Science.gov

Sample records for femtosecond laser excited

  1. Lattice dynamics of femtosecond laser-excited antimony

    NASA Astrophysics Data System (ADS)

    Abdel-Fattah, Mahmoud Hanafy; Bugayev, Aleksey; Elsayed-Ali, Hani E.

    2016-07-01

    Ultrafast electron diffraction is used to probe the lattice dynamics of femtosecond laser-excited antimony thin film. The temporal hierarchies of the intensity and position of diffraction orders are monitored. The femtosecond laser excitation of antimony film was found to lead to initial compression after the laser pulse, which gives way to tension vibrating at new equilibrium displacement. A damped harmonic oscillator model, in which the hot electron-blast force contributes to the driving force of oscillations in lattice spacing, is used to interpret the data. The electron-phonon energy-exchange rate and the electronic Grüneisen parameter were obtained.

  2. Carrier dynamics in femtosecond-laser-excited bismuth telluride

    NASA Astrophysics Data System (ADS)

    Wang, J. L.; Guo, L.; Ling, C.; Song, Y. M.; Xu, X. F.; Ni, Z. H.; Chen, Y. F.

    2016-04-01

    The carrier dynamics of B i2T e3 is studied using the femtosecond pump-probe technique. Three distinct processes, including free carrier absorption, band filling, and electron-hole recombination, are found to contribute to the reflectivity changes. The two-temperature model is used to describe the intraband energy relaxation process of carriers, and the Drude contribution well explains the intensity dependence of the peak values of the nonoscillatory component in the reflectivity signal. The combined effects of free carrier absorption and band filling result in a reflection minimum at about 2 ps after laser excitation. The nonzero background signal increases linearly with the pump fluence, which is attributed to the electron-hole recombination. Finally, our results provide an illustration of investigating the carrier dynamics in semiconductors from the ultrafast reflectivity spectra.

  3. Possible surface plasmon polariton excitation under femtosecond laser irradiation of silicon

    SciTech Connect

    Derrien, Thibault J.-Y.; Laboratoire Lasers, Plasmas et Procédés Photoniques , UMR CNRS 7341 - Aix-Marseille Université, Parc Technologique et Scientifique de Luminy, Case 917, 163 avenue de Luminy, F-13288 Marseille Cedex 09 ; Itina, Tatiana E.; Torres, Rémi; Sarnet, Thierry; Sentis, Marc

    2013-08-28

    The mechanisms of ripple formation on silicon surface by femtosecond laser pulses are investigated. We demonstrate the transient evolution of the density of the excited free-carriers. As a result, the experimental conditions required for the excitation of surface plasmon polaritons are revealed. The periods of the resulting structures are then investigated as a function of laser parameters, such as the angle of incidence, laser fluence, and polarization. The obtained dependencies provide a way of better control over the properties of the periodic structures induced by femtosecond laser on the surface of a semiconductor material.

  4. Dynamic near-field nanofocusing by V-shaped metal groove via a femtosecond laser excitation

    NASA Astrophysics Data System (ADS)

    Du, Guangqing; Yang, Qing; Chen, Feng; Lu, Yu; Ou, Yan; Yong, Jiale; Hou, Xun

    2016-03-01

    The ultrafast dynamics of plasmonic near-field nanofocusing by a V-shaped groove milled on Au film via a femtosecond laser excitation is theoretically studied based on finite element method. The spatiotemporal evolution of the focused e-fields around the V-groove geometry is obtained. It is revealed that the strong nanofocusing at the V-shaped groove occurs at the moderate electron temperature of 3000 K in the electron-phonon uncoupled state via a femtosecond laser pulse excitation. The phenomenon is explained as the electron thermal dynamics manipulation of plasmon resonances due to femtosecond laser fluence modifications. This study provides basic understanding of ultrafast dynamics of near-field nanofocusing in V-shaped geometry for wide applications in the fields such as super-resolution imaging, SERS, and photothermal therapy.

  5. Investigation of the spectra of luminescence and Raman scattering in water and chlorophyll "a" excited by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Biryukova, Yu. S.; Ilyin, A. A.; Golik, S. S.; Mayor, A. Y.

    2015-11-01

    The Raman spectra of femtosecond laser pulses in distilled and tap water, and luminescence spectra of aqueous solutions containing dissolved organic matter, chlorophyll "a" and biological objects excited by ultra-short laser pulses was investigated.

  6. Two-photon excited fluorescence enhancement with broadband versus tunable femtosecond laser pulse excitation

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Yeh, Alvin T.

    2012-02-01

    The inverse relationship between two-photon excited fluorescence (TPEF) and laser pulse duration suggests that two-photon microscopy (TPM) performance may be improved by decreasing pulse duration. However, for ultrashort pulses of sub-10 femtosecond (fs) in duration, its spectrum contains the effective gain bandwidth of Ti:Sapphire and its central wavelength is no longer tunable. An experimental study was performed to explore this apparent tradeoff between untuned sub-10 fs transform-limited pulse (TLP) and tunable 140 fs pulse for TPEF. Enhancement factors of 1.6, 6.7, and 5.2 are measured for Indo-1, FITC, and TRITC excited by sub-10 fs TLP compared with 140 fs pulse tuned to the two-photon excitation (TPE) maxima at 730 nm, 800 nm, and 840 nm, respectively. Both degenerate (v1=v2) and nondegenerate (v1≠v2) mixing of sub-10 fs TLP spectral components result in its broad second-harmonic (SH) power spectrum and high spectral density, which can effectively compensate for the lack of central wavelength tuning and lead to large overlap with dye TPE spectra for TPEF enhancements. These pulse properties were also exploited for demonstrating its potential applications in multicolor imaging with TPM.

  7. Nanoscale Depth-Resolved Coherent Femtosecond Motion in Laser-Excited Bismuth

    SciTech Connect

    Johnson, S. L.; Beaud, P.; Krasniqi, F. S.; Kaiser, M.; Grolimund, D.; Abela, R.; Ingold, G.; Milne, C. J.; Zijlstra, E. S.; Garcia, M. E.

    2008-04-18

    We employ grazing-incidence femtosecond x-ray diffraction to characterize the coherent, femtosecond laser-induced lattice motion of a bismuth crystal as a function of depth from the surface with a temporal resolution of 193{+-}8 fs. The data show direct consequences on the lattice motion from carrier diffusion and electron-hole interaction, allowing us to estimate an effective diffusion rate of D=2.3{+-}0.3 cm{sup 2}/s for the highly excited carriers and an electron-hole interaction time of 260{+-}20 fs.

  8. Ultrafast spin-transfer torque driven by femtosecond pulsed-laser excitation.

    PubMed

    Schellekens, A J; Kuiper, K C; de Wit, R R J C; Koopmans, B

    2014-01-01

    Spin currents have an important role in many proposed spintronic devices, as they govern the switching process of magnetic bits in random access memories or drive domain wall motion in magnetic shift registers. The generation of these spin currents has to be fast and energy efficient for realization of these envisioned devices. Recently it has been shown that femtosecond pulsed-laser excitation of thin magnetic films creates intense and ultrafast spin currents. Here we utilize this method to change the orientation of the magnetization in a magnetic bilayer by spin-transfer torque on sub-picosecond timescales. By analysing the dynamics of the magnetic bilayer after laser excitation, the rich physics governing ultrafast spin-transfer torque are elucidated opening up new pathways to ultrafast magnetization reversal, but also providing a new method to quantify optically induced spin currents generated on femtosecond timescales. PMID:25007881

  9. Mechanism of oxidative stress generation in cells by localized near-infrared femtosecond laser excitation

    NASA Astrophysics Data System (ADS)

    He, Hao; Chan, Kam Tai; Kong, Siu Kai; Lee, Rebecca Kit Ying

    2009-12-01

    We examined the effect of femtosecond (fs) and continuous wave (CW) lasers at near-infrared range on the creation of reactive oxygen species in a human liver cancer cell line. By controlling the mitochondria electron transport chain (ETC), it was found that a major part of the oxidative stress was generated by the laser induced thermal effect on the mitochondria while the remaining part was created by direct free electron liberation by the fs pulses, which could be observed after breaking the ETC. The study helps clarify the major effects produced on animal cells when excited by fs lasers.

  10. Two-photon fluorescence excitation spectroscopy by pulse shaping ultrabroad-bandwidth femtosecond laser pulses

    SciTech Connect

    Xu Bingwei; Coello, Yves; Lozovoy, Vadim V.; Dantus, Marcos

    2010-11-10

    A fast and automated approach to measuring two-photon fluorescence excitation (TPE) spectra of fluorophores with high resolution ({approx}2 nm ) by pulse shaping ultrabroad-bandwidth femtosecond laser pulses is demonstrated. Selective excitation in the range of 675-990 nm was achieved by imposing a series of specially designed phase and amplitude masks on the excitation pulses using a pulse shaper. The method eliminates the need for laser tuning and is, thus, suitable for non-laser-expert use. The TPE spectrum of Fluorescein was compared with independent measurements and the spectra of the pH-sensitive dye 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS) in acidic and basic environments were measured for the first time using this approach.

  11. Direct printing of microstructures by femtosecond laser excitation of nanocrystals in solution

    NASA Astrophysics Data System (ADS)

    Shou, Wan; Pan, Heng

    2016-05-01

    We report direct printing of micro/sub-micron structures by femtosecond laser excitation of semiconductor nanocrystals (NCs) in solution. Laser excitation with moderate intensity (1011-1012 W/cm2) induces 2D and 3D deposition of CdTe nanocrystals in aqueous solution, which can be applied for direct printing of microstructures. It is believed that laser irradiation induces charge formation on nanocrystals leading to deposition. Furthermore, it is demonstrated that the charged nanocrystals can respond to external electrical bias, enabling a printing approach based on selective laser induced electrophoretic deposition. Finally, energy dispersive X-ray analysis of deposited structures shows oxidation occurs and deposited structure mainly consists of CdxO.

  12. Ca2+ waves across gaps in non-excitable cells induced by femtosecond laser exposure

    NASA Astrophysics Data System (ADS)

    He, Hao; Wang, Shaoyang; Li, Xun; Li, Shiyang; Hu, Minglie; Cao, Youjia; Wang, Ching-Yue

    2012-04-01

    Calcium is a second messenger in all cells for various cellular processes. It was found in astrocytes and neurons that femtosecond laser stimulation could induce Ca2+ wave propagation. In this work, a femtosecond laser with a power above a certain threshold was focused on single HeLa/HEK293T cells for Ca2+ mobilization. Several types of Ca2+ oscillation patterns were found in neighboring cells. The Ca2+ wave propagated very fast across 40-μm gaps in the Ca2+-free medium mediated by the adenosine-triphosphate released from cells. This approach could provide a clean methodology to investigate the Ca2+ dynamics in non-excitable cells.

  13. Laser wakefield excitation and measurement by femtosecond longitudinal interferometry

    SciTech Connect

    Siders, C.W.; Le Blanc, S.P.; Fisher, D.; Tajima, T.; Downer, M.C.; Babine, A.; Stepanov, A.; Sergeev, A.

    1996-04-01

    Plasma density oscillations (Langmuir waves) in the wake of an intense (I{sub peak} {approximately} 3 {times} 10{sup 17}W/cm{sup 2}) laser pulse (100 fs) are measured with ultrafast time resolution using a longitudinal interferometric technique. Phase shifts consistent with large amplitude ({delta}n{sub e}/n{sub e} {approximately} 1) density waves at the electron plasma frequency were observed in a fully tunnel-ionized He plasma, corresponding to longitudinal electric fields of {approximately} 10 GV/m. Strong radial ponderomotive forces enhance the density oscillations. As this technique utilizes a necessary component of any laser-based plasma accelerator, it promises to be a powerful tool for on-line monitoring and control of future plasma-based particle accelerators.

  14. Selective two-photon absorptive resonance femtosecond-laser electronic-excitation tagging velocimetry.

    PubMed

    Jiang, Naibo; Halls, Benjamin R; Stauffer, Hans U; Danehy, Paul M; Gord, James R; Roy, Sukesh

    2016-05-15

    Selective two-photon absorptive resonance femtosecond-laser electronic-excitation tagging (STARFLEET), a nonseeded ultrafast-laser-based velocimetry technique, is demonstrated in reactive and nonreactive flows. STARFLEET is pumped via a two-photon resonance in N2 using 202.25 nm 100 fs light. STARFLEET greatly reduces the per-pulse energy required (30 μJ/pulse) to generate the signature FLEET emission compared to the conventional FLEET technique (1.1 mJ/pulse). This reduction in laser energy results in less energy deposited in the flow, which allows for reduced flow perturbations (reactive and nonreactive), increased thermometric accuracy, and less severe damage to materials. Velocity measurements conducted in a free jet of N2 and in a premixed flame show good agreement with theoretical velocities, and further demonstrate the significantly less intrusive nature of STARFLEET. PMID:27176968

  15. Preablation electron and lattice dynamics on the silicon surface excited by a femtosecond laser pulse

    SciTech Connect

    Ionin, A. A.; Kudryashov, S. I. Seleznev, L. V.; Sinitsyn, D. V.; Lednev, V. N.; Pershin, S. M.

    2015-11-15

    The study of the time-resolved optical reflection from the silicon surface excited by single femtosecond laser pulses below and near the melting threshold reveals fast (less than 10 ps) Auger recombination of a photogenerated electron–hole plasma with simultaneous energy transfer to the lattice. The acoustic relaxation of the excited surface layer indicates (according to reported data) a characteristic depth of 150 nm of the introduction of the laser radiation energy, which is related to direct linear laser radiation absorption in the photoexcited material due to a decrease in the energy bandgap. The surface temperature, which is probed at a time delay of about 100 ps from the reflection thermomodulation of probe radiation and the integrated continuous thermal emission from the surface, increases with the laser fluence and, thus, favors a nonlinear increase in the fluorescence of sublimated silicon atoms. The surface temperature estimated near the picosecond melting threshold demonstrates a substantial (20%) overheating of the material with respect to the equilibrium melting temperature. Above the melting threshold, the delay of formation of the material melt decreases rapidly (from several tens of picoseconds to several fractions of a picosecond) when the laser fluence and, correspondingly, the surface temperature increase. In the times of acoustic relaxation of the absorbing layer and even later, the time modulation of the optical reflectivity of the material demonstrates acoustic reverberations with an increasing period, which are related to the formation of melt nuclei in the material.

  16. The role of asymmetric excitation in self-organized nanostructure formation upon femtosecond laser ablation

    SciTech Connect

    Reif, Juergen; Varlamova, Olga; Varlamov, Sergej; Bestehorn, Michael

    2012-07-30

    Surface pattering upon multi-pulse femtosecond laser ablation is modeled by a non-linear-dynamic erosion/smoothing model, similar to structure formation during ion sputtering. The model is adopted to account for the influence of laser polarization on nanostructure features. Based on a nonlinear equation of the Kuramoto-Siavshinsky type, it is shown that the directional anisotropy in the pattern formation may result from a spatial anisotropy of the initial excitation/energy-coupling process, such as resonant coupling to surface plasmons/polaritons, or electron diffusion properties. Also, anisotropy of elasto-dynamic surface and diffusion properties may be involved. A comparison of numeric simulations based on the model with corresponding experi-mental results gives a very good agreement.

  17. The role of asymmetric excitation in self-organized nanostructure formation upon femtosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Reif, Juergen; Varlamova, Olga; Varlamov, Sergej; Bestehorn, Michael

    2012-07-01

    Surface pattering upon multi-pulse femtosecond laser ablation is modeled by a non-linear-dynamic erosion/smoothing model, similar to structure formation during ion sputtering. The model is adopted to account for the influence of laser polarization on nanostructure features. Based on a nonlinear equation of the Kuramoto-Siavshinsky type, it is shown that the directional anisotropy in the pattern formation may result from a spatial anisotropy of the initial excitation/energy-coupling process, such as resonant coupling to surface plasmons/polaritons, or electron diffusion properties. Also, anisotropy of elasto-dynamic surface and diffusion properties may be involved. A comparison of numeric simulations based on the model with corresponding experi-mental results gives a very good agreement.

  18. Ultrafast spin-transfer torque driven by femtosecond pulsed-laser excitation

    NASA Astrophysics Data System (ADS)

    Koopmans, Bert

    A hot topic in the field of ultrafast laser-induced manipulation of the magnetic state is that of the role and exploitation of laser-induced spin currents. Intense debate has been triggered by claims that such a spin-transfer, e.g. in the form of super-diffusive spin currents over tens of nanometers, might be a main contributor to the demagnetization process in ferromagnetic thin films after femtosecond laser excitation. In this presentation the underlying concepts will be introduced and recent developments reviewed. Particularly we demonstrate the possibility to apply a laser-induced spin transfer torque on a free magnetic layer, using a non-collinear multilayer configuration consisting of a free in-plane layer on top of a perpendicularly magnetized injection layer, as separated by a nonmagnetic spacer. Interestingly, this approach allows for a quantitative measurement of the amount of spin transfer. Moreover, it might provide access to novel device architectures in which the magnetic state is controlled by fs laser pulses. Careful analysis of the resulting precession of the free layer allows us to quantify the applied torque, and distinguish between driving mechanisms based on laser-induced transfer of hot electrons versus a spin Seebeck effect due to the large thermal gradients. Further engineering of the layered structures in order to gain fundamental understanding and optimize efficiencies will be reported. A simple model that treats local non-equilibrium magnetization dynamics to spin transport effects via a spin-dependent chemical potential will be introduced.

  19. First-principles simulations for excitation of currents in linear carbon chains under femtosecond laser pulse irradiation

    NASA Astrophysics Data System (ADS)

    Su, Gaoshi; Jiang, Lan; Wang, Feng; Qu, Liangti; Lu, Yongfeng

    2016-07-01

    We discuss the response of linear carbon chains to a femtosecond laser pulse. The influence of the chain structure on the excited currents was taken into account. The simulation results showed that excited currents were reversible when laser intensity was relatively weak. An unexpected decrease of current amplitude was found for a laser pulse with a wavelength of 200 nm, which may indicate the transient break of pi bonds in linear carbon chains. For chains with more than 10 atoms, the excited current oscillated with increasing amplitude during simulation time, which was due to the formation of plasma-like resonance.

  20. Probing spatial properties of electronic excitation in water after interaction with temporally shaped femtosecond laser pulses: Experiments and simulations

    NASA Astrophysics Data System (ADS)

    Winkler, Thomas; Sarpe, Cristian; Jelzow, Nikolai; Lasse H., Lillevang; Götte, Nadine; Zielinski, Bastian; Balling, Peter; Senftleben, Arne; Baumert, Thomas

    2016-06-01

    In this work, laser excitation of water under ambient conditions is investigated by radially resolved common-path spectral interferometry. Water, as a sample system for dielectric materials, is excited by ultrashort bandwidth-limited and temporally asymmetric shaped femtosecond laser pulses, where the latter start with an intense main pulse followed by a decaying pulse sequence, i.e. a temporal Airy pulse. Spectral interference in an imaging geometry allows measurements of the transient optical properties integrated along the propagation through the sample but radially resolved with respect to the transverse beam profile. Since the optical properties reflect the dynamics of the free-electron plasma, such measurements reveal the spatial characteristics of the laser excitation. We conclude that temporally asymmetric shaped laser pulses are a promising tool for high-precision laser material processing, as they reduce the transverse area of excitation, but increase the excitation inside the material along the beam propagation.

  1. In situ observation of photo-bleaching in human single living cell excited by a NIR femtosecond laser

    NASA Astrophysics Data System (ADS)

    Cho, Sung-Hak; Chang, Won-Seok; Kim, Jae-Goo; Whang, Kyoung-Hyun; Choi, Kyeong-Sook; Sohn, Seong-Hyang

    2008-03-01

    The photo-bleaching of single living cells excited by femtosecond laser irradiation was observed in situ to study the nonlinear interaction between ultrafast laser pulses and living human breast MDA-MB-231 cells. We conducted a systematic study of the energy dependence of plasma-mediated photo-disruption of fluorescently labeled subcellular structures in the nucleus of living cells using near-infrared (NIR) femtosecond laser pulses through a numerical aperture objective lens (0.75 NA). The behavior of photo-bleached living cells with fluorescently labeled nuclei was observed for 18 h after femtosecond laser irradiation under a fluorescence microscope. The photo-bleaching of single living cells without cell disruption occurred at between 470 and 630 nJ. To study the photo-disruption of subcellular organelles in single living cells using the nonlinear absorption excited by a NIR femtosecond laser pulse, the process of photo-bleaching without photo-disruption provides key information for clarifying the nonlinear interaction between NIR ultrashort, high-intensity laser light and transparent fluorescently labeled living cells.

  2. Electron dynamics and prompt ablation of aluminum surface excited by intense femtosecond laser pulse

    NASA Astrophysics Data System (ADS)

    Ionin, A. A.; Kudryashov, S. I.; Makarov, S. V.; Seleznev, L. V.; Sinitsyn, D. V.

    2014-12-01

    Thin aluminum film homogeneously heated by intense IR femtosecond laser pulses exhibits on the excitation timescale consequent fluence-dependent rise and drop of the IR-pump self-reflectivity, followed by its final saturation at higher fluences F > 0.3 J/cm2. This prompt optical dynamics correlates with the initial monotonic increase in the accompanying laser-induced electron emission, which is succeeded by its non-linear (three-photon) increase for F > 0.3 J/cm2. The underlying electronic dynamics is related to the initial saturation of IR resonant interband transitions in this material, followed by its strong instantaneous electronic heating via intraband transitions during the pump pulse resulting in thermionic emission. Above the threshold fluence of 0.3 J/cm2, the surface electronic heating is balanced during the pump pulse by simultaneous cooling via intense plasma removal (prompt ablation). The relationship between the deposited volume energy density in the film and its prompt electronic temperature derived from the self-reflection measurements using a Drude model, demonstrates a kind of electron "liquid-vapor" phase transition, driven by strong cubic optical non-linearity of the photo-excited aluminum.

  3. Photo-magnonics: excitation of magnonic materials by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Muenzenberg, Markus

    2010-03-01

    Analogue the photonic crystals, a periodic modification of a magnetic material is prepared by forming an anti-dot lattice for spin waves. The resulting bands are generally complex in the magnetic case because of different dispersions along different magnetization directions (backward volume and Damon-Eshbach mode). They depend on the variation strength of the periodic magnetostatic potential. All-optical femtosecond laser experiments allow the excitation of spin-waves with comparable amplitudes as field pulse and resonance techniques today. It is a promising valuable alternative method to study spin-waves and their relaxation paths in a magnonic material. Laser pulses with a duration of 60 fs from a Ti:Sapphire regenerative laser system are used for optical excitation (pump pulse) as well as for the observation of the subsequent magnetic relaxation (probe pulse). The initial local single spin-flip excitation is subsequently decaying into spin waves lower in energy within the pico- and nanosecond regime over a wide spectral range. In focus of our investigation is the propagation and localization of dipolar surface modes (Damon-Eshbach) in thin Nickel and (low damped) CoFeB film cubic and hexagonal lattice structures. Their mode dispersion is measured by applying different magnetic fields which shift the energy of the mode and allows identifying them. We find well defined modes in the condensed state with a specific pronounced k-value determining the properties of the propagating spin wave. One example for a distinct modification of the magnonic periodic structure is a line defect that can function as a wave guide inside the magnonic gap region. An increased intensity of the Damon Eshbach mode by a factor of two is found in the wave guide region. A study of these wave guides will allow to specifically design the material properties, making magnonic materials the material of choice for advanced spin computing devices.

  4. Two-photon excited spectroscopies of ex vivo human skin endogenous species irradiated by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Chen, Jianxin; Zhuo, Shuangmu; Luo, Tianshu; Zhao, Jingjun

    2006-10-01

    Two-photon excited spectroscopies from ex vivo human skin are investigated by using a femtosecond laser and a confocal microscope (Zeiss LSM 510 META). In the dermis, collagen is responsible for second harmonic generation (SHG); elastin, nicotinamide adenine dinucleotide (NADH), melanin and porphyrin are the primary endogenous sources of two-photon excited autofluorescence. In the epidermis, keratin, NADH, melanin and porphyrins contribute to autofluorescence signals. The results also show that the SHG spectra have the ability to shift with the excitation wavelength and the autofluorescence spectra display a red shift of the spectral peaks when increasing the excitation wavelength. These results may have practical implications for diagnosis of skin diseases.

  5. Two-photon excitation of dyes in a polymer matrix by femtosecond pulses from a Ti:sapphire laser

    SciTech Connect

    Meshalkin, Yu P; Myachin, A Yu; Bakhareva, S S; Svetlichnyi, Valerii A; Kopylova, T N; Reznichenko, A V; Dolotov, S M; Ponomarenko, E P

    2003-09-30

    Two-photon fluorescence was observed for 18 organic dyes in a polymethyl methacrylate (PMMA) matrix excited by a femtosecond Ti:sapphire laser. The product of the cross section for two-photon absorption by the quantum yield of fluorescence (two-photon fluorescence cross section) is estimated by comparing it with fluorescence of Rhodamine 6G in ethanol. Using this parameter, dyes are selected that exhibit the most intense fluorescence in PMMA and their concentrations in PMMA are optimised. Coumarin and rhodamine dyes in polymer matrices are proposed for using as visualisers of femtosecond radiation of a Ti:sapphire laser and as detectors in self-triggering systems. (active media. lasers)

  6. Femtosecond two-photon Rabi oscillations in excited He driven by ultrashort intense laser fields

    NASA Astrophysics Data System (ADS)

    Fushitani, M.; Liu, C.-N.; Matsuda, A.; Endo, T.; Toida, Y.; Nagasono, M.; Togashi, T.; Yabashi, M.; Ishikawa, T.; Hikosaka, Y.; Morishita, T.; Hishikawa, A.

    2016-02-01

    Coherent light-matter interaction provides powerful methods for manipulating quantum systems. Rabi oscillation is one such process. As it enables complete population transfer to a target state, it is thus routinely exploited in a variety of applications in photonics, notably quantum information processing. The extension of coherent control techniques to the multiphoton regime offers wider applicability, and access to highly excited or dipole-forbidden transition states. However, the multiphoton Rabi process is often disrupted by other competing nonlinear effects such as the a.c. Stark shift, especially at the high laser-field intensities necessary to achieve ultrafast Rabi oscillations. Here we demonstrate a new route to drive two-photon Rabi oscillations on timescales as short as tens of femtoseconds, by utilizing the strong-field phenomenon known as Freeman resonance. The scenario is not specific to atomic helium as investigated in the present study, but broadly applicable to other systems, thus opening new prospects for the ultrafast manipulation of Rydberg states.

  7. Time-resolved and energy-dispersed spin excitation in ferromagnets and clusters under influence of femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Hartenstein, T.; Lefkidis, G.; Hübner, W.; Zhang, G. P.; Bai, Y.

    2009-04-01

    When an ultrafast laser impinges a magnetic material, it excites charge and then, via spin-orbit-coupling, spin. This holds great promise for the future magnetic storage. However, the coupling of the two dynamics is far from clear, which hampers the experimental effort in femtosecond magnetism. Since not every excitation induces the same spin excitation, a clear understanding of the correlation between charge and spin is crucial. In this paper we investigate in a complete first-principles manner the energy dispersion of the spin-moment change in ferromagnetic Ni and the effect of the distance between the magnetic centers upon the spin localization and local-spin-flip times in metallic chains. Thus we establish the missing link between the spin-momentum change and the density-of-states change, and derive rules-of-thumb for localized spin manipulation.

  8. Photothermal cancer therapy via femtosecond-laser-excited FePt nanoparticles.

    PubMed

    Chen, Cheng-Lung; Kuo, Ling-Ru; Lee, Shin-Yu; Hwu, Yeu-Kuang; Chou, Shang-Wei; Chen, Chia-Chun; Chang, Fu-Hsiung; Lin, Kung-Hsuan; Tsai, Dzung-Han; Chen, Yang-Yuan

    2013-01-01

    FePt nanoparticles (NPs) have recently been revealed to be significant multifunctional materials for the applications of biomedical imaging, drug delivery and magnetic hyperthermia due to their novel magnetic properties. In this study, a newly discovered photothermal effect activated by the near infrared (NIR) femtosecond laser for FePt NPs was demonstrated. The threshold laser energy to destroy cancer cells was found to be comparable to that of gold nanorods (Au NRs) previously reported. Through the thermal lens technique, it was concluded that the temperature of the FePt NPs can be heated up to a couple of hundreds degree C in picoseconds under laser irradiation due to the excellent photothermal transduction efficiency of FePt NPs. This finding boosts FePt NPs versatility in multifunctional targeted cancer therapy. PMID:23137396

  9. Femtosecond laser materials processing

    SciTech Connect

    Stuart, B. C., LLNL

    1998-06-02

    Femtosecond lasers enable materials processing of most any material with extremely high precision and negligible shock or thermal loading to the surrounding area Applications ranging from drilling teeth to cutting explosives to making high-aspect ratio cuts in metals with no heat-affected zone are made possible by this technology For material removal at reasonable rates, we developed a fully computer-controlled 15-Watt average power, 100-fs laser machining system.

  10. Ultraviolet femtosecond laser ionization mass spectrometry.

    PubMed

    Imasaka, Totaro

    2008-01-01

    For this study, multiphoton ionization/mass spectrometry using an ultraviolet (UV) femtosecond laser was employed for the trace analysis of organic compounds. Some of the molecules, such as dioxins, contain several chlorine atoms and have short excited-state lifetimes due to a "heavy atom" effect. A UV femtosecond laser is, then, useful for efficient resonance excitation and subsequent ionization. A technique of multiphoton ionization using an extremely short laser pulse (e.g., <10 fs), referred to as "impulsive ionization," may have a potential for use in fragmentation-free ionization, thus providing information on molecular weight in mass spectrometry. PMID:18302290

  11. Femtosecond Laser Materials Processing

    SciTech Connect

    Banks, P.S.; Stuart, B.C.; Komashko, A.M.; Feit, M.D.; Rubenchik, A.M.; Perry, M.D.

    2000-03-06

    The use of femtosecond lasers allows materials processing of practically any material with extremely high precision and minimal collateral damage. Advantages over conventional laser machining (using pulses longer than a few tens of picoseconds) are realized by depositing the laser energy into the electrons of the material on a time scale short compared to the transfer time of this energy to the bulk of the material, resulting in increased ablation efficiency and negligible shock or thermal stress. The improvement in the morphology by using femtosecond pulses rather than nanosecond pulses has been studied in numerous materials from biologic materials to dielectrics to metals. During the drilling process, we have observed the onset of small channels which drill faster than the surrounding material.

  12. Fluence-dependent dynamics of the 5d6s exchange splitting in Gd metal after femtosecond laser excitation

    NASA Astrophysics Data System (ADS)

    Frietsch, Björn; Carley, Robert; Gleich, Markus; Teichmann, Martin; Bowlan, John; Weinelt, Martin

    2016-07-01

    We investigate the fluence-dependent dynamics of the exchange-split 5d6s valence bands of Gd metal after femtosecond, near-infrared (IR) laser excitation. Time- and angle-resolved photoelectron spectroscopy (tr-ARPES) with extreme ultraviolet (XUV) probe pulses is used to simultaneously map the transient binding energies of the minority and majority spin valence bands. The decay constant of the exchange splitting increases with fluence. This reflects the slower response of the occupied majority-spin component, which we attribute to Elliot–Yafet spin-flip scattering in accordance with the microscopic three-temperature model (M3TM). In contrast, the time constant of the partly unoccupied minority-spin band stays unaffected by a change in pump fluence. Here, we introduce as an alternative to superdiffusive spin transport exchange scattering, which is an ultrafast electronic mechanism explaining the observed dynamics. Exchange scattering can reduce the spin polarization in the partially unoccupied minority-spin band and thus its energetic position without effective demagnetization.

  13. Photocycle populations with femtosecond excitation of crystalline photoactive yellow protein

    NASA Astrophysics Data System (ADS)

    Hutchison, Christopher D. M.; Kaucikas, Marius; Tenboer, Jason; Kupitz, Christopher; Moffat, Keith; Schmidt, Marius; van Thor, Jasper J.

    2016-06-01

    We investigate photocycle excitation of crystalline photoactive yellow protein using femtosecond laser pulses. This work establishes the feasibility and suitable optical excitation conditions to perform femtosecond time resolved X-ray crystallographic measurements using an X-ray free electron laser. Flash photolysis experiments demonstrated photocycle yields of the long-lived 'pB' signalling state of PYP of up to 10% with pulse durations of 130, 500 and 850 fs at 450 nm wavelength. The power density dependence of the transient pB concentration depends strongly on the pulse duration primarily because photobleaching is prominent at the GW/mm2 level.

  14. Advances in femtosecond laser technology

    PubMed Central

    Callou, Thais Pinheiro; Garcia, Renato; Mukai, Adriana; Giacomin, Natalia T; de Souza, Rodrigo Guimarães; Bechara, Samir J

    2016-01-01

    Femtosecond laser technology has become widely adopted by ophthalmic surgeons. The purpose of this study is to discuss applications and advantages of femtosecond lasers over traditional manual techniques, and related unique complications in cataract surgery and corneal refractive surgical procedures, including: LASIK flap creation, intracorneal ring segment implantation, presbyopic treatments, keratoplasty, astigmatic keratotomy, and intrastromal lenticule procedures. PMID:27143847

  15. Advances in femtosecond laser technology.

    PubMed

    Callou, Thais Pinheiro; Garcia, Renato; Mukai, Adriana; Giacomin, Natalia T; de Souza, Rodrigo Guimarães; Bechara, Samir J

    2016-01-01

    Femtosecond laser technology has become widely adopted by ophthalmic surgeons. The purpose of this study is to discuss applications and advantages of femtosecond lasers over traditional manual techniques, and related unique complications in cataract surgery and corneal refractive surgical procedures, including: LASIK flap creation, intracorneal ring segment implantation, presbyopic treatments, keratoplasty, astigmatic keratotomy, and intrastromal lenticule procedures. PMID:27143847

  16. Excitation and dissociation of molecules by femtosecond IR laser radiation in the gas phase and on dielectric surfaces

    SciTech Connect

    Kompanets, V O; Laptev, Vladimir B; Makarov, Aleksandr A; Pigulskii, S V; Ryabov, Evgenii A; Chekalin, Sergei V

    2013-04-30

    This paper presents an overview of early studies and new experimental data on the effect of near-IR (0.8-1.8 {mu}m) and mid-IR (3.3-5.8 {mu}m) intense femtosecond (130-350 fs) laser pulses on polyatomic molecules in the gas phase and on the surface of substrates. We examine the vibrational dynamics of nine molecules containing a C=O chromophore group, which are initiated by resonance femtosecond IR laser radiation at a wavelength of {approx}5 {mu}m, and report measured characteristic times of intramolecular vibrational redistribution. The characteristic time of molecules containing a single C=O group lies in the range 2.4-20 ps and that of the Fe(CO){sub 5} and Cr(CO){sub 6} molecules lies in the nanosecond range ({approx}1.0 and {approx}1.5 ns, respectively). Carbon structures have been observed for the first time to result from the decomposition of (CF{sub 3}){sub 2}CCO molecules on the surface of metal fluorides under the effect of femtosecond IR laser radiation in the wavelength range 3.3-5.4 {mu}m with no gas-phase decomposition of the molecules. (extreme light fields and their applications)

  17. Femtosecond laser cataract surgery.

    PubMed

    Nagy, Zoltan Z; McAlinden, Colm

    2015-01-01

    Femtosecond laser (FSL) cataract surgery is in its infancy but is rapidly gaining popularity due to the improved consistency and predictability for corneal incisions and anterior capsulorhexis. It enables subsequently less phacoemulsification energy and time to be employed, which has gains in terms of reduced corneal oedema. In addition, the FSL allows better circularity of the anterior capsulotomy, capsule overlap, intraocular lens (IOL) placement and centration of the IOL. These advantages have resulted in improved visual and refractive outcomes in the short term. Complication rates are low which reduce with surgeon experience. This review article focuses on the Alcon LenSx system. PMID:26605364

  18. Optical orientation of azo dye molecules in a thin solid film upon nonlinear excitation by femtosecond laser pulses

    SciTech Connect

    Yongseok, Jung; Kozenkov, V M; Magnitskiy, Sergey A; Nagorskiy, Nikolay M

    2006-11-30

    The orientation of molecules in an amorphous pure azo dye film upon nonlinear excitation is detected for the first time. The simultaneous increase and decrease in the film transmission by a factor of 2.5 for orthogonal polarisations of probe radiation indicated the appearance of orientation order in the film caused by the reorientation of azo dye molecules. Due to a high photostability of the AD-1 azo dye demonstrated in single-photon experiments and a high efficiency of nonlinear orientation obtained in experiments with femtosecond pulses, this dye can be widely used in three-dimensional nanophotonic devices such as photonic crystals, optical computers, and optical memory. (letters)

  19. Two-photon-excited luminescence from a Eu3+-doped lithium niobate crystal pumped by a near-infrared femtosecond laser

    NASA Astrophysics Data System (ADS)

    Li, Ai-Hua; Zheng, Zhi-Ren; Lü, Qiang; Xu, Zhao-Peng; Sun, Liang; Liu, Wei-Long; Wu, Wen-Zhi; Lü, Tian-Quan

    2010-09-01

    Red upconversion luminescence (UCL) is observed using an 800 nm femtosecond laser to irradiate a Eu3+-doped LiNbO3 single crystal. Power-dependent and polarization-dependent experiments demonstrate that the red UCL originates from Eu3+ two-photon simultaneous absorption rather than second harmonic generation of nonlinear optical crystal followed by reabsorption of Eu3+. Two different kinds of Eu3+-centers, called Eu3+-pairs, are revealed via emission spectra. Besides using femtosecond laser excitation to simulate diode laser excitation with broad line, the efficient two-photon simultaneous absorption can populate more Eu3+ to upper levels, these are beneficial to the study of cross relaxation with submicrosecond resolution between Eu3+-pairs occurred in practical application. Transient UCL spectra and decay curves suggest that the luminescent state D50 is fed by way of both multiphonon relaxation through state D51 and cross relaxation of D52+F70→D50+F75.

  20. Femtosecond Laser Filamentation for Atmospheric Sensing

    PubMed Central

    Xu, Huai Liang; Chin, See Leang

    2011-01-01

    Powerful femtosecond laser pulses propagating in transparent materials result in the formation of self-guided structures called filaments. Such filamentation in air can be controlled to occur at a distance as far as a few kilometers, making it ideally suited for remote sensing of pollutants in the atmosphere. On the one hand, the high intensity inside the filaments can induce the fragmentation of all matters in the path of filaments, resulting in the emission of characteristic fluorescence spectra (fingerprints) from the excited fragments, which can be used for the identification of various substances including chemical and biological species. On the other hand, along with the femtosecond laser filamentation, white-light supercontinuum emission in the infrared to UV range is generated, which can be used as an ideal light source for absorption Lidar. In this paper, we present an overview of recent progress concerning remote sensing of the atmosphere using femtosecond laser filamentation. PMID:22346566

  1. Femtosecond pulse laser notch shaping via fiber Bragg grating for the excitation source on the coherent anti-Stokes Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Oh, Seung Ryeol; Kwon, Won Sik; Kim, Jin Hwan; Kim, Kyung-Soo; Kim, Soohyun

    2015-03-01

    Single-pulse coherently controlled nonlinear Raman spectroscopy is the simplest method among the coherent anti-Stokes Raman spectroscopy systems. In recent research, it has been proven that notch-shaped femtosecond pulse laser can be used to collect the coherent anti-Stokes Raman signals. In this study, we applied a fiber Bragg grating to the notch filtering component on the femtosecond pulse lasers. The experiment was performed incorporating a titanium sapphire femtosecond pulse laser source with a 100 mm length of 780-HP fiber which is inscribed 30 mm of Bragg grating. The fiber Bragg grating has 785 nm Bragg wavelength with 0.9 nm bandwidth. We proved that if the pulse lasers have above a certain level of positive group delay dispersion, it is sufficient to propagate in the fiber Bragg grating without any spectral distortion. After passing through the fiber Bragg grating, the pulse laser is reflected on the chirped mirror for 40 times to make the transform-limited pulse. Finally, the pulse time duration was 37 fs, average power was 50mW, and showed an adequate notch shape. Furthermore, the simulation of third order polarization signal is performed using MATLAB tools and the simulation result shows that spectral characteristic and time duration of the pulse is sufficient to use as an excitation source for single-pulse coherent anti-Stokes Raman spectroscopy. In conclusion, the proposed method is more simple and cost-effective than the methods of previous research which use grating pairs and resonant photonic crystal slab.

  2. Ultrafast dynamics of near-field enhancements at an off-resonance nano-dimer via femtosecond laser excitations

    NASA Astrophysics Data System (ADS)

    Du, GuangQing; Yang, Qing; Chen, Feng; Bian, Hao; Wu, Yanmin; Lu, Yu; Farooq, Umar; Hou, Xun

    2015-04-01

    Giant electric-field enhancements localized on nano-antennas are important for the optical near-field applications in fields such as super-resolution imaging, near-field optical tweezers, and photothermal therapy. Physically, the field enhancement requires plasmon resonance with respect to structure matching. We report a tunable near-field effect, including localized electric-field enhancement and resistive heating at an off-resonance Au nano-sphere dimer via femtosecond laser irradiation. The near field was strongly modified (up to 81 times) with respect to time evolution at a laser fluence of 0.1 \\text{J/cm}2 . The results are explained as thermal dynamics manipulation of the Au nano-sphere dimer plasmon resonances. This study provides a new alternative route to tailoring the near-field enhancement for wide applications in nano-antennas.

  3. Fine tunable red-green upconversion luminescence from glass ceramic containing 5%Er{sup 3+}:NaYF{sub 4} nanocrystals under excitation of two near infrared femtosecond lasers

    SciTech Connect

    Shang, Xiaoying; Cheng, Wenjing; Zhou, Kan; Ma, Jing; Feng, Donghai; Zhang, Shian; Sun, Zhenrong; Jia, Tianqing; Chen, Ping; Qiu, Jianrong

    2014-08-14

    In this paper, we report fine tunable red-green upconversion luminescence of glass ceramic containing 5%Er{sup 3+}: NaYF{sub 4} nanocrystals excited simultaneously by two near infrared femtosecond lasers. When the glass ceramic was irradiated by 800 nm femtosecond laser, weak red emission centered at 670 nm was detected. Bright red light was observed when the fs laser wavelength was tuned to 1490 nm. However, when excited by the two fs lasers simultaneously, the sample emitted bright green light centered at 550 nm, while the red light kept the same intensity. The dependences of the red and the green light intensities on the two pump lasers are much different, which enables us to manipulate the color emission by adjusting the two pump laser intensities, respectively. We present a theoretical model of Er{sup 3+} ions interacting with two fs laser fields, and explain well the experimental results.

  4. Single Particle Deformation and Analysis of Silica-Coated Gold Nanorods before and after Femtosecond Laser Pulse Excitation.

    PubMed

    Albrecht, Wiebke; Deng, Tian-Song; Goris, Bart; van Huis, Marijn A; Bals, Sara; van Blaaderen, Alfons

    2016-03-01

    We performed single particle deformation experiments on silica-coated gold nanorods under femtosecond (fs) illumination. Changes in the particle shape were analyzed by electron microscopy and associated changes in the plasmon resonance by electron energy loss spectroscopy. Silica-coated rods were found to be more stable compared to uncoated rods but could still be deformed via an intermediate bullet-like shape for silica shell thicknesses of 14 nm. Changes in the size ratio of the rods after fs-illumination resulted in blue-shifting of the longitudinal plasmon resonances. Two-dimensional spatial mapping of the plasmon resonances revealed that the flat side of the bullet-like particles showed a less pronounced longitudinal plasmonic electric field enhancement. These findings were confirmed by finite-difference time-domain (FDTD) simulations. Furthermore, at higher laser fluences size reduction of the particles was found as well as for particles that were not completely deformed yet. PMID:26871607

  5. Single Particle Deformation and Analysis of Silica-Coated Gold Nanorods before and after Femtosecond Laser Pulse Excitation

    PubMed Central

    2016-01-01

    We performed single particle deformation experiments on silica-coated gold nanorods under femtosecond (fs) illumination. Changes in the particle shape were analyzed by electron microscopy and associated changes in the plasmon resonance by electron energy loss spectroscopy. Silica-coated rods were found to be more stable compared to uncoated rods but could still be deformed via an intermediate bullet-like shape for silica shell thicknesses of 14 nm. Changes in the size ratio of the rods after fs-illumination resulted in blue-shifting of the longitudinal plasmon resonances. Two-dimensional spatial mapping of the plasmon resonances revealed that the flat side of the bullet-like particles showed a less pronounced longitudinal plasmonic electric field enhancement. These findings were confirmed by finite-difference time-domain (FDTD) simulations. Furthermore, at higher laser fluences size reduction of the particles was found as well as for particles that were not completely deformed yet. PMID:26871607

  6. Ultrafast dynamics of a near-solid-density layer in an intense femtosecond laser-excited plasma

    SciTech Connect

    Adak, Amitava; Chatterjee, Gourab; Kumar Singh, Prashant; Lad, Amit D.; Brijesh, P.; Kumar, G. Ravindra; Blackman, David R.; Robinson, A. P. L.; Pasley, John

    2014-06-15

    We report on the picosecond dynamics of a near-solid-density plasma generated by an intense, infrared (λ = 800 nm) femtosecond laser using time-resolved pump-probe Doppler spectrometry. An initial red-shift is observed in the reflected third harmonic (λ = 266 nm) probe pulse, which gets blue-shifted at longer probe-delays. A combination of particle-in-cell and radiation-hydrodynamics modelling is performed to model the pump laser interaction with the solid target. The results are post-processed to predict the Doppler shift. An excellent agreement is found between the results of such modelling and the experiment. The modelling suggests that the initial inward motion of the critical surface observed in the experiment is due to the passage of a shock-wave-like disturbance, launched by the pump interaction, propagating into the target. Furthermore, in order to achieve the best possible fit to the experimental data, it was necessary to incorporate the effects of bulk ion-acceleration resulting from the electrostatic field set up by the expulsion of electrons from the laser envelope. We also present results of time-resolved pump-probe reflectometry, which are corroborated with the spectrometry results using a 1-D reflectivity model.

  7. Three-Photon Luminescence of Gold Nanorods Excited by 1040 nm Femtosecond Laser for High Contrast Tissue and In Vivo Imaging

    NASA Astrophysics Data System (ADS)

    Wang, Shaowei; Zhao, Xinyuan; Zhang, Hequn; Cai, Fuhong; Qian, Jun

    2016-01-01

    Gold Nanorods (GNRs) with tunable aspect ratios can strongly absorb and scatter light in the NIR region due to their localized surface plasmon resonance (LSPR) property, and have been demonstrated to exhibit strong plasmon enhanced multiphoton luminescence (MPL) with brightness many times stronger than the conventional organic chromophores. In this study, we synthesized GNRs with longitudinal LSPR peak at 1036 nm to match our home-built light source 1040 nm femtosecond laser, which locates in the “optical window” where the tissue absorbs relatively little light. PEGylated GNRs with great biocompatibility were intravenously injected through the tail vein into mice. Excited by 1040 nm laser, the GNRs exhibit bright three-photon luminescence (3PL) signals while circulating in the blood vessels. The use of GNRs as bright contrast agents for 3PL imaging of mouse ear blood vessels in vivo was demonstrated. And GNRs targeted in tissues can be excited by 1040 nm laser and could be clearly visualized with no autofluorescence background. These results indicated that 3PL of GNRs is very promising for deep in vivo bioimaging and assessing the distribution of GNRs in tissues with high contrast.

  8. Attosecond XUV absorption spectroscopy of doubly excited states in helium atoms dressed by a time-delayed femtosecond infrared laser

    NASA Astrophysics Data System (ADS)

    Yang, Z. Q.; Ye, D. F.; Ding, Thomas; Pfeifer, Thomas; Fu, L. B.

    2015-01-01

    In the present paper, we investigate the time-resolved transient absorption spectroscopy of doubly excited states of helium atoms by solving the time-dependent two-electron Schrödinger equation numerically based on a one-dimensional model. The helium atoms are subjected to an extreme ultraviolet (XUV) attosecond pulse and a time-delayed infrared (IR) few-cycle laser pulse. A superposition of doubly excited states populated by the XUV pulse is identified, which interferes with the direct ionization pathway leading to Fano resonance profiles in the photoabsorption spectrum. In the presence of an IR laser, however, the Fano line profiles are strongly modified: A shifting, splitting, and broadening of the original absorption lines is observed when the XUV attosecond pulse and infrared few-cycle laser pulse overlap in time, which is in good agreement with recent experimental results. At certain time delays, we observe symmetric Lorentz, inverted Fano profiles, and even negative absorption cross sections indicating that the XUV light can be amplified during the interaction with atoms. We further prove that the above pictures are general for different doubly excited states by suitably varying the frequency of the IR field to coherently couple the corresponding states.

  9. Nonlinear broadband photoluminescence of graphene induced by femtosecond laser irradiation

    SciTech Connect

    Liu, Wei-Tao; Wu, S.W.; Schuck, P.J.; Salmeron, Miquel; Shen, Y.R.; Wang, F.

    2010-07-01

    Upon femtosecond laser irradiation, a bright, broadband photoluminescence is observed from graphene at frequencies well above the excitation frequency. Analyses show that it arises from radiative recombination of a broad distribution of nonequilibrium electrons and holes, generated by rapid scattering between photoexcited carriers within tens of femtoseconds after the optical excitation. Its highly unusual characteristics come from the unique electronic and structural properties of graphene.

  10. Femtosecond laser materials processing

    SciTech Connect

    Stuart, B.C.

    1997-02-01

    The use femtosecond pulses for materials processing results in very precise cutting and drilling with high efficiency. Energy deposited in the electrons is not coupled into the bulk during the pulse, resulting in negligible shock or thermal loading to adjacent areas.

  11. Holographic vector-wave femtosecond laser processing

    NASA Astrophysics Data System (ADS)

    Hayasaki, Yoshio; Hasegawa, Satoshi

    2016-03-01

    Arbitrary and variable beam shaping of femtosecond pulses by a computer-generated hologram (CGH) displayed on a spatial light modulator (SLM) have been applied to femtosecond laser processing. The holographic femtosecond laser processing has been widely used in many applications such as two-photon polymerization, optical waveguide fabrication, fabrication of volume phase gratings in polymers, and surface nanostructuring. A vector wave that has a spatial distribution of polarization states control of femtosecond pulses gives good performances for the femtosecond laser processing. In this paper, an in- system optimization of a CGH for massively-parallel femtosecond laser processing, a dynamic control of spatial spectral dispersion to improve the focal spot shape, and the holographic vector-wave femtosecond laser processing are demonstrated.

  12. 2 micron femtosecond fiber laser

    DOEpatents

    Liu, Jian; Wan, Peng; Yang, Lihmei

    2014-07-29

    Methods and systems for generating femtosecond fiber laser pulses are disclose, including generating a signal laser pulse from a seed laser oscillator; using a first amplifier stage comprising an input and an output, wherein the signal laser pulse is coupled into the input of the first stage amplifier and the output of the first amplifier stage emits an amplified and stretched signal laser pulse; using an amplifier chain comprising an input and an output, wherein the amplified and stretched signal laser pulse from the output of the first amplifier stage is coupled into the input of the amplifier chain and the output of the amplifier chain emits a further amplified, stretched signal laser pulse. Other embodiments are described and claimed.

  13. Optical breakdown of air triggered by femtosecond laser filaments

    NASA Astrophysics Data System (ADS)

    Polynkin, Pavel; Moloney, Jerome V.

    2011-10-01

    We report experiments on the generation of dense plasma channels in ambient air using a dual laser pulse excitation scheme. The dilute plasma produced through the filamentation of an ultraintense femtosecond laser pulse is densified via avalanche ionization driven by a co-propagating multi-Joule nanosecond pulse.

  14. Molecular fragmentation induced by a femtosecond laser

    NASA Astrophysics Data System (ADS)

    Kosmidis, Constantine E.; Ledingham, Kenneth W. D.; Kilic, H. S.; McCanny, T.; Singhal, Raghunandan P.; Smith, D.; Langley, Andrew J.

    1998-07-01

    The 90 femtosecond laser induced fragmentation at 375 nm for a number of different nitro-molecules is compared to that induced by a nanosecond laser at the same wavelength by means of time-of-flight mass spectrometry. The potential of femtosecond laser mass spectrometry for analytical purposes is discussed.

  15. Femtosecond-picosecond laser photolysis studies on the dynamics of excited charge-transfer complexes: Aromatic hydrocarbon-acid anhydride, -tetracyanoethylene, and -tetracyanoquinodimethane systems in acetonitrile solutions

    SciTech Connect

    Asahi, Tsuyoshi; Mataga, Noboru )

    1991-03-07

    Formation processes of contact ion pairs (CIP) from the excited Franck-Condon (FC) state of charge-transfer (CT) complexes of aromatic hydrocarbons with acid anhydride as well as cyano compound acceptors in acetonitrile solution and charge recombination (CR) rates (k{sub CR}{sup CIP}) of produced CIP states have been investigated by femtosecond and picosecond laser phototlysis and time-resolved absorption spectral measurements covering a wide range of free energy gap-{Delta}G{degree}{sub ip} between the ion pair and the ground state. It has been confirmed that the CIP formation becomes faster and k{sub CR}{sup CIP} of the produced CIP increases with increase of the strengths of the electron donor (D) and acceptor (A) in the complex, i.e., with decrease of the {minus}{Delta}G{degree}{sub ip} value. This peculiar energy gap dependence of k{sub CR}{sup CIP}, quite different from the bell-shaped one observed in the case of the solvent-separated ion pairs (SSIP) or loose ion pairs (LIP) formed by encounter between fluorescer and quencher in the fluoresence quenching reaction, has been interpreted by assuming the change of electronic and geometrical structures of CIP depending on the strengths of D and A.

  16. Femtosecond lasers for machining of transparent, brittle materials: ablative vs. non-ablative femtosecond laser processing

    NASA Astrophysics Data System (ADS)

    Hendricks, F.; Matylitsky, V. V.

    2016-03-01

    This paper focuses on precision machining of transparent materials by means of ablative and non-ablative femtosecond laser processing. Ablation technology will be compared with a newly developed patent pending non-ablative femtosecond process, ClearShapeTM, using the Spectra-Physics Spirit industrial femtosecond laser.

  17. Femtosecond Timescale Evolution of Pyrrole Electronic Excitation

    NASA Astrophysics Data System (ADS)

    Montero, Raul; Conde, Alvaro Peralta; Ovejas, Virginia; Castano, Fernando; Longarte, Asier

    2012-06-01

    Pyrrole is a simple aromatic molecule with relevantchromophoric properties in biology. Although its apparent simplicity, it shows a complicated dynamics after excitation in the near part of the UV absorption spectrum, which results from the interplay between the bright ππ^* and the dark dissociative πσ^* electronic transitions. Herein, we present a time resolved study with ultrafast resolution on the relaxation dynamics of isolated pyrrole, after excitation in the 265-217 nm range. Two lifetimes of 19 and 15 fs, which are associated with the internal conversion from the bright 1B2 ππ^* state and the propagation of the wavepacket on the πσ^* state, respectively, are found in the studied energy interval. The work also explores the consequences of non resonant adiabatic excitation of the system when broadband femtosecond pulses are employed to prepare the molecule in the targeted electronic states, revealing the key implication of this type of coherent phenomena. The collected data reveal that the bright 1B2 ππ^* state is adiabatically populated at excitation wavelengths far away from resonance, providing an efficient way to reach the πσ^* state. The recorded transients are fit employing a coherent model that provides a comprehensive view of the dynamical processes pyrrole undergoes after excitation by ultrashort light pulses. M. N. R. Ashfold, B. Cronin, A. L. Devine, R. N. Dixon and M. G. D. Nix Science, 312, 1637-1640, 2006.

  18. Ultrafast dynamics of the dielectric functions of ZnO and BaTiO{sub 3} thin films after intense femtosecond laser excitation

    SciTech Connect

    Acharya, S.; Seifert, G.; Chouthe, S.; Graener, H.; Böntgen, T.; Sturm, C.; Schmidt-Grund, R.; Grundmann, M.

    2014-02-07

    The ultrafast carrier dynamics of epitaxial ZnO and BaTiO{sub 3} thin films after intense excitation at 3.10 eV and 4.66 eV photon energy has been studied by femtosecond absorption spectroscopy. Modelling the transient transmission changes on the basis of spectroscopic ellipsometry data and pertinent equilibrium model dielectric functions extended by additional terms for the effects at high carrier density (P-band luminescence and stimulated emission from electron-hole-plasma), a self-consistent parameterized description was obtained for both materials. Excited carrier lifetimes in the range of ≈2 to ≈60 ps and long-lived thermal effects after several hundred ps have been identified in both materials. These findings form a reliable basis to quantitatively describe future femtosecond studies on ZnO/BaTiO{sub 3} heterolayer systems.

  19. Photoemission using femtosecond laser pulses

    SciTech Connect

    Srinivasan-Rao, T.; Tsang, T.; Fischer, J.

    1991-10-01

    Successful operation of short wavelength FEL requires an electron bunch of current >100 A and normalized emittance < 1 mm-mrad. Recent experiments show that RF guns with photocathodes as the electron source may be the ideal candidate for achieving these parameters. To reduce the emittance growth due to space charge and RF dynamics effects, the gun may have to operate at high field gradient (hence at high RF frequency) and a spot size small compared to the aperture. This may necessitate the laser pulse duration to be in the subpicosecond regime to reduce the energy spread. We will present the behavior of metal photocathodes upon irradiation with femtosecond laser beams, comparison of linear and nonlinear photoemission, and scalability to high currents. Theoretical estimate of the intrinsic emittance at the photocathode in the presence of the anomalous heating of the electrons, and the tolerance on the surface roughness of the cathode material will be discussed.

  20. Intravital autofluorescence 2-photon microscopy of murine intestinal mucosa with ultra-broadband femtosecond laser pulse excitation: image quality, photodamage, and inflammation

    NASA Astrophysics Data System (ADS)

    Klinger, Antje; Krapf, Lisa; Orzekowsky-Schroeder, Regina; Koop, Norbert; Vogel, Alfred; Hüttmann, Gereon

    2015-11-01

    Ultra-broadband excitation with ultrashort pulses may enable simultaneous excitation of multiple endogenous fluorophores in vital tissue. Imaging living gut mucosa by autofluorescence 2-photon microscopy with more than 150 nm broad excitation at an 800-nm central wavelength from a sub-10 fs titanium-sapphire (Ti:sapphire) laser with a dielectric mirror based prechirp was compared to the excitation with 220 fs pulses of a tunable Ti:sapphire laser at 730 and 800 nm wavelengths. Excitation efficiency, image quality, and photochemical damage were evaluated. At similar excitation fluxes, the same image brightness was achieved with both lasers. As expected, with ultra-broadband pulses, fluorescence from NAD(P)H, flavines, and lipoproteins was observed simultaneously. However, nonlinear photodamage apparent as hyperfluorescence with functional and structural alterations of the tissue occurred earlier when the laser power was adjusted to the same image brightness. After only a few minutes, the immigration of polymorphonuclear leucocytes into the epithelium and degranulation of these cells, a sign of inflammation, was observed. Photodamage is promoted by the higher peak irradiances and/or by nonoptimal excitation of autofluorescence at the longer wavelength. We conclude that excitation with a tunable narrow bandwidth laser is preferable to ultra-broadband excitation for autofluorescence-based 2-photon microscopy, unless the spectral phase can be controlled to optimize excitation conditions.

  1. Femtosecond laser structuring in dielectrics

    NASA Astrophysics Data System (ADS)

    Juodkazis, Saulius

    2008-03-01

    Three-dimensional (3D) structuring of glasses, crystals, and polymers by tightly focused femtosecond laser pulses is a promising technique for microfluidic, micro-optical, photonic crystal and micro-mechanical applications [1-4]. The 3D laser micro-structuring of resists is demonstrated by direct laser writing [1] and holographic recording using phase control of interfering pulses [2]. Tightly focused laser pulses can reach dielectric breakdown irradiance without self-focusing when sub-1 ps pulses are used for laser-structuring inside dielectrics. The limiting case of microstructuring, a void recording, can be achieved [3]. The mechanism of void formation has been explained as a result of dielectric breakdown and micro-explosion. The absorption is localized within a skin depth of tens-of-nanometers in the plasma at the focus. This defines an ultimate localization of the energy delivery by a laser pulse. The absorbance reaches 0.6 in a fully ionized solid state density breakdown plasma. The high temperature and pressure buildup is large enough to generate a shock wave (strong micro-explosion). For example, a single 100 nJ laser pulse forms a void under tight focusing conditions even in the high strength sapphire (Young modulus of 400 GPa). It is considered that material fails upon compression rather than tension for which the mechanical failure threshold is by an order of magnitude smaller. This scenario of breakdown by compression is corroborated by numerical modeling of the strong explosion at our experimental conditions. Modification of materials by tightly focused femtosecond pulses opens new material processing routes for inert dielectrics [4] and can possibly be used for creation of new high-temperature and pressure phases inside the volume of irradiated samples. These regions with altered nano-structure have different chemical properties as was found in silica glass, quartz, and sapphire by wet etching of the ``shocked'' regions in aqueous solution of

  2. Few-cycle spatiotemporal soliton wave excited by filamentation of a femtosecond laser pulse in materials with anomalous dispersion

    SciTech Connect

    Liu Jiansheng; Li Ruxin; Xu Zhizhan

    2006-10-15

    The nonlinear dynamics of 1.6-{mu}m fs laser pulses propagating in fused silica is investigated by employing a full-order dispersion model. Different from the x-wave generation in normally dispersive media, a few-cycle spatiotemporally compressed soliton wave is generated with the contrary contributions of anomalous group velocity dispersion (GVD) and self-phase-modulation. However, at the tailing edge of the pulse forms a shock wave which generates separate and strong supercontinuum peaked at 670 nm. It is also the origin of conical emission formed both in time and frequency domain with the contribution of normal GVD at visible light.

  3. Massively parallel femtosecond laser processing.

    PubMed

    Hasegawa, Satoshi; Ito, Haruyasu; Toyoda, Haruyoshi; Hayasaki, Yoshio

    2016-08-01

    Massively parallel femtosecond laser processing with more than 1000 beams was demonstrated. Parallel beams were generated by a computer-generated hologram (CGH) displayed on a spatial light modulator (SLM). The key to this technique is to optimize the CGH in the laser processing system using a scheme called in-system optimization. It was analytically demonstrated that the number of beams is determined by the horizontal number of pixels in the SLM NSLM that is imaged at the pupil plane of an objective lens and a distance parameter pd obtained by dividing the distance between adjacent beams by the diffraction-limited beam diameter. A performance limitation of parallel laser processing in our system was estimated at NSLM of 250 and pd of 7.0. Based on these parameters, the maximum number of beams in a hexagonal close-packed structure was calculated to be 1189 by using an analytical equation. PMID:27505815

  4. Femtosecond laser ablation of enamel

    NASA Astrophysics Data System (ADS)

    Le, Quang-Tri; Bertrand, Caroline; Vilar, Rui

    2016-06-01

    The surface topographical, compositional, and structural modifications induced in human enamel by femtosecond laser ablation is studied. The laser treatments were performed using a Yb:KYW chirped-pulse-regenerative amplification laser system (560 fs and 1030 nm) and fluences up to 14 J/cm2. The ablation surfaces were studied by scanning electron microscopy, grazing incidence x-ray diffraction, and micro-Raman spectroscopy. Regardless of the fluence, the ablation surfaces were covered by a layer of resolidified material, indicating that ablation is accompanied by melting of hydroxyapatite. This layer presented pores and exploded gas bubbles, created by the release of gaseous decomposition products of hydroxyapatite (CO2 and H2O) within the liquid phase. In the specimen treated with 1-kHz repetition frequency and 14 J/cm2, thickness of the resolidified material is in the range of 300 to 900 nm. The micro-Raman analysis revealed that the resolidified material contains amorphous calcium phosphate, while grazing incidence x-ray diffraction analysis allowed detecting traces of a calcium phosphate other than hydroxyapatite, probably β-tricalcium phosphate Ca3), at the surface of this specimen. The present results show that the ablation of enamel involves melting of enamel's hydroxyapatite, but the thickness of the altered layer is very small and thermal damage of the remaining material is negligible.

  5. Progress in Cherenkov femtosecond fiber lasers

    NASA Astrophysics Data System (ADS)

    Liu, Xiaomin; Svane, Ask S.; Lægsgaard, Jesper; Tu, Haohua; Boppart, Stephen A.; Turchinovich, Dmitry

    2016-01-01

    We review the recent developments in the field of ultrafast Cherenkov fiber lasers. Two essential properties of such laser systems—broad wavelength tunability and high efficiency of Cherenkov radiation wavelength conversion are discussed. The exceptional performance of the Cherenkov fiber laser systems are highlighted—dependent on the realization scheme, the Cherenkov lasers can generate the femtosecond output tunable across the entire visible and even the UV range, and for certain designs more than 40% conversion efficiency from the pump to Cherenkov signal can be achieved. The femtosecond Cherenkov laser with all-fiber architecture is presented and discussed. Operating in the visible range, it delivers 100-200 fs wavelength-tunable pulses with multimilliwatt output power and exceptionally low noise figure an order of magnitude lower than the traditional wavelength tunable supercontinuum-based femtosecond sources. The applications for Cherenkov laser systems in practical biophotonics and biomedical applications, such as bio-imaging and microscopy, are discussed.

  6. Femtosecond-laser ablation dynamics of dielectrics: basics and applications for thin films.

    PubMed

    Balling, P; Schou, J

    2013-03-01

    Laser ablation of dielectrics by ultrashort laser pulses is reviewed. The basic interaction between ultrashort light pulses and the dielectric material is described, and different approaches to the modeling of the femtosecond ablation dynamics are reviewed. Material excitation by ultrashort laser pulses is induced by a combination of strong-field excitation (multi-photon and tunnel excitation), collisional excitation (potentially leading to an avalanche process), and absorption in the plasma consisting of the electrons excited to the conduction band. It is discussed how these excitation processes can be described by various rate-equation models in combination with different descriptions of the excited electrons. The optical properties of the highly excited dielectric undergo a rapid change during the laser pulse, which must be included in a detailed modeling of the excitations. The material ejected from the dielectric following the femtosecond-laser excitation can potentially be used for thin-film deposition. The deposition rate is typically much smaller than that for nanosecond lasers, but film production by femtosecond lasers does possess several attractive features. First, the strong-field excitation makes it possible to produce films of materials that are transparent to the laser light. Second, the highly localized excitation reduces the emission of larger material particulates. Third, lasers with ultrashort pulses are shown to be particularly useful tools for the production of nanocluster films. The important question of the film stoichiometry relative to that of the target will be thoroughly discussed in relation to the films reported in the literature. PMID:23439493

  7. Generation of elliptically polarized nitrogen ion laser fields using two-color femtosecond laser pulses

    PubMed Central

    Li, Ziting; Zeng, Bin; Chu, Wei; Xie, Hongqiang; Yao, Jinping; Li, Guihua; Qiao, Lingling; Wang, Zhanshan; Cheng, Ya

    2016-01-01

    We experimentally investigate generation of nitrogen molecular ion () lasers with two femtosecond laser pulses at different wavelengths. The first pulse serves as the pump which ionizes the nitrogen molecules and excites the molecular ions to excited electronic states. The second pulse serves as the probe which leads to stimulated emission from the excited molecular ions. We observe that changing the angle between the polarization directions of the two pulses gives rise to elliptically polarized laser fields, which is interpreted as a result of strong birefringence of the gain medium near the wavelengths of the laser. PMID:26888182

  8. Combustion Diagnostics with Femtosecond Laser Radiation

    NASA Astrophysics Data System (ADS)

    Couris, S.; Kotzagianni, M.; Baskevicius, A.; Bartulevicius, T.; Sirutkaitis, V.

    2014-11-01

    In the present work, the potential of Laser Induced Breakdown Spectroscopy employing femtosecond laser pulses (fs-LIBS) for fuel-air equivalence ratio measurements in premixed methane-air and propane-air flames is presented. A Ti-Sapphire laser system (100 fs, 10 Hz, 800 nm) was used as an excitation source for the plasma creation, while a spectrometer was employed to record the plasma emission spectra. The concentration of the investigated methane-air and propane-air mixtures were expressed by the fuel mole fraction Xfuel and varied from only air - Xfuel=0 (phi=0) to only fuel - Xfuel=1 (phi=∞). The spectral characteristics of the fs-LIBS spectra are discussed, while the time and energy dependence of the main spectral features are presented. Moreover, from the analysis of fs-LIBS spectra collected at different fuel mole fractions Xfuel, it was found that the fuel variations could be very well correlated with the variation of the intensity of some spectral lines and/or their ratios. The prepared calibration curves of the fuel mole fraction Xfuel versus the atomic line total intensity ratios (Hα 656.3 nm and O (I) 777 nm) and molecular lines total intensity ratios (C2 516.5 nm and CN 388.3 nm) suggest the high potential of using fs-LIBS for the determination of the local fuel concentration and its temporal variations.

  9. Atmospheric pressure femtosecond laser imaging mass spectrometry

    NASA Astrophysics Data System (ADS)

    Coello, Yves; Gunaratne, Tissa C.; Dantus, Marcos

    2009-02-01

    We present a novel imaging mass spectrometry technique that uses femtosecond laser pulses to directly ionize the sample. The method offers significant advantages over current techniques by eliminating the need of a laser-absorbing sample matrix, being suitable for atmospheric pressure sampling, and by providing 10μm resolution, as demonstrated here with a chemical image of vegetable cell walls.

  10. Welding of transparent polymers using femtosecond laser

    NASA Astrophysics Data System (ADS)

    Roth, Gian-Luca; Rung, Stefan; Hellmann, Ralf

    2016-02-01

    Based on nonlinear absorption, we report on laser welding of cycloolefin copolymers without any additional absorption layer employing infrared femtosecond laser. To the best of our knowledge, this is the first report of ultrashort laser welding of this material class, revealing a remarkable high processing speed of 20 mm/s in a single pass mode. Using a 1028 nm laser having a pulse duration of 220 fs at a repetition rate of 571 kHz leads to a welding seam width between 38 and 137 μm, depending on the applied laser average power. The welded joint is characterized by a maximum shear strength of 40 MPa. The experimental results are compared to those reported for femtosecond laser welding of PMMA and to those published for using a Thulium fiber laser.

  11. Femtosecond lasers for microsurgery of cornea

    NASA Astrophysics Data System (ADS)

    Vartapetov, Sergei K.; Khudyakov, D. V.; Lapshin, Konstantin E.; Obidin, Aleksei Z.; Shcherbakov, Ivan A.

    2012-03-01

    The review of femtosecond laser installations for medical applications is given and a new femtosecond ophthalmologic system for creation of a flap of corneal tissue during the LASIK operation is described. An all-fibre femtosecond laser emitting ~400-fs pulses at 1067 nm is used. The pulse repetition rate can vary from 200 kHz up to 1 MHz. The output energy of the femtosecond system does not exceed 1 μJ. A specially developed objective with small spherical and chromatic aberrations is applied to focus laser radiation to an area of an eye cornea. The size of the focusing spot does not exceed 3 μm. To process the required area, scanning by a laser beam is applied with a speed no less than 5 m s-1. At a stage of preliminary tests of the system, the Κ8 glass, organic PMMA glass and specially prepared agarose gels are used as a phantom of an eye. The femtosecond system is successfully clinically tested on a plenty of eyes of a pig and on several human eyes. The duration of the procedure of creation of a corneal flap does not exceed 20 s.

  12. Femtosecond lasers for microsurgery of cornea

    SciTech Connect

    Vartapetov, Sergei K; Khudyakov, D V; Lapshin, Konstantin E; Obidin, Aleksei Z; Shcherbakov, Ivan A

    2012-03-31

    The review of femtosecond laser installations for medical applications is given and a new femtosecond ophthalmologic system for creation of a flap of corneal tissue during the LASIK operation is described. An all-fibre femtosecond laser emitting {approx}400-fs pulses at 1067 nm is used. The pulse repetition rate can vary from 200 kHz up to 1 MHz. The output energy of the femtosecond system does not exceed 1 {mu}J. A specially developed objective with small spherical and chromatic aberrations is applied to focus laser radiation to an area of an eye cornea. The size of the focusing spot does not exceed 3 {mu}m. To process the required area, scanning by a laser beam is applied with a speed no less than 5 m s{sup -1}. At a stage of preliminary tests of the system, the {Kappa}8 glass, organic PMMA glass and specially prepared agarose gels are used as a phantom of an eye. The femtosecond system is successfully clinically tested on a plenty of eyes of a pig and on several human eyes. The duration of the procedure of creation of a corneal flap does not exceed 20 s.

  13. Non-linear increase and saturation of third-harmonic yield from supported silver nanostructures excited by IR femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Bezhanov, Stanislav G.; Danilov, Pavel N.; Ionin, Andrey A.; Kudryashov, Sergey I.; Lednev, Vasiliy N.; Pershin, Sergey M.; Rudenko, Andrey A.; Saraeva, Irina N.; Seleznev, Leonid V.; Sunchugasheva, Elena S.; Uryupin, Sergey A.; Zayarny, Dmitry A.

    2016-03-01

    A second-power yield of resonantly enhanced third harmonic and three-photon luminescence of 744 nm femtosecond laser pump pulses, weakly focused onto a layer of silver nanorolls on a silica substrate, was spectrally detected in the fluence range of 4-20 mJ cm-2, saturating at higher fluences. The third-harmonic yield and its saturation were explored in terms of ultrafast carrier dynamics, based on direct three-photon or cascade one- and two-photon transitions balanced by Auger recombination (and the final band-filling effect) which limited the radiative recombination output in the form of the third harmonic and three-photon luminescence.

  14. Femtosecond laser sintering of copper nanoparticles

    NASA Astrophysics Data System (ADS)

    Cheng, C. W.; Chen, J. K.

    2016-04-01

    The ultrafast melting of copper nanoparticles (NPs) induced by a femtosecond laser pulse with duration of 100 fs and wavelength of 800 nm is investigated theoretically and experimentally. The Cu pattern fabricated from sintering of a Cu NP-dispersed film by the femtosecond laser at a repetition rate of 80 MHz is experimentally studied. A one-dimensional two-temperature model with temperature-dependent material properties, including the extended Drude model for dynamic optical properties and the thermophysical properties, is employed to simulate the particles ultrafast melting and re-solidification process.

  15. Numerical simulation of impurity desorption induced by nanosecond and femtosecond laser pulses

    SciTech Connect

    Chi Yinsheng; Lin Xiaohui; Chen Minhua; Chen Yunfei

    2006-08-01

    A model based on a stochastic process was developed to study the impurity molecule desorption from a substrate induced by nanosecond and femtosecond lasers. The dynamics of adsorbed molecules irradiated by the laser pulses can be considered to be a Brownian motion in the bath of excited energy carriers. A two-step model was used to describe the nonequilibrium heating process induced by the femtosecond laser pulses. The difference between the desorption processes induced by nanosecond and femtosecond lasers was discussed based on the numerical results for the desorption of CO molecules from a Ru surface. Results indicate that the femtosecond laser is a much better tool for desorption than the nanosecond laser.

  16. Nanostructures created by interfered femtosecond laser

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Chang, Yun-Ching; Yao, Jimmy; Luo, Claire; Yin, Shizhuo; Ruffin, Paul; Brantley, Christina; Edwards, Eugene

    2011-10-01

    The method by applying the interfered femtosecond laser to create nanostructured copper (Cu) surface has been studied. The nanostructure created by direct laser irradiation is also realized for comparison. Results show that more uniform and finer nanostructures with sphere shape and feature size around 100 nm can be induced by the interfered laser illumination comparing with the direct laser illumination. This offers an alternative fabrication approach that the feature size and the shape of the laser induced metallic nanostructures can be highly controlled, which can extremely improve its performance in related application such as the colorized metal, catalyst, SERS substrate, and etc.

  17. Femtosecond switching of magnetism via strongly correlated spin-charge quantum excitations.

    PubMed

    Li, Tianqi; Patz, Aaron; Mouchliadis, Leonidas; Yan, Jiaqiang; Lograsso, Thomas A; Perakis, Ilias E; Wang, Jigang

    2013-04-01

    The technological demand to push the gigahertz (10(9) hertz) switching speed limit of today's magnetic memory and logic devices into the terahertz (10(12) hertz) regime underlies the entire field of spin-electronics and integrated multi-functional devices. This challenge is met by all-optical magnetic switching based on coherent spin manipulation. By analogy to femtosecond chemistry and photosynthetic dynamics--in which photoproducts of chemical and biochemical reactions can be influenced by creating suitable superpositions of molecular states--femtosecond-laser-excited coherence between electronic states can switch magnetic order by 'suddenly' breaking the delicate balance between competing phases of correlated materials: for example, manganites exhibiting colossal magneto-resistance suitable for applications. Here we show femtosecond (10(-15) seconds) photo-induced switching from antiferromagnetic to ferromagnetic ordering in Pr0.7Ca0.3MnO3, by observing the establishment (within about 120 femtoseconds) of a huge temperature-dependent magnetization with photo-excitation threshold behaviour absent in the optical reflectivity. The development of ferromagnetic correlations during the femtosecond laser pulse reveals an initial quantum coherent regime of magnetism, distinguished from the picosecond (10(-12) seconds) lattice-heating regime characterized by phase separation without threshold behaviour. Our simulations reproduce the nonlinear femtosecond spin generation and underpin fast quantum spin-flip fluctuations correlated with coherent superpositions of electronic states to initiate local ferromagnetic correlations. These results merge two fields, femtosecond magnetism in metals and band insulators, and non-equilibrium phase transitions of strongly correlated electrons, in which local interactions exceeding the kinetic energy produce a complex balance of competing orders. PMID:23552945

  18. Superresolved femtosecond laser nanosurgery of cells

    PubMed Central

    Pospiech, Matthias; Emons, Moritz; Kuetemeyer, Kai; Heisterkamp, Alexander; Morgner, Uwe

    2011-01-01

    We report on femtosecond nanosurgery of fluorescently labeled structures in cells with a spatially superresolved laser beam. The focal spot width is reduced using phase filtering applied with a programmable phase modulator. A comprehensive statistical analysis of the resulting cuts demonstrates an achievable average resolution enhancement of 30 %. PMID:21339872

  19. Femtosecond Laser Interaction with Energetic Materials

    SciTech Connect

    Roos, E; Benterou, J; Lee, R; Roeske, F; Stuart, B

    2002-03-25

    Femtosecond laser ablation shows promise in machining energetic materials into desired shapes with minimal thermal and mechanical effects to the remaining material. We will discuss the physical effects associated with machining energetic materials and assemblies containing energetic materials, based on experimental results. Interaction of ultra-short laser pulses with matter will produce high temperature plasma at high-pressure which results in the ablation of material. In the case of energetic material, which includes high explosives, propellants and pyrotechnics, this ablation process must be accomplished without coupling energy into the energetic material. Experiments were conducted in order to characterize and better understand the phenomena of femtosecond laser pulse ablation on a variety of explosives and propellants. Experimental data will be presented for laser fluence thresholds, machining rates, cutting depths and surface quality of the cuts.

  20. Resonance laser-plasma excitation of coherent terahertz phonons in the bulk of fluorine-bearing crystals under high-intensity femtosecond laser irradiation

    SciTech Connect

    Potemkin, F V; Mareev, E I; Khodakovskii, N G; Mikheev, P M

    2013-08-31

    The dynamics of coherent phonons in fluorine-containing crystals was investigated by pump-probe technique in the plasma production regime. Several phonon modes, whose frequencies are overtones of the 0.38-THz fundamental frequency, were simultaneously observed in a lithium fluoride crystal. Phonons with frequencies of 1 and 0.1 THz were discovered in a calcium fluoride crystal and coherent phonons with frequencies of 1 THz and 67 GHz were observed in a barium fluoride crystal. Furthermore, in the latter case the amplitudes of phonon mode oscillations were found to significantly increase 15 ps after laser irradiation. (interaction of laser radiation with matter)

  1. Femtosecond laser in refractive and cataract surgeries

    PubMed Central

    Liu, Han-Han; Hu, Ying; Cui, Hong-Ping

    2015-01-01

    In the past few years, 9 unique laser platforms have been brought to the market. As femtosecond (FS) laser-assisted ophthalmic surgery potentially improves patient safety and visual outcomes, this new technology indeed provides ophthalmologists a reliable new option. But this new technology also poses a range of new clinical and financial challenges for surgeons. We provide an overview of the evolution of FS laser technology for use in refractive and cataract surgeries. This review describes the available laser platforms and mainly focuses on discussing the development of ophthalmic surgery technologies. PMID:25938066

  2. Femtosecond laser microstructuring for polymeric lab-on-chips.

    PubMed

    Eaton, Shane M; De Marco, Carmela; Martinez-Vazquez, Rebeca; Ramponi, Roberta; Turri, Stefano; Cerullo, Giulio; Osellame, Roberto

    2012-08-01

    This paper provides an overview of femtosecond laser microfabrication in polymeric materials, with emphasis on lab-on-chip applications. Due to the nonlinear interaction of femtosecond laser pulses with polymers, laser-induced modifications are localized to the focal volume, enabling high resolution patterning in 3D. Femtosecond laser microfabrication offers unmatched versatility in fabricating surface microchannels and diffractive optics by means of laser ablation, buried optical waveguides and micro-optics through refractive index modification and complex 3D microstructures in photoresists by two-photon polymerization. Femtosecond laser microfabrication technology opens the door to fabricating integrated lab-on-chip devices with a single tool. PMID:22589025

  3. Spherical gold nanoparticles and SiO{sub 2}/Au core/shell microparticles under intense femtosecond laser excitation: relaxation dynamics of gold nanoparticles and nanostructuring of borosilicate glass using SiO{sub 2}/Au microparticles

    SciTech Connect

    Shakhov, A M; Astaf'ev, A A; Gostev, F E; Shelaev, I V; Titov, A N; Nadtochenko, V A; Denisov, N N

    2014-09-30

    This paper reports surface nanostructuring of borosilicate glass covered with a water layer and the production of ∼150 nm diameter pits using SiO{sub 2}/Au core/shell microparticles under excitation with 50 fs pulses (λ = 780 nm) using the optical scheme of an inverted microscope with a 100{sup ×}, NA = 1.4 objective. We compare the thresholds for hole formation in glass with the use of SiO{sub 2}/Au and uncoated SiO{sub 2} microparticles. The threshold is 0.7 J cm{sup -2} for SiO{sub 2}/Au and 2.9 J cm{sup -2} for SiO{sub 2} microparticles, which coincides with the threshold for nanostructuring by a focused femtosecond pulse without microparticles: 3 J cm{sup -2}. Femtosecond pump – probe spectroscopy has been used to study the relaxation dynamics of laser pulse energy absorbed in a Au nanoparticle and the dynamics of energy dissipation to the ambient medium. The threshold for cavitation bubble formation in water with SiO{sub 2}/Au has been determined to be 0.06 mJ cm{sup -2}, which is a factor of 30 lower than the bubble formation threshold in the case of uncoated SiO{sub 2} microparticles. (nanostructures)

  4. Application of femtosecond-laser induced nanostructures in optical memory.

    PubMed

    Shimotsuma, Yasuhiko; Sakakura, Masaaki; Miura, Kiyotaka; Qiu, Jiarong; Kazansky, Peter G; Fujita, Koji; Hirao, Kazuyuki

    2007-01-01

    The femtosecond laser induced micro- and nanostructures for the application to the three-dimensional optical data storage are investigated. We have observed the increase of refractive index due to local densification and atomic defect generation, and demonstrated the real time observation of photothermal effect after the femtosecond laser irradiation inside a glass by the transient lens (TrL) method. The TrL signal showed a damped oscillation with about an 800 ps period. The essential feature of the oscillation can be reproduced by the pressure wave creation and propagation to the outward direction from the irradiated region. The simulation based on elastodynamics has shown that a large thermoelastic stress is relaxed by the generation of the pressure wave. In the case of soda-lime glass, the velocity of the pressure wave is almost same as the longitudinal sound velocity at room temperature (5.8 microm/ns). We have also observed the localized photo-reduction of Sm3+ to Sm2+ inside a transparent and colorless Sm(3+)-doped borate glass. Photoluminescence spectra showed that some the Sm3+ ions in the focal spot within the glass sample were reduced to Sm2+ ions after femtosecond laser irradiation. A photo-reduction bit of 200 nm in three-dimensions can be recorded with a femtosecond laser and readout clearly by detecting the fluorescence excited by Ar+ laser (lambda = 488 nm). A photo-reduction bit can be also erased by photo-oxidation with a cw Ar+ laser (lambda = 514.5 nm). Since photo-reduction bits can be spaced 150 nm apart in a layer within glass, a memory capacity of as high as 1 Tbit can be achieved in a glass piece with dimensions of 10 mm x 10 mm x 1 mm. We have also demonstrated the first observation of the polarization-dependent periodic nanostructure formation by the interference between femtosecond laser light and electron acoustic waves. The observed nanostructures are the smallest embedded structures ever created by light. The period of self

  5. Femtosecond fiber laser additive manufacturing of tungsten

    NASA Astrophysics Data System (ADS)

    Bai, Shuang; Liu, Jian; Yang, Pei; Zhai, Meiyu; Huang, Huan; Yang, Lih-Mei

    2016-04-01

    Additive manufacturing (AM) is promising to produce complex shaped components, including metals and alloys, to meet requirements from different industries such as aerospace, defense and biomedicines. Current laser AM uses CW lasers and very few publications have been reported for using pulsed lasers (esp. ultrafast lasers). In this paper, additive manufacturing of Tungsten materials is investigated by using femtosecond (fs) fiber lasers. Various processing conditions are studied, which leads to desired characteristics in terms of morphology, porosity, hardness, microstructural and mechanical properties of the processed components. Fully dense Tungsten part with refined grain and increased hardness was obtained and compared with parts made with different pulse widths and CW laser. The results are evidenced that the fs laser based AM provides more dimensions to modify mechanical properties with controlled heating, rapid melting and cooling rates compared with a CW or long pulsed laser. This can greatly benefit to the make of complicated structures and materials that could not be achieved before.

  6. Micromachining soda-lime glass by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Jia, Wei; Yu, Jian; Chai, Lu; Wang, Ching-Yue

    2015-08-01

    The physical process of forming a modified region in soda-lime glass was investigated using 1 kHz intense femtosecond laser pulses from a Ti: sapphire laser at 775 nm. Through the modifications induced by the femtosecond laser radiation using selective chemical etching techniques, we fabricated reproducible and defined microstructures and further studied their morphologies and etching properties. Moreover, a possible physical mechanism for the femtosecond laser modification in soda-lime glass was proposed.

  7. Hemifusion of cells using femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Katchinskiy, Nir; Godbout, Roseline; Goez, Helly R.; Elezzabi, Abdulhakem Y.

    2015-03-01

    Attachment of single cells via hemifusion of cellular membranes using femtosecond laser pulses is reported in this manuscript. This is a method to attach single cells using sub-10 femtosecond laser pulses, with 800 nm central wavelength delivered from a Ti:Sapphire laser is described. A fluorescent dye, Calcein AM, was used to verify that the cell's cytoplasm did not migrate from a dyed cell to a non-dyed cell, in order to ascertain that the cells did not go through cell-fusion process. An optical tweezer was used in order to assess the mechanical integrity of the attached joint membranes. Hemifusion of cellular membranes was successful without initiating full cell fusion. Attachment efficiency of 95% was achieved, while the cells' viability was preserved. The attachment was performed via the delivery of one to two trains of sub-10 femtosecond laser pulses lasting 15 milliseconds each. An ultrafast reversible destabilization of the phospholipid molecules in the cellular membranes was induced due to a laser-induced ionization process. The inner phospholipid cell membrane remained intact during the attachment procedure, and cells' cytoplasm remained isolated from the surrounding medium. The unbounded inner phospholipid molecules bonded to the nearest free phospholipid molecule, forming a joint cellular membrane at the connection point. The cellular membrane hemifusion technique can potentially provide a platform for the creation of engineered tissue and cell cultures.

  8. Femtosecond laser ablation of bovine cortical bone

    NASA Astrophysics Data System (ADS)

    Cangueiro, Liliana T.; Vilar, Rui; Botelho do Rego, Ana M.; Muralha, Vania S. F.

    2012-12-01

    We study the surface topographical, structural, and compositional modifications induced in bovine cortical bone by femtosecond laser ablation. The tests are performed in air, with a Yb:KYW chirped-pulse-regenerative amplification laser system (500 fs, 1030 nm) at fluences ranging from 0.55 to 2.24 J/cm2. The ablation process is monitored by acoustic emission measurements. The topography of the laser-treated surfaces is studied by scanning electron microscopy, and their constitution is characterized by glancing incidence x-ray diffraction, x-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and micro-Raman spectroscopy. The results show that femtosecond laser ablation allows removing bone without melting, carbonization, or cracking. The structure and composition of the remaining tissue are essentially preserved, the only constitutional changes observed being a reduction of the organic material content and a partial recrystallization of hydroxyapatite in the most superficial region of samples. The results suggest that, within this fluence range, ablation occurs by a combination of thermal and electrostatic mechanisms, with the first type of mechanism predominating at lower fluences. The associated thermal effects explain the constitutional changes observed. We show that femtosecond lasers are a promising tool for delicate orthopaedic surgeries, where small amounts of bone must be cut with negligible damage, thus minimizing surgical trauma.

  9. Femtosecond Laser-Induced Upconversion Luminescence in Rare-Earth Ions by Nonresonant Multiphoton Absorption.

    PubMed

    Yao, Yunhua; Xu, Cheng; Zheng, Ye; Yang, Chengshuai; Liu, Pei; Jia, Tianqing; Qiu, Jianrong; Sun, Zhenrong; Zhang, Shian

    2016-07-21

    The upconversion luminescence of rare-earth ions has attracted considerable interest because of its important applications in photoelectric conversion, color display, laser device, multiplexed biolabeling, and security printing. Previous studies mainly explored the upconversion luminescence generation through excited state absorption, energy transfer upconversion, and photon avalanche under the continuous wave laser excitation. Here, we focus on the upconversion luminescence generation through a nonresonant multiphoton absorption by using the intense femtosecond pulsed laser excitation and study the upconversion luminescence intensity control by varying the femtosecond laser phase and polarization. We show that the upconversion luminescence of rare-earth ions under the intense femtosecond laser field excitation is easy to be obtained due to the nonresonant multiphoton absorption through the nonlinear interaction between light and matter, which is not available by the continuous wave laser excitation in previous works. We also show that the upconversion luminescence intensity can be effectively controlled by varying the femtosecond pulsed laser phase and polarization, which can open a new technological opportunity to generate and control the upconversion luminescence of rare-earth ions and also can be further extended to the relevant application areas. PMID:27367751

  10. Femtosecond laser processing and spatial light modulator

    NASA Astrophysics Data System (ADS)

    Paivasaari, Kimmo; Silvennoinen, Martti; Kaakkunen, Jarno; Vahimaa, Pasi

    2014-03-01

    The use of the femtosecond laser enables generation of small spot sizes and ablation features. Ablation of the small features usually requires only a small amount of laser power to be delivered to the ablation spot. When using only a one beam for the ablation of the small features this process is bound to be time consuming. The spatial light modulator (SLM) together with the computer generated holograms (CGH) can be used for manipulating and shaping of the laser beam in various applications. In laser micromachining, when using laser with relatively high power, the original beam can be divided up to hundreds beams and still have the energy of the individual beam above the ablation threshold of the material. This parallel laser processing enables more efficient use of the laser power regardless of the machining task.

  11. Polyatomic molecules under intense femtosecond laser irradiation.

    PubMed

    Konar, Arkaprabha; Shu, Yinan; Lozovoy, Vadim V; Jackson, James E; Levine, Benjamin G; Dantus, Marcos

    2014-12-11

    Interaction of intense laser pulses with atoms and molecules is at the forefront of atomic, molecular, and optical physics. It is the gateway to powerful new tools that include above threshold ionization, high harmonic generation, electron diffraction, molecular tomography, and attosecond pulse generation. Intense laser pulses are ideal for probing and manipulating chemical bonding. Though the behavior of atoms in strong fields has been well studied, molecules under intense fields are not as well understood and current models have failed in certain important aspects. Molecules, as opposed to atoms, present confounding possibilities of nuclear and electronic motion upon excitation. The dynamics and fragmentation patterns in response to the laser field are structure sensitive; therefore, a molecule cannot simply be treated as a "bag of atoms" during field induced ionization. In this article we present a set of experiments and theoretical calculations exploring the behavior of a large collection of aryl alkyl ketones when irradiated with intense femtosecond pulses. Specifically, we consider to what extent molecules retain their molecular identity and properties under strong laser fields. Using time-of-flight mass spectrometry in conjunction with pump-probe techniques we study the dynamical behavior of these molecules, monitoring ion yield modulation caused by intramolecular motions post ionization. The set of molecules studied is further divided into smaller sets, sorted by type and position of functional groups. The pump-probe time-delay scans show that among positional isomers the variations in relative energies, which amount to only a few hundred millielectronvolts, influence the dynamical behavior of the molecules despite their having experienced such high fields (V/Å). High level ab initio quantum chemical calculations were performed to predict molecular dynamics along with single and multiphoton resonances in the neutral and ionic states. We propose the

  12. Blue emission from Eu2+-doped high silica glass by near-infrared femtosecond laser irradiation

    NASA Astrophysics Data System (ADS)

    Qiao, Yanbo; Chen, Danping; Ren, Jinjun; Wu, Botao; Qiu, Jianrong; Akai, Tomoko

    2008-01-01

    Eu2+-doped high silica glass (HSG) is fabricated by sintering porous glass which is impregnated with europium ions. Eu2+-doped HSG is revealed to yield intense blue emission excited by ultraviolet (UV) light and near-infrared femtosecond laser. The emission profile obtained by UV excitation can be well traced by near-infrared femtosecond laser. The upconversion emission excited by 800 nm femtosecond laser is considered to be related to a two-photon absorption process from the relationship between the integrated intensity and the pump power. A tentative scheme of upconverted blue emission from Eu2+-doped HSG was also proposed. The HSG materials presented herein are expected to find applications in high density optical storage and three-dimensional color displays.

  13. Nonequilibrium screening and exciton dynamics probed by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Peyghambarian, N.; Koch, S. W.

    1993-02-01

    Our efforts were aimed at the study of nonequilibrium properties of a high-density electron-hole-pair system, which was generated resonantly by femtosecond laser excitation. The investigation consisted of joint theoretical and experimental approaches. Using state of the art femtosecond experimental techniques, we studied extremely rapid physical phenomena. We have succeeded not only in completing the proposed tasks, but have also initiated some new projects and obtained very interesting results. During the last three years in this program, we have published three physical Review Letters, nine Physical Reviews, several other papers in good journals such as Appl. Phys. Lett., J. Opt. Soc. Am., etc., nineteen invited presentations at important conferences, and several contributed papers at international conferences. The list of publications is given in the next section. Here, we summarize the highlights of our achievements during the last three years of this contract.

  14. Femtosecond laser controlled wettability of solid surfaces.

    PubMed

    Yong, Jiale; Chen, Feng; Yang, Qing; Hou, Xun

    2015-12-14

    Femtosecond laser microfabrication is emerging as a hot tool for controlling the wettability of solid surfaces. This paper introduces four typical aspects of femtosecond laser induced special wettability: superhydrophobicity, underwater superoleophobicity, anisotropic wettability, and smart wettability. The static properties are characterized by the contact angle measurement, while the dynamic features are investigated by the sliding behavior of a liquid droplet. Using different materials and machining methods results in different rough microstructures, patterns, and even chemistry on the solid substrates. So, various beautiful wettabilities can be realized because wettability is mainly dependent on the surface topography and chemical composition. The distinctions of the underlying formation mechanism of these wettabilities are also described in detail. PMID:26415826

  15. Femtosecond laser machining of electrospun membranes

    NASA Astrophysics Data System (ADS)

    Wu, Yiquan; Vorobyev, A. Y.; Clark, Robert L.; Guo, Chunlei

    2011-01-01

    We demonstrate that a femtosecond laser can be used to machine arbitrary patterns and pattern arrays into free-standing electrospun polycaprolactone (PCL) membranes. We also examine the influence of various laser irradiation settings on the final microstructure of electrospun membranes. A beam fluence of 0.6 J/cm2 is used to ablate holes in 100 μm thick PCL membranes. The machined holes have an average diameter of 436 μm and a center-to-center spacing of 1000 μm. Based on these results, the femtosecond ablation of electrospun membranes shows great potential for fabricating a variety of functional tissue scaffolds. This technique will advance scaffold design by providing the ability to rapidly tailor surface morphology, while minimizing and controlling the deformation of the electrospun fibers.

  16. Femtosecond laser-electron x-ray source

    DOEpatents

    Hartemann, Frederic V.; Baldis, Hector A.; Barty, Chris P.; Gibson, David J.; Rupp, Bernhard

    2004-04-20

    A femtosecond laser-electron X-ray source. A high-brightness relativistic electron injector produces an electron beam pulse train. A system accelerates the electron beam pulse train. The femtosecond laser-electron X-ray source includes a high intra-cavity power, mode-locked laser and an x-ray optics system.

  17. Femtosecond laser lithotripsy: feasibility and ablation mechanism

    NASA Astrophysics Data System (ADS)

    Qiu, Jinze; Teichman, Joel M. H.; Wang, Tianyi; Neev, Joseph; Glickman, Randolph D.; Chan, Kin Foong; Milner, Thomas E.

    2010-03-01

    Light emitted from a femtosecond laser is capable of plasma-induced ablation of various materials. We tested the feasibility of utilizing femtosecond-pulsed laser radiation (λ=800 nm, 140 fs, 0.9 mJ/pulse) for ablation of urinary calculi. Ablation craters were observed in human calculi of greater than 90% calcium oxalate monohydrate (COM), cystine (CYST), or magnesium ammonium phosphate hexahydrate (MAPH). Largest crater volumes were achieved on CYST stones, among the most difficult stones to fragment using Holmium:YAG (Ho:YAG) lithotripsy. Diameter of debris was characterized using optical microscopy and found to be less than 20 μm, substantially smaller than that produced by long-pulsed Ho:YAG ablation. Stone retropulsion, monitored by a high-speed camera system with a spatial resolution of 15 μm, was negligible for stones with mass as small as 0.06 g. Peak shock wave pressures were less than 2 bars, measured by a polyvinylidene fluoride (PVDF) needle hydrophone. Ablation dynamics were visualized and characterized with pump-probe imaging and fast flash photography and correlated to shock wave pressures. Because femtosecond-pulsed laser ablates urinary calculi of soft and hard compositions, with micron-sized debris, negligible stone retropulsion, and small shock wave pressures, we conclude that the approach is a promising candidate technique for lithotripsy.

  18. Blackening of magnesium alloy using femtosecond laser.

    PubMed

    Shi, Haixia; Cui, Zeqin; Wang, Wenxian; Xu, Bingshe; Gong, Dianqing; Zhang, Wei

    2015-09-01

    Magnesium alloy, a potential structural and biodegradable material, has been increasingly attracting attention. In this paper, two structures with enhanced light absorption on an AZ31B magnesium surface are fabricated by femtosecond laser texturing. Laser power and the number of laser pulses are mainly investigated for darkening effect. After irradiation, surface characteristics are analyzed by a scanning electron microscope equipped with an energy dispersive spectrometer and laser scanning confocal microscope. The darkening effect is investigated by a spectrophotometer with an integrating sphere. Microgroove and stripe structures are obtained, which are covered with homogeneous nanoprotrusions and nanoparticles. The main surface chemical composition after laser ablation is MgO. The optimal light absorption in the visible range (wavelength of 400-800 nm) reaches about 98%, which is significantly improved compared with the untreated surface. The enhanced light absorption is mainly attributed to surface structure. Femtosecond laser surface texturing technology offers potential in the application of stealth technology, airborne devices, and biomedicine. PMID:26368903

  19. Displacive lattice excitation through nonlinear phononics viewed by femtosecond X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Först, M.; Mankowsky, R.; Bromberger, H.; Fritz, D. M.; Lemke, H.; Zhu, D.; Chollet, M.; Tomioka, Y.; Tokura, Y.; Merlin, R.; Hill, J. P.; Johnson, S. L.; Cavalleri, A.

    2013-09-01

    The nonlinear lattice dynamics of La0.7Sr0.3MnO3, as initiated by strong mid-infrared femtosecond pulses made resonant with a specific lattice vibration, are measured with ultrafast X-ray diffraction at the LCLS free electron laser. Our experiments show that large amplitude excitation of an infrared-active stretching mode leads also to a displacive motion along the coordinate of a second, anharmonically coupled, Raman mode. This rectification of the vibrational field is described within the framework of the Ionic Raman Scattering theory and explains how direct lattice excitation in the nonlinear regime can induce a structural phase transition.

  20. Producing ORMOSIL scaffolds by femtosecond laser polymerization

    NASA Astrophysics Data System (ADS)

    Matei, A.; Zamfirescu, M.; Radu, C.; Buruiana, E. C.; Buruiana, T.; Mustaciosu, C.; Petcu, I.; Radu, M.; Dinescu, M.

    2012-07-01

    Structures with different geometries and sizes were built via direct femtosecond laser writing, starting from new organic/inorganic hybrid monomers based on hybrid methacrylate containing triethoxysilane, in addition to urethane and urea groups. Multifunctional oligomer of urethane dimethacrylate type was chosen as comonomer in polymerization experiments because dimethacrylates give rise to the formation of a polymer network, having a number of favorable properties including biocompatibility and surface nanostructuring. Free standing polymeric structures were designed and created in order to be tested in fibroblast cells culture. Investigations of the cellular adhesion, proliferation, and viability of L929 mouse fibroblasts on free-standing laser processed scaffolds were performed for different scaffold designs.

  1. Femtosecond laser crystallization of amorphous Ge

    SciTech Connect

    Salihoglu, Omer; Aydinli, Atilla; Kueruem, Ulas; Gul Yaglioglu, H.; Elmali, Ayhan

    2011-06-15

    Ultrafast crystallization of amorphous germanium (a-Ge) in ambient has been studied. Plasma enhanced chemical vapor deposition grown a-Ge was irradiated with single femtosecond laser pulses of various durations with a range of fluences from below melting to above ablation threshold. Extensive use of Raman scattering has been employed to determine post solidification features aided by scanning electron microscopy and atomic force microscopy measurements. Linewidth of the Ge optic phonon at 300 cm{sup -1} as a function of laser fluence provides a signature for the crystallization of a-Ge. Various crystallization regimes including nanostructures in the form of nanospheres have been identified.

  2. Femtosecond laser ablation of the stapes

    PubMed Central

    McCaughey, Ryan G.; Sun, Hui; Rothholtz, Vanessa S.; Juhasz, Tibor; Wong, Brian J. F.

    2014-01-01

    A femtosecond laser, normally used for LASIK eye surgery, is used to perforate cadaveric human stapes. The thermal side effects of bone ablation are measured with a thermocouple in an inner ear model and are found to be within acceptable limits for inner ear surgery. Stress and acoustic events, recorded with piezoelectric film and a microphone, respectively, are found to be negligible. Optical microscopy, scanning electron microscopy, and optical coherence tomography are used to confirm the precision of the ablation craters and lack of damage to the surrounding tissue. Ablation is compared to that from an Er:YAG laser, the current laser of choice for stapedotomy, and is found to be superior. Ultra-short-pulsed lasers offer a precise and efficient ablation of the stapes, with minimal thermal and negligible mechanical and acoustic damage. They are, therefore, ideal for stapedotomy operations. PMID:19405768

  3. Femtosecond Lasers in Ophthalmology: Surgery and Imaging

    NASA Astrophysics Data System (ADS)

    Bille, J. F.

    Ophthalmology has traditionally been the field with prevalent laser applications in medicine. The human eye is one of the most accessible human organs and its transparency for visible and near-infrared light allows optical techniques for diagnosis and treatment of almost any ocular structure. Laser vision correction (LVC) was introduced in the late 1980s. Today, the procedural ease, success rate, and lack of disturbing side-effects in laser assisted in-situ keratomileusis (LASIK) have made it the most frequently performed refractive surgical procedure (keratomileusis(greek): cornea-flap-cutting). Recently, it has been demonstrated that specific aspects of LVC can take advantage of unique light-matter interaction processes that occur with femtosecond laser pulses.

  4. Femtosecond laser ablation of the stapes

    NASA Astrophysics Data System (ADS)

    McCaughey, Ryan G.; Sun, Hui; Rothholtz, Vanessa S.; Juhasz, Tibor; Wong, Brian J. F.

    2009-03-01

    A femtosecond laser, normally used for LASIK eye surgery, is used to perforate cadaveric human stapes. The thermal side effects of bone ablation are measured with a thermocouple in an inner ear model and are found to be within acceptable limits for inner ear surgery. Stress and acoustic events, recorded with piezoelectric film and a microphone, respectively, are found to be negligible. Optical microscopy, scanning electron microscopy, and optical coherence tomography are used to confirm the precision of the ablation craters and lack of damage to the surrounding tissue. Ablation is compared to that from an Er:YAG laser, the current laser of choice for stapedotomy, and is found to be superior. Ultra-short-pulsed lasers offer a precise and efficient ablation of the stapes, with minimal thermal and negligible mechanical and acoustic damage. They are, therefore, ideal for stapedotomy operations.

  5. Femtosecond lasers in ophthalmology: clinical applications in anterior segment surgery

    NASA Astrophysics Data System (ADS)

    Juhasz, Tibor; Nagy, Zoltan; Sarayba, Melvin; Kurtz, Ronald M.

    2010-02-01

    The human eye is a favored target for laser surgery due to its accessibility via the optically transparent ocular tissue. Femtosecond lasers with confined tissue effects and minimized collateral tissue damage are primary candidates for high precision intraocular surgery. The advent of compact diode-pumped femtosecond lasers, coupled with computer controlled beam delivery devices, enabled the development of high precision femtosecond laser for ophthalmic surgery. In this article, anterior segment femtosecond laser applications currently in clinical practice and investigation are reviewed. Corneal procedures evolved first and remain dominant due to easy targeting referenced from a contact surface, such as applanation lenses placed on the eye. Adding a high precision imaging technique, such as optical coherence tomography (OCT), can enable accurate targeting of tissue beyond the cornea, such as the crystalline lens. Initial clinical results of femtosecond laser cataract surgery are discussed in detail in the latter portion part of the article.

  6. Fabrication of optical cavities with femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Lin, Jintian; Song, Jiangxin; Tang, Jialei; Fang, Wei; Sugioka, Koji; Cheng, Ya

    2014-03-01

    We report on fabrication of three-dimensional (3D) high-quality (Q) whispering-gallery-mode microcavities by femtosecond laser micromachining. The main fabrication procedures include the formation of on-chip freestanding microdisk through selective material removal by femtosecond laser pulses, followed by surface smoothing processes (CO2 laser reflow for amorphous glass and focused ion beam (FIB) sidewall milling for crystalline materials) to improve the Q factors. Fused silica microcavities with 3D geometries are demonstrated with Q factors exceeding 106. A microcavity laser based on Nd:glass has been fabricated, showing a threshold as low as 69μW via free space continuous-wave optical excitation at the room temperature. CaF2 crystalline microcavities with Q factor of ~4.2×104 have also been demonstrated. This technique allows us to fabricate 3D high-Q microcavities in various transparent materials such as glass and crystals, which will benefit a broad spectrum of applications such as nonlinear optics, quantum optics, and bio-sensing.

  7. Femtosecond laser eye surgery: the first clinical experience

    NASA Astrophysics Data System (ADS)

    Juhasz, Tibor; Kurtz, Ron M.; Horvath, Christopher; Suarez, Carlos G.; Nordan, Lee; Slade, Steven

    2002-04-01

    A brief review of commercial applications of femtosecond lasers in a clinical setting with emphasis on applications to corneal surgery is presented. The first clinical results of 208 procedures conducted from June to November 2000 is reported. The results show that femtosecond lasers may be safely used as keratome for use in LASIK procedures.

  8. Femtosecond stimulated Raman spectroscopy as a tool to detect molecular vibrations in ground and excited electronic states

    NASA Astrophysics Data System (ADS)

    Gelin, Maxim F.; Domcke, Wolfgang; Rao, B. Jayachander

    2016-05-01

    We give a detailed theoretical analysis of the simplest variant of femtosecond stimulated Raman spectroscopy, where a picosecond Raman pump pulse and a femtosecond Raman probe pulse are applied resonantly to a chromophore in thermal equilibrium in the ground electronic state. We demonstrate that this technique is capable of the detection of dephasing-free Raman-like lines revealing vibrational modes not only in the electronic ground state but also in the excited electronic state of the chromophore. The analytical results obtained with simplifying assumptions for the shape of the laser pulses are substantiated by numerical simulations with realistic laser pulses, employing the equation-of-motion phase-matching approach.

  9. Dynamics of femtosecond laser-induced melting of silver

    SciTech Connect

    Chan Wailun; Averback, Robert S.; Cahill, David G.; Lagoutchev, Alexei

    2008-12-01

    We use optical third-harmonic generation to measure the melting dynamics of silver following femtosecond laser excitation. The dynamics reveals an unusual two-step process that is associated with the extreme electronic temperatures and very short time and length scales. In the first, which lasts a few picoseconds, the electron and phonon systems begin to equilibrate, and a thin surface layer undergoes melting. Heat conduction during this period is strongly suppressed by electron scattering from d-band excitations. In the second stage, the surface region remains above the melting temperature for a surprisingly long time, 20-30 ps, with the melt front propagating into the bulk at a velocity of {approx_equal}350 m s{sup -1}. In this stage, the electron and phonon systems again fall out of equilibrium and conduction of heat away from the surface region is now limited by the weak electron-phonon (e-p) coupling. From our model calculation, we propose that the melt depths in noble metals irradiated by femtosecond lasers are limited to thicknesses on the order of two to three times of the optical-absorption depth of the light.

  10. Gain dynamics of a free-space nitrogen laser pumped by circularly polarized femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Yao, Jinping; Xie, Hongqiang; Zeng, Bin; Chu, Wei; Li, Guihua; Ni, Jielei; Zhang, Haisu; Jing, Chenrui; Zhang, Chaojin; Xu, Huailiang; Cheng, Ya; Xu, Zhizhan

    2014-08-01

    We experimentally demonstrate ultrafast dynamic of generation of a strong 337-nm nitrogen laser by injecting an external seed pulse into a femtosecond laser filament pumped by a circularly polarized laser pulse. In the pump-probe scheme, it is revealed that the population inversion between the excited and ground states of N2 for the free-space 337-nm laser is firstly built up on the timescale of several picoseconds, followed by a relatively slow decay on the timescale of tens of picoseconds, depending on the nitrogen gas pressure. By measuring the intensities of 337-nm signal from nitrogen gas mixed with different concentrations of oxygen gas, it is also found that oxygen molecules have a significant quenching effect on the nitrogen laser signal. Our experimental observations agree with the picture of electron-impact excitation.

  11. Nanochemical effects in femtosecond laser ablation of metals

    SciTech Connect

    Vorobyev, A. Y.; Guo, Chunlei

    2013-02-18

    We study chemical energy released from the oxidation of aluminum in multipulse femtosecond laser ablation in air and oxygen. Our study shows that the released chemical energy amounts to about 13% of the incident laser energy, and about 50% of the ablated material is oxidized. The ablated material mass per laser pulse is measured to be on the nanogram scale. Our study indicates that femtosecond laser ablation is capable of inducing nanochemical reactions since the femtosecond laser pulse can controllably produce nanoparticles, clusters, and atoms from a solid target.

  12. Noncontact microsurgery of living cell membrane using femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Ilina, I. V.; Ovchinnikov, A. V.; Sitnikov, D. S.; Chefonov, O. V.; Agranat, M. B.; Mikaelyan, A. S.

    2013-06-01

    Near-infrared femtosecond laser pulses were applied to initiate reversible permeabilization of cell membrane and inject extrinsic substances into the target cells. Successful laser-based injection of a membrane impermeable dye, as well as plasmid DNA was demonstrated.

  13. Near infrared femtosecond laser ablation of urinary calculi in water

    NASA Astrophysics Data System (ADS)

    Qiu, Jinze; Teichman, Joel M.; Kuranov, Roman V.; McElroy, Austin B.; Wang, Tianyi; Paranjape, Amit S.; Milner, Thomas E.

    2009-02-01

    Pulsed light emitted from a near infrared (λ=800nm) femtosecond laser is capable of plasma induced photodisruption of various materials. We used femtosecond laser pulses to ablate human urinary calculi. Femtosecond pulsed laser interaction with urinary calculi was investigated with various stone compositions, different incident fluences and number of applied pulses. Spectral-domain optical coherence tomography was used to image cross sections of ablation craters on the surface of urinary calculi. Our results indicate that femtosecond laser pulses can ablate various calculi compositions. Crater diameter and depth varies from tens of microns to several hundred microns when up to 1000 pulses were applied. Future studies are required to determine if pulsed near infrared femtosecond laser pulses can be applied clinically for lithotripsy of urinary calculi.

  14. Thin Film Femtosecond Laser Damage Competition

    SciTech Connect

    Stolz, C J; Ristau, D; Turowski, M; Blaschke, H

    2009-11-14

    In order to determine the current status of thin film laser resistance within the private, academic, and government sectors, a damage competition was started at the 2008 Boulder Damage Symposium. This damage competition allows a direct comparison of the current state of the art of high laser resistance coatings since they are tested using the same damage test setup and the same protocol. In 2009 a high reflector coating was selected at a wavelength of 786 nm at normal incidence at a pulse length of 180 femtoseconds. A double blind test assured sample and submitter anonymity so only a summary of the results are presented here. In addition to the laser resistance results, details of deposition processes, coating materials and layer count, and spectral results will also be shared.

  15. Optical gene transfer by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Konig, Karsten; Riemann, Iris; Tirlapur, Uday K.

    2003-07-01

    Targeted transfection of cells is an important technique for gene therapy and related biomedical applications. We delineate how high-intensity (1012 W/cm2) near-infrared (NIR) 80 MHz nanojoule femtosecond laser pulses can create highly localised membrane perforations within a minute focal volume, enabling non-invasive direct transfection of mammalian cells with DNA. We suspended Chinese hamster ovarian (CHO), rat kangaroo kidney epithelial (PtK2) and rat fibroblast cells in 0.5 ml culture medium in a sterile miniaturized cell chamber (JenLab GmbH, Jena, Germany) containing 0.2 μg plasmid DNA vector pEGFP-N1 (4.7 kb), which codes for green fluorescent protein (GFP). The NIR laser beam was introduced into a femtosecond laser scanning microscope (JenLab GmbH, Jena, Germany; focussed on the edge of the cell membrane of a target cell for 16 ms. The integration and expression efficiency of EGFP were assessed in situ by two-photon fluorescence-lifetime imaging using time-correlated single photon counting. The unique capability to transfer foreign DNA safely and efficiently into specific cell types (including stem cells), circumventing mechanical, electrical or chemical means, will have many applications, such as targeted gene therapy and DNA vaccination.

  16. Colorizing metals with femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Vorobyev, A. Y.; Guo, Chunlei

    2008-01-01

    For centuries, it had been the dream of alchemists to turn inexpensive metals into gold. Certainly, it is not enough from an alchemist's point of view to transfer only the appearance of a metal to gold. However, the possibility of rendering a certain metal to a completely different color without coating can be very interesting in its own right. In this work, we demonstrate a femtosecond laser processing technique that allows us to create a variety of colors on a metal that ultimately leads us to control its optical properties from UV to terahertz.

  17. Femtosecond laser studies of ultrafast intramolecular processes

    SciTech Connect

    Hayden, C.

    1993-12-01

    The goal of this research is to better understand the detailed mechanisms of chemical reactions by observing, directly in time, the dynamics of fundamental chemical processes. In this work femtosecond laser pulses are used to initiate chemical processes and follow the progress of these processes in time. The authors are currently studying ultrafast internal conversion and subsequent intramolecular relaxation in unsaturated hydrocarbons. In addition, the authors are developing nonlinear optical techniques to prepare and monitor the time evolution of specific vibrational motions in ground electronic state molecules.

  18. Colorizing metals with femtosecond laser pulses

    SciTech Connect

    Vorobyev, A. Y.; Guo Chunlei

    2008-01-28

    For centuries, it had been the dream of alchemists to turn inexpensive metals into gold. Certainly, it is not enough from an alchemist's point of view to transfer only the appearance of a metal to gold. However, the possibility of rendering a certain metal to a completely different color without coating can be very interesting in its own right. In this work, we demonstrate a femtosecond laser processing technique that allows us to create a variety of colors on a metal that ultimately leads us to control its optical properties from UV to terahertz.

  19. Ultrasmall Silver Nanopores Fabricated by Femtosecond Laser Pulses

    NASA Astrophysics Data System (ADS)

    Zhao, Jimin; Bian, F.; Tian, Y. C.; Wang, R.; Yang, H. X.; Xu, Hongxing; Meng, Sheng

    2012-02-01

    Ultrasmall nanopores in silver thin films with a diameter of about 2 nm have been fabricated using femtosecond laser ablation in liquid [1]. Ultrafast laser pulse ablation generates highly nonequilibrium excitated states, from which silver thin films emerge and progressively grow with the assistance of capping agent molecules. During this growth process, capping agent molecules are enclaves within the film, leaving individual ultrasmall pores in the thin film. Our first-principles calculations show that the pore size is critically determined by the dimension of the confined molecules. Furthermore, by using smaller capping agent molecules, we were able to fabricate smaller nanopores with 1.6nm diameter. Our approach advances the capability of optical methods in making nanoscale structures with potential applications in areas such as near-field aperture probes, imaging masks, magnetic plasmonic resonances, and biosensing with individual nanopores. [4pt] [1] F. Bian, Y. C. Tian, R. Wang, H. X. Yang, H. X. Xu, Sheng Meng, and Jimin Zhao, Ultrasmall Silver Nanopores Fabricated by Femtosecond Laser Pulses, Nano Lett. 11, 3251--3257 (2011).

  20. Hole drilling on glass optical fibers by a femtosecond laser

    NASA Astrophysics Data System (ADS)

    Hamasaki, Masayuki; Gouya, Kenji; Watanabe, Kazuhiro

    2012-01-01

    A novel optical fiber sensor has been developed for gaseous material detection by means of a femto-second laser which has ultrashort pulse and ultrahigh peak power. This sensor has attractive sensor potion consisted of drilling holes array which is machined on the glass optical fiber. Additionally, the sensor potion is coated with thin gold film. This work expects that an interaction could be induced between transmitted light through fiber core and a bottom of the drilled holes which reaches the fiber core. The interaction could induce near-field optical phenomenon excited by transmitted light through the fiber core. This scheme could make it possible to detect gaseous-material phase substances around the optical fiber. In this study, we found that localized surface plasmon (LSP) was excited by the transmitted light through the fiber core. This paper shows experiment to obtain optimum irradiation conditions and investigation for sensor principle for the development of a novel fiber sensor.

  1. Cornea surgery with nanojoule femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Koenig, Karsten; Wang, Bagui; Riemann, Iris; Kobow, Jens

    2005-04-01

    We report on a novel optical method for (i) flap-generation in LASIK procedures as well as (ii) for flap-free intrastromal refractive surgery based on nanojoule femtosecond laser pulses. The near infrared 200 fs pulses for multiphoton ablation have been provided by ultracompact turn-key MHz laser resonators. LASIK flaps and intracorneal cavities have been realized with high precision within living New Zealand rabbits using the system FemtoCutO (JenLab GmbH, Jena, Germany) at 800 nm laser wavelength. Using low-energy sub-2 nJ laser pulses, collateral damage due to photodisruptive and self-focusing effects was avoided. The laser ablation system consists of fast galvoscanners, focusing optics of high numerical aperture as well as a sensitive imaging system and provides also the possibility of 3D multiphoton imaging of fluorescent cellular organelles and SHG signals from collagen. Multiphoton tomography of the cornea was used to determine the exact intratissue beam position and to visualize intraocular post-laser effects. The wound healing process has been investigated up to 90 days after instrastromal laser ablation by histological analysis. Regeneration of damaged collagen structures and the migration of inflammation cells have been detected.

  2. Local field enhancement on metallic periodic surface structures produced by femtosecond laser pulses

    SciTech Connect

    Ionin, Andrei A; Kudryashov, Sergei I; Ligachev, A E; Makarov, Sergei V; Mel'nik, N N; Rudenko, A A; Seleznev, L V; Sinitsyn, D V; Khmelnitskii, R A

    2013-04-30

    Periodic surface structures on aluminium are produced by femtosecond laser pulses for efficient excitation of surface electromagnetic waves using a strong objective (NA = 0.5). The local electromagnetic field enhancement on the structures is measured using the technique of surface-enhanced Raman scattering from pyridine molecules. (extreme light fields and their applications)

  3. Enantioselective femtosecond laser photoionization spectrometry of limonene using photoelectron circular dichroism.

    PubMed

    Rafiee Fanood, Mohammad M; Janssen, Maurice H M; Powis, Ivan

    2015-04-14

    Limonene is ionized by circularly polarized 420 nm femtosecond laser pulses. Ion mass and photoelectron energy spectra identify the dominant (2 + 1) multiphoton ionization mechanism, aided by TDDFT calculations of the Rydberg excitations. Photoelectron circular dichroism measurements on pure enantiomers reveal a chiral asymmetry of ±4 %. PMID:25744283

  4. Femtosecond laser surgery of olfactory ensheathing cells protuberance

    NASA Astrophysics Data System (ADS)

    Yang, H. F.; Zhou, M.; di, J. K.; Zhao, E. L.; Gong, A. H.

    2009-03-01

    Protuberance cutting and recoverable damage of olfactory ensheathing cells (OECs) using femto-second laser surgery are reported. The damages of OECs protuberance are induced by using femtosecond laser surgery with different laser powers and scanning velocities. Through optimizing the parameters, steady cutting of OEC protuberance is achieved. After femtosecond laser surgery with 150 μ W and 10 μm/s is conducted, we found that the cell recovers its viability, such as growth, spread, and motility 1.5 h after the damage, which prove cell’s recovery and regeneration. Current work offers a novel method for establishing cell damage model and studying on cytokinetics.

  5. Femtosecond laser cataract surgery: technology and clinical practice.

    PubMed

    Roberts, Timothy V; Lawless, Michael; Chan, Colin Ck; Jacobs, Mark; Ng, David; Bali, Shveta J; Hodge, Chris; Sutton, Gerard

    2013-03-01

    The recent introduction of femtosecond lasers to cataract surgery has generated much interest among ophthalmologists around the world. Laser cataract surgery integrates high-resolution anterior segment imaging systems with a femtosecond laser, allowing key steps of the procedure, including the primary and side-port corneal incisions, the anterior capsulotomy and fragmentation of the lens nucleus, to be performed with computer-guided laser precision. There is emerging evidence of reduced phacoemulsification time, better wound architecture and a more stable refractive result with femtosecond cataract surgery, as well as reports documenting an initial learning curve. This article will review the current state of technology and discuss our clinical experience. PMID:22788831

  6. Monolithic optofluidic ring resonator lasers created by femtosecond laser nanofabrication.

    PubMed

    Chandrahalim, Hengky; Chen, Qiushu; Said, Ali A; Dugan, Mark; Fan, Xudong

    2015-05-21

    We designed, fabricated, and characterized a monolithically integrated optofluidic ring resonator laser that is mechanically, thermally, and chemically robust. The entire device, including the ring resonator channel and sample delivery microfluidics, was created in a block of fused-silica glass using a 3-dimensional femtosecond laser writing process. The gain medium, composed of Rhodamine 6G (R6G) dissolved in quinoline, was flowed through the ring resonator. Lasing was achieved at a pump threshold of approximately 15 μJ mm(-2). Detailed analysis shows that the Q-factor of the optofluidic ring resonator is 3.3 × 10(4), which is limited by both solvent absorption and scattering loss. In particular, a Q-factor resulting from the scattering loss can be as high as 4.2 × 10(4), suggesting the feasibility of using a femtosecond laser to create high quality optical cavities. PMID:25904381

  7. Femtosecond laser polishing of optical materials

    NASA Astrophysics Data System (ADS)

    Taylor, Lauren L.; Qiao, Jun; Qiao, Jie

    2015-10-01

    Technologies including magnetorheological finishing and CNC polishing are commonly used to finish optical elements, but these methods are often expensive, generate waste through the use of fluids or abrasives, and may not be suited for specific freeform substrates due to the size and shape of finishing tools. Pulsed laser polishing has been demonstrated as a technique capable of achieving nanoscale roughness while offering waste-free fabrication, material-specific processing through direct tuning of laser radiation, and access to freeform shapes using refined beam delivery and focusing techniques. Nanosecond and microsecond pulse duration radiation has been used to perform successful melting-based polishing of a variety of different materials, but this approach leads to extensive heat accumulation resulting in subsurface damage. We have experimentally investigated the ability of femtosecond laser radiation to ablate silicon carbide and silicon. By substituting ultrafast laser radiation, polishing can be performed by direct evaporation of unwanted surface asperities with minimal heating and melting, potentially offering damage-free finishing of materials. Under unoptimized laser processing conditions, thermal effects can occur leading to material oxidation. To investigate these thermal effects, simulation of the heat accumulation mechanism in ultrafast laser ablation was performed. Simulations have been extended to investigate the optimum scanning speed and pulse energy required for processing various substrates. Modeling methodologies and simulation results will be presented.

  8. Femtosecond fiber laser welding of dissimilar metals.

    PubMed

    Huang, Huan; Yang, Lih-Mei; Bai, Shuang; Liu, Jian

    2014-10-01

    In this paper, welding of dissimilar metals was demonstrated for the first time, to the best of our knowledge, by using a high-energy high-repetition-rate femtosecond fiber laser. Metallurgical and mechanical properties were investigated and analyzed under various processing parameters (pulse energy, repetition rate, and welding speed). Results showed that the formation of intermetallic brittle phases and welding defects could be effectively reduced. Strong welding quality with more than 210 MPa tensile strength for stainless steel-aluminum and 175 MPa tensile strength for stainless steel-magnesium has been demonstrated. A minimal heat affected zone and uniform and homogenous phase transformation in the welding region have been demonstrated. This laser-welding technique can be extended for various applications in semiconductor, automobile, aerospace, and biomedical industries. PMID:25322246

  9. Optical reprogramming with ultrashort femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Uchugonova, Aisada; Breunig, Hans G.; Batista, Ana; König, Karsten

    2015-03-01

    The use of sub-15 femtosecond laser pulses in stem cell research is explored with particular emphasis on the optical reprogramming of somatic cells. The reprogramming of somatic cells into induced pluripotent stem (iPS) cells can be evoked through the ectopic expression of defined transcription factors. Conventional approaches utilize retro/lenti-viruses to deliver genes/transcription factors as well as to facilitate the integration of transcription factors into that of the host genome. However, the use of viruses may result in insertional mutations caused by the random integration of genes and as a result, this may limit the use within clinical applications due to the risk of the formation of cancer. In this study, a new approach is demonstrated in realizing non-viral reprogramming through the use of ultrashort laser pulses, to introduce transcription factors into the cell so as to generate iPS cells.

  10. Nanodot formation induced by femtosecond laser irradiation

    SciTech Connect

    Abere, M. J.; Kang, M.; Goldman, R. S.; Yalisove, S. M.; Chen, C.; Rittman, D. R.; Phillips, J. D.; Torralva, B.

    2014-10-20

    The femtosecond laser generation of ZnSe nanoscale features on ZnSe surfaces was studied. Irradiation with multiple exposures produces 10–100 nm agglomerations of nanocrystalline ZnSe while retaining the original single crystal structure of the underlying material. The structure of these nanodots was verified using a combination of scanning transmission electron microscopy, scanning electron microscopy, and atomic force microscopy. The nanodots continue to grow hours after irradiation through a combination of bulk and surface diffusion. We suggest that in nanodot formation the result of ultrafast laser induced point defect formation is more than an order of magnitude below the ZnSe ultrafast melt threshold fluence. This unique mechanism of point defect injection will be discussed.

  11. Blackening of metals using femtosecond fiber laser.

    PubMed

    Huang, Huan; Yang, Lih-Mei; Bai, Shuang; Liu, Jian

    2015-01-10

    This study presents an unprecedented high throughput processing for super-blackening and superhydrophobic/hydrophilic surface on both planar and nonplanar metals surfaces. By using a high pulse repetition rate femtosecond (fs) fiber laser, a light trapping microstructure and nanostructure is generated to absorb light from UV, visible to long-wave infrared spectral region. Different types of surface structures are produced with varying laser scanning conditions (scanning speed and pitch). The modified surface morphologies are characterized using scanning electron microscope and the blackening effect is investigated through spectral measurements. Spectral measurements show that the reflectance of the processed materials decreases sharply in a wide wavelength range and the decrease occurs at different rates for different scanning pitches and speeds. Above 98% absorption over the entire visible wavelength region and above 95% absorption over the near-infrared, middle-wave infrared and long-wave infrared regions range has been demonstrated for the surface structures, and the absorption for specific wavelengths can go above 99%. Furthermore, the processing efficiency of this fs fiber laser blackening technique is 1 order of magnitude higher than that of solid-state fs laser and 4 times higher than that of picosecond (ps) laser. Further increasing of the throughput is expected by using higher repetition and higher scanning speed. This technology offers the great potential in applications such as constructing sensitive detectors and sensors, solar energy absorber, and biomedicine. PMID:25967633

  12. Continuous and Pulsed THz generation with molecular gas lasers and photoconductive antennas gated by femtosecond pulses

    NASA Astrophysics Data System (ADS)

    Cruz, Flavio C.; Nogueira, T.; Costa, Leverson F. L.; Jarschel, Paulo F.; Frateschi, Newton C.; Viscovini, Ronaldo C.; Vieira, Bruno R. B.; Guevara, Victor M. B.; Pereira, Daniel

    2008-04-01

    We report THz generation based on two systems: 1) continuous-wave (cw) laser generation in molecular gas lasers, and 2) short pulse generation in photoconductive antennas, gated by femtosecond near-infrared Ti:sapphire lasers. With the first system, we have generated tens of monochromatic cw laser lines over the last years, extending roughly from 40 microns to several hundred microns. This is done by optical pumping of gas lasers based on polar molecules such as methanol and its isotopes. In the second system, under development, pulsed THz radiation is generated by a photoconductive antenna built in a semi-insulating GaAs substrate excited by femtosecond pulses from a near-infrared (800 nm) Ti:sapphire laser.

  13. Gain dynamics of a free-space nitrogen laser pumped by circularly polarized femtosecond laser pulses.

    PubMed

    Yao, Jinping; Xie, Hongqiang; Zeng, Bin; Chu, Wei; Li, Guihua; Ni, Jielei; Zhang, Haisu; Jing, Chenrui; Zhang, Chaojin; Xu, Huailiang; Cheng, Ya; Xu, Zhizhan

    2014-08-11

    We experimentally demonstrate ultrafast dynamic of generation of the 337-nm nitrogen laser by injecting an external seed pulse into a femtosecond laser filament pumped by a circularly polarized laser pulse. In the pump-probe scheme, it is revealed that the population inversion between the C(3)Π(u) and B(3)Π(g) states of N(2) for the free-space 337-nm laser is firstly built up on the timescale of several picoseconds, followed by a relatively slow decay on the timescale of tens of picoseconds, depending on the nitrogen gas pressure. By measuring the intensities of 337-nm signal from nitrogen gas mixed with different concentrations of oxygen gas, it is also found that oxygen molecules have a significant quenching effect on the nitrogen laser signal. Our experimental observations agree with the picture of electron-impact excitation. PMID:25320986

  14. Quenching Plasma Waves in Two Dimensional Electron Gas by a Femtosecond Laser Pulse

    NASA Astrophysics Data System (ADS)

    Shur, Michael; Rudin, Sergey; Greg Rupper Collaboration; Andrey Muraviev Collaboration

    Plasmonic detectors of terahertz (THz) radiation using the plasma wave excitation in 2D electron gas are capable of detecting ultra short THz pulses. To study the plasma wave propagation and decay, we used femtosecond laser pulses to quench the plasma waves excited by a short THz pulse. The femtosecond laser pulse generates a large concentration of the electron-hole pairs effectively shorting the 2D electron gas channel and dramatically increasing the channel conductance. Immediately after the application of the femtosecond laser pulse, the equivalent circuit of the device reduces to the source and drain contact resistances connected by a short. The total response charge is equal to the integral of the current induced by the THz pulse from the moment of the THz pulse application to the moment of the femtosecond laser pulse application. This current is determined by the plasma wave rectification. Registering the charge as a function of the time delay between the THz and laser pulses allowed us to follow the plasmonic wave decay. We observed the decaying oscillations in a sample with a partially gated channel. The decay depends on the gate bias and reflects the interplay between the gated and ungated plasmons in the device channel. Army Research Office.

  15. Operational Regimes in Picosecond and Femtosecond Pulse-Excited Ultrahigh Vacuum SERS.

    PubMed

    Pozzi, Eric A; Gruenke, Natalie L; Chiang, Naihao; Zhdanov, Dmitry V; Jiang, Nan; Seideman, Tamar; Schatz, George C; Hersam, Mark C; Van Duyne, Richard P

    2016-08-01

    We report a systematic study performed in ultrahigh vacuum designed to identify the laser excitation regimes in which plasmonically enhanced ultrashort pulses may be used to nondestructively probe surface-bound molecules. A nondestructive, continuous-wave spectroscopic probe is used to monitor the effects of four different femtosecond- and picosecond-pulsed beams on the SER signals emanating from molecular analytes residing within plasmonically enhanced fields. We identify the roles of plasmonic amplification and alignment with a molecular electronic transition on the observed changes in the SER signals. Our results indicate that overlap of the laser wavelength with the plasmon resonance is the dominant contributor to signal degradation. In addition, signal loss for a given irradiation condition is observed only for molecules residing in hot spots above a threshold enhancement. Identification of suitable laser energy density ranges demonstrates the importance of considering these parameters when implementing SERS in the presence of pulsed irradiation. PMID:27428724

  16. Femtosecond laser fabrication of gold nanorod/polymer composite microstructures

    NASA Astrophysics Data System (ADS)

    Masui, Kyoko; Shoji, Satoru; Ushiba, Shota; Duan, Xuan-Ming; Kawata, Satoshi

    2012-10-01

    We present a fabrication method of gold nanorod/ polymer composite microstructures by means of a femtosecond near-infrared laser light. The mechanism of this method is based on a cooperation of two optical reactions; two-photon polymerization (TPP) reaction only at the surface of gold nanorods, and optical accumulation of gold nanorods in photo-polymerizable resin. Gold nanorods were mass-produced by seed mediated growth method, and were mono-dispersed in photo-resin. The wavelength of the laser light was tuned resonant to two-photon absorption of the photo-resin, and also close to a longitudinal local surface plasmon resonance (LSPR) mode of the gold nanorods. The laser light excited LSPR onto gold nanorods, resulting in the formation of thin polymer layer only at their surface through TPP. Concurrently occurring optical accumulation of gold nanorods by continuous irradiation of laser light, gold nanorods got together into focus spot. The TPP layer at the surface of gold nanorods worked as a glue to stick one another for forming their aggregated structure in micro/nano scale. By controlling the intensity and the exposure time of laser light, an optimal condition was found to induce dominant polymerization without any thermal damages. The scanning of the focus spot makes it possible to create arbitrary micro/nano structures. This method has a potential to create plasmonic optical materials by controlling the alignment of gold nanorods.

  17. Femtosecond laser enabled keratoplasty for advanced keratoconus

    PubMed Central

    Shivanna, Yathish; Nagaraja, Harsha; Kugar, Thungappa; Shetty, Rohit

    2013-01-01

    Purpose: To assess the efficacy and advantages of femtosecond laser enabled keratoplasty (FLEK) over conventional penetrating keratoplasty (PKP) in advanced keratoconus. Materials and Methods: Detailed review of literature of published randomized controlled trials of operative techniques in PKP and FLEK. Results: Fifteen studies were identified, analyzed, and compared with our outcome. FLEK was found to have better outcome in view of better and earlier stabilization uncorrected visual acuity (UCVA), best corrected visual acuity (BCVA), and better refractive outcomes with low astigmatism as compared with conventional PKP. Wound healing also was noticed to be earlier, enabling early suture removal in FLEK. Conclusions: Studies relating to FLEK have shown better results than conventional PKP, however further studies are needed to assess the safety and intraoperative complications of the procedure. PMID:23925340

  18. Laser wakefield excitation and measurement on a femtosecond time scale: Theory and experiment. Progress report, September 1, 1994--August 31, 1995

    SciTech Connect

    Tajima, T.; Downer, M.

    1995-04-01

    A brief discussion was given for each of the following topics: superluminous wake excitation; photon frequency-shift (photon accelerator) spectroscopy; focusing, diffraction and 2D spectral shift; Raman self-modulation effects; optical preaccelerator; accelerator physics developments; experimental facilities; experimental results--pressure-tunable harmonic generation; experiments in progress--time-domain Rayleigh interferometry; Russian collaboration; and technology transfer.

  19. Effective parameters for film-free femtosecond laser assisted bioprinting.

    PubMed

    Desrus, H; Chassagne, B; Moizan, F; Devillard, R; Petit, S; Kling, R; Catros, S

    2016-05-10

    Optimal conditions for femtosecond laser bioprinting setup are reported on in terms of numerical aperture and accuracy of focal spot location for different bioinks to deposit without using a metallic absorbing layer. PMID:27168307

  20. Modification of Carbon Nanotube Templates Using Femtosecond Laser Pulses

    NASA Astrophysics Data System (ADS)

    Chang, Won-Seok; Yoo, Byung-Hyun; Cho, Sung-Hak

    2008-08-01

    Selective modification of carbon nanotubes (CNTs) on Si substrates was performed using a femtosecond laser. The high shock wave generated by the femtosecond laser effectively removed the CNTs without damage to the Si substrate. This process has many advantages because it is performed without chemicals and is easily applied to large-area patterning. The CNTs grown by plasma-enhanced chemical vapor deposition (PECVD) have a catalyst cap at the end of the nanotube due to the tip-growth mode mechanism. For the application of an electron emission and a bio sensor, the catalyst cap is usually chemically removed, which damages the surface of the wall of the CNTs. However, precise control of the femtosecond laser power and focal position can solve this problem. Furthermore, selective cutting of carbon nanotube using a femtosecond laser does not cause any phase change in the CNTs, as usually shown in focused ion beam irradiation of the CNTs.

  1. Femtosecond laser embedded grating micromachining of flexible PDMS plates

    NASA Astrophysics Data System (ADS)

    Cho, Sung-Hak; Chang, Won-Seok; Kim, Kwang-Ryul; Hong, Jong Wook

    2009-04-01

    We report on the femtosecond laser micromachining of photo-induced embedded diffraction grating in flexible Poly (Dimethly Siloxane) (PDMS) plates using a high-intensity femtosecond (130 fs) Ti: sapphire laser ( λp = 800 nm). The refractive index modifications with diameters ranging from 2 μm to 5 μm were photo-induced after the irradiation with peak intensities of more than 1 × 10 11 W/cm 2. The graded refractive index profile was fabricated to be a symmetric around from the center of the point at which femtosecond laser was focused. The maximum refractive index change (Δ n) was estimated to be 2 × 10 -3. By the X- Y- Z scanning of sample, the embedded diffraction grating in PDMS plate was fabricated successfully using a femtosecond laser.

  2. Femtosecond laser pulse induced birefringence in optically isotropic glass.

    SciTech Connect

    Vawter, Gregory Allen; Luk, Ting Shan; Guo, Junpeng; Yang, Pin; Burns, George Robert

    2003-07-01

    We used a regeneratively amplified Ti:sapphire femtosecond laser to create optical birefringence in an isotropic glass medium. Between two crossed polarizers, regions modified by the femtosecond laser show bright transmission with respect to the dark background of the isotropic glass. This observation immediately suggests that these regions possess optical birefringence. The angular dependence of transmission through the laser-modified region is consistent with that of an optically birefringent material. Laser-induced birefringence is demonstrated in different glasses, including fused silica and borosilicate glass. Experimental results indicate that the optical axes of laser-induced birefringence can be controlled by the polarization direction of the femtosecond laser. The amount of laser-induced birefringence depends on the pulse energy level and number of accumulated pulses.

  3. Transient light absorption induced in glassby femtosecond laser pulses

    SciTech Connect

    Blonskii, I V; Kadan, V N; Pavlov, I A; Kryuchkov, N N; Shpotyuk, O I

    2009-10-31

    The dynamics of the transient light absorption induced in K8 optical glass by filamented femtosecond laser pulses have been studied using time-resolved transmitted-light microscopy at wavelengths from 450 to 700 nm. The transient absorption measured as a function of probe beam wavelength is compared to that predicted by the Drude plasma model. We conclude that, just 450 fs after a pump pulse, the transient absorption is dominated by transient electronic states, presumably, self-trapped excitons, with an excitation energy of 2.6 - 2.7 eV. These states are filled with free-carriers from a long-lived plasma, which acts as a 'carrier reservoir'. The relaxation of transient absorption has two components. The slow component, with {tau}{sub 1} {approx} 17-17.5 ps, is governed by the plasma thermalisation time, whereas the second, with {tau}{sub 1} >> 300 ps, is determined by the plasma lifetime. (nonlinear optical phenomena)

  4. Tuning near-field enhancements on an off-resonance nanorod dimer via temporally shaped femtosecond laser

    NASA Astrophysics Data System (ADS)

    Du, Guangqing; Yang, Qing; Chen, Feng; Lu, Yu; Wu, Yanmin; Ou, Yan; Hou, Xun

    2015-11-01

    We theoretically investigated ultrafast thermal dynamics tuning of near-field enhancements on an off-resonance gold nanorod dimer via temporally shaped femtosecond (fs) laser double pulses. The nonequilibrium thermal excitation is self-consistently coupled into a near-field scattering model for exploring the ultrafast near-field enhancement effects. It is revealed that the near electric-field localized within the gold nanorod dimer can be largely promoted via optimizing the temporal separation and the pulse energy ratio of temporally shaped femtosecond laser double pulses. The results are explained as thermal dynamics manipulation of plasmon resonances in the nanorod dimer via tailoring temporally shaped femtosecond laser. This study provides basic understanding for tuning near-field properties on poorly fabricated metallic nano-structures via temporally shaped femtosecond laser, which can find potential applications in the fields such as fs super-resolution near-field imaging, near-field optical tweezers, and fs photothermal therapy.

  5. Precise micromachining of materials using femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Garasz, K.; Tański, M.; Barbucha, R.; Kocik, M.

    2015-06-01

    We present the results of the experimental parametric study on efficiency, accuracy and quality of femtosecond laser micromachining of different materials. The laser micromachining process was performed with a solid-state Yb:KYW laser. The laser generates 500 fs pulses of three different wavelengths, repetition rate from 100 to 900 kHz and output power up to 50 W. This allows to perform a complex research for a wide range of parameters and materials. Laser micromachining is a process based on a laser ablation phenomenon, i.e. total evaporation of material from the target surface during laser irradiation. It is the most precise method of material removal. Applying a femtosecond laser in the process, allows the use of ultra short pulses, with a duration of 10-15 seconds, while maintaining a high laser power. The concentration of energy within a single pulse is sufficiently high to cause the detachment of particles from the irradiated target without any thermal interactions with the surrounding material. Therefore, the removal of the material occurs only in the laser focus. This allows to avoid most of the unwanted effects of the heat affected zone (HAZ). It has been established, that the quality of laser ablation process using femtosecond pulses is much higher than while using the long pulsed lasers (i.e. nanosecond). The use of femtosecond laser pulses creates therefore an attractive opportunity for high quality micromachining of many groups of materials.

  6. Laser-induced structural modifications in glass using a femtosecond laser and a CO2 laser

    NASA Astrophysics Data System (ADS)

    Tamaki, Takayuki; Nakazumi, Shinya; Nakamura, Keigo; Ono, Shunsuke

    2013-03-01

    In this paper, we present the investigation results on laser-induced structural modifications in a BK7 glass sample (OHARA, S-BSL7) by use of a femtosecond laser and a CO2 laser system. A femtosecond fiber laser system (wavelength: 1.06 μm, pulse duration: 250 fs) generates 1 MHz ultrashort laser pulses with a pulse energy up to 2 μJ, and a CO2 laser system generates CW (continuous wave) laser beam with a wavelength of 10.6 μm. Both laser beams were simultaneously irradiated on a BK7 glass substrate (30 mm × 5 mm × 0.7 mm thick). The structural modifications regions were created by translating the glass sample perpendicular to the laser axis with a distance of 1 mm and a scan speed of 0.1 mm/s. The dependence of structural modifications on the laser energy of femtosecond laser pulses and the power of CO2 laser beam were investigated. The results have demonstrated that the refractive index change region with the width of 3 μm was created with simultaneously irradiation of two laser beams although the structural modification regions, which were produced with only femtosecond laser pulses, were surface ablation. And the surface ablation regions were changed to the refractive index change regions as the energy of CO2 laser beam increase to more than 2W.

  7. Simultaneous identification of multi-combustion-intermediates of alkanol-air flames by femtosecond filament excitation for combustion sensing

    PubMed Central

    Li, Helong; Chu, Wei; Xu, Huailiang; Cheng, Ya; Chin, See-Leang; Yamanouchi, Kaoru; Sun, Hong-Bo

    2016-01-01

    Laser filamentation produced by the propagation of intense laser pulses in flames is opening up new possibility in application to combustion diagnostics that can provide useful information on understanding combustion processes, enhancing combustion efficiency and reducing pollutant products. Here we present simultaneous identification of multiple combustion intermediates by femtosecond filament excitation for five alkanol-air flames fueled by methanol, ethanol, n-propanol, n-butanol, and n-pentanol. We experimentally demonstrate that the intensities of filament-induced photoemission signals from the combustion intermediates C, C2, CH, CN increase with the increasing number of carbons in the fuel molecules, and the signal ratios between the intermediates (CH/C, CH/C2, CN/C, CH/C2, CN/CH) are different for different alkanol combustion flames. Our observation provides a way for sensing multiple combustion components by femtosecond filament excitation in various combustion conditions that strongly depend on the fuel species. PMID:27250021

  8. Simultaneous identification of multi-combustion-intermediates of alkanol-air flames by femtosecond filament excitation for combustion sensing.

    PubMed

    Li, Helong; Chu, Wei; Xu, Huailiang; Cheng, Ya; Chin, See-Leang; Yamanouchi, Kaoru; Sun, Hong-Bo

    2016-01-01

    Laser filamentation produced by the propagation of intense laser pulses in flames is opening up new possibility in application to combustion diagnostics that can provide useful information on understanding combustion processes, enhancing combustion efficiency and reducing pollutant products. Here we present simultaneous identification of multiple combustion intermediates by femtosecond filament excitation for five alkanol-air flames fueled by methanol, ethanol, n-propanol, n-butanol, and n-pentanol. We experimentally demonstrate that the intensities of filament-induced photoemission signals from the combustion intermediates C, C2, CH, CN increase with the increasing number of carbons in the fuel molecules, and the signal ratios between the intermediates (CH/C, CH/C2, CN/C, CH/C2, CN/CH) are different for different alkanol combustion flames. Our observation provides a way for sensing multiple combustion components by femtosecond filament excitation in various combustion conditions that strongly depend on the fuel species. PMID:27250021

  9. Simultaneous identification of multi-combustion-intermediates of alkanol-air flames by femtosecond filament excitation for combustion sensing

    NASA Astrophysics Data System (ADS)

    Li, Helong; Chu, Wei; Xu, Huailiang; Cheng, Ya; Chin, See-Leang; Yamanouchi, Kaoru; Sun, Hong-Bo

    2016-06-01

    Laser filamentation produced by the propagation of intense laser pulses in flames is opening up new possibility in application to combustion diagnostics that can provide useful information on understanding combustion processes, enhancing combustion efficiency and reducing pollutant products. Here we present simultaneous identification of multiple combustion intermediates by femtosecond filament excitation for five alkanol-air flames fueled by methanol, ethanol, n-propanol, n-butanol, and n-pentanol. We experimentally demonstrate that the intensities of filament-induced photoemission signals from the combustion intermediates C, C2, CH, CN increase with the increasing number of carbons in the fuel molecules, and the signal ratios between the intermediates (CH/C, CH/C2, CN/C, CH/C2, CN/CH) are different for different alkanol combustion flames. Our observation provides a way for sensing multiple combustion components by femtosecond filament excitation in various combustion conditions that strongly depend on the fuel species.

  10. Backward nitrogen lasing actions induced by femtosecond laser filamentation: influence of duration of gain

    NASA Astrophysics Data System (ADS)

    Xie, Hongqiang; Li, Guihua; Chu, Wei; Zeng, Bin; Yao, Jinping; Jing, Chenrui; Li, Ziting; Cheng, Ya

    2015-07-01

    We experimentally investigate generation of backward 357 nm N2 laser in a gas mixture of N2/Ar using 800 nm femtosecond laser pulses, and examine the involved gain dynamics based on pump-probe measurements. Our findings show that a minimum duration of gain in the excited N2 molecules is required for generating intense backward nitrogen lasers, which is ∼0.8 ns under our experimental conditions. The results shed new light on the mechanism for generating intense backward lasers from nitrogen molecules, which are highly in demand for high sensitivity remote atmospheric sensing application.

  11. Thermal melting and ablation of silicon by femtosecond laser radiation

    SciTech Connect

    Ionin, A. A.; Kudryashov, S. I. Seleznev, L. V.; Sinitsyn, D. V.; Bunkin, A. F.; Lednev, V. N.; Pershin, S. M.

    2013-03-15

    The space-time dynamics of thermal melting, subsurface cavitation, spallative ablation, and fragmentation ablation of the silicon surface excited by single IR femtosecond laser pulses is studied by timeresolved optical reflection microscopy. This dynamics is revealed by monitoring picosecond and (sub)nanosecond oscillations of probe pulse reflection, which is modulated by picosecond acoustic reverberations in the dynamically growing surface melt subjected to ablation and having another acoustic impedance, and by optical interference between the probe pulse replicas reflected by the spalled layer surface and the layer retained on the target surface. The acoustic reverberation periods change during the growth and ablation of the surface melt film, which makes it possible to quantitatively estimate the contributions of these processes to the thermal dynamics of the material surface. The results on the thermal dynamics of laser excitation are supported by dynamic measurements of the ablation parameters using noncontact ultrasonic diagnostics, scanning electron microscopy, atomic force microscopy, and optical interference microscopy of the modified regions appearing on the silicon surface after ablation.

  12. Thermal melting and ablation of silicon by femtosecond laser radiation

    NASA Astrophysics Data System (ADS)

    Ionin, A. A.; Kudryashov, S. I.; Seleznev, L. V.; Sinitsyn, D. V.; Bunkin, A. F.; Lednev, V. N.; Pershin, S. M.

    2013-03-01

    The space-time dynamics of thermal melting, subsurface cavitation, spallative ablation, and fragmentation ablation of the silicon surface excited by single IR femtosecond laser pulses is studied by timeresolved optical reflection microscopy. This dynamics is revealed by monitoring picosecond and (sub)nanosecond oscillations of probe pulse reflection, which is modulated by picosecond acoustic reverberations in the dynamically growing surface melt subjected to ablation and having another acoustic impedance, and by optical interference between the probe pulse replicas reflected by the spalled layer surface and the layer retained on the target surface. The acoustic reverberation periods change during the growth and ablation of the surface melt film, which makes it possible to quantitatively estimate the contributions of these processes to the thermal dynamics of the material surface. The results on the thermal dynamics of laser excitation are supported by dynamic measurements of the ablation parameters using noncontact ultrasonic diagnostics, scanning electron microscopy, atomic force microscopy, and optical interference microscopy of the modified regions appearing on the silicon surface after ablation.

  13. Phase transitions in femtosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Povarnitsyn, Mikhail E.; Khishchenko, Konstantin V.; Levashov, Pavel R.

    2009-03-01

    In this study we simulate an interaction of femtosecond laser pulses (100 fs, 800 nm, 0.1-10 J/cm 2) with metal targets of Al, Au, Cu, and Ni. For analysis of laser-induced phase transitions, melting and shock waves propagation as well as material decomposition we use an Eulerian hydrocode in conjunction with a thermodynamically complete two-temperature equation of state with stable and metastable phases. Isochoric heating, material evaporation from the free surface of the target and fast propagation of the melting and shock waves are observed. On rarefaction the liquid phase becomes metastable and its lifetime is estimated using the theory of homogeneous nucleation. Mechanical spallation of the target material at high strain rates is also possible as a result of void growth and confluence. In our simulation several ablation mechanisms are taken into account but the main issue of the material is found to originate from the metastable liquid state. It can be decomposed either into a liquid-gas mixture in the vicinity of the critical point, or into droplets at high strain rates and negative pressure. The simulation results are in agreement with available experimental findings.

  14. High power femtosecond lasers at ELI-NP

    SciTech Connect

    Dabu, Razvan

    2015-02-24

    Specifications of the high power laser system (HPLS) designed for nuclear physics experiments are presented. Configuration of the 2 × 10 PW femtosecond laser system is described. In order to reach the required laser beam parameters, advanced laser techniques are proposed for the HPLS: parametric amplification and cross-polarized wave generation for the intensity contrast improvement and spectral broadening, acousto-optic programmable filters to compensate for spectral phase dispersion, optical filters for spectrum management, combined methods for transversal laser suppression.

  15. Terahertz surface emission from Cu{sub 2}ZnSnSe{sub 4} thin film photovoltaic material excited by femtosecond laser pulses

    SciTech Connect

    Zhao, Zhenyu Han, Qifeng; Zhang, Jingtao; Shi, Wangzhou; Niehues, Gudrun; Funkner, Stefan; Yamamoto, Kohji; Tani, Masahiko; Estacio, Elmer; Guo, Qixin

    2014-12-08

    We observed efficient terahertz (THz) emission from sol-gel grown Cu{sub 2}ZnSnSe{sub 4} (CZTSe) thin films using THz time domain spectroscopy technique. The THz emission bandwidth exceeds 2 THz with a dynamic range of 20 dB in the amplitude spectrum. The THz emission amplitude from CZTSe is found to be independent of external magnetic fields. Comparing the polarity of THz emission waveforms of CZTSe and GaAs, we suggest that the acceleration of photo-carriers in the surface accumulation layer of CZTSe is the dominant mechanism of radiation emission. Optical excitation fluence dependence measurements show that the saturation fluence of the CZTSe thin film reaches 1.48 μJ/cm{sup 2}.

  16. 100 W average power femtosecond laser at 343 nm.

    PubMed

    Rothhardt, Jan; Rothhardt, Carolin; Müller, Michael; Klenke, Arno; Kienel, Marco; Demmler, Stefan; Elsmann, Tino; Rothhardt, Manfred; Limpert, Jens; Tünnermann, Andreas

    2016-04-15

    We present a femtosecond laser system delivering up to 100 W of average power at 343 nm. The laser system employs a Yb-based femtosecond fiber laser and subsequent second- and third-harmonic generation in beta barium borate (BBO) crystals. Thermal gradients within these BBO crystals are mitigated by sapphire heat spreaders directly bonded to the front and back surface of the crystals. Thus, a nearly diffraction-limited beam quality (M2 < 1.4) is achieved, despite the high thermal load to the nonlinear crystals. This laser source is expected to push many industrial and scientific applications in the future. PMID:27082370

  17. Holographic femtosecond laser manipulation for advanced material processing

    NASA Astrophysics Data System (ADS)

    Hasegawa, Satoshi; Hayasaki, Yoshio

    2016-02-01

    Parallel femtosecond laser processing using a computer-generated hologram displayed on a spatial light modulator, known as holographic femtosecond laser processing, provides the advantages of high throughput and high-energy use efficiency. Therefore, it has been widely used in many applications, including laser material processing, two-photon polymerization, two-photon microscopy, and optical manipulation of biological cells. In this paper, we review the development of holographic femtosecond laser processing over the past few years from the perspective of wavefront and polarization modulation. In particular, line-shaped and vector-wave femtosecond laser processing are addressed. These beam-shaping techniques are useful for performing large-area machining in laser cutting, peeling, and grooving of materials and for high-speed fabrication of the complex nanostructures that are applied to material-surface texturing to control tribological properties, wettability, reflectance, and retardance. Furthermore, issues related to the nonuniformity of diffraction light intensity in optical reconstruction and wavelength dispersion from a computer-generated hologram are addressed. As a result, large-scale holographic femtosecond laser processing over 1000 diffraction spots was successfully demonstrated on a glass sample.

  18. All-femtosecond laser-assisted in situ keratomileusis

    NASA Astrophysics Data System (ADS)

    Gabryte, Egle; Danieliene, Egle; Vaiceliunaite, Agne; Ruksenas, Osvaldas; Vengris, Mikas; Danielius, Romualdas

    2013-03-01

    We present a femtosecond solid-state Yb:KGW laser system capable of performing the complete laser-assisted in situ keratomileusis (LASIK) ophthalmic procedure. The fundamental infrared radiation (IR) is used to create the corneal flap, and subsequently the corneal stromal ablation is performed using the ultraviolet (UV) pulses of the fifth harmonic. The heating of cornea, ablated surface quality, and healing outcomes of the surgeries performed using the femtosecond laser system are investigated by both ex vivo and in vivo experiments and compared to the results of conventional clinical ArF excimer laser application. The results of this research indicate the feasibility of clinical application of femtosecond UV lasers for LASIK procedure.

  19. Ultrafast Space-time and Spectrum-time Resolved Diagnostics of Multicharged Femtosecond Laser Microplasma

    NASA Astrophysics Data System (ADS)

    Garnov, S. V.; Bukin, V. V.; Malyutin, A. A.; Strelkov, V. V.

    2009-07-01

    We present the review of the recent experimental studies of fundamental mechanisms of femtosecond laser plasma formation and evolution performed in A. M. Prokhorov General Physics Institute of Russian Academy of Sciences. The main object we dealt with was the micro-sized plasma produced in gases with high intensity (up to 5×1017 W/cm2), tightly focused (to a few microns in diameter) IR and UV femtosecond laser pulses. The main attention in the experiments was paid to the initial stage of microplasma formation and evolution characterized by strong laser-plasma coupling resulting in efficient ionization and heating of the medium, distortion of laser beam, and nonlinear spectral conversion of laser radiation to the continuum and laser harmonics. Using a precise pump-probe micro-interferometric technique the dynamics of plasma was studied with femtosecond time-resolution in a wide density range—from a minimal detectable electron concentration (1019 cm-3) to the almost total (down to nuclei) ionization of ions occurred under femtosecond excitation. The obtained time-dependences of plasma density were analyzed. It was observed, for the first time, that a characteristic time of femtosecond laser plasma formation in gases considerably (in times) exceeds the duration of the pump laser pulse. This postionization process is attributed to impact ionization of plasma by hot electrons. We compare the results of the experiments with what the developed theory predicts. Using an ultrafast streak-camera-based spectroscopy technique the temporal evolution of microplasma emission and the dynamics of spectral lines formation in UV-visible range were studied with picosecond time-resolution.

  20. Femtosecond laser surface ablation of transparent solids: understanding the bulk filamentation damage

    NASA Astrophysics Data System (ADS)

    Kudryashov, Sergey I.; Joglekar, A.; Mourou, G.; Ionin, A. A.; Zvorykin, V. D.; Hunt, A. J.

    2007-06-01

    Direct SEM examination reveals a complex nanoscale structure of deep narrow central channels within shallow wide external craters produced by single-shot high-intensity femtosecond laser radiation on Corning 0211 glass and sapphire surfaces. These internal narrow channels are not expected from ordinary surface melt spallation and expulsion processes characteristic of the external surface nanocraters, but exhibit nearly the same appearance threshold. Surprisingly, the nanochannel radiuses rapidly saturate versus incident laser intensity indicating bulk rather than surface character of laser energy deposition, in contrast to the external craters extending versus laser intensity in a regular manner. These facts may be explained by channeling of electromagnetic radiation by near-surface ablative filamentary propagation of intense femtosecond laser pulses in the highly electronically excited dielectrics, by spherical aberrations in the surface layer, or deep drilling of the samples by short-wavelength Bremsstrahlung radiation of relatively hot surface electron-hole or electron-ion plasma. The double structure of ablated surface nano-features is consistent with similar structures observed for bulk damage features fabricated by femtosecond laser pulses at supercritical laser powers, but much lower laser intensities.

  1. Comparative study of femtosecond and nanosecond laser ablation for propulsion applications

    NASA Astrophysics Data System (ADS)

    Ionin, A. A.; Kudryashov, S. I.; Makarov, S. V.; Seleznev, L. V.; Sinitsyn, D. V.

    2012-07-01

    Dependences of absolute vapor/plasma pressure on femtosecond and nanosecond laser intensities were obtained for graphitic materials using a non-contact broadband ultrasonic technique, and propulsion prospects of femtosecond and nanosecond laser launching approaches are discussed.

  2. Mid-infrared ultrafast laser pulses induced third harmonic generation in nitrogen molecules on an excited state

    PubMed Central

    Xie, Hongqiang; Li, Guihua; Yao, Jinping; Chu, Wei; Li, Ziting; Zeng, Bin; Wang, Zhanshan; Cheng, Ya

    2015-01-01

    We report on generation of third harmonic from nitrogen molecules on the excited state with a weak driver laser pulse at a mid-infrared wavelength. The excited nitrogen molecules are generated using a circularly polarized intense femtosecond pulse which produces energetic electrons by photoionization to realize collisional excitation of nitrogen molecules. Furthermore, since the third harmonic is generated using a pump-probe scheme, it enables investigation of the excited-state dynamics of nitrogen molecules produced under different conditions. We also perform a comparative investigation in excited argon atoms, revealing different decay dynamics of the molecules and atoms from the excited states in femtosecond laser induced filaments. PMID:26522886

  3. Flexible gratings fabricated in polymeric plate using femtosecond laser irradiation

    NASA Astrophysics Data System (ADS)

    Park, Jung-Kyu; Cho, Sung-Hak

    2011-05-01

    Flexible gratings embedded in poly-dimethlysiloxane (PDMS) were fabricated using femtosecond laser pulses. Photo-induced gratings in a flexible PDMS plate were directly written by a high-intensity femtosecond (130 fs) Ti: Sapphire laser ( λp=800 nm). Refractive index modifications with 4 μm diameters were photo-induced after irradiation of the femtosecond pulses with peak intensities of more than 1×10 11 W/cm 2. The graded refractive index profile was fabricated to be symmetric around the center of the focal point. The diffraction efficiency of the grating samples is measured by an He-Ne laser. The maximum value of refractive index change (Δ n) in the laser-modified regions was estimated to be approximately 3.17×10 -3.

  4. Fission fragment excited laser system

    DOEpatents

    McArthur, David A.; Tollefsrud, Philip B.

    1976-01-01

    A laser system and method for exciting lasing action in a molecular gas lasing medium which includes cooling the lasing medium to a temperature below about 150 K and injecting fission fragments through the lasing medium so as to preferentially excite low lying vibrational levels of the medium and to cause population inversions therein. The cooled gas lasing medium should have a mass areal density of about 5 .times. 10.sup.-.sup.3 grams/square centimeter, relaxation times of greater than 50 microseconds, and a broad range of excitable vibrational levels which are excitable by molecular collisions.

  5. All-fiber normal-dispersion femtosecond laser

    PubMed Central

    Kieu, K.; Wise, F. W.

    2011-01-01

    Spectral filtering of a chirped pulse can be a strong pulse-shaping mechanism in all-normal-dispersion femtosecond fiber lasers. We report an implementation of such a laser that employs only fiber-format components. The Yb-doped fiber laser includes a fiber filter, and a saturable absorber based on carbon nanotubes. The laser generates 1.5-ps, 3-nJ pulses that can be dechirped to 250 fs duration outside the cavity. PMID:18648465

  6. [INVITED] Control of femtosecond pulsed laser ablation and deposition by temporal pulse shaping

    NASA Astrophysics Data System (ADS)

    Garrelie, Florence; Bourquard, Florent; Loir, Anne--Sophie; Donnet, Christophe; Colombier, Jean-Philippe

    2016-04-01

    This study explores the effects of temporal laser pulse shaping on femtosecond pulsed laser deposition (PLD). The potential of laser pulses temporally tailored on ultrafast time scales is used to control the expansion and the excitation degree of ablation products including atomic species and nanoparticles. The ablation plume generated by temporally shaped femtosecond pulsed laser ablation of aluminum and graphite targets is studied by in situ optical diagnostic methods. Taking advantage of automated pulse shaping techniques, an adaptive procedure based on spectroscopic feedback regulates the irradiance for the enhancement of typical plasma features. Thin films elaborated by unshaped femtosecond laser pulses and by optimized sequence indicate that the nanoparticles generation efficiency is strongly influenced by the temporal shaping of the laser irradiation. The ablation processes leading either to the generation of the nanoparticles either to the formation of plasma can be favored by using a temporal shaping of the laser pulse. Insights are given on the possibility to control the quantity of the nanoparticles. The temporal laser pulse shaping is shown also to strongly modify the laser-induced plasma contents and kinetics for graphite ablation. Temporal pulse shaping proves its capability to reduce the number of slow radicals while increasing the proportion of monomers, with the addition of ionized species in front of the plume. This modification of the composition and kinetics of plumes in graphite ablation using temporal laser pulse shaping is discussed in terms of modification of the structural properties of deposited Diamond-Like Carbon films (DLC). This gives rise to a better understanding of the growth processes involved in femtosecond-PLD and picosecond-PLD of DLC suggesting the importance of neutral C atoms, which are responsible for the subplantation process.

  7. Robust authentication through stochastic femtosecond laser filament induced scattering surfaces

    NASA Astrophysics Data System (ADS)

    Zhang, Haisu; Tzortzakis, Stelios

    2016-05-01

    We demonstrate a reliable authentication method by femtosecond laser filament induced scattering surfaces. The stochastic nonlinear laser fabrication nature results in unique authentication robust properties. This work provides a simple and viable solution for practical applications in product authentication, while also opens the way for incorporating such elements in transparent media and coupling those in integrated optical circuits.

  8. Femtosecond Laser Fabrication of Monolithically Integrated Microfluidic Sensors in Glass

    PubMed Central

    He, Fei; Liao, Yang; Lin, Jintian; Song, Jiangxin; Qiao, Lingling; Cheng, Ya; Sugioka, Koji

    2014-01-01

    Femtosecond lasers have revolutionized the processing of materials, since their ultrashort pulse width and extremely high peak intensity allows high-quality micro- and nanofabrication of three-dimensional (3D) structures. This unique capability opens up a new route for fabrication of microfluidic sensors for biochemical applications. The present paper presents a comprehensive review of recent advancements in femtosecond laser processing of glass for a variety of microfluidic sensor applications. These include 3D integration of micro-/nanofluidic, optofluidic, electrofluidic, surface-enhanced Raman-scattering devices, in addition to fabrication of devices for microfluidic bioassays and lab-on-fiber sensors. This paper describes the unique characteristics of femtosecond laser processing and the basic concepts involved in femtosecond laser direct writing. Advanced spatiotemporal beam shaping methods are also discussed. Typical examples of microfluidic sensors fabricated using femtosecond lasers are then highlighted, and their applications in chemical and biological sensing are described. Finally, a summary of the technology is given and the outlook for further developments in this field is considered. PMID:25330047

  9. Femtosecond laser fabrication of monolithically integrated microfluidic sensors in glass.

    PubMed

    He, Fei; Liao, Yang; Lin, Jintian; Song, Jiangxin; Qiao, Lingling; Cheng, Ya; Sugioka, Koji

    2014-01-01

    Femtosecond lasers have revolutionized the processing of materials, since their ultrashort pulse width and extremely high peak intensity allows high-quality micro- and nanofabrication of three-dimensional (3D) structures. This unique capability opens up a new route for fabrication of microfluidic sensors for biochemical applications. The present paper presents a comprehensive review of recent advancements in femtosecond laser processing of glass for a variety of microfluidic sensor applications. These include 3D integration of micro-/nanofluidic, optofluidic, electrofluidic, surface-enhanced Raman-scattering devices, in addition to fabrication of devices for microfluidic bioassays and lab-on-fiber sensors. This paper describes the unique characteristics of femtosecond laser processing and the basic concepts involved in femtosecond laser direct writing. Advanced spatiotemporal beam shaping methods are also discussed. Typical examples of microfluidic sensors fabricated using femtosecond lasers are then highlighted, and their applications in chemical and biological sensing are described. Finally, a summary of the technology is given and the outlook for further developments in this field is considered. PMID:25330047

  10. Femtosecond Fiber Lasers Based on Dissipative Processes for Nonlinear Microscopy.

    PubMed

    Wise, Frank W

    2012-01-01

    Recent progress in the development of femtosecond-pulse fiber lasers with parameters appropriate for nonlinear microscopy is reviewed. Pulse-shaping in lasers with only normal-dispersion components is briefly described, and the performance of the resulting lasers is summarized. Fiber lasers based on the formation of dissipative solitons now offer performance competitive with that of solid-state lasers, but with the benefits of the fiber medium. Lasers based on self-similar pulse evolution in the gain section of a laser also offer a combination of short pulse duration and high pulse energy that will be attractive for applications in nonlinear bioimaging. PMID:23869163

  11. Femtosecond Fiber Lasers Based on Dissipative Processes for Nonlinear Microscopy

    PubMed Central

    Wise, Frank W.

    2012-01-01

    Recent progress in the development of femtosecond-pulse fiber lasers with parameters appropriate for nonlinear microscopy is reviewed. Pulse-shaping in lasers with only normal-dispersion components is briefly described, and the performance of the resulting lasers is summarized. Fiber lasers based on the formation of dissipative solitons now offer performance competitive with that of solid-state lasers, but with the benefits of the fiber medium. Lasers based on self-similar pulse evolution in the gain section of a laser also offer a combination of short pulse duration and high pulse energy that will be attractive for applications in nonlinear bioimaging. PMID:23869163

  12. Extreme rotational excitation with long sequences of intense femtosecond pulses

    NASA Astrophysics Data System (ADS)

    Bitter, Martin; Milner, Valery

    2015-05-01

    We present an experimental approach to rotational excitation of molecules capable of creating ultra-broad rotational wave packets inaccessible with other methods, including the technique of an optical centrifuge. Our approach is based on an impulsive excitation by a long sequence of more than 20 laser pulses with peak intensities within each pulse exceeding 1013 W/cm2. The method overcomes the three obstacles on the way towards extreme rotational excitation: (i) the strong-field effects associated with a single-pulse scheme, (ii) the centrifugal distortion and Anderson localization in a multi-pulse approach, and (iii) the bandwidth limitation of an optical centrifuge. In oxygen, we demonstrate the ability to populate rotational states with an angular momentum N ~ 250 ℏ , more than twice higher than previously achieved with the centrifuge. Precise timing of the pulses and their spectral broadening due to molecular phase modulation, essential to this technique, are demonstrated and discussed.

  13. Enhancement of peak intensity in a filament core with spatiotemporally focused femtosecond laser pulses

    SciTech Connect

    Zeng Bin; Chu Wei; Li Guihua; Zhang Haisu; Ni Jielei; Gao Hui; Liu Weiwei; Yao Jinping; Cheng Ya; Xu Zhizhan; Chin, See Leang

    2011-12-15

    We demonstrate that the peak intensity in the filament core, which is inherently limited by the intensity clamping effect during femtosecond laser filamentation, can be significantly enhanced using spatiotemporally focused femtosecond laser pulses. In addition, the filament length obtained by spatiotemporally focused femtosecond laser pulses is {approx}25 times shorter than that obtained by a conventional focusing scheme, resulting in improved high spatial resolution.

  14. Substantiation of the mechanism of biphoton nonresonance excitation of molecules of bacteriochlorophyll of purple bacteria by femtosecond pulses

    NASA Astrophysics Data System (ADS)

    Borisov, A. Yu.

    2010-11-01

    In a series of published experimental works, there has been observed nonresonance biphoton excitation, by femtosecond IR pulses (1250-1500 nm) of molecules of bacteriochlorophyll-a and the pigment in the composition of light-absorbing natural "antenna" complexes of photosynthesizing purple bacteria. The authors of these works believe that IR quanta excite hypothetical forbidden levels of pigments of these bacteria in the dual frequency range of 625-750 nm. In this study, an alternative mechanism of intramolecular electron transport apparently responsible for this phenomenon is suggested and substantiated. The mechanism should manifest itself in powerful electric fields, which are achieved in the pulses of picofemtosecond lasers.

  15. Monitoring femtosecond laser microscopic photothermolysis with multimodal microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Huang, Yimei; Lui, Harvey; Zhao, Jianhua; McLean, David I.; Zeng, Haishan

    2016-02-01

    Photothermolysis induced by femtosecond (fs) lasers may be a promising modality in dermatology because of its advantages of high precision due to multiphoton absorption and deeper penetration due to the use of near infrared wavelengths. Although multiphoton absorption nonlinear effects are capable of precision targeting, the femtosecond laser photothermolysis could still have effects beyond the targeted area if a sufficiently high dose of laser light is used. Such unintended effects could be minimized by real time monitoring photothermolysis during the treatment. Targeted photothermolytic treatment of ex vivo mouse skin dermis was performed with tightly focused fs laser beams. Images of reflectance confocal microscopy (RCM), second harmonic generation (SHG), and two-photon fluorescence (TPF) of the mouse skins were obtained with integrated multimodal microscopy before, during, and after the laser treatment. The RCM, SHG, and TPF signal intensities of the treatment areas changed after high power femtosecond laser irradiation. The intensities of the RCM and SHG signals decreased when the tissue was damaged, while the intensity of the TPF signal increased when the photothermolysis was achieved. Moreover, the TPF signal was more susceptible to the degree of the photothermolysis than the RCM and SHG signals. The results suggested that multimodal microscopy is a potentially useful tool to monitor and assess the femtosecond laser treatment of the skin to achieve microscopic photothermolysis with high precision.

  16. Femtosecond lasers as novel tool in dental surgery

    NASA Astrophysics Data System (ADS)

    Serbin, J.; Bauer, T.; Fallnich, C.; Kasenbacher, A.; Arnold, W. H.

    2002-09-01

    There is a proven potential of femtosecond lasers for medical applications like cornea shaping [1], ear surgery or dental surgery [2]. Minimal invasive treatment of carious tissue has become an increasingly important aspect in modern dentistry. State of the art methods like grinding using turbine-driven drills or ablation by Er:YAG lasers [3] generate mechanical and thermal stress, thus generating micro cracks of several tens of microns in the enamel [4]. These cracks are starting points for new carious attacks and have to be avoided for long term success of the dental treatment. By using femtosecond lasers (1 fs=10 -15 s) for ablating dental tissue, these drawbacks can be overcome. We have demonstrated that femtosecond laser ablation offers a tool for crack-free generation of cavities in dental tissue. Furthermore, spectral analysis of the laser induced plasma has been used to indicate carious oral tissue. Our latest results on femtosecond laser dentistry will be presented, demonstrating the great potential of this kind of laser technology in medicine.

  17. Femtosecond stimulated Raman spectroscopy as a tool to detect molecular vibrations in ground and excited electronic states.

    PubMed

    Gelin, Maxim F; Domcke, Wolfgang; Rao, B Jayachander

    2016-05-14

    We give a detailed theoretical analysis of the simplest variant of femtosecond stimulated Raman spectroscopy, where a picosecond Raman pump pulse and a femtosecond Raman probe pulse are applied resonantly to a chromophore in thermal equilibrium in the ground electronic state. We demonstrate that this technique is capable of the detection of dephasing-free Raman-like lines revealing vibrational modes not only in the electronic ground state but also in the excited electronic state of the chromophore. The analytical results obtained with simplifying assumptions for the shape of the laser pulses are substantiated by numerical simulations with realistic laser pulses, employing the equation-of-motion phase-matching approach. PMID:27179484

  18. Programmable femtosecond laser pulses in the ultraviolet

    SciTech Connect

    Hacker, M.; Feurer, T.; Sauerbrey, R.; Lucza, T.; Szabo, G.

    2001-06-01

    Using a combination of a zero-dispersion compressor and spectrally compensated sum-frequency generation, we have produced amplitude-modulated femtosecond pulses in the UV at 200 nm. {copyright} 2001 Optical Society of America

  19. Femtosecond laser three-dimensional micro- and nanofabrication

    SciTech Connect

    Sugioka, Koji; Cheng, Ya

    2014-12-15

    The rapid development of the femtosecond laser has revolutionized materials processing due to its unique characteristics of ultrashort pulse width and extremely high peak intensity. The short pulse width suppresses the formation of a heat-affected zone, which is vital for ultrahigh precision fabrication, whereas the high peak intensity allows nonlinear interactions such as multiphoton absorption and tunneling ionization to be induced in transparent materials, which provides versatility in terms of the materials that can be processed. More interestingly, irradiation with tightly focused femtosecond laser pulses inside transparent materials makes three-dimensional (3D) micro- and nanofabrication available due to efficient confinement of the nonlinear interactions within the focal volume. Additive manufacturing (stereolithography) based on multiphoton absorption (two-photon polymerization) enables the fabrication of 3D polymer micro- and nanostructures for photonic devices, micro- and nanomachines, and microfluidic devices, and has applications for biomedical and tissue engineering. Subtractive manufacturing based on internal modification and fabrication can realize the direct fabrication of 3D microfluidics, micromechanics, microelectronics, and photonic microcomponents in glass. These microcomponents can be easily integrated in a single glass microchip by a simple procedure using a femtosecond laser to realize more functional microdevices, such as optofluidics and integrated photonic microdevices. The highly localized multiphoton absorption of a tightly focused femtosecond laser in glass can also induce strong absorption only at the interface of two closely stacked glass substrates. Consequently, glass bonding can be performed based on fusion welding with femtosecond laser irradiation, which provides the potential for applications in electronics, optics, microelectromechanical systems, medical devices, microfluidic devices, and small satellites. This review paper

  20. Femtosecond laser three-dimensional micro- and nanofabrication

    NASA Astrophysics Data System (ADS)

    Sugioka, Koji; Cheng, Ya

    2014-12-01

    The rapid development of the femtosecond laser has revolutionized materials processing due to its unique characteristics of ultrashort pulse width and extremely high peak intensity. The short pulse width suppresses the formation of a heat-affected zone, which is vital for ultrahigh precision fabrication, whereas the high peak intensity allows nonlinear interactions such as multiphoton absorption and tunneling ionization to be induced in transparent materials, which provides versatility in terms of the materials that can be processed. More interestingly, irradiation with tightly focused femtosecond laser pulses inside transparent materials makes three-dimensional (3D) micro- and nanofabrication available due to efficient confinement of the nonlinear interactions within the focal volume. Additive manufacturing (stereolithography) based on multiphoton absorption (two-photon polymerization) enables the fabrication of 3D polymer micro- and nanostructures for photonic devices, micro- and nanomachines, and microfluidic devices, and has applications for biomedical and tissue engineering. Subtractive manufacturing based on internal modification and fabrication can realize the direct fabrication of 3D microfluidics, micromechanics, microelectronics, and photonic microcomponents in glass. These microcomponents can be easily integrated in a single glass microchip by a simple procedure using a femtosecond laser to realize more functional microdevices, such as optofluidics and integrated photonic microdevices. The highly localized multiphoton absorption of a tightly focused femtosecond laser in glass can also induce strong absorption only at the interface of two closely stacked glass substrates. Consequently, glass bonding can be performed based on fusion welding with femtosecond laser irradiation, which provides the potential for applications in electronics, optics, microelectromechanical systems, medical devices, microfluidic devices, and small satellites. This review paper

  1. Multi-color femtosecond source for simultaneous excitation of multiple fluorescent proteins in two-photon fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Wang, Ke; Liu, Tzu-Ming; Wu, Juwell; Horton, Nicholas G.; Lin, Charles P.; Xu, Chris

    2013-02-01

    Simultaneous imaging of cells expressing multiple fluorescent proteins (FPs) is of particular interest in applications such as mapping neural circuits, tracking multiple immune cell populations, etc. To visualize both in vivo and ex vivo tissue morphology and physiology at a cellular level deep within scattering tissues, two-photon fluorescence microscopy (2PM) is a powerful tool that has found wide applications. However, simultaneous imaging of multiple FPs with 2PM is greatly hampered by the lack of proper ultrafast lasers offering multi-color femtosecond pulses, each targeting the two-photon absorption peak of a different FP. Here we demonstrate simultaneous two-photon fluorescence excitation of RFP, YFP, and CFP in human melanoma cells engineered to express a "rainbow" pallet of colors, using a novel fiber-based source with energetic, three-color femtosecond pulses. The three-color pulses, centered at 775 nm, 864 nm and 950 nm, are obtained through second harmonic generation of the 1550 nm pump laser and SHG of the solitons at 1728 nm and 1900 nm generated through soliton self-frequency shift (SSFS) of the pump laser in a large-mode-area (LMA) fiber. The resulting wavelengths are well matched to the two-photon absorption peaks of the three FPs for efficient excitation. Our results demonstrate that multi-color femtosecond pulse generation using SSFS and a turn-key, fiber-based femtosecond laser can fulfill the requirements for simultaneous imaging of multiple FPs in 2PM, opening new opportunities for a wide range of biological applications where non-invasive, high-resolution imaging of multiple fluorescent indicators is required.

  2. Stabilization of femtosecond laser frequency combs with subhertz residual linewidths.

    PubMed

    Bartels, A; Oates, C W; Hollberg, L; Diddams, S A

    2004-05-15

    We demonstrate that femtosecond laser frequency combs (FLFCs) can have a subhertz linewidth across their entire emission spectra when they are phase locked to a reference laser with a similarly narrow linewidth. Correspondingly, the coherence time of the comb components relative to the reference laser can be of the order of a few seconds. Thus we are able to detect high-contrast spectral interferograms at up to 10-s integration time between two FLFCs locked to a common optical reference. PMID:15181992

  3. Resynchronization in neuronal network divided by femtosecond laser processing.

    PubMed

    Hosokawa, Chie; Kudoh, Suguru N; Kiyohara, Ai; Taguchi, Takahisa

    2008-05-01

    We demonstrated scission of a living neuronal network on multielectrode arrays (MEAs) using a focused femtosecond laser and evaluated the resynchronization of spontaneous electrical activity within the network. By an irradiation of femtosecond laser into hippocampal neurons cultured on a multielectrode array dish, neurites were cut at the focal point. After the irradiation, synchronization of neuronal activity within the network drastically decreased over the divided area, indicating diminished functional connections between neurons. Cross-correlation analysis revealed that spontaneous activity between the divided areas gradually resynchronized within 10 days. These findings indicate that hippocampal neurons have the potential to regenerate functional connections and to reconstruct a network by self-assembly. PMID:18418255

  4. Femtosecond Synchronization of Laser Systems for the LCLS

    SciTech Connect

    Byrd, John; Doolittle, Lawrence; Huang, Gang; Staples, John; Wilcox, Russell; Arthur, John; Frisch, Josef; White, William; /SLAC

    2012-08-24

    The scientific potential of femtosecond x-ray pulses at linac-driven free-electron lasers such as the Linac Coherent Light Source is tremendous. Time-resolved pump-probe experiments require a measure of the relative arrival time of each x-ray pulse with respect to the experimental pump laser. An optical timing system based on stabilized fiber links has been developed for the LCLS to provide this synchronization. Preliminary results show synchronization of the installed stabilized links at the sub-20-femtosecond level. We present details of the implementation at LCLS and potential for future development.

  5. Polarization dependent formation of femtosecond laser-induced periodic surface structures near stepped features

    SciTech Connect

    Murphy, Ryan D.; Torralva, Ben; Adams, David P.; Yalisove, Steven M.

    2014-06-09

    Laser-induced periodic surface structures (LIPSS) are formed near 110 nm-tall Au microstructured edges on Si substrates after single-pulse femtosecond irradiation with a 150 fs pulse centered near a 780 nm wavelength. We investigate the contributions of Fresnel diffraction from step-edges and surface plasmon polariton (SPP) excitation to LIPSS formation on Au and Si surfaces. For certain laser polarization vector orientations, LIPSS formation is dominated by SPP excitation; however, when SPP excitation is minimized, Fresnel diffraction dominates. The LIPSS orientation and period distributions are shown to depend on which mechanism is activated. These results support previous observations of the laser polarization vector influencing LIPSS formation on bulk surfaces.

  6. Wavelength Effects In Femtosecond Pulsed Laser Ablation And Deposition

    SciTech Connect

    Castillejo, Marta; Nalda, Rebeca de; Oujja, Mohamed; Sanz, Mikel

    2010-10-08

    Ultrafast pulsed laser irradiation of solid materials is highly attractive for the micro-and nanostructuring of substrates and for the fabrication of nanostructured deposits. Femtosecond laser pulses promote efficient material removal with reduced heat transfer and high deposition rates of nanometer scale particles free of microscopic particulates. Most of the studies to date have been performed with light pulses centered around the peak wavelength of the Titanium:Sapphire laser, around 800 nm. Analysis of the process over a broader range of wavelengths can provide important information about the processes involved and serve as experimental tests for advanced theoretical models. We report on our current investigations on the effect that laser wavelength of femtosecond pulses has on the superficial nanostructuring induced on biopolymer substrates, and on the characteristics of nanostructured deposits grown by pulsed laser deposition from semiconductor targets.

  7. Femtosecond laser system for micromachining of the materials

    NASA Astrophysics Data System (ADS)

    Barbucha, R.; Kocik, M.; Tański, M.; Garasz, K.; Petrov, T.; Radzewicz, C.

    2015-01-01

    Femtosecond-pulse laser micromachining is based on a laser ablation phenomenon, i.e. total evaporation of material from the target surface during laser irradiation. It is the most precise method of material removal. Moreover it does not require any post processing. Removal of the material occurs only in the laser focus, since the lack of thermal interaction, neither heat affected zone (HAZ) nor debris ocur. Research results have shown that shortening the duration of the laser pulse significantly reduces HAZ, which translates into the high quality of the machined structures. It is the main argument for the use of femtosecond-pulse lasers in the precise micromachining. In this paper, a femtosecond laser system consisting of a solid-state oscillator and the ytterbium-doped pulse fiber amplifier are presented. Average beam power at 343 nm with mode-locking is 4W @25A and pulse length at the oscillator output is 500 fs. Laser micro and nano-machining has found application in different fields. It's primary use is industrial micromachining of metals, ceramics, polymers, glass, biological material for medical use in eye surgery, and photovoltaic cells.

  8. Femtosecond laser microchannels fabrication based on electrons dynamics control using temporally or spatially shaped pulses

    NASA Astrophysics Data System (ADS)

    Yan, Xueliang; Hu, Jie; Li, Xiaowei; Xia, Bo; Liu, Pengjun; Lu, Yongfeng; Jiang, Lan

    2014-11-01

    With ultrashort pulse durations and ultrahigh power densities, femtosecond laser presents unique advantages of high precision and high quality fabrication of microchannels in transparent materials. In our study, by shaping femtosecond laser pulse energy distribution in temporal or spatial domains, localized transient electrons dynamics and the subsequent processes, such as phase changes, can be controlled, leading to the dramatic increases in the capability of femtosecond laser microchannels fabrication. The temporally shaped femtosecond laser pulse trains can significantly enhance the material removal rate in both water-assisted femtosecond laser drilling and femtosecond laser irradiation followed by chemical etching. Besides, high-aspect-ratio and small-diameter microchannels are drilled by spatially shaped femtosecond laser pulses.

  9. Dynamics Of Electronic Excitation Of Solids With Ultrashort Laser Pulse

    SciTech Connect

    Medvedev, Nikita; Rethfeld, Baerbel

    2010-10-08

    When ultrashort laser pulses irradiate a solid, photoabsorption by electrons in conduction band produces nonequilibrium highly energetic free electrons gas. We study the ionization and excitation of the electronic subsystem in a semiconductor and a metal (solid silicon and aluminum, respectively). The irradiating femtosecond laser pulse has a duration of 10 fs and a photon energy of h-bar {omega} = 38 eV. The classical Monte Carlo method is extended to take into account the electronic band structure and Pauli's principle for electrons excited to the conduction band. In the case of semiconductors this applies to the holes as well. Conduction band electrons and valence band holes induce secondary excitation and ionization processes which we simulate event by event. We discuss the transient electron dynamics with respect to the differences between semiconductors and metals. For metals the electronic distribution is split up into two branches: a low energy distribution as a slightly distorted Fermi-distribution and a long high energy tail. For the case of semiconductors it is split into two parts by the band gap. To thermalize, these excited electronic subsystems need longer times than the characteristic pulse duration. Therefore, the analysis of experimental data with femtosecond lasers must be based on non-equilibrium concepts.

  10. Time-resolved visualization of electric fields during femtosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Hebeisen, Christoph T.; Sciaini, Germán; Harb, Maher; Ernstorfer, Ralph; Kruglik, Sergei G.; Miller, R. J. Dwayne

    2008-06-01

    We observe the electric fields caused by charge distributions during femtosecond laser ablation from a silicon (100) surface. Femtosecond electron pulses passing near the ablation site serve as a probe of the electric field generated by the emitted charges and countercharges on the sample surface. The density map of the electron pulse downstream from the sample contains information about the charge distributions. We invert this information by fitting the beam maps using a simple charge distribution model. Under the present excitation conditions (390 nm, 150 fs, 5.6 J/cm2), we observe the emission of 5.3×1011 electrons/cm2 within 3 ps of the excitation pulse, leading to self-acceleration of the emitted electrons to 2% of the speed of light. Preliminary experiments on a metal sample display even faster dynamics.

  11. Femtosecond laser-induced electronic plasma at metal surface

    SciTech Connect

    Chen Zhaoyang; Mao, Samuel S.

    2008-08-04

    We develop a theoretical analysis to model plasma initiation at the early stage of femtosecond laser irradiation of metal surfaces. The calculation reveals that there is a threshold intensity for the formation of a microscale electronic plasma at the laser-irradidated metal surface. As the full width at half maximum of a laser pulse increases from 15 to 200 fs, the plasma formation threshold decreases by merely about 20%. The dependence of the threshold intensity on laser pulse width can be attributed to laser-induced surface electron emission, in particular due to the effect of photoelectric effect.

  12. Fabrication of Optoelectronic Devices in Lithium Fluoride Crystals by Interfering Femtosecond Laser Pulses

    NASA Astrophysics Data System (ADS)

    Kurobori, Toshio; Obayashi, Yoshihiro; Suzuki, Kenji; Hirose, Yukio; Sakai, Toshiaki; Aoshima, Shin-ichiro

    2008-01-01

    Fine-pitched microgratings either on or beneath surface of bulk lithium fluoride (LiF) are holographically fabricated by interfering with the second harmonic (400 nm) of a mode-locked Ti:sapphire oscillator-amplifier laser. The laser-active F2 and F3+ color centers in LiF are excellent candidates for producing visible laser action from the green-to-red spectral range when excited with a single wavelength. Here a green distributed feedback (DFB) laser action with a narrower oscillating linewidth is demonstrated by utilizing simultaneous formation of the F3+ color centers and waveguide with the microgratings encoded by interference of 400 nm femtosecond laser pulses. In addition, the possibility of a dual-beam DFB laser based on these color centers in LiF is discussed.

  13. Subpicosecond 41.8-nm X-ray laser in the plasma produced by femtosecond laser irradiation of a xenon cluster jet

    SciTech Connect

    Ivanova, E P

    2012-12-31

    Model calculations are performed of the radiation gain for the 4d5d (J = 0) - 4d5p (J = 1) transition with a wavelength of 41.8 nm in Pd-like xenon ions in the plasma produced by femtosecond laser irradiation of a xenon cluster jet. Conditions for the excitation of an ultrashort-pulse ({approx}1 ps) X-ray laser are discussed. (lasers)

  14. Ultraviolet femtosecond and nanosecond laser ablation of silicon: Ablation efficiency and laser-induced plasma expansion

    SciTech Connect

    Zeng, Xianzhong; Mao, Xianglei; Greif, Ralph; Russo, Richard E.

    2004-03-23

    Femtosecond laser ablation of silicon in air was studied and compared with nanosecond laser ablation at ultraviolet wavelength (266 nm). Laser ablation efficiency was studied by measuring crater depth as a function of pulse number. For the same number of laser pulses, the fs-ablated crater was about two times deeper than the ns-crater. The temperature and electron number density of the pulsed laser-induced plasma were determined from spectroscopic measurements. The electron number density and temperature of fs-pulse plasmas decreased faster than ns-pulse plasmas due to different energy deposition mechanisms. Images of the laser-induced plasma were obtained with femtosecond time-resolved laser shadowgraph imaging. Plasma expansion in both the perpendicular and the lateral directions to the laser beam were compared for femtosecond and nanosecond laser ablation.

  15. Theoretical analysis of fluorescence signals in filamentation of femtosecond laser pulses in nitrogen molecular gas

    SciTech Connect

    Arevalo, E.; Becker, A.

    2005-10-15

    We study numerically and analytically the role of the combined effect of self-focusing, geometrical focusing, and the plasma defocusing in the formation of the fluorescence signal during the filamentation of a Ti:sapphire laser pulse in nitrogen molecular gas. Results of numerical simulations are used to estimate the number of excited ions in the focal volume, which is proportional to the fluorescence signal. We find good agreement between the theoretical results and the experimental data, showing that such data can be used to get further insight into the effective focal volume during filamentation of femtosecond laser pulses in transparent media.

  16. Optical waveguide writing in photochromic material: photoinduced optical properties by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Gutiérrez, J. M.; Camacho-López, S.; Cano-Lara, M.; Rodríguez, A.; Balderas-Navarro, R. E.; Elizalde, L. E.; Ledezma, R.

    2011-09-01

    We report on the interaction of high repetition rate (MHz) Ti: sapphire laser pulses with a spiropyran polymer (MIC1). Such a polymer is photochromic, wich has potential applications in integrated optical devices. A thin film of polymer deposited on a glass substrate is irradiated with ultrashort pulses (66 fs) from a Ti: sapphire laser. We demonstrate that it is possible to induce an absorption band in the visible by the use of femtosecond pulses via a two-photon excitation process; this might be useful to accomplish waveguide-like structures formation with photochromic response.

  17. Development of femtosecond optical frequency comb laser tracker

    NASA Astrophysics Data System (ADS)

    Yang, Ju-qing; Zhou, Wei-hu; Dong, Deng-feng; Zhang, Zi-li; Lao, Da-bao; Ji, Rong-yi; Wang, Da-yong

    2016-01-01

    A new type femtosecond laser tracker is one high precision measurement instrument with urgent need in science research region and industrial manufacture field. This paper focuses on the operational principle and the structure development of the femtosecond laser tracer, and the method of error compensation as well. The system modules were studied and constructed. The femtosecond frequency comb module was firstly analyzed and developed. The femtosecond laser frequency comb performed perfectly high precise distance measurement for laser tracker. The experimental result showed that the stability of repetition rate reached 3.0×10-12@1s and the stability of carrier envelop offset reached 1.0×10-10@1s. The initial experiment showed that measurement error was less than 1ppm. Later the error compensation module was introduced, and the optoelectronic aiming and tracking control module was built. The actual test result showed that the stability of miss distance was better than 2.0 μm, the tracking speed could reach 2m/s.

  18. Tesla coil discharges guided by femtosecond laser filaments in air

    NASA Astrophysics Data System (ADS)

    Brelet, Yohann; Houard, Aurélien; Arantchouk, Leonid; Forestier, Benjamin; Liu, Yi; Prade, Bernard; Carbonnel, Jérôme; André, Yves-Bernard; Mysyrowicz, André

    2012-04-01

    A Tesla coil generator was designed to produce high voltage pulses oscillating at 100 kHz synchronisable with a nanosecond temporal jitter. Using this compact high voltage generator, we demonstrate reproducible meter long discharges in air at a repetition rate of 1 Hz. Triggering and guiding of the discharges are performed in air by femtosecond laser filaments.

  19. Femtosecond laser flow tagging in non-air flows

    NASA Astrophysics Data System (ADS)

    Zhang, Yibin; Calvert, Nathan

    2015-11-01

    The Femtosecond Laser Electronic Excitation Tagging (FLEET) [Michael, J. B. et al., Applied optics, 50(26), 2011] method is studied in nitrogen-containing gaseous flows. The underlying mechanism behind the FLEET process is the dissociation of molecular nitrogen into atomic nitrogen, which produces long-lived florescence as the nitrogen atoms recombine. Spectra and images of the resulting tagged line provide insight into the effects of different atmospheric gases on the FLEET process. The ionization cross-section, conductivity and energy states of the gaseous particles are each brought into consideration. These experiments demonstrate the feasibility for long-lived flow tagging on the order of hundreds of microseconds in non-air environments. Of particular interest are the enhancement of the FLEET signal with the addition of argon gas, and the non-monotonic quenching effect of oxygen on the length, duration and intensity of the resulting signal and spectra. FLEET is characterized in number of different atmospheric gases, including that simulating Mar's atmospheric composition.

  20. Sub-micron structuring of silicon using femtosecond laser interferometry

    NASA Astrophysics Data System (ADS)

    Oliveira, V.; Vilar, R.; Serra, R.; Oliveira, J. C.; Polushkin, N. I.; Conde, O.

    2013-12-01

    We report the fabrication of planar sub-micron gratings in silicon with a period of 720 nm using a modified Michelson interferometer and femtosecond laser radiation. The gratings consist of alternated stripes of laser ablated and unmodified material. Ablated stripes are bordered by parallel ridges which protrude above the unmodified material. In the regions where ridges are formed, the laser radiation intensity is not sufficient to cause ablation. Nevertheless, melting and a significant temperature increase are expected, and ridges may be formed due to expansion of silicon during resolidification or silicon oxidation. These conclusions are consistent with the evolution of the stripes morphology as a function of the distance from the center of the grating. Sub-micron gratings were created in silicon using femtosecond laser radiation. A modified Michelson interferometer was used. The gratings consist of alternated stripes of ablated and unmodified material. Ablated stripes are surrounded by ridges which protrude above unmodified surface.

  1. Characterization and control of peak intensity distribution at the focus of a spatiotemporally focused femtosecond laser beam.

    PubMed

    He, Fei; Zeng, Bin; Chu, Wei; Ni, Jielei; Sugioka, Koji; Cheng, Ya; Durfee, Charles G

    2014-04-21

    We report on experimental examination of two-photon fluorescence excitation (TPFE) at the focus of a spatially chirped femtosecond laser beam, which reveals an unexpected tilted peak intensity distribution in the focal spot. Our theoretical calculation shows that the tilting of the peak intensity distribution originates from the fact that along the optical axis of objective lens, the spatiotemporally focused pulse reaches its shortest duration exactly at the focal plane. However, when moving away from the optical axis along the direction of spatial chirp of the incident pulse, the pulse reaches its shortest duration either before or after the focal plane, depending on whether the pulse duration is measured above or below the optical axis as well as the sign of the spatial chirp. The tilting of the peak intensity distribution in the focal spot of the spatiotemporally focused femtosecond laser beam can play important roles in applications such as femtosecond laser micromachining and bio-imaging. PMID:24787858

  2. Reflection of femtosecond laser light in multipulse ablation of metals

    SciTech Connect

    Vorobyev, A. Y.; Guo Chunlei

    2011-08-15

    The shot-to-shot reflectance of high-intensity laser light is studied as a function of both the number of laser shots and laser fluence in multipulse ablation of a metal when the irradiated surface undergoes structural changes from an initially smooth surface to a deep crater. Our study shows that the reflectance of the irradiated surface significantly decreases due to the high intensity of laser pulses and the laser-induced surface structures in ablation regimes typically used for femtosecond laser processing of materials. The high-intensity effect dominates in the reflection reduction at low numbers of laser shots when laser-induced surface structures do not cause the reflectance to decrease noticeably. With increasing the number of laser shots, the structural effect comes into play, and both high-intensity and structural effects quickly reduce the reflectance of the sample to a low value.

  3. Structural changes induced on strontium barium niobate glass by femtosecond laser irradiation

    NASA Astrophysics Data System (ADS)

    Haro-González, P.; Martín, I. R.; González-Pérez, S.; Martin, L. L.; Lahoz, F.; Puerto, D.; Solís, J.

    2010-03-01

    Localized modification of the optical properties of erbium doped strontium barium niobate (SBN) glass has been performed using femtosecond laser irradiation. The samples, with composition SrO-BaO-Nb2O5-B2O5 and doped with 5%mol of Er3+, were fabricated using a melt-quenching method. The samples were irradiated with different number of pulses per spot (1-50 pulses) at two different laser fluences (2.6 and 5.6 J/cm2) by using an fs laser amplifier operating at 800 nm and generating pulses with a duration of 120 fs. Micro-luminescent microscopy, using an Ar+ laser as excitation source, has been used to analyze the modifications of the luminescent properties of the sample upon fs laser exposure. The emissions of the Er3+: 4I11/2→4I15/2 and 4I13/2→4I15/2 transitions allow appreciating the structural modifications caused by femtosecond laser exposure. The lifetimes of the levels involved in these transitions were measured inside and outside the laser irradiated region. These measurements have been compared with those obtained in bulk glass ceramic sample, which is obtained from the glass precursor by a thermal treatment in order to estimate the optimal conditions to produce nanocrystals in a localized region by ultrafast laser irradiation.

  4. Platinum nanostructures formed by femtosecond laser irradiation in water

    SciTech Connect

    Huo Haibin; Shen Mengyan

    2012-11-15

    Platinum nanostructures with various morphologies, such as spike-like, ripple-like and array-like structures, have been fabricated by 400 nm and 800 nm femtosecond laser irradiation in water. Different structures can be formed on the surfaces as a function of the laser wavelength, the fluence and scan methods. The reflectance measurements of these structures show much larger absorption on the irradiated surfaces than untreated platinum surfaces.

  5. Probing Molecular Dynamics at Attosecond Resolution with Femtosecond Laser Pulses

    NASA Astrophysics Data System (ADS)

    Tong, X. M.; Zhao, Z. X.; Lin, C. D.

    2003-12-01

    The kinetic energy distribution of D+ ions resulting from the interaction of a femtosecond laser pulse with D2 molecules is calculated based on the rescattering model. From analyzing the molecular dynamics, it is shown that the recollision time between the ionized electron and the D+2 ion can be read from the D+ kinetic energy peaks to attosecond accuracy. We further suggest that a more precise reading of the clock can be achieved by using shorter fs laser pulses (about 15fs).

  6. Tailoring the plasma channel generated by femtosecond laser pulse

    NASA Astrophysics Data System (ADS)

    Wang, Haitao; Fan, Chengyu; Zhang, Pengfei; Jia, Wei

    2015-02-01

    By investigating the spatial and temporal variations of the propagating pulses, we have shown for the first time that the lattice waveguides can induce nonlinear effects to tailor the plasma channel generated by a femtosecond laser pulse. Different types of the spatiotemporal localized nonlinear light bullet’s propagating configurations have been predicted. By adjusting the parameters of the modulation potential, longer continuum filaments and reshaped laser pulses can be obtained, due to the focusing nonlinearity of the lattice modulation index.

  7. Measurement of UV absorption of single living cell for cell manipulation using NIR femtosecond laser

    NASA Astrophysics Data System (ADS)

    Cho, Sung-Hak; Chang, Won-Seok; Kim, Kwang-Ryul; Hong, Jong Wook

    2009-02-01

    Optical UV absorption of single human living cells ranging from 200 nm to 360 nm was measured in situ for the study of cell manipulation using the near-infrared (NIR) femtosecond laser . Human breast living cells of MCF-10A, MCF-7, and MDA-MB-231 were used in this experiment. The selective photo-disruptions of single living cell and its sub-organelle (nucleus) were also demonstrated using the tightly focused 790 nm wavelength femtosecond laser with pulse duration of 110 fs. It was found that each living cell has its own absorption spectrum in UV wavelength ranges. It was also inferred that intrinsic absorption spectrum is attributed to the amount of DNA and protein of living cell. For the study of photo-disruption of single cell using the multi-photon absorption excited by the NIR femtosecond laser pulse, the origin UV absorption spectrum of targeted living cell is important and fundamental information to understand nonlinear interaction between NIR ultrashort, high-intensity laser light and transparent living cell.

  8. Materials processing with a tightly focused femtosecond laser vortex pulse.

    PubMed

    Hnatovsky, Cyril; Shvedov, Vladlen G; Krolikowski, Wieslaw; Rode, Andrei V

    2010-10-15

    In this Letter we present the first (to our knowledge) demonstration of material modification using tightly focused single femtosecond laser vortex pulses. Double-charge femtosecond vortices were synthesized with a polarization-singularity beam converter based on light propagation in a uniaxial anisotropic medium and then focused using moderate- and high-NA optics (viz., NA=0.45 and 0.9) to ablate fused silica and soda-lime glass. By controlling the pulse energy, we consistently machine micrometer-size ring-shaped structures with <100nm uniform groove thickness. PMID:20967085

  9. High-power synchronously pumped femtosecond Raman fiber laser.

    PubMed

    Churin, D; Olson, J; Norwood, R A; Peyghambarian, N; Kieu, K

    2015-06-01

    We report a high-power synchronously pumped femtosecond Raman fiber laser operating in the normal dispersion regime. The Raman laser is pumped by a picosecond Yb(3+)-doped fiber laser. It produces highly chirped pulses with energy up to 18 nJ, average power of 0.76 W and 88% efficiency. The pulse duration is measured to be 147 fs after external compression. We observed two different regimes of operation of the laser: coherent and noise-like regime. Both regimes were experimentally characterized. Numerical simulations are in a good agreement with experimental results. PMID:26030549

  10. Intensity clamping in the filament of femtosecond laser radiation

    SciTech Connect

    Kandidov, V P; Fedorov, V Yu; Tverskoi, O V; Kosareva, O G; Chin, S L

    2011-04-30

    We have studied numerically the evolution of the light field intensity and induced refractive index of a medium upon filamentation of femtosecond laser radiation in air. It is shown that the intensity clamping results from the dynamic balance of optical powers of nonlinear lenses, induced by radiation due to the Kerr nonlinearity of air, and laser plasma produced during photoionisation. We have found the relation between the peak values of the light field intensity and the electron density in laser-produced plasma, as well as the transverse sizes of the filament and the plasma channel. (effects of laser radiation on matter)

  11. Ocular safety limits for 1030nm femtosecond laser cataract surgery

    NASA Astrophysics Data System (ADS)

    Wang, Jenny; Sramek, Christopher; Paulus, Yannis M.; Lavinsky, Daniel; Schuele, Georg; Anderson, Dan; Dewey, David; Palanker, Daniel V.

    2013-03-01

    Application of femtosecond lasers to cataract surgery has added unprecedented precision and reproducibility but ocular safety limits for the procedure are not well-quantified. We present an analysis of safety during laser cataract surgery considering scanned patterns, reduced blood perfusion, and light scattering on residual bubbles formed during laser cutting. Experimental results for continuous-wave 1030 nm irradiation of the retina in rabbits are used to calibrate damage threshold temperatures and perfusion rate for our computational model of ocular heating. Using conservative estimates for each safety factor, we compute the limits of the laser settings for cataract surgery that optimize procedure speed within the limits of retinal safety.

  12. Control of grating-coupled ultrafast surface plasmon pulse and its nonlinear emission by shaping femtosecond laser pulse

    NASA Astrophysics Data System (ADS)

    Toma, Kazunori; Masaki, Yuta; Kusaba, Miyuki; Hirosawa, Kenichi; Kannari, Fumihiko

    2015-09-01

    Spatiotemporal nanofocusing of ultrafast surface plasmon polaritons (SPPs) coupled on a metal Au tapered tip with a curvature radius of a few tens of nanometers is deterministically controlled based on the measured plasmon response function. We control the SPP pulse shape and the second harmonic generation at the apex of the Au tapered tip by shaping the excitation femtosecond laser pulses based on the response function. We also adapted a similar control scheme for coherent anti-Stokes Raman scattering (CARS) and achieved selective CARS excitation of a single Raman mode of carbon nanotubes with only a single excitation laser pulse at the apex of the tip.

  13. Contrasting levels of absorption of intense femtosecond laser pulses by solids

    PubMed Central

    Singh, Prashant Kumar; Cui, Y. Q.; Adak, Amitava; Lad, Amit D.; Chatterjee, Gourab; Brijesh, P.; Sheng, Z. M.; Kumar, G. Ravindra

    2015-01-01

    The absorption of ultraintense, femtosecond laser pulses by a solid unleashes relativistic electrons, thereby creating a regime of relativistic optics. This has enabled exciting applications of relativistic particle beams and coherent X-ray radiation, and fundamental leaps in high energy density science and laboratory astrophysics. Obviously, central to these possibilities lies the basic problem of understanding and if possible, manipulating laser absorption. Surprisingly, the absorption of intense light largely remains an open question, despite the extensive variations in target and laser pulse structures. Moreover, there are only few experimental measurements of laser absorption carried out under very limited parameter ranges. Here we present an extensive investigation of absorption of intense 30 femtosecond laser pulses by solid metal targets. The study, performed under varying laser intensity and contrast ratio over four orders of magnitude, reveals a significant and non-intuitive dependence on these parameters. For contrast ratio of 10−9 and intensity of 2 × 1019 W cm−2, three observations are revealed: preferential acceleration of electrons along the laser axis, a ponderomotive scaling of electron temperature, and red shifting of emitted second-harmonic. These point towards the role of J × B absorption mechanism at relativistic intensity. The experimental results are supported by particle-in-cell simulations. PMID:26648399

  14. Contrasting levels of absorption of intense femtosecond laser pulses by solids.

    PubMed

    Singh, Prashant Kumar; Cui, Y Q; Adak, Amitava; Lad, Amit D; Chatterjee, Gourab; Brijesh, P; Sheng, Z M; Kumar, G Ravindra

    2015-01-01

    The absorption of ultraintense, femtosecond laser pulses by a solid unleashes relativistic electrons, thereby creating a regime of relativistic optics. This has enabled exciting applications of relativistic particle beams and coherent X-ray radiation, and fundamental leaps in high energy density science and laboratory astrophysics. Obviously, central to these possibilities lies the basic problem of understanding and if possible, manipulating laser absorption. Surprisingly, the absorption of intense light largely remains an open question, despite the extensive variations in target and laser pulse structures. Moreover, there are only few experimental measurements of laser absorption carried out under very limited parameter ranges. Here we present an extensive investigation of absorption of intense 30 femtosecond laser pulses by solid metal targets. The study, performed under varying laser intensity and contrast ratio over four orders of magnitude, reveals a significant and non-intuitive dependence on these parameters. For contrast ratio of 10(-9) and intensity of 2 × 10(19)W cm(-2), three observations are revealed: preferential acceleration of electrons along the laser axis, a ponderomotive scaling of electron temperature, and red shifting of emitted second-harmonic. These point towards the role of J × B absorption mechanism at relativistic intensity. The experimental results are supported by particle-in-cell simulations. PMID:26648399

  15. Contrasting levels of absorption of intense femtosecond laser pulses by solids

    NASA Astrophysics Data System (ADS)

    Singh, Prashant Kumar; Cui, Y. Q.; Adak, Amitava; Lad, Amit D.; Chatterjee, Gourab; Brijesh, P.; Sheng, Z. M.; Kumar, G. Ravindra

    2015-12-01

    The absorption of ultraintense, femtosecond laser pulses by a solid unleashes relativistic electrons, thereby creating a regime of relativistic optics. This has enabled exciting applications of relativistic particle beams and coherent X-ray radiation, and fundamental leaps in high energy density science and laboratory astrophysics. Obviously, central to these possibilities lies the basic problem of understanding and if possible, manipulating laser absorption. Surprisingly, the absorption of intense light largely remains an open question, despite the extensive variations in target and laser pulse structures. Moreover, there are only few experimental measurements of laser absorption carried out under very limited parameter ranges. Here we present an extensive investigation of absorption of intense 30 femtosecond laser pulses by solid metal targets. The study, performed under varying laser intensity and contrast ratio over four orders of magnitude, reveals a significant and non-intuitive dependence on these parameters. For contrast ratio of 10-9 and intensity of 2 × 1019 W cm-2, three observations are revealed: preferential acceleration of electrons along the laser axis, a ponderomotive scaling of electron temperature, and red shifting of emitted second-harmonic. These point towards the role of J × B absorption mechanism at relativistic intensity. The experimental results are supported by particle-in-cell simulations.

  16. Nonthermal phase transitions in semiconductors induced by a femtosecond extreme ultraviolet laser pulse

    NASA Astrophysics Data System (ADS)

    Medvedev, Nikita; Jeschke, Harald O.; Ziaja, Beata

    2013-01-01

    In this paper, we present a novel theoretical approach, which allows the study of nonequilibrium dynamics of both electrons and atoms/ions within free-electron laser excited semiconductors at femtosecond time scales. The approach consists of the Monte-Carlo method treating photoabsorption, high-energy-electron and core-hole kinetics and relaxation processes. Low-energy electrons localized within the valence and conduction bands of the target are treated with a temperature equation, including source terms, defined by the exchange of energy and particles with high-energy electrons and atoms. We follow the atomic motion with the molecular dynamics method on the changing potential energy surface. The changes of the potential energy surface and of the electron band structure are calculated at each time step with the help of the tight-binding method. Such a combination of methods enables investigation of nonequilibrium structural changes within materials under extreme ultraviolet (XUV) femtosecond irradiation. Our analysis performed for diamond irradiated with an XUV femtosecond laser pulse predicts for the first time in this wavelength regime the nonthermal phase transition from diamond to graphite. Similar to the case of visible light irradiation, this transition takes place within a few tens of femtoseconds and is caused by changes of the interatomic potential induced by ultrafast electronic excitations. It thus occurs well before the heating stimulated by electron-phonon coupling starts to play a role. This allows us to conclude that this transition is nonthermal and represents a general mechanism of the response of solids to ultrafast electron excitations.

  17. Testing of a femtosecond pulse laser in outer space

    PubMed Central

    Lee, Joohyung; Lee, Keunwoo; Jang, Yoon-Soo; Jang, Heesuk; Han, Seongheum; Lee, Sang-Hyun; Kang, Kyung-In; Lim, Chul-Woo; Kim, Young-Jin; Kim, Seung-Woo

    2014-01-01

    We report a test operation of an Er-doped fibre femtosecond laser which was conducted for the first time in outer space. The fibre-based ultrashort pulse laser payload was designed to meet space-use requirements, undergone through ground qualification tests and finally launched into a low-earth orbit early in 2013. Test results obtained during a one-year mission lifetime confirmed stable mode-locking all the way through although the radiation induced attenuation (RIA) in the Er-doped gain fibre caused an 8.6% reduction in the output power. This successful test operation would help facilitate diverse scientific and technological applications of femtosecond lasers in space and earth atmosphere in the near future. PMID:24875665

  18. Femtosecond-laser assisted cataract surgery: a review.

    PubMed

    Abouzeid, Hana; Ferrini, Walter

    2014-11-01

    Introduced in 2008, the femtosecond laser is a promising new technological advance which plays an ever increasing role in cataract surgery where it automates the three main surgical steps: corneal incision, capsulotomy and lens fragmentation. The proven advantages over manual surgery are: a better quality of incision with reduced induced astigmatism; increased reliability and reproducibility of the capsulotomy with increased stability of the implanted lens; a reduction in the use of ultrasound. Regarding refractive results or safety, however, no prospective randomized study to date has shown significant superiority compared with standard manual technique. The significant extra cost generated by this laser, undertaken by the patient, is a limiting factor for both its use and study. This review outlines the potential benefits of femtosecond-laser-assisted cataract surgery due to the automation of key steps and the safety of this new technology. PMID:24835818

  19. Testing of a femtosecond pulse laser in outer space

    NASA Astrophysics Data System (ADS)

    Lee, Joohyung; Lee, Keunwoo; Jang, Yoon-Soo; Jang, Heesuk; Han, Seongheum; Lee, Sang-Hyun; Kang, Kyung-In; Lim, Chul-Woo; Kim, Young-Jin; Kim, Seung-Woo

    2014-05-01

    We report a test operation of an Er-doped fibre femtosecond laser which was conducted for the first time in outer space. The fibre-based ultrashort pulse laser payload was designed to meet space-use requirements, undergone through ground qualification tests and finally launched into a low-earth orbit early in 2013. Test results obtained during a one-year mission lifetime confirmed stable mode-locking all the way through although the radiation induced attenuation (RIA) in the Er-doped gain fibre caused an 8.6% reduction in the output power. This successful test operation would help facilitate diverse scientific and technological applications of femtosecond lasers in space and earth atmosphere in the near future.

  20. Photosynthetic light-harvesting complexes: fluorescent and absorption spectroscopy under two-photon (1200-1500 nm) and one-photon (600-750 nm) excitation by laser femtosecond pulses

    NASA Astrophysics Data System (ADS)

    Stepanenko, Il'ya A.; Kompanets, Viktor O.; Chekalin, Sergey V.; Makhneva, Zoya K.; Moskalenko, Andrey A.; Razjivin, Andrei P.

    2010-09-01

    The pathways of excitation energy transfer (EET) via pigments of the light-harvesting antenna are still in discussion. The bacteriochlorophyll fluorescence of peripheral light-harvesting complexes (LH2) from purple bacteria can be observed upon two-photon excitation (TPE) within 1200-1500 nm spectral range (a broad band near 1300 nm). Earlier the occurrence of this band was taken as an evidence for the participation of "dark" carotenoid S1 state in EET processes (see [Walla et al., Proc. Nat. Acad. Sci. U.S.A. 97, 10808-10813 (2000)] and references in it). However we showed that TPE spectrum of LH2 fluorescence within 1200-1500 nm is not associated with carotenoids [Stepanenko et al., J. Phys. Chem. B. 113(34), 11720-11723 (2009)]. Here we present TPE spectra of fluorescence for chromatophores and lightharvesting complexes LH2 and LH1 from wild-type cells and from carotenoid-depleted or carotenoidless mutant cells of several purple bacteria. The broad band within 1300-1400 nm was found for all preparations. Absorption pump-probe femtosecond spectroscopy applied to LH2 complex from Rb. sphaeroides revealed the similar spectral and kinetic patterns for TPE at 1350 nm and one-photon excitation at 675 nm. Analysis of pigment composition of this complex by high-pressure liquid chromatography showed that even under mild isolation conditions some bacteriochlorophyll molecules were oxidized to 3-acetyl-chlorophyll molecules having the long-wavelength absorption peak in the 650-700 nm range. It is proposed that these 3-acetyl-chlorophyll molecules are responsible for the broad band in TPE spectra within the 1200-1500 nm region.

  1. Photosynthetic light-harvesting complexes: fluorescent and absorption spectroscopy under two-photon (1200-1500 nm) and one-photon (600-750 nm) excitation by laser femtosecond pulses

    NASA Astrophysics Data System (ADS)

    Stepanenko, Il'ya A.; Kompanets, Viktor O.; Chekalin, Sergey V.; Makhneva, Zoya K.; Moskalenko, Andrey A.; Razjivin, Andrei P.

    2011-02-01

    The pathways of excitation energy transfer (EET) via pigments of the light-harvesting antenna are still in discussion. The bacteriochlorophyll fluorescence of peripheral light-harvesting complexes (LH2) from purple bacteria can be observed upon two-photon excitation (TPE) within 1200-1500 nm spectral range (a broad band near 1300 nm). Earlier the occurrence of this band was taken as an evidence for the participation of "dark" carotenoid S1 state in EET processes (see [Walla et al., Proc. Nat. Acad. Sci. U.S.A. 97, 10808-10813 (2000)] and references in it). However we showed that TPE spectrum of LH2 fluorescence within 1200-1500 nm is not associated with carotenoids [Stepanenko et al., J. Phys. Chem. B. 113(34), 11720-11723 (2009)]. Here we present TPE spectra of fluorescence for chromatophores and lightharvesting complexes LH2 and LH1 from wild-type cells and from carotenoid-depleted or carotenoidless mutant cells of several purple bacteria. The broad band within 1300-1400 nm was found for all preparations. Absorption pump-probe femtosecond spectroscopy applied to LH2 complex from Rb. sphaeroides revealed the similar spectral and kinetic patterns for TPE at 1350 nm and one-photon excitation at 675 nm. Analysis of pigment composition of this complex by high-pressure liquid chromatography showed that even under mild isolation conditions some bacteriochlorophyll molecules were oxidized to 3-acetyl-chlorophyll molecules having the long-wavelength absorption peak in the 650-700 nm range. It is proposed that these 3-acetyl-chlorophyll molecules are responsible for the broad band in TPE spectra within the 1200-1500 nm region.

  2. Intraocular Lens Fragmentation Using Femtosecond Laser: An In Vitro Study

    PubMed Central

    Bala, Chandra; Shi, Jeffrey; Meades, Kerrie

    2015-01-01

    Purpose: To transect intraocular lenses (IOLs) using a femtosecond laser in cadaveric human eyes. To determine the optimal in vitro settings, to detect and characterize gasses or particles generated during this process. Methods: A femtosecond laser was used to transect hydrophobic and hydrophilic acrylic lenses. The settings required to enable easy separation of the lens fragment were determined. The gasses and particles generated were analysed using gas chromatography mass spectrometer (GC-MS) and total organic carbon analyzer (TOC), respectively. Results: In vitro the IOL fragments easily separated at the lowest commercially available energy setting of 1 μJ, 8-μm spot, and 2-μm line separation. No particles were detected in the 0.5- to 900-μm range. No significant gasses or other organic breakdown by products were detected at this setting. At much higher energy levels 12 μJ (4 × 6 μm spot and line separation) significant pyrolytic products were detected, which could be harmful to the eye. In cadaveric explanted IOL capsule complex the laser pulses could be applied through the capsule to the IOL and successfully fragment the IOL. Conclusion: IOL transection is feasible with femtosecond lasers. Further in vivo animal studies are required to confirm safety. Translational Relevance: In clinical practice there are a number of large intraocular lenses that can be difficult to explant. This in-vitro study examines the possibility of transecting the lasers quickly using femtosecond lasers. If in-vivo studies are successful, then this innovation could help ophthalmic surgeons in IOL explantation. PMID:26101721

  3. Excitation energy dependence of excited states dynamics in all- trans-carotenes determined by femtosecond absorption and fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Kosumi, Daisuke; Yanagi, Kazuhiro; Nishio, Tomohiro; Hashimoto, Hideki; Yoshizawa, Masayuki

    2005-06-01

    Ultrafast relaxation kinetics in β-carotene and lycopene has been investigated by femtosecond absorption and fluorescence spectroscopies using tunable excitation pulses. The transient signals induced by the photoexcitation with larger excess energy have broader bands and longer lifetimes both in the 11Bu+and21Ag- excited states. The excess vibrational energy remains longer than several picoseconds and slows the relaxation kinetics in carotenoids.

  4. Three-color femtosecond source for simultaneous excitation of three fluorescent proteins in two-photon fluorescence microscopy

    PubMed Central

    Wang, Ke; Liu, Tzu-Ming; Wu, Juwell; Horton, Nicholas G.; Lin, Charles P.; Xu, Chris

    2012-01-01

    We demonstrate a fiber-based, three-color femtosecond source for simultaneous imaging of three fluorescent proteins (FPs) using two-photon fluorescence microscopy (2PM). The three excitation wavelengths at 775 nm, 864 nm and 950 nm, are obtained through second harmonic generation (SHG) of the 1550-nm pump laser and the 1728-nm and 1900-nm solitons generated through soliton self-frequency shift (SSFS) in a large-mode-area (LMA) fiber. These energetic pulses are well matched to the two-photon excitation peaks of red, cyan and yellow fluorescent proteins (TagRFPs, TagCFPs, and TagYFPs) for efficient excitation. We demonstrate simultaneous 2PM of human melanoma cells expressing a “rainbow” combination of these three fluorescent proteins. PMID:23024893

  5. Studying femtosecond-laser hyperdoping by controlling surface morphology

    SciTech Connect

    Winkler, Mark T.; Sher, Meng-Ju; Lin Yuting; Zhang, Haifei; Smith, Matthew J.; Gradecak, Silvija; Mazur, Eric

    2012-05-01

    We study the fundamental properties of femtosecond-laser (fs-laser) hyperdoping by developing techniques to control the surface morphology following laser irradiation. By decoupling the formation of surface roughness from the doping process, we study the structural and electronic properties of fs-laser doped silicon. These experiments are a necessary step toward developing predictive models of the doping process. We use a single fs-laser pulse to dope silicon with sulfur, enabling quantitative secondary ion mass spectrometry, transmission electron microscopy, and Hall effect measurements. These measurements indicate that at laser fluences at or above 4 kJ m{sup -2}, a single laser pulse yields a sulfur dose >(3 {+-} 1) x 10{sup 13} cm{sup -2} and results in a 45-nm thick amorphous surface layer. Based on these results, we demonstrate a method for hyperdoping large areas of silicon without producing the surface roughness.

  6. Excited-State Vibrational Coherence in Perylene Bisimide Probed by Femtosecond Broadband Pump-Probe Spectroscopy.

    PubMed

    Son, Minjung; Park, Kyu Hyung; Yoon, Min-Chul; Kim, Pyosang; Kim, Dongho

    2015-06-18

    Broadband laser pulses with ultrashort duration are capable of triggering impulsive excitation of the superposition of vibrational eigenstates, giving rise to quantum beating signals originating from coherent wave packet motions along the potential energy surface. In this work, coherent vibrational wave packet dynamics of an N,N'-bis(2,6-dimethylphenyl)perylene bisimide (DMP-PBI) were investigated by femtosecond broadband pump-probe spectroscopy which features fast and balanced data acquisition with a wide spectral coverage of >200 nm. Clear modulations were observed in the envelope of the stimulated emission decay profiles of DMP-PBI with the oscillation frequencies of 140 and 275 cm(-1). Fast Fourier transform analysis of each oscillatory mode revealed characteristic phase jumps near the maxima of the steady-state fluorescence, indicating that the observed vibrational coherence originates from an excited-state wave packet motion. Quantum calculations of the normal modes at the low-frequency region suggest that low-frequency C-C (C═C) stretching motions accompanied by deformation of the dimethylphenyl substituents are responsible for the manifestation of such coherent wave packet dynamics. PMID:25992707

  7. Porcine cadaver iris model for iris heating during corneal surgery with a femtosecond laser

    NASA Astrophysics Data System (ADS)

    Sun, Hui; Fan, Zhongwei; Wang, Jiang; Yan, Ying; Juhasz, Tibor; Kurtz, Ron

    2015-03-01

    Multiple femtosecond lasers have now been cleared for use for ophthalmic surgery, including for creation of corneal flaps in LASIK surgery. Preliminary study indicated that during typical surgical use, laser energy may pass beyond the cornea with potential effects on the iris. As a model for laser exposure of the iris during femtosecond corneal surgery, we simulated the temperature rise in porcine cadaver iris during direct illumination by the femtosecond laser. Additionally, ex-vivo iris heating due to femtosecond laser irradiation was measured with an infrared thermal camera (Fluke corp. Everett, WA) as a validation of the simulation.

  8. Nanosecond component in a femtosecond laser pulse

    SciTech Connect

    Shneider, M. N.; Semak, V. V.; Zhang Zhili

    2012-11-15

    Experimental and computational results show that the coherent microwave scattering from a laser-induced plasma can be used for measuring the quality of a fs laser pulse. The temporal dynamics of the microwave scattered signal from the fs-laser induced plasma can be related to the effect of nanosecond tail of the fs laser pulse.

  9. Measurements of Intense Femtosecond Laser Pulse Propagation in Air

    NASA Astrophysics Data System (ADS)

    Ting, Antonio

    2004-11-01

    Intense femtosecond pulses generated from chirped pulse amplification (CPA) lasers can deliver laser powers many times above the critical power for self-focusing in air. Catastrophic collapse of the laser pulse is usually prevented by the defocusing of the plasma column formed when the laser intensity gets above the threshold for multiphoton ionization. The resultant laser/plasma filament can extend many meters as the laser pulse propagates in the atmosphere. We have carried out a series of experiments both for understanding the formation mechanisms of the filaments and the nonlinear effects such as white light and harmonics generation associated with them. Many applications of these filaments such as remote atmospheric breakdown, laser induced electrical discharge and femtosecond laser material interactions require direct measurements of their characteristics. Direct measurements of these filaments had been difficult because the high laser intensity ( ˜10^13 W/cm^2) can damage practically any optical diagnostics. A novel technique was invented to obtain the first absolute measurements of laser energy, transverse profile, fluence and spectral content of the filaments. We are investigating a ``remote atmospheric breakdown'' concept of remotely sensing chemical and biological compounds. A short intense laser pulse can be generated at a remote position by using the group velocity dispersion (GVD) of the air to compress an initially long, frequency negatively chirped laser pulse to generate the air breakdown and filaments. We have observed that nonlinear contributions to the laser spectrum through self-phase modulation can lead to modification of the linear GVD compression. We have also observed the generation of ultraviolet (UV) radiations from these filaments in air and the induced fluorescence by the UV radiation of a surrogate biological agent. These and other results such as laser induced electrical discharges will be presented.

  10. Femtosecond mode-locked holmium fiber laser pumped by semiconductor disk laser.

    PubMed

    Chamorovskiy, A; Marakulin, A V; Ranta, S; Tavast, M; Rautiainen, J; Leinonen, T; Kurkov, A S; Okhotnikov, O G

    2012-05-01

    We report on a 2085 nm holmium-doped silica fiber laser passively mode-locked by semiconductor saturable absorber mirror and carbon nanotube absorber. The laser, pumped by a 1.16 μm semiconductor disk laser, produces 890 femtosecond pulses with the average power of 46 mW and the repetition rate of 15.7 MHz. PMID:22555700

  11. Radiofrequency plasma antenna generated by femtosecond laser filaments in air

    SciTech Connect

    Brelet, Y.; Houard, A.; Point, G.; Prade, B.; Carbonnel, J.; Andre, Y.-B.; Mysyrowicz, A.; Arantchouk, L.; Pellet, M.

    2012-12-24

    We demonstrate tunable radiofrequency emission from a meter-long linear plasma column produced in air at atmospheric pressure. A short-lived plasma column is initially produced by femtosecond filamentation and subsequently converted into a long-lived discharge column by application of an external high voltage field. Radiofrequency excitation is fed to the plasma by induction and detected remotely as electromagnetic radiation by a classical antenna.

  12. Femtosecond laser additive manufacturing of iron and tungsten parts

    NASA Astrophysics Data System (ADS)

    Nie, Bai; Yang, Lihmei; Huang, Huan; Bai, Shuang; Wan, Peng; Liu, Jian

    2015-06-01

    For the first time, femtosecond laser additive manufacturing is demonstrated. Pure iron and tungsten powders, having very different melting temperature and mechanical properties, are used for the demonstration. Parts with various shapes, such as ring and cube, are fabricated. Micro-hardness and ultimate tensile strength are investigated for the fabricated samples. The results are also compared to the similar parts made by a continuous-wave laser. It is found that fs laser additive manufacturing can obtain better mechanical properties and fabricate materials that are not possible before.

  13. Polymer hydrophilicity and hydrophobicity induced by femtosecond laser direct irradiation

    NASA Astrophysics Data System (ADS)

    Wang, Z. K.; Zheng, H. Y.; Lim, C. P.; Lam, Y. C.

    2009-09-01

    Controlled modification of surface wettability of polymethyl methacrylate (PMMA) was achieved by irradiation of PMMA surface with femtosecond laser pulses at various laser fluences and focus distances. Fluences from 0.40 to 2.1 J/cm2 produced a hydrophobic surface and 2.1 to 52.7 J/cm2 (maximum investigated) produced a hydrophilic surface. Fluences less than 0.31 J/cm2 had no effect on the wettability of the raw PMMA. This change in wettability was caused dominantly by laser induced chemical structure modification and not by a change in surface roughness.

  14. Polarization behaviour of femtosecond laser written waveguides in lithium niobate

    NASA Astrophysics Data System (ADS)

    Tejerina, M. R.; Biasetti, D. A.; Torchia, G. A.

    2015-09-01

    In this work, we analysed the polarization of guided light in femtosecond laser written waveguides. The studied waveguides were performed with different laser pulse energies in an x-cut lithium niobate crystal. The guided intensities were experimentally measured and compared with numerical simulations reaching a qualitatively good accordance. This comparison allowed a verification of the "mechanical expansion theory" which is useful to compute the refractive index field. Also, information related to the modelling of waveguides generated with different laser pulse energies was obtained. Both of these facts are keys to design and manufacture optical circuits by using this technological approach.

  15. High-resolution optical frequency metrology with stabilized femtosecond lasers

    NASA Astrophysics Data System (ADS)

    Jones, Ronald Jason

    The merging of such seemingly disparate fields as optical frequency metrology and ultrafast physics over the past few years has had a revolutionary impact on both fields. Extensive research over the past several decades has focused on stabilizing cw lasers to atomic and molecular transitions. These transitions in the optical and near-infrared regimes provide some of the highest Q's accessible in spectroscopy due to their high resonant frequencies (Q ≡ nu o/deltanu). Modern experiments have enjoyed increasing levels of precision and accuracy due to such stabilized laser systems. A long standing problem in optical frequency metrology, however, is the difficulty to perform direct frequency measurements in the optical spectrum. Traditional optical frequency chains are complex, costly, and lack flexibility. Recent experiments based on mode-locked femtosecond (fs) lasers promise to eliminate this problem and make optical frequency measurements accessible as a general laboratory tool. The use of fs lasers now enables the direct measurement of optical transitions by simply linking these frequencies to the repetition rate of the fs laser. The ability of the femtosecond laser to link the optical and radio frequency regimes is ultimately limited by its stability. In this dissertation, we present a novel stabilization scheme in which the frequency, phase, and repetition rate of a Kerr-lens mode-locked (KLM) ti:sapphire laser are locked to that of an ultra-stable Fabry-Perot reference cavity. The large signal to noise ratio of the recovered cavity resonance allows the superb short term stability (tau < 1 second) of the passive reference cavity to be transferred to the femtosecond laser. This technique may find future application in any experiment involving the use of femtosecond pulses in which a resonant cavity is employed, such as intracavity studies of light-matter interactions with ultra-short pulses. The short term instability of the cavity stabilized femtosecond laser

  16. Femtosecond laser direct writing of monocrystalline hexagonal silver prisms

    SciTech Connect

    Vora, Kevin; Kang, SeungYeon; Moebius, Michael; Mazur, Eric

    2014-10-06

    Bottom-up growth methods and top-down patterning techniques are both used to fabricate metal nanostructures, each with a distinct advantage: One creates crystalline structures and the other offers precise positioning. Here, we present a technique that localizes the growth of metal crystals to the focal volume of a laser beam, combining advantages from both approaches. We report the fabrication of silver nanoprisms—hexagonal nanoscale silver crystals—through irradiation with focused femtosecond laser pulses. The growth of these nanoprisms is due to a nonlinear optical interaction between femtosecond laser pulses and a polyvinylpyrrolidone film doped with silver nitrate. The hexagonal nanoprisms have bases hundreds of nanometers in size and the crystal growth occurs over exposure times of less than 1 ms (8 orders of magnitude faster than traditional chemical techniques). Electron backscatter diffraction analysis shows that the hexagonal nanoprisms are monocrystalline. The fabrication method combines advantages from both wet chemistry and femtosecond laser direct-writing to grow silver crystals in targeted locations. The results presented in this letter offer an approach to directly positioning and growing silver crystals on a substrate, which can be used for plasmonic devices.

  17. Amplitude autocorrelation of femtosecond laser pulses using linear photogalvanic effect in sillenite crystals

    NASA Astrophysics Data System (ADS)

    Grachev, A. I.; Romashko, R. V.; Kulchin, Yu. N.; Golik, S. S.; Nippolainen, E.; Kamshilin, A. A.

    2012-06-01

    We demonstrate excitation of the linear photogalvanic current in a Bi12TiO20 crystal by two orthogonally polarized femtosecond laser pulses with detecting the electrical current via charge accumulation on the sample electrodes. Such a setup was used to implement an interferometric autocorrelation technique for characterization of ultrashort light pulses. Integration of the detected current in femtosecond time domain leads to vanishing of a bipolar component of the photogalvanic current which arises due to a pulse chirping. The advantage of the proposed technique is that it produces the electric field correlation function directly without the need for data processing using a compact, robust, and non-expensive detector in the form of a photoconductive cell of a non-centrosymmetric crystal.

  18. Conical Emission of TI:SAPPHIRE Femtosecond Laser Pulses Propagating in Water

    NASA Astrophysics Data System (ADS)

    Zhang, Shian; Sun, Zhenrong; Yang, Xihua; Wang, Zugeng; Xu, Zhizhan; Li, Ruxin

    Conical emission is investigated for Ti:sapphire femtosecond laser pulses propagating in water. The colored rings can be observed in the forward direction due to the constructive and destructive interference of transverse wavevector, which are induced by the spatio-temporal gradient of the free-electron density. With increasing input laser energy, due to filamentation and pulse splitting induced by the plasma created by multiphoton excitation of electrons from the valence band to the conduction band, the on-axis spectrum of the conical emission is widely broadened and strongly modulated with respect to input laser spectrum, and finally remains fairly constant at higher laser energy due to intensity clamping in the filaments.

  19. Delivery of molecules into cells using carbon nanoparticles activated by femtosecond laser pulses.

    PubMed

    Chakravarty, Prerona; Qian, Wei; El-Sayed, Mostafa A; Prausnitz, Mark R

    2010-08-01

    A major barrier to drug and gene delivery is crossing the cell's plasma membrane. Physical forces applied to cells via electroporation, ultrasound and laser irradiation generate nanoscale holes in the plasma membrane for direct delivery of drugs into the cytoplasm. Inspired by previous work showing that laser excitation of carbon nanoparticles can drive the carbon-steam reaction to generate highly controlled shock waves, we show that carbon black nanoparticles activated by femtosecond laser pulses can facilitate the delivery of small molecules, proteins and DNA into two types of cells. Our initial results suggest that interaction between the laser energy and carbon black nanoparticles may generate photoacoustic forces by chemical reaction to create transient holes in the membrane for intracellular delivery. PMID:20639882

  20. Laser surface and subsurface modification of sapphire using femtosecond pulses

    NASA Astrophysics Data System (ADS)

    Eberle, G.; Schmidt, M.; Pude, F.; Wegener, K.

    2016-08-01

    Two methods to process sapphire using femtosecond laser pulses are demonstrated, namely ablation (surface), and in-volume laser modification followed by wet etching (subsurface). Firstly, the single and multipulse ablation threshold is determined and compared with previous literature results. A unique application of ablation is demonstrated by modifying the entrance aperture of water jet orifices. Laser ablation exhibits advantages in terms of geometric flexibility and resolution, however, defects in the form of edge outbreaks and poor surface quality are evident. Secondly, the role of material transformation, polarisation state and formation of multi-focus structures after in-volume laser modification is investigated in order to explain their influence during the wet etching process. Laser scanning and electron microscopy as well as electron backscatter diffraction measurements supported by ion beam polishing are used to better understand quality and laser-material interactions of the two demonstrated methods of processing.

  1. Fabrication of mitigation pits for improving laser damage resistance in dielectric mirrors by femtosecond laser machining

    SciTech Connect

    Wolfe, Justin E.; Qiu, S. Roger; Stolz, Christopher J.

    2011-03-20

    Femtosecond laser machining is used to create mitigation pits to stabilize nanosecond laser-induced damage in multilayer dielectric mirror coatings on BK7 substrates. In this paper, we characterize features and the artifacts associated with mitigation pits and further investigate the impact of pulse energy and pulse duration on pit quality and damage resistance. Our results show that these mitigation features can double the fluence-handling capability of large-aperture optical multilayer mirror coatings and further demonstrate that femtosecond laser macromachining is a promising means for fabricating mitigation geometry in multilayer coatings to increase mirror performance under high-power laser irradiation.

  2. Femtosecond all-solid-state laser for refractive surgery

    NASA Astrophysics Data System (ADS)

    Zickler, Leander; Han, Meng; Giese, G.'nter; Loesel, Frieder H.; Bille, Josef F.

    2003-06-01

    Refractive surgery in the pursuit of perfect vision (e.g. 20/10) requires firstly an exact measurement of abberations induced by the eye and then a sophisticated surgical approach. A recent extension of wavefront measurement techniques and adaptive optics to ophthalmology has quantitatively characterized the quality of the human eye. The next milestone towards perfect vision is developing a more efficient and precise laser scalpel and evaluating minimal-invasive laser surgery strategies. Femtosecond all-solid-state MOPA lasers based on passive modelocking and chirped pulse amplification are excellent candidates for eye surgery due to their stability, ultra-high intensity and compact tabletop size. Furthermore, taking into account the peak emission in the near IR and diffraction limited focusing abilities, surgical laser systems performing precise intrastromal incisions for corneal flap resection and intrastromal corneal reshaping promise significant improvement over today's Photorefractive Keratectomy (PRK) and Laser Assisted In Situ Keratomileusis (LASIK) techniques which utilize UV excimer lasers. Through dispersion control and optimized regenerative amplification, a compact femtosecond all-solid-state laser with pulsed energy well above LIOB threshold and kHz repetition rate is constructed. After applying a pulse sequence to the eye, the modified corneal morphology is investigated by high resolution microscopy (Multi Photon/SHG Confocal Microscope).

  3. Synchronized videography of plasma plume expansion during femtosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Paolasini, Steven; Kietzig, Anne

    2014-03-01

    Femtosecond lasers are gaining industrial interest for surface patterning and structuring because of the reduced heat effects to the surrounding material, resulting in a good quality product with a high aspect ratio. Analysis of the plasma plume generated during ablation can provide useful information about the laser-material interactions and thereby the quality of the resulting surface patterns. As a low-cost alternative to rather complicated ICCD camera setups, presented here is an approach based on filming the laser machining process with a high speed camera and tuning the frame rate of the camera to slightly lower than the laser pulse frequency. The delay in frequency between the laser and camera results in frames taken from sequential pulses. Each frame represents a later phase of plume expansion although taken from different pulses. Assuming equal plume evolution processes from pulse to pulse, the sequence of images obtained completes a plume expansion video. To test the assumption of homogeneity between sequential plumes, the camera can be tuned to the frequency of the laser, as to capture consecutive plumes at the same phase in their evolution. This approach enables a relatively low-cost, high resolution visualization of plasma plume evolution suitable for industrial micromachining applications with femtosecond lasers. Using this approach we illustrate differences in plume expansion at the example of machining homogeneous surface patterns in different liquid and gaseous processing environments.

  4. Optical cell cleaning with NIR femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Uchugonova, Aisada; Breunig, Hans Georg; Batista, Ana; König, Karsten

    2015-03-01

    Femtosecond laser microscopes have been used as both micro and nanosurgery tools. The optical knock-out of undesired cells in multiplex cell clusters shall be further reported on in this study. Femtosecond laser-induced cell death is beneficial due to the reduced collateral side effects and therefore can be used to selectively destroy target cells within monolayers, as well as within 3D tissues, all the while preserving cells of interest. This is an important characteristic for the application in stem cell research and cancer treatment. Non-precise damage compromises the viability of neighboring cells by inducing side effects such as stress to the cells surrounding the target due to the changes in the microenvironment, resulting from both the laser and laser-exposed cells. In this study, optimum laser parameters for optical cleaning by isolating single cells and cell colonies are exploited through the use of automated software control. Physiological equilibrium and cellular responses to the laser induced damages are also investigated. Cell death dependence on laser focus, determination and selectivity of intensity/dosage, controllable damage and cell recovery mechanisms are discussed.

  5. Femtosecond laser dissection in C. elegans neural circuits

    NASA Astrophysics Data System (ADS)

    Samuel, Aravinthan D. T.; Chung, Samuel H.; Clark, Damon A.; Gabel, Christopher V.; Chang, Chieh; Murthy, Venkatesh; Mazur, Eric

    2006-02-01

    The nematode C. elegans, a millimeter-long roundworm, is a well-established model organism for studies of neural development and behavior, however physiological methods to manipulate and monitor the activity of its neural network have lagged behind the development of powerful methods in genetics and molecular biology. The small size and transparency of C. elegans make the worm an ideal test-bed for the development of physiological methods derived from optics and microscopy. We present the development and application of a new physiological tool: femtosecond laser dissection, which allows us to selectively ablate segments of individual neural fibers within live C. elegans. Femtosecond laser dissection provides a scalpel with submicrometer resolution, and we discuss its application in studies of neural growth, regenerative growth, and the neural basis of behavior.

  6. Rapid microfabrication of transparent materials using filamented femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Butkus, S.; Gaižauskas, E.; Paipulas, D.; Viburys, Ž.; Kaškelyė, D.; Barkauskas, M.; Alesenkov, A.; Sirutkaitis, V.

    2014-01-01

    Microfabrication of transparent materials using femtosecond laser pulses has showed good potential towards industrial application. Maintaining pulse energies exceeding the critical self-focusing threshold by more than 100-fold produced filaments that were used for micromachining purposes. This article demonstrates two different micromachining techniques using femtosecond filaments generated in different transparent media (water and glass). The stated micromachining techniques are cutting and welding of transparent samples. In addition, cutting and drilling experiments were backed by theoretical modelling giving a deeper insight into the whole process. We demonstrate cut-out holes in soda-lime glass having thickness up to 1 mm and aspect ratios close to 20, moreover, the fabrication time is of the order of tens of seconds, in addition, grooves and holes were fabricated in hardened 1.1 mm thick glass (Corning Gorilla glass). Glass welding was made possible and welded samples were achieved after several seconds of laser fabrication.

  7. Beam wandering of femtosecond laser filament in air.

    PubMed

    Yang, Jing; Zeng, Tao; Lin, Lie; Liu, Weiwei

    2015-10-01

    The spatial wandering of a femtosecond laser filament caused by the filament heating effect in air has been studied. An empirical formula has also been derived from the classical Karman turbulence model, which determines quantitatively the displacement of the beam center as a function of the propagation distance and the effective turbulence structure constant. After fitting the experimental data with this formula, the effective turbulence structure constant has been estimated for a single filament generated in laboratory environment. With this result, one may be able to estimate quantitatively the displacement of a filament over long distance propagation and interpret the practical performance of the experiments assisted by femtosecond laser filamentation, such as remote air lasing, pulse compression, high order harmonic generation (HHG), etc. PMID:26480079

  8. Selective metallization on insulator surfaces with femtosecond laser pulses.

    PubMed

    Xu, Jian; Liao, Yang; Zeng, Huidan; Zhou, Zenghui; Sun, Haiyi; Song, Juan; Wang, Xinshun; Cheng, Ya; Xu, Zhizhan; Sugioka, Koji; Midorikawa, Katsumi

    2007-10-01

    We report selective metallization on surfaces of insulators (glass slides and lithium niobate crystal) based on femtosecond laser modification combined with electroless plating. The process is mainly composed of four steps: (1) formation of silver nitrate thin films on the surfaces of glass or crystal substrates; (2) generation of silver particles in the irradiated area by femtosecond laser direct writing; (3) removal of unirradiated silver nitrate films; and (4) selective electroless plating in the modified area. We discuss the mechanism of selective metallization on the insulators. Moreover, we investigate the electrical and adhesive properties of the copper microstructures patterned on the insulator surfaces, showing great potential of integrating electrical functions into lab-on-a-chip devices. PMID:19550542

  9. Nanosecond and femtosecond laser spectroscopy of molecules of biological interest

    NASA Astrophysics Data System (ADS)

    Villani, P.; Orlando, S.; Santagata, A.; De Bonis, A.; Veronesi, S.; Giardini, A.

    2007-07-01

    This paper mainly concerns on nanosecond and femtosecond laser spectroscopy of aromatic organic compounds as neurotransmitters, and plume diagnostics of the ablated species, in order to characterize the plasma dynamics, i.e. the temporal and spatial evolution of the plume. Optical emission spectroscopy has been applied to characterize the transient species produced in the femtosecond (fs) and nanosecond (ns) regimes. The laser sources employed for optical emission spectroscopy are a frequency-doubled Nd:YAG Handy ( λ = 532 nm, τ = 5 ns) and a frequency-doubled Nd:glass ( λ = 527 nm, τ = 250 fs). These studies aim to detect and give information on the photoexcitation and photodissociation of these biological molecules and to compare the plasma characteristics in the two ablation regimes.

  10. Femtosecond laser fluorescence and propagation in very dense potassium vapor.

    PubMed

    Makdisi, Y; Kokaj, J; Afrousheh, K; Nair, R; Mathew, J; Pichler, G

    2013-12-16

    Femtosecond (fs) laser propagation and fluorescence of dense potassium vapor was studied, and the spectral region around the first and the second doublets of the principal series lines of potassium atoms was investigated. In our search we did not observe the conical emission in the far field, although it was previously observed in the case of rubidium. We discuss the possible reason of this unexpected result. The fluorescence spectrum revealed Rb impurity resonance lines in emission due to the collisional redistribution from the K(4p) levels into the Rb(5p) levels. In the forward propagation of 400 nm femtosecond light we observed the molecular band red shifted from potassium second doublet. However, no molecular spectrum was observed when the mode-locked fs laser light was discretely tuned within the wings of the first resonance lines, at 770 nm. PMID:24514609

  11. Ultrahigh-Resolution Optical Coherence Tomography Using Femtosecond Lasers

    NASA Astrophysics Data System (ADS)

    Fujimoto, J. G.; Aguirre, A. D.; Chen, Y.; Herz, P. R.; Hsiung, P.-L.; Ko, T. H.; Nishizawa, N.; Kärtner, F. X.

    Optical coherence tomography (OCT) is an emerging optical imaging modality for biomedical research and clinical medicine. OCT can perform high resolution, cross-sectional tomographic imaging in materials and biological systems by measuring the echo time delay and magnitude of backreflected or backscattered light [1]. In medical applications, OCT has the advantage that imaging can be performed in situ and in real time, without the need to remove and process specimens as in conventional excisional biopsy and histopathology. OCT can achieve axial image resolutions of 1 to 15 μm; one to two orders of magnitude higher than standard ultrasound imaging. The image resolution in OCT is determined by the coherence length of the light source and is inversely proportional to its bandwidth. Femtosecond lasers can generate extremely broad bandwidths and have enabled major advances in ultrahigh-resolution OCT imaging. This chapter provides an overview of OCT technology and ultrahigh-resolution OCT imaging using femtosecond lasers.

  12. Optimization study of the femtosecond laser-induced forward-transfer process with thin aluminum films

    NASA Astrophysics Data System (ADS)

    Bera, Sudipta; Sabbah, A. J.; Yarbrough, J. M.; Allen, C. G.; Winters, Beau; Durfee, Charles G.; Squier, Jeff A.

    2007-07-01

    The parameters for an effective laser-induced forward-transfer (LIFT) process of aluminum thin films using a femtosecond laser are studied. Deposited feature size as a function of laser fluence, donor film thickness, quality of focus, and the pulse duration are varied, providing a metric of the most desirable conditions for femtosecond LIFT with thin aluminum films.

  13. Optimally enhanced optical emission in laser-induced air plasma by femtosecond double-pulse

    NASA Astrophysics Data System (ADS)

    Chen, Anmin; Li, Suyu; Li, Shuchang; Jiang, Yuanfei; Shao, Junfeng; Wang, Tingfeng; Huang, Xuri; Jin, Mingxing; Ding, Dajun

    2013-10-01

    In laser-induced breakdown spectroscopy, a femtosecond double-pulse laser was used to induce air plasma. The plasma spectroscopy was observed to lead to significant increase of the intensity and reproducibility of the optical emission signal compared to femtosecond single-pulse laser. In particular, the optical emission intensity can be optimized by adjusting the delay time of femtosecond double-pulse. An appropriate pulse-to-pulse delay was selected, that was typically about 50 ps. This effect can be especially advantageous in the context of femtosecond laser-induced breakdown spectroscopy, plasma channel, and so on.

  14. Optimally enhanced optical emission in laser-induced air plasma by femtosecond double-pulse

    SciTech Connect

    Chen, Anmin; Li, Suyu; Li, Shuchang; Jiang, Yuanfei; Ding, Dajun; Shao, Junfeng; Wang, Tingfeng; Huang, Xuri; Jin, Mingxing

    2013-10-15

    In laser-induced breakdown spectroscopy, a femtosecond double-pulse laser was used to induce air plasma. The plasma spectroscopy was observed to lead to significant increase of the intensity and reproducibility of the optical emission signal compared to femtosecond single-pulse laser. In particular, the optical emission intensity can be optimized by adjusting the delay time of femtosecond double-pulse. An appropriate pulse-to-pulse delay was selected, that was typically about 50 ps. This effect can be especially advantageous in the context of femtosecond laser-induced breakdown spectroscopy, plasma channel, and so on.

  15. Electrostrictive Mechanism of Nanostructure Formation at Solid Surfaces Irradiated by Femtosecond Laser Pulses.

    PubMed

    Pavlyniuk, Oleg R; Datsyuk, Vitaly V

    2016-12-01

    The significance of the mechanical pressure of light in creation of laser-induced periodic surface structures (LIPSSs) is investigated. Distributions of the electrically induced normal pressure and tangential stress at the illuminated solid surface, as well as the field of volume electrostrictive forces, are calculated taking into account surface plasmon polariton (SPP) excitation. Based on these calculations, we predict surface destruction and structure formation due to inelastic deformations during single femtosecond pulses. The calculated fields of the electromagnetic forces are found to agree well with the experimental ripple structures. We thus conclude that the electrostrictive forces can explain the origin of the periodic ripple structures. PMID:26754942

  16. Experimental femtosecond laser photodisruption of rabbit sclera for minimally invasive laser sclerostomy: An in vitro study

    NASA Astrophysics Data System (ADS)

    Yang, Xiaobo; Dai, Nengli; Long, Hua; Lu, Peixiang; Li, Wan; Jiang, Fagang

    2010-07-01

    Femtosecond laser technology, used as a minimally invasive tool in intrastromal refractive surgery, may also have potential as a useful instrument for glaucoma filtration surgery. The purpose of the present study was to evaluate the feasibility of minimally invasive laser sclerostomy by femtosecond laser photodisruption and seek the appropriate patterns of laser ablation and relevant laser parameters. A femtosecond laser (800 nm/50 fs/1 kHz), focused by a 0.1 numerical aperture (NA) objective lens, with different pulse energies and exposure times was applied to ablate hydrated rabbit sclera in vitro. The irradiated samples were examined by scanning electron microscopy (SEM). By moving a three-dimensional, computer-controlled translation stage to which the sample was attached, the femtosecond laser could produce three types of ablation patterns, including linear ablation, cylindrical aperture and rectangular cavity. With pulse energies ranging from 37.5 to 150 μJ, the linear lesions were consistently observed at the inner surface of sclera, whereas it failed to make any photodisruption if pulse energy was below the threshold value of 31.25 μJ, with the corresponding threshold intensity of 4.06×10 14 W/cm 2. The depths of the linear lesions increased linearly with both pulse energy (37.5-150 μJ) and exposure time (0.1-0.4 s). Histological examination showed the incisions produced by femtosecond laser photodisruption had precise geometry and the edges were sharp and smooth, with no evidence of collateral damage to the surrounding tissue. Our results predict the potential application of femtosecond laser pulses in minimally invasive laser sclerostomy for glaucoma treatment.

  17. Multiphoton microscopy system with a compact fiber-based femtosecond-pulse laser and handheld probe.

    PubMed

    Liu, Gangjun; Kieu, Khanh; Wise, Frank W; Chen, Zhongping

    2011-01-01

    We report on the development of a compact multiphoton microscopy (MPM) system that integrates a compact and robust fiber laser with a miniature probe. The all normal dispersion fiber femtosecond laser has a central wavelength of 1.06 μm, pulse width of 125 fs and average power of more than 1 W. A double cladding photonic crystal fiber was used to deliver the excitation beam and to collect the two-photon signal. The hand-held probe included galvanometer-based mirror scanners, relay lenses and a focusing lens. The packaged probe had a diameter of 16 mm. Second harmonic generation (SHG) images and two-photon excited fluorescence (TPEF) images of biological tissues were demonstrated using the system. PMID:20635426

  18. Femtosecond laser ablation of carbon: From spallation to formation of hot critical plasma

    NASA Astrophysics Data System (ADS)

    Kudryashov, S. I.; Ionin, A. A.; Makarov, S. V.; Mel'nik, N. N.; Seleznev, L. V.; Sinitsyn, D. V.

    2012-07-01

    Strong ablative shock waves were generated on a highly oriented pyrolytic graphite surface by intense IR femtosecond laser pulses in a broad fluence range and their basic parameters (pressure, velocity) were acquired by means of a non-contact broadband ultrasonic technique. At moderate laser fluences (F ≥ 0.3 J/cm2), ultrafast formation of a dense, strongly-heated (supercritical) carbon phase is expected, which expands on a fluence-dependent picosecond timescale in the form of a point-like three-dimensional explosion, driving a multi-GPa shock wave both in ambient air and the graphite target. At higher laser fluences (F > 5 J/cm2), critical electron-ion plasma is formed instantaneously during the exciting femtosecond laser pulse, with its strong plasma absorption initiating a TPa-level shock wave (the maximum shock wave pressure ≈ 3 TPa is more than twice the previous maximum for carbon). Because of the ablative removal of the laser-heated surface carbon layer, the following time-integrated structural studies indicate the formation of a mixture of diamond and graphite nanocrystallites or, in other words, glassy carbon only in the redeposition products.

  19. Multiterawatt femtosecond laser system with kilohertz pulse repetition rate

    SciTech Connect

    Petrov, V V; Pestryakov, E V; Laptev, A V; Petrov, V A; Kuptsov, G V; Trunov, V I; Frolov, S A

    2014-05-30

    The basic principles, layout and components are presented for a multiterawatt femtosecond laser system with a kilohertz pulse repetition rate f, based on their parametric amplification and laser amplification of picosecond radiation that pumps the stages of the parametric amplifier. The results of calculations for a step-by-step increase in the output power from the LBO crystal parametric amplifier channel up to the multiterawatt level are presented. By using the developed components in the pump channel of the laser system, the parameters of the regenerative amplifier with the output energy ∼1 mJ at the wavelength 1030 nm and with f = 1 kHz are experimentally studied. The optical scheme of the diode-pumped multipass cryogenic Yb:Y{sub 2}O{sub 3} laser ceramic amplifier is developed and its characteristics are determined that provide the output energy within the range 0.25 – 0.35 J. (lasers)

  20. Absence of amorphous phase in high power femtosecond laser-ablated silicon

    SciTech Connect

    Rogers, Matthew S.; Grigoropoulos, Costas P.; Minor, Andrew M.; Mao, Samuel S.

    2009-01-05

    As femtosecond lasers emerge as viable tools for advanced microscale materials processing, it becomes increasingly important to understand the characteristics of materials resulting from femtosecond laser microablation or micromachining. We conducted transmission electron microscopy experiments to investigate crater structures in silicon produced by repetitive high power femtosecond laser ablation. Comparable experiments of nanosecond laser ablation of silicon were also performed. We found that an amorphous silicon layer that is typically produced in nanosecond laser ablation is absent when the material is irradiated by high power femtosecond laser pulses. Instead, only a defective single crystalline layer was observed in the high power femtosecond laser-ablated silicon crater. Possible mechanisms underlying the formation of the defective single crystalline phase are discussed.

  1. Patterning of silica microsphere monolayers with focused femtosecond laser pulses

    SciTech Connect

    Cai Wenjian; Piestun, Rafael

    2006-03-13

    We demonstrate the patterning of monolayer silica microsphere lattices with tightly focused femtosecond laser pulses. We selectively removed microspheres from a lattice and characterized the effect on the lattice and the substrate. The proposed physical mechanism for the patterning process is laser-induced breakdown followed by ablation of material. We show that a microsphere focuses radiation in its interior and in the near field. This effect plays an important role in the patterning process by enhancing resolution and accuracy and by reducing the pulse energy threshold for damage. Microsphere patterning could create controlled defects within self-assembled opal photonic crystals.

  2. 1-kHz-repetition-rate femtosecond Raman laser

    NASA Astrophysics Data System (ADS)

    Didenko, N. V.; Konyashchenko, A. V.; Kostryukov, P. V.; Losev, L. L.; Pazyuk, V. S.; Tenyakov, S. Yu

    2016-07-01

    A femtosecond Raman laser utilising compressed hydrogen is experimentally investigated under pumping by radiation from a 1-kHz-repetition-rate Ti : sapphire laser. In the regime of double-pulse pumping, the conditions are determined, which correspond to the minimal energy dispersion of Stokes pulses. The optical scheme is realised, which is capable of ensuring the long-term stability of the average power of the first Stokes component with a variation of less than 2%. The Stokes pulses are produced with a pulse duration of 60 fs and energy of 0.26 mJ at a conversion efficiency of 14%.

  3. Femtosecond laser internal manufacturing of three-dimensional microstructure devices

    NASA Astrophysics Data System (ADS)

    Zheng, Chong; Hu, Anming; Chen, Tao; Oakes, Ken D.; Liu, Shibing

    2015-10-01

    Potential applications for three-dimensional microstructure devices developed rapidly across numerous fields including microoptics, microfluidics, microelectromechanical systems, and biomedical devices. Benefiting from many unique fabricating advantages, internal manufacturing methods have become the dominant process for three-dimensional microstructure device manufacturing. This paper provides a brief review of the most common techniques of femtosecond laser three-dimensional internal manufacturing (3DIM). The physical mechanisms and representative experimental results of 3D manufacturing technologies based on multiphoton polymerization, laser modification, microexplosion and continuous hollow structure internal manufacturing are provided in details. The important progress in emerging applications based on the 3DIM technologies is introduced as well.

  4. Variable bandwidth birefringent filter for tunable femtosecond lasers

    SciTech Connect

    Naganuma, K.; Lenz, G.; Ippen, E.P. )

    1992-10-01

    A design for a birefringent filter is described, which is suitable for tunable femtosecond lasers. Using a single plate, which has a steeply diving optic axis, two-octave tunability is attained with negligible deterioration of the stopband rejection. For a specific wavelength region, it means that the filter's bandwidth can be changed by a factor of four. Another characteristic of the design is that, for the same bandwidth, the proposed plate is five times thicker than a conventional plate in which the optic axis is parallel to the surface. Thus, etalon effects can be avoided. Tuning characteristics of color center lasers utilizing the new filter are also presented. 18 refs.

  5. A new approach to fabricate pdms structures using femtosecond laser

    NASA Astrophysics Data System (ADS)

    Selvaraj, Hamsapriya

    Polydimethylsiloxane (PDMS) is commonly used to prototype micro and nano featured components due to its beneficial properties. PDMS based devices have been used for diverse applications such as cell culturing, cell sorting and sensors. Motivated by such diverse applications possible through pure PDMS and reinforced PDMS, numerous efforts have been directed towards developing novel fabrication techniques. Prototyping 2D and 3D pure and reinforced PDMS microdevices normally require a long curing time and must go through multiple steps. This research explores the possibility of fabricating microscale and nanoscale structures directly from PDMS resin using femtosecond laser processing. This study offers an alternative fabrication route that potentially lead to a new way for prototyping of pure and reinforced PDMS devices, and the generation of hybrid nanomaterials. In depth investigation of femtosecond laser irradiation of PDMS resin reveals that the process is highly intensity-dependent. At low to intermediate intensity regime, femtosecond laser beam is able to rapidly cure the resin and create micron-sized structures directly from PDMS resin. At higher intensity regime, a total break-down of the resin material occurs and leads to the formation of PDMS nanoparticles. This work demonstrates a new way of rapid curing of PDMS resin on a microsecond timescale using femtosecond laser irradiation. The proposed technique permits maskless singlestep curing and is capable of fabricating 2D and 3D structures in micro-scale. Reinforced PDMS microstructures also have been fabricated through this method. The proposed technique permits both reinforcement and rapid curing and is ideal for fabricating reinforced structures in microscale. The strength of the nanofiber reinforced PDMS microstructures has been investigated by means of Nanoindentation test. The results showed significant improvement in strength of the material. Hybrid PDMS-Si and hybrid PDMS-Al nanoparticle aggregate

  6. Femtosecond laser collagen cross-linking without traditional photosensitizers

    NASA Astrophysics Data System (ADS)

    Guo, Yizang; Wang, Chao; Celi, Nicola; Vukelic, Sinisa

    2015-03-01

    Collagen cross-linking in cornea has the capability of enhancing its mechanical properties and thereby providing an alternative treatment for eye diseases such as keratoconus. Currently, riboflavin assisted UVA light irradiation is a method of choice for cross-link induction in eyes. However, ultrafast pulsed laser interactions may be a powerful alternative enabling in-depth treatment while simultaneously diminishing harmful side effects such as, keratocyte apoptosis. In this study, femtosecond laser is utilized for treatment of bovine cornea slices. It is hypothesized that nonlinear absorption of femtosecond laser pulses plays a major role in the maturation of immature cross-links and the promotion of their growth. Targeted irradiation with tightly focused laser pulses allows for the absence of a photosensitizing agent. Inflation test was conducted on half treated porcine cornea to identify the changes of mechanical properties due to laser treatment. Raman spectroscopy was utilized to study subtle changes in the chemical composition of treated cornea. The effects of treatment are analyzed by observing shifts in Amide I and Amide III bands, which suggest deformation of the collagen structure in cornea due to presence of newly formed cross-links.

  7. Saturable absorber mode-locked femtosecond Cr4+:YAG laser

    NASA Astrophysics Data System (ADS)

    Hayduk, Michael J.; Johns, Steven T.; Krol, Mark F.

    1997-07-01

    We have demonstrated self-starting passive mode-locking of a chromium-doped:YAG (Cr4+:YAG) laser using a saturable absorber mirror (SAM) structure. Highly stable femtosecond pulses tunable from 1488 to 1535 nm were generated. Average TEM00 output powers ranged from 40 to 80 mW with a minimum pulse width of 120 fs measured at 1488 nm. The generation of ultrashort pulses in solid-state lasers using the Kerr lens modelocking (KLM) technique has been the center of much attention in recent years. Sub 100 fs pulses have been produced using many different laser systems. However, the KLM process is very sensitive to cavity alignment and is easily perturbed by mechanical vibrations and pump power fluctuations. A more reliable process makes use of a saturable absorber to start and stabilize the soliton formation process. The saturable absorber eliminates the need for critical cavity alignment. The femtosecond pulse train produced by the SAM structure in the Cr4+:YAG laser system is highly stable over very long periods of time. The wide tunability of the Cr4+:YAG laser throughout the 1.5 micrometer transmission window of optical fiber makes it an ideal spectroscopic source for the characterization and development of novel materials and devices for ultrafast optical interconnects.

  8. Femtosecond X-ray solution scattering reveals that bond formation mechanism of a gold trimer complex is independent of excitation wavelength

    PubMed Central

    Kim, Kyung Hwan; Kim, Jong Goo; Oang, Key Young; Kim, Tae Wu; Ki, Hosung; Jo, Junbeom; Kim, Jeongho; Sato, Tokushi; Nozawa, Shunsuke; Adachi, Shin-ichi; Ihee, Hyotcherl

    2016-01-01

    The [Au(CN)2−]3 trimer in water experiences a strong van der Waals interaction between the d10 gold atoms due to large relativistic effect and can serve as an excellent model system to study the bond formation process in real time. The trimer in the ground state (S0) exists as a bent structure without the covalent bond between the gold atoms, and upon the laser excitation, one electron in the antibonding orbital goes to the bonding orbital, thereby inducing the formation of a covalent bond between gold atoms. This process has been studied by various time-resolved techniques, and most of the interpretation on the structure and dynamics converge except that the structure of the first intermediate (S1) has been debated due to different interpretations between femtosecond optical spectroscopy and femtosecond X-ray solution scattering. Recently, the excitation wavelength of 267 nm employed in our previous scattering experiment was suggested as the culprit for misinterpretation. Here, we revisited this issue by performing femtosecond X-ray solution scattering with 310 nm excitation and compared the results with our previous study employing 267 nm excitation. The data show that a linear S1 structure is formed within 500 fs regardless of excitation wavelength and the structural dynamics observed at both excitation wavelengths are identical to each other within experimental errors. PMID:27191012

  9. Femtosecond X-ray solution scattering reveals that bond formation mechanism of a gold trimer complex is independent of excitation wavelength.

    PubMed

    Kim, Kyung Hwan; Kim, Jong Goo; Oang, Key Young; Kim, Tae Wu; Ki, Hosung; Jo, Junbeom; Kim, Jeongho; Sato, Tokushi; Nozawa, Shunsuke; Adachi, Shin-Ichi; Ihee, Hyotcherl

    2016-07-01

    The [Au(CN)2 (-)]3 trimer in water experiences a strong van der Waals interaction between the d(10) gold atoms due to large relativistic effect and can serve as an excellent model system to study the bond formation process in real time. The trimer in the ground state (S0) exists as a bent structure without the covalent bond between the gold atoms, and upon the laser excitation, one electron in the antibonding orbital goes to the bonding orbital, thereby inducing the formation of a covalent bond between gold atoms. This process has been studied by various time-resolved techniques, and most of the interpretation on the structure and dynamics converge except that the structure of the first intermediate (S1) has been debated due to different interpretations between femtosecond optical spectroscopy and femtosecond X-ray solution scattering. Recently, the excitation wavelength of 267 nm employed in our previous scattering experiment was suggested as the culprit for misinterpretation. Here, we revisited this issue by performing femtosecond X-ray solution scattering with 310 nm excitation and compared the results with our previous study employing 267 nm excitation. The data show that a linear S1 structure is formed within 500 fs regardless of excitation wavelength and the structural dynamics observed at both excitation wavelengths are identical to each other within experimental errors. PMID:27191012

  10. Nanograting formation on metals in air with interfering femtosecond laser pulses

    SciTech Connect

    Miyazaki, Kenzo E-mail: kmiyazaki@wind.ocn.ne.jp; Miyaji, Godai; Inoue, Toshishige

    2015-08-17

    It is demonstrated that a homogeneous nanograting having the groove period much smaller than the laser wavelength (∼800 nm) can be fabricated on metals in air through ablation induced by interfering femtosecond laser pulses (100 fs at a repetition rate of 10 Hz). Morphological changes on stainless steel and Ti surfaces, observed with an increase in superimposed shots of the laser pulses at a low fluence, have shown that the nanograting is developed through bonding structure change at the interference fringes, plasmonic near-field ablation to create parallel grooves on the fringe, and subsequent excitation of surface plasmon polaritons to regulate the groove intervals at 1/3 or 1/4 of the fringe period over the whole irradiated area. Calculation for a model target having a thin oxide layer on the metal substrate reproduces well the observed groove periods and explains the mechanism for the nanograting formation.

  11. Manipulation of cellular light from green fluorescent protein by a femtosecond laser

    NASA Astrophysics Data System (ADS)

    He, Hao; Li, Shiyang; Wang, Shaoyang; Hu, Minglie; Cao, Youjia; Wang, Chingyue

    2012-10-01

    Green fluorescent protein (GFP) is one of the most widely studied and exploited proteins in biochemistry and cell biology. It emits fluorescence following optical excitation, which is usually provided by a laser. Here, we report that fluorescence from enhanced GFP can be `turned off' by exposing cells to laser light. A short flash of femtosecond laser light is shown to deplete calcium in the endoplasmic reticulum of cells. Calcium-release-activated calcium channels are then activated by stromal interaction molecule 1 (STIM1). The rise in intracellular Ca2+ depolarizes mitochondria and increases the leakage of reactive oxygen species, which then permanently bleach the GFP. This controllable optical scheme for reactive oxygen species generation can also be used to modulate the photoconversion of GFP fluorescence from green to red emission and provide a mechanism for influencing cellular molecular dynamics.

  12. Radiation from laser accelerated electron bunches: Coherent terahertz and femtosecond X-rays

    SciTech Connect

    Leemans, W.P.; Esarey, E.; van Tilborg, J.; Michel, P.A.; Schroeder, C.B.; Toth, Cs.; Geddes, C.G.R.; Shadwick, B.A.

    2004-10-01

    Electron beam based radiation sources provide electromagnetic radiation for countless applications. The properties of the radiation are primarily determined by the properties of the electron beam. Compact laser driven accelerators are being developed that can provide ultra-short electron bunches (femtosecond duration) with relativistic energies reaching towards a GeV. The electron bunches are produced when an intense laser interacts with a dense plasma and excites a large amplitude plasma density modulation (wakefield) that can trap background electrons and accelerate them to high energies. The short pulse nature of the accelerated bunches and high particle energy offer the possibility of generating radiation from one compact source that ranges from coherent terahertz to gamma rays. The intrinsic synchronization to a laser pulse and unique character of the radiation offers a wide range of possibilities for scientific applications. Two particular radiation source regimes are discussed: Coherent terahertz emission and x-ray emission based on betatron oscillations and Thomson scattering.

  13. Excitation of surface waves by a short laser pulse in a conductor

    SciTech Connect

    Uryupin, S A; Frolov, A A

    2013-12-31

    We have studied the possibility of exciting surface waves in a conductor, which is irradiated by a focused femtosecond laser pulse incident along the normal to the surface. The time-dependent ponderomotive force is shown to lead to the excitation of surface waves in the terahertz frequency range. It is also shown that the total energy and the pulse amplitude of the surface waves increases with increasing effective electron collision frequency. (terahertz radiation)

  14. [Objective evaluation the application of femtosecond laser in cataract surgery].

    PubMed

    Liu, Y Z

    2016-02-01

    Femtosecond laser-assisted cataract surgery (FLACS) is a novel technology and the biggest revolution in the field of cataract in the latest several years. However, increasing large-scale population randomized controlled trials (RCT) have demonstrated that FLACS does not provide significant advantages over conventional phacoemulsification cataract surgery (CPCS) for common cataract patients. Furthermore, the cost and space requirement of the femtosecond equipment are another two limitations for the universal application of FSL in cataract surgery. However, FLACS may be beneficial for complex cataract situations, such as lens dislocation, zonular laxity, traumatic cataract, low preoperative endothelial cell values, and significant corneal astigmatism. With the progress of science and technology, FLACS can be expected to achieve integration with phacoemulsification systems, and equipment costs can be reduced, making it more widely used in clinical practice in the future. PMID:26906700

  15. Femtosecond laser generated gold nanoparticles and their plasmonic properties

    NASA Astrophysics Data System (ADS)

    Das, Rupali; Navas M., P.; Soni, R. K.

    2016-05-01

    The pulsed laser ablation in liquid medium is now commonly used to generate stable colloidal nanoparticles (NPs) in absence of any chemical additives or stabilizer with diverse applications. In this paper, we report generation of gold NPs (Au NPs) by ultra-short laser pulses. Femtosecond (fs) laser radiation (λ = 800 nm) has been used to ablate a gold target in pure de-ionized water to produce gold colloids with smallsize distribution. The average size of the particles can be further controlled by subjecting to laser-induced post-irradiation providing a versatile physical method of size-selected gold nanoparticles. The optical extinction and morphological dimensions were investigated with UV-Vis spectroscopy and Transmission Electron Microscopy measurements, respectively. Finite difference time domain (FDTD) method is employed to calculate localized surface plasmon (LSPR) wavelength and the near-field generated by Au NPs and their hybrids.

  16. Crystalline micro/nanostructures fabrication on silicon using femtosecond laser

    NASA Astrophysics Data System (ADS)

    Deng, Guoliang; Yang, Xianheng; Feng, Guoying; Zhou, Shouhuan

    2015-02-01

    The laser induced micro/ nano-meter size surface structures are fabricated by multi linear polarized femtosecond laser pulses (pulse duration τ=35 fs, wavelength λ=800 nm) irradiation at room temperature(25 ° ) and 400 °. The structures fabricated at these two temperatures show distinct temperature dependence. The grooves, which are parallel to the polarization of the laser light, can be clearly observed at almost all the structured area formed at 400 ° while laser induced period structures(ripples) are the most pronounced surface structure in the crater formed at room temperature. The crystallinity of these surface structures are investigated by using Raman spectroscopy. The Raman spectrum shows that all the structured area formed at 400 ° is crystalline(or poly-crystalline) while amorphous silicon can be observed within the structures formed at room temperature (25 °). These results indicate that temperature is an important parameter to be tuned to tailor the micro/nano-structure fabrication.

  17. Multiterawatt femtosecond laser system with kilohertz pulse repetition rate

    NASA Astrophysics Data System (ADS)

    Petrov, V. V.; Pestryakov, E. V.; Laptev, A. V.; Petrov, V. A.; Kuptsov, G. V.; Trunov, V. I.; Frolov, S. A.

    2014-05-01

    The basic principles, layout and components are presented for a multiterawatt femtosecond laser system with a kilohertz pulse repetition rate f, based on their parametric amplification and laser amplification of picosecond radiation that pumps the stages of the parametric amplifier. The results of calculations for a step-by-step increase in the output power from the LBO crystal parametric amplifier channel up to the multiterawatt level are presented. By using the developed components in the pump channel of the laser system, the parameters of the regenerative amplifier with the output energy ~1 mJ at the wavelength 1030 nm and with f = 1 kHz are experimentally studied. The optical scheme of the diode-pumped multipass cryogenic Yb:Y2O3 laser ceramic amplifier is developed and its characteristics are determined that provide the output energy within the range 0.25 - 0.35 J.

  18. Oxygen assisted interconnection of silver nanoparticles with femtosecond laser radiation

    SciTech Connect

    Huang, H.; Zhou, Y.; Duley, W. W.

    2015-12-14

    Ablation of silver (Ag) nanoparticles in the direction of laser polarization is achieved by utilizing femtosecond laser irradiation in air at laser fluence ranging from ∼2 mJ/cm{sup 2} to ∼14 mJ/cm{sup 2}. This directional ablation is attributed to localized surface plasmon induced localized electric field enhancement. Scanning electron microscopy observations of the irradiated particles in different gases and at different pressures indicate that the ablation is further enhanced by oxygen in the air. This may be due to the external heating via the reactions of its dissociation product, atomic oxygen, with the surface of Ag particles, while the ablated Ag is not oxidized. Further experimental observations show that the ablated material re-deposits near the irradiated particles and results in the extension of the particles in laser polarization direction, facilitating the interconnection of two well-separated nanoparticles.

  19. Nanostructuring of ITO thin films through femtosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Sahin, Ramazan; Kabacelik, Ismail

    2016-04-01

    Due to reduced thermal effects, tightly focused femtosecond laser beams can yield submicron resolution with minimal side effects. In laser direct writing applications, diffraction-free nature of the Bessel beams relaxes alignment of the sample and shortens the production time. Micron-sized central spots and long depth of focused beams can be simultaneously produced. We apply fs Bessel beam single-pulse ablation method to transparent conductive oxide films. We use laser of 1030 nm wavelength and two different axicons (base angles are 25° and 40°). Fabricated structures are characterized by optical microscope, atomic force microscope and scanning electron microscope. Laser beam shaping and virtues of non-diffracted Bessel beams provide periodic structures for scribing in the solar cells or high-resolution displays and reduce the process time.

  20. Femtosecond laser micromachining for the realization of fully integrated photonic and microfluidic devices

    NASA Astrophysics Data System (ADS)

    Eaton, S. M.; Osellame, R.; Ramponi, R.

    2015-02-01

    Femtosecond laser microprocessing is a direct, maskless fabrication technique that has attracted much attention in the past 10 years due to its unprecedented versatility in the 3D patterning of transparent materials. Two common modalities of femtosecond laser microfabrication include buried optical waveguide writing and surface laser ablation, which have been applied to a wide range of transparent substrates including glasses, polymers and crystals. In two photon polymerization, a third modality of femtosecond laser fabrication, focused femtosecond laser pulses drive photopolymerization in photoresists, enabling the writing of complex 3D structures with submicrometer resolution. In this paper, we discuss several microdevices realized by these diverse modalities of femtosecond laser microfabrication, for applications in microfluidics, sensing and quantum information.

  1. Bi-directional terahertz-to-infrared emission from metal-coated nanostructures upon femtosecond laser irradiation.

    PubMed

    Zhang, Liangliang; Wu, Tong; Zhao, Ji; Zhang, Cunlin; Zhang, X-C

    2015-09-21

    We report on the investigation of bi-directional terahertz-to-infrared (THz-to-IR) radiation from a metal film coated on a substrate with randomly ordered pore arrays by irradiation of femtosecond laser pulses. THz-to-IR radiation was observed both for front-side excitation (laser incident on the metal surface) and for rear-side excitation (laser incident on the substrate). In both cases, the radiation was observed both in the propagation direction of the laser beam and in the reverse direction. Considering these findings, we propose a thermal emission mechanism based on the production of surface plasmons, either delocalized (through phase-matched excitation) or localized (through surface roughness) at the air/metal and metal/substrate interfaces. PMID:26406717

  2. Ultrafast demagnetization after femtosecond laser pulses: Transfer of angular momentum from the electronic system to magnetoelastic spin-phonon modes

    NASA Astrophysics Data System (ADS)

    Tsatsoulis, T.; Illg, C.; Haag, M.; Mueller, B. Y.; Zhang, L.; Fähnle, M.

    2016-04-01

    During ultrafast demagnetization after the excitation of ferromagnetic films with femtosecond laser pulses, the angular momentum of the electronic system is transferred to the lattice via electron-phonon scatterings. The actual amount of transfer is calculated for Ni and Fe by considering spin-phonon eigenmodes, which have a sharp angular momentum. Because the considered Hamiltonian is not isotropic, the total angular momentum is not conserved.

  3. Correlation between anterior chamber characteristics and laser flare photometry immediately after femtosecond laser treatment before phacoemulsification.

    PubMed

    Pahlitzsch, M; Torun, N; Pahlitzsch, M L; Klamann, M K J; Gonnermann, J; Bertelmann, E; Pahlitzsch, T

    2016-08-01

    PurposeTo assess the anterior chamber (AC) characteristics and its correlation to laser flare photometry immediately after femtosecond laser-assisted capsulotomy and photodisruption.Patients and methodsThe study included 97 cataract eyes (n=97, mean age 68.6 years) undergoing femtosecond laser-assisted cataract surgery (FLACS). Three cohorts were analysed relating to the flare photometry directly post femtosecond laser treatment (flare <100 n=28, 69.6±7 years; flare 100-249 n=47, 67.7±8 years; flare >249 photon counts per ms cohort n=22, 68.5±10 years). Flare photometry (KOWA FM-700), corneal topography (Oculus Pentacam, Germany: AC depth, volume, angle, pachymetry), axial length, pupil diameter, and endothelial cells were assessed before FLACS, immediately after femtosecond laser treatment and 1 day postoperative (LenSx Alcon, USA). Statistical data were analysed by SPSS v19.0, Inc.ResultsThe AC depth, AC volume, AC angle, central and thinnest corneal thickness showed a significant difference between flare <100 vs flare 100-249 10 min post femtosecond laser procedure (P=0.002, P=0.023, P=0.007, P=0.003, P=0.011, respectively). The AC depth, AC volume, and AC angle were significantly larger (P=0.001, P=0.007, P=0.003, respectively) in the flare <100 vs flare >249 cohort 10 min post femtosecond laser treatment.ConclusionsA flat AC, low AC volume, and a narrow AC angle were parameters associated with higher intraocular inflammation. These criteria could be used for patient selection in FLACS to reduce postoperative intraocular inflammation. PMID:27229702

  4. Femtosecond laser ablation of gold interdigitated electrodes for electronic tongues

    NASA Astrophysics Data System (ADS)

    Manzoli, Alexandra; de Almeida, Gustavo F. B.; Filho, José A.; Mattoso, Luiz H. C.; Riul, Antonio; Mendonca, Cleber R.; Correa, Daniel S.

    2015-06-01

    Electronic tongue (e-tongue) sensors based on impedance spectroscopy have emerged as a potential technology to evaluate the quality and chemical composition of food, beverages, and pharmaceuticals. E-tongues usually employ transducers based on metal interdigitated electrodes (IDEs) coated with a thin layer of an active material, which is capable of interacting chemically with several types of analytes. IDEs are usually produced by photolithographic methods, which are time-consuming and costly, therefore, new fabrication technologies are required to make it more affordable. Here, we employed femtosecond laser ablation with pulse duration of 50 fs to microfabricate gold IDEs having finger width from 2.3 μm up to 3.2 μm. The parameters used in the laser ablation technique, such as light intensity, scan speed and beam spot size have been optimized to achieve uniform IDEs, which were characterized by optical and scanning electron microscopy. The electrical properties of gold IDEs fabricated by laser ablation were evaluated by impedance spectroscopy, and compared to those produced by conventional photolithography. The results show that femtosecond laser ablation is a promising alternative to conventional photolithography for fabricating metal IDEs for e-tongue systems.

  5. Focal spot analysis of radially polarized femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Sun, Wenchao; Hu, Wenhua; Qi, Junli; Wang, Weiming; Liao, Jiali; Yi, Wenjun; Jia, Hui; Li, Xiujian

    2014-09-01

    When radially polarized light beams focus through high numerical-aperture lens, there will be a very strong longitudinal component of the light field near the focus. And, under the condition of certain system parameters, they can shape a spot which is over the focusing spot of the diffraction limit, which are the superiorities that linearly polarized light and circularly polarized light do not have. Besides, what we have found in the experiment is that radially polarized femtosecond laser pulses own the same superiorities, which provides the basis for using the focusing characteristics of radially polarized light beams under the condition of shorter and more powerful laser pulses. So far, although people have studied a lot on radially polarized light beams, this kind of light beams' focusing characters are rarely researched. What is worse, most research of its focusing characters still stays in the stage of theoretical simulation,and it seems that none of people have really studied it by the way of experiments. This article is precisely based on this. On the basis of predecessors' a lot of theoretical research, the article pays more attention on analyzing radially polarized light beams' focusing character through experiments. What's more, the article, based on femtosecond laser pulses, compares the differences of the focusing nature among linearly polarized light, circularly polarized light and radially polarized light. And it gets the conclusion that radially polarized femtosecond laser pulses have better focusing character in longitudinal light field, confirming the feasibility that radially polarized light beams can be used in the fields of pulling, catching, and accelerating particles, metal cutting and high-density storage.

  6. Wavelength dependence of femtosecond laser-induced breakdown in water and implications for laser surgery

    NASA Astrophysics Data System (ADS)

    Linz, Norbert; Freidank, Sebastian; Liang, Xiao-Xuan; Vogel, Alfred

    2016-07-01

    The wavelength dependence of the threshold for femtosecond optical breakdown in water provides information on the interplay of multiphoton, tunneling, and avalanche ionization and is of interest for parameter selection in laser surgery. We measured the bubble threshold from ultraviolet to near-infrared wavelengths and found a continuous decrease of the irradiance threshold with increasing wavelength λ . Results are compared to the predictions of a numerical model that assumes a band gap of 9.5 eV and considers the existence of a separate initiation channel via excitation of valence band electrons into a solvated state followed by rapid upconversion into the conduction band. Fits to experimental data yield an electron collision time of ≈1 fs and an estimate for the capacity of the initiation channel. Using that collision time, the breakdown dynamics were explored up to λ = 2 μ m . The irradiance threshold first continues to decrease but levels out for wavelengths longer than 1.3 μ m . This opens promising perspectives for laser surgery at wavelengths around 1.3 and 1.7 μ m , which are attractive because of their large penetration depth into scattering tissues.

  7. Electrochemical behavior of nano and femtosecond laser textured titanium alloy for implant surface modification.

    PubMed

    Jeong, Yong-Hoon; Kim, Won-Gi; Choe, Han-Cheol

    2011-02-01

    In this study, the electrochemical behavior of nano and femtosecond laser textured titanium alloy for implant surface modification has been researched using the potentiostat equipment. Cp-Ti and Ti-6Al-4V alloy, located on X-Y motorized stage, were irradiated using femtosecond laser. The corrosion properties were examined by a potentiodynamic and AC impedance test. PMID:21456241

  8. Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon.

    PubMed

    Derrien, Thibault J-Y; Krüger, Jörg; Itina, Tatiana E; Höhm, Sandra; Rosenfeld, Arkadi; Bonse, Jörn

    2013-12-01

    The formation of near-wavelength laser-induced periodic surface structures (LIPSS) on silicon upon irradiation with sequences of Ti:sapphire femtosecond laser pulse pairs (pulse duration 150 fs, central wavelength 800 nm) is studied theoretically. For this purpose, the nonlinear generation of conduction band electrons in silicon and their relaxation is numerically calculated using a two-temperature model approach including intrapulse changes of optical properties, transport, diffusion and recombination effects. Following the idea that surface plasmon polaritons (SPP) can be excited when the material turns from semiconducting to metallic state, the "SPP active area" is calculated as function of fluence and double-pulse delay up to several picoseconds and compared to the experimentally observed rippled surface areas. Evidence is presented that multi-photon absorption explains the large increase of the rippled area for temporally overlapping pulses. For longer double-pulse delays, relevant relaxation processes are identified. The results demonstrate that femtosecond LIPSS on silicon are caused by the excitation of SPP and can be controlled by temporal pulse shaping. PMID:24514516

  9. Simultaneous solution-based generation and characterization of crystalline bismuth thin film by femtosecond laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhu, Liangdong; Saha, Sumit; Liu, Weimin; Wang, Yanli; Keszler, Douglas A.; Fang, Chong

    2015-08-01

    We demonstrate generation and characterization of crystalline bismuth thin film from triphenyl bismuth in methanol. Upon ultraviolet (267 nm) femtosecond laser irradiation of the solution, a thin film of elemental bismuth forms on the inner side of the sample cuvette, confirmed by detection of the coherent A1g optical phonon mode of crystalline bismuth at ˜90 cm-1. Probe pulses at 267 and 400 nm are used to elucidate the excited state potential energy surface and photochemical reaction coordinate of triphenyl bismuth in solution with femtosecond resolution. The observed phonon mode blueshifts with increasing irradiation time, likely due to the gradual thickening of nascent bismuth thin film to ˜80 nm in 90 min. From transient absorption with the 400 nm probe, we observe a dominant ˜4 ps decay time constant of the excited-state absorption signal, which is attributed to a characteristic metal-ligand bond-weakening/breaking intermediate enroute to crystalline metallic thin film from the solution precursor molecules. Our versatile optical setup thus opens an appealing avenue to characterize the laser-induced crystallization process in situ and prepare high-quality thin films and nanopatterns directly from solution phase.

  10. Simultaneous solution-based generation and characterization of crystalline bismuth thin film by femtosecond laser spectroscopy

    SciTech Connect

    Zhu, Liangdong; Keszler, Douglas A.; Fang, Chong; Saha, Sumit; Liu, Weimin; Wang, Yanli

    2015-08-10

    We demonstrate generation and characterization of crystalline bismuth thin film from triphenyl bismuth in methanol. Upon ultraviolet (267 nm) femtosecond laser irradiation of the solution, a thin film of elemental bismuth forms on the inner side of the sample cuvette, confirmed by detection of the coherent A{sub 1g} optical phonon mode of crystalline bismuth at ∼90 cm{sup −1}. Probe pulses at 267 and 400 nm are used to elucidate the excited state potential energy surface and photochemical reaction coordinate of triphenyl bismuth in solution with femtosecond resolution. The observed phonon mode blueshifts with increasing irradiation time, likely due to the gradual thickening of nascent bismuth thin film to ∼80 nm in 90 min. From transient absorption with the 400 nm probe, we observe a dominant ∼4 ps decay time constant of the excited-state absorption signal, which is attributed to a characteristic metal-ligand bond-weakening/breaking intermediate enroute to crystalline metallic thin film from the solution precursor molecules. Our versatile optical setup thus opens an appealing avenue to characterize the laser-induced crystallization process in situ and prepare high-quality thin films and nanopatterns directly from solution phase.

  11. Laser Excited Fluorescence Studies Of Black Liquor

    NASA Astrophysics Data System (ADS)

    Horvath, J. J.; Semerjian, H. G.

    1986-10-01

    Laser excited fluorescence of black liquor was investigated as a possible monitoring technique for pulping processes. A nitrogen pumped dye laser was used to examine the fluorescence spectrum of black liquor solutions. Various excitation wavelengths were used between 290 and 403 nm. Black liquor fluorescence spectra were found to vary with both excitation wavelength and black liquor concentration. Laser excited fluorescence was found to be a sensitive technique for measurement of black liquor with good detection limits and linear response over a large dynamic range.

  12. Femtosecond laser heat affected zones profiled in Co/Si multilayer thin films

    SciTech Connect

    Picard, Yoosuf N.; Yalisove, Steven M.

    2008-01-07

    In this letter, we describe an approach for assessing collateral thermal damage resulting from high intensity, femtosecond laser irradiation. Polycrystalline Co thin films deposited on Si (100) substrates and buried under an amorphous Si film were prepared for plan-view transmission electron microscopy (TEM) prior to laser irradiation by femtosecond laser pulses. A heat affected zone (HAZ) resulting from single pulse irradiation at a fluence of 0.9 J/cm{sup 2} was determined by TEM imaging and point-wise selected area diffraction. The spatially Gaussian laser pulse generated a HAZ extending up to 3 {mu}m radially from the femtosecond laser irradiated region.

  13. Femtosecond laser ablation elemental mass spectrometry.

    PubMed

    Hergenröder, Roland; Samek, Ota; Hommes, Vanja

    2006-01-01

    Laser ablation mass spectrometry (LA-MS) has always been an interesting method for the elemental analysis of solid samples. Chemical analysis with a laser requires small amounts of material. Depending on the analytical detection system, subpicogram quantities may be sufficient. In addition, a focused laser beam permits the spatial characterization of heterogeneity in solid samples typically with micrometer resolution in terms of lateral and depth dimensions. With the advent of high-energy, ultra-short pulse lasers, new possibilities arise. The task of this review is to discuss the principle differences between the ablation process of short (>1 ps) and ultra-short (<1 ps) pulses. Based on the timescales and the energy balance of the process that underlies an ablation event, it will be shown that ultra-short pulses are less thermal and cause less collateral damages than longer pulses. The confinement of the pulse energy to the focal region guarantees a better spatial resolution in all dimensions and improves the analytical figures of merit (e.g., fractionation). Applications that demonstrate these features and that will be presented are in-depth profiling of multi-layer samples and the elemental analysis of biological materials. PMID:16477613

  14. Femtosecond laser processing of photovoltaic and transparent materials

    NASA Astrophysics Data System (ADS)

    Ahn, Sanghoon

    The photovoltaic semiconducting and transparent dielectric materials are of high interest in current industry. Femtosecond laser processing can be an effective technique to fabricate such materials since non-linear photochemical mechanisms predominantly occur. In this series of studies, femtosecond (fs) laser processing techniques that include laser drilling on Si wafer, laser scribing on CIGS thin film, laser ablation on Lithium Niobate (LN) crystal, and fabrication of 3D structures in fused silica were studied. The fs laser drilling on Si wafer was performed to fabricate via holes for wrap-through PV devices. For reduction of the number of shots in fs laser drilling process, self-action of laser light in the air was initiated. To understand physical phenomena during laser drilling, scanning electron microscopy (SEM), emission, and shadowgraph images were studied. The result indicated the presence of two mechanisms that include fabrication by self-guided beam and wall-guided beam. Based on our study, we could fabricate ~16 micrometer circular-shaped via holes with ~200 laser pulses on 160-170 micrometer thick c- and mc-Si wafer. For the fs laser scribing on ink jet printed CIGS thin film solar cell, the effect of various parameters that include pulse accumulation, wavelength, pulse energy, and overlapping were elucidated. In our processing regime, the effect of wavelength could be diminished due to compensation between beam size, pulse accumulation, energy fluence, and the absorption coefficient. On the other hand, for high PRF fs laser processing, pulse accumulation effect cannot be ignored, while it can be negligible in low PRF fs laser processing. The result indicated the presence of a critical energy fluence for initiating delamination of CIGS layer. To avoid delamination and fabricate fine isolation lines, the overlapping method can be applied. With this method, ~1 micrometer width isolation lines were fabricated. The fs laser ablation on LN wafer was studied

  15. Transient phonon vacuum squeezing due to femtosecond-laser-induced bond hardening

    NASA Astrophysics Data System (ADS)

    Cheenicode Kabeer, Fairoja; Grigoryan, Naira S.; Zijlstra, Eeuwe S.; Garcia, Martin E.

    2014-09-01

    Ultrashort optical pulses can be used both to create fundamental quasiparticles in crystals and to change their properties. In noble metals, femtosecond lasers induce bond hardening, but little is known about its origin and consequences. Here we simulate ultrafast laser excitation of silver at high fluences. We compute laser-excited potential-energy surfaces by all-electron ab initio theory and analyze the resulting quantum lattice dynamics. We also consider incoherent lattice heating due to electron-phonon interactions using the generalized two-temperature model. We find phonon hardening, which we attribute to the excitation of s electrons. We demonstrate that this may result in phonon vacuum squeezed states with an optimal squeezing factor of ˜0.001 at the L-point longitudinal mode. This finding implies that ultrafast laser-induced bond hardening may be used as a tool to manipulate the quantum state of opaque materials, where, so far, the squeezing of phonons below the zero-point motion has only been realized in transparent crystals by a different mechanism. On the basis of our finding, we further propose a method for directly measuring bond hardening.

  16. Ultraprecise medical applications with ultrafast lasers: corneal surgery with femtosecond lasers

    NASA Astrophysics Data System (ADS)

    Loesel, Frieder H.; Kurtz, Ron M.; Horvath, Christopher; Sayegh, Samir I.; Mourou, Gerard A.; Bille, Josef F.; Juhasz, Tibor

    1999-02-01

    We investigated refractive corneal surgery in vivo and in vitro by intrastromal photodisruption using a compact ultrafast femtosecond laser system. Ultrashort-pulsed lasers operating in the femtosecond time regime are associated with significantly smaller and deterministic threshold energies for photodisruption, as well as reduced shock waves and smaller cavitation bubbles than the nanosecond or picosecond lasers. Our reliable all-solid-state laser system was specifically designed for real world medical applications. By scanning the 5 micron focus spot of the laser below the corneal surface, the overlapping small ablation volumes of single pulses resulted in contiguous tissue cutting and vaporization. Pulse energies were typically in the order of a few microjoules. Combination of different scanning patterns enabled us to perform corneal flap cutting, femtosecond-LASIK, and femtosecond intrastromal keratectomy in porcine, rabbit, and primate eyes. The cuts proved to be highly precise and possessed superior dissection and surface quality. Preliminary studies show consistent refractive changes in the in vivo studies. We conclude that the technology is capable to perform a variety of corneal refractive procedures at high precision, offering advantages over current mechanical and laser devices and enabling entirely new approaches for refractive surgery.

  17. Label-free multi-photon imaging using a compact femtosecond fiber laser mode-locked by carbon nanotube saturable absorber

    PubMed Central

    Kieu, K.; Mehravar, S.; Gowda, R.; Norwood, R. A.; Peyghambarian, N.

    2013-01-01

    We demonstrate label-free multi-photon imaging of biological samples using a compact Er3+-doped femtosecond fiber laser mode-locked by a single-walled carbon nanotube (CNT). These compact and low cost lasers have been developed by various groups but they have not been exploited for multiphoton microscopy. Here, it is shown that various multiphoton imaging modalities (e.g. second harmonic generation (SHG), third harmonic generation (THG), two-photon excitation fluorescence (TPEF), and three-photon excitation fluorescence (3PEF)) can be effectively performed on various biological samples using a compact handheld CNT mode-locked femtosecond fiber laser operating in the telecommunication window near 1560nm. We also show for the first time that chlorophyll fluorescence in plant leaves and diatoms can be observed using 1560nm laser excitation via three-photon absorption. PMID:24156074

  18. Organic random laser in an optofluidic chip fabricated by femtosecond laser

    NASA Astrophysics Data System (ADS)

    Vishnubhatla, Krishna Chaitanya; Osellame, Roberto; Lanzani, Guglielmo; Ramponi, Roberta; Virgili, Tersilla

    2010-02-01

    Femtosecond laser based micromachining technologies have the inherent capability of producing elements in 3D. Their ability of rapid prototyping can be exploited to develop novel Optofluidics devices. Microfluidic channels were fabricated and integrated with optical waveguides using a single femtosecond laser. Optically pumping the microchannel filled with polyfluorene solution and by dispersing nanoparticles in the solution, random lasing in the microchannel is obtained. We demonstrate a novel approach to organic photonic devices, where the unique properties of a conjugated polymer in solution are exploited in a microfluidic configuration in order to produce easy-to-integrate photonic devices.

  19. Femtosecond laser-drilled capillary integrated into a microfluidic device

    SciTech Connect

    Kim, Tyson N.; Campbell, Kyle; Groisman, Alex; Kleinfeld, David; Schaffer, Chris B.

    2005-05-16

    Recent growth in microfluidic technology is, to a large extent, driven by soft lithography, a high-throughput fabrication technique where polymer materials, such as poly(dimethyl) siloxane (PDMS), are molded to form microscopic channel networks. Nevertheless, the channel architectures that can be obtained by molding are limited. We address this limitation by using femtosecond laser micromachining to add unmoldable features to the microfluidic devices. We apply laser ablation to drill microcapillaries, with diameters as small as 0.5 {mu}m and aspect ratios as high as 800:1, in the walls of molded PDMS channels. Finally, we use a laser-drilled microcapillary to trap a polystyrene bead by suction and hold it against a shear flow.

  20. Nanoscale patterning of graphene through femtosecond laser ablation

    SciTech Connect

    Sahin, R.; Akturk, S.; Simsek, E.

    2014-02-03

    We report on nanometer-scale patterning of single layer graphene on SiO{sub 2}/Si substrate through femtosecond laser ablation. The pulse fluence is adjusted around the single-pulse ablation threshold of graphene. It is shown that, even though both SiO{sub 2} and Si have more absorption in the linear regime compared to graphene, the substrate can be kept intact during the process. This is achieved by scanning the sample under laser illumination at speeds yielding a few numbers of overlapping pulses at a certain point, thereby effectively shielding the substrate. By adjusting laser fluence and translation speed, 400 nm wide ablation channels could be achieved over 100 μm length. Raster scanning of the sample yields well-ordered periodic structures, provided that sufficient gap is left between channels. Nanoscale patterning of graphene without substrate damage is verified with Scanning Electron Microscope and Raman studies.

  1. Measurement of acceleration in femtosecond laser-plasmas

    SciTech Connect

    Haessner, R.; Theobald, W.; Niedermeier, S.; Michelmann, K.; Feurer, T.; Schillinger, H.; Sauerbrey, R.

    1998-02-20

    Accelerations up to 4x10{sup 19} m/s{sup 2} are measured in femtosecond laser-produced plasmas at intensities of 10{sup 18} W/cm{sup 2} using the Frequency Resolved Optical Gating (FROG) technique. A high density plasma is formed by focusing an ultrashort unchirped laser pulse on a plane carbon target and part of the reflected pulse is eventually detected by a FROG autocorrelator. Radiation pressure and thermal pressure accelerate the plasma which causes a chirp in the reflected laser pulse. The retrieved phase and amplitude information reveal that the plasma motion is dominated by the large light pressure which pushes the plasma into the target. This is supported by theoretical estimates and by the results of independently measured time integrated spectra of the reflected pulse.

  2. Femtosecond Laser Patterning of the Biopolymer Chitosan for Biofilm Formation.

    PubMed

    Estevam-Alves, Regina; Ferreira, Paulo Henrique Dias; Coatrini, Andrey C; Oliveira, Osvaldo N; Fontana, Carla Raquel; Mendonca, Cleber Renato

    2016-01-01

    Controlling microbial growth is crucial for many biomedical, pharmaceutical and food industry applications. In this paper, we used a femtosecond laser to microstructure the surface of chitosan, a biocompatible polymer that has been explored for applications ranging from antimicrobial action to drug delivery. The influence of energy density on the features produced on chitosan was investigated by optical and atomic force microscopies. An increase in the hydrophilic character of the chitosan surface was attained upon laser micromachining. Patterned chitosan films were used to observe Staphylococcus aureus (ATCC 25923) biofilm formation, revealing an increase in the biofilm formation in the structured regions. Our results indicate that fs-laser micromachining is an attractive option to pattern biocompatible surfaces, and to investigate basic aspects of the relationship between surface topography and bacterial adhesion. PMID:27548153

  3. Femtosecond Laser Patterning of the Biopolymer Chitosan for Biofilm Formation

    PubMed Central

    Estevam-Alves, Regina; Ferreira, Paulo Henrique Dias; Coatrini, Andrey C.; Oliveira, Osvaldo N.; Fontana, Carla Raquel; Mendonca, Cleber Renato

    2016-01-01

    Controlling microbial growth is crucial for many biomedical, pharmaceutical and food industry applications. In this paper, we used a femtosecond laser to microstructure the surface of chitosan, a biocompatible polymer that has been explored for applications ranging from antimicrobial action to drug delivery. The influence of energy density on the features produced on chitosan was investigated by optical and atomic force microscopies. An increase in the hydrophilic character of the chitosan surface was attained upon laser micromachining. Patterned chitosan films were used to observe Staphylococcus aureus (ATCC 25923) biofilm formation, revealing an increase in the biofilm formation in the structured regions. Our results indicate that fs-laser micromachining is an attractive option to pattern biocompatible surfaces, and to investigate basic aspects of the relationship between surface topography and bacterial adhesion. PMID:27548153

  4. Reinforced direct bonding of optical materials by femtosecond laser welding.

    PubMed

    Hélie, David; Bégin, Michael; Lacroix, Fabrice; Vallée, Réal

    2012-04-20

    A process for reinforcing a direct bond between optical materials using femtosecond laser welding is presented. As a side benefit, the optical transmission properties of the joined components are shown not to be altered by the joining process. The joints exhibits higher shear breakage loads, yielding a maximum measured joint strength of 5.25 MPa for an applied load of 75 kg in fused silica. The laser sealing of direct bonds between dissimilar materials improves their resistance to thermal shocks. Direct bonds sealed by a circular weld seam can withstand thermal shocks at temperatures at least twice as great as nonreinforced direct bonds. The combination of ultrashort laser welding and direct bonding provides an innovative joining method that benefits from the advantages of both contributing physical processes. PMID:22534922

  5. Femtosecond laser pulse train interaction with dielectric materials

    NASA Astrophysics Data System (ADS)

    Dematteo Caulier, O.; Mishchik, K.; Chimier, B.; Skupin, S.; Bourgeade, A.; Javaux Léger, C.; Kling, R.; Hönninger, C.; Lopez, J.; Tikhonchuk, V.; Duchateau, G.

    2015-11-01

    The interaction of trains of femtosecond microjoule laser pulses with dielectric materials by means of a multi-scale model is investigated. Theoretical predictions are directly confronted with experimental observations in soda-lime glass. It is shown that due to the low heat conductivity, a significant fraction of the laser energy can be accumulated in the absorption region. Depending on the pulse repetition rate, the material can be heated to high temperatures even though the single pulse energy is too low to induce a significant material modification. Regions heated above the glass transition temperature in the simulations correspond very well to zones of permanent material modifications observed in the experiments. It turns out that pulse-to-pulse variations of the laser absorption are negligible and of minor influence to permanent material modifications.

  6. Femtosecond pulsed laser deposition of biological and biocompatible thin layers

    NASA Astrophysics Data System (ADS)

    Hopp, B.; Smausz, T.; Kecskeméti, G.; Klini, A.; Bor, Zs.

    2007-07-01

    In our study we investigate and report the femtosecond pulsed laser deposition of biological and biocompatible materials. Teflon, polyhydroxybutyrate, polyglycolic-acid, pepsin and tooth in the form of pressed pellets were used as target materials. Thin layers were deposited using pulses from a femtosecond KrF excimer laser system (FWHM = 450 fs, λ = 248 nm, f = 10 Hz) at different fluences: 0.6, 0.9, 1.6, 2.2, 2.8 and 3.5 J/cm 2, respectively. Potassium bromide were used as substrates for diagnostic measurements of the films on a FTIR spectrometer. The pressure in the PLD chamber was 1 × 10 -3 Pa, and in the case of tooth and Teflon the substrates were heated at 250 °C. Under the optimized conditions the chemical structure of the deposited materials seemed to be largely preserved as evidenced by the corresponding IR spectra. The polyglycolic-acid films showed new spectral features indicating considerable morphological changes during PLD. Surface structure and thickness of the layers deposited on Si substrates were examined by an atomic force microscopy (AFM) and a surface profilometer. An empirical model has been elaborated for the description of the femtosecond PLD process. According to this the laser photons are absorbed in the surface layer of target resulting in chemical dissociation of molecules. The fast decomposition causes explosion-like gas expansion generating recoil forces which can tear off and accelerate solid particles. These grains containing target molecules without any chemical damages are ejected from the target and deposited onto the substrate forming a thin layer.

  7. Polycrystalline VO2 thin films via femtosecond laser processing of amorphous VO x

    NASA Astrophysics Data System (ADS)

    Charipar, N. A.; Kim, H.; Breckenfeld, E.; Charipar, K. M.; Mathews, S. A.; Piqué, A.

    2016-05-01

    Femtosecond laser processing of pulsed laser-deposited amorphous vanadium oxide thin films was investigated. Polycrystalline VO2 thin films were achieved by femtosecond laser processing in air at room temperature. The electrical transport properties, crystal structure, surface morphology, and optical properties were characterized. The laser-processed films exhibited a metal-insulator phase transition characteristic of VO2, thus presenting a pathway for the growth of crystalline vanadium dioxide films on low-temperature substrates.

  8. Femtosecond laser patterning of biological materials

    NASA Astrophysics Data System (ADS)

    Grigoropoulos, Costas P.; Jeon, Hojeong; Hidai, Hirofumi; Hwang, David J.

    2011-03-01

    This paper aims at presenting a review of work at the Laser Thermal Laboratory on the microscopic laser modification of biological materials using ultrafast laser pulses. We have devised a new method for fabricating high aspect ratio patterns of varying height by using two-photon polymerization process in order to study contact guidance and directed growth of biological cells. Studies using NIH-3T3 and MDCK cells indicate that cell morphology on fiber scaffolds is influenced by the pattern of actin microfilament bundles. Cells experienced different strength of contact guidance depending on the ridge height. Cell morphology and motility was investigated on micronscale anisotropic cross patterns and parallel line patterns having different aspect ratios. A significant effect on cell alignment and directionality of migration was observed. Cell morphology and motility were influenced by the aspect ratio of the cross pattern, the grid size, and the ridge height. Cell contractility was examined microscopically in order to measure contractile forces generated by individual cells on self-standing fiber scaffolds.

  9. Microfabrication of transparent materials using filamented femtosecond laser beams

    NASA Astrophysics Data System (ADS)

    Butkus, S.; Paipulas, D.; Gaižauskas, Eugenijus; KaškelytÄ--, D.; Sirutkaitis, V.

    2014-05-01

    Glass drilling realized with the help of femtosecond lasers attract industrial attention, however, desired tasks may require systems employing high numerical aperture (NA) focusing conditions, low repetition rate lasers and complex fast motion translation stages. Due to the sensitivity of such systems, slight instabilities in parameter values can lead to crack formations, severe fabrication rate decrement and poor quality overall results. A microfabrication system lacking the stated disadvantages was constructed and demonstrated in this report. An f-theta lens was used in combination with a galvanometric scanner, in addition, a water pumping system that enables formation of water films of variable thickness in real time on the samples. Water acts as a medium for filament formation, which in turn decreases the focal spot diameter and increases fluence and axial focal length. This article demonstrates the application of a femtosecond (280fs) laser towards rapid cutting of different transparent materials. Filament formation in water gives rise to strong ablation at the surface of the sample, moreover, the water, surrounding the ablated area, adds increased cooling and protection from cracking. The constructed microfabrication system is capable of drilling holes in thick soda-lime, hardened glasses and sapphire. The fabrication time varies depending on the diameter of the hole and spans from a few to several hundred seconds. Moreover, complex-shape fabrication was demonstrated.

  10. Investigation of diffractive optical element femtosecond laser machining

    NASA Astrophysics Data System (ADS)

    Chabrol, Grégoire R.; Ciceron, Adline; Twardowski, Patrice; Pfeiffer, Pierre; Flury, Manuel; Mermet, Frédéric; Lecler, Sylvain

    2016-06-01

    This paper presents an explorative study on the machining of diffractive optical elements (DOEs) in transparent materials using a femtosecond laser source. A simple form of DOE, a binary phase grating with a period of 20.85 μm (σ = 0.5 μm), a groove depth and width of 0.7 μm (σ = 0.2 μm) and 8.8 μm (σ = 0.5 μm) respectively, was successfully machined in BK7. The topographic characteristics were measured by white light interferometry and scanning electron microscopy (SEM). The processing was carried out on high precision stages with an ultrafast fibre laser (350 fs) emitting a 343 nm pulse focused onto the sample with a stationary microscope objective. A diffracted efficiency of 27%, obtained with a spectro goniometer, was corroborated by the theoretical results obtained by the Fourier modal method (FMM), taking into account the measured topographic values. These encouraging results demonstrate that high-speed femtosecond laser manufacturing of DOE in bulk glasses can be achieved, opening the way to rapid prototyping of multi-layered-DOEs.

  11. Pulse front tilt measurement of femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Dimitrov, Nikolay; Stoyanov, Lyubomir; Stefanov, Ivan; Dreischuh, Alexander; Hansinger, Peter; Paulus, Gerhard G.

    2016-07-01

    In this work we report experimental investigations of an intentionally introduced pulse front tilt on femtosecond laser pulses by using an inverted field correlator/interferometer. A reliable criterion for the precision in aligning (in principle) dispersionless systems for manipulating ultrashort pulses is developed, specifically including cases when the pulse front tilt is a result of a desired spatio-temporal coupling. The results obtained using two low-dispersion diffraction gratings are in good qualitative agreement with the data from a previously developed analytical model and from an independent interferometric measurement.

  12. Femtosecond laser ablation of dentin and enamel: relationship between laser fluence and ablation efficiency

    NASA Astrophysics Data System (ADS)

    Chen, Hu; Liu, Jing; Li, Hong; Ge, Wenqi; Sun, Yuchun; Wang, Yong; Lü, Peijun

    2015-02-01

    The objective was to study the relationship between laser fluence and ablation efficiency of a femtosecond laser with a Gaussian-shaped pulse used to ablate dentin and enamel for prosthodontic tooth preparation. A diode-pumped thin-disk femtosecond laser with wavelength of 1025 nm and pulse width of 400 fs was used for the ablation of dentin and enamel. The laser spot was guided in a line on the dentin and enamel surfaces to form a groove-shaped ablation zone under a series of laser pulse energies. The width and volume of the ablated line were measured under a three-dimensional confocal microscope to calculate the ablation efficiency. Ablation efficiency for dentin reached a maximum value of 0.020 mm3/J when the laser fluence was set at 6.51 J/cm2. For enamel, the maximum ablation efficiency was 0.009 mm3/J at a fluence of 7.59 J/cm2. Ablation efficiency of the femtosecond laser on dentin and enamel is closely related to the laser fluence and may reach a maximum when the laser fluence is set to an appropriate value.

  13. Delocalization of femtosecond laser radiation in crystalline Si in the mid-IR range

    NASA Astrophysics Data System (ADS)

    Zavedeev, E. V.; Kononenko, V. V.; Konov, V. I.

    2016-01-01

    The strong delocalization of the energy of femtosecond pulses in silicon appears to be an essential factor for preventing laser damage inside a crystal and seemingly excludes the possibility of direct laser writing in the bulk, at least in the one- and two-photon absorption (1 PA and 2 PA) wavelength regions. Previously, the prefocal depletion of the pulse energy and laser-induced free-carrier plasma defocusing of the light were considered to be the main causes of the unlocalized dissipation of light energy. Here, we consider whether the delocalization could be significantly reduced by using longer wavelengths, at which the role of 1 PA and 2 PA decreases and higher orders of nonlinearity come into play. We numerically simulate propagation of focused femtosecond pulses at a wavelength of 1.2-5.25 μm. Plasma defocusing was found to be the crucial delocalization mechanism that prevents the enhancement of material excitation, even in the five-photon absorption region.

  14. Fast Laser Excitation and Ultrahigh Strain-Rate Deformation

    SciTech Connect

    Robert Averback

    2007-06-03

    Phase evolution induced by single or repeated excitation with energetic femtosecond laser pulses is examined. Of primary interest is the solidification behavior of pure metals at deep undercoolings and self-organization in simple eutectic alloys. Time resolved measurements using third harmonic generation (THG) of light and ultrafast electron diffraction (UED) are employed to elucidate several issues related to fast laser excitation, including heat transport by ballistic and diffusional electrons through multilayer films, the dependence of crystallization velocities on materials properties, mechanisms controlling the transport of heat away from the crystal-liquid interface, and the possibility for quenching pure metals, such as Cu, Ni, and Fe, into the amorphous state. Special samples designed to maximize the quenching speed are developed. The properties of such pure metallic glasses, such as glass and crystallization temperatures, will be measured, if such samples are successfully produced. The measurements are complemented by molecular dynamics computer simulations of the solidification process. The second interest of this research is mesoscopic, self-organization of materials under repeated laser melting, with diffusional relaxation between pulses. We select binary alloys that are immiscible in the solid state but miscible in the liquid state, such as Ag-Cu. Femtosecond laser irradiation is employed to induce melting and to vary the melting time over a wide range, from a few ps to hundreds of ps. This enables us to perform critical experimental tests of key theoretical predictions self-organization in alloys under external forcing, in particular the existence of a threshold value of the forced mixing length for patterning to take place.

  15. Femtosecond laser ablation properties of transparent materials: impact of the laser process parameters on the machining throughput

    NASA Astrophysics Data System (ADS)

    Matylitsky, V. V.; Hendricks, F.; Aus der Au, J.

    2013-03-01

    High average power, high repetition rate femtosecond lasers with μJ pulse energies are increasingly used for bio-medical and material processing applications. With the introduction of femtosecond laser systems such as the SpiritTM platform developed by High Q Lasers and Spectra-Physics, micro-processing of solid targets with femtosecond laser pulses have obtained new perspectives for industrial applications [1]. The unique advantage of material processing with subpicosecond lasers is efficient, fast and localized energy deposition, which leads to high ablation efficiency and accuracy in nearly all kinds of solid materials. The study on the impact of the laser processing parameters on the removal rate for transparent substrate using femtosecond laser pulses will be presented. In particular, examples of micro-processing of poly-L-lactic acid (PLLA) - bio-degradable polyester and XensationTM glass (Schott) machined with SpiritTM ultrafast laser will be shown.

  16. High repetition rate femtosecond laser forming sub-10 µm diameter interconnection vias

    NASA Astrophysics Data System (ADS)

    Tan, B; Panchatsharam, S; Venkatakrishnan, K

    2009-03-01

    Laser ablative microvia formation has been widely accepted as an effective manufacturing method for interconnect via formation. Current conventional nanosecond laser microvia formation has reached its limit in terms of minimum via diameter and machining quality. Femtosecond laser has been investigated intensively for its superior machining quality and capability of producing much smaller features. However, the traditional femtosecond laser has very low power and is thus unable to meet the throughput requirement. In this paper we report ablative microvia formation using femtosecond lasers at megahertz repetition rates. Laser ablation was demonstrated for the first time for sub-10 µm interconnection via drilling at a throughput of 10 000 vias per second. A systematic study of the influence of a high repetition rate in femtosecond laser micromachining of silicon was carried out. The experiments were performed using an Yb-doped fibre amplified/oscillator laser with 1030 nm wavelength in an air environment. The effects of a high repetition rate on microvia formation were observed at ~300 fs for silicon substrates. Laser parameters along with threshold energy, via diameter, ablation depth, ablation rate and via quality were studied in detail to accentuate the need of femtosecond lasers for forming sub-10 µm diameter microvias. The experimental results show that femtosecond laser pulses with high repetition rates show unequivocally the advantages of short-pulse laser ablation for high-precision applications in micrometre-scale dimensions.

  17. Femtosecond laser damage in dielectric coatings

    NASA Astrophysics Data System (ADS)

    Bonse, Joern; Baudach, Steffen; Krueger, Joerg; Kautek, Wolfgang; Starke, Kai; Gross, Tobias; Ristau, Detlev; Rudolph, Wolfgang G.; Jasapara, Jayesh C.; Welsch, Eberhard

    2001-04-01

    Multi-shot investigations of Ti:sapphire laser (wavelength (lambda) approximately equals 800 nm) induced damage were performed in three different laboratories (BAM, Berlin; LZH, Hannover; UNM, Albuquerque). The ablation behavior of a high reflecting mirror consisting of alternating (lambda) /4- layers of Ta2O5 and SiO2 was studied. Fused silica served as substrate. The influence of the pulse duration ((tau) equals 13 - 130 fs), the pulse number (30 - (infinity) ) and the repetition rate (10 Hz - 100 MHz) on the damage threshold will be discussed.

  18. OCT-aided femtosecond laser micromachining device

    NASA Astrophysics Data System (ADS)

    Massow, Ole; Jackstadt, Michael; Wisweh, Henning; Will, Fabian; Lubatschowski, Holger

    2009-02-01

    Fs-lasers are widely used for microsurgery and micromachining. Due to nonlinear interaction of ultrashort pulses with tissue or matter precisions of a few μm can be achieved. But particularly in the field of surgery this precision can not be obtained as the devices for diagnostics and treatment have to be changed due to separate systems. We show a combined system of a fs-laser and a Fourier-Domain optical coherence tomography (FD-OCT) enabling to cut and image the region of interest alternately. The FD-OCT offers non-invasive imaging at an axial resolution of 6, 2 μm and a transverse resolution of 3 μm in air which is comparable to the interaction zone of the fslaser-pulses. OCT-aided subsurface cutting is successfully demonstrated on biological ex-vito samples of porcine cornea and larynx. Furthermore it appeared that in situ OCT imaging enables to monitor cuts produced with pulse energies close to the energy threshold. In conclusion, this setup demonstrates the potential of a system combining cutting and OCT imaging within the same optical setup without the need of changing devices.

  19. Influence of laser polarization on plasma fluorescence emission during the femtosecond filamentation in air

    NASA Astrophysics Data System (ADS)

    Shi, Yan; Chen, Anmin; Jiang, Yuanfei; Li, Suyu; Jin, Mingxing

    2016-05-01

    The laser polarization state has a great influence on the plasma fluorescence emission during femtoseond filamentation in air. For the spectral lines from N2, in the case of focusing lens with longer focal length (f=100 cm), due to the impact excitation, circular polarization leads to stronger fluorescence emission when the laser energy is higher than the 'energy threshold' (2.0 mJ). As a lens with shorter focal length (f=40 cm) is used, a similar phenomenon can be observed, however, the 'energy threshold' is much lower, which is lower than 0.8 mJ. For the lines from N2+, especially for the 391 nm one, their emission is stronger in the linear polarization state. The mechanism of plasma fluorescence emission during femtosecond filamentation is discussed based on the analysis of these phenomena, which will be helpful to the remote sensing and spectrum analysis.

  20. Improvement of electrospun polymer fiber meshes pore size by femtosecond laser irradiation

    NASA Astrophysics Data System (ADS)

    Rebollar, Esther; Cordero, Diego; Martins, Albino; Chiussi, Stefano; Reis, Rui L.; Neves, Nuno M.; León, Betty

    2011-02-01

    Polymer meshes have recently attracted great attention due to their great variety of applications in fields such as tissue engineering and drug delivery. Poly(ɛ-caprolactone) nanofibers were prepared by electrospinning giving rise to porous meshes. However, for some applications in tissue engineering where, for instance, cell migration into the inner regions of the mesh is aimed, the pore size obtained by conventional techniques is too narrow. To improve the pore size, laser irradiation with femtosecond pulses (i.e., negligible heat diffusion into the polymer material and confined excitation energy) is performed. A detailed study of the influence of the pulse energy, pulse length, and number of pulses on the topography of electrospun fiber meshes has been carried out, and the irradiated areas have been studied by scanning electron microscopy, contact angle measurements and spectroscopic techniques. The results show that using the optimal laser parameters, micropores are formed and the nature of the fibers is preserved.

  1. Ordered horizontal Sb{sub 2}Te{sub 3} nanowires induced by femtosecond lasers

    SciTech Connect

    Li, Yuwei; Stoica, Vladimir A.; Liu, Wei; Endicott, Lynn; Walrath, Jenna C.; Lin, Yen-Hsiang; Uher, Ctirad; Clarke, Roy; Sun, Kai; Chang, Alex S.; Pipe, Kevin P.; Goldman, Rachel S.

    2014-11-17

    Nanowires are of intense interest on account of their ability to confine electronic and phononic excitations in narrow channels, leading to unique vibronic and optoelectronic properties. Most systems reported to date exhibit nanowire axes perpendicular to the substrate surface, while for many applications (e.g., photodetectors and sensors), a parallel orientation may be advantageous. Here, we report the formation of in-plane Sb{sub 2}Te{sub 3} nanowires using femtosecond laser irradiation. High-resolution scanning transmission electron microscopy imaging and element mapping reveal that an interesting laser-driven anion exchange mechanism is responsible for the nanowire formation. This development points the way to the scalable production of a distinct class of nanowire materials with in-plane geometry.

  2. Multiparameter Flowfield Measurements in High-Pressure, Cryogenic Environments Using Femtosecond Lasers

    NASA Technical Reports Server (NTRS)

    Burns, Ross A.; Danehy, Paul M.; Peters, Christopher J.

    2016-01-01

    Femtosecond laser electronic excitation tagging (FLEET) and Rayleigh scattering (RS) from a femtosecond laser are demonstrated in the NASA Langley 0.3-m Transonic Cryogenic Tunnel (TCT). The measured signals from these techniques are examined for their thermodynamic dependencies in pure nitrogen. The FLEET signal intensity and signal lifetimes are found to scale primarily with the gas density, as does the RS signal. Several models are developed, which capture these physical behaviors. Notably, the FLEET and Rayleigh scattering intensities scale linearly with the flow density, while the FLEET signal decay rates are a more complex function of the thermodynamic state of the gas. The measurement of various flow properties are demonstrated using these techniques. While density was directly measured from the signal intensities and FLEET signal lifetime, temperature and pressure were measured using the simultaneous FLEET velocity measurements while assuming the flow had a constant total enthalpy. Measurements of density, temperature, and pressure from the FLEET signal are made with accuracies as high as 5.3 percent, 0.62 percent, and 6.2 percent, respectively, while precisions were approximately 10 percent, 0.26 percent, and 11 percent for these same quantities. Similar measurements of density from Rayleigh scattering showed an overall accuracy of 3.5 percent and a precision of 10.2 percent over a limited temperature range (T greater than 195 K). These measurements suggest a high degree of utility at using the femtosecond-laser based diagnostics for making multiparameter measurements in high-pressure, cryogenic environments such as large-scale TCT facilities.

  3. Pressure effects on the femtosecond laser filamentation

    NASA Astrophysics Data System (ADS)

    Qi, Xiexing; Ma, Cunliang; Lin, Wenbin

    2016-01-01

    We investigate the pressure effects on the propagation of the laser pulse with wavelength of 800 nm by numerical simulations. We consider the effects on the on-axis intensity, the beam radius and the energy of the filament, as well as the on-axis density of plasma. Numerical results show that when the pressures increase, the length, radius and energy of the light filament become shorter, narrower and lower, respectively. Moreover, we find that the length and the radius of filament are approximately inversely proportional to the pressure and the square root of pressure, respectively, and the pulse with shorter duration is easier to be affected by the pressure. We also obtain the conclusion that the plasma is not necessary to generate the filament in gases in various pressures, as stated by Béjot et al. [1] for the case of standard atmosphere pressure.

  4. Femtosecond laser for glaucoma treatment: the comparison between simulation and experimentation results on ocular tissue removal

    NASA Astrophysics Data System (ADS)

    Hou, Dong Xia; Ngoi, Bryan K. A.; Hoh, Sek Tien; Koh, Lee Huat K.; Deng, Yuan Zi

    2005-04-01

    In ophthalmology, the use of femtosecond lasers is receiving more attention than ever due to its extremely high intensity and ultra short pulse duration. It opens the highly beneficial possibilities for minimized side effects during surgery process, and one of the specific areas is laser surgery in glaucoma treatment. However, the sophisticated femtosecond laser-ocular tissue interaction mechanism hampers the clinical application of femtosecond laser to treat glaucoma. The potential contribution in this work lies in the fact, that this is the first time a modified moving breakdown theory is applied, which is appropriate for femtosecond time scale, to analyze femtosecond laser-ocular tissue interaction mechanism. Based on this theory, energy deposition and corresponding thermal increase are studied by both simulation and experimentation. A simulation model was developed using Matlab software, and the simulation result was validated through in-vitro laser-tissue interaction experiment using pig iris. By comparing the theoretical and experimental results, it is shown that femtosecond laser can obtain determined ocular tissue removal, and the thermal damage is evidently reduced. This result provides a promising potential for femtosecond laser in glaucoma treatment.

  5. Curved Yb:YAG waveguide lasers, fabricated by femtosecond laser inscription.

    PubMed

    Calmano, Thomas; Paschke, Anna-Greta; Müller, Sebastian; Kränkel, Christian; Huber, Günter

    2013-10-21

    Straight and s-curve Yb(7%):YAG waveguides have been fabricated with the femtosecond laser writing technique. By employing a novel writing scheme an increase of the refractive index change could be achieved in comparison to waveguides written with the standard procedure. Straight waveguides, fabricated with this scheme, enabled highly efficient Ti:sapphire laser pumped waveguide lasers with slope efficiencies of 79% and output powers of more than 1 W. With slope efficiencies from 50% to 60% for the curved waveguide lasers with radii of curvature of R ≥ 20 mm the possibility of fs-laser written complex optical devices is demonstrated. PMID:24150389

  6. Dry eye associated with laser in situ keratomileusis: Mechanical microkeratome versus femtosecond laser

    PubMed Central

    Salomão, Marcella Q.; Ambrósio, Renato; Wilson, Steven E.

    2014-01-01

    Purpose To compare the incidence of laser in situ keratomileusis (LASIK)–associated dry eye and the need for postoperative cyclosporine A treatment after flap creation with a femtosecond laser or a mechanical microkeratome. Setting Cole Eye Institute, Cleveland, Ohio, USA. Methods Eyes were randomized to flap creation with an IntraLase femtosecond laser (30 or 60 kHz) or a Hansatome microkeratome. No patient had signs, symptoms, or treatment of dry eye preoperatively. Flap thickness was determined by intraoperative ultrasonic pachymetry. Slitlamp assessments of the cornea and need for postoperative dry-eye treatment were evaluated preoperatively and 1 month postoperatively. Results The flap was created with the femtosecond laser in 113 eyes and with the microkeratome in 70 eyes. The difference in mean central flap thickness between the femtosecond group (111 μm ± 14 [SD]) and the microkeratome group (131 ± 25 μm) was statistically significant (P<.001). The incidence of LASIK-associated dry eye was statistically significantly higher in the microkeratome group (46%) than in the femtosecond group (8%) (P<.0001), as was the need for postoperative cyclosporine A treatment (24% and 7%, respectively) (P<.01). In the microkeratome group, there was no correlation between thick flaps and a higher incidence of LASIK-induced dry eye. Conclusions Eyes with femtosecond flaps had a lower incidence of LASIK-associated dry eye and required less treatment for the disorder. In addition to neurotrophic effects from corneal nerve cutting, other factors may be important because no correlation was found between flap thickness (or ablation depth) and the incidence of LASIK-induced dry eye. PMID:19781472

  7. Picosecond and femtosecond laser ablation of hard tissues

    NASA Astrophysics Data System (ADS)

    Serafetinides, Alexander A.; Makropoulou, Mersini I.; Kar, Ajoy K.; Khabbaz, Marouan

    1996-12-01

    In this study, the interaction of picosecond and femtosecond pulsed laser radiation with human dental tissue was investigated experimentally, as this unexplored field is expected to be a potential alternative in powerful laser processing of biomedical structures. Dentin ablation rate experiments were performed by using teeth sections of different thickness. Dental tissue samples were irradiated in air with i) a regenerative amplifier laser at 1064 nm, pulse duration 110 ps, ii) the second harmonic laser at 532 nm, pulse duration 100 ps, and iii) a picosecond tunable dye amplifier at 595 nm, pulse width 800 fs. In all the experiments the pulse repetition rate was 10 Hz. The ablation rate per pulse at different energy fluence settings was calculated by measuring the time needed for the perforation of the whole dental sample thickness. Short laser pulses can confine thermal energy within the optical zone, which maximizes photothermal and photomechanical mechanisms of interaction. Tissue ablation rates were found to be comparable to or better than other nanosecond lasers, and left smooth surfaces, free of thermal damage.

  8. Interaction of femtosecond laser pulses with tempera paints

    NASA Astrophysics Data System (ADS)

    Gaspard, Solenne; Oujja, Mohamed; Moreno, Pablo; Méndez, Cruz; García, Ana; Domingo, Concepción; Castillejo, Marta

    2008-12-01

    For the implementation of femtosecond (fs) laser cleaning methodologies of light-sensitive substrates as those encountered in artistic paintings, the interaction between fs laser pulses and painting components has to be well characterized. In this work, the modifications induced by fs laser irradiation of paints are examined in unvarnished aged model temperas. Irradiation at fluences below or above the ablation thresholds by 120 fs pulses at 795 nm from a Ti:Sapphire laser of unpigmented and traditional artist's pigment temperas (cinnabar and chrome yellow) is shown to result in various degrees of discolouration and changes of the laser-induced fluorescence signal. Fourier transform FT-Raman (at 1064 nm) and micro-Raman (at 785 nm) spectroscopic measurements were carried out to assess the changes induced. Noticeable modifications of the Raman bands of the pigments are absent while build-up of extra bands of amorphous carbon (indicative of carbonization or charring) does not take place, in contrast with previous observations upon irradiation with 248 nm, 25 ns pulses. It is concluded that IR fs irradiation provides a high degree of control over the induced modifications, a feature of interest in the design of new laser restoration schemes.

  9. Femtosecond laser ablation of polytetrafluoroethylene (Teflon) in ambient air

    NASA Astrophysics Data System (ADS)

    Wang, Z. B.; Hong, M. H.; Lu, Y. F.; Wu, D. J.; Lan, B.; Chong, T. C.

    2003-05-01

    Teflon, polytetrafluorethylene (PTFE), is an important material in bioscience and medical application due to its special characteristics (bio-compatible, nonflammable, antiadhesive, and heat resistant). The advantages of ultrashort laser processing of Teflon include a minimal thermal penetration region and low processing temperatures, precision removal of material, and good-quality feature definition. In this paper, laser processing of PTFE in ambient air by a Ti:sapphire femtosecond laser (780 nm, 110 fs) is investigated. It is found that the pulse number on each irradiated surface area must be large enough for a clear edge definition and the ablated depth increases with the pulse number. The air ionization effect at high laser fluences not only degrades the ablated structures quality but also reduces the ablation efficiency. High quality microstructures are demonstrated with controlling laser fluence below a critical fluence to exclude the air ionization effect. The ablated microstructures show strong adhesion property to liquids and clear edges that are suitable for bio-implantation applications. Theoretical calculation is used to analyze the evolution of the ablated width and depth at various laser fluences.

  10. Metal deep engraving with high average power femtosecond lasers

    NASA Astrophysics Data System (ADS)

    Faucon, M.; Mincuzzi, G.; Morin, F.; Hönninger, C.; Mottay, E.; Kling, R.

    2015-03-01

    Deep engraving of 3D textures is a very demanding process for the creation of master tool e. g molds, forming tools or coining dies. As these masters are uses for reproduction of 3D patterns the materials for the tools are typically hard and brittle and thus difficult to machine. The new generation of industrial femtosecond lasers provides both high accuracy engraving results and high ablation rates at the same time. Operation at pulse energies of typically 40 μJ and repetition rates in the Mhz range the detrimental effect of heat accumulation has to be avoided. Therefore high scanning speeds are required to reduce the pulse overlap below 90%. As a consequence scan speeds in the range of 25-50 m/s a needed, which is beyond the capability of galvo scanners. In this paper we present results using a combination of a polygon scanner with a high average power femtosecond laser and compare this to results with conventional scanners. The effects of pulse energy and scan speed of the head on geometrical accuracy are discussed. The quality of the obtained structures is analyzed by means of 3D surface metrology microscope as well as SEM images.

  11. Evaluation of femtosecond laser-induced breakdown spectroscopy for explosive residue detection.

    PubMed

    De Lucia, Frank C; Gottfried, Jennifer L; Miziolek, Andrzej W

    2009-01-19

    Recently laser-induced breakdown spectroscopy (LIBS) has been investigated as a potential technique for trace explosive detection. Typically LIBS is performed using nanosecond laser pulses. For this work, we have investigated the use of femtosecond laser pulses for explosive residue detection at two different fluences. Femtosecond laser pulses have previously been shown to provide several advantages for laser ablation and other LIBS applications. We have collected LIBS spectra of several bulk explosives and explosive residues at different pulse durations and energies. In contrast to previous femtosecond LIBS spectra of explosives, we have observed atomic emission peaks for the constituent elements of explosives - carbon, hydrogen, nitrogen, and oxygen. Preliminary results indicate that several advantages attributed to femtosecond pulses are not realized at higher laser fluences. PMID:19158854

  12. Dynamics of femtosecond laser produced tungsten nanoparticle plumes

    SciTech Connect

    Harilal, S. S.; Hassanein, A.; Farid, N.; Kozhevin, V. M.

    2013-11-28

    We investigated the expansion features of femtosecond laser generated tungsten nanoparticle plumes in vacuum. Fast gated images showed distinct two components expansion features, viz., plasma and nanoparticle plumes, separated by time of appearance. The persistence of plasma and nanoparticle plumes are ∼500 ns and ∼100 μs, respectively, and propagating with velocities differed by 25 times. The estimated temperature of the nanoparticles showed a decreasing trend with increasing time and space. Compared to low-Z materials (e.g., Si), ultrafast laser ablation of high-Z materials like W provides significantly higher nanoparticle yield. A comparison between the nanoparticle plumes generated by W and Si is also discussed along with other metals.

  13. Ablation and nanostructuring of metals by femtosecond laser pulses

    SciTech Connect

    Ashitkov, S I; Komarov, P S; Ovchinnikov, A V; Struleva, E V; Agranat, M B; Zhakhovskii, V V; Inogamov, N A

    2014-06-30

    Using an interferometric continuous monitoring technique, we have investigated the motion of the surface of an aluminium target in the case of femtosecond laser ablation at picosecond time delays relative to the instant of laser exposure. Measurements of the temporal target dispersion dynamics, molecular dynamics simulation results and the morphology of the ablation crater have demonstrated a thermomechanical (spall) nature of the disruption of the condensed phase due to the cavitation-driven formation and growth of vapour phase nuclei upon melt expansion, followed by the formation of surface nanostructures upon melt solidification. The tensile strength of heated aluminium in a condensed state has been determined experimentally at an expansion rate of ∼10{sup 9} s{sup -1}. (extreme light fields and their applications)

  14. Femtosecond laser-induced surface structures on carbon fibers.

    PubMed

    Sajzew, Roman; Schröder, Jan; Kunz, Clemens; Engel, Sebastian; Müller, Frank A; Gräf, Stephan

    2015-12-15

    The influence of different polarization states during the generation of periodic nanostructures on the surface of carbon fibers was investigated using a femtosecond laser with a pulse duration τ=300  fs, a wavelength λ=1025  nm, and a peak fluence F=4  J/cm². It was shown that linear polarization results in a well-aligned periodic pattern with different orders of magnitude concerning their period and an alignment parallel and perpendicular to fiber direction, respectively. For circular polarization, both types of uniform laser-induced periodic surface structures (LIPSS) patterns appear simultaneously with different dominance in dependence on the position at the fiber surface. Their orientation was explained by the polarization-dependent absorptivity and the geometrical anisotropy of the carbon fibers. PMID:26670499

  15. Micro-structured femtosecond laser assisted FBG hydrogen sensor.

    PubMed

    Karanja, Joseph Muna; Dai, Yutang; Zhou, Xian; Liu, Bin; Yang, Minghong

    2015-11-30

    We discuss hydrogen sensors based on fiber Bragg gratings (FBGs) micro-machined by femtosecond laser to form microgrooves and sputtered with Pd/Ag composite film. The atomic ratio of the two metals is controlled at Pd:Ag = 3:1. At room temperature, the hydrogen sensitivity of the sensor probe micro-machined by 75 mW laser power and sputtered with 520 nm of Pd/Ag film is 16.5 pm/%H. Comparably, the standard FBG hydrogen sensitivity becomes 2.5 pm/%H towards the same 4% hydrogen concentration. At an ambient temperature of 35°C, the processed sensor head has a dramatic rise in hydrogen sensitivity. Besides, the sensor shows good response and repeatability during hydrogen concentration test. PMID:26698733

  16. Laser optoacoustic tomography for the study of femtosecond laser filaments in air

    NASA Astrophysics Data System (ADS)

    Bychkov, A. S.; Cherepetskaya, E. B.; Karabutov, A. A.; Makarov, V. A.

    2016-08-01

    We propose to use optoacoustic tomography to study the characteristics of femtosecond laser filamentation in air and condensed matter. The high spatial resolution of the proposed system, which consists of an array of broadband megahertz piezoelectric elements, ensures its effectiveness, despite the attenuation of ultrasonic waves in air.

  17. Fabrication of 3D microfluidic structures inside glass by femtosecond laser micromachining

    NASA Astrophysics Data System (ADS)

    Sugioka, Koji; Cheng, Ya

    2014-01-01

    Femtosecond lasers have opened up new avenues in materials processing due to their unique characteristics of ultrashort pulse widths and extremely high peak intensities. One of the most important features of femtosecond laser processing is that a femtosecond laser beam can induce strong absorption in even transparent materials due to nonlinear multiphoton absorption. This makes it possible to directly create three-dimensional (3D) microfluidic structures in glass that are of great use for fabrication of biochips. For fabrication of the 3D microfluidic structures, two technical approaches are being attempted. One of them employs femtosecond laser-induced internal modification of glass followed by wet chemical etching using an acid solution (Femtosecond laser-assisted wet chemical etching), while the other one performs femtosecond laser 3D ablation of the glass in distilled water (liquid-assisted femtosecond laser drilling). This paper provides a review on these two techniques for fabrication of 3D micro and nanofluidic structures in glass based on our development and experimental results.

  18. A Fokker-Planck code for laser plasma interaction in femtosecond-laser shock peening

    NASA Astrophysics Data System (ADS)

    Ren, Zhencheng; Wang, Guo-Xiang; Ye, Chang; Dong, Yalin

    2016-03-01

    A Fokker-Planck code is developed to simulate the laser-plasma interaction in the femtosecond-laser shock peening and forming processes. A numerical scheme dealing with high-energy concentration and its resulting steep gradient are presented, and the source code is provided as supplementary material for further usage. The breakdown of the classical heat transport theory is observed when the laser intensity increases. The difference in heat flow between the classical theory and simulation is presented. It is found that the classical heat transport theory overestimates heat flow by orders of magnitude during femtosecond-laser shock peening or forming. As a result, the electron pressure can be underestimated using the classical hydrodynamic code.

  19. Possible evidence of Coulomb explosion in the femtosecond laser ablation of metal at low laser fluence

    NASA Astrophysics Data System (ADS)

    Li, Shuchang; Li, Suyu; Zhang, Fangjian; Tian, Dan; Li, He; Liu, Dunli; Jiang, Yuanfei; Chen, Anmin; Jin, Mingxing

    2015-11-01

    We use a computational model to study the ablation mechanism of metal target irradiated by femtosecond pulse laser. It is confirmed that the Coulomb explosion can occur during femtosecond laser ablation of metal. The influence of thermal ablation and Coulomb explosion on the ablation depth is respectively investigated. Comparing the calculated results with the experimental ones, we find that the theoretical results which consider the thermal ablation only agree well with the experimental ones at high laser fluence, and those which take the Coulomb explosion into account fit well with the experimental ones at lower laser fluence, which exactly explains the ablation mechanism. In contrast with the previous theoretical results which only consider the thermal ablation, our theoretical simulation describes the ablation mechanism straightforward by making comparison of ablation depth, and provides a more reasonable explanation that fits with the actual ablation process.

  20. Dynamics of femtosecond laser absorption of fused silica in the ablation regime

    SciTech Connect

    Lebugle, M. Sanner, N.; Varkentina, N.; Sentis, M.; Utéza, O.

    2014-08-14

    We investigate the ultrafast absorption dynamics of fused silica irradiated by a single 500 fs laser pulse in the context of micromachining applications. A 60-fs-resolution pump-probe experiment that measures the reflectivity and transmissivity of the target under excitation is developed to reveal the evolution of plasma absorption. Above the ablation threshold, an overcritical plasma with highly non-equilibrium conditions is evidenced in a thin layer at the surface. The maximum electron density is reached at a delay of 0.5 ps after the peak of the pump pulse, which is a strong indication of the occurrence of electronic avalanche. The results are further analyzed to determine the actual feedback of the evolution of the optical properties of the material on the pump pulse. We introduce an important new quantity, namely, the duration of absorption of the laser by the created plasma, corresponding to the actual timespan of laser absorption by inverse Bremsstrahlung. Our results indicate an increasing contribution of plasma absorption to the total material absorption upon raising the excitation fluence above the ablation threshold. The role of transient optical properties during the energy deposition stage is characterized and our results emphasize the necessity to take it into account for better understanding and control of femtosecond laser-dielectrics interaction.

  1. Angle-Dependent Irradiation of C4 in Femtosecond Laser Pulses

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-Ping; Zhang, Feng-Shou; Zhu, Yun; Xie, Guan-Hao

    2012-07-01

    We study the angle-dependent irradiation of linear C4 in the strong femtosecond laser pulses with the help of time-dependent local density approximation applied to valence electrons, coupled non-adiabatically to molecular dynamics of ions. It is found that the excitation of C4 including the electrons and ions has a strong relation to the angle between the laser polarization and the internuclear axis of C4. The ionization yield decreases when the angle ranges from 0 to π/2. A clear suppression in the ionization yield is found when the laser polarization is perpendicular to the internuclear axis of C4. We track the dynamic motion of ionized C4 even in the relaxation time. It shows that the ionized C4 keeps on oscillating without fragmenting after the irradiation in different cases, while it is more excited when the laser polarization is along the internuclear axis. Furthermore, it is found that the change of the ELF takes place mainly in the xy plane and xz plane and the electron ejection mainly comes from the middle two atoms for the θ = 0 case.

  2. Femtosecond-laser-driven molecular dynamics on surfaces: Photodesorption of molecular oxygen from Ag(110)

    NASA Astrophysics Data System (ADS)

    Lončarić, Ivor; Alducin, M.; Saalfrank, P.; Juaristi, J. I.

    2016-01-01

    We simulate the femtosecond-laser-induced desorption dynamics of a diatomic molecule from a metal surface by including the effect of the electron and phonon excitations created by the laser pulse. Following previous models, the laser-induced surface excitation is treated through the two temperature model, while the multidimensional dynamics of the molecule is described by a classical Langevin equation, in which the friction and random forces account for the action of the heated electrons. In this work we propose the additional use of the generalized Langevin oscillator model to also include the effect of the energy exchange between the molecule and the heated surface lattice in the desorption dynamics. The model is applied to study the laser-induced desorption of O2 from the Ag(110) surface, making use of a six-dimensional potential energy surface calculated within density functional theory. Our results reveal the importance of the phonon mediated process and show that, depending on the value of the electronic density in the surroundings of the molecule adsorption site, its inclusion can significantly enhance or reduce the desorption probabilities.

  3. Sub-diffraction limited structuring of solid targets with femtosecond laser pulses.

    PubMed

    Korte, F; Adams, S; Egbert, A; Fallnich, C; Ostendorf, A; Nolte, S; Will, M; Ruske, J P; Chichkov, B; Tuennermann, A

    2000-07-17

    Possibilities to produce sub-diffraction limited structures in thin metal films and bulk dielectric materials using femtosecond laser pulses are investigated. The physics of ultrashort pulse laser ablation of solids is outlined. Results on the fabrication of sub-micrometer structures in 100-200 nm chrome-coated surfaces by direct ablative writing are reported. Polarization maintaining optical waveguides produced by femtosecond laser pulses inside crystalline quartz are demonstrated. PMID:19404368

  4. Mechanism study of femtosecond laser induced selective metallization (FLISM) on glass surfaces

    NASA Astrophysics Data System (ADS)

    Xu, Jian; Liao, Yang; Zeng, Huidan; Cheng, Ya; Xu, Zhizhan; Sugioka, Koji; Midorikawa, Katsumi

    2008-07-01

    We investigate the mechanism of selective metallization on glass surfaces with the assistance of femtosecond laser irradiation followed by electroless plating. Irradiation of femtosecond laser makes it possible to selectively deposit copper microstructures in the irradiated area on glass surfaces coated with silver nitrate films. The energy-dispersive X-ray (EDX) analyses reveal that silver atoms are produced on the surface of grooves formed by laser ablation, which serve as catalysis seeds for subsequent electroless copper plating.

  5. Fabrication of surface nanoscale axial photonics structures with a femtosecond laser.

    PubMed

    Shen, Fangcheng; Shu, Xuewen; Zhang, Lin; Sumetsky, M

    2016-06-15

    Surface nanoscale axial photonics (SNAP) structures are fabricated with a femtosecond laser for the first time, to the best of our knowledge. The inscriptions introduced by the laser pressurize the fiber and cause its nanoscale effective radius variation. We demonstrate the subangstrom precise fabrication of individual and coupled SNAP microresonators having the effective radius variation of several nanometers. Our results pave the way to a novel ultraprecise SNAP fabrication technology based on the femtosecond laser inscription. PMID:27304291

  6. Active compensation of large dispersion of femtosecond pulses for precision laser ranging.

    PubMed

    Lee, Sang-Hyun; Lee, Joohyung; Kim, Young-Jin; Lee, Keunwoo; Kim, Seung-Woo

    2011-02-28

    We describe an active way of compensation for large dispersion induced in the femtosecond light pulses travelling in air for laser ranging. The pulse duration is consistently regulated at 250 fs by dispersion control, allowing sub-micrometer resolution in measuring long distances by means of time-of-flight measurement. This method could facilitate more reliable applications of femtosecond pulses for satellite laser ranging, laser altimetry and active LIDAR applications. PMID:21369227

  7. Optical-induced electrical current in diamond switched by femtosecond-attosecond laser pulses by ab initio simulations

    NASA Astrophysics Data System (ADS)

    Gao, L. L.; Wang, F.; Jiang, L.; Qu, L. T.; Lu, Y. F.

    2016-01-01

    The electric current has been switched in diamond by a dual-laser field with an attosecond pulse train and a femtosecond laser, respectively serving to excite and drive electrons. The optical-induced current is simulated by the developed method based on the time-dependent density functional theory. The electric current is induced within several attoseconds with the diamond’s conductivity increased by 16~23 orders of magnitude. Our work opens the way to extending electronic signal processing from the present gigahertz domain into the exahertz domain.

  8. Femtosecond Laser Synthesis of Multi-Element Nanocrystals

    SciTech Connect

    Dinh, L N; Trelenberg, T; Torralva, B; Stuart, B C; Balooch, M

    2003-01-08

    We studied the conditions under which short-pulsed laser deposited (PLD) stoichiometric multi-element nanocrystals of GaAs,InP,CoPt and Inconel (an alloy of Cr, Fe and Ni) are formed. The properties of the PLD nanoclusters and the irradiated targets were investigated as a function of the laser pulse-length (150 fs-500 ps) and the inert background gas pressure in the synthesis chamber (microTorr to hundreds of Torr). Our results reveal that the formation of stoichiometric GaAs nanocrystals required ablating a GaAs target with a shorter than 25 ps laser in a {ge} 50 miliTorr of inert background pressure. For InP, a mixture of stoichiometric InP and In nanocrystals with an InP/In ratio of {approx} 1 resulted upon ablating an InP target in Ar at 1 Torr. This InP/In ratio increased to {approx} 5 when ablating the InP target in an Ar pressure of 750 Torr. In case of CoPt alloy, the stoichiometry in the target was not reflected in the collected nanocluster films, independent of the background gas pressure. Interestingly, the stoichiometry of the target was found in the collected nanocluster films when an Inconel target was ablated by a femtosecond laser even in vacuum. It is noted that the constituents of Inconel (Cr, Fe and Ni) have similar vapor pressures while Co and Pt do not. Our experimental results suggest that the stoichiometries of the PLD multi-element nanoclusters are closer with those of the targets when shorter than 25 ps lasers are used. However, this does not imply that simply irradiating a multi-element target in vacuum with a shorter than 25 ps pulse-length laser would automatically result in the formation of stoichiometric nanocrystals. The preservation of the stoichiometry of the irradiated target and the formation of stoichiometric semiconductor nanocrystals require ablating the targets with a shorter than 25 ps laser in a background gas. The minimum background gas pressure is materials dependent. And for metal alloys, the stoichiometry of the ablated

  9. Controlling two plasmon decay instability in intense femtosecond laser driven plasmas

    SciTech Connect

    Singh, Prashant Kumar; Adak, Amitava; Lad, Amit D.; Chatterjee, Gourab; Ravindra Kumar, G.; Brijesh, P.

    2015-11-15

    We investigate the onset of the two-plasmon-decay (TPD) instability in intense femtosecond laser-solid interaction. In particular, this instability, originating at the quarter critical electron density surface in the inhomogeneous plasma, is explored for a wide range of laser parameters-energy, pulse duration, and intensity contrast. By varying these laser parameters, we demonstrate ways to excite and control the growth of the TPD process. The pulse duration scan carried out under a constant laser fluence reveals the pulse width dependent nature of TPD growth. The spectral splitting of the TPD induced three-halves harmonic emission is used to infer the electron temperature near the quarter critical density surface. Moreover, by varying the laser contrast over four orders of magnitude, we find that the intensity threshold of three-halves harmonic emission increases by nearly two orders of magnitude. This contrast dependent intensity threshold for the emission of three-halves harmonic can be a useful diagnostic of the laser contrast.

  10. Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses

    SciTech Connect

    Watanabe, Wataru; Onda, Satoshi; Tamaki, Takayuki; Itoh, Kazuyoshi; Nishii, Junji

    2006-07-10

    We report on the joining of dissimilar transparent materials based on localized melting and resolidification of the materials only around the focal volume due to nonlinear absorption of focused femtosecond laser pulses. We demonstrate the joining of borosilicate glass and fused silica, whose coefficients of thermal expansion are different. The joint strength and the transmittance through joint volume were investigated by varying the translation velocity of the sample and the pulse energy of the irradiated laser pulses.

  11. Self-organized Propagation of Femtosecond Laser Filamentation in Air

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Hao, Zuoqiang; Xi, Tingting; Lu, Xin; Zhang, Zhe; Yang, Hui; Jin, Zhan; Wang, Zhaohua; Wei, Zhiyi

    A long plasma channel is formed with a length up to a few hundred meters when intense femtosecond laser pulses propagate in air. We find that the propagation of the filaments in the channel shows a very complicated process including the evolution from a single filament into two and three and even more distinct filaments periodically, and the merging of multiple filaments into two filaments that propagate stably and fade away eventually. From the point of view of applications, the lifetime of the plasma channel can be prolonged to the order of microseconds when another sub-ns laser pulse is introduced. The filaments' distribution is optimized using a pinhole with different diameters. Our experiments also demonstrate simultaneous triggering and guiding of large gap discharges in air by laser filaments. A new concept of "laser plasma channel propulsion" is proposed. It is demonstrated that the plasma channel can continuously propel a light paper airplane without complicated focusing optics. As for the long distance propagation of the laser pulses, the filamentation process and the surpercontinuum (SC) emission are closely dependent on the initial negative chirp and the divergence angle of the laser beam. Most of laser energy deposited in the background serves as an energy reservoir for further propagation of the filamentation. We have shown that an energy reservoir over ten times the size of the filament core (mm size) is necessary to feed a single filament undisturbed propagation. At last, the characteristics of the multiple filaments formed by pre-focused and freely propagating fs laser pulses are investigated and compared.

  12. Ultrafast Excited State Relaxation of a Metalloporphyrin Revealed by Femtosecond X-ray Absorption Spectroscopy.

    PubMed

    Shelby, Megan L; Lestrange, Patrick J; Jackson, Nicholas E; Haldrup, Kristoffer; Mara, Michael W; Stickrath, Andrew B; Zhu, Diling; Lemke, Henrik T; Chollet, Matthieu; Hoffman, Brian M; Li, Xiaosong; Chen, Lin X

    2016-07-20

    Photoexcited Nickel(II) tetramesitylporphyrin (NiTMP), like many open-shell metalloporphyrins, relaxes rapidly through multiple electronic states following an initial porphyrin-based excitation, some involving metal centered electronic configuration changes that could be harnessed catalytically before excited state relaxation. While a NiTMP excited state present at 100 ps was previously identified by X-ray transient absorption (XTA) spectroscopy at a synchrotron source as a relaxed (d,d) state, the lowest energy excited state (J. Am. Chem. Soc., 2007, 129, 9616 and Chem. Sci., 2010, 1, 642), structural dynamics before thermalization were not resolved due to the ∼100 ps duration of the available X-ray probe pulse. Using the femtosecond (fs) X-ray pulses of the Linac Coherent Light Source (LCLS), the Ni center electronic configuration from the initial excited state to the relaxed (d,d) state has been obtained via ultrafast Ni K-edge XANES (X-ray absorption near edge structure) on a time scale from hundreds of femtoseconds to 100 ps. This enabled the identification of a short-lived Ni(I) species aided by time-dependent density functional theory (TDDFT) methods. Computed electronic and nuclear structure for critical excited electronic states in the relaxation pathway characterize the dependence of the complex's geometry on the electron occupation of the 3d orbitals. Calculated XANES transitions for these excited states assign a short-lived transient signal to the spectroscopic signature of the Ni(I) species, resulting from intramolecular charge transfer on a time scale that has eluded previous synchrotron studies. These combined results enable us to examine the excited state structural dynamics of NiTMP prior to thermal relaxation and to capture intermediates of potential photocatalytic significance. PMID:27286410

  13. Measurement of ablation threshold of oxide-film-coated aluminium nanoparticles irradiated by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Chefonov, O. V.; Ovchinnikov, A. V.; Il'ina, I. V.; Agranat, M. B.

    2016-03-01

    We report the results of experiments on estimation of femtosecond laser threshold intensity at which nanoparticles are removed from the substrate surface. The studies are performed with nanoparticles obtained by femtosecond laser ablation of pure aluminium in distilled water. The attenuation (or extinction, i.e. absorption and scattering) spectra of nanoparticles are measured at room temperature in the UV and optical wavelength ranges. The size of nanoparticles is determined using atomic force microscopy. A new method of scanning photoluminescence is proposed to evaluate the threshold of nanoparticle removal from the surface of a glass substrate exposed to IR femtosecond laser pulses with intensities 1011 – 1013 W cm-2.

  14. Synthesis of submicron metastable phase of silicon using femtosecond laser-driven shock wave

    SciTech Connect

    Tsujino, Masashi; Sano, Tomokazu; Sakata, Osami; Ozaki, Norimasa; Kodama, Ryosuke; Kimura, Shigeru; Takeda, Shingo; Kobayashi, Kojiro F.; Hirose, Akio

    2011-12-15

    We measured the grain size of metastable phase of Si synthesized by shock compression. We analyzed the crystalline structures of the femtosecond laser-driven shock compressed silicon with x-ray diffraction measurements. We found that submicron grains of metastable Si-VIII exist in the silicon. We suggest that the pressure loading time is too short for the nucleated high-pressure phases to grow in case of the femtosecond laser-driven shock compression, therefore Si-VIII grains of submicron size are obtained. We are expecting to discover other unique crystalline structures induced by the femtosecond laser-driven shock wave.

  15. Formation of periodic nanostructures using a femtosecond laser to control cell spreading on titanium

    NASA Astrophysics Data System (ADS)

    Shinonaga, T.; Tsukamoto, M.; Kawa, T.; Chen, P.; Nagai, A.; Hanawa, T.

    2015-06-01

    Although titanium (Ti) is a common biomaterial, controlling cell spreading by forming periodic structures using a femtosecond laser should improve its biocompatibility. Herein we investigate the influence of periodic nanostructures formed on the surface of a Ti plate on cell spreading. Nanostructures with a periodicity of 590 nm are formed using a femtosecond laser with a wavelength of 775 nm. Cell spreading on the plate without period structures lacks a definite direction, whereas cell spreading on the Ti plate with periodic structures occurs along the grooves, suggesting that forming periodic structures via a femtosecond laser can control cell spreading.

  16. The fluence threshold of femtosecond laser blackening of metals: The effect of laser-induced ripples

    NASA Astrophysics Data System (ADS)

    Ou, Zhigui; Huang, Min; Zhao, Fuli

    2016-05-01

    With the primary controlling factor of the laser fluence, we have investigated femtosecond laser blackening of stainless steel, brass, and aluminum in visible light range. In general, low reflectance about 5% can be achieved in appropriate ranges of laser fluences for all the treated metal surfaces. Significantly, towards stainless steel and brass a fluence threshold of blackening emerges unusually: a dramatic reflectance decline occurs in a specific, narrow fluence range. In contrast, towards aluminum the reflectance declines steadily over a wide fluence range instead of the threshold-like behavior from steel and brass. The morphological characteristics and corresponding reflectance spectra of the treated surfaces indicates that the blackening threshold of stainless steel and brass corresponds to the fluence threshold of laser-induced subwavelength ripples. Such periodic ripples growing rapidly near ablation threshold absorb visible light efficiently through grating coupling and cavity trapping promoted by surface plasmon polaritons. Whereas, for aluminum, with fluence increasing the looming ripples are greatly suppressed by re-deposited nanoparticle aggregates that present intrinsic colors other than black, and until the formation of large scale "ravines" provided with strong light-trapping, sufficient blackening is achieved. In short, there are different fluence dependencies for femtosecond laser blackening of metals, and the specific blackening fluence threshold for certain metals in the visible range originates in the definite fluence threshold of femtosecond laser-induced ripples.

  17. Plasmonic decay in a metallic grating after femtosecond pulse excitation

    SciTech Connect

    Mueller, Roland; Bethge, Jens

    2010-09-15

    The paper presents a theoretical study on the excitation of surface plasmon polaritons (SPPs) and their decay by reradiation to light. We consider a free-standing metallic transmission grating being illuminated with a TM-polarized light pulse of 10 fs duration at normal incidence. The SPP decay time is assumed to be much larger than the pulse duration. In particular, we analyze the SPP decay after the exciting pulse disappeared. We find periodic amplitude modulation of the declining light field both in close proximity to the grating, where evanescent waves are dominant and in the far-field region, where the light field consists mainly of propagating waves. Using the example of the magnetic field, we demonstrate that the amplitude modulation of the near field exhibits increasing strength with time due to a drop of the evanescent wave density associated with the SPP decay. The far field above and below the grating shows frequency beating with periods corresponding to the reciprocal width of a frequency gap in the transmission spectrum. Strong coupling between SPP modes on the top and bottom interfaces leads to fixed phase relations between the beat notes of the transmitted and reflected light fields. This coupling is confirmed by a periodic change in the Poynting flow direction perpendicular to the interfaces. Finally, we study also the dynamics of the SPP decay by employing Gabor wavelet transforms for the calculated fields far above and below the grating. In this way, we get access to the spectral contents of the light field at different times. This novel spectral-temporal analysis shows a narrowing of the initial pulse spectrum and reveals spectral features not seen in the Fourier spectrum.

  18. Laser damage resistant pits in dielectric coatings created by femtosecond laser machining

    SciTech Connect

    Wolfe, J; Roger Qiu, ,; Stolz, C; Thomas, M; Martinez, C; Ozkan, A

    2009-11-03

    Replacing growing damage sites with benign, laser damage resistant features in multilayer dielectric films may enable large mirrors to be operated at significantly higher fluences. Laser damage resistant features have been created in high reflecting coatings on glass substrates using femtosecond laser machining. These prototype features have been damage tested to over 40 J/cm{sup 2} (1064nm, 3ns pulselength) and have been shown not to damage upon repeated irradiation at 40J/cm{sup 2}. Further work to optimize feature shape and laser machining parameters is ongoing.

  19. Spectral and spatial resolving of photoelectric property of femtosecond laser drilled holes of GaSb(1-x)Bi(x).

    PubMed

    Pan, C B; Zha, F X; Song, Y X; Shao, J; Dai, Y; Chen, X R; Ye, J Y; Wang, S M

    2015-07-15

    Femtosecond laser drilled holes of GaSbBi were characterized by the joint measurements of photoconductivity (PC) spectroscopy and laser-beam-induced current (LBIC) mapping. The excitation light in PC was focused down to 60 μm presenting the spectral information of local electronic property of individual holes. A redshift of energy band edge of about 6-8 meV was observed by the PC measurement when the excitation light irradiated on the laser drilled holes. The spatial resolving of photoelectric property was achieved by the LBIC mapping which shows "pseudo-holes" with much larger dimensions than the geometric sizes of the holes. The reduced LBIC current with the pseudo-holes is associated with the redshift effect indicating that the electronic property of the rim areas of the holes is modified by the femtosecond laser drilling. PMID:26176477

  20. Adaptive control of lasers and their interactions with matter using femtosecond pulse shaping

    NASA Astrophysics Data System (ADS)

    Efimov, Anatoly

    Coherent control of chemical reactions, atomic and molecular systems, lattice dynamics, and electronic motion rely on femtosecond laser sources capable of producing programmable arbitrarily shaped waveforms. To enter the time scale of natural dynamic processes in many systems, femtosecond pulse shaping techniques must be extended to the ultrashort pulse domain (<50 fs). Concurrently, reliable high-fidelity amplification of shaped waveforms is required in many applications. We demonstrate ultrabroad bandwidth pulse shaping of 13 fs pulses with Fourier-domain phase-only filtering using a liquid crystal array. We further demonstrate the amplification of shaped pulses in a multipass chirped pulse amplifier (CPA) system to produce millijoule-level optical waveforms with 30 fs resolution. Recently, a new approach to coherent control of physical systems was introduced, which, instead of relying on formidable theoretical calculations of complex system dynamics, makes use of an appropriate experimental feedback from the system itself to control its evolution. We apply this adaptive feedback approach for enhancement of ionization rates in a femtosecond plasma with the goal of minimization of phase distortions in the amplifier system. With the help of a learning algorithm and survival principles of nature, we teach our laser to control its own phase by using spectral blueshifting in a rapidly created plasma as a feedback to the algorithm. Control of lattice vibrations has long been sought as a means of studying phonon-related processes in solids. In addition, generation and control of large-amplitude optical phonon modes may open a path to femtosecond time- resolved studies of structural phase transitions and production of ultrashort shaped X-ray pulses. We perform pump-probe phase-resolved measurements and control of optical A1g mode in sapphire through shaped-pulse impulsive stimulated Raman scattering (ISRS). We chose this material as a candidate for possible nonlinear

  1. Combining femtosecond laser ablation and diode laser welding in lamellar and endothelial corneal transplants

    NASA Astrophysics Data System (ADS)

    Pini, Roberto; Rossi, Francesca; Matteini, Paolo; Ratto, Fulvio; Menabuoni, Luca; Lenzetti, Ivo; Yoo, Sonia H.; Parel, Jean-Marie

    2008-02-01

    Based on our previous clinical experiences in minimally invasive diode laser-induced welding of corneal tissue in penetrating keratoplasty (PK), i.e. full-thickness transplant of the cornea, we combined this technique with the use of a femtosecond laser for applications in lamellar (LK) and endothelial (EK) keratoplasty. In LK, the femtosecond laser was used to prepare donor button and recipient corneal bed; the wound edges were stained with a water solution of Indocyanine Green (ICG) and then irradiated with a diode laser emitting in CW mode to induce stromal welding. Intraoperatory observations and follow-up results up to 6 months indicated the formation of a smooth stromal interface, total absence of edema as well as inflammation, and reduction of post-operative astigmatism, as compared with conventional suturing procedures. In EK the femtosecond laser was used for the preparation of a 100 μm thick, 8.5mm diameter donor corneal endothelium flap. The flap stromal side was stained with ICG. After stripping the recipient Descemet's membrane and endothelium, the donor flap was positioned in the anterior chamber on the inner face of the cornea by an air bubble and secured to the recipient cornea by diode laser pulses delivered by means of a fiberoptic contact probe introduced in the anterior chamber, which produced welding spots of 200 μm diameter. Femtosecond laser sculpturing of the donor cornea provided lamellar and endothelial flaps of preset and constant thickness. Diode laserinduced welding showed a unique potential to permanently secure the donor flap in place, avoiding postoperative displacement and inflammation reaction.

  2. Femtosecond laser-induced microstructures in glasses and applications in micro-optics.

    PubMed

    Qiu, Jianrong

    2004-01-01

    Femtosecond laser has been widely used in microscopic modifications to materials due to its ultra-short laser pulse and ultrahigh light intensity. When a transparent material e.g. glass is irradiated by a tightly focused femtosecond laser, the photo-induced reaction is expected to occur only near the focused part of the laser beam inside the glass due to the multiphoton processes. We observed various induced structures e.g. color center defects, refractive index change, micro-void and micro-crack, in glasses after the femtosecond laser irradiation. In this paper, we review the femtosecond laser induced phenomena and discuss the mechanisms of the observed phenomena. We also introduce the fabrication of various micro-optical components, e.g. optical waveguide, micro-grating, micro-lens, fiber attenuator, 3-dimensional optical memory by using the femtosecond laser-induced structures. The femtosecond laser will open new possibilities in the fabrication of micro-optical components with various optical functions. PMID:15057868

  3. Formation de nano-structures lors de l'ablation du silicium par laser femtoseconde

    NASA Astrophysics Data System (ADS)

    Berton, Nicolas

    When a material is irradiated with a laser fluence near its ablation threshold, periodic surface structures appear on its surface. Those structures are perpendicular to the polarisation vector and their periods are close to the laser wavelength. They have been extensively studied for more than thirty years, and their origins are quite well understood. However, the recent use of ultra-short laser sources has renewed the subject. Because of the appearance of other structures and the modification of previously observed surface structures having slightly different characteristics. In that master thesis, we will propose explanations concerning the origins of those modifications and the growth of these new structures. Experiments were performed on silicon irradiated by a titanium/sapphire femtosecond laser, by varying several parameters including the fluence, number of pulses, pulse duration and the ambient medium. Some discrepancies with the previous theory of J.Sipe have been observed in the case of "classical ripples", the period obtained after irradiating is slightly random, and definitely lower than the laser incident wavelength; within certain conditions even two dimensional structures can be observed. Those features have been explained using a Sipe-Drude model which takes the electronic excitation during the pulse into account. Irradiating in a liquid medium, more exotic structures have been observed. In deed, ripples with higher frequency period approching 100 nm and perpendicular to the polarisation are also formed. Structures growing on the classical ripples are also formed that are parallels to the polarisation and their period is more important than the laser wavelength. These structures are probably due to interference between two surface waves. This study shows that the effect of the excited electron gaz during the laser irradiation cannot be ignored and that other phenomena, previously not taken into account, leads to new structures. Hypothesis on their

  4. Robust non-wetting PTFE surfaces by femtosecond laser machining.

    PubMed

    Liang, Fang; Lehr, Jorge; Danielczak, Lisa; Leask, Richard; Kietzig, Anne-Marie

    2014-01-01

    Nature shows many examples of surfaces with extraordinary wettability,which can often be associated with particular air-trapping surface patterns. Here,robust non-wetting surfaces have been created by femtosecond laser ablation of polytetrafluoroethylene (PTFE). The laser-created surface structure resembles a forest of entangled fibers, which support structural superhydrophobicity even when the surface chemistry is changed by gold coating. SEM analysis showed that the degree of entanglement of hairs and the depth of the forest pattern correlates positively with accumulated laser fluence and can thus be influenced by altering various laser process parameters. The resulting fibrous surfaces exhibit a tremendous decrease in wettability compared to smooth PTFE surfaces; droplets impacting the virgin or gold coated PTFE forest do not wet the surface but bounce off. Exploratory bioadhesion experiments showed that the surfaces are truly air-trapping and do not support cell adhesion. Therewith, the created surfaces successfully mimic biological surfaces such as insect wings with robust anti-wetting behavior and potential for antiadhesive applications. In addition, the fabrication can be carried out in one process step, and our results clearly show the insensitivity of the resulting non-wetting behavior to variations in the process parameters,both of which make it a strong candidate for industrial applications. PMID:25110862

  5. Formation of Si structure in glass with a femtosecond laser

    NASA Astrophysics Data System (ADS)

    Miura, Kiyotaka; Hirao, Kazuyuki; Shimotsuma, Yasuhiko; Sakakura, Masaaki; Kanehira, Shingo

    2008-10-01

    Mixing metallic Al into the starting material for silicate glass is proposed as a means of forming Si structures in glass. We confirmed that Si nanocrystals are space-selectively deposited in silicate glass via a thermite reaction triggered by femtosecond laser pulses. Small Si particles were transformed into larger, but still micrometer sized, Si particles by laser irradiation. These structures grew to micro-size particles due to the thermite reaction promoted by heat treatment. We discuss what effect the irradiation of the focused laser pulse had on the Si deposition process in the laser-irradiated region. Localized high temperatures and pressures and generation of shock waves appear to be very important in forming Si-rich structures that contribute to the growth of Si particles. The diffusion of calcium ions by the generation of shock waves and the presence of Al-rich structures is important for forming Si-rich structures such as Si clusters, which is achieved by continuously breaking Si-O bonds using localized high temperatures.

  6. Optical Spectroscopy Using Gas-Phase Femtosecond Laser Filamentation

    NASA Astrophysics Data System (ADS)

    Odhner, Johanan; Levis, Robert

    2014-04-01

    Femtosecond laser filamentation occurs as a dynamic balance between the self-focusing and plasma defocusing of a laser pulse to produce ultrashort radiation as brief as a few optical cycles. This unique source has many properties that make it attractive as a nonlinear optical tool for spectroscopy, such as propagation at high intensities over extended distances, self-shortening, white-light generation, and the formation of an underdense plasma. The plasma channel that constitutes a single filament and whose position in space can be controlled by its input parameters can span meters-long distances, whereas multifilamentation of a laser beam can be sustained up to hundreds of meters in the atmosphere. In this review, we briefly summarize the current understanding and use of laser filaments for spectroscopic investigations of molecules. A theoretical framework of filamentation is presented, along with recent experimental evidence supporting the established understanding of filamentation. Investigations carried out on vibrational and rotational spectroscopy, filament-induced breakdown, fluorescence spectroscopy, and backward lasing are discussed.

  7. Optical spectroscopy using gas-phase femtosecond laser filamentation.

    PubMed

    Odhner, Johanan; Levis, Robert

    2014-01-01

    Femtosecond laser filamentation occurs as a dynamic balance between the self-focusing and plasma defocusing of a laser pulse to produce ultrashort radiation as brief as a few optical cycles. This unique source has many properties that make it attractive as a nonlinear optical tool for spectroscopy, such as propagation at high intensities over extended distances, self-shortening, white-light generation, and the formation of an underdense plasma. The plasma channel that constitutes a single filament and whose position in space can be controlled by its input parameters can span meters-long distances, whereas multifilamentation of a laser beam can be sustained up to hundreds of meters in the atmosphere. In this review, we briefly summarize the current understanding and use of laser filaments for spectroscopic investigations of molecules. A theoretical framework of filamentation is presented, along with recent experimental evidence supporting the established understanding of filamentation. Investigations carried out on vibrational and rotational spectroscopy, filament-induced breakdown, fluorescence spectroscopy, and backward lasing are discussed. PMID:24423375

  8. Robust Non-Wetting PTFE Surfaces by Femtosecond Laser Machining

    PubMed Central

    Liang, Fang; Lehr, Jorge; Danielczak, Lisa; Leask, Richard; Kietzig, Anne-Marie

    2014-01-01

    Nature shows many examples of surfaces with extraordinary wettability, which can often be associated with particular air-trapping surface patterns. Here, robust non-wetting surfaces have been created by femtosecond laser ablation of polytetrafluoroethylene (PTFE). The laser-created surface structure resembles a forest of entangled fibers, which support structural superhydrophobicity even when the surface chemistry is changed by gold coating. SEM analysis showed that the degree of entanglement of hairs and the depth of the forest pattern correlates positively with accumulated laser fluence and can thus be influenced by altering various laser process parameters. The resulting fibrous surfaces exhibit a tremendous decrease in wettability compared to smooth PTFE surfaces; droplets impacting the virgin or gold coated PTFE forest do not wet the surface but bounce off. Exploratory bioadhesion experiments showed that the surfaces are truly air-trapping and do not support cell adhesion. Therewith, the created surfaces successfully mimic biological surfaces such as insect wings with robust anti-wetting behavior and potential for antiadhesive applications. In addition, the fabrication can be carried out in one process step, and our results clearly show the insensitivity of the resulting non-wetting behavior to variations in the process parameters, both of which make it a strong candidate for industrial applications. PMID:25110862

  9. Using femtosecond lasers to modify sizes of gold nanoparticles

    NASA Astrophysics Data System (ADS)

    da Silva Cordeiro, Thiago; Almeida de Matos, Ricardo; Silva, Flávia Rodrigues de Oliveira; Vieira, Nilson D.; Courrol, Lilia C.; Samad, Ricardo E.

    2016-04-01

    Metallic nanoparticles are important on several scientific, medical and industrial areas. The control of nanoparticles characteristics has fundamental importance to increase the efficiency on the processes and applications in which they are employed. The metallic nanoparticles present specific surface plasmon resonances (SPR). These resonances are related with the collective oscillations of the electrons presents on the metallic nanoparticle. The SPR is determined by the potential defined by the nanoparticle size and geometry. There are several methods of producing gold nanoparticles, including the use of toxic chemical polymers. We already reported the use of natural polymers, as for example, the agar-agar, to produce metallic nanoparticles under xenon lamp irradiation. This technique is characterized as a "green" synthesis because the natural polymers are inoffensive to the environment. We report a technique to produce metallic nanoparticles and change its geometrical and dimensional characteristics using a femtosecond laser. The 1 ml initial solution was irradiate using a laser beam with 380 mW, 1 kHz and 40 nm of bandwidth centered at 800 nm. The setup uses an Acousto-optic modulator, Dazzler, to change the pulses spectral profiles by introduction of several orders of phase, resulting in different temporal energy distributions. The use of Dazzler has the objective of change the gold nanoparticles average size by the changing of temporal energy distributions of the laser pulses incident in the sample. After the laser irradiation, the gold nanoparticles average diameter were less than 15 nm.

  10. Fundamentals of femtosecond laser ablation of dielectric materials

    SciTech Connect

    Byskov-Nielsen, J.; Le, D. Q. S.; Christensen, M. N.; Balling, P.; Christensen, B. H.

    2010-10-08

    The modeling of laser-excited dielectric materials requires a detailed description of the electronic excitation. Dielectric materials do not absorb visible light by traditional linear absorption, so the dynamical generation of conduction-band electrons strongly couples to the absorption. The generation of free electrons is initiated by strong-field excitation and followed by multiplication through impact ionization by energetic electrons heated by the laser. The present paper describes an approach to solving the coupled problem of electron excitation and one-dimensional light propagation. The electronic excitation is described in the so-called multiple-rate-equation model, and the light is absorbed by a combination of strong-field excitation and linear absorption by the excited electrons, which are assumed to behave as a free-electron gas described by a Drude model. The model is generic and based on a few key parameters: the wavelength and the pulse duration of the light, and the band gap of the dielectric medium. This allows parametric investigations of ablation phenomena.

  11. Laser Excited Fluorescence For Forensic Diagnostics

    NASA Astrophysics Data System (ADS)

    McKinney, Robert E.

    1986-07-01

    The application of laser excited fluorescence to the detection and identification of latent fingerprints was first accomplished ten years ago. The development of the technology has progressed rapidly with the introduction of commercial equipment by several manufacturers. Systems based on Argon-ion, Copper-vapor, and frequency-doubled Nd:YAG lasers are compared. The theoretical basis of detection by fluorescence is discussed along with the more useful techniques of dye staining. Other applications of the laser excited fluorescence in forensic investigation include gunshot residue analysis, serology, collection of trace evidence, and document examination.

  12. Wavelength dependence of femtosecond laser-induced damage threshold of optical materials

    SciTech Connect

    Gallais, L. Douti, D.-B.; Commandré, M.; Batavičiūtė, G.; Pupka, E.; Ščiuka, M.; Smalakys, L.; Sirutkaitis, V.; Melninkaitis, A.

    2015-06-14

    An experimental and numerical study of the laser-induced damage of the surface of optical material in the femtosecond regime is presented. The objective of this work is to investigate the different processes involved as a function of the ratio of photon to bandgap energies and compare the results to models based on nonlinear ionization processes. Experimentally, the laser-induced damage threshold of optical materials has been studied in a range of wavelengths from 1030 nm (1.2 eV) to 310 nm (4 eV) with pulse durations of 100 fs with the use of an optical parametric amplifier system. Semi-conductors and dielectrics materials, in bulk or thin film forms, in a range of bandgap from 1 to 10 eV have been tested in order to investigate the scaling of the femtosecond laser damage threshold with the bandgap and photon energy. A model based on the Keldysh photo-ionization theory and the description of impact ionization by a multiple-rate-equation system is used to explain the dependence of laser-breakdown with the photon energy. The calculated damage fluence threshold is found to be consistent with experimental results. From these results, the relative importance of the ionization processes can be derived depending on material properties and irradiation conditions. Moreover, the observed damage morphologies can be described within the framework of the model by taking into account the dynamics of energy deposition with one dimensional propagation simulations in the excited material and thermodynamical considerations.

  13. [Recent advances in femtosecond laser-assisted cataract surgery].

    PubMed

    Yu, Yin-hui; Yao, Ke

    2013-05-01

    As the leading cause of blindness, the type of surgery performed to remove cataracts has evolved from Intracapsular to Extracapsular and to phacoemulsification. Advantages of femtosecond laser include high instantaneous power, strong penetration, short pulse-duration and micro-precision present superior accuracy, predictability and safety to cataract surgery, while also minimizing injury to surrounding ocular tissue. It mainly assists in the procedures of anterior capsulotomy, lens fragmentation, clear corneal incision and limbal relaxing incision creation. However, compared to conventional phacoemulsification, problems such as the minimization of complications and difficulties in conducting peer-reviewed studies with a longer follow-up period and large sample, as well as coverage of added costs remain untracked.The purpose of this review is to outline the advantages and disadvantages as well as clinical value of this evolving technology compared to conventional phacoemulsification. PMID:24021187

  14. Polarization maintaining linear cavity Er-doped fiber femtosecond laser

    NASA Astrophysics Data System (ADS)

    Jang, Heesuk; Jang, Yoon-Soo; Kim, Seungman; Lee, Keunwoo; Han, Seongheum; Kim, Young-Jin; Kim, Seung-Woo

    2015-10-01

    We present a polarization-maintaining (PM) type of Er-doped fiber linear oscillator designed to produce femtosecond laser pulses with high operational stability. Mode locking is activated using a semiconductor saturable absorber mirror (SESAM) attached to one end of the linear PM oscillator. To avoid heat damage, the SESAM is mounted on a copper-silicon-layered heat sink and connected to the linear oscillator through a fiber buffer dissipating the residual pump power. A long-term stability test is performed to prove that the proposed oscillator design maintains a soliton-mode single-pulse operation without breakdown of mode locking over a week period. With addition of an Er-doped fiber amplifier, the output power is raised to 180 mW with 60 fs pulse duration, from which an octave-spanning supercontinuum is produced.

  15. Nonlinear Raman-Nath diffraction of femtosecond laser pulses.

    PubMed

    Vyunishev, A M; Slabko, V V; Baturin, I S; Akhmatkhanov, A R; Shur, V Ya

    2014-07-15

    We study the nonlinear Raman-Nath diffraction (NRND) of femtosecond laser pulses in a 1D periodic nonlinear photonic structure. The calculated second-harmonic spectra represent frequency combs for different orders of transverse phase matching. These frequency combs are in close analogy with the well-known spectral Maker fringes observed in single crystals. The spectral intensity of the second harmonic experiences a redshift with a propagation angle, which is opposite the case of Čerenkov nonlinear diffraction. We analyze how NRND is affected by the group-velocity mismatch between fundamental and second-harmonic pulses and by the parameters of the structure. Our experimental results prove the theoretical predictions. PMID:25121694

  16. Removal of Retained Descemets Membrane Using Femtosecond Laser

    PubMed Central

    May, William; Alrashidi, Sultan; Daoud, Yassine J.

    2016-01-01

    We present a unique method of retrocorneal membrane removal with a femtosecond laser (FSL). A 22-year-old male who had undergone penetrating keratoplasty had a retained retrocorneal membrane and a double anterior chamber postoperatively. The membrane was dissected completely with the FSL and the free-floating membrane was removed. Histopathological evaluation confirmed the diagnosis of retained Descemets membrane (DM). There was improvement in uncorrected visual acuity from 20/300 to 20/50. Central corneal endothelial cell count was 810 cells/mm2 preoperatively and 778 cells/mm2 postoperatively. Inadvertent retention of DM may be safely treated with the FSL. Clarity and viability of the existing graft can be maintained. PMID:27555712

  17. Spectroscopic analysis of femtosecond laser plasma filament in air

    NASA Astrophysics Data System (ADS)

    Bernhardt, J.; Liu, W.; Théberge, F.; Xu, H. L.; Daigle, J. F.; Châteauneuf, M.; Dubois, J.; Chin, S. L.

    2008-03-01

    We report a spectroscopic analysis of a filament generated by a femtosecond laser pulse in air. In the filament spectra, the characteristic Stark broadened atomic oxygen triplet centered at 777.4 nm has been observed. The measured electron impact Stark broadening parameter of the triplet is larger than the theoretical value by Griem [H.R. Griem, Plasma Spectroscopy, McGraw Hill, New York, 1964] by a factor 6.7 . Using the experimental value 0.0166nm , the plasma densities derived from Stark broadening agree well with those most recently obtained from Théberge et al.'s measurement of the nitrogen fluorescence calibrated by longitudinal diffraction [F. Théberge, W. Liu, P.T. Simard, A. Becker, S. L. Chin, Phys. Rev. E 74 (2006) 036406]. However, the Stark broadening approach is much simpler and can be used to non-invasively measure the filament plasma density distribution in air under different propagation conditions.

  18. Mimicking subsecond neurotransmitter dynamics with femtosecond laser stimulated nanosystems

    NASA Astrophysics Data System (ADS)

    Nakano, Takashi; Chin, Catherine; Myint, David Mo Aung; Tan, Eng Wui; Hale, Peter John; Krishna M., Bala Murali; Reynolds, John N. J.; Wickens, Jeff; Dani, Keshav M.

    2014-06-01

    Existing nanoscale chemical delivery systems target diseased cells over long, sustained periods of time, typically through one-time, destructive triggering. Future directions lie in the development of fast and robust techniques capable of reproducing the pulsatile chemical activity of living organisms, thereby allowing us to mimic biofunctionality. Here, we demonstrate that by applying programmed femtosecond laser pulses to robust, nanoscale liposome structures containing dopamine, we achieve sub-second, controlled release of dopamine - a key neurotransmitter of the central nervous system - thereby replicating its release profile in the brain. The fast delivery system provides a powerful new interface with neural circuits, and to the larger range of biological functions that operate on this short timescale.

  19. Noise properties of microwave signals synthesized with femtosecond lasers.

    PubMed

    Ivanov, Eugene N; McFerran, John J; Diddams, Scott A; Hollberg, Leo

    2007-04-01

    We discuss various aspects of high resolution measurements of phase fluctuations at microwave frequencies. This includes methods to achieve thermal noise limited sensitivity, along with the improved immunity to oscillator amplitude noise. A few prototype measurement systems were developed to measure phase fluctuations of microwave signals extracted from the optical pulse trains generated by femtosecond lasers. This enabled first reliable measurements of the excess phase noise associated with optical-to-microwave frequency division. The spectral density of the excess phase noise was found to be -140 dBc/Hz at 100 Hz offset from the 10 GHz carrier which was almost 40 dB better than that of a high quality microwave synthesizer. PMID:17441583

  20. Composition analysis by scanning femtosecond laser ultraprobing (CASFLU).

    DOEpatents

    Ishikawa, Muriel Y.; Wood, Lowell L.; Campbell, E. Michael; Stuart, Brent C.; Perry, Michael D.

    2002-01-01

    The composition analysis by scanning femtosecond ultraprobing (CASFLU) technology scans a focused train of extremely short-duration, very intense laser pulses across a sample. The partially-ionized plasma ablated by each pulse is spectrometrically analyzed in real time, determining the ablated material's composition. The steering of the scanned beam thus is computer directed to either continue ablative material-removal at the same site or to successively remove nearby material for the same type of composition analysis. This invention has utility in high-speed chemical-elemental, molecular-fragment and isotopic analyses of the microstructure composition of complex objects, e.g., the oxygen isotopic compositions of large populations of single osteons in bone.

  1. Removal of Retained Descemets Membrane Using Femtosecond Laser.

    PubMed

    May, William; Alrashidi, Sultan; Daoud, Yassine J

    2016-01-01

    We present a unique method of retrocorneal membrane removal with a femtosecond laser (FSL). A 22-year-old male who had undergone penetrating keratoplasty had a retained retrocorneal membrane and a double anterior chamber postoperatively. The membrane was dissected completely with the FSL and the free-floating membrane was removed. Histopathological evaluation confirmed the diagnosis of retained Descemets membrane (DM). There was improvement in uncorrected visual acuity from 20/300 to 20/50. Central corneal endothelial cell count was 810 cells/mm(2) preoperatively and 778 cells/mm(2) postoperatively. Inadvertent retention of DM may be safely treated with the FSL. Clarity and viability of the existing graft can be maintained. PMID:27555712

  2. Optical vibration sensor fabricated by femtosecond laser micromachining

    SciTech Connect

    Kamata, Masanao; Obara, Minoru; Gattass, Rafael R.; Cerami, Loren R.; Mazur, Eric

    2005-08-01

    We fabricated an optical vibration sensor using a high-repetition rate femtosecond laser oscillator. The sensor consists of a single straight waveguide written across a series of three pieces of glass. The central piece is mounted on a suspended beam to make it sensitive to mechanical vibration, acceleration, or external forces. Displacement of the central piece is detected by measuring the change in optical transmission through the waveguide. The resulting sensor is small, simple, and requires no alignment. The sensor has a linear response over the frequency range 20 Hz-2 kHz, can detect accelerations as small as 0.01 m/s{sup 2}, and is nearly temperature independent.

  3. Fast femtosecond laser ablation for efficient cutting of sintered alumina substrates

    NASA Astrophysics Data System (ADS)

    Oosterbeek, Reece N.; Ward, Thomas; Ashforth, Simon; Bodley, Owen; Rodda, Andrew E.; Simpson, M. Cather

    2016-09-01

    Fast, accurate cutting of technical ceramics is a significant technological challenge because of these materials' typical high mechanical strength and thermal resistance. Femtosecond pulsed lasers offer significant promise for meeting this challenge. Femtosecond pulses can machine nearly any material with small kerf and little to no collateral damage to the surrounding material. The main drawback to femtosecond laser machining of ceramics is slow processing speed. In this work we report on the improvement of femtosecond laser cutting of sintered alumina substrates through optimisation of laser processing parameters. The femtosecond laser ablation thresholds for sintered alumina were measured using the diagonal scan method. Incubation effects were found to fit a defect accumulation model, with Fth,1=6.0 J/cm2 (±0.3) and Fth,∞=2.5 J/cm2 (±0.2). The focal length and depth, laser power, number of passes, and material translation speed were optimised for ablation speed and high quality. Optimal conditions of 500 mW power, 100 mm focal length, 2000 μm/s material translation speed, with 14 passes, produced complete cutting of the alumina substrate at an overall processing speed of 143 μm/s - more than 4 times faster than the maximum reported overall processing speed previously achieved by Wang et al. [1]. This process significantly increases processing speeds of alumina substrates, thereby reducing costs, making femtosecond laser machining a more viable option for industrial users.

  4. Human cadaver retina model for retinal heating during corneal surgery with a femtosecond laser

    NASA Astrophysics Data System (ADS)

    Sun, Hui; Fan, Zhongwei; Yun, Jin; Zhao, Tianzhuo; Yan, Ying; Kurtz, Ron M.; Juhasz, Tibor

    2014-02-01

    Femtosecond lasers are widely used in everyday clinical procedures to perform minimally invasive corneal refractive surgery. The intralase femtosecond laser (AMO Corp. Santa Ana, CA) is a common example of such a laser. In the present study a numerical simulation was developed to quantify the temperature rise in the retina during femtosecond intracorneal surgery. Also, ex-vivo retinal heating due to laser irradiation was measured with an infrared thermal camera (Fluke Corp. Everett, WA) as a validation of the simulation. A computer simulation was developed using Comsol Multiphysics to calculate the temperature rise in the cadaver retina during femtosecond laser corneal surgery. The simulation showed a temperature rise of less than 0.3 degrees for realistic pulse energies for the various repetition rates. Human cadaver retinas were irradiated with a 150 kHz Intralase femtosecond laser and the temperature rise was measured withan infrared thermal camera. Thermal camera measurements are in agreement with the simulation. During routine femtosecond laser corneal surgery with normal clinical parameters, the temperature rise is well beneath the threshold for retina damage. The simulation predictions are in agreement with thermal measurements providing a level of experimental validation.

  5. Femtosecond laser waveguide writing in ternary zinc magnesium phosphate glasses

    NASA Astrophysics Data System (ADS)

    Skovorodnikov, Nikolay

    Femtosecond (fs) pulsed laser inscription was used to fabricate optical waveguides in ternary zinc magnesium phosphate glasses with different compositions. The main goal of this work was to find a reliable dielectric material for fs-laser waveguide writing, which has particular physical properties. The material is to be mechanically robust and chemically durable and is to exhibit positive refractive index change under fs-laser irradiation. Besides, such phosphate glass structures possess an advantageous high solubility of rare-earth ions, which can be potentially exploited for the fabrication of active photonic devices. In order to produce optical changes a fs-laser beam was focused inside the material so a sufficient intensity was reached and permanent structural modification could be induced at the focal volume. The glass samples were translated along the laser beam direction; therefore elongated optical modifications were formed. Whether the written lines were able to guide light was verified by measuring the near-field profile of the output mode of the waveguide at 660 nm. This way, optical guiding was demonstrated for the sample 25MgO 25ZnO 50P2O5 (mole %). Either tracks of damage or negative refractive index changes did not allow demonstrating guiding for other compositions. The laser-induced structural changes within the glass network were studied by means of spatially resolved micro Raman and fluorescence spectroscopy. While slight or no peak shifts, of relevant Raman bands, were found, a strong fluorescence signal was measured and associated with POHC electronic defect formation. These results and corresponding changes of optical properties are discussed in relation with the O/P atomic ratios favorable for waveguide fabrication.

  6. Electrofluidics fabricated by space-selective metallization in glass microfluidic structures using femtosecond laser direct writing.

    PubMed

    Xu, Jian; Wu, Dong; Hanada, Yasutaka; Chen, Chi; Wu, Sizhu; Cheng, Ya; Sugioka, Koji; Midorikawa, Katsumi

    2013-12-01

    Space-selective metallization of the inside of glass microfluidic structures using femtosecond laser direct-write ablation followed by electroless plating is demonstrated. Femtosecond laser direct writing followed by thermal treatment and successive chemical etching allows us to fabricate three-dimensional microfluidic structures inside photosensitive glass. Then, femtosecond laser ablation followed by electroless metal plating enables flexible deposition of patterned metal films on desired locations of not only the top and bottom walls but also the sidewalls of fabricated microfluidic structures. A volume writing scheme for femtosecond laser irradiation inducing homogeneous ablation on the sidewalls of microfluidic structures is proposed for sidewall metallization. The developed technique is used to fabricate electrofluidics in which microelectric components are integrated into glass microchannels. The fabricated electrofluidics are applied to control the temperature of liquid samples in the microchannels for the enhancement of chemical reactions and to manipulate the movement of biological samples in the microscale space. PMID:24104603

  7. Intermediate band properties of femtosecond-laser hyperdoped silicon

    NASA Astrophysics Data System (ADS)

    Sher, Meng-Ju

    This thesis explores using femtosecond-laser pulses to hyperdope silicon with chalcogen dopants at concentrations above the maximum equilibrium solubility. Hyperdoped silicon is promising for improving efficiencies of solar cells: the material exhibits broad-band light absorption to wavelengths deep below the corresponding bandgap energy of silicon. The high concentration of dopants forms an intermediate band (IB), instead of discrete energy levels, and the IB enables sub-bandgap light absorption. This thesis is divided into two primary studies: the dopant incorporation and the IB properties. First, we study dopant incorporation with a gas-phase dopant precursor (SF6) using secondary ion mass spectrometry. By varying the pressure of SF6, we find that the surface adsorbed molecules are the dominant source of the dopant. Furthermore, we show the hyperdoped layer is single crystalline. The results demonstrate that the dopant incorporation depth, concentration, and crystallinity are controlled respectively by the number of laser pulses, pressure of the dopant precursor, and laser fluence. Second, we study the IB properties of hyperdoped silicon using optical and electronic measurements. We use Fourier transform infrared spectroscopy to study light absorption. The absorption extends to wavelengths as far as 6 mum before thermal annealing and we find the upper bound of the IB location at 0.2 eV below the conduction band edge. For electronic measurements, we anneal the samples to form a diode between the hyperdoped layer and the substrate, allowing us to probe the IB using temperature-dependent electronic transport measurements. The measurement data indicate that these samples form a localized IB at concentrations below the insulator-to-metal transition. Using a two-band model, we obtain the location of the localized IB at >0.07 eV below the conduction band edge. After femtosecond-laser hyperdoping, annealing is necessary to reduce the laser-induced defects; however

  8. Filamentation of Beam-Shaped Femtosecond Laser Pulses

    SciTech Connect

    Polynkin, Pavel; Kolesik, Miroslav; Moloney, Jerome

    2010-10-08

    When ultra-intense and ultra-short optical pulses propagate in transparent dielectrics, the dynamic balance between multiple linear and nonlinear effects results in the generation of laser filaments. These peculiar objects have numerous interesting properties and can be potentially used in a variety of applications from remote sensing to the optical pulse compression down to few optical cycles to guiding lightning discharges away from sensitive sites. Materializing this practical potential is not straightforward owing to the complexity of the physical picture of filamentation. In this paper, we discuss recent experiments on using beam shaping as a means of control over the filament formation and dynamics. Two particular beam shapes that we have investigated so far are Bessel and Airy beams. The diffraction-free propagation of femtosecond Bessel beams allows for the creation of extended plasma channels in air. These extended filaments can be used for the generation of energetic optical pulses with the duration in the few-cycle range. In the case of filamentation of femtosecond Airy beams, the self-bending property of these beams allows for the creation of curved filaments. This is a new regime of the intense laser-pulse propagation in which the linear self-bending property of the beam competes against the nonlinear self-channeling. The bent filaments generated by ultra-intense Airy beams emit forward-propagating broadband radiation. Analysis of the spatial and spectral distribution of this emission provides for a valuable tool for analyzing the evolution of the ultra-intense optical pulse along the optical path.

  9. Nanosurgery with near-infrared 12-femtosecond and picosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Uchugonova, Aisada; Zhang, Huijing; Lemke, Cornelius; König, Karsten

    2011-03-01

    Laser-assisted surgery based on multiphoton absorption of NIR laser light has great potential for high precision surgery at various depths within the cells and tissues. Clinical applications include refractive surgery (fs-LASIK). The non-contact laser method also supports contamination-free cell nanosurgery. Here we apply femtosecond laser scanning microscopes for sub-100 nm surgery of human cells and metaphase chromosomes. A mode-locked 85 MHz Ti:Sapphire laser with an M-shaped ultrabroad band spectrum (maxima: 770 nm/830 nm) with an in situ pulse duration at the target ranging from 12 femtoseconds up to 3 picoseconds was employed. The effects of laser nanoprocessing in cells and chromosomes have been quantified by atomic force microscopy (AFM) and electron microscopy. These studies demonstrate the potential of extreme ultrashort femtosecond laser pulses at low mean milliwatt powers for sub-100 nm surgery.

  10. Electron shuttling across the interface of CdSe nanoparticles monitored by femtosecond laser spectroscopy

    SciTech Connect

    Burda, C.; Green, T.C.; Link, S.; El-Sayed, M.A.

    1999-03-18

    The formation and decay of the optical hole (bleach) for 4 nm CdSe nanoparticles (NPs) with adsorbed electron acceptors (1,4-benzoquinone and 1,2-naphthoquinone) and the rise and decay of the reduced electron acceptors formed after interfacial electron transfer from the CdSe NPs were investigated by femtosecond laser spectroscopy. The ultrashort (200--400 fs) rise times of the bleach at the band-gap energy of the CdSe NP as well as of the acceptor radical anion are found to increase with increasing the excitation energy. This suggests that the electron transfer from the CdSe NP to the quinone electron acceptor occurs after thermalization of the excited hot electrons. The decay times of the transient absorption for the electron acceptor radical anions are found to be comparable to that of the CdSe NP bleach recovery time (3 ps). This suggests that the surface quinones shuttle the electron from the conduction band to the valence band of the excited NP. The authors contrast this behavior with the excited-state dynamics of the recently investigated CdS-MV{sup 2+} system in which the electron acceptor does not shuttle the accepted electron back to the hole in CdS.

  11. Femtosecond pulsed laser ablation of GaAs

    NASA Astrophysics Data System (ADS)

    Trelenberg, T. W.; Dinh, L. N.; Saw, C. K.; Stuart, B. C.; Balooch, M.

    2004-01-01

    The properties of femtosecond-pulsed laser deposited GaAs nanoclusters were investigated. Nanoclusters of GaAs were produced by laser ablating a single crystal GaAs target in vacuum or in a buffer gas using a Ti-sapphire laser with a 150 fs minimum pulse length. For in-vacuum deposition, X-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM) revealed that the average cluster size was approximately 7 nm for laser pulse lengths between 150 fs and 25 ps. The average cluster size dropped to approximately 1.5 nm at a pulse length of 500 ps. It was also observed that film thickness decreased with increasing laser pulse length. A reflective coating, which accumulated on the laser admission window during ablation, reduced the amount of laser energy reaching the target for subsequent laser shots and developed more rapidly at longer pulse lengths. This observation indicates that non-stoichiometric (metallic) ablatants were produced more readily at longer pulse lengths. The angular distribution of ejected material about the target normal was well fitted to a bi-cosine distribution of cos 47 θ+ cos 4 θ for ablation in vacuum using 150 fs pulses. XPS and AES revealed that the vacuum-deposited films contained excess amorphous Ga or As in addition to the stoichiometric GaAs nanocrystals seen with XRD. However, films containing only the GaAs nanocrystals were produced when ablation was carried out in the presence of a buffer gas with a pressure in excess of 6.67 Pa. At buffer gas pressure on the order of 1 Torr, it was found that the stoichiometry of the ablated target was also preserved. These experiments indicate that both laser pulse length and buffer gas pressure play important roles in the formation of multi-element nanocrystals by laser ablation. The effects of gas pressure on the target's morphology and the size of the GaAs nanocrystals formed will also be discussed.

  12. Femtosecond pulses generated from a synchronously pumped chromium-doped forsterite laser

    NASA Technical Reports Server (NTRS)

    Seas, A.; Petricevic, V.; Alfano, R. R.

    1993-01-01

    Kerr lens mode-locking (KLM) has become a standard method to produce femtosecond pulses from tunable solid state lasers. High power inside the laser resonator propagating through the laser-medium with nonlinear index of refraction, coupled with the stability conditions of the laser modes in the resonator, result in a passive amplitude modulation which explains the mechanism for pulse shortening. Recently, chromium doped forsterite was shown to exhibit similar pulse behavior. A successful attempt to generate femtosecond pulses from a synchronously pumped chromium-doped forsterite laser with intracavity dispersion compensation is reported. Stable, transform limited pulses with duration of 105 fs were routinely generated, tunable between 1240 to 1270 nm.

  13. Calorimetric detection of the conical terahertz radiation from femtosecond laser filaments in air

    NASA Astrophysics Data System (ADS)

    Houard, Aurélien; Liu, Yi; Mysyrowicz, André; Leriche, Bernadette

    2007-12-01

    The spectral distribution of the conical terahertz emission from a femtosecond laser filament in air is measured with a bolometric detector and a set of filters, confirming that the main part of the emission lies between 0.5 and 3THz. The efficiency of this terahertz emission is compared with that obtained in air via four wave mixing of femtosecond laser pulses at ω and 2ω in the presence of a plasma.

  14. Direct synthesis of sp-bonded carbon chains on graphite surface by femtosecond laser irradiation

    SciTech Connect

    Hu, A.; Rybachuk, M.; Lu, Q.-B.; Duley, W. W.

    2007-09-24

    Microscopic phase transformation from graphite to sp-bonded carbon chains (carbyne) and nanodiamond has been induced by femtosecond laser pulses on graphite surface. UV/surface enhanced Raman scattering spectra and x-ray photoelectron spectra displayed the local synthesis of carbyne in the melt zone while nanocrystalline diamond and trans-polyacetylene chains form in the edge area of gentle ablation. These results evidence possible direct 'writing' of variable chemical bonded carbons by femtosecond laser pulses for carbon-based applications.

  15. Nonlinear femtosecond near infrared laser structuring in oxide glasses

    NASA Astrophysics Data System (ADS)

    Royon, Arnaud

    Three-dimensional femtosecond laser structuring has a growing interest because of its ease of implementation and the numerous possible applications in the domain of photonic components. Structures such as waveguides, diffraction gratings, optical memories or photonic crystals can be fabricated thanks to this technique. Its use with oxide glasses is promising because of several advantages; they are resistant to flux and ageing, their chemical composition can easily be changed to fit the well-defined requirements of an application. They can already be found in Raman amplifiers, optical fibers, fiber lasers, and other devices. This thesis is based on two axes. The first axis consists in characterizing the linear and nonlinear optical properties of bulk vitreous materials in order to optimize their composition with a particular application in view. Within this context, the nonlinear optical properties, their physical origins (electronic and nuclear) as well as their characteristic response times (from a few femtoseconds to a few hundreds of picoseconds) are described within the Born-Oppenheimer approximation. Fused silica and several sodium-borophosphate glasses containing different concentrations in niobium oxide have been studied. Results show that the nonlinear optical properties of fused silica are mainly from electronic origin, whereas in the sodium-borophosphate glasses, the contribution from nuclear origin becomes predominant when the concentration of niobium oxide exceeds 30%. The second axis is based on the structuring of materials. Three commercially available fused silica samples presenting different fabrication conditions (therefore distinct impurity levels) and irradiated with a near infrared femtosecond laser have been studied. The laser induced defects have been identified by means of several spectroscopic techniques. They show the formation of color centers as well as a densification inside the irradiated area. Their linear refractive index and

  16. Femtosecond laser induced nanostructuring for surface enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Messaoudi, H.; Das, S. K.; Lange, J.; Heinrich, F.; Schrader, S.; Frohme, M.; Grunwald, R.

    2014-03-01

    The formation of periodical nanostructures with femtosecond laser pulses was used to create highly efficient substrates for surface-enhanced Raman spectroscopy (SERS). We report about the structuring of silver and copper substrates and their application to the SERS of DNA (herring sperm) and protein molecules (egg albumen). The maximum enhancement factors were found on Ag substrates processed with the second harmonic generation (SHG) of a 1-kHz Ti:sapphire laser and structure periods near the SHG wavelength. In the case of copper, however, the highest enhancement was obtained with long-period ripples induced with at fundamental wavelength. This is explained by an additional significant influence of nanoparticles on the surface. Nanostructured areas in the range of 1.25 mm2 were obtained in 10 s. The surfaces were characterized by scanning electron microscopy, Fast Fourier Transform and Raman spectroscopy. Moreover, the role of the chemical modification of the metal structures is addressed. Thin oxide layers resulting from working in atmosphere which improve the biocompatibility were indicated by vibration spectra. It is expected that the detailed study of the mechanisms of laser-induced nanostructure formation will stimulate further applications of functionalized surfaces like photocatalysis, selective chemistry and nano-biology.

  17. Femtosecond laser ablation of brass in air and liquid media

    NASA Astrophysics Data System (ADS)

    Shaheen, M. E.; Gagnon, J. E.; Fryer, B. J.

    2013-06-01

    Laser ablation of brass in air, water, and ethanol was investigated using a femtosecond laser system operating at a wavelength of 785 nm and a pulse width less than 130 fs. Scanning electron and optical microscopy were used to study the efficiency and quality of laser ablation in the three ablation media at two different ablation modes. With a liquid layer thickness of 3 mm above the target, ablation rate was found to be higher in water and ethanol than in air. Ablation under water and ethanol showed cleaner surfaces and less debris re-deposition compared to ablation in air. In addition to spherical particles that are normally formed from re-solidified molten material, micro-scale particles with varying morphologies were observed scattered in the ablated structures (craters and grooves) when ablation was conducted under water. The presence of such particles indicates the presence of a non-thermal ablation mechanism that becomes more apparent when ablation is conducted under water.

  18. Microscopic and macroscopic modeling of femtosecond laser ablation of metals

    NASA Astrophysics Data System (ADS)

    Povarnitsyn, Mikhail E.; Fokin, Vladimir B.; Levashov, Pavel R.

    2015-12-01

    Simulation of femtosecond laser ablation of a bulk aluminum target is performed using two complementary approaches. The first method is single-fluid two-temperature hydrodynamics (HD) completed with a two-temperature equation of state (EOS). The second approach is a combination of classical molecular dynamics (MD) and a continuum model of a free electron subsystem. In both methods, an identical and accurate description of optical and transport properties of the electron subsystem is based on wide-range models reproducing effects of electron heat wave propagation, electron-phonon/ion coupling and laser energy absorption on a time-dependent profile of the dielectric function. For simulation of homogeneous nucleation in a metastable liquid phase, a kinetic model of nucleation is implemented in the HD approach. The phase diagrams of the EOS and MD potential are in good agreement that gives opportunity to compare the dynamics of laser ablation obtained by both methods directly. Results of simulation are presented in the range of incident fluences 0.1-20 J/cm2 and match well with experimental findings for an ablation crater depth. The MD accurately reproduces nonequilibrium phase transitions and takes into account surface effects on nanoscale. The HD approach demonstrates good qualitative agreement with the MD method in the dynamics of phase explosion and spallation. Other advantages and disadvantages of both approaches are examined and discussed.

  19. Photodissociation dynamics of iodocyclohexane upon UV excitation by femtosecond pump-probe technique

    NASA Astrophysics Data System (ADS)

    Hu, Chunlong; Wang, Lian; Wang, Yanmei; Tang, Ying; Long, Jinyou; Zhang, Bing

    2016-08-01

    The photodissociation dynamics of iodocyclohexane in the A-band and C-state have been investigated by femtosecond time-resolved time-of-flight mass spectroscopy. Iodocyclohexane was pumped by 266 nm pulse to its A-band. The following dissociation dynamics is prompt and direct. The time it takes for the progression of the wave packet from the dissociative state to the dissociating asymptotic region is around 180 fs. The C-state was excited by 200 nm pump pulse and it has predissociative character with predissociation time of about 600 fs, which may have contributions from multiple vibrational modes.

  20. Miniature fiber-optic multiphoton microscopy system using frequency-doubled femtosecond Er-doped fiber laser

    PubMed Central

    Huang, Lin; Mills, Arthur K.; Zhao, Yuan; Jones, David J.; Tang, Shuo

    2016-01-01

    We report on a miniature fiber-optic multiphoton microscopy (MPM) system based on a frequency-doubled femtosecond Er-doped fiber laser. The femtosecond pulses from the laser source are delivered to the miniature fiber-optic probe at 1.58 µm wavelength, where a standard single mode fiber is used for delivery without the need of free-space dispersion compensation components. The beam is frequency-doubled inside the probe by a periodically poled MgO:LiNbO3 crystal. Frequency-doubled pulses at 786 nm with a maximum power of 80 mW and a pulsewidth of 150 fs are obtained and applied to excite intrinsic signals from tissues. A MEMS scanner, a miniature objective, and a multimode collection fiber are further used to make the probe compact. The miniature fiber-optic MPM system is highly portable and robust. Ex vivo multiphoton imaging of mammalian skins demonstrates the capability of the system in imaging biological tissues. The results show that the miniature fiber-optic MPM system using frequency-doubled femtosecond fiber laser can potentially bring the MPM imaging for clinical applications. PMID:27231633

  1. Miniature fiber-optic multiphoton microscopy system using frequency-doubled femtosecond Er-doped fiber laser.

    PubMed

    Huang, Lin; Mills, Arthur K; Zhao, Yuan; Jones, David J; Tang, Shuo

    2016-05-01

    We report on a miniature fiber-optic multiphoton microscopy (MPM) system based on a frequency-doubled femtosecond Er-doped fiber laser. The femtosecond pulses from the laser source are delivered to the miniature fiber-optic probe at 1.58 µm wavelength, where a standard single mode fiber is used for delivery without the need of free-space dispersion compensation components. The beam is frequency-doubled inside the probe by a periodically poled MgO:LiNbO3 crystal. Frequency-doubled pulses at 786 nm with a maximum power of 80 mW and a pulsewidth of 150 fs are obtained and applied to excite intrinsic signals from tissues. A MEMS scanner, a miniature objective, and a multimode collection fiber are further used to make the probe compact. The miniature fiber-optic MPM system is highly portable and robust. Ex vivo multiphoton imaging of mammalian skins demonstrates the capability of the system in imaging biological tissues. The results show that the miniature fiber-optic MPM system using frequency-doubled femtosecond fiber laser can potentially bring the MPM imaging for clinical applications. PMID:27231633

  2. Controlling the femtosecond laser-driven transformation of dicyclopentadiene into cyclopentadiene

    PubMed Central

    Goswami, Tapas; Das, Dipak K.; Goswami, Debabrata

    2013-01-01

    Dynamics of the chemical transformation of dicyclopentadiene into cyclopentadiene in a supersonic molecular beam is elucidated using femtosecond time-resolved degenerate pump–probe mass spectrometry. Control of this ultrafast chemical reaction is achieved by using linearly chirped frequency modulated pulses. We show that negatively chirped femtosecond laser pulses enhance the cyclopentadiene photoproduct yield by an order of magnitude as compared to that of the unmodulated or the positively chirped pulses. This demonstrates that the phase structure of femtosecond laser pulse plays an important role in determining the outcome of a chemical reaction. PMID:24098059

  3. Femtosecond electron deflectometry for measuring transient fields generated by laser-accelerated fast electrons

    SciTech Connect

    Inoue, Shunsuke; Tokita, Shigeki; Otani, Kazuto; Hashida, Masaki; Sakabe, Shuji

    2011-07-18

    The temporal evolution of the electric field generated near the surface of a solid target by a femtosecond laser pulse with intensity of 1 x 10{sup 16 }W/cm{sup 2} has been investigated by electron deflectometry; in this technique, ultrashort electron pulses generated by intense femtosecond laser pulses are used as probes. We found that electric field of the order of 10{sup 8 }V/m along the target surface was generated and decayed within 400 fs. The results of this study demonstrate the potential of electron deflectometry for measuring ultrafast phenomena in the femtosecond time domain.

  4. Graphene-based Y-branch laser in femtosecond laser written Nd:YAG waveguides.

    PubMed

    Liu, Hongliang; Cheng, Chen; Romero, Carolina; Vázquez de Aldana, Javier R; Chen, Feng

    2015-04-20

    We report on Q-switched waveguide lasers on the graphene-based crystalline Y-branch platform. By applying direct femtosecond laser writing of Nd:YAG laser crystal, a surface waveguide splitter with Y-branch geometry has been fabricated with depressed cladding configuration. The Q-switched lasing operation at 1064 nm is achieved in transmission mode, by attaching a two-layer graphene on the resonator output mirror, as well as by using interaction between the evanescent field and a few-layer graphene that was positioned right above the Y-type waveguide. Q-switched laser with a maximum average power of 173 mW, pulse energy and duration of 63 nJ and 90 ns is obtained. This work opens a way for laser-written crystalline devices as compact, direct-pump laser sources for diverse applications. PMID:25969011

  5. Laser induced damage of sapphire and titanium doped sapphire crystals under femtosecond to nanosecond laser irradiation

    NASA Astrophysics Data System (ADS)

    Bussière, B.; Utéza, O.; Sanner, N.; Sentis, M.; Riboulet, G.; Vigroux, L.; Commandré, M.; Wagner, F.; Natoli, J.-Y.; Chambaret, J.-P.

    2009-10-01

    The use of large Ti:Sapphire crystals in ultra fast high peak power laser amplifiers makes crucial the problem of crystal laser induced damage. These works aim to quantify the laser induced damage threshold (LIDT) of Sapphire and Ti:Sapphire crystals under femtosecond, picosecond and nanosecond laser pulse irradiations, which are typically encountered in such laser chains. Furthermore, a study of the influence of cryogenic conditions on the LIDT of Ti:Sapphire crystals and of their anti-reflection coating has been performed. The results are important to understand the mechanisms leading to the damage, and to reveal the key parameters which will have to be optimized in future high peak power laser chains.

  6. Femtosecond laser induced periodic surface structures on multi-layer graphene

    SciTech Connect

    Beltaos, Angela Kovačević, Aleksander G.; Matković, Aleksandar; Ralević, Uroš; Savić-Šević, Svetlana; Jovanović, Djordje; Jelenković, Branislav M.; Gajić, Radoš

    2014-11-28

    In this work, we present an observation of laser induced periodic surface structures (LIPSS) on graphene. LIPSS on other materials have been observed for nearly 50 years, but until now, not on graphene. Our findings for LIPSS on multi-layer graphene were consistent with previous reports of LIPSS on other materials, thus classifying them as high spatial frequency LIPSS. LIPSS on multi-layer graphene were generated in an air environment by a linearly polarized femtosecond laser with excitation wavelength λ of 840 nm, pulse duration τ of ∼150 fs, and a fluence F of ∼4.3–4.4 mJ/cm{sup 2}. The observed LIPSS were perpendicular to the laser polarization and had dimensions of width w of ∼30–40 nm and length l of ∼0.5–1.5 μm, and spatial periods Λ of ∼70–100 nm (∼λ/8–λ/12), amongst the smallest of spatial periods reported for LIPSS on other materials. The spatial period and width of the LIPSS were shown to decrease for an increased number of laser shots. The experimental results support the leading theory behind high spatial frequency LIPSS formation, implying the involvement of surface plasmon polaritons. This work demonstrates a new way to pattern multi-layer graphene in a controllable manner, promising for a variety of emerging graphene/LIPSS applications.

  7. Ambient Femtosecond Laser Vaporization and Nanosecond Laser Desorption Electrospray Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Flanigan, Paul; Levis, Robert

    2014-06-01

    Recent investigations of ambient laser-based transfer of molecules into the gas phase for subsequent mass spectral analysis have undergone a renaissance resulting from the separation of vaporization and ionization events. Here, we seek to provide a snapshot of recent femtosecond (fs) duration laser vaporization and nanosecond (ns) duration laser desorption electrospray ionization mass spectrometry experiments. The former employs pulse durations of <100 fs to enable matrix-free laser vaporization with little or no fragmentation. When coupled to electrospray ionization, femtosecond laser vaporization provides a universal, rapid mass spectral analysis method requiring no sample workup. Remarkably, laser pulses with intensities exceeding 1013 W cm-2 desorb intact macromolecules, such as proteins, and even preserve the condensed phase of folded or unfolded protein structures according to the mass spectral charge state distribution, as demonstrated for cytochrome c and lysozyme. Because of the ability to vaporize and ionize multiple components from complex mixtures for subsequent analysis, near perfect classification of explosive formulations, plant tissue phenotypes, and even the identity of the manufacturer of smokeless powders can be determined by multivariate statistics. We also review the more mature field of nanosecond laser desorption for ambient mass spectrometry, covering the wide range of systems analyzed, the need for resonant absorption, and the spatial imaging of complex systems like tissue samples.

  8. Microfabrication of optical elements with femtosecond Ti:sapphire laser oscillator

    NASA Astrophysics Data System (ADS)

    Bai, Bing; Zhou, Changhe; Sun, Xiaohui; Ru, Huayi

    2005-01-01

    We report the experimental fabrication of optical elements with femtosecond pulses. The laser source we adopted is a low power Ti: sapphire laser oscillator, with a central wavelength of 790 nm and pulse duration of 100 fs. Positive-photoresist-coated film acts as the sacrificial material. To obtain the optical elements, three microobjectives with high numerical aperture 0.25 and 0.1 were used to focus the light beam of femtosecond laser. Due to the extreme high intensity of the tightly focused femtosecond laser beam, nonlinear effect occurred between photoresist and the laser pulses, which enable the ablation of the photoresist. In the experiments, we use a translational stage that hold the sample by a pump through a ventage. Various gratings and phase plates are fabricated by this method. The obtained gratings patterns are checked with a conventional optical microscopy. The fabricating widths and depths are measured with the Taylor Hobson equipment. With the same method, photomask for microelectronics can also be fabricated. From the experimental results, we see that the fabrication of the different microobjectives can be achieved with this method. This technique can be applied to the fields of microoptics and microelectronics. The mechanism between femtosecond laser and photoresist is also investigated. The processing mechanics is considered as laser ablation. Fabrication of optical elements with femtosecond laser reflects a new trend for fabrication of microoptical elements.

  9. Transverse writing of three-dimensional tubular optical waveguides in glass with a slit-shaped femtosecond laser beam.

    PubMed

    Liao, Yang; Qi, Jia; Wang, Peng; Chu, Wei; Wang, Zhaohui; Qiao, Lingling; Cheng, Ya

    2016-01-01

    We report on fabrication of tubular optical waveguides buried in ZBLAN glass based on transverse femtosecond laser direct writing. Irradiation in ZBLAN with focused femtosecond laser pulses leads to decrease of refractive index in the modified region. Tubular optical waveguides of variable mode areas are fabricated by forming the four sides of the cladding with slit-shaped femtosecond laser pulses, ensuring single mode waveguiding with a mode field dimension as small as ~4 μm. PMID:27346285

  10. Transverse writing of three-dimensional tubular optical waveguides in glass with a slit-shaped femtosecond laser beam

    NASA Astrophysics Data System (ADS)

    Liao, Yang; Qi, Jia; Wang, Peng; Chu, Wei; Wang, Zhaohui; Qiao, Lingling; Cheng, Ya

    2016-06-01

    We report on fabrication of tubular optical waveguides buried in ZBLAN glass based on transverse femtosecond laser direct writing. Irradiation in ZBLAN with focused femtosecond laser pulses leads to decrease of refractive index in the modified region. Tubular optical waveguides of variable mode areas are fabricated by forming the four sides of the cladding with slit-shaped femtosecond laser pulses, ensuring single mode waveguiding with a mode field dimension as small as ~4 μm.

  11. Transverse writing of three-dimensional tubular optical waveguides in glass with a slit-shaped femtosecond laser beam

    PubMed Central

    Liao, Yang; Qi, Jia; Wang, Peng; Chu, Wei; Wang, Zhaohui; Qiao, Lingling; Cheng, Ya

    2016-01-01

    We report on fabrication of tubular optical waveguides buried in ZBLAN glass based on transverse femtosecond laser direct writing. Irradiation in ZBLAN with focused femtosecond laser pulses leads to decrease of refractive index in the modified region. Tubular optical waveguides of variable mode areas are fabricated by forming the four sides of the cladding with slit-shaped femtosecond laser pulses, ensuring single mode waveguiding with a mode field dimension as small as ~4 μm. PMID:27346285

  12. Photophysical properties of C60 colloids suspended in water with Triton X-100 surfactant: excited-state properties with femtosecond resolution.

    PubMed

    Clements, Andrew F; Haley, Joy E; Urbas, Augustine M; Kost, Alan; Rauh, R David; Bertone, Jane F; Wang, Fei; Wiers, Brian M; Gao, De; Stefanik, Todd S; Mott, Andrew G; Mackie, David M

    2009-06-11

    We examine the photophysics of a colloidal suspension of C(60) particles in a micellar solution of Triton X-100 and water, prepared via a new synthesis which allows high-concentration suspensions. The particle sizes are characterized by transmission electron microscopy and dynamic light scattering and found to be somewhat polydisperse in the range of 10-100 nm. The suspension is characterized optically by UV-vis spectroscopy, femtosecond transient absorption spectroscopy, laser flash photolysis, and z-scan. The ground-state absorbance spectrum shows a broad absorbance feature centered near 450 nm which is indicative of colloidal C(60). The transient absorption dynamics, presented for the first time with femtosecond resolution, are very similar to that of thin films of C(60) and indicate a strong quenching of the singlet excited state on short time scales and evidence of little intersystem crossing to a triplet excited state. Laser flash photolysis reveals that a triplet excited-state absorption spectrum, which is essentially identical in shape to that of molecular C(60) solutions, does indeed arise, but with much lower magnitude and somewhat shorter lifetime. Z-scan analysis confirms that the optical response of this material is dominated by nonlinear scattering. PMID:19441808

  13. Femtosecond laser micromachining of polyvinylidene fluoride (PVDF) based piezo films

    NASA Astrophysics Data System (ADS)

    Lee, Seongkuk; Bordatchev, Evgueni V.; Zeman, Marco J. F.

    2008-04-01

    Piezoelectric polymers have been known to exist for more than 40 years, but in recent years they have been recognized as smart materials for the fabrication of microsensors, microactuators and other micro-electro-mechanical systems (MEMS). In this work, femtosecond laser micromachining of a polyvinylidene fluoride (PVDF) film, coated with NiCu on both sides, has been studied to understand selective patterning mechanisms of NiCu layers and ablation characteristics of PVDF films. A detailed characterization of morphological changes of the laser-irradiated areas has been investigated using scanning electron microscopy. Through morphological analysis, the multiple shot damage thresholds of a 28 µm thick PVDF film and 40 nm thick NiCu layer have been determined. Surface morphology examination indicates that NiCu layers are removed from the PVDF film through a sequence of cracking-peeling off-curling. In addition, the NiCu layer on the rear side was also removed by the partially transmitted laser energy. The PVDF film was removed in forms of bundles of filaments and solid fragments by a combination of pure ablation and explosive removal of material by bursting of bubbles; the role of the explosive removal becomes more dominant with the increase of laser fluence. Optimal process conditions for cutting of the PVDF film and patterning of the NiCu coating without damaging the PVDF polymer have been established and applied to fabricate a vibration microsensor prototype that shows significant potential in using PVDF-based functional microdevices for telecommunications, transportation and biomedical applications.

  14. Quasi-steady-state air plasma channel produced by a femtosecond laser pulse sequence

    PubMed Central

    Lu, Xin; Chen, Shi-You; Ma, Jing-Long; Hou, Lei; Liao, Guo-Qian; Wang, Jin-Guang; Han, Yu-Jing; Liu, Xiao-Long; Teng, Hao; Han, Hai-Nian; Li, Yu-Tong; Chen, Li-Ming; Wei, Zhi-Yi; Zhang, Jie

    2015-01-01

    A long air plasma channel can be formed by filamentation of intense femtosecond laser pulses. However, the lifetime of the plasma channel produced by a single femtosecond laser pulse is too short (only a few nanoseconds) for many potential applications based on the conductivity of the plasma channel. Therefore, prolonging the lifetime of the plasma channel is one of the key challenges in the research of femtosecond laser filamentation. In this study, a unique femtosecond laser source was developed to produce a high-quality femtosecond laser pulse sequence with an interval of 2.9 ns and a uniformly distributed single-pulse energy. The metre scale quasi-steady-state plasma channel with a 60–80 ns lifetime was formed by such pulse sequences in air. The simulation study for filamentation of dual femtosecond pulses indicated that the plasma channel left by the previous pulse was weakly affected the filamentation of the next pulse in sequence under our experimental conditions. PMID:26493279

  15. Quasi-steady-state air plasma channel produced by a femtosecond laser pulse sequence.

    PubMed

    Lu, Xin; Chen, Shi-You; Ma, Jing-Long; Hou, Lei; Liao, Guo-Qian; Wang, Jin-Guang; Han, Yu-Jing; Liu, Xiao-Long; Teng, Hao; Han, Hai-Nian; Li, Yu-Tong; Chen, Li-Ming; Wei, Zhi-Yi; Zhang, Jie

    2015-01-01

    A long air plasma channel can be formed by filamentation of intense femtosecond laser pulses. However, the lifetime of the plasma channel produced by a single femtosecond laser pulse is too short (only a few nanoseconds) for many potential applications based on the conductivity of the plasma channel. Therefore, prolonging the lifetime of the plasma channel is one of the key challenges in the research of femtosecond laser filamentation. In this study, a unique femtosecond laser source was developed to produce a high-quality femtosecond laser pulse sequence with an interval of 2.9 ns and a uniformly distributed single-pulse energy. The metre scale quasi-steady-state plasma channel with a 60-80 ns lifetime was formed by such pulse sequences in air. The simulation study for filamentation of dual femtosecond pulses indicated that the plasma channel left by the previous pulse was weakly affected the filamentation of the next pulse in sequence under our experimental conditions. PMID:26493279

  16. Understanding Femtosecond-Pulse Laser Damage through Fundamental Physics Simulations

    NASA Astrophysics Data System (ADS)

    Mitchell, Robert A., III

    It did not take long after the invention of the laser for the field of laser damage to appear. For several decades researchers have been studying how lasers damage materials, both for the basic scientific understanding of highly nonequilibrium processes as well as for industrial applications. Femtosecond pulse lasers create little collateral damage and a readily reproducible damage pattern. They are easily tailored to desired specifications and are particularly powerful and versatile tools, contributing even more industrial interest in the field. As with most long-standing fields of research, many theoretical tools have been developed to model the laser damage process, covering a wide range of complexities and regimes of applicability. However, most of the modeling methods developed are either too limited in spatial extent to model the full morphology of the damage crater, or incorporate only a small subset of the important physics and require numerous fitting parameters and assumptions in order to match values interpolated from experimental data. Demonstrated in this work is the first simulation method capable of fundamentally modeling the full laser damage process, from the laser interaction all the way through to the resolidification of the target, on a large enough scale that can capture the full morphology of the laser damage crater so as to be compared directly to experimental measurements instead of extrapolated values, and all without any fitting parameters. The design, implementation, and testing of this simulation technique, based on a modified version of the particle-in-cell (PIC) method, is presented. For a 60 fs, 1 mum wavelength laser pulse with fluences of 0.5 J/cm 2, 1.0 J/cm2, and 2.0 J/cm2 the resulting laser damage craters in copper are shown and, using the same technique applied to experimental crater morphologies, a laser damage fluence threshold is calculated of 0.15 J/cm2, consistent with current experiments performed under conditions similar

  17. Ultrafast Electron Dynamics in Gold in the Presence of Laser Excited Surface Plasma Waves

    SciTech Connect

    Raynaud, M.

    2010-02-02

    Surface plasmon excitation with ultrashort intense laser pulses enhances efficiently laser absorption in metals and creates local high fields and non-equilibrium hot electrons population that have attractivity for numerous applications such as the development of intense sources of high-energy particles or photons and in the fast ignitor scheme in the framework of inertial fusion. In this context, the knowledge of the dynamics of relaxation of the collective electrons behavior is of importance. Using gold grating, we have investigated electrons relaxation in the presence of laser excited surface plasmon waves using a multiple-wavelengh femtosecond pump-probe technique. The results yield evidence of longer relaxation time in the presence of the collective excitation than that of individual electronic states.

  18. Thermal lensing effect of CS2 studied with femtosecond laser pulses.

    PubMed

    Li, Yi-Ci; Kuo, Yu-Ting; Huang, Po-Yuan; Yang, Sidney S; Lee, Cheng-I; Wei, Tai-Huei

    2015-10-14

    By chopping 820 nm 18 femtosecond (fs)-laser pulses, continuously generated by a self-mode locked Ti:Al2O3 laser at 82 MHz, into trains with both train-width and train-to-train separation considerably longer than the thermal diffusivity time constant τth of CS2, we conducted Z-scan measurements on it at various times relative to the leading pulse of each train (T's). As a result, we observed negative nonlinear refraction strengthening with T within τth and gradually stabilizing with T exceeding τth. We quantitatively explain the experimental results in terms of the thermal lensing effect. In particular, we attribute the heat generation to non-radiative relaxation of libration excited by individual 18 fs-pulses via stimulated Raman scattering. In contrast to the commonly held view of multi-photon excitation, we propose and verify a new heat-generating mechanism for the thermal lensing effect in CS2. PMID:26246122

  19. In situ nanojoining of Y- and T-shaped silver nanowires structures using femtosecond laser radiation

    NASA Astrophysics Data System (ADS)

    Lin, Luchan; Liu, Lei; Peng, Peng; Zou, Guisheng; Duley, Walt W.; Zhou, Y. Norman

    2016-03-01

    We report the in situ joining of spatially separated silver nanowires without additional filler material by controlled irradiation with femtosecond laser pulses. Nanojoining under these conditions arises from highly localized heat generation in the vicinity of the gap between adjacent silver nanowires. Melting, followed by the flow of silver into the gap, is optimized by adjusting the direction of laser polarization relative to gap geometry. Our results show that melting of silver occurs on both nanowires in the vicinity of the gap between the two components. Successful formation of a joint is found to be a function of the angle between the long axis of the nanowires and the gap distance. Finite element simulations show that the strong localized electric field generated by optical excitation determines the location and the morphology of the resulting bond. Light coupling and the resulting emission properties of these Y-shaped nanowire structures have been simulated and are compared to similar structures where the gap remains open. It is suggested that joined Y-shaped couplers will have a higher switching ratio between emitted nanowire ends than those occurring in open-gap structures. Nanojoining induced by localized heating under strong field excitation may enable the production of robust branched metal nanowire structures for optical applications.

  20. Filamentation of femtosecond laser pulses as a source for radiotherapy

    NASA Astrophysics Data System (ADS)

    Meesat, Ridthee; Allard, Jean-François; Belmouaddine, Hakim; Brastaviceanu, Tiberius; Tremblay, Luc; Paquette, Benoit; Jay-Gerin, Jean-Paul; Wagner, J. Richard; Lepage, Martin; Houde, Daniel

    2011-08-01

    Here, we report that intense ultra-short laser pulses produce a plasma of low energy electrons (LEEs) by the inverse Bremsstrahlung effect and multiphoton ionization process. The phenomena show five striking characteristics. First, the self-focusing of ultra-short laser pulses creates a plasma of LEEs (6.5 eV), which is concentrated in filaments through an avalanche process. Second, kinetically hot 6.5 eV electrons interact with surrounding molecules resulting in reactive radical species. Third, the dose rate reaches an enormous level of ~2.8 × 1011 Gy/s as determined by a cericcerous sulfate dosimetry and this leads to an ultra-high deposition of energy of between 4.6 × 107 to 8.16 × 107 keV/μm. Fourth, filaments of variable length are produced by femtosecond pulses depending on the pulse duration as determined by a tissue-equivalent radiation polymer gel dosimeter and imaged by magnetic resonance imaging (MRI). These results reveal that one of the very interesting novelty of filamentation is the very low entrance dose, similar to proton irradiation. Lastly, filamentary irradiation results in the decomposition of thymidine in the absence and the presence of oxygen similar to the radiolysis of water.

  1. Direct-write diffracting tubular optical components using femtosecond lasers

    NASA Astrophysics Data System (ADS)

    McMillen, Ben; Bellouard, Yves

    2014-03-01

    Over the last decade, femtosecond lasers have been used extensively for the fabrication of optical elements via direct writing and in combination with chemical etching. These processes have been an enabling technology for manufacturing a variety of devices such as waveguides, fluidic channels, and mechanical components. Here, we present high quality micro-scale optical components buried inside various glass substrates such as soda-lime glass or fused silica. These components consist of high-precision, simple patterns with tubular shapes. Typical diameters range from a few microns to one hundred microns. With the aid of high-bandwidth, high acceleration flexure stages, we achieve highly symmetric pattern geometries, which are particularly important for achieving homogeneous stress distribution within the substrate. We model the optical properties of these structures using beam propagation simulation techniques and experimentally demonstrate that such components can be used as cost-effective, low-numerical aperture lenses. Additionally, we investigate their capability for studying the stress-distribution induced by the laser-affected zones and possible related densification effects.

  2. Live cell opto-injection by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Baumgart, J.; Bintig, W.; Ngezahayo, A.; Ertmer, W.; Lubatschowski, H.; Heisterkamp, A.

    2007-02-01

    Fluorescence imaging of cells and cell organelles requires labeling by fluorophores. The labeling of living cells is often done by transfection of fluorescent proteins. Viral vectors are transferring the DNA into the cell. To avoid the use of viruses, it is possible to perforate the cell membrane for example by electro-shocks, the so called electroporation, so that the fluorescent proteins can diffuse into the cell. This method causes cell death in up to 50% of the treated cells because the damage of the outer membrane is too large. A less lethal perforation of the cell membrane with high efficiency can be realized by femtosecond (fs) laser pulses. Transient pores are created by focusing the laser beam for some milliseconds on the membrane. Through this pore, the proteins can enter into the cell. This was demonstrated in a proof of principle experiment for a few cells, but it is essential to develop an opto-perforation system for large numbers of cells in order to obtain statistically significant samples for biological experiments. The relationship between pulse energy, irradiation time, repetition rate and efficacy of the transfer of a chromophor into the cells as well as the viability of the cells was analysed. The cell viability was observed up to 90 minutes after manipulation.

  3. Energetic neutron beams generated from femtosecond laser plasma interactions

    SciTech Connect

    Zulick, C.; Dollar, F.; Chvykov, V.; Kalinchenko, G.; Maksimchuk, A.; Raymond, A.; Thomas, A. G. R.; Willingale, L.; Yanovsky, V.; Krushelnick, K.; Davis, J.; Petrov, G. M.

    2013-03-25

    Experiments at the HERCULES laser facility have produced directional neutron beams with energies up to 16.8({+-}0.3) MeV using {sub 1}{sup 2}d(d,n){sub 2}{sup 3}He,{sub 7}{sup 3}Li(p,n){sub 4}{sup 7}Be,and{sub 3}{sup 7}Li(d,n){sub 4}{sup 8}Be reactions. Efficient {sub 1}{sup 2}Li(d,n){sub 4}{sup 8}Be reactions required the selective acceleration of deuterons through the introduction of a deuterated plastic or cryogenically frozen D{sub 2}O layer on the surface of a thin film target. The measured neutron yield was {<=}1.0 ({+-}0.5) Multiplication-Sign 10{sup 7} neutrons/sr with a flux 6.2({+-}3.7) times higher in the forward direction than at 90{sup Degree-Sign }. This demonstrates that femtosecond lasers are capable of providing a time averaged neutron flux equivalent to commercial {sub 1}{sup 2}d(d,n){sub 2}{sup 3}He generators with the advantage of a directional beam with picosecond bunch duration.

  4. Analytical application of femtosecond laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Melikechi, Noureddine; Markushin, Yuri

    2015-05-01

    We report on significant advantages provided by femtosecond laser-induced breakdown spectroscopy (LIBS) for analytical applications in fields as diverse as protein characterization and material science. We compare the results of a femto- and nanosecond-laser-induced breakdown spectroscopy analysis of dual-elemental pellets in terms of the shot-to-shot variations of the neutral/ionic emission line intensities. This study is complemented by a numerical model based on two-dimensional random close packing of disks in an enclosed geometry. In addition, we show that LIBS can be used to obtain quantitative identification of the hydrogen composition of bio-macromolecules in a heavy water solution. Finally, we show that simultaneous multi-elemental particle assay analysis combined with LIBS can significantly improve macromolecule detectability up to near single molecule per particle efficiency. Research was supported by grants from the National Science Foundation Centers of Research Excellence in Science and Technology (0630388), National Aeronautics and Space Administration (NX09AU90A). Our gratitude to Dr. D. Connolly, Fox Chase Cancer Center.

  5. Pulse energy dependence of subcellular dissection by femtosecond laser pulses

    NASA Technical Reports Server (NTRS)

    Heisterkamp, A.; Maxwell, I. Z.; Mazur, E.; Underwood, J. M.; Nickerson, J. A.; Kumar, S.; Ingber, D. E.

    2005-01-01

    Precise dissection of cells with ultrashort laser pulses requires a clear understanding of how the onset and extent of ablation (i.e., the removal of material) depends on pulse energy. We carried out a systematic study of the energy dependence of the plasma-mediated ablation of fluorescently-labeled subcellular structures in the cytoskeleton and nuclei of fixed endothelial cells using femtosecond, near-infrared laser pulses focused through a high-numerical aperture objective lens (1.4 NA). We find that the energy threshold for photobleaching lies between 0.9 and 1.7 nJ. By comparing the changes in fluorescence with the actual material loss determined by electron microscopy, we find that the threshold for true material ablation is about 20% higher than the photobleaching threshold. This information makes it possible to use the fluorescence to determine the onset of true material ablation without resorting to electron microscopy. We confirm the precision of this technique by severing a single microtubule without disrupting the neighboring microtubules, less than 1 micrometer away. c2005 Optical Society of America.

  6. Experimental study and numerical simulation of the propulsion of microbeads by femtosecond laser filament

    SciTech Connect

    Zhang Nan; Liu Weiwei; Xu Zhijun; Wang Mingwei; Zhu Xiaonong

    2008-08-01

    The light filament formed by intense femtosecond laser pulses in air can be used to generate the effective impulse to propel a micro glass bead. In this report, through both experimental studies and the corresponding numerical simulations that involve the dynamics of the nonlinear propagation of light and the laser ablation mechanism, we confirm that this propulsion scheme is based on the laser ablation of the target material. The fundamental characteristics of laser propulsion using a single ultrafast laser filament is also revealed.

  7. Modeling crater formation in femtosecond-pulse laser damage from basic principles.

    PubMed

    Mitchell, Robert A; Schumacher, Douglass W; Chowdhury, Enam A

    2015-05-15

    We present the first fundamental simulation method for the determination of crater morphology due to femtosecond-pulse laser damage. To this end we have adapted the particle-in-cell (PIC) method commonly used in plasma physics for use in the study of laser damage and developed the first implementation of a pair potential for PIC codes. We find that the PIC method is a complementary approach to modeling laser damage, bridging the gap between fully ab-initio molecular dynamics approaches and empirical models. We demonstrate our method by modeling a femtosecond-pulse laser incident on a flat copper slab for a range of intensities. PMID:26393696

  8. Measurement of temperature rises in the femtosecond laser pulsed three-dimensional atom probe

    SciTech Connect

    Cerezo, A.; Smith, G.D.W.; Clifton, P.H.

    2006-04-10

    A previous Letter [B. Gault et al., Appl. Phys. Lett. 86, 094101 (2005)] interpreted measurements of the field evaporation enhancement under femtosecond pulsed laser irradiation of a field emitter in terms of a direct electric field enhancement by the intrinsic field of the laser light. We show that, on the contrary, the field evaporation enhancement is predominantly a thermal heating effect. Indirect measurements of the peak specimen temperature under irradiation by femtosecond laser pulses are consistent with temperature rises obtained using longer laser pulses in a range of earlier work.

  9. Influence of energy and wavelength on femtosecond laser-induced nucleation of protein

    NASA Astrophysics Data System (ADS)

    Murai, Ryota; Yoshikawa, Hiroshi Y.; Hasenaka, Hitoshi; Takahashi, Yoshinori; Maruyama, Mihoko; Sugiyama, Shigeru; Adachi, Hiroaki; Takano, Kazufumi; Matsumura, Hiroyoshi; Murakami, Satoshi; Inoue, Tsuyoshi; Mori, Yusuke

    2011-06-01

    The influence of energy and wavelength on femtosecond laser-induced nucleation of protein was systematically investigated with Hen Egg White Lysozyme and Glucose Isomerase at two different wavelengths, λ = 780 nm and 260 nm. We found that the enhancement of nucleation probability at a laser wavelength of λ = 780 nm was comparable with that at λ = 260 nm, which produces more protein dimers. The nucleation was dependent on laser pulse energy and could be induced beyond the threshold energy of cavitation bubbles. These results indicate that the photophysical processes like cavitation bubbles formation are main triggers for the femtosecond laser-induced nucleation.

  10. Comparison of calcium phosphate coatings formed on femtosecond laser-induced and sand-blasted titanium

    NASA Astrophysics Data System (ADS)

    Liang, C. Y.; Yang, X. J.; Wei, Q.; Cui, Z. D.

    2008-11-01

    High energy femtosecond laser process was employed to create regular surface patterning on titanium while sand blasting treatment made a coarse surface. Both laser-induced titanium and blasted titanium could promote the formation of calcium phosphate compounds after the acid and alkali treatment, but little crystallized hydroxyapatite was grown on the laser-induced titanium in 1.5SBF only for 6 h, whereas Ca 4P 6O 19 was formed on the sand-blasted titanium. The femtosecond laser process together with common acid and alkali treatment might provide potential choice to enhance the biocompatibility of titanium and its alloys.

  11. Femtosecond laser-induced periodic surface structure formation on tungsten

    SciTech Connect

    Vorobyev, A. Y.; Guo Chunlei

    2008-09-15

    In this paper, we demonstrate the generation of periodic surface structures on a technologically important material, tungsten, at both 400 and 800 nm, despite that the table values of dielectric constants for tungsten at these two wavelengths suggest the absence of surface plasmons, a wave necessary for forming periodic structures on metals. Furthermore, we find that the structure periods formed on tungsten are significantly less than the laser wavelengths. We believe that the dielectric constants of tungsten change significantly due to intense laser pulse heating and surface structuring and roughening at nanometer scales, permitting surface plasmon excitation and periodic structure formation.

  12. Apparatus for laser-assisted electron scattering in femtosecond intense laser fields.

    PubMed

    Kanya, Reika; Morimoto, Yuya; Yamanouchi, Kaoru

    2011-12-01

    An apparatus for observation of laser-assisted electron scattering (LAES) in femtosecond intense laser fields was developed. The unique apparatus has three essential components, i.e., a photocathode-type ultrashort pulsed-electron gun, a toroidal-type electron energy analyzer enabling simultaneous detection of energy and angular distributions of scattered electrons with high efficiency, and a high repetition-rate data acquisition system combined with a high power 5 kHz Ti:sapphire laser system. These advantages make extremely weak femtosecond-LAES signals distinguishable from the huge elastic scattering signals. A precise method for securing a spatial overlap between three beams, that is, an atomic beam, an electron beam, and a laser beam, and synchronization between the electron and laser pulses is described. As a demonstration of this apparatus, an electron energy spectrum of the LAES signals with 1.4 × 10(12) W/cm(2), 795 nm, 50 fs laser pulses was observed, and the detection limit and further improvements of the apparatus are examined. PMID:22225197

  13. Selection and amplification of modes of an optical frequency comb using a femtosecond laser injection-locking technique

    SciTech Connect

    Moon, H. S.; Kim, E. B.; Park, S. E.; Park, C. Y.

    2006-10-30

    The authors have demonstrated the selection and the amplification of the components of an optical frequency comb using a femtosecond laser injectionlocking technique. The author used a mode-locked femtosecond Ti:sapphire laser as the master laser and a single-mode diode laser as the slave laser. The femtosecond laser injection-locking technique was applied to a filter for mode selection of the optical frequency comb and an amplifier for amplification of the selected mode. The authors could obtain the laser source selected only the desired mode of the optical frequency comb and amplified the power of the selected modes several thousand times.

  14. Elemental fractionation in 785 nm picosecond and femtosecond laser ablation inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Shaheen, M. E.; Gagnon, J. E.; Fryer, B. J.

    2015-05-01

    Elemental fractionation and ICP-MS signal response were investigated for two different pulse width laser beams originating from the same laser system. Femtosecond and picosecond laser beams at pulse widths of 130 fs and 110 ps, respectively, and wavelength of 785 nm were used to ablate NIST 610 synthetic glass and SRM 1107 Naval Brass B at the same spot for 800 to 1000 laser pulses at different repetition rates (5 to 50 Hz). Elemental fractionation was found to depend on repetition rate and showed a trend with femtosecond laser ablation that is opposite to that observed in picosecond laser ablation for most measured isotopes. ICP-MS signal intensity was higher in femtosecond than picosecond LA-ICP-MS in both NIST 610 and naval brass when ablation was conducted under the same fluence and repetition rate. The differences in signal intensity were partly related to differences in particle size distribution between particles generated by femtosecond and picosecond laser pulses and the consequent differences in transport and ionization efficiencies. The main reason for the higher signal intensity resulting from femtosecond laser pulses was related to the larger crater sizes compared to those created during picosecond laser ablation. Elemental ratios measured using 66Zn/63Cu, 208Pb/238U, 232Th/238U, 66Zn/232Th and 66Zn/208Pb were found to change with the number of laser pulses with data points being more scattered in picosecond than femtosecond laser pulses. Reproducibility of replicate measurements of signal intensities, fractionation and elemental ratios was better for fs-LA-ICP-MS (RSD ~ 3 to 6%) than ps-LA-ICP-MS (RSD ~ 7 to 11%).

  15. Terahertz radiation from Cd{sub x}Hg{sub 1-x}Te photoexcited by femtosecond laser pulses

    SciTech Connect

    Krotkus, A.; Adomavicius, R.; Molis, G.; Urbanowicz, A.; Eusebe, H.

    2004-10-01

    Terahertz radiation from Cd{sub x}Hg{sub 1-x}Te samples excited by femtosecond Ti:sapphire laser pulses were measured by using an ultrafast photoconductive antenna manufactured from low-temperature grown GaAs. Terahertz fields radiated by the samples of all three investigated alloy compositions with x=0, 0.2, and 0.3 were of the same order of magnitude. No azimuthal angle dependence of the radiated signal was detected, which evidences that linear current surge effect is dominating over nonlinear optical rectification.

  16. Study of nonlinear optical absorption properties of Sb2Se3 nanoparticles in the nanosecond and femtosecond excitation regime

    NASA Astrophysics Data System (ADS)

    Molli, Muralikrishna; Pradhan, Prabin; Dutta, Devarun; Jayaraman, Aditya; Bhat Kademane, Abhijit; Muthukumar, V. Sai; Kamisetti, Venkataramaniah; Philip, Reji

    2016-05-01

    In this work, we report for the first time, the nonlinear optical absorption properties of antimony selenide (Sb2Se3) nanoparticles synthesized through solvothermal route. X-ray diffraction results revealed the crystalline nature of the nanoparticles. Electron microscopy studies revealed that the nanoparticles are in the range of 10-40 nm. Elemental analysis was performed using EDAX. The nanosecond optical limiting effect was characterized by using fluence-dependent transmittance measurements with 15-ns laser pulses at 532 and 1064 nm excitation wavelengths. Mechanistically, effective two-photon (2PA) absorption and nonlinear scattering processes were the dominant nonlinear processes at both the wavelengths. At 800 nm excitation in the femtosecond regime (100 fs), the nonlinear optical absorption was found to be a three-photon (3PA) process. Both 2PA and 3PA processes were explained using the band structure and density of states of Sb2Se3 obtained using density functional theory. These nanoparticles exhibit strong intensity-dependent nonlinear optical absorption and hence could be considered to have optical power-limiting applications in the visible range.

  17. Nanoscale helium ion microscopic analysis of collagen fibrillar changes following femtosecond laser dissection of human cornea.

    PubMed

    Riau, Andri K; Poh, Rebekah; Pickard, Daniel S; Park, Chris H J; Chaurasia, Shyam S; Mehta, Jodhbir S

    2014-08-01

    Over the last decade, femtosecond lasers have emerged as an important tool to perform accurate and fine dissections with minimal collateral damage in biological tissue. The most common surgical procedure in medicine utilizing femtosecond laser is LASIK. During the femtosecond laser dissection process, the corneal collagen fibers inevitably undergo biomechanical and thermal changes on a sub-micro- or even a nanoscale level, which can potentially lead to post-surgical complications. In this study, we utilized helium ion microscopy, complemented with transmission electron microscopy to examine the femtosecond laser-induced collagen fibrillar damage in ex vivo human corneas. We found that the biomechanical damage induced by laser etching, generation of tissue bridges, and expansion of cavitation bubble and its subsequent collapse, created distortion to the surrounding collagen lamellae. Femtosecond laser-induced thermal damage was characterized by collapsed collagen lamellae, loss of collagen banding, collagen coiling, and presence of spherical debris. Our findings have shown the ability of helium ion microscopy to provide high resolution images with unprecedented detail of nanoscale fibrillar morphological changes in order to assess a tissue damage, which could not be resolved by conventional scanning electron microscopy previously. This imaging technology has also given us a better understanding of the tissue-laser interactions in a nano-structural manner and their possible effects on post-operative wound recovery. PMID:25016655

  18. Photomechanical ablation of biological tissue induced by focused femtosecond laser and its application for acupuncture

    NASA Astrophysics Data System (ADS)

    Hosokawa, Yoichiroh; Ohta, Mika; Ito, Akihiko; Takaoka, Yutaka

    2013-03-01

    Photomechanical laser ablation due to focused femtosecond laser irradiation was induced on the hind legs of living mice, and its clinical influence on muscle cell proliferation was investigated via histological examination and reverse transcriptase-polymerase chain reaction (RT-PCR) analysis to examine the expression of the gene encoding myostatin, which is a growth repressor in muscle satellite cells. The histological examination suggested that damage of the tissue due to the femtosecond laser irradiation was localized on epidermis and dermis and hardly induced in the muscle tissue below. On the other hand, gene expression of the myostatin of muscle tissue after laser irradiation was suppressed. The suppression of myostatin expression facilitates the proliferation of muscle cells, because myostatin is a growth repressor in muscle satellite cells. On the basis of these results, we recognize the potential of the femtosecond laser as a tool for noncontact, high-throughput acupuncture in the treatment of muscle disease.

  19. Melt front propagation in dielectrics upon femtosecond laser irradiation: Formation dynamics of a heat-affected layer

    NASA Astrophysics Data System (ADS)

    Garcia-Lechuga, Mario; Solis, Javier; Siegel, Jan

    2016-04-01

    Several studies in dielectrics have reported the presence of a thin heat-affected layer underneath the ablation crater produced by femtosecond laser irradiation. In this work, we present a time-resolved microscopy technique that is capable of monitoring the formation dynamics of this layer and apply it to the study of a phosphate glass exposed to single pulses below the ablation threshold. A few nanoseconds after laser excitation, a melt front interface can be detected, which propagates into the bulk, gradually slowing down its speed. By means of image analysis combined with optical modeling, we are able to determine the temporal evolution of the layer thickness and its refractive index. Initially, a strong transient decrease in the refractive index is observed, which partially recovers afterwards. The layer resolidifies after approximately 1 μs after excitation, featuring a maximum thickness of several hundreds of nanometers.

  20. SPECIAL ISSUE DEVOTED TO THE 90TH ANNIVERSARY OF A.M. PROKHOROV: Formation and development dynamics of femtosecond laser microplasma in gases

    NASA Astrophysics Data System (ADS)

    Bukin, V. V.; Vorob'ev, Nikolai S.; Garnov, Sergei V.; Konov, Vitalii I.; Lozovoi, V. I.; Malyutin, A. A.; Shchelev, M. Ya; Yatskovskii, I. S.

    2006-07-01

    We report our experimental investigations of the formation and development dynamics of laser plasma produced in gas microvolumes (microplasma) upon multiple ionisation by tightly focused (to a spot 2—3 μm in diameter) high-intensity (up to ≈1017 W cm-2) femtosecond pulses of a Ti:sapphire laser (τp ⋍ 130 fs, λ = 800 nm). Precision interferometric measurements (with a spatial resolution of ≈1.5 μm) were made of the spatiotemporal distribution of the refractive index and electron density in the microplasmas of the air and helium immediately during the action of the exciting femtosecond laser pulse and at the initial stage of free plasma expansion. The microplasma formation was shown to occur as a result of almost complete (up to bare nuclei) ionisation of the initial gas. For the first time the spectral continuum and the dynamics of spectral line formation in the UV and visible spectral ranges were investigated with a picosecond time resolution for the femtosecond laser-produced microplasmas of the air, N2, Ar, and He at normal conditions. For the first time the generation of the second (even) laser radiation harmonic was recorded in a femtosecond subcritical-density plasma of gases.

  1. Study of nonlinear optical absorption properties of V2O5 nanoparticles in the femtosecond excitation regime

    NASA Astrophysics Data System (ADS)

    Molli, Muralikrishna; Bhat Kademane, Abhijit; Pradhan, Prabin; Sai Muthukumar, V.

    2016-08-01

    In this work, we report for the first time, the nonlinear optical absorption properties of vanadium pentoxide (V2O5) nanoparticles in the femtosecond excitation regime. V2O5 nanoparticles were synthesized through solution combustion technique. The as-synthesized samples were further characterized using XRD, FESEM, EDAX, TEM and UV-visible spectroscopy. X-ray diffraction results revealed the crystalline nature of the nanoparticles. Electron microscopy studies showed the size of the nanoparticles to be ~200 nm. Open-aperture z-scan technique was employed to study the nonlinear optical absorption behavior of the synthesized samples using a 100-fs laser pulses at 800 nm from a regeneratively amplified Ti: sapphire laser. The mechanism of nonlinear absorption was found to be a three-photon absorption process which was explained using the density of states of V2O5 obtained using density functional theory. These nanoparticles exhibit strong intensity-dependent nonlinear optical absorption and hence could be considered for optical-power-limiting applications.

  2. Absorption of laser radiation by femtosecond laser-induced plasma of air and its emission characteristics

    NASA Astrophysics Data System (ADS)

    Ilyin, A. A.; Golik, S. S.; Shmirko, K. A.

    2015-11-01

    The energy absorbed by femtosecond laser plasma has nonlinear dependence on incident laser energy. The threshold power for plasma formation is 5.2 GW. Emission of nitrogen molecule, nitrogen molecule ion, atomic oxygen (unresolved triplet O I 777 nm) and nitrogen (triplet N I 742.4, 744.3 and 746.8 nm) lines is detected. Molecular emission consists of second positive and firs negative systems of nitrogen. Time-resolved spectroscopy of plasmas shows short molecular line emission (up to 1 ns) and long atomic line emission (up to 150 ns).

  3. Graphene for improved femtosecond laser based pluripotent stem cell transfection.

    PubMed

    Mthunzi, Patience; He, Kuang; Ngcobo, Sandile; Khanyile, Thulile; Warner, Jamie H

    2014-05-01

    Pluripotent stem cells are hugely attractive in the tissue engineering research field as they can self-renew and be selectively differentiated into various cell types. For stem cell and tissue engineering research it is important to develop new, biocompatible scaffold materials and graphene has emerged as a promising material in this area as it does not compromise cell proliferation and accelerates specific cell differentiation. Previous studies have shown a non-invasive optical technique for mouse embryonic stem (mES) cell differentiation and transfection using femtosecond (fs) laser pulses. To investigate cellular responses to the influence of graphene and laser irradiation, here we present for the first time a study of mES cell fs laser transfection on graphene coated substrates. First we studied the impact of graphene on Chinese Hamster Ovary (CHO-K1) cell viability and cell cytotoxicity in the absence of laser exposure. These were tested via evaluating the mitochondrial activity through adenosine triphosphates (ATP) luminescence and breakages on the cell plasma membrane assessed using cytosolic lactate dehydrogenase (LDH) screening. Secondly, the effects of fs laser irradiation on cell viability and cytotoxicity at 1064 and 532 nm for cells plated and grown on graphene and pure glass were assessed. Finally, optical transfection of CHO-K1 and mES cells was performed on graphene coated versus plain glass substrates. Our results show graphene stimulated cell viability whilst triggering a mild release of intracellular LDH. We also observed that compared to pure glass substrates; laser irradiation at 1064 nm on graphene plates was less cytotoxic. Finally, in mES cells efficient optical transfection at 1064 (82%) and 532 (25%) nm was obtained due to the presence of a graphene support as compared to pristine glass. Here we hypothesize an up-regulation of cell adhesion promoting peptides or laminin-related receptors of the extracellular matrix (ECM) in cell samples

  4. Mid-infrared laser emission from Cr:ZnS channel waveguide fabricated by femtosecond laser helical writing.

    PubMed

    Peng, Ya-Pei; Zou, Xiao; Bai, Zhengyuan; Leng, Yuxin; Jiang, Benxue; Jiang, Xiongwei; Zhang, Long

    2015-01-01

    The operation of a mid-infrared laser at 2244 nm in a Cr:ZnS polycrystalline channel waveguide fabricated using direct femtosecond laser writing with a helical movement technique is demonstrated. A maximum power output of 78 mW and an optical-to-optical slope efficiency of 8.6% are achieved. The compact waveguide structure with 2 mm length was obtained through direct femtosecond laser writing, which was moved on a helical trajectory along the laser medium axis and parallel to the writing direction. PMID:26692268

  5. Mid-infrared laser emission from Cr:ZnS channel waveguide fabricated by femtosecond laser helical writing

    PubMed Central

    Peng, Ya-Pei; Zou, Xiao; Bai, Zhengyuan; Leng, Yuxin; Jiang, Benxue; Jiang, Xiongwei; Zhang, Long

    2015-01-01

    The operation of a mid-infrared laser at 2244 nm in a Cr:ZnS polycrystalline channel waveguide fabricated using direct femtosecond laser writing with a helical movement technique is demonstrated. A maximum power output of 78 mW and an optical-to-optical slope efficiency of 8.6% are achieved. The compact waveguide structure with 2 mm length was obtained through direct femtosecond laser writing, which was moved on a helical trajectory along the laser medium axis and parallel to the writing direction. PMID:26692268

  6. Laser Acceleration of Ultrashort Ion Bunches and Femtosecond Neutron Sources

    SciTech Connect

    Macchi, A.; Cattani, F.; Liseykina, T. V.; Cornolti, F.

    2006-04-07

    We have theoretically investigated the acceleration of ions in the interaction of high intensity, circularly polarized laser pulses with overdense plasmas. By using 1D and 2D particle-in-cell (PIC) simulations we find that high-density, short duration ion bunches moving into the plasma are promptly generated at the laser-plasma interaction surface. This regime is qualitatively different from ion acceleration regimes driven by fast electrons, such as sheath acceleration at the back of the target or shock acceleration at the front, which occur for linear polarization. A simple analytical model accounts for the numerical observations and provides scaling laws for the ion bunch velocity and generation time as a function of pulse intensity and plasma density. The present mechanism based on circular polarization of the laser pulse leads to moderate ion energies (in the 100 keV-1 MeV range) but very high ion densities and low beam divergence. These ion bunches might be of interest for problems of compression and acceleration of high-density matter by short pulses as well as for the development of compact neutron sources. We analyzed a scheme based on two-side irradiation of a thin foil deuterated target, where two colliding ion bunches are produced leading to an ultrashort neutron burst. We evaluated that, for intensities of a few 1019 W cm-2, more than 103 neutrons per Joule may be produced within a time shorter than one femtosecond. Another scheme based on a layered deuterium-tritium target is outlined.

  7. Optical measurement on quantum cascade lasers using femtosecond pulses

    NASA Astrophysics Data System (ADS)

    Cai, Hong

    Quantum cascade lasers (QCLs) as the state-of-the-art mid-infrared (mid-IR) coherent sources have been greatly developed in aspects such as output power, energy efficiency and spectral purity. However, there are additional applications of QCLs in high demand, namely mode-locking, mid-IR modulation, etc. The inherent optical properties and ultrafast carrier dynamics can lead to solutions to these challenges. In this dissertation, we further characterize QCLs using mid-IR femtosecond (fs) pulses generated from a laser system consisting of a Ti:sapphire oscillator, a Ti:sapphire regenerative amplifier, an optical parametric amplifier and a difference frequency generator. We study the Kerr nonlinearity of QCLs by coupling resonant and off-resonant mid-IR fs pulses into an active QCL waveguide. We observe an increase in the spectral width of the transmitted fs pulses as the coupled mid-IR pulse power increases. This is explained by the self-phase modulation effect due to the large Kerr nonlinearity of QCL waveguides. We further confirm this effect by observing the intensity dependent far-field profile of the transmitted mid-IR pulses, showing the pulses undergo self-focusing as they propagate through the active QCL due to the intensity dependent refractive index. The finite-difference time-domain simulations of QCL waveguides with Kerr nonlinearity incorporated show similar behavior to the experimental results. The giant Kerr nonlinearity investigated here may be used to realize ultrafast pulse generation in QCLs. In addition, we temporally resolved the ultrafast mid-infrared transmission modulation of QCLs using a near-infrared pump/mid-infrared probe technique at room temperature. Two different femtosecond wavelength pumps are used with photon energy above and below the quantum well (QW) bandgap. The shorter wavelength pump modulates the mid-infrared probe transmission through interband transition assisted mechanisms, resulting in a high transmission modulation depth

  8. Tailoring the surface plasmon resonance of embedded silver nanoparticles by combining nano- and femtosecond laser pulses

    SciTech Connect

    Doster, J.; Baraldi, G.; Gonzalo, J.; Solis, J.; Hernandez-Rueda, J.; Siegel, J.

    2014-04-14

    We demonstrate that the broad surface plasmon resonance (SPR) of a single layer of near-coalescence silver nanoparticles (NPs), embedded in a dielectric matrix can be tailored by irradiation with a single nanosecond laser pulse into a distribution featuring a sharp resonance at 435 nm. Scanning electron microscopy studies reveal the underlying mechanism to be a transformation into a distribution of well-separated spherical particles. Additional exposure to multiple femtosecond laser pulses at 400 nm or 800 nm wavelength induces polarization anisotropy of the SPR, with a peak shift that increases with laser wavelength. The spectral changes are measured in-situ, employing reflection and transmission micro-spectroscopy with a lateral resolution of 4 μm. Spectral maps as a continuous function of local fluence can be readily produced from a single spot. The results open exciting perspectives for dynamically tuning and switching the optical response of NP systems, paving the way for next-generation applications.

  9. Target dependent femtosecond laser plasma implantation dynamics in enabling silica for high density erbium doping.

    PubMed

    Chandrappan, Jayakrishnan; Murray, Matthew; Kakkar, Tarun; Petrik, Peter; Agocs, Emil; Zolnai, Zsolt; Steenson, D P; Jha, Animesh; Jose, Gin

    2015-01-01

    Chemical dissimilarity of tellurium oxide with silica glass increases phase separation and crystallization tendency when mixed and melted for making a glass. We report a novel technique for incorporating an Er(3+)-doped tellurite glass composition into silica substrates through a femtosecond (fs) laser generated plasma assisted process. The engineered material consequently exhibits the spectroscopic properties of Er(3+)-ions, which are unachievable in pure silica and implies this as an ideal material for integrated photonics platforms. Formation of a well-defined metastable and homogeneous glass structure with Er(3+)-ions in a silica network, modified with tellurite has been characterized using high-resolution cross-sectional transmission electron microscopy (HRTEM). The chemical and structural analyses using HRTEM, Rutherford backscattering spectrometry (RBS) and laser excitation techniques, confirm that such fs-laser plasma implanted glasses may be engineered for significantly higher concentration of Er(3+)-ions without clustering, validated by the record high lifetime-density product 0.96 × 10(19) s.cm(-3). Characterization of planar optical layers and photoluminescence emission spectra were undertaken to determine their thickness, refractive indices and photoluminescence properties, as a function of Er(3+) concentration via different target glasses. The increased Er(3+) content in the target glass enhance the refractive index and photoluminescence intensity of the modified silica layer whilst the lifetime and thickness decrease. PMID:26370060

  10. Nanofabrication of tailored surface structures in dielectrics using temporally shaped femtosecond-laser pulses.

    PubMed

    Hernandez-Rueda, Javier; Götte, Nadine; Siegel, Jan; Soccio, Michelina; Zielinski, Bastian; Sarpe, Cristian; Wollenhaupt, Matthias; Ezquerra, Tiberio A; Baumert, Thomas; Solis, Javier

    2015-04-01

    We have investigated the use of tightly focused, temporally shaped femtosecond (fs)-laser pulses for producing nanostructures in two dielectric materials (sapphire and phosphate glass) with different characteristics in their response to pulsed laser radiation. For this purpose, laser pulses shaped by third-order dispersion (TOD) were used to generate temporally asymmetric excitation pulses, leading to the single-step production of subwavelength ablative and subablative surface structures. When compared to previous works on the interaction of tightly focused TOD-shaped pulses with fused silica, we show here that this approach leads to very different nanostructure morphologies, namely, clean nanopits without debris surrounding the crater in sapphire and well-outlined nanobumps and nanovolcanoes in phosphate glass. Although in sapphire the debris-free processing is associated with the much lower viscosity of the melt compared to fused silica, nanobump formation in phosphate glass is caused by material network expansion (swelling) upon resolidification below the ablation threshold. The formation of nanovolcanoes is a consequence of the combined effect of material network expansion and ablation occurring in the periphery and central part of the irradiated region, respectively. It is shown that the induced morphologies can be efficiently controlled by modulating the TOD coefficient of the temporally shaped pulses. PMID:25762003

  11. Target dependent femtosecond laser plasma implantation dynamics in enabling silica for high density erbium doping

    NASA Astrophysics Data System (ADS)

    Chandrappan, Jayakrishnan; Murray, Matthew; Kakkar, Tarun; Petrik, Peter; Agocs, Emil; Zolnai, Zsolt; Steenson, D. P.; Jha, Animesh; Jose, Gin

    2015-09-01

    Chemical dissimilarity of tellurium oxide with silica glass increases phase separation and crystallization tendency when mixed and melted for making a glass. We report a novel technique for incorporating an Er3+-doped tellurite glass composition into silica substrates through a femtosecond (fs) laser generated plasma assisted process. The engineered material consequently exhibits the spectroscopic properties of Er3+-ions, which are unachievable in pure silica and implies this as an ideal material for integrated photonics platforms. Formation of a well-defined metastable and homogeneous glass structure with Er3+-ions in a silica network, modified with tellurite has been characterized using high-resolution cross-sectional transmission electron microscopy (HRTEM). The chemical and structural analyses using HRTEM, Rutherford backscattering spectrometry (RBS) and laser excitation techniques, confirm that such fs-laser plasma implanted glasses may be engineered for significantly higher concentration of Er3+-ions without clustering, validated by the record high lifetime-density product 0.96 × 1019 s.cm-3. Characterization of planar optical layers and photoluminescence emission spectra were undertaken to determine their thickness, refractive indices and photoluminescence properties, as a function of Er3+ concentration via different target glasses. The increased Er3+ content in the target glass enhance the refractive index and photoluminescence intensity of the modified silica layer whilst the lifetime and thickness decrease.

  12. Target dependent femtosecond laser plasma implantation dynamics in enabling silica for high density erbium doping

    PubMed Central

    Chandrappan, Jayakrishnan; Murray, Matthew; Kakkar, Tarun; Petrik, Peter; Agocs, Emil; Zolnai, Zsolt; Steenson, D.P.; Jha, Animesh; Jose, Gin

    2015-01-01

    Chemical dissimilarity of tellurium oxide with silica glass increases phase separation and crystallization tendency when mixed and melted for making a glass. We report a novel technique for incorporating an Er3+-doped tellurite glass composition into silica substrates through a femtosecond (fs) laser generated plasma assisted process. The engineered material consequently exhibits the spectroscopic properties of Er3+-ions, which are unachievable in pure silica and implies this as an ideal material for integrated photonics platforms. Formation of a well-defined metastable and homogeneous glass structure with Er3+-ions in a silica network, modified with tellurite has been characterized using high-resolution cross-sectional transmission electron microscopy (HRTEM). The chemical and structural analyses using HRTEM, Rutherford backscattering spectrometry (RBS) and laser excitation techniques, confirm that such fs-laser plasma implanted glasses may be engineered for significantly higher concentration of Er3+-ions without clustering, validated by the record high lifetime-density product 0.96 × 1019 s.cm−3. Characterization of planar optical layers and photoluminescence emission spectra were undertaken to determine their thickness, refractive indices and photoluminescence properties, as a function of Er3+ concentration via different target glasses. The increased Er3+ content in the target glass enhance the refractive index and photoluminescence intensity of the modified silica layer whilst the lifetime and thickness decrease. PMID:26370060

  13. Laser induced periodic surface structuring on Si by temporal shaped femtosecond pulses.

    PubMed

    Almeida, G F B; Martins, R J; Otuka, A J G; Siqueira, J P; Mendonca, C R

    2015-10-19

    We investigated the effect of temporal shaped femtosecond pulses on silicon laser micromachining. By using sinusoidal spectral phases, pulse trains composed of sub-pulses with distinct temporal separations were generated and applied to the silicon surface to produce Laser Induced Periodic Surface Structures (LIPSS). The LIPSS obtained with different sub-pulse separation were analyzed by comparing the intensity of the two-dimensional fast Fourier Transform (2D-FFT) of the AFM images of the ripples (LIPSS). It was observed that LIPSS amplitude is more emphasized for the pulse train with sub-pulses separation of 128 fs, even when compared with the Fourier transform limited pulse. By estimating the carrier density achieved at the end of each pulse train, we have been able to interpret our results with the Sipe-Drude model, that predicts that LIPSS efficacy is higher for a specific induced carrier density. Hence, our results indicate that temporal shaping of the excitation pulse, performed by spectral phase modulation, can be explored in fs-laser microstructuring. PMID:26480419

  14. Femtosecond laser-induced periodic surface structures on silica

    SciTech Connect

    Hoehm, S.; Rosenfeld, A.; Krueger, J.; Bonse, J.

    2012-07-01

    The formation of laser-induced periodic surface structures (LIPSS) on two different silica polymorphs (single-crystalline synthetic quartz and commercial fused silica glass) upon irradiation in air with multiple linearly polarized single- and double-fs-laser pulse sequences ({tau} = 150 fs pulse duration, {lambda} = 800 nm center wavelength, temporal pulse separation {Delta}t < 40 ps) is studied experimentally and theoretically. Two distinct types of fs-LIPSS [so-called low-spatial-frequency LIPSS (LSFL) and high-spatial-frequency LIPSS (HSFL)] with different spatial periods and orientations were identified. Their appearance was characterized with respect to the experimental parameters peak laser fluence and number of laser pulses per spot. Additionally, the 'dynamics' of the LIPSS formation was addressed in complementary double-fs-pulse experiments with varying delays, revealing a characteristic change of the LSFL periods. The experimental results are interpreted on the basis of a Sipe-Drude model considering the carrier dependence of the optical properties of fs-laser excited silica. This new approach provides an explanation of the LSFL orientation parallel to the laser beam polarisation in silica - as opposed to the behaviour of most other materials.

  15. Material processing with 12 femtosecond picojoule laser pulses

    NASA Astrophysics Data System (ADS)

    König, Karsten; Licht, Martin; Straub, Martin; Uchugonova, Aisada

    2012-03-01

    Extremely short near infrared laser pulses (e.g. 10 fs) offer the possibility of precise sub-100nm processing without collateral side effects. Furthermore, the can be employed to excite a variety of absorbers simultaneously due to their broad 100 nm emission band. We demonstrate two-photon fluorescence imaging of green and red fluorescent proteins in living cells as well as two-photon nanolithography with 12 fs laser pulses (750-850 nm) at low microwatt mean power using an 85 MHz laser resonator. At a minimum of 400 μW mean power, direct nanoprocessing in blood cells was realized. Multiphoton ablation in biological specimens follows a P2/τ relation. We were able to create sub-100nm ripples in silicon wafers, to cut glass, gold, and polymers as well as to create transient nanoholes in the membranes of living stem cells and cancer cells for targeted transfection.

  16. Probing Single Molecules with a Tunable Femtosecond Laser Coupled RF-STM

    NASA Astrophysics Data System (ADS)

    Cao, Weicai

    Scanning Tunneling Microscope (STM) has become a powerful tool in nanoscience for imaging, manipulation and electronic spectroscopy. STM inelastic electron tunneling spectroscopy (IETS) first achieved chemical identification of molecular species by characterizing vibrational energies. Recently, with the STM itProbe and H2 rotational spectromicroscopy, molecular structure and chemical bonds are observed with the STM. Despite these successes in spatial resolution, various efforts have been made to combine fs laser with STM to overcome the temporal resolution limitation of STM, there is so far no clear evidence of simultaneous fs and A resolution. Electronic properties of organic molecules are of central importance to applications such as molecular electronics, organic LEDs, and solar cells. Properties of these molecules can be probed by the scanning tunneling microscope (STM) at the single molecule level and with sub-A spatial resolution. The molecular orbital of 4, 7-Di ([2, 20-bithiophen]-5-yl) benzo[c] [1, 2, 5] thiadiazole (4T-BTD) with intramolecular donor-acceptor-donor sites is probed with the electronic state dI/dV imaging and H2 rotational and vibrational spectromicroscopy. 1, 4-Phenylene Diisocyanide (PDI) is probed by imaging with a CO-terminated tip and H2. PDI can self-assemble on noble metal surfaces to form nanostructures, which could have potential applications in molecular electronics and catalysis. Further combination of a RF-STM with a tunable femtosecond laser enables the investigation of light-molecule interactions. In this dissertation, efforts are spent to setup a new tunable fs laser (220 nm˜1040 nm) to couple with the RF-STM. The effects of the femtosecond laser are followed by detecting photo induced electron emission and photochemistry. A new double lock-in technique is applied to detect the weak laser-induced signal in the tunneling regime. To sharpen the energy width and increase the lifetime of the excited states of molecules, thin

  17. Inhibition of Escherichia coli respiratory enzymes by short visible femtosecond laser irradiation

    NASA Astrophysics Data System (ADS)

    Lu, Chieh-Han; Lin, Kung-Hsuan; Hsu, Yung-Yuan; Tsen, Kong-Thon; Kuan, Yung-Shu

    2014-08-01

    A visible femtosecond laser is shown to be capable of selectively inactivating a wide spectrum of microorganisms in a wavelength and pulse width dependent manner. However, the mechanism of how a visible femtosecond laser affects the viability of different microorganisms is still elusive. In this paper, the cellular surface properties, membrane integrity and metabolic rate of Escherichia coli (E. coli) irradiated by a visible femtosecond laser (λ = 415 nm, pulse width = 100 fs) with different exposure times were investigated. Our results showed that femtosecond laser treatment for 60 min led to cytoplasmic leakage, protein aggregation and alternation of the physical properties of the E. coli cell membrane. In comparison, a 10 min exposure of bacteria to femtosecond laser irradiation induced an immediate reduction of 75% in the glucose-dependent respiratory rate, while the cytoplasmic leakage was not detected. Results from enzymatic assays showed that oxidases and dehydrogenases involved in the E. coli respiratory chain exhibited divergent susceptibility after laser irradiation. This early commencement of respiratory inhibition after a short irradiation is presumed to have a dominant effect on the early stage of bacteria inactivation.

  18. Efficient and robust strong-field control of population transfer in sensitizer dyes with designed femtosecond laser pulses.

    PubMed

    Schneider, Johannes; Wollenhaupt, Matthias; Winzenburg, Andreas; Bayer, Tim; Köhler, Jens; Faust, Rüdiger; Baumert, Thomas

    2011-05-21

    We demonstrate control of electronic population transfer in molecules with the help of appropriately shaped femtosecond laser pulses. To this end we investigate two photosensitizer dyes in solution being prepared in the triplet ground state. Excitation within the triplet system is followed by intersystem crossing and the corresponding singlet fluorescence is monitored as a measure of population transfer in the triplet system. We record control landscapes with respect to the fluorescence intensity on both dyes by a systematic variation of laser pulse shapes combining second order and third order dispersion. In the strong-field regime we find highly structured topologies with large areas of maximum or minimum population transfer being insensitive over a certain range of applied laser intensities thus demonstrating robustness. We then compare our experimental results with simulations on generic molecular potentials by solving the time-dependent Schrödinger equation for excitation with shaped pulses. Control landscapes with respect to population transfer confirm the general trends from experiments. An analysis of regions with maximum or minimum population transfer indicates that coherent processes are responsible for the outcome of our excitation process. The physical mechanisms of joint motion of ground and excited state wave packets or population of a vibrational eigenstate in the excited state permit us to discuss the molecular dynamics in an atom-like picture. PMID:21437344

  19. Femtosecond laser ablation of sapphire on different crystallographic facet planes by single and multiple laser pulses irradiation

    NASA Astrophysics Data System (ADS)

    Qi, Litao; Nishii, Kazuhiro; Yasui, Motohiro; Aoki, Hikoharu; Namba, Yoshiharu

    2010-10-01

    Ablation of sapphire on different crystallographic facet planes by single and multiple laser pulses irradiation was carried out with a femtosecond pulsed laser operating at a wavelength of 780 nm and a pulse width of 164 fs. The quality and morphology of the laser ablated sapphire surface were evaluated by scanning electron microscopy and atomic force microscopy. For single laser pulse irradiation, two ablation phases were observed, which have a strong dependency on the pulse energy. The volume of the ablated craters kept an approximately linear relationship with the pulse energy. The threshold fluences of the two ablation phases on different crystallographic facet planes were calculated from the relationship between the squared diameter of the craters and pulse energy. With multiple laser pulses irradiation, craters free of cracks were obtained in the 'gentle' ablation phase. The threshold fluence for N laser pulses was calculated and found to decrease inversely to the number of laser pulses irradiating on the substrate surface due to incubation effect. The depth of the craters increased with the number of laser pulses until reaching a saturation value. The mechanism of femtosecond laser ablation of sapphire in two ablation phases was discussed and identified as either phase explosion, Coulomb explosion or particle vaporization. The choice of crystallographic facet plane has little effect on the process of femtosecond laser ablation of sapphire when compared with the parameters of the femtosecond laser pulses, such as pulse energy and number of laser pulses. In the 'gentle' ablation phase, laser-induced periodic surface structures (LIPSS) with a spatial period of 340 nm were obtained and the mechanism of the LIPSS formation is discussed. There is a potential application of the femtosecond laser ablation to the fabrication of sapphire-based devices.

  20. Dynamic imaging of a single gold nanoparticle in liquid irradiated by off-resonance femtosecond laser

    NASA Astrophysics Data System (ADS)

    Boutopoulos, Christos; Hatef, Ali; Fortin-Deschênes, Matthieu; Meunier, Michel

    2015-07-01

    Plasmonic nanoparticles can lead to extreme confinement of the light in the near field. This unique ability of plasmonic nanoparticles can be used to generate nanobubbles in liquid. In this work, we demonstrate with single-particle monitoring that 100 nm gold nanoparticles (AuNPs) irradiated by off-resonance femtosecond (fs) laser in the tissue therapeutic optical window (λ = 800 nm), can act as a durable nanolenses in liquid and provoke nanocavitation while remaining intact. We have employed combined ultrafast shadowgraphic imaging, in situ dark field imaging and dynamic tracking of AuNP Brownian motion to ensure the study of individual AuNPs/nanolenses under multiple fs laser pulses. We demonstrate that 100 nm AuNPs can generate multiple, highly confined (radius down to 550 nm) and transient (life time < 50 ns) nanobubbles. The latter is of significant importance for future development of in vivo AuNP-assisted laser nanosurgery and theranostic applications, where AuNP fragmentation should be avoided to prevent side effects, such as cytotoxicity and immune system's response. The experimental results have been correlated with theoretical modeling to provide an insight to the AuNP-safe cavitation mechanism as well as to investigate the deformation mechanism of the AuNPs at high laser fluences.Plasmonic nanoparticles can lead to extreme confinement of the light in the near field. This unique ability of plasmonic nanoparticles can be used to generate nanobubbles in liquid. In this work, we demonstrate with single-particle monitoring that 100 nm gold nanoparticles (AuNPs) irradiated by off-resonance femtosecond (fs) laser in the tissue therapeutic optical window (λ = 800 nm), can act as a durable nanolenses in liquid and provoke nanocavitation while remaining intact. We have employed combined ultrafast shadowgraphic imaging, in situ dark field imaging and dynamic tracking of AuNP Brownian motion to ensure the study of individual AuNPs/nanolenses under multiple fs

  1. Imaging of the expansion of femtosecond-laser-produced silicon plasma atoms by off-resonant planar laser-induced fluorescence.

    PubMed

    Samek, Ota; Leis, Franz; Margetic, Vanja; Malina, Radomir; Niemax, Kay; Hergenröder, Roland

    2003-10-20

    Planar laser-induced fluorescence measurements were used to investigate the expansion dynamics of a femtosecond laser-induced plasma. Temporally and spatially resolved measurements were performed to monitor the atoms that were ablated from a silicon target. A dye laser (lambda = 288.16 nm) was used to excite fluorescence signals. The radiation of an off-resonant transition (Si 390.55 nm) was observed at different distances from the target surface. This allowed easy detection of the ablated Si atoms without problems caused by scattered laser light. Abel inversion was applied to obtain the radial distribution of the Si atoms. The atom distribution in the plasma shows some peculiarities, depending on the crater depth. PMID:14594057

  2. Visible fiber lasers excited by GaN laser diodes

    NASA Astrophysics Data System (ADS)

    Fujimoto, Yasushi; Nakanishi, Jun; Yamada, Tsuyoshi; Ishii, Osamu; Yamazaki, Masaaki

    2013-07-01

    This paper describes and discusses visible fiber lasers that are excited by GaN laser diodes. One of the attractive points of visible light is that the human eye is sensitive to it between 400 and 700 nm, and therefore we can see applications in display technology. Of course, many other applications exist. First, we briefly review previously developed visible lasers in the gas, liquid, and solid-state phases and describe the history of primary solid-state visible laser research by focusing on rare-earth doped fluoride media, including glasses and crystals, to clarify the differences and the merits of primary solid-state visible lasers. We also demonstrate over 1 W operation of a Pr:WPFG fiber laser due to high-power GaN laser diodes and low-loss optical fibers (0.1 dB/m) made by waterproof fluoride glasses. This new optical fiber glass is based on an AlF3 system fluoride glass, and its waterproof property is much better than the well known fluoride glass of ZBLAN. The configuration of primary visible fiber lasers promises highly efficient, cost-effective, and simple laser systems and will realize visible lasers with photon beam quality and quantity, such as high-power CW or tunable laser systems, compact ultraviolet lasers, and low-cost ultra-short pulse laser systems. We believe that primary visible fiber lasers, especially those excited by GaN laser diodes, will be effective tools for creating the next generation of research and light sources.

  3. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: The dissociation pathways of N2+ in intense femtosecond laser fields

    NASA Astrophysics Data System (ADS)

    Chen, De-Ying; Zhang, Sheng; Xia, Yuan-Qin

    2009-07-01

    Using a neutral N2 beam as target, this paper studies the dissociation of N+2 in intense femtosecond laser fields (45 fs, ~1 × 1016 W/cm2) at the laser wavelength of 800 nm based on the time-of-flight mass spectra of N+ fragment ions. The angular distributions of N+ and the laser power dependence of N+ yielded from different dissociation pathways show that the dissociation mechanisms mainly proceed through the couplings between the metastable states (A, B and C) and the upper excited states of N+2. A coupling model of light-dressed potential energy curves of N+2 is used to interpret the kinetic energy release of N+.

  4. Femtosecond carrier dynamics and modelocking in monolithic CPM lasers

    SciTech Connect

    Brorson, S.D.; Moerk, J.; Moeller-Larsen, A.; Nielsen, J.M.; Bischoff, S.

    1996-10-01

    Femtosecond pump-probe measurements of the dynamics in both forward- and reverse-biased semiconductor optical waveguides are presented. Slow (nanosecond) as well as ultrafast (femtosecond) dynamics are observed in both kinds of structures. These measurements imply that the slow saturable absorber theory of modelocking in monolithic CPM devices is incomplete.

  5. Observation of voids and optical seizing of voids in silica glass with infrared femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Watanabe, Wataru; Toma, Tadamasa; Yamada, Kazuhiro; Nishii, Junji; Hayashi, Ken-ichi; Itoh, Kazuyoshi

    2000-11-01

    Many researchers have investigated the interaction of femtosecond laser pulses with a wide variety of materials. The structural modifications both on the surface and inside the bulk of transparent materials have been demonstrated. When femtosecond laser pulses are focused into glasses with a high numerical-aperture objective, voids are formed. We demonstrate that one can seize and move voids formed by femtosecond laser pulses inside silica glass and also merge two voids into one. We also present clear evidence that a void is a cavity by showing a scanning-electron-microscope image of cleft voids: we clove through the glass along a plane that includes the laser-ablated thin line on the surface and the voids formed inside. The optical seizing and merging of voids are important basic techniques for fabricate micro-optical dynamic devices, such as the rewritable 3-D optical storage.

  6. Theoretical research on period microstructure induced by femtosecond laser in transparent dielectric

    NASA Astrophysics Data System (ADS)

    Fan, Shuwei; Zhang, Yan

    2014-11-01

    In this paper, we do some research on the interior period microstructure of transparent materials induced by a femtosecond laser of 800-nm wavelength. By adopting a nonlinear propagation physical model of femtosecond laser pulses and considering the spherical aberration effect(SA), we analyze the influence of nonlinear effects such an self-focusing, GDV, MPA, plasma defocusing and interface aberration on femtosecond laser propagation in transparent materials. Meantime, in the case with nonlinear effects and interface aberration, we research the influence of fs laser power, pulse width, numerical aperture and focusing depth on period microvoid. Simultaneously, compared with simulating results in different focusing lens numerical aperture, we find that big numerical aperature and deep focusing more easily produced period voids.

  7. The evolution of corneal and refractive surgery with the femtosecond laser.

    PubMed

    Aristeidou, Antonis; Taniguchi, Elise V; Tsatsos, Michael; Muller, Rodrigo; McAlinden, Colm; Pineda, Roberto; Paschalis, Eleftherios I

    2015-01-01

    The use of femtosecond lasers has created an evolution in modern corneal and refractive surgery. With accuracy, safety, and repeatability, eye surgeons can utilize the femtosecond laser in almost all anterior refractive procedures; laser in situ keratomileusis (LASIK), small incision lenticule extraction (SMILE), penetrating keratoplasty (PKP), insertion of intracorneal ring segments, anterior and posterior lamellar keratoplasty (Deep anterior lamellar keratoplasty (DALK) and Descemet's stripping endothelial keratoplasty (DSEK)), insertion of corneal inlays and cataract surgery. As the technology matures, it will push surgical limits and open new avenues for ophthalmic intervention in areas not yet explored. As we witness the transition from femto-LASIK to femto-cataract surgery it becomes obvious that this innovation is here to stay. This article presents some of the most relevant advances of femtosecond lasers to modern corneal and refractive surgery. PMID:26605365

  8. Luminescence of black silicon fabricated by high-repetition rate femtosecond laser pulses

    SciTech Connect

    Chen Tao; Si Jinhai; Hou Xun; Kanehira, Shingo; Miura, Kiyotaka; Hirao, Kazuyuki

    2011-10-01

    We studied the photoluminescence (PL) from black silicon that was fabricated using an 800 nm, 250 kHz femtosecond laser in air. By changing the scan velocity and the fluence of the femtosecond laser, the formation of the PL band between the orange (600 nm) and red bands (near 680 nm) could be controlled. The red band PL from the photoinduced microstructures on the black silicon was observed even without annealing due to the thermal accumulation of high-repetition rate femtosecond laser pulses. The orange band PL was easily quenched under 532 nm cw laser irradiation, whereas the red band PL was more stable; this can be attributed to ''defect luminescence'' and ''quantum confinement'', respectively.

  9. A Comparison of Different Operating Systems for Femtosecond Lasers in Cataract Surgery.

    PubMed

    Wu, B M; Williams, G P; Tan, A; Mehta, J S

    2015-01-01

    The introduction of femtosecond lasers is potentially a major shift in the way we approach cataract surgery. The development of increasingly sophisticated intraocular lenses (IOLs), coupled with heightened patient expectation of high quality postsurgical visual outcomes, has generated the need for a more precise, highly reproducible and standardized method to carry out cataract operations. As femtosecond laser-assisted cataract surgery (FLACS) becomes more commonplace in surgical centers, further evaluation of the potential risks and benefits needs to be established, particularly in the medium/long term effects. Healthcare administrators will also have to weigh and balance out the financial costs of these lasers relative to the advantages they put forth. In this review, we provide an operational overview of three of five femtosecond laser platforms that are currently commercially available: the Catalys (USA), the Victus (USA), and the LDV Z8 (Switzerland). PMID:26483973

  10. Two-octave spectral broadening of subnanojoule Cr:forsterite femtosecond laser pulses in tapered fibers

    NASA Astrophysics Data System (ADS)

    Akimov, D. A.; Ivanov, A. A.; Alfimov, M. V.; Bagayev, S. N.; Birks, T. A.; Wadsworth, W. J.; Russell, P. St. J.; Fedotov, A. B.; Pivtsov, V. S.; Podshivalov, A. A.; Zheltikov, A. M.

    Spectral broadening of femtosecond Cr:forsterite laser pulses is enhanced due to the use of tapered fibers. Supercontinuum generation with unamplified subnanojoule femtosecond Cr:forsterite laser pulses is observed for the first time. With 40-fs 0.6-nJ pulses of 1.25-μm Cr:forsterite laser radiation coupled into a tapered fiber having a taper waist diameter of about 2 μm and a taper waist length of 90 mm, we observed the spectra spanning more than two octaves at the output of the fiber in the regime of anomalous group-velocity dispersion. This result opens the way for the creation of compact femtosecond Cr:forsterite laser plus tapered fiber systems for optical metrology and biomedical applications.

  11. Fabrication of a periodic structure with a high refractive-index difference by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Takeshima, Nobuhito; Kuroiwa, Yutaka; Narita, Yoshihiro; Tanaka, Shuhei; Hirao, Kazuyuki

    2004-08-01

    A microfabrication process using ultrafast laser pulses in glass was investigated. We investigated the formation of semiconductors by the irradiation of glasses with femtosecond laser pulses. ZnS- or PbS-doped SiO2-Al2O3-B2O3-CaO-ZnO-Na2O-K2O glasses were prepared by a melting method and irradiated by femtosecond laser pulses. Periodic structures in the sample glasses with a high refractive index difference were produced by femtosecond laser pulses. The maximum relative refractive index difference between the irradiated area and the nonirradiated areas was 20%. Diffraction gratings were also fabricated inside the ZnS- or PbS-doped silicate glasses. The diffraction efficiency of these gratings was approximately 90% in the infrared region.

  12. Femtosecond laser-assisted cataract surgery-current status and future directions.

    PubMed

    Grewal, Dilraj S; Schultz, Tim; Basti, Surendra; Dick, H Burkhard

    2016-01-01

    Femtosecond laser-assisted cataract surgery (FLACS) putatively offers several advantages over conventional phacoemulsification. We review the current status of FLACS and discuss the evolution of femtosecond lasers in cataract surgery and the currently available femtosecond laser platforms. We summarize the outcomes of FLACS for corneal wound creation, limbal relaxing incisions, capsulotomy, and lens fragmentation. We discuss surgical planning, preoperative considerations, clinical experiences including the learning curve and postoperative outcomes with FLACS, and also the cost effectiveness of FLACS. We present the intraoperative complications and management of challenging cases where FLACS offers an advantage and also speculate on the future directions with FLACS. Further advancements in laser technology to refine its efficacy, advancement in intraocular lens design to harness the potential benefits of FLACS, and a reduction in cost are needed to establish a clear superiority over conventional phacoemulsification. PMID:26409902

  13. A Comparison of Different Operating Systems for Femtosecond Lasers in Cataract Surgery

    PubMed Central

    Wu, B. M.; Williams, G. P.; Tan, A.; Mehta, J. S.

    2015-01-01

    The introduction of femtosecond lasers is potentially a major shift in the way we approach cataract surgery. The development of increasingly sophisticated intraocular lenses (IOLs), coupled with heightened patient expectation of high quality postsurgical visual outcomes, has generated the need for a more precise, highly reproducible and standardized method to carry out cataract operations. As femtosecond laser-assisted cataract surgery (FLACS) becomes more commonplace in surgical centers, further evaluation of the potential risks and benefits needs to be established, particularly in the medium/long term effects. Healthcare administrators will also have to weigh and balance out the financial costs of these lasers relative to the advantages they put forth. In this review, we provide an operational overview of three of five femtosecond laser platforms that are currently commercially available: the Catalys (USA), the Victus (USA), and the LDV Z8 (Switzerland). PMID:26483973

  14. Infrared antireflection DLC films by femtosecond pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Wang, Shuyun; Guo, Yanlong; Wang, Xiaobing; Cheng, Yong; Wang, Huisheng; Liu, Xu

    2009-05-01

    Diamond-like Carbon(DLC) films are deposited by Ti:Sapphire femtosecond pulsed laser(800nm, 120fs-2ps, 3.3W, 1-1000Hz) at room temperature. The substrate is n-type Si(100), and the target is 99.999%-purity graphite. After a great lot of experiments, optimal technical parameters, which are 1000Hz repetition frequency, 120fs pulse-width, 5cm-distance between target and underlay and 1014W/cm2 power-density, were used to deposite 443nm thick DLC film. Raman spectrum measurement shows a broad peak with a center at 1550 cm-1 for all films, similar to those of typical diamond-like carbon films prepared using other methods. And sp3-bond content reaches 67% analyzed by XPS. There is no nick on the film when scraped 105 times by a RS-5600 friction test machine under the pressure of 9.8N. The infrared transmittance increases along with the oxygen pressure when between 0.03 Pa and 2 Pa. The result shows that oxygen is effective in etching sp2-bond content. The extreme infrared transmittance of Si slice deposited DLC film on single surface is higher than 64% at 3-5μm, superior to 53% when being uncoated.

  15. Adaptable acylindrical microlenses fabricated by femtosecond laser micromachining

    NASA Astrophysics Data System (ADS)

    Paiè, Petra; Bragheri, Francesca; Claude, Theo; Osellame, Roberto

    2015-03-01

    Microfluidic lenses are a powerful tool for many lab on a chip applications ranging from sensing to detection and also to imaging purpose, with the great advantage to increase the degree of integration and compactness of these micro devices. In this work we present the realization of such a compact microfluidic lens with reconfigurable optical properties. The technique used to realize the device we present is femtosecond laser micromachining followed by chemical etching, which allows to easily fabricate 3D microfluidic devices with an arbitrary shape. Thanks to that it has been possible to easily fabricate different lens made up by cylindrical microchannel in fused silica glasses filled with liquids with a proper refractive index. The optical properties of these devices are tested and shown to be in a good agreement with the theoretical model previously implemented. Furthermore we have also optimized the design of these microlenses in order to reduce the effects of spherical aberrations in the focal region, thus allowing us to obtain a set of different acylindrical microfluidic lenses, whose validation is also reported. In this work the lens adaptability can be achieved by replacing the liquid inside the microchannel, so that we can easily tune the feature of the focused beam. Thus increasing the possible range of applications of these micro optical elements, as an example we report on the validation of the device as a fast integrated optofluidic shutter.

  16. Minimum visible retinal lesions from pico- and femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Roach, William P.; Toth, Cynthia A.; Stein, Cindy D.; Noojin, Gary D.; Stolarski, David J.; Cain, Clarence P.

    1994-08-01

    Threshold measurements for Minimum Visible Lesions (MVL) at the retina are reported for femtosecond (fs) and picosecond (ps) laser pulses in Rhesus monkey eyes using visible wavelengths. The 50% probability for damage (ED50) dosages are calculated for 1 hour and 24 hour post-exposures at the 95% confidence level. The ED50 values are found to decrease with pulsewidth down to 600 fs. At 90 fs the ED50 dosages were noted to increase slightly when compared with the 3 ps and 600 fs values. Fluorescein angiography (FA) was accomplished at both 1 hour and 24 hour post-exposure and did not demonstrate lower threshold for damage, which has been the case for MVL's created with longer pulse durations (>= nanoseconds). At the 90 fs pulse duration, MVLs were not observed below 0.1 (mu) J. At energies greater than 0.1 (mu) J, both MVL and the absence of MVL's were observed up to 1.4 (mu) J. Above 1.4 (mu) J all energies delivered showed MVL development. Out of 138 data points taken at 90 fs, 94 were between 0.1 and 14 (mu) J, and the observed lesions are distributed with approximately 50% probability throughout this energy rate.

  17. Femtosecond laser capsulotomy versus manual capsulotomy: a Meta-analysis

    PubMed Central

    Qian, Dao-Wei; Guo, Hai-Ke; Jin, Shang-Li; Zhang, Hong-Yang; Li, Yuan-Cun

    2016-01-01

    AIM To perform a Meta-analysis on the precision and safety of femtosecond laser (FSL) capsulotomy compared with manual continuous curvilinear capsulotomy (CCC). METHODS We searched PubMed, EMBASE, Web of Science, the Cochrane Library databases, and Clinical Trials.gov that maintained our inclusion criteria. Reference lists of retrieved articles were also reviewed. The effects of morphology of capsulorhexis and the tears of anterior capsule were calculated by using random-effect models. RESULTS We identified 4 randomized and 7 nonrandomized studies involving 2941 eyes. The diameter of capsulotomy and the rates of anterior capsule tear showed no statistically difference between FSL group and manual group (MD=0.03; 95%CI, -0.03 to 0.09, P=0.31), and (OR=1.40; 95%CI, 0.28 to 6.97, P=0.68) respectively. In terms of the circularity of capsulotomy, FSL group had a more significant advantage than the manual CCC group (MD=0.09; 95%CI, 0.05 to 0.12, P<0.0001). CONCLUSION Our Meta-analysis shows that FSL can perform a capsulotomy with more precision and higher reliability than manual CCC. The results in diameter of capsulotomy and the rate of anterior capsule tears was no significant difference between FSL and manual CCC groups. However in terms of circularity, the FSL was superior to the manual procedure. PMID:27158620

  18. Enhanced efficiency of solar-driven thermoelectric generator with femtosecond laser-textured metals.

    PubMed

    Hwang, Taek Yong; Vorobyev, A Y; Guo, Chunlei

    2011-07-01

    Through femtosecond laser irradiation, we produce in this work a unique type of surface nanostructure on Al that have enhanced absorption at UV and visible but a relatively small emissivity in infrared. By integrating this laser-treated Al to a solar-driven thermoelectric generator, we show that the thermoelectric generator integrated with the femtosecond laser-treated Al foil generates a significantly higher power than the ones without. Our study shows that our technique can dramatically enhance the efficiency of solar-driven thermoelectric devices that may lead to a leap forward in solar energy harnessing. PMID:21747551

  19. Plasma density inside a femtosecond laser filament in air: strong dependence on external focusing.

    PubMed

    Théberge, Francis; Liu, Weiwei; Simard, Patrick Tr; Becker, Andreas; Chin, See Leang

    2006-09-01

    Our experiment shows that external focusing strongly influences the plasma density and the diameter of femtosecond Ti-sapphire laser filaments generated in air. The control of plasma filament parameters is suitable for many applications such as remote spectroscopy, laser induced electrical discharge, and femtosecond laser material interactions. The measurements of the filament showed the plasma density increases from 10(15)cm(-3) to 2 x 10(18)cm(-3) when the focal length decreases from 380 cm to 10 cm while the diameter of the plasma column varies from 30 microm to 90 microm. The experimental results are in good qualitative agreement with the results of numerical simulations. PMID:17025753

  20. Micro/Nano-Structuring of Medical Stainless Steel using Femtosecond Laser Pulses

    NASA Astrophysics Data System (ADS)

    Lin, C. Y.; Cheng, C. W.; Ou, K. L.

    The medical stainless steel (SUS 304) surface is irradiated by femtosecond laser pulses with linear or circular polarization to form nanostructure-covered conical microstructures. The mean spacing of the conical microstructures and the type of the nanostructure can be controlled by the laser-processing parameters. The liquid test (water and normal-saline solution) demonstrates that the process provides a fast single-step structuring method to generate hydrophobic-enhanced metal parts. The biocompatibility test demonstrated that the femtosecond laser micro/nano- structuring surfaces have excellent biocompatibility properties compared to an untreated surface.

  1. Femtosecond Laser--Pumped Source of Entangled Photons for Quantum Cryptography Applications

    SciTech Connect

    Pan, D.; Donaldson, W.; Sobolewski, R.

    2007-07-31

    We present an experimental setup for generation of entangled-photon pairs via spontaneous parametric down-conversion, based on the femtosecond-pulsed laser. Our entangled-photon source utilizes a 76-MHz-repetition-rate, 100-fs-pulse-width, mode-locked, ultrafast femtosecond laser, which can produce, on average, more photon pairs than a cw laser of an equal pump power. The resulting entangled pairs are counted by a pair of high-quantum-efficiency, single-photon, silicon avalanche photodiodes. Our apparatus is intended as an efficient source/receiver system for the quantum communications and quantum cryptography applications.

  2. Plasma channels during filamentation of a femtosecond laser pulse with wavefront astigmatism in air

    SciTech Connect

    Dergachev, A A; Kandidov, V P; Shlenov, S A; Ionin, A A; Mokrousova, D V; Seleznev, L V; Sinitsyn, D V; Sunchugasheva, E S; Shustikova, A P

    2014-12-31

    We have demonstrated experimentally and numerically the possibility of controlling parameters of plasma channels formed during filamentation of a femtosecond laser pulse by introducing astigmatism in the laser beam wavefront. It is found that weak astigmatism increases the length of the plasma channel in comparison with the case of aberration-free focusing and that strong astigmatism can cause splitting of the plasma channel into two channels located one after another on the filament axis. (interaction of laser radiation with matter. laser plasma)

  3. Femtosecond laser field induced modifications of electron-transfer processes in Ne{sup +}-He collisions

    SciTech Connect

    Lu Zhenzhong; Chen Deying; Fan Rongwei; Xia Yuanqin

    2012-01-02

    We demonstrate the presence of femtosecond laser induced charge transfer in Ne{sup +}-He collisions. Electron transfer in ion-atom collisions is considerably modified when the collision is embedded in a strong laser field with the laser intensity of {approx}10{sup 15} W/cm{sup 2}. The observed anisotropy of the He{sup +} angular distribution confirms the prediction of early work that the capture probability varies significantly with the laser polarization angle.

  4. Wake Fields Excited in a Micron-Scale Dielectric Rectangular Structure by a Train of Femtosecond Bunches

    NASA Astrophysics Data System (ADS)

    Marshall, T. C.; Fang, J.-M.; Hirshfield, J. L.; Wang, Changbiao; Tarakanov, V. P.; Park, S. Y.

    2002-12-01

    We study the longitudinal wake field components which are induced in a rectangular, dielectric-lined structure having micron-scale dimensions by the passage of one or more charge bunches having femtosecond duration. The bunches would be obtained from a 500 MeV LACARA "chopper" which uses a TW optical wave from a CO2 laser [1]; the bunches are chopped from a macrobunch having duration ˜1 psec obtained from a high brightness 500 MeV rf linac. The high intensity laser wave accomplishes the chopping of the macrobunch into slices which are roughly 10% of the 10.6 μm radiation wavelength. These microbunches can be shaped into a rectangular cross section, approximately 10 μm × 150 μm in dimension, and will excite wake fields when injected into a rectangular dielectric wake field accelerating structure. We compute sample 3D wake fields, using the PIC code KARAT, as well as by means of an analytic method. The passage of just one pC bunch will set up a longitudinal wake field ˜ 40 MeV/m, and a train of ten properly-timed such bunches can produce a cumulative wake field ˜ 600 MeV/m. The choice of dimensions causes the wave solutions to approximate a single-mode excited by an infinitely-tall bunch in a 2D structure; a highly uniform longitudinal wake field in the cross-sectional plane of the structure results, suitable for accelerating a correctly positioned "test bunch". KARAT includes the effect of interference between the Cerenkov radiation of the bunch with the transition radiation emitted as the bunch enters the structure. The wake field structure is several cm in length, and is both rigid and capable of microfabrication accuracy; it could accordingly be a reproducible module in a staged array. The stability of the bunches and the analytic formulation are dealt with in a companion paper [2].

  5. Compact 180-kV Marx generator triggered in atmospheric air by femtosecond laser filaments

    NASA Astrophysics Data System (ADS)

    Arantchouk, L.; Point, G.; Brelet, Y.; Larour, J.; Carbonnel, J.; André, Y.-B.; Mysyrowicz, A.; Houard, A.

    2014-03-01

    We developed a compact Marx generator triggered in atmospheric air by a single femtosecond laser beam undergoing filamentation. Voltage pulses of 180 kV could be generated with a subnanosecond jitter. The same laser beam was also used to initiate simultaneously guided discharges up to 21 cm long at the output of the generator.

  6. Compact 180-kV Marx generator triggered in atmospheric air by femtosecond laser filaments

    SciTech Connect

    Arantchouk, L. Larour, J.; Point, G.; Brelet, Y.; Carbonnel, J.; André, Y.-B.; Mysyrowicz, A.; Houard, A.

    2014-03-10

    We developed a compact Marx generator triggered in atmospheric air by a single femtosecond laser beam undergoing filamentation. Voltage pulses of 180 kV could be generated with a subnanosecond jitter. The same laser beam was also used to initiate simultaneously guided discharges up to 21 cm long at the output of the generator.

  7. Single-cell optoporation and transfection using femtosecond laser and optical tweezers.

    PubMed

    Waleed, Muhammad; Hwang, Sun-Uk; Kim, Jung-Dae; Shabbir, Irfan; Shin, Sang-Mo; Lee, Yong-Gu

    2013-01-01

    In this paper, we demonstrate a new single-cell optoporation and transfection technique using a femtosecond Gaussian laser beam and optical tweezers. Tightly focused near-infrared (NIR) femtosecond laser pulse was employed to transiently perforate the cellular membrane at a single point in MCF-7 cancer cells. A distinct technique was developed by trapping the microparticle using optical tweezers to focus the femtosecond laser precisely on the cell membrane to puncture it. Subsequently, an external gene was introduced in the cell by trapping and inserting the same plasmid-coated microparticle into the optoporated cell using optical tweezers. Various experimental parameters such as femtosecond laser exposure power, exposure time, puncture hole size, exact focusing of the femtosecond laser on the cell membrane, and cell healing time were closely analyzed to create the optimal conditions for cell viability. Following the insertion of plasmid-coated microparticles in the cell, the targeted cells exhibited green fluorescent protein (GFP) under the fluorescent microscope, hence confirming successful transfection into the cell. This new optoporation and transfection technique maximizes the level of selectivity and control over the targeted cell, and this may be a breakthrough method through which to induce controllable genetic changes in the cell. PMID:24049675

  8. Profitability analysis of a femtosecond laser system for cataract surgery using a fuzzy logic approach

    PubMed Central

    Trigueros, José Antonio; Piñero, David P; Ismail, Mahmoud M

    2016-01-01

    AIM To define the financial and management conditions required to introduce a femtosecond laser system for cataract surgery in a clinic using a fuzzy logic approach. METHODS In the simulation performed in the current study, the costs associated to the acquisition and use of a commercially available femtosecond laser platform for cataract surgery (VICTUS, TECHNOLAS Perfect Vision GmbH, Bausch & Lomb, Munich, Germany) during a period of 5y were considered. A sensitivity analysis was performed considering such costs and the countable amortization of the system during this 5y period. Furthermore, a fuzzy logic analysis was used to obtain an estimation of the money income associated to each femtosecond laser-assisted cataract surgery (G). RESULTS According to the sensitivity analysis, the femtosecond laser system under evaluation can be profitable if 1400 cataract surgeries are performed per year and if each surgery can be invoiced more than $500. In contrast, the fuzzy logic analysis confirmed that the patient had to pay more per surgery, between $661.8 and $667.4 per surgery, without considering the cost of the intraocular lens (IOL). CONCLUSION A profitability of femtosecond laser systems for cataract surgery can be obtained after a detailed financial analysis, especially in those centers with large volumes of patients. The cost of the surgery for patients should be adapted to the real flow of patients with the ability of paying a reasonable range of cost. PMID:27500115

  9. A comparison of the characteristics of excimer and femtosecond laser ablation of acrylonitrile butadiene styrene (ABS)

    NASA Astrophysics Data System (ADS)

    See, Tian Long; Liu, Zhu; Li, Lin; Zhong, Xiang Li

    2016-02-01

    This paper presents an investigation on the ablation characteristics of excimer laser (λ = 248 nm, τ = 15 ns) and femtosecond laser (λ = 800 nm, τ = 100 fs) on ABS polymer sheets. The laser-material interaction parameters (ablation threshold, optical penetration depth and incubation factor) and the changes in material chemical properties were evaluated and compared between the two lasers. The work shows that the ablation threshold and effective optical penetration depth values are dependent on the wavelength of laser beam (photon energy) and the pulse width. The ablation threshold value is lower for the excimer laser ablation of ABS (Fth = 0.087 J/cm2) than that for the femtosecond laser ablation of ABS (Fth = 1.576 J/cm2), demonstrating a more dominating role of laser wavelength than the pulse width in influencing the ablation threshold. The ablation depth versus the logarithmic scale of laser fluence shows two linear regions for the fs laser ablation, not previously known for polymers. The effective optical penetration depth value is lower for excimer laser ablation (α-1 = 223 nm) than that for femtosecond laser ablation (α-1 = 2917 nm). The ablation threshold decreases with increasing number of pulses (NOP) due to the chain scission process that shortens the polymeric chains, resulting in a weaker polymeric configuration and the dependency is governed by the incubation factor. Excimer laser treatment of ABS eliminates the Cdbnd C bond completely through the chain scission process whereas Cdbnd C bond is partially eliminated through the femtosecond laser treatment due to the difference in photon energy of the two laser beams. A reduction in the Cdbnd C bond through the chain scission process creates free radical carbons which then form crosslinks with each other or react with oxygen, nitrogen and water in air producing oxygen-rich (Csbnd O and Cdbnd O bond) and nitrogen-rich (Csbnd N) functional groups.

  10. Femtosecond laser excitation of multiple spin waves and composition dependence of Gilbert damping in full-Heusler Co{sub 2}Fe{sub 1−x}Mn{sub x}Al films

    SciTech Connect

    Cheng, Chuyuan; Li, Shufa; Lai, Tianshu E-mail: jhzhao@red.semi.ac.cn; Meng, Kangkang; Zhao, Jianhua E-mail: jhzhao@red.semi.ac.cn

    2013-12-02

    Spin-wave dynamics in 30 nm thick Co{sub 2}Fe{sub 1−x}Mn{sub x}Al full-Heusler films is investigated using time-resolved magneto-optical polar Kerr spectroscopy under an external field perpendicular to films. Damon-Eshbach (DE) and the first-order perpendicular standing spin-wave (PSSW) modes are observed simultaneously in four samples with x = 0, 0.3, 0.7, and 1. The frequency of DE and PSSW modes does not apparently depend on composition x, but damping of DE mode significantly on x and reaches the minimum as x = 0.7. The efficient coherent excitation of DE spin wave exhibits the promising application of Co{sub 2}Fe{sub 0.3}Mn{sub 0.7}Al films in magnonic devices.

  11. External sclerostomy with the femtosecond laser versus a surgical knife in rabbits

    PubMed Central

    Shi, Yao; Yang, Xiao-Bo; Dai, Neng-Li; Long, Hua; Lu, Pei-Xiang; Jin, Ling; Jiang, Fa-Gang

    2012-01-01

    AIM To experimentally compare the external sclerostomy produced using a femtosecond laser with that made by a surgical knife and to evaluate the healing patterns, efficacy and technical advantages of femtosecond laser sclerostomy. METHODS In a prospective randomized, controlled, masked-observer study, 10 pigmented rabbits underwent external sclerostomy with a femtosecond laser in the right eye; 10 additional rabbits underwent sclerostomy with a surgical superblade in the right eye. Clinical characteristics, which included bleb morphology and intraocular pressure, were recorded for 1 month after surgery. Six additional rabbits underwent external femtosecond laser sclerostomy in the right eye and mechanical sclerostomy in the left eye and were killed at day 14 after surgery. Histologic staining, immunohistochemistry and scanning electron microscopy were subsequently performed to assess the morphology of the filtering fistula. The titanium-sapphire femtosecond laboratory laser was operating at a repetition rate of 1 kHz, 0.4 mJ pulse energy, a central wavelength of 800nm and a pulse duration of 50 femtoseconds. Mann-Whitney and Kaplan-Meier tests were used for statistical analysis. RESULTS Successful complete sclerostomy was achieved in each laser-treated eye which was hit only once by the laser. The laser treated time was approximately 15s-16s. In the laser-treated group (n=16), 2 eyes (12%) developed mild hyphema at the site of entry and 8 eyes (50%) showed transient edema in the corneal periphery adjacent to the laser impact zone. The differences between the groups in duration of function blebs and pressure reduction were statistically significant (P=0.025 and 0.016, respectively). The success rate of the laser-treated group was significantly higher than the knife group (P=0.005). Histologically, the subconjunctival connective tissue was loosely arranged with partially patent sclerostomy in the laser-treated eyes at postoperative day 14. This contrasted with the

  12. Spectroscopic monitoring on irradiation-induced formation of AuAg alloy nanoparticles by femtosecond laser

    NASA Astrophysics Data System (ADS)

    Herbani, Yuliati; Nakamura, Takahiro; Sato, Shunichi

    2016-02-01

    The interaction of an intense femtosecond laser pulses with a neat liquid solvent has been known to produce a number of highly reactive species that are useful to induce chemical reactions in the solution through the nonlinear absorption processes. When metal ions are present in the solution, they are assumed to readily reduce by ions, radicals, molecules or excited states generated photolytically from the solvent resulting in the formation of zerovalent metal nanoalloys. If two kinds of metal precursors are involved in a reduction process, the alloying process is expected. In this work, irradiation-induced synthesis of AuAg bimetallic nanoparticle at different laser-pulse energies was examined to investigate the formation mechanism in the presence of NH4OH in the initial solution. At a given laser pulse energy (5.8 mJ/pulse), the time evolution of the UV-visible absorption spectra showed that the formation of AuAg nanoalloys most likely begin with the formation of Ag-riched alloy nanoparticles. As the reduction is started, the absorption spectrum of solution was closer to that of pure Ag nanoparticles. This indicates that the reduction rate of Ag is relatively greater than that of Au nanoparticle in the presence of ammonia. The single peak position then shifts to the red region as the irradiation time increases. After 10 min, the peak positions are between pure silver and gold peaks indicating the alloying process occurs at this stage. At low pulse energy (1.0 mJ/pulse), there was an induction time for several minutes before the absorption is detectable, and hence the alloying process is also delayed (after 20 minutes irradiation). While the formation rate of nanoparticles is more pronounced at high laser pulse energy, the formation yield is relatively the same for both laser pulse energies.

  13. Terahertz generation and detection using femtosecond mode-locked Yb-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Kong, Moon Sik; Kim, Ji Su; Han, Sang-Pil; Kim, Namje; Moon, Ki Won; Park, Kyung Hyun; Jeon, Min Yong

    2016-02-01

    We successfully demonstrate a THz generation using an ytterbium (Yb)-doped mode-locked femtosecond fiber laser and a home-made low-temperature grown (LTG) InGaAs Photoconductive antenna (PCA) module for THz Time-domain spectroscopy (TDS) systems. The Yb-doped fiber ring laser consists of a pump laser diode (PLD), a wavelength division multiplexer (WDM) coupler, a single-mode fiber (SMF), a 25 cm-long highly Yb-doped fiber, two collimators, two quarter wave plates (QWPs), a half-wave plate (HWP), a 10 nm broadband band pass filter, an isolator, and a polarizing beam splitter (PBS). In order to achieve the passively mode-locked optical short pulse, the nonlinear polarization rotation (NPR) effect is used. The achieved center wavelength and the 3 dB bandwidth of the modelocked fiber laser are 1.03 μm and ~ 15.6 nm, respectively. It has 175 fs duration after pulse compression with 66.2 MHz repetition rate. The average output power of mode-locked laser has more than 275 mW. The LTG-InGaAs PCA modules are used as the emitter and receiver in order to achieve the THz radiation. The PCA modules comprise a hyper-hemispherical Si lens and a log-spiral antenna-integrated LTG-InGaAs PCA chip electronically contacted on a printed circuit board (PCB). An excitation optical average pumping and probing power were ~ 6.3 mW and 5 mW, respectively. The free-space distance between the emitter and the receiver in the THz-TDS system was 70 mm. The spectrum of the THz radiation is achieved higher than 1.5 THz.

  14. Nanosurgery of cells and chromosomes using near-infrared twelve-femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Uchugonova, Aisada; Lessel, Matthias; Nietzsche, Sander; Zeitz, Christian; Jacobs, Karin; Lemke, Cornelius; König, Karsten

    2012-10-01

    Laser-assisted surgery based on multiphoton absorption of near-infrared laser light has great potential for high precision surgery at various depths within the cells and tissues. Clinical applications include refractive surgery (fs-LASIK). The non-contact laser method also supports contamination-free cell nanosurgery. In this paper we describe usage of an ultrashort femtosecond laser scanning microscope for sub-100 nm surgery of human cells and metaphase chromosomes. A mode-locked 85 MHz Ti:Sapphire laser with an M-shaped ultrabroad band spectrum (maxima: 770 nm/830 nm) and an in situ pulse duration at the target ranging from 12 fs up to 3 ps was employed. The effects of laser nanoprocessing in cells and chromosomes have been quantified by atomic force microscopy. These studies demonstrate the potential of extreme ultrashort femtosecond laser pulses at low mean milliwatt powers for sub-100 nm surgery of cells and cellular organelles.

  15. Electron transfer of carbonylmetalate radical pairs: femtosecond visible spectroscopy of optically excited ion pairs

    SciTech Connect

    Wen, X.; Spears, K.G.; Wiederrecht, G.P.; Wasielewski, M.R.

    1997-02-01

    Charge transfer excitation at 640 nm of the cobaltocenium tetracarbonylcobaltate ion pair, [Cp{sub 2}Co{sup +}{vert_bar}Co(CO){sub 4}{sup -}], was monitored in 1,2- dichloroethane solution by femtosecond transient visible absorption spectroscopy. The absorption prepares a neutral radical pair that can undergo spontaneous back electron transfer, and which shows a double peaked spectrum with features at 760 and 815 nm at 3 ps delay time. Transient decay times of 5.8{+-}0.5 ps were measured by monitoring the decay of Co(CO){sub 4} at 757 nm and 780 nm, and these are assigned to the back electron transfer step. The ET kinetics are consistent with the previously reported rates of electron transfer that were measured for specific vibrational states by picosecond transient IR.

  16. Femtosecond laser ablation dynamics of fused silica extracted from oscillation of time-resolved reflectivity

    SciTech Connect

    Kumada, Takayuki Akagi, Hiroshi; Itakura, Ryuji; Otobe, Tomohito; Yokoyama, Atsushi

    2014-03-14

    Femtosecond laser ablation dynamics of fused silica is examined via time-resolved reflectivity measurements. After optical breakdown was caused by irradiation of a pump pulse with fluence F{sub pump} = 3.3–14.9 J/cm{sup 2}, the reflectivity oscillated with a period of 63 ± 2 ps for a wavelength λ = 795 nm. The period was reduced by half for λ = 398 nm. We ascribe the oscillation to the interference between the probe pulses reflected from the front and rear surfaces of the photo-excited molten fused silica layer. The time-resolved reflectivity agrees closely with a model comprising a photo-excited layer which expands due to the formation of voids, and then separates into two parts, one of which is left on the sample surface and the other separated as a molten thin layer from the surface by the spallation mechanism. Such oscillations were not observed in the reflectivity of soda-lime glass. Whether the reflectivity oscillates or not probably depends on the layer viscosity while in a molten state. Since viscosity of the molten fused silica is several orders of magnitude higher than that of the soda-lime glass at the same temperature, fused silica forms a molten thin layer that reflects the probe pulse, whereas the soda-lime glass is fragmented into clusters.

  17. Pressure-induced phase transformations during femtosecond-laser doping of silicon

    NASA Astrophysics Data System (ADS)

    Smith, Matthew J.; Lin, Yu-Ting; Sher, Meng-Ju; Winkler, Mark T.; Mazur, Eric; Gradečak, Silvija

    2011-09-01

    Silicon hyperdoped with chalcogens via femtosecond-laser irradiation exhibits unique near-unity sub-bandgap absorptance extending into the infrared region. The intense light-matter interactions that occur during femtosecond-laser doping produce pressure waves sufficient to induce phase transformations in silicon, resulting in the formation of metastable polymorphic phases, but their exact formation mechanism and influence on the doping process are still unknown. We report direct observations of these phases, describe their formation and distribution, and consider their potential impact on sub-bandgap absorptance. Specifically, the transformation from diamond cubic Si-I to pressure-induced polymorphic crystal structures (amorphous Si, Si-XII, and Si-III) during femtosecond-laser irradiation was investigated using scanning electron microscopy, Raman spectroscopy, and transmission electron microscopy. Amorphous Si, Si-XII, and Si-III were found to form in femtosecond-laser doped silicon regardless of the presence of a gaseous or thin-film dopant precursor. The rate of pressure loading and unloading induced by femtosecond-laser irradiation kinetically limits the formation of pressure-induced phases, producing regions of amorphous Si 20 to 200 nm in size and nanocrystals of Si-XII and Si-III. The surface texturing that occurs during femtosecond-laser irradiation produces inhomogeneous pressure distributions across the surface and causes delayed development of high-pressure silicon polymorphs over many laser pulses. Finally, we find that the polymorph phases disappear during annealing more rapidly than the sub-bandgap absorptance decreases, enabling us to decouple these two processes through post-treatment annealing.

  18. Microfabrication of optical elements with femtosecond Ti:sapphire laser oscillator

    NASA Astrophysics Data System (ADS)

    Sun, Xiaohui; Zhou, Changhe; Liu, Liren; Yu, Bingkun

    2004-10-01

    We demonstrate experimentally fabrication of optical elements with femtosecond pulses. The laser source we adopted is a low power Ti: sapphire laser oscillator, with a central wavelength of 790 nm and pulse duration of 100 fs. Positive-photoresist-film-coated glass substrate acts as the sacrificial material. Due to the extreme high intensity of the tightly focused femtosecond laser beam, nonlinear processing occurred between photoresist and the laser pulses, which enable the sub-micron feature processing. In the experiments, we use a translational stage that is controlled by a computer to accurately move for fabrication of optical elements with high precision. Various gratings and phase plates are fabricated by this method. The obtained gratings patterns are checked with a conventional optical microscopy. The fabricating widths and depths are measured with the Taylor Hobson equipment. With the same method, photomask for microelectronics can also be fabricated. From the experimental results, we see that a high processing precision and the feature size exceeding the diffraction limit can be achieved with this method. This technique can be applied to the fields of microoptics and microelectronics. The mechanism between femtosecond laser and photoresist is also investigated. The processing mechanics is considered as laser ablation and nonlinear two-photon absorption phenomenon. Fabrication of optical elements with femtosecond laser reflects a new trend for fabrication of microoptical elements.

  19. Thermodynamics of nanosecond nanobubble formation at laser-excited metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Siems, A.; Weber, S. A. L.; Boneberg, J.; Plech, A.

    2011-04-01

    The nonlinear thermal behavior of laser-heated gold nanoparticles in aqueous suspension is determined by time-resolved optical spectroscopy and x-ray scattering. The nanoparticles can be excited transiently to high lattice temperatures owing to their large absorption cross-section and slow heat dissipation to the surrounding. A consequence is the observation of lattice expansion, changed optical transmission, vapor bubble formation or particle melting. The heat transfer equations are solved for two limiting cases of heat pulses shorter and longer than the characteristic cooling time. The results of pulsed excitation with femtosecond and nanosecond lasers are explained by the theoretical prediction, and the bubble formation is interpreted by a spinodal decomposition at the particle-liquid interface. It is shown that both the laser spectroscopy and x-ray scattering results agree qualitatively and quantitatively, underlining the validity of the comprehensive model.

  20. Femtosecond Stimulated Raman Study of Excited-State Evolution in Bacteriorhodopsin

    PubMed Central

    McCamant, David W.; Kukura, Philipp; Mathies, Richard A.

    2005-01-01

    Femtosecond time-resolved stimulated Raman spectroscopy (FSRS) is used to examine the photoisomerization dynamics in the excited state of bacteriorhodopsin. Near-IR stimulated emission is observed in the FSRS probe window that decays with a 400–600-fs time constant. Additionally, dispersive vibrational lines appear at the locations of the ground-state vibrational frequencies and decay with a 260-fs time constant. The dispersive line shapes are caused by a nonlinear effect we term Raman initiated by nonlinear emission (RINE) that generates vibrational coherence on the ground-state surface. Theoretical expressions for the RINE line shapes are developed and used to fit the spectral and temporal evolution of the spectra. The rapid 260-fs decay of the RINE peak intensity, compared to the slower evolution of the stimulated emission, indicates that the excited-state population moves in ∼260 fs to a region on the potential energy surface where the RINE signal is attenuated. This loss of RINE signal is best explained by structural evolution of the excited-state population along multiple low-frequency modes that carry the molecule out of the harmonic photochemically inactive Franck–Condon region and into the photochemically active geometry. PMID:16852266