Science.gov

Sample records for fermenting neutrophilic crenarchaeote

  1. The genome of Hyperthermus butylicus: a sulfur-reducing, peptide fermenting, neutrophilic Crenarchaeote growing up to 108 °C

    PubMed Central

    Brügger, Kim; Chen, Lanming; Stark, Markus; Zibat, Arne; Redder, Peter; Ruepp, Andreas; Awayez, Mariana; She, Qunxin; Garrett, Roger A.; Klenk, Hans-Peter

    2007-01-01

    Hyperthermus butylicus, a hyperthermophilic neutrophile and anaerobe, is a member of the archaeal kingdom Crenarchaeota. Its genome consists of a single circular chromosome of 1,667,163 bp with a 53.7% G+C content. A total of 1672 genes were annotated, of which 1602 are protein-coding, and up to a third are specific to H. butylicus. In contrast to some other crenarchaeal genomes, a high level of GUG and UUG start codons are predicted. Two cdc6 genes are present, but neither could be linked unambiguously to an origin of replication. Many of the predicted metabolic gene products are associated with the fermentation of peptide mixtures including several peptidases with diverse specificities, and there are many encoded transporters. Most of the sulfur-reducing enzymes, hydrogenases and electron-transfer proteins were identified which are associated with energy production by reducing sulfur to H2S. Two large clusters of regularly interspaced repeats (CRISPRs) are present, one of which is associated with a crenarchaeal-type cas gene superoperon; none of the spacer sequences yielded good sequence matches with known archaeal chromosomal elements. The genome carries no detectable transposable or integrated elements, no inteins, and introns are exclusive to tRNA genes. This suggests that the genome structure is quite stable, possibly reflecting a constant, and relatively uncompetitive, natural environment. PMID:17350933

  2. Dibiphytanyl Ether Lipids in Nonthermophilic Crenarchaeotes

    PubMed Central

    DeLong, Edward F.; King, Linda L.; Massana, Ramon; Cittone, Henry; Murray, Alison; Schleper, Christa; Wakeham, Stuart G.

    1998-01-01

    The kingdom Crenarchaeota is now known to include archaea which inhabit a wide variety of low-temperature environments. We report here lipid analyses of nonthermophilic crenarchaeotes, which revealed the presence of cyclic and acyclic dibiphytanylglycerol tetraether lipids. Nonthermophilic crenarchaeotes appear to be a major biological source of tetraether lipids in marine planktonic environments. PMID:9501451

  3. Substrate preference, uptake kinetics and bioenergetics in a facultatively autotrophic, thermoacidophilic crenarchaeote.

    PubMed

    Urschel, Matthew R; Hamilton, Trinity L; Roden, Eric E; Boyd, Eric S

    2016-05-01

    Facultative autotrophs are abundant components of communities inhabiting geothermal springs. However, the influence of uptake kinetics and energetics on preference for substrates is not well understood in this group of organisms. Here, we report the isolation of a facultatively autotrophic crenarchaeote, strain CP80, from Cinder Pool (CP, 88.7°C, pH 4.0), Yellowstone National Park. The 16S rRNA gene sequence from CP80 is 98.8% identical to that from Thermoproteus uzonensis and is identical to the most abundant sequence identified in CP sediments. Strain CP80 reduces elemental sulfur (S8°) and demonstrates hydrogen (H2)-dependent autotrophic growth. H2-dependent autotrophic activity is suppressed by amendment with formate at a concentration in the range of 20-40 μM, similar to the affinity constant determined for formate utilization. Synthesis of a cell during growth with low concentrations of formate required 0.5 μJ compared to 2.5 μJ during autotrophic growth with H2 These results, coupled to data indicating greater C assimilation efficiency when grown with formate as compared to carbon dioxide, are consistent with preferential use of formate for energetic reasons. Collectively, these results provide new insights into the kinetic and energetic factors that influence the physiology and ecology of facultative autotrophs in high-temperature acidic environments. PMID:27037359

  4. Archaea of the Miscellaneous Crenarchaeotal Group are abundant, diverse and widespread in marine sediments

    PubMed Central

    Kubo, Kyoko; Lloyd, Karen G; F Biddle, Jennifer; Amann, Rudolf; Teske, Andreas; Knittel, Katrin

    2012-01-01

    Members of the highly diverse Miscellaneous Crenarchaeotal Group (MCG) are globally distributed in various marine and continental habitats. In this study, we applied a polyphasic approach (rRNA slot blot hybridization, quantitative PCR (qPCR) and catalyzed reporter deposition FISH) using newly developed probes and primers for the in situ detection and quantification of MCG crenarchaeota in diverse types of marine sediments and microbial mats. In general, abundance of MCG (cocci, 0.4 μm) relative to other archaea was highest (12–100%) in anoxic, low-energy environments characterized by deeper sulfate depletion and lower microbial respiration rates (P=0.06 for slot blot and P=0.05 for qPCR). When studied in high depth resolution in the White Oak River estuary and Hydrate Ridge methane seeps, changes in MCG abundance relative to total archaea and MCG phylogenetic composition did not correlate with changes in sulfate reduction or methane oxidation with depth. In addition, MCG abundance did not vary significantly (P>0.1) between seep sites (with high rates of methanotrophy) and non-seep sites (with low rates of methanotrophy). This suggests that MCG are likely not methanotrophs. MCG crenarchaeota are highly diverse and contain 17 subgroups, with a range of intragroup similarity of 82 to 94%. This high diversity and widespread distribution in subsurface sediments indicates that this group is globally important in sedimentary processes. PMID:22551871

  5. Novel Cultivation-Based Approach To Understanding the Miscellaneous Crenarchaeotic Group (MCG) Archaea from Sedimentary Ecosystems

    PubMed Central

    Huber, Harald; Meador, Travis; Hinrichs, Kai-Uwe; Thomm, Michael

    2013-01-01

    The uncultured miscellaneous crenarchaeotic group (MCG) archaea comprise one of the most abundant microbial groups in the Earth's subsurface environment. However, very little information is available regarding the lifestyle, physiology, and factors controlling the distribution of members of this group. We established a novel method using both cultivation and molecular techniques, including a pre-PCR propidium monoazide treatment, to investigate viable members of the MCG in vitro. Enrichment cultures prepared from estuarine sediment were provided with one of a variety of carbon substrates or cultivation conditions and incubated for 3 weeks. Compared with the samples from time zero, there was an order-of-magnitude increase in the number of MCG 16S rRNA genes in almost all cultures, indicating that MCG archaea are amenable to in vitro cultivation. None of the tested substrates or conditions significantly stimulated growth of MCG archaea more than the basal medium alone; however, glycerol (0.02%) had a significantly inhibitory effect (P < 0.05). Diversity analysis of populations resulting from four culture treatments (basal medium, addition of amino acids, H2-CO2 as the gas phase, or initial aerobic conditions) revealed that the majority of viable MCG archaea were affiliated with the MCG-8 and MCG-4 clusters. There were no significant differences in MCG diversity between these treatments, also indicating that some members of MCG-4 and MCG-8 are tolerant of initially oxic conditions. The methods outlined here will be useful for further investigation of MCG archaea and comparison of substrates and cultivation conditions that influence their growth in vitro. PMID:23934495

  6. Thermogladius shockii gen. nov., sp. nov., a hyperthermophilic crenarchaeote from Yellowstone National Park, USA.

    PubMed

    Osburn, Magdalena R; Amend, Jan P

    2011-01-01

    A hyperthermophilic heterotrophic archaeon (strain WB1) was isolated from a thermal pool in the Washburn hot spring group of Yellowstone National Park, USA. WB1 is a coccus, 0.6-1.2 μm in diameter, with a tetragonal S-layer, vacuoles, and occasional stalk-like protrusions. Growth is optimal at 84°C (range 64-93°C), pH 5-6 (range 3.5-8.5), and <1 g/l NaCl (range 0-4.6 g/l NaCl). Tests of metabolic properties show the isolate to be a strict anaerobe that ferments complex organic substrates. Phylogenetic analysis of the 16S rRNA gene sequence places WB1 in a clade of previously uncultured Desulfurococcaceae and shows it to have ≤ 96% 16S rRNA sequence identity to Desulfurococcus mobilis, Staphylothermus marinus, Staphylothermus hellenicus, and Sulfophobococcus zilligii. The 16S rRNA gene contains a large insertion similar to homing endonuclease introns reported in Thermoproteus and Pyrobaculum species. Growth is unaffected by the presence of S(0) or SO(4)(2-), thereby differentiating the isolate from its closest relatives. Based on phylogenetic and physiological differences, it is proposed that isolate WB1 represents the type strain of a novel genus and species within the Desulfurococcaceae, Thermogladius shockii gen. nov., sp. nov. (RIKEN = JCM-16579, ATCC = BAA-1607, Genbank 16S rRNA gene = EU183120). PMID:20978744

  7. Diversity of Miscellaneous Crenarchaeotic Group archaea in freshwater karstic lakes and their segregation between planktonic and sediment habitats.

    PubMed

    Fillol, Mireia; Sànchez-Melsió, Alexandre; Gich, Frederic; Borrego, Carles M

    2015-04-01

    The Miscellaneous Crenarchaeotic Group (MCG) is an archaeal lineage whose members are widespread and abundant in marine sediments. MCG archaea have also been consistently found in stratified euxinic lakes. In this work, we have studied archaeal communities in three karstic lakes to reveal potential habitat segregation of MCG subgroups between planktonic and sediment compartments. In the studied lakes, archaeal assemblages were strikingly similar to those of the marine subsurface with predominance of uncultured Halobacteria in the plankton and Thermoplasmata and MCG in anoxic, organic-rich sediments. Multivariate analyses identified sulphide and dissolved organic carbon as predictor variables of archaeal community composition. Quantification of MCG using a newly designed qPCR primer pair that improves coverage for MCG subgroups prevalent in the studied lakes revealed conspicuous populations in both the plankton and the sediment. Subgroups MCG-5a and -5b appear as planktonic specialists thriving in euxinic bottom waters, while subgroup MCG-6 emerges as a generalist group able to cope with varying reducing conditions. Besides, comparison of DNA- and cDNA-based pyrotag libraries revealed that rare subgroups in DNA libraries, i.e. MCG-15, were prevalent in cDNA-based datasets, suggesting that euxinic, organic-rich sediments of karstic lakes provide optimal niches for the activity of some specialized MCG subgroups. PMID:25764468

  8. Fermentation process

    SciTech Connect

    Lutzen, N.W.

    1982-02-23

    Fermentation process consists essentially of fermenting a 10-45% w/w aqueous slurry of granular starch for the production of ethanol with an ethanol-producing microorganism in the presence of alpha-amylase and glucoamylase, the conduct of said fermentation being characterized by low levels of dextrin and fermentable sugars in solution in the fermentation broth throughout the fermentation, and thereafter recovering enzymes from the fermentation broth for use anew in fermentation of granular starch.

  9. How neutrophils kill fungi.

    PubMed

    Gazendam, Roel P; van de Geer, Annemarie; Roos, Dirk; van den Berg, Timo K; Kuijpers, Taco W

    2016-09-01

    Neutrophils play a critical role in the prevention of invasive fungal infections. Whereas mouse studies have demonstrated the role of various neutrophil pathogen recognition receptors (PRRs), signal transduction pathways, and cytotoxicity in the murine antifungal immune response, much less is known about the killing of fungi by human neutrophils. Recently, novel primary immunodeficiencies have been identified in patients with a susceptibility to fungal infections. These human 'knock-out' neutrophils expand our knowledge to understand the role of PRRs and signaling in human fungal killing. From the studies with these patients it is becoming clear that neutrophils employ fundamentally distinct mechanisms to kill Candida albicans or Aspergillus fumigatus. PMID:27558342

  10. Neutrophil's weapons in atherosclerosis.

    PubMed

    Chistiakov, Dimitry A; Bobryshev, Yuri V; Orekhov, Alexander N

    2015-12-01

    Neutrophils are important components of immunity associated with inflammatory responses against a broad spectrum of pathogens. These cells could be rapidly activated by proinflammatory stimuli and migrate to the inflamed and infected sites where they release a variety of cytotoxic molecules with antimicrobial activity. Neutrophil antibacterial factors include extracellular proteases, redox enzymes, antimicrobial peptides, and small bioactive molecules. In resting neutrophils, these factors are stored in granules and released upon activation during degranulation. These factors could be also secreted in a neutrophil-derived microparticle-dependent fashion. Neutrophils exhibit a unique property to produce neutrophil extracellular traps (NETs) composed of decondensed chromatin and granular proteins to catch and kill bacteria. Neutrophil-released factors are efficient in inactivation and elimination of pathogens through oxidation-dependent or independent damage of bacterial cells, inactivation and neutralization of virulence factors and other mechanisms. However, in chronic atherosclerosis-associated inflammation, protective function of neutrophils could be impaired and misdirected against own cells. This could lead to deleterious effects and progressive vascular injury. In atherogenesis, a pathogenic role of neutrophils could be especially seen in early stages associated with endothelial dysfunction and induction of vascular inflammation and in late atherosclerosis associated with plaque rupture and atherothrombosis. Assuming a prominent impact of neutrophils in cardiovascular pathology, developing therapeutic strategies targeting neutrophil-specific antigens could have a promising clinical potential. PMID:26551083

  11. ISOLATION OF MOUSE NEUTROPHILS

    PubMed Central

    Swamydas, Muthulekha; Luo, Yi; Dorf, Martin E.; Lionakis, Michail S.

    2015-01-01

    Neutrophils represent the first line of defense against bacterial and fungal pathogens. Indeed, patients with inherited and acquired qualitative and quantitative neutrophil defects are at high risk for developing bacterial and fungal infections and suffering adverse outcomes from these infections. Therefore, research aiming at defining the molecular factors that modulate neutrophil effector function under homeostatic conditions and during infection is essential for devising strategies to augment neutrophil function and improve the outcome of infected individuals. This unit describes a reproducible density gradient centrifugation-based protocol that can be applied in any laboratory to harvest large numbers of highly enriched and highly viable neutrophils from the bone marrow of mice both at the steady state and following infection with Candida albicans as described in UNIT 19.6. In another protocol, we also present a method that combines gentle enzymatic tissue digestion with a positive immunomagnetic selection technique or Fluorescence-activated cell sorting (FACS) to harvest highly pure and highly viable preparations of neutrophils directly from mouse tissues such as the kidney, the liver or the spleen. Finally, methods for isolating neutrophils from mouse peritoneal fluid and peripheral blood are included. Mouse neutrophils isolated by these protocols can be used for examining several aspects of cellular function ex vivo including pathogen binding, phagocytosis and killing, neutrophil chemotaxis, oxidative burst, degranulation and cytokine production, and for performing neutrophil adoptive transfer experiments. PMID:26237011

  12. Dimethylfumarate Impairs Neutrophil Functions.

    PubMed

    Müller, Susen; Behnen, Martina; Bieber, Katja; Möller, Sonja; Hellberg, Lars; Witte, Mareike; Hänsel, Martin; Zillikens, Detlef; Solbach, Werner; Laskay, Tamás; Ludwig, Ralf J

    2016-01-01

    Host defense against pathogens relies on neutrophil activation. Inadequate neutrophil activation is often associated with chronic inflammatory diseases. Neutrophils also constitute a significant portion of infiltrating cells in chronic inflammatory diseases, for example, psoriasis and multiple sclerosis. Fumarates improve the latter diseases, which so far has been attributed to the effects on lymphocytes and dendritic cells. Here, we focused on the effects of dimethylfumarate (DMF) on neutrophils. In vitro, DMF inhibited neutrophil activation, including changes in surface marker expression, reactive oxygen species production, formation of neutrophil extracellular traps, and migration. Phagocytic ability and autoantibody-induced, neutrophil-dependent tissue injury ex vivo was also impaired by DMF. Regarding the mode of action, DMF modulates-in a stimulus-dependent manner-neutrophil activation using the phosphoinositide 3-kinase/Akt-p38 mitogen-activated protein kinase and extracellular signal-regulated kinase 1/2 pathways. For in vivo validation, mouse models of epidermolysis bullosa acquisita, an organ-specific autoimmune disease caused by autoantibodies to type VII collagen, were employed. In the presence of DMF, blistering induced by injection of anti-type VII collagen antibodies into mice was significantly impaired. DMF treatment of mice with clinically already-manifested epidermolysis bullosa acquisita led to disease improvement. Collectively, we demonstrate a profound inhibitory activity of DMF on neutrophil functions. These findings encourage wider use of DMF in patients with neutrophil-mediated diseases. PMID:26763431

  13. Neutrophilic dermatoses in children.

    PubMed

    Berk, David R; Bayliss, Susan J

    2008-01-01

    The neutrophilic dermatoses are rare disorders, especially in children, and are characterized by neutrophilic infiltrates in the skin and less commonly in extracutaneous tissue. The neutrophilic dermatoses share similar clinical appearances and associated conditions, including inflammatory bowel disease, malignancies, and medications. Overlap forms of disease demonstrating features of multiple neutrophilic dermatoses may be seen. The manuscript attempts to provide an up-to-date review of (i) classical neutrophilic dermatoses, focusing on distinctive features in children and (ii) neutrophilic dermatoses which may largely be pediatric or genodermatosis-associated (Majeed, SAPHO [synovitis, severe acne, sterile palmoplantar pustulosis, hyperostosis, and osteitis] syndrome, PAPA (pyogenic sterile arthritis, pyoderma gangrenosum, and acne), PFAPA (periodic fever with aphthous stomatitis, pharyngitis, and cervical adenopathy), and other periodic fever syndromes, and congenital erosive and vesicular dermatosis healing with reticulated supple scarring). PMID:18950391

  14. Immunoreceptors on neutrophils.

    PubMed

    van Rees, Dieke J; Szilagyi, Katka; Kuijpers, Taco W; Matlung, Hanke L; van den Berg, Timo K

    2016-04-01

    Neutrophils play a critical role in the host defense against infection, and they are able to perform a variety of effector mechanisms for this purpose. However, there are also a number of pathological conditions, including autoimmunity and cancer, in which the activities of neutrophils can be harmful to the host. Thus the activities of neutrophils need to be tightly controlled. As in the case of other immune cells, many of the neutrophil effector functions are regulated by a series of immunoreceptors on the plasma membrane. Here, we review what is currently known about the functions of the various individual immunoreceptors and their signaling in neutrophils. While these immunoreceptors allow for the recognition of a diverse range of extracellular ligands, such as cell surface structures (like proteins, glycans and lipids) and extracellular matrix components, they commonly signal via conserved ITAM or ITIM motifs and their associated downstream pathways that depend on the phosphorylation of tyrosine residues in proteins and/or inositol lipids. This allows for a balanced homeostatic regulation of neutrophil effector functions. Given the number of available immunoreceptors and their fundamental importance for neutrophil behavior, it is perhaps not surprising that pathogens have evolved means to evade immune responses through some of these pathways. Inversely, some of these receptors evolved to specifically recognize these pathogens. Finally, some interactions mediated by immunoreceptors in neutrophils have been identified as promising targets for therapeutic intervention. PMID:26976825

  15. Neutrophils in cancer.

    PubMed

    Treffers, Louise W; Hiemstra, Ida H; Kuijpers, Taco W; van den Berg, Timo K; Matlung, Hanke L

    2016-09-01

    Neutrophils play an important role in cancer. This does not only relate to the well-established prognostic value of the presence of neutrophils, either in the blood or in tumor tissue, in the context of cancer progression or for the monitoring of therapy, but also to their active role in the progression of cancer. In the current review, we describe what is known in general about the role of neutrophils in cancer. What is emerging is a complex, rather heterogeneous picture with both pro- and anti-tumorigenic roles, which apparently differs with cancer type and disease stage. Furthermore, we will discuss the well-known role of neutrophils as myeloid-derived suppressor cells (MDSC), and also on the role of neutrophils as important effector cells during antibody therapy in cancer. It is clear that neutrophils contribute substantially to cancer progression in multiple ways, and this includes both direct effects on the cancer cells and indirect effect on the tumor microenvironment. While in many cases neutrophils have been shown to promote tumor progression, for instance by acting as MDSC, there are also protective effects, particularly when antibody immunotherapy is performed. A better understanding of the role of neutrophils is likely to provide opportunities for immunomodulation and for improving the treatment of cancer patients. PMID:27558343

  16. Myeloperoxidase Stimulates Neutrophil Degranulation.

    PubMed

    Grigorieva, D V; Gorudko, I V; Sokolov, A V; Kostevich, V A; Vasilyev, V B; Cherenkevich, S N; Panasenko, O M

    2016-08-01

    Myeloperoxidase, heme enzyme of azurophilic granules in neutrophils, is released into the extracellular space in the inflammation foci. In neutrophils, it stimulates a dose-dependent release of lactoferrin (a protein of specific granules), lysozyme (a protein of specific and azurophilic granules), and elastase (a protein of azurophilic granules). 4-Aminobenzoic acid hydrazide, a potent inhibitor of peroxidase activity of myeloperoxidase, produced no effect on neutrophil degranulation. Using signal transduction inhibitors (genistein, methoxyverapamil, wortmannin, and NiCl2), we demonstrated that myeloperoxidase-induced degranulation of neutrophils resulted from enzyme interaction with the plasma membrane and depends on activation of tyrosine kinases, phosphatidylinositol 3-kinases (PI3K), and calcium signaling. Myeloperoxidase modified by oxidative/halogenation stress (chlorinated and monomeric forms of the enzyme) lost the potency to activate neutrophil degranulation. PMID:27597056

  17. [Neutrophilic functional heterogeneity].

    PubMed

    2006-02-01

    Blood neutrophilic functional heterogeneity is under discussion. The neutrophils of one subpopulation, namely killer neutrophils (Nk), potential phagocytes, constitute a marginal pool and a part of the circulating pool, intensively produce active oxygen forms (AOF) and they are adherent to the substrate. The neutrophils of another subpopulation, cager neutrophils (Nc), seem to perform a transport function of delivering foreign particles to the competent organs, to form about half of the circulating pool, to produce APC to a lesser extent, exclusively for self-defense and, probably, in usual conditions, to fail to interact with substrate. Analysis of the experimental findings suggests that the phylogenetic age of Nk is older than that of Nc and Nk has predominantly a tendency to spontaneous apoptosis under physiological conditions. PMID:16610631

  18. Neutrophil kinetics in man.

    PubMed Central

    Dancey, J T; Deubelbeiss, K A; Harker, L A; Finch, C A

    1976-01-01

    A method has been developed for measuring neutrophil cellularity in normal human bone marrow, in which the neutrophil-erythroid ratio was determined from marrow sections and marrow normoblasts were estimated by the erythron iron turnover. Neutrophil maturational categories, defined by morphologic criteria, were supported by autoradiographs of marrow flashed-labeled with 3H-thymidine. Correction for multiple counting error was empirically derived by counting serial sections through cells of each maturational category. The normal neutrophil-erythroid ratio in 13 normal human subjects was 1.5 +/- 0.07. The mean number of normoblasts in the same subjects was estimated to be 5.07 +/- 0.84 X 10(9) cells/kg. Total marrow neutrophils (X 10(9) cells/kg) were 7.70 +/- 1.20, the postmitotic pool (metamyelocytes, bands, and segmented forms) was 5.59 +/- 0.90 and the mitotic pool (promyelocytes + myelocytes) was 2.11 +/- 0.36. Marrow neutrophil ("total") production has been determined from the number of neutrophils comprising the postmitotic marrow pool divided by their transit time Transit time was derived from the appearance in circulating neutrophils of injected 3H-thymidine. The postmitotic pool comprised 5.59 +/- 0.90 X 10(9) neutrophils/kg, and the transit time was 6.60 +/- 0.03 days. From these data marrow neutrophil production was calculated to be 0.85 X 10(9) cells/kg per day. Effective production, measured as the turnover of circulating neutrophils labeled with 3H-thymidine, was 0.87 +/- 0.13 X 10(9) cells/kg per day. This value correlated well with the calculation of marrow neutrophil production. A larger turnover of 1.62 +/- 0.46 X 10(9) cells/kg per day was obtained when diisopropylfluorophosphate-32P was used to label circulating neutrophils. Studies using isologous cells doubly labeled with 3H-thymidine and diisopropylfluorophosphate-32P demonstrated a lower recovery and shorter t1/2 of the 32P label. Images PMID:956397

  19. The lymph node neutrophil.

    PubMed

    Hampton, Henry R; Chtanova, Tatyana

    2016-04-01

    Secondary lymphoid organs provide a specialized microenvironment tailored to foster communication between cells of the innate and adaptive immune systems. These interactions allow immune cells to coordinate multilayered defense against pathogens. Until recently dendritic cells and macrophages were thought to comprise the main innate immune cell subsets responsible for delivering signals that drive the adaptive immune response, while the function of neutrophils was largely confined to the innate immune system. However, the discovery of neutrophils in lymph nodes has raised the question of whether neutrophils might play a more extensive role not only in innate immunity per se, but also in coordinating the interactions between innate and adaptive immune responses. In this review we discuss the mechanisms and consequences of neutrophil recruitment to lymph nodes and how this recruitment influences subsequent immune responses both in situ and at distant sites. PMID:27025975

  20. Neutrophils in cystic fibrosis.

    PubMed

    Laval, Julie; Ralhan, Anjali; Hartl, Dominik

    2016-06-01

    Cystic fibrosis (CF) lung disease is characterized by chronic infection and inflammation. Among inflammatory cells, neutrophils represent the major cell population accumulating in the airways of CF patients. While neutrophils provide the first defensive cellular shield against bacterial and fungal pathogens, in chronic disease conditions such as CF these short-lived immune cells release their toxic granule contents that cause tissue remodeling and irreversible structural damage to the host. A variety of human and murine studies have analyzed neutrophils and their products in the context of CF, yet their precise functional role and therapeutic potential remain controversial and incompletely understood. Here, we summarize the current evidence in this field to shed light on the complex and multi-faceted role of neutrophils in CF lung disease. PMID:26854289

  1. Neutrophil biology: an update

    PubMed Central

    Kobayashi, Yoshiro

    2015-01-01

    Neutrophil extracellular traps (NETs) are involved in bacterial killing as well as autoimmunity, because NETs contain proteases, bactericidal peptides, DNA and ribonucleoprotein. NETs are formed via a novel type of cell death called NETosis. NETosis is distinct from apoptosis, but it resembles necrosis in that both membranes are not intact so that they allow intracellular proteins to leak outside of the cells. Removal of NETs and neutrophils undergoing NETosis by phagocytes and its subsequent response are not completely clarified, as compared with the response after removal of either apoptotic or necrotic neutrophils by phagocytes. How neutrophil density in peripheral blood is kept within a certain range is important for health and disease. Although the studies on severe congenital neutropenia and benign ethnic neutropenia have provided unbiased views on it, the studies are rather limited to human neutropenia, and mice with a mutation of mouse counterpart gene often fail to exhibit neutropenia. Degranulation plays a critical role in bactericidal action. The recent studies revealed that it is also involved in immunomodulation, pain control and estrous cycle control. N1 and N2 are representative of neutrophil subpopulations. The dichotomy holds true in patients or mice with severe trauma or cancer, providing the basis of differential roles of neutrophils in diseases. PMID:26600743

  2. Fermented Vegetables

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The wide variety of fermented foods of the world can be classified by the materials obtained from the fermentation, such as alcohol (beer, wine), organic acid such as lactic acid and acetic acid (vegetables, dairy), carbon dioxide (bread), and amino acids or peptides from protein (fish fermentations...

  3. Neutrophil swarming: an essential process of the neutrophil tissue response.

    PubMed

    Kienle, Korbinian; Lämmermann, Tim

    2016-09-01

    Neutrophil infiltration into inflamed and infected tissues is a fundamental process of the innate immune response. While neutrophil interactions with the blood vessel wall have been intensely studied over the last decades, neutrophil dynamics beyond the vasculature have for a long time remained poorly investigated. Recent intravital microscopy studies of neutrophil populations directly at the site of tissue damage or microbial invasion have changed our perspective on neutrophil responses within tissues. Swarm-like migration patterns of neutrophils, referred to as 'neutrophil swarming', have been detected in diverse tissues under conditions of sterile inflammation and infection with various pathogens, including bacteria, fungi, and parasites. Current work has begun to unravel the molecular pathways choreographing the sequential phases of highly coordinated chemotaxis followed by neutrophil accumulation and the formation of substantial neutrophil clusters. It is now clear that intercellular communication among neutrophils amplifies their recruitment in a feed-forward manner, which provides them with a level of self-organization during neutrophil swarming. This review will summarize recent developments and current concepts on neutrophil swarming, an important process of the neutrophil tissue response with a critical role in maintaining the balance between host protection and inflammation-driven tissue destruction. PMID:27558329

  4. Platelets enhance neutrophil transendothelial migration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Platelets are increasingly recognized as important mediators of inflammation in addition to thrombosis. While platelets have been shown to promote neutrophil (PMN) adhesion to endothelium in various inflammatory models, it is unclear whether platelets enhance neutrophil transmigration across inflame...

  5. The Multifaceted Functions of Neutrophils

    PubMed Central

    Mayadas, Tanya N.; Cullere, Xavier; Lowell, Clifford A.

    2014-01-01

    Neutrophils and neutrophil-like cells are the major pathogen-fighting immune cells in organisms ranging from slime molds to mammals. Central to their function is their ability to be recruited to sites of infection, to recognize and phagocytose microbes, and then to kill pathogens through a combination of cytotoxic mechanisms. These include the production of reactive oxygen species, the release of antimicrobial peptides, and the recently discovered expulsion of their nuclear contents to form neutrophil extracellular traps. Here we discuss these primordial neutrophil functions, which also play key roles in tissue injury, by providing details of neutrophil cytotoxic functions and congenital disorders of neutrophils. In addition, we present more recent evidence that interactions between neutrophils and adaptive immune cells establish a feed-forward mechanism that amplifies pathologic inflammation. These newly appreciated contributions of neutrophils are described in the setting of several inflammatory and autoimmune diseases. PMID:24050624

  6. Cacao Fermentation

    PubMed Central

    Martelli, H. L.; Dittmar, H. F. K.

    1961-01-01

    Cacao beans must be subjected to fermentation before they are used in making chocolate, and their commercial value is related to a proper procedure. Saccharomyces rosei, Hansenula anomala, Pichia fermentans, Pichia membranaefaciens, and Trichosporon cutaneum were found in fermenting cacao beans. All species isolated during the investigation grew on cacao pulp, but only S. rosei, H. anomala, and P. fermentans exhibited fermenting capacity on the sugars of cacao pulp. Species of the genus Saccharomyces were identified as the agents responsible for the alcoholic phase of the cacao fermentation. PMID:13767275

  7. [Leukemic neutrophilic dermatosis].

    PubMed

    Török, L; Kirschner, A; Gurzó, M; Krenács, L

    1999-03-28

    A case of a 67 year-old female patient with acute myeloid leukemia is presented. As the first manifestation of the disease, the patient had symptoms of Sweet's syndrome, later signs of gangrenous pyoderma have developed. This transient form is termed as a "leukemic neutrophilic dermatosis". The authors focus on the important diagnostic and prognostic value of this entity. PMID:10349319

  8. Fermented Vegetables

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter is organized into several sections. The first has information on the history of vegetable fermentation research in the US, dating back to the late 1880s. A overview of commercial cucumber and sauerkraut fermentation practices follows, focusing on the US market, although there is some me...

  9. Cucumber fermentation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Humans have consumed fermented cucumber products since before the dawn of civilization. Although cucumber fermentation remains largely a traditional process, it has proven to be a consistently safe process by which raw cucumbers are transformed into high quality pickles that have a long shelf-life ...

  10. Fermentation industry

    SciTech Connect

    Irvine, R.L.

    1980-06-01

    This article reviews current literature on the fermentation industry. The reuse, recycling and recovery of by-products previously discarded as waste are mentioned, including a Swedish brewery that hopes to reduce discharge of pollutants and the production of single cell protein from a variety of fermentation wastes. The treatment of wastes to produce food substitutes and fertilizers is mentioned together with treatment methods used in distilleries, wineries and in the pharmaceutical industry. (87 References)

  11. Fermentation Industry.

    ERIC Educational Resources Information Center

    Grady, C. P. L., Jr.; Grady, J. K.

    1978-01-01

    Presents a literature review of wastes from the fermentation industry, covering publications of 1976-77. This review focuses on: (1) alcoholic beverage production; (2) pharmaceuticals and biochemicals production; and (3) biomass production. A list of 62 references is also presented. (HM)

  12. Ruminal Fermentation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ruminal fermentation is an exergonic process that converts feedstuffs into short chain volatile fatty acids (VFA), CO2, CH4, NH3, and heat. Some of the free energy is trapped as ATP and this energy is used to drive the growth of anaerobic ruminal microorganisms. The ruminant animals absorb VFA and...

  13. Neutrophil Functions in Periodontal Homeostasis.

    PubMed

    Cortés-Vieyra, Ricarda; Rosales, Carlos; Uribe-Querol, Eileen

    2016-01-01

    Oral tissues are constantly exposed to damage from the mechanical effort of eating and to microorganisms, mostly bacteria. In healthy gingiva tissue remodeling and a balance between bacteria and innate immune cells are maintained. However, excess of bacteria biofilm (plaque) creates an inflammation state that recruits more immune cells, mainly neutrophils to the gingiva. Neutrophils create a barrier for bacteria to reach inside tissues. When neutrophils are insufficient, bacteria thrive causing more inflammation that has been associated with systemic effects on other conditions such as atherosclerosis, diabetes, and cancer. But paradoxically when neutrophils persist, they can also promote a chronic inflammatory state that leads to periodontitis, a condition that leads to damage of the bone-supporting tissues. In periodontitis, bone loss is a serious complication. How a neutrophil balance is needed for maintaining healthy oral tissues is the focus of this review. We present recent evidence on how alterations in neutrophil number and function can lead to inflammatory bone loss, and how some oral bacteria signal neutrophils to block their antimicrobial functions and promote an inflammatory state. Also, based on this new information, novel therapeutic approaches are discussed. PMID:27019855

  14. Neutrophil Functions in Periodontal Homeostasis

    PubMed Central

    Cortés-Vieyra, Ricarda; Rosales, Carlos

    2016-01-01

    Oral tissues are constantly exposed to damage from the mechanical effort of eating and to microorganisms, mostly bacteria. In healthy gingiva tissue remodeling and a balance between bacteria and innate immune cells are maintained. However, excess of bacteria biofilm (plaque) creates an inflammation state that recruits more immune cells, mainly neutrophils to the gingiva. Neutrophils create a barrier for bacteria to reach inside tissues. When neutrophils are insufficient, bacteria thrive causing more inflammation that has been associated with systemic effects on other conditions such as atherosclerosis, diabetes, and cancer. But paradoxically when neutrophils persist, they can also promote a chronic inflammatory state that leads to periodontitis, a condition that leads to damage of the bone-supporting tissues. In periodontitis, bone loss is a serious complication. How a neutrophil balance is needed for maintaining healthy oral tissues is the focus of this review. We present recent evidence on how alterations in neutrophil number and function can lead to inflammatory bone loss, and how some oral bacteria signal neutrophils to block their antimicrobial functions and promote an inflammatory state. Also, based on this new information, novel therapeutic approaches are discussed. PMID:27019855

  15. Feedback Amplification of Neutrophil Function.

    PubMed

    Németh, Tamás; Mócsai, Attila

    2016-06-01

    As the first line of innate immune defense, neutrophils need to mount a rapid and robust antimicrobial response. Recent studies implicate various positive feedback amplification processes in achieving that goal. Feedback amplification ensures effective migration of neutrophils in shallow chemotactic gradients, multiple waves of neutrophil recruitment to the site of inflammation, and the augmentation of various effector functions of the cells. We review here such positive feedback loops including intracellular and autocrine processes, paracrine effects mediated by lipid (LTB4), chemokine, and cytokine mediators, and bidirectional interactions with the complement system and with other immune and non-immune cells. These amplification mechanisms are not only involved in antimicrobial immunity but also contribute to neutrophil-mediated tissue damage under pathological conditions. PMID:27157638

  16. Intracellular signalling during neutrophil recruitment.

    PubMed

    Mócsai, Attila; Walzog, Barbara; Lowell, Clifford A

    2015-08-01

    Recruitment of leucocytes such as neutrophils to the extravascular space is a critical step of the inflammation process and plays a major role in the development of various diseases including several cardiovascular diseases. Neutrophils themselves play a very active role in that process by sensing their environment and responding to the extracellular cues by adhesion and de-adhesion, cellular shape changes, chemotactic migration, and other effector functions of cell activation. Those responses are co-ordinated by a number of cell surface receptors and their complex intracellular signal transduction pathways. Here, we review neutrophil signal transduction processes critical for recruitment to the site of inflammation. The two key requirements for neutrophil recruitment are the establishment of appropriate chemoattractant gradients and the intrinsic ability of the cells to migrate along those gradients. We will first discuss signalling steps required for sensing extracellular chemoattractants such as chemokines and lipid mediators and the processes (e.g. PI3-kinase pathways) leading to the translation of extracellular chemoattractant gradients to polarized cellular responses. We will then discuss signal transduction by leucocyte adhesion receptors (e.g. tyrosine kinase pathways) which are critical for adhesion to, and migration through the vessel wall. Finally, additional neutrophil signalling pathways with an indirect effect on the neutrophil recruitment process, e.g. through modulation of the inflammatory environment, will be discussed. Mechanistic understanding of these pathways provide better understanding of the inflammation process and may point to novel therapeutic strategies for controlling excessive inflammation during infection or tissue damage. PMID:25998986

  17. Neutrophil Elastase Inhibitors

    PubMed Central

    Groutas, William C.; Dou, Dengfeng; Alliston, Kevin R.

    2011-01-01

    Introduction Chronic obstructive pulmonary disease (COPD) constitutes a worldwide health problem. There is currently an urgent and unmet need for the development of small molecule therapeutics capable of blocking and/or reversing the progression of the disorder. Recent studies have greatly illuminated our understanding of the multiple pathogenic processes associated with COPD. Of paramount importance is the key role played by proteases, oxidative stress, apoptosis, and inflammation. Insights gained from these studies have made possible the exploration of new therapeutic approaches. Areas covered An overview of major developments in COPD research with emphasis on low molecular weight neutrophil elastase inhibitors is described in this review. Expert opinion Great strides have been made toward our understanding of the biochemical and cellular events associated with COPD. However, our knowledge regarding the inter-relationships among the multiple pathogenic mechanisms and their mediators involved is till limited. The problem is further compounded by the unavailability of suitable validated biomarkers for assessing the efficacy of potential therapeutic interventions. The complexity of COPD suggests that effective therapeutic interventions may require the administration of more than one agent such as, for instance, an HNE or MMP-12 inhibitor with an anti-inflammatory agent such as a phosphodiesterase-4 inhibitor, or a dual function agent capable of disrupting the cycle of proteolysis, apoptosis, inflammation and oxidative stress PMID:21235378

  18. AUTOINFLAMMATORY PUSTULAR NEUTROPHILIC DISEASES

    PubMed Central

    Naik, Haley B.; Cowen, Edward W.

    2013-01-01

    SYNOPSIS The inflammatory pustular dermatoses constitute a spectrum of non-infectious conditions ranging from localized involvement to generalized disease with associated acute systemic inflammation and multi-organ involvement. Despite the variability in extent and severity of cutaneous presentation, each of these diseases is characterized by non-infectious neutrophilic intra-epidermal microabscesses. Many share systemic findings including fever, elevated inflammatory markers, inflammatory bowel disease and/or osteoarticular involvement, suggesting potential common pathogenic links (Figure 1). The recent discoveries of several genes responsible for heritable pustular diseases have revealed a distinct link between pustular skin disease and regulation of innate immunity. These genetic advances have led to a deeper exploration of common pathways in pustular skin disease and offer the potential for a new era of biologic therapy which targets these shared pathways. This chapter provides a new categorization of inflammatory pustular dermatoses in the context of recent genetic and biologic insights. We will discuss recently-described monogenic diseases with pustular phenotypes, including deficiency of IL-1 receptor antagonist (DIRA), deficiency of the IL-36 receptor antagonist (DITRA), CARD14-associated pustular psoriasis (CAMPS), and pyogenic arthritis, pyoderma gangrenosum, acne (PAPA). We will then discuss how these new genetic advancements may inform how we view previously described pustular diseases, including pustular psoriasis and its clinical variants, with a focus on historical classification by clinical phenotype. PMID:23827244

  19. Neutrophil ageing is regulated by the microbiome.

    PubMed

    Zhang, Dachuan; Chen, Grace; Manwani, Deepa; Mortha, Arthur; Xu, Chunliang; Faith, Jeremiah J; Burk, Robert D; Kunisaki, Yuya; Jang, Jung-Eun; Scheiermann, Christoph; Merad, Miriam; Frenette, Paul S

    2015-09-24

    Blood polymorphonuclear neutrophils provide immune protection against pathogens, but may also promote tissue injury in inflammatory diseases. Although neutrophils are generally considered to be a relatively homogeneous population, evidence for heterogeneity is emerging. Under steady-state conditions, neutrophil heterogeneity may arise from ageing and replenishment by newly released neutrophils from the bone marrow. Aged neutrophils upregulate CXCR4, a receptor allowing their clearance in the bone marrow, with feedback inhibition of neutrophil production via the IL-17/G-CSF axis, and rhythmic modulation of the haematopoietic stem-cell niche. The aged subset also expresses low levels of L-selectin. Previous studies have suggested that in vitro-aged neutrophils exhibit impaired migration and reduced pro-inflammatory properties. Here, using in vivo ageing analyses in mice, we show that neutrophil pro-inflammatory activity correlates positively with their ageing whilst in circulation. Aged neutrophils represent an overly active subset exhibiting enhanced αMβ2 integrin activation and neutrophil extracellular trap formation under inflammatory conditions. Neutrophil ageing is driven by the microbiota via Toll-like receptor and myeloid differentiation factor 88-mediated signalling pathways. Depletion of the microbiota significantly reduces the number of circulating aged neutrophils and dramatically improves the pathogenesis and inflammation-related organ damage in models of sickle-cell disease or endotoxin-induced septic shock. These results identify a role for the microbiota in regulating a disease-promoting neutrophil subset. PMID:26374999

  20. Neutrophils: game changers in glomerulonephritis?

    PubMed Central

    Mayadas, Tanya N.; Rosetti, Florencia; Ernandez, Thomas; Sethi, Sanjeev

    2010-01-01

    Glomerulonephritides represent a diverse array of diseases that have in common immune cell-mediated effector mechanisms that cause organ damage. The contribution of neutrophils to the pathogenesis of proliferative glomerulonephritis (GN) is not well recognized. Most equate neutrophils with killing pathogens and causing collateral tissue damage during acute inflammation. However, these phagocytes are endowed with additional characteristics that have been traditionally reserved for cells of the adaptive immune system. They communicate with other cells, exhibit plasticity in their responses and have the potential to coordinate and inform the subsequent immune response, thus countering the notion that they arrive, destroy and then disappear. Therefore, neutrophils, which are the first to arrive at a site of inflammation, are potential game changers in GN. PMID:20667782

  1. APPLICATION OF PROTEOMICS TO NEUTROPHIL BIOLOGY

    PubMed Central

    Luerman, Gregory C.; Uriarte, Silvia M.; Rane, Madhavi J.; McLeish, Kenneth R.

    2009-01-01

    Polymorphonuclear leukocytes or neutrophils are a primary effector cell of the innate immune system and contribute to the development of adaptive immunity. Neutrophils participate in both the initiation and resolution of inflammatory responses through a series of highly coordinated molecular and phenotypic changes. To accomplish these changes, neutrophils express numerous receptors and use multiple overlapping and redundant signal transduction pathways. Dysregulation of the activation or resolution pathways plays a role in a number of human diseases. A comprehensive understanding of the regulation of neutrophil responses can be provided by high throughput proteomic technologies and sophisticated computational analysis. The first steps in the application of proteomics to understanding neutrophil biology have been taken. Here we review the application of expression, structural, and functional proteomic studies to neutrophils. Although defining the complex molecular events associated with neutrophil activation is in the early stages, the data generated to date suggest that proteomic technologies will dramatically enhance our understanding of neutrophil biology. PMID:19580889

  2. Role of neutrophils in systemic autoimmune diseases

    PubMed Central

    2013-01-01

    Neutrophils have emerged as important regulators of innate and adaptive immune responses. Recent evidence indicates that neutrophils display marked abnormalities in phenotype and function in various systemic autoimmune diseases, and may play a central role in initiation and perpetuation of aberrant immune responses and organ damage in these conditions. This review discusses the putative roles that neutrophils and aberrant neutrophil cell death play in the pathogenesis of various systemic autoimmune diseases, including systemic lupus erythematosus, small vessel vasculitis and rheumatoid arthritis. PMID:24286137

  3. Neutral serine proteases of neutrophils.

    PubMed

    Kettritz, Ralph

    2016-09-01

    Neutrophil serine proteases (NSPs) exercise tissue-degrading and microbial-killing effects. The spectrum of NSP-mediated functions grows continuously, not least because of methodological progress. Sensitive and specific FRET substrates were developed to study the proteolytic activity of each NSP member. Advanced biochemical methods are beginning to characterize common and specific NSP substrates. The resulting novel information indicates that NSPs contribute not only to genuine inflammatory neutrophil functions but also to autoimmunity, metabolic conditions, and cancer. Tight regulatory mechanisms control the proteolytic potential of NSPs. However, not all NSP functions depend on their enzymatic activity. Proteinase-3 (PR3) is somewhat unique among the NSPs for PR3 functions as an autoantigen. Patients with small-vessel vasculitis develop autoantibodies to PR3 that bind their target antigens on the neutrophil surface and trigger neutrophil activation. These activated cells subsequently contribute to vascular necrosis with life-threatening multiorgan failure. This article discusses various aspects of NSP biology and highlights translational aspects with strong clinical implications. PMID:27558338

  4. Neutrophils in cancer: neutral no more.

    PubMed

    Coffelt, Seth B; Wellenstein, Max D; de Visser, Karin E

    2016-07-01

    Neutrophils are indispensable antagonists of microbial infection and facilitators of wound healing. In the cancer setting, a newfound appreciation for neutrophils has come into view. The traditionally held belief that neutrophils are inert bystanders is being challenged by the recent literature. Emerging evidence indicates that tumours manipulate neutrophils, sometimes early in their differentiation process, to create diverse phenotypic and functional polarization states able to alter tumour behaviour. In this Review, we discuss the involvement of neutrophils in cancer initiation and progression, and their potential as clinical biomarkers and therapeutic targets. PMID:27282249

  5. Regulation of immune responses by neutrophils.

    PubMed

    Wang, Jing; Arase, Hisashi

    2014-06-01

    Neutrophils, the most abundant circulating cells in humans, are major pathogen-killing immune cells. For many years, these cells were considered to be simple killers at the "bottom" of immune responses. However, recent studies have revealed more sophisticated mechanisms associated with neutrophilic cytotoxic functions, and neutrophils have been shown to contribute to various infectious and inflammatory diseases. In this review, we discuss the key features of neutrophils during inflammatory responses, from their release from the bone marrow to their death in inflammatory loci. We also discuss the expanding roles of neutrophils that have been identified in the context of several inflammatory diseases. We further focus on the mechanisms that regulate neutrophil recruitment to inflamed tissues and neutrophil cytotoxic activities against both pathogens and host tissues. PMID:24850053

  6. Butyric acid stimulates bovine neutrophil functions and potentiates the effect of platelet activating factor.

    PubMed

    Carretta, M D; Hidalgo, A I; Burgos, J; Opazo, L; Castro, L; Hidalgo, M A; Figueroa, C D; Taubert, A; Hermosilla, C; Burgos, R A

    2016-08-01

    Increased short-chain fatty acid (SCFA) production is associated with subacute ruminal acidosis (SARA) and activation of inflammatory processes. In humans and rodents, SCFAs modulate inflammatory responses in the gut via free fatty acid receptor 2 (FFA2). In bovines, butyric acid is one of the most potent FFA2 agonists. Its expression in bovine neutrophils has recently been demonstrated, suggesting a role in innate immune response in cattle. This study aimed to evaluate if butyric acid modulates oxidative and non-oxidative functions or if it can potentiate other inflammatory mediators in bovine neutrophils. Our results showed that butyric acid can activate bovine neutrophils, inducing calcium (Ca(2+)) influx and mitogen-activated protein kinase (MAPK) phosphorylation, two second messengers involved in FFA2 activation. Ca(2+) influx induced by butyric acid was dependent on the extracellular and intracellular Ca(2+) source and phospholipase C (PLC) activation. Butyric acid alone had no significant effect on reactive oxygen species (ROS) production and chemotaxis; however, a priming effect on platelet-activating factor (PAF), a potent inflammatory mediator, was observed. Butyric acid increased CD63 expression and induced the release of neutrophil granule markers matrix metalloproteinase-9 (MMP-9) and lactoferrin. Finally, we observed that butyric acid induced neutrophil extracellular trap (NET) formation without affecting cellular viability. These findings suggest that butyric acid, a component of the ruminal fermentative process, can modulate the innate immune response of ruminants. PMID:27288853

  7. Neutrophil extracellular traps - the dark side of neutrophils.

    PubMed

    Sørensen, Ole E; Borregaard, Niels

    2016-05-01

    Neutrophil extracellular traps (NETs) were discovered as extracellular strands of decondensed DNA in complex with histones and granule proteins, which were expelled from dying neutrophils to ensnare and kill microbes. NETs are formed during infection in vivo by mechanisms different from those originally described in vitro. Citrullination of histones by peptidyl arginine deiminase 4 (PAD4) is central for NET formation in vivo. NETs may spur formation of autoantibodies and may also serve as scaffolds for thrombosis, thereby providing a link among infection, autoimmunity, and thrombosis. In this review, we present the mechanisms by which NETs are formed and discuss the physiological and pathophysiological consequences of NET formation. We conclude that NETs may be of more importance in autoimmunity and thrombosis than in innate immune defense. PMID:27135878

  8. Neutrophil ageing is regulated by the microbiome

    PubMed Central

    Zhang, Dachuan; Chen, Grace; Manwani, Deepa; Mortha, Arthur; Xu, Chunliang; Faith, Jeremiah J.; Burk, Robert D.; Kunisaki, Yuya; Jang, Jung-Eun; Scheiermann, Christoph; Merad, Miriam; Frenette, Paul S.

    2015-01-01

    Blood polymorphonuclear neutrophils provide immune protection against pathogens but also may promote tissue injury in inflammatory diseases1,2. Although neutrophils are generally considered as a relatively homogeneous population, evidence for heterogeneity is emerging3,4. Under steady-state conditions, neutrophil heterogeneity may arise from ageing and the replenishment by newly released neutrophils from the bone marrow5. Aged neutrophils up-regulate CXCR4, a receptor allowing their clearance in the bone marrow6,7, with feedback inhibition of neutrophil production via the IL17/G-CSF axis8, and rhythmic modulation of the haematopoietic stem cell niche5. The aged subset also expresses low levels of L-selectin (CD62L)5,9. Previous studies have suggested that in vitro-aged neutrophils exhibit impaired migration and reduced pro-inflammatory properties6,10. Here, we show using in vivo ageing analyses that the neutrophil pro-inflammatory activity correlates positively with their ageing in the circulation. Aged neutrophils represent an overly active subset exhibiting enhanced αMβ2 integrin (Mac-1) activation and neutrophil extracellular trap (NET) formation under inflammatory conditions. Neutrophil ageing is driven by the microbiota via Toll-like receptors (TLRs)- and myeloid differentiation factor 88 (Myd88)-mediated signalling pathways. Depletion of the microbiota significantly reduces the number of circulating aged neutrophils and dramatically improves the pathogenesis and inflammation-related organ damage in models of sickle cell disease or endotoxin-induced septic shock. These results thus identify an unprecedented role for the microbiota in regulating a disease-promoting neutrophil subset. PMID:26374999

  9. High solids fermentation reactor

    DOEpatents

    Wyman, Charles E.; Grohmann, Karel; Himmel, Michael E.; Richard, Christopher J.

    1993-03-02

    A fermentation reactor and method for fermentation of materials having greater than about 10% solids. The reactor includes a rotatable shaft along the central axis, the shaft including rods extending outwardly to mix the materials. The reactor and method are useful for anaerobic digestion of municipal solid wastes to produce methane, for production of commodity chemicals from organic materials, and for microbial fermentation processes.

  10. High solids fermentation reactor

    DOEpatents

    Wyman, Charles E.; Grohmann, Karel; Himmel, Michael E.; Richard, Christopher J.

    1993-01-01

    A fermentation reactor and method for fermentation of materials having greater than about 10% solids. The reactor includes a rotatable shaft along the central axis, the shaft including rods extending outwardly to mix the materials. The reactor and method are useful for anaerobic digestion of municipal solid wastes to produce methane, for production of commodity chemicals from organic materials, and for microbial fermentation processes.

  11. Alarmins Link Neutrophils and Dendritic Cells

    PubMed Central

    Yang, De; de la Rosa, Gonzalo; Tewary, Poonam; Oppenheim, Joost J.

    2009-01-01

    Neutrophils are the first major population of leukocyte to infiltrate infected or injured tissues and are crucial for initiating host innate defense and adaptive immunity. Although the contribution of neutrophils to innate immune defense is mediated predominantly by phagocytosis and killing of microorganisms, neutrophils also participate in the induction of adaptive immune responses. At sites of infection and/or injury, neutrophils release numerous mediators upon degranulation or death, among these are alarmins which have a characteristic dual capacity to mobilize and activate antigen-presenting cells. We describe here how alarmins released by neutrophil degranulation and/or death can link neutrophils to dendritic cells by promoting their recruitment and activation, resulting in the augmentation of innate and adaptive immune responses. PMID:19699678

  12. Different Leishmania Species Drive Distinct Neutrophil Functions.

    PubMed

    Hurrell, Benjamin P; Regli, Ivo B; Tacchini-Cottier, Fabienne

    2016-05-01

    Leishmaniases are vector-borne diseases of serious public health importance. During a sand fly blood meal, Leishmania parasites are deposited in the host dermis where neutrophils are rapidly recruited. Neutrophils are the first line of defense and can kill pathogens by an array of mechanisms. They can also form web-like structures called neutrophil extracellular traps (NETs) that can trap and/or kill microbes. The function of neutrophils in leishmaniasis was reported to be either beneficial by contributing to parasite killing or detrimental by impairing immune response development and control of parasite load. Here we review recent data showing that different Leishmania species elicit distinct neutrophil functions thereby influencing disease outcomes. Emerging evidence suggests that neutrophils should be considered important modulators of leishmaniasis. PMID:26944469

  13. Neutrophil Responses to Sterile Implant Materials

    PubMed Central

    Jhunjhunwala, Siddharth; Aresta-DaSilva, Stephanie; Tang, Katherine; Alvarez, David; Webber, Matthew J.; Tang, Benjamin C.; Lavin, Danya M.; Veiseh, Omid; Doloff, Joshua C.; Bose, Suman; Vegas, Arturo; Ma, Minglin; Sahay, Gaurav; Chiu, Alan; Bader, Andrew; Langan, Erin; Siebert, Sean; Li, Jie; Greiner, Dale L.; Newburger, Peter E.; von Andrian, Ulrich H.; Langer, Robert; Anderson, Daniel G.

    2015-01-01

    In vivo implantation of sterile materials and devices results in a foreign body immune response leading to fibrosis of implanted material. Neutrophils, one of the first immune cells to be recruited to implantation sites, have been suggested to contribute to the establishment of the inflammatory microenvironment that initiates the fibrotic response. However, the precise numbers and roles of neutrophils in response to implanted devices remains unclear. Using a mouse model of peritoneal microcapsule implantation, we show 30–500 fold increased neutrophil presence in the peritoneal exudates in response to implants. We demonstrate that these neutrophils secrete increased amounts of a variety of inflammatory cytokines and chemokines. Further, we observe that they participate in the foreign body response through the formation of neutrophil extracellular traps (NETs) on implant surfaces. Our results provide new insight into neutrophil function during a foreign body response to peritoneal implants which has implications for the development of biologically compatible medical devices. PMID:26355958

  14. Proteome Mapping of Adult Zebrafish Marrow Neutrophils Reveals Partial Cross Species Conservation to Human Peripheral Neutrophils

    PubMed Central

    Singh, Sachin Kumar; Sethi, Sachin; Aravamudhan, Sriram; Krüger, Marcus; Grabher, Clemens

    2013-01-01

    Neutrophil granulocytes are pivotal cells within the first line of host defense of the innate immune system. In this study, we have used a gel-based LC-MS/MS approach to explore the proteome of primary marrow neutrophils from adult zebrafish. The identified proteins originated from all major cellular compartments. Gene ontology analysis revealed significant association of proteins with different immune-related network and pathway maps. 75% of proteins identified in neutrophils were identified in neutrophils only when compared to neutrophil-free brain tissue. Moreover, cross-species comparison with human peripheral blood neutrophils showed partial conservation of immune-related proteins between human and zebrafish. This study provides the first zebrafish neutrophil proteome and may serve as a valuable resource for an understanding of neutrophil biology and innate immunity. PMID:24019943

  15. Neutrophil function and dysfunction in periodontal disease.

    PubMed

    Van Dyke, T E; Vaikuntam, J

    1994-01-01

    The polymorphonuclear leukocyte or neutrophil is an integral part of the acute inflammatory response. Its function as a protective cell in the pathogenesis of periodontal disease has been studied extensively. Abnormal neutrophil function has been associated (directly or indirectly) with the pathogenesis of early onset periodontal disease. This paper reviews the recent developments in neutrophil function and dysfunction as they relate to periodontal disease progression. PMID:8032460

  16. Nicotine is Chemotactic for Neutrophils and Enhances Neutrophil Responsiveness to Chemotactic Peptides

    NASA Astrophysics Data System (ADS)

    Totti, Noel; McCusker, Kevin T.; Campbell, Edward J.; Griffin, Gail L.; Senior, Robert M.

    1984-01-01

    Neutrophils contribute to chronic bronchitis and pulmonary emphysema associated with cigarette smoking. Nicotine was found to be chemotactic for human neutrophils but not monocytes, with a peak activity at ~ 31 micromolar. In lower concentrations (comparable to those in smokers' plasma), nicotine enhanced the response of neutrophils to two chemotactic peptides. In contrast to most other chemoattractants for neutrophils, however, nicotine did not affect degranulation or superoxide production. Nicotine thus may promote inflammation and consequent lung injury in smokers.

  17. Transendothelial migration enhances integrin-dependent human neutrophil chemokinesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transendothelial migration of neutrophils induces phenotypic changes that influence the interactions of neutrophils with extravascular tissue components. To assess the influence of transmigration on neutrophil chemokinetic motility, we used polyethylene glycol hydrogels covalently modified with spec...

  18. A Radical Break: Restraining Neutrophil Migration.

    PubMed

    Renkawitz, Jörg; Sixt, Michael

    2016-09-12

    When neutrophils infiltrate a site of inflammation, they have to stop at the right place to exert their effector function. In this issue of Developmental Cell, Wang et al. (2016) show that neutrophils sense reactive oxygen species via the TRPM2 channel to arrest migration at their target site. PMID:27623379

  19. Mechanotransduction in neutrophil activation and deactivation.

    PubMed

    Ekpenyong, Andrew E; Toepfner, Nicole; Chilvers, Edwin R; Guck, Jochen

    2015-11-01

    Mechanotransduction refers to the processes through which cells sense mechanical stimuli by converting them to biochemical signals and, thus, eliciting specific cellular responses. Cells sense mechanical stimuli from their 3D environment, including the extracellular matrix, neighboring cells and other mechanical forces. Incidentally, the emerging concept of mechanical homeostasis,long term or chronic regulation of mechanical properties, seems to apply to neutrophils in a peculiar manner, owing to neutrophils' ability to dynamically switch between the activated/primed and deactivated/deprimed states. While neutrophil activation has been known for over a century, its deactivation is a relatively recent discovery. Even more intriguing is the reversibility of neutrophil activation and deactivation. We review and critically evaluate recent findings that suggest physiological roles for neutrophil activation and deactivation and discuss possible mechanisms by which mechanical stimuli can drive the oscillation of neutrophils between the activated and resting states. We highlight several molecules that have been identified in neutrophil mechanotransduction, including cell adhesion and transmembrane receptors, cytoskeletal and ion channel molecules. The physiological and pathophysiological implications of such mechanically induced signal transduction in neutrophils are highlighted as a basis for future work. This article is part of a Special Issue entitled: Mechanobiology. PMID:26211453

  20. Chronic neutrophilic leukaemia and plasma cell-related neutrophilic leukaemoid reactions.

    PubMed

    Bain, Barbara J; Ahmad, Shahzaib

    2015-11-01

    Many cases reported as 'chronic neutrophilic leukaemia' have had an associated plasma cell neoplasm. Recent evidence suggests that the great majority of such cases represent a neutrophilic leukaemoid reaction to the underlying multiple myeloma or monoclonal gammopathy of undetermined significance. We have analysed all accessible reported cases to clarify the likely diagnosis and to ascertain whether toxic granulation, Döhle bodies and an increased neutrophil alkaline phosphatase score were useful in making a distinction between chronic neutrophilic leukaemia and a neutrophilic leukaemoid reaction. We established that all these changes occur in both conditions. Toxic granulation and Döhle bodies are more consistently present in leukaemoid reactions but also occur quite frequently in chronic neutrophilic leukaemia. The neutrophil alkaline phosphatase score is increased in both conditions and is of no value in making a distinction. PMID:26218186

  1. Neutrophil Elastase Modulates Cytokine Expression

    PubMed Central

    Benabid, Rym; Wartelle, Julien; Malleret, Laurette; Guyot, Nicolas; Gangloff, Sophie; Lebargy, François; Belaaouaj, Azzaq

    2012-01-01

    There is accumulating evidence that following bacterial infection, the massive recruitment and activation of the phagocytes, neutrophils, is accompanied with the extracellular release of active neutrophil elastase (NE), a potent serine protease. Using NE-deficient mice in a clinically relevant model of Pseudomonas aeruginosa-induced pneumonia, we provide compelling in vivo evidence that the absence of NE was associated with decreased protein and transcript levels of the proinflammatory cytokines TNF-α, MIP-2, and IL-6 in the lungs, coinciding with increased mortality of mutant mice to infection. The implication of NE in the induction of cytokine expression involved at least in part Toll-like receptor 4 (TLR-4). These findings were further confirmed following exposure of cultured macrophages to purified NE. Together, our data suggest strongly for the first time that NE not only plays a direct antibacterial role as it has been previously reported, but released active enzyme can also modulate cytokine expression, which contributes to host protection against P. aeruginosa. In light of our findings, the long held view that considers NE as a prime suspect in P. aeruginosa-associated diseases will need to be carefully reassessed. Also, therapeutic strategies aiming at NE inhibition should take into account the physiologic roles of the enzyme. PMID:22927440

  2. Evasion of Neutrophil Killing by Staphylococcus aureus

    PubMed Central

    McGuinness, Will A.; Kobayashi, Scott D.; DeLeo, Frank R.

    2016-01-01

    Staphylococcus aureus causes many types of infections, ranging from self-resolving skin infections to severe or fatal pneumonia. Human innate immune cells, called polymorphonuclear leukocytes (PMNs or neutrophils), are essential for defense against S. aureus infections. Neutrophils are the most prominent cell type of the innate immune system and are capable of producing non-specific antimicrobial molecules that are effective at eliminating bacteria. Although significant progress has been made over the past few decades, our knowledge of S. aureus-host innate immune system interactions is incomplete. Most notably, S. aureus has the capacity to produce numerous molecules that are directed to protect the bacterium from neutrophils. Here we review in brief the role played by neutrophils in defense against S. aureus infection, and correspondingly, highlight selected S. aureus molecules that target key neutrophil functions. PMID:26999220

  3. Evasion of Neutrophil Killing by Staphylococcus aureus.

    PubMed

    McGuinness, Will A; Kobayashi, Scott D; DeLeo, Frank R

    2016-01-01

    Staphylococcus aureus causes many types of infections, ranging from self-resolving skin infections to severe or fatal pneumonia. Human innate immune cells, called polymorphonuclear leukocytes (PMNs or neutrophils), are essential for defense against S. aureus infections. Neutrophils are the most prominent cell type of the innate immune system and are capable of producing non-specific antimicrobial molecules that are effective at eliminating bacteria. Although significant progress has been made over the past few decades, our knowledge of S. aureus-host innate immune system interactions is incomplete. Most notably, S. aureus has the capacity to produce numerous molecules that are directed to protect the bacterium from neutrophils. Here we review in brief the role played by neutrophils in defense against S. aureus infection, and correspondingly, highlight selected S. aureus molecules that target key neutrophil functions. PMID:26999220

  4. How Neutrophils Shape Adaptive Immune Responses

    PubMed Central

    Leliefeld, Pieter H. C.; Koenderman, Leo; Pillay, Janesh

    2015-01-01

    Neutrophils are classically considered as cells pivotal for the first line of defense against invading pathogens. In recent years, evidence has accumulated that they are also important in the orchestration of adaptive immunity. Neutrophils rapidly migrate in high numbers to sites of inflammation (e.g., infection, tissue damage, and cancer) and are subsequently able to migrate to draining lymph nodes (LNs). Both at the site of inflammation as well as in the LNs, neutrophils can engage with lymphocytes and antigen-presenting cells. This crosstalk occurs either directly via cell–cell contact or via mediators, such as proteases, cytokines, and radical oxygen species. In this review, we will discuss the current knowledge regarding locations and mechanisms of interaction between neutrophils and lymphocytes in the context of homeostasis and various pathological conditions. In addition, we will highlight the complexity of the microenvironment that is involved in the generation of suppressive or stimulatory neutrophil phenotypes. PMID:26441976

  5. Dynamic interactions of neutrophils and biofilms

    PubMed Central

    Hirschfeld, Josefine

    2014-01-01

    Background The majority of microbial infections in humans are biofilm-associated and difficult to treat, as biofilms are highly resistant to antimicrobial agents and protect themselves from external threats in various ways. Biofilms are tenaciously attached to surfaces and impede the ability of host defense molecules and cells to penetrate them. On the other hand, some biofilms are beneficial for the host and contain protective microorganisms. Microbes in biofilms express pathogen-associated molecular patterns and epitopes that can be recognized by innate immune cells and opsonins, leading to activation of neutrophils and other leukocytes. Neutrophils are part of the first line of defense and have multiple antimicrobial strategies allowing them to attack pathogenic biofilms. Objective/design In this paper, interaction modes of neutrophils with biofilms are reviewed. Antimicrobial strategies of neutrophils and the counteractions of the biofilm communities, with special attention to oral biofilms, are presented. Moreover, possible adverse effects of neutrophil activity and their biofilm-promoting side effects are discussed. Results/conclusion Biofilms are partially, but not entirely, protected against neutrophil assault, which include the processes of phagocytosis, degranulation, and formation of neutrophil extracellular traps. However, virulence factors of microorganisms, microbial composition, and properties of the extracellular matrix determine whether a biofilm and subsequent microbial spread can be controlled by neutrophils and other host defense factors. Besides, neutrophils may inadvertently contribute to the physical and ecological stability of biofilms by promoting selection of more resistant strains. Moreover, neutrophil enzymes can degrade collagen and other proteins and, as a result, cause harm to the host tissues. These parameters could be crucial factors in the onset of periodontal inflammation and the subsequent tissue breakdown. PMID:25523872

  6. Promoting effect of neutrophils on lung tumorigenesis is mediated by CXCR2 and neutrophil elastase

    PubMed Central

    2013-01-01

    Background Tumor cells produce various cytokines and chemokines that attract leukocytes. Leukocytes can amplify parenchymal innate immune responses, and have been shown to contribute to tumor promotion. Neutrophils are among the first cells to arrive at sites of inflammation, and the increased number of tumor-associated neutrophils is linked to poorer outcome in patients with lung cancer. Results We have previously shown that COPD-like airway inflammation promotes lung cancer in a K-ras mutant mouse model of lung cancer (CC-LR). This was associated with severe lung neutrophilic influx due to the increased level of neutrophil chemoattractant, KC. To further study the role of neutrophils in lung tumorigenesis, we depleted neutrophils in CC-LR mice using an anti-neutrophil antibody. This resulted in a significant reduction in lung tumor number. We further selectively inhibited the main receptor for neutrophil chemo-attractant KC, CXCR2. Similarly, this resulted in suppression of neutrophil recruitment into the lung of CC-LR mice followed by significant tumor reduction. Neutrophil elastase (NE) is a potent elastolytic enzyme produced by neutrophils at the site of inflammation. We crossed the CC-LR mice with NE knock-out mice, and found that lack of NE significantly inhibits lung cancer development. These were associated with significant reduction in tumor cell proliferation and angiogenesis. Conclusion We conclude that lung cancer promotion by inflammation is partly mediated by activation of the IL-8/CXCR2 pathway and subsequent recruitment of neutrophils and release of neutrophil elastase. This provides a baseline for future clinical trials using the IL-8/CXCR2 pathway or NE inhibitors in patients with lung cancer. PMID:24321240

  7. Activation of bovine neutrophils by Brucella spp.

    PubMed

    Keleher, Lauren L; Skyberg, Jerod A

    2016-09-01

    Brucellosis is a globally important zoonotic infectious disease caused by gram negative bacteria of the genus Brucella. While many species of Brucella exist, Brucella melitensis, Brucella abortus, and Brucella suis are the most common pathogens of humans and livestock. The virulence of Brucella is largely influenced by its ability to evade host factors, including phagocytic killing mechanisms, which are critical for the host response to infection. The aim of this study was to characterize the bovine neutrophil response to virulent Brucella spp. Here, we found that virulent strains of smooth B. abortus, B. melitensis, B. suis, and virulent, rough, strains of Brucella canis possess similar abilities to resist killing by resting, or IFN-γ-activated, bovine neutrophils. Bovine neutrophils responded to infection with a time-dependent oxidative burst that varied little between Brucella spp. Inhibition of TAK1, or SYK kinase blunted the oxidative burst of neutrophils in response to Brucella infection. Interestingly, Brucella spp. did not induce robust death of bovine neutrophils. These results indicate that bovine neutrophils respond similarly to virulent Brucella spp. In addition, virulent Brucella spp., including naturally rough strains of B. canis, have a conserved ability to resist killing by bovine neutrophils. PMID:27436438

  8. Neutrophil gene expression in rheumatoid arthritis.

    PubMed

    Cross, Andrew; Bakstad, Denise; Allen, John C; Thomas, Luke; Moots, Robert J; Edwards, Steven W

    2005-10-01

    There is now a growing awareness that infiltrating neutrophils play an important role in the molecular pathology of rheumatoid arthritis. In part, this arises from the fact that neutrophils have potent cytotoxic activity, but additionally from the fact that inflammatory neutrophils can generate a number of cytokines and chemokines that can have a direct influence on the progress of an inflammatory episode. Furthermore, the molecular properties of inflammatory neutrophils are quite different from those normally found in the circulation. For example, inflammatory neutrophils, but not blood neutrophils, can express cell surface receptors (such as MHC Class II molecules and FcgammaRI) that dramatically alter the way in which these cells can interact with ligands to modulate immune function. Cytokine/chemokine expression and surface expression of these novel cell surface receptors is dependent upon the neutrophil responding to local environmental factors to selectively up-regulate the expression of key cellular components via signalling pathways coupled to transcriptional activation. However, major changes in the expression levels of some proteins are also regulated by post-translational modifications that alter rates of proteolysis, and hence changes in the steady-state levels of these molecules. PMID:16112850

  9. Proliferating cell nuclear antigen in neutrophil fate.

    PubMed

    Witko-Sarsat, Véronique; Ohayon, Delphine

    2016-09-01

    The life span of a neutrophil is a tightly regulated process as extended survival is beneficial for pathogen elimination and cell death necessary to prevent cytotoxic content release from activated neutrophils at the inflammatory site. Therefore, the control between survival and death must be a dynamic process. We have previously described that proliferating cell nuclear antigen (PCNA) which is known as a nuclear protein pivotal in DNA synthesis, is a key element in controlling neutrophil survival through its association with procaspases. Contrary to the dogma which asserted that PCNA has a strictly nuclear function, in mature neutrophils, PCNA is present exclusively within the cytosol due to its nuclear export at the end of the granulocytic differentiation. More recent studies are consistent with the notion that the cytosolic scaffold of PCNA is aimed at modulating neutrophil fate rather than simply preventing death. Ultimately, targeting neutrophil survival might have important applications not just in the field of immunology and inflammation, but also in hematology and transfusion. The neutrophil emerges as a unique and powerful cellular model to unravel the basic mechanisms governing the cell cycle-independent functions of PCNA and should be considered as a leader of the pack. PMID:27558345

  10. Neutrophil dysfunction and increased susceptibility to infection.

    PubMed

    Ottonello, L; Dapino, P; Pastorino, G; Dallegri, F; Sacchetti, C

    1995-09-01

    A critical evaluation of 3 years' experience using laboratory screening to detect neutrophil dysfunction is described. Neutrophil dysfunctions in patients with recurrent bacterial infections were investigated by using the following screening tests: (1) neutrophil chemotaxis towards N-formylmethionyl peptides (FMLP) and the complement fragment C5a; (2) neutrophil production of superoxide anions (O2-) in response to phorbol myristate acetate and opsonized zymosan particles; and (3) examination of May-Grünwald and myeloperoxidase cytochemical staining of peripheral blood smears. These tests were carried out in 100 patients suffering from infections and suspected of having altered neutrophil functional competence. A minority of patients was found to have well defined neutrophil dysfunction syndromes: chronic granulomatous disease (four cases), Chediak-Higashi disease (one case) and myeloperoxidase deficiency (one case). Of the remaining 94 patients, in whom infections localized to airways and/or skin predominated, 53 cases were found to have impaired chemotaxis (41 cases) or partial defects of the O2- production. Defects of chemotaxis toward FMLP and those towards both FLMP and C5a were the most frequent abnormalities. No defect was found in the other 41 patients. Moreover, impaired neutrophil chemotaxis was found in some patients with selective IgA deficiency (five cases) or immotile cilia syndrome (seven cases). The results suggest that (a) additional screening tests are required to ameliorate the efficiency of the diagnostic work-up of the patients suspected to have neutrophil dysfunction; and (b) further evaluation, also at the molecular level, should be considered at least in selected cases of non-classified neutrophil dysfunction in order to clarify diagnosis and plan rational therapeutic strategies. PMID:7498244

  11. Neutrophil-Mediated Phagocytosis of Staphylococcus aureus

    PubMed Central

    van Kessel, Kok P. M.; Bestebroer, Jovanka; van Strijp, Jos A. G.

    2014-01-01

    Initial elimination of invading Staphylococcus aureus from the body is mediated by professional phagocytes. The neutrophil is the major phagocyte of the innate immunity and plays a key role in the host defense against staphylococcal infections. Opsonization of the bacteria with immunoglobulins and complement factors enables efficient recognition by the neutrophil that subsequently leads to intracellular compartmentalization and killing. Here, we provide a review of the key processes evolved in neutrophil-mediated phagocytosis of S. aureus and briefly describe killing. As S. aureus is not helpless against the professional phagocytes, we will also highlight its immune evasion arsenal related to phagocytosis. PMID:25309547

  12. Ferment in Technology

    ERIC Educational Resources Information Center

    Crossland, Janice

    1974-01-01

    A pollution-reducing and energy-saving alternative to petroleum use could be the fermentation industry and other technologies based on the use of renewable resources. Expansion of the fermentation industry could reduce our dependence on petroleum, reduce growing waste disposal problems, and help solve world food shortages. (BT)

  13. Neutrophil chemotactic factor release and neutrophil alveolitis in asbestos-exposed individuals

    SciTech Connect

    Hayes, A.A.; Rose, A.H.; Musk, A.W.; Robinson, B.W.

    1988-09-01

    Alveolar neutrophil accumulation occurs in asbestosis. To evaluate a possible role for release of neutrophil chemotactic factor (NCF) in the pathogenesis of asbestosis, spontaneous NCF release from alveolar macrophages obtained by bronchoalveolar lavage (BAL) in eight individuals with asbestosis, 13 asbestos-exposed individuals without asbestosis, and five control subjects has been studied. Alveolar macrophages were incubated in medium (four hours; 37 degrees C), and neutrophil responses to the supernatants were assayed in a microchemotaxis chamber. Alveolar macrophages from subjects with asbestosis released more NCF (97 +/- 19 neutrophils per high-power field (N/HPF)) than controls (3 +/- 1 N/HPF; p less than 0.01). Alveolar macrophages from individuals with asbestos exposure and increased BAL neutrophil proportions (n = 7) released more NCF (93 +/- 24 N/HPF) than individuals with asbestos exposure and normal BAL neutrophil proportions (n = 6; 11 +/- 6 N/HPF; p less than 0.02). The results show that spontaneous NCF release occurs in asbestosis and that NCF release is associated with neutrophil alveolitis in asbestos-exposed individuals without asbestosis, suggesting a pathogenic role for NCF in mediating this neutrophil alveolitis. The results of the study also suggest that the presence of crackles is a better predictor of the presence of neutrophil alveolitis than is an abnormal chest x-ray film.

  14. Moesin regulates neutrophil rolling velocity in vivo.

    PubMed

    Matsumoto, Masanori; Hirata, Takako

    2016-01-01

    During inflammation, the selectin-induced slow rolling of neutrophils on venules cooperates with chemokine signaling to mediate neutrophil recruitment into tissues. Previous studies identified P-selectin glycoprotein ligand-1 (PSGL-1) and CD44 as E-selectin ligands that activate integrins to induce slow rolling. We show here that in TNF-α-treated cremaster muscle venules, slow leukocyte rolling was impaired in mice deficient in moesin, a member of the ezrin-radixin-moesin (ERM) family. Accordingly, neutrophil recruitment in a peritonitis model was decreased in moesin-deficient mice when chemokine signaling was blocked with pertussis toxin. These results suggest that moesin contributes to the slow rolling and subsequent recruitment of neutrophils during inflammation. PMID:27131737

  15. [Effect of erythromycin on neutrophil adhesion molecules].

    PubMed

    Kusano, S; Mukae, H; Morikawa, T; Asai, T; Sawa, H; Morikawa, N; Oda, H; Sakito, O; Shukuwa, C; Senju, R

    1993-01-01

    The mechanisms of erythromycin (EM) in chronic lower respiratory tract diseases including diffuse panbronchiolitis (DPB) has been reported. In this study we investigated the effect of EM on peripheral neutrophil adhesion molecules such as LFA-1 and Mac-1 obtained from six healthy subjects. Pretreatment of neutrophils with each concentration (10 ng/ml approximately 100 micrograms/ml) of EM resulted in no significant reduction in the expression of LFA-1 alpha, beta and Mac-1. Moreover, EM had no capability of reducing these expressions even when neutrophils were pretreated with 1 microgram/ml of EM at time from 0 to 60 min. These findings indicate that EM does not directly reduce the expression of LFA-1 alpha, beta and Mac-1 on peripheral neutrophil obtained from healthy subjects. PMID:8450276

  16. Cryptococcus Neoformans Modulates Extracellular Killing by Neutrophils

    PubMed Central

    Qureshi, Asfia; Grey, Angus; Rose, Kristie L.; Schey, Kevin L.; Del Poeta, Maurizio

    2011-01-01

    We recently established a key role for host sphingomyelin synthase (SMS) in regulating the killing activity of neutrophils against Cryptococcus neoformans. In this paper, we studied the effect of C. neoformans on the killing activity of neutrophils and whether SMS would still be a player against C. neoformans in immunocompromised mice lacking T and natural killer (NK) cells (Tgε26 mice). To this end, we analyzed whether C. neoformans would have any effect on neutrophil survival and killing in vitro and in vivo. We show that unlike Candida albicans, neither the presence nor the capsule size of C. neoformans cells have any effect on neutrophil viability. Interestingly, melanized C. neoformans cells totally abrogated the killing activity of neutrophils. We monitored how exposure of neutrophils to C. neoformans cells would interfere with any further killing activity of the conditioned medium and found that pre-incubation with live but not “heat-killed” fungal cells significantly inhibits further killing activity of the medium. We then studied whether activation of SMS at the site of C. neoformans infection is dependent on T and NK cells. Using matrix-assisted laser desorption–ionization tissue imaging in infected lung we found that similar to previous observations in the isogenic wild-type CBA/J mice, SM 16:0 levels are significantly elevated at the site of infection in mice lacking T and NK cells, but only at early time points. This study highlights that C. neoformans may negatively regulate the killing activity of neutrophils and that SMS activation in neutrophils appears to be partially independent of T and/or NK cells. PMID:21960987

  17. Rosette nanotubes inhibit bovine neutrophil chemotaxis

    PubMed Central

    Le, Minh Hong Anh; Suri, Sarabjeet Singh; Rakotondradany, Felaniaina; Fenniri, Hicham; Singh, Baljit

    2010-01-01

    Migration of activated neutrophils that have prolonged lifespan into inflamed organs is an important component of host defense but also contributes to tissue damage and mortality. In this report, we used biologically-inspired RGD-tagged rosette nanotubes (RNT) to inhibit neutrophil chemotaxis. We hypothesize that RGD-RNT will block neutrophil migration through inhibition of MAPK. In this report, RNT conjugated to lysine (K–RNT) and arginine-glycine-aspartic acid-serine-lysine (RGDSK-RNT) were co-assembled in a molar ratio of 95/5. The effect of the resulting composite RNT (RGDSK/K–RNT) on neutrophil chemotaxis, cell signaling and apoptosis was then investigated. Exposure to RGDSK/K–RNT reduced bovine neutrophil migration when compared to the non-treated group (p < 0.001). Similar effect was seen following treatment with ERK1/2 or p38 MAPK inhibitors. Phosphorylation of the ERK1/2 and p38 MAPK was inhibited at 5 min by RGDSK/K–RNT (p < 0.05). The RGDSD/K-RNT did not affect the migration of neutrophils pre-treated with αvβ3 integrin antibody suggesting that both bind to the same receptor. RGDSK/K–RNT did not induce apoptosis in bovine neutrophils, which was suppressed by pre-exposing them to LPS (p < 0.001). We conclude that RGDSK/K–RNT inhibit phosphorylation of ERK1/2 and p38 MAPK and inhibit chemotaxis of bovine neutrophils. PMID:20663476

  18. Neutrophils in asthma--a review.

    PubMed

    Ciepiela, Olga; Ostafin, Magdalena; Demkow, Urszula

    2015-04-01

    Asthma is a chronic inflammatory disease, with an array of cells involved in the pathogenesis of the disease. The role of neutrophils in the development of bronchial asthma is found to be complex, as they may trigger activation of immunocompetent cells and are a potent source of free oxygen radicals and enzymes participating in airway remodeling. The review highlights the role of neutrophils in bronchial asthma. PMID:25511380

  19. What really happens in the neutrophil phagosome?

    PubMed Central

    Hurst, James K.

    2015-01-01

    Current viewpoints concerning the bactericidal mechanisms of neutrophils are reviewed from a perspective that emphasizes challenges presented by the inability to duplicate ex vivo the intracellular milieu. Among the challenges considered are the influences of confinement upon substrate availability and reaction dynamics, direct and indirect synergistic interactions between individual toxins, and bacterial responses to stressors. Approaches to gauging relative contributions of various oxidative and nonoxidative toxins within neutrophils using bacteria and bacterial mimics as intrinsic probes are also discussed. PMID:22609248

  20. Human neutrophils contain and bind high molecular weight kininogen.

    PubMed Central

    Gustafson, E J; Schmaier, A H; Wachtfogel, Y T; Kaufman, N; Kucich, U; Colman, R W

    1989-01-01

    Because plasma kallikrein activates human neutrophils, and in plasma prekallikrein (PK) circulates complexed with high molecular weight kininogen (HMWK), we determined whether HMWK could mediate kallikrein's association with neutrophils. HMWK antigen (237 +/- 61 ng HMWK/10(8) neutrophils) was present in lysates of washed human neutrophils. Little if any plasma HMWK was tightly bound and nonexchangeable with the neutrophil surface. Human neutrophils were found to possess surface membrane-binding sites for HMWK but no internalization was detected at 37 degrees C. 125I-HMWK binding to neutrophils was dependent upon Zn2+. Binding of 125I-HMWK to neutrophils was specific and 90% reversible. 125I-HMWK binding to neutrophils was saturable with an apparent Kd of 9-18 nM and 40,000-70,000 sites per cell. Upon binding to neutrophils, 125I-HMWK was proteolyzed by human neutrophil elastase (HNE) into lower relative molecular mass derivatives. Furthermore, HMWK found in neutrophils also served as a cofactor for HNE secretion because neutrophils deficient in HMWK have reduced HNE secretion when stimulated in plasma deficient in HMWK or with purified kallikrein. These studies indicate that human neutrophils contain a binding site for HMWK that could serve to localize plasma or neutrophil HMWK on their surface to possibly serve as a receptor for kallikrein and to participate in HNE secretion by this enzyme. Images PMID:2738152

  1. NET amyloidogenic backbone in human activated neutrophils.

    PubMed

    Pulze, L; Bassani, B; Gini, E; D'Antona, P; Grimaldi, A; Luini, A; Marino, F; Noonan, D M; Tettamanti, G; Valvassori, R; de Eguileor, M

    2016-03-01

    Activated human neutrophils produce a fibrillar DNA network [neutrophil extracellular traps (NETs)] for entrapping and killing bacteria, fungi, protozoa and viruses. Our results suggest that the neutrophil extracellular traps show a resistant amyloidogenic backbone utilized for addressing reputed proteins and DNA against the non-self. The formation of amyloid fibrils in neutrophils is regulated by the imbalance of reactive oxygen species (ROS) in the cytoplasm. The intensity and source of the ROS signal is determinant for promoting stress-associated responses such as amyloidogenesis and closely related events: autophagy, exosome release, activation of the adrenocorticotrophin hormone/α-melanocyte-stimulating hormone (ACTH/α-MSH) loop and synthesis of specific cytokines. These interconnected responses in human activated neutrophils, that have been evaluated from a morphofunctional and quantitative viewpoint, represent primitive, but potent, innate defence mechanisms. In invertebrates, circulating phagocytic immune cells, when activated, show responses similar to those described previously for activated human neutrophils. Invertebrate cells within endoplasmic reticulum cisternae produce a fibrillar material which is then assembled into an amyloidogenic scaffold utilized to convey melanin close to the invader. These findings, in consideration to the critical role played by NET in the development of several pathologies, could explain the structural resistance of these scaffolds and could provide the basis for developing new diagnostic and therapeutic approaches in immunomediated diseases in which the innate branch of the immune system has a pivotal role. PMID:26462606

  2. Interactions of human neutrophils with leukotoxic streptococci.

    PubMed Central

    Sullivan, G W; Mandell, G L

    1980-01-01

    Most strains of Streptococcus pyogenes contain a toxin which can kill neutrophils. Previous workers failed to show any correlation between leukotoxin content and virulence of animals or humans. We examined the in vitro interactions of a leukotoxic streptococcus and a nonleukotoxic variant with human neutrophils. At ratios of 200 streptococcal colony-forming units per neutrophil, the toxic strain killed 92.8 +/- 2.0% of neutrophils, and the nontoxic strain killed only 9.0 +/- 1.2%. Despite this, ingestion of the two strains was equal. Postphagocytic oxidative metabolism was equivalent with low numbers of either toxic or nontoxic streptococci but depressed with high numbers of leukotoxic streptococci. At 20 min, neutrophils were able to kill leukotoxic (99.6 +/- 0.3% killed) and nonleukotoxic streptococci (99.5 +/- 0.2% killed) equally efficiently (P = 0.42). Thus, leukotoxicity does not interfere with the ability of neutrophils to destroy streptococci. This may explain why leukotoxicity does not appear to be an important factor in streptococcal virulence. Images Fig. 1 PMID:7002789

  3. Reactive Oxygen Species and Neutrophil Function.

    PubMed

    Winterbourn, Christine C; Kettle, Anthony J; Hampton, Mark B

    2016-06-01

    Neutrophils are essential for killing bacteria and other microorganisms, and they also have a significant role in regulating the inflammatory response. Stimulated neutrophils activate their NADPH oxidase (NOX2) to generate large amounts of superoxide, which acts as a precursor of hydrogen peroxide and other reactive oxygen species that are generated by their heme enzyme myeloperoxidase. When neutrophils engulf bacteria they enclose them in small vesicles (phagosomes) into which superoxide is released by activated NOX2 on the internalized neutrophil membrane. The superoxide dismutates to hydrogen peroxide, which is used by myeloperoxidase to generate other oxidants, including the highly microbicidal species hypochlorous acid. NOX activation occurs at other sites in the cell, where it is considered to have a regulatory function. Neutrophils also release oxidants, which can modify extracellular targets and affect the function of neighboring cells. We discuss the identity and chemical properties of the specific oxidants produced by neutrophils in different situations, and what is known about oxidative mechanisms of microbial killing, inflammatory tissue damage, and signaling. PMID:27050287

  4. Differential expression of pentraxin 3 in neutrophils.

    PubMed

    Razvina, Olga; Jiang, Shuying; Matsubara, Koichi; Ohashi, Riuko; Hasegawa, Go; Aoyama, Takashi; Daigo, Kenji; Kodama, Tatsuhiko; Hamakubo, Takao; Naito, Makoto

    2015-02-01

    Pentraxins belong to the superfamily of conserved proteins that are characterized by a cyclic multimeric structure. Pentraxin 3 (PTX3) is a long pentraxin which can be produced by different cell types upon exposure to various inflammatory signals. Inside the neutrophil PTX3 is stored in form of granules localized in the cytoplasm. Neutrophilic granules are divided into three types: azurophilic (primary) granules, specific (secondary) granules and gelatinase (tertiary) granules. PTX3 has been considered to be localized in specific (secondary) granules. Immunofluorescent analyses using confocal laser microscopic examination were performed to clarify the localization of all three groups of granules within the cytoplasm of the mature neutrophils and neutrophils stimulated with IL-8. Furthermore, PTX3 was localized in primary granules of promyelocyte cell line HL-60. As a result, we suggest that PTX3 is localized not only in specific granules, but is also partly expressed in primary and tertiary granules. After the stimulation with IL-8, irregular reticular structures called neutrophil extracellular traps (NETs) were formed, three types of granules were trapped by NETs and PTX3 showed partial colocalization with these granular components. PTX3 localized in all three types of granules in neutrophils may play important roles in host defense. PMID:25449330

  5. Proteomic Analysis of Neutrophil Priming by PAF.

    PubMed

    Aquino, Elaine N; Neves, Anne C D; Santos, Karina C; Uribe, Carlos E; Souza, Paulo E N; Correa, José R; Castro, Mariana S; Fontes, Wagner

    2016-01-01

    Polymorphonuclear neutrophils are the main cells of the innate immunity inflammatory response. Several factors can activate or stimulate neutrophils, including platelet-activating factor (PAF), a lipid mediator. Some authors consider the activation induced by PAF priming because it triggers limited production of reactive oxygen species (ROS) and it amplifies the response of the cell to a subsequent activator. The stimulation is reversible, which is critical for modulating the inflammatory response. Exacerbated inflammatory responses lead to serious diseases, such as systemic inflammatory response syndrome (SIRS), among others. Characterizing the stimulation of neutrophils during the possible reversion or prevention of an exaggerated inflammatory response is critical for the development of control strategies. In this study, a proteomic approach was used to identify 36 proteins that differ in abundance between quiescent neutrophils and PAFstimulated neutrophils. The identified proteins were associated with increased DNA repair processes, calcium flux, protein transcription, cytoskeleton alterations that facilitate migration and degranulation, and the release of proinflammatory cytokines and proteins that modulate the inflammatory response. Some of the identified proteins have not been previously reported in neutrophils. PMID:26631175

  6. Fermentative alcohol production

    DOEpatents

    Wilke, Charles R.; Maiorella, Brian L.; Blanch, Harvey W.; Cysewski, Gerald R.

    1982-01-01

    An improved fermentation process for producing alcohol which includes the combination of vacuum fermentation and vacuum distillation. Preferably, the vacuum distillation is carried out in two phases, one a fermentor proper operated at atmospheric pressure and a flash phase operated at reduced pressure with recycle of fermentation brew having a reduced alcohol content to the fermentor, using vapor recompression heating of the flash-pot recycle stream to heat the flash-pot or the distillation step, and using "water load balancing" (i.e., the molar ratio of water in the fermentor feed is the same as the molar ratio of water in the distillation overhead).

  7. Neutrophils in Cancer: Two Sides of the Same Coin

    PubMed Central

    Uribe-Querol, Eileen; Rosales, Carlos

    2015-01-01

    Neutrophils are the most abundant leukocytes in blood and are considered to be the first line of defense during inflammation and infections. In addition, neutrophils are also found infiltrating many types of tumors. Tumor-associated neutrophils (TANs) have relevant roles in malignant disease. Indeed neutrophils may be potent antitumor effector cells. However, increasing clinical evidence shows TANs correlate with poor prognosis. The tumor microenvironment controls neutrophil recruitment and in turn TANs help tumor progression. Hence, TANs can be beneficial or detrimental to the host. It is the purpose of this review to highlight these two sides of the neutrophil coin in cancer and to describe recent studies that provide some light on the mechanisms for neutrophil recruitment to the tumor, for neutrophils supporting tumor progression, and for neutrophil activation to enhance their antitumor functions. PMID:26819959

  8. Excessive Neutrophils and Neutrophil Extracellular Traps Contribute to Acute Lung Injury of Influenza Pneumonitis

    PubMed Central

    Narasaraju, Teluguakula; Yang, Edwin; Samy, Ramar Perumal; Ng, Huey Hian; Poh, Wee Peng; Liew, Audrey-Ann; Phoon, Meng Chee; van Rooijen, Nico; Chow, Vincent T.

    2011-01-01

    Complications of acute respiratory distress syndrome (ARDS) are common among critically ill patients infected with highly pathogenic influenza viruses. Macrophages and neutrophils constitute the majority of cells recruited into infected lungs, and are associated with immunopathology in influenza pneumonia. We examined pathological manifestations in models of macrophage- or neutrophil-depleted mice challenged with sublethal doses of influenza A virus H1N1 strain PR8. Infected mice depleted of macrophages displayed excessive neutrophilic infiltration, alveolar damage, and increased viral load, later progressing into ARDS-like pathological signs with diffuse alveolar damage, pulmonary edema, hemorrhage, and hypoxemia. In contrast, neutrophil-depleted animals showed mild pathology in lungs. The brochoalveolar lavage fluid of infected macrophage-depleted mice exhibited elevated protein content, T1-α, thrombomodulin, matrix metalloproteinase-9, and myeloperoxidase activities indicating augmented alveolar-capillary damage, compared to neutrophil-depleted animals. We provide evidence for the formation of neutrophil extracellular traps (NETs), entangled with alveoli in areas of tissue injury, suggesting their potential link with lung damage. When co-incubated with infected alveolar epithelial cells in vitro, neutrophils from infected lungs strongly induced NETs generation, and augmented endothelial damage. NETs induction was abrogated by anti-myeloperoxidase antibody and an inhibitor of superoxide dismutase, thus implying that NETs generation is induced by redox enzymes in influenza pneumonia. These findings support the pathogenic effects of excessive neutrophils in acute lung injury of influenza pneumonia by instigating alveolar-capillary damage. PMID:21703402

  9. Neutrophils and neutrophil extracellular traps orchestrate initiation and resolution of inflammation.

    PubMed

    Hahn, Jonas; Knopf, Jasmin; Maueröder, Christian; Kienhöfer, Deborah; Leppkes, Moritz; Herrmann, Martin

    2016-01-01

    Neutrophils, the most abundant leukocytes in the human body, are considered to be the first line of defense in the fight against microorganisms. In this fight neutrophils employ weaponry such as reactive oxygen species produced via the NADPH oxidase complex 2 together with the release of intracellular granules containing antimicrobial agents. The discovery that activated neutrophils release decondensed chromatin as DNase-sensitive neutrophil extracellular traps (NETs) lead to a renewed interest in these leukocytes and the function of NETs in vivo. In this review, we will focus on desirable as well as detrimental features of NETs by the example of gout and pancreatitis. In our models we observed that neutrophils drive the initiation of inflammation and are required for the resolution of inflammation. PMID:27586795

  10. Neutrophilic and Pauci-immune Phenotypes in Severe Asthma.

    PubMed

    Panettieri, Reynold A

    2016-08-01

    Although 2 T-helper type 2 inflammation evokes airway hyperresponsiveness and narrowing, neutrophilic or pauci-immune asthma accounts for significant asthma morbidity. Viruses, toxicants, environmental tobacco smoke exposure, and bacterial infections induce asthma exacerbations mediated by neutrophilic inflammation or by structural cell (pauci-immune) mechanisms. Therapeutic challenges exist in the management of neutrophilic and pauci-immune phenotypes because both syndromes manifest steroid insensitivity. The recognition that neutrophil subsets exist and their functions are unique poses exciting opportunities to develop precise therapies. The conventional thought to target neutrophil activation or migration globally may explain why current drug development in neutrophilic asthma remains challenging. PMID:27401627

  11. Exercise, training and neutrophil microbicidal activity.

    PubMed

    Smith, J A; Telford, R D; Mason, I B; Weidemann, M J

    1990-06-01

    The concentration in human plasma of putative neutrophil-"priming" cytokines like endogenous pyrogens is known to increase significantly in response to moderate exercise (11). This is characteristic of an acute-phase response. The ability of blood neutrophils isolated from both trained and untrained human subjects (n = 11, 9) to produce microbicidal reactive oxygen species was determined using luminol-enhanced chemiluminescence both before and after one hour of aerobic exercise at 60% VO2max. Irrespective of training and stimulus concentration, exercise nearly always caused significant "priming" of the capacity of neutrophils to produce H2O2 and HOCl upon stimulation with opsonized zymosan (P less than 0.01); however, compared to their untrained counterparts, the activity of cells isolated from trained individuals was depressed about 50% at unit stimulus concentration, both before and after exercise (P less than 0.075), whilst remaining unaltered at saturating concentrations. Although neutrophil oxygenation activity is only one parameter that contributes to immunological status, regular episodes of moderate exercise may increase resistance to infection by priming the "killing capacity" of neutrophils. In contrast, prolonged periods of intensive training may lead to increased susceptibility to common infections by diminishing this activity. PMID:2115507

  12. Blocking neutrophil diapedesis prevents hemorrhage during thrombocytopenia.

    PubMed

    Hillgruber, Carina; Pöppelmann, Birgit; Weishaupt, Carsten; Steingräber, Annika Kathrin; Wessel, Florian; Berdel, Wolfgang E; Gessner, J Engelbert; Ho-Tin-Noé, Benoît; Vestweber, Dietmar; Goerge, Tobias

    2015-07-27

    Spontaneous organ hemorrhage is the major complication in thrombocytopenia with a potential fatal outcome. However, the exact mechanisms regulating vascular integrity are still unknown. Here, we demonstrate that neutrophils recruited to inflammatory sites are the cellular culprits inducing thrombocytopenic tissue hemorrhage. Exposure of thrombocytopenic mice to UVB light provokes cutaneous petechial bleeding. This phenomenon is also observed in immune-thrombocytopenic patients when tested for UVB tolerance. Mechanistically, we show, analyzing several inflammatory models, that it is neutrophil diapedesis through the endothelial barrier that is responsible for the bleeding defect. First, bleeding is triggered by neutrophil-mediated mechanisms, which act downstream of capturing, adhesion, and crawling on the blood vessel wall and require Gαi signaling in neutrophils. Second, mutating Y731 in the cytoplasmic tail of VE-cadherin, known to selectively affect leukocyte diapedesis, but not the induction of vascular permeability, attenuates bleeding. Third, and in line with this, simply destabilizing endothelial junctions by histamine did not trigger bleeding. We conclude that specifically targeting neutrophil diapedesis through the endothelial barrier may represent a new therapeutic avenue to prevent fatal bleeding in immune-thrombocytopenic patients. PMID:26169941

  13. Neutrophil Leukocyte: Combustive Microbicidal Action and Chemiluminescence

    PubMed Central

    Allen, Robert C.

    2015-01-01

    Neutrophil leukocytes protect against a varied and complex array of microbes by providing microbicidal action that is simple, potent, and focused. Neutrophils provide such action via redox reactions that change the frontier orbitals of oxygen (O2) facilitating combustion. The spin conservation rules define the symmetry barrier that prevents direct reaction of diradical O2 with nonradical molecules, explaining why combustion is not spontaneous. In burning, the spin barrier is overcome when energy causes homolytic bond cleavage producing radicals capable of reacting with diradical O2 to yield oxygenated radical products that further participate in reactive propagation. Neutrophil mediated combustion is by a different pathway. Changing the spin quantum state of O2 removes the symmetry restriction to reaction. Electronically excited singlet molecular oxygen (1O2*) is a potent electrophilic reactant with a finite lifetime that restricts its radius of reactivity and focuses combustive action on the target microbe. The resulting exergonic dioxygenation reactions produce electronically excited carbonyls that relax by light emission, that is, chemiluminescence. This overview of neutrophil combustive microbicidal action takes the perspectives of spin conservation and bosonic-fermionic frontier orbital considerations. The necessary principles of particle physics and quantum mechanics are developed and integrated into a fundamental explanation of neutrophil microbicidal metabolism. PMID:26783542

  14. [Neuro-neutrophilic Disease and Dementia].

    PubMed

    Hisanaga, Kinya

    2016-04-01

    Neuro-neutrophilic diseases are multisystem inflammatory disorders that include neuro-Behçet and neuro-Sweet disease. These disorders ectopically damage the nervous system due to the abnormal chemotaxis of neutrophils. The neutrophils' chemotaxis is induced by oral muco-cutaneous bacterial infections and the dysregulation of cytokines, including interleukins. The frequencies of human leukocyte antigen (HLA)-B51 in neuro-Behçet disease and HLA-B54 as well as Cw1 in neuro-Sweet disease significantly higher than the levels present in Japanese normal controls. Notably, their frequencies are also higher in patients exhibiting neurological complications than in patients without neurological complications. These HLA types are considered risk factors that are directly related to the etiology of these diseases. Prednisolone and colchicine, which suppress neutrophil activation, are used to treat the acute phase of both diseases. Alternatively, dapsone is prescribed to prednisolone-dependent recurrent cases of neuro-Sweet disease. Dementia is a neurological symptom of these disorders, especially in the chronic progressive subtype of neuro-Behçet disease. Other immunosuppressant drugs, including methotrexate and infliximab, are administered to patients with the chronic progressive type of neuro-Behçet disease. Neuro-neutrophilic diseases are a form of dementia considered treatable. PMID:27056853

  15. Decreased apoptosis of beta 2- integrin-deficient bovine neutrophils.

    PubMed

    Nagahata, Hajime; Higuchi, Hidetoshi; Teraoka, Hiroki; Takahashi, Kenji; Takahashi, Kensi; Kuwabara, Mikinori; Inanami, Osamu; Kuwabara, Mikwori

    2004-02-01

    Stimulant-induced viability of neutrophils, nuclear-fragmentation, increase in intracellular calcium ([Ca2+]i), expression of annexin V on neutrophils and proteolysis of a fluorogenic peptide substrate Ac-DEVD-MCA (acetyl Asp-Glu-Val-Asp alpha-[4-methyl-coumaryl-7-amide]) by neutrophil lysates from five normal calves and three calves with leucocyte adhesion deficiency were determined to evaluate the apoptosis of normal and CD18-deficient neutrophils. Viability was markedly decreased in control neutrophils stimulated with opsonized zymosan (OPZ), compared to CD18-deficient neutrophils at 37 degrees C after incubation periods of 6 and 24 hours. The rate of apoptosis of control neutrophils stimulated with OPZ increased significantly depending on the incubation time, whereas no apparent increase in apoptosis was found in CD18-deficient neutrophils under the same conditions. Aggregated bovine (Agg) IgG-induced apoptosis of control neutrophils was not significantly different from that of CD18-deficient neutrophils. The expression of annexin V on OPZ-stimulated control neutrophils was greater than that of unstimulated ones 6 h after stimulation. No apparent increase in annexin V expression on CD18-deficient neutrophils was found with OPZ stimulation. A delay in apoptosis was demonstrated in CD18-deficient bovine neutrophils and this appeared to be closely associated with lowered signalling via [Ca2+]i, diminished annexin V expression on the cell surface, and decreased caspase 3 activity in lysates. PMID:14984592

  16. Granulopoiesis and granules of human neutrophils.

    PubMed

    Cowland, Jack B; Borregaard, Niels

    2016-09-01

    Granules are essential for the ability of neutrophils to fulfill their role in innate immunity. Granule membranes contain proteins that react to environmental cues directing neutrophils to sites of infection and initiate generation of bactericidal oxygen species. Granules are densely packed with proteins that contribute to microbial killing when liberated to the phagosome or extracellularly. Granules are, however, highly heterogeneous and are traditionally subdivided into azurophil granules, specific granules, and gelatinase granules in addition to secretory vesicles. This review will address issues pertinent to formation of granules, which is a process intimately connected to maturation of neutrophils from their precursors in the bone marrow. We further discuss possible mechanisms by which decisions are made regarding sorting of proteins to constitutive secretion or storage in granules and how degranulation of granule subsets is regulated. PMID:27558325

  17. Major neutrophil functions subverted by Porphyromonas gingivalis

    PubMed Central

    Olsen, Ingar; Hajishengallis, George

    2016-01-01

    Polymorphonuclear leukocytes (neutrophils) constitute an integrated component of the innate host defense in the gingival sulcus/periodontal pocket. However, the keystone periodontal pathogen Porphyromonas gingivalis has in the course of evolution developed a number of capacities to subvert this defense to its own advantage. The present review describes the major mechanisms that P. gingivalis uses to subvert neutrophil homeostasis, such as impaired recruitment and chemotaxis, resistance to granule-derived antimicrobial agents and to the oxidative burst, inhibition of phagocytic killing while promoting a nutritionally favorable inflammatory response, and delay of neutrophil apoptosis. Studies in animal models have shown that at least some of these mechanisms promote the dysbiotic transformation of the periodontal polymicrobial community, thereby leading to inflammation and bone loss. It is apparent that neutrophil–P. gingivalis interactions and subversion of innate immunity are key contributing factors to the pathogenesis of periodontal disease. PMID:26993626

  18. Defective neutrophil chemotaxis in juvenile periodontitis.

    PubMed Central

    Clark, R A; Page, R C; Wilde, G

    1977-01-01

    Neutrophil chemotaxis was evaluated in nine patients with juvenile periodontitis, with normal subjects and patients with the adult form of periodontitis as controls. Defective chemotactic responses were observed in neutrophils from seven of nine juvenile patients, and a reduced level of complement-derived chemotactic activity was demonstrated in serum from four patients. These determinations were normal in all the patients with adult periodontitis. Serum from five of the juvenile patients contained a heat-stable, non-dialyzable factor that markedly inhibited the chemotaxis of normal neutrophils. Thus the characteristic tissue destruction seen in juvenile periodontitis may be, at least in part, a consequence of a failure of host defense mechanisms. PMID:591063

  19. Clinical Microfluidics for Neutrophil Genomics and Proteomics

    PubMed Central

    Kotz, Kenneth T.; Xiao, Wenzong; Miller-Graziano, Carol; Qian, Wei-Jun; Russom, Aman; Warner, Elizabeth A.; Moldawer, Lyle L.; De, Asit; Bankey, Paul E.; Petritis, Brianne O.; Camp, David G.; Rosenbach, Alan E.; Goverman, Jeremy; Fagan, Shawn P.; Brownstein, Bernard H.; Irimia, Daniel; Xu, Weihong; Wilhelmy, Julie; Mindrinos, Michael N.; Smith, Richard D.; Davis, Ronald W.; Tompkins, Ronald G.; Toner, Mehmet

    2010-01-01

    Neutrophils play critical roles in modulating the immune response. We present a robust methodology for rapidly isolating neutrophils directly from whole blood and develop ‘on-chip’ processing for mRNA and protein isolation for genomics and proteomics. We validate this device with an ex vivo stimulation experiment and by comparison with standard bulk isolation methodologies. Lastly, we implement this tool as part of a near patient blood processing system within a multi-center clinical study of the immune response to severe trauma and burn injury. The preliminary results from a small cohort of patients in our study and healthy controls show a unique time-dependent gene expression pattern clearly demonstrating the ability of this tool to discriminate temporal transcriptional events of neutrophils within a clinical setting. PMID:20802500

  20. The structure of neutrophil defensin genes.

    PubMed

    Linzmeier, R; Michaelson, D; Liu, L; Ganz, T

    1993-04-26

    Defensins are a family of microbicidal peptides abundant in the granules of mammalian neutrophils, in rabbit alveolar macrophages, and in human and murine intestinal Paneth cells. We cloned and sequenced the genes of three neutrophil-specific defensins. Human HNP-1 and HNP-3 are nearly identical and rabbit NP-3a is closely related. The four known neutrophil-specific defensin genes are strikingly similar in the structure and organization of their three exons and two introns, but the three defensin genes expressed in macrophages (MCP-1 and -2) or Paneth cells (HD-5) are organized differently: HD-5 had only two exons, and MCP-1 and -2 have a comparatively short first intron. The diverse genomic organization of defensin genes may contribute to their cell-specific expression. PMID:8477861

  1. The role of neutrophils in inflammation resolution.

    PubMed

    Jones, Hefin R; Robb, Calum T; Perretti, Mauro; Rossi, Adriano G

    2016-04-01

    The fundamental role played by neutrophils for an efficient, acute inflammatory response has long been appreciated, with the underlying molecular and cellular mechanisms largely elucidated over the past decades. However, more recent work suggests that the biological functions exerted by this fascinating leucocyte are somewhat more extensive than previously acknowledged. Here we discuss how extravasated neutrophils govern the initiation of the resolution phase of inflammation by enabling activation of pro-resolving circuits to ensure the safe conclusion of the inflammatory response. The neutrophil 'alarm bell' on resolution is effected through release of soluble mediators as well as apoptotic bodies and other vesicles, which, in turn, can inform and modify the microenvironment ultimately leading to termination of the inflammatory response coinciding with re-establishment of tissue homeostasis and functionality. PMID:27021499

  2. Metabolic requirements for neutrophil extracellular traps formation

    PubMed Central

    Rodríguez-Espinosa, Oscar; Rojas-Espinosa, Oscar; Moreno-Altamirano, María Maximina Bertha; López-Villegas, Edgar Oliver; Sánchez-García, Francisco Javier

    2015-01-01

    As part of the innate immune response, neutrophils are at the forefront of defence against infection, resolution of inflammation and wound healing. They are the most abundant leucocytes in the peripheral blood, have a short lifespan and an estimated turnover of 1010 to 1011 cells per day. Neutrophils efficiently clear microbial infections by phagocytosis and by oxygen-dependent and oxygen-independent mechanisms. In 2004, a new neutrophil anti-microbial mechanism was described, the release of neutrophil extracellular traps (NETs) composed of DNA, histones and anti-microbial peptides. Several microorganisms, bacterial products, as well as pharmacological stimuli such as PMA, were shown to induce NETs. Neutrophils contain relatively few mitochondria, and derive most of their energy from glycolysis. In this scenario we aimed to analyse some of the metabolic requirements for NET formation. Here it is shown that NETs formation is strictly dependent on glucose and to a lesser extent on glutamine, that Glut-1, glucose uptake, and glycolysis rate increase upon PMA stimulation, and that NET formation is inhibited by the glycolysis inhibitor, 2-deoxy-glucose, and to a lesser extent by the ATP synthase inhibitor oligomycin. Moreover, when neutrophils were exposed to PMA in glucose-free medium for 3 hr, they lost their characteristic polymorphic nuclei but did not release NETs. However, if glucose (but not pyruvate) was added at this time, NET release took place within minutes, suggesting that NET formation could be metabolically divided into two phases; the first, independent from exogenous glucose (chromatin decondensation) and, the second (NET release), strictly dependent on exogenous glucose and glycolysis. PMID:25545227

  3. Chlorination of Taurine by Human Neutrophils

    PubMed Central

    Weiss, Stephen J.; Klein, Roger; Slivka, Adam; Wei, Maria

    1982-01-01

    The model hydrogen peroxide-myeloperoxidase-chloride system is capable of generating the powerful oxidant hypochlorous acid, which can be quantitated by trapping the generated species with the β-amino acid, taurine. The resultant stable product, taurine chloramine, can be quantitated by its ability to oxidize the sulfhydryl compound, 5-thio-2-nitro-benzoic acid to the disulfide, 5,5′-dithiobis(2-nitroben-zoic acid) or to oxidize iodide to iodine. Using this system, purified myeloperoxidase in the presence of chloride and taurine converted stoichiometric quantities of hydrogen peroxide to taurine chloramine. Chloramine generation was absolutely dependent on hydrogen peroxide, myeloperoxidase, and chloride and could be inhibited by catalase, myeloperoxidase inhibitors, or chloride-free conditions. In the presence of taurine, intact human neutrophils stimulated with either phorbol myristate acetate or opsonized zymosan particles generated a stable species capable of oxidizing 5-thio-2-nitrobenzoic acid or iodide. Resting cells did not form this species. The oxidant formed by the stimulated neutrophils was identified as taurine chloramine by both ultraviolet spectrophotometry and electrophoresis. Taurine chloramine formation by the neutrophil was dependent on the taurine concentration, time, and cell number. Neutrophil-dependent chloramine generation was inhibited by catalase, the myeloperoxidase inhibitors, azide, cyanide, or aminotriazole and by chloride-free conditions, but not by superoxide dismutase or hydroxyl radical scavengers. Thus, it appears that stimulated human neutrophils can utilize the hydrogen peroxide-myeloperoxidase-chloride system to generate taurine chloramine. Based on the demonstrated ability of the myeloperoxidase system to generate free hypochlorous acid we conclude that neutrophils chlorinate taurine by producing this powerful oxidant. The biologic reactivity and cytotoxic potential of hypochlorous acid and its chloramine derivatives

  4. A variable immunoreceptor in a subpopulation of human neutrophils

    PubMed Central

    Puellmann, Kerstin; Kaminski, Wolfgang E.; Vogel, Mandy; Nebe, C. Thomas; Schroeder, Josef; Wolf, Hans; Beham, Alexander W.

    2006-01-01

    Neutrophils are thought to rely solely on nonspecific immune mechanisms. Here we provide molecular biological, immunological, ultrastructural, and functional evidence for the presence of a T cell receptor (TCR)-based variable immunoreceptor in a 5–8% subpopulation of human neutrophils. We demonstrate that these peripheral blood neutrophils express variable and individual-specific TCRαβ repertoires and the RAG1/RAG2 recombinase complex. The proinflammatory cytokine granulocyte colony-stimulating factor regulates expression of the neutrophil immunoreceptor and RAG1/RAG2 in vivo. Specific engagement of the neutrophil TCR complex protects from apoptosis and stimulates secretion of the neutrophil-activating chemokine IL-8. Our results, which also demonstrate the presence of the TCR in murine neutrophils, suggest the coexistence of a variable and an innate host defense system in mammalian neutrophils. PMID:16983085

  5. Dynamics of neutrophil migration in lymph nodes during infection

    PubMed Central

    Chtanova, Tatyana; Schaeffer, Marie; Han, Seong-Ji; van Dooren, Giel G.; Nollmann, Marcelo; Herzmark, Paul; Chan, Shiao Wei; Satija, Harshita; Camfield, Kristin; Aaron, Holly; Striepen, Boris; Robey, Ellen A.

    2008-01-01

    Summary While the signals that control neutrophil migration from the blood to sites of infection have been well characterized, little is known about their migration patterns within lymph nodes, or the strategies that neutrophils use to find their local sites of action. To address these questions, we used two-photon scanning laser microscopy (TPSLM) to examine neutrophil migration in intact lymph nodes during infection with an intracellular parasite, Toxoplasma gondii. We find that neutrophils form both small, transient or large, persistent swarms via a strikingly coordinated migration pattern. We provide evidence that cooperative action of neutrophils and parasite egress from host cells can trigger swarm formation. Neutrophil swarm formation coincides in space and time with the removal of macrophages that line the subcapsular sinus of the lymph node. Our data provide insights into the cellular mechanisms underlying neutrophil swarming and suggest new roles for neutrophils in shaping immune responses. PMID:18718768

  6. Neutrophils come of age in chronic inflammation

    PubMed Central

    Caielli, Simone; Banchereau, Jacques; Pascual, Virginia

    2013-01-01

    Neutrophils have long been known to participate in acute inflammation, but a role in chronic inflammatory and autoimmune diseases is now emerging. These cells are key players in the recognition and elimination of pathogens, but they also sense self components, including nucleic acids and products of sterile tissue damage. While this normally contributes to tissue repair, it can also lead to the release of highly immunogenic products that can trigger and/or amplify autoimmune pathogenic loops. Understanding the mechanisms that underlie neutrophil activation, migration, survival and their various forms of death in health and disease might provide us with new approaches to treat chronic inflammatory conditions. PMID:23127555

  7. Nucleotide chloramines and neutrophil-mediated cytotoxicity.

    PubMed

    Bernofsky, C

    1991-03-01

    Hypochlorite is a reactive oxidant formed as an end product of the respiratory burst in activated neutrophils. It is responsible for killing bacteria and has been implicated in neutrophil-mediated tissue injury associated with the inflammatory process. Although hypochlorite is a potent cytotoxic agent, the primary mechanism by which it exerts its effect is unclear. This review examines evidence that the primary event in hypochlorite cytotoxicity is the loss of adenine nucleotides from the target cell. This loss appears to be mediated by the formation of adenine nucleotide chloramines which are reactive intermediates with a free radical character and are capable of forming stable ligands with proteins and nucleic acids. PMID:1848195

  8. Xylose fermentation to ethanol

    SciTech Connect

    McMillan, J.D.

    1993-01-01

    The past several years have seen tremendous progress in the understanding of xylose metabolism and in the identification, characterization, and development of strains with improved xylose fermentation characteristics. A survey of the numerous microorganisms capable of directly fermenting xylose to ethanol indicates that wild-type yeast and recombinant bacteria offer the best overall performance in terms of high yield, final ethanol concentration, and volumetric productivity. The best performing bacteria, yeast, and fungi can achieve yields greater than 0.4 g/g and final ethanol concentrations approaching 5%. Productivities remain low for most yeast and particularly for fungi, but volumetric productivities exceeding 1.0 g/L-h have been reported for xylose-fermenting bacteria. In terms of wild-type microorganisms, strains of the yeast Pichia stipitis show the most promise in the short term for direct high-yield fermentation of xylose without byproduct formation. Of the recombinant xylose-fermenting microorganisms developed, recombinant E. coli ATTC 11303 (pLOI297) exhibits the most favorable performance characteristics reported to date.

  9. Migration of canine neutrophils to chitin and chitosan.

    PubMed

    Usami, Y; Okamoto, Y; Minami, S; Matsuhashi, A; Kumazawa, N H; Tanioka, S; Shigemasa, Y

    1994-12-01

    Suspension of chitin and chitosan particles (mean size of 1 micron) were found to attract canine neutrophils chemotactically as determined by a checkerboard assay through polycarbonate filter with 5 microns pore size in Blind well chamber. Suspension of chitin induced chemokinetic migrations of the neutrophils. These evidences might reflect accumulation of neutrophils to chitin- and chitosan-implanted regions in dogs. PMID:7696425

  10. Neutrophilic dermatoses and inflammatory bowel diseases.

    PubMed

    Marzano, A V; Menicanti, C; Crosti, C; Trevisan, V

    2013-04-01

    Pyoderma gangrenosum (PG) and Sweet's Syndrome (SS) are inflammatory skin diseases caused by the accumulation of neutrophils in the skin and, rarely, in internal organs, which led to coining the term of neutrophilic dermatoses (ND) to define these conditions. Recently, ND have been included among the autoinflammatory diseases, which are forms due to mutations of genes regulating the innate immune responses. Both PG and SS are frequently associated with inflammatory bowel diseases (IBD), a group of chronic intestinal disorders which comprises ulcerative colitis and Crohn's disease and whose pathogenesis involves both the innate and adaptive immunity in genetically prone individuals. Patients with IBD develop PG in 1-3% of cases, while SS is rarer. PG presents with deep erythematous-to-violaceous painful ulcers with undermined borders, but bullous, pustular, and vegetative variants can also occur. SS, also known as acute febrile neutrophilic dermatosis, is characterized by the abrupt onset of fever, peripheral neutrophilia, tender erythematous skin lesions and a diffuse neutrophilic dermal infiltrate. In this review that will be focused on PG and SS, we will describe also the aseptic abscesses syndrome, a new entity within the spectrum of ND which frequently occurs in association with IBD and is characterized by deep abscesses mainly involving the spleen and skin and by polymorphic cutaneous manifestations including PG- and SS-like lesions. PMID:23588144

  11. Myeloperoxidase in human neutrophil host defence.

    PubMed

    Nauseef, William M

    2014-08-01

    Human neutrophils represent the predominant leucocyte in circulation and the first responder to infection. Concurrent with ingestion of microorganisms, neutrophils activate and assemble the NADPH oxidase at the phagosome, thereby generating superoxide anion and hydrogen peroxide. Concomitantly, granules release their contents into the phagosome, where the antimicrobial proteins and enzymes synergize with oxidants to create an environment toxic to the captured microbe. The most rapid and complete antimicrobial action by human neutrophils against many organisms relies on the combined efforts of the azurophilic granule protein myeloperoxidase and hydrogen peroxide from the NADPH oxidase to oxidize chloride, thereby generating hypochlorous acid and a host of downstream reaction products. Although individual components of the neutrophil antimicrobial response exhibit specific activities in isolation, the situation in the environment of the phagosome is far more complicated, a consequence of multiple and complex interactions among oxidants, proteins and their by-products. In most cases, the cooperative interactions among the phagosomal contents, both from the host and the microbe, culminate in loss of viability of the ingested organism. PMID:24844117

  12. Interaction of neutrophils with vascular smooth muscle: identification of a neutrophil-derived relaxing factor.

    PubMed

    Rimele, T J; Sturm, R J; Adams, L M; Henry, D E; Heaslip, R J; Weichman, B M; Grimes, D

    1988-04-01

    Experiments were designed to study the interaction of rat peritoneal neutrophils with the vascular smooth muscle of the rat aorta. Rings of aorta, suspended in 10-ml organ chambers containing a physiologic salt solution, were precontracted with phenylephrine. Neutrophils (1 X 10(5) -4 X 10(7) cells/organ chamber) caused a cell number-dependent relaxation of the rat aorta that was augmented by superoxide dismutase (100 U/ml) or changing the oxygen content from 95 to 21%. The neutrophil-induced smooth muscle relaxation occurred in rings with and without endothelium and in rings precontracted with increasing concentrations of phenylephrine, prostaglandin F2 alpha or KCI. Catalase (1000 U/ml) and mannitol (1 X 10(-3) M) did not block the neutrophil-induced relaxation, whereas phenazine methosulfate (1 X 10(-5) M), hydroquinone (3 X 10(-5) M) and methylene blue (1 X 10(-5) M) reversed the neutrophil-induced relaxation. Pre-exposure of endothelium-rubbed rings to neutrophils (2 X 10(7) cells/organ chamber; 15 min) depressed the subsequent concentration-response curve to phenylephrine but augmented the relaxation induced by the phosphodiesterase inhibitor zaprinast (1 X 10(-5) M). The effluent from a column restraining the neutrophils induced a relaxation of endothelium-rubbed aortic rings that was prevented by methylene blue (1 X 10(-5) M). These results demonstrate that rat neutrophils release a factor that has a pharmacologic profile similar to that previously reported for the relaxing factor released from the vascular endothelium. PMID:3129547

  13. Effects of phosphodiester and phosphorothioate ODN2216 on leukotriene synthesis in human neutrophils and neutrophil apoptosis.

    PubMed

    Viryasova, Galina M; Golenkina, Ekaterina A; Galkina, Svetlana I; Gaponova, Tatjana V; Romanova, Yulia M; Sud'ina, Galina F

    2016-06-01

    Polymorphonuclear leukocytes (PMNLs, neutrophils) play a major role in the initiation and resolution of the inflammatory response, and neutrophil apoptosis is a critical step in resolving inflammation. We examined the effects of oligodeoxynucleotide (ODN) species with different numbers of phosphodiester and phosphorothioate bonds on leukotriene synthesis in PMNLs and on neutrophil apoptosis. Our modifications were based on the well-known ODN2216 molecule (Krug et al., 2001). Treatment of cultured human neutrophils with ODN2216 accelerated apoptosis except in the case of a species with only phosphodiester bonds. The ODNs with poly(g) (phosphorothioate) sequences at both ends and a phosphodiester inner core had maximal effects on leukotriene synthesis in neutrophils and inhibited formation of 5-lipoxygenase metabolites. Addition of phosphodiester and phosphorothioate ODNs to PMNLs produced distinct effects on superoxide and nitric oxide formation: phosphorothioate-containing ODNs concomitantly stimulated production of nitric oxide and superoxide, which may rapidly combine to generate peroxynitrite. Altogether, our results describe strong activation of neutrophil's cellular responses by phosphorothioate ODN2216. We propose that phosphorothioate modification of ODNs represents a potential mechanism of PMNL activation. PMID:27036535

  14. Pneumolysin activates neutrophil extracellular trap formation.

    PubMed

    G Nel, J; Theron, A J; Durandt, C; Tintinger, G R; Pool, R; Mitchell, T J; Feldman, C; Anderson, R

    2016-06-01

    The primary objective of the current study was to investigate the potential of the pneumococcal toxin, pneumolysin (Ply), to activate neutrophil extracellular trap (NET) formation in vitro. Isolated human blood neutrophils were exposed to recombinant Ply (5-20 ng ml(-1) ) for 30-90 min at 37°C and NET formation measured using the following procedures to detect extracellular DNA: (i) flow cytometry using Vybrant® DyeCycle™ Ruby; (ii) spectrofluorimetry using the fluorophore, Sytox(®) Orange (5 μM); and (iii) NanoDrop(®) technology. These procedures were complemented by fluorescence microscopy using 4', 6-diamino-2-phenylindole (DAPI) (nuclear stain) in combination with anti-citrullinated histone monoclonal antibodies to visualize nets. Exposure of neutrophils to Ply resulted in relatively rapid (detected within 30-60 min), statistically significant (P < 0·05) dose- and time-related increases in the release of cellular DNA impregnated with both citrullinated histone and myeloperoxidase. Microscopy revealed that NETosis appeared to be restricted to a subpopulation of neutrophils, the numbers of NET-forming cells in the control and Ply-treated systems (10 and 20 ng ml(-1) ) were 4·3 (4·2), 14.3 (9·9) and 16·5 (7·5), respectively (n = 4, P < 0·0001 for comparison of the control with both Ply-treated systems). Ply-induced NETosis occurred in the setting of retention of cell viability, and apparent lack of involvement of reactive oxygen species and Toll-like receptor 4. In conclusion, Ply induces vital NETosis in human neutrophils, a process which may either contribute to host defence or worsen disease severity, depending on the intensity of the inflammatory response during pneumococcal infection. PMID:26749379

  15. Changes in Neutrophil Functions in Astronauts

    NASA Technical Reports Server (NTRS)

    Kaur, Indreshpal; Simons, Elizabeth R.; Castro, Victoria; Pierson, Duane L.

    2002-01-01

    Neutrophil functions (phagocytosis, oxidative burst, degranulation) and expression of surface markers involved in these functions were studied in 25 astronauts before and after 4 space shuttle missions. Space flight duration ranged from 5 to 11 days. Blood specimens were obtained 10 days before launch (preflight or L-10), immediately after landing (landing or R+0), and again at 3 days after landing (postflight or R+3). Blood samples were also collected from 9 healthy low-stressed subjects at 3 time points simulating a 10-day shuttle mission. The number of neutrophils increased at landing by 85 percent when compared to the preflight numbers. Neutrophil functions were studied in whole blood using flow cytometric methods. Phagocytosis of E.coli-FITC and oxidative burst capacity of the neutrophils following the 9 to 11 day missions were lower at all three sampling points than the mean values for control subjects. Phagocytosis and oxidative burst capacity of the astronauts was decreased even 10-days before space flight. Mission duration appears to be a factor in phagocytic and oxidative functions. In contrast, following the short-duration (5-days) mission, these functions were unchanged from control values. No consistent changes in degranulation were observed following either short or medium length space missions. The expression of CD16, CD32, CD11a, CD11b, CD11c, L-selectin and CD36 was measured and found to be variable. Specifically, CD16 and CD32 did not correlate with the changes in oxidative burst and phagocytosis. We can conclude from this study that the stresses associated with space flight can alter the important functions of neutrophils.

  16. [Perfluorocarbon emulsions and other corpuscular systems influence on neutrophil activity].

    PubMed

    Shekhtman, D G; Safronova, V G; Sklifas, A N; Alovskaia, A A; Gapeev, A B; Obraztsov, V V; Chemeris, N K

    1997-01-01

    Influence of perfluorodecalin, perfluoromethilcyclohexylpiperidine, perfluorotributylamine emulsions on active oxygen form (AOF) generation by neutrophils has been studied. All investigated emulsions stabilized both proxanol 268 and egg yolk phospholipids inhibited PMA-stimulated neutrophil activity. Castor oil emulsion also inhibited the neutrophil activity. Neutrophil response for chemotactic peptide, was unchanged in the presence of all tested emulsions. We suppose that fast hydrophobic attachment of inert submicrone emulsion particles to cell surface provokes alteration of neutrophil plasma membrane function resulting in a decrease of AOF generation. PMID:9490112

  17. Inhibition of Neutrophil Exocytosis Ameliorates Acute Lung Injury in Rats

    PubMed Central

    Uriarte, Silvia M.; Rane, Madhavi J.; Merchant, Michael L.; Jin, Shunying; Lentsch, Alex B.; Ward, Richard A.; McLeish, Kenneth R.

    2013-01-01

    Exocytosis of neutrophil granules contributes to acute lung injury (ALI) induced by infection or inflammation, suggesting that inhibition of neutrophil exocytosis in vivo could be a viable therapeutic strategy. This study was conducted to determine the effect of a cell-permeable fusion protein that inhibits neutrophil exocytosis (TAT-SNAP-23) on ALI using an immune complex deposition model in rats. The effect of inhibition of neutrophil exocytosis by intravenous administration of TAT-SNAP-23 on ALI was assessed by albumin leakage, neutrophil infiltration, lung histology, and proteomic analysis of bronchoalveolar lavage fluid (BALf). Administration of TAT-SNAP-23, but not TAT-Control, significantly reduced albumin leakage, total protein levels in the BALf, and intra-alveolar edema and hemorrhage. Evidence that TAT-SNAP-23 inhibits neutrophil exocytosis included a reduction in plasma membrane CD18 expression by BALf neutrophils and a decrease in neutrophil granule proteins in BALf. Similar degree of neutrophil accumulation in the lungs and/or BALf suggests that TAT-SNAP-23 did not alter vascular endothelial cell function. Proteomic analysis of BALf revealed that components of the complement and coagulation pathways were significantly reduced in BALf from TAT-SNAP-23-treated animals. Our results indicate that administration of a TAT-fusion protein that inhibits neutrophil exocytosis reduces in vivo ALI. Targeting neutrophil exocytosis is a potential therapeutic strategy to ameliorate ALI. PMID:23364427

  18. Neutrophil extracellular traps: Their role in periodontal disease

    PubMed Central

    Kolaparthy, Lakshmi Kanth; Sanivarapu, Sahitya; Swarna, Chakrapani; Devulapalli, Narasimha Swamy

    2014-01-01

    Neutrophils are the first line of innate immune defense against infectious diseases. Since their discovery, they have always been considered tissue-destructive cells responsible for inflammatory tissue damage occurring during infections. Extensive research in the field of neutrophil cell biology and their role skewing the immune response in various infections or inflammatory disorders revealed their importance in the regulation of immune response. Neutrophils also release neutrophil extracellular traps (NETs) for the containment of infection and inflammation along with other antimicrobial molecules. Activated neutrophils provide signals for the activation and maturation of macrophages as well as dendritic cells. Neutrophils are also involved in the regulation of T-cell immune response against various pathogens and tumor antigens. Thus, the present review is intended to highlight the emerging role of neutrophil extracellular trap production in the regulation of immune response and its role in periodontal disease. PMID:25624623

  19. Neutrophil extracellular traps: Their role in periodontal disease.

    PubMed

    Kolaparthy, Lakshmi Kanth; Sanivarapu, Sahitya; Swarna, Chakrapani; Devulapalli, Narasimha Swamy

    2014-01-01

    Neutrophils are the first line of innate immune defense against infectious diseases. Since their discovery, they have always been considered tissue-destructive cells responsible for inflammatory tissue damage occurring during infections. Extensive research in the field of neutrophil cell biology and their role skewing the immune response in various infections or inflammatory disorders revealed their importance in the regulation of immune response. Neutrophils also release neutrophil extracellular traps (NETs) for the containment of infection and inflammation along with other antimicrobial molecules. Activated neutrophils provide signals for the activation and maturation of macrophages as well as dendritic cells. Neutrophils are also involved in the regulation of T-cell immune response against various pathogens and tumor antigens. Thus, the present review is intended to highlight the emerging role of neutrophil extracellular trap production in the regulation of immune response and its role in periodontal disease. PMID:25624623

  20. Fermented and Acidified Vegetables

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetables may be preserved by fermentation, direct acidification, or a combination of these along with pasteurization or refrigeration and selected additives to yield products with an extended shelf life and enhanced safety. Organic acids such as lactic, acetic, sorbic and benzoic acids along with ...

  1. Distinct Oral Neutrophil Subsets Define Health and Periodontal Disease States.

    PubMed

    Fine, N; Hassanpour, S; Borenstein, A; Sima, C; Oveisi, M; Scholey, J; Cherney, D; Glogauer, M

    2016-07-01

    Neutrophils exit the vasculature and swarm to sites of inflammation and infection. However, these cells are abundant in the healthy, inflammation-free human oral environment, suggesting a unique immune surveillance role within the periodontium. We hypothesize that neutrophils in the healthy oral cavity occur in an intermediary parainflammatory state that allows them to interact with and contain the oral microflora without eliciting a marked inflammatory response. Based on a high-throughput screen of neutrophil CD (cluster of differentiation) marker expression and a thorough literature review, we developed multicolor flow cytometry panels to determine the surface marker signatures of oral neutrophil subsets in periodontal health and disease. We define here 3 distinct neutrophil subsets: resting/naive circulatory neutrophils, parainflammatory neutrophils found in the healthy oral cavity, and proinflammatory neutrophils found in the oral cavity during chronic periodontal disease. Furthermore, parainflammatory neutrophils manifest as 2 distinct subpopulations-based on size, granularity, and expression of specific CD markers-and exhibit intermediate levels of activation as compared with the proinflammatory oral neutrophils. These intermediately activated parainflammatory populations occur in equal proportions in the healthy oral cavity, with a shift to one highly activated proinflammatory neutrophil population in chronic periodontal disease. This work is the first to identify and characterize oral parainflammatory neutrophils that interact with commensal biofilms without inducing an inflammatory response, thereby demonstrating that not all neutrophils trafficking through periodontal tissues are fully activated. In addition to establishing possible diagnostic and treatment monitoring biomarkers, this oral neutrophil phenotype model builds on existing literature suggesting that the healthy periodontium may be in a parainflammatory state. PMID:27270666

  2. L-lysine fermentation.

    PubMed

    Anastassiadis, Savas

    2007-01-01

    Amino acids are the basic bioelements of proteins, which are the most important macromolecules for the functions of humans and animals. Out of the 20 L-amino acids, ecumenically found in most of living organisms, L-lysine is one of the 9 amino acids which are essential for human and animal nutrition. L-lysine is useful as medicament, chemical agent, food material (food industry) and feed additive (animal food). Its demand has been steadily increasing in recent years and several hundred thousands tones of L-lysine (about 800,000 tones/year) are annually produced worldwide almost by microbial fermentation. The stereospecificity of amino acids (the L isomer) makes the fermentation advantageous compared with synthetic processes. Mutant auxotrophic or resistant to certain chemicals strains of so-called gram positive coryneform bacteria are generally used, including the genera Brevibacterium and Corynebacterium, united to the genus. The significance of Research and Development increased rapidly since the discovery of fermentative amino acid production in the fifties (S. Kinoshita et al., Proceedings of the International Symposium on Enzyme Chemistry 2:464-468 (1957)), leading to innovative fermentation processes which replaced the classical manufacturing methods of L-lysine like acid hydrolysis. L-Lysine is separated and purified by suitable downstream processes involving classical separation or extraction methods (ultrafiltration or centrifugation, separation or ion exchange extraction, crystallization, drying) and is sold as a powder. Alternatively, spray dried pellets or liquid fermentation broth can be used as animal feed supplement. On behalf of today's strong competition in amino acid industry, Biotechnology companies are continuously aiming in innovative research developments and use complex management concepts and business strategies, towards gaining market leadership in the field of amino acid production. PMID:19075830

  3. Induction of neutrophil chemotactic factor production by staurosporine in rat peritoneal neutrophils

    PubMed Central

    Edamatsu, Takeo; Xiao, Yi-Qun; Tanabe, Jun-ichi; Mue, Suetsugu; Ohuchi, Kazuo

    1997-01-01

    Incubation of rat peritoneal neutrophils in medium containing various concentrations of staurosporine (6.4–64 nM) increased the neutrophil chemotactic activity in the conditioned medium in a time- and concentration-dependent manner. Separation of the neutrophil chemotactic activity in the conditioned medium by isoelectric focusing revealed that staurosporine (64 nM) stimulated the production of basic (pH>8) neutrophil chemotactic factors, while TPA (12-O-tetradecanoylphorbol 13-acetate, 49 nM) stimulated the production of both basic (pH>8) and acidic (pH 5) neutrophil chemotactic factors. Determination by immunoassay of cytokine-induced neutrophil chemoattractant (CINC)-1, -2α, -2β and -3 in the conditioned medium at 4 h revealed that staurosporine (64 nM) and TPA (49 nM) strongly stimulated the production of CINC-3 (staurosporine, 133.0±3.8; TPA, 26.7±1.0; control, 0.32±0.01 ng ml−1, means±s.e.mean from four samples) compared to CINC-1 (staurosporine, 55.0±1.2; TPA, 12.2±0.3; control, 0.56±0.01 ng ml−1), and CINC-2α (staurosporine, 1.09±0.03; TPA, 0.90±0.02; control, <0.10 ng ml−1). CINC-2β was below the detectable amount (<0.078 ng ml−1). The level of CINC-3 mRNA in the peritoneal neutrophils was determined by reverse transcription-polymerase chain reaction. Staurosporine (64 nM) and TPA (49 nM) enhanced the level of CINC-3 mRNA time-dependently, but had no effect on GAPDH mRNA levels. Production of staurosporine-induced neutrophil chemotactic factor was inhibited by the protein kinase C inhibitors, H-7 (IC50, 12.3 μM), calphostin C (IC50, 0.77 μM) and Ro 31-8425 (24.3% inhibition at 10 μM), and by the tyrosine kinase inhibitor, genistein (IC50, 68.5 μM). Production of TPA-induced neutrophil chemotactic factor was also inhibited by both inhibitors. Both the staurosporine- and the TPA-induced increase in CINC-3 mRNA levels were suppressed by H-7 and genistein. PMID:9283699

  4. Neutrophil extracellular traps in physiology and pathology

    PubMed Central

    Manda, Aneta; Araźna, Magdalena; Demkow, Urszula A.

    2014-01-01

    Neutrophil extracellular traps (NETs) are developed by nature to protect the body from furious invaders. On the other hand NET s can play an important role in human pathology. Recent studies have shown that neutrophils are able to perform beneficial suicide to create an unique microbicidal net composed from cellular content attached to chromatic frame. It is a powerful tool that primary serve as protector from severe infections, but this weapon is also a double ended sword of the immunity. If overproduced NET s provoke certain autoimmune diseases, coagulation disorders and even cancer metastases. Moreover, due to the competition between host and pathogens, the microorganism have developed a width repertoire of sophisticated evading mechanisms, like creation of polysaccharide capsule or changes in cell wall charge. Therefore it is important to increase the knowledge about paths underlying NET s formation and degradation processes if we want to efficiently fight with bacterial infections and certain diseases. PMID:26155111

  5. [Inhibition of neutrophil adhesion by pectic galacturonans].

    PubMed

    Popov, S V; Ovodova, R G; Popova, G Iu; Nikitina, I R; Ovodov, Iu S

    2007-01-01

    The inhibition of the adhesion of neutrophils to fibronectin by the fragments of the main galacturonan chain of the following pectins was demonstrated: comaruman from the marsh cinquefoil Comarum polustre, bergenan from the Siberian tea Bergenia crassifolia, lemnan from the duckweed Lemna minor, zosteran from the seagrass Zostera marina, and citrus pectin. The parent pectins, except for comaruman, did not affect the cell adhesion. Galacturonans prepared from the starting pectins by acidic hydrolysis were shown to reduce the neutrophil adhesion stimulated by phorbol 12-myristate 13-acetate (1.625 microM) and dithiothreitol (0.5 mM) at a concentration of 50-200 microg/ml. The presence of carbohydrate chains with molecular masses higher than 300, from 100 to 300, and from 50 to 100 kDa in the galacturonan fractions was proved by membrane ultrafiltration. PMID:17375675

  6. Neutrophil myeloperoxidase destruction by ultraviolet irradiation

    SciTech Connect

    Hanker, J.; Giammara, B.; Strauss, G.

    1988-01-01

    The peroxidase activity of enriched leukocyte preparations on coverslips was determined cytochemically with a newly developed method. The techniques utilizes diaminobenzidine medium and cupric nitrate intensification and is suitable for analysis with light microscopy, SEM, and TEM. Blood specimens from control individuals were studied with and without in vitro UV irradiation and compared with those from psoriasis patients exposed therapeutically to various types of UV in phototherapy. All UV irradiated samples showed diminished neutrophil myeloperoxidase (MP) activity although that of the principal eosinophil peroxidase was unaffected. The SEMs supported the contention that decreased neutrophil MP activity might be related to UV induced degranulation. It is believed to be possible, eventually, to equate the observed MP degranulation effect after UV irradiation with diminished ability to fight bacterial infections.

  7. Prevention of vascular inflammation by nanoparticle targeting of adherent neutrophils

    NASA Astrophysics Data System (ADS)

    Wang, Zhenjia; Li, Jing; Cho, Jaehyung; Malik, Asrar B.

    2014-03-01

    Inflammatory diseases such as acute lung injury and ischaemic tissue injury are caused by the adhesion of a type of white blood cell--polymorphonuclear neutrophils--to the lining of the circulatory system or vascular endothelium and unchecked neutrophil transmigration. Nanoparticle-mediated targeting of activated neutrophils on vascular endothelial cells at the site of injury may be a useful means of directly inactivating neutrophil transmigration and hence mitigating vascular inflammation. Here, we report a method employing drug-loaded albumin nanoparticles, which efficiently deliver drugs into neutrophils adherent to the surface of the inflamed endothelium. Using intravital microscopy of tumour necrosis factor-α-challenged mouse cremaster post-capillary venules, we demonstrate that fluorescently tagged albumin nanoparticles are largely internalized by neutrophils adherent to the activated endothelium via cell surface Fcɣ receptors. Administration of albumin nanoparticles loaded with the spleen tyrosine kinase inhibitor, piceatannol, which blocks `outside-in' β2 integrin signalling in leukocytes, detached the adherent neutrophils and elicited their release into the circulation. Thus, internalization of drug-loaded albumin nanoparticles into neutrophils inactivates the pro-inflammatory function of activated neutrophils, thereby offering a promising approach for treating inflammatory diseases resulting from inappropriate neutrophil sequestration and activation.

  8. Acetaminophen prevents oxidative burst and delays apoptosis in human neutrophils.

    PubMed

    Freitas, Marisa; Costa, Vera M; Ribeiro, Daniela; Couto, Diana; Porto, Graça; Carvalho, Félix; Fernandes, Eduarda

    2013-05-23

    Acetaminophen is a frequently prescribed over-the-counter drug to reduce fever and pain in the event of inflammatory process. As neutrophils are relevant cells in inflammatory processes, the putative interaction of acetaminophen with these cells, if present, would be of paramount importance. The present study was undertaken to evaluate the effect of acetaminophen in human neutrophils' oxidative burst and lifespan in vitro. The obtained results demonstrate that acetaminophen efficiently modulates neutrophils' oxidative burst in phorbol myristate acetate-activated neutrophils, in a concentration-dependent manner, at in vivo relevant concentrations. It was clearly demonstrated that acetaminophen is a strong scavenger of HOCl and H2O2, which probably contributed to the effect observed in neutrophils. Acetaminophen also induced the depletion of glutathione in stimulated neutrophils, suggesting its transformation into a reactive intermediate. Obtained results further revealed that acetaminophen affects programmed cell death of human neutrophils, resulting in a delay of previously stimulated neutrophils-mediated apoptosis. Overall, our data suggested that acetaminophen has considerable potential to be included in anti-inflammatory therapeutic strategies, by preventing biological damage induced by an excessive production of reactive species generated in activated neutrophils and by extending the lifespan of neutrophils, favoring the elimination of pathogens, thus contributing to tissue healing and resolution of inflammation. PMID:23518321

  9. Leukotriene B4-Neutrophil Elastase Axis Drives Neutrophil Reverse Transendothelial Cell Migration In Vivo.

    PubMed

    Colom, Bartomeu; Bodkin, Jennifer V; Beyrau, Martina; Woodfin, Abigail; Ody, Christiane; Rourke, Claire; Chavakis, Triantafyllos; Brohi, Karim; Imhof, Beat A; Nourshargh, Sussan

    2015-06-16

    Breaching endothelial cells (ECs) is a decisive step in the migration of leukocytes from the vascular lumen to the extravascular tissue, but fundamental aspects of this response remain largely unknown. We have previously shown that neutrophils can exhibit abluminal-to-luminal migration through EC junctions within mouse cremasteric venules and that this response is elicited following reduced expression and/or functionality of the EC junctional adhesion molecule-C (JAM-C). Here we demonstrate that the lipid chemoattractant leukotriene B4 (LTB4) was efficacious at causing loss of venular JAM-C and promoting neutrophil reverse transendothelial cell migration (rTEM) in vivo. Local proteolytic cleavage of EC JAM-C by neutrophil elastase (NE) drove this cascade of events as supported by presentation of NE to JAM-C via the neutrophil adhesion molecule Mac-1. The results identify local LTB4-NE axis as a promoter of neutrophil rTEM and provide evidence that this pathway can propagate a local sterile inflammatory response to become systemic. PMID:26047922

  10. Capsular polysaccharides from Cryptococcus neoformans modulate production of neutrophil extracellular traps (NETs) by human neutrophils.

    PubMed

    Rocha, Juliana D B; Nascimento, Michelle T C; Decote-Ricardo, Debora; Côrte-Real, Suzana; Morrot, Alexandre; Heise, Norton; Nunes, Marise P; Previato, José Osvaldo; Mendonça-Previato, Lucia; DosReis, George A; Saraiva, Elvira M; Freire-de-Lima, Célio G

    2015-01-01

    In the present study, we characterized the in vitro modulation of NETs (neutrophil extracellular traps) induced in human neutrophils by the opportunistic fungus Cryptococcus neoformans, evaluating the participation of capsular polysaccharides glucuronoxylomanan (GXM) and glucuronoxylomannogalactan (GXMGal) in this phenomenon. The mutant acapsular strain CAP67 and the capsular polysaccharide GXMGal induced NET production. In contrast, the wild-type strain and the major polysaccharide GXM did not induce NET release. In addition, C. neoformans and the capsular polysaccharide GXM inhibited PMA-induced NET release. Additionally, we observed that the NET-enriched supernatants induced through CAP67 yeasts showed fungicidal activity on the capsular strain, and neutrophil elastase, myeloperoxidase, collagenase and histones were the key components for the induction of NET fungicidal activity. The signaling pathways associated with NET induction through the CAP67 strain were dependent on reactive oxygen species (ROS) and peptidylarginine deiminase-4 (PAD-4). Neither polysaccharide induced ROS production however both molecules blocked the production of ROS through PMA-activated neutrophils. Taken together, the results demonstrate that C. neoformans and the capsular component GXM inhibit the production of NETs in human neutrophils. This mechanism indicates a potentially new and important modulation factor for this fungal pathogen. PMID:25620354

  11. Leptin as a uremic toxin interferes with neutrophil chemotaxis.

    PubMed

    Ottonello, Luciano; Gnerre, Paola; Bertolotto, Maria; Mancini, Marina; Dapino, Patrizia; Russo, Rodolfo; Garibotto, Giacomo; Barreca, Tommaso; Dallegri, Franco

    2004-09-01

    Leptin is a pleiotropic molecule involved in energy homeostasis, hematopoiesis, inflammation, and immunity. Hypoleptinemia characterizing starvation has been strictly related to increased susceptibility to infection secondary to malnutrition. Nevertheless, ESRD is characterized by high susceptibility to bacterial infection despite hyperleptinemia. Defects in neutrophils play a crucial role in the infectious morbidity, and several uremic toxins that are capable of depressing neutrophil functions have been identified. Only a few and contrasting reports about leptin and neutrophils are available. This study provides evidence that leptin inhibits neutrophil migration in response to classical chemoattractants. Moreover, serum from patients with ESRD inhibits migration of normal neutrophils in response to N-formyl-methionyl-leucyl-phenylalanine with a strict correlation between serum leptin levels and serum ability to suppress neutrophil locomotion. Finally, the serum inhibitory activity can be effectively prevented by immune depletion of leptin. The results also show, however, that leptin by itself is endowed with chemotactic activity toward neutrophils. The two activities-inhibition of the cell response to chemokines and stimulation of neutrophil migration-could be detected at similar concentrations. On the contrary, neutrophils exposed to leptin did not display detectable [Ca(2+)](i) mobilization, oxidant production, or beta(2)-integrin upregulation. The results demonstrate that leptin is a pure chemoattractant devoid of secretagogue properties that are capable of inhibiting neutrophil chemotaxis to classical neutrophilic chemoattractants. Taking into account the crucial role of neutrophils in host defense, the leptin-mediated ability of ERSD serum to inhibit neutrophil chemotaxis appears as a potential mechanism that contributes to the establishment of infections in ERSD. PMID:15339985

  12. Peripheral neutrophils after allergic asthmatic reactions.

    PubMed

    Asman, B; Strand, V; Bylin, G; Bergström, K

    1997-01-01

    The response of peripheral neutrophils was studied in 16 patients with allergic asthma after challenge with birch/grass pollen allergen, in order to identify inflammatory markers associated with only the early asthmatic reaction and those associated with both early and late asthmatic reactions. The allergen challenge proceeded until the patients had an early asthmatic reaction with 100% increase in specific airway resistance. Bronchoconstriction after allergen challenge was monitored hourly over 9 h and finally after 18 h, by measurement of the forced expiratory volume in 1 s. Seven patients had a late reaction, defined as a decrease in forced expiratory volume in 1 s of more than 15%. Blood samples were taken before and 18 h after challenge. After allergen challenge (18 h) the blood concentration of neutrophils in patients with a late asthmatic reaction was 1.4 times higher than before challenge and there was a tendency for increased Fc gamma receptor-mediated chemiluminescence. Lewis X-antigen (CD 15), which is associated with endothelial adhesion and extravasation, significantly decreased at the same time. Neutrophils were incubated with the tetrapeptide arginine-glycine-aspartate-serine before and 18 h after allergen challenge. Both patient groups showed an increased Fc gamma receptor-mediated chemiluminescence and a decreased Fc gamma receptor membrane expression following allergen challenge, suggesting a preactivation. In conclusion, patients with a dual asthmatic reaction show a sustained primed inflammatory response and primed neutrophils compared with patients with only an early reaction when measured after the decline of clinical symptoms provoked by allergen challenge. PMID:9352381

  13. Characterization of prostanoid receptors on rat neutrophils.

    PubMed Central

    Wise, H; Jones, R L

    1994-01-01

    1. The effects of various prostanoid agonists have been compared on the increase in intracellular free calcium ([Ca2+]i) and the aggregation reaction of rat peritoneal neutrophils induced by N-formyl-L-methionyl-L-leucyl-L-phenylalanine (FMLP). 2. Prostaglandin E2 (PGE2) and the specific IP-receptor agonist, cicaprost, both inhibited the FMLP-induced increase in [Ca2+]i (IC50 33 nM and 18 nM respectively) and the FMLP-induced aggregation reaction (IC50 5.6 nM and 7.9 nM respectively). PGD2, PGF2 alpha, and the TP-receptor agonist, U 46619, were inactive at the highest concentration tested (1 microM). 3. The EP1-receptor agonist, 17-phenyl-omega-trinor PGE2, and the EP3-receptor agonists, GR 63799X and sulprostone, had no inhibitory effect on FMLP-stimulated rat neutrophils. 4. PGE1 (EP/IP-receptor agonist) and iloprost (IP-receptor agonist) inhibited the FMLP-induced increase in [Ca2+]i with IC50 values of 34 nM and 38 nM respectively. The EP2-receptor agonists, butaprost and misoprostol (1 microM), inhibited both FMLP-stimulated [Ca2+]i and aggregation. However another EP2-receptor agonist, AH 13205, was inactive in both assays. 5. Prostanoid receptors present on rat neutrophils were further characterized by measuring [3H]-adenosine 3':5'-cyclic monophosphate ([3H]-cyclic AMP) accumulation. Only those agonists capable of stimulating [3H]-cyclic AMP accumulation were able to inhibit both FMLP-stimulated [Ca2+]i and aggregation. 6. These results indicate that rat neutrophils possess inhibitory IP and EP-receptors; the relative potencies of PGE2, misoprostol and butaprost are those expected for the EP2-receptor subtype. No evidence for DP, FP, TP or EP1 and EP3-receptors was obtained. PMID:7834211

  14. Differentiating neutrophils using the optical coulter counter

    NASA Astrophysics Data System (ADS)

    Schonbrun, Ethan; Di Caprio, Giuseppe

    2015-11-01

    We present an optofluidic measurement system that quantifies cell volume, dry mass, and nuclear morphology of neutrophils in high-throughput. While current clinical hematology analyzers can differentiate neutrophils from a blood sample, they do not give other quantitative information beyond their count. In order to better understand the distribution of neutrophil phenotypes in a blood sample, we perform two distinct multivariate measurements. In both measurements, white blood cells are driven through a microfluidic channel and imaged while in flow onto a color camera using a single exposure. In the first measurement, we quantify cell volume, scattering strength, and cell dry mass by combining quantitative phase imaging with dye exclusion cell volumetric imaging. In the second measurement, we quantify cell volume and nuclear morphology using a nucleic acid fluorescent stain. In this way, we can correlate cell volume to other cellular characteristics, which would not be possible using an electrical coulter counter. Unlike phase imaging or cell scattering analysis, the optical coulter counter is capable of quantifying cell volume virtually independent of the cell's refractive index and unlike optical tomography, measurements are possible on quickly flowing cells, enabling high-throughput.

  15. Differentiating neutrophils using the optical coulter counter

    NASA Astrophysics Data System (ADS)

    Schonbrun, E.; Di Caprio, G.

    2015-03-01

    We present an opto-fluidic measurement system that quantifies cell volume, dry mass and nuclear morphology of neutrophils in high-throughput. While current clinical hematology analyzers can differentiate neutrophils from a blood sample, they do not give other quantitative information beyond their count. In order to better understand the distribution of neutrophil phenotypes in a blood sample, we perform two distinct multivariate measurements. In both measurements, white blood cells are driven through a microfluidic channel and imaged while in flow onto a color camera using a single exposure. In the first measurement, we quantify cell volume, scattering strength, and cell dry mass by combining quantitative phase imaging with dye exclusion cell volumetric imaging. In the second measurement, we quantify cell volume and nuclear morphology using a nucleic acid fluorescent stain. In this way, we can correlate cell volume to other cellular characteristics, which would not be possible using an electrical coulter counter. Unlike phase imaging or cell scattering analysis, the optical coulter counter is capable of quantifying cell volume virtually independent of the cell's refractive index and unlike optical tomography, measurements are possible on quickly flowing cells, enabling high-throughput.

  16. Palisaded neutrophilic granulomatous dermatitis in rheumatoid arthritis.

    PubMed

    Sangueza, Omar P; Caudell, Misty D; Mengesha, Yebabe M; Davis, Loretta S; Barnes, Cheryl J; Griffin, Julia E; Fleischer, Alan B; Jorizzo, Joseph L

    2002-08-01

    Palisaded neutrophilic granulomatous dermatitis (PNGD) is an entity that has not been clearly defined either clinically or histopathologically. It is seen in patients with rheumatoid arthritis and other connective tissue diseases. In the past, many cases of PNGD have been described under several different names including palisaded neutrophilic and granulomatous dermatitis, linear subcutaneous bands, interstitial granulomatous dermatitis with cutaneous cords and arthritis, rheumatoid papules, and Churg-Strauss granuloma. We report 7 additional cases of PNGD. Clinically, 6 patients presented with erythematous to violaceous plaques, papules, and nodules on multiple body sites; one presented with subcutaneous linear bands on the shoulder. Five had rheumatoid arthritis; one had adult-onset Still's disease; and one showed clinical signs of rheumatoid arthritis, although serologically the rheumatoid factor was negative. On histologic examination, a spectrum of changes was observed ranging from urticaria-like infiltrates to leukocytoclastic vasculitis and granuloma annulare with neutrophils. We report these cases to expand the histologic spectrum of this entity and to further delineate the different forms of clinical presentation. PMID:12140472

  17. [Neutrophil activation by sea hydrobiont biopolymers].

    PubMed

    Zaporozhets, T S

    2003-01-01

    Biopolymers of sea hydrobionts such as mytilan, alpha-1,4;1,6-D-glycan isolated from the muntle of the mussel Crenomytilus grayanus; translam, beta-1,3;1,6-D-glucan isolated from the seaweed Laminaria cichorioides; fucoidan, a sulfated polysccharide isolated from the algae Fucus evanescens; zosterin, a pectin isolated from sea grass of the family Zosteraceae were comparatively studied. The mechanisms of the phagocyte activation were investigated and the dose-dependent ability of the biopolymers to increase in vitro adhesion of the intact cells and to restore the neutrophil functions at cyclophosphamide-induced immunodepression was detected. The neutrophil activation by mytilan, zosterin and fucoidan linked with the adhesion potentiation was shown to be associated with their ability to increase the number of the adhesion receptors and in particular CD116b on the cell surface. The lower potential of the neutrophils preincubated in vitro with high doses of translam beta-glucan could be due to blockade of the beta-glucan receptors participating in the complex multicomponent adhesion process. The use of the biopolymers of the sea hydrobionts of the glycobiological nature for modulation of the immunity processes provided rather convenient in vivo management of intracellular processes through direct and competing carbohydrate specific interactions of the modifiers with the membrane receptors and formation of active and inactive lectin-glycoligand and carbohydrate-carbohydrate complexes. PMID:15002173

  18. Neutrophil activator of matrix metalloproteinase-2 (NAM).

    PubMed

    Rollo, Ellen E; Hymowitz, Michelle; Schmidt, Cathleen E; Montana, Steve; Foda, Hussein; Zucker, Stanley

    2006-01-01

    We have isolated a novel soluble factor(s), neutrophil activator of matrix metalloproteinases (NAM), secreted by unstimulated normal human peripheral blood neutrophils that causes the activation of cell secreted promatrix metalloproteinase-2 (proMMP-2). Partially purified preparations of NAM have been isolated from the conditioned media of neutrophils employing gelatin-Sepharose chromatography and differential membrane filter centrifugation. NAM activity, as assessed by exposing primary human umbilical vein endothelial cells (HUVEC) or HT1080 cells to NAM followed by gelatin zymography, was seen within one hour. Tissue inhibitor of metalloproteinase-2 (TIMP-2) and hydroxamic acid derived inhibitors of MMPs (CT1746 and BB94) abrogated the activation of proMMP-2 by NAM, while inhibitors of serine and cysteine proteases showed no effect. NAM also produced an increase in TIMP-2 binding to HUVEC and HT1080 cell surfaces that was inhibited by TIMP-2, CT1746, and BB94. Time-dependent increases in MT1-MMP protein and mRNA were seen following the addition of NAM to cells. These data support a role for NAM in cancer dissemination. PMID:17086359

  19. In the eye of the neutrophil swarm-navigation signals that bring neutrophils together in inflamed and infected tissues.

    PubMed

    Lämmermann, Tim

    2016-07-01

    Neutrophils are sentinel cells that express in higher vertebrates >30 chemokine and chemoattractant receptors to sense and quickly react to tissue damage signals. Intravital microscopy studies in mouse models of wounding, inflammation, and infection have revealed that neutrophils form cell swarms at local sites of tissue injury and cell death. This swarming response is choreographed by chemokines, lipids, and other chemoattractants, controlling sequential phases of highly coordinated chemotaxis, intercellular signal relay, and cluster formation among neutrophils. This review will give a brief overview about the basic principles and key molecules that have led to the refined multistep model of how neutrophils come together to isolate sites of tissue injury and microbial invasion from healthy tissue. Whereas auto- and paracrine signaling among neutrophils during later phases of swarming can provide a level of self-organization for robust navigation in diverse inflammatory settings, guidance factors from primary tissue lesions, resident bystander cells, and dying cells regulate the initial phases of the swarming response. This review will discuss how the specific environmental context and mixture of attractants at the locally inflamed site can lead to variants of the multistep attraction model and influence the extent of neutrophil swarming, ranging from accumulations of only few individual cells to the aggregation of several hundreds of neutrophils, as found in abscesses. Given the critical roles of neutrophils in both host protection and tissue destruction, novel insights on neutrophil swarming might provide useful for the therapeutic modulation of neutrophil-dependent inflammatory processes. PMID:26416718

  20. Pulmonary vascular sequestration of neutrophils in endotoxemia is initiated by an effect of endotoxin on the neutrophil in the rabbit

    SciTech Connect

    Haslett, C.; Worthen, G.S.; Giclas, P.C.; Morrison, D.C.; Henson, J.E.; Henson, P.M.

    1987-07-01

    Endotoxemia causes neutrophil sequestration in the pulmonary vascular bed. Such sequestration may be a critical initiating event in the generation of microvascular injury, although the mechanisms that lead to this localization are not understood. To investigate these phenomena, the following study employed intravenous pulses of /sup 111/Indium-tropolonate-labeled neutrophils (/sup 111/In-neutrophils), which circulated in the rabbit with normal kinetics and responded in a manner indistinguishable from unlabeled, circulating neutrophils in response to an intravenous injection of purified endotoxic lipopolysaccharide (LPS) or epinephrine. Pulmonary sequestration of /sup 111/In-neutrophils was assessed by quantitative external gamma camera scintigraphy of a lung suprahilar region of interest. Noninvasive assessment of radioactivity by this method accurately reflected total lung radioactivity, which was shown by autoradiography to be confined to the injected /sup 111/In-neutrophils. Intravenously administered LPS caused a marked, dose-dependent sequestration of /sup 111/In-neutrophils in the pulmonary vasculature, and exhaustive ultrastructural autoradiography showed discretely radiolabeled neutrophils located within pulmonary capillaries. A distinct effect was seen with an intravenous injection of as little as 100 ng per rabbit (i.e., 500 pg/ml blood). A 5-min ex vivo pretreatment of /sup 111/In-neutrophils with 10 ng to 10 micrograms/ml LPS in heat-inactivated plasma also caused dose-dependent pulmonary sequestration of the pretreated /sup 111/In-neutrophils but did not cause generalized neutropenia in recipient rabbits.

  1. Acidogenic fermentation of lactose

    SciTech Connect

    Kisaalita, W.S.; Pinder, K.L.; Lo, K.V.

    1987-01-01

    Cheese whey is the main component of waste streams from cheese manufacturing plants. Whey is a high biochemical oxygen demand (BOD) effluent that must be reduced before the streams are sent to the sewer. It is proposed in this article that the production of methane by anaerobic fermentation would be the best use of this stream, especially for small plants. Single-stage fermentation of lactose, the main component of whey, results in a very low pH and a stalled process. Two-phase fermentation will eliminate this problem. The acidogenic stage of fermentation has been studied at pH of between 4 and 6.5. The nature of the main products of the reaction have been found to be pH dependent. Below a pH of 4.5 a gas (CO/sub 2/ and H/sub 2/) is produced along with ethanol, acetate, and butyrate. Above a pH of 4.5 no gas was produced and the liquid products included less ethanol and butyrate and more acetate. A separate study on the conditions for gas formation showed that if the pH dropped for a short time below 4.5 gases were formed at all subsequent pH. This would indicate a change in population distribution due to the period at a low pH. By assuming that the desired products from the acidogenic stage were butyrate, acetate, and no gases, the optimum pH range was found to be between 6.0 and 6.5.

  2. Fermentation method producing ethanol

    DOEpatents

    Wang, Daniel I. C.; Dalal, Rajen

    1986-01-01

    Ethanol is the major end product of an anaerobic, thermophilic fermentation process using a mutant strain of bacterium Clostridium thermosaccharolyticum. This organism is capable of converting hexose and pentose carbohydrates to ethanol, acetic and lactic acids. Mutants of Clostridium thermosaccharolyticum are capable of converting these substrates to ethanol in exceptionally high yield and with increased productivity. Both the mutant organism and the technique for its isolation are provided.

  3. Human neutrophil kinetics: modeling of stable isotope labeling data supports short blood neutrophil half-lives.

    PubMed

    Lahoz-Beneytez, Julio; Elemans, Marjet; Zhang, Yan; Ahmed, Raya; Salam, Arafa; Block, Michael; Niederalt, Christoph; Asquith, Becca; Macallan, Derek

    2016-06-30

    Human neutrophils have traditionally been thought to have a short half-life in blood; estimates vary from 4 to 18 hours. This dogma was recently challenged by stable isotope labeling studies with heavy water, which yielded estimates in excess of 3 days. To investigate this disparity, we generated new stable isotope labeling data in healthy adult subjects using both heavy water (n = 4) and deuterium-labeled glucose (n = 9), a compound with more rapid labeling kinetics. To interpret results, we developed a novel mechanistic model and applied it to previously published (n = 5) and newly generated data. We initially constrained the ratio of the blood neutrophil pool to the marrow precursor pool (ratio = 0.26; from published values). Analysis of heavy water data sets yielded turnover rates consistent with a short blood half-life, but parameters, particularly marrow transit time, were poorly defined. Analysis of glucose-labeling data yielded more precise estimates of half-life (0.79 ± 0.25 days; 19 hours) and marrow transit time (5.80 ± 0.42 days). Substitution of this marrow transit time in the heavy water analysis gave a better-defined blood half-life of 0.77 ± 0.14 days (18.5 hours), close to glucose-derived values. Allowing the ratio of blood neutrophils to mitotic neutrophil precursors (R) to vary yielded a best-fit value of 0.19. Reanalysis of the previously published model and data also revealed the origin of their long estimates for neutrophil half-life: an implicit assumption that R is very large, which is physiologically untenable. We conclude that stable isotope labeling in healthy humans is consistent with a blood neutrophil half-life of less than 1 day. PMID:27136946

  4. Human neutrophil kinetics: modeling of stable isotope labeling data supports short blood neutrophil half-lives

    PubMed Central

    Lahoz-Beneytez, Julio; Elemans, Marjet; Zhang, Yan; Ahmed, Raya; Salam, Arafa; Block, Michael; Niederalt, Christoph; Macallan, Derek

    2016-01-01

    Human neutrophils have traditionally been thought to have a short half-life in blood; estimates vary from 4 to 18 hours. This dogma was recently challenged by stable isotope labeling studies with heavy water, which yielded estimates in excess of 3 days. To investigate this disparity, we generated new stable isotope labeling data in healthy adult subjects using both heavy water (n = 4) and deuterium-labeled glucose (n = 9), a compound with more rapid labeling kinetics. To interpret results, we developed a novel mechanistic model and applied it to previously published (n = 5) and newly generated data. We initially constrained the ratio of the blood neutrophil pool to the marrow precursor pool (ratio = 0.26; from published values). Analysis of heavy water data sets yielded turnover rates consistent with a short blood half-life, but parameters, particularly marrow transit time, were poorly defined. Analysis of glucose-labeling data yielded more precise estimates of half-life (0.79 ± 0.25 days; 19 hours) and marrow transit time (5.80 ± 0.42 days). Substitution of this marrow transit time in the heavy water analysis gave a better-defined blood half-life of 0.77 ± 0.14 days (18.5 hours), close to glucose-derived values. Allowing the ratio of blood neutrophils to mitotic neutrophil precursors (R) to vary yielded a best-fit value of 0.19. Reanalysis of the previously published model and data also revealed the origin of their long estimates for neutrophil half-life: an implicit assumption that R is very large, which is physiologically untenable. We conclude that stable isotope labeling in healthy humans is consistent with a blood neutrophil half-life of less than 1 day. PMID:27136946

  5. Neutrophil depletion delays wound repair in aged mice

    PubMed Central

    Nishio, Naomi; Okawa, Yayoi; Sakurai, Hidetoshi

    2008-01-01

    One of the most important clinical problems in caring for elderly patients is treatment of pressure ulcers. One component of normal wound healing is the generation of an inflammatory reaction, which is characterized by the sequential infiltration of neutrophils, macrophages and lymphocytes. Neutrophils migrate early in the wound healing process. In aged C57BL/6 mice, wound healing is relatively inefficient. We examined the effects of neutrophil numbers on wound healing in both young and aged mice. We found that the depletion of neutrophils by anti-Gr-1 antibody dramatically delayed wound healing in aged mice. The depletion of neutrophils in young mice had less effect on the kinetics of wound healing. Intravenous G-CSF injection increased the migration of neutrophils to the wound site. While the rate of wound repair did not change significantly in young mice following G-CSF injection, it increased significantly in old mice. PMID:19424869

  6. Recombinant Zymomonas for pentose fermentation

    DOEpatents

    Picataggio, S.K.; Zhang, M.; Eddy, C.K.; Deanda, K.A.; Finkelstein, M.

    1996-05-07

    The invention relates to microorganisms which normally do not ferment a pentose sugar and which are genetically altered to ferment this pentose to produce ethanol. A representative example is Zymomonas mobilis which has been transformed with E. coli xylose isomerase, xylulokinase, transaldolase and transketolase genes. Expression of the added genes are under the control of Zymomonas mobilis promoters. This newly created microorganism is useful for fermenting pentoses and glucose, produced by hydrolysis of hemicellulose and cellulose, to produce ethanol. 2 figs.

  7. Recombinant zymomonas for pentose fermentation

    DOEpatents

    Picataggio, Stephen K.; Zhang, Min; Eddy, Christina K.; Deanda, Kristine A.; Finkelstein, Mark

    1996-01-01

    The invention relates to microorganisms which normally do not ferment a pentose sugar and which are genetically altered to ferment this pentose to produce ethanol. A representative example is Zymomonas mobilis which has been transformed with E. coli xylose isomerase, xylulokinase, transaldolase and transketolase genes. Expression of the added genes are under the control of Zymomonas mobilis promoters. This newly created microorganism is useful for fermenting pentoses and glucose, produced by hydrolysis of hemicellulose and cellulose, to produce ethanol.

  8. Neutrophil lipoxygenase metabolism and adhesive function following acute thermal injury.

    PubMed

    Damtew, B; Marino, J A; Fratianne, R B; Spagnuolo, P J

    1993-02-01

    Leukotrienes, especially leukotriene B4, are important modulators of various neutrophil functions including adherence and chemotaxis. In previous work, we demonstrated that neutrophil adherence to extracellular matrixes was diminished in the acute stages of burn injury. In this study, we demonstrated that neutrophil adhesion to human and bovine endothelium in the baseline state and after stimulation with leukotriene B4 is depressed markedly after burn injury. The defect in stimulated adherence to endothelium was not specific to leukotriene B4 because impaired adhesion was observed with n-formyl-methionyl-leucyl-phenylalanine and ionophore A23187 as well. Moreover, the adherence defect correlated with 95% and 81% decreases in the release of leukotriene B4 and 5-hydroxy-(6E,87,117,147)-eicosatetraenoic acid, respectively, from burn PMN treated with A23187. Burn neutrophils also released proportionately more byproducts of leukotriene B4 omega oxidation, particularly 20-COOH-leukotriene B4, than did control neutrophils. When examined 3 1/2 weeks after injury, abnormalities in neutrophil leukotriene B4 generation and the adherence of burn neutrophils had recovered to near normal values. To determine whether the decreased release of leukotriene B4 from burn neutrophils was due to increased degradation or diminished synthesis of leukotriene B4, we examined the degradation of exogenous tritiated leukotriene B4 as well as the production of leukotriene B4 from tritiated arachidonic acid in neutrophils. Burn neutrophils converted significantly greater quantities of tritiated leukotriene B4 to tritiated 20-COOH-leukotriene B4 and synthesized markedly less tritiated leukotriene B4 from tritiated arachidonic acid than did control neutrophils, suggesting that decreased leukotriene B4 release by burn neutrophils was the result of both enhanced degradation and decreased synthesis.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8381849

  9. Recombinant Zymomonas for pentose fermentation

    DOEpatents

    Picataggio, S.K.; Min Zhang; Eddy, C.K.; Deanda, K.A.

    1998-03-10

    The invention relates to microorganisms which normally do not ferment pentose sugar and which are genetically altered to ferment pentose sugar to produce ethanol, and fermentation processes utilizing the same. Examples include Zymomonas mobilis which has been transformed with combinations of E. coli genes for xylose isomerase, xylulokinase, transaldolase, transketolase, L-arabinose isomerase, L-ribulokinase, and L-ribulose-5-phosphate 4-epimerase. Expression of the added genes are under the control of Zymomonas mobilis promoters. These newly created microorganisms are useful for fermenting pentoses and glucose, produced by hydrolysis of hemicellulose and cellulose, to produce ethanol. 7 figs.

  10. Pentose fermentation by recombinant Zymomonas

    DOEpatents

    Picataggio, S.K.; Zhang, M.; Eddy, C.K.; Deanda, K.A.; Finkelstein, M.; Mohagheghi, A.; Newman, M.M.; McMillan, J.D.

    1998-01-27

    The invention relates to microorganisms which normally do not ferment pentose sugar and which are genetically altered to ferment pentose sugar to produce ethanol, and fermentation processes utilizing the same. Examples include Zymomonas mobilis which has been transformed with combinations of E. coli genes for xylose isomerase, xylulokinase, transaldolase, transketolase, L-arabinose isomerase, L-ribulokinase, and L-ribulose 5-phosphate 4-epimerase. Expression of the added genes are under the control of Zymomonas mobilis promoters. These newly created microorganisms are useful for fermenting pentoses and glucose, produced by hydrolysis of hemicellulose and cellulose, to produce ethanol. 7 figs.

  11. Pentose fermentation by recombinant zymomonas

    DOEpatents

    Picataggio, Stephen K.; Zhang, Min; Eddy, Christina K.; Deanda, Kristine A.; Finkelstein, Mark; Mohagheghi, Ali; Newman, Mildred M.; McMillan, James D.

    1998-01-01

    The invention relates to microorganisms which normally do not ferment pentose sugar and which are genetically altered to ferment pentose sugar to produce ethanol, and fermentation processes utilizing the same. Examples include Zymomonas mobilis which has been transformed with combinations of E. coli genes for xylose isomerase, xylulokinase, transaldolase, transketolase, L-arabinose isomerase, L-ribulokinase, and L-ribulose 5-phosphate 4-epimerase. Expression of the added genes are under the control of Zymomonas mobilis promoters. These newly created microorganisms are useful for fermenting pentoses and glucose, produced by hydrolysis of hemicellulose and cellulose, to produce ethanol.

  12. Recombinant Zymomonas for pentose fermentation

    DOEpatents

    Picataggio, Stephen K.; Zhang, Min; Eddy, Christina K.; Deanda, Kristine A.

    1998-01-01

    The invention relates to microorganisms which normally do not ferment pentose sugar and which are genetically altered to ferment pentose sugar to produce ethanol, and fermentation processes utilizing the same. Examples include Zymomonas mobilis which has been transformed with combinations of E. coli genes for xylose isomerase, xylulokinase, transaldolase, transketolase, L-arabinose isomerase, L-ribulokinase, and L-ribulose-5-phosphate 4-epimerase. Expression of the added genes are under the control of Zymomonas mobilis promoters. These newly created microorganisms are useful for fermenting pentoses and glucose, produced by hydrolysis of hemicellulose and cellulose, to produce ethanol.

  13. Neutrophils: Between Host Defence, Immune Modulation, and Tissue Injury

    PubMed Central

    Kruger, Philipp; Saffarzadeh, Mona; Weber, Alexander N. R.; Rieber, Nikolaus; Radsak, Markus; von Bernuth, Horst; Benarafa, Charaf; Roos, Dirk; Skokowa, Julia; Hartl, Dominik

    2015-01-01

    Neutrophils, the most abundant human immune cells, are rapidly recruited to sites of infection, where they fulfill their life-saving antimicrobial functions. While traditionally regarded as short-lived phagocytes, recent findings on long-term survival, neutrophil extracellular trap (NET) formation, heterogeneity and plasticity, suppressive functions, and tissue injury have expanded our understanding of their diverse role in infection and inflammation. This review summarises our current understanding of neutrophils in host-pathogen interactions and disease involvement, illustrating the versatility and plasticity of the neutrophil, moving between host defence, immune modulation, and tissue damage. PMID:25764063

  14. SRF is required for neutrophil migration in response to inflammation

    PubMed Central

    Taylor, Ashley; Tang, Wenwen; Bruscia, Emanuela M.; Zhang, Ping-Xia; Lin, Aiping; Gaines, Peter; Wu, Dianqing

    2014-01-01

    Serum response factor (SRF) is a ubiquitously expressed transcription factor and master regulator of the actin cytoskeleton. We have previously shown that SRF is essential for megakaryocyte maturation and platelet formation and function. Here we elucidate the role of SRF in neutrophils, the primary defense against infections. To study the effect of SRF loss in neutrophils, we crossed Srffl/fl mice with select Cre-expressing mice and studied neutrophil function in vitro and in vivo. Despite normal neutrophil numbers, neutrophil function is severely impaired in Srf knockout (KO) neutrophils. Srf KO neutrophils fail to polymerize globular actin to filamentous actin in response to N-formyl-methionine-leucine-phenylalanine, resulting in significantly disrupted cytoskeletal remodeling. Srf KO neutrophils fail to migrate to sites of inflammation in vivo and along chemokine gradients in vitro. Polarization in response to cytokine stimuli is absent and Srf KO neutrophils show markedly reduced adhesion. Integrins play an essential role in cellular adhesion, and although integrin expression levels are maintained with loss of SRF, integrin activation and trafficking are disrupted. Migration and cellular adhesion are essential for normal cell function, but also for malignant processes such as metastasis, underscoring an essential function for SRF and its pathway in health and disease. PMID:24574460

  15. Neutrophilic Skin Lesions in Autoimmune Connective Tissue Diseases

    PubMed Central

    Hau, Estelle; Vignon Pennamen, Marie-Dominique; Battistella, Maxime; Saussine, Anne; Bergis, Maud; Cavelier-Balloy, Benedicte; Janier, Michel; Cordoliani, Florence; Bagot, Martine; Rybojad, Michel; Bouaziz, Jean-David

    2014-01-01

    Abstract The pathophysiology of neutrophilic dermatoses (NDs) and autoimmune connective tissue diseases (AICTDs) is incompletely understood. The association between NDs and AICTDs is rare; recently, however, a distinctive subset of cutaneous lupus erythematosus (LE, the prototypical AICTD) with neutrophilic histological features has been proposed to be included in the spectrum of lupus. The aim of our study was to test the validity of such a classification. We conducted a monocentric retrospective study of 7028 AICTDs patients. Among these 7028 patients, a skin biopsy was performed in 932 cases with mainly neutrophilic infiltrate on histology in 9 cases. Combining our 9 cases and an exhaustive literature review, pyoderma gangrenosum, Sweet syndrome (n = 49), Sweet-like ND (n = 13), neutrophilic urticarial dermatosis (n = 6), palisaded neutrophilic granulomatous dermatitis (n = 12), and histiocytoid neutrophilic dermatitis (n = 2) were likely to occur both in AICTDs and autoinflammatory diseases. Other NDs were specifically encountered in AICTDs: bullous LE (n = 71), amicrobial pustulosis of the folds (n = 28), autoimmunity-related ND (n = 24), ND resembling erythema gyratum repens (n = 1), and neutrophilic annular erythema (n = 1). The improvement of AICTDS neutrophilic lesions under neutrophil targeting therapy suggests possible common physiopathological pathways between NDs and AICTDs. PMID:25546688

  16. Human filarial Wolbachia lipopeptide directly activates human neutrophils in vitro.

    PubMed

    Tamarozzi, F; Wright, H L; Johnston, K L; Edwards, S W; Turner, J D; Taylor, M J

    2014-10-01

    The host inflammatory response to the Onchocerca volvulus endosymbiont, Wolbachia, is a major contributing factor in the development of chronic pathology in humans (onchocerciasis/river blindness). Recently, the toll-like pattern recognition receptor motif of the major inflammatory ligands of filarial Wolbachia, membrane-associated diacylated lipoproteins, was functionally defined in murine models of pathology, including mediation of neutrophil recruitment to the cornea. However, the extent to which human neutrophils can be activated in response to this Wolbachia pattern recognition motif is not known. Therefore, the responses of purified peripheral blood human neutrophils to a synthetic N-terminal diacylated lipopeptide (WoLP) of filarial Wolbachia peptidoglycan-associated lipoprotein (PAL) were characterized. WoLP exposure led to a dose-dependent activation of healthy, human neutrophils that included gross morphological alterations and modulation of surface expressed integrins involved in tethering, rolling and extravasation. WoLP exposure induced chemotaxis but not chemokinesis of neutrophils, and secretion of the major neutrophil chemokine, interleukin 8. WoLP also induced and primed the respiratory burst, and enhanced neutrophil survival by delay of apoptosis. These results indicate that the major inflammatory motif of filarial Wolbachia lipoproteins directly activates human neutrophils in vitro and promotes a molecular pathway by which human neutrophils are recruited to sites of Onchocerca parasitism. PMID:24909063

  17. Exploring inflammatory disease drug effects on neutrophil function.

    PubMed

    Wu, Xiaojie; Kim, Donghyuk; Young, Ashlyn T; Haynes, Christy L

    2014-08-21

    Neutrophils are critical inflammatory cells; thus, it is important to characterize the effects of drugs on neutrophil function in the context of inflammatory diseases. Herein, chemically guided neutrophil migration, known as chemotaxis, is studied in the context of drug treatment at the single cell level using a microfluidic platform, complemented by cell viability assays and calcium imaging. Three representative drugs known to inhibit surface receptor expression, signaling enzyme activity, and the elevation of intracellular Ca(2+) levels, each playing a significant role in neutrophil chemotactic pathways, are used to examine the in vitro drug effects on cellular behaviors. The microfluidic device establishes a stable concentration gradient of chemokines across a cell culture chamber so that neutrophil migration can be monitored under various drug-exposure conditions. Different time- and concentration-dependent regulatory effects were observed by comparing the motility, polarization, and effectiveness of neutrophil chemotaxis in response to the three drugs. Viability assays revealed distinct drug capabilities in reducing neutrophil viability while calcium imaging clarified the role of Ca(2+) in the neutrophil chemotaxis. This study provides mechanistic insight into the drug effects on neutrophil function, facilitating comparison of current and potential pharmaceutical approaches. PMID:24946254

  18. [Neutrophils and immunity: is it innate or acquired?].

    PubMed

    Chakravarti, Arpita; Allaeys, Isabelle; Poubelle, Patrice E

    2007-10-01

    The neutrophil has long been considered a phagocytic cell with a short life-span whose major role is to destroy intruders to the body. Toll receptors and anti-infectious factors such as defensin, perforin and granzymes are newly discovered mechanisms used by neutrophils for the first line of defense against invaders. Moreover, subpopulations of neutrophils share specific functions like the synthesis of certain cytokines and chemokines, as well as the expression of immunoreceptors like the T cell receptor. A primary consequence of inflammation on neutrophils is a delay in their spontaneous programmed cell death. Hence, this multifunctional cell is also a necessary actor of the acquired immune response. Neutrophils have the capacity to degrade and process antigens as well as efficiently present antigenic peptides to lymphocytes. Neutrophil interactions with immune cells, in particular dendritic cells, lead to the formation of IL-12 and TNF-alpha deviating the immune response towards a Th1 phenotype. Thus, the neutrophil exhibits a cellular plasticity that explains its capacity to transdifferentiate depending on the local requirements of the immune response. The neutrophil is probably the most underappreciated immune cell among hematopoietic leukocytes, and many neutrophil functions remain to be unraveled. PMID:17937896

  19. Distinct Functions of Neutrophil in Cancer and Its Regulation

    PubMed Central

    Granot, Zvi; Jablonska, Jadwiga

    2015-01-01

    Neutrophils are the most abundant of all white blood cells in the human circulation and are usually associated with inflammation and with fighting infections. In recent years the role immune cells play in cancer has been a matter of increasing interest. In this context the function of neutrophils is controversial as neutrophils were shown to possess both tumor promoting and tumor limiting properties. Here we provide an up-to-date review of the pro- and antitumor properties neutrophils possess as well as the environmental cues that regulate these distinct functions. PMID:26648665

  20. Mechanism of neutrophil recruitment to the lung after pulmonary contusion.

    PubMed

    Hoth, J Jason; Wells, Jonathan D; Hiltbold, Elizabeth M; McCall, Charles E; Yoza, Barbara K

    2011-06-01

    Blunt chest trauma resulting in pulmonary contusion is a common but poorly understood injury. We previously demonstrated that lung contusion activates localized and systemic innate immune mechanisms and recruits neutrophils to the injured lung. We hypothesized that the innate immune and inflammatory activation of neutrophils may figure prominently in the response to lung injury. To investigate this, we used a model of pulmonary contusion in the mouse that is similar to that observed clinically in humans and evaluated postinjury lung function and pulmonary neutrophil recruitment. Comparisons were made between injured mice with and without neutrophil depletion. We further examined the role of chemokines and adhesion receptors in neutrophil recruitment to the injured lung. We found that lung injury and resultant physiological dysfunction after contusion were dependent on the presence of neutrophils in the alveolar space. We show that CXCL1, CXCL2/3, and CXCR2 are involved in neutrophil recruitment to the lung after injury and that intercellular adhesion molecule 1 is locally expressed and actively participates in this process. Injured gp91-deficient mice showed improved lung function, indicating that oxidant production by neutrophil NADPH oxidase mediates lung dysfunction after contusion. These data suggest that both neutrophil presence and function are required for lung injury after lung contusion. PMID:21330942

  1. Differential Use of Human Neutrophil Fcγ Receptors for Inducing Neutrophil Extracellular Trap Formation

    PubMed Central

    Alemán, Omar Rafael; Mora, Nancy; Cortes-Vieyra, Ricarda; Uribe-Querol, Eileen; Rosales, Carlos

    2016-01-01

    Neutrophils (PMN) are the most abundant leukocytes in the blood. PMN migrate from the circulation to sites of infection, where they are responsible for antimicrobial functions. PMN use phagocytosis, degranulation, and formation of neutrophil extracellular traps (NETs) to kill microbes. NETs are fibers composed of chromatin and neutrophil-granule proteins. Several pathogens, including bacteria, fungi, and parasites, and also some pharmacological stimuli such as phorbol 12-myristate 13-acetate (PMA) are efficient inducers of NETs. Antigen-antibody complexes are also capable of inducing NET formation. However the particular Fcγ receptor involved in triggering this function is a matter of controversy. In order to provide some insight into what Fcγ receptor is responsible for NET formation, each of the two human Fcγ receptors was stimulated individually by specific monoclonal antibodies and NET formation was evaluated. FcγRIIa cross-linking did not promote NET formation. Cross-linking other receptors such as integrins also did not promote NET formation. In contrast FcγRIIIb cross-linking induced NET formation similarly to PMA stimulation. NET formation was dependent on NADPH-oxidase, PKC, and ERK activation. These data show that cross-linking FcγRIIIb is responsible for NET formation by the human neutrophil. PMID:27034964

  2. Differential Use of Human Neutrophil Fcγ Receptors for Inducing Neutrophil Extracellular Trap Formation.

    PubMed

    Alemán, Omar Rafael; Mora, Nancy; Cortes-Vieyra, Ricarda; Uribe-Querol, Eileen; Rosales, Carlos

    2016-01-01

    Neutrophils (PMN) are the most abundant leukocytes in the blood. PMN migrate from the circulation to sites of infection, where they are responsible for antimicrobial functions. PMN use phagocytosis, degranulation, and formation of neutrophil extracellular traps (NETs) to kill microbes. NETs are fibers composed of chromatin and neutrophil-granule proteins. Several pathogens, including bacteria, fungi, and parasites, and also some pharmacological stimuli such as phorbol 12-myristate 13-acetate (PMA) are efficient inducers of NETs. Antigen-antibody complexes are also capable of inducing NET formation. However the particular Fcγ receptor involved in triggering this function is a matter of controversy. In order to provide some insight into what Fcγ receptor is responsible for NET formation, each of the two human Fcγ receptors was stimulated individually by specific monoclonal antibodies and NET formation was evaluated. FcγRIIa cross-linking did not promote NET formation. Cross-linking other receptors such as integrins also did not promote NET formation. In contrast FcγRIIIb cross-linking induced NET formation similarly to PMA stimulation. NET formation was dependent on NADPH-oxidase, PKC, and ERK activation. These data show that cross-linking FcγRIIIb is responsible for NET formation by the human neutrophil. PMID:27034964

  3. Cationic liposomes evoke proinflammatory mediator release and neutrophil extracellular traps (NETs) toward human neutrophils.

    PubMed

    Hwang, Tsong-Long; Hsu, Ching-Yun; Aljuffali, Ibrahim A; Chen, Chun-Han; Chang, Yuan-Ting; Fang, Jia-You

    2015-04-01

    Cationic liposomes are widely used as nanocarriers for therapeutic and diagnostic purposes. The cationic components of liposomes can induce inflammatory responses. This study examined the effect of cationic liposomes on human neutrophil activation. Cetyltrimethylammonium bromide (CTAB) or soyaethyl morpholinium ethosulfate (SME) was incorporated into liposomes as the cationic additive. The liposomes' cytotoxicity and their induction of proinflammatory mediators, intracellular calcium, and neutrophil extracellular traps (NETs) were investigated. The interaction of the liposomes with the plasma membrane triggered the stimulation of neutrophils. CTAB liposomes induced complete leakage of lactate dehydrogenase (LDH) at all concentrations tested, whereas SME liposomes released LDH in a concentration-dependent manner. CTAB liposomes proved to more effectively activate neutrophils compared with SME liposomes, as indicated by increased superoxide anion and elastase levels. Calcium influx increased 9-fold after treatment with CTAB liposomes. This influx was not changed by SME liposomes compared with the untreated control. Scanning electron microscopy (SEM) and immunofluorescence images indicated the presence of NETs after treatment with cationic liposomes. NETs could be quickly formed, within minutes, after CTAB liposomal treatment. In contrast to this result, NET formation was slowly and gradually increased by SME liposomes, within 4h. Based on the data presented here, it is important to consider the toxicity of cationic liposomes during administration in the body. This is the first report providing evidence of NET production induced by cationic liposomes. PMID:25731102

  4. Energy Metabolism of Human Neutrophils during Phagocytosis

    PubMed Central

    Borregaard, Niels; Herlin, Troels

    1982-01-01

    Detailed quantitative studies were performed on the generation and utilization of energy by resting and phagocytosing human neutrophils. The ATP content was 1.9 fmol/cell, was constant during rest, and was not influenced by the presence or absence of glucose in the medium. The intracellular content of phosphocreatine was less than 0.2 fmol/cell. In the presence of glucose, ATP was generated almost exclusively from lactate produced from glucose taken up from the surrounding medium. The amount of lactate produced could account for 85% of the glucose taken up by the cells, and the intracellular glycosyl store, glycogen, was not drawn upon. The rate of ATP generation as calculated from the rate of lactate production was 1.3 fmol/cell/min. During phagocytosis, there was no measurable increase in glucose consumption or lactate production, and the ATP content fell rapidly to 0.8 fmol/cell. This disappearance of ATP was apparently irreversible since no corresponding increase in ADP or AMP was observed. It therefore appears that this phagocytosis-induced fall in ATP concentration represents all the extra energy utilized in human neutrophils in the presence of glucose. In the absence of glucose, the rate of ATP generation in the resting cell was considerably smaller, 0.75 fmol/cell per min, as calculated from the rate of glycolysis, which is sustained exclusively by glycogenolysis. Under this condition, however, phagocytosis induces significant enhancement of glycogenolysis and the rate of lactate production is increased by 60%, raising the rate of ATP generation to 1.2 fmol/cell per min. Nonetheless, the ATP content drops significantly from 1.9 to 1.0 fmol/cell. Neutrophils from patients with chronic granulomatous disease have the same rate of glycolysis and the same ATP content as normal cells, thus confirming that the defective respiration of these cells does not affect their energy metabolism. PMID:7107894

  5. Characterization of C1 inhibitor binding to neutrophils.

    PubMed Central

    Chang, N S; Boackle, R J; Leu, R W

    1991-01-01

    In a previous study we have isolated neutrophil membrane proteins that non-covalently bind to native C1-INH (105,000 MW) and a non-functional, degraded C1-INH (88,000 MW; C1-INH-88). To further characterize the binding nature, we have designed a novel kinetic C1 titration assay which enables not only a quantification of the removal of fluid-phase C1-INH by neutrophils, but also a concomitant measure of residual C1-INH function. Native C1-INH, when adsorbed to EDTA-pretreated neutrophils, lost its function in the inhibition of fluid-phase C1. The non-functional C1-INH-88, which is probably devoid of a reactive centre, was found to block the binding of native C1-INH to neutrophils. Pretreatment of neutrophils with serine esterase inhibitors did not abrogate binding capacity of the cells for C1-INH, whereas the binding affinity for C1-INH was lost when the cells were pretreated with trypsin. An array of human peripheral blood leucocytes and several lymphoid cell lines has surface binding sites for C1-INH, but not on human erythrocytes and U937 cells. Binding was further confirmed using (i) C1-INH-microsphere beads to neutrophils, in which the binding was blocked when pretreating neutrophils with excess C1-INH or with trypsin, and (ii) radiolabelled C1-INH to neutrophils, which was competitively blocked by unlabelled non-functional C1-INH-88. Desialylation of C1-INH significantly reduced its binding affinity for neutrophils, indicating that the membrane receptor sites on neutrophils could be specific for the binding of sialic acid residues on C1-INH. Overall, our studies indicate that neutrophils or other leucocytes possess specific surface binding sites for the sialic acid-containing portion of C1-INH. PMID:2045131

  6. Salmonella Transiently Reside in Luminal Neutrophils in the Inflamed Gut

    PubMed Central

    Loetscher, Yvonne; Wieser, Andreas; Lengefeld, Jette; Kaiser, Patrick; Schubert, Sören; Heikenwalder, Mathias; Hardt, Wolf-Dietrich; Stecher, Bärbel

    2012-01-01

    Background Enteric pathogens need to grow efficiently in the gut lumen in order to cause disease and ensure transmission. The interior of the gut forms a complex environment comprising the mucosal surface area and the inner gut lumen with epithelial cell debris and food particles. Recruitment of neutrophils to the intestinal lumen is a hallmark of non-typhoidal Salmonella enterica infections in humans. Here, we analyzed the interaction of gut luminal neutrophils with S. enterica serovar Typhimurium (S. Tm) in a mouse colitis model. Results Upon S. Tmwt infection, neutrophils transmigrate across the mucosa into the intestinal lumen. We detected a majority of pathogens associated with luminal neutrophils 20 hours after infection. Neutrophils are viable and actively engulf S. Tm, as demonstrated by live microscopy. Using S. Tm mutant strains defective in tissue invasion we show that pathogens are mostly taken up in the gut lumen at the epithelial barrier by luminal neutrophils. In these luminal neutrophils, S. Tm induces expression of genes typically required for its intracellular lifestyle such as siderophore production iroBCDE and the Salmonella pathogenicity island 2 encoded type three secretion system (TTSS-2). This shows that S. Tm at least transiently survives and responds to engulfment by gut luminal neutrophils. Gentamicin protection experiments suggest that the life-span of luminal neutrophils is limited and that S. Tm is subsequently released into the gut lumen. This “fast cycling” through the intracellular compartment of gut luminal neutrophils would explain the high fraction of TTSS-2 and iroBCDE expressing intra- and extracellular bacteria in the lumen of the infected gut. Conclusion In conclusion, live neutrophils recruited during acute S. Tm colitis engulf pathogens in the gut lumen and may thus actively engage in shaping the environment of pathogens and commensals in the inflamed gut. PMID:22493718

  7. Bacteriophages and dairy fermentations

    PubMed Central

    Marcó, Mariángeles Briggiler; Moineau, Sylvain; Quiberoni, Andrea

    2012-01-01

    This review highlights the main strategies available to control phage infection during large-scale milk fermentation by lactic acid bacteria. The topics that are emphasized include the factors influencing bacterial activities, the sources of phage contamination, the methods available to detect and quantify phages, as well as practical solutions to limit phage dispersion through an adapted factory design, the control of air flow, the use of adequate sanitizers, the restricted used of recycled products, and the selection and growth of bacterial cultures. PMID:23275866

  8. Ethanolic fermentation of lignocellulose hydrolysates

    SciTech Connect

    Hahn-Haegerdal, B.

    1996-12-31

    This minireview discusses various factors which require consideration for the ethanolic fermentation of lignocellulose hydrolysates. The production of an alternative transportation fuel requires pretreatment of the biomass and detoxification to enhance the fermentability. Recombinant DNA technology makes it possible to engineer new microorganisms for efficient ethanol production from all sugars present in the hydrolysates. 60 refs.

  9. Fumaric acid production by fermentation

    PubMed Central

    Roa Engel, Carol A.; Zijlmans, Tiemen W.; van Gulik, Walter M.; van der Wielen, Luuk A. M.

    2008-01-01

    The potential of fumaric acid as a raw material in the polymer industry and the increment of cost of petroleum-based fumaric acid raises interest in fermentation processes for production of this compound from renewable resources. Although the chemical process yields 112% w/w fumaric acid from maleic anhydride and the fermentation process yields only 85% w/w from glucose, the latter raw material is three times cheaper. Besides, the fermentation fixes CO2. Production of fumaric acid by Rhizopus species and the involved metabolic pathways are reviewed. Submerged fermentation systems coupled with product recovery techniques seem to have achieved economically attractive yields and productivities. Future prospects for improvement of fumaric acid production include metabolic engineering approaches to achieve low pH fermentations. PMID:18214471

  10. Fluorescent Ly6G antibodies determine macrophage phagocytosis of neutrophils and alter the retrieval of neutrophils in mice.

    PubMed

    Bucher, Kirsten; Schmitt, Fee; Autenrieth, Stella E; Dillmann, Inken; Nürnberg, Bernd; Schenke-Layland, Katja; Beer-Hammer, Sandra

    2015-09-01

    Fluorescently labeled Ly6G antibodies enable the tracking of neutrophils in mice, whereas purified anti-Ly6G rapidly depletes neutrophils from the circulation. The mechanisms underlying neutrophil depletion are still under debate. Here, we examined how identical Ly6G antibodies coupled to different fluorochromes affect neutrophil fate in vivo. BM cells stained with Ly6G antibodies were injected into mice. The number of retrieved anti-Ly6G-FITC(+) cells was reduced significantly in comparison with anti-Ly6G-APC(+) or anti-Ly6G-PE(+) cells. Flow cytometry and multispectral imaging flow cytometry analyses revealed that anti-Ly6G-FITC(+) neutrophils were preferentially phagocytosed by BMMs in vitro and by splenic, hepatic, and BM macrophages in vivo. Direct antibody injection of anti-Ly6G-FITC but not anti-Ly6G-PE depleted neutrophils to the same degree as purified anti-Ly6G, indicating that the FITC-coupled antibody eliminates neutrophils by a similar mechanism as the uncoupled antibody. With the use of a protein G-binding assay, we demonstrated that APC and PE but not FITC coupling inhibited access to interaction sites on the anti-Ly6G antibody. We conclude the following: 1) that neutrophil phagocytosis by macrophages is a central mechanism in anti-Ly6G-induced neutrophil depletion and 2) that fluorochrome-coupling can affect functional properties of anti-Ly6G antibodies, thereby modifying macrophage uptake of Ly6G-labeled neutrophils and neutrophil retrieval following adoptive cell transfer or injection of fluorescent anti-Ly6G. PMID:26019296

  11. Proteome profiling of human neutrophil granule subsets, secretory vesicles, and cell membrane: correlation with transcriptome profiling of neutrophil precursors.

    PubMed

    Rørvig, Sara; Østergaard, Ole; Heegaard, Niels H H; Borregaard, Niels

    2013-10-01

    Neutrophils are indispensable in the innate immune defense against invading microorganisms. Neutrophils contain SVs and several subsets of granules that are essential for their function. Proteins present in neutrophil SVs and granules are synthesized during terminal granulopoiesis in the bone marrow. The heterogeneity of granules, as determined by marker proteins characteristic of each granule subset, is thought to result from differences in the biosynthetic windows of major classes of granule proteins, a process referred to as targeting by timing. Qualitative proteomic analysis of neutrophil granules, SVs, and plasma membrane has been performed before. Here, we performed subcellular fractionation on freshly isolated human neutrophils by nitrogen cavitation and density centrifugation on a four-layer Percoll gradient. Granule subsets were pooled and subjected to SDS-PAGE, and gel pieces were in-gel-digested with trypsin. The resulting peptides were analyzed using LTQ Orbitrap XL tandem MS. A total of 1292 unique proteins were identified and grouped, according to the neutrophil fraction, in which they displayed maximal expression. In addition to various known neutrophil proteins, several uncharacterized proteins were found, as well as proteins not described previously in neutrophils. To study the correlation between mRNA expression in neutrophil precursors and the localization of their cognate proteins, the distribution of 126 identified proteins was compared with their mRNA expression profiles. The neutrophil subcellular proteome profiles presented here may be used as a database in combination with the mRNA array database to predict and test the presence and localization of proteins in neutrophil granules and membranes. PMID:23650620

  12. Human neutrophil leukocyte elastase activity is inhibited by Phenol Red

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Neutrophil elastase (NE) activity in urine, sputum and nasal mucous is used as an indicator of inflammation due to viral or bacterial infection. However, bovine nasal mucous neutrophils collected, lysed and stored in Dulbecco's minimal medium containing Phenol Red, showed no NE activity with methox...

  13. Intergrin-dependent neutrophil migration in the injured mouse cornea

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As an early responder to an inflammatory stimulus, neutrophils must exit the vasculature and migrate through the extravascular tissue to the site of insult, which is often remote from the point of extravasation. Following a central epithelial corneal abrasion, neutrophils recruited from the peripher...

  14. Transepithelial migration of neutrophils into the lung requires TREM-1

    PubMed Central

    Klesney-Tait, Julia; Keck, Kathy; Li, Xiaopeng; Gilfillan, Susan; Otero, Karel; Baruah, Sankar; Meyerholz, David K.; Varga, Steven M.; Knudson, Cory J.; Moninger, Thomas O.; Moreland, Jessica; Zabner, Joseph; Colonna, Marco

    2012-01-01

    Acute respiratory infections are responsible for more than 4 million deaths each year. Neutrophils play an essential role in the innate immune response to lung infection. These cells have an armamentarium of pattern recognition molecules and antimicrobial agents that identify and eliminate pathogens. In the setting of infection, neutrophil triggering receptor expressed on myeloid cells 1 (TREM-1) amplifies inflammatory signaling. Here we demonstrate for the first time that TREM-1 also plays an important role in transepithelial migration of neutrophils into the airspace. We developed a TREM-1/3–deficient mouse model of pneumonia and found that absence of TREM-1/3 markedly increased mortality following Pseudomonas aeruginosa challenge. Unexpectedly, TREM-1/3 deficiency resulted in increased local and systemic cytokine production. TREM-1/3–deficient neutrophils demonstrated intact bacterial killing, phagocytosis, and chemotaxis; however, histologic examination of TREM-1/3–deficient lungs revealed decreased neutrophil infiltration of the airways. TREM-1/3–deficient neutrophils effectively migrated across primary endothelial cell monolayers but failed to migrate across primary airway epithelia grown at the air-liquid interface. These data define a new function for TREM-1 in neutrophil migration across airway epithelial cells and suggest that it amplifies inflammation through targeted neutrophil migration into the lung. PMID:23241959

  15. Cytokine induced expression of programmed death ligands in human neutrophils

    PubMed Central

    Bankey, Paul E.; Banerjee, Sanjib; Zucchiatti, Andrea; De, Mita; Sleem, Rami W.; Lin, Chuen-Fu L.; Miller-Graziano, Carol L.; De, Asit K.

    2010-01-01

    1. Summary Recent evidence indicates that human neutrophils can serve as non-professional antigen presenting cells (APC). Although expression of MHC class II and co-stimulatory molecules on human neutrophils is limited, these molecules can be significantly induced following in vitro exposure to the cytokines IFNγ and GM-CSF. Since professional APCs such as dendritic cells express both co-stimulatory and co-inhibitory molecules for activation and regulation of adaptive immunity, we determined whether cytokines induce increased expression of specific co-signaling molecules on human neutrophils. We report here that circulating human neutrophils express co-inhibitory molecules such as immunoglobulin–like transcript (ILT) 4 and 5, and also comparatively low and highly variable levels of ILT2 and 3, but the expression of these ILTs was not significantly changed by cytokine treatment. In contrast, we demonstrate for the first time that human peripheral blood neutrophils, although do not express the co-inhibitory molecule, programmed death ligand (PD-L) 1 on their surface, can express this molecule at moderate levels following cytokine exposure. Although moderate PD-L1 levels on healthy volunteers’ neutrophils were not inhibitory to T cells, our findings do not exclude a possible robust increase in neutrophil PD-L1 expression in pathological conditions with immunosuppressive functions. These results suggest a possible immunoregulatory role for human neutrophils in adaptive immunity. PMID:20123111

  16. Promoting metastasis: neutrophils and T cells join forces.

    PubMed

    Fridlender, Zvi G; Albelda, Steven M; Granot, Zvi

    2015-07-01

    The role neutrophils play in cancer is a matter of debate as both pro- and anti-tumor functions have been documented. In a recent publication in Nature, Coffelt et al. identify a new mechanism where neutrophils and T cells cooperate to generate metastasis-supporting immune suppression. PMID:26138787

  17. How Neutrophil Extracellular Traps Become Visible

    PubMed Central

    2016-01-01

    Neutrophil extracellular traps (NETs) have been identified as a fundamental innate immune defense mechanism against different pathogens. NETs are characterized as released nuclear DNA associated with histones and granule proteins, which form an extracellular web-like structure that is able to entrap and occasionally kill certain microbes. Furthermore, NETs have been shown to contribute to several noninfectious disease conditions when released by activated neutrophils during inflammation. The identification of NETs has mainly been succeeded by various microscopy techniques, for example, immunofluorescence microscopy, transmission electron microscopy (TEM), and scanning electron microscopy (SEM). Since the last years the development and improvement of new immunofluorescence-based techniques enabled optimized visualization and quantification of NETs. On the one hand in vitro live-cell imaging led to profound new ideas about the mechanisms involved in the formation and functionality of NETs. On the other hand different intravital, in vivo, and in situ microscopy techniques led to deeper insights into the role of NET formation during health and disease. This paper presents an overview of the main used microscopy techniques to visualize NETs and describes their advantages as well as disadvantages. PMID:27294157

  18. Neutrophilic dermatoses: pyoderma gangrenosum and Sweet's syndrome.

    PubMed Central

    Lear, J. T.; Atherton, M. T.; Byrne, J. P.

    1997-01-01

    Pyoderma gangrenosum and Sweet's syndrome are classified as neutrophilic dermatoses as they exhibit intense dermal inflammatory infiltrates composed of neutrophils with little evidence of a primary vasculitis. They share several characteristics and respond to immunosuppressives. Aetiology is felt to represent a manifestation of altered immunologic reactivity. Patients with both conditions concurrently have been described. Diagnosis is based on clinical and histopathological findings. However, clinically the typical forms of the two conditions are quite distinct: pyoderma showing cutaneous ulceration with a purple undermined border and Sweet's syndrome having tender, erythematous, nonulcerated plaques and nodules. Approximately 50% of cases of pyoderma are associated with a specific systemic disorder. These include inflammatory bowel disease, rheumatoid arthritis, non-Hodgkin's lymphoma and myeloproliferative disorders. Many associations with Sweet's syndrome have been described, including acute myeloid leukaemia, myeloma and adenocarcinomas, and haematological malignancy. There is overlap between the two conditions with lesions categorised as Sweet's syndrome being clinically more characteristic of atypical pyoderma and vice versa. We believe that pyoderma and Sweet's syndrome represent a continuum of spectrum of disease. The reason for the clinical differences between the conditions is unclear and merits further investigation but may be explained by varying levels of intensity and extent of the inflammatory process. This review will describe the pathogenesis, clinical features, diagnosis, associations and treatment of the two conditions. Images Figure 1 Figure 2 PMID:9122099

  19. Gas controlled hydrogen fermentation.

    PubMed

    Bastidas-Oyanedel, Juan-Rodrigo; Mohd-Zaki, Zuhaida; Zeng, Raymond J; Bernet, Nicolas; Pratt, Steven; Steyer, Jean-Philippe; Batstone, Damien John

    2012-04-01

    Acidogenic fermentation is an anaerobic process of double purpose, while treating organic residues it produces chemical compounds, such as hydrogen, ethanol and organic acids. Therefore, acidogenic fermentation arises as an attractive biotechnology process towards the biorefinery concept. Moreover, this process does not need sterile operating conditions and works under a wide range of pH. Changes of operating conditions produce metabolic shifts, inducing variability on acidogenic product yield. To induce those changes, experiments, based on reactor headspace N(2)-flushing (gas phase), were designed. A major result was the hydrogen yield increase from 1 to 3.25±0.4 ( [Formula: see text] ) at pH 4.5 and N(2)-flushing of 58.4 (L·d(-1)). This yield is close to the theoretical acidogenic value (4 [Formula: see text] ). The mechanisms that explain this increase on hydrogen yield shifts are related to the thermodynamics of three metabolic reactions: lactate hydrogenase, NADH hydrogenase and homoacetogenesis, which are affected by the low hydrogen partial pressures. PMID:22342590

  20. Lactose fermentation by engineered Saccharomyces cerevisiae capable of fermenting cellobiose.

    PubMed

    Liu, Jing-Jing; Zhang, Guo-Chang; Oh, Eun Joong; Pathanibul, Panchalee; Turner, Timothy L; Jin, Yong-Su

    2016-09-20

    Lactose is an inevitable byproduct of the dairy industry. In addition to cheese manufacturing, the growing Greek yogurt industry generates excess acid whey, which contains lactose. Therefore, rapid and efficient conversion of lactose to fuels and chemicals would be useful for recycling the otherwise harmful acid whey. Saccharomyces cerevisiae, a popular metabolic engineering host, cannot natively utilize lactose. However, we discovered that an engineered S. cerevisiae strain (EJ2) capable of fermenting cellobiose can also ferment lactose. This finding suggests that a cellobiose transporter (CDT-1) can transport lactose and a β-glucosidase (GH1-1) can hydrolyze lactose by acting as a β-galactosidase. While the lactose fermentation by the EJ2 strain was much slower than the cellobiose fermentation, a faster lactose-fermenting strain (EJ2e8) was obtained through serial subcultures on lactose. The EJ2e8 strain fermented lactose with a consumption rate of 2.16g/Lh. The improved lactose fermentation by the EJ2e8 strain was due to the increased copy number of cdt-1 and gh1-1 genes. Looking ahead, the EJ2e8 strain could be exploited for the production of other non-ethanol fuels and chemicals from lactose through further metabolic engineering. PMID:27457698

  1. Reverse Migration of Neutrophils: Where, When, How, and Why?

    PubMed

    Nourshargh, Sussan; Renshaw, Stephen A; Imhof, Beat A

    2016-05-01

    Neutrophil migration to injured and pathogen-infected tissues is a fundamental component of innate immunity. An array of cellular and molecular events mediate this response to collectively guide neutrophils out of the vasculature and towards the core of the ensuing inflammatory reaction where they exert effector functions. Advances in imaging modalities have revealed that neutrophils can also exhibit motility away from sites of inflammation and injury, although it is unclear under what circumstances this reverse migration is a physiological protective response, and when it has pathophysiological relevance. Here we review different types of neutrophil reverse migration and discuss the current understanding of the associated mechanisms. In this context we propose clarifications to the existing terminology used to describe the many facets of neutrophil reverse migration. PMID:27055913

  2. Clearance of apoptotic neutrophils and resolution of inflammation.

    PubMed

    Greenlee-Wacker, Mallary C

    2016-09-01

    The engulfment of apoptotic cells by phagocytes, a process referred to as efferocytosis, is essential for maintenance of normal tissue homeostasis and a prerequisite for the resolution of inflammation. Neutrophils are the predominant circulating white blood cell in humans, and contain an arsenal of toxic substances that kill and degrade microbes. Neutrophils are short-lived and spontaneously die by apoptosis. This review will highlight how the engulfment of apoptotic neutrophils by human phagocytes occurs, how heterogeneity of phagocyte populations influences efferocytosis signaling, and downstream consequences of efferocytosis. The efferocytosis of apoptotic neutrophils by macrophages promotes anti-inflammatory signaling, prevents neutrophil lysis, and dampens immune responses. Given the immunomodulatory properties of efferocytosis, understanding pathways that regulate and enhance efferocytosis could be harnessed to combat infection and chronic inflammatory conditions. PMID:27558346

  3. Spatial control of actin polymerization during neutrophil chemotaxis

    PubMed Central

    Weiner, Orion D.; Servant, Guy; Welch, Matthew D.; Mitchison, Timothy J.; Sedat, John W.; Bourne, Henry R.

    2010-01-01

    Neutrophils respond to chemotactic stimuli by increasing the nucleation and polymerization of actin filaments, but the location and regulation of these processes are not well understood. Here, using a permeabilized-cell assay, we show that chemotactic stimuli cause neutrophils to organize many discrete sites of actin polymerization, the distribution of which is biased by external chemotactic gradients. Furthermore, the Arp2/3 complex, which can nucleate actin polymerization, dynamically redistributes to the region of living neutrophils that receives maximal chemotactic stimulation, and the least-extractable pool of the Arp2/3 complex co-localizes with sites of actin polymerization. Our observations indicate that chemoattractant-stimulated neutrophils may establish discrete foci of actin polymerization that are similar to those generated at the posterior surface of the intracellular bacterium Listeria monocytogenes. We propose that asymmetrical establishment and/or maintenance of sites of actin polymerization produces directional migration of neutrophils in response to chemotactic gradients. PMID:10559877

  4. Exosomes Mediate LTB4 Release during Neutrophil Chemotaxis.

    PubMed

    Majumdar, Ritankar; Tavakoli Tameh, Aidin; Parent, Carole A

    2016-01-01

    Leukotriene B4 (LTB4) is secreted by chemotactic neutrophils, forming a secondary gradient that amplifies the reach of primary chemoattractants. This strategy increases the recruitment range for neutrophils and is important during inflammation. Here, we show that LTB4 and its synthesizing enzymes localize to intracellular multivesicular bodies that, upon stimulation, release their content as exosomes. Purified exosomes can activate resting neutrophils and elicit chemotactic activity in a LTB4 receptor-dependent manner. Inhibition of exosome release leads to loss of directional motility with concomitant loss of LTB4 release. Our findings establish that the exosomal pool of LTB4 acts in an autocrine fashion to sensitize neutrophils towards the primary chemoattractant, and in a paracrine fashion to mediate the recruitment of neighboring neutrophils in trans. We envision that this mechanism is used by other signals to foster communication between cells in harsh extracellular environments. PMID:26741884

  5. Cytoprotection against neutrophil-delivered oxidant attack by antibiotics.

    PubMed

    Ottonello, L; Dallegri, F; Dapino, P; Pastorino, G; Sacchetti, C

    1991-11-27

    In the present study we have investigated the effect of six antibiotics (penicillin G, ceftazidime, cephotaxime, cephoperazon, ampicillin and piperacillin) on the neutrophil cytolytic activity by using a system constituted of phorbol-12-myristate-13-acetate-triggered neutrophils and 51Cr-labelled lymphoblastoid Daudi target cells. The results demonstrate that five of these drugs (ceftazidime, cephotaxime, cephoperazon, ampicillin and piperacillin) are capable of inhibiting the neutrophil cytolytic activity by inactivating the hypochlorous acid (HOCl) generated extracellularly by the myeloperoxidase pathway and crucial to the target cell lysis. Penicillin G had no effect on neutrophil-mediated cytolysis. Thus, these data demonstrate that ceftazidime, cephotaxime, cephoperazon, ampicillin and piperacillin lower the neutrophil-mediated target cell damage by a HOCl-scavenging mechanism, suggesting a possible cytoprotective role for these drugs during infections. PMID:1662510

  6. Neutrophils--a key component of ischemia-reperfusion injury.

    PubMed

    Schofield, Zoe Victoria; Woodruff, Trent Martin; Halai, Reena; Wu, Mike Chia-Lun; Cooper, Matthew Allister

    2013-12-01

    Ischemia-reperfusion injury (IRI) is a common occurrence following myocardial infarction, transplantation, stroke, and trauma that can lead to multiple organ failure, which remains the foremost cause of death in critically ill patients. Current therapeutic strategies for IRI are mainly palliative, and there is an urgent requirement for a therapeutic that could prevent or reverse tissue damage caused by IRI. Neutrophils are the primary responders following ischemia and reperfusion and represent important components in the protracted inflammatory response and severity associated with IRI. Experimental studies demonstrate neutrophil infiltration at the site of ischemia and show that inducing neutropenia can protect organs from IRI. In this review, we highlight the mechanisms involved in neutrophil recruitment, activation, and adherence and how this contributes to disease severity in IRI. Inhibiting neutrophil mobilization, tissue recruitment, and ultimately neutrophil-associated activation of local and systemic inflammatory responses may have therapeutic potential in the amelioration of local and remote tissue damage following IRI. PMID:24088997

  7. Paradoxical Roles of the Neutrophil in Sepsis: Protective and Deleterious

    PubMed Central

    Sônego, Fabiane; Castanheira, Fernanda Vargas e Silva; Ferreira, Raphael Gomes; Kanashiro, Alexandre; Leite, Caio Abner Vitorino Gonçalves; Nascimento, Daniele Carvalho; Colón, David Fernando; Borges, Vanessa de Fátima; Alves-Filho, José Carlos; Cunha, Fernando Queiróz

    2016-01-01

    Sepsis, an overwhelming inflammatory response syndrome secondary to infection, is one of the costliest and deadliest medical conditions worldwide. Neutrophils are classically considered to be essential players in the host defense against invading pathogens. However, several investigations have shown that impairment of neutrophil migration to the site of infection, also referred to as neutrophil paralysis, occurs during severe sepsis, resulting in an inability of the host to contain and eliminate the infection. On the other hand, the neutrophil antibacterial arsenal contributes to tissue damage and the development of organ dysfunction during sepsis. In this review, we provide an overview of the main events in which neutrophils play a beneficial or deleterious role in the outcome of sepsis. PMID:27199981

  8. Identifying neutrophils in H&E staining histology tissue images.

    PubMed

    Wang, Jiazhuo; MacKenzie, John D; Ramachandran, Rageshree; Chen, Danny Z

    2014-01-01

    Identifying neutrophils lays a crucial foundation for diagnosing acute inflammation diseases. But, such computerized methods on the commonly used H&E staining histology tissue images are lacking, due to various inherent difficulties of identifying cells in such image modality and the challenge that a considerable portion of neutrophils do not have a "textbook" appearance. In this paper, we propose a new method for identifying neutrophils in H&E staining histology tissue images. We first segment the cells by applying iterative edge labeling, and then identify neutrophils based on the segmentation results by considering the "context" of each candidate cell constructed by a new Voronoi diagram of clusters of other neutrophils. We obtain good performance compared with two baseline algorithms we constructed, on clinical images collected from patients suspected of having inflammatory bowl diseases. PMID:25333103

  9. Exosomes Mediate LTB4 Release during Neutrophil Chemotaxis

    PubMed Central

    Majumdar, Ritankar; Tavakoli Tameh, Aidin; Parent, Carole A.

    2016-01-01

    Leukotriene B4 (LTB4) is secreted by chemotactic neutrophils, forming a secondary gradient that amplifies the reach of primary chemoattractants. This strategy increases the recruitment range for neutrophils and is important during inflammation. Here, we show that LTB4 and its synthesizing enzymes localize to intracellular multivesicular bodies that, upon stimulation, release their content as exosomes. Purified exosomes can activate resting neutrophils and elicit chemotactic activity in a LTB4 receptor-dependent manner. Inhibition of exosome release leads to loss of directional motility with concomitant loss of LTB4 release. Our findings establish that the exosomal pool of LTB4 acts in an autocrine fashion to sensitize neutrophils towards the primary chemoattractant, and in a paracrine fashion to mediate the recruitment of neighboring neutrophils in trans. We envision that this mechanism is used by other signals to foster communication between cells in harsh extracellular environments. PMID:26741884

  10. Human plasma kallikrein releases neutrophil elastase during blood coagulation.

    PubMed Central

    Wachtfogel, Y T; Kucich, U; James, H L; Scott, C F; Schapira, M; Zimmerman, M; Cohen, A B; Colman, R W

    1983-01-01

    Elastase is released from human neutrophils during the early events of blood coagulation. Human plasma kallikrein has been shown to stimulate neutrophil chemotaxis, aggregation, and oxygen consumption. Therefore, the ability of kallikrein to release neutrophil elastase was investigated. Neutrophils were isolated by dextran sedimentation, and elastase release was measured by both an enzyme-linked immunosorbent assay, and an enzymatic assay using t-butoxy-carbonyl-Ala-Ala-Pro-Val-amino methyl coumarin as the substrate. Kallikrein, 0.1-1.0 U/ml, (0.045-0.45 microM), was incubated with neutrophils that were preincubated with cytochalasin B (5 micrograms/ml). The release of elastase was found to be proportional to the kallikrein concentration. Kallikrein released a maximum of 34% of the total elastase content, as measured by solubilizing the neutrophils in the nonionic detergent Triton X-100. A series of experiments was carried out to determine if kallikrein was a major enzyme involved in neutrophil elastase release during blood coagulation. When 10 million neutrophils were incubated in 1 ml of normal plasma in the presence of 30 mM CaCl2 for 90 min, 2.75 micrograms of elastase was released. In contrast, neutrophils incubated in prekallikrein-deficient or Factor XII-deficient plasma released less than half of the elastase, as compared with normal plasma. The addition of purified prekallikrein to prekallikrein-deficient plasma restored neutrophil elastase release to normal levels. Moreover, release of elastase was enhanced in plasma deficient in C1-inhibitor, the major plasma inhibitor of kallikrein. This release was not dependent upon further steps in the coagulation pathway, or on C5a, since levels of elastase, released in Factor XI- or C5-deficient plasma, were similar to that in normal plasma, and an antibody to C5 failed to inhibit elastase release. These data suggest that kallikrein may be a major enzyme responsible for the release of elastase during blood

  11. Effect of perfluorochemical blood substitutes on human neutrophil function.

    PubMed

    Virmani, R; Fink, L M; Gunter, K; English, D

    1984-01-01

    This investigation was undertaken to determine the influence of perfluorochemical blood substitutes (PFCs) on human neutrophil function. Neutrophils isolated from blood of healthy donors were incubated at 37 degrees C for 1 hour with 25 percent Oxypherol (perfluorotributylamine) or Fluosol-DA (perfluorodecalin and perfluorotripropylamine) in the presence of fresh autologous serum. In comparison to cells incubated with Hank's balanced salt solution (buffer), neutrophils exposed to PFCs were markedly inhibited in their chemotactic and phagocytic responses. With 25 percent PFCs, chemotaxis to zymosan-activated serum was inhibited to approximately 25 percent of control by Fluosol-DA and 11 percent by Oxypherol. Phagocytosis of polystyrene beads in the presence of fresh serum was decreased to 52 and 50 percent of control by both Oxypherol and Fluosol-DA, respectively. Neutrophils exposed to PFCs aggregated slower and with an extended activation time upon addition of phorbol myristate acetate (PMA). When activated with n-formyl-methionyl-leucyl-phenylalanine (FMLP), neutrophils exposed to PFCs aggregated at a faster rate but with a longer lag phase in comparison to control cells. Neutrophil superoxide (O-2) release stimulated by PMA also was depressed by prior exposure of cells to Oxypherol (6 nmoles O-2/1.5 X 10(6) neutrophils) compared to buffer (32 nmoles O-2/1.5 X 10(6) neutrophils). PMA-stimulated neutrophil adherence was depressed significantly by prior exposure to Fluosol-DA compared to control. In contrast, Oxypherol had insignificant influence on stimulated adherence. Since PFCs have a profound influence on several important neutrophil functions, patients receiving PFC should be monitored closely for possible infectious complications. PMID:6087518

  12. Human resistin promotes neutrophil proinflammatory activation and neutrophil extracellular trap formation and increases severity of acute lung injury.

    PubMed

    Jiang, Shaoning; Park, Dae Won; Tadie, Jean-Marc; Gregoire, Murielle; Deshane, Jessy; Pittet, Jean Francois; Abraham, Edward; Zmijewski, Jaroslaw W

    2014-05-15

    Although resistin was recently found to modulate insulin resistance in preclinical models of type II diabetes and obesity, recent studies also suggested that resistin has proinflammatory properties. We examined whether the human-specific variant of resistin affects neutrophil activation and the severity of LPS-induced acute lung injury. Because human and mouse resistin have distinct patterns of tissue distribution, experiments were performed using humanized resistin mice that exclusively express human resistin (hRTN(+/-)(/-)) but are deficient in mouse resistin. Enhanced production of TNF-α or MIP-2 was found in LPS-treated hRtn(+/-/-) neutrophils compared with control Rtn(-/-/-) neutrophils. Expression of human resistin inhibited the activation of AMP-activated protein kinase, a major sensor and regulator of cellular bioenergetics that also is implicated in inhibiting inflammatory activity of neutrophils and macrophages. In addition to the ability of resistin to sensitize neutrophils to LPS stimulation, human resistin enhanced neutrophil extracellular trap formation. In LPS-induced acute lung injury, humanized resistin mice demonstrated enhanced production of proinflammatory cytokines, more severe pulmonary edema, increased neutrophil extracellular trap formation, and elevated concentration of the alarmins HMGB1 and histone 3 in the lungs. Our results suggest that human resistin may play an important contributory role in enhancing TLR4-induced inflammatory responses, and it may be a target for future therapies aimed at reducing the severity of acute lung injury and other inflammatory situations in which neutrophils play a major role. PMID:24719460

  13. Bacteriophage ecology in a commercial cucumber fermentation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To reduce high-salt waste from cucumber fermentations, low-salt fermentations are under development. These fermentations may require the use of starter cultures to ensure normal fermentations. Because potential phage infection can cause starter culture failure, it is important to understand phage ec...

  14. Dry anaerobic methane fermentation

    SciTech Connect

    Jewell, W.J.; Dell'Orto, S.; Fanfoni, K.J.; Fast, S.; Jackson, D.; Kabrick, R.M.

    1981-01-01

    The conversion of relatively dry organics directly to biogas increases the potential of using large amounts of organics such as mixtures of crop residues and animal manures on the farm, crop residues, and urban solid wastes. Besides the use of the dry fermentation process on farms and in centralized facilities, the possibility of using this concept as a residential energy generating system exists. Existing crop residues can be used to generate biogas without major water needs problems. Requirements for an efficient reaction include initial solid content less than 30%, an active methanogenic slurry addition of 40% dry weight (depending on the substrate), and a reaction period of 60-300 days, depending on the reactor temperatures. Further analyses are required to clarify the controlling parameters and the economic feasibility.

  15. Fermented broth in tyrosinase- and melanogenesis inhibition.

    PubMed

    Chan, Chin-Feng; Huang, Ching-Cheng; Lee, Ming-Yuan; Lin, Yung-Sheng

    2014-01-01

    Fermented broth has a long history of applications in the food, pharmaceutical and cosmetic industries. Recently, the use of fermented broth in skin care products is in ascendance. This review investigates the efficacy of fermented broth in inhibiting tyrosinase and melanogenesis. Possible active ingredients and hypopigmentation mechanisms of fermented broth are discussed, and potential applications of fermented broth in the cosmetic industry are also addressed. PMID:25255749

  16. A Classic Clinical Case: Neutrophilic Eccrine Hidradenitis

    PubMed Central

    Copaescu, Ana-Maria; Castilloux, Jean-François; Chababi-Atallah, Myrna; Sinave, Christian; Bertrand, Janie

    2013-01-01

    Background Neutrophilic eccrine hidradenitis (NEH) is a rare condition described mostly in adult patients receiving chemotherapy for acute myelogenous leukemia. When it affects the facial region, it can mimic cellulitis and delay the diagnostic, thus proper recognition is essential. Objective This article describes a classic case of NEH. We will review the diagnostic, the differential diagnostic (mostly cellulitis) and the management of this condition. Methods After a literature review, the patient's file was properly studied in order to portray a clear picture of this condition. Medical photographs and appropriate physical examination upon presentation are also included. Results The diagnostic for NEH was suggested by the clinical presentation and confirmed histopathologically (skin biopsy). Conclusion The diagnostic of NEH is essential in order to prevent multiple unnecessary antibiotics. PMID:24474918

  17. Polymorphonuclear neutrophil function in systemic sclerosis.

    PubMed Central

    Czirják, L; Dankó, K; Sipka, S; Zeher, M; Szegedi, G

    1987-01-01

    In vitro functions of polymorphonuclear (PMN) neutrophils were studied in 20 patients with progressive systemic sclerosis (PSS). An increase in the basal chemiluminescence (CL) activity of peripheral blood PMNs was found, suggesting that these cells had been preactivated in vivo. Patients with more extensive skin disease or signs of disease progression tended to have higher basal CL values. Active oxygen products during the respiratory burst may increase the extent of inflammatory and fibrotic processes and could be involved in the endothelial injury in PSS. The stimulatory capacity of CL response was normal in our study. No alterations were found in the opsonised yeast phagocytic activity of granulocytes when compared with control values. The binding of erythrocyte-antibody particles was found also to be normal. A depressed chemotactic activity of PMN cells against zymosan activated serum was also shown. The cause of the decreased chemotaxis of PMNs remains to be elucidated. PMID:3592786

  18. Blocking neutrophil integrin activation prevents ischemia–reperfusion injury

    PubMed Central

    Yago, Tadayuki; Petrich, Brian G.; Zhang, Nan; Liu, Zhenghui; Shao, Bojing; Ginsberg, Mark H.

    2015-01-01

    Neutrophil recruitment, mediated by β2 integrins, combats pyogenic infections but also plays a key role in ischemia–reperfusion injury and other inflammatory disorders. Talin induces allosteric rearrangements in integrins that increase affinity for ligands (activation). Talin also links integrins to actin and other proteins that enable formation of adhesions. Structural studies have identified a talin1 mutant (L325R) that perturbs activation without impairing talin’s capacity to link integrins to actin and other proteins. Here, we found that mice engineered to express only talin1(L325R) in myeloid cells were protected from renal ischemia–reperfusion injury. Dissection of neutrophil function in vitro and in vivo revealed that talin1(L325R) neutrophils had markedly impaired chemokine-induced, β2 integrin–mediated arrest, spreading, and migration. Surprisingly, talin1(L325R) neutrophils exhibited normal selectin-induced, β2 integrin–mediated slow rolling, in sharp contrast to the defective slow rolling of neutrophils lacking talin1 or expressing a talin1 mutant (W359A) that blocks talin interaction with integrins. These studies reveal the importance of talin-mediated activation of integrins for renal ischemia–reperfusion injury. They further show that neutrophil arrest requires talin recruitment to and activation of integrins. However, although neutrophil slow rolling requires talin recruitment to integrins, talin-mediated integrin activation is dispensable. PMID:26169939

  19. Fluid phase recognition molecules in neutrophil-dependent immune responses.

    PubMed

    Jaillon, Sébastien; Ponzetta, Andrea; Magrini, Elena; Barajon, Isabella; Barbagallo, Marialuisa; Garlanda, Cecilia; Mantovani, Alberto

    2016-04-01

    The innate immune system comprises both a cellular and a humoral arm. Neutrophils are key effector cells of the immune and inflammatory responses and have emerged as a major source of humoral pattern recognition molecules (PRMs). These molecules, which include collectins, ficolins, and pentraxins, are specialised in the discrimination of self versus non-self and modified-self and share basic multifunctional properties including recognition and opsonisation of pathogens and apoptotic cells, activation and regulation of the complement cascade and tuning of inflammation. Neutrophils act as a reservoir of ready-made soluble PRMs, such as the long pentraxin PTX3, the peptidoglycan recognition protein PGRP-S, properdin and M-ficolin, which are stored in neutrophil granules and are involved in neutrophil effector functions. In addition, other soluble PRMs, such as members of the collectin family, are not expressed in neutrophils but can modulate neutrophil-dependent immune responses. Therefore, soluble PRMs are an essential part of the innate immune response and retain antibody-like effector functions. Here, we will review the expression and general function of soluble PRMs, focusing our attention on molecules involved in neutrophil effector functions. PMID:27021644

  20. Review of the neutrophil response to Bordetella pertussis infection.

    PubMed

    Eby, Joshua C; Hoffman, Casandra L; Gonyar, Laura A; Hewlett, Erik L

    2015-12-01

    The nature and timing of the neutrophil response to infection with Bordetella pertussis is influenced by multiple virulence factors expressed by the bacterium. After inoculation of the host airway, the recruitment of neutrophils signaled by B. pertussis lipooligosaccharide (LOS) is suppressed by pertussis toxin (PTX). Over the next week, the combined activities of PTX, LOS and adenylate cyclase toxin (ACT) result in production of cytokines that generate an IL-17 response, promoting neutrophil recruitment which peaks at 10-14 days after inoculation in mice. Arriving at the site of infection, neutrophils encounter the powerful local inhibitory activity of ACT, in conjunction with filamentous hemagglutinin. With the help of antibodies, neutrophils contribute to clearance of B. pertussis, but only after 28-35 days in a naïve mouse. Studies of the lasting, antigen-specific IL-17 response to infection in mice and baboons has led to progress in vaccine development and understanding of pathogenesis. Questions remain about the mediators that coordinate neutrophil recruitment and the mechanisms by which neutrophils overcome B. pertussis virulence factors. PMID:26432818

  1. Hyperalgesia due to nerve injury: role of neutrophils.

    PubMed

    Perkins, N M; Tracey, D J

    2000-01-01

    The hypothesis that the early inflammatory cell, the neutrophil, contributes to the hyperalgesia resulting from peripheral nerve injury was tested in rats in which the sciatic nerve was partially transected on one side. The extent and time-course of neutrophilic infiltration of the sciatic nerve and innervated paw skin after partial nerve damage was characterized using immunocytochemistry. The number of endoneurial neutrophils was significantly elevated in sections of operated nerve compared to sections of sham-operated nerve for the entire period studied, i.e. up to seven days post-surgery. This considerable elevation in endoneurial neutrophil numbers was only observed at the site of nerve injury. Depletion of circulating neutrophils at the time of nerve injury significantly attenuated the induction of hyperalgesia. However, depletion of circulating neutrophils at day 8 post-injury did not alleviate hyperalgesia after its normal induction. It is concluded that endoneurial accumulation of neutrophils at the site of peripheral nerve injury is important in the early genesis of the resultant hyperalgesia. The findings support the notion that a neuroimmune interaction occurs as a result of peripheral nerve injury and is important in the subsequent development of neuropathic pain. PMID:11113323

  2. The Multifaceted Roles Neutrophils Play in the Tumor Microenvironment.

    PubMed

    Sionov, Ronit Vogt; Fridlender, Zvi G; Granot, Zvi

    2015-12-01

    Neutrophils are myeloid cells that constitute 50-70 % of all white blood cells in the human circulation. Traditionally, neutrophils are viewed as the first line of defense against infections and as a major component of the inflammatory process. In addition, accumulating evidence suggest that neutrophils may also play a key role in multiple aspects of cancer biology. The possible involvement of neutrophils in cancer prevention and promotion was already suggested more than half a century ago, however, despite being the major component of the immune system, their contribution has often been overshadowed by other immune components such as lymphocytes and macrophages. Neutrophils seem to have conflicting functions in cancer and can be classified into anti-tumor (N1) and pro-tumor (N2) sub-populations. The aim of this review is to discuss the varying nature of neutrophil function in the cancer microenvironment with a specific emphasis on the mechanisms that regulate neutrophil mobilization, recruitment and activation. PMID:24895166

  3. Chemokine Regulation of Neutrophil Infiltration of Skin Wounds

    PubMed Central

    Su, Yingjun; Richmond, Ann

    2015-01-01

    Significance: Efficient recruitment of neutrophils to an injured skin lesion is an important innate immune response for wound repair. Defects in neutrophil recruitment lead to impaired wound healing. Recent Advances: Chemokines and chemokine receptors are known to regulate neutrophil recruitment. Recent research advances reveal more mechanistic details about the regulation of chemokines and chemokine receptors on neutrophil egress from bone marrow, transmigration into the wound site, spatial navigation toward the necrotic skin tissue, and apoptosis-induced clearance by efferocytosis. Critical Issues: Skin injury triggers local and systemic alterations in the expression of multiple chemotactic molecules and the magnitude of chemokine receptor-mediated signaling. The responses of a number of CXC and CX3C chemokines and their receptors closely associate with the temporal and spatial recruitment of neutrophils to wound sites during the inflammatory phase and promote the clearance of necrotic neutrophils during the transition into the proliferative phase. Functional aberrancy in these chemokines and chemokine receptor systems is recognized as one of the important mechanisms underlying the pathology of impaired wound healing. Future Directions: Future research should aim to investigate the therapeutic modulation of neutrophil activity through the targeting of specific chemokines or chemokine receptors in the early inflammatory phase to improve clinical management of wound healing. PMID:26543677

  4. Neutrophil extracellular traps in sheep mastitis.

    PubMed

    Pisanu, Salvatore; Cubeddu, Tiziana; Pagnozzi, Daniela; Rocca, Stefano; Cacciotto, Carla; Alberti, Alberto; Marogna, Gavino; Uzzau, Sergio; Addis, Maria Filippa

    2015-01-01

    Neutrophil extracellular traps (NETs) are structures composed of DNA, histones, and antimicrobial proteins that are released extracellularly by neutrophils and other immune cells as a means for trapping and killing invading pathogens. Here, we describe NET formation in milk and in mammary alveoli of mastitic sheep, and provide a dataset of proteins found in association to these structures. Nucleic acid staining, immunomicroscopy and fluorescent in-situ hybridization of mastitic mammary tissue from sheep infected with Streptococcus uberis demonstrated the presence of extranuclear DNA colocalizing with antimicrobial proteins, histones, and bacteria. Then, proteomic analysis by LTQ-Orbitrap Velos mass spectrometry provided detailed information on protein abundance changes occurring in milk upon infection. As a result, 1095 unique proteins were identified, of which 287 being significantly more abundant in mastitic milk. Upon protein ontology classification, the most represented localization classes for upregulated proteins were the cytoplasmic granule, the nucleus, and the mitochondrion, while function classes were mostly related to immune defence and inflammation pathways. All known NET markers were massively increased, including histones, granule proteases, and antimicrobial proteins. Of note was the detection of protein arginine deiminases (PAD3 and PAD4). These enzymes are responsible for citrullination, the post-translational modification that is known to trigger NET formation by inducing chromatin decondensation and extracellular release of NETs. As a further observation, citrullinated residues were detected by tandem mass spectrometry in histones of samples from mastitic animals. In conclusion, this work provides novel microscopic and proteomic information on NETs formed in vivo in the mammary gland, and reports the most complete database of proteins increased in milk upon bacterial mastitis. PMID:26088507

  5. Neutrophil adhesion and chemotaxis depend on substrate mechanics

    NASA Astrophysics Data System (ADS)

    Jannat, Risat A.; Robbins, Gregory P.; Ricart, Brendon G.; Dembo, Micah; Hammer, Daniel A.

    2010-05-01

    Neutrophil adhesion to the vasculature and chemotaxis within tissues play critical roles in the inflammatory response to injury and pathogens. Unregulated neutrophil activity has been implicated in the progression of numerous chronic and acute diseases such as rheumatoid arthritis, asthma and sepsis. Cell migration of anchorage-dependent cells is known to depend on both chemical and mechanical interactions. Although neutrophil responses to chemical cues have been well characterized, little is known about the effect of underlying tissue mechanics on neutrophil adhesion and migration. To address this question, we quantified neutrophil migration and traction stresses on compliant hydrogel substrates with varying elasticity in a micromachined gradient chamber in which we could apply either a uniform concentration or a precise gradient of the bacterial chemoattractant fMLP. Neutrophils spread more extensively on substrates of greater stiffness. In addition, increasing the stiffness of the substrate leads to a significant increase in the chemotactic index for each fMLP gradient tested. As the substrate becomes stiffer, neutrophils generate higher traction forces without significant changes in cell speed. These forces are often displayed in pairs and focused in the uropod. Increases in the mean fMLP concentration beyond the KD of the receptor lead to a decrease in chemotactic index on all surfaces. Blocking with an antibody against β2-integrins leads to a significant reduction, but not an elimination, of directed motility on stiff materials, but no change in motility on soft materials, suggesting neutrophils can display both integrin-dependent and integrin-independent motility. These findings are critical for understanding how neutrophil migration may change in different mechanical environments in vivo and can be used to guide the design of migration inhibitors that more efficiently target inflammation.

  6. Effects of Staphylococcal Enterotoxins on Human Neutrophil Functions and Apoptosis

    PubMed Central

    Moulding, Dale A.; Walter, Catherine; Hart, C. Anthony; Edwards, Steven W.

    1999-01-01

    Staphylococcal enterotoxins have marked effects on the properties of T cells and monocytes and have recently been reported to affect neutrophil function. In this study, we investigated the abilities of staphylococcal enterotoxins A and B and toxic shock syndrome toxin 1 to affect respiratory burst activity and to delay apoptosis in human neutrophils. When cultures containing approximately 97% neutrophils were tested, the toxins all delayed neutrophil apoptosis in a dose-dependent manner and induced the expression of FcγRI on the neutrophil cell surface. These effects on apoptosis and expression of FcγRI were largely abrogated by the addition of a neutralizing anti-gamma interferon antibody. Similarly, the effects of these toxins on phorbol ester-induced chemiluminescence were decreased after neutralization of gamma interferon. These effects on neutrophil function were mimicked by the addition of conditioned medium from peripheral blood mononuclear cells incubated with the toxins, and again, neutralizing anti-gamma interferon antibodies largely negated the effects. However, when highly purified neutrophils prepared by immunodepletion of T cells and major histocompatibility complex class II-expressing cells were analyzed, the toxins were without effect on apoptosis and FcγRI expression, but granulocyte-macrophage colony-stimulating factor and gamma interferon could still delay apoptosis. These data indicate that these toxins have no direct effect on neutrophil apoptosis but can act indirectly via the production of T-cell-derived and monocyte-derived cytokines. It is noteworthy that such effects are detected in neutrophil suspensions containing only 3% contamination with T cells and other mononuclear cells. PMID:10225889

  7. The hepatic inflammatory response after acetaminophen overdose: role of neutrophils.

    PubMed

    Lawson, J A; Farhood, A; Hopper, R D; Bajt, M L; Jaeschke, H

    2000-04-01

    Acetaminophen overdose induces severe liver injury and hepatic failure. There is evidence that inflammatory cells may be involved in the pathophysiology. Thus, the aim of this investigation was to characterize the neutrophilic inflammatory response after treatment of C3Heb/FeJ mice with 300 mg/kg acetaminophen. A time course study showed that neutrophils accumulate in the liver parallel to or slightly after the development of liver injury. The number of neutrophils in the liver was substantial (209 +/- 64 PMN/50 high-power fields at 12 h) compared to baseline levels (7 +/- 1). Serum levels of TNF-alpha and the C-X-C chemokines KC and MIP-2 increased by 28-, 14-, and 295-fold, respectively, over levels found in controls during the injury process. In addition, mRNA expression of MIP-2 and KC were upregulated in livers of acetaminophen-treated animals as determined by ribonuclease protection assay. However, none of these mediators were generated in large enough quantities to account for neutrophil sequestration in the liver. There was no upregulation of Mac-1 (CD11b/ CD18) or shedding of L-selectin on circulating neutrophils. Moreover, an anti-CD18 antibody had no protective effect against acetaminophen overdose during the first 24 h. These results indicate that there is a local inflammatory response after acetaminophen overdose, including a substantial accumulation of neutrophils in the liver. Because of the critical importance of beta2 integrins for neutrophil cytotoxicity, these results suggest that neutrophils do not contribute to the initiation or progression of AAP-induced liver. The inflammation observed after acetaminophen overdose may be characteristic for a response sufficient to recruit neutrophils for the purpose of removing necrotic cells but is not severe enough to cause additional damage. PMID:10774834

  8. Translational control of human neutrophil responses by MNK1.

    PubMed

    Fortin, Carl F; Mayer, Thomas Z; Cloutier, Alexandre; McDonald, Patrick P

    2013-10-01

    A growing number of inflammatory and immune processes in vivo have been shown to be influenced by neutrophil-derived cytokines. Whereas the underlying transcriptional mechanisms are increasingly well understood, the translational regulation of this neutrophil response remains largely unexplored. Here, we show that the MNK1, which participates in translational control in several cell types, is activated in response to physiological neutrophil agonists (LPS, TNF-α) in the cytoplasmic and nuclear compartments. With the use of various pharmacological inhibitors, we found that MNK1 activation takes place downstream of the TAK1-p38 MAPK axis in neutrophils, whereas the MEK/ERK, JNK, PI3K, and PKC pathways are not involved. Pharmacological blockade of MNK1, as well as overexpression experiments, established that cytokine protein synthesis (but not gene expression) is under the control of MNK1 in neutrophils. Likewise, MNK1 inhibition reversed the antiapoptotic effect of LPS and TNF-α in neutrophils, and this was accompanied by a decreased expression of the antiapoptotic protein Mcl-1. Thus, MNK1 appears to be an important regulator of neutrophil responses. Although MNK1 inhibition did not affect protein recruitment to mRNA caps, it decreased the phosphorylation of molecules implicated in translation initiation control, such as S6K, S6, and hyperphosphorylated 4E-BP1. These molecular targets of MNK1 are shared with those of PI3K in neutrophils, and accordingly, MNK1 inhibition partially impaired the belated PI3K/Akt activation elicited by LPS or TNF in these cells. Given the importance of neutrophils and their products in numerous chronic inflammatory disorders, MNK1 could represent an attractive therapeutic target. PMID:23401599

  9. Tempol inhibits neutrophil and hydrogen peroxide-mediated DNA damage.

    PubMed

    Hahn, S M; Mitchell, J B; Shacter, E

    1997-01-01

    Inflammatory conditions characterized by neutrophil activation are associated with a variety of chronic diseases. Reactive oxygen species are produced by activated neutrophils and produce DNA damage which may lead to tissue damage. Previous studies have shown that activated murine neutrophils induce DNA strand breaks in a target plasmacytoma cell, RIMPC 2394. We studied the effect of a water soluble nitroxide anti-oxidant, Tempol, on murine neutrophil induction of DNA strand breaks in this system. Murine neutrophils were isolated from the peritoneal cavity of BALB/cAn mice after an i.p. injection of pristane oil. Neutrophils were activated by the phorbol ester PMA and co-incubated with RIMPC 2394 cells. Control alkaline elution studies revealed progressive DNA strand breaks in RIMPC cells with time. The addition of Tempol to the incubation mixture prevented DNA damage in a dose dependent fashion. Five mM Tempol provided complete protection. Tempol protection against DNA strand breaks was similar for both stimulated neutrophils and exogenously added hydrogen peroxide. Measurement of hydrogen peroxide produced by stimulated neutrophils demonstrated that Tempol did not decrease hydrogen peroxide concentration. Oxidation of reduced metals, thereby interfering with the production of hydroxyl radical, is the most likely mechanism of nitroxide protection, although superoxide dismutase (SOD) like activity and scavenging of carbon-based free radicals may also account for a portion of the observed protection. The anti-oxidant activity of Tempol inhibited DNA damage by activated neutrophils. The nitroxides as a class of compounds may have a role in the investigation and modification of inflammatory conditions. PMID:9378367

  10. Mannheimia haemolytica leukotoxin binds cyclophilin D on bovine neutrophil mitochondria.

    PubMed

    Aulik, Nicole A; Hellenbrand, Katrina M; Kisiela, Dagmara; Czuprynski, Charles J

    2011-01-01

    Mannheimia haemolytica is an important member of the bovine respiratory disease (BRD) complex that causes fibrinous and necrotizing pleuropneumonia in cattle. BRD is characterized by abundant neutrophil infiltration into the alveoli and fibrin deposition. The most important virulence factor of M. haemolytica is its leukotoxin. Previous research in our laboratory has shown that the leukotoxin is able to enter into and traffic to the mitochondria of a bovine lymphoblastoid cell line (BL-3). In this study, we evaluated the ability of LKT to be internalized and travel to mitochondria in bovine neutrophils. We demonstrate that LKT binds bovine neutrophil mitochondria and co-immunoprecipitates with TOM22 and TOM40, which are members of the translocase of the outer mitochondrial (TOM) membrane family. Upon entry into mitochondria, LKT co-immunoprecipitates with cyclophilin D, a member of the mitochondria permeability transition pore. Unlike BL-3 cells, bovine neutrophil mitochondria are not protected against LKT by the membrane-stabilizing agent cyclosporin A, nor were bovine neutrophil mitochondria protected by the permeability transition pore antagonist bongkrekic acid. In addition, we found that bovine neutrophil cyclophilin D is significantly smaller than that found in BL-3 cells. Bovine neutrophils were protected against LKT by protein transfection of an anti-cyclophilin D antibody directed at the C-terminal amino acids, but not an antibody against the first 50 N-terminal amino acids. In contrast, BL-3 cells were protected by antibodies against either the C-terminus or N-terminus of cyclophilin. These data confirm that LKT binds to bovine neutrophil mitochondria, but indicate there are distinctions between neutrophil and BL-3 mitochondria that might reflect differences in cyclophilin D. PMID:21220005

  11. Social Ferment and School Finance

    ERIC Educational Resources Information Center

    Hack, Walter G.

    1972-01-01

    Describes the nature of contemporary society in terms of gross or general changes observed during the past twenty years in order to consider possible breakthroughs of school finance as products of social ferment. (Author/AN)

  12. Optimal design of airlift fermenters

    SciTech Connect

    Moresi, M.

    1981-11-01

    In this article a modeling of a draft-tube airlift fermenter (ALF) based on perfect back-mixing of liquid and plugflow for gas bubbles has been carried out to optimize the design and operation of fermentation units at different working capacities. With reference to a whey fermentation by yeasts the economic optimization has led to a slim ALF with an aspect ratio of about 15. As far as power expended per unit of oxygen transfer is concerned, the responses of the model are highly influenced by kLa. However, a safer use of the model has been suggested in order to assess the feasibility of the fermentation process under study. (Refs. 39).

  13. [Neutrophilic dermatosis in ulcerative colitis occurring in advanced age].

    PubMed

    López Maldonado, M D; Calvo Catalá, J; Ronda Gasulla, A; Hortelano Martínez, E; Herrera Ballester, A; Febrer Bosch, I

    1994-08-01

    The Neutrophilic dermatosis (ND) is considered as an independent entity with diverse clinical manifestations among which there are: gangrenous pyoderma, nodous erythema, Sweets Syndrome, vesiculopustula eruptions associated to ulcerous colitis and intestinal short circuit syndrome with or without short circuit. Histologically, they are characterized by infiltration of polymorphonuclear neutrophils, generally at the dermic level, but also at the epidermic. They are usually associated to systemic diseases, especially to chronic intestinal inflammatory disease. Our aim was to describe two forms of clinical presentation of neutrophilic dermatosis: gangrenous pyoderma and vesiculopustula eruption, associated to ulcerous colitis starting at advances ages. PMID:7772690

  14. Hidden truth of circulating neutrophils (polymorphonuclear neutrophil) function in periodontally healthy smoker subjects

    PubMed Central

    Agarwal, Chitra; Baron, Tarun Kumar; Mehta, Dhoom Singh

    2016-01-01

    Context: Tobacco smoking is considered to be a major risk factor associated with periodontal disease. Smoking exerts a major effect on the protective elements of the immune response, resulting in an increase in the extent and severity of periodontal destruction. Aims: The aim of the present study was to assess viability and phagocytic function of neutrophils in circulating blood of the smokers and nonsmokers who are periodontally healthy. Settings and Design: Two hundred subjects in the mean range of 20–30 years of age were included in the study population. It was a retrospective study carried out for 6 months. Materials and Methods: Two hundred subjects were divided into four groups: 50 nonsmokers, 50 light smokers (<5 cigarettes/day), 50 moderate smokers (5–15 cigarettes/day), and 50 heavy smokers (>15 cigarettes/day). Full mouth plaque index, sulcus bleeding index, and probing depths were measured. Percentage viability of circulating neutrophils and average number of phagocytosed Candida albicans were recorded. Statistical Analysis Used: Means and standard deviations were calculated from data obtained within the groups. Comparison between the smokers and nonsmokers was performed by Kruskal–Wallis ANOVA analysis. Comparison between smoker groups was performed using Mann–Whitney–Wilcoxon test. Results: Percentage viability of neutrophils was significantly less in heavy smokers (66.9 ± 4.0), moderate (76.6 ± 4.2), light smokers (83.1 ± 2.5) as compared to nonsmokers (92.3 ± 2.6) (P < 0.01). The ability of neutrophils to phagocytose, i.e., mean particle number was significantly less in light smokers (3.5 ± 0.5), moderate smokers (2.3 ± 0.5), and heavy smokers (1.4 ± 0.5) compared to nonsmokers (4.9 ± 0.7) (P < 0.01) with evidence of dose-response effect. Conclusions: Smoking significantly affects neutrophils viability and phagocytic function in periodontally healthy population. PMID:27143827

  15. Complement factor H modulates the activation of human neutrophil granulocytes and the generation of neutrophil extracellular traps.

    PubMed

    Schneider, Andrea E; Sándor, Noémi; Kárpáti, Éva; Józsi, Mihály

    2016-04-01

    Factor H (FH) is a major inhibitor of the alternative pathway of complement activation in plasma and on certain host surfaces. In addition to being a complement regulator, FH can bind to various cells via specific receptors, including binding to neutrophil granulocytes through complement receptor type 3 (CR3; CD11b/CD18), and modulate their function. The cellular roles of FH are, however, poorly understood. Because neutrophils are important innate immune cells in inflammatory processes and the host defense against pathogens, we aimed at studying the effects of FH on various neutrophil functions, including the generation of extracellular traps. FH co-localized with CD11b on the surface of neutrophils isolated from peripheral blood of healthy individuals, and cell-bound FH retained its cofactor activity and enhanced C3b degradation. Soluble FH supported neutrophil migration and immobilized FH induced cell spreading. In addition, immobilized but not soluble FH enhanced IL-8 release from neutrophils. FH alone did not trigger the cells to produce neutrophil extracellular traps (NETs), but NET formation induced by PMA and by fibronectin plus fungal β-glucan were inhibited by immobilized, but not by soluble, FH. Moreover, in parallel with NET formation, immobilized FH also inhibited the production of reactive oxygen species induced by PMA and by fibronectin plus β-glucan. Altogether, these data indicate that FH has multiple regulatory roles on neutrophil functions. While it can support the recruitment of neutrophils, FH may also exert anti-inflammatory effects and influence local inflammatory and antimicrobial reactions, and reduce tissue damage by modulating NET formation. PMID:26938503

  16. Relationships between lifestyle factors and neutrophil functions in the elderly.

    PubMed

    Tsukamoto, Kazumasa; Suzuki, Katsuhiko; Machida, Kazuhiko; Saiki, Chinatsu; Murayama, Rumiko; Sugita, Minoru

    2002-01-01

    We investigated the relationships between neutrophil functions and lifestyle factors in the elderly. The subjects (84 males, 73.9+/-5.8 years old; and 63 females, 70.0+/-4.6 years old) belonged to a recreational seniors club in Japan. Investigations of the subjects' stress, exercise habits, smoking habits, and alcohol-drinking habits were performed. The phagocytosis and superoxide productivity of the neutrophils were measured with a nitroblue tetrazolium (NBT) reduction test. In addition, leukocyte counts and serum total protein (TP) levels were determined. The results revealed that aging, high serum levels, and stress-coping factors (e.g., having hobbies, keeping pets, and close links with friends or family) significantly correlated with preferable neutrophil functions. In addition, significant effects of lifestyle factors on the balance between phagocytosis and subsequent superoxide production were observed. Thus, the results of the present study suggest that there are correlations between neutrophil functions and lifestyle factors in the elderly. PMID:12357457

  17. [The phagocytosis of polymorphonuclear neutrophilic granulocytes in progressive periodontitis].

    PubMed

    Konopka, T; Zietek, M

    1995-01-01

    The aim of this paper was the evaluation of the phagocytic activity of neutrophils in blood and in gingival pocket fluid in patients suffering from rapidly progressive periodontitis (RPP) and postjuvenile periodontitis (PJP). Prior to periodontal treatment the authors evaluated the capacity to phagocytose latex particles of peripheral blood neutrophils from 21 patients with RPP, 51 with PJP and 59 healthy subjects (control group) as well as the phagocytic activity of neutrophils in pocket fluid from 21 patients with RPP, 14 with PJP and from 20 healthy subjects. This phagocytic activity was significantly lower in all examined groups in comparison with the control group. A similar evaluation executed 3 months after treatment revealed normal phagocytosis of blood neutrophils from patients with RPP. In patients receiving complementary pharmacotherapy (spiramycine combined with metronidazol), a better improvement of phagocytosis was noted, than that observed in patients treated only surgically. PMID:7481699

  18. Cellular Mechanisms Underlying Eosinophilic and Neutrophilic Airway Inflammation in Asthma

    PubMed Central

    Vatrella, Alessandro; Busceti, Maria Teresa; Gallelli, Luca; Calabrese, Cecilia; Terracciano, Rosa

    2015-01-01

    Asthma is a phenotypically heterogeneous chronic disease of the airways, characterized by either predominant eosinophilic or neutrophilic, or even mixed eosinophilic/neutrophilic inflammatory patterns. Eosinophilic inflammation can be associated with the whole spectrum of asthma severity, ranging from mild-to-moderate to severe uncontrolled disease, whereas neutrophilic inflammation occurs mostly in more severe asthma. Eosinophilic asthma includes either allergic or nonallergic phenotypes underlying immune responses mediated by T helper (Th)2 cell-derived cytokines, whilst neutrophilic asthma is mostly dependent on Th17 cell-induced mechanisms. These immune-inflammatory profiles develop as a consequence of a functional impairment of T regulatory (Treg) lymphocytes, which promotes the activation of dendritic cells directing the differentiation of distinct Th cell subsets. The recent advances in the knowledge of the cellular and molecular mechanisms underlying asthmatic inflammation are contributing to the identification of novel therapeutic targets, potentially suitable for the implementation of future improvements in antiasthma pharmacologic treatments. PMID:25878402

  19. Role of PTEN in neutrophil extracellular trap formation.

    PubMed

    Teimourian, Shahram; Moghanloo, Ehsan

    2015-08-01

    NETosis has been associated with a particular mode of cell death although it is still controversial as to what extent autophagy is involved in NETosis. Class I/AKT/mTOR pathway is a key regulator of autophagy. PTEN tumor suppressor gene encodes a dual specificity phosphatase that antagonizes the phosphatidylinositol 3-kinase in class the I/AKT/mTOR pathway. In this study, we investigated the effects of PTEN down-regulation as well as overexpression on NETosis. Our results show that 35% of HL-60 differentiated neutrophil-like cells generated NETs by PMA. The portion of the population that produced NETs in PTEN knockdown HL-60 differentiated neutrophils was 9% and in PTEN overexpressed HL-60 differentiated neutrophils, it was 56%. Our results show that increasing PTEN expression increases NETs formation in neutrophils, and its suppression reduces NETs. PMID:25913476

  20. Oxidative burst of neutrophils against melanoma B16-F10.

    PubMed

    Zivkovic, Morana; Poljak-Blazi, Marija; Zarkovic, Kamelija; Mihaljevic, Danijela; Schaur, Rudolf Joerg; Zarkovic, Neven

    2007-02-01

    Intensive oxidative burst was determined by chemiluminescence of peripheral blood neutrophils of mice that were intramuscularly injected with melanoma B16-F10 and/or subcutaneously with Sephadex G-200. The neutrophils from papula developed at the site of Sephadex injection were cytotoxic for the B16-F10 cells in vitro. However, survival of Sephadex injected tumour-bearing mice was lower than of control animals bearing B16-F10, while their tumours grew faster and were less necrotic. Thus, it is likely that injection of Sephadex distracted the neutrophils from the tumour allowing faster progression of the tumour, indicating that neutrophils may have an important role in the host defence against malignant cells in the early stage of tumour development. PMID:16564616

  1. Fatty acids as modulators of neutrophil recruitment, function and survival.

    PubMed

    Rodrigues, Hosana G; Takeo Sato, Fabio; Curi, Rui; Vinolo, Marco A R

    2016-08-15

    Neutrophils are well-known to act in the destruction of invading microorganisms. They have also been implicated in the activation of other immune cells including B- and T-lymphocytes and in the resolution of inflammation and tissue regeneration. Neutrophils are produced in the bone marrow and released into the circulation from where they migrate to tissues to perform their effector functions. Neutrophils are in constant contact with fatty acids that can modulate their function, activation and fate (survival or cell death) through different mechanisms. In this review, the effects of fatty acids pertaining to five classes, namely, long-chain saturated fatty acids (LCSFAs), short-chain fatty acids (SCFAs), and omega-3 (n-3), omega-6 (n-6) and omega-9 (n-9) unsaturated fatty acids, on neutrophils and the relevance of these effects for disease development are discussed. PMID:25987417

  2. Cellular mechanisms underlying eosinophilic and neutrophilic airway inflammation in asthma.

    PubMed

    Pelaia, Girolamo; Vatrella, Alessandro; Busceti, Maria Teresa; Gallelli, Luca; Calabrese, Cecilia; Terracciano, Rosa; Maselli, Rosario

    2015-01-01

    Asthma is a phenotypically heterogeneous chronic disease of the airways, characterized by either predominant eosinophilic or neutrophilic, or even mixed eosinophilic/neutrophilic inflammatory patterns. Eosinophilic inflammation can be associated with the whole spectrum of asthma severity, ranging from mild-to-moderate to severe uncontrolled disease, whereas neutrophilic inflammation occurs mostly in more severe asthma. Eosinophilic asthma includes either allergic or nonallergic phenotypes underlying immune responses mediated by T helper (Th)2 cell-derived cytokines, whilst neutrophilic asthma is mostly dependent on Th17 cell-induced mechanisms. These immune-inflammatory profiles develop as a consequence of a functional impairment of T regulatory (Treg) lymphocytes, which promotes the activation of dendritic cells directing the differentiation of distinct Th cell subsets. The recent advances in the knowledge of the cellular and molecular mechanisms underlying asthmatic inflammation are contributing to the identification of novel therapeutic targets, potentially suitable for the implementation of future improvements in antiasthma pharmacologic treatments. PMID:25878402

  3. Neutrophil-derived cathelicidin protects from neointimal hyperplasia

    PubMed Central

    Soehnlein, Oliver; Wantha, Sarawuth; Simsekyilmaz, Sakine; Döring, Yvonne; Megens, Remco T. A.; Mause, Sebastian F.; Drechsler, Maik; Smeets, Ralf; Weinandy, Stefan; Schreiber, Fabian; Gries, Thomas; Jockenhoevel, Stefan; Möller, Martin; Vijayan, Santosh; van Zandvoort, Marc A. M. J.; Agerberth, Birgitta; Pham, Christine T.; Gallo, Richard L.; Hackeng, Tilman M.; Liehn, Elisa A.; Zernecke, Alma; Klee, Doris; Weber, Christian

    2011-01-01

    Percutaneous transluminal angioplasty with stent implantation is used to dilate of arteries narrowed by atherosclerotic plaques and to revascularize coronary arteries occluded by atherothrombosis in myocardial infarction. Commonly applied drug-eluting stents release anti-proliferative or anti-inflammatory agents to reduce the incidence of in-stent stenosis. However, these stents may lead to in-stent stenosis and increase the rate late stent thrombosis, an obstacle to optimal revascularization possibly related to endothelial recovery. Here we examined the contribution of neutrophils and neutrophilic granule proteins to arterial healing after injury. We found that neutrophil-born cathelicidin (mouse CRAMP, human LL-37) promoted re-endothelization and thereby limited neointima formation after stent implantation. We then translated these findings, generating a neutrophil-instructing biofunctionalized miniaturized Nitinol stent coated with LL-37. This stent reduced in-stent stenosis in a mouse model of atherosclerosis, suggesting that LL-37 may promote vascular healing after interventional therapy. PMID:21974936

  4. [MORPHOLOGICAL FEATURES OF NEUTROPHILS AND EOSINOPHILS GRANULES IN SAPPHIRE MINKS].

    PubMed

    Uzenbaeva, L B; Kizhina, A G; Ilyukha, V A

    2015-01-01

    It has been established that sapphire minks have abnormality of subcellular structure of blood and bone marrow neutrophils and eosinophils. The abnormality consists in forming of abnormal "giant" granules. The si- ze and the number of abnormal granules significantly change during maturation of leucocytes in bone marrow. We have found differences between abnormal granules forming in neutrophils and eosinophils that depend on the maturing stage and the cells life cycle duration as well as morphofunctional features of these granulocytes. PMID:26863773

  5. Disentangling the effects of tocilizumab on neutrophil survival and function.

    PubMed

    Gaber, Timo; Hahne, Martin; Strehl, Cindy; Hoff, Paula; Dörffel, Yvonne; Feist, Eugen; Burmester, Gerd-Rüdiger; Buttgereit, Frank

    2016-06-01

    The synovial tissue in rheumatoid arthritis (RA) represents a hypoxic environment with up-regulated pro-inflammatory cytokines and cellular infiltrates including neutrophils. Although inhibition of the interleukin (IL)6 receptor pathway by tocilizumab is a potent treatment option for RA, it may also cause adverse effects such as an occasionally high-grade neutropenia. We analysed the impact of tocilizumab on survival, mediator secretion, oxidative burst, phagocytosis and energy availability of high-dose toll-like receptor (TLR)2/4-stimulated neutrophils (to mimic an arthritis flare) under normoxic versus hypoxic conditions. Human neutrophils were purified, pre-treated with varying doses of tocilizumab, dexamethasone or human IgG1 and high-dose-stimulated with lipopolysaccharide (LPS) alone-triggering TLR2/4-, LPS plus IL6, or left unstimulated. Cells were then incubated under normoxic (18 % O2) or hypoxic (1 % O2) conditions and subsequently analysed. Neutrophil survival and energy availability were significantly decreased by tocilizumab in a dose-dependent manner in high-dose TLR2/4-stimulated cells, but to a greater extent under normoxia as compared to hypoxia. We also found high-dose LPS-stimulated oxidative burst and phagocytosis of neutrophils to be higher under hypoxic versus normoxic conditions, but this difference was reduced by tocilizumab. Finally, we observed that tocilizumab affected neutrophil mediator secretion as a function of oxygen availability. Tocilizumab is known for both beneficial effects and a higher incidence of neutropenia when treating RA patients. Our results suggest that both effects can at least in part be explained by a reduction in neutrophil survival, a dose-dependent inhibition of hypoxia-induced NADPH oxidase-mediated oxidative burst and phagocytosis of infiltrating hypoxic neutrophils and an alteration of mediator secretion. PMID:26721805

  6. Neutrophil extracellular traps: Is immunity the second function of chromatin?

    PubMed Central

    2012-01-01

    Neutrophil extracellular traps (NETs) are made of processed chromatin bound to granular and selected cytoplasmic proteins. NETs are released by white blood cells called neutrophils, maybe as a last resort, to control microbial infections. This release of chromatin is the result of a unique form of cell death, dubbed “NETosis.” Here we review our understanding of how NETs are made, their function in infections and as danger signals, and their emerging importance in autoimmunity and coagulation. PMID:22945932

  7. Fermentation studies on extracts of beet

    SciTech Connect

    Smith, J.M.

    1983-03-01

    Fodder beet juice and sugar beet juice were found to be good substrates for the production of ethanol. Two strains of flocculent yeast were selected to ferment fodder beet juice and sugar beet juice. Beet juice was found to have a high level of contaminating microorganisms. Elimination of these microorganisms from the beet juice before fermentation was an essential step if high fermentation efficiencies were to be achieved. Continuous fermentation of fodder beet juice and sugar beet juice provided higher fermenter productivities than rapid batch fermentation. Under New Zealand farming conditions, it is estimated that 4000 litres of ethanol per hectare could be produced on a nation-wide basis.

  8. Ethanol fermentation and potential.

    PubMed

    Miller, D L

    1975-01-01

    Ethyl alcohol is one of the United States and world's major chemicals. Beverage alcohol in the United States must be prepared from cereal grains or other natural products. The U.S. industrial alcohol market has remained relatively stable for several years at approximately 300 million gallons annually. Most of this has been produced synthetically from petroleum raw material (gas and oil). These raw materials are experiencing major price increases and are in short supply. The production of ethyl alcohol from cereal grains and cellulosic raw materials by fermentation is technically feasible and has been proven. Alcohol produced from all such materials is equal to synthetic alcohol in quality and performance. Competitive economics have controlled the basic raw materials used. The major potential new ethyl alcohol market is as a component of automobile fuels. A 10% alcohol-gasoline blend in the United States would annually require over 10 billion gallons of anhydrous alcohol. Use of alcohol for this purpose is technically feasible. However, alcohol has not been economically competitive to date. PMID:1191746

  9. Fermentations with new recombinant organisms

    SciTech Connect

    Bothast, R.J.; Nichols, N.N.; Dien, B.S.

    1999-10-01

    US fuel ethanol production in 1998 exceeded the record production of 1.4 billion gallons set in 1995. Most of this ethanol was produced from over 550 million bushels of corn. Expanding fuel ethanol production will require developing lower-cost feedstocks, and only lignocellulosic feedstocks are available in sufficient quantities to substitute for corn starch. Major technical hurdles to converting lignocellulose to ethanol include the lack of low-cost efficient enzymes for saccharification of biomass to fermentable sugars and the development of microorganisms for the fermentation of these mixed sugars. To date, the most successful research approaches to develop novel biocatalysts that will efficiently ferment mixed sugar syrups include isolation of novel yeasts that ferment xylose, genetic engineering of Escherichia coli and other gram negative bacteria for ethanol production, and genetic engineering of Saccharomyces cerevisiae and Zymomonas mobilis for pentose utilization. The authors have evaluated the fermentation of corn fiber hydrolyzates by the various strains developed. E. coli K011, E. coli SL40, E. coli FBR3, Zymomonas CP4 (pZB5), and Saccharomyces 1400 (pLNH32) fermented corn fiber hydrolyzates to ethanol in the range of 21--34 g/L with yields ranging from 0.41 to 0.50 g of ethanol per gram of sugar consumed. Progress with new recombinant microorganisms has been rapid and will continue with the eventual development of organisms suitable for commercial ethanol production. Each research approach holds considerable promise, with the possibility existing that different industrially hardened strains may find separate applications in the fermentation of specific feedstocks.

  10. Granule Protein Processing and Regulated Secretion in Neutrophils

    PubMed Central

    Sheshachalam, Avinash; Srivastava, Nutan; Mitchell, Troy; Lacy, Paige; Eitzen, Gary

    2014-01-01

    Neutrophils are part of a family of granulocytes that, together with eosinophils and basophils, play an essential role in innate immunity. Neutrophils are the most abundant circulating leukocytes and are vital for rapid immune responses, being recruited to sites of injury or infection within minutes, where they can act as specialized phagocytic cells. However, another prominent function of neutrophils is the release of pro-inflammatory compounds, including cytokines, chemokines, and digestive enzymes, which are stored in intracellular compartments and released through regulated exocytosis. Hence, an important feature that contributes to rapid immune responses is capacity of neutrophils to synthesize and store pre-formed pro-inflammatory mediators in specialized intracellular vesicles and thus no new synthesis is required. This review will focus on advancement in three topics relevant to neutrophil secretion. First, we will examine what is known about basal level pro-inflammatory mediator synthesis, trafficking, and storage in secretory compartments. Second, we will review recent advancements in the mechanisms that control vesicle mobilization and the release of pre-formed mediators. Third, we will examine the upregulation and de novo synthesis of pro-inflammatory mediators by neutrophils engaged at sites of infection. PMID:25285096

  11. Stimulus-dependent secretion of plasma proteins from human neutrophils.

    PubMed Central

    Borregaard, N; Kjeldsen, L; Rygaard, K; Bastholm, L; Nielsen, M H; Sengeløv, H; Bjerrum, O W; Johnsen, A H

    1992-01-01

    In search for matrix proteins released from secretory vesicles of human neutrophils, a prominent 67-kD protein was identified in the extracellular medium of neutrophils stimulated by the chemotactic peptide, FMLP. The protein was purified to apparent homogeneity and partially sequenced. The sequence of the first 32 NH2-terminal amino acids was identical to the sequence of albumin. mRNA for human albumin could not be detected in bone marrow cells, nor could biosynthetic labeling of albumin be demonstrated in bone marrow cells during incubation with [14C]leucine. Immunofluorescence studies on single cells demonstrated the presence of intracellular albumin in fixed permeabilized neutrophils. Light microscopy of immunogold-silver-stained cryosections visualized albumin in cytoplasmic "granules." The morphology of these was determined by immunoelectron microscopy as vesicles of varying form and size. Subcellular fractionation studies on unstimulated neutrophils demonstrated the presence of albumin in the low density pre-gamma and gamma-regions that contain secretory vesicles, but are devoid of specific granules and azurophil granules. Albumin was readily released from these structures during activation of neutrophils with inflammatory mediators. Immunoblotting demonstrated the presence of immunoglobulin and transferrin along with albumin in exocytosed material from stimulated neutrophils. This indicates that secretory vesicles are unique endocytic vesicles that can be triggered to exocytose by inflammatory stimuli. Images PMID:1378856

  12. Simplified Human Neutrophil Extracellular Traps (NETs) Isolation and Handling.

    PubMed

    Najmeh, Sara; Cools-Lartigue, Jonathan; Giannias, Betty; Spicer, Jonathan; Ferri, Lorenzo E

    2015-01-01

    Neutrophil Extracellular Traps (NETs) have been recently identified as part of the neutrophil's antimicrobial armamentarium. Apart from their role in fighting infections, recent research has demonstrated that they may be involved in many other disease processes, including cancer progression. Isolating purified NETs is a crucial element to allow the study of these functions. In this video, we demonstrate a simplified method of cell free NET isolation from human whole blood using readily available reagents. Isolated NETs can then be used for immunofluorescence staining, blotting or various functional assays. This enables an assessment of their biologic properties in the absence of the potential confounding effects of neutrophils themselves. A density gradient separation technique is employed to isolate neutrophils from healthy donor whole blood. Isolated neutrophils are then stimulated by phorbol 12-myristate 13-acetate (PMA) to induce NETosis. Activated neutrophils are then discarded, and a cell-free NET stock is obtained. We then demonstrate how isolated NETs can be used in an adhesion assay with A549 human lung cancer cells. The NET stock is used to coat the wells of a 96 well cell culture plate O/N, and after ensuring an adequate NET monolayer formation on the bottom of the wells, CFSE labeled A549 cells are added. Adherent cells are quantified using a Nikon TE300 fluorescent microscope. In some wells, 1000U DNAse1 is added 10 min before counting to degrade NETs. PMID:25938591

  13. Identification of dipeptidyl peptidase III in human neutrophils.

    PubMed

    Hashimoto, J; Yamamoto, Y; Kurosawa, H; Nishimura, K; Hazato, T

    2000-07-01

    We have found activity of dipeptidyl peptidase (DPP) III, one of the most important enkephalin-degrading enzymes in the central nervous system, in human neutrophils. HPLC analysis of the peptide fragments produced by treatment of leucine-enkephalin with isolated neutrophils in the presence of inhibitors of other enkephalin-degrading enzymes revealed that the enzyme in human neutrophils cleaved dipeptides from the NH(2) terminus of leucine-enkephalin, suggesting the presence of DPPIII activity in human neutrophils. Using a specific synthesized substrate and proteinase inhibitors, it was found that the neutrophils have 19.2 +/- 3.6 microM/h/5 x 10(6) cells of beta-naphthylamine for the enzyme. It was also confirmed that spinorphin and tynorphin, both reported to inhibit the activities of enkephalin-degrading enzymes, had potent inhibitory activities (IC(50): 4.0 and 0.029 microg/ml, respectively) against the enzyme. The presence of DPPIII activity in human neutrophils suggests that the biologically active peptides which are associated with enkephalin play a physiological role in regulating enkephalin or inflammatory mechanisms in peripheral tissues. PMID:10873616

  14. Suppressed neutrophil function in children with acute lymphoblastic leukemia.

    PubMed

    Tanaka, Fumiko; Goto, Hiroaki; Yokosuka, Tomoko; Yanagimachi, Masakatsu; Kajiwara, Ryosuke; Naruto, Takuya; Nishimaki, Shigeru; Yokota, Shumpei

    2009-10-01

    Infection is a major obstacle in cancer chemotherapy. Neutropenia has been considered to be the most important risk factor for severe infection; however, other factors, such as impaired neutrophil function, may be involved in susceptibility to infection in patients undergoing chemotherapy. In this study, we analyzed neutrophil function in children with acute lymphoblastic leukemia (ALL). Whole blood samples were obtained from 16 children with ALL at diagnosis, after induction chemotherapy, and after consolidation chemotherapy. Oxidative burst and phagocytic activity of neutrophils were analyzed by flow cytometry. Oxidative burst of neutrophils was impaired in ALL patients. The percentage of neutrophils with normal oxidative burst after PMA stimulation was 59.0 +/- 13.2 or 70.0 +/- 21.0% at diagnosis or after induction chemotherapy, respectively, which was significantly lower compared with 93.8 +/- 6.1% in healthy control subjects (P = 0.00004, or 0.002, respectively); however, this value was normal after consolidation chemotherapy. No significant differences were noted in phagocytic activity in children with ALL compared with healthy control subjects. Impaired oxidative burst of neutrophils may be one risk factor for infections in children with ALL, especially in the initial periods of treatment. PMID:19728023

  15. Faropenem enhances superoxide anion production by human neutrophils in vitro.

    PubMed

    Sato, K; Sato, N; Shimizu, H; Tsutiya, T; Takahashi, H; Kakizaki, S; Takayama, H; Takagi, H; Mori, M

    1999-09-01

    Neutrophils are important cellular components in the defence against infections and many studies in vitro have shown that some antibiotics affect neutrophil function. We examined the effect of faropenem, a new oral penem antibiotic on neutrophil killing function by determining the generation of superoxide anion in vitro. The production of superoxide anion was measured by chemiluminescence amplified by a Cypridina luciferin analogue in the presence of N-formyl-Met-Leu-Phe (fMLP). Faropenem significantly enhanced chemiluminescence in a dose-dependent manner. The effect of faropenem was maximal at 5 min of incubation time and continued for at least 30 min. The effect of faropenem was also observed when neutrophils were stimulated by a calcium ionophore (ionomycin), while the effect of faropenem did not change in the presence of 12-O-tetra-decanoylphorbolmyristate acetate. Cytosol Ca2+ concentration ([Ca2+]i) monitored with Fura-2 increased in response to fMLP, however, faropenem did not influence the response of [Ca2+]i to fMLP. Our results suggest that faropenem enhanced the generation of superoxide anion by neutrophils, probably at the site where cytosol Ca2+ regulates NADPH oxidase. Faropenem might be potentially advantageous in the treatment of infections because a synergic interaction of antibodies and cytocidal neutrophils is necessary for the early eradication of the pathogenic bacteria. PMID:10511400

  16. Tumor-Associated Macrophages and Neutrophils in Tumor Microenvironment

    PubMed Central

    Kim, Jaehong; Bae, Jong-Sup

    2016-01-01

    Distinct tumor microenvironment forms in each progression step of cancer and has diverse capacities to induce both adverse and beneficial consequences for tumorigenesis. It is now known that immune cells can be activated to favor tumor growth and progression, most probably influenced by the tumor microenvironment. Tumor-associated macrophages and tumor-associated neutrophils can exert protumoral functions, enhancing tumor cell invasion and metastasis, angiogenesis, and extracellular matrix remodeling, while inhibiting the antitumoral immune surveillance. Considering that neutrophils in inflammatory environments recruit macrophages and that recruited macrophages affect neutrophil functions, there may be various degrees of interaction between tumor-associated macrophages and tumor-associated neutrophils. Platelets also play an important role in the recruitment and regulation of monocytic and granulocytic cells in the tumor tissues, suggesting that platelet function may be essential for generation of tumor-associated macrophages and tumor-associated neutrophils. In this review, we will explore the biology of tumor-associated macrophages and tumor-associated neutrophils and their possible interactions in the tumor microenvironment. Special attention will be given to the recruitment and activation of these tumor-associated cells and to the roles they play in maintenance of the tumor microenvironment and progression of tumors. PMID:26966341

  17. Genomic modulators of gene expression in human neutrophils.

    PubMed

    Naranbhai, Vivek; Fairfax, Benjamin P; Makino, Seiko; Humburg, Peter; Wong, Daniel; Ng, Esther; Hill, Adrian V S; Knight, Julian C

    2015-01-01

    Neutrophils form the most abundant leukocyte subset and are central to many disease processes. Technical challenges in transcriptomic profiling have prohibited genomic approaches to date. Here we map expression quantitative trait loci (eQTL) in peripheral blood CD16+ neutrophils from 101 healthy European adults. We identify cis-eQTL for 3281 neutrophil-expressed genes including many implicated in neutrophil function, with 450 of these not previously observed in myeloid or lymphoid cells. Paired comparison with monocyte eQTL demonstrates nuanced conditioning of genetic regulation of gene expression by cellular context, which relates to cell-type-specific DNA methylation and histone modifications. Neutrophil eQTL are markedly enriched for trait-associated variants particularly autoimmune, allergy and infectious disease. We further demonstrate how eQTL in PADI4 and NOD2 delineate risk variant function in rheumatoid arthritis, leprosy and Crohn's disease. Taken together, these data help advance understanding of the genetics of gene expression, neutrophil biology and immune-related diseases. PMID:26151758

  18. Neutrophil migration into the placenta: Good, bad or deadly?

    PubMed Central

    Giaglis, Stavros; Stoikou, Maria; Grimolizzi, Franco; Subramanian, Bibin Y.; van Breda, Shane V.; Hoesli, Irene; Lapaire, Olav; Hasler, Paul; Than, Nandor Gabor; Hahn, Sinuhe

    2016-01-01

    ABSTRACT Almost 2 decades have passed since the discovery that pregnancy is associated with a basal inflammatory state involving neutrophil activation, and that this is more overt in cases with preeclampsia, than in instances with sepsis. This pivotal observation paved the way for our report, made almost a decade ago, describing the first involvement of neutrophil extracellular traps (NETs) in a non-infectious human pathology, namely preeclampsia, where an abundance of these structures were detected directly in the placental intervillous space. Despite these remarkable findings, there remains a paucity of interest among reproductive biologists in further exploring the role or involvement of neutrophils in pregnancy and related pathologies. In this review we attempt to redress this deficit by highlighting novel recent findings including the discovery of a novel neutrophil subset in the decidua, the interaction of placental protein 13 (PP13) and neutrophils in modulating spiral artery modification, as well as the use of animal model systems to elucidate neutrophil function in implantation, gestation and parturition. These model systems have been particularly useful in identifying key components implicated in recurrent fetal loss, preeclampsia or new signaling molecules such as sphingolipids. Finally, the recent discovery that anti-phospolipid antibodies can trigger NETosis, supports our hypothesis that these structures may contribute to placental dysfunction in pertinent cases with recurrent fetal loss. PMID:26933824

  19. Role of reverse transendothelial migration of neutrophils in inflammation.

    PubMed

    Hirano, Yohei; Aziz, Monowar; Wang, Ping

    2016-06-01

    Transmigration of neutrophils through vascular endothelial walls into the inflamed tissues is a critical defense mechanism of innate immune system against infection and injury caused by sepsis, trauma, ischemia-reperfusion, and other acute or chronic inflammatory diseases. However, their excessive infiltration and uncontrolled activation may lead to the destruction of normal tissue architecture and unrestrained inflammation. Transendothelial migration (TEM) in a luminal-to-abluminal direction is widely known as the final step of neutrophil migration cascade into the inflamed tissues. Recent studies have shown that neutrophils not necessarily move from the vascular lumen to the extravascular tissues in a one way direction; they also proceed in an opposite direction, known as reverse transendothelial migration (rTEM) to get back into the vascular lumen again. This novel paradigm of neutrophil round trip is currently on the spotlight due to its possible interaction with immune system. Current review highlighting the growing demand of this newly identified neutrophil migratory event will not only rewrite the disease pathophysiology, but also help scientists design novel therapeutic strategy leading to the remission of inflammatory diseases in which controlling exaggerated neutrophil infiltration is a major challenge. PMID:26872312

  20. Influence of suspension on the oxidative burst by rat neutrophils

    NASA Technical Reports Server (NTRS)

    Miller, E. S.; Koebel, D. A.; Davis, S. A.; Klein, J. B.; McLeish, K. R.; Goldwater, D.; Sonnenfeld, G.

    1994-01-01

    The influence of spaceflight on the oxidative burst of neutrophils is not known. The present study was designed to evaluate the influence of antiorthostatic suspension, a ground-based modeling system designed to simulate certain aspects of weightlessness that occur after spaceflight, on the capacity of rat neutrophils to express the oxidative burst, an important host defense mechanism against microbial pathogens. Rats were suspended in whole body harnesses in the antiorthostatic orientation for a 3- or 7-day period. Control rats were suspended orthostatically or allowed to remain in vivarium cages without the attachment of any suspension materials. After suspension, peripheral blood was harvested and neutrophils were isolated by density gradient centrifugation. The enriched neutrophil preparations were stimulated with N-formyl-methionyl-leucine-phenylalanine and phorbol myristic acid to induce the oxidative burst. It was found that neutrophils isolated from suspended animals released the same levels of superoxide anion as did vivarium control animals that were not suspended, indicating that whole body suspension did not alter this aspect of rat neutrophil function.

  1. Permissive and protective roles for neutrophils in leishmaniasis.

    PubMed

    Carlsen, E D; Liang, Y; Shelite, T R; Walker, D H; Melby, P C; Soong, L

    2015-11-01

    Leishmania parasites are the causative agents of leishmaniasis, a neglected tropical disease that causes substantial morbidity and considerable mortality in many developing areas of the world. Recent estimates suggest that roughly 10 million people suffer from cutaneous leishmaniasis (CL), and approximately 76,000 are afflicted with visceral leishmaniasis (VL), which is universally fatal without treatment. Efforts to develop therapeutics and vaccines have been greatly hampered by an incomplete understanding of the parasite's biology and a lack of clear protective correlates that must be met in order to achieve immunity. Although parasites grow and divide preferentially in macrophages, a number of other cell types interact with and internalize Leishmania parasites, including monocytes, dendritic cells and neutrophils. Neutrophils appear to be especially important shortly after parasites are introduced into the skin, and may serve a dual protective and permissive role during the establishment of infection. Curiously, neutrophil recruitment to the site of infection appears to continue into the chronic phase of disease, which may persist for many years. The immunological impact of these cells during chronic leishmaniasis is unclear at this time. In this review we discuss the ways in which neutrophils have been observed to prevent and promote the establishment of infection, examine the role of anti-neutrophil antibodies in mouse models of leishmaniasis and consider recent findings that neutrophils may play a previously unrecognized role in influencing chronic parasite persistence. PMID:26126690

  2. Free p-Cresol Alters Neutrophil Function in Dogs.

    PubMed

    Bosco, Anelise Maria; Pereira, Priscila Preve; Almeida, Breno Fernando Martins; Narciso, Luis Gustavo; Dos Santos, Diego Borba; Santos-Neto, Álvaro José Dos; Ferreira, Wagner Luis; Ciarlini, Paulo César

    2016-05-01

    To achieve a clearer understanding of the mechanisms responsible for neutrophil dysfunction recently described in dogs with chronic renal failure (CRF), the plasma concentrations of free p-cresol in healthy dogs (n = 20) and those with CRF (n = 20) were compared. The degree of correlation was determined between plasma levels of p-cresol and markers of oxidative stress and function of neutrophils in these dogs. The effect of this compound on oxidative metabolism and apoptosis was assessed in neutrophils isolated from 16 healthy dogs incubated in RPMI 1640 supplemented with p-cresol (0.405 mg/L) and compared with medium supplemented with uremic plasma (50%). To achieve this, the plasma concentration of p-cresol was quantified by liquid phase high-performance liquid chromatography. The neutrophil oxidative metabolism was determined using the probes hydroethidine and 2',7'-dichlorofluorescein diacetate and apoptosis was measured using Annexin V-PE by capillary flow cytometry. Compared with the healthy dogs, uremic dogs presented higher concentrations of free p-cresol, greater oxidative stress, and neutrophils primed for accelerated apoptosis. The free p-cresol induced in neutrophils from healthy dogs increased apoptosis and decreased reactive oxygen species production. We conclude that the health status presented during uremia concomitant with the increase in plasma free p-cresol can contribute to the presence of immunosuppression in dogs with CRF. PMID:26496142

  3. P-selectin promotes neutrophil extracellular trap formation in mice.

    PubMed

    Etulain, Julia; Martinod, Kimberly; Wong, Siu Ling; Cifuni, Stephen M; Schattner, Mirta; Wagner, Denisa D

    2015-07-01

    Neutrophil extracellular traps (NETs) can be released in the vasculature. In addition to trapping microbes, they promote inflammatory and thrombotic diseases. Considering that P-selectin induces prothrombotic and proinflammatory signaling, we studied the role of this selectin in NET formation. NET formation (NETosis) was induced by thrombin-activated platelets rosetting with neutrophils and was inhibited by anti-P-selectin aptamer or anti-P-selectin glycoprotein ligand-1 (PSGL-1) inhibitory antibody but was not induced by platelets from P-selectin(-/-) mice. Moreover, NETosis was also promoted by P-selectin-immunoglobulin fusion protein but not by control immunoglobulin. We isolated neutrophils from mice engineered to overproduce soluble P-selectin (P-selectin(ΔCT/ΔCT) mice). Although the levels of circulating DNA and nucleosomes (indicative of spontaneous NETosis) were normal in these mice, basal neutrophil histone citrullination and presence of P-selectin on circulating neutrophils were elevated. NET formation after stimulation with platelet activating factor, ionomycin, or phorbol 12-myristate 13-acetate was significantly enhanced, indicating that the P-selectin(ΔCT/ΔCT) neutrophils were primed for NETosis. In summary, P-selectin, cellular or soluble, through binding to PSGL-1, promotes NETosis, suggesting that this pathway is a potential therapeutic target for NET-related diseases. PMID:25979951

  4. Effect of Prototheca zopfii on neutrophil function from bovine milk.

    PubMed

    Cunha, Luciane T; Pugine, Silvana P; Valle, Claudia R; Ribeiro, Andrea R; Costa, Ernane J X; De Melo, Mariza P

    2006-12-01

    This study was carried to investigate neutrophil function in the presence of Prototheca zopfii. For this purpose, bovine milk neutrophils were incubated in the absence (control) of and presence of P. zopfii, and then they were examined hydrogen peroxide (H(2)O(2)) production, antioxidant enzyme activities, and phagocytic capacity. Milk was collected from negative "California Mastitis Test" (CMT) quarter from three lactating Holstein cows after induction of leukocytosis with an intramammary infusion of oyster glycogen. H(2)O(2) production was measured using the phenol red method. Catalase activity was measured following H(2)O(2) reduction at 240 nm and the activity of glutathione reductase was determined by measuring the rate of NADPH oxidation at 340 nm. P. zopfii death was assessed by fluorescent microscopy using acridine orange assay and by colony forming units (CFUs). Comparisons between the groups were initially performed by analysis of variance (ANOVA). Significant differences were then compared using Tukey's test with a significance coefficient of 0.05. Hydrogen peroxide production, catalase and glutathione reductase activities by neutrophils incubated in presence of P. zopfii were stimulated five times, 21% and 27% respectively, compared to the unstimulated-neutrophils. Neutrophils did not affect P. zopfii death as shown by microscopy and CFUs. These observations led to the conclusion that the P. zopfii promote a high increase of H(2)O(2) production by neutrophils from bovine milk during algae exposition accompanied by increase of antioxidant enzyme activities; however, this process did not affect P. zopfii death. PMID:17146586

  5. Neutrophils express oncomodulin and promote optic nerve regeneration.

    PubMed

    Kurimoto, Takuji; Yin, Yuqin; Habboub, Ghaith; Gilbert, Hui-Ya; Li, Yiqing; Nakao, Shintaro; Hafezi-Moghadam, Ali; Benowitz, Larry I

    2013-09-11

    Although neurons are normally unable to regenerate their axons after injury to the CNS, this situation can be partially reversed by activating the innate immune system. In a widely studied instance of this phenomenon, proinflammatory agents have been shown to cause retinal ganglion cells, the projection neurons of the eye, to regenerate lengthy axons through the injured optic nerve. However, the role of different molecules and cell populations in mediating this phenomenon remains unclear. We show here that neutrophils, the first responders of the innate immune system, play a central role in inflammation-induced regeneration. Numerous neutrophils enter the mouse eye within a few hours of inducing an inflammatory reaction and express high levels of the atypical growth factor oncomodulin (Ocm). Immunodepletion of neutrophils diminished Ocm levels in the eye without altering levels of CNTF, leukemia inhibitory factor, or IL-6, and suppressed the proregenerative effects of inflammation. A peptide antagonist of Ocm suppressed regeneration as effectively as neutrophil depletion. Macrophages enter the eye later in the inflammatory process but appear to be insufficient to stimulate extensive regeneration in the absence of neutrophils. These data provide the first evidence that neutrophils are a major source of Ocm and can promote axon regeneration in the CNS. PMID:24027282

  6. Structural and functional characterization of elastases from horse neutrophils.

    PubMed Central

    Dubin, A; Potempa, J; Travis, J

    1994-01-01

    In order better to understand the pathophysiology of the equine form of emphysema, two elastinolytic enzymes from horse neutrophils, referred to as proteinases 2A and 2B, have been extensively characterized and compared with the human neutrophil proteinases, proteinase-3 and elastase. Specificity studies using both the oxidized insulin B-chain and synthetic peptides revealed that cleavage of peptide bonds with P1 alanine or valine residues was preferred. Further characterization of the two horse elastases by N-terminal sequence and reactive-site analyses indicated that proteinases 2A and 2B have considerable sequence similarity to each other, to proteinase-3 from human neutrophils (proteinase 2A), to human neutrophil elastase (proteinase 2B) and to a lesser extent to pig pancreatic elastase. Horse and human elastases differed somewhat in their interaction with some natural protein proteinase inhibitors. For example, in contrast with its action on human neutrophil elastase, aprotinin did not inhibit either of the horse proteinases. However, the Val15, alpha-aminobutyric acid-15 (Abu15), alpha-aminovaleric acid-15 (Nva15) and Ala15 reactive-site variants of aprotinin were good inhibitors of proteinase 2B (Ki < 10(-9) M) but only weak inhibitors of proteinase 2A (Ki > 10(-7) M). In summary, despite these differences, the horse neutrophil elastases were found to resemble closely their human counterparts, thus implicating them in the pathological degradation of connective tissue in chronic lung diseases in the equine species. PMID:7516152

  7. Genomic modulators of gene expression in human neutrophils

    PubMed Central

    Naranbhai, Vivek; Fairfax, Benjamin P.; Makino, Seiko; Humburg, Peter; Wong, Daniel; Ng, Esther; Hill, Adrian V. S.; Knight, Julian C.

    2015-01-01

    Neutrophils form the most abundant leukocyte subset and are central to many disease processes. Technical challenges in transcriptomic profiling have prohibited genomic approaches to date. Here we map expression quantitative trait loci (eQTL) in peripheral blood CD16+ neutrophils from 101 healthy European adults. We identify cis-eQTL for 3281 neutrophil-expressed genes including many implicated in neutrophil function, with 450 of these not previously observed in myeloid or lymphoid cells. Paired comparison with monocyte eQTL demonstrates nuanced conditioning of genetic regulation of gene expression by cellular context, which relates to cell-type-specific DNA methylation and histone modifications. Neutrophil eQTL are markedly enriched for trait-associated variants particularly autoimmune, allergy and infectious disease. We further demonstrate how eQTL in PADI4 and NOD2 delineate risk variant function in rheumatoid arthritis, leprosy and Crohn's disease. Taken together, these data help advance understanding of the genetics of gene expression, neutrophil biology and immune-related diseases. PMID:26151758

  8. Chronic neutrophilic leukemia: a clinical perspective

    PubMed Central

    Menezes, Juliane; Cigudosa, Juan Cruz

    2015-01-01

    Chronic neutrophilic leukemia (CNL) is a rare myeloproliferative neoplasm (MPN) that includes only 150 patients described to date meeting the latest World Health Organization (WHO) criteria and the recently reported CSF3R mutations. The diagnosis is based on morphological criteria of granulocytic cells and the exclusion of genetic drivers that are known to occur in others MPNs, such as BCR-ABL1, PDGFRA/B, or FGFR1 rearrangements. However, this scenario changed with the identification of oncogenic mutations in the CSF3R gene in approximately 83% of WHO-defined and no monoclonal gammopathy-associated CNL patients. CSF3R T618I is a highly specific molecular marker for CNL that is sensitive to inhibition in vitro and in vivo by currently approved protein kinase inhibitors. In addition to CSF3R mutations, other genetic alterations have been found, notably mutations in SETBP1, which may be used as prognostic markers to guide therapeutic decisions. These findings will help to understand the pathogenesis of CNL and greatly impact the clinical management of this disease. In this review, we discuss the new genetic alterations recently found in CNL and the clinical perspectives in its diagnosis and treatment. Fortunately, since the diagnosis of CNL is not based on exclusion anymore, the molecular characterization of the CSF3R gene must be included in the WHO criteria for CNL diagnosis. PMID:26366092

  9. Cinnoline derivatives as human neutrophil elastase inhibitors.

    PubMed

    Giovannoni, Maria Paola; Schepetkin, Igor A; Crocetti, Letizia; Ciciani, Giovanna; Cilibrizzi, Agostino; Guerrini, Gabriella; Khlebnikov, Andrei I; Quinn, Mark T; Vergelli, Claudia

    2016-08-01

    Compounds that can effectively inhibit the proteolytic activity of human neutrophil elastase (HNE) represent promising therapeutics for treatment of inflammatory diseases. We present here the synthesis, structure-activity relationship analysis, and biological evaluation of a new series of HNE inhibitors with a cinnoline scaffold. These compounds exhibited HNE inhibitory activity but had lower potency compared to N-benzoylindazoles previously reported by us. On the other hand, they exhibited increased stability in aqueous solution. The most potent compound, 18a, had a good balance between HNE inhibitory activity (IC50 value = 56 nM) and chemical stability (t1/2 = 114 min). Analysis of reaction kinetics revealed that these cinnoline derivatives were reversible competitive inhibitors of HNE. Furthermore, molecular docking studies of the active products into the HNE binding site revealed two types of HNE inhibitors: molecules with cinnolin-4(1H)-one scaffold, which were attacked by the HNE Ser195 hydroxyl group at the amido moiety, and cinnoline derivatives containing an ester function at C-4, which is the point of attack of Ser195. PMID:26194018

  10. Fermentative butanol production by Clostridia.

    PubMed

    Lee, Sang Yup; Park, Jin Hwan; Jang, Seh Hee; Nielsen, Lars K; Kim, Jaehyun; Jung, Kwang S

    2008-10-01

    Butanol is an aliphatic saturated alcohol having the molecular formula of C(4)H(9)OH. Butanol can be used as an intermediate in chemical synthesis and as a solvent for a wide variety of chemical and textile industry applications. Moreover, butanol has been considered as a potential fuel or fuel additive. Biological production of butanol (with acetone and ethanol) was one of the largest industrial fermentation processes early in the 20th century. However, fermentative production of butanol had lost its competitiveness by 1960s due to increasing substrate costs and the advent of more efficient petrochemical processes. Recently, increasing demand for the use of renewable resources as feedstock for the production of chemicals combined with advances in biotechnology through omics, systems biology, metabolic engineering and innovative process developments is generating a renewed interest in fermentative butanol production. This article reviews biotechnological production of butanol by clostridia and some relevant fermentation and downstream processes. The strategies for strain improvement by metabolic engineering and further requirements to make fermentative butanol production a successful industrial process are also discussed. PMID:18727018

  11. A Chinese fermented soybean food.

    PubMed

    Han, B Z; Rombouts, F M; Nout, M J

    2001-04-11

    Sufu or furu is a fermented soybean product originating in China. It is a cheese-like product with a spreadable creamy consistency and a pronounced flavour. Sufu is a popular side dish consumed mainly with breakfast rice or steamed bread. It has a long history and written records date back to the Wei Dynasty (220-265 AD). Sufu is made by fungal solid state fermentation of tofu (soybean curd) followed by aging in brine containing salt and alcohol. The present review is based on scientific data published in Chinese and international sources. Several types of sufu can be distinguished, according to processing method or according to colour and flavour. Choice of processing can result in mould fermented sufu, naturally fermented sufu, bacterial fermented sufu, or enzymatically ripened sufu. Depending on the choice of dressing mixture, red, white or grey sufu may be obtained. The stages of the process are discussed and include the preparation of tofu, the preparation of pehtze, salting and ripening. Fungal starters include Actinomucor spp., Mucor spp. and Rhizopus spp. The chemical composition is discussed with particular reference to the proximate composition, the amino acid content and profile, as well as the volatile flavour components of various types of sufu. PMID:11322691

  12. Immobilized cells in meat fermentation.

    PubMed

    McLoughlin, A J; Champagne, C P

    1994-01-01

    The immobilization of microbial cells can contribute to fermented meat technology at two basic levels. First, the solid/semisolid nature (low available water) of the substrate restricts the mobility of cells and results in spatial organizations based on "natural immobilization" within the fermentation matrix. The microniches formed influence the fermentation biochemistry through mass transfer limitations and the subsequent development and activity of the microflora. This form of immobilization controls the nature of competition between subpopulations within the microflora and ultimately exerts an effect on the ecological competence (ability to survive and compete) of the various cultures present. Second, immobilized cell technology (ICT) can be used to enhance the ecological competence of starter cultures added to initiate the fermentation. Immobilization matrices such as alginate can provide microniches or microenvironments that protect the culture during freezing or lyophilization, during subsequent rehydration, and when in competition with indigenous microflora. The regulated release of cells from the microenvironments can also contribute to competitive ability. The regulation of both immobilization processes can result in enhanced fermentation activity. PMID:8069934

  13. The role of neutrophils in myocardial ischemia-reperfusion injury.

    PubMed

    Jordan, J E; Zhao, Z Q; Vinten-Johansen, J

    1999-09-01

    Reperfusion of ischemic myocardium is necessary to salvage tissue from eventual death. However, reperfusion after even brief periods of ischemia is associated with pathologic changes that represent either an acceleration of processes initiated during ischemia per se, or new pathophysiological changes that were initiated after reperfusion. This 'reperfusion injury' shares many characteristics with inflammatory responses in the myocardium. Neutrophils feature prominently in this inflammatory component of postischemic injury. Ischemia-reperfusion prompts a release of oxygen free radicals, cytokines and other proinflammatory mediators that activate both the neutrophils and the coronary vascular endothelium. Activation of these cell types promotes the expression of adhesion molecules on both the neutrophils and endothelium, which recruits neutrophils to the surface of the endothelium and initiate a specific cascade of cell-cell interactions, leading first to adherence of neutrophils to the vascular endothelium, followed later by transendothelial migration and direct interaction with myocytes. This specific series of events is a prerequisite to the phenotypic expression of reperfusion injury, including endothelial dysfunction, microvascular collapse and blood flow defects, myocardial infarction and apoptosis. Pharmacologic therapy can target the various components in this critical series of events. Effective targets for these pharmacologic agents include: (a) inhibiting the release or accumulation of proinflammatory mediators, (b) altering neutrophil or endothelial cell activation and (c) attenuating adhesion molecule expression on endothelium, neutrophils and myocytes. Monoclonal antibodies to adhesion molecules (P-selectin, L-selectin, CD11, CD18), complement fragments and receptors attenuate neutrophil-mediated injury (vascular injury, infarction), but clinical application may encounter limitations due to antigen-antibody reactions with the peptides. Humanized

  14. Ethanolic fermentation of pentoses in lignocellulose hydrolysates

    SciTech Connect

    Hahn-Haegerdal, B.; Linden, T.; Senac, T.; Skoog, K.

    1991-12-31

    In the fermentation of lignocellulose hydrolysates to ethanol, two major problems are encountered: the fermentation of the pentose sugar xylose, and the presence of microbial inhibitors. Xylose can be directly fermented with yeasts; such as Pachysolen tannophilus, Candida shehatae, and Pichia stipis, or by isomerization of xylose to xylulose with the enzyme glucose (xylose) isomerase, and subsequent fermentation with bakers yeast, Saccharomyces cerevisiae. The direct fermentation requires low, carefully controlled oxygenation, as well as the removal of inhibitors. Also, the xylose-fermenting yeasts have a limited ethanol tolerance. The combined isomerization and fermentation with XI and S. cerevisiae gives yields and productivities comparable to those obtained in hexose fermentations without oxygenation and removal of inhibitors. However, the enzyme is not very stable in a lignocellulose hydrolysate, and S. cerevisiae has a poorly developed pentose phosphate shunt. Different strategies involving strain adaptation, and protein and genetic engineering adopted to overcome these different obstacles, are discussed.

  15. Treatment of biomass to obtain fermentable sugars

    DOEpatents

    Dunson, Jr., James B.; Tucker, Melvin; Elander, Richard; Hennessey, Susan M.

    2011-04-26

    Biomass is pretreated using a low concentration of aqueous ammonia at high biomass concentration. Pretreated biomass is further hydrolyzed with a saccharification enzyme consortium. Fermentable sugars released by saccharification may be utilized for the production of target chemicals by fermentation.

  16. Yeasts Diversity in Fermented Foods and Beverages

    NASA Astrophysics Data System (ADS)

    Tamang, Jyoti Prakash; Fleet, Graham H.

    People across the world have learnt to culture and use the essential microorganisms for production of fermented foods and alcoholic beverages. A fermented food is produced either spontaneously or by adding mixed/pure starter culture(s). Yeasts are among the essential functional microorganisms encountered in many fermented foods, and are commercially used in production of baker's yeast, breads, wine, beer, cheese, etc. In Asia, moulds are predominant followed by amylolytic and alcohol-producing yeasts in the fermentation processes, whereas in Africa, Europe, Australia and America, fermented products are prepared exclusively using bacteria or bacteria-yeasts mixed cultures. This chapter would focus on the varieties of fermented foods and alcoholic beverages produced by yeasts, their microbiology and role in food fermentation, widely used commercial starters (pilot production, molecular aspects), production technology of some common commercial fermented foods and alcoholic beverages, toxicity and food safety using yeasts cultures and socio-economy

  17. Experiments with Fungi Part 2: Fermentation.

    ERIC Educational Resources Information Center

    Dale, Michele; Hetherington, Shane

    1996-01-01

    Gives details of three experiments with alcoholic fermentation by yeasts which yield carbon dioxide and ethanol. Lists procedures for making cider, vinegar, and fermentation gases. Provides some historical background and detailed equipment requirements. (DDR)

  18. Diesel fuel by fermentation of wastes

    SciTech Connect

    Pierce, S.M.; Wayman, M.

    1983-01-11

    An improved diesel fuel which is entirely capable of preparation from renewable resources. The fuel comprises a blend of fermentation produced butanol and fermentation produced glycerides. The substrates useful for the butanol fermentation are conventional industrial waste products, such as cheese whey and low value carbohydrate containing waste materials such as corn cobs, wood chips, etc. Similar substrate materials are used in the fermentation or growth culture of glyceride producing microbes.

  19. Venous levels of shear support neutrophil-platelet adhesion and neutrophil aggregation in blood via P-selectin and beta2-integrin

    NASA Technical Reports Server (NTRS)

    Konstantopoulos, K.; Neelamegham, S.; Burns, A. R.; Hentzen, E.; Kansas, G. S.; Snapp, K. R.; Berg, E. L.; Hellums, J. D.; Smith, C. W.; McIntire, L. V.; Simon, S. I.

    1998-01-01

    BACKGROUND: After activation, platelets adhere to neutrophils via P-selectin and beta2-integrin. The molecular mechanisms and adhesion events in whole blood exposed to venous levels of hydrodynamic shear in the absence of exogenous activation remain unknown. METHODS AND RESULTS: Whole blood was sheared at approximately 100 s(-1). The kinetics of neutrophil-platelet adhesion and neutrophil aggregation were measured in real time by flow cytometry. P-selectin was upregulated to the platelet surface in response to shear and was the primary factor mediating neutrophil-platelet adhesion. The extent of neutrophil aggregation increased linearly with platelet adhesion to neutrophils. Blocking either P-selectin, its glycoprotein ligand PSGL-1, or both simultaneously by preincubation with a monoclonal antibody resulted in equivalent inhibition of neutrophil-platelet adhesion (approximately 30%) and neutrophil aggregation (approximately 70%). The residual amount of neutrophil adhesion was blocked with anti-CD11b/CD18. Treatment of blood with prostacyclin analogue ZK36374, which raises cAMP levels in platelets, blocked P-selectin upregulation and neutrophil aggregation to baseline. Complete abrogation of platelet-neutrophil adhesion required both ZK36374 and anti-CD18. Electron microscopic observations of fixed blood specimens revealed that platelets augmented neutrophil aggregation both by forming bridges between neutrophils and through contact-mediated activation. CONCLUSIONS: The results are consistent with a model in which venous levels of shear support platelet adherence to neutrophils via P-selectin binding PSGL-1. This interaction alone is sufficient to mediate neutrophil aggregation. Abrogation of platelet adhesion and aggregation requires blocking Mac-1 in addition to PSGL-1 or P-selectin. The described mechanisms are likely of key importance in the pathogenesis and progression of thrombotic disorders that are exacerbated by leukocyte-platelet aggregation.

  20. Ethanol fermentation using novel techniques

    SciTech Connect

    Kim, K.

    1984-01-01

    Potato starch, sweet potato, and Jerusalem artichoke were hydrolyzed using high pressure extrusion and/or acid and the hydrolysates were utilized as substrates for ethanol fermentation. The first extrusion at 13,000 to 40,000 psi did not completely hydrolyze the starch solution to fermentable sugar. At elevated temperatures (79-97/sup 0/C) and in the presence of HCl, the high pressure extrusion (13,000 psi) effectively hydrolyzed starch into fermentable sugars to yield 12.1, 22.4, and 30.5 dextrose equivalent (DE) in 1, 2, and 3 N HCl, respectively. Maximal reducing sugar value of 84.2 DE and 0.056% hydroxymethylfurfural (HMF) was achieved after heating 8% sweet potato slurry (SPS) in 1 N HCl at 110/sup 0/C for 15 min. The degraded SPS was then fermented at 37/sup 0/C using an alcohol-tolerant strain of Saccharomyces cerevisiae to give 41.6 g of 200 proof ethanol from 400 g fresh Georgia Red Sweet potato tuber. A maximal reducing sugar value of 83.5 fructose equivalent and 0.004% HMF was formed from Jerusalem artichoke slurry (JAS) containing 8% total solid following heating in 0.1 N HCl at 97/sup 0/C for 10 min. The degraded JAS was then fermented at 37 C and 29.1 g 200 proof ethanol was produced from 320 g fresh tuber of Jerusalem artichoke. Continuous ethanol fermentation was successfully achieved using a bioreactor where cells were immobilized onto inorganic, channeled porous alumina beads. A maximum productivity (27.0/g ethanol/l.h) was achieved with the bioreactor at 35 C using malt yeast extract broth containing 10% glucose as the feedstock. The immobilized cell system showed good operational and storage stability, and could be stored for more than five months without loss of productivities.

  1. Transendothelial migration enhances integrin-dependent human neutrophil chemokinesis.

    PubMed

    Gonzalez, Anjelica L; El-Bjeirami, Wafa; West, Jennifer L; McIntire, Larry V; Smith, C Wayne

    2007-03-01

    Transendothelial migration of neutrophils induces phenotypic changes that influence the interactions of neutrophils with extravascular tissue components. To assess the influence of transmigration on neutrophil chemokinetic motility, we used polyethylene glycol hydrogels covalently modified with specific peptide sequences relevant to extracellular matrix proteins. We evaluated fMLP-stimulated human neutrophil motility on peptides Arg-Gly-Asp-Ser (RGDS) and TMKIIPFNRTLIGG (P2), alone and in combination. RGDS is a bioactive sequence found in a number of proteins, and P2 is a membrane-activated complex-1 (Mac-1) ligand located in the gamma-chain of the fibrinogen protein. We evaluated, via video microscopy, cell motility by measuring cell displacement from origin and total accumulated distance traveled and then calculated average velocity. Results indicate that although adhesion and shape change were supported by hydrogels containing RGD alone, motility was not. Mac-1-dependent motility was supported on hydrogels containing P2 alone. Motility was enhanced through combined presentation of RGD and P2, engaging Mac-1, alpha(V)beta(3), and beta(1) integrins. Naïve neutrophil motility on combined peptide substrates was dependent on Mac-1, and alpha(4)beta(1) while alpha(6)beta(1) contributed to speed and linear movement. Transmigrated neutrophil motility was dependent on alpha(v)beta(3) and alpha(5)beta(1), and alpha(4)beta(1), alpha(6)beta(1), and Mac-1 contributed to speed and linear motion. Together, the data demonstrate that efficient neutrophil migration, dependent on multi-integrin interaction, is enhanced after transendothelial migration. PMID:17164427

  2. 27 CFR 19.296 - Fermented materials.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Fermented materials. 19.296 Section 19.296 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU..., Use, and Disposal of Materials § 19.296 Fermented materials. Fermented materials that a...

  3. 27 CFR 19.296 - Fermented materials.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Fermented materials. 19.296 Section 19.296 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU..., Use, and Disposal of Materials § 19.296 Fermented materials. Fermented materials that a...

  4. Neutrophil function in children with kwashiorkor.

    PubMed

    Schopfer, K; Douglas, S D

    1976-09-01

    Peripheral blood polymorphonuclear neutrophil (PMN) function has been investigated for 46 children with kwashiorkor (without overt infection) in the Ivory Coast, West Africa. In vitro chemotactic response, candidacidal activity, and kinetic studies of metabolism during phagocytosis have been performed. Postphagocytic morphological events were evaluated by electron microscopy. The reduction of nitroblue tetrazolium (NBT), measurement of enzyme activities, activity of glycolysis, and hexose monophosphate shunt (HMS) activity were assessed. The extent of iodide incorporation into trichloracetic acid (TCA)-precipitable protein by phagocytizing PMN'S and thyroid hormone degradation were measured. Chemotactic response was reduced at early time intervals (30, 60, and 120 minutes) and reached control values after 180 minutes. Whereas PMN's of controls killed 32.13 +/- 11.10 per cent of Candida albicans after 60 minutes, PMN's from kwashiorkor patients killed 18.55 +/- 7.74 per cent (p less than 0.01). HMS activity for resting PMN's of kwashiorkor children was higher than for controls, and during particle ingestion the extent of stimulation was comparable to controls. Electron microscopic assessment of phagocytic vacuole formation and degranulation showed no difference between PMN's from kwashiorkor and and control subjects. Incorporation of 131 I into TCA-precipitable proteins by phagocytizing PMN's from kwashiorkor children was reduced in compraison to controls, with either viable or heat-killed lactobacilli. No impairment in thyroxine (T4) degradation was observed for PMN's from kwashiorkor cases. PMS's from kwashiorkor patients show toxic granules, Dohle bodies, evidence of high baseline NBT reduction, and glucose decarboxylation. Functional studies indicate impaired kinetics of chemotaxis, diminished candidacidal activity, and reduced iodination. Enzymatic activities of resting cells are normal. Lactate production, HMS activity during phagocytosis, and morphological

  5. Isolation and Characterization of Low- vs. High-Density Neutrophils in Cancer.

    PubMed

    Sagiv, Jitka Y; Voels, Sandra; Granot, Zvi

    2016-01-01

    Neutrophils are the most abundant of all white blood cells in the human circulation and serve as the first line of defense against microbial infections. Traditionally, neutrophils were viewed as a homogeneous population of myeloid cells. However, in recent years accumulating evidence has suggested that neutrophils are heterogeneous and that distinct neutrophil subsets may play very different roles. Here, we describe the methodology for isolation of high- and low-density neutrophils from the murine and human circulation using a density gradient and antibody based enrichment. We further describe the methodology for functional characterization of these different neutrophil subsets in the context of cancer. PMID:27581022

  6. Contributions of neutrophils to the adaptive immune response in autoimmune disease

    PubMed Central

    Pietrosimone, Kathryn M; Liu, Peng

    2016-01-01

    Neutrophils are granulocytic cytotoxic leukocytes of the innate immune system that activate during acute inflammation. Neutrophils can also persist beyond the acute phase of inflammation to impact the adaptive immune response during chronic inflammation. In the context of the autoimmune disease, neutrophils modulating T and B cell functions by producing cytokines and chemokines, forming neutrophil extracellular traps, and acting as or priming antigen presentation cells. Thus, neutrophils are actively involved in chronic inflammation and tissue damage in autoimmune disease. Using rheumatoid arthritis as an example, this review focuses on functions of neutrophils in adaptive immunity and the therapeutic potential of these cells in the treatment of autoimmune disease and chronic inflammation. PMID:27042404

  7. Characterization and purification of neutrophil ecto-phosphatidic acid phosphohydrolase.

    PubMed Central

    English, D; Martin, M; Harvey, K A; Akard, L P; Allen, R; Widlanski, T S; Garcia, J G; Siddiqui, R A

    1997-01-01

    Phosphatidic acid and its derivatives play potentially important roles as extracellular messengers in biological systems. An ecto-phosphatidic acid phosphohydrolase (ecto-PAPase) has been identified which effectively regulates neutrophil responses to exogenous phosphatidic acid by converting the substrate to diacylglycerol. The present study was undertaken to characterize this ecto-enzyme on intact cells and to isolate the enzyme from solubilized neutrophil extracts. In the absence of detergent, short chain phosphatidic acids were hydrolysed most effectively by neutrophil plasma membrane ecto-PAPase; both saturated and unsaturated long chain phosphatidic acids were relatively resistant to hydrolysis. Both long (C18:1) and short (C8) chain lyso-phosphatidic acids were hydrolysed at rates comparable with those observed for short chain (diC8) phosphatidic acid. Activity of the ecto-enzyme accounted for essentially all of the N-ethylmaleimide-insensitive, Mg2+-independent PAPase activity recovered from disrupted neutrophils. At 37 degrees C and pH7.2, the apparent Km for dioctanoyl phosphatidic acid (diC8PA) was 1. 4x10(-3) M. Other phosphatidic acids and lysophosphatidic acids inhibited hydrolysis of [32P]diC8PA in a rank order that correlated with competitor solubility, lysophosphatidic acids and unsaturated phosphatidic acids being much more effective inhibitors than long chain saturated phosphatidic acids. Dioleoyl (C18:1) phosphatidic acid was an unexpectedly strong inhibitor of activity, in comparison with its ability to act as a direct substrate in the absence of detergent. Other inhibitors of neutrophil ecto-PAPase included sphingosine, dimethyl- and dihydro-sphingosine, propranolol, NaF and MgCl2. Of several leucocyte populations isolated from human blood by FACS, including T cells, B cells, NK lymphocytes and monocytes, ecto-PAPase was most prevalent on neutrophils; erythrocytes were essentially devoid of activity. A non-hydrolysable, phosphonate analogue of

  8. The Mechanics of Neutrophils: Synthetic Modeling of Three Experiments

    PubMed Central

    Herant, Marc; Marganski, William A.; Dembo, Micah

    2003-01-01

    Much experimental data exist on the mechanical properties of neutrophils, but so far, they have mostly been approached within the framework of liquid droplet models. This has two main drawbacks: 1), It treats the cytoplasm as a single phase when in reality, it is a composite of cytosol and cytoskeleton; and 2), It does not address the problem of active neutrophil deformation and force generation. To fill these lacunae, we develop here a comprehensive continuum-mechanical paradigm of the neutrophil that includes proper treatment of the membrane, cytosol, and cytoskeleton components. We further introduce two models of active force production: a cytoskeletal swelling force and a polymerization force. Armed with these tools, we present computer simulations of three classic experiments: the passive aspiration of a neutrophil into a micropipette, the active extension of a pseudopod by a neutrophil exposed to a local stimulus, and the crawling of a neutrophil inside a micropipette toward a chemoattractant against a varying counterpressure. Principal results include: 1), Membrane cortical tension is a global property of the neutrophil that is affected by local area-increasing shape changes. We argue that there exists an area dilation viscosity caused by the work of unfurling membrane-storing wrinkles and that this viscosity is responsible for much of the regulation of neutrophil deformation. 2), If there is no swelling force of the cytoskeleton, then it must be endowed with a strong cohesive elasticity to prevent phase separation from the cytosol during vigorous suction into a capillary tube. 3), We find that both swelling and polymerization force models are able to provide a unifying fit to the experimental data for the three experiments. However, force production required in the polymerization model is beyond what is expected from a simple short-range Brownian ratchet model. 4), It appears that, in the crawling of neutrophils or other amoeboid cells inside a micropipette

  9. Peptide secreted by human alveolar macrophages releases neutrophil granule contents

    SciTech Connect

    MacArthur, C.K.; Miller, E.J.; Cohen, A.B.

    1987-11-15

    A monoclonal antibody was developed against an 8000-kDa enzyme-releasing peptide (ERP) released from human alveolar macrophages. ERP was isolated on an immunoaffinity column containing the antibody bound to staphylococcal protein A-Sepharose, and by autoradiography. Release of ERP from the macrophages is not changed by plastic adherence, phagocytosis, calcium ionophore, or phorbol esters. The peptide was not antigenically similar to interferon-..gamma.., tumor necrosis factor, or interleukin l..cap alpha.. or 1..beta... The release of constituents from azurophilic and specific granules was the main identified biologic function of ERP. ERP was a more effective secretagogue in the untreated neutrophils and f-met-leu-phe was more effective in the cytochalasin B-treated neutrophils. Absorption of ERP from macrophage-conditioned medium removed a small amount of the chemotactic activity; however, the immunopurified peptide was not chemotactic or chemokinetic for neutrophils, and at high concentrations, it suppressed base line chemokinesis. Treatment of washed macrophages with trypsin released active ERP of approximately the same m.w. of spontaneously secreted ERP. These studies showed that human alveolar macrophages release a peptide which is a secretagogue for human neutrophils under conditions which may be encountered in the lungs during certain disease states. Proteolytic enzymes which are free in the lungs may release the peptide and lead to the secretion of neutrophil enzymes.

  10. Leukocyte subsets and neutrophil function after short-term spaceflight

    NASA Technical Reports Server (NTRS)

    Stowe, R. P.; Sams, C. F.; Mehta, S. K.; Kaur, I.; Jones, M. L.; Feeback, D. L.; Pierson, D. L.

    1999-01-01

    Changes in leukocyte subpopulations and function after spaceflight have been observed but the mechanisms underlying these changes are not well defined. This study investigated the effects of short-term spaceflight (8-15 days) on circulating leukocyte subsets, stress hormones, immunoglobulin levels, and neutrophil function. At landing, a 1.5-fold increase in neutrophils was observed compared with preflight values; lymphocytes were slightly decreased, whereas the results were variable for monocytes. No significant changes were observed in plasma levels of immunoglobulins, cortisol, or adrenocorticotropic hormone. In contrast, urinary epinephrine, norepinephrine, and cortisol were significantly elevated at landing. Band neutrophils were observed in 9 of 16 astronauts. Neutrophil chemotactic assays showed a 10-fold decrease in the optimal dose response after landing. Neutrophil adhesion to endothelial cells was increased both before and after spaceflight. At landing, the expression of MAC-1 was significantly decreased while L-selectin was significantly increased. These functional alterations may be of clinical significance on long-duration space missions.

  11. Entamoeba histolytica induces human neutrophils to form NETs.

    PubMed

    Ventura-Juarez, J; Campos-Esparza, Mr; Pacheco-Yepez, J; López-Blanco, J A; Adabache-Ortíz, A; Silva-Briano, M; Campos-Rodríguez, R

    2016-08-01

    Entamoeba histolytica invades the intestine and other organs during the pathogenesis of amoebiasis. In the early stages, the host organism responds with an inflammatory infiltrate composed mostly of neutrophils. It has been reported that these immune cells, activated by E. histolytica, exert a protective role by releasing proteolytic enzymes and generating reactive oxygen/nitrogen species (ROS/RNS) and antimicrobial peptides. It is now known that neutrophils also produce neutrophil extracellular traps (NETs), which are able to damage and kill pathogens. Studies have shown that intracellular protozoan pathogens, including Toxoplasma gondi, Plasmodium falciparum and Leishmania spp, induce neutrophils to release NETs and are damaged by them. However, the action of this mechanism has not been explored in relation to E. histolytica trophozoites. Through scanning electron, epifluorescence microscopy and viability assays, we show for first time that during in vitro interaction with E. histolytica trophozoites, human neutrophils released NETs that covered amoebas and reduced amoebic viability. These NETs presented histones, myeloperoxidase and decondensed chromatin. The results suggest that NETs participate in the elimination of the parasite. PMID:27138813

  12. Marine Natural Product Inhibitors of Neutrophil-Associated Inflammation.

    PubMed

    Chen, Chun-Yu; Tsai, Yung-Fong; Chang, Wen-Yi; Yang, Shun-Chin; Hwang, Tsong-Long

    2016-01-01

    Neutrophils are widely recognized to play an important role in acute inflammatory responses, and recent evidence has expanded their role to modulating chronic inflammatory and autoimmune diseases. Reactive oxygen species (ROS) and microbicidal compounds released from neutrophils that are recruited to the site of inflammation contribute to the pathogenesis of multiple inflammation-associated diseases such as chronic obstructive pulmonary disease, atherosclerosis, and hepatitis. Marine organisms are a valuable source of bioactive compounds with potential for industrial and pharmaceutical application. Marine natural products that inhibit neutrophil activation could be used as drugs for the treatment of inflammatory diseases. Numerous studies investigating marine natural products have reported novel anti-inflammatory agents. Nevertheless, the detailed mechanisms underlying their actions, which could facilitate our understanding of the molecular events occurring in neutrophils, have not been reported in most of the associated research studies. Therefore, in this review, we will present marine products that inhibit neutrophil-associated inflammation. Furthermore, we will be limiting the detailed discussion to agents with well-investigated molecular targets. PMID:27472345

  13. Neutrophil-Epithelial Interactions: A Double-Edged Sword.

    PubMed

    Parkos, Charles A

    2016-06-01

    In recent years, it has become clear that innate immune cells termed neutrophils act as double-edged swords by playing essential roles in clearing infection but also causing tissue damage, yet being critical for wound healing. Neutrophil recruitment to sites of injured tissue or infection has been well studied, and many of the molecular events that regulate passage of leukocytes out of the microcirculation are now understood. However, after exiting the circulation, the molecular details that regulate neutrophil passage to end targets, such mucosal surfaces, are just beginning to be appreciated. Given that migration of neutrophils across mucosal epithelia is associated with disease symptoms and disruption of critical barrier function in disorders such as inflammatory bowel disease, there has been long-standing interest in understanding the molecular basis and functional consequences of neutrophil-epithelial interactions. It is a great honor that my work was recognized by the Rous-Whipple Award this past year, giving me the opportunity to summarize what we have learned during the past few decades about leukocyte interactions with epithelial cells. PMID:27083514

  14. Nitrite attenuated peroxynitrite and hypochlorite generation in activated neutrophils.

    PubMed

    Ren, Xiaoming; Ding, Yun; Lu, Naihao

    2016-03-15

    Oxidative stress is usually considered as an important factor to the pathogenesis of various diseases. Peroxynitrite (ONOO(-)) and hypochlorite (OCl(-)) are formed in immune cells as a part of the innate host defense system, but excessive reactive oxygen species generation can cause progressive inflammation and tissue damage. It has been proven that through mediating nitric oxide (NO) homeostasis, inorganic nitrite (NO2(-)) shows organ-protective effects on oxidative stress and inflammation. However, the effects of NO2(-) on the function of immune cells were still not clear. The potential role of NO2(-) in modulating ONOO(-) and OCl(-) generation in neutrophil cells was investigated in this study. As an immune cell activator, lipopolysaccharide (LPS) increased both ONOO(-) and OCl(-) production in neutrophils, which was significantly attenuated by NO2(-). NO2(-) reduced superoxide (O2(·-)) generation via a NO-dependent mechanism and increased NO formation in activated neutrophils, suggesting a crucial role of O2(·-) in NO2(-)-mediated reduction of ONOO(-). Moreover, the reduced effect of NO2(-) on OCl(-) production was attributed to that NO2(-) reduced H2O2 production in activated neutrophils without influencing the release of myeloperoxidase (MPO), thus limiting OCl(-) production by MPO/H2O2 system. Therefore, NO2(-) attenuates ONOO(-) and OCl(-) formation in activated neutrophils, opening a new direction to modulate the inflammatory response. PMID:26854590

  15. Synthesis and biological evaluation of neutrophilic inflammation inhibitors.

    PubMed

    Bruno, Olga; Brullo, Chiara; Arduino, Nicoletta; Schenone, Silvia; Ranise, Angelo; Bondavalli, Francesco; Ottonello, Luciano; Dapino, Patrizia; Dallegri, Franco

    2004-03-01

    In several non-infectious human diseases, such as ulcerous colitis, rheumatoid arthritis, chronic obstructive pulmonary disease (COPD), the extravasal recruitment of neutrophils plays a crucial role in the development of tissue damage, which, when persistent, can lead to the irreversible organ dysfunction. The neutrophil activation is controlled by a number of intracellular pathways, particularly by a cAMP-dependent protein kinase A (PKA) which also acts on phosphodiesterase IV (PDE4) gene stimulating the synthesis of this enzyme, able to transform cAMP to inactive AMP. PDE4 inhibitors enhance intracellular cAMP and decrease inflammatory cell activation. Several 3-cyclopentyloxy-4-methoxybenzaldehyde and 3-cyclopentyloxy-4-methoxybenzoic acid derivatives were synthesized and studied by us to evaluate their ability to inhibit the superoxide anion production in human neutrophils. These compounds were found able to inhibit the neutrophil activation and some of them increased the cAMP level on tumor necrosis factor-alpha-stimulated neutrophils. Moreover, they also inhibited selectively the human PDE4 enzyme, although they are less potent than the reference compound Rolipram. We report here synthesis, biological studies and some SAR considerations concerning the above mentioned compounds. PMID:14987986

  16. Characterizing asthma from a drop of blood using neutrophil chemotaxis.

    PubMed

    Sackmann, Eric Karl-Heinz; Berthier, Erwin; Schwantes, Elizabeth A; Fichtinger, Paul S; Evans, Michael D; Dziadzio, Laura L; Huttenlocher, Anna; Mathur, Sameer K; Beebe, David J

    2014-04-22

    Asthma is a chronic inflammatory disorder that affects more than 300 million people worldwide. Asthma management would benefit from additional tools that establish biomarkers to identify phenotypes of asthma. We present a microfluidic solution that discriminates asthma from allergic rhinitis based on a patient's neutrophil chemotactic function. The handheld diagnostic device sorts neutrophils from whole blood within 5 min, and generates a gradient of chemoattractant in the microchannels by placing a lid with chemoattractant onto the base of the device. This technology was used in a clinical setting to assay 34 asthmatic (n = 23) and nonasthmatic, allergic rhinitis (n = 11) patients to establish domains for asthma diagnosis based on neutrophil chemotaxis. We determined that neutrophils from asthmatic patients migrate significantly more slowly toward the chemoattractant compared with nonasthmatic patients (P = 0.002). Analysis of the receiver operator characteristics of the patient data revealed that using a chemotaxis velocity of 1.55 μm/min for asthma yields a diagnostic sensitivity and specificity of 96% and 73%, respectively. This study identifies neutrophil chemotaxis velocity as a potential biomarker for asthma, and we demonstrate a microfluidic technology that was used in a clinical setting to perform these measurements. PMID:24711384

  17. Marine Natural Product Inhibitors of Neutrophil-Associated Inflammation

    PubMed Central

    Chen, Chun-Yu; Tsai, Yung-Fong; Chang, Wen-Yi; Yang, Shun-Chin; Hwang, Tsong-Long

    2016-01-01

    Neutrophils are widely recognized to play an important role in acute inflammatory responses, and recent evidence has expanded their role to modulating chronic inflammatory and autoimmune diseases. Reactive oxygen species (ROS) and microbicidal compounds released from neutrophils that are recruited to the site of inflammation contribute to the pathogenesis of multiple inflammation-associated diseases such as chronic obstructive pulmonary disease, atherosclerosis, and hepatitis. Marine organisms are a valuable source of bioactive compounds with potential for industrial and pharmaceutical application. Marine natural products that inhibit neutrophil activation could be used as drugs for the treatment of inflammatory diseases. Numerous studies investigating marine natural products have reported novel anti-inflammatory agents. Nevertheless, the detailed mechanisms underlying their actions, which could facilitate our understanding of the molecular events occurring in neutrophils, have not been reported in most of the associated research studies. Therefore, in this review, we will present marine products that inhibit neutrophil-associated inflammation. Furthermore, we will be limiting the detailed discussion to agents with well-investigated molecular targets. PMID:27472345

  18. Neutrophil-derived resistin release induced by Aggregatibacter actinomycetemcomitans.

    PubMed

    Furugen, Reiko; Hayashida, Hideaki; Yoshii, Yumiko; Saito, Toshiyuki

    2011-08-01

    Resistin is an adipokine that induces insulin resistance in mice. In humans, resistin is not produced in adipocytes, but in various leukocytes instead, and it acts as a proinflammatory molecule. The present investigation demonstrated high levels of resistin in culture supernatants of neutrophils that are stimulated by a highly leukotoxic strain of Aggregatibacter actinomycetemcomitans. In contrast, the level of resistin was remarkably low when neutrophils were exposed to two other strains that produce minimal levels of leukotoxin and a further isogenic mutant strain incapable of producing leukotoxin. Pretreatment of neutrophils with a monoclonal antibody to CD18, β chain of lymphocyte function-associated molecule 1 (LFA-1), or an Src family tyrosine kinase inhibitor before incubation with the highly leukotoxic strain inhibited the release of resistin. These results show that A. actinomycetemcomitans-expressed leukotoxin induces extracellular release of human neutrophil-derived resistin by interacting with LFA-1 on the surface of neutrophils and, consequently, activating Src family tyrosine kinases. PMID:21658109

  19. Diabetes primes neutrophils to undergo NETosis, which impairs wound healing.

    PubMed

    Wong, Siu Ling; Demers, Melanie; Martinod, Kimberly; Gallant, Maureen; Wang, Yanming; Goldfine, Allison B; Kahn, C Ronald; Wagner, Denisa D

    2015-07-01

    Wound healing is impaired in diabetes, resulting in significant morbidity and mortality. Neutrophils are the main leukocytes involved in the early phase of healing. As part of their anti-microbial defense, neutrophils form extracellular traps (NETs) by releasing decondensed chromatin lined with cytotoxic proteins. NETs, however, can also induce tissue damage. Here we show that neutrophils isolated from type 1 and type 2 diabetic humans and mice were primed to produce NETs (a process termed NETosis). Expression of peptidylarginine deiminase 4 (PAD4, encoded by Padi4 in mice), an enzyme important in chromatin decondensation, was elevated in neutrophils from individuals with diabetes. When subjected to excisional skin wounds, wild-type (WT) mice produced large quantities of NETs in wounds, but this was not observed in Padi4(-/-) mice. In diabetic mice, higher levels of citrullinated histone H3 (H3Cit, a NET marker) were found in their wounds than in normoglycemic mice and healing was delayed. Wound healing was accelerated in Padi4(-/-) mice as compared to WT mice, and it was not compromised by diabetes. DNase 1, which disrupts NETs, accelerated wound healing in diabetic and normoglycemic WT mice. Thus, NETs impair wound healing, particularly in diabetes, in which neutrophils are more susceptible to NETosis. Inhibiting NETosis or cleaving NETs may improve wound healing and reduce NET-driven chronic inflammation in diabetes. PMID:26076037

  20. CXCL5 Drives Neutrophil Recruitment in TH17-Mediated GN

    PubMed Central

    Disteldorf, Erik M.; Krebs, Christian F.; Paust, Hans-Joachim; Turner, Jan-Eric; Nouailles, Geraldine; Tittel, André; Meyer-Schwesinger, Catherine; Stege, Gesa; Brix, Silke; Velden, Joachim; Wiech, Thorsten; Helmchen, Udo; Steinmetz, Oliver M.; Peters, Anett; Bennstein, Sabrina B.; Kaffke, Anna; Llanto, Chrystel; Lira, Sergio A.; Mittrücker, Hans-Willi; Stahl, Rolf A.K.; Kurts, Christian; Kaufmann, Stefan H.E.

    2015-01-01

    Neutrophil trafficking to sites of inflammation is essential for the defense against bacterial and fungal infections, but also contributes to tissue damage in TH17-mediated autoimmunity. This process is regulated by chemokines, which often show an overlapping expression pattern and function in pathogen- and autoimmune-induced inflammatory reactions. Using a murine model of crescentic GN, we show that the pathogenic TH17/IL-17 immune response induces chemokine (C-X-C motif) ligand 5 (CXCL5) expression in kidney tubular cells, which recruits destructive neutrophils that contribute to renal tissue injury. By contrast, CXCL5 was dispensable for neutrophil recruitment and effective bacterial clearance in a murine model of acute bacterial pyelonephritis. In line with these findings, CXCL5 expression was highly upregulated in the kidneys of patients with ANCA-associated crescentic GN as opposed to patients with acute bacterial pyelonephritis. Our data therefore identify CXCL5 as a potential therapeutic target for the restriction of pathogenic neutrophil infiltration in TH17-mediated autoimmune diseases while leaving intact the neutrophil function in protective immunity against invading pathogens. PMID:24904089

  1. African fermented foods and probiotics.

    PubMed

    Franz, Charles M A P; Huch, Melanie; Mathara, Julius Maina; Abriouel, Hikmate; Benomar, Nabil; Reid, Gregor; Galvez, Antonio; Holzapfel, Wilhelm H

    2014-11-01

    Africa has an age old history of production of traditional fermented foods and is perhaps the continent with the richest variety of lactic acid fermented foods. These foods have a large impact on the nutrition, health and socio-economy of the people of the continent, often plagued by war, drought, famine and disease. Sub-Saharan Africa is the world's region with the highest percentage of chronically malnourished people and high child mortality. Further developing of traditional fermented foods with added probiotic health features would be an important contribution towards reaching the UN Millennium Development Goals of eradication of poverty and hunger, reduction in child mortality rates and improvement of maternal health. Specific probiotic strains with documented health benefits are sparsely available in Africa and not affordable to the majority of the population. Furthermore, they are not used in food fermentations. If such probiotic products could be developed especially for household food preparation, such as cereal or milk foods, it could make a profound impact on the health and well-being of adults and children. Suitable strains need to be chosen and efforts are needed to produce strains to make products which will be available for clinical studies. This can gauge the impact of probiotics on consumers' nutrition and health, and increase the number of people who can benefit. PMID:25203619

  2. PRODUCTION OF MANNITOL BY FERMENTATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mannitol, a naturally occurring polyol, is widely used in the food, pharmaceutical, medicine and chemical industry. The production of mannitol by fermentation has become attractive because of the problems associated with its production by chemical methods. We have selected Lactobacillus intermediu...

  3. [Discovery of the neutrophil extracellular traps begins a new stage in the study of neutrophil morphogenesis and function].

    PubMed

    Perova, M D; Shubich, M G

    2011-01-01

    The purpose of the present review was to analyze the accumulating evidence regarding recently discovered novel defense mechanism of neutrophils - capacity to form neutrophil extracellular traps (NETs). Contact with pathogenic microbes and/or exposure to proinflammatory cytokines trigger the respiratory burst in the neutrophils with a subsequent initiation of a cell death (NETosis) which differs from apoptosis and necrosis. NETs are formed by the fibrils of decondensed chromatin (DNA/ histones), released from the neutrophil, which is closely associated with the antimicrobial proteins of cytoplasmic granules. Due to its three-dimensional structure, NETs are capable of retaining the microorganisms (bacteria, fungi and protozoa), while high local concentration of the antimicrobial substances provides their killing. The review presents the evidence of a potential defensive role of NETs in infectious diseases, traumas and surgical operations, as well as during the early stage of a repair process. Considering the role played by neutrophils in the immune response orientation via pentraxin-3 (PTX3), including the switching to adaptive immunity, it is necessary to study the subsequent interaction of DNA/histone exrtacellular structures with the tissue microenvironment. PMID:21954717

  4. Human neutrophil elastase: mediator and therapeutic target in atherosclerosis.

    PubMed

    Henriksen, Peter A; Sallenave, Jean-Michel

    2008-01-01

    Human neutrophil elastase (HNE) is present within atherosclerotic plaques where it contributes to matrix degradation and weakening of the vessel wall associated with the complications of aneurysm formation and plaque rupture. It is joined by other extracellular proteases in these actions but the broad range of substrates and potency of HNE coupled with the potential for rapid increases in HNE activity associated with neutrophil degranulation in acute coronary syndromes single this disruptive protease out as therapeutic target in atherosclerotic disease. This review summarises the role of HNE in neutrophil-mediated endothelial injury and the evidence for HNE as a mediator of atherosclerotic plaque development. The therapeutic potential of HNE neutralising antiproteases, alpha-1-antitrypsin and elafin, in atherosclerosis, is discussed. PMID:18289916

  5. Neutrophils Are Decreased in Obsessive-Compulsive Disorder: Preliminary Investigation

    PubMed Central

    Kilic, Faruk; Koseoglu, Filiz; Ustundag, Bilal

    2011-01-01

    Objective There has been no study in the literature evaluating total blood count in obsessive-compulsive disorder (OCD). Therefore, we performed the present study to spesifically measure serum total blood count particularly white blood cells to see whether or not its eventual alterations might have an etiopathogenetic significance in patients with OCD. Methods Total blood count was measured in thirty patients and same number of healthy controls. Additionally, all patients were assessed by Yale-Brown Obsession Compulsion Scale (Y-BOCS). Results Except for neutrophil count, there were no significant differences between the groups regarding any haematological parameter. The mean neutrophil count of the patient group was lower compared to that of the control subjects. Conclusion In conclusion, the present study suggests that neutrophil count is reduced in pure OCD patients and this finding may contribute to the role of immunological factors in the pathogenesis of OCD. PMID:22216047

  6. Nanoparticle Targeting of Neutrophils for Improved Cancer Immunotherapy

    PubMed Central

    Chu, Dafeng; Zhao, Qi; Yu, Jian; Zhang, Faya; Zhang, Hui; Wang, Zhenjia

    2016-01-01

    Cancer immunotherapy using tumor specific monoclonal antibodies (mAbs) presents a novel approach for cancer treatment. A monoclonal antibody TA99 specific for gp75 antigen of melanoma, initiates neutrophil recruitment in tumor responsible for cancer therapy. Here we report a strategy for hijacking neutrophils in vivo using nanoparticles (NPs) to deliver therapeutics into tumor. In a mouse model of melanoma, we showed that systemically delivered albumin NPs increased in tumor when TA99 antibody was injected; and the nanoparticle tumor accumulation was mediated by neutrophils. After the administration of pyropheophorbide-a (Ppa) loaded albumin NPs and TA99, photodynamic therapy significantly suppressed the tumor growth and increased mouse survival compared with treatment with the NPs or TA99. The study reveals a new avenue to treat cancer by nanoparticle hitchhiking of immune systems to enhance delivery of therapeutics into tumor sites. PMID:26989887

  7. Externalized decondensed neutrophil chromatin occludes pancreatic ducts and drives pancreatitis.

    PubMed

    Leppkes, Moritz; Maueröder, Christian; Hirth, Sebastian; Nowecki, Stefanie; Günther, Claudia; Billmeier, Ulrike; Paulus, Susanne; Biermann, Mona; Munoz, Luis E; Hoffmann, Markus; Wildner, Dane; Croxford, Andrew L; Waisman, Ari; Mowen, Kerri; Jenne, Dieter E; Krenn, Veit; Mayerle, Julia; Lerch, Markus M; Schett, Georg; Wirtz, Stefan; Neurath, Markus F; Herrmann, Martin; Becker, Christoph

    2016-01-01

    Ductal occlusion has been postulated to precipitate focal pancreatic inflammation, while the nature of the primary occluding agents has remained elusive. Neutrophils make use of histone citrullination by peptidyl arginine deiminase-4 (PADI4) in contact to particulate agents to extrude decondensed chromatin as neutrophil extracellular traps (NETs). In high cellular density, NETs form macroscopically visible aggregates. Here we show that such aggregates form inside pancreatic ducts in humans and mice occluding pancreatic ducts and thereby driving pancreatic inflammation. Experimental models indicate that PADI4 is critical for intraductal aggregate formation and that PADI4-deficiency abrogates disease progression. Mechanistically, we identify the pancreatic juice as a strong instigator of neutrophil chromatin extrusion. Characteristic single components of pancreatic juice, such as bicarbonate ions and calcium carbonate crystals, induce aggregated NET formation. Ductal occlusion by aggregated NETs emerges as a pathomechanism with relevance in a plethora of inflammatory conditions involving secretory ducts. PMID:26964500

  8. Oxidative product formation in irradiated neutrophils. A flow cytometric analysis

    SciTech Connect

    Wolber, R.A.; Duque, R.E.; Robinson, J.P.; Oberman, H.A.

    1987-03-01

    The effect of irradiation on neutrophil oxidative function was evaluated using a flow cytometric assay of intracellular hydrogen peroxide (H/sub 2/O/sub 2/) production. This assay quantitates the H/sub 2/O/sub 2/-dependent conversion of the nonfluorescent compound, 2'-7'-dichlorofluorescein (DCFH), into fluorescent 2'-7'-dichlorofluorescein (DCF) on a single-cell basis. Intracellular H/sub 2/O/sub 2/ production in response to stimulation with phorbol myristate acetate was not affected by neutrophil irradiation at doses up to 2500 rad. In addition, irradiation of intracellular DCFH and aqueous 2'-7'-dichlorofluorescein diacetate (DCFH-DA) resulted in DCF production, which suggested that oxidative molecules produced by aqueous radiolysis were detected by this assay. This study indicates that radiation doses of 1500 to 2500 rad, which are sufficient to prevent induction of graft-versus-host disease by transfused blood components, are not deleterious to neutrophil oxidative metabolism.

  9. Effect of laser irradiation on neutrophils metabolism in stress

    NASA Astrophysics Data System (ADS)

    Brill, Gregory E.; Grigoriev, Sergei N.; Romanova, Tatyana P.; Petrisheva, Svetlana G.

    1994-02-01

    In experiments on male mice of CBA line the alteration of neutrophils cytochemical profile in peripheral blood He-Ne laser irradiation in vitro (4 mW/cm2, 15 min) and modification of metabolic disturbances in polymorphonuclear leucocytes in stress by laser radiation were studied. It was found that direct laser irradiation of blood results in the decrease of glycogen and lipids content, the increase of ATP-ase, succinate dehydrogenase and myeloperoxidase activity, rise of lysosomal cationic proteins level, and membrane oxidase systems of neutrophils stimulation. In short-term immobilization stress conditions transcutaneous laser irradiation in vivo (19 mW/cm2, 15 min) prevents the development of stress induced changes of metabolism and function of neutrophils.

  10. Modulation of neutrophil oxidative burst via histamine receptors

    PubMed Central

    Číž, M; Lojek, A

    2013-01-01

    Histamine has the ability to influence the activity of immune cells including neutrophils and plays a pivotal role in inflammatory processes, which are a complex network of cellular and humoral events. One of the main functions manifested by activated neutrophils is oxidative burst, which is linked to the production of reactive oxygen species; therefore, the effects of histamine receptor agonists and antagonists on the oxidative burst of neutrophils is reviewed. A role for the well-characterized histamine H1 and H2 receptors in this process is discussed and compared to that of the recently discovered H4 receptor. Linked Articles This article is part of a themed issue on Histamine Pharmacology Update. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2013.170.issue-1 PMID:23336732

  11. Neutrophil Fates in Bronchiectasis and Alpha-1 Antitrypsin Deficiency.

    PubMed

    Russell, Derek W; Gaggar, Amit; Solomon, George M

    2016-04-01

    The neutrophil is a powerful cellular defender of the vulnerable interface between the environment and pulmonary tissues. This cell's potent weapons are carefully calibrated in the healthy state to maximize effectiveness in fighting pathogens while minimizing tissue damage and allowing for repair of what damage does occur. The three related chronic airway disorders of cystic fibrosis, non-cystic fibrosis bronchiectasis, and alpha-1 antitrypsin deficiency all demonstrate significant derangements of this homeostatic system that result in their respective pathologies. An important shared feature among them is the inefficient resolution of chronic inflammation that serves as a central means for neutrophil-driven lung damage resulting in disease progression. Examining the commonalities and divergences between these diseases in the light of their immunopathology is informative and may help guide us toward future therapeutics designed to modulate the neutrophil's interplay with the pulmonary environment. PMID:27115946

  12. An Elucidation of Neutrophil Functions against Mycobacterium tuberculosis Infection

    PubMed Central

    Morris, Devin; Nguyen, Thien; Kim, John; Kassissa, Christine; Khurasany, Melissa; Luong, Jennifer; Kasko, Sarah; Pandya, Shalin; Chu, Michael; Chi, Po-Ting; Lagman, Minette; Venketaraman, Vishwanath

    2013-01-01

    We characterized the functions of neutrophils in response to Mycobacterium tuberculosis (M. tb) infection, with particular reference to glutathione (GSH). We examined the effects of GSH in improving the ability of neutrophils to control intracellular M. tb infection. Our findings indicate that increasing the intracellular levels of GSH with a liposomal formulation of GSH (L-GSH) resulted in reduction in the levels of free radicals and increased acidification of M. tb containing phagosomes leading to the inhibition in the growth of M. tb. This inhibitory mechanism is dependent on the presence of TNF-α and IL-6. Our studies demonstrate a novel regulatory mechanism adapted by the neutrophils to control M. tb infection. PMID:24312131

  13. Detection of Bidirectional Signaling During Integrin Activation and Neutrophil Adhesion

    PubMed Central

    Altman, Stuart M.; Dixit, Neha; Simon, Scott I.

    2014-01-01

    Neutrophil arrest and migration on inflamed endothelium is dependent upon a conformational shift in CD11a/CD18 (LFA-1) from a low to high affinity and clustered state which determines the strength and lifetime of bond formation with intracellular adhesion molecule 1 (ICAM-1). Cytoskeletal adaptor proteins kindlin-3 and talin-1 anchor clustered LFA-1 to the cytoskeleton and support the transition from neutrophil rolling to arrest. We employ microfluidic flow channels and total internal reflection fluorescence microscopy to evaluate the spatiotemporal regulation of LFA-1 affinity and bond formation that facilitate the transition from neutrophil rolling to arrest. Methodology is presented to correlate the relationship between integrin conformation, bond formation with ICAM-1, and cytoskeletal engagement and adhesion strengthening necessary to achieve a migratory phenotype. PMID:24504956

  14. Externalized decondensed neutrophil chromatin occludes pancreatic ducts and drives pancreatitis

    PubMed Central

    Leppkes, Moritz; Maueröder, Christian; Hirth, Sebastian; Nowecki, Stefanie; Günther, Claudia; Billmeier, Ulrike; Paulus, Susanne; Biermann, Mona; Munoz, Luis E.; Hoffmann, Markus; Wildner, Dane; Croxford, Andrew L.; Waisman, Ari; Mowen, Kerri; Jenne, Dieter E.; Krenn, Veit; Mayerle, Julia; Lerch, Markus M.; Schett, Georg; Wirtz, Stefan; Neurath, Markus F.; Herrmann, Martin; Becker, Christoph

    2016-01-01

    Ductal occlusion has been postulated to precipitate focal pancreatic inflammation, while the nature of the primary occluding agents has remained elusive. Neutrophils make use of histone citrullination by peptidyl arginine deiminase-4 (PADI4) in contact to particulate agents to extrude decondensed chromatin as neutrophil extracellular traps (NETs). In high cellular density, NETs form macroscopically visible aggregates. Here we show that such aggregates form inside pancreatic ducts in humans and mice occluding pancreatic ducts and thereby driving pancreatic inflammation. Experimental models indicate that PADI4 is critical for intraductal aggregate formation and that PADI4-deficiency abrogates disease progression. Mechanistically, we identify the pancreatic juice as a strong instigator of neutrophil chromatin extrusion. Characteristic single components of pancreatic juice, such as bicarbonate ions and calcium carbonate crystals, induce aggregated NET formation. Ductal occlusion by aggregated NETs emerges as a pathomechanism with relevance in a plethora of inflammatory conditions involving secretory ducts. PMID:26964500

  15. Ethylmercury and Hg2+ induce the formation of neutrophil extracellular traps (NETs) by human neutrophil granulocytes.

    PubMed

    Haase, Hajo; Hebel, Silke; Engelhardt, Gabriela; Rink, Lothar

    2016-03-01

    Humans are exposed to different mercurial compounds from various sources, most frequently from dental fillings, preservatives in vaccines, or consumption of fish. Among other toxic effects, these substances interact with the immune system. In high doses, mercurials are immunosuppressive. However, lower doses of some mercurials stimulate the immune system, inducing different forms of autoimmunity, autoantibodies, and glomerulonephritis in rodents. Furthermore, some studies suggest a connection between mercury exposure and the occurrence of autoantibodies against nuclear components and granulocyte cytoplasmic proteins in humans. Still, the underlying mechanisms need to be clarified. The present study investigates the formation of neutrophil extracellular traps (NETs) in response to thimerosal and its metabolites ethyl mercury (EtHg), thiosalicylic acid, and mercuric ions (Hg(2+)). Only EtHg and Hg(2+) triggered NETosis. It was independent of PKC, ERK1/2, p38, and zinc signals and not affected by the NADPH oxidase inhibitor DPI. Instead, EtHg and Hg(2+) triggered NADPH oxidase-independent production of ROS, which are likely to be involved in mercurial-induced NET formation. This finding might help understanding the autoimmune potential of mercurial compounds. Some diseases, to which a connection with mercurials has been shown, such as Wegener's granulomatosis and systemic lupus erythematosus, are characterized by high prevalence of autoantibodies against neutrophil-specific auto-antigens. Externalization in the form of NETs may be a source for exposure to these self-antigens. In genetically susceptible individuals, this could be one step in the series of events leading to autoimmunity. PMID:25701957

  16. [Chemistry of life: ferments and fermentation in 17th-century iatrochemistry].

    PubMed

    Clericuzio, Antonio

    2003-01-01

    The concepts of ferment and fermentation played an important, though heretofore neglected, role in 17th-century physiology. Though these notions can be found in ancient philosophy and medicine, as well as in medieval medicine, they became integral part of the chemical medicine that was advocated by Paracelsus and his school. Paracelsians made fermentation a central concept in their successful effort to give chemical foundation to medicine. Jean Baptiste van Helmont and Sylvius used the concepts of ferment and fermentation to explain a variety of physiological processes in human body. Corpuscular philosophers like Robert Boyle and Thomas Willis reinterpreted these notions in corpuscular terms and separated the concept of ferment from that of fermentation. In the second half of the seventeenth century, physiologist tried to explain fermentation by means of chemical reactions, as for instance acid -alkali, and ruled out the notion of ferment as superfluous to their investigations. At the end of hte seventeenth century fermentation attracted the interest of physicists like Johannes Bernoulli and Isaac Newton, who tried to explain fermentative processes in terms of matter and motion (Bernoulli) and short-range forces (Newton). George Ernst Stahl devoted a work to fermentation: the Zymotechnia. He explained fermentation as the outcome of the reactions of molecules formed of saline, oily and earthy corpuscles with particles of water. He saw fermentation as a mechanical process, i.e. as collision of different kinds of corpuscles. PMID:15311436

  17. Nitric oxide regulates neutrophil migration through microparticle formation.

    PubMed

    Nolan, Sarah; Dixon, Rachel; Norman, Keith; Hellewell, Paul; Ridger, Victoria

    2008-01-01

    The role of nitric oxide (NO) in regulating neutrophil migration has been investigated. Human neutrophil migration to interleukin (IL)-8 (1 nmol/L) was measured after a 1-hour incubation using a 96-well chemotaxis plate assay. The NO synthase inhibitor N(G)-nitro-l-arginine methyl ester (L-NAME) significantly (P < 0.001) enhanced IL-8-induced migration by up to 45%. Anti-CD18 significantly (P < 0.001) inhibited both IL-8-induced and L-NAME enhanced migration. Antibodies to L-selectin or PSGL-1 had no effect on IL-8-induced migration but prevented the increased migration to IL-8 induced by L-NAME. L-NAME induced generation of neutrophil-derived microparticles that was significantly (P < 0.01) greater than untreated neutrophils or D-NAME. This microparticle formation was dependent on calpain activity and superoxide production. Only microparticles from L-NAME and not untreated or D-NAME-treated neutrophils induced a significant (P < 0.01) increase in IL-8-induced migration and transendothelial migration. Pretreatment of microparticles with antibodies to L-selectin (DREG-200) or PSGL-1 (PL-1) significantly (P < 0.001) inhibited this effect. The ability of L-NAME-induced microparticles to enhance migration was found to be dependent on the number of microparticles produced and not an increase in microparticle surface L-selectin or PSGL-1 expression. These data show that NO can modulate neutrophil migration by regulating microparticle formation. PMID:18079439

  18. The crucial role of neutrophil granulocytes in bone fracture healing.

    PubMed

    Kovtun, A; Bergdolt, S; Wiegner, R; Radermacher, P; Huber-Lang, M; Ignatius, A

    2016-01-01

    Delayed bone fracture healing and the formation of non-unions represent an important clinical problem, particularly in polytrauma patients who suffer from posttraumatic systemic inflammation. However, the underlying pathomechanisms remain unclear. Neutrophil granulocytes are crucial effector cells in the systemic immune response and represent the most abundant immune cell population in the early fracture haematoma. Here we investigated the role of neutrophils in a mouse model of uncomplicated fracture healing and compromised fracture healing induced by an additional thoracic trauma. Twenty four hours before injury, 50 % of the mice were systemically treated with an anti-Ly-6G-antibody to reduce neutrophil numbers. In the isolated fracture model, Ly-6G-Ab treatment significantly increased the concentration of both pro- and anti-inflammatory cytokines, including interleukin (IL)-6 and IL-10, and chemokines, for example, C-X-C motif ligand 1 (CXCL1) and monocyte chemotactic protein-1 (MCP-1), in the fracture haematoma. Monocyte/macrophage recruitment was also significantly enhanced. After 21 d, bone regeneration was considerably impaired as demonstrated by significantly diminished bone content and impaired mechanical properties of the fracture callus. These results indicate that undisturbed neutrophil recruitment and function in the inflammatory phase after fracture is crucial to initiate downstream responses leading to bone regeneration. In the combined trauma model, the reduction of neutrophil numbers ameliorated pulmonary inflammation but did not provoke any significant effect on bone regeneration, suggesting that neutrophils may not play a crucial pathomechanistic role in compromised fracture healing induced by an additional thoracic trauma. PMID:27452963

  19. Intracellular mechanisms of hydroquinone toxicity on endotoxin-activated neutrophils.

    PubMed

    Hebeda, Cristina Bichels; Pinedo, Fernanda Júdice; Bolonheis, Simone Marques; Ferreira, Zulma F; Muscará, Marcelo Nicolas; Teixeira, Simone Aparecida; Farsky, Sandra Helena Poliselli

    2012-11-01

    Circulating neutrophils promptly react to different substances in the blood and orchestrate the beginning of the innate inflammatory response. We have shown that in vivo exposure to hydroquinone (HQ), the most oxidative compound of cigarette smoke and a toxic benzene metabolite, affects circulating neutrophils, making them unresponsive to a subsequent bacterial infection. In order to understand the action of toxic molecular mechanisms on neutrophil functions, in vitro HQ actions on pro-inflammatory mediator secretions evoked by Escherichia coli lipopolysaccharide (LPS) were investigated. Neutrophils from male Wistar rats were cultured with vehicle or HQ (5 or 10 μM; 2 h) and subsequently incubated with LPS (5 μg/ml; 18 h). Hydroquinone treatment impaired LPS-induced nitric oxide (NO), tumour necrosis factor α (TNF-α), interleukin (IL)-1β and IL-6 secretions by neutrophils. The toxic effect was not dependent on cell death, reduced expression of the LPS receptor or toll-like receptor-4 (TLR-4) or cell priming, as HQ did not induce reactive oxygen species generation or β(2)integrin membrane expression. The action of toxic mechanisms on cytokine secretion was dependent on reduced gene synthesis, which may be due to decreased nuclear factor κB (NF-κB) nuclear translocation. Conversely, this intracellular pathway was not involved in impaired NO production because HQ treatments only affected inducible nitric oxide synthase protein expression and activity, suggesting posttranscriptional and/or posttranslational mechanisms of action. Altogether, our data show that HQ alters the action of different LPS-activated pathways on neutrophils, which may contribute to the impaired triggering of the host innate immune reaction detected during in vivo HQ exposure. PMID:22717997

  20. REDUCTION OF NEUTROPHIL INFLUX DIMINISHES LUNG INJURY AND MORTALITY FOLLOWING PHOSGENE INHALATION

    EPA Science Inventory

    Phosgene inhalation causes a sever noncardiogenic pulmonary edema characterized by an influx of neutrophils into the lung. o study the role of neutrophils in lung injury and mortality after phosgene, we investigated the effects of leukocyte depletion with cyclophosphamide, inhibi...

  1. Human neutrophil elastase inhibitors in innate and adaptive immunity.

    PubMed

    Fitch, P M; Roghanian, A; Howie, S E M; Sallenave, J-M

    2006-04-01

    Recent evidence shows that human neutrophil elastase inhibitors can be synthesized locally at mucosal sites. In addition to efficiently targeting bacterial and host enzymes, they can be released in the interstitium and in the lumen of mucosa, where they have been shown to have antimicrobial activities, and to activate innate immune responses. This review will address more particularly the pleiotropic functions of low-molecular-mass neutrophil elastase inhibitors [SLPI (secretory leucocyte proteinase inhibitor) and elafin] and, more specifically, their role in the development of the adaptive immune response. PMID:16545094

  2. A Neutrophil Phenotype Model for Extracorporeal Treatment of Sepsis

    PubMed Central

    Malkin, Alexander D.; Sheehan, Robert P.; Mathew, Shibin; Federspiel, William J.; Redl, Heinz; Clermont, Gilles

    2015-01-01

    Neutrophils play a central role in eliminating bacterial pathogens, but may also contribute to end-organ damage in sepsis. Interleukin-8 (IL-8), a key modulator of neutrophil function, signals through neutrophil specific surface receptors CXCR-1 and CXCR-2. In this study a mechanistic computational model was used to evaluate and deploy an extracorporeal sepsis treatment which modulates CXCR-1/2 levels. First, a simplified mechanistic computational model of IL-8 mediated activation of CXCR-1/2 receptors was developed, containing 16 ODEs and 43 parameters. Receptor level dynamics and systemic parameters were coupled with multiple neutrophil phenotypes to generate dynamic populations of activated neutrophils which reduce pathogen load, and/or primed neutrophils which cause adverse tissue damage when misdirected. The mathematical model was calibrated using experimental data from baboons administered a two-hour infusion of E coli and followed for a maximum of 28 days. Ensembles of parameters were generated using a Bayesian parallel tempering approach to produce model fits that could recreate experimental outcomes. Stepwise logistic regression identified seven model parameters as key determinants of mortality. Sensitivity analysis showed that parameters controlling the level of killer cell neutrophils affected the overall systemic damage of individuals. To evaluate rescue strategies and provide probabilistic predictions of their impact on mortality, time of onset, duration, and capture efficacy of an extracorporeal device that modulated neutrophil phenotype were explored. Our findings suggest that interventions aiming to modulate phenotypic composition are time sensitive. When introduced between 3–6 hours of infection for a 72 hour duration, the survivor population increased from 31% to 40–80%. Treatment efficacy quickly diminishes if not introduced within 15 hours of infection. Significant harm is possible with treatment durations ranging from 5–24 hours, which

  3. Role of osteopontin in hepatic neutrophil infiltration during alcoholic steatohepatitis

    SciTech Connect

    Apte, Udayan M.; Banerjee, Atrayee; McRee, Rachel; Wellberg, Elizabeth; Ramaiah, Shashi K. . E-mail: sramaiah@cvm.tamu.edu

    2005-08-22

    Alcoholic liver disease (ALD) is a major complication of heavy alcohol (EtOH) drinking and is characterized by three progressive stages of pathology: steatosis, steatohepatitis, and fibrosis/cirrhosis. Alcoholic steatosis (AS) is the initial stage of ALD and consists of fat accumulation in the liver accompanied by minimal liver injury. AS is known to render the hepatocytes increasingly sensitive to toxicants such as bacterial endotoxin (LPS). Alcoholic steatohepatitis (ASH), the second and rate-limiting step in the progression of ALD, is characterized by hepatic fat accumulation, neutrophil infiltration, and neutrophil-mediated parenchymal injury. However, the pathogenesis of ASH is poorly defined. It has been theorized that the pathogenesis of ASH involves interaction of increased circulating levels of LPS with hepatocytes being rendered highly sensitive to LPS due to heavy EtOH consumption. We hypothesize that osteopontin (OPN), a matricellular protein (MCP), plays an important role in the hepatic neutrophil recruitment due to its enhanced expression during the early phase of ALD (AS and ASH). To study the role of OPN in the pathogenesis of ASH, we induced AS in male Sprague-Dawley rats by feeding EtOH-containing Lieber-DeCarli liquid diet for 6 weeks. AS rats experienced extensive fat accumulation and minimal liver injury. Moderate induction in OPN was observed in AS group. ASH was induced by feeding male Sprague-Dawley rats EtOH-containing Lieber-DeCarli liquid diet for 6 weeks followed by LPS injection. The ASH rats had substantial neutrophil infiltration, coagulative oncotic necrosis, and developed higher liver injury. Significant increases in the hepatic and circulating levels of OPN was observed in the ASH rats. Higher levels of the active, thrombin-cleaved form of OPN in the liver in ASH group correlated remarkably with hepatic neutrophil infiltration. Finally, correlative studies between OPN and hepatic neutrophil infiltration was corroborated in a simple

  4. A Neutrophil Phenotype Model for Extracorporeal Treatment of Sepsis.

    PubMed

    Malkin, Alexander D; Sheehan, Robert P; Mathew, Shibin; Federspiel, William J; Redl, Heinz; Clermont, Gilles

    2015-10-01

    Neutrophils play a central role in eliminating bacterial pathogens, but may also contribute to end-organ damage in sepsis. Interleukin-8 (IL-8), a key modulator of neutrophil function, signals through neutrophil specific surface receptors CXCR-1 and CXCR-2. In this study a mechanistic computational model was used to evaluate and deploy an extracorporeal sepsis treatment which modulates CXCR-1/2 levels. First, a simplified mechanistic computational model of IL-8 mediated activation of CXCR-1/2 receptors was developed, containing 16 ODEs and 43 parameters. Receptor level dynamics and systemic parameters were coupled with multiple neutrophil phenotypes to generate dynamic populations of activated neutrophils which reduce pathogen load, and/or primed neutrophils which cause adverse tissue damage when misdirected. The mathematical model was calibrated using experimental data from baboons administered a two-hour infusion of E coli and followed for a maximum of 28 days. Ensembles of parameters were generated using a Bayesian parallel tempering approach to produce model fits that could recreate experimental outcomes. Stepwise logistic regression identified seven model parameters as key determinants of mortality. Sensitivity analysis showed that parameters controlling the level of killer cell neutrophils affected the overall systemic damage of individuals. To evaluate rescue strategies and provide probabilistic predictions of their impact on mortality, time of onset, duration, and capture efficacy of an extracorporeal device that modulated neutrophil phenotype were explored. Our findings suggest that interventions aiming to modulate phenotypic composition are time sensitive. When introduced between 3-6 hours of infection for a 72 hour duration, the survivor population increased from 31% to 40-80%. Treatment efficacy quickly diminishes if not introduced within 15 hours of infection. Significant harm is possible with treatment durations ranging from 5-24 hours, which may

  5. Local rheology of human neutrophils investigated using atomic force microscopy.

    PubMed

    Lee, Yong J; Patel, Dipika; Park, Soyeun

    2011-01-01

    During the immune response, neutrophils display localized mechanical events by interacting with their environment through the micro-vascular transit, trans-endothelial, and trans-epithelial migration. Nano-mechanical studies of human neutrophils on localized nano-domains could provide the essential information for understanding their immune responsive functions. Using the Atomic Force Microscopy (AFM)-based micro-rheology, we have investigated rheological properties of the adherent human neutrophils on local nano-domains. We have applied the modified Hertz model to obtain the viscoelastic moduli from the relatively thick body regions of the neutrophils. In addition, by using more advanced models to account for the substrate effects, we have successfully characterized the rheological properties of the thin leading and tail regions as well. We found a regional difference in the mechanical compliances of the adherent neutrophils. The central regions of neutrophils were significantly stiffer (1,548 ± 871 Pa) than the regions closer to the leading edge (686 ± 801 Pa), while the leading edge and the tail (494 ± 537 Pa) regions were mechanically indistinguishable. The frequency-dependent elastic and viscous moduli also display a similar regional difference. Over the studied frequency range (100 to 300 Hz), the complex viscoelastic moduli display the partial rubber plateau behavior where the elastic moduli are greater than the viscous moduli for a given frequency. The non-disparaging viscous modulus indicates that the neutrophils display a viscoelastic dynamic behavior rather than a perfect elastic behavior like polymer gels. In addition, we found no regional difference in the structural damping coefficient between the leading edge and the cell body. Thus, we conclude that despite the lower loss and storage moduli, the leading edges of the human neutrophils display partially elastic properties similar to the cell body. These results suggest that the lower elastic moduli

  6. Oxidative Autoactivation of Latent Collagenase by Human Neutrophils

    NASA Astrophysics Data System (ADS)

    Weiss, S. J.; Peppin, G.; Ortiz, X.; Ragsdale, C.; Test, S. T.

    1985-02-01

    The pathological destruction of collagen plays a key role in the development of inflammatory disease states affecting every organ system in the human body. Neutrophils localized at inflammatory sites can potentially degrade collagen by releasing a metalloenzyme, collagenase, which is stored in a latent inactive form. Triggered human neutrophils were shown to release and simultaneously activate their latent collagenase. The activation of the latent enzyme was coupled to an oxidative process that required the generation of a highly reactive oxygen metabolite, hypochlorous acid. Oxidative regulation of latent collagenase activity may be important in the pathogenesis of connective tissue damage in vivo.

  7. Neutrophil chemotaxis in sickle cell anaemia, sickle cell beta zero thalassaemia, and after splenectomy.

    PubMed Central

    Donadi, E A; Falcão, R P

    1987-01-01

    Neutrophil chemotaxis was evaluated in 28 patients with sickle cell anaemia, 10 patient with sickle cell beta zero thalassaemia, 25 patients who had undergone splenectomy, and 38 controls. The mean distance migrated by patients' neutrophils was not significantly different from that of neutrophils from controls. Although several immunological variables have been reported to be changed after loss of splenic function, we were unable to show a defect in neutrophil chemotaxis that could account for the increased susceptibility to infection. PMID:3611395

  8. Whose Gene Is It Anyway? The Effect of Preparation Purity on Neutrophil Transcriptome Studies

    PubMed Central

    Thomas, Huw B.; Moots, Robert J.; Edwards, Steven W.; Wright, Helen L.

    2015-01-01

    Protocols for the isolation of neutrophils from whole blood often result in neutrophil preparations containing low numbers (~5%) of contaminating leukocytes, and it is possible that these contaminating cells contribute to highly sensitive assays that measure neutrophil gene expression (e.g. qPCR). We investigated the contribution of contaminating leukocytes on the transcriptome profile of human neutrophils following stimulation with inflammatory cytokines (GM-CSF, TNFα), using RNA-Seq. Neutrophils were isolated using Polymorphprep or the StemCell untouched neutrophil isolation kit (negative selection of “highly pure” neutrophils). The level of contamination was assessed by morphology and flow cytometry. The major source of contamination in Polymorphprep neutrophil preparations was from eosinophils and was highly donor dependent. Contaminating cells were largely, but not completely, absent in neutrophil suspensions prepared using negative selection, but the overall yield of neutrophils was decreased by around 50%. RNA-seq analysis identified only 25 genes that were significantly differentially-expressed between Polymorphprep and negatively-selected neutrophils across all three treatment groups (untreated, GM-CSF, TNFα). The expression levels of 34 cytokines/chemokines both before and after GM-CSF or TNFα treatment were not significantly different between neutrophil isolation methods and therefore not affected by contributions from non-neutrophil cell types. This work demonstrates that low numbers (<5%) of contaminating leukocytes in neutrophil preparations contribute very little to the overall gene expression profile of cytokine-stimulated neutrophils, and that protocols for the isolation of highly pure neutrophils result in significantly lower yields of cells which may hinder investigations where large numbers of cells are required or where volumes of blood are limited. PMID:26401909

  9. A Lipid Mediator Hepoxilin A3 Is a Natural Inducer of Neutrophil Extracellular Traps in Human Neutrophils

    PubMed Central

    Douda, David N.; Grasemann, Hartmut; Pace-Asciak, Cecil

    2015-01-01

    Pulmonary exacerbations in cystic fibrosis airways are accompanied by inflammation, neutrophilia, and mucous thickening. Cystic fibrosis sputum contains a large amount of uncleared DNA contributed by neutrophil extracellular trap (NET) formation from neutrophils. The exact mechanisms of the induction of NETosis in cystic fibrosis airways remain unclear, especially in uninfected lungs of patients with early cystic fibrosis lung disease. Here we show that Hepoxilin A3, a proinflammatory eicosanoid, and the synthetic analog of Hepoxilin B3, PBT-3, directly induce NETosis in human neutrophils. Furthermore, we show that Hepoxilin A3-mediated NETosis is NADPH-oxidase-dependent at lower doses of Hepoxilin A3, while it is NADPH-oxidase-independent at higher doses. Together, these results demonstrate that Hepoxilin A3 is a previously unrecognized inducer of NETosis in cystic fibrosis lungs and may represent a new therapeutic target for treating cystic fibrosis and other inflammatory lung diseases. PMID:25784781

  10. Iron-chelating agent desferrioxamine stimulates formation of neutrophil extracellular traps (NETs) in human blood-derived neutrophils.

    PubMed

    Völlger, Lena; Akong-Moore, Kathryn; Cox, Linda; Goldmann, Oliver; Wang, Yanming; Schäfer, Simon T; Naim, Hassan Y; Nizet, Victor; von Köckritz-Blickwede, Maren

    2016-07-01

    Neutrophil extracellular trap (NET) formation is a significant innate immune defense mechanism against microbial infection that complements other neutrophil functions including phagocytosis and degranulation of antimicrobial peptides. NETs are decondensed chromatin structures in which antimicrobial components (histones, antimicrobial peptides and proteases) are deployed and mediate immobilization of microbes. Here we describe an effect of iron chelation on the phenotype of NET formation. Iron-chelating agent desferrioxamine (DFO) showed a modest but significant induction of NETs by freshly isolated human neutrophils as visualized and quantified by immunocytochemistry against histone-DNA complexes. Further analyses revealed that NET induction by iron chelation required NADPH-dependent production of reactive oxygen species (ROS) as well as protease and peptidyl-arginine-deiminase 4 (PAD4) activities, three key mechanistic pathways previously linked to NET formation. Our results demonstrate that iron chelation by DFO contributes to the formation of NETs and suggest a target for pharmacological manipulation of NET activity. PMID:27129288

  11. Neutrophils are required for both the sensitization and elicitation phase of contact hypersensitivity

    PubMed Central

    Weber, Felix C.; Németh, Tamás; Csepregi, Janka Z.; Dudeck, Anne; Roers, Axel; Ozsvári, Béla; Oswald, Eva; Puskás, László G.; Jakob, Thilo

    2015-01-01

    Allergic contact dermatitis and its animal model, contact hypersensitivity (CHS), are T cell–mediated inflammatory skin diseases induced by contact allergens. Though numerous cellular and molecular players are known, the mechanism of chemical-induced sensitization remains poorly understood. Here, we identify neutrophils as crucial players in the sensitization phase of CHS. Genetic deficiency of neutrophils caused by myeloid-specific deletion of Mcl-1 or antibody-mediated depletion of neutrophils before sensitization abrogated the CHS response. Neutrophil deficiency reduced contact allergen-induced cytokine production, gelatinase release, and reactive oxygen species production in naive mice. Mast cell deficiency inhibited neutrophil accumulation at the site of sensitization. In turn, neutrophils were required for contact allergen-induced release of further neutrophil-attracting chemokines, migration of DCs to the draining lymph nodes, and priming of allergen-specific T cells. Lymph node cells from mice sensitized in the absence of neutrophils failed to transfer sensitization to naive recipients. Furthermore, no CHS response could be induced when neutrophils were depleted before elicitation or when normally sensitized lymph node cells were transferred to neutrophil-deficient recipients, indicating an additional role for neutrophils in the elicitation phase. Collectively, our data identify neutrophils to be critically involved in both the sensitization and elicitation phase of CHS. PMID:25512469

  12. Neutrophil AKT2 regulates heterotypic cell-cell interactions during vascular inflammation.

    PubMed

    Li, Jing; Kim, Kyungho; Hahm, Eunsil; Molokie, Robert; Hay, Nissim; Gordeuk, Victor R; Du, Xiaoping; Cho, Jaehyung

    2014-04-01

    Interactions between platelets, leukocytes, and activated endothelial cells are important during microvascular occlusion; however, the regulatory mechanisms of these heterotypic cell-cell interactions remain unclear. Here, using intravital microscopy to evaluate mice lacking specific isoforms of the serine/threonine kinase AKT and bone marrow chimeras, we found that hematopoietic cell-associated AKT2 is important for neutrophil adhesion and crawling and neutrophil-platelet interactions on activated endothelial cells during TNF-α-induced venular inflammation. Studies with an AKT2-specific inhibitor and cells isolated from WT and Akt KO mice revealed that platelet- and neutrophil-associated AKT2 regulates heterotypic neutrophil-platelet aggregation under shear conditions. In particular, neutrophil AKT2 was critical for membrane translocation of αMβ2 integrin, β2-talin1 interaction, and intracellular Ca2+ mobilization. We found that the basal phosphorylation levels of AKT isoforms were markedly increased in neutrophils and platelets isolated from patients with sickle cell disease (SCD), an inherited hematological disorder associated with vascular inflammation and occlusion. AKT2 inhibition reduced heterotypic aggregation of neutrophils and platelets isolated from SCD patients and diminished neutrophil adhesion and neutrophil-platelet aggregation in SCD mice, thereby improving blood flow rates. Our results provide evidence that neutrophil AKT2 regulates αMβ2 integrin function and suggest that AKT2 is important for neutrophil recruitment and neutrophil-platelet interactions under thromboinflammatory conditions such as SCD. PMID:24642468

  13. Commensal microbiota stimulate systemic neutrophil migration through induction of serum amyloid A.

    PubMed

    Kanther, Michelle; Tomkovich, Sarah; Xiaolun, Sun; Grosser, Melinda R; Koo, Jaseol; Flynn, Edward J; Jobin, Christian; Rawls, John F

    2014-07-01

    Neutrophils serve critical roles in inflammatory responses to infection and injury, and mechanisms governing their activity represent attractive targets for controlling inflammation. The commensal microbiota is known to regulate the activity of neutrophils and other leucocytes in the intestine, but the systemic impact of the microbiota on neutrophils remains unknown. Here we utilized in vivo imaging in gnotobiotic zebrafish to reveal diverse effects of microbiota colonization on systemic neutrophil development and function. The presence of a microbiota resulted in increased neutrophil number and myeloperoxidase expression, and altered neutrophil localization and migratory behaviours. These effects of the microbiota on neutrophil homeostasis were accompanied by an increased recruitment of neutrophils to injury. Genetic analysis identified the microbiota-induced acute phase protein serum amyloid A (Saa) as a host factor mediating microbial stimulation of tissue-specific neutrophil migratory behaviours. In vitro studies revealed that zebrafish cells respond to Saa exposure by activating NF-κB, and that Saa-dependent neutrophil migration requires NF-κB-dependent gene expression. These results implicate the commensal microbiota as an important environmental factor regulating diverse aspects of systemic neutrophil development and function, and reveal a critical role for a Saa-NF-κB signalling axis in mediating neutrophil migratory responses. PMID:24373309

  14. Proteinase 3 contributes to transendothelial migration of NB1-positive neutrophils.

    PubMed

    Kuckleburg, Christopher J; Tilkens, Sarah B; Santoso, Sentot; Newman, Peter J

    2012-03-01

    Neutrophil transmigration requires the localization of neutrophils to endothelial cell junctions, in which receptor-ligand interactions and the action of serine proteases promote leukocyte diapedesis. NB1 (CD177) is a neutrophil-expressed surface molecule that has been reported to bind proteinase 3 (PR3), a serine protease released from activated neutrophils. PR3 has demonstrated proteolytic activity on a number of substrates, including extracellular matrix proteins, although its role in neutrophil transmigration is unknown. Recently, NB1 has been shown to be a heterophilic binding partner for the endothelial cell junctional protein, PECAM-1. Disrupting the interaction between NB1 and PECAM-1 significantly inhibits neutrophil transendothelial cell migration on endothelial cell monolayers. Because NB1 interacts with endothelial cell PECAM-1 at cell junctions where transmigration occurs, we considered that NB1-PR3 interactions may play a role in aiding neutrophil diapedesis. Blocking Abs targeting the heterophilic binding domain of PECAM-1 significantly inhibited transmigration of NB1-positive neutrophils through IL-1β-stimulated endothelial cell monolayers. PR3 expression and activity were significantly increased on NB1-positive neutrophils following transmigration, whereas neutrophils lacking NB1 demonstrated no increase in PR3. Finally, using selective serine protease inhibitors, we determined that PR3 activity facilitated transmigration of NB1-positive neutrophils under both static and flow conditions. These data demonstrate that PR3 contributes in the selective recruitment of the NB1-positive neutrophil population. PMID:22266279

  15. Apoptosis of leukocytes as a marker of neutrophil-endotheliocyte interaction in coronary heart disease.

    PubMed

    Salmina, A B; Shul'man, V A; Nikulina, S Yu; Trufanova, L V; Fursov, A A; But'yanov, P A; Kuskaev, A P; Bol'shakova, E V; Kotlovskii, M Yu

    2007-07-01

    We studied the mechanism of interaction of peripheral blood neutrophils with endothelial cells (expression of cell adhesion molecules and production of NO) and the role of neutrophil apoptosis in the development of endothelial dysfunction. The effects of mitochondrial dysfunction of neutrophils on the development of apoptosis of these cells after their interaction with endothelial cells were analyzed. PMID:18256747

  16. NEUTROPHIL DEPLETION ATTENUATES INTERLEUKIN-8 PRODUCTION IN MILD-OVERSTRETCHED VENTILATED NORMAL RABBIT LUNG

    EPA Science Inventory

    OBJECTIVE: Acute lung injury induced by lung overstretch is associated with neutrophil influx, but the pathogenic role of neutrophils in overstretch-induced lung injury remains unclear. DESIGN: To assess the contribution of neutrophils, we compared the effects of noninjurious lar...

  17. Expression and role of adhesion molecule CD18 on bovine neutrophils.

    PubMed

    Nagahata, H; Nochi, H; Tamoto, K; Noda, H; Kociba, G J

    1995-01-01

    Expression of CD18 on bovine neutrophils in response to stimulation by zymosan activated serum (ZAS) and phorbol myristate acetate (PMA) and the effects of monoclonal antibodies (MAB) recognizing CD18 or bovine neutrophil surface antigens (S2G8 and S5F8G10) on adherence, chemotactic responses and phagocytosis of bovine neutrophils were evaluated. CD18 expression of neutrophils was increased after ZAS and PMA treatment by 12.2 and 54.2% respectively, and were significantly (p < 0.05, p < 0.01) different from those of untreated neutrophils. CD18 expression by neutrophils from a Holstein-Friesian heifer affected with leukocyte adhesion deficiency was within negative controls when stimulated by ZAS and PMA. Adherence, chemotactic responses, and phagocytosis were significantly decreased (p < 0.01) in neutrophils continuously treated with anti-CD18 MAB (MHM 23). Adherence was also significantly decreased in anti-CD18 pretreated neutrophils. Significant (p < 0.01) differences of chemotactic responses and phagocytosis of neutrophils were found between neutrophils pretreated and continuously treated with anti-CD18 MAB (MHM 23). Monoclonal antibodies to other surface antigens did not significantly alter neutrophil adherence, chemotaxis or phagocytosis. This study demonstrated that CD18 expression on bovine neutrophils is increased significantly by stimulation with ZAS and PMA and that the adhesion molecule CD18 plays an important role in adhesion-related functions. PMID:7704836

  18. Proteinase 3–dependent caspase-3 cleavage modulates neutrophil death and inflammation

    PubMed Central

    Loison, Fabien; Zhu, Haiyan; Karatepe, Kutay; Kasorn, Anongnard; Liu, Peng; Ye, Keqiang; Zhou, Jiaxi; Cao, Shannan; Gong, Haiyan; Jenne, Dieter E.; Remold-O’Donnell, Eileen; Xu, Yuanfu; Luo, Hongbo R.

    2014-01-01

    Caspase-3–mediated spontaneous death in neutrophils is a prototype of programmed cell death and is critical for modulating physiopathological inflammatory responses; however, the underlying regulatory pathways remain ill defined. Here we determined that in aging neutrophils, the cleavage and activation of caspase-3 is independent of the canonical caspase-8– or caspase-9–mediated pathway. Instead, caspase-3 activation was mediated by serine protease proteinase 3 (PR3), which is present in the cytosol of aging neutrophils. Specifically, PR3 cleaved procaspase-3 at a site upstream of the canonical caspase-9 cleavage site. In mature neutrophils, PR3 was sequestered in granules and released during aging via lysosomal membrane permeabilization (LMP), leading to procaspase-3 cleavage and apoptosis. Pharmacological inhibition or knockdown of PR3 delayed neutrophil death in vitro and consistently delayed neutrophil death and augmented neutrophil accumulation at sites of inflammation in a murine model of peritonitis. Adoptive transfer of both WT and PR3-deficient neutrophils revealed that the delayed death of neutrophils lacking PR3 is due to an altered intrinsic apoptosis/survival pathway, rather than the inflammatory microenvironment. The presence of the suicide protease inhibitor SERPINB1 counterbalanced the protease activity of PR3 in aging neutrophils, and deletion of Serpinb1 accelerated neutrophil death. Taken together, our results reveal that PR3-mediated caspase-3 activation controls neutrophil spontaneous death. PMID:25180606

  19. Expression and role of adhesion molecule CD18 on bovine neutrophils.

    PubMed Central

    Nagahata, H; Nochi, H; Tamoto, K; Noda, H; Kociba, G J

    1995-01-01

    Expression of CD18 on bovine neutrophils in response to stimulation by zymosan activated serum (ZAS) and phorbol myristate acetate (PMA) and the effects of monoclonal antibodies (MAB) recognizing CD18 or bovine neutrophil surface antigens (S2G8 and S5F8G10) on adherence, chemotactic responses and phagocytosis of bovine neutrophils were evaluated. CD18 expression of neutrophils was increased after ZAS and PMA treatment by 12.2 and 54.2% respectively, and were significantly (p < 0.05, p < 0.01) different from those of untreated neutrophils. CD18 expression by neutrophils from a Holstein-Friesian heifer affected with leukocyte adhesion deficiency was within negative controls when stimulated by ZAS and PMA. Adherence, chemotactic responses, and phagocytosis were significantly decreased (p < 0.01) in neutrophils continuously treated with anti-CD18 MAB (MHM 23). Adherence was also significantly decreased in anti-CD18 pretreated neutrophils. Significant (p < 0.01) differences of chemotactic responses and phagocytosis of neutrophils were found between neutrophils pretreated and continuously treated with anti-CD18 MAB (MHM 23). Monoclonal antibodies to other surface antigens did not significantly alter neutrophil adherence, chemotaxis or phagocytosis. This study demonstrated that CD18 expression on bovine neutrophils is increased significantly by stimulation with ZAS and PMA and that the adhesion molecule CD18 plays an important role in adhesion-related functions. Images Fig. 2. Fig. 3. Fig. 4. PMID:7704836

  20. Neutrophils are required for both the sensitization and elicitation phase of contact hypersensitivity.

    PubMed

    Weber, Felix C; Németh, Tamás; Csepregi, Janka Z; Dudeck, Anne; Roers, Axel; Ozsvári, Béla; Oswald, Eva; Puskás, László G; Jakob, Thilo; Mócsai, Attila; Martin, Stefan F

    2015-01-12

    Allergic contact dermatitis and its animal model, contact hypersensitivity (CHS), are T cell-mediated inflammatory skin diseases induced by contact allergens. Though numerous cellular and molecular players are known, the mechanism of chemical-induced sensitization remains poorly understood. Here, we identify neutrophils as crucial players in the sensitization phase of CHS. Genetic deficiency of neutrophils caused by myeloid-specific deletion of Mcl-1 or antibody-mediated depletion of neutrophils before sensitization abrogated the CHS response. Neutrophil deficiency reduced contact allergen-induced cytokine production, gelatinase release, and reactive oxygen species production in naive mice. Mast cell deficiency inhibited neutrophil accumulation at the site of sensitization. In turn, neutrophils were required for contact allergen-induced release of further neutrophil-attracting chemokines, migration of DCs to the draining lymph nodes, and priming of allergen-specific T cells. Lymph node cells from mice sensitized in the absence of neutrophils failed to transfer sensitization to naive recipients. Furthermore, no CHS response could be induced when neutrophils were depleted before elicitation or when normally sensitized lymph node cells were transferred to neutrophil-deficient recipients, indicating an additional role for neutrophils in the elicitation phase. Collectively, our data identify neutrophils to be critically involved in both the sensitization and elicitation phase of CHS. PMID:25512469

  1. 27 CFR 24.197 - Production by fermentation.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Production by fermentation... fermentation. In producing special natural wine by fermentation, flavoring materials may be added before or during fermentation. Special natural wine produced by fermentation may be ameliorated in the same...

  2. 27 CFR 24.197 - Production by fermentation.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Production by fermentation... fermentation. In producing special natural wine by fermentation, flavoring materials may be added before or during fermentation. Special natural wine produced by fermentation may be ameliorated in the same...

  3. 27 CFR 24.197 - Production by fermentation.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Production by fermentation... fermentation. In producing special natural wine by fermentation, flavoring materials may be added before or during fermentation. Special natural wine produced by fermentation may be ameliorated in the same...

  4. 27 CFR 24.197 - Production by fermentation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Production by fermentation... fermentation. In producing special natural wine by fermentation, flavoring materials may be added before or during fermentation. Special natural wine produced by fermentation may be ameliorated in the same...

  5. 27 CFR 24.197 - Production by fermentation.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Production by fermentation... fermentation. In producing special natural wine by fermentation, flavoring materials may be added before or during fermentation. Special natural wine produced by fermentation may be ameliorated in the same...

  6. Subcellular fractionation of human neutrophils and analysis of subcellular markers.

    PubMed

    Clemmensen, Stine Novrup; Udby, Lene; Borregaard, Niels

    2014-01-01

    The neutrophil has long been recognized for its impressive number of cytoplasmic granules that harbor proteins indispensable for innate immunity. Analysis of isolated granules has provided important information on how the neutrophil grades its response to match the challenges it meets on its passage from blood to tissues. Nitrogen cavitation was developed as a method for disruption of cells on the assumption that sudden reduction of the partial pressure of nitrogen would lead to aeration of nitrogen dissolved in the lipid bilayer of plasma membranes. We find that cells are broken by the shear stress that is associated with passage through the outlet valve under high pressure and that this results in disruption of the neutrophil cell membrane while granules remain intact. The unique properties of Percoll as a sedimentable density medium with no inherent tonicity or viscosity are used for creation of continuous density gradients with shoulders in the density profile created to optimize the physical separation of granule subsets and light membranes. Immunological methods (sandwich enzyme-linked immunosorbent assays) are used for quantitation of proteins that are characteristic constituents of the granule subsets of neutrophils. PMID:24504946

  7. Capillary plexuses are vulnerable to neutrophil extracellular traps.

    PubMed

    Boneschansker, Leo; Inoue, Yoshitaka; Oklu, Rahmi; Irimia, Daniel

    2016-02-01

    Capillary plexuses are commonly regarded as reliable networks for blood flow and robust oxygen delivery to hypoxia sensitive tissues. They have high levels of redundancy to assure adequate blood supply when one or more of the capillaries in the network are blocked by a clot. However, despite having extensive capillary plexuses, many vital organs are often subject to secondary organ injury in patients with severe inflammation. Recent studies have suggested that neutrophils play a role in this pathology, even though their precise contribution remains elusive. Here we investigate the effect of chromatin fibres released from overly-activated neutrophils (neutrophil extracellular traps, NETs) on the flow of blood through microfluidic networks of channels replicating geometrical features of capillary plexuses. In an in vitro setting, we show that NETs can decouple the traffic of red blood cells from that of plasma in microfluidic networks. The effect is astonishingly disproportionate, with NETs from less than 200 neutrophils resulting in more than half of a 0.6 mm(2) microfluidic network to become void of red blood cell traffic. Importantly, the NETs are able to perturb the blood flow in capillary networks despite the presence of anti-coagulants. If verified to occur in vivo, this finding could represent a novel mechanism for tissue hypoxia and secondary organ injury during severe inflammation in patients already receiving antithrombotic and anticoagulant therapies. PMID:26797289

  8. [Neutrophil disorders: diagnosis and hematopoietic stem cell transplantation].

    PubMed

    Kobayashi, Masao

    2015-10-01

    Neutrophil disorders are classified into abnormal neutrophil function and granulopoiesis. The identification of genetic defects causing neutropenia and neutrophil dysfunction has revealed the mechanisms controlling myeloid differentiation and their functions. The International Union of Immunological Societies of Primary Immunodeficiencies represents the most current catalog of approximately 30 neutrophil disorders. In this report, we show the progress made in studies of the pathophysiology and treatment of these disorders, focusing on chronic granulomatous disease (CGD) and severe congenital neutropenia (SCN). Hematopoietic stem cell transplantation (HSCT) is the only available curative therapy for CGD and SCN. However, the use of HSCT as treatment for both diseases is limited by transplant-related mortality (TRM) because of active infections and intractable inflammatory complications. Recently, reduced-intensity conditioning regimens have been introduced to minimize the TRM and the late adverse effects of HSCT for both diseases. The results of HSCT using the RIC regimen for 40 patients with CGD and SCN in Hiroshima University Hospital are summarized herein. Determining the optimal line of treatment will require further accumulation to cases to refine HSCT for both diseases. PMID:26458464

  9. The Role of Neutrophils in Alpha-1 Antitrypsin Deficiency.

    PubMed

    McCarthy, Cormac; Reeves, Emer P; McElvaney, Noel G

    2016-08-01

    Alpha-1 antitrypsin deficiency (AATD) is characterized by low levels of circulating alpha-1 antitrypsin and an increased risk for emphysema, liver disease, and panniculitis. The reduced levels of alpha-1 antitrypsin in AATD predispose the lung to unopposed proteolytic activity, predominantly from neutrophil-derived proteases, chiefly neutrophil elastase. This leads to emphysema. The mechanisms subtending the liver disease are less well understood, but are probably due to a "gain-of function" inflammatory process in the liver, stoked by intracellular retention of aberrantly folded alpha-1 antitrypsin. The panniculitis associated with AATD is most likely due to unopposed proteolytic activity in the skin. Although AATD has been traditionally viewed as a condition arising from a protease-antiprotease imbalance in the lung, it is increasingly recognized that AATD is an inflammatory disorder, both in the lung and in the extrapulmonary manifestations associated with the condition. This inflammation is predominantly neutrophil driven, and there are several alpha-1 antitrypsin-related mechanisms involved in potentiating this neutrophilic response. The rationale for AAT augmentation therapy in AATD is classically based on restoring the antiprotease balance in the lung, but its beneficial effects may also be exerted systemically, further exposing the pathogenesis of AATD-related disease and indicating a potential usage for alpha-1 antitrypsin in other inflammatory conditions. PMID:27564664

  10. Chemokine CXCL1 mediated neutrophil recruitment: Role of glycosaminoglycan interactions.

    PubMed

    Sawant, Kirti V; Poluri, Krishna Mohan; Dutta, Amit K; Sepuru, Krishna Mohan; Troshkina, Anna; Garofalo, Roberto P; Rajarathnam, Krishna

    2016-01-01

    The chemokine CXCL1/MGSA plays a pivotal role in the host immune response by recruiting and activating neutrophils for microbial killing at the tissue site. CXCL1 exists reversibly as monomers and dimers, and mediates its function by binding glycosaminoglycans (GAG) and CXCR2 receptor. We recently showed that both monomers and dimers are potent CXCR2 agonists, the dimer is the high-affinity GAG ligand, lysine and arginine residues located in two non-overlapping domains mediate GAG interactions, and there is extensive overlap between GAG and receptor-binding domains. To understand how these structural properties influence in vivo function, we characterized peritoneal neutrophil recruitment of a trapped monomer and trapped dimer and a panel of WT lysine/arginine to alanine mutants. Monomers and dimers were active, but WT was more active indicating synergistic interactions promote recruitment. Mutants from both domains showed reduced GAG heparin binding affinities and reduced neutrophil recruitment, providing compelling evidence that both GAG-binding domains mediate in vivo trafficking. Further, mutant of a residue that is involved in both GAG binding and receptor signaling showed the highest reduction in recruitment. We conclude that GAG interactions and receptor activity of CXCL1 monomers and dimers are fine-tuned to regulate neutrophil trafficking for successful resolution of tissue injury. PMID:27625115

  11. ACTIVATED NEUTROPHILS INHIBIT PHAGOCYTOSIS BY HUMAN MONOCYTE CELLS IN VITRO

    EPA Science Inventory

    We have previously reported the correlation of decreased phagocytosis of opsonized zymosan by sputum monocytic cells with the increase in sputum neutrophils in volunteers 6h after inhalation of endotoxin (20,000 EU) (Alexis, et al. JACI, 2003;112:353). To define whether an intrin...

  12. Superoxide generation and cytotactic response of irradiated neutrophils

    SciTech Connect

    Eastlund, D.T.; Charbonneau, T.T.

    1988-07-01

    Irradiation of blood components has been used to prevent transfusion-related graft-versus-host disease (GVHD) in immunocompromised patients. This study was designed to determine the effect of irradiation on neutrophil aggregation, chemotaxis, and superoxide generation. Purified neutrophils were irradiated with a Cesium source at four doses ranging from 0 to 17,500 rads. Formyl-methionyl-leucyl-phenylalanine (FMLP) and zymosan-treated serum (ZTS) cytotaxin-induced chemotaxis and migration were determined in the agarose assay. Neutrophil aggregation to FMLP was determined by aggregometry. Superoxide generation and random migration were not affected by irradiation at doses up to 17,500 rads. When compared to nonirradiated controls, the chemotactic response to ZTS remained normal, with an insignificant decline from 174 +/- 31.0 to 150 +/- 42.3 (mean +/- SD) units. The chemotactic response to FMLP declined insignificantly, from 228 +/- 31.3 at 0 rad to 207 +/- 26.4 at 17,500 rads. The aggregation response to FMLP remained within the normal range but declined from 0.78 +/- 0.11 to 0.61 +/- 0.18. At the radiation doses currently used to reduce the risk of transfusion-related GVHD, neutrophil superoxide generation and chemotactic response remain essentially normal.

  13. Yersinia pestis targets neutrophils via complement receptor 3.

    PubMed

    Merritt, Peter M; Nero, Thomas; Bohman, Lesley; Felek, Suleyman; Krukonis, Eric S; Marketon, Melanie M

    2015-05-01

    Yersinia species display a tropism for lymphoid tissues during infection, and the bacteria select innate immune cells for delivery of cytotoxic effectors by the type III secretion system. Yet, the mechanism for target cell selection remains a mystery. Here we investigate the interaction of Yersinia pestis with murine splenocytes to identify factors that participate in the targeting process. We find that interactions with primary immune cells rely on multiple factors. First, the bacterial adhesin Ail is required for efficient targeting of neutrophils in vivo. However, Ail does not appear to directly mediate binding to a specific cell type. Instead, we find that host serum factors direct Y. pestis to specific innate immune cells, particularly neutrophils. Importantly, specificity towards neutrophils was increased in the absence of bacterial adhesins because of reduced targeting of other cell types, but this phenotype was only visible in the presence of mouse serum. Addition of antibodies against complement receptor 3 and CD14 blocked target cell selection, suggesting that a combination of host factors participate in steering bacteria towards neutrophils during plague infection. PMID:25359083

  14. Yersinia pestis targets neutrophils via complement receptor 3

    PubMed Central

    Merritt, Peter M.; Nero, Thomas; Bohman, Lesley; Felek, Suleyman; Krukonis, Eric S.; Marketon, Melanie M.

    2015-01-01

    Yersinia species display a tropism for lymphoid tissues during infection, and the bacteria select innate immune cells for delivery of cytotoxic effectors by the type III secretion system. Yet the mechanism for target cell selection remains a mystery. Here we investigate the interaction of Yersinia pestis with murine splenocytes to identify factors that participate in the targeting process. We find that interactions with primary immune cells rely on multiple factors. First, the bacterial adhesin Ail is required for efficient targeting of neutrophils in vivo. However, Ail does not appear to directly mediate binding to a specific cell type. Instead, we find that host serum factors direct Y. pestis to specific innate immune cells, particularly neutrophils. Importantly, specificity towards neutrophils was increased in the absence of bacterial adhesins due to reduced targeting of other cell types, but this phenotype was only visible in the presence of mouse serum. Addition of antibodies against complement receptor 3 and CD14 blocked target cell selection, suggesting that a combination of host factors participate in steering bacteria toward neutrophils during plague infection. PMID:25359083

  15. Gut bacteria require neutrophils to promote mammary tumorigenesis.

    PubMed

    Lakritz, Jessica R; Poutahidis, Theofilos; Mirabal, Sheyla; Varian, Bernard J; Levkovich, Tatiana; Ibrahim, Yassin M; Ward, Jerrold M; Teng, Ellen C; Fisher, Brett; Parry, Nicola; Lesage, Stephanie; Alberg, Natalie; Gourishetti, Sravya; Fox, James G; Ge, Zhongming; Erdman, Susan E

    2015-04-20

    Recent studies suggest that gastrointestinal tract microbiota modulate cancer development in distant non-intestinal tissues. Here we tested mechanistic hypotheses using a targeted pathogenic gut microbial infection animal model with a predilection to breast cancer. FVB-Tg(C3-1-TAg)cJeg/JegJ female mice were infected by gastric gavage with Helicobacter hepaticus at three-months-of-age putting them at increased risk for mammary tumor development. Tumorigenesis was multifocal and characterized by extensive infiltrates of myeloperoxidase-positive neutrophils otherwise implicated in cancer progression in humans and animal models. To test whether neutrophils were important in etiopathogenesis in this bacteria-triggered model system, we next systemically depleted mice of neutrophils using thrice weekly intraperitoneal injections with anti-Ly-6G antibody. We found that antibody depletion entirely inhibited tumor development in this H. hepaticus-infected model. These data demonstrate that host neutrophil-associated immune responses to intestinal tract microbes significantly impact cancer progression in distal tissues such as mammary glands, and identify gut microbes as novel targets for extra-intestinal cancer therapy. PMID:25831236

  16. On the pharmacology of oxidative burst of human neutrophils.

    PubMed

    Nosáľ, R; Drábiková, K; Jančinová, V; Mačičková, T; Pečivová, J; Perečko, T; Harmatha, J; Šmidrkal, J

    2015-01-01

    The effect of three therapeutically used drugs and five polyphenolic compounds on the mechanism of oxidative burst was compared in whole blood and isolated neutrophils at cellular and molecular level. In 10 microM concentration, the compounds investigated decreased the oxidative burst of whole blood in the rank order of potency: N-feruloylserotonin (N-f-5HT) > curcumin (CUR) > quercetin (QUER) > arbutin (ARB) > resveratrol (RES) > dithiaden (DIT) > carvedilol (CARV) > brompheniramine (BPA). The ratio between the percentage inhibition of extracellular versus intracellular chemiluminescence (CL) followed the rank order QUER > N-f-5HT > RES > CUR > DIT and is indicative of the positive effect of the compounds tested against oxidative burst of neutrophils, demonstrating suppression of reactive oxygen species extracellularly with minimal alteration of intracellular reactive oxygen species (ROS). Activation of protein kinase C was significantly decreased by DIT, CUR, QUER and N-f-5HT. CARV, DIT, QUER and ARB reduced activated neutrophil myeloperoxidase release more significantly compared with the effect on superoxide anion generation. All compounds tested increased the activity of caspase-3 in cell-free system. It is suggested that other regulatory mechanisms than protein kinase C might participate in the inhibition of neutrophil activation with the compounds tested. Different mechanisms are concerned in controlling the assembly of NADPH oxidase and the regulatory role of calcium ions is suggested. Compounds decreasing the amount of extracellular ROS generation, yet affecting but minimally intracellular ROS generation, are promising for further investigation in vivo. PMID:26681073

  17. Fermented products with probiotic qualities.

    PubMed

    Kalantzopoulos, G

    1997-01-01

    For several centuries, fermented products derived from plant or animal materials have been an acceptable and essential part of the diet in most parts of the world. Health benefits have also often been associated with them. Probiotics can be defined as fermented food containing specific live microorganisms or a live microbial food or feed supplement, which beneficially effects the human or the host animal by improving its intestinal microbial balance. Nearly all probiotics currently on the market contain Lactobacilli, Streptococci, Enterococci or Bifidobacteria. In contrast to Japan, where freeze-dried microorganisms are consumed by a substantial part of the human population, in Europe, probiotic action towards humans are only claimed for certain fermented dairy products (e.g. yoghurts). Those species that have been extensively studied so far, with several experimental trials on man, are the two yoghurt bacteria Streptocaccus thermophilus and Lactobacillus bulgaricus, L. casei and Bifidobacteria. L. acidophilus has also received important scientific interest, however, only a few human studies have been carried out. From the technological point of view a good probiotic should be stable and viable for long periods under storage, should be able to survive the low pH levels of the stomach, be able to colonise the epithelium of the gastro-intestinal tract of the host, should not be pathogenic and, last but not least, must be capable of exerting a growth promoting effect or a resistance to infectious diseases. The beneficial effects of probiotics are mainly contributed to a direct antagonistic effect against specific groups of microorganisms (Enteropathogenes), by an effect on the metabolism in the gut or by a stimulation of systemic or mucosal immunity. We will present major proven health benefits of milks fermented with those bacterial species and discuss, where possible, the impact of the specific selection and utilisation of particular strains. PMID:16887587

  18. Antimicrobial peptides and nitric oxide production by neutrophils from periodontitis subjects

    PubMed Central

    Mariano, F.S.; Campanelli, A.P.; Nociti, F.H.; Mattos-Graner, R.O.; Gonçalves, R.B.

    2012-01-01

    Neutrophils play an important role in periodontitis by producing nitric oxide (NO) and antimicrobial peptides, molecules with microbicidal activity via oxygen-dependent and -independent mechanisms, respectively. It is unknown whether variation in the production of antimicrobial peptides such as LL-37, human neutrophil peptides (HNP) 1-3, and NO by neutrophils influences the pathogenesis of periodontal diseases. We compared the production of these peptides and NO by lipopolysaccharide (LPS)-stimulated neutrophils isolated from healthy subjects and from patients with periodontitis. Peripheral blood neutrophils were cultured with or without Aggregatibacter actinomycetemcomitans-LPS (Aa-LPS), Porphyromonas gingivalis-LPS (Pg-LPS) and Escherichia coli-LPS (Ec-LPS). qRT-PCR was used to determine quantities of HNP 1-3 and LL-37 mRNA in neutrophils. Amounts of HNP 1-3 and LL-37 proteins in the cell culture supernatants were also determined by ELISA. In addition, NO levels in neutrophil culture supernatants were quantitated by the Griess reaction. Neutrophils from periodontitis patients cultured with Aa-LPS, Pg-LPS and Ec-LPS expressed higher HNP 1-3 mRNA than neutrophils from healthy subjects. LL-37 mRNA expression was higher in neutrophils from patients stimulated with Aa-LPS. Neutrophils from periodontitis patients produced significantly higher LL-37 protein levels than neutrophils from healthy subjects when stimulated with Pg-LPS and Ec-LPS, but no difference was observed in HNP 1-3 production. Neutrophils from periodontitis patients cultured or not with Pg-LPS and Ec-LPS produced significantly lower NO levels than neutrophils from healthy subjects. The significant differences in the production of LL-37 and NO between neutrophils from healthy and periodontitis subjects indicate that production of these molecules might influence individual susceptibility to important periodontal pathogens. PMID:22850872

  19. Neutrophil Extracellular Traps in ANCA-Associated Vasculitis

    PubMed Central

    Söderberg, Daniel; Segelmark, Mårten

    2016-01-01

    A group of pauci-immune vasculitides, characterized by neutrophil-rich necrotizing inflammation of small vessels and the presence of antineutrophil cytoplasmic antibodies (ANCAs), is referred to as ANCA-associated vasculitis (AAV). ANCAs against proteinase 3 (PR3) (PR3-ANCA) or myeloperoxidase (MPO) (MPO-ANCA) are found in over 90% of patients with active disease, and these ANCAs are implicated in the pathogenesis of AAV. Dying neutrophils surrounding the walls of small vessels are a histological hallmark of AAV. Traditionally, it has been assumed that these neutrophils die by necrosis, but neutrophil extracellular traps (NETs) have recently been visualized at the sites of vasculitic lesions. AAV patients also possess elevated levels of NETs in the circulation. ANCAs are capable of inducing NETosis in neutrophils, and their potential to do so has been shown to be affinity dependent and to correlate with disease activity. Neutrophils from AAV patients are also more prone to release NETs spontaneously than neutrophils from healthy blood donors. NETs contain proinflammatory proteins and are thought to contribute to vessel inflammation directly by damaging endothelial cells and by activating the complement system and indirectly by acting as a link between the innate and adaptive immune system through the generation of PR3- and MPO-ANCA. Injection of NET-loaded myeloid dendritic cells into mice results in circulating PR3- and MPO-ANCA and the development of AAV-like disease. NETs have also been shown to be essential in a rodent model of drug-induced vasculitis. NETs induced by propylthiouracil could not be degraded by DNaseI, implying that disordered NETs might be important for the generation of ANCAs. NET degradation was also highlighted in another study showing that AAV patients have reduced DNaseI activity resulting in less NET degradation. With this in mind, it might be that prolonged exposure to proteins in the NETs due to the overproduction of NETs and/or reduced

  20. Neutrophil Extracellular Traps in ANCA-Associated Vasculitis.

    PubMed

    Söderberg, Daniel; Segelmark, Mårten

    2016-01-01

    A group of pauci-immune vasculitides, characterized by neutrophil-rich necrotizing inflammation of small vessels and the presence of antineutrophil cytoplasmic antibodies (ANCAs), is referred to as ANCA-associated vasculitis (AAV). ANCAs against proteinase 3 (PR3) (PR3-ANCA) or myeloperoxidase (MPO) (MPO-ANCA) are found in over 90% of patients with active disease, and these ANCAs are implicated in the pathogenesis of AAV. Dying neutrophils surrounding the walls of small vessels are a histological hallmark of AAV. Traditionally, it has been assumed that these neutrophils die by necrosis, but neutrophil extracellular traps (NETs) have recently been visualized at the sites of vasculitic lesions. AAV patients also possess elevated levels of NETs in the circulation. ANCAs are capable of inducing NETosis in neutrophils, and their potential to do so has been shown to be affinity dependent and to correlate with disease activity. Neutrophils from AAV patients are also more prone to release NETs spontaneously than neutrophils from healthy blood donors. NETs contain proinflammatory proteins and are thought to contribute to vessel inflammation directly by damaging endothelial cells and by activating the complement system and indirectly by acting as a link between the innate and adaptive immune system through the generation of PR3- and MPO-ANCA. Injection of NET-loaded myeloid dendritic cells into mice results in circulating PR3- and MPO-ANCA and the development of AAV-like disease. NETs have also been shown to be essential in a rodent model of drug-induced vasculitis. NETs induced by propylthiouracil could not be degraded by DNaseI, implying that disordered NETs might be important for the generation of ANCAs. NET degradation was also highlighted in another study showing that AAV patients have reduced DNaseI activity resulting in less NET degradation. With this in mind, it might be that prolonged exposure to proteins in the NETs due to the overproduction of NETs and/or reduced

  1. Promising ethanologens for xylose fermentation

    SciTech Connect

    Zhang, M.; Franden, M.A.; Newman, M.

    1995-12-31

    An economical biomass-to-ethanol process depends on the efficient conversion of both its cellulose and hemicellulose components. On a dry weight basis, the typical feedstock contains approx 25-50% (w/w) glucose, 10-30% (w/w) xylose, 15-30% (w/w) lignin, and 1-5% (w/w) of other minor pentose and hexose sugars. Although many microorganisms can ferment the glucose component in cellulose to ethanol, conversion of pentose sugars in the hemicellulose fraction, particularly xylose, has been hindered by the lack of a suitable biocatalyst. Despite the development of recombinant strains with improved fermentation performance, increased ethanol yields and concentrations and shorter fermentation times are key targets that have yet to be achieved from lignocellulosic hydrolyzates. Our objective is to develop biocatalysts for the rapid and efficient conversion of xylose by engineering key metabolic pathways in selected organisms. To identify promising biocatalysts for these efforts, we have surveyed several industrial microorganisms according to several primary traits considered to be essential, as well as a number of secondary traits considered to be desirable, in a commercial biomass-to-ethanol process.

  2. Pesticides' influence on wine fermentation.

    PubMed

    Caboni, Pierluigi; Cabras, Paolo

    2010-01-01

    Wine quality strongly depends on the grape quality. To obtain high-quality wines, it is necessary to process healthy grapes at the correct ripeness stage and for this reason the farmer has to be especially careful in the prevention of parasite attacks on the grapevine. The most common fungal diseases affecting grape quality are downy and powdery mildew (Plasmopara viticola and Uncinula necator), and gray mold (Botrytis cinerea). On the other hand, the most dangerous insects are the grape moth (Lobesia botrana), vine mealybug (Planococcus ficus), and the citrus mealybug (Planococcus citri). Farmers fight grape diseases and insects applying pesticides that can be found at harvest time on grapes. The persistence of pesticides depends on the chemical characteristic of the active ingredients as well as on photodegradation, thermodegradation, codistillation, and enzymatic degradation. The pesticide residues on grapes can be transferred to the must and this can influence the selection and development of yeast strains. Moreover, yeasts can also influence the levels of the pesticides in the wine by reducing or adsorbing them on lees. During the fermentative process, yeasts can cause the disappearance of pesticide residues by degradation or absorption at the end of the fermentation when yeasts are deposited as lees. In this chapter, we reviewed the effect of commonly used herbicides, insecticides, and fungicides on yeasts. We also studied the effect of alcoholic and malolactic fermentation on pesticide residues. PMID:20610173

  3. Epithelial neutrophil activating peptide-78: a novel chemotactic cytokine for neutrophils in arthritis.

    PubMed Central

    Koch, A E; Kunkel, S L; Harlow, L A; Mazarakis, D D; Haines, G K; Burdick, M D; Pope, R M; Walz, A; Strieter, R M

    1994-01-01

    We and others have shown that cells obtained from inflamed joints of rheumatoid arthritis (RA) patients produce interleukin-8, a potent chemotactic cytokine for neutrophils (PMNs). However, IL-8 accounted for only 40% of the chemotactic activity for PMNs found in these synovial fluids. Currently, we have examined the production of the novel PMN chemotactic cytokine, epithelial neutrophil activating peptide-78 (ENA-78), using peripheral blood, synovial fluid, and synovial tissue from 70 arthritic patients. RA ENA-78 levels were greater in RA synovial fluid (239 +/- 63 ng/ml) compared with synovial fluid from other forms of arthritis (130 +/- 118 ng/ml) or osteoarthritis (2.6 +/- 1.8 ng/ml) (P < 0.05). RA peripheral blood ENA-78 levels (70 +/- 26 ng/ml) were greater than normal peripheral blood levels (0.12 +/- 0.04 ng/ml) (P < 0.05). Anti-ENA-78 antibodies neutralized 42 +/- 9% (mean +/- SE) of the chemotactic activity for PMNs found in RA synovial fluids. Isolated RA synovial tissue fibroblasts in vitro constitutively produced significant levels of ENA-78, and this production was further augmented when stimulated with tumor necrosis factor-alpha (TNF-alpha). In addition RA and osteoarthritis synovial tissue fibroblasts as well as RA synovial tissue macrophages were found to constitutively produce ENA-78. RA synovial fluid mononuclear cells spontaneously produced ENA-78, which was augmented in the presence of lipopolysaccharide. Immunohistochemical localization of ENA-78 from the synovial tissue of patients with arthritis or normal subjects showed that the predominant cellular source of this chemokine was synovial lining cells, followed by macrophages, endothelial cells, and fibroblasts. Synovial tissue macrophages and fibroblasts were more ENA-78 immunopositive in RA than in normal synovial tissue (P < 0.05). These results, which are the first demonstration of ENA-78 in a human disease state, suggest that ENA-78 may play an important role in the recruitment of PMNs

  4. [Defects of neutrophil function in chronic gastroduodenitis in children].

    PubMed

    Agafonova, E V; Malanicheva, T G; Denisova, S N

    2013-01-01

    At present, chronic gastroduodenitis (CGD) occupies one ofthe leading places in the structure of diseases of the gastrointestinal tract in children. In the etiology of CGD, along with the leading pathogenic Helicobacterpylori (HP), the role of the fungal flora increased. The aim of the work was to evaluate the functional activity of neutrophils in children with the CGD, associated with HP and Candida albicans. Among 110 children in the age from 7 to 17 years with chronic gastroduodenitis, associated with Helicobacter pylory(HP), as well as the association of HP with Candida albicans and the markers of secondary immune insufficiency, a study of the phagocytic activity and immune phenotype of neutrophils by flow cytofluorimetry was conducted. Differentiated peculiarities of the phagocytic activity of neutrophils in association with bacterial pathogens (HP) and fungal flora were identified. The transformation of the immune phenotype was combined with a significant depression of the phagocytic and microbicidal functions, more pronounced with the association of HP and Candida albicans. Circulating mannano protein antigen of Candida albicans influenced on the surface of phenotype of neutrophils, increasing the expression of protopathic and HLADR-receptors, and decreasing the expression of adhesion receptors and cytolysis. Thus, in case of chronic gastroduodenitis in children, there was a considerable transformation of the phenotype of neutrophil with differentiated characteristics at the association with bacterial (HP) pathogens and fungal flora. The obtained data should be taken into account when carrying out medical activities, and the doctors should include in the composition of complex therapy of CGD, associated with Candida albicans, drugs, aimed at immunocorrection of the identified violations PMID:23951901

  5. Protrusive and Contractile Forces of Spreading Human Neutrophils.

    PubMed

    Henry, Steven J; Chen, Christopher S; Crocker, John C; Hammer, Daniel A

    2015-08-18

    Human neutrophils are mediators of innate immunity and undergo dramatic shape changes at all stages of their functional life cycle. In this work, we quantified the forces associated with a neutrophil's morphological transition from a nonadherent, quiescent sphere to its adherent and spread state. We did this by tracking, with high spatial and temporal resolution, the cell's mechanical behavior during spreading on microfabricated post-array detectors printed with the extracellular matrix protein fibronectin. Two dominant mechanical regimes were observed: transient protrusion and steady-state contraction. During spreading, a wave of protrusive force (75 ± 8 pN/post) propagates radially outward from the cell center at a speed of 206 ± 28 nm/s. Once completed, the cells enter a sustained contractile state. Although post engagement during contraction was continuously varying, posts within the core of the contact zone were less contractile (-20 ± 10 pN/post) than those residing at the geometric perimeter (-106 ± 10 pN/post). The magnitude of the protrusive force was found to be unchanged in response to cytoskeletal inhibitors of lamellipodium formation and myosin II-mediated contractility. However, cytochalasin B, known to reduce cortical tension in neutrophils, slowed spreading velocity (61 ± 37 nm/s) without significantly reducing protrusive force. Relaxation of the actin cortical shell was a prerequisite for spreading on post arrays as demonstrated by stiffening in response to jasplakinolide and the abrogation of spreading. ROCK and myosin II inhibition reduced long-term contractility. Function blocking antibody studies revealed haptokinetic spreading was induced by β2 integrin ligation. Neutrophils were found to moderately invaginate the post arrays to a depth of ∼1 μm as measured from spinning disk confocal microscopy. Our work suggests a competition of adhesion energy, cortical tension, and the relaxation of cortical tension is at play at the onset of

  6. Effects of MCI-186 upon neutrophil-derived active oxygens.

    PubMed

    Sumitomo, K; Shishido, N; Aizawa, H; Hasebe, N; Kikuchi, K; Nakamura, M

    2007-01-01

    Reactions of 3-methyl-1-phenyl-2-pyrazoline-5-one (MCI-186) with hypochlorous acid and superoxide were analysed by spectrophotometry and mass spectrometry. The results were applied to the neutrophil system to evaluate the scavenging activity of neutrophil-derived active oxygen species by MCI-186. MCI-186 reacted rapidly with hypochlorous acid (1 x 10(6) M(-1)s(-1)) to form a chlorinated intermediate, followed by a slow conversion to a new spectrum. MCI-186 consumed 3 moles of hypochlorous acid and did not react with superoxide. The newly synthesized fluorescence probes, 2-[6-(4'-amino)-phenoxy-3H-xanthen-3-on-9-yl]benzoic acid (APF) and 2-[6-(4'-hydroxy)phenoxy-3H-anthen-3-on-9-yl]benzoic acid (HPF) successfully detected neutrophil-derived active oxygens (Setsukinai K, Urano Y, Kakinuma K, Majima HJ, Nagano T. Development of novel fluorescence probes that can reliably detect reactive oxygen species and distinguish specific species. J Biol Chem 2003; 278: 3170-3175). The rate constants for the reaction of hypochlorous acid with MCI-186 and fluorescence probes was in the order of MCI-186 > APF > HPF. Fluorescence due to the oxidation of APF and HPF was observed with the stimulated neutrophils. The result that the intensity from APF oxidation was higher than that from HPF oxidation is compatible with reports that APF selectively reacts with hypochlorous acid. Fluorescence due to oxidation of both APF and HPF decreased when the reactions were carried out in the presence of a fluorescence probe and MCI-186 in a dose-dependent manner. These results indicate that MCI-186 effectively scavenges neutrophil-derived hypochlorous acid and other active oxygens. PMID:17705989

  7. Polymorphonuclear neutrophils in periodontitis and their possible modulation as a therapeutic approach.

    PubMed

    Nicu, Elena A; Loos, Bruno G

    2016-06-01

    The main focus of this review is polymorphonuclear neutrophilic granulocytes. Polymorphonuclear neutrophils play a pivotal role in normal host resistance to subgingival dental-plaque biofilm. Both hyper- and hypo-responsiveness of the immune system toward the microbial challenge in periodontitis have been described. We review polymorphonuclear neutrophil physiology with emphasis on the role of neutrophil functions and dysfunctions in periodontitis. Text boxes are given at the end of each subsection, which present the current knowledge on neutrophil-modulating agents as a potential therapeutic approach in periodontitis. PMID:27045435

  8. Tumor-Recruited Neutrophils and Neutrophil TIMP-Free MMP-9 Regulate Coordinately the Levels of Tumor Angiogenesis and Efficiency of Malignant Cell Intravasation

    PubMed Central

    Bekes, Erin M.; Schweighofer, Bernhard; Kupriyanova, Tatyana A.; Zajac, Ewa; Ardi, Veronica C.; Quigley, James P.; Deryugina, Elena I.

    2011-01-01

    Tumor-associated neutrophils contribute to neovascularization by supplying matrix metalloproteinase-9 (MMP-9), a protease that has been genetically and biochemically linked to induction of angiogenesis. Specific roles of inflammatory neutrophils and their distinct proMMP-9 in the coordinate regulation of tumor angiogenesis and tumor cell dissemination, however, have not been addressed. We demonstrate that the primary tumors formed by highly disseminating variants of human fibrosarcoma and prostate carcinoma recruit elevated levels of infiltrating MMP-9-positive neutrophils and concomitantly exhibit enhanced levels of angiogenesis and intravasation. Specific inhibition of neutrophil influx by interleukin 8 (IL-8) neutralization resulted in the coordinated diminishment of tumor angiogenesis and intravasation, both of which were rescued by purified neutrophil proMMP-9. However, if neutrophil proMMP-9, naturally devoid of tissue inhibitor of metalloproteinases (TIMP), was delivered in complex with TIMP-1 or in a mixture with TIMP-2, the protease failed to rescue the inhibitory effects of anti-IL8 therapy, indicating that the TIMP-free status of proMMP-9 is critical for facilitating tumor angiogenesis and intravasation. Our findings directly link tumor-associated neutrophils and their TIMP-free proMMP-9 with the ability of aggressive tumor cells to induce the formation of new blood vessels that serve as conduits for tumor cell dissemination. Thus, treatment of cancers associated with neutrophil infiltration may benefit from specific targeting of neutrophil MMP-9 at early stages to prevent ensuing tumor angiogenesis and tumor metastasis. PMID:21741942

  9. Immobilized immune complexes induce neutrophil extracellular trap release by human neutrophil granulocytes via FcγRIIIB and Mac-1.

    PubMed

    Behnen, Martina; Leschczyk, Christoph; Möller, Sonja; Batel, Tobit; Klinger, Matthias; Solbach, Werner; Laskay, Tamás

    2014-08-15

    Canonical neutrophil antimicrobial effector mechanisms, such as degranulation, production of reactive oxygen species, and release of neutrophil extracellular traps (NETs), can result in severe pathology. Activation of neutrophils through immune complexes (ICs) plays a central role in the pathogenesis of many autoimmune inflammatory diseases. In this study, we report that immobilized ICs (iICs), which are hallmarks of several autoimmune diseases, induce the release of NETs from primary human neutrophils. The iIC-induced NET formation was found to require production of reactive oxygen species by NADPH oxidase and myeloperoxidase and to be mediated by FcγRIIIb. Blocking of the β2 integrin macrophage-1 Ag but not lymphocyte function-associated Ag-1 abolished iIC-induced NET formation. This suggests that FcγRIIIb signals in association with macrophage-1 Ag. As intracellular signaling pathways involved in iIC-induced NET formation we identified the tyrosine kinase Src/Syk pathway, which downstream regulates the PI3K/Akt, p38 MAPK, and ERK1/2 pathways. To our knowledge, the present study shows for the first time that iICs induce NET formation. Thus, we conclude that NETs contribute to pathology in autoimmune inflammatory disorders associated with surface-bound ICs. PMID:25024378

  10. Process for the fermentative production of acetone, butanol and ethanol

    DOEpatents

    Glassner, David A.; Jain, Mahendra K.; Datta, Rathin

    1991-01-01

    A process including multistage continuous fermentation followed by batch fermentation with carefully chosen temperatures for each fermentation step, combined with an asporogenic strain of C. acetobutylicum and a high carbohydrate substrate concentration yields extraordinarily high butanol and total solvents concentrations.

  11. PERVAPORATION MEMBRANE SYSTEMS FOR VOLATILE FERMENTATION PRODUCT RECOVERY AND DEHYDRATION

    EPA Science Inventory

    The economics of fermentative production of fuels and commodity chemicals can be a strong function of the efficiency with which the fermentation products are removed from the biological media. Due to growth inhibition by some fermentation products, including ethanol, concentrati...

  12. New developments in oxidative fermentation.

    PubMed

    Adachi, O; Moonmangmee, D; Toyama, H; Yamada, M; Shinagawa, E; Matsushita, K

    2003-02-01

    Oxidative fermentations have been well established for a long time, especially in vinegar and in L-sorbose production. Recently, information on the enzyme systems involved in these oxidative fermentations has accumulated and new developments are possible based on these findings. We have recently isolated several thermotolerant acetic acid bacteria, which also seem to be useful for new developments in oxidative fermentation. Two different types of membrane-bound enzymes, quinoproteins and flavoproteins, are involved in oxidative fermentation, and sometimes work with the same substrate but produce different oxidation products. Recently, there have been new developments in two different oxidative fermentations, D-gluconate and D-sorbitol oxidations. Flavoproteins, D-gluconate dehydrogenase, and D-sorbitol dehydrogenase were isolated almost 2 decades ago, while the enzyme involved in the same oxidation reaction for D-gluconate and D-sorbitol has been recently isolated and shown to be a quinoprotein. Thus, these flavoproteins and a quinoprotein have been re-assessed for the oxidation reaction. Flavoprotein D-gluconate dehydrogenase and D-sorbitol dehydrogenase were shown to produce 2-keto- D-gluconate and D-fructose, respectively, whereas the quinoprotein was shown to produce 5-keto- D-gluconate and L-sorbose from D-gluconate and D-sorbitol, respectively. In addition to the quinoproteins described above, a new quinoprotein for quinate oxidation has been recently isolated from Gluconobacter strains. The quinate dehydrogenase is also a membrane-bound quinoprotein that produces 3-dehydroquinate. This enzyme can be useful for the production of shikimate, which is a convenient salvage synthesis system for many antibiotics, herbicides, and aromatic amino acids synthesis. In order to reduce energy costs of oxidative fermentation in industry, several thermotolerant acetic acid bacteria that can grow up to 40 degrees C have been isolated. Of such isolated strains, some

  13. ICAM-1–expressing neutrophils exhibit enhanced effector functions in murine models of endotoxemia

    PubMed Central

    Woodfin, Abigail; Beyrau, Martina; Voisin, Mathieu-Benoit; Ma, Bin; Whiteford, James R.; Hordijk, Peter L.; Hogg, Nancy

    2016-01-01

    Intracellular adhesion molecule-1 (ICAM-1) is a transmembrane glycoprotein expressed on the cell surface of numerous cell types such as endothelial and epithelial cells, vascular smooth muscle cells, and certain leukocyte subsets. With respect to the latter, ICAM-1 has been detected on neutrophils in several clinical and experimental settings, but little is known about the regulation of expression or function of neutrophil ICAM-1. In this study, we report on the de novo induction of ICAM-1 on the cell surface of murine neutrophils by lipopolysaccharide (LPS), tumor necrosis factor, and zymosan particles in vitro. The induction of neutrophil ICAM-1 was associated with enhanced phagocytosis of zymosan particles and reactive oxygen species (ROS) generation. Conversely, neutrophils from ICAM-1–deficient mice were defective in these effector functions. Mechanistically, ICAM-1–mediated intracellular signaling appeared to support neutrophil ROS generation and phagocytosis. In vivo, LPS-induced inflammation in the mouse cremaster muscle and peritoneal cavity led to ICAM-1 expression on intravascular and locally transmigrated neutrophils. The use of chimeric mice deficient in ICAM-1 on myeloid cells demonstrated that neutrophil ICAM-1 was not required for local neutrophil transmigration, but supported optimal intravascular and extravascular phagocytosis of zymosan particles. Collectively, the present results shed light on regulation of expression and function of ICAM-1 on neutrophils and identify it as an additional regulator of neutrophil effector responses in host defense. PMID:26647392

  14. Neutrophils in the tumor microenvironment: trying to heal the wound that cannot heal.

    PubMed

    Singel, Kelly L; Segal, Brahm H

    2016-09-01

    Neutrophils are the first responders to infection and injury and are critical for antimicrobial host defense. Through the generation of reactive oxidants, activation of granular constituents and neutrophil extracellular traps, neutrophils target microbes and prevent their dissemination. While these pathways are beneficial in the context of trauma and infection, their off-target effects in the context of tumor are variable. Tumor-derived factors have been shown to reprogram the marrow, skewing toward the expansion of myelopoiesis. This can result in stimulation of both neutrophilic leukocytosis and the release of immature granulocytic populations that accumulate in circulation and in the tumor microenvironment. While activated neutrophils have been shown to kill tumor cells, there is growing evidence for neutrophil activation driving tumor progression and metastasis through a number of pathways, including stimulation of thrombosis and angiogenesis, stromal remodeling, and impairment of T cell-dependent anti-tumor immunity. There is also growing appreciation of neutrophil heterogeneity in cancer, with distinct neutrophil populations promoting cancer control or progression. In addition to the effects of tumor on neutrophil responses, anti-neoplastic treatment, including surgery, chemotherapy, and growth factors, can influence neutrophil responses. Future directions for research are expected to result in more mechanistic knowledge of neutrophil biology in the tumor microenvironment that may be exploited as prognostic biomarkers and therapeutic targets. PMID:27558344

  15. CXCR2 and CXCR4 antagonistically regulate neutrophil trafficking from murine bone marrow

    PubMed Central

    Eash, Kyle J.; Greenbaum, Adam M.; Gopalan, Priya K.; Link, Daniel C.

    2010-01-01

    Neutrophils are a major component of the innate immune response. Their homeostasis is maintained, in part, by the regulated release of neutrophils from the bone marrow. Constitutive expression of the chemokine CXCL12 by bone marrow stromal cells provides a key retention signal for neutrophils in the bone marrow through activation of its receptor, CXCR4. Attenuation of CXCR4 signaling leads to entry of neutrophils into the circulation through unknown mechanisms. We investigated the role of CXCR2-binding ELR+ chemokines in neutrophil trafficking using mouse mixed bone marrow chimeras reconstituted with Cxcr2–/– and WT cells. In this context, neutrophils lacking CXCR2 were preferentially retained in the bone marrow, a phenotype resembling the congenital disorder myelokathexis, which is characterized by chronic neutropenia. Additionally, transient disruption of CXCR4 failed to mobilize Cxcr2–/– neutrophils. However, neutrophils lacking both CXCR2 and CXCR4 displayed constitutive mobilization, showing that CXCR4 plays a dominant role in neutrophil trafficking. With regard to CXCR2 ligands, bone marrow endothelial cells and osteoblasts constitutively expressed the ELR+ chemokines CXCL1 and CXCL2, and CXCL2 expression was induced in endothelial cells during G-CSF–induced neutrophil mobilization. Collectively, these data suggest that CXCR2 signaling is a second chemokine axis that interacts antagonistically with CXCR4 to regulate neutrophil release from the bone marrow. PMID:20516641

  16. Type I IFNs induce anti-tumor polarization of tumor associated neutrophils in mice and human.

    PubMed

    Andzinski, Lisa; Kasnitz, Nadine; Stahnke, Stephanie; Wu, Ching-Fang; Gereke, Marcus; von Köckritz-Blickwede, Maren; Schilling, Bastian; Brandau, Sven; Weiss, Siegfried; Jablonska, Jadwiga

    2016-04-15

    The importance of tumor associated neutrophils (TANs) in cancer development is in the meantime well established. Numerous of clinical data document the adverse prognostic effects of neutrophil infiltration in solid tumors. However, certain tumor therapies need functional neutrophils to be effective, suggesting altered neutrophil polarization associated with different outcomes for cancer patients. Therefore, modulation of neutrophilic phenotypes represents a potent therapeutic option, but factors mediating neutrophil polarization are still poorly defined. In this manuscript we provide evidence that type I IFNs alter neutrophilic phenotype into anti-tumor, both in mice and human. In the absence of IFN-β, pro-tumor properties, such as reduced tumor cytotoxicity with low neutrophil extracellular traps (NETs) expression, low ICAM1 and TNF-α expression, dominated neutrophil phenotypes in primary lesion and premetastatic lung. Interestingly, such neutrophils have significantly prolonged life-span. Notably, interferon therapy in mice altered TAN polarization towards anti-tumor N1. Similar changes in neutrophil activation could be observed in melanoma patients undergoing type I IFN therapy. Altogether, these data highlight the therapeutic potential of interferons, suggesting optimization of its clinical use as potent anti-tumor agent. PMID:26619320

  17. Neutrophil Recruitment to Lymph Nodes Limits Local Humoral Response to Staphylococcus aureus

    PubMed Central

    Kamenyeva, Olena; Boularan, Cedric; Kabat, Juraj; Cheung, Gordon Y. C.; Cicala, Claudia; Yeh, Anthony J.; Chan, June L.; Periasamy, Saravanan; Otto, Michael; Kehrl, John H.

    2015-01-01

    Neutrophils form the first line of host defense against bacterial pathogens. They are rapidly mobilized to sites of infection where they help marshal host defenses and remove bacteria by phagocytosis. While splenic neutrophils promote marginal zone B cell antibody production in response to administered T cell independent antigens, whether neutrophils shape humoral immunity in other lymphoid organs is controversial. Here we investigate the neutrophil influx following the local injection of Staphylococcus aureus adjacent to the inguinal lymph node and determine neutrophil impact on the lymph node humoral response. Using intravital microscopy we show that local immunization or infection recruits neutrophils from the blood to lymph nodes in waves. The second wave occurs temporally with neutrophils mobilized from the bone marrow. Within lymph nodes neutrophils infiltrate the medulla and interfollicular areas, but avoid crossing follicle borders. In vivo neutrophils form transient and long-lived interactions with B cells and plasma cells, and their depletion augments production of antigen-specific IgG and IgM in the lymph node. In vitro activated neutrophils establish synapse- and nanotube-like interactions with B cells and reduce B cell IgM production in a TGF- β1 dependent manner. Our data reveal that neutrophils mobilized from the bone marrow in response to a local bacterial challenge dampen the early humoral response in the lymph node. PMID:25884622

  18. ICAM-1-expressing neutrophils exhibit enhanced effector functions in murine models of endotoxemia.

    PubMed

    Woodfin, Abigail; Beyrau, Martina; Voisin, Mathieu-Benoit; Ma, Bin; Whiteford, James R; Hordijk, Peter L; Hogg, Nancy; Nourshargh, Sussan

    2016-02-18

    Intracellular adhesion molecule-1 (ICAM-1) is a transmembrane glycoprotein expressed on the cell surface of numerous cell types such as endothelial and epithelial cells, vascular smooth muscle cells, and certain leukocyte subsets. With respect to the latter, ICAM-1 has been detected on neutrophils in several clinical and experimental settings, but little is known about the regulation of expression or function of neutrophil ICAM-1. In this study, we report on the de novo induction of ICAM-1 on the cell surface of murine neutrophils by lipopolysaccharide (LPS), tumor necrosis factor, and zymosan particles in vitro. The induction of neutrophil ICAM-1 was associated with enhanced phagocytosis of zymosan particles and reactive oxygen species (ROS) generation. Conversely, neutrophils from ICAM-1-deficient mice were defective in these effector functions. Mechanistically, ICAM-1-mediated intracellular signaling appeared to support neutrophil ROS generation and phagocytosis. In vivo, LPS-induced inflammation in the mouse cremaster muscle and peritoneal cavity led to ICAM-1 expression on intravascular and locally transmigrated neutrophils. The use of chimeric mice deficient in ICAM-1 on myeloid cells demonstrated that neutrophil ICAM-1 was not required for local neutrophil transmigration, but supported optimal intravascular and extravascular phagocytosis of zymosan particles. Collectively, the present results shed light on regulation of expression and function of ICAM-1 on neutrophils and identify it as an additional regulator of neutrophil effector responses in host defense. PMID:26647392

  19. Central role of neutrophil in the pathogenesis of severe acute pancreatitis

    PubMed Central

    Yang, Zhi-wen; Meng, Xiao-xiao; Xu, Ping

    2015-01-01

    Severe acute pancreatitis (SAP) is an acute abdominal disease with the strong systemic inflammatory response, and rapidly progresses from a local pancreatic damage into multiple organ dysfunction. For many decades, the contributions of neutrophils to the pathology of SAP were traditionally thought to be the chemokine and cytokine cascades that accompany inflammation. In this review, we focus mainly on those recently recognized aspects of neutrophils in SAP processes. First, emerging evidence suggests that therapeutic interventions targeting neutrophils significantly lower tissue damage and protect against the occurrence of pancreatitis. Second, trypsin activation promotes the initial neutrophils recruitment into local pancreas, and subsequently neutrophils infiltration in turn triggers trypsin production. Finally, neutrophils have the unique ability to release neutrophil extracellular traps even in the absence of pathogens. PMID:26249268

  20. Central role of neutrophil in the pathogenesis of severe acute pancreatitis.

    PubMed

    Yang, Zhi-Wen; Meng, Xiao-Xiao; Xu, Ping

    2015-11-01

    Severe acute pancreatitis (SAP) is an acute abdominal disease with the strong systemic inflammatory response, and rapidly progresses from a local pancreatic damage into multiple organ dysfunction. For many decades, the contributions of neutrophils to the pathology of SAP were traditionally thought to be the chemokine and cytokine cascades that accompany inflammation. In this review, we focus mainly on those recently recognized aspects of neutrophils in SAP processes. First, emerging evidence suggests that therapeutic interventions targeting neutrophils significantly lower tissue damage and protect against the occurrence of pancreatitis. Second, trypsin activation promotes the initial neutrophils recruitment into local pancreas, and subsequently neutrophils infiltration in turn triggers trypsin production. Finally, neutrophils have the unique ability to release neutrophil extracellular traps even in the absence of pathogens. PMID:26249268

  1. Frontline Science: Splenic progenitors aid in maintaining high neutrophil numbers at sites of sterile chronic inflammation.

    PubMed

    Jhunjhunwala, Siddharth; Alvarez, David; Aresta-DaSilva, Stephanie; Tang, Katherine; Tang, Benjamin C; Greiner, Dale L; Newburger, Peter E; von Andrian, Ulrich H; Langer, Robert; Anderson, Daniel G

    2016-08-01

    Neutrophils are constantly generated from hematopoietic stem and progenitor cells in the bone marrow to maintain high numbers in circulation. A considerable number of neutrophils and their progenitors have been shown to be present in the spleen too; however, their exact role in this organ remains unclear. Herein, we sought to study the function of splenic neutrophils and their progenitors using a mouse model for sterile, peritoneal inflammation. In this microcapsule device implantation model, we show chronic neutrophil presence at implant sites, with recruitment from circulation as the primary mechanism for their prevalence in the peritoneal exudate. Furthermore, we demonstrate that progenitor populations in the spleen play a key role in maintaining elevated neutrophil numbers. Our results provide new insight into the role for splenic neutrophils and their progenitors and establish a model to study neutrophil function during sterile inflammation. PMID:26965635

  2. Sex Hormones Coordinate Neutrophil Immunity in the Vagina by Controlling Chemokine Gradients.

    PubMed

    Lasarte, Sandra; Samaniego, Rafael; Salinas-Muñoz, Laura; Guia-Gonzalez, Mauriel A; Weiss, Linnea A; Mercader, Enrique; Ceballos-García, Elena; Navarro-González, Teresa; Moreno-Ochoa, Laura; Perez-Millan, Federico; Pion, Marjorie; Sanchez-Mateos, Paloma; Hidalgo, Andres; Muñoz-Fernandez, Maria A; Relloso, Miguel

    2016-02-01

    Estradiol-based contraceptives and hormonal replacement therapy predispose women to Candida albicans infections. Moreover, during the ovulatory phase (high estradiol), neutrophil numbers decrease in the vaginal lumen and increase during the luteal phase (high progesterone). Vaginal secretions contain chemokines that drive neutrophil migration into the lumen. However, their expression during the ovarian cycle or in response to hormonal treatments are controversial and their role in vaginal defense remains unknown.To investigate the transepithelial migration of neutrophils, we used adoptive transfer of Cxcr2(-/-) neutrophils and chemokine immunofluorescence quantitative analysis in response to C. albicans vaginal infection in the presence of hormones.Our data show that the Cxcl1/Cxcr2 axis drives neutrophil transepithelial migration into the vagina. Progesterone promotes the Cxcl1 gradient to favor neutrophil migration. Estradiol disrupts the Cxcl1 gradient and favors neutrophil arrest in the vaginal stroma; as a result, the vagina becomes more vulnerable to pathogens. PMID:26238687

  3. Molecular control of PtdIns(3,4,5)P3 signaling in neutrophils

    PubMed Central

    Luo, Hongbo R; Mondal, Subhanjan

    2015-01-01

    Neutrophils play critical roles in innate immunity and host defense. However, excessive neutrophil accumulation or hyper-responsiveness of neutrophils can be detrimental to the host system. Thus, the response of neutrophils to inflammatory stimuli needs to be tightly controlled. Many cellular processes in neutrophils are mediated by localized formation of an inositol phospholipid, phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P3), at the plasma membrane. The PtdIns(3,4,5)P3 signaling pathway is negatively regulated by lipid phosphatases and inositol phosphates, which consequently play a critical role in controlling neutrophil function and would be expected to act as ideal therapeutic targets for enhancing or suppressing innate immune responses. Here, we comprehensively review current understanding about the action of lipid phosphatases and inositol phosphates in the control of neutrophil function in infection and inflammation. PMID:25576302

  4. Kinetics model development of cocoa bean fermentation

    NASA Astrophysics Data System (ADS)

    Kresnowati, M. T. A. P.; Gunawan, Agus Yodi; Muliyadini, Winny

    2015-12-01

    Although Indonesia is one of the biggest cocoa beans producers in the world, Indonesian cocoa beans are oftenly of low quality and thereby frequently priced low in the world market. In order to improve the quality, adequate post-harvest cocoa processing techniques are required. Fermentation is the vital stage in series of cocoa beans post harvest processing which could improve the quality of cocoa beans, in particular taste, aroma, and colours. During the fermentation process, combination of microbes grow producing metabolites that serve as the precursors for cocoa beans flavour. Microbial composition and thereby their activities will affect the fermentation performance and influence the properties of cocoa beans. The correlation could be reviewed using a kinetic model that includes unstructured microbial growth, substrate utilization and metabolic product formation. The developed kinetic model could be further used to design cocoa bean fermentation process to meet the expected quality. Further the development of kinetic model of cocoa bean fermentation also serve as a good case study of mixed culture solid state fermentation, that has rarely been studied. This paper presents the development of a kinetic model for solid-state cocoa beans fermentation using an empirical approach. Series of lab scale cocoa bean fermentations, either natural fermentations without starter addition or fermentations with mixed yeast and lactic acid bacteria starter addition, were used for model parameters estimation. The results showed that cocoa beans fermentation can be modelled mathematically and the best model included substrate utilization, microbial growth, metabolites production and its transport. Although the developed model still can not explain the dynamics in microbial population, this model can sufficiently explained the observed changes in sugar concentration as well as metabolic products in the cocoa bean pulp.

  5. Roscovitine ameliorates endotoxin-induced uveitis through neutrophil apoptosis

    PubMed Central

    Jiang, Zhao-Xin; Qiu, Suo; Lou, Bing-Sheng; Yang, Yao; Wang, Wen-Cong; Lin, Xiao-Feng

    2016-01-01

    Neutrophils have been recognized as critical response cells during the pathogenesis of endotoxin-induced uveitis (EIU). Apoptosis of neutrophils induced by roscovitine has previously been demonstrated to ameliorate inflammation in several in vivo models. The present study aimed to assess whether roscovitine ameliorates EIU. EIU was induced in female C57BL/6 mice by a single intravitreal injection of lipopolysaccharide (LPS; 250 ng). The mice were divided into three groups as follows: LPS alone, LPS plus vehicle, LPS plus roscovitine (50 mg/kg). The mice were euthanized 12, 24, 48 and 72 h after LPS-induced uveitis. Accumulation of inflammatory cells in the vitreous body was confirmed by immunohistochemistry, and quantified following hematoxylin and eosin staining. Terminal deoxynucleotidyl transferase dUTP nick-end labeling was performed to detect of apoptotic cells. The mRNA levels of inflammatory cytokines were analyzed by reverse transcription-quantitative polymerase chain reaction and the changes in protein levels were analyzed by western blotting. Inflammatory cells accumulated in the vitreous near the optic nerve head and the quantity peaked at 24 h after LPS injection. Immunohistochemistry revealed that the majority of the inflammatory cells were neutrophils. The number of infiltrating cells was similar in the LPS and LPS plus vehicle groups, while there were significantly less in the roscovitine group at 24 h. Apoptosis of neutrophils was observed between 12 and 48 h after roscovitine injection, while no apoptosis was observed in the other groups. The mRNA expression levels of GMCSF, CINC-1 and ICAM-1 peaked at 12 h after LPS injection, and decreased to normal levels at 72 h. This trend in mRNA expression was similar in the LPS and LPS plus vehicle groups; however, the expression levels decreased more quickly in the roscovitine group at 24 and 48 h. Following roscovitine administration, upregulated cleaved caspase 3 expression levels and downregulated Mcl-1

  6. Roscovitine ameliorates endotoxin-induced uveitis through neutrophil apoptosis.

    PubMed

    Jiang, Zhao-Xin; Qiu, Suo; Lou, Bing-Sheng; Yang, Yao; Wang, Wen-Cong; Lin, Xiao-Feng

    2016-08-01

    Neutrophils have been recognized as critical response cells during the pathogenesis of endotoxin‑induced uveitis (EIU). Apoptosis of neutrophils induced by roscovitine has previously been demonstrated to ameliorate inflammation in several in vivo models. The present study aimed to assess whether roscovitine ameliorates EIU. EIU was induced in female C57BL/6 mice by a single intravitreal injection of lipopolysaccharide (LPS; 250 ng). The mice were divided into three groups as follows: LPS alone, LPS plus vehicle, LPS plus roscovitine (50 mg/kg). The mice were euthanized 12, 24, 48 and 72 h after LPS‑induced uveitis. Accumulation of inflammatory cells in the vitreous body was confirmed by immunohistochemistry, and quantified following hematoxylin and eosin staining. Terminal deoxynucleotidyl transferase dUTP nick‑end labeling was performed to detect of apoptotic cells. The mRNA levels of inflammatory cytokines were analyzed by reverse transcription‑quantitative polymerase chain reaction and the changes in protein levels were analyzed by western blotting. Inflammatory cells accumulated in the vitreous near the optic nerve head and the quantity peaked at 24 h after LPS injection. Immunohistochemistry revealed that the majority of the inflammatory cells were neutrophils. The number of infiltrating cells was similar in the LPS and LPS plus vehicle groups, while there were significantly less in the roscovitine group at 24 h. Apoptosis of neutrophils was observed between 12 and 48 h after roscovitine injection, while no apoptosis was observed in the other groups. The mRNA expression levels of GMCSF, CINC‑1 and ICAM‑1 peaked at 12 h after LPS injection, and decreased to normal levels at 72 h. This trend in mRNA expression was similar in the LPS and LPS plus vehicle groups; however, the expression levels decreased more quickly in the roscovitine group at 24 and 48 h. Following roscovitine administration, upregulated cleaved caspase 3 expression levels

  7. Passive mechanical behavior of human neutrophils: effect of cytochalasin B.

    PubMed Central

    Tsai, M. A.; Frank, R. S.; Waugh, R. E.

    1994-01-01

    Actin is a ubiquitous protein in eukaryotic cells. It plays a major role in cell motility and in the maintenance and control of cell shape. In this article, we intend to address the contribution of actin to the passive mechanical properties of human neutrophils. As a framework for assessing this contribution, the neutrophil is modeled as a simple viscous fluid drop with a constant cortical ("surface") tension. The reagent cytochalasin B (CTB) was used to disrupt the F-actin structure, and the neutrophil cortical tension and cytoplasmic viscosity were evaluated by single-cell micropipette aspiration. The cortical tension was calculated by simple force balance, and the viscosity was calculated according to a numerical analysis of the cell entry into the micropipette. CTB reduced the cell cortical tension in a dose-dependent fashion: by 19% at a concentration of 3 microM and by 49% at 30 microM. CTB also reduced the cytoplasmic viscosity by approximately -25% at a concentration of 3 microM and by approximately 65% at a concentration of 30 microM when compared at the same aspiration pressures. All three groups of neutrophils, normal cells, and cells treated with either 3 or 30 microM CTB, exhibited non-Newtonian behavior, in that the apparent viscosity decreased with increasing shear rate. The dependence of the cytoplasmic viscosity on deformation rate can be described empirically by mu = mu c(gamma m/gamma c)-b, where mu is cytoplasmic viscosity, gamma m is mean shear rate, mu c is the characteristic viscosity at the characteristic shear rate gamma c, and b is a material coefficient. The shear rate dependence of the cytoplasmic viscosity was reduced by CTB treatment. This is reflected by the changes in the material coefficients. When gamma c was set to 1 s-1, pc = 130 +/- 23 Pa.s and b = 0.52 +/- 0.09 for normal neutrophils and pc = 54 +/- 15 Pa.S and b = 0.26 +/- 0.05 for cells treated with 30 micro M CTB. These results provide the first quantitative assessment of

  8. Extractive fermentation of acetic acid

    SciTech Connect

    Busche, R.M.

    1991-12-31

    In this technoeconomic evaluation of the manufacture of acetic acid by fermentation, the use of the bacterium: Acetobacter suboxydans from the old vinegar process was compared with expected performance of the newer Clostridium thermoaceticum bacterium. Both systems were projected to operate as immobilized cells in a continuous, fluidized bed bioreactor, using solvent extraction to recover the product. Acetobacter metabolizes ethanol aerobically to produce acid at 100 g/L in a low pH medium. This ensures that the product is in the form of a concentrated extractable free acid, rather than as an unextractable salt. Unfortunately, yields from glucose by way of the ethanol fermentation are poor, but near the biological limits of the organisms involved. Conversely, C. thermoaceticum is a thermophilic anaerobe that operates at high fermentation rates on glucose at neutral pH to produce acetate salts directly in substantially quantitative yields. However, it is severely inhibited by product, which restricts concentration to a dilute 20 g/L. An improved Acetobacter system operating with recycled cells at 50 g/L appears capable of producing acid at $0.38/lb, as compared with a $0.29/lb price for synthetic acid. However, this system has only a limited margin for process improvement. The present Clostridium system cannot compete, since the required selling price would be $0.42/lb. However, if the organism could be adapted to tolerate higher product concentrations at acid pH, selling price could be reduced to $0.22/lb, or about 80% of the price of synthetic acid.

  9. Microbiology of keribo fermentation: an Ethiopian traditional fermented beverage.

    PubMed

    Abawari, Rashid Abafita

    2013-10-15

    Keribo is an indigenous traditional fermented beverage and is being served on holidays, wedding ceremony and also used as sources of income of many households in Jimma zone. The aim of this study was to document the microbiology of the product and antibiotic susceptibility patterns of LAB. Samples of Keribo were collected from Jimma town and four of its districts. Keribo was fermented in the laboratory following the traditional techniques for microbial succession monitored at 6 h intervals. Finally, dominant LAB was evaluated for their antibiotic susceptibility patterns against eight antibiotics. Samples of Keribo from open markets and households in Jimma zone showed average Lactic Acid Bacteria (LAB), Aerobic Mesophilic Bacteria (AMB), Aerobic Spore-formers (ASF) and yeasts with mean counts of (log CFU mL(-1)) 2.70 +/- 2.07, 2.34 +/- 2.37, 4.96 +/- 2.80 and 2.01 +/- 0.60, respectively. The mean counts of Enterobacteriaceae, staphylococci and moulds were below detectable levels. The early stage was dominated by AMB and ASF. However, the mean counts of LAB increased exponentially for the first 30 h and remain constant thereafter. Leuconostoc mesenteroides, identified as the most dominant LAB, were found to be susceptible to penicillin G, gentamicin, ampicilin, chloramphenicol, amikacin, bacitracin and norfloxacin but resistant to vancomycin. PMID:24506010

  10. Fermentation Rates of Grape Juice

    PubMed Central

    Ough, C. S.; Kunkee, R. E.

    1968-01-01

    Microbiological analysis showed that juices from white grapes had less biotin than juices from red grapes. The biotin content of the juices of some varieties was significantly different from that of other varieties. We did not note any regional effects on the biotin content of the juices. Biotin content of the Cabernet Sauvignon grapes increased significantly with maturity, whereas the biotin content of a white variety did not. The biotin content, with the total nitrogen, can be used to estimate indirectly the yeast growth potential and hence to predict the fermentation rate of the juice. About 84% of the rate variation can be accounted for by the calculated regression equations. PMID:16349801

  11. Solid-phase fermentation of sweet sorghum

    SciTech Connect

    Bryan, W.L.; Parrish, R.L.

    1982-12-01

    Solid-phase fermentations of chopped Wray sweet sorghum, (0.6 and 2.5 cm size) occurred in 7-liter fermentors at higher rates than juice fermentations and produced 80% ethanol yields, compared to 73% for juice. Heat loss from fermentors limited maximum temperatures to 38 degrees C. Low ethanol yields may have been caused by natural inhibitors or by thermal inhibition.

  12. Bacteriophage ecology in commercial sauerkraut fermentations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ecology of bacteriophages infecting lactic acid bacteria (LAB) in commercial sauerkraut fermentations was investigated. Brine samples were taken from four commercial sauerkraut fermentation tanks over a 60- or 100-day period in 2000 and 2001. A total of 171 independent phage isolates, including ...

  13. Microbial interactions associated with secondary cucumber fermentation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aims: To evaluate the interaction between selected yeasts and bacteria and associate their metabolic activity with secondary cucumber fermentation. Methods and Results: Selected yeast and bacteria, isolated from cucumber secondary fermentations, were inoculated as single and mixed cultures in a cucu...

  14. Fermentation: From Sensory Experience to Conceptual Understanding

    ERIC Educational Resources Information Center

    Moore, Eugene B.

    1977-01-01

    Presented is a laboratory exercise that utilizes the natural yeast carbonation method of making homemade root beer to study fermentation and the effect of variables upon the fermentation process. There are photographs, a sample data sheet, and procedural hints included. (Author/MA)

  15. Manufacturing Ethyl Acetate From Fermentation Ethanol

    NASA Technical Reports Server (NTRS)

    Rohatgi, Naresh K.; Ingham, John D.

    1991-01-01

    Conceptual process uses dilute product of fermentation instead of concentrated ethanol. Low-concentration ethanol, extracted by vacuum from fermentation tank, and acetic acid constitutes feedstock for catalytic reaction. Product of reaction goes through steps that increases ethyl acetate content to 93 percent by weight. To conserve energy, heat exchangers recycle waste heat to preheat process streams at various points.

  16. Butanol production by fermentation: efficient bioreactors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Energy security, environmental concerns, and business opportunities in the emerging bio-economy have generated strong interest in the production of n-butanol by fermentation. Acetone butanol ethanol (ABE or solvent) batch fermentation process is product limiting because butanol even at low concentra...

  17. Neutrophil roles in left ventricular remodeling following myocardial infarction

    PubMed Central

    2013-01-01

    Polymorphonuclear granulocytes (PMNs; neutrophils) serve as key effector cells in the innate immune system and provide the first line of defense against invading microorganisms. In addition to producing inflammatory cytokines and chemokines and undergoing a respiratory burst that stimulates the release of reactive oxygen species, PMNs also degranulate to release components that kill pathogens. Recently, neutrophil extracellular traps have been shown to be an alternative way to trap microorganisms and contain infection. PMN-derived granule components are also involved in multiple non-infectious inflammatory processes, including the response to myocardial infarction (MI). In this review, we will discuss the biological characteristics, recruitment, activation, and removal of PMNs, as well as the roles of PMN-derived granule proteins in inflammation and innate immunity, focusing on the MI setting when applicable. We also discuss future perspectives that will direct research in PMN biology. PMID:23731794

  18. Inhibition of superoxide anion production by extracellular acidification in neutrophils.

    PubMed

    Murata, Naoya; Mogi, Chihiro; Tobo, Masayuki; Nakakura, Takashi; Sato, Koichi; Tomura, Hideaki; Okajima, Fumikazu

    2009-01-01

    Extracellular acidification inhibited formyl-Met-Leu-Phe- or C5a-induced superoxide anion (O(2)(-)) production in differentiated HL-60 neutrophil-like cells and human neutrophils. A cAMP-increasing agonist, prostaglandin E(1), also inhibited the formyl peptide-induced O(2)(-) production. The inhibitory action on the O(2)(-) production by extracellular acidic pH was associated with cAMP accumulation and partly attenuated by H89, a protein kinase A inhibitor. A significant amount of mRNAs for T-cell death-associated gene 8 (TDAG8) and other proton-sensing ovarian cancer G-protein-coupled receptor 1 (OGR1)-family receptors is expressed in these cells. These results suggest that cAMP/protein kinase A, possibly through proton-sensing G-protein-coupled receptors, may be involved in extracellular acidic pH-induced inhibition of O(2)(-) production. PMID:19539899

  19. Influence of age on neutrophil function in foals.

    PubMed

    Wichtel, M G; Anderson, K L; Johnson, T V; Nathan, U; Smith, L

    1991-11-01

    Functional activities (phagocytosis and killing) of neutrophil leucocytes (NL) and immunoglobulin G concentrations were evaluated in six healthy foals from birth to 6 months of age. Peripheral blood NL were reacted with Streptococcus equisimilis in 20 per cent pooled equine serum for 30, 60 and 90 mins and functional activities of NL were determined using a fluorochrome microassay. Values for foal NL function were compared with those of healthy adult horses (n = 28). Foal neutrophil function was influenced by age. Killing capacity of NL decreased, whereas phagocytic capacity increased, until 113 days of age, after which a reversal in trends became apparent. Immunoglobulin G concentrations changed significantly over time and were lowest at 29 to 56 days of age. All foal values for NL function fell within the range of normal values established for healthy adult horses. PMID:1778167

  20. Microbial Ligand Costimulation Drives Neutrophilic Steroid-Refractory Asthma

    PubMed Central

    Hadebe, Sabelo; Kirstein, Frank; Fierens, Kaat; Chen, Kong; Drummond, Rebecca A.; Vautier, Simon; Sajaniemi, Sara; Murray, Graeme; Williams, David L.; Redelinghuys, Pierre; Reinhart, Todd A.; Fallert Junecko, Beth A.; Kolls, Jay K.; Lambrecht, Bart N.; Brombacher, Frank; Brown, Gordon D.

    2015-01-01

    Asthma is a heterogeneous disease whose etiology is poorly understood but is likely to involve innate responses to inhaled microbial components that are found in allergens. The influence of these components on pulmonary inflammation has been largely studied in the context of individual agonists, despite knowledge that they can have synergistic effects when used in combination. Here we have explored the effects of LPS and β-glucan, two commonly-encountered microbial agonists, on the pathogenesis of allergic and non-allergic respiratory responses to house dust mite allergen. Notably, sensitization with these microbial components in combination acted synergistically to promote robust neutrophilic inflammation, which involved both Dectin-1 and TLR-4. This pulmonary neutrophilic inflammation was corticosteroid-refractory, resembling that found in patients with severe asthma. Thus our results provide key new insights into how microbial components influence the development of respiratory pathology. PMID:26261989

  1. Suppression of neutrophil superoxide production by conventional peritoneal dialysis solution.

    PubMed

    Ing, B L; Gupta, D K; Nawab, Z M; Zhou, F Q; Rahman, M A; Daugirdas, J T

    1988-09-01

    The pH of conventional peritoneal dialysis solution is normally in the range of 5.0 to 5.5, because acid has been added during the manufacturing process to prevent caramelization of dextrose during sterilization. We studied the effects of normalizing the pH of conventional peritoneal dialysis solution on superoxide production by normal human neutrophils. At a pH of 6.0, superoxide generation was 4.07 +/- 2.56 (SD) nanomoles per million cells. With normalization of pH to 7.4, superoxide production was 19.3 +/- 7.3 (p less than 0.001). The results suggest that the unphysiologic acidity of conventional peritoneal dialysis solution has deleterious consequences on neutrophil superoxide formation. PMID:2847987

  2. Neutrophils and Granulocytic MDSC: The Janus God of Cancer Immunotherapy.

    PubMed

    Zilio, Serena; Serafini, Paolo

    2016-01-01

    Neutrophils are the most abundant circulating blood cell type in humans, and are the first white blood cells recruited at the inflammation site where they orchestrate the initial immune response. Although their presence at the tumor site was recognized in the 1970s, until recently these cells have been neglected and considered to play just a neutral role in tumor progression. Indeed, in recent years neutrophils have been recognized to play a dual role in tumor development by either assisting the growth, angiogenesis, invasion, and metastasis or by exerting tumoricidal action directly via the secretion of antitumoral compounds, or indirectly via the orchestration of antitumor immunity. Understanding the biology of these cells and influencing their polarization in the tumor micro- and macro-environment may be the key for the development of new therapeutic strategies, which may finally hold the promise of an effective immunotherapy for cancer. PMID:27618112

  3. Functional genomics for food fermentation processes.

    PubMed

    Smid, E J; Hugenholtz, J

    2010-01-01

    This review describes recent scientific and technological drivers of food fermentation research. In addition, a number of practical implications of the results of this development will be highlighted. The first part of the manuscript elaborates on the message that genome sequence information gives us an unprecedented view on the biodiversity of microbes in food fermentation. This information can be made applicable for tailoring relevant characteristics of food products through fermentation. The second part deals with the integration of genome sequence data into metabolic models and the use of these models for a number of topics that are relevant for food fermentation processes. The final part will be about metagenomics approaches to reveal the complexity and understand the functionality of undefined complex microbial consortia used in a diverse range of food fermentation processes. PMID:22129346

  4. Functional compounds in fermented buckwheat sprouts.

    PubMed

    Maejima, Yasunori; Nakatsugawa, Hiroki; Ichida, Daiki; Maejima, Mayumi; Aoyagi, Yasuo; Maoka, Takashi; Etoh, Hideo

    2011-01-01

    Fermented buckwheat sprouts (FBS) are used as multifunctional foods. Their production process includes fermentation with lactic acid bacteria. The major strains were found to include Lactobacillus plantarum, Lactobacillus brevis, Lactobacillus pentosus, Lactococcus lactis subsp. lactis, and Pediococcus pentosaceus in an investigation of the lactic acid bacteria. We searched for the functional components, and nicotianamine (NA) and 2″-hydroxynicotianamine (HNA) were identified as angiotensin I-converting enzyme (ACE) inhibitors. NA and HNA increased during fermentation. Indole-3-ethanol was identified as an antioxidant (a SOD active substance), and may have been generated from tryptophan during fermentation because it was not contained in green buckwheat juice. A safety test demonstrated that FBS contained were safe functional food components, showing negative results in buckwheat allergy tests. Any buckwheat allergy substances might have been degraded during the fermentation process. PMID:21897039

  5. Low investment approach to alcohol fermentation

    SciTech Connect

    Bungay, H.R.

    1980-01-01

    The paper suggests attitudes for designing a low investment fuel alcohol plant instead of providing a specific blueprint, noting that the criteria for an agro-industrial complex can be applied rather than those of a modern chemical plant. In the case of fermenter design, for example, alternative approaches suggested are, the use of open-vat fermenters, tower fermentation maintaining high concentrations of organisms, combined fermentation and storage and use of 12 ft diameter plastic sewer pipe buried in the ground for an inexpensive and well-insulated fermenter. Instead of 3 or more distillation columns, the proposed plant would have only one, producing 85% alcohol, plus a tank or column for a drying agent to remove the remaining water. A direct fired still using biomass residues or coal could be designed to avoid the major expense of a large power plant to generate process steam.

  6. Lactic acid fermentation of crude sorghum extract

    SciTech Connect

    Samuel, W.A.; Lee, Y.Y.; Anthony, W.B.

    1980-04-01

    Crude extract from sweet sorghum supplemented with vetch juice was utilized as the carbohydrate source for fermentative production of lactic acid. Fermentation of media containing 7% (w/v) total sugar was completed in 60-80 hours by Lactobacillus plantarum, product yield averaging 85%. Maximum acid production rates were dependent on pH, initial substrate distribution, and concentration, the rates varying from 2 to 5 g/liter per hour. Under limited medium supplementation the lactic acid yield was lowered to 67%. The fermented ammoniated product contained over eight times as much equivalent crude protein (N x 6.25) as the original medium. Unstructured kinetic models were developed for cell growth, lactic acid formation, and substrate consumption in batch fermentation. With the provision of experimentally determined kinetic parameters, the proposed models accurately described the fermentation process. 15 references.

  7. Neutrophil recruitment by allergens contribute to allergic sensitization and allergic inflammation

    PubMed Central

    Hosoki, Koa; Boldogh, Istvan; Sur, Sanjiv

    2016-01-01

    Purpose of review To discuss the presence and role of neutrophils in asthma and allergic diseases, and outline importance of pollen and cat dander-induced innate neutrophil recruitment in induction of allergic sensitization and allergic inflammation. Recent findings Uncontrolled asthma is associated with elevated numbers of neutrophils, and levels of neutrophil-attracting chemokine IL-8 and IL-17 in BAL fluids. These parameters negatively correlate with lung function. Pollen allergens and cat dander recruit neutrophils to the airways in a TLR4, MD2 and CXCR2-dependent manner. Repeated recruitment of activated neutrophils by these allergens facilitates allergic sensitization and airway inflammation. Inhibition of neutrophil recruitment with CXCR2 inhibitor, disruption of TLR4, or siRNA against MD2 also inhibits allergic inflammation. The molecular mechanisms by which neutrophils shift the inflammatory response of the airways to inhaled allergens to an allergic phenotype is an area of active research. Summary Recent studies have revealed that neutrophil recruitment is important in development of allergic sensitization and inflammation. Inhibition of neutrophils recruitment may be strategy to control allergic inflammation. PMID:26694038

  8. Activated neutrophils disrupt endothelial monolayer integrity by an oxygen radical-independent mechanism

    SciTech Connect

    Harlan, J.M.; Schwartz, B.R.; Reidy, M.A.; Schwartz, S.M.; Ochs, H.D.; Harker, L.A.

    1985-02-01

    The effect of activated neutrophils on endothelial monolayer integrity in vitro has been measured by assessing the capacity of endothelial monolayers on polycarbonate filters to exclude /sup 125/I-albumin. Although formylmethionyl-leucyl-phenylalanine (FMLP)-activated neutrophils failed to induce /sup 51/Cr-release or detachment after 4 hours of incubation with endothelial monolayers cultured in polystyrene wells, FMLP-activated neutrophils produced a marked increase in the passage of /sup 125/I-albumin across bovine aortic or pulmonary artery endothelial monolayers on polycarbonate filters. This effect was evident as early as 30 minutes following the addition of FMLP-activated neutrophils to the monolayer and reached 180% over control values at 2 hours (p . 0.001). Light and transmission electron microscopic examination of the polycarbonate filters exposed to FMLP-activated neutrophils revealed focal disruption of the endothelial monolayers. Chronic granulomatous disease neutrophils produced similar disruption of the endothelial monolayer at 2 hours. Moreover, catalase and superoxide dismutase failed to reduce significantly the neutrophil-mediated increase in /sup 125/I-albumin passage at 2 hours. Cell-free postsecretory supernatants of FMLP-activated neutrophils, leukotriene C4, and platelet activating factor did not induce a significant increase in /sup 125/I-albumin passage across the endothelial monolayers. Of note, FMLP-activated neutrophils from a patient with a congenital abnormality of neutrophil adhesion and chemotaxis did not induce disruption of the monolayer or increase /sup 125/I-albumin passage.

  9. Neutrophils in cancer development and progression: Roles, mechanisms, and implications (Review).

    PubMed

    Zhang, Xu; Zhang, Wen; Yuan, Xiao; Fu, Min; Qian, Hui; Xu, Wenrong

    2016-09-01

    Neutrophils are predominant immune cells that protect the host from microbial infection. The roles of neutrophils in tumor have long been ignored due to their short life span and terminal differentiation phenotype. In recent years, emerging evidence indicates that neutrophils have phenotypic and functional plasticity. Neutrophils eliminate malignant cells by releasing the antimicrobial and cytotoxic contents in their granules or secreting immune mediators to recruit and activate other antitumor effector cells. On the contrary, tumor derived factors can convert neutrophils into a pro-tumor phenotype. Neutrophils have been shown to facilitate tumorigenesis, promote tumor growth and metastasis, stimulate tumor angiogenesis, and mediate immunosuppression. The number of neutrophils in blood and tumor tissues of cancer patients is associated with disease progression and patient outcome. In this review, we summarize the recent progress of neutrophils in the pathogenesis of cancer with an emphasis on neutrophil polarization. Better understanding of the mechanisms that regulate the dichotomy of neutrophils will not only shed light on their roles in cancer but also provide new approaches for cancer diagnosis and treatment. PMID:27573431

  10. The dynamics of neutrophils in zebrafish (Danio rerio) during infection with the parasite Ichthyophthirius multifiliis.

    PubMed

    von Gersdorff Jørgensen, Louise

    2016-08-01

    Ichthyophthirius multifiliis is a ciliated protozoan parasite infecting the skin and gills of freshwater fish. Neutrophils are attracted to the infection sites, as a part of the innate immune response. In this study a transgenic line of zebrafish (Tg(MPO:GFP)(i114)) with GFP-tagged neutrophils was infected with I. multifiliis and the neutrophil influx in the caudal fin was quantified. Twenty-four hours post infection (pi) the neutrophil count had gone up with an average of 3.4 fold. Forty-eight h pi the neutrophil count had dropped 12% and 72 h pi it had dropped to 21% compared to 24 h pi. At 72 h pi the neutrophil count was 2.7 times higher than prior to infection. A few dead parasites were observed, which were disintegrated and covered internally and externally with neutrophils. Live parasites, both surrounded by neutrophils and with no neutrophils in the near vicinity, were found during the infection. Neutrophils interacted directly with the parasites with pseudopod formation projecting towards the pathogen. These results indicate a strong innate immune response immediately following infection and/or a subsequent immune evasion by the parasite. PMID:27231191

  11. Neutrophils promote Alzheimer's disease-like pathology and cognitive decline via LFA-1 integrin.

    PubMed

    Zenaro, Elena; Pietronigro, Enrica; Della Bianca, Vittorina; Piacentino, Gennj; Marongiu, Laura; Budui, Simona; Turano, Ermanna; Rossi, Barbara; Angiari, Stefano; Dusi, Silvia; Montresor, Alessio; Carlucci, Tommaso; Nanì, Sara; Tosadori, Gabriele; Calciano, Lucia; Catalucci, Daniele; Berton, Giorgio; Bonetti, Bruno; Constantin, Gabriela

    2015-08-01

    Inflammation is a pathological hallmark of Alzheimer's disease, and innate immune cells have been shown to contribute to disease pathogenesis. In two transgenic models of Alzheimer's disease (5xFAD and 3xTg-AD mice), neutrophils extravasated and were present in areas with amyloid-β (Aβ) deposits, where they released neutrophil extracellular traps (NETs) and IL-17. Aβ42 peptide triggered the LFA-1 integrin high-affinity state and rapid neutrophil adhesion to integrin ligands. In vivo, LFA-1 integrin controlled neutrophil extravasation into the CNS and intraparenchymal motility. In transgenic Alzheimer's disease models, neutrophil depletion or inhibition of neutrophil trafficking via LFA-1 blockade reduced Alzheimer's disease-like neuropathology and improved memory in mice already showing cognitive dysfunction. Temporary depletion of neutrophils for 1 month at early stages of disease led to sustained improvements in memory. Transgenic Alzheimer's disease model mice lacking LFA-1 were protected from cognitive decline and had reduced gliosis. In humans with Alzheimer's disease, neutrophils adhered to and spread inside brain venules and were present in the parenchyma, along with NETs. Our results demonstrate that neutrophils contribute to Alzheimer's disease pathogenesis and cognitive impairment and suggest that the inhibition of neutrophil trafficking may be beneficial in Alzheimer's disease. PMID:26214837

  12. The Aminopeptidase CD13 Induces Homotypic Aggregation in Neutrophils and Impairs Collagen Invasion

    PubMed Central

    Fiddler, Christine A.; Parfrey, Helen; Cowburn, Andrew S.; Luo, Ding; Nash, Gerard B.; Murphy, Gillian; Chilvers, Edwin R.

    2016-01-01

    Aminopeptidase N (CD13) is a widely expressed cell surface metallopeptidase involved in the migration of cancer and endothelial cells. Apart from our demonstration that CD13 modulates the efficacy of tumor necrosis factor-α-induced apoptosis in neutrophils, no other function for CD13 has been ascribed in this cell. We hypothesized that CD13 may be involved in neutrophil migration and/or homotypic aggregation. Using purified human blood neutrophils we confirmed the expression of CD13 on neutrophils and its up-regulation by pro-inflammatory agonists. However, using the anti-CD13 monoclonal antibody WM-15 and the aminopeptidase enzymatic inhibitor bestatin we were unable to demonstrate any direct involvement of CD13 in neutrophil polarisation or chemotaxis. In contrast, IL-8-mediated neutrophil migration in type I collagen gels was significantly impaired by the anti-CD13 monoclonal antibodies WM-15 and MY7. Notably, these antibodies also induced significant homotypic aggregation of neutrophils, which was dependent on CD13 cross-linking and was attenuated by phosphoinositide 3-kinase and extracellular signal-related kinase 1/2 inhibition. Live imaging demonstrated that in WM-15-treated neutrophils, where homotypic aggregation was evident, the number of cells entering IL-8 impregnated collagen I gels was significantly reduced. These data reveal a novel role for CD13 in inducing homotypic aggregation in neutrophils, which results in a transmigration deficiency; this mechanism may be relevant to neutrophil micro-aggregation in vivo. PMID:27467268

  13. Defensins Impair Phagocytic Killing by Neutrophils in Biomaterial-Related Infection

    PubMed Central

    Kaplan, S. S.; Heine, R. P.; Simmons, R. L.

    1999-01-01

    The implantation of foreign material carries a risk of infection which frequently is resistant to all treatment short of removing the implant. We have previously shown that these materials activate neutrophils by contact, leading to production of oxygen free radicals accompanied by release of granule products. Such activation further results in depletion of local host defenses, including the capacity of biomaterial-activated neutrophils to kill bacteria. Among the granule products released from neutrophils are small cationic antibacterial peptides (human neutrophil peptides [HNP]) known as defensins. Here we tested the hypothesis that defensins, released from activated neutrophils onto the surface of biomaterials, might play a role in the deactivation of subsequent neutrophil populations. Incubation of neutrophils with purified HNP resulted in a dose-related impairment of stimulus-induced oxygen radical production and of phagocytic killing. Furthermore, fresh neutrophils added to biomaterial-associated neutrophils exhibited impaired phagocytic killing. This impairment could be abrogated by antibody to HNP but not by an irrelevant antibody. Taken together, these observations support the idea that neutrophils activated at a material surface can create, by means of HNP release, an environment hostile to their microbicidal function and that of their infiltrating brethren. PMID:10084997

  14. mTOR Mediates IL-23 Induction of Neutrophil IL-17 and IL-22 Production.

    PubMed

    Chen, Feidi; Cao, Anthony; Yao, Suxia; Evans-Marin, Heather L; Liu, Han; Wu, Wei; Carlsen, Eric D; Dann, Sara M; Soong, Lynn; Sun, Jiaren; Zhao, Qihong; Cong, Yingzi

    2016-05-15

    It has been shown recently that neutrophils are able to produce IL-22 and IL-17, which differentially regulate the pathogenesis of inflammatory bowel disease. However, it is still largely unknown how the neutrophil production of IL-22 and IL-17 is regulated, and their role in the pathogenesis of inflammatory bowel disease. In this study, we found that IL-23 promoted neutrophil production of IL-17 and IL-22. IL-23 stimulated the neutrophil expression of IL-23R as well as rorc and ahr. Retinoid acid receptor-related orphan receptor γ t and aryl-hydrocarbon receptor differentially regulated IL-23 induction of neutrophil IL-17 and IL-22. In addition, IL-23 induced the activation of mTOR in neutrophils. Blockade of the mTOR pathway inhibited IL-23-induced expression of rorc and ahr, as well as IL-17 and IL-22 production. By using a microbiota Ag-specific T cell-mediated colitis model, we demonstrated that depletion of neutrophils, as well as blockade of IL-22, resulted in a significant increase in the severity of colitis, thereby indicating a protective role of neutrophils and IL-22 in chronic colitis. Collectively, our data revealed that neutrophils negatively regulate microbiota Ag-specific T cell induction of colitis, and IL-23 induces neutrophil production of IL-22 and IL-17 through induction of rorc and ahr, which is mediated by the mTOR pathway. PMID:27067005

  15. Cigarette smoke (CS) and nicotine delay neutrophil spontaneous death via suppressing production of diphosphoinositol pentakisphosphate

    PubMed Central

    Xu, Yuanfu; Li, Hongmei; Bajrami, Besnik; Kwak, Hyunjeong; Cao, Shannan; Liu, Peng; Zhou, Jiaxi; Zhou, Yuan; Zhu, Haiyan; Ye, Keqiang; Luo, Hongbo R.

    2013-01-01

    Diphosphoinositol pentakisphosphate (InsP7), a higher inositol phosphate containing energetic pyrophosphate bonds, is beginning to emerge as a key cellular signaling molecule. However, the various physiological and pathological processes that involve InsP7 are not completely understood. Here we report that cigarette smoke (CS) extract and nicotine reduce InsP7 levels in aging neutrophils. This subsequently leads to suppression of Akt deactivation, a causal mediator of neutrophil spontaneous death, and delayed neutrophil death. The effect of CS extract and nicotine on neutrophil death can be suppressed by either directly inhibiting the PtdIns(3,4,5)P3/Akt pathway, or increasing InsP7 levels via overexpression of InsP6K1, an inositol hexakisphosphate (InsP6) kinase responsible for InsP7 production in neutrophils. Delayed neutrophil death contributes to the pathogenesis of CS-induced chronic obstructive pulmonary disease. Therefore, disruption of InsP6K1 augments CS-induced neutrophil accumulation and lung damage. Taken together, these results suggest that CS and nicotine delay neutrophil spontaneous death by suppressing InsP7 production and consequently blocking Akt deactivation in aging neutrophils. Modifying neutrophil death via this pathway provides a strategy and therapeutic target for the treatment of tobacco-induced chronic obstructive pulmonary disease. PMID:23610437

  16. Proteinase 3 and neutrophil elastase enhance inflammation in mice by inactivating antiinflammatory progranulin

    PubMed Central

    Kessenbrock, Kai; Fröhlich, Leopold; Sixt, Michael; Lämmermann, Tim; Pfister, Heiko; Bateman, Andrew; Belaaouaj, Azzaq; Ring, Johannes; Ollert, Markus; Fässler, Reinhard; Jenne, Dieter E.

    2008-01-01

    Neutrophil granulocytes form the body’s first line of antibacterial defense, but they also contribute to tissue injury and noninfectious, chronic inflammation. Proteinase 3 (PR3) and neutrophil elastase (NE) are 2 abundant neutrophil serine proteases implicated in antimicrobial defense with overlapping and potentially redundant substrate specificity. Here, we unraveled a cooperative role for PR3 and NE in neutrophil activation and noninfectious inflammation in vivo, which we believe to be novel. Mice lacking both PR3 and NE demonstrated strongly diminished immune complex–mediated (IC-mediated) neutrophil infiltration in vivo as well as reduced activation of isolated neutrophils by ICs in vitro. In contrast, in mice lacking just NE, neutrophil recruitment to ICs was only marginally impaired. The defects in mice lacking both PR3 and NE were directly linked to the accumulation of antiinflammatory progranulin (PGRN). Both PR3 and NE cleaved PGRN in vitro and during neutrophil activation and inflammation in vivo. Local administration of recombinant PGRN potently inhibited neutrophilic inflammation in vivo, demonstrating that PGRN represents a crucial inflammation-suppressing mediator. We conclude that PR3 and NE enhance neutrophil-dependent inflammation by eliminating the local antiinflammatory activity of PGRN. Our results support the use of serine protease inhibitors as antiinflammatory agents. PMID:18568075

  17. Leishmania amazonensis promastigotes induce and are killed by neutrophil extracellular traps

    PubMed Central

    Guimarães-Costa, Anderson B.; Nascimento, Michelle T. C.; Froment, Giselle S.; Soares, Rodrigo P. P.; Morgado, Fernanda N.; Conceição-Silva, Fátima; Saraiva, Elvira M.

    2009-01-01

    Neutrophils are short-lived leukocytes that die by apoptosis, necrosis, and NETosis. Upon death by NETosis, neutrophils release fibrous traps of DNA, histones, and granule proteins named neutrophil extracellular traps (NETs), which can kill bacteria and fungi. Inoculation of the protozoan Leishmania into the mammalian skin causes local inflammation with neutrophil recruitment. Here, we investigated the release of NETs by human neutrophils upon their interaction with Leishmania parasites and NETs' ability to kill this protozoan. The NET constituents DNA, elastase, and histones were detected in traps associated to promastigotes by immunofluorescence. Electron microscopy revealed that Leishmania was ensnared by NETs released by neutrophils. Moreover, Leishmania and its surface lipophosphoglycan induced NET release by neutrophils in a parasite number- and dose-dependent manner. Disruption of NETs by DNase treatment during Leishmania–neutrophil interaction increased parasite survival, evidencing NETs' leishmanicidal effect. Leishmania killing was also elicited by NET-rich supernatants from phorbol 12-myristate 13-acetate-activated neutrophils. Immunoneutralization of histone during Leishmania–neutrophil interaction partially reverted Leishmania killing, and purified histone killed the parasites. Meshes composed of DNA and elastase were evidenced in biopsies of human cutaneous leishmaniasis. NET is an innate response that might contribute to diminish parasite burden in the Leishmania inoculation site. PMID:19346483

  18. Myeloid conditional deletion and transgenic models reveal a threshold for the neutrophil survival factor Serpinb1.

    PubMed

    Burgener, Sabrina S; Baumann, Mathias; Basilico, Paola; Remold-O'Donnell, Eileen; Touw, Ivo P; Benarafa, Charaf

    2016-09-01

    Serpinb1 is an inhibitor of neutrophil granule serine proteases cathepsin G, proteinase-3 and elastase. One of its core physiological functions is to protect neutrophils from granule protease-mediated cell death. Mice lacking Serpinb1a (Sb1a-/-), its mouse ortholog, have reduced bone marrow neutrophil numbers due to cell death mediated by cathepsin G and the mice show increased susceptibility to lung infections. Here, we show that conditional deletion of Serpinb1a using the Lyz2-cre and Cebpa-cre knock-in mice effectively leads to recombination-mediated deletion in neutrophils but protein-null neutrophils were only obtained using the latter recombinase-expressing strain. Absence of Serpinb1a protein in neutrophils caused neutropenia and increased granule permeabilization-induced cell death. We then generated transgenic mice expressing human Serpinb1 in neutrophils under the human MRP8 (S100A8) promoter. Serpinb1a expression levels in founder lines correlated positively with increased neutrophil survival when crossed with Sb1a-/- mice, which had their defective neutrophil phenotype rescued in the higher expressing transgenic line. Using new conditional and transgenic mouse models, our study demonstrates the presence of a relatively low Serpinb1a protein threshold in neutrophils that is required for sustained survival. These models will also be helpful in delineating recently described functions of Serpinb1 in metabolism and cancer. PMID:27107834

  19. Characterization of neutrophil function in Papillon-Lefèvre syndrome.

    PubMed

    Roberts, Helen; White, Phillipa; Dias, Irundika; McKaig, Sarah; Veeramachaneni, Ratna; Thakker, Nalin; Grant, Melissa; Chapple, Iain

    2016-08-01

    Papillon-Lefévre syndrome is a rare, inherited, autosomal-recessive disease, characterized by palmoplantar keratosis and severe prepubertal periodontitis, leading to premature loss of all teeth. Papillon-Lefévre syndrome is caused by a mutation in the cathepsin C gene, resulting in complete loss of activity and subsequent failure to activate immune response proteins. Periodontitis in Papillon-Lefévre syndrome is thought to arise from failure to eliminate periodontal pathogens as a result of cathepsin C deficiency, although mechanistic pathways remain to be elucidated. The aim of this study was to characterize comprehensively neutrophil function in Papillon-Lefévre syndrome. Peripheral blood neutrophils were isolated from 5 patients with Papillon-Lefévre syndrome, alongside matched healthy control subjects. For directional chemotactic accuracy, neutrophils were exposed to the chemoattractants MIP-1α and fMLP and tracked by real-time videomicroscopy. Reactive oxygen species generation was measured by chemiluminescence. Neutrophil extracellular trap formation was assayed fluorometrically, and proinflammatory cytokine release was measured following overnight culture of neutrophils with relevant stimuli. Neutrophil serine protease deficiencies resulted in a reduced ability of neutrophils to chemotax efficiently and an inability to generate neutrophil extracellular traps. Neutrophil extracellular trap-bound proteins were also absent in Papillon-Lefévre syndrome, and Papillon-Lefévre syndrome neutrophils released higher levels of proinflammatory cytokines in unstimulated and stimulated conditions, and plasma cytokines were elevated. Notably, neutrophil chemoattractants MIP-1α and CXCL8 were elevated in Papillon-Lefévre syndrome neutrophils, as was reactive oxygen species formation. We propose that relentless recruitment and accumulation of hyperactive/reactive neutrophils (cytokines, reactive oxygen species) with increased tissue transit times into periodontal

  20. Characterization of Neutrophil Function in Human Cutaneous Leishmaniasis Caused by Leishmania braziliensis

    PubMed Central

    Conceição, Jacilara; Davis, Richard; Carneiro, Pedro Paulo; Giudice, Angela; Muniz, Aline C.; Wilson, Mary E.; Carvalho, Edgar M.; Bacellar, Olívia

    2016-01-01

    Infection with different Leishmania spp. protozoa can lead to a variety of clinical syndromes associated in many cases with inflammatory responses in the skin. Although macrophages harbor the majority of parasites throughout chronic infection, neutrophils are the first inflammatory cells to migrate to the site of infection. Whether neutrophils promote parasite clearance or exacerbate disease in murine models varies depending on the susceptible or resistant status of the host. Based on the hypothesis that neutrophils contribute to a systemic inflammatory state in humans with symptomatic L. braziliensis infection, we evaluated the phenotype of neutrophils from patients with cutaneous leishmaniasis (CL) during the course of L. braziliensis infection. After in vitro infection with L. braziliensis, CL patient neutrophils produced more reactive oxygen species (ROS) and higher levels of CXCL8 and CXCL9, chemokines associated with recruitment of neutrophils and Th1-type cells, than neutrophils from control healthy subjects (HS). Despite this, CL patient and HS neutrophils were equally capable of phagocytosis of L. braziliensis. There was no difference between the degree of activation of neutrophils from CL versus healthy subjects, assessed by CD66b and CD62L expression using flow cytometry. Of interest, these studies revealed that both parasite-infected and bystander neutrophils became activated during incubation with L. braziliensis. The enhanced ROS and chemokine production in neutrophils from CL patients reverted to baseline after treatment of disease. These data suggest that the circulating neutrophils during CL are not necessarily more microbicidal, but they have a more pro-inflammatory profile after parasite restimulation than neutrophils from healthy subjects. PMID:27167379

  1. The generation of neutrophils in the bone marrow is controlled by autophagy

    PubMed Central

    Rožman, S; Yousefi, S; Oberson, K; Kaufmann, T; Benarafa, C; Simon, H U

    2015-01-01

    Autophagy has been demonstrated to have an essential function in several cellular hematopoietic differentiation processes, for example, the differentiation of reticulocytes. To investigate the role of autophagy in neutrophil granulopoiesis, we studied neutrophils lacking autophagy-related (Atg) 5, a gene encoding a protein essential for autophagosome formation. Using Cre-recombinase mediated gene deletion, Atg5-deficient neutrophils showed no evidence of abnormalities in morphology, granule protein content, apoptosis regulation, migration, or effector functions. In such mice, however, we observed an increased proliferation rate in the neutrophil precursor cells of the bone marrow as well as an accelerated process of neutrophil differentiation, resulting in an accumulation of mature neutrophils in the bone marrow, blood, spleen, and lymph nodes. To directly study the role of autophagy in neutrophils, we employed an in vitro model of differentiating neutrophils that allowed modulating the levels of ATG5 expression, or, alternatively, intervening pharmacologically with autophagy-regulating drugs. We could show that autophagic activity correlated inversely with the rate of neutrophil differentiation. Moreover, pharmacological inhibition of p38 MAPK or mTORC1 induced autophagy in neutrophilic precursor cells and blocked their differentiation, suggesting that autophagy is negatively controlled by the p38 MAPK–mTORC1 signaling pathway. On the other hand, we obtained no evidence for an involvement of the PI3K-AKT or ERK1/2 signaling pathways in the regulation of neutrophil differentiation. Taken together, these findings show that, in contrast to erythropoiesis, autophagy is not essential for neutrophil granulopoiesis, having instead a negative impact on the generation of neutrophils. Thus, autophagy and differentiation exhibit a reciprocal regulation by the p38–mTORC1 axis. PMID:25323583

  2. Systemic hypoxia enhances exercise-mediated bactericidal and subsequent apoptotic responses in human neutrophils.

    PubMed

    Wang, Jong-Shyan; Chiu, Ya-Ting

    2009-10-01

    Phagocytosis and oxidative burst are critical host defense mechanisms in which neutrophils clear invading pathogens. Clearing phagocytic neutrophils by triggering apoptosis is an essential process for controlling inflammation. This study elucidates how various exercise bouts with/without hypoxia affected neutrophil bactericidal activity and subsequent apoptosis in humans. Fifteen sedentary males performed six distinct experimental tests in an air-conditioned normobaric hypoxia chamber: two normoxic exercises [strenuous exercise (SE; up to maximal O2 consumption) and moderate exercise (ME; 50% maximal O2 consumption for 30 min) while exposed to 21% O2], two hypoxic exercises (ME for 30 min while exposed to 12% and 15% O2), and two hypoxic exposures (resting for 30 min while exposed to 12% and 15% O2). The results showed that 1) plasma complement-C3a desArg/C4a desArg/C5a concentrations were increased, 2) expressions of L-selectin/lymphocyte functin-associated antigen-1/Mac-1/C5aR on neutrophils were enhanced, 3) phagocytosis of neutrophils to Esherichia coli and release of neutrophil oxidant products by E. coli were elevated, and 4) E. coli-induced phosphotidylserine exposure or caspase-3 activation of neutrophils were promoted immediately and 2 h after both 12% O2 exposure at rest and with ME as well as normoxic SE. Although neither normoxic ME nor breathing 15% O2 at rest influenced these complement- and neutrophil-related immune responses, ME at both 12% and 15% O2 resulted in enhanced complement activation in the blood, expressions of opsonic/complement receptors on neutrophils, or the bactericidal activity and apoptosis of neutrophils. Moreover, the increased neutrophil oxidant production and apoptosis by normoxic SE and hypoxic ME were ameliorated by treating neutrophils with diphenylene iodonium (a NADPH oxidase inhibitor). Therefore, we conclude that ME at 12-15% O2 enhances bactericidal capacity and facilitates the subsequent apoptosis of neutrophils. PMID

  3. At the Bedside: Neutrophil extracellular traps (NETs) as targets for biomarkers and therapies in autoimmune diseases.

    PubMed

    Barnado, April; Crofford, Leslie J; Oates, Jim C

    2016-02-01

    Neutrophil extracellular traps are associated with a unique form of cell death distinct from apoptosis or necrosis, whereby invading microbes are trapped and killed. Neutrophil extracellular traps can contribute to autoimmunity by exposing autoantigens, inducing IFN-α production, and activating the complement system. The association of neutrophil extracellular traps with autoimmune diseases, particularly systemic lupus erythematosus, will be reviewed. Increased neutrophil extracellular trap formation is seen in psoriasis, antineutrophil cytoplasmic antibody-associated vasculitis, antiphospholipid antibody syndrome rheumatoid arthritis, and systemic lupus erythematosus. Neutrophil extracellular traps may promote thrombus formation in antineutrophil cytoplasmic antibody-associated vasculitis and antiphospholipid antibody syndrome. In systemic lupus erythematosus, increased neutrophil extracellular trap formation is associated with increased disease activity and renal disease, suggesting that neutrophil extracellular traps could be a disease activity marker. Neutrophil extracellular traps can damage and kill endothelial cells and promote inflammation in atherosclerotic plaques, which may contribute to accelerated atherosclerosis in systemic lupus erythematosus. As neutrophil extracellular traps induce IFN-α production, measuring neutrophil extracellular traps may estimate IFN-α levels and identify which systemic lupus erythematosus patients have elevated levels and may be more likely to respond to emerging anti-IFN-α therapies. In addition to anti-IFN-α therapies, other novel agents, such as N-acetyl-cysteine, DNase I, and peptidylarginine deiminase inhibitor 4, target neutrophil extracellular traps. Neutrophil extracellular traps offer insight into the pathogenesis of autoimmune diseases and provide promise in developing disease markers and novel therapeutic agents in systemic lupus erythematosus. Priority areas for basic research based on clinical research

  4. Characterization of Neutrophil Function in Human Cutaneous Leishmaniasis Caused by Leishmania braziliensis.

    PubMed

    Conceição, Jacilara; Davis, Richard; Carneiro, Pedro Paulo; Giudice, Angela; Muniz, Aline C; Wilson, Mary E; Carvalho, Edgar M; Bacellar, Olívia

    2016-05-01

    Infection with different Leishmania spp. protozoa can lead to a variety of clinical syndromes associated in many cases with inflammatory responses in the skin. Although macrophages harbor the majority of parasites throughout chronic infection, neutrophils are the first inflammatory cells to migrate to the site of infection. Whether neutrophils promote parasite clearance or exacerbate disease in murine models varies depending on the susceptible or resistant status of the host. Based on the hypothesis that neutrophils contribute to a systemic inflammatory state in humans with symptomatic L. braziliensis infection, we evaluated the phenotype of neutrophils from patients with cutaneous leishmaniasis (CL) during the course of L. braziliensis infection. After in vitro infection with L. braziliensis, CL patient neutrophils produced more reactive oxygen species (ROS) and higher levels of CXCL8 and CXCL9, chemokines associated with recruitment of neutrophils and Th1-type cells, than neutrophils from control healthy subjects (HS). Despite this, CL patient and HS neutrophils were equally capable of phagocytosis of L. braziliensis. There was no difference between the degree of activation of neutrophils from CL versus healthy subjects, assessed by CD66b and CD62L expression using flow cytometry. Of interest, these studies revealed that both parasite-infected and bystander neutrophils became activated during incubation with L. braziliensis. The enhanced ROS and chemokine production in neutrophils from CL patients reverted to baseline after treatment of disease. These data suggest that the circulating neutrophils during CL are not necessarily more microbicidal, but they have a more pro-inflammatory profile after parasite restimulation than neutrophils from healthy subjects. PMID:27167379

  5. NADPH oxidase promotes neutrophil extracellular trap formation in pulmonary aspergillosis.

    PubMed

    Röhm, Marc; Grimm, Melissa J; D'Auria, Anthony C; Almyroudis, Nikolaos G; Segal, Brahm H; Urban, Constantin F

    2014-05-01

    NADPH oxidase is a crucial enzyme in antimicrobial host defense and in regulating inflammation. Chronic granulomatous disease (CGD) is an inherited disorder of NADPH oxidase in which phagocytes are defective in generation of reactive oxidant intermediates. Aspergillus species are ubiquitous, filamentous fungi, which can cause invasive aspergillosis, a major cause of morbidity and mortality in CGD, reflecting the critical role for NADPH oxidase in antifungal host defense. Activation of NADPH oxidase in neutrophils can be coupled to the release of proteins and chromatin that comingle in neutrophil extracellular traps (NETs), which can augment extracellular antimicrobial host defense. NETosis can be driven by NADPH oxidase-dependent and -independent pathways. We therefore undertook an analysis of whether NADPH oxidase was required for NETosis in Aspergillus fumigatus pneumonia. Oropharyngeal instillation of live Aspergillus hyphae induced neutrophilic pneumonitis in both wild-type and NADPH oxidase-deficient (p47(phox-/-)) mice which had resolved in wild-type mice by day 5 but progressed in p47(phox-/-) mice. NETs, identified by immunostaining, were observed in lungs of wild-type mice but were absent in p47(phox-/-) mice. Using bona fide NETs and nuclear chromatin decondensation as an early NETosis marker, we found that NETosis required a functional NADPH oxidase in vivo and ex vivo. In addition, NADPH oxidase increased the proportion of apoptotic neutrophils. Together, our results show that NADPH oxidase is required for pulmonary clearance of Aspergillus hyphae and generation of NETs in vivo. We speculate that dual modulation of NETosis and apoptosis by NADPH oxidase enhances antifungal host defense and promotes resolution of inflammation upon infection clearance. PMID:24549323

  6. Interplay between shear stress and adhesion on neutrophil locomotion.

    PubMed

    Smith, Lee A; Aranda-Espinoza, Helim; Haun, Jered B; Hammer, Daniel A

    2007-01-15

    Leukocyte locomotion over the lumen of inflamed endothelial cells is a critical step, following firm adhesion, in the inflammatory response. Once firmly adherent, the cell will spread and will either undergo diapedesis through individual vascular endothelial cells or will migrate to tight junctions before extravasating to the site of injury or infection. Little is known about the mechanisms of neutrophil spreading or locomotion, or how motility is affected by the physical environment. We performed a systematic study to investigate the effect of the type of adhesive ligand and shear stress on neutrophil motility by employing a parallel-plate flow chamber with reconstituted protein surfaces of E-selectin, E-selectin/PECAM-1, and E-selectin/ICAM-1. We find that the level and type of adhesive ligand and the shear rate are intertwined in affecting several metrics of migration, such as the migration velocity, random motility, index of migration, and the percentage of cells moving in the direction of flow. On surfaces with high levels of PECAM-1, there is a near doubling in random motility at a shear rate of 180 s(-1) compared to the motility in the absence of flow. On surfaces with ICAM-1, neutrophil random motility exhibits a weaker response to shear rate, decreasing slightly when shear rate is increased from static conditions to 180 s(-1), and is only slightly higher at 1000 s(-1) than in the absence of flow. The random motility increases with increasing surface concentrations of E-selectin and PECAM-1 under static and flow conditions. Our findings illustrate that the endothelium may regulate neutrophil migration in postcapillary venules through the presentation of various adhesion ligands at sites of inflammation. PMID:17071667

  7. Neutrophil extracellular traps promote deep vein thrombosis in mice

    PubMed Central

    Brill, A.; Fuchs, T.A.; Savchenko, A.S.; Thomas, G.M.; Martinod, K.; De Meyer, S.F.; Bhandari, A.A.; Wagner, D.D.

    2011-01-01

    Summary Background Upon activation, neutrophils can release nuclear material known as neutrophil extracellular traps (NETs), which were initially described as a part of antimicrobial defense. Extracellular chromatin was recently reported to be pro-thrombotic in vitro and to accumulate in plasma and thrombi of baboons with experimental deep vein thrombosis (DVT). Objective To explore the source and role of extracellular chromatin in DVT. Methods We used an established murine model of DVT induced by flow restriction (stenosis) in the inferior vena cava (IVC). Results We demonstrate that the levels of extracellular DNA increase in plasma after 6 h IVC stenosis, compared to sham-operated mice. Immunohistochemical staining revealed the presence of Gr-1-positive neutrophils in both red (RBC-rich) and white (platelet-rich) parts of thrombi. Citrullinated histone H3 (CitH3), an element of NETs’ structure, was present only in the red part of thrombi and was frequently associated with the Gr-1 antigen. Immunofluorescent staining of thrombi showed proximity of extracellular CitH3 and von Willebrand factor (VWF), a platelet adhesion molecule crucial for thrombus development in this model. Infusion of Deoxyribonuclease 1 (DNase 1) protected mice from DVT after 6 h and also 48 h IVC stenosis. Infusion of an unfractionated mixture of calf thymus histones increased plasma VWF and promoted DVT early after stenosis application. Conclusions Extracellular chromatin, likely originating from neutrophils, is a structural part of a venous thrombus and both the DNA scaffold and histones appear to contribute to the pathogenesis of DVT in mice. NETs may provide new targets for DVT drug development. PMID:22044575

  8. Protrusive and Contractile Forces of Spreading Human Neutrophils

    PubMed Central

    Henry, Steven J.; Chen, Christopher S.; Crocker, John C.; Hammer, Daniel A.

    2015-01-01

    Human neutrophils are mediators of innate immunity and undergo dramatic shape changes at all stages of their functional life cycle. In this work, we quantified the forces associated with a neutrophil’s morphological transition from a nonadherent, quiescent sphere to its adherent and spread state. We did this by tracking, with high spatial and temporal resolution, the cell’s mechanical behavior during spreading on microfabricated post-array detectors printed with the extracellular matrix protein fibronectin. Two dominant mechanical regimes were observed: transient protrusion and steady-state contraction. During spreading, a wave of protrusive force (75 ± 8 pN/post) propagates radially outward from the cell center at a speed of 206 ± 28 nm/s. Once completed, the cells enter a sustained contractile state. Although post engagement during contraction was continuously varying, posts within the core of the contact zone were less contractile (−20 ± 10 pN/post) than those residing at the geometric perimeter (−106 ± 10 pN/post). The magnitude of the protrusive force was found to be unchanged in response to cytoskeletal inhibitors of lamellipodium formation and myosin II-mediated contractility. However, cytochalasin B, known to reduce cortical tension in neutrophils, slowed spreading velocity (61 ± 37 nm/s) without significantly reducing protrusive force. Relaxation of the actin cortical shell was a prerequisite for spreading on post arrays as demonstrated by stiffening in response to jasplakinolide and the abrogation of spreading. ROCK and myosin II inhibition reduced long-term contractility. Function blocking antibody studies revealed haptokinetic spreading was induced by β2 integrin ligation. Neutrophils were found to moderately invaginate the post arrays to a depth of ∼1 μm as measured from spinning disk confocal microscopy. Our work suggests a competition of adhesion energy, cortical tension, and the relaxation of cortical tension is at play at the

  9. Association of microparticles and neutrophil activation with decompression sickness.

    PubMed

    Thom, Stephen R; Bennett, Michael; Banham, Neil D; Chin, Walter; Blake, Denise F; Rosen, Anders; Pollock, Neal W; Madden, Dennis; Barak, Otto; Marroni, Alessandro; Balestra, Costantino; Germonpre, Peter; Pieri, Massimo; Cialoni, Danilo; Le, Phi-Nga Jeannie; Logue, Christopher; Lambert, David; Hardy, Kevin R; Sward, Douglas; Yang, Ming; Bhopale, Veena B; Dujic, Zeljko

    2015-09-01

    Decompression sickness (DCS) is a systemic disorder, assumed due to gas bubbles, but additional factors are likely to play a role. Circulating microparticles (MPs)--vesicular structures with diameters of 0.1-1.0 μm--have been implicated, but data in human divers have been lacking. We hypothesized that the number of blood-borne, Annexin V-positive MPs and neutrophil activation, assessed as surface MPO staining, would differ between self-contained underwater breathing-apparatus divers suffering from DCS vs. asymptomatic divers. Blood was analyzed from 280 divers who had been exposed to maximum depths from 7 to 105 meters; 185 were control/asymptomatic divers, and 90 were diagnosed with DCS. Elevations of MPs and neutrophil activation occurred in all divers but normalized within 24 h in those who were asymptomatic. MPs, bearing the following proteins: CD66b, CD41, CD31, CD142, CD235, and von Willebrand factor, were between 2.4- and 11.7-fold higher in blood from divers with DCS vs. asymptomatic divers, matched for time of sample acquisition, maximum diving depth, and breathing gas. Multiple logistic regression analysis documented significant associations (P < 0.001) between DCS and MPs and for neutrophil MPO staining. Effect estimates were not altered by gender, body mass index, use of nonsteroidal anti-inflammatory agents, or emergency oxygen treatment and were modestly influenced by divers' age, choice of breathing gas during diving, maximum diving depth, and whether repetitive diving had been performed. There were no significant associations between DCS and number of MPs without surface proteins listed above. We conclude that MP production and neutrophil activation exhibit strong associations with DCS. PMID:26139218

  10. Chronic neutrophilic leukemia associated with chronic lymphocytic leukemia.

    PubMed

    Ito, K; Usuki, K; Iki, S; Urabe, A

    1998-07-01

    We report on an 83-year-old male with chronic neutrophilic leukemia (CNL) associated initially with IgM monoclonal gammopathy and later with B cell chronic lymphocytic leukemia (CLL), in which the clone differed from that of the preceding monoclonal gammopathy. At initial presentation, the patient had hepatosplenomegaly, leukocytosis (29100 x 10(6)/l) with an increase of mature neutrophils (83%), 20q- chromosomal abnormality, an increased leukocyte alkaline phosphatase score, elevated serum levels of vitamin B12 and uric acid, a low serum level of granulocyte colony-stimulating factor, and high serum IgM (1015 mg/dl: lambda type M protein). Thereafter, lymphocytosis developed gradually. Three years after the initial presentation, the patient had no serum M protein, but showed evidence of leukocytosis (36600 x 10(6)/l) with 20q- chromosomal abnormality and an increase of mature neutrophils (51%) and small lymphocytes (43.5%), CD5+/19+/20+/HLA-DR+ and surface membrane IgM+/D+/kappa+. Gene rearrangements of the immunoglobulin heavy and kappa light chains were also present. To our knowledge, this is the first reported case of CNL associated with CLL. PMID:9713172

  11. Monoclonal gammopathy of undetermined significance disguised as chronic neutrophilic leukemia.

    PubMed

    Hartley, M A; Sokol, L; Caceres, G; Hussein, M A; List, A; Pinilla-Ibarz, J

    2010-01-01

    We encountered a 60-year-old woman with a medical history of diabetes mellitus, osteoporosis, peripheral vascular disease, and hypertension who had earlier presented at an outside facility with knee pain, which led to a finding of elevated neutrophil count of 35×10(9)/L. Because she was otherwise asymptomatic but continued showing elevated neutrophil levels, she sought a second opinion at our facility. Serum protein immunoelectrophoresis with immunofixation revealed an immunoglobulin A (IgA)-κ monoclonal gammopathy concentration of 1305 mg/dL (normal 80-350 mg/dL) but relatively normal concentrations of IgG of 840 mg/dL (620-1400 mg/dL) and IgM of 36 mg/dL (45-250 mg/dL). Using clonal analysis, we found a polyclonal expression pattern in all cell types analyzed. Comprehensive work-up for multiple myeloma and infectious etiology of neutrophilia was negative. We concluded that our patient's neutrophilia may have been due to the underlying monoclonal gammopathy. This is the first case in the literature of a patient with monoclonal gammopathy of undetermined significance presenting with chronic neutrophilia, mimicking chronic neutrophilic leukemia (CNL). Patients with CNL have a poor prognosis; therefore, it is important to distinguish diagnostically between CNL and reactive neutrophilia. PMID:21415944

  12. Activation of human neutrophils by mycobacterial phenolic glycolipids

    PubMed Central

    Fäldt, J; Dahlgren, C; Karlsson, A; Ahmed, A M S; Minnikin, D E; Ridell, M

    1999-01-01

    The interaction between mycobacterial phenolic glycolipids (PGLs) and phagocytes was studied. Human neutrophils were allowed to interact with each of four purified mycobacterial PGLs and the neutrophil production of reactive oxygen metabolites was followed kinetically by luminol-/isoluminol-amplified chemiluminescence. The PGLs from Mycobacterium tuberculosis and Mycobacterium kansasii, respectively, were shown to stimulate the production of oxygen metabolites, while PGLs from Mycobacterium marinum and Mycobacterium bovis BCG, respectively, were unable to induce an oxidative response. Periodate treatment of the M. tuberculosis PGL decreased the production of oxygen radicals, showing the importance of the PGL carbohydrate moiety for the interaction. The activation, however, could not be inhibited by rhamnose or fucose, indicating a complex interaction which probably involves more than one saccharide unit. This is in line with the fact that the activating PGLs from M. tuberculosis and M. kansasii contain tri- and tetrasaccharides, respectively, while the nonactivating PGLs from M. marinum and M. bovis BCG each contain a monosaccharide. The complement receptor 3 (CR3) has earlier been shown to be of importance for the phagocyte binding of mycobacteria, but did not appear to be involved in the activation of neutrophils by PGLs. The subcellular localization of the reactive oxygen metabolites formed was related to the way in which the glycolipids were presented to the cells. PMID:10540187

  13. Effect of glutamine supplementation on neutrophil function in male judoists.

    PubMed

    Sasaki, Eiji; Umeda, Takashi; Takahashi, Ippei; Arata, Kojima; Yamamoto, Yousuke; Tanabe, Masaru; Oyamada, Kazuyuki; Hashizume, Erika; Nakaji, Shigeyuki

    2013-01-01

    Glutamine is an important amino acid for immune function. Though high intensity and prolonged exercise decreases plasma glutamine concentration and causes immune suppression, the relationship between neutrophil functions and glutamine has not yet been found. The purpose of this study was to investigate the impacts of glutamine supplementation on neutrophil function. Twenty-six male university judoists were recruited. Subjects were classified into glutamine and control groups. The glutamine group ingested 3000 mg of glutamine per day and the control group ingested placebo for 2 weeks. Examinations were performed at the start of preunified loading exercise (pre-ULE), then 1 and 2 weeks after ULE (post-ULE). Reactive oxygen species (ROS) production, phagocytic activity, serum opsonic activity and serum myogenic enzymes were measured. Differences between the levels obtained in pre-ULE and post-ULE for the two groups were compared. In the glutamine group, ROS production activity increased 1 week after ULE, whereas it was not observed in the control group (P < 0.001). Though myogenic enzymes increased significantly after ULE (P < 0.001), the glutamine group remained unchanged by supplementation during ULE. Glutamine supplementation has prevented excessive muscle damage and suppression of neutrophil function, especially in ROS production activity, even during an intensive training period. PMID:23348981

  14. Hyposialylated α1-acid glycoprotein inhibits phagocytosis of feline neutrophils.

    PubMed

    Rossi, G; Capitani, L; Ceciliani, F; Restelli, L; Paltrinieri, S

    2013-10-01

    Feline α1-acid glycoprotein (fAGP) modifies both its serum concentration and its glycan moiety during diseases. fAGP is hyposialylated in cats with feline infectious peritonitis (FIP), but not in clinically healthy cats or in cats with other diseases. This study was aimed to determine whether hyposialylated fAGP influences phagocytosis. A flow cytometric method based on ingestion of fluoresceinated bacteria and adapted to feline blood was used to assess phagocytosis of leukocytes incubated with 'non-pathological' fAGP (purified from sera with normal concentrations of AGP) and 'pathological' fAGP (purified from sera with >1.5mg/mL hyposialylated AGP). The flow cytometric method provided repeatable results for neutrophils (coefficients of variations, CVs <15%) but not for monocytes (CVs>20%) which had also a high individual variability. Compared with saline solution and with non-pathological fAGP, pathological fAGP significantly decreased phagocytosis in neutrophils and monocytes. This study demonstrated that hyposialylated fAGP down-regulates the phagocytic activity of feline neutrophils. PMID:23726663

  15. Neutrophil functions and serum IgG in growing foals.

    PubMed

    Demmers, S; Johannisson, A; Gröndahl, G; Jensen-Waern, M

    2001-11-01

    The aim of this study was to investigate the phagocytic and killing capacities as well as expression of CD18 of neutrophils obtained from healthy foals from birth to age 8 months. Blood was taken from 6 Standardbred foals at 7 time-points between ages 2-56 days and thereafter once a month. For comparison, cells from 16 mature horses were evaluated. Neutrophil phagocytosis of yeast cells was assessed by flow cytometry after opsonisation with mature pooled serum, autologous serum or anti-yeast IgG. The killing capacity of the neutrophils, as indicated by the oxidative burst, was monitored by chemiluminescence. Serum IgG concentration was measured by radial immunodiffusion. In addition to clinical examination, the amount of serum amyloid A and the total leucocyte count were used as markers for infection. The phagocytic ability was impaired until age 3 weeks, when autologous serum was used as opsonin. Killing capacity was also low initially but, from 3 months onwards, chemiluminescence values were equal to or higher than in mature horses. Serum IgG decreased from 10 g/l at 2 days to 5 g/l at 2 months and then increased gradually to 10 g/l at the end of the study. These findings may in part explain the increased susceptibility to bacterial infections in young horses. PMID:11770989

  16. Neutrophilic bacterial meningitis: pathology and etiologic diagnosis of fatal cases.

    PubMed

    Guarner, Jeannette; Liu, Lindy; Bhatnagar, Julu; Jones, Tara; Patel, Mitesh; DeLeon-Carnes, Marlene; Zaki, Sherif R

    2013-08-01

    The frequency of fatalities due to acute bacterial meningitis has decreased significantly due to vaccinations, early diagnoses, and treatments. We studied brain tissues of patients with fatal neutrophilic meningitis referred to the Centers for Disease Control for etiologic diagnosis from 2000-2009 to highlight aspects of the disease that may be preventable or treatable. Demographic, clinical, and laboratory data were extracted from records. Of 117 cases in the database with a diagnosis of meningitis or meningoencephalitis, 39 had neutrophilic inflammation in the meninges. Inflammatory cells infiltrated the superficial cortex in 16 of 39 (41%) cases. Bacteria were found using Gram and bacterial silver stains in 72% of cases, immunohistochemistry in 69% (including two cases where the meningococcus was found outside the meninges), and PCR in 74%. Streptococcus pneumoniae was the cause of the meningitis in 14 patients and Neisseria meningitidis in 9. In addition, Streptococcus spp. were found to be the cause in six cases, while Staphylococcus aureus, Staphylococcus spp., Enterococcus spp., and Fusobacterium were the cause of one case each. There were six cases in which no specific etiological agent could be determined. The mean age of the patients with S. pneumoniae was 39 years (range 0-65), with N. meningitidis was 19 years (range 7-51), whereas that for all others was 31 years (range 0-68). In summary, our study shows that S. pneumoniae continues to be the most frequent cause of fatal neutrophilic bacterial meningitis followed by N. meningitidis, both vaccine preventable diseases. PMID:23558577

  17. Role of gelsolin in actin depolymerization of adherent human neutrophils.

    PubMed Central

    Wang, J S; Coburn, J P; Tauber, A I; Zaner, K S

    1997-01-01

    Human neutrophils generally function adherent to an extracellular matrix. We have previously reported that upon adhesion to laminin- or fibronectin-coated, but not uncoated, plastic there is a depolymerization of actin in neutrophils. This phenomenon was not affected by inhibitors of the more well-studied components of the signal transduction pathway, specifically, pertussis toxin, an inhibitor of G-proteins, H-7 or staurosporine, inhibitors of protein kinase C, or herbimycin A, an inhibitor of nonreceptor tyrosine kinase. We therefore focused our attention on actin-binding proteins and measured the changes in the partitioning of gelsolin between the Triton X-100-soluble and -insoluble cellular fractions which occur upon neutrophil adhesion by means of quantitating anti-gelsolin antibody binding to aliquots of these fractions. It was found that approximately 90% of the total cellular gelsolin was found in the Triton X-100-soluble fraction in suspended cells, but that upon adherence to either fibronectin- or laminin-coated plastic about 40% of the soluble gelsolin could be detected in the insoluble fraction. This effect was not observed in cells adherent to uncoated plastic, wherein more than 90% of the gelsolin was found in the soluble fraction. Results of immunofluorescence microscopy of these cell preparations was consistent with this data. A gelsolin translocation to the insoluble cellular actin network may account for a part of the observed actin depolymerization. Images PMID:9017600

  18. Localizing the lipid products of PI3Kγ in neutrophils

    PubMed Central

    Norton, Laura; Lindsay, Yvonne; Deladeriere, Arnaud; Chessa, Tamara; Guillou, Hervé; Suire, Sabine; Lucocq, John; Walker, Simon; Andrews, Simon; Segonds-Pichon, Anne; Rausch, Oliver; Finan, Peter; Sasaki, Takehiko; Du, Cheng-Jin; Bretschneider, Till; Ferguson, G. John; Hawkins, Phillip T.; Stephens, Len

    2016-01-01

    Class I phosphoinositide 3-kinases (PI3Ks) are important regulators of neutrophil migration in response to a range of chemoattractants. Their primary lipid products PtdIns(3,4,5)P3 and PtdIns(3,4)P2 preferentially accumulate near to the leading edge of migrating cells and are thought to act as an important cue organizing molecular and morphological polarization. We have investigated the distribution and accumulation of these lipids independently in mouse neutrophils using eGFP-PH reportersand electron microscopy (EM). We found that authentic mouse neutrophils rapidly polarized their Class I PI3K signalling, as read-out by eGFP-PH reporters, both at the up-gradient leading edge in response to local stimulation with fMLP as well as spontaneously and randomly in response to uniform stimulation. EM studies revealed these events occurred at the plasma membrane, were dominated by accumulation of PtdIns(3,4,5)P3, but not PtdIns(3,4)P2, and were dependent on PI3Kγ and its upstream activation by both Ras and Gβγs. PMID:26596865

  19. Localizing the lipid products of PI3Kγ in neutrophils.

    PubMed

    Norton, Laura; Lindsay, Yvonne; Deladeriere, Arnaud; Chessa, Tamara; Guillou, Hervé; Suire, Sabine; Lucocq, John; Walker, Simon; Andrews, Simon; Segonds-Pichon, Anne; Rausch, Oliver; Finan, Peter; Sasaki, Takehiko; Du, Cheng-Jin; Bretschneider, Till; Ferguson, G John; Hawkins, Phillip T; Stephens, Len

    2016-01-01

    Class I phosphoinositide 3-kinases (PI3Ks) are important regulators of neutrophil migration in response to a range of chemoattractants. Their primary lipid products PtdIns(3,4,5)P3 and PtdIns(3,4)P2 preferentially accumulate near to the leading edge of migrating cells and are thought to act as an important cue organizing molecular and morphological polarization. We have investigated the distribution and accumulation of these lipids independently in mouse neutrophils using eGFP-PH reportersand electron microscopy (EM). We found that authentic mouse neutrophils rapidly polarized their Class I PI3K signalling, as read-out by eGFP-PH reporters, both at the up-gradient leading edge in response to local stimulation with fMLP as well as spontaneously and randomly in response to uniform stimulation. EM studies revealed these events occurred at the plasma membrane, were dominated by accumulation of PtdIns(3,4,5)P3, but not PtdIns(3,4)P2, and were dependent on PI3Kγ and its upstream activation by both Ras and Gβγs. PMID:26596865

  20. Platelets: New Bricks in the Building of Neutrophil Extracellular Traps

    PubMed Central

    Carestia, Agostina; Kaufman, Tomas; Schattner, Mirta

    2016-01-01

    In addition to being key elements in hemostasis and thrombosis, platelets have an important role in the inflammatory and innate immune response. This activity is associated with their capability to recognize pathogens through the expression of toll-like receptors, the secretion of various cytokines, chemokines, and growth factors stored within their granules, and the expression of cell adhesion molecules that allows interaction with other immune cells, mainly neutrophils and monocytes. As part of the first line of defense, neutrophils control invading pathogens by phagocytosis, the release of antimicrobial proteins during degranulation, or through the formation of web-like structures named neutrophil extracellular traps (NETs). NETs are formed by chromatin, proteases, and antimicrobial proteins, and their main function is to trap and kill bacteria, virus, and fungi, avoiding their dissemination. Besides microorganisms, NET formation is also triggered by proinflammatory molecules and platelets. The uncontrolled formation of NETs might exert tissue damage and has been involved in a pathogenic mechanism of autoimmune and prothrombotic clinical conditions. In this review, we discuss the role of platelets in NET generation highlighting the mediators, stimuli, and molecular mechanisms involved in this phenomenon, both in human and murine models. PMID:27458459

  1. Homer3 regulates the establishment of neutrophil polarity.

    PubMed

    Wu, Julie; Pipathsouk, Anne; Keizer-Gunnink, A; Fusetti, F; Alkema, W; Liu, Shanshan; Altschuler, Steven; Wu, Lani; Kortholt, Arjan; Weiner, Orion D

    2015-05-01

    Most chemoattractants rely on activation of the heterotrimeric G-protein Gαi to regulate directional cell migration, but few links from Gαi to chemotactic effectors are known. Through affinity chromatography using primary neutrophil lysate, we identify Homer3 as a novel Gαi2-binding protein. RNA interference-mediated knockdown of Homer3 in neutrophil-like HL-60 cells impairs chemotaxis and the establishment of polarity of phosphatidylinositol 3,4,5-triphosphate (PIP3) and the actin cytoskeleton, as well as the persistence of the WAVE2 complex. Most previously characterized proteins that are required for cell polarity are needed for actin assembly or activation of core chemotactic effectors such as the Rac GTPase. In contrast, Homer3-knockdown cells show normal magnitude and kinetics of chemoattractant-induced activation of phosphoinositide 3-kinase and Rac effectors. Chemoattractant-stimulated Homer3-knockdown cells also exhibit a normal initial magnitude of actin polymerization but fail to polarize actin assembly and intracellular PIP3 and are defective in the initiation of cell polarity and motility. Our data suggest that Homer3 acts as a scaffold that spatially organizes actin assembly to support neutrophil polarity and motility downstream of GPCR activation. PMID:25739453

  2. Biological reactivity and biomarkers of the neutrophil oxidant, hypochlorous acid.

    PubMed

    Winterbourn, Christine C

    2002-12-27

    Free radicals or reactive oxygen species are thought to contribute to the pathology of many diseases. These include inflammatory conditions, where neutrophils accumulate in large numbers and are stimulated to produce superoxide and other reactive oxidants. Hypochlorous acid (HOCl), produced by myeloperoxidase-catalysed oxidation of chloride by hydrogen peroxide, is the major strong oxidant generated by these cells. Neutrophil-mediated injury may also be important in toxicology when an initial insult is followed by an inflammatory response. It is important to characterize the inflammatory component of such injury and the extent to which it involves reactive oxidants. On the one hand, this requires an understanding of how neutrophil oxidants react with cells and tissue constituents. On the other, specific biomarkers are needed so that oxidative damage can be quantified in clinical material and related to disease severity. This presentation considers biologically relevant reactions of HOCl and the biomarker assays that can be applied to probing the pathological role of myeloperoxidase and its products. PMID:12505315

  3. Homer3 regulates the establishment of neutrophil polarity

    PubMed Central

    Wu, Julie; Pipathsouk, Anne; Keizer-Gunnink, A.; Fusetti, F.; Alkema, W.; Liu, Shanshan; Altschuler, Steven; Wu, Lani; Kortholt, Arjan; Weiner, Orion D.

    2015-01-01

    Most chemoattractants rely on activation of the heterotrimeric G-protein Gαi to regulate directional cell migration, but few links from Gαi to chemotactic effectors are known. Through affinity chromatography using primary neutrophil lysate, we identify Homer3 as a novel Gαi2-binding protein. RNA interference–mediated knockdown of Homer3 in neutrophil-like HL-60 cells impairs chemotaxis and the establishment of polarity of phosphatidylinositol 3,4,5-triphosphate (PIP3) and the actin cytoskeleton, as well as the persistence of the WAVE2 complex. Most previously characterized proteins that are required for cell polarity are needed for actin assembly or activation of core chemotactic effectors such as the Rac GTPase. In contrast, Homer3-knockdown cells show normal magnitude and kinetics of chemoattractant-induced activation of phosphoinositide 3-kinase and Rac effectors. Chemoattractant-stimulated Homer3-knockdown cells also exhibit a normal initial magnitude of actin polymerization but fail to polarize actin assembly and intracellular PIP3 and are defective in the initiation of cell polarity and motility. Our data suggest that Homer3 acts as a scaffold that spatially organizes actin assembly to support neutrophil polarity and motility downstream of GPCR activation. PMID:25739453

  4. Therapeutic exercise attenuates neutrophilic lung injury and skeletal muscle wasting.

    PubMed

    Files, D Clark; Liu, Chun; Pereyra, Andrea; Wang, Zhong-Min; Aggarwal, Neil R; D'Alessio, Franco R; Garibaldi, Brian T; Mock, Jason R; Singer, Benjamin D; Feng, Xin; Yammani, Raghunatha R; Zhang, Tan; Lee, Amy L; Philpott, Sydney; Lussier, Stephanie; Purcell, Lina; Chou, Jeff; Seeds, Michael; King, Landon S; Morris, Peter E; Delbono, Osvaldo

    2015-03-11

    Early mobilization of critically ill patients with the acute respiratory distress syndrome (ARDS) has emerged as a therapeutic strategy that improves patient outcomes, such as the duration of mechanical ventilation and muscle strength. Despite the apparent efficacy of early mobility programs, their use in clinical practice is limited outside of specialized centers and clinical trials. To evaluate the mechanisms underlying mobility therapy, we exercised acute lung injury (ALI) mice for 2 days after the instillation of lipopolysaccharides into their lungs. We found that a short duration of moderate intensity exercise in ALI mice attenuated muscle ring finger 1 (MuRF1)-mediated atrophy of the limb and respiratory muscles and improved limb muscle force generation. Exercise also limited the influx of neutrophils into the alveolar space through modulation of a coordinated systemic neutrophil chemokine response. Granulocyte colony-stimulating factor (G-CSF) concentrations were systemically reduced by exercise in ALI mice, and in vivo blockade of the G-CSF receptor recapitulated the lung exercise phenotype in ALI mice. Additionally, plasma G-CSF concentrations in humans with acute respiratory failure (ARF) undergoing early mobility therapy showed greater decrements over time compared to control ARF patients. Together, these data provide a mechanism whereby early mobility therapy attenuates muscle wasting and limits ongoing alveolar neutrophilia through modulation of systemic neutrophil chemokines in lung-injured mice and humans. PMID:25761888

  5. Neutrophil Development, Migration, and Function in Teleost Fish

    PubMed Central

    Havixbeck, Jeffrey J.; Barreda, Daniel R.

    2015-01-01

    It is now widely recognized that neutrophils are sophisticated cells that are critical to host defense and the maintenance of homeostasis. In addition, concepts such as neutrophil plasticity are helping to define the range of phenotypic profiles available to cells in this group and the physiological conditions that contribute to their differentiation. Herein, we discuss key features of the life of a teleost neutrophil including their development, migration to an inflammatory site, and contributions to pathogen killing and the control of acute inflammation. The potent anti-microbial mechanisms elicited by these cells in bony fish are a testament to their long-standing evolutionary contributions in host defense. In addition, recent insights into their active roles in the control of inflammation prior to induction of apoptosis highlight their importance to the maintenance of host integrity in these early vertebrates. Overall, our goal is to summarize recent progress in our understanding of this cell type in teleost fish, and to provide evolutionary context for the contributions of this hematopoietic lineage in host defense and an efficient return to homeostasis following injury or infection. PMID:26561837

  6. Yersinia enterocolitica-mediated degradation of neutrophil extracellular traps (NETs).

    PubMed

    Möllerherm, Helene; Neumann, Ariane; Schilcher, Katrin; Blodkamp, Stefanie; Zeitouni, Nathalie E; Dersch, Petra; Lüthje, Petra; Naim, Hassan Y; Zinkernagel, Annelies S; von Köckritz-Blickwede, Maren

    2015-12-01

    Neutrophil extracellular trap (NET) formation is described as a tool of the innate host defence to fight against invading pathogens. Fibre-like DNA structures associated with proteins such as histones, cell-specific enzymes and antimicrobial peptides are released, thereby entrapping invading pathogens. It has been reported that several bacteria are able to degrade NETs by nucleases and thus evade the NET-mediated entrapment. Here we studied the ability of three different Yersinia serotypes to induce and degrade NETs. We found that the common Yersinia enterocolitica serotypes O:3, O:8 and O:9 were able to induce NETs in human blood-derived neutrophils during the first hour of co-incubation. At later time points, the NET amount was reduced, suggesting that degradation of NETs has occurred. This was confirmed by NET degradation assays with phorbol-myristate-acetate-pre-stimulated neutrophils. In addition, we found that the Yersinia supernatants were able to degrade purified plasmid DNA. The absence of Ca(2+) and Mg(2+) ions, but not that of a protease inhibitor cocktail, completely abolished NET degradation. We therefore postulate that Y. enterocolitica produces Ca(2+)/Mg(2+)-dependent NET-degrading nucleases as shown for some Gram-positive pathogens. PMID:26459885

  7. Phosphoproteins and the activation of the neutrophil respiratory burst oxidase

    SciTech Connect

    Okamura, N.; Curnutte, J.T.; Babior, B.M.

    1987-05-01

    The respiratory burst oxidase is a neutrophil enzyme that converts oxygen to O/sub 2//sup -/. It is dormant in resting cells but is activated when the cells are exposed to phorbol myristate acetate (PMA). PMA also induces the incorporation of /sup 32/P into certain neutrophil proteins. To determine whether phosphorylation of these proteins is related to oxidase activation, protein phosphorylation was studied in patients with chronic granulomatous disease (GCD), a group of inherited conditions in which oxidase activity is missing. In normals, neutrophil activation by PMA is associated with the phosphorylation inter alia of 48K proteins at pI 7.3 and 7.8. There is also inconstant phosphorylation of a 48K protein at pI 6.8. In 4 patients with X-linked chronic granulomatous disease (CGD), phosphorylation of pp48/6.8 and pp48/7.3 was absent, while in autosomal recessive CGD, phosphorylation of all 3 of these proteins was absent in 3 patients and significantly diminished in a fourth. These results suggest that the phosphorylation of these proteins is related to the activation of the respiratory burst oxidase. By peptide mapping, these 3 proteins appear to consist of a single peptide species whose pI variability may be due to post-translational modification. The only phosphoamino acid found in pp48/7.3 was phosphoserine.

  8. Neutrophil elastase promotes myofibroblast differentiation in lung fibrosis

    PubMed Central

    Gregory, Alyssa D.; Kliment, Corrine R.; Metz, Heather E.; Kim, Kyoung-Hee; Kargl, Julia; Agostini, Brittani A.; Crum, Lauren T.; Oczypok, Elizabeth A.; Oury, Tim A.; Houghton, A. McGarry

    2015-01-01

    IPF is a progressive lung disorder characterized by fibroblast proliferation and myofibroblast differentiation. Although neutrophil accumulation within IPF lungs has been negatively correlated with outcomes, the role played by neutrophils in lung fibrosis remains poorly understood. We have demonstrated previously that NE promotes lung cancer cell proliferation and hypothesized that it may have a similar effect on fibroblasts. In the current study, we show that NE−/− mice are protected from asbestos-induced lung fibrosis. NE−/− mice displayed reduced fibroblast and myofibroblast content when compared with controls. NE directly both lung fibroblast proliferation and myofibroblast differentiation in vitro, as evidenced by proliferation assays, collagen gel contractility assays, and αSMA induction. Furthermore, αSMA induction occurs in a TGF-β-independent fashion. Treatment of asbestos-recipient mice with ONO-5046, a synthetic NE antagonist, reduced hydroxyproline content. Thus, the current study points to a key role for neutrophils and NE in the progression of lung fibrosis. Lastly, the study lends rationale to use of NE-inhibitory approaches as a novel therapeutic strategy for patients with lung fibrosis. PMID:25743626

  9. Porphyromonas gingivalis infection of oral epithelium inhibits neutrophil transepithelial migration.

    PubMed Central

    Madianos, P N; Papapanou, P N; Sandros, J

    1997-01-01

    Periodontal diseases are inflammatory disorders caused by microorganisms of dental plaque that colonize the gingival sulcus and, subsequently, the periodontal pocket. As in other mucosal infections, the host response to plaque bacteria is characterized by an influx of polymorphonuclear leukocytes (PMNs) to the gingival crevice. Neutrophil migration through the epithelial lining of the gingival pocket is thought to be the first line of defense against plaque bacteria. In order to model this phenomenon in vitro, we used the oral epithelial cell line KB and human PMNs in the Transwell system and examined the impact of Porphyromonas gingivalis-epithelial cell interactions on subsequent PMN transepithelial migration. We demonstrate here that P. gingivalis infection of oral epithelial cells failed to trigger transmigration of PMNs. Furthermore, it significantly inhibited neutrophil transmigration actively induced by stimuli such as N-formylmethionyl leucyl phenylalanine, interleukin-8 (IL-8), and the intestinal pathogen enterotoxigenic Escherichia coli. The ability of P. gingivalis to block PMN transmigration was strongly positively correlated with the ability to adhere to and invade epithelial cells. In addition, P. gingivalis attenuated the production of IL-8 and the expression of intercellular adhesion molecule 1 by epithelial cells. The ability of P. gingivalis to block neutrophil migration across an intact epithelial barrier may critically impair the potential of the host to confront the bacterial challenge and thus may play an important role in the pathogenesis of periodontal disease. PMID:9316996

  10. Osmotically induced cytosolic free Ca(2+) changes in human neutrophils.

    PubMed

    Morris, M R; Doull, I J; Hallett, M B

    2001-02-01

    Cytosolic free Ca(2+) concentration in neutrophils was measured by ratiometric fluorometry of intracellular fura2. Increasing the extracellular osmolarity, by either NaCl (300-600 mM) or sucrose (600-1200 mM), caused a rise in cytosolic free Ca(2+) (Delta(max) approximately equal to 600 nM). This was not due to cell lysis as the cytosolic free Ca(2+) concentration was reversed by restoration of isotonicity and a second rise in cytosolic free Ca(2+) could be provoked by repeating the change in extracellular osmolarity. Furthermore, the rise in cytosolic free Ca(2+) concentration occurred in the absence of extracellular Ca(2+), demonstrating that release of intracellular fura2 into the external medium did not occur. The osmotically-induced rise in cytosolic free Ca(2+) was not inhibited by either the phospholipase C-inhibitor U73122, or the microfilament inhibitor cytochalasin B, suggesting that neither signalling via inositol tris-phosphate or the cytoskeletal system were involved. However, the rise in cytosolic free Ca(2+) may have resulted from a reduction in neutrophil water volume in hyperosmotic conditions. As these rises in cytosolic Ca(2+) (Delta(max) approximately equal to 600 nM) were large enough to provoke changes in neutrophil activity, we propose that conditions which removes cell water may similarly elevate cytosolic free Ca(2+) to physiologically important levels. PMID:11341979

  11. Inhibition of cytochalasin-primed neutrophils by hyperosmolarity.

    PubMed

    Giambelluca, Miriam S; Gende, Oscar A

    2008-10-01

    Experimental and clinical investigations using hyperosmotic solutions for resuscitation of hemorrhagic shock demonstrated modulation of the inflammatory response. Decreased postinjury hyperinflammation has been attributed to a reduction in neutrophil-mediated tissue damage. This study shows that cytoskeletal disruption with cytochalasinB did not reverse or prevent the inhibitory effect of an osmolarity increase on the neutrophil cytotoxic response to a formyl peptide. In cytochalasin-primed neutrophils, the hyperosmolarity-dependent inhibition promptly reversed after returning to iso-osmotic levels. Paradoxically, an increase in osmolarity after stimulation produced an increase in the release of reactive oxygen species to the extracellular medium. The inhibitory effect of hyperosmotic NaCl can be reproduced by solutions of similar osmolarity containing N-methyl glucamine or sucrose, but solutions containing mannitol allowed an almost complete response to N-formyl methionyl leucyl phenylalanine. The effects on the release of reactive oxygen species to the extracellular media found with the OxyBURST-bovine serum albumin assay correlated with the changes of the intracellular calcium signal, indicating that the inhibition by hyperosmolarity occurs near the receptor level. PMID:18277949

  12. Comparative evaluation of the role of the adhesion molecule CD177 in neutrophil interactions with platelets and endothelium.

    PubMed

    Pliyev, Boris K; Menshikov, Mikhail

    2012-09-01

    Neutrophil-specific glycoprotein CD177 is expressed on a subset of human neutrophils and has been shown to be a counter-receptor for platelet endothelial cell adhesion molecule-1 (PECAM-1, CD31). Previous studies have demonstrated that the interaction of CD177 with endothelial PECAM-1 supports neutrophil transendothelial migration resulting in preferential transmigration of the CD177-expressing neutrophil subset. As PECAM-1 is also abundantly expressed on platelets, we addressed a follow-up suggestion that CD177/PECAM-1 adhesive interaction may mediate platelet-neutrophil interactions and CD177-positive neutrophils may have a competitive advantage over CD177-negative neutrophils in binding platelets. Here, we report that CD177-positive and CD177-negative neutrophils do not differ significantly in their capacity to form platelet-neutrophil conjugates as assayed in whole blood and in mixed preparations of isolated platelets and neutrophils. Under flow conditions, neither platelet nor neutrophil activation resulted in preferential binding of platelets to CD177-expressing neutrophils. Furthermore, no significant difference was found in the ability of both neutrophil subsets to adhere to and migrate across surface-adherent activated platelets, whereas predominantly CD177-positive neutrophils migrated across HUVEC monolayers. In addition, we demonstrated that S(536) N dimorphism of PECAM-1, which affects CD177/PECAM-1 interaction, did not influence the equal capacity of the two neutrophil subsets to interact with platelets but influenced significantly the transendothelial migration of CD177-expressing neutrophils. Thus, CD177/PECAM-1 adhesive interaction, while contributing to neutrophil-endothelial cell interaction in neutrophil transendothelial migration, does not contribute to or is redundant in platelet-neutrophil interactions. PMID:22690867

  13. Neutrophil kinetics of recombinant human granulocyte colony-stimulating factor-induced neutropenia in rats

    SciTech Connect

    Okada, Yuji; Kawagishi, Mayumi; Kusaka, Masaru )

    1990-01-01

    Single injection of recombinant human granulocyte colony-stimulating factor (rhG-CSF) immediately induced a decrease in the number of circulating neutrophils in rats. This neutropenia occurred 10 minutes after the injection but disappeared 40 minutes after injection. This transient neutropenia was dose-dependently induced by rhG-CSF and also induced by repeated injections. We studied the kinetics of circulating neutrophils in transient neutropenia. rhG-CSF markedly decreased the number of {sup 3}H-diisopropylfluorophosphate ({sup 3}H-DFP) labeled neutrophils in the circulation 10 minutes after injection but the labeled neutrophils recovered to near the control level 40 minutes after the injection. These results indicate that the neutrophil margination accounts for the neutrophenia and the marginated neutrophils return to the circulation.

  14. Visualization of Signaling Molecules During Neutrophil Recruitment in Transgenic Mice Expressing FRET Biosensors.

    PubMed

    Mizuno, Rei; Kamioka, Yuji; Sakai, Yoshiharu; Matsuda, Michiyuki

    2016-01-01

    A number of chemical mediators regulate neutrophil recruitment to inflammatory sites either positively or negatively. Although the actions of each chemical mediator on the intracellular signaling networks controlling cell migration have been studied with neutrophils cultured in vitro, how such chemical mediators act cooperatively or counteractively in vivo remains largely unknown. To understand the mechanisms regulating neutrophil recruitment to the inflamed intestine in vivo, we recently generated transgenic mice expressing biosensors based on FRET (Förster resonance energy transfer) and set up two-photon excitation microscopy to observe the gastrointestinal tract in living mice. By measuring FRET in neutrophils, we showed activity changes of protein kinases in the neutrophils recruited to inflamed intestines. In this chapter, we describe the protocol used to visualize the protein kinase activities in neutrophils of the inflamed intestine of transgenic mice expressing the FRET biosensors. PMID:27246030

  15. The Essential Role of Neutrophils during Infection with the Intracellular Bacterial Pathogen Listeria monocytogenes.

    PubMed

    Witter, Alexandra R; Okunnu, Busola M; Berg, Rance E

    2016-09-01

    Neutrophils have historically been characterized as first responder cells vital to host survival because of their ability to contain and eliminate bacterial and fungal pathogens. However, recent studies have shown that neutrophils participate in both protective and detrimental responses to a diverse array of inflammatory and infectious diseases. Although the contribution of neutrophils to extracellular infections has been investigated for decades, their specific role during intracellular bacterial infections has only recently been appreciated. During infection with the Gram-positive intracellular pathogen Listeria monocytogenes, neutrophils are recruited from the bone marrow to sites of infection where they use novel bacterial-sensing pathways leading to phagocytosis and production of bactericidal factors. This review summarizes the requirement of neutrophils during L. monocytogenes infection by examining both neutrophil trafficking and function during primary and secondary infection. PMID:27543669

  16. Ly6G-mediated depletion of neutrophils is dependent on macrophages.

    PubMed

    Bruhn, Kevin W; Dekitani, Ken; Nielsen, Travis B; Pantapalangkoor, Paul; Spellberg, Brad

    2016-01-01

    Antibody-mediated depletion of neutrophils is commonly used to study neutropenia. However, the mechanisms by which antibodies deplete neutrophils have not been well defined. We noticed that mice deficient in complement and macrophages had blunted neutrophil depletion in response to anti-Ly6G monoclonal antibody (MAb) treatment. In vitro, exposure of murine neutrophils to anti-Ly6G MAb in the presence of plasma did not result in significant depletion of cells, either in the presence or absence of complement. In vivo, anti-Ly6G-mediated neutrophil depletion was abrogated following macrophage depletion, but not complement depletion, indicating a requirement for macrophages to induce neutropenia by this method. These results inform the use and limitations of anti-Ly6G antibody as an experimental tool for depleting neutrophils in various immunological settings. PMID:26870635

  17. Fermentation processes. (Latest citations from the Compendex database). Published Search

    SciTech Connect

    Not Available

    1993-06-01

    The bibliography contains citations concerning fermentation techniques, enzymes, and enzyme technology used in the production of alcohols and other products. Continuous fermentation processes, and the application of computer technology to fermentation control are also considered. Descriptions of specific materials and fermentation processes are included. (Contains 250 citations and includes a subject term index and title list.)

  18. Characteristics of spoilage-associated secondary cucumber fermentation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Secondary fermentations during the bulk storage of fermented cucumbers can result in spoilage that causes a total loss of the fermented product, at an estimated cost of $6,000 to $15,000 per affected tank. Previous research has suggested that such fermentations are the result of microbiological util...

  19. Lactic acid bacteria from fermented table olives.

    PubMed

    Hurtado, Albert; Reguant, Cristina; Bordons, Albert; Rozès, Nicolas

    2012-08-01

    Table olives are one of the main fermented vegetables in the world. Olives can be processed as treated or natural. Both have to be fermented but treated green olives have to undergo an alkaline treatment before they are placed in brine to start their fermentation. It has been generally established that lactic acid bacteria (LAB) are responsible for the fermentation of treated olives. However, LAB and yeasts compete for the fermentation of natural olives. Yeasts play a minor role in some cases, contributing to the flavour and aroma of table olives and in LAB development. The main microbial genus isolated in table olives is Lactobacillus. Other genera of LAB have also been isolated but to a lesser extent. Lactobacillus plantarum and Lactobacillus pentosus are the predominant species in most fermentations. Factors influencing the correct development of fermentation and LAB, such as pH, temperature, the amount of NaCl, the polyphenol content or the availability of nutrients are also reviewed. Finally, current research topics on LAB from table olives are reviewed, such as using starters, methods of detection and identification of LAB, their production of bacteriocins, and the possibility of using table olives as probiotics. PMID:22475936

  20. [Effect of dissolved oxygen on mutanolysin fermentation].

    PubMed

    Liu, T J; Xu, W L; Sun, W B; Zhang, Y Z

    2000-03-01

    Effects of several parameters relating to dissolved oxygen(DO) on mutanolysin fermentation were studied. The experiment using shake flasks shows that the medium volume and shaker agitation speed affect the production of mutanolysin. At the same time, the agitation rate together with aeation rate has effects on DO in fermentor. Mutanolysin fermentation was affected by DO greatly. Oxygen is a key restricted factor in mutanolysin fermentation. It affects the metablism and physiological action of Streptomyces globisporus S186. Whatever the DO is excessive high or low, it won't benefit the mutanolysin production. If DO is super, S. globisporus S186 will grow luxuriantly but do not produce mutanolysin, while if DO is lower, the S. globisporus S186 won't grow well even not to produce mutanolysin. During the course of fermentation, the DO changed regularly. It is similar to many antibiotic fermentation and some amino acid fermentation. As S. globisporus S186 grow in exponential phase, DO begin to decrease rapidly from 6 h and get to the lowest point at 40 h or so. Subsequently mutanolysin starts to be produced. DO rises again from 90 h. The key technoloyg of oxygen control in the fermentation is to keep the DO at a suboptimum level. In order to get a high mutanolysin yield, during the culture in fermentor the agitation rate and aeration rate should be kept at 200 r/min and 1:0.8(V:V) respectively. PMID:10976334

  1. Neutrophilic granulocytes modulate invariant NKT cell function in mice and humans.

    PubMed

    Wingender, Gerhard; Hiss, Marcus; Engel, Isaac; Peukert, Konrad; Ley, Klaus; Haller, Hermann; Kronenberg, Mitchell; von Vietinghoff, Sibylle

    2012-04-01

    Invariant NKT (iNKT) cells are a conserved αβTCR(+) T cell population that can swiftly produce large amounts of cytokines, thereby activating other leukocytes, including neutrophilic granulocytes (neutrophils). In this study, we investigated the reverse relationship, showing that high neutrophil concentrations suppress the iNKT cell response in mice and humans. Peripheral Vα14 iNKT cells from spontaneously neutrophilic mice produced reduced cytokines in response to the model iNKT cell Ag α-galactosyl ceramide and expressed lower amounts of the T-box transcription factor 21 and GATA3 transcription factor than did wild-type controls. This influence was extrinsic, as iNKT cell transcription factor expression in mixed chimeric mice depended on neutrophil count, not iNKT cell genotype. Transcription factor expression was also decreased in primary iNKT cells from the neutrophil-rich bone marrow compared with spleen in wild-type mice. In vitro, the function of both mouse and human iNKT cells was inhibited by coincubation with neutrophils. This required cell-cell contact with live neutrophils. Neutrophilic inflammation in experimental peritonitis in mice decreased iNKT cell T-box transcription factor 21 and GATA3 expression and α-galactosyl ceramide-induced cytokine production in vivo. This was reverted by blockade of neutrophil mobilization. Similarly, iNKT cells from the human peritoneal cavity expressed lower transcription factor levels during neutrophilic peritonitis. Our data reveal a novel regulatory axis whereby neutrophils reduce iNKT cell responses, which may be important in shaping the extent of inflammation. PMID:22387552

  2. Neutrophilic granulocytes modulate invariant natural killer T cell function in mice and humans

    PubMed Central

    Wingender, Gerhard; Hiss, Marcus; Engel, Isaac; Peukert, Konrad; Ley, Klaus; Haller, Hermann; Kronenberg, Mitchell; von Vietinghoff, Sibylle

    2012-01-01

    Invariant natural killer T (iNKT) cells are a conserved αβTCR+ T cell population that can swiftly produce large amounts of cytokines, thereby activating other leukocytes, including neutrophilic granulocytes (neutrophils). Here we investigated the reverse relationship, showing that high neutrophil concentrations suppress the iNKT cell response in mice and humans. Peripheral Vα14i NKT cells from spontaneously neutrophilic mice produced reduced cytokines in response to the model iNKT cell antigen αGalCer and expressed lower amounts of the T-bet and GATA3 transcription factors than did wild-type controls. This influence was extrinsic, as iNKT cell transcription factor expression in mixed chimeric mice depended on neutrophil count, not iNKT cell genotype. Transcription factor expression was also decreased in primary iNKT cells from the neutrophil rich bone marrow compared to spleen in wild-type mice. In vitro, the function of both mouse and human iNKT cells was inhibited by co-incubation with neutrophils. This required cell-cell contact with live neutrophils. Neutrophilic inflammation in experimental peritonitis in mice decreasediNKT cell T-bet and GATA3 expression and αGalCer induced cytokine production in vivo. This was reverted by blockade of neutrophil mobilization. Similarly, iNKT cells from the human peritoneal cavity expressed lower transcription factor levels during neutrophilic peritonitis. Our data reveal a novel regulatory axis whereby neutrophils reduce iNKT cell responses, which may be important in shaping the extent of inflammation. PMID:22387552

  3. NFκB Is Persistently Activated in Continuously Stimulated Human Neutrophils

    PubMed Central

    Miskolci, Veronika; Rollins, Janet; Vu, Hai Yen; Ghosh, Chandra C; Davidson, Dennis; Vancurova, Ivana

    2007-01-01

    Increased activation of the transcription factor NFκB in the neutrophils has been associated with the pathogenesis of sepsis, acute lung injury (ALI), bronchopulmonary dysplasia (BPD), and other neutrophil-mediated inflammatory disorders. Despite recent progress in analyzing early NFκB activation in human neutrophils, activation of NFκB in persistently stimulated neutrophils has not been previously studied. Because it is the persistent NFκB activation that is thought to be involved in the host response to sepsis and the pathogenesis of ALI and BPD, we hypothesized that continuously stimulated human neutrophils may exhibit a late phase of NFκB activity. The goal of this study was to analyze the NFκB activation and expression of IκB and NFκB proteins during neutrophil stimulation with inflammatory signals for prolonged times. We demonstrate that neutrophil stimulation with lipopolysaccharide (LPS) and tumor necrosis factor-α (TNFα) induces, in addition to the early activation at 30–60 min, a previously unrecognized late phase of NFκB activation. In LPS-stimulated neutrophils, this NFκB activity typically had a biphasic character, whereas TNFα-stimulated neutrophils exhibited a continuous NFκB activity peaking around 9 h after stimulation. In contrast to the early NFκB activation that inversely correlates to the nuclear levels of IκBα, however, in continuously stimulated neutrophils, NFκB is persistently activated despite considerable levels of IκBα present in the nucleus. Our data suggest that NFκB is persistently activated in human neutrophils during neutrophil-mediated inflammatory disorders, and this persistent NFκB activity may represent one of the underlying mechanisms for the continuous production of proinflammatory mediators. PMID:17592547

  4. Neutrophils aggravate acute liver injury during obstructive cholestasis in bile duct-ligated mice.

    PubMed

    Gujral, Jaspreet S; Farhood, Anwar; Bajt, Mary Lynn; Jaeschke, Hartmut

    2003-08-01

    Obstruction of the common bile duct in a variety of clinical settings leads to cholestatic liver injury. An important aspect of this injury is hepatic inflammation, with neutrophils as the prominent cell type involved. However, the pathophysiologic role of the infiltrating neutrophils during cholestatic liver injury remains unclear. Therefore, we tested the hypothesis that neutrophils contribute to the overall pathophysiology by using bile duct-ligated (BDL) wild-type animals and mice deficient in the beta(2) integrin CD18. In wild-type animals, neutrophils were activated systemically as indicated by the increased expression of Mac-1 (CD11b/CD18) and L-selectin shedding 3 days after BDL. Histologic evaluation (48 +/- 10% necrosis) and plasma transaminase levels showed severe liver injury. Compared with sham-operated controls (< 10 neutrophils per 20 high-power fields), large numbers of neutrophils were present in livers of BDL mice (425 +/- 64). About 60% of these neutrophils had extravasated into the parenchyma. In addition, a substantial number of extravasated neutrophils were found in the portal tract. In contrast, Mac-1 was not up-regulated and plasma transaminase activities and the area of necrosis (21 +/- 9%) were significantly reduced in CD18-deficient animals. These mice had overall 62% less neutrophils in the liver. In particular, extravasation from sinusoids and portal venules (PV) was reduced by 91% and 47%, respectively. Immunohistochemical staining for chlorotyrosine, a marker of neutrophil-derived oxidant stress, was observed in the parenchyma of BDL wild-type but not CD18-deficient mice. In conclusion, neutrophils aggravated acute cholestatic liver injury after BDL. This inflammatory injury involves CD18-dependent extravasation of neutrophils from sinusoids and reactive oxygen formation. PMID:12883479

  5. [APOPTOSIS AND NECROSIS OF CIRCULATING NEUTROPHILS IN PATIENTS WHILE HIGH RISK OF POSTOPERAIVE PERITONITIS OCCURRENCE].

    PubMed

    Sheyko, V D; Sytnik, D A; Shkurupiy, O O

    2015-11-01

    Processes of apoptosis and necrosis of peripheral neutrophils were investigated in 43 patients, operated on for an acute abdominal organs diseases on the first and fourth postoperative days. Changes of apoptosis and necrosis processes in peripheral neutrophils in dynamics were established. Unfavorable course of early postoperative period in patients with initial high and average risk of postoperative peritonitis occurrence was accompanied by shift in necrosis/apoptosis ratio towards necrosis of peripheral neutrophils. PMID:26939426

  6. Oral Neutrophil Transcriptome Changes Result in a Pro-Survival Phenotype in Periodontal Diseases

    PubMed Central

    Lakschevitz, Flavia S.; Aboodi, Guy M.; Glogauer, Michael

    2013-01-01

    Background Periodontal diseases are inflammatory processes that occur following the influx of neutrophils into the periodontal tissues in response to the subgingival bacterial biofilm. Current literature suggests that while neutrophils are protective and prevent bacterial infections, they also appear to contribute to damage of the periodontal tissues. In the present study we compare the gene expression profile changes in neutrophils as they migrate from the circulation into the oral tissues in patients with chronic periodontits and matched healthy subjects. We hypothesized that oral neutrophils in periodontal disease patients will display a disease specific transcriptome that differs from the oral neutrophil of healthy subjects. Methods Venous blood and oral rinse samples were obtained from healthy subjects and chronic periodontitis patients for neutrophil isolation. mRNA was isolated from the neutrophils, and gene expression microarray analysis was completed. Results were confirmed for specific genes of interest by qRT-PCR and Western Blot analysis. Results and Discussion Chronic periodontitis patients presented with increased recruitment of neutrophils to the oral cavity. Gene expression analysis revealed differences in the expression levels of genes from several biological pathways. Using hierarchical clustering analysis, we found that the apoptosis network was significantly altered in patients with chronic inflammation in the oral cavity, with up-regulation of pro-survival members of the Bcl-2 family and down-regulation of pro-apoptosis members in the same compartment. Additional functional analysis confirmed that the percentages of viable neutrophils are significantly increased in the oral cavity of chronic periodontitis patients. Conclusions Oral neutrophils from patients with periodontal disease displayed an altered transcriptome following migration into the oral tissues. This resulted in a pro-survival neutrophil phenotype in chronic periodontitis patients

  7. Facilitation of Allergic Sensitization and Allergic Airway Inflammation by Pollen-Induced Innate Neutrophil Recruitment.

    PubMed

    Hosoki, Koa; Aguilera-Aguirre, Leopoldo; Brasier, Allan R; Kurosky, Alexander; Boldogh, Istvan; Sur, Sanjiv

    2016-01-01

    Neutrophil recruitment is a hallmark of rapid innate immune responses. Exposure of airways of naive mice to pollens rapidly induces neutrophil recruitment. The innate mechanisms that regulate pollen-induced neutrophil recruitment and the contribution of this neutrophilic response to subsequent induction of allergic sensitization and inflammation need to be elucidated. Here we show that ragweed pollen extract (RWPE) challenge in naive mice induces C-X-C motif ligand (CXCL) chemokine synthesis, which stimulates chemokine (C-X-C motif) receptor 2 (CXCR2)-dependent recruitment of neutrophils into the airways. Deletion of Toll-like receptor 4 (TLR4) abolishes CXCL chemokine secretion and neutrophil recruitment induced by a single RWPE challenge and inhibits induction of allergic sensitization and airway inflammation after repeated exposures to RWPE. Forced induction of CXCL chemokine secretion and neutrophil recruitment in mice lacking TLR4 also reconstitutes the ability of multiple challenges of RWPE to induce allergic airway inflammation. Blocking RWPE-induced neutrophil recruitment in wild-type mice by administration of a CXCR2 inhibitor inhibits the ability of repeated exposures to RWPE to stimulate allergic sensitization and airway inflammation. Administration of neutrophils derived from naive donor mice into the airways of Tlr4 knockout recipient mice after each repeated RWPE challenge reconstitutes allergic sensitization and inflammation in these mice. Together these observations indicate that pollen-induced recruitment of neutrophils is TLR4 and CXCR2 dependent and that recruitment of neutrophils is a critical rate-limiting event that stimulates induction of allergic sensitization and airway inflammation. Inhibiting pollen-induced recruitment of neutrophils, such as by administration of CXCR2 antagonists, may be a novel strategy to prevent initiation of pollen-induced allergic airway inflammation. PMID:26086549

  8. Functional Properties of Microorganisms in Fermented Foods

    PubMed Central

    Tamang, Jyoti P.; Shin, Dong-Hwa; Jung, Su-Jin; Chae, Soo-Wan

    2016-01-01

    Fermented foods have unique functional properties imparting some health benefits to consumers due to presence of functional microorganisms, which possess probiotics properties, antimicrobial, antioxidant, peptide production, etc. Health benefits of some global fermented foods are synthesis of nutrients, prevention of cardiovascular disease, prevention of cancer, gastrointestinal disorders, allergic reactions, diabetes, among others. The present paper is aimed to review the information on some functional properties of the microorganisms associated with fermented foods and beverages, and their health-promoting benefits to consumers. PMID:27199913

  9. Microbiological and biochemical study of coffee fermentation.

    PubMed

    Avallone, S; Guyot, B; Brillouet, J M; Olguin, E; Guiraud, J P

    2001-04-01

    The coffee fermentation microflora were rich and mainly constituted of aerobic Gram-negative bacilli, with Erwinia and Klebsiella genuses at the highest frequencies. The best population increase was observed with lactic acid bacteria and yeasts, whereas those microorganisms that counted on a pectin medium remained constant during the fermentation step. Qualitatively, lactic acid bacteria belonged mainly to Leuconostoc mesenteroides species but the others microflora were relatively heterogeneous. The microorganisms isolated on pectin medium were Enterobacteriaceae, identified as Erwinia herbicola and Klebsiella pneumoniae, not reported as strong pectolytic strains. Throughout coffee fermentation, 60% of the simple sugars were degraded by the total microflora and not specifically by pectolytic microorganisms. PMID:11178725

  10. Alcoholic fermentation of sorghum without cooking

    SciTech Connect

    Thammarutwasik, P.; Koba, Y.; Ueda, S.

    1986-07-01

    Sorgum was used as raw material for alcoholic fermentation without cooking. Two varieties of sorghum grown in Thailand, KU 439 and KU 257, contained 80.0 and 75.8% of total sugar. Optimum amount of sorghum for alcoholic fermentation should be between 30 and 35% (w/v) in the fermentation broth. In these conditions 13.0 and 12.6% (v/v) of alcohol could be obtained in 84 and 91.9% yield based on the theoretical value of the starch content from KU 439 and KU 257, respectively.

  11. Functional Properties of Microorganisms in Fermented Foods.

    PubMed

    Tamang, Jyoti P; Shin, Dong-Hwa; Jung, Su-Jin; Chae, Soo-Wan

    2016-01-01

    Fermented foods have unique functional properties imparting some health benefits to consumers due to presence of functional microorganisms, which possess probiotics properties, antimicrobial, antioxidant, peptide production, etc. Health benefits of some global fermented foods are synthesis of nutrients, prevention of cardiovascular disease, prevention of cancer, gastrointestinal disorders, allergic reactions, diabetes, among others. The present paper is aimed to review the information on some functional properties of the microorganisms associated with fermented foods and beverages, and their health-promoting benefits to consumers. PMID:27199913

  12. Biotechnology of Flavor Generation in Fermented Meats

    NASA Astrophysics Data System (ADS)

    Toldrá, Fidel

    Traditionally, meat fermentation was based on the use of natural flora, including the “back-slopping”, or addition of a previous successful fermented sausage. However, these practices gave a great variability in the developed flora and affected the safety and quality of the sausages (Toldrá, 2002; Toldrá & Flores, 2007). The natural flora of fermented meat has been studied for many years (Leistner, 1992; Toldrá, 2006a), and more recently, these micro-organisms have been isolated and biochemically identified through molecular methods applied to extracted DNA and RNA (Cocolin, Manzano, Aggio, Cantoni, & Comi, 2001; Cocolin, Manzano, Cantoni, & Comi, 2001; Comi, Urso, Lacumin, Rantsiou, Cattaneo & Cantoni, 2005).

  13. Improved fermentative alcohol production. [Patent application

    DOEpatents

    Wilke, C.R.; Maiorella, B.L.; Blanch, H.W.; Cysewski, G.R.

    1980-11-26

    An improved fermentation process is described for producing alcohol which includes the combination of vacuum fermentation and vacuum distillation. Preferably, the vacuum distillation is carried out in two phases, one a fermentor proper operated at atmospheric pressure and a flash phase operated at reduced pressure with recycle of fermentation brew having a reduced alcohol content to the fermentor, using vapor recompression heating of the flash-pot recycle stream to heat the flash-pot or the distillation step, and using water load balancing (i.e., the molar ratio of water in the fermentor feed is the same as the molar ratio of water in the distillation overhead).

  14. Neutrophil-mediated damage to human vascular endothelium. Role of cytokine activation.

    PubMed Central

    Westlin, W. F.; Gimbrone, M. A.

    1993-01-01

    Cytokine activation of cultured human vascular endothelial cells renders them hyperadhesive for blood leukocytes. Co-incubation of freshly isolated, unstimulated human blood neutrophils with confluent cytokine-activated human endothelial monolayers for 90 minutes results in extensive endothelial detachment and destruction of monolayer integrity. In contrast, unactivated endothelial monolayers remain intact. Using this in vitro model, we have explored the neutrophil-effector mechanisms involved in this injury. Coincubation in the presence of a serine protease inhibitor (phenylmethylsulfonyl fluoride) or specific elastase inhibitors (Ala-Ala-Pro-Val-chloromethyl ketone or alpha-1-protease inhibitor) markedly diminished injury. In contrast, scavengers or inhibitors of oxygen-derived free radicals (superoxide dismutase, catalase, mannitol, or sodium azide) were not protective. Purified human neutrophil elastase mimicked the effect of the neutrophils suggesting a key role for elastase in the neutrophil-mediated injury in this model. Interfering with direct neutrophil-endothelial cell contact by interposing a microporous barrier insert prevented endothelial cell detachment. Furthermore, this neutrophil-mediated detachment could be inhibited with interleukin-8, an action correlated with a decrease in neutrophil adhesion to activated endothelial monolayers. By defining the role of endothelial activation in neutrophil-mediated injury, this in vitro model may provide useful insights into potential therapeutic interventions designed to prevent disruption of the endothelial barrier function. Images Figure 1 Figure 6 PMID:8424450

  15. The influence of early neutrophil-Leishmania interactions on the host immune response to infection

    PubMed Central

    Ribeiro-Gomes, Flavia L.; Sacks, David

    2012-01-01

    Neutrophils are the first cells recruited to the dermal site of Leishmania infection following injection by needle or sand fly bite. The role of neutrophils in either promoting or suppressing host immunity remains controversial. We discuss the events driving neutrophil recruitment, their interaction with the parasite and apoptotic fate, and the nature of their encounters with other innate cells. We suggest that the influence of the neutrophil response on infection outcome critically depends on the timing of their recruitment and the tissue environment in which it occurs. PMID:22919650

  16. Hyperbaric oxygen enhances neutrophil apoptosis and their clearance by monocyte-derived macrophages.

    PubMed

    Almzaiel, Anwar J; Billington, Richard; Smerdon, Gary; Moody, A John

    2015-08-01

    Neutrophil apoptosis and clearance by macrophages are essential for wound healing. Evidence suggests that hyperbaric oxygen (HBO) exposure may enhance neutrophil apoptosis, but HBO effects leading to neutrophil clearance by macrophages are still unclear. In the current study, bovine neutrophils and monocyte-derived macrophages (MDMΦ) were co-cultured under HBO (97.9% O2, 2.1% CO2 at 2.4 atm absolute (ATA)) (1 atm = 101.325 kPa), hyperbaric normoxia (8.8% O2 at 2.4 ATA), normobaric hyperoxia (95% O2, 5% CO2), normoxia (air), and normobaric hypoxia (5% O2, 5% CO2). Phagocytosis of fresh and 22 h aged neutrophils by MDMΦ was increased after HBO pre-treatment, assessed using flow cytometry and light microscopy. Enhanced clearance of neutrophils was accompanied by an increase in H2O2 levels following HBO pre-treatment with upregulation of IL-10 (anti-inflammatory cytokine) mRNA expression in LPS-stimulated MDMΦ that had ingested aged neutrophils. TNF-α (pro-inflammatory cytokine) gene expression did not change in LPS-stimulated MDMΦ that had ingested fresh or aged neutrophils after HBO, pressure, and hyperoxia. These findings suggest that HBO-activated MDMΦ participate in the clearance of apoptotic cells. Uptake of neutrophils by MDMΦ exposed to HBO may contribute to resolution of inflammation, because HBO induced up-regulation of IL-10 mRNA expression. PMID:26194051

  17. Helicobacter pylori neutrophil activating protein as target for new drugs against H. pylori inflammation

    PubMed Central

    Choli-Papadopoulou, Theodora; Kottakis, Filippos; Papadopoulos, Georgios; Pendas, Stefanos

    2011-01-01

    Helicobacter pylori (H. pylori) infection is among the most common human infections and the major risk factor for peptic ulcer disease and gastric cancer. Within this work we present the implication of C-terminal region of H. pylori neutrophil activating protein in the stimulation of neutrophil activation as well as the evidence that the C-terminal region of H. pylori activating protein is indispensable for neutrophil adhesion to endothelial cells, a step necessary to H. pylori inflammation. In addition we show that arabino galactan proteins derived from chios mastic gum, the natural resin of the plant Pistacia lentiscus var. Chia inhibit neutrophil activation in vitro. PMID:21677824

  18. Matrix metalloproteinases modulate ameboid-like migration of neutrophils through inflamed interstitial tissue

    PubMed Central

    Lerchenberger, Max; Uhl, Bernd; Stark, Konstantin; Zuchtriegel, Gabriele; Eckart, Annekathrin; Miller, Meike; Puhr-Westerheide, Daniel; Praetner, Marc; Rehberg, Markus; Khandoga, Alexander G.; Lauber, Kirsten; Massberg, Steffen; Krombach, Fritz

    2013-01-01

    In vitro studies suggest that leukocytes locomote in an ameboid fashion independently of pericellular proteolysis. Whether this motility pattern applies for leukocyte migration in inflamed tissue is still unknown. In vivo microscopy on the inflamed mouse cremaster muscle revealed that blockade of serine proteases or of matrix metalloproteinases (MMPs) significantly reduces intravascular accumulation and transmigration of neutrophils. Using a novel in vivo chemotaxis assay, perivenular microinjection of inflammatory mediators induced directional interstitial migration of neutrophils. Blockade of actin polymerization, but not of actomyosin contraction abolished neutrophil interstitial locomotion. Multiphoton laser scanning in vivo microscopy showed that the density of the interstitial collagen network increases in inflamed tissue, thereby providing physical guidance to infiltrating neutrophils. Although neutrophils locomote through the interstitium without pericellular collagen degradation, inhibition of MMPs, but not of serine proteases, diminished their polarization and interstitial locomotion. In this context, blockade of MMPs was found to modulate expression of adhesion/signaling molecules on neutrophils. Collectively, our data indicate that serine proteases are critical for neutrophil extravasation, whereas these enzymes are dispensable for neutrophil extravascular locomotion. By contrast, neutrophil interstitial migration strictly relies on actin polymerization and does not require the pericellular degradation of collagen fibers but is modulated by MMPs. PMID:23757732

  19. Sulphonamides as anti-inflammatory agents: old drugs for new therapeutic strategies in neutrophilic inflammation?

    PubMed

    Ottonello, L; Dapino, P; Scirocco, M C; Balbi, A; Bevilacqua, M; Dallegri, F

    1995-03-01

    1. It is well known that neutrophils act as mediators of tissue injury in a variety of inflammatory diseases. Their histotoxic activity is presently thought to involve proteinases and oxidants, primarily hypochlorous acid (HOCl). This oxidant is also capable of inactivating the specific inhibitor of neutrophil elastase (alpha 1-antitrypsin), thereby favouring digestion of the connective matrix. 2. In the present work, we found that sulphanilamide and some sulphanilamide-related anti-inflammatory drugs such as dapsone, nimesulide and sulphapyridine reduce the availability of HOCl in the extracellular microenvironment of activated neutrophils and prevent the inactivation of alpha 1-antitrypsin by these cells in a dose-dependent manner. The ability of each drug to prevent alpha 1-antitrypsin from inactivation by neutrophils correlates significantly with its capacity to reduce the recovery of HOCl from neutrophils. Five other non-steroidal anti-inflammatory drugs were completely ineffective. 3. Therefore, sulphanilamide-related drugs, i.e. dapsone, nimesulide and sulphapyridine, have the potential to reduce the bioavailability of neutrophil-derived HOCl and, in turn, to favour the alpha 1-antitrypsin-dependent control of neutrophil elastolytic activity. These drugs appear as a well-defined group of agents which are particularly prone to attenuate neutrophil histotoxicity. They can also be viewed as a previously unrecognized starting point for the development of new compounds in order to plan rational therapeutic strategies for controlling tissue injury during neutrophilic inflammation. PMID:7736703

  20. Immune complex stimulation of neutrophil apoptosis: investigating the involvement of oxidative and nonoxidative pathways.

    PubMed

    Ottonello, L; Frumento, G; Arduino, N; Dapino, P; Tortolina, G; Dallegri, F

    2001-01-15

    Neutrophils are involved in the pathogenesis of various inflammatory diseases. One of the mechanisms by which neutrophilic inflammation is generated is immune complex (IC) deposition in tissue. As the clearance of apoptotic neutrophils from inflamed sites is considered a crucial determinant for the resolution of inflammation, we investigated the effects of IC-induced neutrophil activation on apoptosis and the mechanisms regulating neutrophil survival. Our results show that IC stimulated apoptosis efficiently. The percentage of apoptotic neutrophils was reduced by the anti-FcgammaRII mAb IV.3, but not by anti-FcgammaRIII mAb 3G8. The spontaneous apoptosis was completely inhibited by the antioxidant compound catalase, which in turn prevented only partially the apoptosis in presence of IC. The oxidative metabolism triggered by IC was inhibited only blocking both FcgammaRII and FcgammaRIII. Neutrophils from patients with chronic granulomatous disease, congenitally incapable of producing oxidants, showed low level of spontaneous apoptosis, but underwent a nearly 3-fold increment in the apoptosis rate when incubated with IC. In conclusion, neutrophil apoptosis appears to be a process governed by multiple pathways, some of which are strictly ROS-dependent, others acting in a nonoxidative manner. In particular, the herein shown FcgammaRII-dependent, ROS-independent, signal-inducing neutrophil apoptosis may uncover new pharmacological targets for the promotion of cell removal from sites of inflammation, thereby favoring the resolution of the inflammatory process. PMID:11163533

  1. Imaging neutrophil migration dynamics using micro-optical coherence tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Chu, Kengyeh K.; Yonker, Lael; Som, Avira; Pazos, Michael; Kusek, Mark E.; Hurley, Bryan P.; Tearney, Guillermo J.

    2016-03-01

    Neutrophils are immune cells that undergo chemotaxis, detecting and migrating towards a chemical signal gradient. Neutrophils actively migrate across epithelial boundaries, interacting with the epithelium to selectively permit passage without compromising the epithelial barrier. In many inflammatory disorders, excessive neutrophil migration can cause damage to the epithelium itself. The signaling pathways and mechanisms that facilitate trans-epithelial migration are not fully characterized. Our laboratory has developed micro-optical coherence tomography (μOCT), which has 2 μm lateral resolution and 1 μm axial resolution. As a high-resolution native contrast modality, μOCT can directly visualize individual neutrophils as they interact with a cell layer cultured on a transwell filter. A chemoattractant can be applied to the apical side of inverted monolayer, and human neutrophils placed in the basolateral compartment, while μOCT captures 3D images of the chemotaxis. μOCT images can also generate quantitative metrics of migration volume to study the dependence of chemotaxis on monolayer cell type, chemoattractant type, and disease state of the neutrophils. For example, a disease known as leukocyte adhesion deficiency (LAD) can be simulated by treating neutrophils with antibodies that interfere with the CD18 receptor, a facilitator of trans-epithelial migration. We conducted a migration study of anti-CD18 treated and control neutrophils using T84 intestinal epithelium as a barrier. After one hour, μOCT time-lapse imaging indicated a strong difference in the fraction of neutrophils that remain attached to the epithelium after migration (0.67 +/- 0.12 attached anti-CD18 neutrophils, 0.23 +/- 0.08 attached control neutrophils, n = 6, p < 0.05), as well as a modest but non-significant decrease in total migration volume for treated neutrophils. We can now integrate μOCT-derived migration metrics with simultaneously acquired measurements of transepithelial electrical

  2. Lung inflammation promotes metastasis through neutrophil protease-mediated degradation of Tsp-1

    PubMed Central

    El Rayes, Tina; Catena, Raúl; Lee, Sharrell; Stawowczyk, Marcin; Joshi, Natasha; Fischbach, Claudia; Powell, Charles A.; Dannenberg, Andrew J.; Altorki, Nasser K.; Gao, Dingcheng; Mittal, Vivek

    2015-01-01

    Inflammation is inextricably associated with primary tumor progression. However, the contribution of inflammation to tumor outgrowth in metastatic organs has remained underexplored. Here, we show that extrinsic inflammation in the lungs leads to the recruitment of bone marrow-derived neutrophils, which degranulate azurophilic granules to release the Ser proteases, elastase and cathepsin G, resulting in the proteolytic destruction of the antitumorigenic factor thrombospondin-1 (Tsp-1). Genetic ablation of these neutrophil proteases protected Tsp-1 from degradation and suppressed lung metastasis. These results provide mechanistic insights into the contribution of inflammatory neutrophils to metastasis and highlight the unique neutrophil protease–Tsp-1 axis as a potential antimetastatic therapeutic target. PMID:26668367

  3. Neutrophil Extracellular Trap Formation Is Independent of De Novo Gene Expression.

    PubMed

    Sollberger, Gabriel; Amulic, Borko; Zychlinsky, Arturo

    2016-01-01

    Neutrophils are essential innate immune cells whose responses are crucial in the clearance of invading pathogens. Neutrophils can respond to infection by releasing neutrophil extracellular traps (NETs). NETs are formed of chromatin and specific granular proteins and are released after execution of a poorly characterized cell death pathway. Here, we show that NET formation induced by PMA or Candida albicans is independent of RNA polymerase II and III-mediated transcription as well as of protein synthesis. Thus, neutrophils contain all the factors required for NET formation when they emerge from the bone marrow as differentiated cells. PMID:27310721

  4. Observational Study of the Genetic Architecture of Neutrophil-Mediated Inflammatory Skin Diseases

    ClinicalTrials.gov

    2014-06-11

    Other Specified Inflammatory Disorders of Skin or Subcutaneous Tissue; Pyoderma Gangrenosum; Erosive Pustular Dermatosis of the Scalp; Sweet's Syndrome; Behcet's Disease; Bowel-associated Dermatosis-arthritis Syndrome; Pustular Psoriasis; Acute Generalized Exanthematous Pustulosis; Keratoderma Blenorrhagicum; Sneddon-Wilkinson Disease; IgA Pemphigus; Amicrobial Pustulosis of the Folds; Infantile Acropustulosis; Transient Neonatal Pustulosis; Neutrophilic Eccrine Hidradenitis; Rheumatoid Neutrophilic Dermatitis; Neutrophilic Urticaria; Still's Disease; Erythema Marginatum; Unclassified Periodic Fever Syndromes / Autoinflammatory Syndromes; Dermatitis Herpetiformis; Linear IgA Bullous Dermatosis; Bullous Systemic Lupus Erythematosus; Inflammatory Epidermolysis Bullosa Aquisita; Neutrophilic Dermatosis of the Dorsal Hands (Pustular Vasculitis); Small Vessel Vasculitis Including Urticarial Vasculitis; Erythema Elevatum Diutinum; Medium Vessel Vasculitis

  5. Neutrophil Extracellular Trap Formation Is Independent of De Novo Gene Expression

    PubMed Central

    Zychlinsky, Arturo

    2016-01-01

    Neutrophils are essential innate immune cells whose responses are crucial in the clearance of invading pathogens. Neutrophils can respond to infection by releasing neutrophil extracellular traps (NETs). NETs are formed of chromatin and specific granular proteins and are released after execution of a poorly characterized cell death pathway. Here, we show that NET formation induced by PMA or Candida albicans is independent of RNA polymerase II and III-mediated transcription as well as of protein synthesis. Thus, neutrophils contain all the factors required for NET formation when they emerge from the bone marrow as differentiated cells. PMID:27310721

  6. Neutrophil-Derived MMP-8 Drives AMPK-Dependent Matrix Destruction in Human Pulmonary Tuberculosis.

    PubMed

    Ong, Catherine W M; Elkington, Paul T; Brilha, Sara; Ugarte-Gil, Cesar; Tome-Esteban, Maite T; Tezera, Liku B; Pabisiak, Przemyslaw J; Moores, Rachel C; Sathyamoorthy, Tarangini; Patel, Vimal; Gilman, Robert H; Porter, Joanna C; Friedland, Jon S

    2015-05-01

    Pulmonary cavities, the hallmark of tuberculosis (TB), are characterized by high mycobacterial load and perpetuate the spread of M. tuberculosis. The mechanism of matrix destruction resulting in cavitation is not well defined. Neutrophils are emerging as key mediators of TB immunopathology and their influx are associated with poor outcomes. We investigated neutrophil-dependent mechanisms involved in TB-associated matrix destruction using a cellular model, a cohort of 108 patients, and in separate patient lung biopsies. Neutrophil-derived NF-kB-dependent matrix metalloproteinase-8 (MMP-8) secretion was up-regulated in TB and caused matrix destruction both in vitro and in respiratory samples of TB patients. Collagen destruction induced by TB infection was abolished by doxycycline, a licensed MMP inhibitor. Neutrophil extracellular traps (NETs) contain MMP-8 and are increased in samples from TB patients. Neutrophils lined the circumference of human pulmonary TB cavities and sputum MMP-8 concentrations reflected TB radiological and clinical disease severity. AMPK, a central regulator of catabolism, drove neutrophil MMP-8 secretion and neutrophils from AMPK-deficient patients secrete lower MMP-8 concentrations. AMPK-expressing neutrophils are present in human TB lung biopsies with phospho-AMPK detected in nuclei. These data demonstrate that neutrophil-derived MMP-8 has a key role in the immunopathology of TB and is a potential target for host-directed therapy in this infectious disease. PMID:25996154

  7. N-Formyl-Perosamine Surface Homopolysaccharides Hinder the Recognition of Brucella abortus by Mouse Neutrophils.

    PubMed

    Mora-Cartín, Ricardo; Chacón-Díaz, Carlos; Gutiérrez-Jiménez, Cristina; Gurdián-Murillo, Stephany; Lomonte, Bruno; Chaves-Olarte, Esteban; Barquero-Calvo, Elías; Moreno, Edgardo

    2016-06-01

    Brucella abortus is an intracellular pathogen of monocytes, macrophages, dendritic cells, and placental trophoblasts. This bacterium causes a chronic disease in bovines and in humans. In these hosts, the bacterium also invades neutrophils; however, it fails to replicate and just resists the killing action of these leukocytes without inducing significant activation or neutrophilia. Moreover, B. abortus causes the premature cell death of human neutrophils. In the murine model, the bacterium is found within macrophages and dendritic cells at early times of infection but seldom in neutrophils. Based on this observation, we explored the interaction of mouse neutrophils with B. abortus In contrast to human, dog, and bovine neutrophils, naive mouse neutrophils fail to recognize smooth B. abortus bacteria at early stages of infection. Murine normal serum components do not opsonize smooth Brucella strains, and neutrophil phagocytosis is achieved only after the appearance of antibodies. Alternatively, mouse normal serum is capable of opsonizing rough Brucella mutants. Despite this, neutrophils still fail to kill Brucella, and the bacterium induces cell death of murine leukocytes. In addition, mouse serum does not opsonize Yersinia enterocolitica O:9, a bacterium displaying the same surface polysaccharide antigen as smooth B. abortus Therefore, the lack of murine serum opsonization and absence of murine neutrophil recognition are specific, and the molecules responsible for the Brucella camouflage are N-formyl-perosamine surface homopolysaccharides. Although the mouse is a valuable model for understanding the immunobiology of brucellosis, direct extrapolation from one animal system to another has to be undertaken with caution. PMID:27001541

  8. Role of hydrogen peroxide in neutrophil-mediated destruction of cultured endothelial cells.

    PubMed Central

    Weiss, S J; Young, J; LoBuglio, A F; Slivka, A; Nimeh, N F

    1981-01-01

    Human neutrophils stimulated with phorbol myristate acetate were able to destroy suspensions or monolayers of cultured human endothelial cells. Neutrophil-mediated cytotoxicity was related to phorbol myristate acetate concentration, time of incubation and neutrophil number. Cytolysis was prevented by the addition of catalase, while superoxide dismutase had no effect on cytotoxicity. The addition of the heme-enzyme inhibitors, azide or cyanide, markedly stimulated neutrophil-mediated damage while exogenous myeloperoxidase failed to stimulate cytolysis. Neutrophils isolated from patients with chronic granulomatous disease did not destroy the endothelial cell targets while myeloperoxidase-deficient neutrophils successfully mediated cytotoxicity. Endothelial cell damage mediated by the myeloperoxidase deficient cells was also inhibited by catalase but not superoxide dismutase. The addition of purified myeloperoxidase to the deficient cells did not stimulate cytotoxicity. Glucose-glucose oxidase, an enzyme system capable of generating hydrogen peroxide, could replace the neutrophil as the cytotoxic mediator. The addition of myeloperoxidase at low concentrations of glucose oxidase did not increase cytolysis, but at the higher concentrations of glucose oxidase it stimulated cytotoxicity. The destruction of endothelial cells by the glucose oxidase-myeloperoxidase system was inhibited by the addition of hypochlorous acid scavengers. In contrast, neutrophil-mediated cytolysis was not effectively inhibited by the hypochlorous acid scavengers. Based on these observations, we propose that human neutrophils can destroy cultured human endothelial cells by generating cytotoxic quantities of hydrogen peroxide. PMID:6268662

  9. Monocytic cell differentiation from band-stage neutrophils under inflammatory conditions via MKK6 activation

    PubMed Central

    Köffel, René; Meshcheryakova, Anastasia; Warszawska, Joanna; Hennig, Annika; Wagner, Karin; Jörgl, Almut; Gubi, Daniela; Moser, Doris; Hladik, Anastasiya; Hoffmann, Ulrike; Fischer, Michael B.; van den Berg, Wim; Koenders, Marije; Scheinecker, Clemens; Gesslbauer, Bernhard; Knapp, Sylvia

    2014-01-01

    During inflammation, neutrophils are rapidly mobilized from the bone marrow storage pool into peripheral blood (PB) to enter lesional sites, where most rapidly undergo apoptosis. Monocytes constitute a second wave of inflammatory immigrates, giving rise to long-lived macrophages and dendritic cell subsets. According to descriptive immunophenotypic and cell culture studies, neutrophils may directly “transdifferentiate” into monocytes/macrophages. We provide mechanistic data in human and murine models supporting the existence of this cellular pathway. First, the inflammatory signal–induced MKK6-p38MAPK cascade activates a monocyte differentiation program in human granulocyte colony-stimulating factor–dependent neutrophils. Second, adoptively transferred neutrophils isolated from G-CSF–pretreated mice rapidly acquired monocyte characteristics in response to inflammatory signals in vivo. Consistently, inflammatory signals led to the recruitment of osteoclast progenitor cell potential from ex vivo–isolated G-CSF–mobilized human blood neutrophils. Monocytic cell differentiation potential was retained in left-shifted band-stage neutrophils but lost in neutrophils from steady-state PB. MKK6-p38MAPK signaling in HL60 model cells led to diminishment of the transcription factor C/EBPα, which enabled the induction of a monocytic cell differentiation program. Gene profiling confirmed lineage conversion from band-stage neutrophils to monocytic cells. Therefore, inflammatory signals relayed by the MKK6-p38MAPK cascade induce monocytic cell differentiation from band-stage neutrophils. PMID:25214442

  10. The murine neutrophil NLRP3 inflammasome is activated by soluble but not particulate or crystalline agonists.

    PubMed

    Chen, Kaiwen W; Bezbradica, Jelena S; Groß, Christina J; Wall, Adam A; Sweet, Matthew J; Stow, Jennifer L; Schroder, Kate

    2016-04-01

    Neutrophils express pattern recognition receptors (PRRs) and regulate immune responses via PRR-dependent cytokine production. An emerging theme is that neutrophil PRRs often exhibit cell type-specific adaptations in their signalling pathways. This prompted us to examine inflammasome signalling by the PRR NLRP3 in murine neutrophils, in comparison to well-established NLRP3 signalling pathways in macrophages. Here, we demonstrate that while murine neutrophils can indeed signal via the NLRP3 inflammasome, neutrophil NLRP3 selectively responds to soluble agonists but not to the particulate/crystalline agonists that trigger NLRP3 activation in macrophages via phagolysosomal rupture. In keeping with this, alum did not trigger IL-1β production from human PMN, and the lysosomotropic peptide Leu-Leu-OMe stimulated only weak NLRP3-dependent IL-1β production from murine neutrophils, suggesting that lysosomal rupture is not a strong stimulus for NLRP3 activation in neutrophils. We validated our in vitro findings for poor neutrophil NLRP3 responses to particles in vivo, where we demonstrated that neutrophils do not significantly contribute to alum-induced IL-1β production in mice. In all, our studies highlight that myeloid cell identity and the nature of the danger signal can strongly influence signalling by a single PRR, thus shaping the nature of the resultant immune response. PMID:27062120

  11. Priming of the neutrophil respiratory burst: role in host defense and inflammation.

    PubMed

    El-Benna, Jamel; Hurtado-Nedelec, Margarita; Marzaioli, Viviana; Marie, Jean-Claude; Gougerot-Pocidalo, Marie-Anne; Dang, Pham My-Chan

    2016-09-01

    Neutrophils are the major circulating white blood cells in humans. They play an essential role in host defense against pathogens. In healthy individuals, circulating neutrophils are in a dormant state with very low efficiency of capture and arrest on the quiescent endothelium. Upon infection and subsequent release of pro-inflammatory mediators, the vascular endothelium signals to circulating neutrophils to roll, adhere, and cross the endothelial barrier. Neutrophils migrate toward the infection site along a gradient of chemo-attractants, then recognize and engulf the pathogen. To kill this pathogen entrapped inside the vacuole, neutrophils produce and release high quantities of antibacterial peptides, proteases, and reactive oxygen species (ROS). The robust ROS production is also called 'the respiratory burst', and the NADPH oxidase or NOX2 is the enzyme responsible for the production of superoxide anion, leading to other ROS. In vitro, several soluble and particulate agonists induce neutrophil ROS production. This process can be enhanced by prior neutrophil treatment with 'priming' agents, which alone do not induce a respiratory burst. In this review, we will describe the priming process and discuss the beneficial role of controlled neutrophil priming in host defense and the detrimental effect of excessive neutrophil priming in inflammatory diseases. PMID:27558335

  12. Dry fermentation of agricultural residues

    NASA Astrophysics Data System (ADS)

    Jewell, W. J.; Chandler, J. A.; Dellorto, S.; Fanfoni, K. J.; Fast, S.; Jackson, D.; Kabrick, R. M.

    1981-09-01

    A dry fermentation process is discussed which converts agricultural residues to methane, using the residues in their as produced state. The process appears to simplify and enhance the possibilities for using crop residues as an energy source. The major process variables investigated include temperature, the amount and type of inoculum, buffer requirements, compaction, and pretreatment to control the initial available organic components that create pH problems. A pilot-scale reactor operation on corn stover at a temperature of 550 C, with 25 percent initial total solids, a seed-to-feed ratio of 2.5 percent, and a buffer-to-feed ratio of 8 percent achieved 33 percent total volatile solids destruction in 60 days. Volumetric biogas yields from this unit were greater than 1 vol/vol day for 12 days, and greater than 0.5 vol/vol day for 32 days, at a substrate density of 169 kg/m (3).

  13. [The research progress of succinic acid fermentation strains].

    PubMed

    Wang, Qing-Zhao; Zhao, Xue-Ming

    2007-07-01

    The potential of succinic acid as an important chemical intermediates had been realized and fermentation is one of the best ways to make it possible in economical aspect. Fermentation organism is the key part of the fermentation method. The updated research developments of fermentation organisms and the fermentation characteristics and problems of them were reviewed and analyzed in this paper. Finally,the development future of fermenation organism was forecasted. PMID:17822024

  14. Neutrophil extracellular traps promote differentiation and function of fibroblasts.

    PubMed

    Chrysanthopoulou, Akrivi; Mitroulis, Ioannis; Apostolidou, Eirini; Arelaki, Stella; Mikroulis, Dimitrios; Konstantinidis, Theocharis; Sivridis, Efthimios; Koffa, Maria; Giatromanolaki, Alexandra; Boumpas, Dimitrios T; Ritis, Konstantinos; Kambas, Konstantinos

    2014-07-01

    Neutrophil activation by inflammatory stimuli and the release of extracellular chromatin structures (neutrophil extracellular traps - NETs) have been implicated in inflammatory disorders. Herein, we demonstrate that NETs released by neutrophils treated either with fibrosis-related agents, such as cigarette smoke, magnesium silicate, bleomycin, or with generic NET inducers, such as phorbol 12-myristate 13-acetate, induced activation of lung fibroblasts (LFs) and differentiation into myofibroblast (MF) phenotype. Interestingly, the aforementioned agents or IL-17 (a primary initiator of inflammation/fibrosis) had no direct effect on LF activation and differentiation. MFs treated with NETs demonstrated increased connective tissue growth factor expression, collagen production, and proliferation/migration. These fibrotic effects were significantly decreased after degradation of NETs with DNase1, heparin or myeloperoxidase inhibitor, indicating the key role of NET-derived components in LF differentiation and function. Furthermore, IL-17 was expressed in NETs and promoted the fibrotic activity of differentiated LFs but not their differentiation, suggesting that priming by DNA and histones is essential for IL-17-driven fibrosis. Additionally, autophagy was identified as the orchestrator of NET formation, as shown by inhibition studies using bafilomycin A1 or wortmannin. The above findings were further supported by the detection of NETs in close proximity to alpha-smooth muscle actin (α-SMA)-expressing fibroblasts in biopsies from patients with fibrotic interstitial lung disease or from skin scar tissue. Together, these data suggest that both autophagy and NETs are involved not only in inflammation but also in the ensuing fibrosis and thus may represent potential therapeutic targets in human fibrotic diseases. PMID:24740698

  15. Neutrophil elastase and proteinase 3 trafficking routes in myelomonocytic cells

    SciTech Connect

    Kaellquist, Linda; Rosen, Hanna; Nordenfelt, Pontus; Calafat, Jero; Janssen, Hans; Persson, Ann-Maj; Hansson, Markus; Olsson, Inge

    2010-11-15

    Neutrophil elastase (NE) and proteinase 3 (PR3) differ in intracellular localization, which may reflect different trafficking mechanisms of the precursor forms when synthesized at immature stages of neutrophils. To shed further light on these mechanisms, we compared the trafficking of precursor NE (proNE) and precursor PR3 (proPR3). Like proNE [1], proPR3 interacted with CD63 upon heterologous co-expression in COS cells but endogenous interaction was not detected although cell surface proNE/proPR3/CD63 were co-endocytosed in myelomonocytic cells. Cell surface proNE/proPR3 turned over more rapidly than cell surface CD63 consistent with processing/degradation of the pro-proteases but recycling of CD63. Colocalization of proNE/proPR3/CD63 with clathrin and Rab 7 suggested trafficking through coated vesicles and late endosomes. Partial caveolar trafficking of proNE/CD63 but not proPR3 was suggested by colocalization with caveolin-1. Blocking the C-terminus of proNE/proPR3 by creating a fusion with FK506 binding protein inhibited endosomal re-uptake of proNE but not proPR3 indicating 'pro{sub C}'-peptide-dependent structural/conformational requirements for proNE but not for proPR3 endocytosis. The NE aminoacid residue Y199 of a proposed NE sorting motif that interacts with AP-3 [2] was not required for proNE processing, sorting or endocytosis in rat basophilic leukemia (RBL) cells expressing heterologous Y199-deleted proNE; this suggests operation of another AP-3-link for proNE targeting. Our results show intracellular multi-step trafficking to be different between proNE and proPR3 consistent with their differential subcellular NE/PR3 localization in neutrophils.

  16. Staphylococcus epidermidis strategies to avoid killing by human neutrophils.

    PubMed

    Cheung, Gordon Y C; Rigby, Kevin; Wang, Rong; Queck, Shu Y; Braughton, Kevin R; Whitney, Adeline R; Teintze, Martin; DeLeo, Frank R; Otto, Michael

    2010-01-01

    Staphylococcus epidermidis is a leading nosocomial pathogen. In contrast to its more aggressive relative S. aureus, it causes chronic rather than acute infections. In highly virulent S. aureus, phenol-soluble modulins (PSMs) contribute significantly to immune evasion and aggressive virulence by their strong ability to lyse human neutrophils. Members of the PSM family are also produced by S. epidermidis, but their role in immune evasion is not known. Notably, strong cytolytic capacity of S. epidermidis PSMs would be at odds with the notion that S. epidermidis is a less aggressive pathogen than S. aureus, prompting us to examine the biological activities of S. epidermidis PSMs. Surprisingly, we found that S. epidermidis has the capacity to produce PSMδ, a potent leukocyte toxin, representing the first potent cytolysin to be identified in that pathogen. However, production of strongly cytolytic PSMs was low in S. epidermidis, explaining its low cytolytic potency. Interestingly, the different approaches of S. epidermidis and S. aureus to causing human disease are thus reflected by the adaptation of biological activities within one family of virulence determinants, the PSMs. Nevertheless, S. epidermidis has the capacity to evade neutrophil killing, a phenomenon we found is partly mediated by resistance mechanisms to antimicrobial peptides (AMPs), including the protease SepA, which degrades AMPs, and the AMP sensor/resistance regulator, Aps (GraRS). These findings establish a significant function of SepA and Aps in S. epidermidis immune evasion and explain in part why S. epidermidis may evade elimination by innate host defense despite the lack of cytolytic toxin expression. Our study shows that the strategy of S. epidermidis to evade elimination by human neutrophils is characterized by a passive defense approach and provides molecular evidence to support the notion that S. epidermidis is a less aggressive pathogen than S. aureus. PMID:20949069

  17. sup 111 Indium-labeled neutrophil migration into the lungs of bleomycin-treated rabbits assessed noninvasively by external scintigraphy

    SciTech Connect

    Haslett, C.; Shen, A.S.; Feldsien, D.C.; Allen, D.; Henson, P.M.; Cherniack, R.M. )

    1989-09-01

    Factors controlling neutrophil migration into the lung are poorly understood, but their identification is important for our understanding of the pathogenesis of inflammatory lung diseases. Pulmonary inflammation is difficult to quantify, and neutrophils in tissues and BAL may not accurately represent cell migration. In this study, intravenously delivered pulses of rabbit neutrophils labeled with Indium-111 (111In-neutrophils) were used to monitor neutrophil migration into the lungs. Radioactivity quantified in the lung region of interest (ROI) of external gamma camera scintigrams recorded 24 h after intravenous 111In-neutrophil injection accurately reflected the actual neutrophil-associated lung tissue radioactivity. ROI radioactivity at 24 h also correlated closely with the percent of 111In-neutrophils that had migrated into lavageable air spaces, and this parameter therefore provided an index of total lung 111In-neutrophil migration. Using 24-h ROI radioactivity and percent of injected 111In-neutrophils recovered in BAL at 24 h as indices of neutrophil migration into the lung, it was found that intratracheal saline caused only a transient neutrophil migration, whereas 10 U/kg intratracheal bleomycin induced migration that persisted for as long as 3 wk. 111In-neutrophil migration into the lung, assessed by external scintigraphy, correlated with total neutrophils quantified in histologic sections (r = 0.71, p = 0.006). The data suggest that this approach will be valuable in investigating mechanisms controlling neutrophil migration in lung inflammation, and that 111In-neutrophil scintigraphy may provide a noninvasive index of total lung neutrophil load that might be useful in staging inflammation in patchy diseases such as idiopathic pulmonary fibrosis.

  18. Granzyme B-expressing neutrophils correlate with bacterial load in granulomas from Mycobacterium tuberculosis-infected cynomolgus macaques

    PubMed Central

    Mattila, Joshua T.; Maiello, Pauline; Sun, Tao; Via, Laura E.; Flynn, JoAnne L.

    2015-01-01

    Summary The role of neutrophils in tuberculosis (TB), and whether neutrophils express granzyme B (grzB), a pro-apoptotic enzyme associated with cytotoxic T cells, is controversial. We examined neutrophils in peripheral blood (PB) and lung granulomas of Mycobacterium tuberculosis-infected cynomolgus macaques and humans to determine whether mycobacterial products or pro-inflammatory factors induce neutrophil grzB expression. We found large numbers of grzB-expressing neutrophils in macaque and human granulomas and these cells contained more grzB+ granules than T cells. Higher neutrophil, but not T cell, grzB expression correlated with increased bacterial load. Although unstimulated PB neutrophils lacked grzB expression, grzB expression increased upon exposure to M. tuberculosis bacilli, M. tuberculosis culture filtrate protein or lipopolysaccharide from Escherichia coli. Perforin is required for granzyme-mediated cytotoxicity by T cells, but was not observed in PB or granuloma neutrophils. Nonetheless, stimulated PB neutrophils secreted grzB as determined by enzyme-linked immunospot assays. Purified grzB was not bactericidal or bacteriostatic, suggesting secreted neutrophil grzB acts on extracellular targets, potentially enhancing neutrophil migration through extracellular matrix and regulating apoptosis or activation in other cell types. These data indicate mycobacterial products and the pro-inflammatory environment of granulomas up-regulates neutrophil grzB expression and suggests a previously unappreciated aspect of neutrophil biology in TB. PMID:25653138

  19. Neutrophils Are Not Less Sensitive Than Other Blood Leukocytes to the Genomic Effects of Glucocorticoids

    PubMed Central

    Hirsch, Gaelle; Lavoie-Lamoureux, Anouk; Beauchamp, Guy; Lavoie, Jean-Pierre

    2012-01-01

    Background Neutrophils are generally considered less responsive to glucocorticoids compared to other inflammatory cells. The reported increase in human neutrophil survival mediated by these drugs partly supports this assertion. However, it was recently shown that dexamethasone exerts potent anti-inflammatory effects in equine peripheral blood neutrophils. Few comparative studies of glucocorticoid effects in neutrophils and other leukocytes have been reported and a relative insensitivity of neutrophils to these drugs could not be ruled out. Objective We assessed glucocorticoid-responsiveness in equine and human peripheral blood neutrophils and neutrophil-depleted leukocytes. Methods Blood neutrophils and neutrophil-depleted leukocytes were isolated from 6 healthy horses and 4 human healthy subjects. Cells were incubated for 5 h with or without LPS (100 ng/mL) alone or combined with hydrocortisone, prednisolone or dexamethasone (10−8 M and 10−6 M). IL-1β, TNF-α, IL-8, glutamine synthetase and GR-α mRNA expression was quantified by qPCR. Equine neutrophils were also incubated for 20 h with or without the three glucocorticoids and cell survival was assessed by flow cytometry and light microscopy on cytospin preparations. Results We found that glucocorticoids down-regulated LPS-induced pro-inflammatory mRNA expression in both cell populations and species. These drugs also significantly increased glutamine synthetase gene expression in both equine cell populations. The magnitude of glucocorticoid response between cell populations was generally similar in both species. We also showed that dexamethasone had a comparable inhibitory effect on pro-inflammatory gene expression in both human and equine neutrophils. As reported in other species, glucocorticoids significantly increase the survival in equine neutrophils. Conclusions Glucocorticoids exert genomic effects of similar magnitude on neutrophils and on other blood leukocytes. We speculate that the poor response to

  20. Induction of CD18-mediated passage of neutrophils by Pasteurella haemolytica in pulmonary bronchi and bronchioles.

    PubMed

    Ackermann, M R; Brogden, K A; Florance, A F; Kehrli, M E

    1999-02-01

    Pasteurella haemolytica is an important respiratory pathogen of cattle that incites extensive infiltrates of neutrophils into the lung. In addition to the parenchymal damage caused by factors released by P. haemolytica, neutrophils contribute to the pathologic changes in the lungs. Molecules which mediate neutrophil infiltration into the lungs during P. haemolytica pneumonia are poorly characterized. To determine whether the CD18 family (beta2-integrin) of leukocyte adhesion molecules mediates initial passage of neutrophils into the pulmonary bronchi and bronchioles of lungs infected with P. haemolytica, three Holstein calves homozygous for bovine leukocyte adhesion deficiency (BLAD) (CD18-deficient neutrophils), and three age- and breed-matched control calves (normal CD18 expression) were inoculated with P. haemolytica A1 via a fiberoptic bronchoscope and euthanized at 2 h postinoculation. Sections of lung were stained for neutrophils, and the intensity of neutrophilic infiltration was determined by computerized image analysis. Significantly fewer (P < 0.05) neutrophils infiltrated the lumen, epithelium, and adventitia of bronchioles and bronchi in lungs of calves with BLAD compared to normal calves, which had dense infiltrates within these sites at 2 h postinoculation. The reduced infiltration in calves with BLAD occurred despite the presence of an extremely large number of neutrophils in peripheral blood that is typical for these calves. The large number of neutrophils in the blood of calves with BLAD is probably a physiologic response that can occur without microbial colonization, since one calf with BLAD that was raised under germ-free conditions had large numbers of neutrophils in the blood that were similar to those in a calf with BLAD that was raised conventionally. Neutrophil counts in the germ-free and conventionally reared calves with BLAD were much higher than those in the three normal calves raised under germ-free conditions. The work in this study

  1. Solid-phase fermentation of sweet sorghum

    SciTech Connect

    Bryan, W.L.; Parrish, R.L.

    1982-12-01

    Solid-phase fermentations of chopped Wray sweet sorghum, (0.6 and 2.5 cm size) occurred in 7-liter fermentors at higher rates than juice fermentations and produced 80% ethanol yields, compared to 73% for juice. Heat loss from fermentors limited maximum temperatures to 38/sup 0/C. Low ethanol yields may have been caused by natural inhibitors or by thermal inhibition.

  2. Neutrophilic oxidative stress mediates organic dust-induced pulmonary inflammation and airway hyperresponsiveness.

    PubMed

    McGovern, Toby K; Chen, Michael; Allard, Benoit; Larsson, Kjell; Martin, James G; Adner, Mikael

    2016-01-15

    Airway exposure to organic dust (OD) from swine confinement facilities induces airway inflammation dominated by neutrophils and airway hyperresponsiveness (AHR). One important neutrophilic innate defense mechanism is the induction of oxidative stress. Therefore, we hypothesized that neutrophils exacerbate airway dysfunction following OD exposure by increasing oxidant burden. BALB/C mice were given intranasal challenges with OD or PBS (1/day for 3 days). Mice were untreated or treated with a neutrophil-depleting antibody, anti-Ly6G, or the antioxidant dimethylthiourea (DMTU) prior to OD exposure. Twenty-four hours after the final exposure, we measured airway responsiveness in response to methacholine (MCh) and collected bronchoalveolar lavage fluid to assess pulmonary inflammation and total antioxidant capacity. Lung tissue was harvested to examine the effect of OD-induced antioxidant gene expression and the effect of anti-Ly6G or DMTU. OD exposure induced a dose-dependent increase of airway responsiveness, a neutrophilic pulmonary inflammation, and secretion of keratinocyte cytokine. Depletion of neutrophils reduced OD-induced AHR. DMTU prevented pulmonary inflammation involving macrophages and neutrophils. Neutrophil depletion and DMTU were highly effective in preventing OD-induced AHR affecting large, conducting airways and tissue elastance. OD induced an increase in total antioxidant capacity and mRNA levels of NRF-2-dependent antioxidant genes, effects that are prevented by administration of DMTU and neutrophil depletion. We conclude that an increase in oxidative stress and neutrophilia is critical in the induction of OD-induced AHR. Prevention of oxidative stress diminishes neutrophil influx and AHR, suggesting that mechanisms driving OD-induced AHR may be dependent on neutrophil-mediated oxidant pathways. PMID:26545900

  3. Neutrophil Depletion Attenuates Placental Ischemia-Induced Hypertension in the Rat.

    PubMed

    Regal, Jean F; Lillegard, Kathryn E; Bauer, Ashley J; Elmquist, Barbara J; Loeks-Johnson, Alex C; Gilbert, Jeffrey S

    2015-01-01

    Preeclampsia is characterized by reduced placental perfusion with placental ischemia and hypertension during pregnancy. Preeclamptic women also exhibit a heightened inflammatory state and greater number of neutrophils in the vasculature compared to normal pregnancy. Since neutrophils are associated with tissue injury and inflammation, we hypothesized that neutrophils are critical to placental ischemia-induced hypertension and fetal demise. Using the reduced uteroplacental perfusion pressure (RUPP) model of placental ischemia-induced hypertension in the rat, we determined the effect of neutrophil depletion on blood pressure and fetal resorptions. Neutrophils were depleted with repeated injections of polyclonal rabbit anti-rat polymorphonuclear leukocyte (PMN) antibody (antiPMN). Rats received either antiPMN or normal rabbit serum (Control) on 13.5, 15.5, 17.5, and 18.5 days post conception (dpc). On 14.5 dpc, rats underwent either Sham surgery or clip placement on ovarian arteries and abdominal aorta to reduce uterine perfusion pressure (RUPP). On 18.5 dpc, carotid arterial catheters were placed and mean arterial pressure (MAP) was measured on 19.5 dpc. Neutrophil-depleted rats had reduced circulating neutrophils from 14.5 to 19.5 dpc compared to Control, as well as decreased neutrophils in lung and placenta on 19.5 dpc. MAP increased in RUPP Control vs Sham Control rats, and neutrophil depletion attenuated this increase in MAP in RUPP rats without any effect on Sham rats. The RUPP-induced increase in fetal resorptions and complement activation product C3a were not affected by neutrophil depletion. Thus, these data are the first to indicate that neutrophils play an important role in RUPP hypertension and that cells of the innate immune system may significantly contribute to pregnancy-induced hypertension. PMID:26135305

  4. Site-Specific Neutrophil Migration and CXCL2 Expression in Periodontal Tissue.

    PubMed

    Greer, A; Irie, K; Hashim, A; Leroux, B G; Chang, A M; Curtis, M A; Darveau, R P

    2016-07-01

    The oral microbial community is the best-characterized bacterial ecosystem in the human host. It has been shown in the mouse that oral commensal bacteria significantly contribute to clinically healthy periodontal homeostasis by influencing the number of neutrophils that migrate from the vasculature to the junctional epithelium. Furthermore, in clinically healthy tissue, the neutrophil response to oral commensal bacteria is associated with the select expression of the neutrophil chemokine CXCL2 but not CXCL1. This preliminary study examined the contribution of commensal bacteria on neutrophil location across the tooth/gingival interface. Tissue sections from the root associated mesial (anterior) of the second molar to the root associated distal (posterior) of the second molar were examined for neutrophils and the expression of the neutrophil chemokine ligands CXCL1 and CXCL2. It was found that both the number of neutrophils as well as the expression of CXCL2 but not CXCL1 was significantly increased in tissue sections close to the interdental region, consistent with the notion of select tissue expression patterns for neutrophil chemokine expression and subsequent neutrophil location. Furthermore, mice gavaged with either oral Streptococcus or Lactobacillus sp. bacteria induced a location pattern of neutrophils and CXCL2 expression similar to the normal oral flora. These data indicate for the first time select neutrophil location and chemokine expression patterns associated with clinically healthy tissue. The results reveal an increased inflammatory load upon approaching the interproximal region, which is consistent with the observation that the interproximal region often reveals early clinical signs of periodontal disease. PMID:27013641

  5. Activated Neutrophils Are Associated with Pediatric Cerebral Malaria Vasculopathy in Malawian Children

    PubMed Central

    Feintuch, Catherine Manix; Saidi, Alex; Seydel, Karl; Chen, Grace; Goldman-Yassen, Adam; Mita-Mendoza, Neida K.; Kim, Ryung S.; Frenette, Paul S.; Taylor, Terrie

    2016-01-01

    ABSTRACT Most patients with cerebral malaria (CM) sustain cerebral microvascular sequestration of Plasmodium falciparum-infected red blood cells (iRBCs). Although many young children are infected with P. falciparum, CM remains a rare outcome; thus, we hypothesized that specific host conditions facilitate iRBC cerebral sequestration. To identify these host factors, we compared the peripheral whole-blood transcriptomes of Malawian children with iRBC cerebral sequestration, identified as malarial-retinopathy-positive CM (Ret+CM), to the transcriptomes of children with CM and no cerebral iRBC sequestration, defined as malarial-retinopathy-negative CM (Ret-CM). Ret+CM was associated with upregulation of 103 gene set pathways, including cytokine, blood coagulation, and extracellular matrix (ECM) pathways (P < 0.01; false-discovery rate [FDR] of <0.05). Neutrophil transcripts were the most highly upregulated individual transcripts in Ret+CM patients. Activated neutrophils can modulate diverse host processes, including the ECM, inflammation, and platelet biology to potentially facilitate parasite sequestration. Therefore, we compared plasma neutrophil proteins and neutrophil chemotaxis between Ret+CM and Ret-CM patients. Plasma levels of human neutrophil elastase, myeloperoxidase, and proteinase 3, but not lactoferrin or lipocalin, were elevated in Ret+CM patients, and neutrophil chemotaxis was impaired, possibly related to increased plasma heme. Neutrophils were rarely seen in CM brain microvasculature autopsy samples, and no neutrophil extracellular traps were found, suggesting that a putative neutrophil effect on endothelial cell biology results from neutrophil soluble factors rather than direct neutrophil cellular tissue effects. Meanwhile, children with Ret-CM had lower levels of inflammation, higher levels of alpha interferon, and upregulation of Toll-like receptor pathways and other host transcriptional pathways, which may represent responses that do not favor

  6. The Interleukin-17 Induced Activation and Increased Survival of Equine Neutrophils Is Insensitive to Glucocorticoids

    PubMed Central

    Murcia, Ruby Yoana; Vargas, Amandine; Lavoie, Jean-Pierre

    2016-01-01

    Background Glucocorticoids (GCs) are the most effective drugs for the treatment of human asthma. However, a subgroup of asthmatic patients with neutrophilic airway inflammation is insensitive to GCs. Interleukin-17 (IL-17), a cytokine upregulated in the airways of a subset of human asthmatic patients, contributes to the recruitment of neutrophils and induces a glucocorticoid resistance in human airway epithelial cells. We hypothesized that IL-17 similarly activates neutrophils and contributes to their persistence in the asthmatic airways in spite of glucocorticoid therapy. Objective To determine whether IL-17 directly activates neutrophils and whether this response is attenuated by GCs. Methods Neutrophils were isolated from the blood of horses and incubated in the presence of recombinant equine IL-17, LPS and dexamethasone. mRNA and protein expression of IL-17 receptors (IL-17RA/IL-17RC) were assessed by qPCR and immunoblot, respectively. Pro-inflammatory cytokine expression, cell viability and apoptosis were determined by qPCR, Trypan Blue exclusion test, and flow cytometry, respectively. Results Equine neutrophils express both IL-17RA and IL-17RC at the mRNA and protein levels. Neutrophil stimulation with IL-17 increases the mRNA expression of IL-8, which is not attenuated by dexamethasone (p = 0.409). Also, neutrophil viability is significantly increased (p<0.0001) by IL-17 in the presence of LPS when compared to LPS alone. Flow cytometry and light microscopy revealed that LPS-induced apoptosis is decreased by IL-17 (p = 0.02 and p = 0.006 respectively). Conclusion These results indicate that IL-17 directly activates equine neutrophils at 24 hours, and that the expression of IL-8 thus induced is not attenuated by GCs. Additionally, IL-17 increases neutrophil viability and decreases apoptosis. These findings suggest an important role of IL-17 in pulmonary persistence of neutrophils in the asthmatic airways. PMID:27138006

  7. Mouse neutrophils lacking lamin B receptor expression exhibit aberrant development and lack critical functional responses

    PubMed Central

    Gaines, Peter; Tien, Chiung W.; Olins, Ada L.; Olins, Donald E.; Shultz, Leonard D.; Carney, Lisa; Berliner, Nancy

    2008-01-01

    Objective The capacity of neutrophils to eradicate bacterial infections is dependent on normal development and the activation of functional responses, which include chemotaxis and the generation of oxygen radicals during the respiratory burst. A unique feature of the neutrophil is its highly lobulated nucleus, which is thought to facilitate chemotaxis but may also play a role in other critical neutrophil functions. Nuclear lobulation is dependent on the expression of the inner nuclear envelope protein, the lamin B receptor (LBR), mutations of which cause hypolobulated neutrophil nuclei in human Pelger-Huët anomaly (PHA) and the "ichthyosis" (ic) phenotype in mice. In this study we have investigated roles for LBR in mediating neutrophil development and the activation of multiple neutrophil functions, including chemotaxis and the respiratory burst. Materials and Methods A progenitor EML cell line was generated from an ic/ic mouse, and derived cells that lacked LBR expression were induced to mature neutrophils and then examined for abnormal morphology and functional responses. Results Neutrophils derived from EML-ic/ic cells exhibited nuclear hypolobulation identical to that observed in ichthyosis mice. The ic/ic neutrophils also displayed abnormal chemotaxis, supporting the notion that nuclear segmentation augments neutrophil extravasation. Furthermore, promyelocytic forms of ic/ic cells displayed decreased proliferative responses and produced a deficient respiratory burst upon terminal maturation. Conclusions Our studies of promyelocytes that lack LBR expression have identified roles for LBR in regulating not only the morphologic maturation of the neutrophil nucleus but also proliferative and functional responses that are critical to innate immunity. PMID:18550262

  8. Impaired neutrophil function in 24p3 null mice contributes to enhanced susceptibility to bacterial infections

    PubMed Central

    Liu, Zhuoming; Petersen, Robert; Devireddy, L.

    2013-01-01

    Lipocalin 24p3 (24p3) is a neutrophil secondary granule protein. 24p3 is also a siderocalin, which binds several bacterial siderophores. It was therefore proposed that synthesis and secretion of 24p3 by stimulated macrophages or release of 24p3 upon neutrophil degranulation sequesters iron-laden siderophores to attenuate bacterial growth. Accordingly, 24p3-deficient mice are susceptible to bacterial pathogens whose siderophores would normally be chelated by 24p3. Specific granule deficiency (SGD) is a rare congenital disorder characterized by complete absence of proteins in secondary granules. Neutrophils from SGD patients, who are prone to bacterial infections, lack normal functions but the potential role of 24p3 in neutrophil dysfunction in SGD is not known. Here we show that neutrophils from 24p3−/− mice are defective in many neutrophil functions. Specifically, neutrophils in 24p3−/− mice do not extravasate to sites of infection and are defective for chemotaxis. A transcriptome analysis revealed that genes that control cytoskeletal reorganization are selectively suppressed in 24p3−/− neutrophils. Additionally, small regulatory RNAs (miRNAs) that control upstream regulators of cytoskeletal proteins are also increased in 24p3−/− neutrophils. Further, 24p3−/− neutrophils failed to phagocytose bacteria, which may account for the enhanced sensitivity of 24p3−/− mice to both intracellular (Listeria monocytogenes) and extracellular (Candida albicans, Staphylococcus aureus) pathogens. Listeria does not secrete siderophores and additionally, the siderophore secreted by Candida is not sequestered by 24p3. Therefore, the heightened sensitivity of 24p3−/− mice to these pathogens is not due to sequestration of siderophores limiting iron availability, but is a consequence of impaired neutrophil function. PMID:23543755

  9. Comparison of recombinant xylose-fermenting saccharomyces and natural xylose-fermenting yeasts in fermenting mixed sugars containing both glucose and xylose

    SciTech Connect

    Ho, N.W.Y.; Chen, Zhengdao; Brainard, A.

    1995-12-01

    Cellulosic biomass is an ideal renewable feedstock for the production of ethanol fuels. A Saccharomyces yeast has been genetically engineered to ferment xylose, a constituent of biomass. Results are described and compared with other natural xylose-fermenting yeasts.

  10. Acetone-butanol Fermentation of Marine Macroalgae

    SciTech Connect

    Huesemann, Michael H.; Kuo, Li-Jung; Urquhart, Lindsay A.; Gill, Gary A.; Roesijadi, Guritno

    2012-03-01

    Mannitol and laminarin, which are present at high concentrations in the brown macroalga Saccharina spp., a type of kelp, are potential biochemical feedstocks for butanol production. To test their bioconversion potential, aqueous extracts of the kelp Saccharina spp., mannitol, and glucose (a product of laminarin hydrolysis) were subjected to acetone-butanol fermentation by Clostridium acetobutylicum (ATCC 824). Both mannitol and glucose were readily fermented. Mixed substrate fermentations with glucose and mannitol resulted in diauxic growth of C. acetobutylicum with glucose depletion preceding mannitol utilization. Fermentation of kelp extract exhibited triauxic growth, with an order of utilization of free glucose, mannitol, and bound glucose, presumably laminarin. The lag in laminarin utilization reflected the need for enzymatic hydrolysis of this polysaccharide into fermentable sugars. The butanol and total solvent yields were 0.12 g/g and 0.16 g/g, respectively, indicating that significant improvements are still needed to make industrial-scale acetone-butanol fermentations of seaweed economically feasible.

  11. Coffee fermentation and flavor--An intricate and delicate relationship.

    PubMed

    Lee, Liang Wei; Cheong, Mun Wai; Curran, Philip; Yu, Bin; Liu, Shao Quan

    2015-10-15

    The relationship between coffee fermentation and coffee aroma is intricate and delicate at which the coffee aroma profile is easily impacted by the fermentation process during coffee processing. However, as the fermentation process in coffee processing is conducted mainly for mucilage removal, its impacts on coffee aroma profile are usually neglected. Therefore, this review serves to summarize the available literature on the impacts of fermentation in coffee processing on coffee aroma as well as other unconventional avenues where fermentation is employed for coffee aroma modulation. Studies have noted that proper control over the fermentation process imparts desirable attributes and prevents undesirable fermentation which generates off-flavors. Other unconventional avenues in which fermentation is employed for aroma modulation include digestive bioprocessing and the fermentation of coffee extracts and green coffee beans. The latter is an area that should be explored further with appropriate microorganisms given its potential for coffee aroma modulation. PMID:25952856

  12. Neutrophil actin dysfunction is a genetic disorder associated with partial impairment of neutrophil actin assembly in three family members.

    PubMed Central

    Southwick, F S; Dabiri, G A; Stossel, T P

    1988-01-01

    A male infant with a severe neutrophil motility disorder and poorly polymerizable actin in PMN extracts was reported over a decade ago to have neutrophil actin dysfunction (NAD) (1974. N. Engl. J. Med. 291:1093-1099). Polymerized actin (F-actin) content of fixed and permeabilized intact neutrophils from the father, mother, and sister of the NAD index case have been measured using nitrobenzoxadiazole-phallacidin, a fluorescent compound which binds specifically to actin filaments. F-actin content of unstimulated PMN from all three family members was significantly lower than unstimulated control PMN (mean 23.6 +/- 0.4 SEM fluorescent units vs. 32.6 +/- 0.6 for controls). After stimulation with the chemotactic peptide FMLP, maximal F-actin content of NAD family member PMN was below that of controls (52.7 +/- 1.3 vs. 72.6 +/- 1.8). F-actin content of detergent insoluble cytoskeletons after stimulation with FMLP was also significantly lower in PMN from NAD family members as compared with controls (21 +/- 6% vs. 73 +/- 8%). PMN extracts from the father and mother, when treated with 0.6 M KCl, polymerized half as much actin as controls. Whereas diisopropylfluorophosphate treatment of normal PMN decreased actin polymerizability in cell extracts, this treatment increased the assembly of actin in parental PMN extract. Addition of purified actin to NAD extracts failed to reveal an abnormal actin polymerization inhibitory activity, and no obvious structural defect in actin purified from the father's PMNs was noted by HPLC and two dimensional thin layer chromatography of tryptic digests. The present studies of actin assembly in intact PMNs confirm that NAD is associated with a true defect in PMN actin assembly and is a genetic disorder that is recessively inherited. Images PMID:3183050

  13. The impact of cationic solid lipid nanoparticles on human neutrophil activation and formation of neutrophil extracellular traps (NETs).

    PubMed

    Hwang, Tsong-Long; Aljuffali, Ibrahim A; Hung, Chi-Feng; Chen, Chun-Han; Fang, Jia-You

    2015-06-25

    Cationic solid lipid nanoparticles (cSLNs) are extensively employed as the nanocarriers for drug/gene targeting to tumors and the brain. Investigation into the possible immune response of cSLNs is still lacking. The aim of this study was to evaluate the impact of cSLNs upon the activation of human polymorphonuclear neutrophil cells (PMNs). The cytotoxicity, pro-inflammatory mediators, Ca(2+) mobilization, mitogen-activated protein kinases (MAPKs), and neutrophil extracellular traps (NETs) as the indicators of PMN stimulation were examined in this work. The cSLNs presented a diameter of 195 nm with a zeta potential of 44 mV. The cSLNs could interact with the cell membrane to produce a direct membrane lysis and the subsequent cytotoxicity according to lactate dehydrogenase (LDH) elevation. The interaction of cSLNs with the membrane also triggered a Ca(2+) influx, followed by the induction of oxidative stress and degranulation. The cationic nanoparticles elevated the levels of superoxide anion and elastase by 24- and 9-fold, respectively. The PMN activation by cSLNs promoted the phosphorylation of p38 and Jun-N-terminal kinases (JNK) but not extracellular signal-regulated kinases (ERK). The imaging of scanning electron microscopy (SEM) and immunofluorescence demonstrated the production of NETs by cSLNs. This phenomenon was not significant for the neutral SLNs (nSLNs), although histones in NETs also increased after treatment of nSLNs. Our results suggest an important role of cSLNs in governing the activation of human neutrophils. PMID:25920576

  14. Matters of life and death. How neutrophils die or survive along NET release and is "NETosis" = necroptosis?

    PubMed

    Desai, Jyaysi; Mulay, Shrikant R; Nakazawa, Daigo; Anders, Hans-Joachim

    2016-06-01

    Neutrophil extracellular trap (NET) formation is a hallmark of many disorders that involve neutrophil recruitment, tissue damage, and inflammation. As NET formation is often associated with neutrophil death, the term "NETosis" has become popular. Upon discovery that neutrophils may survive NET release, apparent misnomers, such as "vital NETosis," have been proposed. Meanwhile, it has become obvious that certain stimuli can trigger neutrophil necroptosis, a process associated with NET-like chromatin release. Here, we discuss the relationship between NET release and neutrophil death in view highlighting that many assays used in the field do not properly distinguish between the two. An updated nomenclature is needed replacing the term "NETosis" to meet the growing variety of settings leading to chromatin release with and without neutrophil death. Dissecting which triggers of NET release involve which signaling pathway will help to define drugable molecular targets that inhibit NET release and/or neutrophil necrosis in specific disorders. PMID:27048811

  15. Tumor-Associated Neutrophils Show Phenotypic and Functional Divergence in Human Lung Cancer.

    PubMed

    Saha, Shilpi; Biswas, Subhra K

    2016-07-11

    Studies in murine cancer models have demonstrated the phenotypic and functional divergence of neutrophils; however, their role in pro- or anti-tumor responses in human remains elusive. In this issue of Cancer Cell, Singhal et al. report the existence of specialized subsets of neutrophils in human lung cancer with diverging functions. PMID:27411583

  16. Basal neutrophil function in human aging: Implications in endothelial cell adhesion.

    PubMed

    Nogueira-Neto, Joes; Cardoso, André S C; Monteiro, Hugo P; Fonseca, Fernando L A; Ramos, Luiz Roberto; Junqueira, Virginia B C; Simon, Karin A

    2016-07-01

    Much attention has been drawn to the pro-inflammatory condition that accompanies aging. This study compared parameters from non-stimulated neutrophils, obtained from young (18-30 years old [y.o.]) and elderly (65-80 y.o.) human volunteers. Measured as an inflammatory marker, plasmatic concentration of hs-CRP was found higher in elderly individuals. Non-stimulated neutrophil production of ROS and NO was, respectively, 38 and 29% higher for the aged group. From the adhesion molecules evaluated, only CD11b expression was elevated in neutrophils from the aged group, whereas no differences were found for CD11a, CD18, or CD62. A 69% higher non-stimulated in vitro neutrophil/endothelial cell adhesion was observed for neutrophils isolated from elderly donors. Our results suggest that with aging, neutrophils may be constitutively producing more reactive species in closer proximity to endothelial cells of vessel walls, which may both contribute to vascular damage and reflect a neutrophil intracellular disrupted redox balance, altering neutrophil function in aging. PMID:27109745

  17. Cigarette smoking and lung destruction. Accumulation of neutrophils in the lungs of cigarette smokers.

    PubMed

    Hunninghake, G W; Crystal, R G

    1983-11-01

    It has been hypothesized that lung destruction in persons with emphysema associated with cigarette smoking is mediated by elastase released by neutrophils that have migrated to the alveolar structures in response to cigarette smoke. To directly evaluate this hypothesis, cell suspensions, isolated from bronchoalveolar lavage fluid and from open lung biopsies of nonsmokers and cigarette smokers with normal lung parenchyma and from open lung biopsies of nonsmokers and cigarette smokers who have sarcoidosis were evaluated for the presence of neutrophils. A significantly increased number of neutrophils was present in the cell suspensions isolated from bronchoalveolar lavage fluid and from open lung biopsies of both normal and sarcoid cigarette smokers compared with that in the nonsmokers (p less than 0.01, each comparison). Evaluation of the alveolar macrophages present in lavage fluid suggested a mechanism by which neutrophils may be attracted to the lungs of cigarette smokers: alveolar macrophages of cigarette smokers release a chemotactic factor for neutrophils, whereas alveolar macrophages of nonsmokers do not. In addition, alveolar macrophages of nonsmokers, after exposure to cigarette smoke, in vitro, are stimulated to release this chemotactic factor. These studies demonstrate that an increased number of neutrophils are present in the lungs of cigarette smokers compared with that in nonsmokers and suggest that cigarette smoke may attract neutrophils to the lung by stimulating alveolar macrophages to release a potent chemotactic factor for neutrophils. PMID:6556892

  18. EVALUATION OF ASSAYS FOR THE MEASUREMENT OF BOVINE NEUTROPHIL REACTIVE OXYGEN SPECIES.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During mastitis and other bacterial-mediated diseases of cattle, neutrophils play a critical role in the host innate immune response to infection. Neutrophils are among the earliest leukocytes recruited to the site of infection and contribute to host innate immune defenses through their ability to ...

  19. Comparative evaluation of assays for the measurement of bovine neutrophil oxidative burst activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During mastitis and other bacterial-mediated diseases of cattle, neutrophils play a critical role in the host innate immune response to infection. The bactericidal activity of neutrophils is mediated, in part, through the generation of reactive oxygen species (ROS). The objectives of the current stu...

  20. Bacterial lipopolysaccharides prime human neutrophils for enhanced production of leukotriene B4.

    PubMed Central

    Doerfler, M E; Danner, R L; Shelhamer, J H; Parrillo, J E

    1989-01-01

    Neutrophils can be "primed" for an enhanced respiratory burst by lipopolysaccharide (LPS) in concentrations measurable in patients with septic shock. Leukotriene B4 (LTB4) is the primary eicosanoid product of neutrophils and is felt to be a mediator of host defense and inflammation. We investigated the in vitro effects of LPS on neutrophil production of LTB4 and the omega-oxidation metabolites of LTB4. Incubation of neutrophils with LPS in concentrations ranging from 0.01 to 100 ng/ml did not result in production of LTB4 or metabolites in the absence of a second stimulus. Priming neutrophils with LPS and then stimulating with opsonized zymosan, phorbol-myristate-acetate or a low concentration of the calcium ionophore A23187 resulted in enhanced production of LTB4. LPS priming of neutrophils occurred in a concentration dependent manner. LPS did not result in LTB4 production in response to the chemoattractant peptide FMLP. LPS priming of neutrophils had no effect on cytosolic calcium concentrations of resting or zymosan-stimulated cells. These results suggest that LPS might effect host defense and tissue injury by potentiating the effect of other stimulants on neutrophil production of LTB4. This LPS induced enhancement may represent an important pathogenetic pathway in patients with gram negative sepsis. PMID:2537852