide adenine dinucleotide phosphate in different P. pastoris strains. The ratio of reduced versus oxidized nicotinamide adenine dinucleotide phosphate was significantly higher in an engineered strain overexpressing glucose-6-phosphate dehydrogenase than in the corresponding wildtype strain. Interestingly, a difference was also observed in the nicotinamide adenine dinucleotide phosphate pool size, which was significantly higher in the wildtype than in the modified strain. PMID:24841212

  14. Hox Proteins Display a Common and Ancestral Ability to Diversify Their Interaction Mode with the PBC Class Cofactors

    PubMed Central

    Hudry, Bruno; Remacle, Sophie; Delfini, Marie-Claire; Rezsohazy, René; Graba, Yacine; Merabet, Samir

    2012-01-01

    Hox transcription factors control a number of developmental processes with the help of the PBC class proteins. In vitro analyses have established that the formation of Hox/PBC complexes relies on a short conserved Hox protein motif called the hexapeptide (HX). This paradigm is at the basis of the vast majority of experimental approaches dedicated to the study of Hox protein function. Here we questioned the unique and general use of the HX for PBC recruitment by using the Bimolecular Fluorescence Complementation (BiFC) assay. This method allows analyzing Hox-PBC interactions in vivo and at a genome-wide scale. We found that the HX is dispensable for PBC recruitment in the majority of investigated Drosophila and mouse Hox proteins. We showed that HX-independent interaction modes are uncovered by the presence of Meis class cofactors, a property which was also observed with Hox proteins of the cnidarian sea anemone Nematostella vectensis. Finally, we revealed that paralog-specific motifs convey major PBC-recruiting functions in Drosophila Hox proteins. Altogether, our results highlight that flexibility in Hox-PBC interactions is an ancestral and evolutionary conserved character, which has strong implications for the understanding of Hox protein functions during normal development and pathologic processes. PMID:22745600

  15. A disulfide-stabilized conformer of methionine synthase reveals an unexpected role for the histidine ligand of the cobalamin cofactor

    PubMed Central

    Datta, Supratim; Koutmos, Markos; Pattridge, Katherine A.; Ludwig, Martha L.; Matthews, Rowena G.

    2008-01-01

    B12-dependent methionine synthase (MetH) from Escherichia coli is a large modular protein that is alternately methylated by methyltetrahydrofolate to form methylcobalamin and demethylated by homocysteine to form cob(I)alamin. Major domain rearrangements are required to allow cobalamin to react with three different substrates: homocysteine, methyltetrahydrofolate, and S-adenosyl-l-methionine (AdoMet). These same rearrangements appear to preclude crystallization of the wild-type enzyme. Disulfide cross-linking was used to lock a C-terminal fragment of the enzyme into a unique conformation. Cysteine point mutations were introduced at Ile-690 and Gly-743. These cysteine residues span the cap and the cobalamin-binding module and form a cross-link that reduces the conformational space accessed by the enzyme, facilitating protein crystallization. Here, we describe an x-ray structure of the mutant fragment in the reactivation conformation; this conformation enables the transfer of a methyl group from AdoMet to the cobalamin cofactor. In the structure, the axial ligand to the cobalamin, His-759, dissociates from the cobalamin and forms intermodular contacts with residues in the AdoMet-binding module. This unanticipated intermodular interaction is expected to play a major role in controlling the distribution of conformers required for the catalytic and the reactivation cycles of the enzyme. PMID:18332423

  16. Chicken ovalbumin upstream promoter transcription factors act as auxiliary cofactors for hepatocyte nuclear factor 4 and enhance hepatic gene expression.

    PubMed Central

    Ktistaki, E; Talianidis, I

    1997-01-01

    Chicken ovalbumin upstream promoter transcription factors (COUP-TFs) strongly inhibit transcriptional activation mediated by nuclear hormone receptors, including hepatocyte nuclear factor 4 (HNF-4). COUP-TFs repress HNF-4-dependent gene expression by competition with HNF-4 for common binding sites found in several regulatory regions. Here we show that promoters, such as the HNF-1 promoter, which are recognized by HNF-4 but not by COUP-TFs are activated by COUP-TFI and COUP-TFII in conjunction with HNF-4 more than 100-fold above basal levels, as opposed to about 8-fold activation by HNF-4 alone. This enhancement was strictly dependent on an intact HNF-4 E domain. In vitro and in vivo evidence suggests that COUP-TFs enhance HNF-4 activity by a mechanism that involves their physical interaction with the amino acid 227 to 271 region of HNF-4. Our results indicate that in certain promoters, COUP-TFs act as auxiliary cofactors for HNF-4, orienting the HNF-4 activation domain in a more efficient configuration to achieve enhanced transcriptional activity. These findings provide new insights into the regulatory functions of COUP-TFs, suggesting their involvement in the initial activation and subsequent high-level expression of hepatic regulators, as well as in the positive and negative modulation of downstream target genes. PMID:9111350

  17. Iron is a specific cofactor for distinct oxidation- and aggregation-dependent Aβ toxicity mechanisms in a Drosophila model

    PubMed Central

    Ott, Stanislav; Dziadulewicz, Nikolas; Crowther, Damian C.

    2015-01-01

    ABSTRACT Metals, including iron, are present at high concentrations in amyloid plaques in individuals with Alzheimer's disease, where they are also thought to be cofactors in generating oxidative stress and modulating amyloid formation. In this study, we present data from several Drosophila models of neurodegenerative proteinopathies indicating that the interaction between iron and amyloid beta peptide (Aβ) is specific and is not seen for other aggregation-prone polypeptides. The interaction with iron is likely to be important in the dimerisation of Aβ and is mediated by three N-terminal histidines. Transgenic fly lines systematically expressing all combinations of His>Ala substitutions in Aβ were generated and used to study the pathological role of these residues. Developmental eye phenotypes, longevity and histological examinations indicate that the N-terminal histidines have distinct position-dependent and -independent mechanisms. The former mediate the toxic effects of metals and Aβ aggregation under non-oxidising conditions and the latter are relevant under oxidising conditions. Understanding how Aβ mediates neurotoxic effects in vivo will help to better target pathological pathways using aggregation blockers and metal-modifying agents. PMID:26035384

  18. Iron is a specific cofactor for distinct oxidation- and aggregation-dependent Aβ toxicity mechanisms in a Drosophila model.

    PubMed

    Ott, Stanislav; Dziadulewicz, Nikolas; Crowther, Damian C

    2015-07-01

    Metals, including iron, are present at high concentrations in amyloid plaques in individuals with Alzheimer's disease, where they are also thought to be cofactors in generating oxidative stress and modulating amyloid formation. In this study, we present data from several Drosophila models of neurodegenerative proteinopathies indicating that the interaction between iron and amyloid beta peptide (Aβ) is specific and is not seen for other aggregation-prone polypeptides. The interaction with iron is likely to be important in the dimerisation of Aβ and is mediated by three N-terminal histidines. Transgenic fly lines systematically expressing all combinations of His>Ala substitutions in Aβ were generated and used to study the pathological role of these residues. Developmental eye phenotypes, longevity and histological examinations indicate that the N-terminal histidines have distinct position-dependent and -independent mechanisms. The former mediate the toxic effects of metals and Aβ aggregation under non-oxidising conditions and the latter are relevant under oxidising conditions. Understanding how Aβ mediates neurotoxic effects in vivo will help to better target pathological pathways using aggregation blockers and metal-modifying agents. PMID:26035384

  19. Transcription cofactor PC4 plays essential roles in collaboration with the small subunit of general transcription factor TFIIE.

    PubMed

    Akimoto, Yusuke; Yamamoto, Seiji; Iida, Satoshi; Hirose, Yutaka; Tanaka, Aki; Hanaoka, Fumio; Ohkuma, Yoshiaki

    2014-12-01

    In eukaryotes, positive cofactor 4 (PC4) stimulates activator-dependent transcription by facilitating transcription initiation and the transition from initiation to elongation. It also forms homodimers and binds to single-stranded DNA and various transcriptional activators, including the general transcription factor TFIIH. In this study, we further investigated PC4 from Homo sapiens and the nematode Caenorhabditis elegans (hPC4 and cePC4, respectively). hPC4 strongly stimulated transcription on a linearized template, whereas it alleviated transcription on a supercoiled template. Transcriptional stimulation by PC4 was also alleviated by increasing the amount of TFIID. GST pull-down studies with general transcription factors indicated that both hPC4 and cePC4 bind strongly to TFIIB, TFIIEβ, TFIIFα, TFIIFβ and TFIIH XPB subunits and weakly to TBP and TFIIH p62. However, only hPC4 bound to CDK7. The effect of each PC4 on transcription was studied in combination with TFIIEβ. hPC4 stimulated both basal and activated transcription, whereas cePC4 primarily stimulated activated transcription, especially in the presence of TFIIEβ from C. elegans. Finally, hPC4 bound to the C-terminal region of hTFIIEβ adjacent to the basic region. These results indicate that PC4 plays essential roles in the transition step from transcription initiation to elongation by binding to melted DNA in collaboration with TFIIEβ. PMID:25308091

  20. Codon-Optimized NADH Oxidase Gene Expression and Gene Fusion with Glycerol Dehydrogenase for Bienzyme System with Cofactor Regeneration

    PubMed Central

    Zhou, Qiang; Wang, Shizhen

    2015-01-01

    NADH oxidases (NOXs) play an important role in maintaining balance of NAD+/NADH by catalyzing cofactors regeneration. The expression of nox gene from Lactobacillus brevis in Escherichia coli BL21 (BL21 (DE3)) was studied. Two strategies, the high AT-content in the region adjacent to the initiation codon and codon usage of the whole gene sequence consistent with the host, obtained the NOX activity of 59.9 U/mg and 73.3 U/mg (crude enzyme), with enhanced expression level of 2.0 and 2.5-folds, respectively. Purified NOX activity was 213.8 U/mg. Gene fusion of glycerol dehydrogenase (GDH) and NOX formed bifuctional multi-enzymes for bioconversion of glycerol coupled with coenzyme regeneration. Kinetic parameters of the GDH-NOX for each substrate, glycerol and NADH, were calculated as Vmax(Glycerol) 20 μM/min, Km(Glycerol) 19.4 mM, Vmax (NADH) 12.5 μM/min and Km (NADH) 51.3 μM, respectively, which indicated the potential application of GDH-NOX for quick glycerol analysis and dioxyacetone biosynthesis. PMID:26115038

  1. Chicken ovalbumin upstream promoter transcription factors act as auxiliary cofactors for hepatocyte nuclear factor 4 and enhance hepatic gene expression.

    PubMed

    Ktistaki, E; Talianidis, I

    1997-05-01

    Chicken ovalbumin upstream promoter transcription factors (COUP-TFs) strongly inhibit transcriptional activation mediated by nuclear hormone receptors, including hepatocyte nuclear factor 4 (HNF-4). COUP-TFs repress HNF-4-dependent gene expression by competition with HNF-4 for common binding sites found in several regulatory regions. Here we show that promoters, such as the HNF-1 promoter, which are recognized by HNF-4 but not by COUP-TFs are activated by COUP-TFI and COUP-TFII in conjunction with HNF-4 more than 100-fold above basal levels, as opposed to about 8-fold activation by HNF-4 alone. This enhancement was strictly dependent on an intact HNF-4 E domain. In vitro and in vivo evidence suggests that COUP-TFs enhance HNF-4 activity by a mechanism that involves their physical interaction with the amino acid 227 to 271 region of HNF-4. Our results indicate that in certain promoters, COUP-TFs act as auxiliary cofactors for HNF-4, orienting the HNF-4 activation domain in a more efficient configuration to achieve enhanced transcriptional activity. These findings provide new insights into the regulatory functions of COUP-TFs, suggesting their involvement in the initial activation and subsequent high-level expression of hepatic regulators, as well as in the positive and negative modulation of downstream target genes. PMID:9111350

  2. A disulfide-stabilized conformer of methionine synthase reveals an unexpected role for the histidine ligand of the cobalamin cofactor

    SciTech Connect

    Datta, Supratim; Koutmos, Markos; Pattridge, Katherine A.; Ludwig, Martha L.; Matthews, Rowena G.

    2008-07-08

    B{sub 12}-dependent methionine synthase (MetH) from Escherichia coli is a large modular protein that is alternately methylated by methyltetrahydrofolate to form methylcobalamin and demethylated by homocysteine to form cob(I)alamin. Major domain rearrangements are required to allow cobalamin to react with three different substrates: homocysteine, methyltetrahydrofolate, and S-adenosyl-l-methionine (AdoMet). These same rearrangements appear to preclude crystallization of the wild-type enzyme. Disulfide cross-linking was used to lock a C-terminal fragment of the enzyme into a unique conformation. Cysteine point mutations were introduced at Ile-690 and Gly-743. These cysteine residues span the cap and the cobalamin-binding module and form a cross-link that reduces the conformational space accessed by the enzyme, facilitating protein crystallization. Here, we describe an x-ray structure of the mutant fragment in the reactivation conformation; this conformation enables the transfer of a methyl group from AdoMet to the cobalamin cofactor. In the structure, the axial ligand to the cobalamin, His-759, dissociates from the cobalamin and forms intermodular contacts with residues in the AdoMet-binding module. This unanticipated intermodular interaction is expected to play a major role in controlling the distribution of conformers required for the catalytic and the reactivation cycles of the enzyme.

  3. Evidence for impaired retinoic acid receptor-thyroid hormone receptor AF-2 cofactor activity in human lung cancer.

    PubMed Central

    Moghal, N; Neel, B G

    1995-01-01

    Retinoic acid (RA) is required for normal airway epithelial cell growth and differentiation both in vivo and in vitro. One of the earliest events following the exposure of bronchial epithelial cells to RA is the strong induction of RA receptor beta (RAR beta) mRNA. Previous work established that many lung cancer cell lines and primary tumors display abnormal RAR beta mRNA expression, most often absence or weak expression of the RAR beta 2 isoform, even after RA treatment. Restoration of RAR beta 2 into RAR beta-negative lung cancer cell lines has been reported to inhibit tumorigenicity. Since RAR beta 2 inactivation may contribute to lung cancer, we have investigated the molecular mechanism of defective RAR beta 2 expression. Nuclear run-on assays and transient transfections with RAR beta 2 promoter constructs indicate the presence of trans-acting transcriptional defects in most lung cancer cell lines, which map to the RA response element (RARE). These defects cannot be complemented by RAR-retinoid X receptor cotransfection and can be separated into two types: (i) one affecting transcription from direct repeat RAREs, but not palindromic RAREs, and (ii) another affecting transcription from both types of RARE. Studies using chimeras between RAR alpha, TR alpha, and other transcription factors suggest the existence of novel RAR-thyroid hormone receptor AF-2-specific cofactors, which are necessary for high levels of transcription. Furthermore, these factors may be frequently inactivated in human lung cancer. PMID:7791800

  4. An Arabidopsis F-box protein acts as a transcriptional co-factor to regulate floral development.

    PubMed

    Chae, Eunyoung; Tan, Queenie K-G; Hill, Theresa A; Irish, Vivian F

    2008-04-01

    Plants flower in response to both environmental and endogenous signals. The Arabidopsis LEAFY (LFY) transcription factor is crucial in integrating these signals, and acts in part by activating the expression of multiple floral homeotic genes. LFY-dependent activation of the homeotic APETALA3 (AP3) gene requires the activity of UNUSUAL FLORAL ORGANS (UFO), an F-box component of an SCF ubiquitin ligase, yet how this regulation is effected has remained unclear. Here, we show that UFO physically interacts with LFY both in vitro and in vivo, and this interaction is necessary to recruit UFO to the AP3 promoter. Furthermore, a transcriptional repressor domain fused to UFO reduces endogenous LFY activity in plants, supporting the idea that UFO acts as part of a transcriptional complex at the AP3 promoter. Moreover, chemical or genetic disruption of proteasome activity compromises LFY-dependent AP3 activation, indicating that protein degradation is required to promote LFY activity. These results define an unexpected role for an F-box protein in functioning as a DNA-associated transcriptional co-factor in regulating floral homeotic gene expression. These results suggest a novel mechanism for promoting flower development via protein degradation and concomitant activation of the LFY transcription factor. This mechanism may be widely conserved, as homologs of UFO and LFY have been identified in a wide array of plant species. PMID:18287201

  5. Exosome Cofactors Connect Transcription Termination to RNA Processing by Guiding Terminated Transcripts to the Appropriate Exonuclease within the Nuclear Exosome.

    PubMed

    Kim, Kyumin; Heo, Dong-Hyuk; Kim, Iktae; Suh, Jeong-Yong; Kim, Minkyu

    2016-06-17

    The yeast Nrd1 interacts with the C-terminal domain (CTD) of RNA polymerase II (RNApII) through its CTD-interacting domain (CID) and also associates with the nuclear exosome, thereby acting as both a transcription termination and RNA processing factor. Previously, we found that the Nrd1 CID is required to recruit the nuclear exosome to the Nrd1 complex, but it was not clear which exosome subunits were contacted. Here, we show that two nuclear exosome cofactors, Mpp6 and Trf4, directly and competitively interact with the Nrd1 CID and differentially regulate the association of Nrd1 with two catalytic subunits of the exosome. Importantly, Mpp6 promotes the processing of Nrd1-terminated transcripts preferentially by Dis3, whereas Trf4 leads to Rrp6-dependent processing. This suggests that Mpp6 and Trf4 may play a role in choosing a particular RNA processing route for Nrd1-terminated transcripts within the exosome by guiding the transcripts to the appropriate exonuclease. PMID:27076633

  6. Antibodies use heme as a cofactor to extend their pathogen elimination activity and to acquire new effector functions.

    PubMed

    Dimitrov, Jordan D; Roumenina, Lubka T; Doltchinkova, Virjinia R; Mihaylova, Nikolina M; Lacroix-Desmazes, Sebastien; Kaveri, Srinivas V; Vassilev, Tchavdar L

    2007-09-14

    Various pathological processes are accompanied by release of high amounts of free heme into the circulation. We demonstrated by kinetic, thermodynamic, and spectroscopic analyses that antibodies have an intrinsic ability to bind heme. This binding resulted in a decrease in the conformational freedom of the antibody paratopes and in a change in the nature of the noncovalent forces responsible for the antigen binding. The antibodies use the molecular imprint of the heme molecule to interact with an enlarged panel of structurally unrelated epitopes. Upon heme binding, monoclonal as well as pooled immunoglobulin G gained an ability to interact with previously unrecognized bacterial antigens and intact bacteria. IgG-heme complexes had an enhanced ability to trigger complement-mediated bacterial killing. It was also shown that heme, bound to immunoglobulins, acted as a cofactor in redox reactions. The potentiation of the antibacterial activity of IgG after contact with heme may represent a novel and inducible innate-type defense mechanism against invading pathogens. PMID:17636257

  7. Regulation of an in vivo metal-exchangeable superoxide dismutase from Propionibacterium shermanii exhibiting activity with different metal cofactors.

    PubMed Central

    Sehn, A P; Meier, B

    1994-01-01

    The anaerobic, but aerotolerant Propionibacterium freudenreichii sp. shermanii contains a single superoxide dismutase [EC 1.15.1.1.] exhibiting comparable activity with iron or manganese as metal cofactor. The formation of superoxide dismutase is not depending on the supplementation of iron or manganese to the culture medium. Even in the absence of these metals the protein is built in comparable amounts. Bacteria grown in the absence of iron and manganese synthesize a superoxide dismutase with very low activity which had incorporated copper. If the medium was also depleted of copper, cobalt was incorporated, leading to an enzymically inactive form. In the absence of cobalt an enzymically inactive superoxide dismutase was built with unknown metal contents. Upon aeration the amount of superoxide dismutase activity increased continuously up to 9 h, due to a de novo synthesis of the protein. This superoxide dismutase had incorporated iron into the active centre. The superoxide dismutase of Propionibacterium shermanii is able to form a much wider variety of complexes with trace metal ions in vivo than previously recognized, leading to the hypothesis that the original function of these proteins was the binding of cytoplasmic trace metals present in excess. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:7818484

  8. Transcriptional co-factor Transducin beta-like (TBL) 1 acts as a checkpoint in pancreatic cancer malignancy

    PubMed Central

    Stoy, Christian; Sundaram, Aishwarya; Rios Garcia, Marcos; Wang, Xiaoyue; Seibert, Oksana; Zota, Annika; Wendler, Susann; Männle, David; Hinz, Ulf; Sticht, Carsten; Muciek, Maria; Gretz, Norbert; Rose, Adam J; Greiner, Vera; Hofmann, Thomas G; Bauer, Andrea; Hoheisel, Jörg; Berriel Diaz, Mauricio; Gaida, Matthias M; Werner, Jens; Schafmeier, Tobias; Strobel, Oliver; Herzig, Stephan

    2015-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer fatalities in Western societies, characterized by high metastatic potential and resistance to chemotherapy. Critical molecular mechanisms of these phenotypical features still remain unknown, thus hampering the development of effective prognostic and therapeutic measures in PDAC. Here, we show that transcriptional co-factor Transducin beta-like (TBL) 1 was over-expressed in both human and murine PDAC. Inactivation of TBL1 in human and mouse pancreatic cancer cells reduced cellular proliferation and invasiveness, correlating with diminished glucose uptake, glycolytic flux, and oncogenic PI3 kinase signaling which in turn could rescue TBL1 deficiency-dependent phenotypes. TBL1 deficiency both prevented and reversed pancreatic tumor growth, mediated transcriptional PI3 kinase inhibition, and increased chemosensitivity of PDAC cells in vivo. As TBL1 mRNA levels were also found to correlate with PI3 kinase levels and overall survival in a cohort of human PDAC patients, TBL1 was identified as a checkpoint in the malignant behavior of pancreatic cancer and its expression may serve as a novel molecular target in the treatment of human PDAC. PMID:26070712

  9. ADP-Ribose Pyrophosphatase Reaction in Crystalline State Conducted by Consecutive Binding of Two Manganese(II) Ions as Cofactors.

    PubMed

    Furuike, Yoshihiko; Akita, Yuka; Miyahara, Ikuko; Kamiya, Nobuo

    2016-03-29

    Adenosine diphosphate ribose pyrophosphatase (ADPRase), a member of the Nudix family proteins, catalyzes the metal-induced and concerted general acid-base hydrolysis of ADP ribose (ADPR) into AMP and ribose-5'-phosphate (R5P). The ADPR-hydrolysis reaction of ADPRase from Thermus thermophilus HB8 (TtADPRase) requires divalent metal cations such as Mn(2+), Zn(2+), or Mg(2+) as cofactors. Here, we report the reaction pathway observed in the catalytic center of TtADPRase, based on cryo-trapping X-ray crystallography at atomic resolutions around 1.0 Å using Mn(2+) as the reaction trigger, which was soaked into TtADPRase-ADPR binary complex crystals. Integrating 11 structures along the reaction timeline, five reaction states of TtADPRase were assigned, which were ADPRase alone (E), the ADPRase-ADPR binary complex (ES), two ADPRase-ADPR-Mn(2+) reaction intermediates (ESM, ESMM), and the postreaction state (E'). Two Mn(2+) ions were inserted consecutively into the catalytic center of the ES-state and ligated by Glu86 and Glu82, which are highly conserved among the Nudix family, in the ESM- and ESMM-states. The ADPR-hydrolysis reaction was characterized by electrostatic, proximity, and orientation effects, and by preferential binding for the transition state. A new reaction mechanism is proposed, which differs from previous ones suggested from structure analyses with nonhydrolyzable substrate analogues or point-mutated ADPRases. PMID:26979298

  10. Backbone and ILV methyl resonance assignments of E. coli thymidylate synthase bound to cofactor and a nucleotide analogue

    PubMed Central

    Sapienza, Paul J.; Lee, Andrew L.

    2013-01-01

    Thymidylate synthase (TSase) is a 62 kDa homodimeric enzyme required for de novo synthesis of thymidine monophosphate (dTMP) in most organisms. This makes the enzyme an excellent target for anticancer and microbial antibiotic drugs. In addition, TSase has been shown to exhibit negative cooperativity and half-the-sites reactivity. For these collective reasons, TSase is widely studied, and much is known about its kinetics and structure as it progresses through a multi-step catalytic cycle. Recently, nuclear magnetic resonance (NMR) spin relaxation has been instrumental in demonstrating the critical role of dynamics in enzyme function in small model systems. These studies raise questions about how dynamics affect function in larger enzymes with more complex reaction coordinates. TSase is an ideal candidate given its size, oligomeric state, cooperativity, and status as a drug target. Here, as a pre-requisite to spin relaxation studies, we present the backbone and ILV methyl resonance assignments of TSase from Escherichia coli bound to a substrate analogue and cofactor. PMID:23653343

  11. 2.0 Angstrom Structure of Prostaglandin H2 Synthase-1 Reconstituted with a Manganese Porphyrin Cofactor

    SciTech Connect

    Gupta,K.; Selinsky, B.; Loll, P.

    2006-01-01

    Prostaglandin H{sub 2} synthase (EC 1.14.99.1) is a clinically important drug target that catalyzes two key steps in the biosynthesis of the eicosanoid hormones. The enzyme contains spatially distinct cyclooxygenase and peroxidase active sites, both of which require a heme cofactor. Substitution of ferric heme by Mn{sup III} protoporphyrin IX greatly diminishes the peroxidase activity, but has little effect on the cyclooxygenase activity. Here, the 2.0 Angstrom resolution crystal structure of the Mn{sup III} form of ovine prostaglandin H{sub 2} synthase-1 is described (R = 21.8%, R{sub free} = 23.7%). Substitution of Mn{sup III} for Fe{sup III} causes no structural perturbations in the protein. However, the out-of-plane displacement of the manganese ion with respect to the porphyrin is greater than that of the iron by approximately 0.2 Angstroms. This perturbation may help to explain the altered catalytic properties of the manganese enzyme.

  12. Bioinformatic evidence for a widely distributed, ribosomally produced electron carrier precursor, its maturation proteins, and its nicotinoprotein redox partners

    PubMed Central

    2011-01-01

    Background Enzymes in the radical SAM (rSAM) domain family serve in a wide variety of biological processes, including RNA modification, enzyme activation, bacteriocin core peptide maturation, and cofactor biosynthesis. Evolutionary pressures and relationships to other cellular constituents impose recognizable grammars on each class of rSAM-containing system, shaping patterns in results obtained through various comparative genomics analyses. Results An uncharacterized gene cluster found in many Actinobacteria and sporadically in Firmicutes, Chloroflexi, Deltaproteobacteria, and one Archaeal plasmid contains a PqqE-like rSAM protein family that includes Rv0693 from Mycobacterium tuberculosis. Members occur clustered with a strikingly well-conserved small polypeptide we designate "mycofactocin," similar in size to bacteriocins and PqqA, precursor of pyrroloquinoline quinone (PQQ). Partial Phylogenetic Profiling (PPP) based on the distribution of these markers identifies the mycofactocin cluster, but also a second tier of high-scoring proteins. This tier, strikingly, is filled with up to thirty-one members per genome from three variant subfamilies that occur, one each, in three unrelated classes of nicotinoproteins. The pattern suggests these variant enzymes require not only NAD(P), but also the novel gene cluster. Further study was conducted using SIMBAL, a PPP-like tool, to search these nicotinoproteins for subsequences best correlated across multiple genomes to the presence of mycofactocin. For both the short chain dehydrogenase/reductase (SDR) and iron-containing dehydrogenase families, aligning SIMBAL's top-scoring sequences to homologous solved crystal structures shows signals centered over NAD(P)-binding sites rather than over substrate-binding or active site residues. Previous studies on some of these proteins have revealed a non-exchangeable NAD cofactor, such that enzymatic activity in vitro requires an artificial electron acceptor such as N,N-dimethyl-4

  13. Biomarker tests for fetal lung maturity.

    PubMed

    Leung-Pineda, Van; Gronowski, Ann M

    2010-12-01

    The production of surfactant is a key step in fetal lung development. Surfactant decreases alveolar surface tension, thereby preventing alveolar collapse and allowing efficient gas exchange. The lack of adequate amounts of lung surfactant results in respiratory distress syndrome. Tests that assess surfactant concentrations in amniotic fluid are good predictors of infants that will not develop respiratory distress syndrome. The most frequently used test to assess fetal lung maturity (TDx FLM II) will not be available after December 2011. Therefore, we review the currently available tests for fetal lung maturity including lecithin:sphingomyelin ratio, phosphatidyl glycerol, surfactant:albumin ratio and lamellar body counts. Herein, we discuss their clinical utility and consider a suitable replacement for the future. PMID:21133706

  14. Remotely sensing wheat maturation with radar

    NASA Technical Reports Server (NTRS)

    Bush, T. F.; Ulaby, F. T.

    1975-01-01

    The scattering properties of wheat were studied in the 8-18 GHz band as a function of frequency, polarization, incidence angle, and crop maturity. Supporting ground truth was collected at the time of measurement. The data indicate that the radar backscattering coefficient is sensitive to both radar system parameters and crop characteristics particularly at incidence angles near nadir. Linear regression analyses of the radar backscattering coefficient on both time and plant moisture content result in rather good correlation. Furthermore, by calculating the average time rate of change of the radar backscattering coefficient it is found that it undergoes rapid variations shortly before and after the wheat is harvested. Both of these analyses suggest methods for estimating wheat maturity and for monitoring the progress of harvest.

  15. Visualizing antibody affinity maturation in germinal centers.

    PubMed

    Tas, Jeroen M J; Mesin, Luka; Pasqual, Giulia; Targ, Sasha; Jacobsen, Johanne T; Mano, Yasuko M; Chen, Casie S; Weill, Jean-Claude; Reynaud, Claude-Agnès; Browne, Edward P; Meyer-Hermann, Michael; Victora, Gabriel D

    2016-03-01

    Antibodies somatically mutate to attain high affinity in germinal centers (GCs). There, competition between B cell clones and among somatic mutants of each clone drives an increase in average affinity across the population. The extent to which higher-affinity cells eliminating competitors restricts clonal diversity is unknown. By combining multiphoton microscopy and sequencing, we show that tens to hundreds of distinct B cell clones seed each GC and that GCs lose clonal diversity at widely disparate rates. Furthermore, efficient affinity maturation can occur in the absence of homogenizing selection, ensuring that many clones can mature in parallel within the same GC. Our findings have implications for development of vaccines in which antibodies with nonimmunodominant specificities must be elicited, as is the case for HIV-1 and influenza. PMID:26912368

  16. Mature brain tissue in the sacrococcygeal region.

    PubMed

    Shrestha, Binod Bade; Ghimire, Pradeep; Ghartimagar, Dilasma; Jwarchan, Bishnu; Lalchan, Subita; Karmacharya, Mikesh

    2016-01-01

    Complete mature brain tissue in sacrococcygeal region is a rare congenital anomaly in a newborn, which usually is misdiagnosed for sacrococcygeal teratoma. Glial tumor-like ependymoma is also common in sacrococcygeal area but mostly appears later in life. We present a case of complete heterotopic brain tissue in the sacrococcygeal region. The patient underwent total excision of mass with coccygectomy. To our knowledge it is the second case being reported. PMID:27194682

  17. Mature brain tissue in the sacrococcygeal region

    PubMed Central

    Shrestha, Binod Bade; Ghimire, Pradeep; Ghartimagar, Dilasma; Jwarchan, Bishnu; Lalchan, Subita; Karmacharya, Mikesh

    2016-01-01

    Complete mature brain tissue in sacrococcygeal region is a rare congenital anomaly in a newborn, which usually is misdiagnosed for sacrococcygeal teratoma. Glial tumor-like ependymoma is also common in sacrococcygeal area but mostly appears later in life. We present a case of complete heterotopic brain tissue in the sacrococcygeal region. The patient underwent total excision of mass with coccygectomy. To our knowledge it is the second case being reported. PMID:27194682

  18. Maturation of Fetal Responses to Music

    ERIC Educational Resources Information Center

    Kisilevsky, B. S.; Hains, S. M. J.; Jacquet, A.-Y.; Granier-Deferre, C.; Lecanuet, J. P.

    2004-01-01

    Maturation of fetal response to music was characterized over the last trimester of pregnancy using a 5-minute piano recording of Brahms' Lullaby, played at an average of 95, 100, 105 or 110 dB (A). Within 30 seconds of the onset of the music, the youngest fetuses (28-32 weeks GA) showed a heart rate increase limited to the two highest dB levels;…

  19. Maturity schedules of lake trout in Lake Michigan

    USGS Publications Warehouse

    Madenjian, Charles P.; DeSorcie, Timothy J.; Stedman, Ralph M.

    1998-01-01

    We determined maturity schedules of male and female lake trout (Salvelinus namaycush) in Lake Michigan from nearshore populations and from an offshore population on Sheboygan Reef, which is located in midlake. Gill nets and bottom trawls were used to catch lake trout in fall 1994 and 1995 from two nearshore sites and Sheboygan Reef. Each lake trout was judged immature or mature, based on visual examination of gonads. Probit analysis, coupled with relative potency testing, revealed that age-at-maturity and length-at-maturity were similar at the two nearshore sites, but that lake trout from the nearshore sites matured at a significantly earlier age than lake trout from Sheboygan Reef. However, length at maturity for the nearshore populations was nearly identical to that for the offshore population, suggesting that rate of lake trout maturation in Lake Michigan was governed by growth rather than age. Half of the lake trout males reached maturity at a total length of 580 mm, whereas half of the females were mature at a length of 640 mm. Over half of nearshore males were mature by age 5, and over half the nearshore females matured by age 6. Due to a slower growth rate, maturity was delayed by 2 years on Sheboygan Reef compared with the nearshore populations. Documentation of this delay in maturation may be useful in deciding stocking allocations for lake trout rehabilitation in Lake Michigan.

  20. The AGU Data Management Maturity Model Initiative

    NASA Astrophysics Data System (ADS)

    Bates, J. J.

    2015-12-01

    In September 2014, the AGU Board of Directors approved two initiatives to help the Earth and space sciences community address the growing challenges accompanying the increasing size and complexity of data. These initiatives are: 1) Data Science Credentialing: development of a continuing education and professional certification program to help scientists in their careers and to meet growing responsibilities and requirements around data science; and 2) Data Management Maturity (DMM) Model: development and implementation of a data management maturity model to assess process maturity against best practices, and to identify opportunities in organizational data management processes. Each of these has been organized within AGU as an Editorial Board and both Boards have held kick off meetings. The DMM model Editorial Board will recommend strategies for adapting and deploying a DMM model to the Earth and space sciences create guidance documents to assist in its implementation, and provide input on a pilot appraisal process. This presentation will provide an overview of progress to date in the DMM model Editorial Board and plans for work to be done over the upcoming year.

  1. Human mature erythroblasts are resistant to apoptosis.

    PubMed

    Hristoskova, Sashka; Holzgreve, Wolfgang; Hahn, Sinuhe; Rusterholz, Corinne

    2007-03-10

    Apoptosis plays an important role in red blood cell development, notably by regulating the fate of early erythroid progenitors. We show here that, by contrast, mature erythroblasts are resistant to apoptosis. Treatment of these cells with several apoptosis-inducing agents failed to trigger caspase activation and oligonucleosomal DNA fragmentation. Interestingly, we find that cytochrome c levels are dramatically reduced even though the cells contain mitochondria. Supplementation of cytosolic extracts from mature erythroblasts with cytochrome c, however, did not rescue caspase activation. This was not due to the presence of inhibitors of apoptosis, as these proteins were also missing in these cells. We also show that cytochrome c depletion is a normal event during erythroblast differentiation, which follows transient, developmentally induced caspase activation and correlates with the loss of response to cytokine withdrawal or drug-induced apoptosis. Our data therefore suggest that erythroblasts acquire resistance to apoptosis during maturation through the developmentally induced depletion of cytochrome c and other crucial regulators of the apoptotic machinery. PMID:17289021

  2. DNA damage response during mouse oocyte maturation.

    PubMed

    Mayer, Alexandra; Baran, Vladimir; Sakakibara, Yogo; Brzakova, Adela; Ferencova, Ivana; Motlik, Jan; Kitajima, Tomoya S; Schultz, Richard M; Solc, Petr

    2016-01-01

    Because low levels of DNA double strand breaks (DSBs) appear not to activate the ATM-mediated prophase I checkpoint in full-grown oocytes, there may exist mechanisms to protect chromosome integrity during meiotic maturation. Using live imaging we demonstrate that low levels of DSBs induced by the radiomimetic drug Neocarzinostatin (NCS) increase the incidence of chromosome fragments and lagging chromosomes but do not lead to APC/C activation and anaphase onset delay. The number of DSBs, represented by γH2AX foci, significantly decreases between prophase I and metaphase II in both control and NCS-treated oocytes. Transient treatment with NCS increases >2-fold the number of DSBs in prophase I oocytes, but less than 30% of these oocytes enter anaphase with segregation errors. MRE11, but not ATM, is essential to detect DSBs in prophase I and is involved in H2AX phosphorylation during metaphase I. Inhibiting MRE11 by mirin during meiotic maturation results in anaphase bridges and also increases the number of γH2AX foci in metaphase II.  Compromised DNA integrity in mirin-treated oocytes indicates a role for MRE11 in chromosome integrity during meiotic maturation. PMID:26745237

  3. Technology Maturation of Integrated System Health Management

    NASA Astrophysics Data System (ADS)

    Feather, Martin S.; Uckun, Serdar; Hicks, Kenneth A.

    2008-01-01

    Despite two decades of significant investments in R&D of Integrated System Health Management (ISHM), mission-critical applications of it in aerospace are few and far between. ISHM is subject to the general difficulty of transitioning technologies out of R&D labs and into practical applications. New and unproven methods such as ISHM introduce multiple mission risks (technology, schedule, cost), and may require a transition to unconventional and as-yet-unproven operations concepts in order to be effective. Laboratory and flight demonstrations are necessary but insufficient to adequately reduce those risks. What is needed is a solid business case before a new technology can be considered for fleetwide deployment. To address these problems, we recently applied a technology maturation assessment process developed at NASA's Jet Propulsion Laboratory to study the challenges of ISHM technology maturation. This application resulted in identification of the technologies (and technology maturation activities) that would result in the greatest risk reduction per investment dollar. Our approach and its results are described herein.

  4. Decelerating Mature Adipocyte Dedifferentiation by Media Composition.

    PubMed

    Huber, Birgit; Kluger, Petra J

    2015-12-01

    The establishment of adipose tissue test systems is still a major challenge in the investigation of cellular and molecular interactions responsible for the pathogenesis of inflammatory diseases involving adipose tissue. Mature adipocytes are mainly involved in these pathologies, but rarely used in vitro, due to the lack of an appropriate culture medium which inhibits dedifferentiation and maintains adipocyte functionality. In our study, we showed that Dulbecco's Modified Eagle's Medium/Ham's F-12 with 10% fetal calf serum (FCS) reported for the culture of mature adipocytes favors dedifferentiation, which was accompanied by a high glycerol release, a decreasing release of leptin, and a low expression of the adipocyte marker perilipin A, but high expression of CD73 after 21 days. Optimized media containing FCS, biotin, pantothenate, insulin, and dexamethasone decelerated the dedifferentiation process. These cells showed a lower lipolysis rate, a high level of leptin release, as well as a high expression of perilipin A. CD73-positive dedifferentiated fat cells were only found in low quantity. In this work, we showed that mature adipocytes when cultured under optimized conditions could be highly valuable for adipose tissue engineering in vitro. PMID:26228997

  5. Epigenetic mechanisms in pubertal brain maturation

    PubMed Central

    Morrison, Kathleen E.; Rodgers, Ali B.; Morgan, Christopher P.; Bale, Tracy L.

    2014-01-01

    Puberty is a critical period of development during which the reemergence of gonadotropin releasing hormone secretion from the hypothalamus triggers a cascade of hormone-dependent processes. Maturation of specific brain regions including the prefrontal cortex occurs during this window, but the complex mechanisms underlying these dynamic changes are not well understood. Particularly, the potential involvement of epigenetics in this programming has been under-examined. The epigenome is known to guide earlier stages of development, and it is similarly poised to regulate vital pubertal-driven brain maturation. Further, as epigenetic machinery is highly environmentally responsive, its involvement may also lend this period of growth to greater vulnerability to external insults, resulting in reprogramming and increased disease risk. Importantly, neuropsychiatric diseases commonly present in individuals during or immediately following puberty, and environmental perturbations including stress may precipitate disease onset by disrupting the normal trajectory of pubertal brain development via epigenetic mechanisms. In this review, we discuss epigenetic processes involved in pubertal brain maturation, the potential points of derailment, and the importance of future studies for understanding this dynamic developmental window and gaining a better understanding of neuropsychiatric disease risk. PMID:24239720

  6. Maturation modeling in Otway Basin, Australia

    SciTech Connect

    Middleton, M.F.; Falvey, D.A.

    1983-02-01

    The Otway basin is a Jurassic to Pliocene sedimentary basin formed on the southern Australian continental margin. Its formation is associated with rifting and breakup of the Australian and Antarctic plates. Lithospheric cooling and contraction have probably produced post-breakup subsidence. Either lithospheric stretching or deep crustal metamorphism may have produced pre-breakup subsidence. These mechanisms have identifiable thermal histories. Organic diagenesis (specifically the reflectance of vitrinite in oil) is empirically determined by the thermal and depositional history of an organic sediment. Thus, the stages of hydrocarbon maturity of Otway basin sediments can be modeled. Depositional history is determined from ''geohistory analysis'' and thermal history depends on the subsidence mechanism applied to the basin. A paleo-heat-flow history derived from the deep crustal metamorphism model of subsidence produces a maturation profile with depth that is consistent with observed vitrinite reflectance data, although organic diagenesis modeling is relatively insensitive to precise details of thermal history. Depositional and maturation history modeling for the present day, 20 Ma ago, 40 Ma ago, and 60 Ma ago is applied to a seismic profile across the southern Australian continental shelf in the Otway basin as a demonstration of the projection backward in time of sedimentation and organic diagenesis.

  7. Maturation of the cytochrome cd1 nitrite reductase NirS from Pseudomonas aeruginosa requires transient interactions between the three proteins NirS, NirN and NirF

    PubMed Central

    Nicke, Tristan; Schnitzer, Tobias; Münch, Karin; Adamczack, Julia; Haufschildt, Kristin; Buchmeier, Sabine; Kucklick, Martin; Felgenträger, Undine; Jänsch, Lothar; Riedel, Katharina; Layer, Gunhild

    2013-01-01

    The periplasmic cytochrome cd1 nitrite reductase NirS occurring in denitrifying bacteria such as the human pathogen Pseudomonas aeruginosa contains the essential tetrapyrrole cofactors haem c and haem d1. Whereas the haem c is incorporated into NirS by the cytochrome c maturation system I, nothing is known about the insertion of the haem d1 into NirS. Here, we show by co-immunoprecipitation that NirS interacts with the potential haem d1 insertion protein NirN in vivo. This NirS–NirN interaction is dependent on the presence of the putative haem d1 biosynthesis enzyme NirF. Further, we show by affinity co-purification that NirS also directly interacts with NirF. Additionally, NirF is shown to be a membrane anchored lipoprotein in P. aeruginosa. Finally, the analysis by UV–visible absorption spectroscopy of the periplasmic protein fractions prepared from the P. aeruginosa WT (wild-type) and a P. aeruginosa ΔnirN mutant shows that the cofactor content of NirS is altered in the absence of NirN. Based on our results, we propose a potential model for the maturation of NirS in which the three proteins NirS, NirN and NirF form a transient, membrane-associated complex in order to achieve the last step of haem d1 biosynthesis and insertion of the cofactor into NirS. PMID:23683062

  8. Transcriptome analysis of embryo maturation in maize

    PubMed Central

    2013-01-01

    Background Maize is one of the most important crops in the world. With the exponentially increasing population and the need for ever increased food and feed production, an increased yield of maize grain (as well as rice, wheat and other grains) will be critical. Maize grain development is understood from the perspective of morphology, hormone responses, and storage reserve accumulation. This includes various studies on gene expression during embryo development and maturation but a global study of gene expression of the embryo has not been possible until recently. Transcriptome analysis is a powerful new tool that can be used to understand the genetic basis of embryo maturation. Results We undertook a transcriptomic analysis of normal maturing embryos at 15, 21 and 27 days after pollination (DAP), of one elite maize germplasm line that was utilized in crosses to transgenic plants. More than 19,000 genes were analyzed by this method and the challenge was to select subsets of genes that are vitally important to embryo development and maturation for the initial analysis. We describe the changes in expression for genes relating to primary metabolic pathways, DNA synthesis, late embryogenesis proteins and embryo storage proteins, shown through transcriptome analysis and confirmed levels of transcription for some genes in the transcriptome using qRT-PCR. Conclusions Numerous genes involved in embryo maturation have been identified, many of which show changes in expression level during the progression from 15 to 27 DAP. An expected array of genes involved in primary metabolism was identified. Moreover, more than 30% of transcripts represented un-annotated genes, leaving many functions to be discovered. Of particular interest are the storage protein genes, globulin-1, globulin-2 and an unidentified cupin family gene. When expressing foreign proteins in maize, the globulin-1 promoter is most often used, but this cupin family gene has much higher expression and may be a

  9. 7 CFR 51.1555 - Fairly well matured.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ....1555 Fairly well matured. Fairly well matured means that the skins of the potatoes are generally fairly firmly set and not more than 10 percent of the potatoes in the lot have more than one-fourth of the...

  10. 7 CFR 51.1555 - Fairly well matured.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ....1555 Fairly well matured. Fairly well matured means that the skins of the potatoes are generally fairly firmly set and not more than 10 percent of the potatoes in the lot have more than one-fourth of the...

  11. Morphology of preovulatory bovine follicles as related to oocyte maturation.

    PubMed

    de Loos, F A; Bevers, M M; Dieleman, S J; Kruip, T A

    1991-03-01

    Thirty-three preovulatory bovine oocytes and their follicles were collected during the period of final maturation in normally cyclic cows. Cell density of the membrana granulosa, mitotic index of the membrana granulosa, and the occurrence of eosinophilic granulocytes around the basal membrane as well as the maturational stage of the oocyte were determined. Cell density decreased during the period of final maturation. Mitotic indices also decreased after an initial high level in the first hours of the final maturation. Eosinophilic granulocytes were only seen during the last hours of final maturation. The maturational stages of the oocytes were related to distinct maturational stages of the follicular wall as determined by morphological characteristics. We propose a scoring system for the maturity of the follicular wall based on cell density, presence of mitotic figures and the presence of eosinophilic granulocytes outside the vascular compartment. PMID:16726922

  12. The structure of tubulin-binding cofactor A from Leishmania major infers a mode of association during the early stages of microtubule assembly

    SciTech Connect

    Barrack, Keri L.; Fyfe, Paul K.; Hunter, William N.

    2015-04-21

    The structure of a tubulin-binding cofactor from L. major is reported and compared with yeast, plant and human orthologues. Tubulin-binding cofactor A (TBCA) participates in microtubule formation, a key process in eukaryotic biology to create the cytoskeleton. There is little information on how TBCA might interact with β-tubulin en route to microtubule biogenesis. To address this, the protozoan Leishmania major was targeted as a model system. The crystal structure of TBCA and comparisons with three orthologous proteins are presented. The presence of conserved features infers that electrostatic interactions that are likely to involve the C-terminal tail of β-tubulin are key to association. This study provides a reagent and template to support further work in this area.

  13. The α-thio and/or β-γ-hypophosphate analogs of ATP as cofactors of T4 DNA ligase.

    PubMed

    Pawlowska, Roza; Korczynski, Dariusz; Nawrot, Barbara; Stec, Wojciech J; Chworos, Arkadiusz

    2016-08-01

    T4 DNA ligase is one of the most commonly used enzymes for in vitro molecular research and a useful model for testing the ligation mechanism of ATP-dependent DNA ligation. To better understand the influence of phosphate group modifications in the ligation process, a series of ATP analogs were tested as cofactors. P-diastereomers of newly developed β,γ-hypo-ATPαS (thio) and β,γ-hypo-ATP (oxo) were synthesized and their activity was compared to ATPαS and their natural precursors. The evaluation of presented ATP analogs revealed the importance of the α-phosphate stereogenic center in ATPαS for the T4 DNA ligase activity and sheds new light on the interaction between ATP-dependent DNA ligases and cofactors. PMID:27337226

  14. Crystal Structure of the Thermus thermophilus 16 S rRNA Methyltransferase RsmC in Complex with Cofactor and Substrate Guanosine*S⃞

    PubMed Central

    Demirci, Hasan; Gregory, Steven T.; Dahlberg, Albert E.; Jogl, Gerwald

    2008-01-01

    Post-transcriptional modification is a ubiquitous feature of ribosomal RNA in all kingdoms of life. Modified nucleotides are generally clustered in functionally important regions of the ribosome, but the functional contribution to protein synthesis is not well understood. Here we describe high resolution crystal structures for the N2-guanine methyltransferase RsmC that modifies residue G1207 in 16 S rRNA near the decoding site of the 30 S ribosomal subunit. RsmC is a class I S-adenosyl-l-methionine-dependent methyltransferase composed of two methyltransferase domains. However, only one S-adenosyl-l-methionine molecule and one substrate molecule, guanosine, bind in the ternary complex. The N-terminal domain does not bind any cofactor. Two structures with bound S-adenosyl-l-methionine and S-adenosyl-l-homocysteine confirm that the cofactor binding mode is highly similar to other class I methyltransferases. Secondary structure elements of the N-terminal domain contribute to cofactor-binding interactions and restrict access to the cofactor-binding site. The orientation of guanosine in the active site reveals that G1207 has to disengage from its Watson-Crick base pairing interaction with C1051 in the 16 S rRNA and flip out into the active site prior to its modification. Inspection of the 30 S crystal structure indicates that access to G1207 by RsmC is incompatible with the native subunit structure, consistent with previous suggestions that this enzyme recognizes a subunit assembly intermediate. PMID:18667428

  15. Requirement of NifX and other nif proteins for in vitro biosynthesis of the iron-molybdenum cofactor of nitrogenase.

    PubMed

    Shah, V K; Rangaraj, P; Chatterjee, R; Allen, R M; Roll, J T; Roberts, G P; Ludden, P W

    1999-05-01

    The iron-molybdenum cofactor (FeMo-co) of nitrogenase contains molybdenum, iron, sulfur, and homocitrate in a ratio of 1:7:9:1. In vitro synthesis of FeMo-co has been established, and the reaction requires an ATP-regenerating system, dithionite, molybdate, homocitrate, and at least NifB-co (the metabolic product of NifB), NifNE, and dinitrogenase reductase (NifH). The typical in vitro FeMo-co synthesis reaction involves mixing extracts from two different mutant strains of Azotobacter vinelandii defective in the biosynthesis of cofactor or an extract of a mutant strain complemented with the purified missing component. Surprisingly, the in vitro synthesis of FeMo-co with only purified components failed to generate significant FeMo-co, suggesting the requirement for one or more other components. Complementation of these assays with extracts of various mutant strains demonstrated that NifX has a role in synthesis of FeMo-co. In vitro synthesis of FeMo-co with purified components is stimulated approximately threefold by purified NifX. Complementation of these assays with extracts of A. vinelandii DJ42. 48 (DeltanifENX DeltavnfE) results in a 12- to 15-fold stimulation of in vitro FeMo-co synthesis activity. These data also demonstrate that apart from the NifX some other component(s) is required for the cofactor synthesis. The in vitro synthesis of FeMo-co with purified components has allowed the detection, purification, and identification of an additional component(s) required for the synthesis of cofactor. PMID:10217770

  16. Crystal structures of shikimate dehydrogenase AroE from Thermus thermophilus HB8 and its cofactor and substrate complexes: insights into the enzymatic mechanism.

    PubMed

    Bagautdinov, Bagautdin; Kunishima, Naoki

    2007-10-19

    Shikimate dehydrogenase (EC 1.1.1.25) catalyses the fourth step of the shikimate pathway which is required for the synthesis of the aromatic amino acids and other aromatic compounds in bacteria, microbial eukaryotes, and plants. The crystal structures of the shikimate dehydrogenase AroE from Thermus thermophilus HB8 in its ligand-free form, binary complexes with cofactor NADP+ or substrate shikimate, and the ternary complex with both NADP(H) and shikimate were determined by X-ray diffraction method at atomic resolutions. The crystals are nearly isomorphous with the asymmetric unit containing a dimer, each subunit of which has a bi-domain structure of compact alpha/beta sandwich folds. The two subunits of the enzyme display asymmetry in the crystals due to different relative orientations between the N- and C-terminal domains resulting in a slightly different closure of the interdomain clefts. NADP(H) is bound to the more closed form only. This closed conformation with apparent higher affinity to the cofactor is also observed in the unliganded crystal form, indicating that the NADP(H) binding to TtAroE may follow the selection mode where the cofactor binds to the subunit that happens to be in the closed conformation in solution. Crystal structures of the closed subunits with and without NADP(H) show no significant structural difference, suggesting that the cofactor binding to the closed subunit corresponds to the lock-and-key model in TtAroE. On the other hand, shikimate binds to both open and closed subunit conformers of both apo and NADP(H)-liganded holo enzyme forms. The ternary complex TtAroE:NADP(H):shikimate allows unambiguous visualization of the SDH permitting elucidation of the roles of conserved residues Lys64 and Asp100 in the hydride ion transfer between NADP(H) and shikimate. PMID:17825835

  17. Bioorganometallic chemistry: biocatalytic oxidation reactions with biomimetic nad+/nadh co-factors and [cp*rh(bpy)h]+ for selective organic synthesis

    SciTech Connect

    Lutz, Jochen; Hollman, Frank; Ho, The Vinh; Schnyder, Adrian; Fish, Richard H.; Schmid, Andreas

    2004-03-09

    The biocatalytic, regioselective hydroxylation of 2-hydroxybiphenyl to the corresponding catechol was accomplished utilizing the monooxygenase 2-hydroxybiphenyl 3-monooxygenase (HbpA). The necessary natural nicotinamide adenine dinucleotide (NAD{sup +}) co-factor for this biocatalytic process was replaced by a biomimetic co-factor, N-benzylnicotinamide bromide, 1a. The interaction between the flavin (FAD) containing HbpA enzyme and the corresponding biomimetic NADH compound, N-benzyl-1,4-dihdronicotinamide, 1b, for hydride transfers, was shown to readily occur. The in situ recycling of the reduced NADH biomimic 1b from 1a was accomplished with [Cp*Rh(bpy)H](Cl); however, productive coupling of this regeneration reaction to the enzymatic hydroxylation reaction was not totally successful, due to a deactivation process concerning the HbpA enzyme peripheral groups; i.e., -SH or -NH{sub 2} possibly reacting with the precatalyst, [Cp*Rh(bpy)(H{sub 2}O)](Cl){sub 2}, and thus inhibiting the co-factor regeneration process. The deactivation mechanism was studied, and a promising strategy of derivatizing these peripheral -SH or -NH{sub 2} groups with a polymer containing epoxide was successful in circumventing the undesired interaction between HbpA and the precatalyst. This latter strategy allowed tandem co-factor regeneration using 1a or 2a, [Cp*Rh(bpy)(H2O)](Cl){sub 2}, and formate ion, in conjunction with the polymer bound, FAD containing HbpA enzyme to provide the catechol product.

  18. Career Maturity Determinants: Individual Development, Social Context, and Historical Time.

    ERIC Educational Resources Information Center

    Schmitt-Rodermund, Eva; Silbereisen, Rainer K.

    1998-01-01

    Compares adolescents from East Germany who experienced an educational system offering little choice with adolescents from West Germany who experienced more leeway to investigate career maturity. East German adolescents reported more career maturity. Person-related variables predicted career maturity in both groups; family and peer context were…

  19. Using the Reading Maturity Survey in Teacher Education Program Evaluation

    ERIC Educational Resources Information Center

    Theiss, Deb; Philbrick, Anita; Jarman, Georgia

    2009-01-01

    This study surveyed pre-service teachers to determine their reading maturity using The Reading Maturity Survey (Thomas, 2001). Results indicate that pre-service teachers self-report high levels of confidence in their reading maturity with the exception of two areas that may relate to developing skills in critical reflection and transformational…

  20. 7 CFR 1427.174 - Maturity of seed cotton loans.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Maturity of seed cotton loans. 1427.174 Section 1427..., DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS COTTON Recourse Seed Cotton Loans § 1427.174 Maturity of seed cotton loans. Seed cotton loans mature on demand by CCC but no later than May 31...