Science.gov

Sample records for fermented yacon smallanthus

  1. Comparison of Yacon (Smallanthus sonchifolius) Tuber with Commercialized Fructo-oligosaccharides (FOS) in Terms of Physiology, Fermentation Products and Intestinal Microbial Communities in Rats.

    PubMed

    Utami, Ni Wayan Arya; Sone, Teruo; Tanaka, Michiko; Nakatsu, Cindy H; Saito, Akihiko; Asano, Kozo

    2013-01-01

    The yacon (Smallanthus sonchifolius) tuber was examined with regard to its prebiotic effects compared with commercialized fructo-oligosaccharides (FOS). A feed containing 10% yacon tuber, which is equivalent to 5% commercialized FOS in terms of the amount of fructo-oligosaccharides (GF2, GF3 and GF4), was administrated to rats for 28 days. The yacon diet changed the intestinal microbial communities beginning in the first week, resulting in a twofold greater concentration of cecal short-chain fatty acids (SCFAs). The SCFA composition differed, but the cecal pH in rats fed yacon tuber was equal to that in rats fed FOS. Serum triglycerides were lower in rats fed yacon compared with rats fed FOS and the control diet. Cecal size was greater with the yacon tuber diet compared with the control diet. The abundant fermentation in the intestines created a selective environment for the intestinal microbiota, which included Lactobacillus acidophilus, Bifidobacterium pseudolongum, Bifidobacterium animalis and Barnesiella spp. according to identification with culture-independent analysis, 16S rRNA gene PCR-DGGE combined with cloning and sequencing. Barnesiella spp. and B. pseudolongum were only found in the rats fed the yacon diet, while L. acidophilus and B. animalis were found in abundance in rats fed both the yacon and FOS diets. The genus Barnesiella has not previously been reported to be associated with yacon or FOS fermentation. We concluded that the physiological and microbiological effects of the yacon tuber were different from those of FOS. Differences in cecal size, blood triglycerides and microbial community profiles including their metabolites (SCFAs) between the yacon tuber and FOS were shown to be more greatly affected by the yacon tuber rather than FOS. PMID:24936376

  2. Comparison of Yacon (Smallanthus sonchifolius) Tuber with Commercialized Fructo-oligosaccharides (FOS) in Terms of Physiology, Fermentation Products and Intestinal Microbial Communities in Rats

    PubMed Central

    UTAMI, Ni Wayan Arya; SONE, Teruo; TANAKA, Michiko; NAKATSU, Cindy H; SAITO, Akihiko; ASANO, Kozo

    2013-01-01

    The yacon (Smallanthus sonchifolius) tuber was examined with regard to its prebiotic effects compared with commercialized fructo-oligosaccharides (FOS). A feed containing 10% yacon tuber, which is equivalent to 5% commercialized FOS in terms of the amount of fructo-oligosaccharides (GF2, GF3 and GF4), was administrated to rats for 28 days. The yacon diet changed the intestinal microbial communities beginning in the first week, resulting in a twofold greater concentration of cecal short-chain fatty acids (SCFAs). The SCFA composition differed, but the cecal pH in rats fed yacon tuber was equal to that in rats fed FOS. Serum triglycerides were lower in rats fed yacon compared with rats fed FOS and the control diet. Cecal size was greater with the yacon tuber diet compared with the control diet. The abundant fermentation in the intestines created a selective environment for the intestinal microbiota, which included Lactobacillus acidophilus, Bifidobacterium pseudolongum, Bifidobacterium animalis and Barnesiella spp. according to identification with culture-independent analysis, 16S rRNA gene PCR-DGGE combined with cloning and sequencing. Barnesiella spp. and B. pseudolongum were only found in the rats fed the yacon diet, while L. acidophilus and B. animalis were found in abundance in rats fed both the yacon and FOS diets. The genus Barnesiella has not previously been reported to be associated with yacon or FOS fermentation. We concluded that the physiological and microbiological effects of the yacon tuber were different from those of FOS. Differences in cecal size, blood triglycerides and microbial community profiles including their metabolites (SCFAs) between the yacon tuber and FOS were shown to be more greatly affected by the yacon tuber rather than FOS. PMID:24936376

  3. Yacon (Smallanthus sonchifolius): a functional food.

    PubMed

    Delgado, Grethel Teresa Choque; Tamashiro, Wirla Maria da Silva Cunha; Maróstica Junior, Mário Roberto; Pastore, Glaucia Maria

    2013-09-01

    Yacon (Smallanthus sonchifolius) is an Andean tuberous root that is regarded as a functional food given that it contains fructooligosaccharides (FOS), inulin and phenolic compounds. The consumption of FOS and inulin improves the growth of bifidobacteria in the colon, enhances mineral absorption and gastrointestinal metabolism and plays a role in the regulation of serum cholesterol. Furthermore, the literature reports that the consumption of these prebiotics promotes a positive modulation of the immune system, improving resistance to infections and allergic reactions. Certain studies have demonstrated the potential of yacon as an alternative food source for those patients with conditions that require dietary changes. This review intends to describe the potential of yacon as a prebiotic and its cultivation and industrial processing for human consumption. PMID:23709016

  4. Polyphenol oxidase from yacon roots (Smallanthus sonchifolius).

    PubMed

    Neves, Valdir Augusto; da Silva, Maraiza Aparecida

    2007-03-21

    Polyphenol oxidase (E.C. 1.14.18.1) (PPO) extracted from yacon roots (Smallanthus sonchifolius) was partially purified by ammonium sulfate fractionation and separation on Sephadex G-100. The enzyme had a molecular weight of 45 490+/-3500 Da and Km values of 0.23, 1.14, 1.34, and 5.0 mM for the substrates caffeic acid, chlorogenic acid, 4-methylcatechol, and catechol, respectively. When assayed with resorcinol, DL-DOPA, pyrogallol, protocatechuic, p-coumaric, ferulic, and cinnamic acids, catechin, and quercetin, the PPO showed no activity. The optimum pH varied from 5.0 to 6.6, depending on substrate. PPO activity was inhibited by various phenolic and nonphenolic compounds. p-Coumaric and cinnamic acids showed competitive inhibition, with Ki values of 0.017 and 0.011 mM, respectively, using chlorogenic acid as substrate. Heat inactivation from 60 to 90 degrees C showed the enzyme to be relatively stable at 60-70 degrees C, with progressive inactivation when incubated at 80 and 90 degrees C. The Ea (apparent activation energy) for inactivation was 93.69 kJ mol-1. Sucrose, maltose, glucose, fructose, and trehalose at high concentrations appeared to protect yacon PPO against thermal inactivation at 75 and 80 degrees C. PMID:17316020

  5. Andean yacon root (Smallanthus sonchifolius Poepp. Endl) fructooligosaccharides as a potential novel source of prebiotics.

    PubMed

    Pedreschi, Romina; Campos, David; Noratto, Giuliana; Chirinos, Rosana; Cisneros-Zevallos, Luis

    2003-08-27

    The ability of three known probiotic strains (two lactobacilli and one bifidobacterium) to ferment fructooligosaccharides (FOS) from yacon roots (Smallanthus sonchifolius Poepp. Endl) was compared to commercial FOS in this study. Results indicate that Lactobacillus acidophilus NRRL-1910, Lactobacillus plantarum NRRL B-4496, and Bifidobacterium bifidum ATCC 15696 were able to ferment yacon root FOS. FOS consumption apparently depended on the degree of polymerization and the initial FOS composition. L. plantarum NRRL B-4496 and L. acidophilus NRRL B-1910 completely utilized 1-kestose molecules, while B. bifidum was able to utilize 1-kestose molecules as well as molecules with a higher degree of polymerization. PMID:12926870

  6. Yacon (Smallanthus sonchifolius) as a Food Supplement: Health-Promoting Benefits of Fructooligosaccharides

    PubMed Central

    Caetano, Brunno F. R.; de Moura, Nelci A.; Almeida, Ana P. S.; Dias, Marcos C.; Sivieri, Kátia; Barbisan, Luís F.

    2016-01-01

    Yacon (Smallanthus sonchifolius), a perennial plant of the family Asteraceae native to the Andean regions of South America, is an abundant source of fructooligosaccharides (FOS). This comprehensive review of the literature addressed the role of yacon supplementation in promoting health and reducing the risk of chronic diseases. According to several preclinical and clinical trials, FOS intake favors the growth of health-promoting bacteria while reducing pathogenic bacteria populations. Moreover, the endproducts of FOS fermentation by the intestinal microbiota, short chain fatty acids (SCFA), act as substrates or signaling molecules in the regulation of the immune response, glucose homeostasis and lipid metabolism. As a result, glycemic levels, body weight and colon cancer risk can be reduced. Based on these findings, most studies reviewed concluded that due to their functional properties, yacon roots may be effectively used as a dietary supplement to prevent and treat chronic diseases. PMID:27455312

  7. Yacon (Smallanthus sonchifolius) as a Food Supplement: Health-Promoting Benefits of Fructooligosaccharides.

    PubMed

    Caetano, Brunno F R; de Moura, Nelci A; Almeida, Ana P S; Dias, Marcos C; Sivieri, Kátia; Barbisan, Luís F

    2016-01-01

    Yacon (Smallanthus sonchifolius), a perennial plant of the family Asteraceae native to the Andean regions of South America, is an abundant source of fructooligosaccharides (FOS). This comprehensive review of the literature addressed the role of yacon supplementation in promoting health and reducing the risk of chronic diseases. According to several preclinical and clinical trials, FOS intake favors the growth of health-promoting bacteria while reducing pathogenic bacteria populations. Moreover, the endproducts of FOS fermentation by the intestinal microbiota, short chain fatty acids (SCFA), act as substrates or signaling molecules in the regulation of the immune response, glucose homeostasis and lipid metabolism. As a result, glycemic levels, body weight and colon cancer risk can be reduced. Based on these findings, most studies reviewed concluded that due to their functional properties, yacon roots may be effectively used as a dietary supplement to prevent and treat chronic diseases. PMID:27455312

  8. Oligofructans content and yield of yacon (Smallanthus sonchifolius) cultivated in Mississippi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Smallanthus sonchifolius (Poepp. & Endl.) H. Robinson (Asteraceae), also known as yacon, is an herbaceous tropical species native to the high mountains of Andes. It has been introduced to several countries, including Japan and Brazil. We are attempting to acclimatize yacon to Mississippi as a poten...

  9. Caffeic acid derivatives in the roots of yacon (Smallanthus sonchifolius).

    PubMed

    Takenaka, Makiko; Yan, Xiaojun; Ono, Hiroshi; Yoshida, Mitsuru; Nagata, Tadahiro; Nakanishi, Tateo

    2003-01-29

    Five caffeic acid derivatives were found in the roots of yacon, Smallanthus sonchifolius (Poepp. and Endl.) H. Robinson, Asteraceae, as the major water-soluble phenolic compounds. The structures of these compounds were determined by analysis of spectroscopic data. Two of these were chlorogenic acid (3-caffeoylquinic acid) and 3,5-dicaffeoylquinic acid, common phenolic compounds in plants of the family Asteraceae. Three were esters of caffeic acid with the hydroxy groups of aldaric acid, derived from hexose. The structure of the aldaric moiety was determined by hydrolysis and comparison of NMR spectra with those of standard aldaric acids. The compounds were novel caffeic acid esters of altraric acid: 2,4- or 3,5-dicaffeoylaltraric acid, 2,5-dicaffeoylaltraric acid, and 2,3,5- or 2,4,5-tricaffeoylaltraric acid. PMID:12537459

  10. Yacon (Smallanthus sonchifolius): a food with multiple functions.

    PubMed

    de Almeida Paula, Hudsara Aparecida; Abranches, Monise Viana; de Luces Fortes Ferreira, Célia Lúcia

    2015-01-01

    Functional foods are the focus of many studies worldwide. This is justified by the effects they have on public health and thus interest in elucidation of the mechanisms involved in their actions. The present review aims to broaden the discussions of the functional properties attributed to yacon (Smallanthus sonchifolius), considered a food with multiple functions since it possesses bioactive compounds (antimicrobial, antioxidant, and probiotic substances) that exert beneficial effects on the body. Although some studies have already demonstrated several of these functions, clinical evidence is scarce, making it necessary that more studies are conducted in this area. Still, since the availability of this food in the market is relatively new, its popularity depends on publications aimed at consumer education and development of new products by the food industry. PMID:24915403

  11. Extraction and identification of antioxidants in the roots of yacon (Smallanthus sonchifolius).

    PubMed

    Yan, X; Suzuki, M; Ohnishi-Kameyama, M; Sada, Y; Nakanishi, T; Nagata, T

    1999-11-01

    Yacon, Smallanthus sonchifolius (Poepp. & Endl.) H. Robinson, Asteraceae, an important economic species grown for its juicy tuberous root, is potentially beneficial in the diet to diabetics. The antioxidative activity of yacon root was studied by 1, 1-diphenyl-2-picrylhydrazyl (DPPH) assay. Antioxidants were extracted by methanol and isolated and purified by gel permeation chromatography and preparative reverse-phase HPLC. Two of the major antioxidants were identified as chlorogenic acid and tryptophan by NMR and mass spectrometry. PMID:10552877

  12. Protective effects of yacon (Smallanthus sonchifolius) intake on experimental colon carcinogenesis.

    PubMed

    de Moura, Nelci A; Caetano, Brunno F R; Sivieri, Kátia; Urbano, Luis H; Cabello, Claudio; Rodrigues, Maria A M; Barbisan, Luis F

    2012-08-01

    Yacon (Smallanthus sonchifolius), a tuberous root native to the Andean region of South America, contains high concentration of fructans with potential for colon cancer prevention. This study investigated the potential beneficial of yacon intake on colon carcinogenesis induced by 1,2-dimethylhydrazine (DMH) in male Wistar rats. After 4 weeks of DMH-initiation, groups were fed basal diet (G1 and G6) or basal diet containing dried extract of yacon root at 0.5% (G2), 1.0% (G3 and G5) or a synbiotic formulation (G4) (1.0% yacon plus Lactobacillus casei at 2.5 × 10(10)CFU per g diet) for 13 weeks. At week 20, a significant reduction in number and multiplicity of aberrant crypt foci (ACF) and in number of invasive adenocarcinomas was observed in the groups orally treated with 1.0% yacon (G3) or the synbiotic formulation (G4) (0.05yacon (G3) or the synbiotic formulation (G4). Therefore, the findings this study indicate that yacon and yacon plus L. casei intake may reduce the development of chemically-induced colon cancer. PMID:22595329

  13. Antioxidant properties of sterilized yacon (Smallanthus sonchifolius) tuber flour.

    PubMed

    Sousa, Sérgio; Pinto, Jorge; Rodrigues, César; Gião, Maria; Pereira, Claúdia; Tavaria, Freni; Malcata, F Xavier; Gomes, Ana; Bertoldo Pacheco, M T; Pintado, Manuela

    2015-12-01

    The objective of this research work was to investigate the antioxidant properties of sterilized yacon tuber flour. The results revealed for the first time the high antioxidant activity of sterilized yacon flour. The best extract obtained by boiling 8.9% (w/v) of yacon flour in deionised water for 10 min exhibited a total antioxidant capacity of 222±2 mg (ascorbic acid equivalent)/100 g DW and a total polyphenol content of 275±3 mg (gallic acid equivalent)/100 g DW associated to the presence of four main phenolic compounds: chlorogenic acid, caffeic acid, coumaric acid and protocatechuic acid, as well as the amino acid tryptophan. The most abundant was chlorogenic acid, followed by caffeic acid. Biological assays revealed that the extract had indeed antioxidant protection, and no pro-oxidant activity. In conclusion, sterilized yacon tuber flour has the potential to be used in the food industry as a food ingredient to produce functional food products. PMID:26041224

  14. Purification and identification of antimicrobial sesquiterpene lactones from yacon (Smallanthus sonchifolius) leaves.

    PubMed

    Lin, Fengqiu; Hasegawa, Morifumi; Kodama, Osamu

    2003-10-01

    The extraction of yacon [Smallanthus sonchifolius (Poepp. and Endl.) H. Robinson; Asteraceae] leaves and chromatographic separation yielded two new antibacterial melampolide-type sesquiterpene lactones, 8beta-tigloyloxymelampolid-14-oic acid methyl ester and 8beta-methacryloyloxymelampolid-14-oic acid methyl ester, as well as the four known melampolides, sonchifolin, uvedalin, enhydrin and fluctuanin. The newly identified compound, 8beta-methacryloyloxymelampolid-14-oic acid methyl ester, exhibited potent antimicrobial activity against Bacillus subtilis and Pyricularia oryzae, while 8beta-tigloyloxymelampolid-14-oic acid methyl ester showed lower activity. Fluctuanin exhibited the strongest antibacterial activity against B. subtilis among these six sesquiterpene lactones. PMID:14586103

  15. New acyclic diterpenic acids from yacon (Smallanthus sonchifolius) leaves.

    PubMed

    Mercado, María I; Coll Aráoz, María V; Grau, Alfredo; Catalán, César A N

    2010-11-01

    Two new acyclic diterpenoids, smaditerpenic acid E (1a) and F (2a), along with nineteen melampolide-type sesquiterpene lactones, six of them not previously reported in yacon, were isolated from the methylene chloride leaf rinse extract. Their structures were elucidated from 1D and 2D NMR experiments and gas chromatography coupled to mass spectrometry. PMID:21213966

  16. Investigation of phenolic acids in yacon (Smallanthus sonchifolius) leaves and tubers.

    PubMed

    Simonovska, Breda; Vovk, Irena; Andrensek, Samo; Valentová, Katerina; Ulrichová, Jitka

    2003-10-17

    Thin-layer chromatographic (TLC) screening of crude extracts of dried leaves and tubers of yacon (Smallanthus sonchifolius, Asteraceae) and products of acid hydrolysis of tubers on the silica gel HPTLC plates using the developing solvents ethyl acetate-formic acid-water (85:10:15, v/v/v) and n-hexane-ethyl acetate-formic acid (20:19:1, v/v/v) proved the presence of chlorogenic, caffeic and ferulic acid. These phenolic acids were isolated from the crude extract of yacon leaves by preparative TLC, and identified after elution by HPLC/MS, as well as by direct injection of the crude extract into the HPLC/MS system. Acid hydrolysis of tubers released the increased amount of phenolic acids (e.g. caffeic acid and ferulic acid), flavonoid quercetin and an unidentified flavonoid, which was detected by TLC analysis. Ferulic acid, isomers of dicaffeoylquinic acid and still an unidentified derivative of chlorogenic acid (Mr = 562) as constituents of yacon leaves and ferulic acid as constituent of yacon tubers are reported here for the first time. These acids gave significant contribution to the radical scavenging activity detected directly on the TLC plate sprayed with 1,1-diphenyl-2-picrylhydrazyl (DPPH). PMID:14601830

  17. Health properties of oca (Oxalis tuberosa) and yacon (Smallanthus sonchifolius).

    PubMed

    Jimenez, María Eugenia; Rossi, Analia; Sammán, Norma

    2015-10-01

    Andean roots and tubers are underexploited crops; many contain compounds beneficial to health, so a greater knowledge of their properties is important for encouraging their consumption. The aim of this work was to study the content of bioactive compounds of yacon and oca and their effect on intestinal health using as a model rats of the Wistar strain. Two varieties of ocas (Overa and Rosada) and yacon, which contain significant amounts of fructooligosaccharides and phenolic compounds, were chosen. Rats of the Wistar strain were fed for two months with diets containing these foods in amounts sufficient to provide 8% of fiber. A significant decrease in pH values and an increment in lactobacilli and bifidobacteria counts in the cecum of rats fed with inulin, oca Rosada and Overa were observed; there was no significant decrease in enterobacteriaceae and enterococci counts. The cecum antioxidant activity was incremented in rats fed with the experimental foods with respect to the control diets. The components of dietary fiber and phenolic compound contents in yacon and oca produce effects that contribute to the intestinal health of the experimental animals. PMID:26237397

  18. Yacon (Smallanthus sonchifolius)-derived fructooligosaccharides improves the immune parameters in the mouse.

    PubMed

    Delgado, Grethel T Choque; Thomé, Rodolfo; Gabriel, Dirce L; Tamashiro, Wirla M S C; Pastore, Glaucia M

    2012-11-01

    Owing to its high contents of fructooligosaccharides (FOSs), the yacon (Smallanthus sonchifolius) root is used in traditional Andean medicine as a substitute for cane sugar in diabetes and for obesity prevention. This study was designed to test the hypothesis that regular consumption of yacon works to improve the immune system. BALB/c mice were fed with the AIN-93 diet supplemented with 5% commercial FOS or either 3% or 5% yacon FOS for 30 consecutive days. Animals in the control group were fed with nonsupplemented ration. Food intake; weight gain; serum levels of IgA, IgM, and IgG; levels of fecal IgA, production of nitric oxide by peritoneal macrophages, frequencies of T and B lymphocytes in the spleen and peripheral blood, T-cell proliferation, and cytokine production were evaluated in all groups. No significant differences were observed in food intake and weight gain when the experimental and control groups were compared. Also, serum levels of IgA, IgM, and IgG; nitric oxide production in peritoneal macrophages; frequencies of T and B lymphocytes in the spleen and peripheral blood; T-cell proliferation; and production of interleukin (IL)-4, interferon-γ, IL-10, and tumor necrosis factor α did not differ in the different groups. The intake of FOS, however, led to a significant reduction of the proinflammatory cytokine IL-1β in macrophage cultures and elevation of the levels of fecal IgA. Together, these results indicate that the daily consumption of yacon does not exert negative effects on the immune system, helps to preserve an anti-inflammatory state in phagocytic cells, and improves mucosal immunity, possibly preventing the risks associated with autoimmune and metabolic diseases. PMID:23176799

  19. Characterization of the microbial diversity in yacon spontaneous fermentation

    PubMed Central

    Reina, L. D.; Pérez-Díaz, I. M.; Breidt, F.; Azcarate-Peril, M. A.; Medina, E.; Butz, N.V.

    2015-01-01

    The prebiotic fructooligosaccharides (FOS) content of yacon makes this root an attractive alternative for the supplementation of a variety of food products. The preservation of yacon by fermentation has been proposed as an alternative to increase the probiotic content of the root concomitantly with its shelf life. Thus the fermented yacon could have significant functional content. The objective of this research was to characterize the biochemistry and microbiology of spontaneous yacon fermentation and define the viability of the proposed process. The biochemical analysis of spontaneous heterolactic fermentation of yacon showed a progressive drop in pH with increased lactic and acetic acids, and the production of mannitol during fermentation. The microbial ecology of yacon fermentation was investigated using culture-dependent and culture-independent methods. Bacterial cell counts revealed a dominance of lactic acid bacteria (LAB) over yeasts, which were also present during fermentation. Results showed that the heterofermentative LAB were primarily Leuconostoc species, which dominated the fermentation. The fermentation of yacon by Leuconostoc spp. is thus presented as a viable method to achieve long term preservation of this root. PMID:25777679

  20. Comparison of three different solid-phase microextraction fibres for analysis of essential oils in yacon (Smallanthus sonchifolius) leaves.

    PubMed

    Adam, M; Juklová, M; Bajer, T; Eisner, A; Ventura, K

    2005-08-19

    A headspace solid-phase microextraction (HS-SPME) procedure based on three commercialised fibers (100 microm polydimethylsiloxane, 65 microm polydimethylsiloxane-divinylbenzene and 50/30 microm divinylbenzene-Carboxen-polydimethylsiloxane) is presented for the determination of a selected essential oils in dried leaves of yacon (Smallanthus sonchifolius). The extraction performances of these compounds were compared using fibers with one, two and three coatings. The optimal experimental procedures for the adsorption and desorption of target compounds were determined. Significant parameters affecting sorption process such as sample weight, sorption and desorption time and temperature were optimised and discussed. Finally, the optimised procedures were applied successfully for the determination of these compounds in various yacon species. The relative concentration factors of three characteristic components of yacon were measured for relative evaluation of the fiber efficiency. Main essential oils were isolated from dried yacon leaves by appropriate solid-phase microextraction fiber and semi-quantitative analysis of the target volatiles was conducted by gas chromatography-flame ionisation detection (GC-FID) using a capillary column. Three compounds--beta-pinene, caryophylene and y-cadinene were found as the predominant essential oils. Its relative content was important for specification of yacon varieties. Solid-phase microextraction in combination with gas chromatography enabled a rapid and simple determination of relative content of essential oils in yacon. PMID:16114228

  1. Prebiotic effects of yacon (Smallanthus sonchifolius Poepp. & Endl), a source of fructooligosaccharides and phenolic compounds with antioxidant activity.

    PubMed

    Campos, David; Betalleluz-Pallardel, Indira; Chirinos, Rosana; Aguilar-Galvez, Ana; Noratto, Giuliana; Pedreschi, Romina

    2012-12-01

    Thirty-five different yacon (Smallanthus sonchifolius Poepp. & Endl) accessions were evaluated as potential alternative sources of fructooligosaccharides (FOS) and phenolic type natural antioxidants. FOS, total phenolics (TPC) and antioxidant capacity (AC) contents in the ranges of 6.4-65g/100g of dry mater (DM), 7.9-30.8mg chlorogenic acid (CAE)/g of DM and 23-136μmol trolox equivalente (TE)/g DM were found. Accession AJC 5189 sparked attention for its high FOS content while DPA 07011 for its high TPC and AC. In addition, the prebiotic effect of yacon FOS was tested in vivo with a guinea pig model. A diet rich in yacon FOS promoted the growth of bifidobacteria and lactobacilli, resulting in high levels of short chain fatty acids (SCFAs) in the cecal material and enhancement of cell density and crypt formation in caecum tissue, being indicative of colon health benefits. This study allowed identification of yacon cultivars rich in FOS, AC and/or FOS and AC for nutraceutical applications. PMID:22953898

  2. Dependence of fructooligosaccharide content on activity of fructooligosaccharide-metabolizing enzymes in yacon (Smallanthus sonchifolius) tuberous roots during storage.

    PubMed

    Narai-Kanayama, A; Tokita, N; Aso, K

    2007-08-01

    Tuberous roots of yacon (Smallanthus sonchifolius) accumulate about 10%, on a fresh weight basis, of inulin-type fructooligosacharides (FOSs), known as a food ingredient with various healthy benefits. However, we have a great difficulty to ensure these benefits because FOSs with a lower degree of polymerization (DP) decreased remarkably, and fructose increased when the tuberous roots were stored after harvesting even under previously recommended storage conditions of low temperature with high humidity. In the present study, to elucidate the involvement of FOS-metabolizing enzymes in FOS reduction during storage at 90% relative humidity and 8 degrees C, we extracted a crude protein from yacon tuberous roots and measured the activities of invertase (beta-fructofuranosidase, EC 3.2.1.26), sucrose:sucrose 1-fructosyltransferase (1-SST, EC 2.4.1.99), fructan:fructan 1-fructosyltransferase (1-FFT, EC 2.4.1.100), and fructan 1-exohydrolase (1-FEH, EC 3.2.1.80). The enzyme activities acting on sucrose, both invertase and 1-SST, were weakened after storage for a month. In addition, the activity of 1-FEH acting on short FOSs such as 1-kestose (GF(2)) and 1-nystose (GF(3)) was higher than that of 1-FFT. These results suggest that the continuous decline in FOSs of low DP during storage was dependent mainly on the 1-FEH activity. On the other hand, FOSs with a DP of >or= 9 only slightly decreased in stored yacon tuberous roots during storage, though distinct 1-FEH activity was observed in vitro toward a high-DP inulin-type substrate, indicating that highly polymerized FOSs content was unlikely to be closely connected with the 1-FEH activity. PMID:17995694

  3. Hypolipidemic effect of Smallanthus sonchifolius (yacon) roots on diabetic rats: biochemical approach.

    PubMed

    Habib, Natalia C; Honoré, Stella Maris; Genta, Susana B; Sánchez, Sara S

    2011-10-15

    Fructooligosaccharides (FOS) are sugars found naturally at high concentrations in the storage roots of yacon. This study was designed to analyze the beneficial effects of subchronic oral consumption of yacon root flour as a diet supplement in Streptozotocin-induced diabetic Wistar rats. The experiments were carried out using yacon flour tablets containing the desired level of FOS (340 or 6800mg FOS/kg body weight/day). Yacon flour is a natural product obtained by a simple process of dehydration of yacon roots without added preservatives or chemicals. The administration of FOS-rich yacon flour to diabetic rats for 90days did not significantly alter the body weight of animals throughout the experimental period. Interestingly, a significant decrease in fasting plasma triacylglycerol and very low-density lipoprotein levels were observed. In addition, the treatment was able to protect the diabetic rats of the postprandial peak of plasma triacylglycerol. Yacon-supplemented rats showed an increased insulin-positive pancreatic cell mass distributed in small cell clusters within the exocrine parenchyma, but can only observe a slight increase in fasting plasma insulin levels. Glucagon like peptide-1 content in the cecum was significantly higher in diabetic rats treated with a diet supplemented with yacon flour compared with untreated diabetic animals, accompanied by an important cecal tissue enlargement. All these findings lead us to suggest that this incretin could be an effective mediator of the lipid lowering effects of FOS present in yacon flour. In conclusion, yacon root flour is a natural product rich in FOS that could be well positioned as a nutraceutical product since the present results demonstrate its beneficial effects on diabetes-associated hyperlipidemia. PMID:21907189

  4. Study of the effect exerted by fructo-oligosaccharides from yacon (Smallanthus sonchifolius) root flour in an intestinal infection model with Salmonella Typhimurium.

    PubMed

    Velez, Eva; Castillo, Natalia; Mesón, Oscar; Grau, Alfredo; Bibas Bonet, María E; Perdigón, Gabriela

    2013-06-01

    Beneficial effects of prebiotics like inulin and fructo-oligosaccharides (FOS) have been proven in health and nutrition. Yacon (Smallanthus sonchifolius), an Andean crop, contains FOS (50–70% of its dry weight) and, therefore, is considered a prebiotic. Commercial FOS can upregulate total secretory IgA (S-IgA) in infant mice, prevent infection with Salmonella in swine or enhance immune response for Salmonella vaccine in a mouse model. Previously, we found that administration of yacon root flour regulates gut microbiota balance and has immunomodulatory effects without inflammatory responses. The aim of the present paper is to analyse if yacon prevents enteric infection caused by a strain of Salmonella enteritidis serovar Typhimurium (S. Typhimurium) in a mouse model. BALB/c mice were supplemented with yacon flour (45 d), challenged with S. Typhimurium and killed to study pathogen translocation, total and specific IgA production by ELISA, presence of IgA and other cytokines and Toll-like receptor 4 (TLR4) and clustor of differentiation 206 (CD206) receptors positive cells by immunofluorescence and histological changes. Yacon flour administration had a protective effect from 15 to 30 d of treatment. We found a peak of total S-IgA production without translocation of the pathogen for these periods. At 30 d, there was an increase in IL-6 and macrophage inflammatory proteins-1aþ cells and expression of the receptors CD206 and TLR4. Yacon flour did not have incidence in pathogen-specific S-IgA production. Longer periods (45 d) of administration had no protective effect. Therefore, yacon can prevent enteric infection caused by S. Typhimurium when given up to 30 d; this effect would be mediated by enhancing non-specific immunity, such as total S-IgA, that improves the immunological intestinal barrier. PMID:23137694

  5. Characterization of the microbial diversity in yacon spontaneous fermentation at 20 °C.

    PubMed

    Reina, L D; Pérez-Díaz, I M; Breidt, F; Azcarate-Peril, M A; Medina, E; Butz, N

    2015-06-16

    The prebiotic fructooligosaccharide content of yacon makes this root an attractive alternative for the supplementation of a variety of food products. The preservation of yacon by fermentation has been proposed as an alternative to increase the probiotic content of the root concomitantly with its shelf life. Thus the fermented yacon could have significant functional content. The objective of this research was to characterize the biochemistry and microbiology of spontaneous yacon fermentation with 2% NaCl and define the viability of the proposed process. The biochemical analysis of spontaneous heterolactic fermentation of yacon showed a progressive drop in pH with increased lactic and acetic acids, and the production of mannitol during fermentation. The microbial ecology of yacon fermentation was investigated using culture-dependent and culture-independent methods. Bacterial cell counts revealed a dominance of lactic acid bacteria (LAB) over yeasts, which were also present during the first 2 days of the fermentation. Results showed that the heterofermentative LAB were primarily Leuconostoc species, thus it presents a viable method to achieve long term preservation of this root. PMID:25777679

  6. Improvement of biochemical parameters in type 1 diabetic rats after the roots aqueous extract of yacon [Smallanthus sonchifolius (Poepp.& Endl.)] treatment.

    PubMed

    Oliveira, Gilberto Ornelas; Braga, Camila Pereira; Fernandes, Ana Angélica Henrique

    2013-09-01

    The aim of this study was to evaluate the effect of yacon (Smallanthus sonchifolius) (Poepp.& Endl.) on clinical parameters under diabetic conditions. The aqueous extract of yacon tuberous roots (YRAE; 0.76 g fructan kg⁻¹ body weight) was prepared at the moment of each administration. Thirty-two male rats were divided into four groups (n=8): control group (C); group that received YRAE (Y); untreated diabetic group (DM1); and diabetic group treated with YRAE (Y-DM1). The diabetes mellitus was induced by streptozotocin (60 mg kg⁻¹ body weight). The animals from Y2 and Y-DM1 received YRAE by gavage, at 7-day intervals, for 30 days. The aqueous extract of yacon roots decreased (p<0.05) the water and food intake in diabetic rats (Y-DM1). YRAE treatment reduced (p<0.05) glycaemia, total cholesterol, VLDL-c, LDL-c and triacylglycerol levels in diabetic rats (YRAE). HDL, urea and creatinine levels did not differ (p>0.05) between the Y and Y-DM1 groups. YRAE normalised alanine aminotransferase (ALT) activity, when comparing DM1 and Y-DM1 rats, but had no effect on lactate dehydrogenase activity (LDH). In conclusion, YRAE was sufficient for controlling water and food consumption, hyperglycaemia and dyslipidaemia, and promote the reduction of the ALT, suggesting a hepatoprotective effect in rats with STZ-induced DM1. PMID:23770327

  7. Yacon diet (Smallanthus sonchifolius, Asteraceae) improves hepatic insulin resistance via reducing Trb3 expression in Zucker fa/fa rats

    PubMed Central

    Satoh, H; Audrey Nguyen, M T; Kudoh, A; Watanabe, T

    2013-01-01

    Objective: Yacon is a perennial plant forming a clump of >20 big, edible underground tubers. Yacon, which originates from South America, has become increasingly popular in the Japanese diet for tubers have a lower caloric value and a high fiber content. Recent studies have suggested that yacon feeding ameliorates diabetes as indicated by reduced blood glucose. Methods: We fed male Zucker fa/fa rats for 5 weeks with isocaloric normal chow diet containing from 6.5% control aroid or 6.5% yacon. Insulin sensitivity was evaluated by euglycemic-hyperinsulinemic clamp study. Results: Body weight was comparable between yacon- and aroid-fed rats. In the basal state, yacon feeding had an effect to lower fasting glucose levels from 184.1±4.1 to 167.8±2.7 mg dl−1 (P<0.01), as well as basal hepatic glucose output (HGO) from 9.9±0.4 to 7.4 ± 0.2 mg kg−1 per min (P<0.01). During the clamp studies, the glucose infusion rate required to maintain euglycemia was increased by 12.3% in yacon-fed rat. The insulin suppression of HGO was also increased in yacon-fed rats compared with control rats (85.3±2.4% vs 77.0±3.0% P<0.05), whereas the glucose disposal rate was not different between the two groups. Consistent with the clamp data, the insulin-stimulated phosphorylation of Akt was significantly enhanced in liver but not in skeletal muscle. Furthermore, tribbles 3 (Trb3) expression, which is a negative regulator of Akt activity, was markedly reduced in the liver of yacon-fed rats compared with control rats. Conclusion: These results indicate that the effect of yacon feeding to reduce blood glucose is likely due to its beneficial effects on hepatic insulin sensitivity in the insulin resistant state. PMID:23712282

  8. Characterization of the microbial diversity in yacon spontaneous fermentation at 20 ºC

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The prebiotic fructooligosaccharide content of yaconmakes this root an attractive alternative for the supplementation of a variety of food products. The preservation of yacon by fermentation has been proposed as an alternative to increase the probiotic content of the root concomitantlywith its shelf...

  9. Subchronic 4-month oral toxicity study of dried Smallanthus sonchifolius (yacon) roots as a diet supplement in rats.

    PubMed

    Genta, Susana B; Cabrera, Wilfredo M; Grau, Alfredo; Sánchez, Sara S

    2005-11-01

    Yacon roots are a rich source of fructooligosaccharides (FOS) and have a long use tradition as food in the Andean region. However, there are no published reports regarding their toxicology and use safety. The aim of this study was to analyze the effects of subchronic (4-months) oral consumption of dried yacon root flour as a diet supplement using normal Wistar rats. Two daily intake levels were used, equivalent to 340 mg and 6800 mgFOS/body weight, respectively. Yacon administered as a diet supplement was well tolerated and did not produce any negative response, toxicity or adverse nutritional effect at both intake levels used. Yacon root consumption showed no hypoglycemic activity in normal rats and resulted in significantly reduced post-prandial serum triacylglycerol levels in both doses assayed. Conversely, serum cholesterol reduction was not statistically significant. Cecal hypertrophy was observed in rats fed only the high dose. Our results indicating lack of toxicity and a certain beneficial metabolic activity in normal rats warrant further experiments with normal subjects and patients suffering metabolic disorders. They should also be considered when establishing the regulatory framework of this natural product by national health authorities and international trade agencies. PMID:15979774

  10. Maca (Lepidium meyenii) and yacon (Smallanthus sonchifolius) in combination with silymarin as food supplements: in vivo safety assessment.

    PubMed

    Valentová, Katerina; Stejskal, David; Bartek, Josef; Dvorácková, Svatava; Kren, Vladimír; Ulrichová, Jitka; Simánek, Vilím

    2008-03-01

    Yacon and maca are native Andean crops with growing popularity as food supplements often in combination with other components, e.g. silymarin. There are however no published data on their toxicity and safety in humans. The aim of our randomized placebo-controlled 90-day study was to evaluate the effects of yacon and maca in combination with silymarin on plasma and lipoprotein lipids, serum glucose and safety parameters in patients suffering from the metabolic syndrome. No adverse effects were found in volunteers using silymarin (0.8 g/day), silymarin+yacon (0.8+2.4 g/day) and silymarin+maca (0.6+0.2 g/day). A moderate AST level and diastolic blood pressure increase was found in volunteers using maca (0.6 g/day). In conclusion, the combination silymarin+yacon appears to be promising as a nutraceutical in the prevention of diseases with a proatherogenic lipoprotein profile and liver steatosis. The effect of maca on AST level and blood pressure must be considered when using high doses of maca powder. This effect could be reversed by supplementation with silymarin. PMID:18054420

  11. Iron bioavailability in Wistar rats fed with fortified rice by Ultra Rice technology with or without addition of yacon flour (Smallanthus sonchifolius).

    PubMed

    Della Lucia, Ceres M; Vaz Tostes, Maria das Graças; Silveira, Carlos Mário M; Bordalo, Lívia A; Rodrigues, Fabiana C; Pinheiro-Sant'Ana, Helena Maria; Martino, Hércia S D; Costa, Neuza Maria B

    2013-03-01

    This study aimed to evaluate iron (Fe) bioavailability in Wistar rats fed with rice fortified with micronized ferric pyrophosphate (FP) by Ultra Rice (UR) technology with or without addition of yacon flour as a source of 7.5% of fructooligosaccharides (FOS). Diets were supplied with 12 mg iron/kg from the following sources: ferrous sulfate (FS - control diet), fortified rice with micronized ferric pyrophosphate (Ultra Rice) (UR diet), ferrous sulfate + yacon flour (FS + Y diet) or Ultra Rice + yacon flour (UR + Y diet). Blood samples were collected at the end of depletion and repletion stages for determination of hemoglobin concentration and calculation of the relative biological value (RBV). Also, the content of short chain fatty acids (SCFA) (acetic, propionic and butyric acids) from animals' stools and caecum weight were determined. The UR diet showed high iron bioavailability (RBV = 84.7%). However, the addition of yacon flour in the diet containing fortified rice (UR + Y diet) decreased RBV (63.1%) significantly below the other three groups (p < 0.05). Groups that received yacon flour showed higher acetic acid values compared to those who did not. In conclusion, fortified UR with micronized ferric pyrophosphate showed high iron bioavailability but the addition of yacon flour at 7.5% FOS reduced iron bioavailability despite increased caecum weight and SCFA concentration. PMID:24167960

  12. Effects of fructans-containing yacon (Smallanthus sonchifolius Poepp and Endl.) flour on caecum mucosal morphometry, calcium and magnesium balance, and bone calcium retention in growing rats.

    PubMed

    Lobo, Alexandre R; Colli, Célia; Alvares, Eliana P; Filisetti, Tullia M C C

    2007-04-01

    Yacon roots have been considered a functional food due to the high levels of fructans they contains. In the present study, Ca and Mg balance, bone mass and strength, and caecum mucosal morphometry were evaluated. Growing male Wistar rats (n 24) were fed ad libitum control diets or diets supplemented with yacon flour (5 or 7.5 % fructooligosaccharides) for 27 d. Mineral balance was evaluated in three periods of 5 d (starting on the 4th, 10th and 16th days). After the rats were killled, the bones were removed and bone mineral density was measured. Ca analyses were performed on left femurs and tibias and biomechanical testing on right femurs. The caecum was removed and tissue samples were collected for histological analysis. Caecal histology changed noticeably in rats fed yacon flour: there was an increase in the depth and number of total and bifurcated crypts as well. Yacon flour consumption significantly (P < 0.05) resulted in a positive Ca and Mg balance, leading to higher values of bone mineral retention and biomechanical properties (peak load and stiffness) when compared to the control group. The positive effects on mineral intestinal absorption, bone mass and biomechanical properties showed an important role of yacon roots in the maintenance of healthy bones. The increased number of bifurcating crypts might be related to the higher mineral absorption caused by the enlargement of the absorbing surface in the large intestine of the animals. PMID:17349092

  13. A case of anaphylaxis after the ingestion of yacon.

    PubMed

    Yun, Eun Young; Kim, Hyun Sik; Kim, You Eun; Kang, Min Kyu; Ma, Jeong Eun; Lee, Gi Dong; Cho, Yu Ji; Kim, Ho Cheol; Lee, Jong Deok; Hwang, Young Sil; Jeong, Yi Yeong

    2010-04-01

    Anaphylaxis is a potentially life-threatening systemic allergic reaction, often with an explosive onset; the symptoms range from mild flushing to upper respiratory obstruction, with or without vascular collapse. Foods are common offending allergens and remain the leading cause of outpatient anaphylaxis in most surveys. Yacon (Smallanthus sonchifolius) is a plant native to the Andes region, where its root is cultivated and consumed mainly as food. Unlike most edible roots, yacon contains large amounts of ructooligosaccharides. Traditionally, yacon tubers have been used as a source of natural sweetener and syrup for people suffering from various disorders. We report the case of a 55-year-old woman who developed syncope and generalized urticaria after ingesting yacon roots. The patient had positive skin prick and intradermal tests to yacon extract. An open food challenge test was performed to confirm food anaphylaxis and was positive 10 minutes after the consumption of yacon roots. To our knowledge, this is the first reported case of anaphylaxis after the ingestion of yacon roots. PMID:20358031

  14. A Case of Anaphylaxis After the Ingestion of Yacon

    PubMed Central

    Yun, Eun Young; Kim, Hyun Sik; Kim, You Eun; Kang, Min Kyu; Ma, Jeong Eun; Lee, Gi Dong; Cho, Yu Ji; Kim, Ho Cheol; Lee, Jong Deok; Hwang, Young Sil

    2010-01-01

    Anaphylaxis is a potentially life-threatening systemic allergic reaction, often with an explosive onset; the symptoms range from mild flushing to upper respiratory obstruction, with or without vascular collapse. Foods are common offending allergens and remain the leading cause of outpatient anaphylaxis in most surveys. Yacon (Smallanthus sonchifolius) is a plant native to the Andes region, where its root is cultivated and consumed mainly as food. Unlike most edible roots, yacon contains large amounts of ructooligosaccharides. Traditionally, yacon tubers have been used as a source of natural sweetener and syrup for people suffering from various disorders. We report the case of a 55-year-old woman who developed syncope and generalized urticaria after ingesting yacon roots. The patient had positive skin prick and intradermal tests to yacon extract. An open food challenge test was performed to confirm food anaphylaxis and was positive 10 minutes after the consumption of yacon roots. To our knowledge, this is the first reported case of anaphylaxis after the ingestion of yacon roots. PMID:20358031

  15. The biological and chemical variability of yacon.

    PubMed

    Valentová, Katerina; Lebeda, Ales; Dolezalová, Ivana; Jirovský, David; Simonovska, Breda; Vovk, Irena; Kosina, Pavel; Gasmanová, Nikol; Dziechciarková, Marta; Ulrichová, Jitka

    2006-02-22

    This paper focuses on the biological and chemical variability of four yacon (Smallanthus sonchifolius) accessions cultivated under field conditions. Significant variations in tuber shape, weight, content of oligofructans, as well as in leaf isozymes, phenolics, and relative DNA contents were found. Accessions 6 and 88 were the most productive (up to 3.01 and 3.74 kg/plant); accession 48 was the most balanced from the yield aspect in three vegetative periods. A significantly higher content of beta-(2-->1) oligofructans was noted in accessions 48 and 88 as compared to 6 and 60. No difference in sucrose, glucose, and fructose level was observed. Only accession 6 exhibited separate acid phosphatase and esterase isoforms. Accessions 6 and 60 had the highest content of phenolics, and accession 88 had the lowest relative DNA content. Large yacon intraspecific variation may be useful in future detailed research as a good background for breeding, growing, and utilization in industrial processing. PMID:16478259

  16. Coniochaeta ligniaria: antifungal activity of the cryptic endophytic fungus associated with autotrophic cultures of the medicinal plant Smallanthus sonchifolius (Asteraceae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Few studies have addressed the presence and bioactivity of endophytic fungi living in plantlets growing under in vitro conditions. We isolated a fungus UM 109 from autotrophic cultures of the medicinal plant Smallanthus sonchifolius (yacon). The species was identified as Coniochaeta ligniaria using ...

  17. Three novel compounds from the leaves of Smallanthus sonchifolius.

    PubMed

    Qiu, Ying-Kun; Kang, Ting-Guo; Dou, De-Qiang; Liang, Li; Dong, Feng

    2008-01-01

    Three novel compounds, together with five known ingredients, octacosanol, 3',4',5-trihydroxy-3,7-dimethoxyflavone, 3,4-dihydroxybenzaldehyde, isorhamnetin, and ent-kaurane-3beta,16beta,17-triol, were obtained from the leaves of Smallanthus sonchifolius (yacon), and their structures were elucidated as ent-kaurane-3beta,16beta,17,18-tertol (1), 3R,7E-9-butoxyl-megastigma-3-ol-3-O-beta-D-glucopyranoside (2), and 3S,5R,6Z-megastigma-6-en-3,5,8,9-tertol (3) on the basis of spectroscopic and chemical methods. PMID:19031255

  18. Anti-diabetes constituents in leaves of Smallanthus sonchifolius.

    PubMed

    Xiang, Zheng; He, Fan; Kang, Ting-Guo; Dou, De-Qiang; Gai, Kuo; Shi, Yu-Yuan; Kim, Young-Ho; Dong, Feng

    2010-01-01

    The inhibitory effect of smallanthaditerpenic acids A, B, C and D previously isolated from leaves of Smallanthus sonchifolius (yacon) on alpha-glucosidase were examined and their IC50 were determined to be 0.48 mg/mL, 0.59 mg/mL, 1.00 mg/mL, and 1.17 mg/mL respectively. In addition, a rapid, reliable RP-HPLC method for the analysis of chlorogenic acid, caffeic acid, and smallanthaditerpenic acids A and C in yacon leaves was established, and the variation in their contents in leaves from plants cultivated in different places and collected at different times of the year were compared. The established analytical method for determining smallanthaditerpenic acids A and C, chlorogenic acid and caffeic acid presented good results and could be used as a method for the quality control of S. sonchifolius leaves. PMID:20184030

  19. New Sesquiterpene Lactone Dimer, Uvedafolin, Extracted from Eight Yacon Leaf Varieties (Smallanthus sonchifolius): Cytotoxicity in HeLa, HL-60, and Murine B16-F10 Melanoma Cell Lines.

    PubMed

    Kitai, Yurika; Hayashi, Kana; Otsuka, Moe; Nishiwaki, Hisashi; Senoo, Tatsuya; Ishii, Tomohiko; Sakane, Genta; Sugiura, Makoto; Tamura, Hirotoshi

    2015-12-23

    Uvedafolin, 1, a new sesquiterpene lactone dimer, was isolated from the leaves of Smallanthus sonchifolius with five related compounds, 2-6, and their cytotoxicity was assessed against three tumor cell lines (HeLa, HL-60, B16-F10 melanoma). The stereostructure of 1 was newly elucidated by ESI-TOF-MS, 1D/2D NMR, and single-crystal X-ray diffraction. Dimers 1 and 2 had the most effective IC50 values, 0.2-1.9 μM, against the three tumor cell lines when compared with monomers 3-6 (IC50 values 0.7-9.9 μM) and etoposide (IC50 values 0.8-114 μM). The ester linkages of two sets of monomers, uvedalin, 5, and sonchifolin, 6, for 1, and enhydrin, 4, and sonchifolin, 6, for 2, as well as the acetyl group at the C-9 position, were essential for the high cytotoxicity. Dimers 1 and 2 would have potential as anticancer agents. PMID:26576855

  20. Protective effect of yacon leaves decoction against early nephropathy in experimental diabetic rats.

    PubMed

    Honoré, Stella M; Cabrera, Wilfredo M; Genta, Susana B; Sánchez, Sara S

    2012-05-01

    Nephropathy is the most common cause of morbidity and mortality in diabetic patients. Prevention of this complication has a major relevance. Smallanthus sonchifolius (yacon) leaves have been shown to ameliorate hyperglycemia in streptozotocin-induced diabetic rats. We examined the beneficial effects of yacon leaves decoction on diabetic nephropathy and explored the possible underlying action mechanism. Streptozotocin-diabetic rats were orally administered 10% yacon leaves water decoction (70mg dry extract/kg body weight) once a day for 4weeks. Biochemical parameters in blood and urine were analyzed and immunohistochemistry staining, western immunoblotting and qRT-PCR were assessed. Yacon decoction significantly decreased high blood glucose level in diabetic rats and improved insulin production. Diabetic-dependent alterations in urinary albumin excretion, creatinine clearance, kidney hypertrophy and basement membrane thickening were attenuated by yacon decoction. These findings were associated with a marked decrease in TGF-β1/Smad2/3 signaling. The expression of molecular markers of diabetic nephropathy such as collagen IV, laminin-1, fibronectin and collagen III were also diminished in the yacon-treated group compared to control diabetic group. These results suggest that yacon leaves decoction is a protective agent against renal damage in diabetic nephropathy, whose action can be mediated by TGF-β/Smads signals. PMID:22406203

  1. Smallanthus sonchifolius and Lepidium meyenii - prospective Andean crops for the prevention of chronic diseases.

    PubMed

    Valentová, Katerina; Ulrichová, Jitka

    2003-12-01

    Smallanthus sonchifolius (yacon) and Lepidium meyenii (maca) were the traditional crops of the original population of Peru where they are also still used in folk medicine. These plants are little known in Europe and Northern America although at least yacon can be cultivated in the climatic conditions of these regions. This article deals with the botany and the composition, the structure of main constituents, biological activity of these plants and the cultivation of yacon in the Czech Republic. The potential of yacon tubers to treat hyperglycemia, kidney problems and for skin rejuvenation and the antihyperglycemic and cytoprotective activity of its leaves seems to be related mostly to its oligofructan and phenolic content, respectively. Maca alkaloids, steroids, glucosinolates, isothicyanates and macamides are probably responsible for its aptitude to act as a fertility enhancer, aphrodisiac, adaptogen, immunostimulant, anabolic and to influence hormonal balance. Yacon and maca are already on the European market as prospective functional foods and dietary supplements, mainly for use in certain risk groups of the population, e.g. seniors, diabetics, postmenopausal women etc. PMID:15037892

  2. Antioxidant activities and quali-quantitative analysis of different Smallanthus sonchifolius [(Poepp. and Endl.) H. Robinson] landrace extracts.

    PubMed

    Russo, D; Malafronte, N; Frescura, D; Imbrenda, G; Faraone, I; Milella, L; Fernandez, E; De Tommasi, N

    2015-01-01

    Five landraces of Smallanthus sonchifolius [(Poepp. and Endl.) H. Robinson], known as yacon, were investigated in total phenolic content, antioxidant activity and chemical composition of ethanol extracts (EEs) and decoction extracts (DEs). The results demonstrated that DEs are rich in phenolic acids as caffeic acid, while the EEs show an higher amount of flavonoids, as luteolin 3',7-O-diglucoside and luteolin 7-O-glucoside. These flavonoid glycosides were identified for the first time in yacon extracts, together with apigenin and luteolin. The phytochemical profile explains the different antioxidant activities shown in our study. The landraces PER6-DE and PER4-DE showed the highest radical-scavenging activity and reducing power related to their polyphenolic contents. Results also show that yacon can be considered an important source of bioactive compounds with significant differences among the analysed landraces. PMID:25533266

  3. Hypoglycaemic effects of tea extracts and ent-kaurenoic acid from Smallanthus sonchifolius.

    PubMed

    Raga, Dennis D; Alimboyoguen, Agnes B; del Fierro, Ramon S; Ragasa, Consolacion Y

    2010-11-01

    Hypoglycaemic activity was observed in normoglycaemic mice orally administered with the aqueous Smallanthus sonchifolius leaf tea extract, alloxan-induced diabetic mice orally administered with ent-kaurenoic acid (1), and normoglycaemic mice intraperitoneally administered with 1 from S. sonchifolius leaves. A single dose administration of 50 mg kg(-1) BW yacon leaf tea extract demonstrated immediate but relatively short hypoglycaemic activity, with significant effects observed during 1-2 h. Similarly, administration with 100 mg kg(-1) BW yacon leaf tea extract obtained by heavy stirring in hot water demonstrated a more potent activity compared to the positive control at 1.5-2.0 h. Oral administration of 1 did not affect the blood glucose level of the alloxan-induced diabetic mice, but a single intraperitonial injection of 10 mg kg(-1) BW in normoglycaemic mice had consistent percent blood glucose reduction persisting from 1 to 2 h observation periods. PMID:20981618

  4. [Constituents relating to anti-oxidative and alpha-glucosidase inhibitory activities in Yacon aerial part extract].

    PubMed

    Terada, Sumio; Ito, Kikuo; Yoshimura, Akira; Noguchi, Naoto; Ishida, Takashi

    2006-08-01

    Hot water extract of the aerial part of Yacon (Smallanthus sonchifolia, Compositae) showed potent free radical-scavenging activity and inhibitory effects on lipid peroxidation in rat brain homogenate. The most potent antioxidative activity focused on the 50% MeOH-eluted fraction on DIAION HP-20 column chromatography. The structure of the major component in the fraction was identified as 2,3,5-tricaffeoylaltraric acid (TCAA) based on spectroscopic evidence. The antioxidative activity of TCAA is superior to that of natural antioxidants such as (+/-)-catechin, alpha-tocopherol, and ellagic acid, and TCAA also showed selective maltase-inhibitory activity (IC(50) 49 microg/ml). As the hypoglycemic activity of Yacon extract was described in a previous report, the present results showing that the aerial part of Yacon has strong antioxidative activity may encourage its potential use as a food supplement to prevent type II diabetes. PMID:16880725

  5. A mixture of extracts from Peruvian plants (black maca and yacon) improves sperm count and reduced glycemia in mice with streptozotocin-induced diabetes.

    PubMed

    Gonzales, Gustavo F; Gonzales-Castañeda, Cynthia; Gasco, Manuel

    2013-09-01

    We investigated the effect of two extracts from Peruvian plants given alone or in a mixture on sperm count and glycemia in streptozotocin-diabetic mice. Normal or diabetic mice were divided in groups receiving vehicle, black maca (Lepidium meyenii), yacon (Smallanthus sonchifolius) or three mixtures of extracts black maca/yacon (90/10, 50/50 and 10/90%). Normal or diabetic mice were treated for 7 d with each extract, mixture or vehicle. Glycemia, daily sperm production (DSP), epididymal and vas deferens sperm counts in mice and polyphenol content, and antioxidant activity in each extract were assessed. Black maca (BM), yacon and the mixture of extracts reduced glucose levels in diabetic mice. Non-diabetic mice treated with BM and yacon showed higher DSP than those treated with vehicle (p < 0.05). Diabetic mice treated with BM, yacon and the mixture maca/yacon increased DSP, and sperm count in vas deferens and epididymis with respect to non-diabetic and diabetic mice treated with vehicle (p < 0.05). Yacon has 3.05 times higher polyphenol content than in maca, and this was associated with higher antioxidant activity. The combination of two extracts improved glycemic levels and male reproductive function in diabetic mice. Streptozotocin increased 1.43 times the liver weight that was reversed with the assessed plants extracts. In summary, streptozotocin-induced diabetes resulted in reduction in sperm counts and liver damage. These effects could be reduced with BM, yacon and the BM+yacon mixture. PMID:23489070

  6. Antibacterial and synergistic effects of Smallanthus sonchifolius leaf extracts against methicillin-resistant Staphylococcus aureus under light intensity.

    PubMed

    Joung, Hee; Kwon, Dong-Yeul; Choi, Jang-Gi; Shin, Dong-Young; Chun, Soon-Sil; Yu, Young-Beob; Shin, Dong-Won

    2010-04-01

    Smallanthus sonchifolius (yacon) is a perennial plant mostly cultivated in South America, primarily for use of the tubers as a food crop and the leaves as fodder for livestock. The antibacterial activities of the methanol extract of yacon leaves (S. sonchifolius) and its n-hexane, ethyl acetate, n-butanol and water fractions were evaluated against 6 strains of methicillin-resistant Staphylococcus aureus (MRSA) and 1 standard methicillin-susceptible S. aureus (MSSA) strain by using the disc diffusion method and minimal inhibitory concentrations (MICs) assay in the presence and absence of light. No activity was detected when the two methods were performed without light; however, under illumination at 4000 lux, the n-hexane fraction of yacon (HFY) had a MIC of 15.6 microg/ml. HFYL, prepared by exposure of HFY to 4000 lux for 18 h, was more effective than HFY in terms of antimicrobial activity against the 6 MRSA strains and 1 standard MSSA strain. HFYL mixed with ampicillin or oxacillin showed a synergistic effect with all fractional inhibitory concentrations values being below 0.5. The present study demonstrates the enhancement and antimicrobial activity of yacon leaves against MRSA in the presence of light. PMID:20119720

  7. Radical scavenging and anti-lipoperoxidative activities of Smallanthus sonchifolius leaf extracts.

    PubMed

    Valentová, Katerina; Sersen, Frantisek; Ulrichová, Jitka

    2005-07-13

    Radical scavenging and anti-lipoperoxidative effects of two organic fractions and two aqueous extracts from the leaves of a neglected Andean crop-yacon (Smallanthus sonchifolius Poepp. & Endl., Asteraceae) were determined using various in vitro models. The extracts' total phenolic content was 10.7-24.6%. They exhibited DPPH (IC50 16.14-33.39 microg/mL) and HO* scavenging activities (4.49-6.51 mg/mL). The extracts did not scavenge phenylglyoxylic ketyl radicals, but they retarded their formation. In the xanthine/xanthine oxidase superoxide radical generating system, the extracts' activities were 26.10-37.67 superoxide dismutase equivalents/mg. As one of the extracts displayed xanthine oxidase inhibitory activity, the effect of the extracts on a nonenzymatically generated superoxide was determined (IC50 7.36-21.01 microg/mL). The extracts inhibited t-butyl hydroperoxide-induced lipoperoxidation of microsomal and mitochondrial membranes (IC50 22.15-465.3 microg/mL). These results make yacon leaves a good candidate for use as a food supplement in the prevention of chronic diseases involving oxidative stress. PMID:15998117

  8. Melampolides from the leaves of Smallanthus sonchifolius and their inhibitory activity of lps-induced nitric oxide production.

    PubMed

    Hong, Seong Su; Lee, Seon A; Han, Xiang Hua; Lee, Min Hee; Hwang, Ji Sang; Park, Jeong Sook; Oh, Ki-Wan; Han, Kun; Lee, Myung Koo; Lee, Heesoon; Kim, Wook; Lee, Dongho; Hwang, Bang Yeon

    2008-02-01

    Two new melampolide-type sesquiterpene lactones, 8beta-epoxyangeloyloxy-9alpha-ethoxy-14-oxo-acanthospermolide (1) and 8beta-angeloyloxy-9alpha-ethoxy-14-oxo-acanthospermolide (2), were isolated from the leaves of yacon [Smallanthus sonchifolia (POEPP. et ENDL.) H. Robinson] along with eleven known melampolides, allo-schkuhriolide (3), enhydrin (4), polymatin A (5), fluctuanin (6), 8beta-angeloyloxy-9alpha-acetoxy-14-oxo-acanthospermolide (7), 8beta-angeloyloxy-14-oxo-acanthospermolide (8), 8beta-methacryloyloxymelampolid-14-oic acid methyl ester (9), uvedalin (10), polymatin B (11), 8beta-tigloyloxymelampolid-14-oic acid methyl ester (12), and sonchifolin (13). Their structures were established on the basis of spectroscopic evidence including 1D- and 2D-NMR experiments. All isolates were evaluated for inhibition of LPS-induced nitric oxide production in murine macrophage RAW 264.7 cells. PMID:18239309

  9. The effect of Smallanthus sonchifolius leaf extracts on rat hepatic metabolism.

    PubMed

    Valentová, K; Moncion, A; de Waziers, I; Ulrichová, J

    2004-03-01

    Smallanthus sonchifolius (yacon), originating from South America, has become popular in Japan and in New Zealand for its tubers which contain beta-1,2-oligofructans as the main saccharides. The plant is also successfully cultivated in Central Europe in the Czech Republic in particular. Its aerial part is used in Japan and in Brazil as a component in medicinal teas; while aqueous leaf extracts have been studied for their hypoglycemic activity in normal and diabetic rats. We have already demonstrated the high content of phenolic compounds in yacon leaf extracts and their in vitro antioxidant activity. In this paper, we present the effects of two organic fractions and two aqueous extracts from the leaves of S. sonchifolius on rat hepatocyte viability, on oxidative damage induced by tert-butyl hydroperoxide (t-BH) and allyl alcohol (AA), and on glucose metabolism and their insulin-like effect on the expression of cytochrome P450 (CYP) mRNA. All the extracts tested exhibited strong protective effect against oxidative damage to rat hepatocyte primary cultures in concentrations ranging from 1 to 1000 microg/ml, reduced hepatic glucose production via gluconeogenesis and glycogenolysis at 1000 microg/ml. Moreover, the effects of the organic fractions (200 and 250 microg/ml) and to a lesser extent, the tea infusion (500 microg/ml) on rat CYP2B and CYP2E mRNA expression, were comparable to those observed with insulin. The combination of radical scavenging, cytoprotective and anti-hyperglycemic activity predetermine S. sonchifolius leaves for use in prevention and treatment of chronic diseases involving oxidative stress, particularly diabetes. PMID:15242186

  10. Chemical constituents of Papulaspora immersa, an endophyte from Smallanthus sonchifolius (Asteraceae), and their cytotoxic activity.

    PubMed

    Gallo, Margareth Borges Coutinho; Cavalcanti, Bruno Coêlho; Barros, Francisco Washington Araújo; Odorico de Moraes, Manoel; Costa-Lotufo, Letícia Veras; Pessoa, Cláudia; Bastos, Jairo Kenupp; Pupo, Mônica Tallarico

    2010-12-01

    Papulaspora immersa H. H. Hotson was isolated from roots and leaves of Smallanthus sonchifolius (Poepp. and Endl.) H. Rob. (Asteraceae), traditionally known as Yacon. The fungus was cultured in rice, and, from the AcOEt fraction, 14 compounds were isolated. Among them, (22E,24R)-8,14-epoxyergosta-4,22-diene-3,6-dione (4), 2,3-epoxy-1,2,3,4-tetrahydronaphthalene-c-1,c-4,8-triol (10), and the chromone papulasporin (13) were new secondary metabolites. The spectral data of the known natural products were compared with the literature data, and their structures were established as the (24R)-stigmast-4-en-3-one (1), 24-methylenecycloartan-3β-ol (2), (22E,24R)-ergosta-4,6,8(14),22-tetraen-3-one (3), (-)-(3R,4R)-4-hydroxymellein (5), (-)-(3R)-5-hydroxymellein (6), 6,8-dihydroxy-3-methylisocoumarin (7), (-)-(4S)-4,8-dihydroxy-α-tetralone (8), naphthalene-1,8-diol (9), 6,7,8-trihydroxy-3-methylisocoumarin (11), 7-hydroxy-2,5-dimethylchromone (12), and tyrosol (14). Compound 4 showed the highest cytotoxic activity against the human tumor cell lines MDA-MB435 (melanoma), HCT-8 (colon), SF295 (glioblastoma), and HL-60 (promyelocytic leukemia), with IC₅₀ values of 3.3, 14.7, 5.0 and 1.6 μM, respectively. Strong synergistic effects were also observed with compound 5 and some of the isolated steroidal compounds. PMID:21162007

  11. Evaluation of Antioxidant, Antidiabetic and Anticholinesterase Activities of Smallanthus sonchifolius Landraces and Correlation with Their Phytochemical Profiles

    PubMed Central

    Russo, Daniela; Valentão, Patrícia; Andrade, Paula B.; Fernandez, Eloy C.; Milella, Luigi

    2015-01-01

    The present study aimed to investigate the phytochemical profile of leaf methanol extracts of fourteen Smallanthus sonchifolius (yacon) landraces and their antioxidant, anticholinesterase and antidiabetic activities that could lead to the finding of more effective agents for the treatment and management of Alzheimer’s disease and diabetes. For this purpose, antioxidant activity was assessed using different tests: ferric reducing ability power (FRAP), 2,2-diphenyl-1-picryl hydrazyl (DPPH), nitric oxide (˙NO) and superoxide (O2˙−) scavenging and lipid peroxidation inhibition assays. Anticholinesterase activity was investigated by quantifying the acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities, whereas antidiabetic activity was investigated by α-amylase and α-glucosidase inhibition tests. To understand the contribution of metabolites, phytochemical screening was also performed by high performance liquid chromatography-diode array detector (HPLC-DAD) system. Among all, methanol extract of PER09, PER04 and ECU44 landraces exhibited the highest relative antioxidant capacity index (RACI). ECU44 was found to be rich in 4,5-di-O-caffeoylquinic acid (CQA) and 3,5-di-O-CQA and displayed a good α-amylase and α-glucosidase inhibition, showing the lowest IC50 values. Flavonoids, instead, seem to be involved in the AChE and BChE inhibition. The results of this study revealed that the bioactive compound content differences could be determinant for the medicinal properties of this plant especially for antioxidant and antidiabetic activities. PMID:26263984

  12. Evaluation of Antioxidant, Antidiabetic and Anticholinesterase Activities of Smallanthus sonchifolius Landraces and Correlation with Their Phytochemical Profiles.

    PubMed

    Russo, Daniela; Valentão, Patrícia; Andrade, Paula B; Fernandez, Eloy C; Milella, Luigi

    2015-01-01

    The present study aimed to investigate the phytochemical profile of leaf methanol extracts of fourteen Smallanthus sonchifolius (yacon) landraces and their antioxidant, anticholinesterase and antidiabetic activities that could lead to the finding of more effective agents for the treatment and management of Alzheimer's disease and diabetes. For this purpose, antioxidant activity was assessed using different tests: ferric reducing ability power (FRAP), 2,2-diphenyl-1-picryl hydrazyl (DPPH), nitric oxide (˙NO) and superoxide (O2˙-) scavenging and lipid peroxidation inhibition assays. Anticholinesterase activity was investigated by quantifying the acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities, whereas antidiabetic activity was investigated by α-amylase and α-glucosidase inhibition tests. To understand the contribution of metabolites, phytochemical screening was also performed by high performance liquid chromatography-diode array detector (HPLC-DAD) system. Among all, methanol extract of PER09, PER04 and ECU44 landraces exhibited the highest relative antioxidant capacity index (RACI). ECU44 was found to be rich in 4,5-di-O-caffeoylquinic acid (CQA) and 3,5-di-O-CQA and displayed a good α-amylase and α-glucosidase inhibition, showing the lowest IC50 values. Flavonoids, instead, seem to be involved in the AChE and BChE inhibition. The results of this study revealed that the bioactive compound content differences could be determinant for the medicinal properties of this plant especially for antioxidant and antidiabetic activities. PMID:26263984

  13. Yacon flour and Bifidobacterium longum modulate bone health in rats.

    PubMed

    Rodrigues, Fabiana Carvalho; Castro, Adriano Simões Barbosa; Rodrigues, Vívian Carolina; Fernandes, Sérgio Antônio; Fontes, Edimar Aparecida Filomeno; de Oliveira, Tânia Toledo; Martino, Hércia Stampini Duarte; de Luces Fortes Ferreira, Célia Lúcia

    2012-07-01

    Yacon flour has been considered a food with prebiotic potential because of the high levels of fructooligosaccharides, which allows for its use in formulating synbiotic foods. The purpose of this study was to evaluate the effect of yacon flour and probiotic (Bifidobacterium longum) on the modulation of variables related to bone health. Thirty-two Wistar rats were divided into 4 groups: control, yacon flour, diet+B. longum, and yacon flour+B. longum. After euthanasia, the bones were removed for analysis of biomechanical properties (thickness, length, and strength of fracture) and mineral content (Ca, Mg, and P); the cecum was removed for analysis of the microbiota and short-chain fatty acids. Tibia Ca, P, and Mg content was significantly (P<.05) higher in groups fed diet+B. longum, yacon flour+B. longum than in the control group. An increase in fracture strength was observed in the yacon flour (8.1%), diet+B. longum (8.6%), and yacon flour+B. longum (14.6%) in comparison to the control group. Total anaerobe and weight of the cecum were higher (P<.05) in rats consuming the yacon flour diet compared with the other groups. Cecal concentration of propionate was higher in all experimental groups compared with the control (P<.05). Yacon flour in combination with B. longum helped increase the concentration of minerals in bones, an important factor in the prevention of diseases such as osteoporosis. PMID:22510044

  14. DMA thermal analysis of yacon tuberous roots

    NASA Astrophysics Data System (ADS)

    Blahovec, J.; Lahodová, M.; Kindl, M.; Fernández, E. C.

    2013-12-01

    Specimens prepared from yacon roots in first two weeks after harvest were tested by dynamic mechanical analysis thermal analysis at temperatures between 30 and 90°C. No differences between different parts of roots were proved. There were indicated some differences in the test parameters that were caused by short time storage of the roots. One source of the differences was loss of water during the roots storage. The measured modulus increased during short time storage. Detailed study of changes of the modulus during the specimen dynamic mechanical analysis test provided information about different development of the storage and loss moduli during the specimen heating. The observed results can be caused by changes in cellular membranes observed earlier during vegetable heating, and by composition changes due to less stable components of yacon like inulin.

  15. [Improvement on microwave technology of extracting polysaccharide from yacon leaves].

    PubMed

    Li, Jing-wei; Liu, Jian; Yang, Yong; Zheng, Ming-min; Rong, Ting-zhao

    2007-11-01

    According to the extraction ratio of polysaccharide in yacon leaves, the comparison between microwave extraction and traditional hot water extraction was conducted, and the two-factor and three-level experiment on the microwave extraction of polysaccharide from yacon leaves was investigated. The result showed that the extraction ratio of polysaccharide by using microwave extraction was better than that by using traditional hot water extraction. Moreover, according to the result of variance analysis and multiple comparison, the optimum conditions for extraction of polysaccharide by using microwave technology from yacon leaves were as follows: 280W microwave power for 2 times and 15 minutes at every time. PMID:18323219

  16. The Spermatogenic Effect of Yacon Extract and Its Constituents and Their Inhibition Effect of Testosterone Metabolism

    PubMed Central

    Park, Jeong Sook; Han, Kun

    2013-01-01

    We screened the pharmacological effects of a 50% ethanol extract of Yacon tubers and leaves on spermatogenesis in rats. As a result, we found that Yacon tuber extracts increased sperm number and serum testosterone level in rats. It has been reported that the crude extract of Yacon tubers and leaves contain phenolic acids, such as, chlorogenic acid, ferulic acid and caffeic acid by HPLC/MS analysis. We were interested in the contributions made by phenolic acid, particularly chlorogenic acid of Yacon tuber extract to the spermatogenic activity. After administering Yacon tuber extract or chlorogenic acid to rats for 5 weeks, numbers of sperm in epididymis were increased by 34% and 20%, respectively. We also administered ferulic acid, which has been reported to be a metabolite of chlorogenic acid and a constituent of Yacon tuber extract to investigate its spermatogenic activity in rats. Yacon tuber extract and ferulic acid increased sperm numbers by 43% and 37%, respectively. And, Yacon tuber extract, and chlorogenic acid showed significantly inhibition effect of testoeterone degradation in rat liver homogenate. We considered that the spermatogenic effect of Yacon tuber extract might be related to phenolic compounds and their inhibitory effect of testosterone degradation. Yacon showed the possibility as ameliorable agents of infertility by sperm deficiency and late onset hypogonadism syndrome with low level of testosterone. PMID:24009874

  17. The spermatogenic effect of yacon extract and its constituents and their inhibition effect of testosterone metabolism.

    PubMed

    Park, Jeong Sook; Han, Kun

    2013-03-01

    We screened the pharmacological effects of a 50% ethanol extract of Yacon tubers and leaves on spermatogenesis in rats. As a result, we found that Yacon tuber extracts increased sperm number and serum testosterone level in rats. It has been reported that the crude extract of Yacon tubers and leaves contain phenolic acids, such as, chlorogenic acid, ferulic acid and caffeic acid by HPLC/MS analysis. We were interested in the contributions made by phenolic acid, particularly chlorogenic acid of Yacon tuber extract to the spermatogenic activity. After administering Yacon tuber extract or chlorogenic acid to rats for 5 weeks, numbers of sperm in epididymis were increased by 34% and 20%, respectively. We also administered ferulic acid, which has been reported to be a metabolite of chlorogenic acid and a constituent of Yacon tuber extract to investigate its spermatogenic activity in rats. Yacon tuber extract and ferulic acid increased sperm numbers by 43% and 37%, respectively. And, Yacon tuber extract, and chlorogenic acid showed significantly inhibition effect of testoeterone degradation in rat liver homogenate. We considered that the spermatogenic effect of Yacon tuber extract might be related to phenolic compounds and their inhibitory effect of testosterone degradation. Yacon showed the possibility as ameliorable agents of infertility by sperm deficiency and late onset hypogonadism syndrome with low level of testosterone. PMID:24009874

  18. Hypoglycemic effect of the water extract of Smallantus sonchifolius (yacon) leaves in normal and diabetic rats.

    PubMed

    Aybar, M J; Sánchez Riera, A N; Grau, A; Sánchez, S S

    2001-02-01

    The hypoglycemic effect of the water extract of the leaves of Smallantus sonchifolius (yacon) was examined in normal, transiently hyperglycemic and streptozotocin (STZ)-induced diabetic rats. Ten-percent yacon decoction produced a significant decrease in plasma glucose levels in normal rats when administered by intraperitoneal injection or gastric tube. In a glucose tolerance test, a single administration of 10% yacon decoction lowered the plasma glucose levels in normal rats. In contrast, a single oral or intraperitoneal administration of yacon decoction produced no effect on the plasma glucose levels of STZ-induced diabetic rats. However, the administration of 2% yacon tea ad libitum instead of water for 30 days produced a significant hypoglycemic effect on STZ-induced diabetic rats. After 30 days of tea administration, diabetic rats showed improved body (plasma glucose, plasma insulin levels, body weight) and renal parameters (kidney weight, kidney to body weight ratio, creatinine clearance, urinary albumin excretion) in comparison with the diabetic controls. Our results suggest that yacon water extract produces an increase in plasma insulin concentration. PMID:11167030

  19. Fermentation process

    SciTech Connect

    Lutzen, N.W.

    1982-02-23

    Fermentation process consists essentially of fermenting a 10-45% w/w aqueous slurry of granular starch for the production of ethanol with an ethanol-producing microorganism in the presence of alpha-amylase and glucoamylase, the conduct of said fermentation being characterized by low levels of dextrin and fermentable sugars in solution in the fermentation broth throughout the fermentation, and thereafter recovering enzymes from the fermentation broth for use anew in fermentation of granular starch.

  20. Chemopreventive activity of sesquiterpene lactones (SLs) from yacon against TPA-induced Raji cells deformation.

    PubMed

    Siriwan, D; Miyawaki, C; Miyamoto, T; Naruse, T; Okazaki, K; Tamura, H

    2011-05-15

    Yacon is a medicinal plant used as a traditional medicine by the natives in South America. In Japan, it becomes popular as a health food. Sesquiterpene Lactones (SLs) from yacon leaves were investigated and the active SLs such as enhydrin, uvedalin and sonchifolin, bearing alpha-methylene-gamma-lactone and epoxides as the active functional groups, were identified by 1H-6000 MHz-NMR. Chemopreventive and cytotoxic activities were determined using different primary screening methods. In this study, all tested SLs strongly inhibited TPA-induced deformed of Raji cells. The IC50 values of yacon SLs from anti-deforming assay were 0.04-0.4 microM. Interestingly, yacon SLs showed more potential of chemo preventive activity than both curcumin and parthenolide. However, the cytotoxicity on Raji cells was observed at high concentration of yacon SLs. The degree of anti-deformation was ranked in order: enhydrin >uvedalin >sonchifolin >parthenolide >curcumin. As according to structure-activity relationship, the high activities of enhydrin, uvedalin and sonchifolin may be due to the 2-methyl-2-butenoate and its epoxide moiety. PMID:22097098

  1. Hypoglycemic activity of leaf organic extracts from Smallanthus sonchifolius: Constituents of the most active fractions.

    PubMed

    Genta, Susana B; Cabrera, Wilfredo M; Mercado, María I; Grau, Alfredo; Catalán, César A; Sánchez, Sara S

    2010-04-29

    The aim of the present study was to determine the in vivo hypoglycemic activity of five organic extracts and enhydrin obtained from yacon leaves. The main constituents of the most active fraction were identified. Five organic extracts and pure crystalline enhydrin were administered to normoglycemic, transiently hyperglycemic and streptozotocin (STZ)-diabetic rats. The fasting and post-prandial blood glucose, and serum insulin levels were estimated and an oral glucose tolerance test (OGTT) was performed for the evaluation of hypoglycemic activity and dose optimization of each extract. We found that the methanol, butanol and chloroform extracts showed effective hypoglycemic activity at minimum doses of 50, 10 and 20mg/kg body weight, respectively, and were selected for further experiments. Oral administration of a single-dose of each extract produced a slight lowering effect in the fasting blood glucose level of normal healthy rats, whereas each extract tempered significantly the hyperglycemic peak after food ingestion. Daily administration of each extract for 8 weeks produced an effective glycemic control in diabetic animals with an increase in the plasma insulin level. Phytochemical analysis of the most active fraction, the butanol extract, showed that caffeic, chlorogenic and three dicaffeoilquinic acids were significant components. Additionally, enhydrin, the major sesquiterpene lactone of yacon leaves, was also effective to reduce post-prandial glucose and useful in the treatment of diabetic animals (minimum dose: 0.8mg/kg body weight). The results presented here strongly support the notion that the phenolic compounds above as well as enhydrin are important hypoglycemic principles of yacon leaves that could ameliorate the diabetic state. PMID:20211156

  2. Yacon-Based Product in the Modulation of Intestinal Constipation.

    PubMed

    de Souza Lima Sant'Anna, Mônica; Rodrigues, Vivian Carolina; Araújo, Tatiane Ferreira; de Oliveira, Tânia Toledo; do Carmo Gouveia Peluzio, Maria; de Luces Fortes Ferreira, Célia Lúcia

    2015-09-01

    This study aimed to assess the effects of a yacon-based product (YBP) on constipation in adults, including the elderly. Forty-eight individuals were recruited and divided into equal intervention groups named the test and control groups. The YBP (test) and the control (maltodextrin) were dissolved in commercial orange juice. The volunteers for the YBP/test group consumed, on a daily basis, orange juice containing 10 g fructooligosaccharide (FOS)/inulin per day. The control group consumed, on a daily basis, orange juice containing 25 g of maltodextrin. The study had a span of 30 days. We evaluated the participants' frequency of evacuation, consistency of the feces, constipation score, abdominal symptoms (flatulence, pain, and abdominal strain), and effects upon the microbiota, pH, lactate, and short-chain fatty acids (SCFAs) of the feces. The study showed an increased number of evacuations after the consumption of the YBP as well as an improvement in the consistency of the feces and a reduction in the constipation score. After 30 days of intervention, the group that consumed the YBP showed higher counts of Bifidobacterium, lower Clostridium and enterobacteria counts, and lower fecal pH. In relation to SCFAs, no significant change was found after the intervention. However, the lactate concentration was higher in the test group when compared to the post-treatment control group. The YBP was effective in improving constipation symptoms; not only was its functional characteristic in reducing constipation symptoms evident but it also demonstrated usefulness as a potential therapy. PMID:25692980

  3. Fermented Vegetables

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The wide variety of fermented foods of the world can be classified by the materials obtained from the fermentation, such as alcohol (beer, wine), organic acid such as lactic acid and acetic acid (vegetables, dairy), carbon dioxide (bread), and amino acids or peptides from protein (fish fermentations...

  4. Complete genome sequence of yacon necrotic mottle virus, a novel putative member of the genus Badnavirus.

    PubMed

    Lee, Ye-Ji; Kwak, Hae-Ryun; Lee, Young-Kee; Kim, Mi-Kyeong; Choi, Hong-Soo; Seo, Jang-Kyun

    2015-04-01

    The complete genome sequence of a previously undescribed virus isolated from a yacon plant exhibiting necrotic mottle, chlorosis, stunting, and leaf malformation symptoms in Gyeongju, Korea, was determined. The genome of this virus consists of one circular double-stranded DNA of 7661 bp in size. The genome contained four open reading frames (ORFs 1 to 4) on the plus strand that potentially encode proteins of 26, 32, 234, and 25 kDa. Protein BLAST analysis showed that ORF3, which is the largest ORF, has 45 % amino acid sequence identity (with 89 % coverage) to the ORF3 of fig badnavirus 1 (FBV-1), a recently identified badnavirus. Phylogenetic analysis provided further evidence that the virus identified in this study is probably a member of a new species in the genus Badnavirus. The name yacon necrotic mottle virus (YNMoV) is proposed for this new virus. PMID:25643816

  5. Studies on chemical constituents of the leaves of Smallantus sonchifolius (yacon): structures of two new diterpenes.

    PubMed

    Dou, De-Qiang; Tian, Fang; Qiu, Ying-Kun; Xiang, Zheng; Xu, Bi Xia; Kang, Ting Guo; Dong, Feng

    2010-01-01

    The extract from the leaves of Smallantus sonchifolius (yacon) was found to show potent anti-diabetic activity. Two new diterpenes, named ent-kaurane-3beta,16beta,17, 19-tetrol (1) and ent-kaurane-16beta,17,18,19-tetrol (2), were isolated from the extract, together with six known compounds. The structures of the new compounds were determined on the basis of chemical and physicochemical evidence. PMID:20013471

  6. Cacao Fermentation

    PubMed Central

    Martelli, H. L.; Dittmar, H. F. K.

    1961-01-01

    Cacao beans must be subjected to fermentation before they are used in making chocolate, and their commercial value is related to a proper procedure. Saccharomyces rosei, Hansenula anomala, Pichia fermentans, Pichia membranaefaciens, and Trichosporon cutaneum were found in fermenting cacao beans. All species isolated during the investigation grew on cacao pulp, but only S. rosei, H. anomala, and P. fermentans exhibited fermenting capacity on the sugars of cacao pulp. Species of the genus Saccharomyces were identified as the agents responsible for the alcoholic phase of the cacao fermentation. PMID:13767275

  7. Cucumber fermentation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Humans have consumed fermented cucumber products since before the dawn of civilization. Although cucumber fermentation remains largely a traditional process, it has proven to be a consistently safe process by which raw cucumbers are transformed into high quality pickles that have a long shelf-life ...

  8. Fermented Vegetables

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter is organized into several sections. The first has information on the history of vegetable fermentation research in the US, dating back to the late 1880s. A overview of commercial cucumber and sauerkraut fermentation practices follows, focusing on the US market, although there is some me...

  9. Seasonal dynamics of the flower head infestation of Smallanthus maculatus by two nonfrugivorous tephritids.

    PubMed

    Dzul-Cauich, José F; Hernández-Ortiz, Vicente; Parra-Tabla, Victor; Rico-Gray, Victor

    2014-01-01

    Seasonal dynamics of the capitula infested by Dictyotrypeta sp. and Rhynencina spilogaster (Steyskal) (Diptera: Tephritidae) was evaluated throughout the flowering cycle of their host plant the sunflower, Smallanthus maculatus (Cavanilles) Robinson (Asterales: Asteraceae). In central Veracruz, Mexico, along 16 consecutive weeks, a total of 1,017 mature capitula were collected, recording the presence and abundance of immature stages (larvae and pupae) and their related parasitoids. Both fly species were present throughout the entire season, with overall infestation of 51.5% of the capitula examined. However, Dictyotrypeta sp. infested 11.3%, representing about one-fifth of them, and R. spilogaster was most abundant infesting four times as many capitula (42.9%), whereas both species were found together in only 2.6% of the capitula examined. Based on the temporal occurrence of larvae and pupae into flower heads as well as their associated parasitoids and times of emergence, Dictyotrypeta sp. had two yearly generations, and it seems that the second generation could enter a seasonal diapause; in contrast, R. spilogaster was a univoltine species that entered diapause that lasted until the next year. PMID:25368091

  10. Fermentation industry

    SciTech Connect

    Irvine, R.L.

    1980-06-01

    This article reviews current literature on the fermentation industry. The reuse, recycling and recovery of by-products previously discarded as waste are mentioned, including a Swedish brewery that hopes to reduce discharge of pollutants and the production of single cell protein from a variety of fermentation wastes. The treatment of wastes to produce food substitutes and fertilizers is mentioned together with treatment methods used in distilleries, wineries and in the pharmaceutical industry. (87 References)

  11. Trypanocidal Activity of Smallanthus sonchifolius: Identification of Active Sesquiterpene Lactones by Bioassay-Guided Fractionation

    PubMed Central

    Frank, F. M.; Ulloa, J.; Cazorla, S. I.; Maravilla, G.; Malchiodi, E. L.; Grau, A.; Martino, V.; Catalán, C.; Muschietti, L. V.

    2013-01-01

    In order to find novel plant-derived biologically active compounds against Trypanosoma cruzi, we isolated, from the organic extract of Smallanthus sonchifolius, the sesquiterpene lactones enhydrin (1), uvedalin (2), and polymatin B (3) by bioassay-guided fractionation technique. These compounds showed a significant trypanocidal activity against the epimastigote forms of the parasite with IC50 values of 0.84 μM (1), 1.09 μM (2), and 4.90 μM (3). After a 24 h treatment with 10 μg/mL of enhydrin or uvedalin, parasites were not able to recover their replication rate. Compounds 1 and 2 showed IC50 values of 33.4 μM and 25.0 μM against T. cruzi trypomastigotes, while polymatin B was not active. When the three compounds were tested against the intracellular forms of T. cruzi, they were able to inhibit the amastigote replication with IC50 of 5.17 μM, 3.34 μM, and 9.02 μM for 1, 2, and 3, respectively. The cytotoxicity of the compounds was evaluated in Vero cells obtaining CC50 values of 46.5 μM (1), 46.8 μM (2), and 147.3 μM (3) and the selectivity index calculated. According to these results, enhydrin and uvedalin might have potentials as agents against Chagas disease and could serve as lead molecules to develop new drugs. PMID:23840260

  12. Ruminal Fermentation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ruminal fermentation is an exergonic process that converts feedstuffs into short chain volatile fatty acids (VFA), CO2, CH4, NH3, and heat. Some of the free energy is trapped as ATP and this energy is used to drive the growth of anaerobic ruminal microorganisms. The ruminant animals absorb VFA and...

  13. Fermentation Industry.

    ERIC Educational Resources Information Center

    Grady, C. P. L., Jr.; Grady, J. K.

    1978-01-01

    Presents a literature review of wastes from the fermentation industry, covering publications of 1976-77. This review focuses on: (1) alcoholic beverage production; (2) pharmaceuticals and biochemicals production; and (3) biomass production. A list of 62 references is also presented. (HM)

  14. The effect of yacon (Samallanthus sonchifolius) ethanol extract on cell proliferation and migration of C6 glioma cells stimulated with fetal bovine serum

    PubMed Central

    Lee, Kang Pa; Choi, Nan Hee; Kim, Jin Teak

    2015-01-01

    BACKGROUND/OBJECTIVES Yacon (Samallanthus sonchifolius), a common edible plant grown throughout the world, is well known for its antidiabetic properties. It is also known to have several other pharmacological properties including anti-inflammatory, anti-oxidant, anti-allergic, and anti-cancer effects. To date, the effect of yacon on gliomas has not been studied. In this study, we investigated the effects of yacon on the migration and proliferation of C6 glioma cells stimulated by fetal bovine serum (FBS). MATERIALS/METHODS Cell growth and proliferation were determined by evaluating cell viability using an EZ-Cytox Cell Viability Assay Kit. FBS-induced migration of C6 glioma cells was evaluated by performing the scratch wound healing assay and the Boyden chamber assay. We also used western blot analysis to determine the expression levels of extracellular signal-regulated kinase 1/2 (ERK1/2), a major regulator of migration and proliferation of glioma cells. Matrix metallopeptidase (MMP) 9 and TIMP-1 levels were measured by performing reverse transcription PCR. RESULTS Yacon (300 µg/mL) reduced both the FBS-induced proliferation of C6 glioma cells and the dose-dependent migration of the FBS-stimulated C6 cells. FBS-stimulated C6 glioma cells treated with yacon (200 and 300 µg/mL) showed reduced phosphorylation of ERK1/2 and inhibition of MMP 9 expression compared to those shown by the untreated FBS-stimulated C6 cells. In contrast, yacon (200 and 300 µg/mL) induced TIMP-1 expression. CONCLUSIONS On the basis of these results, we suggest that yacon may exert an anti-cancer effect on FBS-stimulated C6 glioma cells by inhibiting their proliferation and migration. The most likely mechanism for this is down-regulation of ERK1/2 and MMP9 and up-regulation of TIMP-1 expression levels. PMID:26060537

  15. Effect of epoxides and α-methylene-γ-lactone skeleton of sesquiterpenes from yacon (Smallanthus sonchifolius) leaves on caspase-dependent apoptosis and NF-κB inhibition in human cercival cancer cells.

    PubMed

    Siriwan, Dalad; Naruse, Takayuki; Tamura, Hirotoshi

    2011-10-01

    The present study investigated the cytotoxicity of enhydrin (1), uvedalin (2) and sonchifolin (3) in cervical cancer cells. We have found that SLs 1-3 in doses in range of 0.22-10 μM inhibited cell proliferation and induced apoptosis in both a dose- and time-dependent fashion. A significant cell death induction was supported by morphological studies. The apoptotic effect is associated with caspase-3/7 activation and NF-кB inhibition. Interestingly, enhydrin possessing two epoxide units was found to be the most cytotoxic compound. Therefore it can be assumed that number of epoxides and existence of α-methylene-γ-lactone moiety are essential for the acceleration of apoptosis. PMID:21787849

  16. The chromatographic analysis of oligosaccharides and preparation of 1-kestose and nystose in yacon.

    PubMed

    Zhu, Zhen-Yuan; Lian, Hong-Yu; Si, Chuan-Ling; Liu, Yang; Liu, Nian; Chen, Jing; Ding, Li-Na; Yao, Qiang; Zhang, Yongmin

    2012-05-01

    The thin-layer chromatographic analysis of the crude oligosaccharides extracted from yacon revealed the presence of glucose, fructose, sucrose, 1-kestose and nystose. The qualitative and quantitative analysis was carried out on oligosaccharides by high pressure liquid chromatography and the results showed that the contents of d-glucose, fructose, sucrose, 1-kestose, nystose and 1-fructofuranosyl nystose in oligosaccharides were 38.30%, 16.44%, 14.58%, 12.29%, 12.17%, 6.20%, respectively. The content of the fructooligosaccharides in oligosaccharides was 30.66%. The crude oligosaccharides were separated and purified by silica gel column chromatography. The two fractions obtained from crude oligosaccharides were 1-kestose and nystose, which were identified by mass spectra. The yield of 1-kestose and nystose were 10.36% and 9.73%, respectively. The purity of 1-kestose was 82.9% and of nystose was 73.6%. PMID:22013906

  17. Comparative evaluation of polysaccharides isolated from Astragalus, oyster mushroom, and yacon as inhibitors of α-glucosidase.

    PubMed

    Zhu, Zhen-Yuan; Zhang, Jing-Yi; Chen, Li-Jing; Liu, Xiao-Cui; Liu, Yang; Wang, Wan-Xiao; Zhang, Yong-Min

    2014-04-01

    The incidence of diabetes has increased considerably, and become the third serious chronic disease following cancer and cardiovascular diseases. Though acarbose, metformin, and 1-deoxynojirimycin have good efficacy for clinical application as hypoglycemic drugs, their expensive costs and some degree of side effects have limited their clinical application. Recently, increasing attention has concentrated on the polysaccharides from natural plant and animal sources for diabetes. In order to illustrate the pharmaceutical activity of polysaccharides as natural hypoglycemic agents, polysaccharides isolated from Astragalus, oyster mushroom, and Yacon were evaluated for their inhibitory effects on α-glucosidase. Polysaccharides were extracted and purified from Astragalus, Oyster mushroom, and Yacon with hot water at 90 °C for 3 h, respectively. The total sugar content of the polysaccharide was determined by the phenol-sulfuric acid method. The α-glucosidase inhibitory activity was measured by the glucose oxidase method. The results exhibited that the inhibitory effects on α-glucosidase were in decreasing order, Astragalus > oyster mushroom > Yacon. The α-glucosidase inhibition percentage of Astragalus polysaccharide and oyster mushroom polysaccharide were over 40% at the polysaccharide concentration of 0.4 mg·mL(-1). The IC50 of Astragalus polysaccharide and oyster mushroom polysaccharide were 0.28 and 0.424 mg·mL(-1), respectively. The information obtained from this work is beneficial for the use polysaccharides as a dietary supplement for health foods and therapeutics for diabetes. PMID:24863354

  18. Single cell protein production from yacon extract using a highly thermosensitive and permeable mutant of the marine yeast Cryptococcus aureus G7a and its nutritive analysis.

    PubMed

    Zhao, Chun-Hai; Zhang, Tong; Chi, Zhen-Ming; Chi, Zhe; Li, Jing; Wang, Xiang-Hong

    2010-06-01

    The intracellular protein in the highly thermosensitive and permeable mutant can be easily released when they are incubated both in the low-osmolarity water and at the non-permissive temperature (usually 37 degrees C). After the mutant was grown in the yacon extract for 45 h, the crude protein content in the highly thermosensitive and permeable mutant Z114 was 59.1% and over 61% of the total protein could be released from the cells treated at 37 degrees C. The mutant cells grown in the yacon extract still contained high level of essential amino acids and other nutrients. This means that the yacon extract could be used as the medium for growth of the highly thermosensitive and permeable mutant which contained high content of crude protein. PMID:19727833

  19. High solids fermentation reactor

    DOEpatents

    Wyman, Charles E.; Grohmann, Karel; Himmel, Michael E.; Richard, Christopher J.

    1993-03-02

    A fermentation reactor and method for fermentation of materials having greater than about 10% solids. The reactor includes a rotatable shaft along the central axis, the shaft including rods extending outwardly to mix the materials. The reactor and method are useful for anaerobic digestion of municipal solid wastes to produce methane, for production of commodity chemicals from organic materials, and for microbial fermentation processes.

  20. High solids fermentation reactor

    DOEpatents

    Wyman, Charles E.; Grohmann, Karel; Himmel, Michael E.; Richard, Christopher J.

    1993-01-01

    A fermentation reactor and method for fermentation of materials having greater than about 10% solids. The reactor includes a rotatable shaft along the central axis, the shaft including rods extending outwardly to mix the materials. The reactor and method are useful for anaerobic digestion of municipal solid wastes to produce methane, for production of commodity chemicals from organic materials, and for microbial fermentation processes.

  1. Molecularly Imprinted Nanomicrospheres as Matrix Solid-Phase Dispersant Combined with Gas Chromatography for Determination of Four Phosphorothioate Pesticides in Carrot and Yacon

    PubMed Central

    Zhou, Mengchun; Hu, Nana; Shu, Shaohua; Wang, Mo

    2015-01-01

    An efficient, rapid, and selective method for sample pretreatment, namely, molecularly imprinted matrix solid-phase dispersion (MI-MSPD) coupled with gas chromatography (GC), was developed for the rapid isolation of four phosphorothioate organophosphorus pesticides (tolclofos-methyl, phoxim, chlorpyrifos, and parathion-methyl) from carrot and yacon samples. New molecularly imprinted polymer nanomicrospheres were synthesized by using typical structural analogue tolclofos-methyl as a dummy template via surface grafting polymerization on nanosilica. Then, these four pesticides in carrot and yacon were extracted and adsorbed using the imprinted nanomicrospheres and further determined by gas chromatography. Under the optimized conditions, a good linearity of four pesticides was obtained in a range of 0.05–17.0 ng·g−1 with R varying from 0.9971 to 0.9996, and the detection limit of the method was 0.012~0.026 ng·g−1 in carrot and yacon samples. The recovery rates at two spiked levels were in the range of 85.4–105.6% with RSD ≤9.6%. The presented MI-MSPD method combined the advantages of MSPD for allowing the extraction, dispersion, and homogenization in two steps and the advantages of MIPs for high affinity and selectivity towards four phosphorothioate pesticides, which could be applied to the determination of pesticide residues in complicated vegetal samples. PMID:25954569

  2. Molecularly imprinted nanomicrospheres as matrix solid-phase dispersant combined with gas chromatography for determination of four phosphorothioate pesticides in carrot and yacon.

    PubMed

    Zhou, Mengchun; Hu, Nana; Shu, Shaohua; Wang, Mo

    2015-01-01

    An efficient, rapid, and selective method for sample pretreatment, namely, molecularly imprinted matrix solid-phase dispersion (MI-MSPD) coupled with gas chromatography (GC), was developed for the rapid isolation of four phosphorothioate organophosphorus pesticides (tolclofos-methyl, phoxim, chlorpyrifos, and parathion-methyl) from carrot and yacon samples. New molecularly imprinted polymer nanomicrospheres were synthesized by using typical structural analogue tolclofos-methyl as a dummy template via surface grafting polymerization on nanosilica. Then, these four pesticides in carrot and yacon were extracted and adsorbed using the imprinted nanomicrospheres and further determined by gas chromatography. Under the optimized conditions, a good linearity of four pesticides was obtained in a range of 0.05-17.0 ng·g(-1) with R varying from 0.9971 to 0.9996, and the detection limit of the method was 0.012~0.026 ng·g(-1) in carrot and yacon samples. The recovery rates at two spiked levels were in the range of 85.4-105.6% with RSD ≤9.6%. The presented MI-MSPD method combined the advantages of MSPD for allowing the extraction, dispersion, and homogenization in two steps and the advantages of MIPs for high affinity and selectivity towards four phosphorothioate pesticides, which could be applied to the determination of pesticide residues in complicated vegetal samples. PMID:25954569

  3. Quantitative determination of enhydrin in leaf rinse extracts and in glandular trichomes of Smallanthus sonchifolius (Asteraceae) by reversed-phase high-performance liquid chromatography.

    PubMed

    Schorr, Karin; Da Costa, Fernando B

    2005-01-01

    A simple, reliable and rapid reversed-phase HPLC-PAD procedure for the characterisation and quantitative determination of the anti-diabetic sesquiterpene lactone enhydrin (1) from Smallanthus sonchifolius (yacón) has been evaluated and validated. The approach focused on the analysis of various leaf rinse extracts, as well as the glandular trichomes of intact leaves, in which 1 was the major compound detected. The best sample preparation of a rinse extract yielded 0.67 mg/mL of 1, whilst a rapid rinse of a small piece of one dried leaf gave 0.09 mg/mL of 1; the highest concentration obtained from a glandular extract was 0.07 mg/mL. The dried leaves of S. sonchifolius were found to contain a total of 0.97% of 1. PMID:15997848

  4. Ferment in Technology

    ERIC Educational Resources Information Center

    Crossland, Janice

    1974-01-01

    A pollution-reducing and energy-saving alternative to petroleum use could be the fermentation industry and other technologies based on the use of renewable resources. Expansion of the fermentation industry could reduce our dependence on petroleum, reduce growing waste disposal problems, and help solve world food shortages. (BT)

  5. Fermentative alcohol production

    DOEpatents

    Wilke, Charles R.; Maiorella, Brian L.; Blanch, Harvey W.; Cysewski, Gerald R.

    1982-01-01

    An improved fermentation process for producing alcohol which includes the combination of vacuum fermentation and vacuum distillation. Preferably, the vacuum distillation is carried out in two phases, one a fermentor proper operated at atmospheric pressure and a flash phase operated at reduced pressure with recycle of fermentation brew having a reduced alcohol content to the fermentor, using vapor recompression heating of the flash-pot recycle stream to heat the flash-pot or the distillation step, and using "water load balancing" (i.e., the molar ratio of water in the fermentor feed is the same as the molar ratio of water in the distillation overhead).

  6. Xylose fermentation to ethanol

    SciTech Connect

    McMillan, J.D.

    1993-01-01

    The past several years have seen tremendous progress in the understanding of xylose metabolism and in the identification, characterization, and development of strains with improved xylose fermentation characteristics. A survey of the numerous microorganisms capable of directly fermenting xylose to ethanol indicates that wild-type yeast and recombinant bacteria offer the best overall performance in terms of high yield, final ethanol concentration, and volumetric productivity. The best performing bacteria, yeast, and fungi can achieve yields greater than 0.4 g/g and final ethanol concentrations approaching 5%. Productivities remain low for most yeast and particularly for fungi, but volumetric productivities exceeding 1.0 g/L-h have been reported for xylose-fermenting bacteria. In terms of wild-type microorganisms, strains of the yeast Pichia stipitis show the most promise in the short term for direct high-yield fermentation of xylose without byproduct formation. Of the recombinant xylose-fermenting microorganisms developed, recombinant E. coli ATTC 11303 (pLOI297) exhibits the most favorable performance characteristics reported to date.

  7. Fermented and Acidified Vegetables

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetables may be preserved by fermentation, direct acidification, or a combination of these along with pasteurization or refrigeration and selected additives to yield products with an extended shelf life and enhanced safety. Organic acids such as lactic, acetic, sorbic and benzoic acids along with ...

  8. L-lysine fermentation.

    PubMed

    Anastassiadis, Savas

    2007-01-01

    Amino acids are the basic bioelements of proteins, which are the most important macromolecules for the functions of humans and animals. Out of the 20 L-amino acids, ecumenically found in most of living organisms, L-lysine is one of the 9 amino acids which are essential for human and animal nutrition. L-lysine is useful as medicament, chemical agent, food material (food industry) and feed additive (animal food). Its demand has been steadily increasing in recent years and several hundred thousands tones of L-lysine (about 800,000 tones/year) are annually produced worldwide almost by microbial fermentation. The stereospecificity of amino acids (the L isomer) makes the fermentation advantageous compared with synthetic processes. Mutant auxotrophic or resistant to certain chemicals strains of so-called gram positive coryneform bacteria are generally used, including the genera Brevibacterium and Corynebacterium, united to the genus. The significance of Research and Development increased rapidly since the discovery of fermentative amino acid production in the fifties (S. Kinoshita et al., Proceedings of the International Symposium on Enzyme Chemistry 2:464-468 (1957)), leading to innovative fermentation processes which replaced the classical manufacturing methods of L-lysine like acid hydrolysis. L-Lysine is separated and purified by suitable downstream processes involving classical separation or extraction methods (ultrafiltration or centrifugation, separation or ion exchange extraction, crystallization, drying) and is sold as a powder. Alternatively, spray dried pellets or liquid fermentation broth can be used as animal feed supplement. On behalf of today's strong competition in amino acid industry, Biotechnology companies are continuously aiming in innovative research developments and use complex management concepts and business strategies, towards gaining market leadership in the field of amino acid production. PMID:19075830

  9. Acidogenic fermentation of lactose

    SciTech Connect

    Kisaalita, W.S.; Pinder, K.L.; Lo, K.V.

    1987-01-01

    Cheese whey is the main component of waste streams from cheese manufacturing plants. Whey is a high biochemical oxygen demand (BOD) effluent that must be reduced before the streams are sent to the sewer. It is proposed in this article that the production of methane by anaerobic fermentation would be the best use of this stream, especially for small plants. Single-stage fermentation of lactose, the main component of whey, results in a very low pH and a stalled process. Two-phase fermentation will eliminate this problem. The acidogenic stage of fermentation has been studied at pH of between 4 and 6.5. The nature of the main products of the reaction have been found to be pH dependent. Below a pH of 4.5 a gas (CO/sub 2/ and H/sub 2/) is produced along with ethanol, acetate, and butyrate. Above a pH of 4.5 no gas was produced and the liquid products included less ethanol and butyrate and more acetate. A separate study on the conditions for gas formation showed that if the pH dropped for a short time below 4.5 gases were formed at all subsequent pH. This would indicate a change in population distribution due to the period at a low pH. By assuming that the desired products from the acidogenic stage were butyrate, acetate, and no gases, the optimum pH range was found to be between 6.0 and 6.5.

  10. Fermentation method producing ethanol

    DOEpatents

    Wang, Daniel I. C.; Dalal, Rajen

    1986-01-01

    Ethanol is the major end product of an anaerobic, thermophilic fermentation process using a mutant strain of bacterium Clostridium thermosaccharolyticum. This organism is capable of converting hexose and pentose carbohydrates to ethanol, acetic and lactic acids. Mutants of Clostridium thermosaccharolyticum are capable of converting these substrates to ethanol in exceptionally high yield and with increased productivity. Both the mutant organism and the technique for its isolation are provided.

  11. Recombinant Zymomonas for pentose fermentation

    DOEpatents

    Picataggio, S.K.; Zhang, M.; Eddy, C.K.; Deanda, K.A.; Finkelstein, M.

    1996-05-07

    The invention relates to microorganisms which normally do not ferment a pentose sugar and which are genetically altered to ferment this pentose to produce ethanol. A representative example is Zymomonas mobilis which has been transformed with E. coli xylose isomerase, xylulokinase, transaldolase and transketolase genes. Expression of the added genes are under the control of Zymomonas mobilis promoters. This newly created microorganism is useful for fermenting pentoses and glucose, produced by hydrolysis of hemicellulose and cellulose, to produce ethanol. 2 figs.

  12. Recombinant zymomonas for pentose fermentation

    DOEpatents

    Picataggio, Stephen K.; Zhang, Min; Eddy, Christina K.; Deanda, Kristine A.; Finkelstein, Mark

    1996-01-01

    The invention relates to microorganisms which normally do not ferment a pentose sugar and which are genetically altered to ferment this pentose to produce ethanol. A representative example is Zymomonas mobilis which has been transformed with E. coli xylose isomerase, xylulokinase, transaldolase and transketolase genes. Expression of the added genes are under the control of Zymomonas mobilis promoters. This newly created microorganism is useful for fermenting pentoses and glucose, produced by hydrolysis of hemicellulose and cellulose, to produce ethanol.

  13. Pentose fermentation by recombinant zymomonas

    DOEpatents

    Picataggio, Stephen K.; Zhang, Min; Eddy, Christina K.; Deanda, Kristine A.; Finkelstein, Mark; Mohagheghi, Ali; Newman, Mildred M.; McMillan, James D.

    1998-01-01

    The invention relates to microorganisms which normally do not ferment pentose sugar and which are genetically altered to ferment pentose sugar to produce ethanol, and fermentation processes utilizing the same. Examples include Zymomonas mobilis which has been transformed with combinations of E. coli genes for xylose isomerase, xylulokinase, transaldolase, transketolase, L-arabinose isomerase, L-ribulokinase, and L-ribulose 5-phosphate 4-epimerase. Expression of the added genes are under the control of Zymomonas mobilis promoters. These newly created microorganisms are useful for fermenting pentoses and glucose, produced by hydrolysis of hemicellulose and cellulose, to produce ethanol.

  14. Recombinant Zymomonas for pentose fermentation

    DOEpatents

    Picataggio, Stephen K.; Zhang, Min; Eddy, Christina K.; Deanda, Kristine A.

    1998-01-01

    The invention relates to microorganisms which normally do not ferment pentose sugar and which are genetically altered to ferment pentose sugar to produce ethanol, and fermentation processes utilizing the same. Examples include Zymomonas mobilis which has been transformed with combinations of E. coli genes for xylose isomerase, xylulokinase, transaldolase, transketolase, L-arabinose isomerase, L-ribulokinase, and L-ribulose-5-phosphate 4-epimerase. Expression of the added genes are under the control of Zymomonas mobilis promoters. These newly created microorganisms are useful for fermenting pentoses and glucose, produced by hydrolysis of hemicellulose and cellulose, to produce ethanol.

  15. Recombinant Zymomonas for pentose fermentation

    DOEpatents

    Picataggio, S.K.; Min Zhang; Eddy, C.K.; Deanda, K.A.

    1998-03-10

    The invention relates to microorganisms which normally do not ferment pentose sugar and which are genetically altered to ferment pentose sugar to produce ethanol, and fermentation processes utilizing the same. Examples include Zymomonas mobilis which has been transformed with combinations of E. coli genes for xylose isomerase, xylulokinase, transaldolase, transketolase, L-arabinose isomerase, L-ribulokinase, and L-ribulose-5-phosphate 4-epimerase. Expression of the added genes are under the control of Zymomonas mobilis promoters. These newly created microorganisms are useful for fermenting pentoses and glucose, produced by hydrolysis of hemicellulose and cellulose, to produce ethanol. 7 figs.

  16. Pentose fermentation by recombinant Zymomonas

    DOEpatents

    Picataggio, S.K.; Zhang, M.; Eddy, C.K.; Deanda, K.A.; Finkelstein, M.; Mohagheghi, A.; Newman, M.M.; McMillan, J.D.

    1998-01-27

    The invention relates to microorganisms which normally do not ferment pentose sugar and which are genetically altered to ferment pentose sugar to produce ethanol, and fermentation processes utilizing the same. Examples include Zymomonas mobilis which has been transformed with combinations of E. coli genes for xylose isomerase, xylulokinase, transaldolase, transketolase, L-arabinose isomerase, L-ribulokinase, and L-ribulose 5-phosphate 4-epimerase. Expression of the added genes are under the control of Zymomonas mobilis promoters. These newly created microorganisms are useful for fermenting pentoses and glucose, produced by hydrolysis of hemicellulose and cellulose, to produce ethanol. 7 figs.

  17. Bacteriophages and dairy fermentations

    PubMed Central

    Marcó, Mariángeles Briggiler; Moineau, Sylvain; Quiberoni, Andrea

    2012-01-01

    This review highlights the main strategies available to control phage infection during large-scale milk fermentation by lactic acid bacteria. The topics that are emphasized include the factors influencing bacterial activities, the sources of phage contamination, the methods available to detect and quantify phages, as well as practical solutions to limit phage dispersion through an adapted factory design, the control of air flow, the use of adequate sanitizers, the restricted used of recycled products, and the selection and growth of bacterial cultures. PMID:23275866

  18. Ethanolic fermentation of lignocellulose hydrolysates

    SciTech Connect

    Hahn-Haegerdal, B.

    1996-12-31

    This minireview discusses various factors which require consideration for the ethanolic fermentation of lignocellulose hydrolysates. The production of an alternative transportation fuel requires pretreatment of the biomass and detoxification to enhance the fermentability. Recombinant DNA technology makes it possible to engineer new microorganisms for efficient ethanol production from all sugars present in the hydrolysates. 60 refs.

  19. Fumaric acid production by fermentation

    PubMed Central

    Roa Engel, Carol A.; Zijlmans, Tiemen W.; van Gulik, Walter M.; van der Wielen, Luuk A. M.

    2008-01-01

    The potential of fumaric acid as a raw material in the polymer industry and the increment of cost of petroleum-based fumaric acid raises interest in fermentation processes for production of this compound from renewable resources. Although the chemical process yields 112% w/w fumaric acid from maleic anhydride and the fermentation process yields only 85% w/w from glucose, the latter raw material is three times cheaper. Besides, the fermentation fixes CO2. Production of fumaric acid by Rhizopus species and the involved metabolic pathways are reviewed. Submerged fermentation systems coupled with product recovery techniques seem to have achieved economically attractive yields and productivities. Future prospects for improvement of fumaric acid production include metabolic engineering approaches to achieve low pH fermentations. PMID:18214471

  20. Gas controlled hydrogen fermentation.

    PubMed

    Bastidas-Oyanedel, Juan-Rodrigo; Mohd-Zaki, Zuhaida; Zeng, Raymond J; Bernet, Nicolas; Pratt, Steven; Steyer, Jean-Philippe; Batstone, Damien John

    2012-04-01

    Acidogenic fermentation is an anaerobic process of double purpose, while treating organic residues it produces chemical compounds, such as hydrogen, ethanol and organic acids. Therefore, acidogenic fermentation arises as an attractive biotechnology process towards the biorefinery concept. Moreover, this process does not need sterile operating conditions and works under a wide range of pH. Changes of operating conditions produce metabolic shifts, inducing variability on acidogenic product yield. To induce those changes, experiments, based on reactor headspace N(2)-flushing (gas phase), were designed. A major result was the hydrogen yield increase from 1 to 3.25±0.4 ( [Formula: see text] ) at pH 4.5 and N(2)-flushing of 58.4 (L·d(-1)). This yield is close to the theoretical acidogenic value (4 [Formula: see text] ). The mechanisms that explain this increase on hydrogen yield shifts are related to the thermodynamics of three metabolic reactions: lactate hydrogenase, NADH hydrogenase and homoacetogenesis, which are affected by the low hydrogen partial pressures. PMID:22342590

  1. Lactose fermentation by engineered Saccharomyces cerevisiae capable of fermenting cellobiose.

    PubMed

    Liu, Jing-Jing; Zhang, Guo-Chang; Oh, Eun Joong; Pathanibul, Panchalee; Turner, Timothy L; Jin, Yong-Su

    2016-09-20

    Lactose is an inevitable byproduct of the dairy industry. In addition to cheese manufacturing, the growing Greek yogurt industry generates excess acid whey, which contains lactose. Therefore, rapid and efficient conversion of lactose to fuels and chemicals would be useful for recycling the otherwise harmful acid whey. Saccharomyces cerevisiae, a popular metabolic engineering host, cannot natively utilize lactose. However, we discovered that an engineered S. cerevisiae strain (EJ2) capable of fermenting cellobiose can also ferment lactose. This finding suggests that a cellobiose transporter (CDT-1) can transport lactose and a β-glucosidase (GH1-1) can hydrolyze lactose by acting as a β-galactosidase. While the lactose fermentation by the EJ2 strain was much slower than the cellobiose fermentation, a faster lactose-fermenting strain (EJ2e8) was obtained through serial subcultures on lactose. The EJ2e8 strain fermented lactose with a consumption rate of 2.16g/Lh. The improved lactose fermentation by the EJ2e8 strain was due to the increased copy number of cdt-1 and gh1-1 genes. Looking ahead, the EJ2e8 strain could be exploited for the production of other non-ethanol fuels and chemicals from lactose through further metabolic engineering. PMID:27457698

  2. Bacteriophage ecology in a commercial cucumber fermentation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To reduce high-salt waste from cucumber fermentations, low-salt fermentations are under development. These fermentations may require the use of starter cultures to ensure normal fermentations. Because potential phage infection can cause starter culture failure, it is important to understand phage ec...

  3. Dry anaerobic methane fermentation

    SciTech Connect

    Jewell, W.J.; Dell'Orto, S.; Fanfoni, K.J.; Fast, S.; Jackson, D.; Kabrick, R.M.

    1981-01-01

    The conversion of relatively dry organics directly to biogas increases the potential of using large amounts of organics such as mixtures of crop residues and animal manures on the farm, crop residues, and urban solid wastes. Besides the use of the dry fermentation process on farms and in centralized facilities, the possibility of using this concept as a residential energy generating system exists. Existing crop residues can be used to generate biogas without major water needs problems. Requirements for an efficient reaction include initial solid content less than 30%, an active methanogenic slurry addition of 40% dry weight (depending on the substrate), and a reaction period of 60-300 days, depending on the reactor temperatures. Further analyses are required to clarify the controlling parameters and the economic feasibility.

  4. Fermented broth in tyrosinase- and melanogenesis inhibition.

    PubMed

    Chan, Chin-Feng; Huang, Ching-Cheng; Lee, Ming-Yuan; Lin, Yung-Sheng

    2014-01-01

    Fermented broth has a long history of applications in the food, pharmaceutical and cosmetic industries. Recently, the use of fermented broth in skin care products is in ascendance. This review investigates the efficacy of fermented broth in inhibiting tyrosinase and melanogenesis. Possible active ingredients and hypopigmentation mechanisms of fermented broth are discussed, and potential applications of fermented broth in the cosmetic industry are also addressed. PMID:25255749

  5. Social Ferment and School Finance

    ERIC Educational Resources Information Center

    Hack, Walter G.

    1972-01-01

    Describes the nature of contemporary society in terms of gross or general changes observed during the past twenty years in order to consider possible breakthroughs of school finance as products of social ferment. (Author/AN)

  6. Optimal design of airlift fermenters

    SciTech Connect

    Moresi, M.

    1981-11-01

    In this article a modeling of a draft-tube airlift fermenter (ALF) based on perfect back-mixing of liquid and plugflow for gas bubbles has been carried out to optimize the design and operation of fermentation units at different working capacities. With reference to a whey fermentation by yeasts the economic optimization has led to a slim ALF with an aspect ratio of about 15. As far as power expended per unit of oxygen transfer is concerned, the responses of the model are highly influenced by kLa. However, a safer use of the model has been suggested in order to assess the feasibility of the fermentation process under study. (Refs. 39).

  7. Fermentation studies on extracts of beet

    SciTech Connect

    Smith, J.M.

    1983-03-01

    Fodder beet juice and sugar beet juice were found to be good substrates for the production of ethanol. Two strains of flocculent yeast were selected to ferment fodder beet juice and sugar beet juice. Beet juice was found to have a high level of contaminating microorganisms. Elimination of these microorganisms from the beet juice before fermentation was an essential step if high fermentation efficiencies were to be achieved. Continuous fermentation of fodder beet juice and sugar beet juice provided higher fermenter productivities than rapid batch fermentation. Under New Zealand farming conditions, it is estimated that 4000 litres of ethanol per hectare could be produced on a nation-wide basis.

  8. Ethanol fermentation and potential.

    PubMed

    Miller, D L

    1975-01-01

    Ethyl alcohol is one of the United States and world's major chemicals. Beverage alcohol in the United States must be prepared from cereal grains or other natural products. The U.S. industrial alcohol market has remained relatively stable for several years at approximately 300 million gallons annually. Most of this has been produced synthetically from petroleum raw material (gas and oil). These raw materials are experiencing major price increases and are in short supply. The production of ethyl alcohol from cereal grains and cellulosic raw materials by fermentation is technically feasible and has been proven. Alcohol produced from all such materials is equal to synthetic alcohol in quality and performance. Competitive economics have controlled the basic raw materials used. The major potential new ethyl alcohol market is as a component of automobile fuels. A 10% alcohol-gasoline blend in the United States would annually require over 10 billion gallons of anhydrous alcohol. Use of alcohol for this purpose is technically feasible. However, alcohol has not been economically competitive to date. PMID:1191746

  9. Fermentations with new recombinant organisms

    SciTech Connect

    Bothast, R.J.; Nichols, N.N.; Dien, B.S.

    1999-10-01

    US fuel ethanol production in 1998 exceeded the record production of 1.4 billion gallons set in 1995. Most of this ethanol was produced from over 550 million bushels of corn. Expanding fuel ethanol production will require developing lower-cost feedstocks, and only lignocellulosic feedstocks are available in sufficient quantities to substitute for corn starch. Major technical hurdles to converting lignocellulose to ethanol include the lack of low-cost efficient enzymes for saccharification of biomass to fermentable sugars and the development of microorganisms for the fermentation of these mixed sugars. To date, the most successful research approaches to develop novel biocatalysts that will efficiently ferment mixed sugar syrups include isolation of novel yeasts that ferment xylose, genetic engineering of Escherichia coli and other gram negative bacteria for ethanol production, and genetic engineering of Saccharomyces cerevisiae and Zymomonas mobilis for pentose utilization. The authors have evaluated the fermentation of corn fiber hydrolyzates by the various strains developed. E. coli K011, E. coli SL40, E. coli FBR3, Zymomonas CP4 (pZB5), and Saccharomyces 1400 (pLNH32) fermented corn fiber hydrolyzates to ethanol in the range of 21--34 g/L with yields ranging from 0.41 to 0.50 g of ethanol per gram of sugar consumed. Progress with new recombinant microorganisms has been rapid and will continue with the eventual development of organisms suitable for commercial ethanol production. Each research approach holds considerable promise, with the possibility existing that different industrially hardened strains may find separate applications in the fermentation of specific feedstocks.

  10. A Chinese fermented soybean food.

    PubMed

    Han, B Z; Rombouts, F M; Nout, M J

    2001-04-11

    Sufu or furu is a fermented soybean product originating in China. It is a cheese-like product with a spreadable creamy consistency and a pronounced flavour. Sufu is a popular side dish consumed mainly with breakfast rice or steamed bread. It has a long history and written records date back to the Wei Dynasty (220-265 AD). Sufu is made by fungal solid state fermentation of tofu (soybean curd) followed by aging in brine containing salt and alcohol. The present review is based on scientific data published in Chinese and international sources. Several types of sufu can be distinguished, according to processing method or according to colour and flavour. Choice of processing can result in mould fermented sufu, naturally fermented sufu, bacterial fermented sufu, or enzymatically ripened sufu. Depending on the choice of dressing mixture, red, white or grey sufu may be obtained. The stages of the process are discussed and include the preparation of tofu, the preparation of pehtze, salting and ripening. Fungal starters include Actinomucor spp., Mucor spp. and Rhizopus spp. The chemical composition is discussed with particular reference to the proximate composition, the amino acid content and profile, as well as the volatile flavour components of various types of sufu. PMID:11322691

  11. Immobilized cells in meat fermentation.

    PubMed

    McLoughlin, A J; Champagne, C P

    1994-01-01

    The immobilization of microbial cells can contribute to fermented meat technology at two basic levels. First, the solid/semisolid nature (low available water) of the substrate restricts the mobility of cells and results in spatial organizations based on "natural immobilization" within the fermentation matrix. The microniches formed influence the fermentation biochemistry through mass transfer limitations and the subsequent development and activity of the microflora. This form of immobilization controls the nature of competition between subpopulations within the microflora and ultimately exerts an effect on the ecological competence (ability to survive and compete) of the various cultures present. Second, immobilized cell technology (ICT) can be used to enhance the ecological competence of starter cultures added to initiate the fermentation. Immobilization matrices such as alginate can provide microniches or microenvironments that protect the culture during freezing or lyophilization, during subsequent rehydration, and when in competition with indigenous microflora. The regulated release of cells from the microenvironments can also contribute to competitive ability. The regulation of both immobilization processes can result in enhanced fermentation activity. PMID:8069934

  12. Fermentative butanol production by Clostridia.

    PubMed

    Lee, Sang Yup; Park, Jin Hwan; Jang, Seh Hee; Nielsen, Lars K; Kim, Jaehyun; Jung, Kwang S

    2008-10-01

    Butanol is an aliphatic saturated alcohol having the molecular formula of C(4)H(9)OH. Butanol can be used as an intermediate in chemical synthesis and as a solvent for a wide variety of chemical and textile industry applications. Moreover, butanol has been considered as a potential fuel or fuel additive. Biological production of butanol (with acetone and ethanol) was one of the largest industrial fermentation processes early in the 20th century. However, fermentative production of butanol had lost its competitiveness by 1960s due to increasing substrate costs and the advent of more efficient petrochemical processes. Recently, increasing demand for the use of renewable resources as feedstock for the production of chemicals combined with advances in biotechnology through omics, systems biology, metabolic engineering and innovative process developments is generating a renewed interest in fermentative butanol production. This article reviews biotechnological production of butanol by clostridia and some relevant fermentation and downstream processes. The strategies for strain improvement by metabolic engineering and further requirements to make fermentative butanol production a successful industrial process are also discussed. PMID:18727018

  13. Treatment of biomass to obtain fermentable sugars

    DOEpatents

    Dunson, Jr., James B.; Tucker, Melvin; Elander, Richard; Hennessey, Susan M.

    2011-04-26

    Biomass is pretreated using a low concentration of aqueous ammonia at high biomass concentration. Pretreated biomass is further hydrolyzed with a saccharification enzyme consortium. Fermentable sugars released by saccharification may be utilized for the production of target chemicals by fermentation.

  14. Ethanolic fermentation of pentoses in lignocellulose hydrolysates

    SciTech Connect

    Hahn-Haegerdal, B.; Linden, T.; Senac, T.; Skoog, K.

    1991-12-31

    In the fermentation of lignocellulose hydrolysates to ethanol, two major problems are encountered: the fermentation of the pentose sugar xylose, and the presence of microbial inhibitors. Xylose can be directly fermented with yeasts; such as Pachysolen tannophilus, Candida shehatae, and Pichia stipis, or by isomerization of xylose to xylulose with the enzyme glucose (xylose) isomerase, and subsequent fermentation with bakers yeast, Saccharomyces cerevisiae. The direct fermentation requires low, carefully controlled oxygenation, as well as the removal of inhibitors. Also, the xylose-fermenting yeasts have a limited ethanol tolerance. The combined isomerization and fermentation with XI and S. cerevisiae gives yields and productivities comparable to those obtained in hexose fermentations without oxygenation and removal of inhibitors. However, the enzyme is not very stable in a lignocellulose hydrolysate, and S. cerevisiae has a poorly developed pentose phosphate shunt. Different strategies involving strain adaptation, and protein and genetic engineering adopted to overcome these different obstacles, are discussed.

  15. Experiments with Fungi Part 2: Fermentation.

    ERIC Educational Resources Information Center

    Dale, Michele; Hetherington, Shane

    1996-01-01

    Gives details of three experiments with alcoholic fermentation by yeasts which yield carbon dioxide and ethanol. Lists procedures for making cider, vinegar, and fermentation gases. Provides some historical background and detailed equipment requirements. (DDR)

  16. Yeasts Diversity in Fermented Foods and Beverages

    NASA Astrophysics Data System (ADS)

    Tamang, Jyoti Prakash; Fleet, Graham H.

    People across the world have learnt to culture and use the essential microorganisms for production of fermented foods and alcoholic beverages. A fermented food is produced either spontaneously or by adding mixed/pure starter culture(s). Yeasts are among the essential functional microorganisms encountered in many fermented foods, and are commercially used in production of baker's yeast, breads, wine, beer, cheese, etc. In Asia, moulds are predominant followed by amylolytic and alcohol-producing yeasts in the fermentation processes, whereas in Africa, Europe, Australia and America, fermented products are prepared exclusively using bacteria or bacteria-yeasts mixed cultures. This chapter would focus on the varieties of fermented foods and alcoholic beverages produced by yeasts, their microbiology and role in food fermentation, widely used commercial starters (pilot production, molecular aspects), production technology of some common commercial fermented foods and alcoholic beverages, toxicity and food safety using yeasts cultures and socio-economy

  17. Diesel fuel by fermentation of wastes

    SciTech Connect

    Pierce, S.M.; Wayman, M.

    1983-01-11

    An improved diesel fuel which is entirely capable of preparation from renewable resources. The fuel comprises a blend of fermentation produced butanol and fermentation produced glycerides. The substrates useful for the butanol fermentation are conventional industrial waste products, such as cheese whey and low value carbohydrate containing waste materials such as corn cobs, wood chips, etc. Similar substrate materials are used in the fermentation or growth culture of glyceride producing microbes.

  18. Ethanol fermentation using novel techniques

    SciTech Connect

    Kim, K.

    1984-01-01

    Potato starch, sweet potato, and Jerusalem artichoke were hydrolyzed using high pressure extrusion and/or acid and the hydrolysates were utilized as substrates for ethanol fermentation. The first extrusion at 13,000 to 40,000 psi did not completely hydrolyze the starch solution to fermentable sugar. At elevated temperatures (79-97/sup 0/C) and in the presence of HCl, the high pressure extrusion (13,000 psi) effectively hydrolyzed starch into fermentable sugars to yield 12.1, 22.4, and 30.5 dextrose equivalent (DE) in 1, 2, and 3 N HCl, respectively. Maximal reducing sugar value of 84.2 DE and 0.056% hydroxymethylfurfural (HMF) was achieved after heating 8% sweet potato slurry (SPS) in 1 N HCl at 110/sup 0/C for 15 min. The degraded SPS was then fermented at 37/sup 0/C using an alcohol-tolerant strain of Saccharomyces cerevisiae to give 41.6 g of 200 proof ethanol from 400 g fresh Georgia Red Sweet potato tuber. A maximal reducing sugar value of 83.5 fructose equivalent and 0.004% HMF was formed from Jerusalem artichoke slurry (JAS) containing 8% total solid following heating in 0.1 N HCl at 97/sup 0/C for 10 min. The degraded JAS was then fermented at 37 C and 29.1 g 200 proof ethanol was produced from 320 g fresh tuber of Jerusalem artichoke. Continuous ethanol fermentation was successfully achieved using a bioreactor where cells were immobilized onto inorganic, channeled porous alumina beads. A maximum productivity (27.0/g ethanol/l.h) was achieved with the bioreactor at 35 C using malt yeast extract broth containing 10% glucose as the feedstock. The immobilized cell system showed good operational and storage stability, and could be stored for more than five months without loss of productivities.

  19. 27 CFR 19.296 - Fermented materials.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Fermented materials. 19.296 Section 19.296 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU..., Use, and Disposal of Materials § 19.296 Fermented materials. Fermented materials that a...

  20. 27 CFR 19.296 - Fermented materials.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Fermented materials. 19.296 Section 19.296 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU..., Use, and Disposal of Materials § 19.296 Fermented materials. Fermented materials that a...

  1. African fermented foods and probiotics.

    PubMed

    Franz, Charles M A P; Huch, Melanie; Mathara, Julius Maina; Abriouel, Hikmate; Benomar, Nabil; Reid, Gregor; Galvez, Antonio; Holzapfel, Wilhelm H

    2014-11-01

    Africa has an age old history of production of traditional fermented foods and is perhaps the continent with the richest variety of lactic acid fermented foods. These foods have a large impact on the nutrition, health and socio-economy of the people of the continent, often plagued by war, drought, famine and disease. Sub-Saharan Africa is the world's region with the highest percentage of chronically malnourished people and high child mortality. Further developing of traditional fermented foods with added probiotic health features would be an important contribution towards reaching the UN Millennium Development Goals of eradication of poverty and hunger, reduction in child mortality rates and improvement of maternal health. Specific probiotic strains with documented health benefits are sparsely available in Africa and not affordable to the majority of the population. Furthermore, they are not used in food fermentations. If such probiotic products could be developed especially for household food preparation, such as cereal or milk foods, it could make a profound impact on the health and well-being of adults and children. Suitable strains need to be chosen and efforts are needed to produce strains to make products which will be available for clinical studies. This can gauge the impact of probiotics on consumers' nutrition and health, and increase the number of people who can benefit. PMID:25203619

  2. PRODUCTION OF MANNITOL BY FERMENTATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mannitol, a naturally occurring polyol, is widely used in the food, pharmaceutical, medicine and chemical industry. The production of mannitol by fermentation has become attractive because of the problems associated with its production by chemical methods. We have selected Lactobacillus intermediu...

  3. [Chemistry of life: ferments and fermentation in 17th-century iatrochemistry].

    PubMed

    Clericuzio, Antonio

    2003-01-01

    The concepts of ferment and fermentation played an important, though heretofore neglected, role in 17th-century physiology. Though these notions can be found in ancient philosophy and medicine, as well as in medieval medicine, they became integral part of the chemical medicine that was advocated by Paracelsus and his school. Paracelsians made fermentation a central concept in their successful effort to give chemical foundation to medicine. Jean Baptiste van Helmont and Sylvius used the concepts of ferment and fermentation to explain a variety of physiological processes in human body. Corpuscular philosophers like Robert Boyle and Thomas Willis reinterpreted these notions in corpuscular terms and separated the concept of ferment from that of fermentation. In the second half of the seventeenth century, physiologist tried to explain fermentation by means of chemical reactions, as for instance acid -alkali, and ruled out the notion of ferment as superfluous to their investigations. At the end of hte seventeenth century fermentation attracted the interest of physicists like Johannes Bernoulli and Isaac Newton, who tried to explain fermentative processes in terms of matter and motion (Bernoulli) and short-range forces (Newton). George Ernst Stahl devoted a work to fermentation: the Zymotechnia. He explained fermentation as the outcome of the reactions of molecules formed of saline, oily and earthy corpuscles with particles of water. He saw fermentation as a mechanical process, i.e. as collision of different kinds of corpuscles. PMID:15311436

  4. 27 CFR 24.197 - Production by fermentation.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Production by fermentation... fermentation. In producing special natural wine by fermentation, flavoring materials may be added before or during fermentation. Special natural wine produced by fermentation may be ameliorated in the same...

  5. 27 CFR 24.197 - Production by fermentation.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Production by fermentation... fermentation. In producing special natural wine by fermentation, flavoring materials may be added before or during fermentation. Special natural wine produced by fermentation may be ameliorated in the same...

  6. 27 CFR 24.197 - Production by fermentation.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Production by fermentation... fermentation. In producing special natural wine by fermentation, flavoring materials may be added before or during fermentation. Special natural wine produced by fermentation may be ameliorated in the same...

  7. 27 CFR 24.197 - Production by fermentation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Production by fermentation... fermentation. In producing special natural wine by fermentation, flavoring materials may be added before or during fermentation. Special natural wine produced by fermentation may be ameliorated in the same...

  8. 27 CFR 24.197 - Production by fermentation.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Production by fermentation... fermentation. In producing special natural wine by fermentation, flavoring materials may be added before or during fermentation. Special natural wine produced by fermentation may be ameliorated in the same...

  9. Fermented products with probiotic qualities.

    PubMed

    Kalantzopoulos, G

    1997-01-01

    For several centuries, fermented products derived from plant or animal materials have been an acceptable and essential part of the diet in most parts of the world. Health benefits have also often been associated with them. Probiotics can be defined as fermented food containing specific live microorganisms or a live microbial food or feed supplement, which beneficially effects the human or the host animal by improving its intestinal microbial balance. Nearly all probiotics currently on the market contain Lactobacilli, Streptococci, Enterococci or Bifidobacteria. In contrast to Japan, where freeze-dried microorganisms are consumed by a substantial part of the human population, in Europe, probiotic action towards humans are only claimed for certain fermented dairy products (e.g. yoghurts). Those species that have been extensively studied so far, with several experimental trials on man, are the two yoghurt bacteria Streptocaccus thermophilus and Lactobacillus bulgaricus, L. casei and Bifidobacteria. L. acidophilus has also received important scientific interest, however, only a few human studies have been carried out. From the technological point of view a good probiotic should be stable and viable for long periods under storage, should be able to survive the low pH levels of the stomach, be able to colonise the epithelium of the gastro-intestinal tract of the host, should not be pathogenic and, last but not least, must be capable of exerting a growth promoting effect or a resistance to infectious diseases. The beneficial effects of probiotics are mainly contributed to a direct antagonistic effect against specific groups of microorganisms (Enteropathogenes), by an effect on the metabolism in the gut or by a stimulation of systemic or mucosal immunity. We will present major proven health benefits of milks fermented with those bacterial species and discuss, where possible, the impact of the specific selection and utilisation of particular strains. PMID:16887587

  10. Pesticides' influence on wine fermentation.

    PubMed

    Caboni, Pierluigi; Cabras, Paolo

    2010-01-01

    Wine quality strongly depends on the grape quality. To obtain high-quality wines, it is necessary to process healthy grapes at the correct ripeness stage and for this reason the farmer has to be especially careful in the prevention of parasite attacks on the grapevine. The most common fungal diseases affecting grape quality are downy and powdery mildew (Plasmopara viticola and Uncinula necator), and gray mold (Botrytis cinerea). On the other hand, the most dangerous insects are the grape moth (Lobesia botrana), vine mealybug (Planococcus ficus), and the citrus mealybug (Planococcus citri). Farmers fight grape diseases and insects applying pesticides that can be found at harvest time on grapes. The persistence of pesticides depends on the chemical characteristic of the active ingredients as well as on photodegradation, thermodegradation, codistillation, and enzymatic degradation. The pesticide residues on grapes can be transferred to the must and this can influence the selection and development of yeast strains. Moreover, yeasts can also influence the levels of the pesticides in the wine by reducing or adsorbing them on lees. During the fermentative process, yeasts can cause the disappearance of pesticide residues by degradation or absorption at the end of the fermentation when yeasts are deposited as lees. In this chapter, we reviewed the effect of commonly used herbicides, insecticides, and fungicides on yeasts. We also studied the effect of alcoholic and malolactic fermentation on pesticide residues. PMID:20610173

  11. Promising ethanologens for xylose fermentation

    SciTech Connect

    Zhang, M.; Franden, M.A.; Newman, M.

    1995-12-31

    An economical biomass-to-ethanol process depends on the efficient conversion of both its cellulose and hemicellulose components. On a dry weight basis, the typical feedstock contains approx 25-50% (w/w) glucose, 10-30% (w/w) xylose, 15-30% (w/w) lignin, and 1-5% (w/w) of other minor pentose and hexose sugars. Although many microorganisms can ferment the glucose component in cellulose to ethanol, conversion of pentose sugars in the hemicellulose fraction, particularly xylose, has been hindered by the lack of a suitable biocatalyst. Despite the development of recombinant strains with improved fermentation performance, increased ethanol yields and concentrations and shorter fermentation times are key targets that have yet to be achieved from lignocellulosic hydrolyzates. Our objective is to develop biocatalysts for the rapid and efficient conversion of xylose by engineering key metabolic pathways in selected organisms. To identify promising biocatalysts for these efforts, we have surveyed several industrial microorganisms according to several primary traits considered to be essential, as well as a number of secondary traits considered to be desirable, in a commercial biomass-to-ethanol process.

  12. Process for the fermentative production of acetone, butanol and ethanol

    DOEpatents

    Glassner, David A.; Jain, Mahendra K.; Datta, Rathin

    1991-01-01

    A process including multistage continuous fermentation followed by batch fermentation with carefully chosen temperatures for each fermentation step, combined with an asporogenic strain of C. acetobutylicum and a high carbohydrate substrate concentration yields extraordinarily high butanol and total solvents concentrations.

  13. PERVAPORATION MEMBRANE SYSTEMS FOR VOLATILE FERMENTATION PRODUCT RECOVERY AND DEHYDRATION

    EPA Science Inventory

    The economics of fermentative production of fuels and commodity chemicals can be a strong function of the efficiency with which the fermentation products are removed from the biological media. Due to growth inhibition by some fermentation products, including ethanol, concentrati...

  14. New developments in oxidative fermentation.

    PubMed

    Adachi, O; Moonmangmee, D; Toyama, H; Yamada, M; Shinagawa, E; Matsushita, K

    2003-02-01

    Oxidative fermentations have been well established for a long time, especially in vinegar and in L-sorbose production. Recently, information on the enzyme systems involved in these oxidative fermentations has accumulated and new developments are possible based on these findings. We have recently isolated several thermotolerant acetic acid bacteria, which also seem to be useful for new developments in oxidative fermentation. Two different types of membrane-bound enzymes, quinoproteins and flavoproteins, are involved in oxidative fermentation, and sometimes work with the same substrate but produce different oxidation products. Recently, there have been new developments in two different oxidative fermentations, D-gluconate and D-sorbitol oxidations. Flavoproteins, D-gluconate dehydrogenase, and D-sorbitol dehydrogenase were isolated almost 2 decades ago, while the enzyme involved in the same oxidation reaction for D-gluconate and D-sorbitol has been recently isolated and shown to be a quinoprotein. Thus, these flavoproteins and a quinoprotein have been re-assessed for the oxidation reaction. Flavoprotein D-gluconate dehydrogenase and D-sorbitol dehydrogenase were shown to produce 2-keto- D-gluconate and D-fructose, respectively, whereas the quinoprotein was shown to produce 5-keto- D-gluconate and L-sorbose from D-gluconate and D-sorbitol, respectively. In addition to the quinoproteins described above, a new quinoprotein for quinate oxidation has been recently isolated from Gluconobacter strains. The quinate dehydrogenase is also a membrane-bound quinoprotein that produces 3-dehydroquinate. This enzyme can be useful for the production of shikimate, which is a convenient salvage synthesis system for many antibiotics, herbicides, and aromatic amino acids synthesis. In order to reduce energy costs of oxidative fermentation in industry, several thermotolerant acetic acid bacteria that can grow up to 40 degrees C have been isolated. Of such isolated strains, some

  15. Kinetics model development of cocoa bean fermentation

    NASA Astrophysics Data System (ADS)

    Kresnowati, M. T. A. P.; Gunawan, Agus Yodi; Muliyadini, Winny

    2015-12-01

    Although Indonesia is one of the biggest cocoa beans producers in the world, Indonesian cocoa beans are oftenly of low quality and thereby frequently priced low in the world market. In order to improve the quality, adequate post-harvest cocoa processing techniques are required. Fermentation is the vital stage in series of cocoa beans post harvest processing which could improve the quality of cocoa beans, in particular taste, aroma, and colours. During the fermentation process, combination of microbes grow producing metabolites that serve as the precursors for cocoa beans flavour. Microbial composition and thereby their activities will affect the fermentation performance and influence the properties of cocoa beans. The correlation could be reviewed using a kinetic model that includes unstructured microbial growth, substrate utilization and metabolic product formation. The developed kinetic model could be further used to design cocoa bean fermentation process to meet the expected quality. Further the development of kinetic model of cocoa bean fermentation also serve as a good case study of mixed culture solid state fermentation, that has rarely been studied. This paper presents the development of a kinetic model for solid-state cocoa beans fermentation using an empirical approach. Series of lab scale cocoa bean fermentations, either natural fermentations without starter addition or fermentations with mixed yeast and lactic acid bacteria starter addition, were used for model parameters estimation. The results showed that cocoa beans fermentation can be modelled mathematically and the best model included substrate utilization, microbial growth, metabolites production and its transport. Although the developed model still can not explain the dynamics in microbial population, this model can sufficiently explained the observed changes in sugar concentration as well as metabolic products in the cocoa bean pulp.

  16. Extractive fermentation of acetic acid

    SciTech Connect

    Busche, R.M.

    1991-12-31

    In this technoeconomic evaluation of the manufacture of acetic acid by fermentation, the use of the bacterium: Acetobacter suboxydans from the old vinegar process was compared with expected performance of the newer Clostridium thermoaceticum bacterium. Both systems were projected to operate as immobilized cells in a continuous, fluidized bed bioreactor, using solvent extraction to recover the product. Acetobacter metabolizes ethanol aerobically to produce acid at 100 g/L in a low pH medium. This ensures that the product is in the form of a concentrated extractable free acid, rather than as an unextractable salt. Unfortunately, yields from glucose by way of the ethanol fermentation are poor, but near the biological limits of the organisms involved. Conversely, C. thermoaceticum is a thermophilic anaerobe that operates at high fermentation rates on glucose at neutral pH to produce acetate salts directly in substantially quantitative yields. However, it is severely inhibited by product, which restricts concentration to a dilute 20 g/L. An improved Acetobacter system operating with recycled cells at 50 g/L appears capable of producing acid at $0.38/lb, as compared with a $0.29/lb price for synthetic acid. However, this system has only a limited margin for process improvement. The present Clostridium system cannot compete, since the required selling price would be $0.42/lb. However, if the organism could be adapted to tolerate higher product concentrations at acid pH, selling price could be reduced to $0.22/lb, or about 80% of the price of synthetic acid.

  17. Microbiology of keribo fermentation: an Ethiopian traditional fermented beverage.

    PubMed

    Abawari, Rashid Abafita

    2013-10-15

    Keribo is an indigenous traditional fermented beverage and is being served on holidays, wedding ceremony and also used as sources of income of many households in Jimma zone. The aim of this study was to document the microbiology of the product and antibiotic susceptibility patterns of LAB. Samples of Keribo were collected from Jimma town and four of its districts. Keribo was fermented in the laboratory following the traditional techniques for microbial succession monitored at 6 h intervals. Finally, dominant LAB was evaluated for their antibiotic susceptibility patterns against eight antibiotics. Samples of Keribo from open markets and households in Jimma zone showed average Lactic Acid Bacteria (LAB), Aerobic Mesophilic Bacteria (AMB), Aerobic Spore-formers (ASF) and yeasts with mean counts of (log CFU mL(-1)) 2.70 +/- 2.07, 2.34 +/- 2.37, 4.96 +/- 2.80 and 2.01 +/- 0.60, respectively. The mean counts of Enterobacteriaceae, staphylococci and moulds were below detectable levels. The early stage was dominated by AMB and ASF. However, the mean counts of LAB increased exponentially for the first 30 h and remain constant thereafter. Leuconostoc mesenteroides, identified as the most dominant LAB, were found to be susceptible to penicillin G, gentamicin, ampicilin, chloramphenicol, amikacin, bacitracin and norfloxacin but resistant to vancomycin. PMID:24506010

  18. Fermentation Rates of Grape Juice

    PubMed Central

    Ough, C. S.; Kunkee, R. E.

    1968-01-01

    Microbiological analysis showed that juices from white grapes had less biotin than juices from red grapes. The biotin content of the juices of some varieties was significantly different from that of other varieties. We did not note any regional effects on the biotin content of the juices. Biotin content of the Cabernet Sauvignon grapes increased significantly with maturity, whereas the biotin content of a white variety did not. The biotin content, with the total nitrogen, can be used to estimate indirectly the yeast growth potential and hence to predict the fermentation rate of the juice. About 84% of the rate variation can be accounted for by the calculated regression equations. PMID:16349801

  19. Solid-phase fermentation of sweet sorghum

    SciTech Connect

    Bryan, W.L.; Parrish, R.L.

    1982-12-01

    Solid-phase fermentations of chopped Wray sweet sorghum, (0.6 and 2.5 cm size) occurred in 7-liter fermentors at higher rates than juice fermentations and produced 80% ethanol yields, compared to 73% for juice. Heat loss from fermentors limited maximum temperatures to 38 degrees C. Low ethanol yields may have been caused by natural inhibitors or by thermal inhibition.

  20. Bacteriophage ecology in commercial sauerkraut fermentations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ecology of bacteriophages infecting lactic acid bacteria (LAB) in commercial sauerkraut fermentations was investigated. Brine samples were taken from four commercial sauerkraut fermentation tanks over a 60- or 100-day period in 2000 and 2001. A total of 171 independent phage isolates, including ...

  1. Microbial interactions associated with secondary cucumber fermentation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aims: To evaluate the interaction between selected yeasts and bacteria and associate their metabolic activity with secondary cucumber fermentation. Methods and Results: Selected yeast and bacteria, isolated from cucumber secondary fermentations, were inoculated as single and mixed cultures in a cucu...

  2. Butanol production by fermentation: efficient bioreactors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Energy security, environmental concerns, and business opportunities in the emerging bio-economy have generated strong interest in the production of n-butanol by fermentation. Acetone butanol ethanol (ABE or solvent) batch fermentation process is product limiting because butanol even at low concentra...

  3. Fermentation: From Sensory Experience to Conceptual Understanding

    ERIC Educational Resources Information Center

    Moore, Eugene B.

    1977-01-01

    Presented is a laboratory exercise that utilizes the natural yeast carbonation method of making homemade root beer to study fermentation and the effect of variables upon the fermentation process. There are photographs, a sample data sheet, and procedural hints included. (Author/MA)

  4. Manufacturing Ethyl Acetate From Fermentation Ethanol

    NASA Technical Reports Server (NTRS)

    Rohatgi, Naresh K.; Ingham, John D.

    1991-01-01

    Conceptual process uses dilute product of fermentation instead of concentrated ethanol. Low-concentration ethanol, extracted by vacuum from fermentation tank, and acetic acid constitutes feedstock for catalytic reaction. Product of reaction goes through steps that increases ethyl acetate content to 93 percent by weight. To conserve energy, heat exchangers recycle waste heat to preheat process streams at various points.

  5. Functional genomics for food fermentation processes.

    PubMed

    Smid, E J; Hugenholtz, J

    2010-01-01

    This review describes recent scientific and technological drivers of food fermentation research. In addition, a number of practical implications of the results of this development will be highlighted. The first part of the manuscript elaborates on the message that genome sequence information gives us an unprecedented view on the biodiversity of microbes in food fermentation. This information can be made applicable for tailoring relevant characteristics of food products through fermentation. The second part deals with the integration of genome sequence data into metabolic models and the use of these models for a number of topics that are relevant for food fermentation processes. The final part will be about metagenomics approaches to reveal the complexity and understand the functionality of undefined complex microbial consortia used in a diverse range of food fermentation processes. PMID:22129346

  6. Functional compounds in fermented buckwheat sprouts.

    PubMed

    Maejima, Yasunori; Nakatsugawa, Hiroki; Ichida, Daiki; Maejima, Mayumi; Aoyagi, Yasuo; Maoka, Takashi; Etoh, Hideo

    2011-01-01

    Fermented buckwheat sprouts (FBS) are used as multifunctional foods. Their production process includes fermentation with lactic acid bacteria. The major strains were found to include Lactobacillus plantarum, Lactobacillus brevis, Lactobacillus pentosus, Lactococcus lactis subsp. lactis, and Pediococcus pentosaceus in an investigation of the lactic acid bacteria. We searched for the functional components, and nicotianamine (NA) and 2″-hydroxynicotianamine (HNA) were identified as angiotensin I-converting enzyme (ACE) inhibitors. NA and HNA increased during fermentation. Indole-3-ethanol was identified as an antioxidant (a SOD active substance), and may have been generated from tryptophan during fermentation because it was not contained in green buckwheat juice. A safety test demonstrated that FBS contained were safe functional food components, showing negative results in buckwheat allergy tests. Any buckwheat allergy substances might have been degraded during the fermentation process. PMID:21897039

  7. Low investment approach to alcohol fermentation

    SciTech Connect

    Bungay, H.R.

    1980-01-01

    The paper suggests attitudes for designing a low investment fuel alcohol plant instead of providing a specific blueprint, noting that the criteria for an agro-industrial complex can be applied rather than those of a modern chemical plant. In the case of fermenter design, for example, alternative approaches suggested are, the use of open-vat fermenters, tower fermentation maintaining high concentrations of organisms, combined fermentation and storage and use of 12 ft diameter plastic sewer pipe buried in the ground for an inexpensive and well-insulated fermenter. Instead of 3 or more distillation columns, the proposed plant would have only one, producing 85% alcohol, plus a tank or column for a drying agent to remove the remaining water. A direct fired still using biomass residues or coal could be designed to avoid the major expense of a large power plant to generate process steam.

  8. Lactic acid fermentation of crude sorghum extract

    SciTech Connect

    Samuel, W.A.; Lee, Y.Y.; Anthony, W.B.

    1980-04-01

    Crude extract from sweet sorghum supplemented with vetch juice was utilized as the carbohydrate source for fermentative production of lactic acid. Fermentation of media containing 7% (w/v) total sugar was completed in 60-80 hours by Lactobacillus plantarum, product yield averaging 85%. Maximum acid production rates were dependent on pH, initial substrate distribution, and concentration, the rates varying from 2 to 5 g/liter per hour. Under limited medium supplementation the lactic acid yield was lowered to 67%. The fermented ammoniated product contained over eight times as much equivalent crude protein (N x 6.25) as the original medium. Unstructured kinetic models were developed for cell growth, lactic acid formation, and substrate consumption in batch fermentation. With the provision of experimentally determined kinetic parameters, the proposed models accurately described the fermentation process. 15 references.

  9. Fermentation processes. (Latest citations from the Compendex database). Published Search

    SciTech Connect

    Not Available

    1993-06-01

    The bibliography contains citations concerning fermentation techniques, enzymes, and enzyme technology used in the production of alcohols and other products. Continuous fermentation processes, and the application of computer technology to fermentation control are also considered. Descriptions of specific materials and fermentation processes are included. (Contains 250 citations and includes a subject term index and title list.)

  10. Characteristics of spoilage-associated secondary cucumber fermentation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Secondary fermentations during the bulk storage of fermented cucumbers can result in spoilage that causes a total loss of the fermented product, at an estimated cost of $6,000 to $15,000 per affected tank. Previous research has suggested that such fermentations are the result of microbiological util...

  11. [Effect of dissolved oxygen on mutanolysin fermentation].

    PubMed

    Liu, T J; Xu, W L; Sun, W B; Zhang, Y Z

    2000-03-01

    Effects of several parameters relating to dissolved oxygen(DO) on mutanolysin fermentation were studied. The experiment using shake flasks shows that the medium volume and shaker agitation speed affect the production of mutanolysin. At the same time, the agitation rate together with aeation rate has effects on DO in fermentor. Mutanolysin fermentation was affected by DO greatly. Oxygen is a key restricted factor in mutanolysin fermentation. It affects the metablism and physiological action of Streptomyces globisporus S186. Whatever the DO is excessive high or low, it won't benefit the mutanolysin production. If DO is super, S. globisporus S186 will grow luxuriantly but do not produce mutanolysin, while if DO is lower, the S. globisporus S186 won't grow well even not to produce mutanolysin. During the course of fermentation, the DO changed regularly. It is similar to many antibiotic fermentation and some amino acid fermentation. As S. globisporus S186 grow in exponential phase, DO begin to decrease rapidly from 6 h and get to the lowest point at 40 h or so. Subsequently mutanolysin starts to be produced. DO rises again from 90 h. The key technoloyg of oxygen control in the fermentation is to keep the DO at a suboptimum level. In order to get a high mutanolysin yield, during the culture in fermentor the agitation rate and aeration rate should be kept at 200 r/min and 1:0.8(V:V) respectively. PMID:10976334

  12. Lactic acid bacteria from fermented table olives.

    PubMed

    Hurtado, Albert; Reguant, Cristina; Bordons, Albert; Rozès, Nicolas

    2012-08-01

    Table olives are one of the main fermented vegetables in the world. Olives can be processed as treated or natural. Both have to be fermented but treated green olives have to undergo an alkaline treatment before they are placed in brine to start their fermentation. It has been generally established that lactic acid bacteria (LAB) are responsible for the fermentation of treated olives. However, LAB and yeasts compete for the fermentation of natural olives. Yeasts play a minor role in some cases, contributing to the flavour and aroma of table olives and in LAB development. The main microbial genus isolated in table olives is Lactobacillus. Other genera of LAB have also been isolated but to a lesser extent. Lactobacillus plantarum and Lactobacillus pentosus are the predominant species in most fermentations. Factors influencing the correct development of fermentation and LAB, such as pH, temperature, the amount of NaCl, the polyphenol content or the availability of nutrients are also reviewed. Finally, current research topics on LAB from table olives are reviewed, such as using starters, methods of detection and identification of LAB, their production of bacteriocins, and the possibility of using table olives as probiotics. PMID:22475936

  13. Microbiological and biochemical study of coffee fermentation.

    PubMed

    Avallone, S; Guyot, B; Brillouet, J M; Olguin, E; Guiraud, J P

    2001-04-01

    The coffee fermentation microflora were rich and mainly constituted of aerobic Gram-negative bacilli, with Erwinia and Klebsiella genuses at the highest frequencies. The best population increase was observed with lactic acid bacteria and yeasts, whereas those microorganisms that counted on a pectin medium remained constant during the fermentation step. Qualitatively, lactic acid bacteria belonged mainly to Leuconostoc mesenteroides species but the others microflora were relatively heterogeneous. The microorganisms isolated on pectin medium were Enterobacteriaceae, identified as Erwinia herbicola and Klebsiella pneumoniae, not reported as strong pectolytic strains. Throughout coffee fermentation, 60% of the simple sugars were degraded by the total microflora and not specifically by pectolytic microorganisms. PMID:11178725

  14. Alcoholic fermentation of sorghum without cooking

    SciTech Connect

    Thammarutwasik, P.; Koba, Y.; Ueda, S.

    1986-07-01

    Sorgum was used as raw material for alcoholic fermentation without cooking. Two varieties of sorghum grown in Thailand, KU 439 and KU 257, contained 80.0 and 75.8% of total sugar. Optimum amount of sorghum for alcoholic fermentation should be between 30 and 35% (w/v) in the fermentation broth. In these conditions 13.0 and 12.6% (v/v) of alcohol could be obtained in 84 and 91.9% yield based on the theoretical value of the starch content from KU 439 and KU 257, respectively.

  15. Functional Properties of Microorganisms in Fermented Foods.

    PubMed

    Tamang, Jyoti P; Shin, Dong-Hwa; Jung, Su-Jin; Chae, Soo-Wan

    2016-01-01

    Fermented foods have unique functional properties imparting some health benefits to consumers due to presence of functional microorganisms, which possess probiotics properties, antimicrobial, antioxidant, peptide production, etc. Health benefits of some global fermented foods are synthesis of nutrients, prevention of cardiovascular disease, prevention of cancer, gastrointestinal disorders, allergic reactions, diabetes, among others. The present paper is aimed to review the information on some functional properties of the microorganisms associated with fermented foods and beverages, and their health-promoting benefits to consumers. PMID:27199913

  16. Functional Properties of Microorganisms in Fermented Foods

    PubMed Central

    Tamang, Jyoti P.; Shin, Dong-Hwa; Jung, Su-Jin; Chae, Soo-Wan

    2016-01-01

    Fermented foods have unique functional properties imparting some health benefits to consumers due to presence of functional microorganisms, which possess probiotics properties, antimicrobial, antioxidant, peptide production, etc. Health benefits of some global fermented foods are synthesis of nutrients, prevention of cardiovascular disease, prevention of cancer, gastrointestinal disorders, allergic reactions, diabetes, among others. The present paper is aimed to review the information on some functional properties of the microorganisms associated with fermented foods and beverages, and their health-promoting benefits to consumers. PMID:27199913

  17. Biotechnology of Flavor Generation in Fermented Meats

    NASA Astrophysics Data System (ADS)

    Toldrá, Fidel

    Traditionally, meat fermentation was based on the use of natural flora, including the “back-slopping”, or addition of a previous successful fermented sausage. However, these practices gave a great variability in the developed flora and affected the safety and quality of the sausages (Toldrá, 2002; Toldrá & Flores, 2007). The natural flora of fermented meat has been studied for many years (Leistner, 1992; Toldrá, 2006a), and more recently, these micro-organisms have been isolated and biochemically identified through molecular methods applied to extracted DNA and RNA (Cocolin, Manzano, Aggio, Cantoni, & Comi, 2001; Cocolin, Manzano, Cantoni, & Comi, 2001; Comi, Urso, Lacumin, Rantsiou, Cattaneo & Cantoni, 2005).

  18. Improved fermentative alcohol production. [Patent application

    DOEpatents

    Wilke, C.R.; Maiorella, B.L.; Blanch, H.W.; Cysewski, G.R.

    1980-11-26

    An improved fermentation process is described for producing alcohol which includes the combination of vacuum fermentation and vacuum distillation. Preferably, the vacuum distillation is carried out in two phases, one a fermentor proper operated at atmospheric pressure and a flash phase operated at reduced pressure with recycle of fermentation brew having a reduced alcohol content to the fermentor, using vapor recompression heating of the flash-pot recycle stream to heat the flash-pot or the distillation step, and using water load balancing (i.e., the molar ratio of water in the fermentor feed is the same as the molar ratio of water in the distillation overhead).

  19. Dry fermentation of agricultural residues

    NASA Astrophysics Data System (ADS)

    Jewell, W. J.; Chandler, J. A.; Dellorto, S.; Fanfoni, K. J.; Fast, S.; Jackson, D.; Kabrick, R. M.

    1981-09-01

    A dry fermentation process is discussed which converts agricultural residues to methane, using the residues in their as produced state. The process appears to simplify and enhance the possibilities for using crop residues as an energy source. The major process variables investigated include temperature, the amount and type of inoculum, buffer requirements, compaction, and pretreatment to control the initial available organic components that create pH problems. A pilot-scale reactor operation on corn stover at a temperature of 550 C, with 25 percent initial total solids, a seed-to-feed ratio of 2.5 percent, and a buffer-to-feed ratio of 8 percent achieved 33 percent total volatile solids destruction in 60 days. Volumetric biogas yields from this unit were greater than 1 vol/vol day for 12 days, and greater than 0.5 vol/vol day for 32 days, at a substrate density of 169 kg/m (3).

  20. [The research progress of succinic acid fermentation strains].

    PubMed

    Wang, Qing-Zhao; Zhao, Xue-Ming

    2007-07-01

    The potential of succinic acid as an important chemical intermediates had been realized and fermentation is one of the best ways to make it possible in economical aspect. Fermentation organism is the key part of the fermentation method. The updated research developments of fermentation organisms and the fermentation characteristics and problems of them were reviewed and analyzed in this paper. Finally,the development future of fermenation organism was forecasted. PMID:17822024

  1. Solid-phase fermentation of sweet sorghum

    SciTech Connect

    Bryan, W.L.; Parrish, R.L.

    1982-12-01

    Solid-phase fermentations of chopped Wray sweet sorghum, (0.6 and 2.5 cm size) occurred in 7-liter fermentors at higher rates than juice fermentations and produced 80% ethanol yields, compared to 73% for juice. Heat loss from fermentors limited maximum temperatures to 38/sup 0/C. Low ethanol yields may have been caused by natural inhibitors or by thermal inhibition.

  2. Comparison of recombinant xylose-fermenting saccharomyces and natural xylose-fermenting yeasts in fermenting mixed sugars containing both glucose and xylose

    SciTech Connect

    Ho, N.W.Y.; Chen, Zhengdao; Brainard, A.

    1995-12-01

    Cellulosic biomass is an ideal renewable feedstock for the production of ethanol fuels. A Saccharomyces yeast has been genetically engineered to ferment xylose, a constituent of biomass. Results are described and compared with other natural xylose-fermenting yeasts.

  3. Acetone-butanol Fermentation of Marine Macroalgae

    SciTech Connect

    Huesemann, Michael H.; Kuo, Li-Jung; Urquhart, Lindsay A.; Gill, Gary A.; Roesijadi, Guritno

    2012-03-01

    Mannitol and laminarin, which are present at high concentrations in the brown macroalga Saccharina spp., a type of kelp, are potential biochemical feedstocks for butanol production. To test their bioconversion potential, aqueous extracts of the kelp Saccharina spp., mannitol, and glucose (a product of laminarin hydrolysis) were subjected to acetone-butanol fermentation by Clostridium acetobutylicum (ATCC 824). Both mannitol and glucose were readily fermented. Mixed substrate fermentations with glucose and mannitol resulted in diauxic growth of C. acetobutylicum with glucose depletion preceding mannitol utilization. Fermentation of kelp extract exhibited triauxic growth, with an order of utilization of free glucose, mannitol, and bound glucose, presumably laminarin. The lag in laminarin utilization reflected the need for enzymatic hydrolysis of this polysaccharide into fermentable sugars. The butanol and total solvent yields were 0.12 g/g and 0.16 g/g, respectively, indicating that significant improvements are still needed to make industrial-scale acetone-butanol fermentations of seaweed economically feasible.

  4. Coffee fermentation and flavor--An intricate and delicate relationship.

    PubMed

    Lee, Liang Wei; Cheong, Mun Wai; Curran, Philip; Yu, Bin; Liu, Shao Quan

    2015-10-15

    The relationship between coffee fermentation and coffee aroma is intricate and delicate at which the coffee aroma profile is easily impacted by the fermentation process during coffee processing. However, as the fermentation process in coffee processing is conducted mainly for mucilage removal, its impacts on coffee aroma profile are usually neglected. Therefore, this review serves to summarize the available literature on the impacts of fermentation in coffee processing on coffee aroma as well as other unconventional avenues where fermentation is employed for coffee aroma modulation. Studies have noted that proper control over the fermentation process imparts desirable attributes and prevents undesirable fermentation which generates off-flavors. Other unconventional avenues in which fermentation is employed for aroma modulation include digestive bioprocessing and the fermentation of coffee extracts and green coffee beans. The latter is an area that should be explored further with appropriate microorganisms given its potential for coffee aroma modulation. PMID:25952856

  5. Batch and fed-batch fermentation of Bacillus thuringiensis using starch industry wastewater as fermentation substrate.

    PubMed

    Vu, Khanh Dang; Tyagi, Rajeshwar Dayal; Valéro, José R; Surampalli, Rao Y

    2010-08-01

    Bacillus thuringiensis var. kurstaki biopesticide was produced in batch and fed-batch fermentation modes using starch industry wastewater as sole substrate. Fed-batch fermentation with two intermittent feeds (at 10 and 20 h) during the fermentation of 72 h gave the maximum delta-endotoxin concentration (1,672.6 mg/L) and entomotoxicity (Tx) (18.5 x 10(6) SBU/mL) in fermented broth which were significantly higher than maximum delta-endotoxin concentration (511.0 mg/L) and Tx (15.8 x 10(6) SBU/mL) obtained in batch process. However, fed-batch fermentation with three intermittent feeds (at 10, 20 and 34 h) of the fermentation resulted in the formation of asporogenous variant (Spo-) from 36 h to the end of fermentation (72 h) which resulted in a significant decrease in spore and delta-endotoxin concentration and finally the Tx value. Tx of suspended pellets (27.4 x 10(6) SBU/mL) obtained in fed-batch fermentation with two feeds was the highest value as compared to other cases. PMID:19888605

  6. Yeast Biodiversity from DOQ Priorat Uninoculated Fermentations.

    PubMed

    Padilla, Beatriz; García-Fernández, David; González, Beatriz; Izidoro, Iara; Esteve-Zarzoso, Braulio; Beltran, Gemma; Mas, Albert

    2016-01-01

    Climate, soil, and grape varieties are the primary characteristics of terroir and lead to the definition of various appellations of origin. However, the microbiota associated with grapes are also affected by these conditions and can leave a footprint in a wine that will be part of the characteristics of terroir. Thus, a description of the yeast microbiota within a vineyard is of interest not only to provide a better understanding of the winemaking process, but also to understand the source of microorganisms that maintain a microbial footprint in wine from the examined vineyard. In this study, two typical grape varieties, Grenache and Carignan, have been sampled from four different vineyards in the DOQ Priorat winegrowing region. Afterward, eight spontaneous alcoholic fermentations containing only grapes from one sampling point and of one variety were conducted at laboratory scale. The fermentation kinetics and yeast population dynamics within each fermentation experiment were evaluated. Yeast identification was performed by RFLP-PCR of the 5.8S-ITS region and by sequencing D1/D2 of the 26S rRNA gene of the isolates. The fermentation kinetics did not indicate clear differences between the two varieties of grapes or among vineyards. Approximately 1,400 isolates were identified, exhibiting high species richness in some fermentations. Of all the isolates studied, approximately 60% belong to the genus Hanseniaspora, 16% to Saccharomyces, and 11% to Candida. Other minor genera, such as Hansenula, Issatchenkia, Kluyveromyces, Saccharomycodes, and Zygosaccharomyces, were also found. The distribution of the identified yeast throughout the fermentation process was studied, and Saccharomyces cerevisiae was found to be present mainly at the end of the fermentation process, while Aureobasidium pullulans was isolated primarily during the first days of fermentation in three of the eight spontaneous fermentations. This work highlights the complexity and diversity of the vineyard

  7. Yeast Biodiversity from DOQ Priorat Uninoculated Fermentations

    PubMed Central

    Padilla, Beatriz; García-Fernández, David; González, Beatriz; Izidoro, Iara; Esteve-Zarzoso, Braulio; Beltran, Gemma; Mas, Albert

    2016-01-01

    Climate, soil, and grape varieties are the primary characteristics of terroir and lead to the definition of various appellations of origin. However, the microbiota associated with grapes are also affected by these conditions and can leave a footprint in a wine that will be part of the characteristics of terroir. Thus, a description of the yeast microbiota within a vineyard is of interest not only to provide a better understanding of the winemaking process, but also to understand the source of microorganisms that maintain a microbial footprint in wine from the examined vineyard. In this study, two typical grape varieties, Grenache and Carignan, have been sampled from four different vineyards in the DOQ Priorat winegrowing region. Afterward, eight spontaneous alcoholic fermentations containing only grapes from one sampling point and of one variety were conducted at laboratory scale. The fermentation kinetics and yeast population dynamics within each fermentation experiment were evaluated. Yeast identification was performed by RFLP-PCR of the 5.8S-ITS region and by sequencing D1/D2 of the 26S rRNA gene of the isolates. The fermentation kinetics did not indicate clear differences between the two varieties of grapes or among vineyards. Approximately 1,400 isolates were identified, exhibiting high species richness in some fermentations. Of all the isolates studied, approximately 60% belong to the genus Hanseniaspora, 16% to Saccharomyces, and 11% to Candida. Other minor genera, such as Hansenula, Issatchenkia, Kluyveromyces, Saccharomycodes, and Zygosaccharomyces, were also found. The distribution of the identified yeast throughout the fermentation process was studied, and Saccharomyces cerevisiae was found to be present mainly at the end of the fermentation process, while Aureobasidium pullulans was isolated primarily during the first days of fermentation in three of the eight spontaneous fermentations. This work highlights the complexity and diversity of the vineyard

  8. Anaerobic xylose fermentation by Spathaspora passalidarum.

    PubMed

    Hou, X

    2012-04-01

    A cost-effective conversion of lignocellulosic biomass into bioethanol requires that the xylose released from the hemicellulose fraction (20-40% of biomass) can be fermented. Baker's yeast, Saccharomyces cerevisiae, efficiently ferments glucose but it lacks the ability to ferment xylose. Xylose-fermenting yeast such as Pichia stipitis requires accurately controlled microaerophilic conditions during the xylose fermentation, rendering the process technically difficult and expensive. In this study, it is demonstrated that under anaerobic conditions Spathaspora passalidarum showed high ethanol production yield, fast cell growth, and rapid sugar consumption with xylose being consumed after glucose depletion, while P. stipitis was almost unable to utilize xylose under these conditions. It is further demonstrated that for S. passalidarum, the xylose conversion takes place by means of NADH-preferred xylose reductase (XR) and NAD(+)-dependent xylitol dehydrogenase (XDH). Thus, the capacity of S. passalidarum to utilize xylose under anaerobic conditions is possibly due to the balance between the cofactor's supply and demand through this XR-XDH pathway. Only few XRs with NADH preference have been reported so far. 2-Deoxy glucose completely inhibited the conversion of xylose by S. passalidarum under anaerobic conditions, but only partially did that under aerobic conditions. Thus, xylose uptake by S. passalidarum may be carried out by different xylose transport systems under anaerobic and aerobic conditions. The presence of glucose also repressed the enzymatic activity of XR and XDH from S. passalidarum as well as the activities of those enzymes from P. stipitis. PMID:22124720

  9. Emerging approaches in fermentative production of statins.

    PubMed

    Singh, Sudheer Kumar; Pandey, Ashok

    2013-10-01

    Microbial metabolites have many important applications in pharmaceutical and health-care industry. The products of microbial origin are usually produced by submerged fermentation. The solid-state fermentation represents an alternative mode of fermentation, which is increasingly being employed as an alternative to submerged fermentation for metabolite production. The prospect of producing high-value product using low-value raw material offers a substantial premium to switch to these technologies. The cost of statins being one major factor, solid-state fermentation with agro-industrial residues as carbon, nitrogen and support matrix, promises to substantially lower the cost of production. Hence, newer approaches are required to exploit the agro-industrial residues for statin production. The development of these technologies offers an opportunity to exploit low-cost substrates without substantial investment in newer production methodologies. The emerging evidence of beneficial effect of statins in applications other than lipid lowering such as in Alzheimer disease, HIV, age-related dementia, and cancer chemotherapy makes it very important to develop methods for economic production of statins. PMID:23912209

  10. Swine manure fermentation for hydrogen production.

    PubMed

    Zhu, Jun; Li, Yecong; Wu, Xiao; Miller, Curtis; Chen, Paul; Ruan, Roger

    2009-11-01

    Biohydrogen fermentation using liquid swine manure as substrate supplemented with glucose was investigated in this project. Experiments were conducted using a semi-continuously-fed fermenter (8L in total volume and 4 L in working volume) with varying pHs from 4.7 through 5.9 under controlled temperature (35+/-1 degrees C). The hydraulic retention time (HRT) tested include 16, 20, and 24h; however, in two pH conditions (5.0 and 5.3), an additional HRT of 12h was also tried. The experimental design combining HRT and pH provided insight on the fermenter performance in terms of hydrogen generation. The results indicated that both HRT and pH had profound influences on fermentative hydrogen productivity. A rising HRT would lead to greater variation in hydrogen concentration in the offgas and the best HRT was found to be 16 h for the fermenter in this study. The best pH value in correspondence to the highest hydrogen generation was revealed to be 5.0 among all the pHs studied. There was no obvious inhibition on hydrogen production by methanogenesis when methane content in the offgas was lower than 2%. Otherwise, an inverse linear relationship between hydrogen and methane content was observed with a correlation coefficient of 0.9699. Therefore, to increase hydrogen content in the offgas, methane production has to be limited to below 2%. PMID:19157863

  11. Fermentation studies using Saccharomyces diastaticus yeast strains

    SciTech Connect

    Erratt, J.A.; Stewart, G.G.

    1981-01-01

    The yeast species, Saccharomyces diastaticus, has the ability to ferment starch and dextrin, because of the extracellular enzyme, glucoamylase, which hydrolyzes the starch/dextrin to glucose. A number of nonallelic genes--DEX 1, DEX 2, and dextrinase B which is allelic to STA 3--have been isolated, which impart to the yeast the ability to ferment dextrin. Various diploid yeast strains were constructed, each being either heterozygous or homozygous for the individual dextrinase genes. Using 12 (sup 0) plato hopped wort (30% corn adjunct) under agitated conditions, the fermentation rates of the various diploid yeast strains were monitored. A gene-dosage effect was exhibited by yeast strains containing DEX 1 or DEX 2, however, not with yeast strains containing dextrinase B (STA 3). The fermentation and growth rates and extents were determined under static conditions at 14.4 C and 21 C. With all yeast strains containing the dextrinase genes, both fermentation and growth were increased at the higher incubation temperature. Using 30-liter fermentors, beer was produced with the various yeast strains containing the dextrinase genes and the physical and organoleptic characteristics of the products were determined. The concentration of glucose in the beer was found to increase during a 3-mo storage period at 21 C, indicating that the glucoamylase from Saccharomyces diastaticus is not inactivated by pasteurization. (Refs. 36).

  12. Xylose fermentation to ethanol. A review

    SciTech Connect

    McMillan, J D

    1993-01-01

    The past several years have seen tremendous progress in the understanding of xylose metabolism and in the identification, characterization, and development of strains with improved xylose fermentation characteristics. A survey of the numerous microorganisms capable of directly fermenting xylose to ethanol indicates that wild-type yeast and recombinant bacteria offer the best overall performance in terms of high yield, final ethanol concentration, and volumetric productivity. The best performing bacteria, yeast, and fungi can achieve yields greater than 0.4 g/g and final ethanol concentrations approaching 5%. Productivities remain low for most yeast and particularly for fungi, but volumetric productivities exceeding 1.0 g/L-h have been reported for xylose-fermenting bacteria. In terms of wild-type microorganisms, strains of the yeast Pichia stipitis show the most promise in the short term for direct high-yield fermentation of xylose without byproduct formation. Of the recombinant xylose-fermenting microorganisms developed, recombinant E. coli ATTC 11303 (pLOI297) exhibits the most favorable performance characteristics reported to date.

  13. One hundred years of clostridial butanol fermentation.

    PubMed

    Moon, Hyeon Gi; Jang, Yu-Sin; Cho, Changhee; Lee, Joungmin; Binkley, Robert; Lee, Sang Yup

    2016-02-01

    Butanol has been widely used as an important industrial solvent and feedstock for chemical production. Also, its superior fuel properties compared with ethanol make butanol a good substitute for gasoline. Butanol can be efficiently produced by the genus Clostridium through the acetone-butanol-ethanol (ABE) fermentation, one of the oldest industrial fermentation processes. Butanol production via industrial fermentation has recently gained renewed interests as a potential solution to increasing pressure of climate change and environmental problems by moving away from fossil fuel consumption and moving toward renewable raw materials. Great advances over the last 100 years are now reviving interest in bio-based butanol production. However, several challenges to industrial production of butanol still need to be overcome, such as overall cost competitiveness and development of higher performance strains with greater butanol tolerance. This minireview revisits the past 100 years of remarkable achievements made in fermentation technologies, product recovery processes, and strain development in clostridial butanol fermentation through overcoming major technical hurdles. PMID:26738754

  14. Fermentation and recovery process for lactic acid production

    DOEpatents

    Tsai, S.P.; Moon, S.H.; Coleman, R.

    1995-11-07

    A method is described for converting starch to glucose and fermenting glucose to lactic acid, including simultaneous saccharification and fermentation through use of a novel consortium of bacterial strains. 2 figs.

  15. Glycerol production by fermenting yeast cells is essential for optimal bread dough fermentation.

    PubMed

    Aslankoohi, Elham; Rezaei, Mohammad Naser; Vervoort, Yannick; Courtin, Christophe M; Verstrepen, Kevin J

    2015-01-01

    Glycerol is the main compatible solute in yeast Saccharomyces cerevisiae. When faced with osmotic stress, for example during semi-solid state bread dough fermentation, yeast cells produce and accumulate glycerol in order to prevent dehydration by balancing the intracellular osmolarity with that of the environment. However, increased glycerol production also results in decreased CO2 production, which may reduce dough leavening. We investigated the effect of yeast glycerol production level on bread dough fermentation capacity of a commercial bakery strain and a laboratory strain. We find that Δgpd1 mutants that show decreased glycerol production show impaired dough fermentation. In contrast, overexpression of GPD1 in the laboratory strain results in increased fermentation rates in high-sugar dough and improved gas retention in the fermenting bread dough. Together, our results reveal the crucial role of glycerol production level by fermenting yeast cells in dough fermentation efficiency as well as gas retention in dough, thereby opening up new routes for the selection of improved commercial bakery yeasts. PMID:25764309

  16. Glycerol Production by Fermenting Yeast Cells Is Essential for Optimal Bread Dough Fermentation

    PubMed Central

    Aslankoohi, Elham; Rezaei, Mohammad Naser; Vervoort, Yannick; Courtin, Christophe M.; Verstrepen, Kevin J.

    2015-01-01

    Glycerol is the main compatible solute in yeast Saccharomyces cerevisiae. When faced with osmotic stress, for example during semi-solid state bread dough fermentation, yeast cells produce and accumulate glycerol in order to prevent dehydration by balancing the intracellular osmolarity with that of the environment. However, increased glycerol production also results in decreased CO2 production, which may reduce dough leavening. We investigated the effect of yeast glycerol production level on bread dough fermentation capacity of a commercial bakery strain and a laboratory strain. We find that Δgpd1 mutants that show decreased glycerol production show impaired dough fermentation. In contrast, overexpression of GPD1 in the laboratory strain results in increased fermentation rates in high-sugar dough and improved gas retention in the fermenting bread dough. Together, our results reveal the crucial role of glycerol production level by fermenting yeast cells in dough fermentation efficiency as well as gas retention in dough, thereby opening up new routes for the selection of improved commercial bakery yeasts. PMID:25764309

  17. Fermentation characteristics of yeasts isolated from traditionally fermented masau (Ziziphus mauritiana) fruits.

    PubMed

    Nyanga, Loveness K; Nout, Martinus J R; Smid, Eddy J; Boekhout, Teun; Zwietering, Marcel H

    2013-09-16

    Yeast strains were characterized to select potential starter cultures for the production of masau fermented beverages. The yeast species originally isolated from Ziziphus mauritiana (masau) fruits and their traditionally fermented fruit pulp in Zimbabwe were examined for their ability to ferment glucose and fructose using standard broth under aerated and non-aerated conditions. Most Saccharomyces cerevisiae strains were superior to other species in ethanol production. The best ethanol producing S. cerevisiae strains, and strains of the species Pichia kudriavzevii, Pichia fabianii and Saccharomycopsis fibuligera were tested for production of flavor compounds during fermentation of masau fruit juice. Significant differences in the production of ethanol and other volatile compounds during fermentation of masau juice were observed among and within the four tested species. Alcohols and esters were the major volatiles detected in the fermented juice. Trace amounts of organic acids and carbonyl compounds were detected. Ethyl hexanoate and ethyl octanoate were produced in highest amounts as compared to the other volatile compounds. S. cerevisiae strains produced higher amounts of ethanol and flavor compounds as compared to the other species, especially fatty acid ethyl esters that provide the major aroma impact of freshly fermented wines. The developed library of characteristics can help in the design of mixtures of strains to obtain a specific melange of product functionalities. PMID:24029027

  18. Production of aroma compounds in lactic fermentations.

    PubMed

    Smid, E J; Kleerebezem, M

    2014-01-01

    This review describes recent scientific research on the production of aroma compounds by lactic acid bacteria (LAB) in fermented food products. We discuss the various precursor molecules for the formation of aroma compounds in connection with the metabolic pathways involved. The roles of nonmetabolic properties such as cell lysis are also described in relation to aroma formation. Finally, we provide an overview of the literature on methods to steer and control aroma formation by LAB in mixed culture fermentations. We demonstrate that the technological progress made recently in high-throughput analysis methods has been driving the development of new approaches to understand, control, and steer aroma formation in (dairy) fermentation processes. This currently entails proposing new rules for designing stable, high-performance mixed cultures constituting a selection of strains, which in concert and on the basis of their individual predicted gene contents deliver the required functionalities. PMID:24580073

  19. Yeast Interactions in Inoculated Wine Fermentation

    PubMed Central

    Ciani, Maurizio; Capece, Angela; Comitini, Francesca; Canonico, Laura; Siesto, Gabriella; Romano, Patrizia

    2016-01-01

    The use of selected starter culture is widely diffused in winemaking. In pure fermentation, the ability of inoculated Saccharomyces cerevisiae to suppress the wild microflora is one of the most important feature determining the starter ability to dominate the process. Since the wine is the result of the interaction of several yeast species and strains, many studies are available on the effect of mixed cultures on the final wine quality. In mixed fermentation the interactions between the different yeasts composing the starter culture can led the stability of the final product and the analytical and aromatic profile. In the present review, we will discuss the recent developments regarding yeast interactions in pure and in mixed fermentation, focusing on the influence of interactions on growth and dominance in the process. PMID:27148235

  20. Pilot scale fermentation of Jerusalem artichoke tuber pulp mashes

    SciTech Connect

    Ziobro, G.C.; Williams, L.A.

    1983-01-01

    Processing and fermentation of Jerusalem artichoke (Helianthus tuberosus L.) tuber pulp mashes were successfully carried out at pilot scales of 60 gallons and 1000 gallons. Whole tubers were pulped mechanically into a thick mash and fermented, using commercially available Saccharomyces cerevisiae and selected strains of Kluyveromyces fragilis. EtOH fermentation yields ranging from 50-70% of theoretical maximum were obtained in 3-4 days. Several problems regarding the processing and direct fermentation of tuber pulp mashes are discussed.

  1. Acidogenic fermentation of lignocellulose - acid yield and conversion of components

    SciTech Connect

    Datta, R.

    1981-01-01

    Corn stover was fermented with a mixed culture of anaerobic microorganisms to form simple (C2-C6), volatile organic acids. Alkaline pretreatment allowed a greater fermentation of the pectin and hemicellulose than of the cellulose and lignin, but all components were utilized. The percent fermentation of the soluble fraction, hemicellulose, cellulose, and lignin was 79.6, 74.1, 36.9, and 20.9%, respively. The yield of acid (as acetate) with respect to material fermented was 84%.

  2. Liquefaction, Saccharification, and Fermentation of Ammoniated Corn to ethanol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Treatment of whole corn kernels with anhydrous ammonia gas has been proposed as a way to facilitate the separation of non-fermentable coproducts before fermentation of the starch to ethanol, but the fermentability of ammoniated corn has not been thoroughly investigated. Also, it is intended that the...

  3. 27 CFR 24.212 - High fermentation wine.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false High fermentation wine. 24..., DEPARTMENT OF THE TREASURY LIQUORS WINE Production of Other Than Standard Wine § 24.212 High fermentation wine. High fermentation wine is wine made with the addition of sugar within the limitations...

  4. 27 CFR 24.212 - High fermentation wine.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false High fermentation wine. 24..., DEPARTMENT OF THE TREASURY ALCOHOL WINE Production of Other Than Standard Wine § 24.212 High fermentation wine. High fermentation wine is wine made with the addition of sugar within the limitations...

  5. 27 CFR 24.212 - High fermentation wine.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false High fermentation wine. 24..., DEPARTMENT OF THE TREASURY LIQUORS WINE Production of Other Than Standard Wine § 24.212 High fermentation wine. High fermentation wine is wine made with the addition of sugar within the limitations...

  6. 27 CFR 24.212 - High fermentation wine.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false High fermentation wine. 24..., DEPARTMENT OF THE TREASURY ALCOHOL WINE Production of Other Than Standard Wine § 24.212 High fermentation wine. High fermentation wine is wine made with the addition of sugar within the limitations...

  7. System for extracting protein from a fermentation product

    DOEpatents

    Lawton, Jr., John Warren; Bootsma, Jason Alan; Lewis, Stephen Michael

    2016-04-26

    A method of producing bioproducts from a feedstock in a system configured to produce ethanol and distillers grains from a fermentation product is disclosed. A system configured to process feedstock into a fermentation product and bioproducts including ethanol and meal is disclosed. A bioproduct produced from a fermentation product produced from a feedstock in a biorefining system is disclosed.

  8. Anaerobic fermentation of beef cattle manure. Final report

    SciTech Connect

    Hashimoto, A.G.; Chen, Y.R.; Varel, V.H.

    1981-01-01

    The research to convert livestock manure and crop residues into methane and a high protein feed ingredient by thermophilic anaerobic fermentation are summarized. The major biological and operational factors involved in methanogenesis were discussed, and a kinetic model that describes the fermentation process was presented. Substrate biodegradability, fermentation temperature, and influent substrate concentration were shown to have significant effects on CH/sub 4/ production rate. The kinetic model predicted methane production rates of existing pilot and full-scale fermentation systems to within 15%. The highest methane production rate achieved by the fermenter was 4.7 L CH/sub 4//L fermenter day. This is the highest rate reported in the literature and about 4 times higher than other pilot or full-scale systems fermenting livestock manures. Assessment of the energy requirements for anaerobic fermentation systems showed that the major energy requirement for a thermophilic system was for maintaining the fermenter temperature. The next major energy consumption was due to the mixing of the influent slurry and fermenter liquor. An approach to optimizing anaerobic fermenter designs by selecting design criteria that maximize the net energy production per unit cost was presented. Based on the results, we believe that the economics of anaerobic fermentation is sufficiently favorable for farm-scale demonstration of this technology.

  9. 27 CFR 24.212 - High fermentation wine.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false High fermentation wine. 24.212 Section 24.212 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Production of Other Than Standard Wine § 24.212 High fermentation wine. High fermentation wine is wine...

  10. 27 CFR 24.176 - Crushing and fermentation.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... fermentation, the maximum volume increase of the juice after the addition of rehydrated yeast is limited to 0.5... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Crushing and fermentation..., DEPARTMENT OF THE TREASURY ALCOHOL WINE Production of Wine § 24.176 Crushing and fermentation. (a)...

  11. 27 CFR 24.176 - Crushing and fermentation.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... fermentation, the maximum volume increase of the juice after the addition of rehydrated yeast is limited to 0.5... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Crushing and fermentation..., DEPARTMENT OF THE TREASURY LIQUORS WINE Production of Wine § 24.176 Crushing and fermentation. (a)...

  12. Method for extracting protein from a fermentation product

    SciTech Connect

    Lawton, Jr., John Warren; Bootsma, Jason Alan; Lewis, Stephen Michael

    2014-02-18

    A method of producing bioproducts from a feedstock in a system configured to produce ethanol and distillers grains from a fermentation product is disclosed. A system configured to process feedstock into a fermentation product and bioproducts including ethanol and meal is disclosed. A bioproduct produced from a fermentation product produced from a feedstock in a biorefining system is disclosed.

  13. REDUCING WASTEWATER FROM CUCUMBER PICKLING PROCESS BY CONTROLLED CULTURE FERMENTATION

    EPA Science Inventory

    On a demonstration scale, the controlled culture fermentation process (CCF) developed by the U.S. Food Fermentation Laboratory was compared with the conventional natural fermentation process (NF) in regard to product quality and yield and volume and concentration of wastewaters. ...

  14. Kombucha tea fermentation: Microbial and biochemical dynamics.

    PubMed

    Chakravorty, Somnath; Bhattacharya, Semantee; Chatzinotas, Antonis; Chakraborty, Writachit; Bhattacharya, Debanjana; Gachhui, Ratan

    2016-03-01

    Kombucha tea, a non-alcoholic beverage, is acquiring significant interest due to its claimed beneficial properties. The microbial community of Kombucha tea consists of bacteria and yeast which thrive in two mutually non-exclusive compartments: the soup or the beverage and the biofilm floating on it. The microbial community and the biochemical properties of the beverage have so far mostly been described in separate studies. This, however, may prevent understanding the causal links between the microbial communities and the beneficial properties of Kombucha tea. Moreover, an extensive study into the microbial and biochemical dynamics has also been missing. In this study, we thus explored the structure and dynamics of the microbial community along with the biochemical properties of Kombucha tea at different time points up to 21 days of fermentation. We hypothesized that several biochemical properties will change during the course of fermentation along with the shifts in the yeast and bacterial communities. The yeast community of the biofilm did not show much variation over time and was dominated by Candida sp. (73.5-83%). The soup however, showed a significant shift in dominance from Candida sp. to Lachancea sp. on the 7th day of fermentation. This is the first report showing Candida as the most dominating yeast genus during Kombucha fermentation. Komagateibacter was identified as the single largest bacterial genus present in both the biofilm and the soup (~50%). The bacterial diversity was higher in the soup than in the biofilm with a peak on the seventh day of fermentation. The biochemical properties changed with the progression of the fermentation, i.e., beneficial properties of the beverage such as the radical scavenging ability increased significantly with a maximum increase at day 7. We further observed a significantly higher D-saccharic acid-1,4-lactone content and caffeine degradation property compared to previously described Kombucha tea fermentations. Our

  15. Recovery of succinic acid from fermentation broth.

    PubMed

    Kurzrock, Tanja; Weuster-Botz, Dirk

    2010-03-01

    Succinic acid is of high interest as bio-feedstock for the chemical industry. It is a precursor for a variety of many other chemicals, e.g. 1,4-butandiol, tetrahydrofuran, biodegradable polymers and fumaric acid. Besides optimized production strains and fermentation processes it is indispensable to develop cost-saving and energy-effective downstream processes to compete with the current petrochemical production process. Various methods such as precipitation, sorption and ion exchange, electrodialysis, and liquid-liquid extraction have been investigated for the recovery of succinic acid from fermentation broth and are reviewed critically here. PMID:19898782

  16. Third Generation Biofuels via Direct Cellulose Fermentation

    PubMed Central

    Carere, Carlo R.; Sparling, Richard; Cicek, Nazim; Levin, David B.

    2008-01-01

    Consolidated bioprocessing (CBP) is a system in which cellulase production, substrate hydrolysis, and fermentation are accomplished in a single process step by cellulolytic microorganisms. CBP offers the potential for lower biofuel production costs due to simpler feedstock processing, lower energy inputs, and higher conversion efficiencies than separate hydrolysis and fermentation processes, and is an economically attractive near-term goal for “third generation” biofuel production. In this review article, production of third generation biofuels from cellulosic feedstocks will be addressed in respect to the metabolism of cellulolytic bacteria and the development of strategies to increase biofuel yields through metabolic engineering. PMID:19325807

  17. Fermentative metabolism of Chlamydomonas reinhardtii

    SciTech Connect

    Gfeller, R.P.; Gibbs, M.

    1984-05-01

    The anaerobic starch breakdown into end-products in the green alga Chlamydomonas reinhardtii F-60 has been investigated in the dark and in the light. The effects of 3-(3,4-dicholorophenyl)-1,1-dimethylurea (DCMU) and carbonyl cyanide-p-trifluoromethoxyphenyl hydrazone (FCCP) on the fermentation in the light have also been investigated. Anaerobic starch breakdown rate (13.1 +/- 3.5 micromoles C per milligram chlorophyll per hour) is increased 2-fold by FCCP in the dark. Light (100 watts per square meter) decreases up to 4-fold the dark rate, an inhibition reversed by FCCP. In the dark, formate, acetate, and ethanol are formed in the ratios of 2.07:1.07:0.91, and account for roughly 100% of the C from the starch. H/sub 2/ production is 0.43 mole per mole glucose in the starch. Glycerol, D-lactate, and CO/sub 2/ have been detected in minor amounts. In the light, with DCMU and FCCP present, acetate is produced in a 1:1 ratio to formate, and H/sub 2/ evolution is 2.13 moles per mole glucose. When FCCP only is present, acetate production is lower, and CO/sub 2/ and H/sub 2/ evolutions is 1.60 and 4.73 moles per mole glucose, respectively. When DCMU alone is present, CO/sub 2/ and H/sub 2/ photoevolution is higher than in the dark. Without DCMU, CO/sub 2/ and H/sub 2/ evolution is about 100% higher than in its presence. In both conditions, acetate is not formed. In all conditions in the light, ethanol is a minor product. Formate production is least affected by light. The stoichiometry in the dark indicates that starch is degraded via the glycolytic pathway, and pyruvate is broken down into acetyl-CoA and formate. Acetyl-CoA is further dissimilated into acetate and ethanol. In the light, acetate is produced only in the presence of FCCP and, when photophosphorylation is possible, it is used in unidentified reactions. Ethanol formation is inhibited by the light in all conditions. 30 references, 5 figures, 2 tables.

  18. Pyrosequencing-based analysis of bacterial community and metabolites profiles in Korean traditional seafood fermentation: a flatfish-fermented seafood.

    PubMed

    Jung, Jaejoon; Lee, Se Hee; Jin, Hyun Mi; Jeon, Che Ok; Park, Woojun

    2014-01-01

    Bacterial community and metabolites were analyzed in a flatfish jeotgal, a Korean fermented seafood. Inverse relationship of pH and 16S rRNA gene copy number was identified during fermentation. Lactobacillus was the predominant bacterial genus. Increase of Firmicutes was a common characteristic shared by other fermented seafood. Fructose, glucose, and maltose were the major metabolites. PMID:25035997

  19. The effect of lactic acid bacteria on cocoa bean fermentation.

    PubMed

    Ho, Van Thi Thuy; Zhao, Jian; Fleet, Graham

    2015-07-16

    Cocoa beans (Theobroma cacao L.) are the raw material for chocolate production. Fermentation of cocoa pulp by microorganisms is crucial for developing chocolate flavor precursors. Yeasts conduct an alcoholic fermentation within the bean pulp that is essential for the production of good quality beans, giving typical chocolate characters. However, the roles of bacteria such as lactic acid bacteria and acetic acid bacteria in contributing to the quality of cocoa bean and chocolate are not fully understood. Using controlled laboratory fermentations, this study investigated the contribution of lactic acid bacteria to cocoa bean fermentation. Cocoa beans were fermented under conditions where the growth of lactic acid bacteria was restricted by the use of nisin and lysozyme. The resultant microbial ecology, chemistry and chocolate quality of beans from these fermentations were compared with those of indigenous (control) fermentations. The yeasts Hanseniaspora guilliermondii, Pichia kudriavzevii, Kluyveromyces marxianus and Saccharomyces cerevisiae, the lactic acid bacteria Lactobacillus plantarum, Lactobacillus pentosus and Lactobacillus fermentum and the acetic acid bacteria Acetobacter pasteurianus and Gluconobacter frateurii were the major species found in control fermentations. In fermentations with the presence of nisin and lysozyme, the same species of yeasts and acetic acid bacteria grew but the growth of lactic acid bacteria was prevented or restricted. These beans underwent characteristic alcoholic fermentation where the utilization of sugars and the production of ethanol, organic acids and volatile compounds in the bean pulp and nibs were similar for beans fermented in the presence of lactic acid bacteria. Lactic acid was produced during both fermentations but more so when lactic acid bacteria grew. Beans fermented in the presence or absence of lactic acid bacteria were fully fermented, had similar shell weights and gave acceptable chocolates with no differences

  20. The Comparative Evaluation of Fermented and Non-fermented Soybean Extract on Antioxidation and Whitening.

    PubMed

    Chae, Ga Yeon; Ha, Bae Jin

    2011-12-01

    The present study was performed to compare the antioxidative and whitening activities of fermented soybean extract (FSB) and non-fermented soybean extract (SB). Antioxidative and whitening activities of FSB and SB were evaluated by the determination of DPPH, superoxide radical and hydroxyl radical scavenging activities, linoleic acid inhibition activity, and tyrosinase inhibition activity. FSB showed the higher effect than SB in the antioxidative activities. Also FSB showed the better effect than SB in whitening activity. These results demonstrated that the fermentation played a more excellent role than the non-fermentation in antioxidation and whitening. Therefore, this study suggested that FSB could be a useful cosmetic ingredient for antioxidation and skin whitening. PMID:24278573

  1. Analysis of problems with dry fermentation process for biogas production

    NASA Astrophysics Data System (ADS)

    Pilát, Peter; Patsch, Marek; Jandačka, Jozef

    2012-04-01

    The technology of dry anaerobic fermentation is still meeting with some scepticism, and therefore in most biogas plants are used wet fermentation technology. Fermentation process would be not complete without an optimal controlled condition: dry matter content, density, pH, and in particular the reaction temperature. If is distrust of dry fermentation eligible it was on the workplace of the Department of Power Engineering at University of Zilina built an experimental small-scale biogas station that allows analysis of optimal parameters of the dry anaerobic fermentation, in particular, however, affect the reaction temperature on yield and quality of biogas.

  2. Ethanol production from xylose by enzymic isomerization and yeast fermentation

    SciTech Connect

    Chiang, L.C.; Hsiao, H.Y.; Ueng, P.P.; Chen, L.F.; Tsao, G.T.

    1981-01-01

    Repetitive enzymic isomerization of xylose followed by yeast fermentation of xylulose, and simultaneous enzymic isomerization and yeast fermentation were proven to be methods capable of converting xylose to ethanol. The fermentation product, ethanol, xylitol, or glycerol, has little inhibitory or deactivation effect on the activity of isomerase. In a comparison of the ability of yeasts to ferment xylulose to ethanol, Schizosaccharomyces pombe was found to be superior to industrial bakers' yeast. Under optimal conditions (pH 6, temperature 30/sup 0/C), a final ethanol concentration of 6.3 wt.% was obtained from simulated hemicellulose hydrolysate using a simultaneous fermentation process. The ethanol yield was over 80% of the theoretical value.

  3. Fermentation of xylulose to ethanol using xylose isomerase and yeasts

    SciTech Connect

    Jeffries, T.W.

    1981-01-01

    In a survey of 35 organisms, predominantly yeasts, about 40% were capable of fermenting xylulose to ethanol. Two species, Candida tropicalis and Schizosaccharomyces pombe, did so at good rates and without an initial lag. Saccharomyces cerevisiae strains that fermented glucose rapidly fermented xylulose at a slower rate. Ten yeasts and three strains of the bacterium Zymomonas mobilis were weak or negative for xylulose, even though they fermented glucose under the conditions employed. C. tropicalis was able to form 1.0 M ethanol from 1.0 M xylose if the fermentation broth was recycled over immobilized xylose isomerase.

  4. Simultaneous saccharification and fermentation (SSF) using cellobiose fermenting yeast Brettanomyces custersii

    DOEpatents

    Spindler, D.D.; Grohmann, K.; Wyman, C.E.

    1992-03-31

    A process for producing ethanol from plant biomass includes forming a substrate from the biomass with the substrate including hydrolysates of cellulose and hemicellulose. A species of the yeast Brettanomyces custersii (CBS 5512), which has the ability to ferment both cellobiose and glucose to ethanol, is then selected and isolated. The substrate is inoculated with this yeast, and the inoculated substrate is then fermented under conditions favorable for cell viability and conversion of hydrolysates to ethanol. 2 figs.

  5. Simultaneous saccharification and fermentation (SSF) using cellobiose fermenting yeast Brettanomyces custersii

    SciTech Connect

    Spindler, Diane D.; Grohmann, Karel; Wyman, Charles E.

    1992-01-01

    A process for producing ethanol from plant biomass includes forming a substrate from the biomass with the substrate including hydrolysates of cellulose and hemicellulose. A species of the yeast Brettanomyces custersii (CBS 5512), which has the ability to ferment both cellobiose and glucose to ethanol, is then selected and isolated. The substrate is inoculated with this yeast, and the inoculated substrate is then fermented under conditions favorable for cell viability and conversion of hydrolysates to ethanol.

  6. Biotechnology, fermentation, foods and the future

    SciTech Connect

    Wesley, P.

    1981-02-01

    This article reviews the future of biotechnology in the food industry - the continuing development of methods for controlled fermentation and enzyme reaction, combined with the projected culturing of new and useful organisms through gene-splicing. At present, the largest enzyme market in the food industry is for glucose isomerase to convert glucose to high-fructose corn syrup.

  7. Effect of molasses supplementation on ruminal fermentation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This fact sheet summarizes the results of two continuous culture fermentor studies that evaluated the effects of molasses supplementation on ruminal fermentation of a pasture diet. The first study compared molasses with corn supplementation. Diets consisted of pasture only, molasses plus pasture, co...

  8. Enzymatic and bacterial conversions during sourdough fermentation.

    PubMed

    Gänzle, Michael G

    2014-02-01

    Enzymatic and microbial conversion of flour components during bread making determines bread quality. Metabolism of sourdough microbiota and the activity of cereal enzymes are interdependent. Acidification, oxygen consumption, and thiols accumulation by microbial metabolism modulate the activity of cereal enzymes. In turn, cereal enzymes provide substrates for bacterial growth. This review highlights the role of cereal enzymes and the metabolism of lactic acid bacteria in conversion of carbohydrates, proteins, phenolic compounds and lipids. Heterofermentative lactic acid bacteria prevailing in wheat and rye sourdoughs preferentially metabolise sucrose and maltose; the latter is released by cereal enzymes during fermentation. Sucrose supports formation of acetate by heterofermentative lactobacilli, and the formation of exopolysaccharides. The release of maltose and glucose by cereal enzymes during fermentation determines the exopolysaccharide yield in sourdough fermentations. Proteolysis is dependent on cereal proteases. Peptidase activities of sourdough lactic acid bacteria determine the accumulation of (bioactive) peptides, amino acids, and amino acid metabolites in dough and bread. Enzymatic conversion and microbial metabolism of phenolic compounds is relevant in sorghum and millet containing high levels of phenolic compounds. The presence of phenolic compounds with antimicrobial activity in sorghum selects for fermentation microbiota that are resistant to the phenolic compounds. PMID:24230468

  9. Recovery of carboxylic acids produced by fermentation.

    PubMed

    López-Garzón, Camilo S; Straathof, Adrie J J

    2014-01-01

    Carboxylic acids such as citric, lactic, succinic and itaconic acids are useful products and are obtained on large scale by fermentation. This review describes the options for recovering these and other fermentative carboxylic acids. After cell removal, often a primary recovery step is performed, using liquid-liquid extraction, adsorption, precipitation or conventional electrodialysis. If the carboxylate is formed rather than the carboxylic acid, the recovery process involves a step for removing the cation of the formed carboxylate. Then, bipolar electrodialysis and thermal methods for salt splitting can prevent that waste inorganic salts are co-produced. Final carboxylic acid purification requires either distillation or crystallization, usually involving evaporation of water. Process steps can often be combined synergistically. In-situ removal of carboxylic acid by extraction during fermentation is the most popular approach. Recovery of the extractant can easily lead to waste inorganic salt formation, which counteracts the advantage of the in-situ removal. For industrial production, various recovery principles and configurations are used, because the fermentation conditions and physical properties of specific carboxylic acids differ. PMID:24751382

  10. Fermentable sugar production from lignocellulosic biomass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fermentable sugar production from lignocellulosic biomass has become an important research focus in the production of renewable biofuels and other bio-products. It means conversion of the carbohydrates contained in the biomass, including cellulose, hemicellose, and/or pectin into their component sug...

  11. Removing Biostatic Agents From Fermentation Solutions

    NASA Technical Reports Server (NTRS)

    Du Fresne, E. R.

    1984-01-01

    Liquid carbon dioxide inexpensive solvent. Inexpensive process proposed for removing such poisons as furfural and related compounds from fermentation baths of biomass hydrolysates. New process based on use of liquid carbon dioxide as extraction solvent. Liquid CO2 preferable to such other liquid solvents as ether or methylene chloride.

  12. [Acetobutylic fermentation: strains and regional raw materials].

    PubMed

    Benassi, F O; Bloos, R K; de Rambaldo, L A

    1983-01-01

    The purpose of the present work was to show, as a first stage, that it is possible to characterize autochtohnous strains of Clostridium acetobutilicum of a good solvent producing capacity, specially N-butanol, through the utilization of suitable techniques for isolating anaerobic microorganisms. Cassava roots were employed as raw material using suitable culture media and an anaerobic jar of cold catalyst. The fermentative capacity of the strains thus isolated was evaluated against a control strain of Clostridium acetobutilicum. Even though some of the strains showed a greater solvent producing power, most of them showed lower fermentation capacity than the control strain, which could be increased, by applying successive thermic treatments. As a second stage, and due to the low cost production of cassava in the Province of Misiones, we studied its utilization as an acetone-butanol fermentation substrate. Mashes composed of binary mixtures of cassava flour and variable amounts of integral flour maize or soy were treated with selected "starters" of Clostridium acetobutilicum, being further processed according to standardized techniques in order to obtain the already mentioned solvents. Mashes concentration influence was also studied using culture media the composition of which proved to be excellent in all experiments carried out under "static system" conditions. The highest fermentative yields (maximum value recorded: 26,20 g of total solvents, with respect to dry solids), were recorded for mashes obtained from mixtures containing integral maize flour; these showed a higher degree of nutrients utilization than those prepared with integral soy flour. PMID:6400763

  13. RUMINAL FERMENTATION OF PROPYLENE GLYCOL AND GLYCEROL

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bovine rumen fluid was fermented anaerobically with 25 mM R-propylene glycol, S-propylene glycol, or glycerol added. After 24 h all of the propylene glycol enantiomers and approximately 80% of the glycerol were metabolized. Acetate, propionate, butyrate, valerate, and caproate concentrations, in dec...

  14. Colonic Fermentation Promotes Decompression sickness in Rats.

    PubMed

    de Maistre, Sébastien; Vallée, Nicolas; Gempp, Emmanuel; Lambrechts, Kate; Louge, Pierre; Duchamp, Claude; Blatteau, Jean-Eric

    2016-01-01

    Massive bubble formation after diving can lead to decompression sickness (DCS). During dives with hydrogen as a diluent for oxygen, decreasing the body's H2 burden by inoculating hydrogen-metabolizing microbes into the gut reduces the risk of DCS. So we set out to investigate if colonic fermentation leading to endogenous hydrogen production promotes DCS in fasting rats. Four hours before an experimental dive, 93 fasting rats were force-fed, half of them with mannitol and the other half with water. Exhaled hydrogen was measured before and after force-feeding. Following the hyperbaric exposure, we looked for signs of DCS. A higher incidence of DCS was found in rats force-fed with mannitol than in those force-fed with water (80%, [95%CI 56, 94] versus 40%, [95%CI 19, 64], p < 0.01). In rats force-fed with mannitol, metronidazole pretreatment reduced the incidence of DCS (33%, [95%CI 15, 57], p = 0.005) at the same time as it inhibited colonic fermentation (14 ± 35 ppm versus 118 ± 90 ppm, p = 0.0001). Pre-diveingestion of mannitol increased the incidence of DCS in fasting rats when colonic fermentation peaked during the decompression phase. More generally, colonic fermentation in rats on a normal diet could promote DCS through endogenous hydrogen production. PMID:26853722

  15. Fermentation process for production of xanthan

    SciTech Connect

    Wernau, W.C.

    1981-08-04

    Xanthomonas polymers used in displacement of oil from partially depleted reservoirs are produced in higher concentrations and yields by the gradual addition of a source of assimilable carbon, preferably glucose, to the aqueous nutrient medium during the course of a Xanthomonas fermentation. The cost factors involved in secondary and tertiary oil recovery and the competitive use of diluted Xanthomonas whole broths in such recovery dictate increasing the fermentation concentration of the Xanthomonas polymers. Reduced shipping costs, broth storage facilities, and handling costs are some of the benefits derived. Furthermore, reduced volumes of solvent are needed for recovery when initial broth concentrations are high in those processes where Xanthomonas gums are recovered for oil recovery applications. Increasing the fermentation yield of a desired microbial product is accomplished by adding or feeding a nutrient or nutrients during the course of the fermentation cycle. The addition of glucose solution is started immediately after inoculation. The glucose is fed at an exponentially increasing rate up to 24 hr after inoculation and thereafter at a constant rate. Other nutrients may be fed with the source of assimilable carbon. (Also related to US 11/30/78 Appl. 964,951). 4 claims.

  16. Fermentation process for production of Xanthan

    SciTech Connect

    Wernau, W.C.

    1981-08-04

    Xanthomonas polymers used in displacement of oil from partially depleted reservoirs are produced in higher concentrations and yields by the gradual addition of a source of assimilable carbon, preferably glucose, to the aqueous nutrient medium during the course of a Xanthomonas fermentation. The cost factors involved in secondary and tertiary oil recovery and the competitive use of diluted Xanthomonas whole broths in such recovery dictate increasing the fermentation concentration of the Xanthomonas polymers. Reduced shipping costs, broth storage facilities, and handling costs are some of the benefits derived. Furthermore, reduced volumes of solvent are needed for recovery when initial broth concentrations are high in those processes where Xanthomonas gums are recovered for oil recovery applications. Increasing the fermentation yield of a desired microbial product is accomplished by adding or feeding a nutrient or nutrients during the course of the fermentation cycle. The addition of glucose solution is started immediately after inoculation. The glucose is fed at an exponentially increasing rate up to 24 hr after inoculation and thereafter at a constant rate. Other nutrients may be fed with the source of assimilable carbon. (Also related to US 11/30/78 Appl. 964,951). 4 claims.

  17. Colonic Fermentation Promotes Decompression sickness in Rats

    PubMed Central

    de Maistre, Sébastien; Vallée, Nicolas; Gempp, Emmanuel; Lambrechts, Kate; Louge, Pierre; Duchamp, Claude; Blatteau, Jean-Eric

    2016-01-01

    Massive bubble formation after diving can lead to decompression sickness (DCS). During dives with hydrogen as a diluent for oxygen, decreasing the body’s H2 burden by inoculating hydrogen-metabolizing microbes into the gut reduces the risk of DCS. So we set out to investigate if colonic fermentation leading to endogenous hydrogen production promotes DCS in fasting rats. Four hours before an experimental dive, 93 fasting rats were force-fed, half of them with mannitol and the other half with water. Exhaled hydrogen was measured before and after force-feeding. Following the hyperbaric exposure, we looked for signs of DCS. A higher incidence of DCS was found in rats force-fed with mannitol than in those force-fed with water (80%, [95%CI 56, 94] versus 40%, [95%CI 19, 64], p < 0.01). In rats force-fed with mannitol, metronidazole pretreatment reduced the incidence of DCS (33%, [95%CI 15, 57], p = 0.005) at the same time as it inhibited colonic fermentation (14 ± 35 ppm versus 118 ± 90 ppm, p = 0.0001). Pre-diveingestion of mannitol increased the incidence of DCS in fasting rats when colonic fermentation peaked during the decompression phase. More generally, colonic fermentation in rats on a normal diet could promote DCS through endogenous hydrogen production. PMID:26853722

  18. Ruminal fermentation of propylene glycol and glycerol.

    PubMed

    Trabue, Steven; Scoggin, Kenwood; Tjandrakusuma, Siska; Rasmussen, Mark A; Reilly, Peter J

    2007-08-22

    Bovine rumen fluid was fermented anaerobically with 25 mM R-propylene glycol, S-propylene glycol, or glycerol added. After 24 h, all of the propylene glycol enantiomers and approximately 80% of the glycerol were metabolized. Acetate, propionate, butyrate, valerate, and caproate concentrations, in decreasing order, all increased with incubation time. Addition of any of the three substrates somewhat decreased acetate formation, while addition of either propylene glycol increased propionate formation but decreased that of butyrate. R- and S-propylene glycol did not differ significantly in either their rates of disappearance or the products formed when they were added to the fermentation medium. Fermentations of rumen fluid containing propylene glycol emitted the sulfur-containing gases 1-propanethiol, 1-(methylthio)propane, methylthiirane, 2,4-dimethylthiophene, 1-(methylthio)-1-propanethiol, dipropyl disulfide, 1-(propylthio)-1-propanethiol, dipropyl trisulfide, 3,5-diethyl-1,2,4-trithiolane, 2-ethyl-1,3-dithiane, and 2,4,6-triethyl-1,3,5-trithiane. Metabolic pathways that yield each of these gases are proposed. The sulfur-containing gases produced during propylene glycol fermentation in the rumen may contribute to the toxic effects seen in cattle when high doses are administered for therapeutic purposes. PMID:17655323

  19. Fermentation and oxygen transfer in microgravity

    NASA Technical Reports Server (NTRS)

    Dunlop, Eric H.

    1989-01-01

    The need for high rate oxygen transfer in microgravity for a Controlled Ecological Life Support System (CELSS) environment offers a number of difficulties and challenges. The use of a phase separated bioreactor appears to provide a way of overcoming these problems resulting in a system capable of providing high cell densities with rapid fermentation rates. Some of the key design elements are discussed.

  20. Forecasting for fermentation operational decision making.

    PubMed

    Montague, Gary A; Martin, Elaine B; O'Malley, Christopher J

    2008-01-01

    An awareness of the likely future behavior of a batch or a fed-batch fermentation process is valuable information that can be exploited to improve product consistency and maximize profitability. For example, by making operational policy changes in a feedforward control sense, improved consistency can be facilitated, while prior knowledge of batch productivity, or the end time, can help determine the downstream processing configuration and upstream process scheduling. In this article, forecasting methods based on multivariate batch statistical data analysis procedures are contrasted with case-based reasoning (CBR). Additionally, the importance of appropriate statistical data prescreening and the choice of a suitable metric for case selection are investigated. Two industrial case studies are considered, a fed-batch pharmaceutical fermentation and a batch beer fermentation process. It is demonstrated that, following appropriate statistical prescreening of the data, in terms of forecasting performance, CBR is comparable to linear projection to latent structures (PLS), for the more straightforward problem, i.e., the batch beer fermentation, while for the more complex case-the pharmaceutical process-CBR exhibits enhanced performance over PLS. PMID:19194911

  1. New fermentation route cuts energy costs

    SciTech Connect

    Not Available

    1980-10-08

    Alcon Biotechnology has built a containerized continuous-fermentation demonstration unit and claims a steam consumption of under 20 lb/gallon of alcohol. Crawford and Russell (Stamford, Conn.) is offering this new power-alcohol technology in the U.S. which is designed for a range of feeds including cane and beet sugar juice, molasses and cereal grains.

  2. Degradation of 5-hydroxymethylfurfural during yeast fermentation.

    PubMed

    Akıllıoglu, Halise Gül; Mogol, Burçe Ataç; Gökmen, Vural

    2011-12-01

    5-Hydroxymethyl furfural (HMF) may occur in malt in high quantities depending on roasting conditions. However, the HMF content of different types of beers is relatively low, indicating its potential for degradation during fermentation. This study investigates the degradation kinetics of HMF in wort during fermentation by Saccharomyces cerevisiae. The results indicated that HMF decreased exponentially as fermentation progressed. The first-order degradation rate of HMF was 0.693 × 10(-2) and 1.397 × 10(-2)min(-1) for wort and sweet wort, respectively, indicating that sugar enhances the activity of yeasts. In wort, HMF was converted into hydroxymethyl furfuryl alcohol by yeasts with a high yield (79-84% conversion). Glucose and fructose were utilised more rapidly by the yeasts in dark roasted malt than in pale malt (p<0.05). The conversion of HMF into hydroxymethyl furfuryl alcohol seems to be a primary activity of yeast cells, and presence of sugars in the fermentation medium increases this activity. PMID:22010851

  3. Effects of fermentation substrate conditions on corn-soy co-fermentation for fuel ethanol production.

    PubMed

    Yao, Linxing; Lee, Show-Ling; Wang, Tong; de Moura, Juliana M L N; Johnson, Lawrence A

    2012-09-01

    Soy skim, a protein-rich liquid co-product from the aqueous extraction of soybeans, was co-fermented with corn to produce ethanol. Effects of soy skim addition level, type of skim, corn particle size, water-to-solids ratio, and urea on co-fermentation were determined. The addition of 20-100% skim increased the fermentation rate by 18-27% and shortened the fermentation time by 5-7h without affecting ethanol yield. Finely ground corn or high water-to-solids ratio (≥ 3.0) in the mash gave higher fermentation rates, but did not increase the ethanol yield. When the water was completely replaced with soy skim, the addition of urea became unnecessary. Soy skim retentate that was concentrated by nanofiltration increased fermentation rate by 25%. The highest level of skim addition resulted in a finished beer with 16% solids, 47% protein (dwb) containing 3.6% lysine, and an ethanol yield of 39 g/100g dry corn. PMID:22784965

  4. Functional Characterization of Bacterial Communities Responsible for Fermentation of Doenjang: A Traditional Korean Fermented Soybean Paste.

    PubMed

    Jung, Woo Yong; Jung, Ji Young; Lee, Hyo Jung; Jeon, Che Ok

    2016-01-01

    Doenjang samples were prepared in triplicate and their microbial abundance, bacterial communities, and metabolites throughout fermentation were analyzed to investigate the functional properties of microorganisms in doenjang. Viable bacterial cells were approximately three orders of magnitude higher than fungal cells, suggesting that bacteria are more responsible for doenjang fermentation. Pyrosequencing and proton nuclear magnetic resonance spectroscopy were applied for the analysis of bacterial communities and metabolites, respectively. Bacterial community analysis based on 16S rRNA gene sequences revealed that doenjang samples included Bacillus, Enterococcus, Lactobacillus, Clostridium, Staphylococcus, Corynebacterium, Oceanobacillus, and Tetragenococcus. These genera were found either in doenjang-meju or solar salts, but not in both, suggesting two separate sources of bacteria. Bacillus and Enterococcus were dominant genera during the fermentation, but their abundances were not associated with metabolite changes, suggesting that they may not be major players in doenjang fermentation. Tetragenococcus was dominant in 108 day-doenjang samples, when lactate, acetate, putrescine, and tyramine increased quickly as glucose and fructose decreased, indicating that Tetragenococcus might be primarily responsible for organic acid and biogenic amine production. Lactobacillus was identified as a dominant group from the 179-day samples, associated with the increase of γ-aminobutyric acid (GABA) and the decrease of galactose, indicating a potential role for this genus as a major GABA producer during fermentation. The results of this study clarified the functional properties of major bacterial communities in the doenjang fermentation process, contributing to the production of safe and high-quality doenjang. PMID:27303399

  5. Functional Characterization of Bacterial Communities Responsible for Fermentation of Doenjang: A Traditional Korean Fermented Soybean Paste

    PubMed Central

    Jung, Woo Yong; Jung, Ji Young; Lee, Hyo Jung; Jeon, Che Ok

    2016-01-01

    Doenjang samples were prepared in triplicate and their microbial abundance, bacterial communities, and metabolites throughout fermentation were analyzed to investigate the functional properties of microorganisms in doenjang. Viable bacterial cells were approximately three orders of magnitude higher than fungal cells, suggesting that bacteria are more responsible for doenjang fermentation. Pyrosequencing and proton nuclear magnetic resonance spectroscopy were applied for the analysis of bacterial communities and metabolites, respectively. Bacterial community analysis based on 16S rRNA gene sequences revealed that doenjang samples included Bacillus, Enterococcus, Lactobacillus, Clostridium, Staphylococcus, Corynebacterium, Oceanobacillus, and Tetragenococcus. These genera were found either in doenjang-meju or solar salts, but not in both, suggesting two separate sources of bacteria. Bacillus and Enterococcus were dominant genera during the fermentation, but their abundances were not associated with metabolite changes, suggesting that they may not be major players in doenjang fermentation. Tetragenococcus was dominant in 108 day-doenjang samples, when lactate, acetate, putrescine, and tyramine increased quickly as glucose and fructose decreased, indicating that Tetragenococcus might be primarily responsible for organic acid and biogenic amine production. Lactobacillus was identified as a dominant group from the 179-day samples, associated with the increase of γ-aminobutyric acid (GABA) and the decrease of galactose, indicating a potential role for this genus as a major GABA producer during fermentation. The results of this study clarified the functional properties of major bacterial communities in the doenjang fermentation process, contributing to the production of safe and high-quality doenjang. PMID:27303399

  6. Pure Culture Fermentation of Green Olives1

    PubMed Central

    Etchells, J. L.; Borg, A. F.; Kittel, I. D.; Bell, T. A.; Fleming, H. P.

    1966-01-01

    The method previously developed by us for the pure-culture fermentation of brined cucumbers and other vegetables has been applied successfully to Manzanillo variety olives. Field-run grade fruit was processed first by conventional procedures to remove most of the bitterness. Then the relative abilities of Lactobacillus plantarum, L. brevis, Pediococcus cerevisiae, and Leuconostoc mesenteroides to become established and produce acid in both heat-shocked (74 C for 3 min) and unheated olives, brined at 4.7 to 5.9% NaCl (w/v basis), were evaluated. The heat-shock treatment not only proved effective in ridding the fruit of naturally occurring, interfering, and competitive microbial groups prior to brining and inoculation, but also made the olives highly fermentable with respect to growth and acid production by the introduced culture, particularly L. plantarum. Of the four species used as inocula, L. plantarum was by far the most vigorous in fermentation ability. It consistently produced the highest levels of brine acidity (1.0 to 1.2% calculated as lactic acid) and the lowest pH values (3.8 to 3.9) during the fermentation of heat-shocked olives. Also, L. plantarum completely dominated fermentations when used in two-species (with P. cerevisiae) and three-species (with P. cerevisiae and L. brevis) combinations as inocula. In contrast, when L. plantarum was inoculated into the brines of unheated olives it failed to become properly established; the same was true for the other species tested, but even to a more pronounced degree. L. brevis was the only species used that failed to develop in brines of both heat-shocked and unheated olives. Modification of the curing brine by the addition of lactic acid at the outset, either with or without dextrose, led to a much earlier onset of fermentation with accompanying acid development, as compared to treatments with dextrose alone or nonadditive controls. Reasons for the marked improvement of the fermentability of Manzanillo olives

  7. Microbial diversity and flavor formation in onion fermentation.

    PubMed

    Cheng, Lili; Luo, Jianfei; Li, Pan; Yu, Hang; Huang, Jianfei; Luo, Lixin

    2014-09-01

    Fermented onion products are popular in many countries. We conducted fermentation with and without salt to identify the microorganisms responsible for onion fermentation and the unique taste of fermented onion. The results of PCR-DGGE (polymerase chain reaction-denaturing gradient gel electrophoresis) revealed that lactic acid bacteria (Lactobacillus zymae, L. malefermentans, L. plantarum), acetic acid bacteria (Acetobacter pasteurianus, A. orientalis), citric acid bacteria (Citrobacter sp., C. freundii), and yeasts (Candida humilis, Kazachstania exigua, Saccharomyces boulardii) were the dominant microorganisms involved in onion fermentation. Organic acid analysis indicated that lactic acid and acetic acid significantly increased after fermentation. There were no significant changes in the types of amino acids after fermentation, but the total concentration of amino acids significantly decreased after fermentation with salt. The increase in esters, alcohols, and aldehydes after fermentation was responsible for the unique flavor of fermented onion. Fermentation with salt inhibited the accumulation of organic acids and limited the conversion of proteins into amino acids but maintained the unique odor of onion by limiting the degradation of sulfur-containing compounds. PMID:25088041

  8. Intracellular ethanol accumulation in Saccharomyces cerevisiae during fermentation.

    PubMed

    D'Amore, T; Panchal, C J; Stewart, G G

    1988-01-01

    An intracellular accumulation of ethanol in Saccharomyces cerevisiae was observed during the early stages of fermentation (3 h). However, after 12 h of fermentation, the intracellular and extracellular ethanol concentrations were similar. Increasing the osmotic pressure of the medium caused an increase in the ratio of intracellular to extracellular ethanol concentrations at 3 h of fermentation. As in the previous case, the intracellular and extracellular ethanol concentrations were similar after 12 h of fermentation. Increasing the osmotic pressure also caused a decrease in yeast cell growth and fermentation activities. However, nutrient supplementation of the medium increased the extent of growth and fermentation, resulting in complete glucose utilization, even though intracellular ethanol concentrations were unaltered. These results suggest that nutrient limitation is a major factor responsible for the decreased growth and fermentation activities observed in yeast cells at higher osmotic pressures. PMID:3278685

  9. Acoustical experiment of yogurt fermentation process.

    PubMed

    Ogasawara, H; Mizutani, K; Ohbuchi, T; Nakamura, T

    2006-12-22

    One of the important factors through food manufacturing is hygienic management. Thus, food manufactures prove their hygienic activities by taking certifications like a Hazard Analysis and Critical Control Point (HACCP). This concept also applies to food monitoring. Acoustical measurements have advantage for other measurement in food monitoring because they make it possible to measure with noncontact and nondestructive. We tried to monitor lactic fermentation of yogurt by a probing sensor using a pair of acoustic transducers. Temperature of the solution changes by the reaction heat of fermentation. Consequently the sound velocity propagated through the solution also changes depending on the temperature. At the same time, the solution change its phase from liquid to gel. The transducers usage in the solution indicates the change of the temperature as the change of the phase difference between two transducers. The acoustic method has advantages of nondestructive measurement that reduces contamination of food product by measuring instrument. The sensor was inserted into milk with lactic acid bacterial stain of 19 degrees C and monitored phase retardation of propagated acoustic wave and its temperature with thermocouples in the mild. The monitoring result of fermentation from milk to Caspian Sea yogurt by the acoustic transducers with the frequency of 3.7 MHz started to show gradient change in temperature caused by reaction heat of fermentation but stop the gradient change at the end although the temperature still change. The gradient change stopped its change because of phase change from liquid to gel. The present method will be able to measure indirectly by setting transducers outside of the measuring object. This noncontact sensing method will have great advantage of reduces risk of food contamination from measuring instrument because the measurement probes are set out of fermentation reactor or food containers. Our proposed method will contribute to the

  10. Comparison of fermentation of diets of variable composition and microbial populations in the rumen of sheep and Rusitec fermenters. I. Digestibility, fermentation parameters, and microbial growth.

    PubMed

    Martínez, M E; Ranilla, M J; Tejido, M L; Ramos, S; Carro, M D

    2010-08-01

    Four ruminally and duodenally cannulated sheep and 8 Rusitec fermenters were used to determine the effects of forage to concentrate (F:C) ratio and type of forage in the diet on ruminal fermentation and microbial protein synthesis. The purpose of the study was to assess how closely fermenters can mimic the dietary differences found in vivo. The 4 experimental diets contained F:C ratios of 70:30 or 30:70 with either alfalfa hay or grass hay as the forage. Microbial growth was determined in both systems using (15)N as a microbial marker. Rusitec fermenters detected differences between diets similar to those observed in sheep by changing F:C ratio on pH; neutral detergent fiber digestibility; total volatile fatty acid concentrations; molar proportions of acetate, propionate, butyrate, isovalerate, and caproate; and amylase activity. In contrast, Rusitec fermenters did not reproduce the dietary differences found in sheep for NH(3)-N and lactate concentrations, dry matter (DM) digestibility, proportions of isobutyrate and valerate, carboxymethylcellulase and xylanase activities, and microbial growth and its efficiency. Regarding the effect of the type of forage in the diet, Rusitec fermenters detected differences between diets similar to those found in sheep for most determined parameters, with the exception of pH, DM digestibility, butyrate proportion, and carboxymethylcellulase activity. Minimum pH and maximal volatile fatty acid concentrations were reached at 2h and at 6 to 8h postfeeding in sheep and fermenters, respectively, indicating that feed fermentation was slower in fermenters compared with that in sheep. There were differences between systems in the magnitude of most determined parameters. In general, fermenters showed lower lactate concentrations, neutral detergent fiber digestibility, acetate:propionate ratios, and enzymatic activities. On the contrary, fermenters showed greater NH(3)-N concentrations, DM digestibility, and proportions of propionate

  11. Fermentation to ethanol of pentose-containing spent sulphite liquor

    SciTech Connect

    Yu, S.; Wayman, M.; Parekh, S.K.

    1987-06-01

    Ethanolic fermentation of spent sulphite liquor with ordinary bakers' yeast is incomplete because this yeast cannot ferment the pentose sugars in the liquor. This results in poor alcohol yields, and a residual effluent problem. By using the yeast Candida shehatae (R) for fermentation of the spent sulphite liquor from a large Canadian alcohol-producing sulphite pulp and paper mill, pentoses as well as hexoses were fermented nearly completely, alcohol yields were raised by 33%, and sugar removal increased by 46%. Inhibitors were removed prior to fermentation by steam stripping. Major benefits were obtained by careful recycling of this yeast, which was shown to be tolerant both of high sugar concentrations and high alcohol concentrations. When sugar concentrations over 250 g/L (glucose:xylose 70:30) were fermented, ethanol became an inhibitor when its concentration reached 90 g/L. However, when the ethanol was removed by low-temperature vacuum distillation, fermentation continued and resulted in a yield of 0.50 g ethanol/g sugar consumed. Further improvement was achieved by combining enzyme saccharification of sugar oligomers with fermentation. This yeast is able to ferment both hexoses and pentoses simultaneously, efficiently, and rapidly. Present indications are that it is well suited to industrial operations wherever hexoses and pentoses are both to be fermented to ethanol, for example, in wood hydrolysates. (Refs. 6).

  12. Safety assessment of the biogenic amines in fermented soya beans and fermented bean curd.

    PubMed

    Yang, Juan; Ding, Xiaowen; Qin, Yingrui; Zeng, Yitao

    2014-08-01

    To evaluate the safety of biogenic amines, high performance liquid chromatography (HPLC) was used to evaluate the levels of biogenic amines in fermented soya beans and fermented bean curd. In fermented soya beans, the total biogenic amines content was in a relatively safe range in many samples, although the concentration of histamine, tyramine, and β-phenethylamine was high enough in some samples to cause a possible safety threat, and 8 of the 30 samples were deemed unsafe. In fermented bean curd, the total biogenic amines content was more than 900 mg/kg in 19 white sufu amples, a level that has been determined to pose a safety hazard; putrescine was the only one detected in all samples and also had the highest concentration, which made samples a safety hazard; the content of tryptamine, β-phenethylamine, tyramine, and histamine had reached the level of threat to human health in some white and green sufu samples, and that may imply another potential safety risk; and 25 of the 33 samples were unsafe. In conclusion, the content of biogenic amines in all fermented soya bean products should be studied and appropriate limits determined to ensure the safety of eating these foods. PMID:25029555

  13. Fermentation broth components influence droplet coalescence and hinder advanced biofuel recovery during fermentation.

    PubMed

    Heeres, Arjan S; Schroën, Karin; Heijnen, Joseph J; van der Wielen, Luuk A M; Cuellar, Maria C

    2015-08-01

    Developments in synthetic biology enabled the microbial production of long chain hydrocarbons, which can be used as advanced biofuels in aviation or transportation. Currently, these fuels are not economically competitive due to their production costs. The current process offers room for improvement: by utilizing lignocellulosic feedstock, increasing microbial yields, and using cheaper process technology. Gravity separation is an example of the latter, for which droplet growth by coalescence is crucial. The aim of this study was to study the effect of fermentation broth components on droplet coalescence. Droplet coalescence was measured using two setups: a microfluidic chip and regular laboratory scale stirred vessel (2 L). Some fermentation broth components had a large impact on droplet coalescence. Especially components present in hydrolysed cellulosic biomass and mannoproteins from the yeast cell wall retard coalescence. To achieve a technically feasible gravity separation that can be integrated with the fermentation, the negative effects of these components on coalescence should be minimized. This could be achieved by redesign of the fermentation medium or adjusting the fermentation conditions, aiming to minimize the release of surface active components by the microorganisms. This way, another step can be made towards economically feasible advanced biofuel production. PMID:26097113

  14. Lactic acid bacteria and yeasts involved in the fermentation ofamabere amaruranu, a Kenyan fermented milk.

    PubMed

    Nyambane, Bitutu; Thari, William M; Wangoh, John; Njage, Patrick M K

    2014-11-01

    Indigenous fermented milk products contain microbiota composed of technologically important species and strains which are gradually getting lost with new technologies. We investigated the microbial diversity inamabere amaruranu, a traditionally fermented milk product from Kenya. Sixteen samples of the product from different containers were obtained. One hundred and twenty isolates of lactic acid bacteria (LAB) and 67 strains of yeasts were identified using API 50 CH and API 20 C AUX identification kits, respectively. The average pH of all the traditional fermented samples was 4.00 ± 0.93. Lactobacilli, yeasts, and molds as well asEnterobacteriaceae counts from the plastic containers were significantly higher (P < 0.05) than those from gourd.Enterobacteriaceae were below 1.00 ± 1.11 log10 cfu/mL in products from the gourds and 2.17 ± 1.92 log10 cfu/mL from the plastic containers. The LAB species were identified asStreptococcus thermophilus (25%),Lactobacillus plantarum (20%), andLeuconostoc mesenteroides (20%). The predominant yeasts wereSaccharomyces cerevisiae (25%),Trichosporum mucoides (15%),Candida famata (10%), andCandida albicans (10%). The type of vessel used for fermentation had no significant influence on the type of isolated and identified species. The diverse mixture of LAB and yeasts microflora forms a potential consortium for further product innovation inamabere amaruranu and other fermented milk products. PMID:25493187

  15. Volatile components and sensory characteristics of Thai traditional fermented shrimp pastes during fermentation periods.

    PubMed

    Kleekayai, Thanyaporn; Pinitklang, Surapong; Laohakunjit, Natta; Suntornsuk, Worapot

    2016-03-01

    Headspace-volatile components and sensory characteristics, including color, Maillard reaction products and free amino acid profiles, of two types of Thai traditional fermented shrimp paste, Kapi Ta Dam and Kapi Ta Deang, were investigated during the fermentation periods up to 6 months. The results showed that the colors of both products were changed with a decrease in CIELAB values over the fermentation period, except for yellowness of Kapi Ta Deang. Essential amino acids such as lysine and leucine and non-essential amino acids such as glutamic acid and alanine were found to be predominant free-amino acids in the products. After headspace volatile component extraction of the product was carried out using a SPME fiber coated with DVB/CAR/PDMS and analyzed by GC-MS, the main compounds responsible for distinct volatiles in the products were N-containing compounds, especially pyrazines which give roasted nutty odor. The results of sensory evaluation from panelists also suggest that fermentation period had an effect on sensory characteristics of the fermented shrimp pastes. Moreover, the sensory perceptions of the products would associate with their color, the Maillard reaction products, amino acid profiles and volatile compounds. PMID:27570264

  16. Extraction chemistry of fermentation product carboxylic acids

    SciTech Connect

    Kertes, A.S.; King, C.J.

    1986-02-01

    Within the framework of a program aiming to improve the existing extractive recovery technology of fermentation products, the state of the art is critically reviewed. The acids under consideration are propionic, lactic, pyruvic, succinic, fumaric, maleic, malic, itaconic, tartaric, citric, and isocitric, all obtained by the aerobic fermentation of glucose via the glycolytic pathways and glyoxylate bypass. With no exception, it is the undissociated monomeric acid that is extracted into carbon-bonded and phosphorus-bonded oxygen donor extractants. In the organic phase, the acids are usually dimerized. The extractive transfer process obeys the Nernst law, and the measured partition coefficients range from about 0.003 for aliphatic hydrocarbons to about 2 to 3 for aliphatic alcohols and ketones to about 10 or more for organophosphates. Equally high distribution ratios are measured when long-chain tertiary amines are employed as extractants, forming bulky salts preferentially soluble in the organic phase.

  17. Engineering the Escherichia coli Fermentative Metabolism

    NASA Astrophysics Data System (ADS)

    Orencio-Trejo, M.; Utrilla, J.; Fernández-Sandoval, M. T.; Huerta-Beristain, G.; Gosset, G.; Martinez, A.

    Fermentative metabolism constitutes a fundamental cellular capacity for industrial biocatalysis. Escherichia coli is an important microorganism in the field of metabolic engineering for its well-known molecular characteristics and its rapid growth. It can adapt to different growth conditions and is able to grow in the presence or absence of oxygen. Through the use of metabolic pathway engineering and bioprocessing techniques, it is possible to explore the fundamental cellular properties and to exploit its capacity to be applied as industrial biocatalysts to produce a wide array of chemicals. The objective of this chapter is to review the metabolic engineering efforts carried out with E. coli by manipulating the central carbon metabolism and fermentative pathways to obtain strains that produce metabolites with high titers, such as ethanol, alanine, lactate and succinate.

  18. Influence of cobalt on fermentative methylation.

    PubMed

    Claridge, C A; Rossomano, V Z; Buono, N S; Gourevitch, A; Lein, J

    1966-03-01

    Streptomyces rishiriensis produces at least five closely related antibiotics. Strain selection yielded a culture producing only the most active component, coumermycin A. Hydrolysis of this antibiotic by barium hydroxide yielded both 5-methyl-pyrrole-2-carboxylic acid and pyrrole-2-carboxylic acid, which could be separated by paper chromatography. Coumermycin A was thus shown to be two fractions, designated A(1) and A(2) depending upon the nature of the pyrrole carboxylic acid portion. The addition of cobalt to the fermentation medium at a level as low as 0.01 mug/ml shifted the fermentation exclusively to the production of coumermycin A(1). Other ions were ineffective, except nickel, whose activity could be explained by the presence of contaminating cobalt. PMID:5959861

  19. Extraction chemistry of fermentation product carboxylic acid

    SciTech Connect

    Kertes, A.S.; King, C.J.

    1986-02-01

    Within the framework of a program aiming to improve the existing extractive recovery technology of fermentation products, the state of the art is critically reviewed. The acids under consideration are propionic, lactic, pyruvic, succinic, fumaric, maleic, malic, itaconic, tartaric, citric, and isocitric, all obtained by the aerobic fermentation of glucose via the glycolytic pathway and glyoxylate bypass. With no exception, it is the undissociated monomeric acid that is extracted into carbon-bonded and phosphorus-bonded oxygen donor extractants. In the organic phase, the acids are usually dimerized. The extractive transfer process obeys the Nernst law, and the measured partition coefficients range from about 0.003 for aliphatic hydrocarbons to about 2 to 3 for aliphatic alcohols and ketones to about 10 or more for organophosphates. Equally high distribution ratios are measured when long-chain tertiary amines are employed as extractants, forming bulky salts preferentially soluble in the organic phase. 123 references.

  20. Influence of pre-fermentation cold maceration treatment on aroma compounds of Cabernet Sauvignon wines fermented in different industrial scale fermenters.

    PubMed

    Cai, Jian; Zhu, Bao-Qing; Wang, Yun-He; Lu, Lin; Lan, Yi-Bin; Reeves, Malcolm J; Duan, Chang-Qing

    2014-07-01

    The influence of pre-fermentation cold maceration (CM) on Cabernet Sauvignon wines fermented in two different industrial-scale fermenters was studied. CM treatment had different effects on wine aroma depending on the types of fermenter, being more effective for automatic pumping-over tank (PO-tank) than automatic punching-down tank (PD-tank). When PO-tank was used, CM-treated wine showed a decrease in some fusel alcohols (isobutanol and isopentanol) and an increase in some esters (especially acetate esters). However, no significant changes were detected in these compounds when PD-tank was used. Ethyl 2-hexenoate and diethyl succinate were decreased, while geranylacetone was increased by the CM treatment in both fermenters. β-Damascenone was increased by the CM treatment in PO-tank fermented wines but decreased in PD-tank fermented wines. The fruity, caramel and floral aroma series were enhanced while chemical series were decreased by the CM treatment in PO-tank fermented wines. The content of (Z)-6-nonen-1-ol in the final wines was positively correlated to CM treatment. PMID:24518336

  1. Mathematical model of self-cycling fermentation

    SciTech Connect

    Wincure, B.M.; Cooper, D.G.; Rey, A.

    1995-04-20

    This article presents a mathematical model for biomass, limiting substrate, and dissolved oxygen concentrations during stable operation of self-cycling fermentation (SCF). Laboratory experiments using the bacterium Acinetobacter calcoaceticus RAG-1 and ethanol as the limiting substrate were performed to validate the model. A computer simulation developed from the model successfully matched experimental SCF intracycle trends and end-of-cycle results and, most importantly, settled into an unimposed periodicity characteristic of stable SCF operation.

  2. Enzyme conversion of biomass to fermentable sugars

    SciTech Connect

    Bagby, M.O.

    1983-01-01

    Saccharification studies indicated the suitability of Trichoderma viride 253 crude enzyme preparation as a promising agent for saccharifying sugarcane baggase hemicellulose, treated ..cap alpha..-cellulose, and alkali-treated bagasse. Utilization of sugarcane bagasse for the fermentative production of cellulases, hemicellulases, and single cell protein (SCP) by T. viride 253 can be outlined as follows: (a) Production of extracellular cellulases and hemicellulases in a forced aeration-stirred tank fermentor using crude bagasse as the sole carbon source in Dox's culture medium. (b) Treatment of the remaining biodegraded bagasse with NaOH. (c) Refermentation in static culture of bagasse as the sole carbon source in Dox's culture medium for production of SCP material. The yeast, Pachysolen tannophilus, is capable of converting xylose and glucose to ethanol. Fermentation of the crude hydrolyzate from straw revealed low efficiencies of 40 to 60%. As anticipated, interfering substances are present in these crude substrates. Further procedures for optimization of both processing of hydrolyzates and fermentation are being investigated. Endoglucanase and cellobiase are inhibited by glucose, and cellobiose inhibits exoglucanase. A yeast (Candida wickerhamii) was isolated which ferments water soluble oligosaccharides. Because oligosaccharides (cellulodxtrins) are easier to prepare than glucose from cellulose, attention has been directed toward substrate preparation and organism characterization. While the literature contains several methods for preparing cellulodextrins, all the methods involve several steps or involve the removal or neutralization of strong acids. A simple method has been developed using trifluoroacetic acid (TFA)-water for the hydrolysis. Analysis by TLC and HPLC shows a series of cellulodextrins (DP1-6) which are completely converted to ethanol by Candida wickerhamii in 4 to 5 days.

  3. Challenges in industrial fermentation technology research.

    PubMed

    Formenti, Luca Riccardo; Nørregaard, Anders; Bolic, Andrijana; Hernandez, Daniela Quintanilla; Hagemann, Timo; Heins, Anna-Lena; Larsson, Hilde; Mears, Lisa; Mauricio-Iglesias, Miguel; Krühne, Ulrich; Gernaey, Krist V

    2014-06-01

    Industrial fermentation processes are increasingly popular, and are considered an important technological asset for reducing our dependence on chemicals and products produced from fossil fuels. However, despite their increasing popularity, fermentation processes have not yet reached the same maturity as traditional chemical processes, particularly when it comes to using engineering tools such as mathematical models and optimization techniques. This perspective starts with a brief overview of these engineering tools. However, the main focus is on a description of some of the most important engineering challenges: scaling up and scaling down fermentation processes, the influence of morphology on broth rheology and mass transfer, and establishing novel sensors to measure and control insightful process parameters. The greatest emphasis is on the challenges posed by filamentous fungi, because of their wide applications as cell factories and therefore their relevance in a White Biotechnology context. Computational fluid dynamics (CFD) is introduced as a promising tool that can be used to support the scaling up and scaling down of bioreactors, and for studying mixing and the potential occurrence of gradients in a tank. PMID:24846823

  4. Bioethanol production from fermentable sugar juice.

    PubMed

    Zabed, Hossain; Faruq, Golam; Sahu, Jaya Narayan; Azirun, Mohd Sofian; Hashim, Rosli; Boyce, Amru Nasrulhaq

    2014-01-01

    Bioethanol production from renewable sources to be used in transportation is now an increasing demand worldwide due to continuous depletion of fossil fuels, economic and political crises, and growing concern on environmental safety. Mainly, three types of raw materials, that is, sugar juice, starchy crops, and lignocellulosic materials, are being used for this purpose. This paper will investigate ethanol production from free sugar containing juices obtained from some energy crops such as sugarcane, sugar beet, and sweet sorghum that are the most attractive choice because of their cost-effectiveness and feasibility to use. Three types of fermentation process (batch, fed-batch, and continuous) are employed in ethanol production from these sugar juices. The most common microorganism used in fermentation from its history is the yeast, especially, Saccharomyces cerevisiae, though the bacterial species Zymomonas mobilis is also potentially used nowadays for this purpose. A number of factors related to the fermentation greatly influences the process and their optimization is the key point for efficient ethanol production from these feedstocks. PMID:24715820

  5. Development of yeasts for xylose fermentation

    SciTech Connect

    Jeffries, T.W.; Yang, V.; Marks, J.; Amartey, S.; Kenealy, W.R.; Cho, J.Y.; Dahn, K.; Davis, B.P.

    1993-12-31

    Xylose is an abundant sugar in hardwoods and agricultural residues. Its use is essential for any economical conversion of lignocellulose to ethanol. Only a few yeasts ferment xylose effectively. Our results show that the best strains are Candida shehatae ATCC 2984 and Pichia stipitis CBS 6054. Wild type strains of C. shehatae ATCC 22984 will produce 56 g/L of ethanol from xylose within 48 h in a fed batch fermentation. We have obtained improved mutants of P.stipitis by selecting for growth on L-xylose and L-arabinose. Mutant strains produce up to 55% more ethanol than the parent and exhibit higher specific fermentation rates. We have also developed an effective transformation system that enables the introduction and expression of heterologous DNA on integrating and autonomous vectors. The transformation system for P. stipitis is based on its URA3 gene as a selectable marker and an autonomous replication sequence (ARS) which we isolated from the parent. We are using integrating and ARS vectors to metabolically engineer P. stipitis by altering the regulation and expression of key enzymes. As model systems we are examining the expression of alcohol dehydrogenase (ADH) and pyruvate decarboxylase (PDC) that are present in limiting amounts or induced only under non-growth conditions.

  6. [The antihypertensive effect of fermented milks].

    PubMed

    Domínguez González, Karina N; Cruz Guerrero, Alma E; Márquez, Humberto González; Gómez Ruiz, Lorena C; García-Garibay, Mariano; Rodríguez Serrano, Gabriela M

    2014-01-01

    There is a great variety of fermented milks containing lactic acid bacteria that present health-promoting properties. Milk proteins are hydrolyzed by the proteolytic system of these microorganisms producing peptides which may also perform other functions in vivo. These peptides are encrypted within the primary structure of proteins and can be released through food processing, either by milk fermentation or enzymatic hydrolysis during gastrointestinal transit. They perform different activities, since they act in the cardiovascular, digestive, endocrine, immune and nervous systems. Bioactive peptides that have an antihypertensive, antithrombotic, antioxidant and hypocholesterolemic effect on the cardiovascular system can reduce the risk factors for chronic disease manifestation and help improve human health. Most studied bioactive peptides are those which exert an antihypertensive effect by inhibiting the angiotensin-converting enzyme (ACE). Recently, the study of these peptides has focused on the implementation of tests to prove that they have an effect on health. This paper focuses on the production of ACEinhibitory antihypertensive peptides from fermented milks, its history, production and in vivo tests on rats and humans, on which its hypotensive effect has been shown. PMID:24721277

  7. Fermentation based carbon nanotube multifunctional bionic composites

    PubMed Central

    Valentini, Luca; Bon, Silvia Bittolo; Signetti, Stefano; Tripathi, Manoj; Iacob, Erica; Pugno, Nicola M.

    2016-01-01

    The exploitation of the processes used by microorganisms to digest nutrients for their growth can be a viable method for the formation of a wide range of so called biogenic materials that have unique properties that are not produced by abiotic processes. Here we produced living hybrid materials by giving to unicellular organisms the nutrient to grow. Based on bread fermentation, a bionic composite made of carbon nanotubes (CNTs) and a single-cell fungi, the Saccharomyces cerevisiae yeast extract, was prepared by fermentation of such microorganisms at room temperature. Scanning electron microscopy analysis suggests that the CNTs were internalized by the cell after fermentation bridging the cells. Tensile tests on dried composite films have been rationalized in terms of a CNT cell bridging mechanism where the strongly enhanced strength of the composite is governed by the adhesion energy between the bridging carbon nanotubes and the matrix. The addition of CNTs also significantly improved the electrical conductivity along with a higher photoconductive activity. The proposed process could lead to the development of more complex and interactive structures programmed to self-assemble into specific patterns, such as those on strain or light sensors that could sense damage or convert light stimulus in an electrical signal. PMID:27279425

  8. Fermentation based carbon nanotube multifunctional bionic composites.

    PubMed

    Valentini, Luca; Bon, Silvia Bittolo; Signetti, Stefano; Tripathi, Manoj; Iacob, Erica; Pugno, Nicola M

    2016-01-01

    The exploitation of the processes used by microorganisms to digest nutrients for their growth can be a viable method for the formation of a wide range of so called biogenic materials that have unique properties that are not produced by abiotic processes. Here we produced living hybrid materials by giving to unicellular organisms the nutrient to grow. Based on bread fermentation, a bionic composite made of carbon nanotubes (CNTs) and a single-cell fungi, the Saccharomyces cerevisiae yeast extract, was prepared by fermentation of such microorganisms at room temperature. Scanning electron microscopy analysis suggests that the CNTs were internalized by the cell after fermentation bridging the cells. Tensile tests on dried composite films have been rationalized in terms of a CNT cell bridging mechanism where the strongly enhanced strength of the composite is governed by the adhesion energy between the bridging carbon nanotubes and the matrix. The addition of CNTs also significantly improved the electrical conductivity along with a higher photoconductive activity. The proposed process could lead to the development of more complex and interactive structures programmed to self-assemble into specific patterns, such as those on strain or light sensors that could sense damage or convert light stimulus in an electrical signal. PMID:27279425

  9. Fermentation based carbon nanotube multifunctional bionic composites

    NASA Astrophysics Data System (ADS)

    Valentini, Luca; Bon, Silvia Bittolo; Signetti, Stefano; Tripathi, Manoj; Iacob, Erica; Pugno, Nicola M.

    2016-06-01

    The exploitation of the processes used by microorganisms to digest nutrients for their growth can be a viable method for the formation of a wide range of so called biogenic materials that have unique properties that are not produced by abiotic processes. Here we produced living hybrid materials by giving to unicellular organisms the nutrient to grow. Based on bread fermentation, a bionic composite made of carbon nanotubes (CNTs) and a single-cell fungi, the Saccharomyces cerevisiae yeast extract, was prepared by fermentation of such microorganisms at room temperature. Scanning electron microscopy analysis suggests that the CNTs were internalized by the cell after fermentation bridging the cells. Tensile tests on dried composite films have been rationalized in terms of a CNT cell bridging mechanism where the strongly enhanced strength of the composite is governed by the adhesion energy between the bridging carbon nanotubes and the matrix. The addition of CNTs also significantly improved the electrical conductivity along with a higher photoconductive activity. The proposed process could lead to the development of more complex and interactive structures programmed to self-assemble into specific patterns, such as those on strain or light sensors that could sense damage or convert light stimulus in an electrical signal.

  10. Regulation of alcohol fermentation by Escherichia coli

    SciTech Connect

    Clark, D.P.

    1986-03-01

    The purpose of this project is to elucidate the way in which the fermentative synthesis of ethanol is regulated in the facultative anaerobe Escherichia coli. Focus is on the two final steps in alcohol synthesis, which are catalyzed by alcohol dehydrogenase and acetaldehyde CoA dehydrogenase. We have isolated a series of mutations affecting the expression of these enzymes. Some of these mutations are in the structural genes for these enzymes; others affect the regulation of the adh operon. We have recently cloned the genes coding for these enzymes and are now studying the effect of multiple copies of the adh gene on fermentative growth and its regulation. A recently invented technique, proton suicide has allowed the selection of a variety of novel mutants affecting fermentation which are presently being characterized. We have isolated a comprehensive collection of operon fusions in which the lacZ structural gene is fused to promoters that are inactive aerobically but active anaerobically. Although these genes (like adh) are only expressed under anaerobic conditions, the level of induction varies from two-fold to nearly 100-fold. The nitrogen source, medium pH, nature of the buffer, presence of alternative electron acceptors (e.g., nitrate), and other factors exert a great effect on the expression of many of these genes. In the near future we will investigate control mechanisms common to the adh operon and other anaerobically regulated genes.