Science.gov

Sample records for fermilab tevatron collider

  1. Estimates of Fermilab Tevatron collider performance

    SciTech Connect

    Dugan, G.

    1991-09-01

    This paper describes a model which has been used to estimate the average luminosity performance of the Tevatron collider. In the model, the average luminosity is related quantitatively to various performance parameters of the Fermilab Tevatron collider complex. The model is useful in allowing estimates to be developed for the improvements in average collider luminosity to be expected from changes in the fundamental performance parameters as a result of upgrades to various parts of the accelerator complex.

  2. Implementation of Stochastic Cooling Hardware at Fermilab's Tevatron Collider

    SciTech Connect

    Pasquinelli, Ralph J.; /Fermilab

    2011-08-01

    The invention of Stochastic cooling by Simon van der Meer made possible the increase in phase space density of charged particle beams. In particular, this feedback technique allowed the development of proton antiproton colliders at both CERN and Fermilab. This paper describes the development of hardware systems necessary to cool antiprotons at the Fermilab Tevatron Collider complex.

  3. Implementation of stochastic cooling hardware at Fermilab's Tevatron collider

    NASA Astrophysics Data System (ADS)

    Pasquinelli, Ralph J.

    2011-08-01

    The invention of Stochastic cooling by Simon van der Meer made possible the increase in phase space density of charged particle beams. In particular, this feedback technique allowed the development of proton antiproton colliders at both CERN and Fermilab. This paper describes the development of hardware systems necessary to cool antiprotons at the Fermilab Tevatron Collider complex.

  4. The performance of the Tevatron collider at Fermilab

    SciTech Connect

    Gelfand, N.M.

    1991-10-01

    This paper will describe the actual operating performance of the Tevatron, operating as a collider, and will indicate the planned upgrades which will enhance, the physics results coming from the experiments being performed at Fermilab.

  5. Double diffraction dissociation at the Fermilab Tevatron collider.

    PubMed

    Affolder, T; Akimoto, H; Akopian, A; Albrow, M G; Amaral, P; Amidei, D; Anikeev, K; Antos, J; Apollinari, G; Arisawa, T; Asakawa, T; Ashmanskas, W; Azfar, F; Azzi-Bacchetta, P; Bacchetta, N; Bailey, M W; Bailey, S; de Barbaro, P; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Barone, M; Bauer, G; Bedeschi, F; Belforte, S; Bell, W H; Bellettini, G; Bellinger, J; Benjamin, D; Bensinger, J; Beretvas, A; Berge, J P; Berryhill, J; Bhatti, A; Binkley, M; Bisello, D; Bishai, M; Blair, R E; Blocker, C; Bloom, K; Blumenfeld, B; Blusk, S R; Bocci, A; Bodek, A; Bokhari, W; Bolla, G; Bonushkin, Y; Borras, K; Bortoletto, D; Boudreau, J; Brandl, A; van Den Brink, S; Bromberg, C; Brozovic, M; Bruner, N; Buckley-Geer, E; Budagov, J; Budd, H S; Burkett, K; Busetto, G; Byon-Wagner, A; Byrum, K L; Cabrera, S; Calafiura, P; Campbell, M; Carithers, W; Carlson, J; Carlsmith, D; Caskey, W; Castro, A; Cauz, D; Cerri, A; Chan, A W; Chang, P S; Chang, P T; Chapman, J; Chen, C; Chen, Y C; Cheng, M T; Chertok, M; Chiarelli, G; Chirikov-Zorin, I; Chlachidze, G; Chlebana, F; Christofek, L; Chu, M L; Chung, Y S; Ciobanu, C I; Clark, A G; Connolly, A; Convery, M; Conway, J; Cordelli, M; Cranshaw, J; Cropp, R; Culbertson, R; Dagenhart, D; D'Auria, S; DeJongh, F; Dell'Agnello, S; Dell'Orso, M; Demortier, L; Deninno, M; Derwent, P F; Devlin, T; Dittmann, J R; Dominguez, A; Donati, S; Done, J; D'Onofrio, M; Dorigo, T; Eddy, N; Einsweiler, K; Elias, J E; Engels, E; Erbacher, R; Errede, D; Errede, S; Fan, Q; Feild, R G; Fernandez, J P; Ferretti, C; Field, R D; Fiori, I; Flaugher, B; Foster, G W; Franklin, M; Freeman, J; Friedman, J; Fukui, Y; Furic, I; Galeotti, S; Gallas, A; Gallinaro, M; Gao, T; Garcia-Sciveres, M; Garfinkel, A F; Gatti, P; Gay, C; Gerdes, D W; Giannetti, P; Glagolev, V; Glenzinski, D; Gold, M; Goldstein, J; Gorelov, I; Goshaw, A T; Gotra, Y; Goulianos, K; Green, C; Grim, G; Gris, P; Groer, L; Grosso-Pilcher, C; Guenther, M; Guillian, G; Guimaraes Da Costa, J; Haas, R M; Haber, C; Hahn, S R; Hall, C; Handa, T; Handler, R; Hao, W; Happacher, F; Hara, K; Hardman, A D; Harris, R M; Hartmann, F; Hatakeyama, K; Hauser, J; Heinrich, J; Heiss, A; Herndon, M; Hill, C; Hoffman, K D; Holck, C; Hollebeek, R; Holloway, L; Hughes, R; Huston, J; Huth, J; Ikeda, H; Incandela, J; Introzzi, G; Iwai, J; Iwata, Y; James, E; Jones, M; Joshi, U; Kambara, H; Kamon, T; Kaneko, T; Karr, K; Kasha, H; Kato, Y; Keaffaber, T A; Kelley, K; Kelly, M; Kennedy, R D; Kephart, R; Khazins, D; Kikuchi, T; Kilminster, B; Kim, B J; Kim, D H; Kim, H S; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kirby, M; Kirk, M; Kirsch, L; Klimenko, S; Koehn, P; Kondo, K; Konigsberg, J; Korn, A; Korytov, A; Kovacs, E; Kroll, J; Kruse, M; Kuhlmann, S E; Kurino, K; Kuwabara, T; Laasanen, A T; Lai, N; Lami, S; Lammel, S; Lancaster, J; Lancaster, M; Lander, R; Latino, G; LeCompte, T; Lee, A M; Lee, K; Leone, S; Lewis, J D; Lindgren, M; Liss, T M; Liu, J B; Liu, Y C; Litvintsev, D O; Lobban, O; Lockyer, N; Loken, J; Loreti, M; Lucchesi, D; Lukens, P; Lusin, S; Lyons, L; Lys, J; Madrak, R; Maeshima, K; Maksimovic, P; Malferrari, L; Mangano, M; Mariotti, M; Martignon, G; Martin, A; Matthews, J A; Mayer, J; Mazzanti, P; McFarland, K S; McIntyre, P; McKigney, E; Menguzzato, M; Menzione, A; Mesropian, C; Meyer, A; Miao, T; Miller, R; Miller, J S; Minato, H; Miscetti, S; Mishina, M; Mitselmakher, G; Moggi, N; Moore, E; Moore, R; Morita, Y; Moulik, T; Mulhearn, M; Mukherjee, A; Muller, T; Munar, A; Murat, P; Murgia, S; Nachtman, J; Nagaslaev, V; Nahn, S; Nakada, H; Nakano, I; Nelson, C; Nelson, T; Neu, C; Neuberger, D; Newman-Holmes, C; Ngan, C Y; Niu, H; Nodulman, L; Nomerotski, A; Oh, S H; Oh, Y D; Ohmoto, T; Ohsugi, T; Oishi, R; Okusawa, T; Olsen, J; Orejudos, W; Pagliarone, C; Palmonari, F; Paoletti, R; Papadimitriou, V; Partos, D; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pescara, L; Phillips, T J; Piacentino, G; Pitts, K T; Pompos, A; Pondrom, L; Pope, G; Popovic, M; Prokoshin, F; Proudfoot, J; Ptohos, F; Pukhov, O; Punzi, G; Rakitine, A; Reher, D; Reichold, A; Ribon, A; Riegler, W; Rimondi, F; Ristori, L; Riveline, M; Robertson, W J; Robinson, A; Rodrigo, T; Rolli, S; Rosenson, L; Roser, R; Rossin, R; Roy, A; Ruiz, A; Safonov, A; St Denis, R; Sakumoto, W K; Saltzberg, D; Sanchez, C; Sansoni, A; Santi, L; Sato, H; Savard, P; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Scodellaro, L; Scott, A; Scribano, A; Segler, S; Seidel, S; Seiya, Y; Semenov, A; Semeria, F; Shah, T; Shapiro, M D; Shepard, P F; Shibayama, T; Shimojima, M; Shochet, M; Sidoti, A; Siegrist, J; Sill, A; Sinervo, P; Singh, P; Slaughter, A J; Sliwa, K; Smith, C; Snider, F D; Solodsky, A; Spalding, J; Speer, T; Sphicas, P; Spinella, F; Spiropulu, M; Spiegel, L; Steele, J; Stefanini, A; Strologas, J; Strumia, F; Stuart, D; Sumorok, K; Suzuki, T; Takano, T; Takashima, R; Takikawa, K; Tamburello, P; Tanaka, M

    2001-10-01

    We present results from a measurement of double diffraction dissociation in pp collisions at the Fermilab Tevatron collider. The production cross section for events with a central pseudorapidity gap of width Deltaeta(0)>3 (overlapping eta = 0) is found to be 4.43+/-0.02(stat)+/-1.18(syst) mb [ 3.42+/-0.01(stat)+/-1.09(syst) mb] at square root of (s) = 1800[630] GeV. Our results are compared with previous measurements and with predictions based on Regge theory and factorization. PMID:11580642

  6. Search for New Fermions (''Quirks'') at the Fermilab Tevatron Collider

    SciTech Connect

    Abazov, V. M.; Alexeev, G. D.; Golovanov, G.; Kharzheev, Y. N.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.; Abbott, B.; Gutierrez, P.; Hossain, S.; Severini, H.; Skubic, P.; Strauss, M.; Abolins, M.; Benitez, J. A.; Brock, R.; Edmunds, D.; Fisher, W.; Kraus, J.

    2010-11-19

    We report results of a search for particles with anomalously high ionization in events with a high transverse energy jet and large missing transverse energy in 2.4 fb{sup -1} of integrated luminosity collected by the D0 experiment at the Fermilab Tevatron pp collider. Production of such particles (quirks) is expected in scenarios with extra QCD-like SU(N) sectors, and this study is the first dedicated search for such signatures. We find no evidence of a signal and set a lower mass limit of 107, 119, and 133 GeV for the mass of a charged quirk with strong dynamics scale {Lambda} in the range from 10 keV to 1 MeV and N=2, 3, and 5, respectively.

  7. Search for New Fermions (``Quirks'') at the Fermilab Tevatron Collider

    NASA Astrophysics Data System (ADS)

    Abazov, V. M.; Abbott, B.; Abolins, M.; Acharya, B. S.; Adams, M.; Adams, T.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Alverson, G.; Alves, G. A.; Ancu, L. S.; Aoki, M.; Arnoud, Y.; Arov, M.; Askew, A.; Åsman, B.; Atramentov, O.; Avila, C.; Backusmayes, J.; Badaud, F.; Bagby, L.; Baldin, B.; Bandurin, D. V.; Banerjee, S.; Barberis, E.; Baringer, P.; Barreto, J.; Bartlett, J. F.; Bassler, U.; Beale, S.; Bean, A.; Begalli, M.; Begel, M.; Belanger-Champagne, C.; Bellantoni, L.; Benitez, J. A.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besançon, M.; Beuselinck, R.; Bezzubov, V. A.; Bhat, P. C.; Bhatnagar, V.; Blazey, G.; Blessing, S.; Bloom, K.; Boehnlein, A.; Boline, D.; Bolton, T. A.; Boos, E. E.; Borissov, G.; Bose, T.; Brandt, A.; Brandt, O.; Brock, R.; Brooijmans, G.; Bross, A.; Brown, D.; Brown, J.; Bu, X. B.; Buchholz, D.; Buehler, M.; Buescher, V.; Bunichev, V.; Burdin, S.; Burnett, T. H.; Buszello, C. P.; Calpas, B.; Calvet, S.; Camacho-Pérez, E.; Carrasco-Lizarraga, M. A.; Carrera, E.; Casey, B. C. K.; Castilla-Valdez, H.; Chakrabarti, S.; Chakraborty, D.; Chan, K. M.; Chandra, A.; Chen, G.; Chevalier-Théry, S.; Cho, D. K.; Cho, S. W.; Choi, S.; Choudhary, B.; Christoudias, T.; Cihangir, S.; Claes, D.; Clutter, J.; Cooke, M.; Cooper, W. E.; Corcoran, M.; Couderc, F.; Cousinou, M.-C.; Croc, A.; Cutts, D.; Ćwiok, M.; Das, A.; Davies, G.; de, K.; de Jong, S. J.; de La Cruz-Burelo, E.; Déliot, F.; Demarteau, M.; Demina, R.; Denisov, D.; Denisov, S. P.; Desai, S.; Devaughan, K.; Diehl, H. T.; Diesburg, M.; Dominguez, A.; Dorland, T.; Dubey, A.; Dudko, L. V.; Duggan, D.; Duperrin, A.; Dutt, S.; Dyshkant, A.; Eads, M.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Enari, Y.; Eno, S.; Evans, H.; Evans, J. A.; Evdokimov, A.; Evdokimov, V. N.; Facini, G.; Ferapontov, A. V.; Ferbel, T.; Fiedler, F.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Fortner, M.; Fox, H.; Fuess, S.; Gadfort, T.; Garcia-Bellido, A.; Gavrilov, V.; Gay, P.; Geist, W.; Geng, W.; Gerbaudo, D.; Gerber, C. E.; Gershtein, Y.; Ginther, G.; Golovanov, G.; Goussiou, A.; Grannis, P. D.; Greder, S.; Greenlee, H.; Greenwood, Z. D.; Gregores, E. M.; Grenier, G.; Gris, Ph.; Grivaz, J.-F.; Grohsjean, A.; Grünendahl, S.; Grünewald, M. W.; Guo, F.; Guo, J.; Gutierrez, G.; Gutierrez, P.; Haas, A.; Hagopian, S.; Haley, J.; Han, L.; Harder, K.; Harel, A.; Hauptman, J. M.; Hays, J.; Hebbeker, T.; Hedin, D.; Hegab, H.; Heinson, A. P.; Heintz, U.; Hensel, C.; Heredia-de La Cruz, I.; Herner, K.; Hesketh, G.; Hildreth, M. D.; Hirosky, R.; Hoang, T.; Hobbs, J. D.; Hoeneisen, B.; Hohlfeld, M.; Hossain, S.; Hubacek, Z.; Huske, N.; Hynek, V.; Iashvili, I.; Illingworth, R.; Ito, A. S.; Jabeen, S.; Jaffré, M.; Jain, S.; Jamin, D.; Jesik, R.; Johns, K.; Johnson, M.; Johnston, D.; Jonckheere, A.; Jonsson, P.; Joshi, J.; Juste, A.; Kaadze, K.; Kajfasz, E.; Karmanov, D.; Kasper, P. A.; Katsanos, I.; Kehoe, R.; Kermiche, S.; Khalatyan, N.; Khanov, A.; Kharchilava, A.; Kharzheev, Y. N.; Khatidze, D.; Kirby, M. H.; Kohli, J. M.; Kozelov, A. V.; Kraus, J.; Kumar, A.; Kupco, A.; Kurča, T.; Kuzmin, V. A.; Kvita, J.; Lammers, S.; Landsberg, G.; Lebrun, P.; Lee, H. S.; Lee, S. W.; Lee, W. M.; Lellouch, J.; Li, L.; Li, Q. Z.; Lietti, S. M.; Lim, J. K.; Lincoln, D.; Linnemann, J.; Lipaev, V. V.; Lipton, R.; Liu, Y.; Liu, Z.; Lobodenko, A.; Lokajicek, M.; Love, P.; Lubatti, H. J.; Luna-Garcia, R.; Luty, M. A.; Lyon, A. L.; Maciel, A. K. A.; Mackin, D.; Madar, R.; Magaña-Villalba, R.; Malik, S.; Malyshev, V. L.; Maravin, Y.; Martínez-Ortega, J.; McCarthy, R.; McGivern, C. L.; Meijer, M. M.; Melnitchouk, A.; Menezes, D.; Mercadante, P. G.; Merkin, M.; Meyer, A.; Meyer, J.; Mondal, N. K.; Muanza, G. S.; Mulhearn, M.; Nagy, E.; Naimuddin, M.; Narain, M.; Nayyar, R.; Neal, H. A.; Negret, J. P.; Neustroev, P.; Nilsen, H.; Novaes, S. F.; Nunnemann, T.; Obrant, G.; Onoprienko, D.; Orduna, J.; Osman, N.; Osta, J.; Otero Y Garzón, G. J.; Owen, M.; Padilla, M.; Pangilinan, M.; Parashar, N.; Parihar, V.; Park, S. K.; Parsons, J.; Partridge, R.; Parua, N.; Patwa, A.; Penning, B.; Perfilov, M.; Peters, K.; Peters, Y.; Petrillo, G.; Pétroff, P.; Piegaia, R.; Piper, J.; Pleier, M.-A.; Podesta-Lerma, P. L. M.; Podstavkov, V. M.; Pol, M.-E.; Polozov, P.; Popov, A. V.; Prewitt, M.; Price, D.; Protopopescu, S.; Qian, J.; Quadt, A.; Quinn, B.; Rangel, M. S.; Ranjan, K.; Ratoff, P. N.; Razumov, I.; Renkel, P.; Rich, P.; Rijssenbeek, M.; Ripp-Baudot, I.; Rizatdinova, F.; Rominsky, M.; Royon, C.; Rubinov, P.; Ruchti, R.; Safronov, G.; Sajot, G.; Sánchez-Hernández, A.; Sanders, M. P.; Sanghi, B.; Santos, A. S.; Savage, G.; Sawyer, L.; Scanlon, T.; Schamberger, R. D.; Scheglov, Y.; Schellman, H.; Schliephake, T.; Schlobohm, S.; Schwanenberger, C.; Schwienhorst, R.; Sekaric, J.; Severini, H.; Shabalina, E.; Shary, V.; Shchukin, A. A.; Shivpuri, R. K.; Simak, V.; Sirotenko, V.; Skubic, P.; Slattery, P.; Smirnov, D.; Smith, K. J.; Snow, G. R.; Snow, J.; Snyder, S.; Söldner-Rembold, S.; Sonnenschein, L.; Sopczak, A.; Sosebee, M.; Soustruznik, K.; Spurlock, B.; Stark, J.; Stolin, V.; Stoyanova, D. A.; Strauss, E.; Strauss, M.; Strom, D.; Stutte, L.; Svoisky, P.; Takahashi, M.; Tanasijczuk, A.; Taylor, W.; Titov, M.; Tokmenin, V. V.; Tsybychev, D.; Tuchming, B.; Tully, C.; Tuts, P. M.; Uvarov, L.; Uvarov, S.; Uzunyan, S.; van Kooten, R.; van Leeuwen, W. M.; Varelas, N.; Varnes, E. W.; Vasilyev, I. A.; Verdier, P.; Vertogradov, L. S.; Verzocchi, M.; Vesterinen, M.; Vilanova, D.; Vint, P.; Vokac, P.; Wahl, H. D.; Wang, M. H. L. S.; Warchol, J.; Watts, G.; Wayne, M.; Weber, M.; Wetstein, M.; White, A.; Wicke, D.; Williams, M. R. J.; Wilson, G. W.; Wimpenny, S. J.; Wobisch, M.; Wood, D. R.; Wyatt, T. R.; Xie, Y.; Xu, C.; Yacoob, S.; Yamada, R.; Yang, W.-C.; Yasuda, T.; Yatsunenko, Y. A.; Ye, Z.; Yin, H.; Yip, K.; Yoo, H. D.; Youn, S. W.; Yu, J.; Zelitch, S.; Zhao, T.; Zhou, B.; Zhu, J.; Zielinski, M.; Zieminska, D.; Zivkovic, L.

    2010-11-01

    We report results of a search for particles with anomalously high ionization in events with a high transverse energy jet and large missing transverse energy in 2.4fb-1 of integrated luminosity collected by the D0 experiment at the Fermilab Tevatron pp¯ collider. Production of such particles (quirks) is expected in scenarios with extra QCD-like SU(N) sectors, and this study is the first dedicated search for such signatures. We find no evidence of a signal and set a lower mass limit of 107, 119, and 133 GeV for the mass of a charged quirk with strong dynamics scale Λ in the range from 10 keV to 1 MeV and N=2, 3, and 5, respectively.

  8. Search for quirks at the Fermilab Tevatron Collider

    SciTech Connect

    Abazov, V.M.; Abbott, B.; Abolins, M.; Acharya, B.S.; Adams, M.; Adams, T.; Alexeev, G.D.; Alkhazov, G.; Alton, A.; Alverson, G.; Alves, G.A.; /Rio de Janeiro, CBPF /NIKHEF, Amsterdam

    2010-08-01

    We report results of a search for particles with anomalously high ionization in events with a high transverse energy jet and large missing transverse energy in 2.4 fb{sup -1} of integrated luminosity collected by the D0 experiment at the Fermilab Tevatron p{bar p} collider. Production of such particles (quirks) is expected in scenarios with extra QCD-like SU(N) sectors, and this study is the first dedicated search for such signatures. We find no evidence of a signal and set a lower mass limit of 107 GeV for the mass of a charged quirk with strong dynamics scale {Lambda} in the range from 10 keV to 1 MeV.

  9. QCD Results from the Fermilab Tevatron proton-antiproton Collider

    SciTech Connect

    Warburton, Andreas; CDF, for the; Collaborations, D0

    2010-01-01

    Selected recent quantum chromodynamics (QCD) measurements are reviewed for Fermilab Run II Tevatron proton-antiproton collisions studied by the Collider Detector at Fermilab (CDF) and D0 Collaborations at a centre-of-mass energy of {radical}s = 1.96 TeV. Tantamount to Rutherford scattering studies at the TeV scale, inclusive jet and dijet production cross-section measurements are used to seek and constrain new particle physics phenomena, test perturbative QCD calculations, inform parton distribution function (PDF) determinations, and extract a precise value of the strong coupling constant, a{sub s}(m{sub Z}) = 0.1161{sub -0.0048}{sup +0.0041}. Inclusive photon production cross-section measurements reveal an inability of next-to-leading-order (NLO) perturbative QCD (pQCD) calculations to describe low-energy photons arising directly in the hard scatter. Events with {gamma} + 3-jet configurations are used to measure the increasingly important double parton scattering (DPS) phenomenon, with an obtained effective interaction cross section of {sigma}{sub eff} = 16.4 {+-} 2.3 mb. Observations of central exclusive particle production demonstrate the viability of observing the Standard Model Higgs boson using similar techniques at the Large Hadron Collider (LHC). Three areas of inquiry into lower energy QCD, crucial to understanding high-energy collider phenomena, are discussed: the examination of intra-jet track kinematics to infer that jet formation is dominated by pQCD, and not hadronization, effects; detailed studies of the underlying event and its universality; and inclusive minimum-bias charged-particle momentum and multiplicity measurements, which are shown to challenge the Monte Carlo generators.

  10. Progress in Antiproton Production at the Fermilab Tevatron Collider

    SciTech Connect

    Pasquinelli, Ralph J.; Drendel, Brian; Gollwitzer, Keith; Johnson, Stan; Lebedev, Valeri; Leveling, Anthony; Morgan, James; Nagaslaev, Vladimir; Peterson, Dave; Sondgeroth, Alan; Werkema, Steve; /Fermilab

    2009-04-01

    Fermilab Collider Run II has been ongoing since 2001. During this time peak luminosities in the Tevatron have increased from approximately 10 x 10{sup 30} cm{sup -2}sec{sup -1} to 300 x 10{sup 30} cm{sup 02}sec{sup -1}. A major contributing factor in this remarkable performance is a greatly improved antiproton production capability. Since the beginning of Run II, the average antiproton accumulation rate has increased from 2 x 10{sup 10}{anti p}/hr to about 24 x 10{sup 10}{anti p}/hr. Peak antiproton stacking rates presently exceed 28 x 10{sup 10}{anti p}/hr. The antiproton stacking rate has nearly doubled since 2005. It is this recent progress that is the focus of this paper. The process of transferring antiprotons to the Recycler Ring for subsequent transfer to the collider has been significantly restructured and streamlined, yielding additional cycle time for antiproton production. Improvements to the target station have greatly increased the antiproton yield from the production target. The performance of the Antiproton Source stochastic cooling systems has been enhanced by upgrades to the cooling electronics, accelerator lattice optimization, and improved operating procedures. In this paper, we will briefly report on each of these modifications.

  11. Electroweak and B physics results from the Fermilab Tevatron Collider

    SciTech Connect

    Pitts, K.T.

    2001-01-30

    This writeup is an introduction to some of the experimental issues involved in performing electroweak and b physics measurements at the Fermilab Tevatron. In the electroweak sector, we discuss W and Z boson cross section measurements as well as the measurement of the mass of the W boson. For b physics, we discuss measurements of B{sup 0}/{bar B}{sup 0} mixing and CP violation. This paper is geared towards nonexperts who are interested in understanding some of the issues and motivations for these measurements and how the measurements are carried out.

  12. Progress with collision optics of the Fermilab Tevatron collider

    SciTech Connect

    Valishev, A.; Alexahin, Y.; Annala, J.; Lebedev, V.; Nagaslaev, V.; Sajaev, V.; /Argonne

    2006-06-01

    Recent advances in the measurement and modeling of the machine parameters and lattice functions at the Tevatron allowed modifications of the collision optics to be performed in order to increase the collider luminosity. As the result, beta functions in the two collision points were decreased from 35cm to 29cm which resulted in {approx}10% increase of the peak luminosity. In this report we describe the results of optics measurements and corrections. We also discuss planned improvements, including the new betatron tune working point and correction of the beta function chromaticity.

  13. SVX4: A New Deep-Submicron Readout IC for the Tevatron Collider at Fermilab

    SciTech Connect

    Krieger, B.; Alfonsi, S.; Bacchetta, N.; Centro, S.; Christofek, L.; Garcia-Sciveres, M.; Haber, C.; Hanagaki, K.; Hoff, J.; Johnson, M.; vonderLippe, H.; Lujan, P.; Mandelli, E.; Meng, G.; Nomerotski, A.; Pellet, D.; Rapidis, P.; Utes, M.; Walder, J.-P.; Weber, M.; Wester, W.; /LBL, Berkeley /Padua U. /INFN, Padua /Kansas U. /Fermilab /UC, Davis

    2003-10-01

    SVX4 is the new silicon strip readout IC designed to meet the increased radiation tolerance requirements for Run IIb at the Tevatron collider. Devices have been fabricated, tested, and approved for production. The SVX4 design is a technology migration of the SVX3D design currently in use by CDF. Whereas SVX3D was fabricated in a 0.8 {micro}m radiation-hard process, SVX4 was fabricated in a standard 0.25 {micro}m mixed-signal CMOS technology using the ''radiation tolerant by design'' transistor topologies devised by the RD-49 collaboration. The specific cell layouts include digital cells developed by the ATLAS Pixel group, and full-custom analog blocks. Unlike its predecessors, the new design also includes the necessary features required for generic use by both the CDF and D0 experiments at Fermilab. Performance of the IC includes >20 MRad total dose tolerance, and {approx}2000 e-rms equivalent input noise charge with 40 pF input capacitance, when sampled at 132 ns period with an 80 ns preamp risetime. At the nominal digitize/readout rate of 106/53 MHz, the 9 mm x 6.3 mm die dissipates {approx}2 mW/channel average at 2.5 V. A review of typical operation, details of the design conversion process, and performance measurements are covered.

  14. A search for Z boson pair production at the Fermilab Tevatron Collider

    NASA Astrophysics Data System (ADS)

    Jarvis, Chad

    2007-12-01

    This dissertation describes a search for Z/gamma* boson pair production decaying into mumumumu, mumuee, and eeee final states with approximately 1 fb-1 of data at the Fermilab Tevatron Collider at s = 1.96 TeV. The small cross section times branching ratio for each channel mandated a thorough study of the acceptance and efficiencies. After optimization, 1.7 +/- 0.1 events are expected for Standard Model production with a background of 0.13 +/- 0.03 events. One event was found in the mumu ee channel. A cross section limit of 4.4 pb is determined at a 95% confidence level for Standard Model production. Additionally, one parameter and two parameter 95% C.L. limits are found for the anomalous neutral trilinear gauge couplings ZZZ* and ZZgamma*. The one parameter 95% C.L. coupling limits with a form factor scale of 1.2 TeV are: -0.28 < fZ40 < 0.28, -0.31 < fZ50 < 0.29, -0.26 < fg40 < 0.26, and -0.30 < fg50 < 0.28.

  15. A search for z boson pair production at the Fermilab Tevatron Collider

    SciTech Connect

    Jarvis, Chad Ryan; /Maryland U.

    2007-10-01

    This dissertation describes a search for Z/{gamma}* boson pair production decaying into {mu}{mu}{mu}{mu}, {mu}{mu}ee, and eeee final states with approximately 1 fb{sup -1} of data at the Fermilab Tevatron Collider at {radical}s = 1.96 TeV. The small cross section times branching ratio for each channel mandated a thorough study of the acceptance and efficiencies. After optimization, 1.7 {+-} 0.1 events are expected for Standard Model production with a background of 0.13 {+-} 0.03 events. One event was found in the {mu}{mu}ee channel. A cross section limit of 4.4 pb is determined at a 95% confidence level for Standard Model production. Additionally, one parameter and two parameter 95% C.L. limits are found for the anomalous neutral trilinear gauge couplings ZZZ* and ZZ{gamma}*. The one parameter 95% C.L. coupling limits with a form factor scale of 1.2 TeV are: -0.28 < f{sub 40}{sup Z} < 0.28, -0.31 < f{sub 50}{sup Z} < 0.29, -0.26 < f{sub 40}{gamma} < 0.26, and -0.30 < f{sub 50}{sup {gamma}} < 0.28.

  16. Improvements to Antiproton Accumulator to Recycler Transfers at the Fermilab Tevatron Collider

    SciTech Connect

    Morgan, J.P.; Drendel, B.; Vander Muelen, D.; /Fermilab

    2009-04-01

    Since 2005, the Recycler has become the sole storage ring for antiprotons used in the Tevatron Collider. The operational role of the Antiproton Source has shifted to exclusively producing antiprotons for periodic transfers to the Recycler. The process of transferring the antiprotons from the Accumulator to the Recycler has been greatly improved, leading to a dramatic reduction in the transfer time. The reduction in time has been accomplished with both an improvement in transfer efficiency and an increase in average stacking rate. This paper will describe the improvements that have streamlined the transfer process and other changes that contributed to a significant increase in the number of antiprotons available to the Collider.

  17. Operating Procedure Changes to Improve Antiproton Production at the Fermilab Tevatron Collider

    SciTech Connect

    Drendel, B.; Morgan, J.P.; Vander Meulen, D.; /Fermilab

    2009-04-01

    Since the start of Fermilab Collider Run II in 2001, the maximum weekly antiproton accumulation rate has increased from 400 x 10{sup 10} Pbars/week to approximately 3,700 x 10{sup 10} Pbars/week. There are many factors contributing to this increase, one of which involves changes to operational procedures that have streamlined and automated Antiproton Source production. Automation has been added to the beam line orbit control, stochastic cooling power level management, and RF settings. In addition, daily tuning efforts have been streamlined by implementing sequencer driven tuning software.

  18. A search for the Higgs boson in the zh channel with the D0 detector at the Fermilab Tevatron collider

    SciTech Connect

    Heinmiller, James Matthew; /Illinois U., Chicago

    2006-11-01

    This analysis describes a search for a standard model Higgs boson produced in association with a Z boson through the decay mode ZH {yields} e{sup +}e{sup -}b{bar b} in p{bar p} collisions at {radical}s = 1.96 TeV at the Fermilab Tevatron Collider. The data sample used in this analysis corresponds to 452 pb{sup -1} of integrated luminosity accumulated with the D{null} detector. Agreement between data and standard model predictions is observed. A 95% confidence level upper exclusion limit for the {sigma}(p{bar p} {yields} ZH) x BR(H {yields} b{bar b}) channel is set between 3.2-8.2 pb for Higgs masses of 105 to 145 GeV.

  19. Observation of Exclusive Dijet Production at the Fermilab Tevatron p-pbar Collider

    SciTech Connect

    Aaltonen, T.; Adelman, J.; Akimoto, T.; Albrow, M.G.; Gonzalez, B.Alvarez; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Aoki, M.; /Illinois U., Urbana /Fermilab

    2007-12-01

    The authors present the first observation and cross section measurement of exclusive dijet production in {bar p}p interactions, {bar p}p {yields} {bar p} + dijet + p. Using a data sample of 310 pb{sup -1} collected by the Run II Collider Detector at Fermilab at {radical}s = 1.96 TeV, exclusive cross sections for events with two jets of transverse energy E{sub T}{sup jet} {ge} 10 GeV have been measured as a function of minimum E{sub T}{sup jet}. The exclusive signal is extracted from fits to data distributions based on Monte Carlo simulations of expected dijet signal and background shapes. The simulated background distribution shapes are checked in a study of a largely independent data sample of 200 pb{sup -1} of b-tagged jet events, where exclusive dijet production is expected to be suppressed by the J{sub z} = 0 total angular momentum selection rule. Results obtained are compared with theoretical expectations, and implications for exclusive Higgs boson production at the pp Large Hadron Collider at {radical}s = 14 TeV are discussed.

  20. Data preservation at the Fermilab Tevatron

    NASA Astrophysics Data System (ADS)

    Boyd, J.; Herner, K.; Jayatilaka, B.; Roser, R.; Sakumoto, W.

    2015-12-01

    The Fermilab Tevatron collider's data-taking run ended in September 2011, yielding a dataset with rich scientific potential. The CDF and DO experiments each have nearly 9 PB of collider and simulated data stored on tape. A large computing infrastructure consisting of tape storage, disk cache, and distributed grid computing for physics analysis with the Tevatron data is present at Fermilab. The Fermilab Run II data preservation project intends to keep this analysis capability sustained through the year 2020 or beyond. To achieve this, we are implementing a system that utilizes virtualization, automated validation, and migration to new standards in both software and data storage technology as well as leveraging resources available from currently-running experiments at Fermilab. These efforts will provide useful lessons in ensuring long-term data access for numerous experiments throughout high-energy physics, and provide a roadmap for high-quality scientific output for years to come.

  1. Data preservation at the Fermilab Tevatron

    DOE PAGESBeta

    Boyd, J.; Herner, K.; Jayatilaka, B.; Roser, R.; Sakumoto, W.

    2015-12-23

    The Fermilab Tevatron collider's data-taking run ended in September 2011, yielding a dataset with rich scientific potential. The CDF and DO experiments each have nearly 9 PB of collider and simulated data stored on tape. A large computing infrastructure consisting of tape storage, disk cache, and distributed grid computing for physics analysis with the Tevatron data is present at Fermilab. The Fermilab Run II data preservation project intends to keep this analysis capability sustained through the year 2020 or beyond. To achieve this, we are implementing a system that utilizes virtualization, automated validation, and migration to new standards in bothmore » software and data storage technology as well as leveraging resources available from currently-running experiments at Fermilab. Furthermore, these efforts will provide useful lessons in ensuring long-term data access for numerous experiments throughout high-energy physics, and provide a roadmap for high-quality scientific output for years to come.« less

  2. Data preservation at the Fermilab Tevatron

    SciTech Connect

    Boyd, J.; Herner, K.; Jayatilaka, B.; Roser, R.; Sakumoto, W.

    2015-12-23

    The Fermilab Tevatron collider's data-taking run ended in September 2011, yielding a dataset with rich scientific potential. The CDF and DO experiments each have nearly 9 PB of collider and simulated data stored on tape. A large computing infrastructure consisting of tape storage, disk cache, and distributed grid computing for physics analysis with the Tevatron data is present at Fermilab. The Fermilab Run II data preservation project intends to keep this analysis capability sustained through the year 2020 or beyond. To achieve this, we are implementing a system that utilizes virtualization, automated validation, and migration to new standards in both software and data storage technology as well as leveraging resources available from currently-running experiments at Fermilab. Furthermore, these efforts will provide useful lessons in ensuring long-term data access for numerous experiments throughout high-energy physics, and provide a roadmap for high-quality scientific output for years to come.

  3. Tevatron collider operations and plans

    SciTech Connect

    Peter H. Garbincius

    2004-06-17

    Fermilab's Tevatron is a proton-antiproton collider with center of mass energy of 1.96 TeV. The antiprotons are produced by 125 GeV protons from the Main Injector striking a stainless steel target. The 8 GeV antiprotons are collected and cooled in the Debuncher and Accumulator rings of the Antiproton Source and, just recently, in the Recycler ring before acceleration by the Main Injector and the Tevatron. In addition to energy, a vital parameter for generating physics data is the Luminosity delivered to the experiments given by a formula that is listed in detail in the paper.

  4. W+ jets production at the Fermilab Tevatron

    SciTech Connect

    Dittmann, J.R.; CDF Collaboration; D0 Collaboration

    1997-05-01

    The production properties of jets in W events have been measured using {radical}s = 1.8 TeV pp collisions at the Fermilab Tevatron Collider. Experimental results from several CDF and D0 analyses are compared to leading-order and next-to-leading-order QCD predictions.

  5. Simulation of Hollow Electron Beam Collimation in the Fermilab Tevatron Collider

    SciTech Connect

    Morozov, I.A.; Stancari, G.; Valishev, A.; Shatilov, D.N.; /Novosibirsk, IYF

    2012-05-01

    The concept of augmenting the conventional collimation system of high-energy storage rings with a hollow electron beam was successfully demonstrated in experiments at the Tevatron. A reliable numerical model is required for understanding particle dynamics in the presence of a hollow beam collimator. Several models were developed to describe imperfections of the electron beam profile and alignment. The features of the imperfections are estimated from electron beam profile measurements. Numerical simulations of halo removal rates are compared with experimental data taken at the Tevatron.

  6. Measurements of Transverse Beam Diffusion Rates in the Fermilab Tevatron Collider

    SciTech Connect

    Stancari, G.; Annala, G.; Johnson, T.R.; Still, D.A.; Valishev, A.; /Fermilab

    2011-08-01

    The transverse beam diffusion rate vs. particle oscillation amplitude was measured in the Tevatron using collimator scans. All collimator jaws except one were retracted. As the jaw of interest was moved in small steps, the local shower rates were recorded as a function of time. By using a diffusion model, the time evolution of losses could be related to the diffusion rate at the collimator position. Preliminary results of these measurements are presented.

  7. Top physics at the Tevatron Collider

    SciTech Connect

    Margaroli, Fabrizio; /Purdue U.

    2007-10-01

    The top quark has been discovered in 1995 at the CDF and DO experiments located in the Tevatron ring at the Fermilab laboratory. After more than a decade the Tevatron collider, with its center-of-mass energy collisions of 1.96 TeV, is still the only machine capable of producing such exceptionally heavy particle. Here I present a selection of the most recent CDF and DO measurements performed analyzing {approx} 1 fb{sup -1} of integrated luminosity.

  8. Measurement of the production rate of the charm jet recoiling against the W boson using the D0 detector at the Fermilab Tevatron Collider

    SciTech Connect

    Ahsan, Mahsana; /Kansas State U.

    2008-05-01

    This dissertation describes a measurement of the rate of associated production of the W boson with the charm jet in the proton and anti-proton collisions at the center-of-mass energy of 1.96 TeV at the Fermilab Tevatron Collider. The measurement has direct sensitivity to the strange quark content inside the proton. A direct measurement of the momentum distribution of the strange quark inside the proton is essential for a reliable calculation of new physics signal as well as the background processes at the collider experiments. The identification of events containing a W boson and a charm jet is based on the leptonic decays of the W boson together with a tagging technique for the charm jet identification based on the semileptonic decay of the charm quark into the muon. The charm jet recoiling against the W boson must have a minimum transverse momentum of 20 GeV and an absolute value of pseudorapidity less than 2.5. This measurement utilizes the data collected by the D0 detector at the Fermilab Collider. The measured rate of the charm jet production in association with the W boson in the inclusive jet production with the W boson is 0.074 {+-} 0.023, which is in agreement with the theoretical predictions at the leading order in Quantum Chromodynamics.

  9. First measurements of inclusive W and Z cross sections from run II of the fermilab tevatron collider.

    PubMed

    Acosta, D; Affolder, T; Akimoto, T; Albrow, M G; Ambrose, D; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arisawa, T; Arguin, J-F; Artikov, A; Ashmanskas, W; Attal, A; Azfar, F; Azzi-Bacchetta, P; Bacchetta, N; Bachacou, H; Badgett, W; Barbaro-Galtieri, A; Barker, G J; Barnes, V E; Barnett, B A; Baroiant, S; Barone, M; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Bhatti, A; Binkley, M; Bisello, D; Bishai, M; Blair, R E; Blocker, C; Bloom, K; Blumenfeld, B; Bocci, A; Bodek, A; Bolla, G; Bolshov, A; Booth, P S L; Bortoletto, D; Boudreau, J; Bourov, S; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Burkett, K; Busetto, G; Bussey, P; Byrum, K L; Cabrera, S; Calafiura, P; Campanelli, M; Campbell, M; Canepa, A; Casarsa, M; Carlsmith, D; Carron, S; Carosi, R; Cavalli-Sforza, M; Castro, A; Catastini, P; Cauz, D; Cerri, A; Cerri, C; Cerrito, L; Chapman, J; Chen, C; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chu, M L; Chuang, S; Chung, J Y; Chung, W-H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A G; Clark, D; Coca, M; Connolly, A; Convery, M; Conway, J; Cooper, B; Cordelli, M; Cortiana, G; Cranshaw, J; Cuevas, J; Culbertson, R; Currat, C; Cyr, D; Dagenhart, D; Da Ronco, S; D'Auria, S; de Barbaro, P; De Cecco, S; De Lentdecker, G; Dell'Agnello, S; Dell'Orso, M; Demers, S; Demortier, L; Deninno, M; De Pedis, D; Derwent, P F; Dionisi, C; Dittmann, J R; Doksus, P; Dominguez, A; Donati, S; Donega, M; Donini, J; D'Onofrio, M; Dorigo, T; Drollinger, V; Ebina, K; Eddy, N; Ely, R; Erbacher, R; Erdmann, M; Errede, D; Errede, S; Eusebi, R; Fang, H-C; Farrington, S; Fedorko, I; Feild, R G; Feindt, M; Fernandez, J P; Ferretti, C; Field, R D; Fiori, I; Flanagan, G; Flaugher, B; Flores-Castillo, L R; Foland, A; Forrester, S; Foster, G W; Franklin, M; Freeman, J; Frisch, H; Fujii, Y; Furic, I; Gajjar, A; Gallas, A; Galyardt, J; Gallinaro, M; Garcia-Sciveres, M; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D W; Gerchtein, E; Giagu, S; Giannetti, P; Gibson, A; Gibson, K; Ginsburg, C; Giolo, K; Giordani, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, D; Goldstein, J; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Gotra, Y; Goulianos, K; Gresele, A; Grosso-Pilcher, C; Guenther, M; Guimaraes da Costa, J; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Handler, R; Happacher, F; Hara, K; Hare, M; Harr, R F; Harris, R M; Hartmann, F; Hatakeyama, K; Hauser, J; Hays, C; Hayward, H; Heider, E; Heinemann, B; Heinrich, J; Hennecke, M; Herndon, M; Hill, C; Hirschbuehl, D; Hocker, A; Hoffman, K D; Holloway, A; Hou, S; Houlden, M A; Huffman, B T; Huang, Y; Hughes, R E; Huston, J; Ikado, K; Incandela, J; Introzzi, G; Iori, M; Ishizawa, Y; Issever, C; Ivanov, A; Iwata, Y; Iyutin, B; James, E; Jang, D; Jarrell, J; Jeans, D; Jensen, H; Jeon, E J; Jones, M; Joo, K K; Jun, S; Junk, T; Kamon, T; Kang, J; Karagoz Unel, M; Karchin, P E; Kartal, S; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, M S; Kim, S B; Kim, S H; Kim, T H; Kim, Y K; King, B T; Kirby, M; Kirsch, L; Klimenko, S; Knuteson, B; Ko, B R; Kobayashi, H; Koehn, P; Kong, D J; Kondo, K; Konigsberg, J; Kordas, K; Korn, A; Korytov, A; Kotelnikov, K; Kotwal, A V; Kovalev, A; Kraus, J; Kravchenko, I; Kreymer, A; Kroll, J; Kruse, M; Krutelyov, V; Kuhlmann, S E; Kuznetsova, N; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, J; Lancaster, M; Lander, R; Lannon, K; Lath, A; Latino, G; Lauhakangas, R; Lazzizzera, I; Le, Y; Lecci, C; Lecompte, T; Lee, J; Lee, J; Lee, S W; Leonardo, N; Leone, S; Lewis, J D; Li, K; Lin, C; Lin, C S; Lindgren, M; Liss, T M; Litvintsev, D O; Liu, T; Liu, Y; Lockyer, N S; Loginov, A; Loreti, M; Loverre, P; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lyons, L; Lys, J; Lysak, R; Macqueen, D; Madrak, R; Maeshima, K; Maksimovic, P; Malferrari, L; Manca, G; Marginean, R; Martin, M; Martin, A; Martin, V; Martínez, M; Maruyama, T; Matsunaga, H; Mattson, M; Mazzanti, P; McFarland, K S; McGivern, D; McIntyre, P M; McNamara, P; Ncnulty, R; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miller, L; Miller, R; Miller, J S; Miquel, R; Miscetti, S; Mitselmakher, G; Miyamoto, A; Miyazaki, Y; Moggi, N; Mohr, B; Moore, R; Morello, M; Moulik, T; Movilla Fernandez, P A; Mukherjee, A; Mulhearn, M; Muller, T; Mumford, R; Munar, A; Murat, P; Nachtman, J; Nahn, S; Nakamura, I; Nakano, I; Napier, A; Napora, R; Naumov, D; Necula, V; Niell, F; Nielsen, J; Nelson, C; Nelson, T; Neu, C; Neubauer, M S; Newman-Holmes, C; Nicollerat, A-S; Nigmanov, T; Nodulman, L; Norniella, O; Oesterberg, K; Ogawa, T; Oh, S H; Oh, Y D; Ohsugi, T; Okusawa, T; Oldeman, R; Orava, R; Orejudos, W; Pagliarone, C; Palmonari, F; Paoletti, R; Papadimitriou, V; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Pauly, T; Paus, C; Pellett, D; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pitts, K T; Plager, C; Pompos, A; Pondrom, L; Pope, G; Poukhov, O; Prakoshyn, F; Pratt, T; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Rademacker, J; Rakitine, A; Rappoccio, S; Ratnikov, F; Ray, H; Reichold, A; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Rimondi, F; Rinnert, K; Ristori, L; Robertson, W J; Robson, A; Rodrigo, T; Rolli, S; Rosenson, L; Roser, R; Rossin, R; Rott, C; Russ, J; Ruiz, A; Ryan, D; Saarikko, H; Safonov, A; St Denis, R; Sakumoto, W K; Salamanna, G; Saltzberg, D; Sanchez, C; Sansoni, A; Santi, L; Sarkar, S; Sato, K; Savard, P; Savoy-Navarro, A; Schemitz, P; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Scodellaro, L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semeria, F; Sexton-Kennedy, L; Sfiligoi, I; Shapiro, M D; Shears, T; Shepard, P F; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Siegrist, J; Siket, M; Sill, A; Sinervo, P; Sisakyan, A; Skiba, A; Slaughter, A J; Sliwa, K; Smirnov, D; Smith, J R; Snider, F D; Snihur, R; Somalwar, S V; Spalding, J; Spezziga, M; Spiegel, L; Spinella, F; Spiropulu, M; Squillacioti, P; Stadie, H; Stefanini, A; Stelzer, B; Stelzer-Chilton, O; Strologas, J; Stuart, D; Sukhanov, A; Sumorok, K; Sun, H; Suzuki, T; Taffard, A; Tafirout, R; Takach, S F; Takano, H; Takashima, R; Takeuchi, Y; Takikawa, K; Tanaka, M; Tanaka, R; Tanimoto, N; Tapprogge, S; Tecchio, M; Teng, P K; Terashi, K; Tesarek, R J; Tether, S; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tollefson, K; Tomura, T; Tonelli, D; Tönnesmann, M; Torre, S; Torretta, D; Trischuk, W; Tseng, J; Tsuchiya, R; Tsuno, S; Tsybychev, D; Turini, N; Turner, M; Ukegawa, F; Unverhau, T; Uozumi, S; Usynin, D; Vacavant, L; Vaiciulis, A; Varganov, A; Vataga, E; Vejcik, S; Velev, G; Veramendi, G; Vickey, T; Vidal, R; Vila, I; Vilar, R; Volobouev, I; von der Mey, M; Wagner, R G; Wagner, R L; Wagner, W; Wallny, R; Walter, T; Yamashita, T; Yamamoto, K; Wan, Z; Wang, M J; Wang, S M; Warburton, A; Ward, B; Waschke, S; Waters, D; Watts, T; Weber, M; Wester, W C; Whitehouse, B; Wicklund, A B; Wicklund, E; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolter, M; Worcester, M; Worm, S; Wright, T; Wu, X; Würthwein, F; Wyatt, A; Yagil, A; Yang, U K; Yao, W; Yeh, G P; Yi, K; Yoh, J; Yoon, P; Yorita, K; Yoshida, T; Yu, I; Yu, S; Yu, Z; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zetti, F; Zhou, J; Zsenei, A; Zucchelli, S

    2005-03-11

    We report the first measurements of inclusive W and Z cross sections times leptonic branching ratios for pp collisions at square root[s]=1.96 TeV, based on their decays to electrons and muons. The data correspond to an integrated luminosity of 72 pb(-1) recorded with the CDF detector at the Fermilab Tevatron. We test e-mu universality in W decays, and we measure the ratio of leptonic W and Z rates from which the leptonic branching fraction B(W-->lnu) can be extracted as well as an indirect value for the total width of the W and the Cabibbo-Kobayashi-Maskawa matrix element, |V(cs)|. PMID:15783955

  10. Antiproton acceleration in the Fermilab Main Ring and Tevatron

    SciTech Connect

    Martin, P.; Dinkel, J.; Ducar, R.; Kerns, C.; Kerns, Q.; Meisner, K.; Miller, H.W.; Reid, J.; Tawzer, S.; Wildman, D.

    1987-03-01

    The operation of the Fermilab Main Ring and Tevatron rf systems for colliding beams physics is discussed. The changes in the rf feedback system required for the accelration of antiprotons, and the methods for achieving proper transfer of both protons and antiprotons are described. Data on acceleration and transfer efficiencies are presented.

  11. Initial operation of the Tevatron collider

    SciTech Connect

    Johnson, R.

    1987-03-01

    The Tevatron is now the highest energy proton synchrotron and the only accelerator made with superconducting magnets. Operating since 1983 as a fixed-target machine at energies up to 800 GeV, it has now been modified to operate as a 900 GeV antiproton-proton collider. This paper describes the initial operation of the machine in this mode. The new features of the Fermilab complex, including the antiproton source and the Main Ring injector with its two overpasses and new rf requirements, are discussed. Beam characteristics in the Tevatron (including lifetimes, emittances, luminosity, beam-beam tune shifts, backgrounds, and low beta complications), the coordination of the steps in the accelerator chain, and the commissioning history are also discussed. Finally, some plans for the improvement of the collider are presented.

  12. Tevatron instrumentation: boosting collider performance

    SciTech Connect

    Shiltsev, Vladimir; Jansson, Andreas; Moore, Ronald; /Fermilab

    2006-05-01

    The Tevatron in Collider Run II (2001-present) is operating with six times more bunches, many times higher beam intensities and luminosities than in Run I (1992-1995). Beam diagnostics were crucial for the machine start-up and the never-ending luminosity upgrade campaign. We present the overall picture of the Tevatron diagnostics development for Run II, outline machine needs for new instrumentation, present several notable examples that led to Tevatron performance improvements, and discuss the lessons for the next big machines--LHC and ILC.

  13. Seismic studies for Fermilab future collider projects

    SciTech Connect

    Lauh, J.; Shiltsev, V.

    1997-11-01

    Ground motion can cause significant beam emittance growth and orbit oscillations in large hadron colliders due to a vibration of numerous focusing magnets. Larger accelerator ring circumference leads to smaller revolution frequency and, e.g. for the Fermilab Very Large Hadron Collider(VLHC) 50-150 Hz vibrations are of particular interest as they are resonant with the beam betatron frequency. Seismic measurements at an existing large accelerator under operation can help to estimate the vibrations generated by the technical systems in future machines. Comparison of noisy and quiet microseismic conditions might be useful for proper choice of technical solutions for future colliders. This article presents results of wide-band seismic measurements at the Fermilab site, namely, in the tunnel of the Tevatron and on the surface nearby, and in two deep tunnels in the Illinois dolomite which is though to be a possible geological environment of the future accelerators.

  14. Diagnostics of the Fermilab Tevatron using an AC dipole

    SciTech Connect

    Miyamoto, Ryoichi

    2008-08-01

    The Fermilab Tevatron is currently the world's highest energy colliding beam facility. Its counter-rotating proton and antiproton beams collide at 2 TeV center-of-mass. Delivery of such intense beam fluxes to experiments has required improved knowledge of the Tevatron's beam optical lattice. An oscillating dipole magnet, referred to as an AC dipole, is one of such a tool to non-destructively assess the optical properties of the synchrotron. We discusses development of an AC dipole system for the Tevatron, a fast-oscillating (f ~ 20 kHz) dipole magnet which can be adiabatically turned on and off to establish sustained coherent oscillations of the beam particles without affecting the transverse emittance. By utilizing an existing magnet and a higher power audio amplifier, the cost of the Tevatron AC dipole system became relatively inexpensive. We discuss corrections which must be applied to the driven oscillation measurements to obtain the proper interpretation of beam optical parameters from AC dipole studies. After successful operations of the Tevatron AC dipole system, AC dipole systems, similar to that in the Tevatron, will be build for the CERN LHC. We present several measurements of linear optical parameters (beta function and phase advance) for the Tevatron, as well as studies of non-linear perturbations from sextupole and octupole elements.

  15. Diagnostics of the Fermilab Tevatron using an AC dipole

    NASA Astrophysics Data System (ADS)

    Miyamoto, Ryoichi

    The Fermilab Tevatron is currently the world's highest energy colliding beam facility. Its counter-rotating proton and antiproton beams collide at 2 TeV center-of-mass. Delivery of such intense beam fluxes to experiments has required improved knowledge of the Tevatron's beam optical lattice. An oscillating dipole magnet, referred to as an AC dipole, is one of such a tool to non-destructively assess the optical properties of the synchrotron. We discusses development of an AC dipole system for the Tevatron, a fast-oscillating (f˜20 kHz) dipole magnet which can be adiabatically turned on and off to establish sustained coherent oscillations of the beam particles without affecting the transverse emittance. By utilizing an existing magnet and a higher power audio amplifier, the cost of the Tevatron AC dipole system became relatively inexpensive. We discuss corrections which must be applied to the driven oscillation measurements to obtain the proper interpretation of beam optical parameters from AC dipole studies. After successful operations of the Tevatron AC dipole system, AC dipole systems, similar to that in the Tevatron, will be build for the CERN LHC. We present several measurements of linear optical parameters (beta function and phase advance) for the Tevatron, as well as studies of non-linear perturbations from sextupole and octupole elements.

  16. Collider Detector at Fermilab (CDF): Data from B Hadrons Research

    DOE Data Explorer

    The Collider Detector at Fermilab (CDF) is a Tevatron experiment at Fermilab. The Tevatron, a powerful particle accelerator, accelerates protons and antiprotons close to the speed of light, and then makes them collide head-on inside the CDF detector. The CDF detector is used to study the products of such collisions. The CDF Physics Group is organized into six working groups, each with a specific focus. The Bottom group studies the production and decay of B hadrons. Their public web page makes data and numerous figures available from both CDF Runs I and II.

  17. New particle signals at the SSC and at an upgraded Tevatron collider

    SciTech Connect

    Barnett, R.M.; Hollebeek, R.J.; White, A.P.; Yoh, J.; Baer, H.A.; Barnett, B.A.; Eichten, E.; Freeman, J.E.; Gamberini, G.; Grifols, J.A.

    1988-01-01

    We have studied the production and detection of several types of new particles at the Superconducting Super Collider (SSC) and at three possible upgrades of the Fermilab Tevatron Collider. We compare the physics potential of the SSC with that of an upgraded collider, and we discuss in depth the relative capabilities of the three Tevatron Collider upgrades. From a physics standpoint, we suggest that one of the proposed upgrades has several advantages. 34 refs., 21 figs., 5 tabs.

  18. Fermilab Tevatron and Pbar source status report

    SciTech Connect

    Edwards, H.

    1986-08-01

    The antiproton production cycle is enumerated, and the commissioning of the antiproton source is described, giving milestones and major obstacles. The Tevatron collider operation is described, including procedure to load the Tevatron with three bunches of protons and three bunches of antiprotons. Commissioning of the Main Ring and Tevatron for collider operation is described. Development and accelerator studies in four areas were necessary: main ring RF manipulations; controls and applications software support; Tevatron storage and low-beta squeeze sequence; and study of various beam transfers, storage steps, and sequences. Final tests are described. A long range upgrade program is presently under evaluation to accomplish these goals: luminosity increase to 5 x 10/sup 31/ cm/sup -2/sec/sup -1/, production rates up to 4 x 10/sup 11/ antiprotons/hr, and intensity increase for fixed target operation. Beam quality is to be improved by the injector and main ring upgrades, and the luminosity goal is addressed by the Collider upgrade. (LEW)

  19. Mixed pbar source operation at the Fermilab Tevatron

    SciTech Connect

    Bhat, C.M.; Capista, D.P.; Chase, B.E.; Dey, J.E.; Kourbanis, I.; Seiya, K.; Wu, V.; /Fermilab

    2005-05-01

    Recently we have adopted a scheme, called ''Mixed pbar Source Operation'' in the Fermilab Main Injector (MI). The purpose of this mode of operation is to transfer pbar bunches from the Recycler and the Accumulator to the Tevatron for collider shots. In this scheme, four 2.5 MHz pbar bunches are injected in to the MI, re-bunched in four groups of 53 MHz bunches at 8 GeV, accelerated to 150 GeV, and coalesced in to four 53 MHz bunches before transfer to the Tevatron. A special magnet ramp is needed in the MI to allow for pbar beam of slightly different 8 GeV energies from the Recycler and the Accumulator. Here we will present the status of this scheme.

  20. Fixed target experiments at the Fermilab Tevatron

    DOE PAGESBeta

    Gutierrez, Gaston; Reyes, Marco A.

    2014-11-10

    This paper presents a review of the study of Exclusive Central Production at a Center of Mass energy of √s = 40 GeV at the Fermilab Fixed Target program. In all reactions reviewed in this paper, protons with an energy of 800 GeV were extracted from the Tevatron accelerator at Fermilab and directed to a Liquid Hydrogen target. The states reviewed include π⁺π⁻, K⁰s K⁰s, K⁰s K±π∓, φφ and D*±. Partial Wave Analysis results will be presented on the light states but only the cross-section will be reviewed in the diffractive production of D*±.

  1. Fixed target experiments at the Fermilab Tevatron

    SciTech Connect

    Gutierrez, Gaston; Reyes, Marco A.

    2014-11-10

    This paper presents a review of the study of Exclusive Central Production at a Center of Mass energy of √s = 40 GeV at the Fermilab Fixed Target program. In all reactions reviewed in this paper, protons with an energy of 800 GeV were extracted from the Tevatron accelerator at Fermilab and directed to a Liquid Hydrogen target. The states reviewed include π⁺π⁻, K⁰s K⁰s, K⁰s K±π, φφ and D. Partial Wave Analysis results will be presented on the light states but only the cross-section will be reviewed in the diffractive production of D.

  2. Search for Diphoton Events with Large Missing Transverse Energy in 6.3 fb-1 of p$\\bar{p}$ Collisions using the D0 Detector at the Fermilab Tevatron Collider

    SciTech Connect

    Cooke, Mark Stephen

    2010-01-01

    A search for diphoton events with large missing transverse energy produced in p$\\bar{p}$ collisions at √s = 1.96 TeV is presented. The data were collected with the D0 detector at the Fermilab Tevatron Collider between 2002 and 2010, and correspond to 6.3 fb-1 of integrated luminosity. The observed missing transverse energy distribution is well described by the Standard Model prediction, and 95% C.L. limits are derived on two realizations of theories beyond the Standard Model. In a gauge mediated supersymmetry breaking scenario, the breaking scale Λ is excluded for Λ < 124 TeV. In a universal extra dimension model including gravitational decays, the compactification radius Rc is excluded for Rc-1 < 477 GeV.

  3. Beam instrumentation for the Tevatron Collider

    SciTech Connect

    Moore, Ronald S.; Jansson, Andreas; Shiltsev, Vladimir; /Fermilab

    2009-10-01

    The Tevatron in Collider Run II (2001-present) is operating with six times more bunches and many times higher beam intensities and luminosities than in Run I (1992-1995). Beam diagnostics were crucial for the machine start-up and the never-ending luminosity upgrade campaign. We present the overall picture of the Tevatron diagnostics development for Run II, outline machine needs for new instrumentation, present several notable examples that led to Tevatron performance improvements, and discuss the lessons for future colliders.

  4. Activities at Fermilab related to collider present and future

    NASA Astrophysics Data System (ADS)

    Goderre, G. P.; Holt, J.

    1992-11-01

    The long-range Fermilab program requires fully capitalizing on the world's highest energy accelerator, the Tevatron, throughout the decade of the 90's. The program calls for increasing the collider luminosity with each successive run until peak luminosities of ≳5×1031 cm-2 s-1 and integrated luminosities of ≳100 pb-1 per run are achieved, effectively doubling the mass range accessible for discovery. If the quark lies at the upper range of the mass of the Tevatron, then increasing the energy of the collider operation could prove to be a crucial factor in the future program as well. In order to achieve these goals, we present a highly challenging upgrade of the present accelerator complex, called Fermilab III. In order to increase this performance level by a factor of 50, many changes are needed. Such a plan, of necessity, has modifications in almost all areas of the accelerator as the present system is reasonably optimized. (AIP)

  5. Sonic helium detectors in the Fermilab Tevatron

    SciTech Connect

    Bossert, R.J.; /Fermilab

    2006-01-01

    In the Fermilab Tevatron cryogenic system there are many remotely located low-pressure plate relief valves that must vent large volumes of cold helium gas when magnet quenches occur. These valves can occasionally stick open or not reseat completely, resulting in a large helium loss. As such, the need exists for a detector to monitor the relief valve's discharge area for the presence of helium. Due to the quantity needed, cost is an important factor. A unit has been developed and built for this purpose that is quite inexpensive. Its operating principle is based on the speed of sound, where two closely matched tubes operate at their acoustic resonant frequency. When helium is introduced into one of these tubes, the resulting difference in acoustic time of flight is used to trigger an alarm. At present, there are 39 of these units installed and operating in the Tevatron. They have detected many minor and major helium leaks, and have also been found useful in detecting a rise in the helium background in the enclosed refrigerator buildings. This paper covers the construction, usage and operational experience gained with these units over the last several years.

  6. Sonic Helium Detectors in the Fermilab Tevatron

    NASA Astrophysics Data System (ADS)

    Bossert, R. J.

    2006-04-01

    In the Fermilab Tevatron cryogenic system there are many remotely located low-pressure plate relief valves that must vent large volumes of cold helium gas when magnet quenches occur. These valves can occasionally stick open or not reseat completely, resulting in a large helium loss. As such, the need exists for a detector to monitor the relief valve's discharge area for the presence of helium. Due to the quantity needed, cost is an important factor. A unit has been developed and built for this purpose that is quite inexpensive. Its operating principle is based on the speed of sound, where two closely matched tubes operate at their acoustic resonant frequency. When helium is introduced into one of these tubes, the resulting difference in acoustic time of flight is used to trigger an alarm. At present, there are 39 of these units installed and operating in the Tevatron. They have detected many minor and major helium leaks, and have also been found useful in detecting a rise in the helium background in the enclosed refrigerator buildings. This paper covers the construction, usage and operational experience gained with these units over the last several years.

  7. Fermilab Tevatron high level rf accelerating systems

    SciTech Connect

    Kerns, Q.; Kerns, C.; Miller, H.; Tawser, S.; Reid, J.; Webber, R.; Wildman, D.

    1985-06-01

    Eight tuned rf cavities have been installed and operated in the F0 straight section of the Tevatron. Their mechanical placement along the beam line enables them to be operated for colliding beams as two independent groups of four cavities, group 1-4 accelerating antiprotons and group 5-8 accelerating protons. The only difference is that the spacing between cavities 4 and 5 was increased to stay clear of the F0 colliding point. The cavities can easily be rephased by switching cables in a low-level distribution system (fan-out) so that the full accelerating capability of all eight cavities can be used during fixed target operations. Likewise, the cables from capacitive probes on each cavity gap can be switched to proper lengths and summed in a fan-back system to give an rf signal representing the amplitude and phase as ''seen by the beam,'' separately for protons and antiprotons. Such signals have been used to phase lock the Tevatron to the Main Ring for synchronous transfer.

  8. Fermilab tevatron high level RF accelerating systems

    SciTech Connect

    Kerns, Q.; Kerns, C.; Miller, H.; Reid, J.; Tawzer, S.; Webber, R.; Wildman, D.

    1985-10-01

    Eight tuned rf cavities have been installed and operated in the F0 straight section of the Tevatron. Their mechanical placement along the beam line enables them to be operated for colliding beams as two independent groups of four cavities, group 1-4 accelerating antiprotons and group 5-8 accelerating protons. The only difference is that the spacing between cavities 4 and 5 was increased to stay clear of the F0 colliding point. The cavities can easily be rephased by switching cables in a low-level distribution system (fan-out) so that the full accelerating capability of all eight cavities can be used during fixed target operations. Likewise, the cables from capacitive probes on each cavity gap can be switched to proper lengths and summed in a fan-back system to give an rf signal representing the amplitude and phase as ''seen by the beam,'' separately for protons and antiprotons. Such signals have been used to phase lock the Tevatron to the Main Ring for synchronous transfer. A cavity consists of two quarter-wave resonators placed back to back with a coaxial drift tube separating the two accelerating gaps by ..pi.. radians. The cavities are very similar to the prototype which has been previously described/sup 3/ and is operating as Station 8 in the Tevatron. Only additional water cooling around the high current region of the drift tube supports and a double loop used to monitor the unbalance current through the Hipernom mode damping resistor have been added. Each cavity has a Q of about7100, a shunt impedance of 1.2 M..cap omega.., and is capable of running cw with a peak accelerating voltage of 360

  9. Search for top quark at Fermilab Collider

    SciTech Connect

    Sliwa, K.; The CDF Collaboration

    1991-10-01

    The status of a search for the top quark with Collider Detector at Fermilab (CDF), based on a data sample recorded during the 1988--1989 run is presented. The plans for the next Fermilab Collider run in 1992--1993 and the prospects of discovering the top quark are discussed. 19 refs., 4 figs., 2 tabs.

  10. Collider Detector at Fermilab (CDF): Data from the Top Group's Top Quark Research

    DOE Data Explorer

    The Collider Detector at Fermilab (CDF) is a Tevatron experiment at Fermilab. The Tevatron, a powerful particle accelerator, accelerates protons and antiprotons close to the speed of light, and then makes them collide head-on inside the CDF detector. The CDF detector is used to study the products of such collisions. The CDF Physics Group at Fermilab is organized into six working groups, each with a specific focus. The Top group studies the properties of the top quark, the heaviest known fundamental particle. Their public web page makes data and numerous figures available from both CDF Runs I and II.

  11. Collider Detector at Fermilab (CDF): Data from Supersymmetry, New Phenomena Research of the CDF Exotics Group

    DOE Data Explorer

    The Collider Detector at Fermilab (CDF) is a Tevatron experiment at Fermilab. The Tevatron, a powerful particle accelerator, accelerates protons and antiprotons close to the speed of light, and then makes them collide head-on inside the CDF detector. The CDF detector is used to study the products of such collisions. The CDF Physics Group at Fermilab is organized into six working groups, each with a specific focus. The Exotics group searches for Supersymmetry and other New Phenomena. Their public web page makes data and numerous figures available from both CDF Runs I and II.

  12. Correlations in bottom quark pair production at the Fermilab Tevatron

    SciTech Connect

    Galyardt, Jason Edward

    2009-01-01

    I present an analysis of b$\\bar{b}$ pair production correlations, using dimuon-triggered data collected with the Collider Detector at Fermilab (CDF) in p$\\bar{p}$ collisions at √s = 1.96 TeV during Run II of the TeVatron. The leading order (LO) and next-to-leading order (NLO) b quark production processes are discriminated by the angular and momentum correlations between the b{bar b} pair. Track-level jets containing a muon are classified by b quark content and used to estimate the momentum vector of the progenitor b quark. The theoretical distributions given by the MC@NLO event generator are tested against the data.

  13. Prospects in CP violation measurements at the Tevatron Collider

    SciTech Connect

    Diego Tonelli

    2004-06-22

    The Fermilab Tevatron Collider is currently the most copious source of b-hadrons, thanks to the large b{bar b} production cross-section in 1.96 TeV p{bar p} collisions. Recent detector upgrades allow for a wide range of CP violation and flavor-mixing measurements that are fully competitive (direct asymmetries in self-tagging modes) or complementary (asymmetries of B{sub s} and b-baryons decays) with B-factories. In this paper we review some recent CP violation results from the D0 and CDF II Collaborations and we discuss the prospects for future measurements.

  14. Minimax: Multiparticle physics at the TeVatron collider

    SciTech Connect

    Bjorken, J.D.

    1994-01-01

    The author and two dozen others are engaged in a small test/experiment in the Fermilab Tevatron collider. It is called Minimax, and its purpose is to explore large-cross-section physics in the forward direction. The primary goal of Minimax is search for events containing the residue of disoriented chiral condensate (dcc) produced in the primary collision. The theoretical ideas are very speculative. But if they are right, they could provide an interpretation of the Centauro/anti-Centauro anomalies claimed to have been seen in cosmic-ray events. In this paper, the history and status of Minimax is described.

  15. The Tevatron Hadron Collider: A short history

    SciTech Connect

    Tollestrup, A.V.

    1994-11-01

    The subject of this presentation was intended to cover the history of hadron colliders. However this broad topic is probably better left to historians. I will cover a much smaller portion of this subject and specialize my subject to the history of the Tevatron. As we will see, the Tevatron project is tightly entwined with the progress in collider technology. It occupies a unique place among accelerators in that it was the first to make use of superconducting magnets and indeed the basic design now forms a template for all machines using this technology. It was spawned in an incredibly productive era when new ideas were being generated almost monthly and it has matured into our highest energy collider complete with two large detectors that provide the major facility in the US for probing high Pt physics for the coming decade.

  16. Increasing the energy of the Fermilab Tevatron accelerator

    SciTech Connect

    Fuerst, J.D.; Theilacker, J.C.

    1994-07-01

    The superconducting Tevatron accelerator at Fermilab has reached its eleventh year of operation since being commissioned in 1983. Last summer, four significant upgrades to the cryogenic system became operational which allow Tevatron operation at higher energy. This came after many years of R&D, power testing in sectors (one sixth) of the Tevatron, and final system installation. The improvements include the addition of cold helium vapor compressors, supporting hardware for subatmospheric operation, a new satellite refrigerator control system, and a higher capacity central helium liquefier. A description of each cryogenic upgrade, commissioning experience, and attempts to increase the energy of the Tevatron are presented.

  17. DZero (D0) Experiment Results for B Physics from the Fermilab Tevatron

    DOE Data Explorer

    ,

    The DZero b-Physics Working Group studies all issues related to the b-quark at the Fermilab Tevatron Collider. Topics we are working on include CP violation, measurements of B hadron properties (masses, lifetimes, decay branching ratios, production mechanisms), and searches for rare decays. The D0 (DZero) Experiment consists of a worldwide collaboration of scientists conducting research on the fundamental nature of matter.

  18. Longitudinal damping in the Tevatron collider

    SciTech Connect

    Kerns, Q.A.; Jackson, G.; Kerns, C.R.; Miller, H.; Reid, J.; Siemann, R.; Wildman, D.

    1989-03-01

    This paper describes the damper design for 6 proton on 6 pbar bunches in the Tevatron collider. Signal pickup, transient phase detection, derivative networks, and phase correction via the high-level rf are covered. Each rf station is controlled by a slow feedback loop. In addition, global feedback loops control each set of four cavities, one set for protons and one set for antiprotons. Operational experience with these systems is discussed. 7 refs., 9 figs.

  19. Fully 3D Multiple Beam Dynamics Processes Simulation for the Fermilab Tevatron

    SciTech Connect

    Stern, E.; Amundson, J.; Spentzouris, P; Valishev, A.; /Fermilab

    2010-06-01

    The Fermilab Tevatron has been, until 2010, the premier high-energy physics collider in the world. The data collected over the last decade by high-energy physics experiments running at the Tevatron have been analyzed to make important measurements in fundamental areas such as B meson masses and flavor oscillation, searches for the Higgs boson, and supersymmetry. Collecting these data at the limits of detectability has required the Tevatron to operate reliably at high beam intensities to maximize the number of collisions to analyze. This impressive achievement has been assisted by the use of HPC resources and software provided through the SciDAC program. This paper describes the enhancements to the BeamBeam3d code to realistically simulate the Tevatron, the validation of these simulations, and the improvement in equipment reliability and personal safety achieved with the aid of simulations.

  20. Letter of Intent for a Tevatron Collider Beauty Factory

    SciTech Connect

    Volk, J.T.; Yager, P.M.; Edelstein, R.; Christian, D.; Lundberg, B.; Reay, N.W.; Reibel, K.; Sidwell, R.A.; Stanton, N.; Kalbfleisch, G.R.; Skubic, P.; /Oklahoma U.

    1987-01-01

    A hadron collider beauty production experiment which will increase our knowledge of mixing, rare decay modes and even of CP violation could be performed using a new type of detector at the upgraded Fermilab Tevatron. In order to progress from the hundreds of thousands of B{bar B} events which can be tagged per year at a luminosity of several times 10{sup 29}/cm{sup 2}-sec to an ultimate yield of tens of millions at a luminosity of several times 10{sup 31}/cm{sup 2}-sec, they also must embark on a learning curve which will take many years and will require development both of hardware and software before achieving a final system. A new high-luminosity intersection region would have to be included as part of the presently-planned Tevatron Collider upgrade. Designing and constructing an initial system will take four years. Thus, in the light of the positive decision on the SSC, a start must be made soon if Fermilab is ever to play a strong role in this exciting area of physics. Designing even the initial system will require several man-years of effort by a dedicated group of people, together with concurrent work in prototyping and testing. They therefore ask that the Physics Advisory Committee give us their opinion of the priority such a project should be given at Fermilab, within the context that eventually it will require a devoted interaction region which accesses the full achieved luminosity of the machine. Initially, they discuss physics accessible as the B{bar B} yield increases. Subsequently, they outline a detector which can be staged, increasing its power (and cost) as we progress along our learning curve. Finally, costs and time schedules are estimated for the initial version of this detector and possible locations are discussed.

  1. The upgraded data acquisition system for beam loss monitoring at the Fermilab Tevatron and Main Injector

    SciTech Connect

    Baumbaugh, A.; Briegel, C.; Brown, B.C.; Capista, D.; Drennan, C.; Fellenz, B.; Knickerbocker, K.; Lewis, J.D.; Marchionni, A.; Needles, C.; Olson, M.; /Fermilab

    2011-11-01

    A VME-based data acquisition system for beam-loss monitors has been developed and is in use in the Tevatron and Main Injector accelerators at the Fermilab complex. The need for enhanced beam-loss protection when the Tevatron is operating in collider-mode was the main driving force for the new design. Prior to the implementation of the present system, the beam-loss monitor system was disabled during collider operation and protection of the Tevatron magnets relied on the quench protection system. The new Beam-Loss Monitor system allows appropriate abort logic and thresholds to be set over the full set of collider operating conditions. The system also records a history of beam-loss data prior to a beam-abort event for post-abort analysis. Installation of the Main Injector system occurred in the fall of 2006 and the Tevatron system in the summer of 2007. Both systems were fully operation by the summer of 2008. In this paper we report on the overall system design, provide a description of its normal operation, and show a number of examples of its use in both the Main Injector and Tevatron.

  2. Probing neutrino mass with displaced vertices at the Fermilab Tevatron

    SciTech Connect

    Campos, F. de; Eboli, O.J.P.; Magro, M.B.; Porod, W.; Restrepo, D.; Valle, J.W.F.

    2005-04-01

    Supersymmetric extensions of the standard model exhibiting bilinear R-parity violation can generate naturally the observed neutrino mass spectrum as well as mixings. One interesting feature of these scenarios is that the lightest supersymmetric particle (LSP) is unstable, with several of its decay properties predicted in terms of neutrino mixing angles. A smoking gun of this model in colliders is the presence of displaced vertices due to LSP decays in large parts of the parameter space. In this work we focus on the simplest model of this type that comes from minimal supergravity with universal R-parity conserving soft breaking of supersymmetry augmented with bilinear R-parity breaking terms at the electroweak scale (RmSUGRA). We evaluate the potential of the Fermilab Tevatron to probe the RmSUGRA parameters through the analysis of events possessing two displaced vertices stemming from LSP decays. We show that requiring two displaced vertices in the events leads to a reach in m{sub 1/2} twice the one in the usual multilepton signals in a large fraction of the parameter space.

  3. Top Quark Mass from the Tevatron and LHC Colliders

    NASA Astrophysics Data System (ADS)

    Brigliadori, Luca

    2015-03-01

    The discovery of the top quark in 1995 has been one of the great successes of the CDF and D0 experiments at the Fermilab Tevatron collider. Since then, many measurements of the top quark properties have been performed in different channels and using many methods. The importance of measuring its mass lies in the possibility of verifying the predictions and the consistency of the Standard Model as well as in setting constraints on possible, still unobserved, physics. In 2010, the new CERN experiments, ATLAS and CMS, started to measure the top quark properties exploiting the large amount of data collected at the Large Hadron Collider. In March 2014, the very first combination of measurements from all the four experiments has been performed yielding Mtop = 173.34 ± 0.76 GeV, with a precision below 0.5%. In these proceedings a selected review of the most recent or relevant results obtained by the Tevatron and LHC Collaborations is presented.

  4. Introduction to colliding beams at Fermilab

    SciTech Connect

    Thompson, J.

    1994-10-01

    The Fermi National Accelerator Laboratory is currently the site of the world`s highest center-of-mass energy proton-antiproton colliding beam accelerator, the Tevatron. The CDF and D{O} detectors each envelop one of two luminous regions in the collider, and are thus wholly dependent on the accelerator for their success. The Tevatron`s high operating energy, reliability, and record setting integrated luminosity have allowed both experiments to make world-class measurements and defined the region of physics that each can explore. The following sections are an overview of the highlights of the accelerator operation and are compiled from many sources. The major sources for each section are listed at the beginning of that section.

  5. Collider Detector at Fermilab (CDF): Data from Standard Model and Supersymmetric Higgs Bosons Research of the Higgs Group

    DOE Data Explorer

    The Collider Detector at Fermilab (CDF) is a Tevatron experiment at Fermilab. The Tevatron, a powerful particle accelerator, accelerates protons and antiprotons close to the speed of light, and then makes them collide head-on inside the CDF detector. The CDF detector is used to study the products of such collisions. The CDF Physics Group at Fermilab is organized into six working groups, each with a specific focus. The Higgs group searches for Standard Model and Supersymmetric Higgs bosons. Their public web page makes data and numerous figures available from both CDF Runs I and II.

  6. Collider Detector at Fermilab (CDF): Data from the QCD Group's Research into Properties of the Strong Interaction

    DOE Data Explorer

    ,

    The Collider Detector at Fermilab (CDF) is a Tevatron experiment at Fermilab. The Tevatron, a powerful particle accelerator, accelerates protons and antiprotons close to the speed of light, and then makes them collide head-on inside the CDF detector. The CDF detector is used to study the products of such collisions. The CDF Physics Group at Fermilab is organized into six working groups, each with a specific focus. The QCD group studies the properties of the strong interaction. Their public web page makes data and numerous figures available from both CDF Runs I and II.

  7. Operation of the CDF Silicon Vertex Detector with colliding beams at Fermilab

    SciTech Connect

    Bedeschi, F.; Bolognesi, V.; Dell`Agnello, S.; Galeotti, S.; Grieco, G.; Mariotti, M.; Menzione, A.; Punzi, G.; Raffaelli, F.; Ristori, L.; Tartarelli, F.; Turini, N.; Wenzel, H.; Zetti, F.; Bailey, M.W.; Garfinkel, A.F.; Kruse, M.C.; Shaw, N.M.; Carithers, W.C.; Ely, R.; Haber, C.; Holland, S.; Kleinfelder, S.; Merrick, T.; Schneider, O.; Wester, W.; Wong, M.; Yao, W.; Carter, H.; Flaugher, B.; Nelson, C.; Segler, S.; Shaw, T.; Tkaczyk, S.; Turner, K.; Wesson, T.R.; Barnett, B.; Boswell, C.; Skarha, J.; Snider, F.D.; Spies, A.; Tseng, J.; Vejcik, S.; Amidei, D.; Derwent, P.F.; Song, T.Y.; Dunn, A.; Gold, M.; Matthews, J.; Bacchetta, N.; Azzi, P.; Bisello, D.; Busetto, G.; Castro, A.; Loreti, M.; Pescara, L.; Tipton, P.; Watts, G.

    1992-10-01

    In this paper we briefly describe the main features of the CDF Silicon Vertex Detector (SVX) and discuss its performance during actual colliding beam operation at the Fermilab Tevatron. Details on S/N ratio, alignment, resolution and efficiency are given.

  8. Channeling collimation studies at the Fermilab Tevatron

    SciTech Connect

    Carrigan, Richard A.; Drozhdin, Alexandr I.; Fliller, Raymond P., III; Mokhov, Nikolai V.; Shiltsev, Vladimir D.; Still, Dean A.; /Fermilab

    2006-08-01

    Bent crystal channeling has promising advantages for accelerator beam collimation at high energy hadron facilities such as the LHC. This significance has been amplified by several surprising developments including multi-pass channeling and the observation of enhanced deflections over the entire arc of a bent crystal. The second effect has been observed both at RHIC and recently at the Tevatron. Results are reported showing channeling collimation of the circulating proton beam halo at the Tevatron. Parenthetically, this study is the highest energy proton channeling experiment ever carried out. The study is continuing.

  9. Search for resonant second generation slepton production at the Fermilab Tevatron.

    PubMed

    Abazov, V M; Abbott, B; Abolins, M; Acharya, B S; Adams, M; Adams, T; Agelou, M; Agram, J-L; Ahn, S H; Ahsan, M; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Anastasoaie, M; Andeen, T; Anderson, S; Andrieu, B; Anzelc, M S; Arnoud, Y; Arov, M; Askew, A; Asman, B; Jesus, A C S Assis; Atramentov, O; Autermann, C; Avila, C; Ay, C; Badaud, F; Baden, A; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, P; Banerjee, S; Barberis, E; Bargassa, P; Baringer, P; Barnes, C; Barreto, J; Bartlett, J F; Bassler, U; Bauer, D; Bean, A; Begalli, M; Begel, M; Belanger-Champagne, C; Bellantoni, L; Bellavance, A; Benitez, J A; Beri, S B; Bernardi, G; Bernhard, R; Berntzon, L; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Binder, M; Biscarat, C; Black, K M; Blackler, I; Blazey, G; Blekman, F; Blessing, S; Bloch, D; Bloom, K; Blumenschein, U; Boehnlein, A; Boeriu, O; Bolton, T A; Borcherding, F; Borissov, G; Bos, K; Bose, T; Brandt, A; Brock, R; Brooijmans, G; Bross, A; Brown, D; Buchanan, N J; Buchholz, D; Buehler, M; Buescher, V; Burdin, S; Burke, S; Burnett, T H; Busato, E; Buszello, C P; Butler, J M; Calfayan, P; Calvet, S; Cammin, J; Caron, S; Carvalho, W; Casey, B C K; Cason, N M; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K M; Chandra, A; Chapin, D; Charles, F; Cheu, E; Chevallier, F; Cho, D K; Choi, S; Choudhary, B; Christofek, L; Claes, D; Clément, B; Clément, C; Coadou, Y; Cooke, M; Cooper, W E; Coppage, D; Corcoran, M; Cousinou, M-C; Cox, B; Crépé-Renaudin, S; Cutts, D; Cwiok, M; da Motta, H; Das, A; Das, M; Davies, B; Davies, G; Davis, G A; De, K; de Jong, P; de Jong, S J; De La Cruz-Burelo, E; De Oliveira Martins, C; Degenhardt, J D; Déliot, F; Demarteau, M; Demina, R; Demine, P; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Doidge, M; Dominguez, A; Dong, H; Dudko, L V; Duflot, L; Dugad, S R; Duperrin, A; Dyer, J; Dyshkant, A; Eads, M; Edmunds, D; Edwards, T; Ellison, J; Elmsheuser, J; Elvira, V D; Eno, S; Ermolov, P; Estrada, J; Evans, H; Evdokimov, A; Evdokimov, V N; Fatakia, S N; Feligioni, L; Ferapontov, A V; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Fleck, I; Ford, M; Fortner, M; Fox, H; Fu, S; Fuess, S; Gadfort, T; Galea, C F; Gallas, E; Galyaev, E; Garcia, C; Garcia-Bellido, A; Gardner, J; Gavrilov, V; Gay, A; Gay, P; Gelé, D; Gelhaus, R; Gerber, C E; Gershtein, Y; Gillberg, D; Ginther, G; Gollub, N; Gómez, B; Gounder, K; Goussiou, A; Grannis, P D; Greenlee, H; Greenwood, Z D; Gregores, E M; Grenier, G; Gris, Ph; Grivaz, J-F; Grünendahl, S; Grünewald, M W; Guo, F; Guo, J; Gutierrez, G; Gutierrez, P; Haas, A; Hadley, N J; Haefner, P; Hagopian, S; Haley, J; Hall, I; Hall, R E; Han, L; Hanagaki, K; Harder, K; Harel, A; Harrington, R; Hauptman, J M; Hauser, R; Hays, J; Hebbeker, T; Hedin, D; Hegeman, J G; Heinmiller, J M; Heinson, A P; Heintz, U; Hensel, C; Hesketh, G; Hildreth, M D; Hirosky, R; Hobbs, J D; Hoeneisen, B; Hoeth, H; Hohlfeld, M; Hong, S J; Hooper, R; Houben, P; Hu, Y; Hubacek, Z; Hynek, V; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jain, S; Jakobs, K; Jarvis, C; Jenkins, A; Jesik, R; Johns, K; Johnson, C; Johnson, M; Jonckheere, A; Jonsson, P; Juste, A; Käfer, D; Kahn, S; Kajfasz, E; Kalinin, A M; Kalk, J M; Kalk, J R; Kappler, S; Karmanov, D; Kasper, J; Kasper, P; Katsanos, I; Kau, D; Kaur, R; Kehoe, R; Kermiche, S; Kesisoglou, S; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y M; Khatidze, D; Kim, H; Kim, T J; Kirby, M H; Klima, B; Kohli, J M; Konrath, J-P; Kopal, M; Korablev, V M; Kotcher, J; Kothari, B; Koubarovsky, A; Kozelov, A V; Kozminski, J; Kryemadhi, A; Krzywdzinski, S; Kuhl, T; Kumar, A; Kunori, S; Kupco, A; Kurca, T; Kvita, J; Lager, S; Lammers, S; Landsberg, G; Lazoflores, J; Bihan, A-C Le; Lebrun, P; Lee, W M; Leflat, A; Lehner, F; Lesne, V; Leveque, J; Lewis, P; Li, J; Li, Q Z; Lima, J G R; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, Z; Lobo, L; Lobodenko, A; Lokajicek, M; Lounis, A; Love, P; Lubatti, H J; Lynker, M; Lyon, A L; Maciel, A K A; Madaras, R J; Mättig, P; Magass, C; Magerkurth, A; Magnan, A-M; Makovec, N; Mal, P K; Malbouisson, H B; Malik, S; Malyshev, V L; Mao, H S; Maravin, Y; Martens, M; Mattingly, S E K; McCarthy, R; McCroskey, R; Meder, D; Melnitchouk, A; Mendes, A; Mendoza, L; Merkin, M; Merritt, K W; Meyer, A; Meyer, J; Michaut, M; Miettinen, H; Millet, T; Mitrevski, J; Molina, J; Mondal, N K; Monk, J; Moore, R W; Moulik, T; Muanza, G S; Mulders, M; Mulhearn, M; Mundim, L; Mutaf, Y D; Nagy, E; Naimuddin, M; Narain, M; Naumann, N A; Neal, H A; Negret, J P; Nelson, S; Neustroev, P; Noeding, C; Nomerotski, A; Novaes, S F; Nunnemann, T; O'dell, V; O'neil, D C; Obrant, G; Oguri, V; Oliveira, N; Oshima, N; Otec, R; Y Garzón, G J Otero; Owen, M; Padley, P; Parashar, N; Park, S-J; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Pawloski, G; Perea, P M; Perez, E; Peters, K; Pétroff, P; Petteni, M; Piegaia, R; Pleier, M-A; Podesta-Lerma, P L M; Podstavkov, V M; Pogorelov, Y; Pol, M-E; Pompos, A; Pope, B G; Popov, A V; da Silva, W L Prado; Prosper, H B; Protopopescu, S; Qian, J; Quadt, A; Quinn, B; Rani, K J; Ranjan, K; Rapidis, P A; Ratoff, P N; Renkel, P; Reucroft, S; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F; Robinson, S; Rodrigues, R F; Royon, C; Rubinov, P; Ruchti, R; Rud, V I; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Santoro, A; Savage, G; Sawyer, L; Scanlon, T; Schaile, D; Schamberger, R D; Scheglov, Y; Schellman, H; Schieferdecker, P; Schmitt, C; Schwanenberger, C; Schwartzman, A; Schwienhorst, R; Sengupta, S; Severini, H; Shabalina, E; Shamim, M; Shary, V; Shchukin, A A; Shephard, W D; Shivpuri, R K; Shpakov, D; Siccardi, V; Sidwell, R A; Simak, V; Sirotenko, V; Skubic, P; Slattery, P; Smith, R P; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Song, X; Sonnenschein, L; Sopczak, A; Sosebee, M; Soustruznik, K; Souza, M; Spurlock, B; Stark, J; Steele, J; Stevenson, K; Stolin, V; Stone, A; Stoyanova, D A; Strandberg, J; Strang, M A; Strauss, M; Ströhmer, R; Strom, D; Strovink, M; Stutte, L; Sumowidagdo, S; Sznajder, A; Talby, M; Tamburello, P; Taylor, W; Telford, P; Temple, J; Tiller, B; Titov, M; Tokmenin, V V; Tomoto, M; Toole, T; Torchiani, I; Towers, S; Trefzger, T; Trincaz-Duvoid, S; Tsybychev, D; Tuchming, B; Tully, C; Turcot, A S; Tuts, P M; Unalan, R; Uvarov, L; Uvarov, S; Uzunyan, S; Vachon, B; van den Berg, P J; Kooten, R Van; van Leeuwen, W M; Varelas, N; Varnes, E W; Vartapetian, A; Vasilyev, I A; Vaupel, M; Verdier, P; Vertogradov, L S; Verzocchi, M; Villeneuve-Seguier, F; Vint, P; Vlimant, J-R; Toerne, E Von; Voutilainen, M; Vreeswijk, M; Wahl, H D; Wang, L; Warchol, J; Watts, G; Wayne, M; Weber, M; Weerts, H; Wermes, N; Wetstein, M; White, A; Wicke, D; Wilson, G W; Wimpenny, S J; Wobisch, M; Womersley, J; Wood, D R; Wyatt, T R; Xie, Y; Xuan, N; Yacoob, S; Yamada, R; Yan, M; Yasuda, T; Yatsunenko, Y A; Yip, K; Yoo, H D; Youn, S W; Yu, C; Yu, J; Yurkewicz, A; Zatserklyaniy, A; Zeitnitz, C; Zhang, D; Zhao, T; Zhao, Z; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zieminski, A; Zutshi, V; Zverev, E G

    2006-09-15

    We present a search for supersymmetry in the R-parity violating resonant production and decay of smuons and muon sneutrinos in the channels mu-->chi(1)(0)mu, mu-->chi(2,3,4)(0)mu, and nu(mu)-->chi(1,2)(+/-)mu. We analyzed 0.38 fb(-1) of integrated luminosity collected between April 2002 and August 2004 with the D0 detector at the Fermilab Tevatron Collider. The observed number of events is in agreement with the standard model expectation, and we calculate 95% C.L. limits on the slepton production cross section times branching fraction to gaugino plus muon, as a function of slepton and gaugino masses. In the framework of minimal supergravity, we set limits on the coupling parameter lambda(211)('), extending significantly previous results obtained in Run I of the Tevatron and at the CERN LEP collider. PMID:17025876

  10. A tevatron collider beauty factory. [Final report, 1980--1992

    SciTech Connect

    Not Available

    1992-12-31

    This document which is labeled a final report consists of several different items. The first is a proposal for a detector to be developed for beauty physics. The detector is proposed for the Fermilab Tevatron, and would be designed to measure mixing reactions, rare decay modes, and even CP violation in hadron collider beauty production. The general outline of the work proposed is given, and an estimate of the time to actually design the detector is presented, along with proposed changes to the Tevatron to accommodate the system. A preliminary report on an experiment to verify a reported observation of a 17 keV neutrino in tritium decay is presented. The present results in the decay spectra actually show a depression below expected levels, which is not consistent with a massive neutrino. Additional interest has been shown in finishing an electrostatic beta spectrometer which was started several years previously. The instrument uses hemispherical electrostatic electric fields to retard electrons emitted in tritium decay, allowing measurement of integral spectra. The design goal has a 5 eV energy resolution, which may be achievable. A new PhD student is pursuing this experiment. Also the report contains a proposal for additional work in the field of non-perturbative quantum field theory by the theoretical group at OU. The work which is proposed will be applied to electroweak and strong interactions, as well as to quantum gravitational phenomena.

  11. Vacuum control subsystem for the Fermilab Tevatron

    SciTech Connect

    Zagel, J.R.; Chapman, L.J.

    1981-06-01

    The CAMAC 170 module and CIA crate provide a convenient, cost effective method of interfacing any system requiring a large number of simple devices to be multiplexed into the Accelerator Control System. The system is ideal for relatively slowly changing systems where ten bit analog to digital conversions are sufficiently accurate. Together with vacuum interface CIA cards and prom-based software resident in the 170, this system is used to provide intelligent local monitoring and control for the Tevatron vacuum subsystems. Although not implemented in the vacuum interface, digital to analog converters could be included on the plug in modules as well, providing a total digital and analog multiplexing scheme. 2 refs.

  12. Overview of the Tevatron Collider Complex: Goals, Operations and Performance

    SciTech Connect

    Holmes, Stephen; Moore, Ronald S.; Shiltsev, Vladimir

    2011-06-01

    For more than two decades the Tevatron proton-antiproton collider was the centerpiece of the world's high energy physics program. The collider was arguably one of the most complex research instruments ever to reach the operation stage and is widely recognized for numerous physics discoveries and for many technological breakthroughs. In this article we outline the historical background that led to the construction of the Tevatron Collider, the strategy applied to evolution of performance goals over the Tevatron's operational history, and briefly describe operations of each accelerator in the chain and achieved performance.

  13. DZero (D0) Experiment Results for Higgs Physics from the Fermilab Tevatron

    DOE Data Explorer

    The D0 (DZero) Experiment is a worldwide collaboration of scientists conducting research on the fundamental nature of matter. The experiment is located at the Tevatron Collider, at Fermilab. The research is focused on precise studies of interactions of protons and antiprotons and involves an intense search for subatomic clues that reveal the character of the building blocks of the universe. This web page provides access to Run II research results of the Higgs Physics group, including preliminary, submitted, and published results. Figures and data plots are found in the directories with their respective papers.

  14. DZero (D0) Experiment Results for New Phenomena from the Fermilab Tevatron

    DOE Data Explorer

    The D0 (DZero) Experiment is a worldwide collaboration of scientists conducting research on the fundamental nature of matter. The experiment is located at the Tevatron Collider, Fermilab. The research is focused on precise studies of interactions of protons and antiprotons and involves an intense search for subatomic clues that reveal the character of the building blocks of the universe. This web page provides access to Run II research results of the New Phenomena Physics group, including preliminary, submitted, and published results. Figures and data plots are found in the same directories with their respective papers.

  15. DZero (D0) Experiment Results for QCD Physics from the Fermilab Tevatron

    DOE Data Explorer

    The D0 (DZero) Experiment is a worldwide collaboration of scientists conducting research on the fundamental nature of matter. The experiment is located at the Tevatron Collider, at Fermilab. The research is focused on precise studies of interactions of protons and antiprotons at the highest available energies. It involves an intense search for subatomic clues that reveal the character of the building blocks of the universe. This web page provides access to Run II research results of the QCD Physics group, including preliminary, submitted, and published results. Figures and data plots are found in the same directories with their respective papers.

  16. DZero (D0) Experiment Results for Top Quark Physics from the Fermilab Tevatron

    DOE Data Explorer

    The D0 (DZero) Experiment is a worldwide collaboration of scientists conducting research on the fundamental nature of matter. The experiment is located at the Tevatron Collider, Fermilab. The research is focused on precise studies of interactions of protons and antiprotons and involves an intense search for subatomic clues that reveal the character of the building blocks of the universe. This web page provides access to Run II research results of the Top Quark Physics group, including preliminary, submitted, and published results. Figures and data plots are found in the directories with their respective papers.

  17. DZero (D0) Experiment Results for Electroweak Physics from the Fermilab Tevatron

    DOE Data Explorer

    The D0 (DZero) Experiment is a worldwide collaboration of scientists conducting research on the fundamental nature of matter. The experiment is located at the Tevatron Collider, Fermilab. The research is focused on precise studies of interactions of protons and antiprotons and involves an intense search for subatomic clues that reveal the character of the building blocks of the universe. This web page provides access to Run II research results of the Electroweak Physics group, including preliminary, submitted, and published results. Figures and data plots are found in the directories with their respective papers.

  18. Highlights from Fermilab

    SciTech Connect

    Parke, Stephen J.; /Fermilab

    2009-12-01

    In these two lectures I will chose some highlights from the Tevatron experiments (CDF/D0) and the Neutrino experiments and then discuss the future direction of physics at Fermilab after the Tevatron collider era.

  19. Collider Detector (CDF) at FERMILAB: an overview

    SciTech Connect

    Theriot, D.

    1984-07-01

    CDF, the Collider Detector at Fermilab, is a collaboration of almost 150 physicists from ten US universities (University of Chicago, Brandeis University, Harvard University, University of Illinois, University of Pennsylvania, Purdue University, Rockefeller University, Rutgers University, Texas A and M University, and University of Wisconsin), three US DOE supported national laboratories (Fermilab, Argonne National Laboratory, and Lawrence Berkeley Laboratory), Italy (Frascati Laboratory and University of Pisa), and Japan (KEK National Laboratory and Unversity of Tsukuba). The primary physics goal for CDF is to study the general features of proton-antiproton collisions at 2 TeV center-of-mass energy. On general grounds, we expect that parton subenergies in the range 50 to 500 GeV will provide the most interesting physics at this energy. Work at the present CERN Collider has already demonstrated the richness of the 100 GeV scale in parton subenergies.

  20. NLO QCD corrections to Zbb production with massive bottom quarks at the Fermilab Tevatron

    SciTech Connect

    Febres Cordero, F.; Reina, L.; Wackeroth, D.

    2008-10-01

    We calculate the next-to-leading order (NLO) QCD corrections to Zbb production in hadronic collisions including full bottom-quark mass effects. We present results for the total cross section and the invariant mass distribution of the bottom-quark jet pair at the Fermilab Tevatron pp collider. We perform a detailed comparison with a calculation that considers massless bottom quarks, as implemented in the Monte Carlo program MCFM. We find that neglecting bottom-quark mass effects overestimates the total NLO QCD cross section for Zbb production at the Tevatron by about 7%, independent of the choice of the renormalization and factorization scales. Moreover, bottom-quark mass effects can impact the shape of the bottom-quark pair invariant mass distribution, in particular, in the low invariant mass region.

  1. Search for disoriented chiral condensate at the Fermilab Tevatron

    SciTech Connect

    Brooks, T. C.; Convery, M. E.; Davis, W. L.; Del Signore, K. W.; Jenkins, T. L.; Kangas, E.; Knepley, M. G.; Kowalski, K. L.; Taylor, C. C.; Oh, S. H.

    2000-02-01

    We present results from MiniMax (Fermilab T-864), a small test/experiment at the Fermilab Tevatron designed to search for the production of a disoriented chiral condensate (DCC) in p-p(bar sign) collisions at {radical}(s)=1.8 TeV in the forward direction, {approx}3.4<{eta}<{approx}4.2. Data, consisting of 1.3x10{sup 6} events, are analyzed using the robust observables developed in an earlier paper. The results are consistent with generic, binomial-distribution partition of pions into charged and neutral species. Limits on DCC production in various models are presented. (c) 2000 The American Physical Society.

  2. Challenging the standard model at the Tevatron collider

    SciTech Connect

    Filthaut, Frank; /Nijmegen U.

    2011-03-01

    Even at a time where the world's eyes are focused on the Large Hadron Collider at CERN, which has reached the energy frontier in 2010, many important results are still being obtained from data analyses performed at the Tevatron collider at Fermilab. This contribution discusses recent highlights in the areas of B hadron, electroweak, top quark, and Higgs boson physics. The standard model (SM) of particle physics forms the cornerstone of our understanding of elementary particles and their interactions, and many of its aspects have been investigated in great detail. Yet it is generally suspected to be incomplete (e.g. by not allowing for the incorporation of gravity in a field theoretical setting) and un-natural (e.g. the mass of the Higgs boson is not well protected against radiative corrections). In addition, it does not explain the dark matter and dark energy content of the Universe. It is therefore of eminent importance to test the limits of validity of the SM. In the decade since its upgrade to a centre-of-mass energy {radical}s = 1.96 TeV, the Tevatron p{bar p} collider has delivered an integrated luminosity of about 10 fb{sup -1}, up to 9 fb{sup -1} of which are available for analysis by its CDF and D0 collaborations. These large datasets allow for stringent tests of the SM in two areas: direct searches for particles or final states that are not very heavy but that suffer from small production cross sections (e.g. the Higgs boson), and searches for indirect manifestations of beyond-the-standard-model (BSM) effects through virtual effects. The latter searches can often be carried out by precise measurements of otherwise known processes. This contribution describes such tests of the SM carried out by the CDF and D0 collaborations. In particular, recent highlights in the areas of B hadron physics, electroweak physics, top quark physics, and Higgs boson physics are discussed. Recent results of tests of QCD and of direct searches for new phenomena are described in

  3. Synchrotron radiation based beam diagnostics at the Fermilab Tevatron

    DOE PAGESBeta

    Thurman-Keup, R.; Cheung, H. W. K.; Hahn, A.; Hurh, P.; Lorman, E.; Lundberg, C.; Meyer, T.; Miller, D.; Pordes, S.; Valishev, A.

    2011-09-16

    Synchrotron radiation has been used for many years as a beam diagnostic at electron accelerators. It is not normally associated with proton accelerators as the intensity of the radiation is too weak to make detection practical. Therefore, if one utilizes the radiation originating near the edge of a bending magnet, or from a short magnet, the rapidly changing magnetic field serves to enhance the wavelengths shorter than the cutoff wavelength, which for more recent high energy proton accelerators such as Fermilab's Tevatron, tends to be visible light. This paper discusses the implementation at the Tevatron of two devices. A transversemore » beam profile monitor images the synchrotron radiation coming from the proton and antiproton beams separately and provides profile data for each bunch. A second monitor measures the low-level intensity of beam in the abort gaps which poses a danger to both the accelerator's superconducting magnets and the silicon detectors of the high energy physics experiments. Comparisons of measurements from the profile monitor to measurements from the flying wire profile systems are presented as are a number of examples of the application of the profile and abort gap intensity measurements to the modelling of Tevatron beam dynamics.« less

  4. Synchrotron radiation based beam diagnostics at the Fermilab Tevatron

    SciTech Connect

    Thurman-Keup, R.; Cheung, H. W. K.; Hahn, A.; Hurh, P.; Lorman, E.; Lundberg, C.; Meyer, T.; Miller, D.; Pordes, S.; Valishev, A.

    2011-09-16

    Synchrotron radiation has been used for many years as a beam diagnostic at electron accelerators. It is not normally associated with proton accelerators as the intensity of the radiation is too weak to make detection practical. Therefore, if one utilizes the radiation originating near the edge of a bending magnet, or from a short magnet, the rapidly changing magnetic field serves to enhance the wavelengths shorter than the cutoff wavelength, which for more recent high energy proton accelerators such as Fermilab's Tevatron, tends to be visible light. This paper discusses the implementation at the Tevatron of two devices. A transverse beam profile monitor images the synchrotron radiation coming from the proton and antiproton beams separately and provides profile data for each bunch. A second monitor measures the low-level intensity of beam in the abort gaps which poses a danger to both the accelerator's superconducting magnets and the silicon detectors of the high energy physics experiments. Comparisons of measurements from the profile monitor to measurements from the flying wire profile systems are presented as are a number of examples of the application of the profile and abort gap intensity measurements to the modelling of Tevatron beam dynamics.

  5. 132 ns Bunch Spacing in the Tevatron Proton-Antiproton Collider

    SciTech Connect

    Holmes, S.D.; Holt, J.; Johnstone, J.A.; Marriner, J.; Martens, M.; McGinnis, D.

    1994-12-01

    Following completion of the Fermilab Main Injector it is expected that the Tevatron proton-antiproton collider will be operating at a luminosity in excess of 5{times}10{sup 3l} cm{sup {minus}2} with 36 proton and antiproton bunches spaced at 396 nsec. At this luminosity, each of the experimental detectors will see approximately 1.3 interactions per crossing. Potential improvements to the collider low beta and rf systems could push the luminosity beyond 10{times}10{sup 3l} cm{sup {minus}2}sec{sup {minus}1}, resulting in more than three interactions per crossing if the bunch separation is left unchanged. This paper discusses issues related to moving to {approx}100 bunch operation, with bunch spacings of 132 nsec, in the Tevatron. Specific scenarios and associated hardware requirements are described.

  6. Collider Detector at Fermilab (CDF): Data from W, Z bosons and Drell Yan lepton pairs research of the CDF Electroweak Group

    DOE Data Explorer

    The Collider Detector at Fermilab (CDF) is a Tevatron experiment at Fermilab. The Tevatron, a powerful particle accelerator, accelerates protons and antiprotons close to the speed of light, and then makes them collide head-on inside the CDF detector. The CDF detector is used to study the products of such collisions. The CDF Physics Group at Fermilab is organized into six working groups, each with a specific focus. The Electroweak group studies production and properties of W, Z bosons and Drell Yan lepton pairs. Their public web page makes data and numerous figures available from both CDF Runs I and II.

  7. Top and higgs physics at the Tevatron

    SciTech Connect

    Pierre Savard

    2002-12-23

    We present a summary of our experimental understanding of the top quark and discuss the significant improvements expected in Run II at the Fermilab Tevatron Collider. We also discuss prospects for a Higgs boson discovery at the Tevatron.

  8. Determination of the jet energy scale at the collider detector at Fermilab

    SciTech Connect

    Bhatti, A.; Canelli, Florencia; Heinemann, B.; Adelman, J.; Ambrose, D.; Arguin, J.-F.; Barbaro-Galtieri, A.; Budd, H.; Chung, Y.S.; Chung, K.; Cooper, B.; Currat, C.; D'Onofrio, M.; Dorigo, T.; Erbacher, R.; Field, R.; Flanagan, G.; Gibson, A.; Hatakeyama, K.; Happacher, F.; Hoffman, D.; /Argonne /UCLA /Carnegie Mellon U. /Chicago U., EFI /Fermilab /Florida U. /Frascati /Geneva U. /LBL, Berkeley /Liverpool U. /University Coll. London /Michigan State U. /Toronto U. /Padua U. /INFN, Padua /Pavia U. /INFN, Pavia /Pennsylvania U. /INFN, Pisa /Pisa U. /Pisa, Scuola Normale Superiore

    2005-10-01

    A precise determination of the energy scale of jets at the Collider Detector at Fermilab at the Tevatron p{bar p} collider is described. Jets are used in many analyses to estimate the energies of partons resulting from the underlying physics process. Several correction factors are developed to estimate the original parton energy from the observed jet energy in the calorimeter. The jet energy response is compared between data and Monte Carlo simulation for various physics processes, and systematic uncertainties on the jet energy scale are determined. For jets with transverse momenta above 50 GeV the jet energy scale is determined with a 3% systematic uncertainty.

  9. A disoriented chiral condensate search at the Fermilab Tevatron

    SciTech Connect

    Convery, M.E.

    1997-05-01

    MiniMax (Fermilab T-864) was a small test/experiment at the Tevatron designed to search for disoriented chiral condensates (DCC) in the forward direction. Relativistic quantum field theory treats the vacuum as a medium, with bulk properties characterized by long-range order parameters. This has led to suggestions that regions of {open_quotes}disoriented vacuum{close_quotes} might be formed in high-energy collision processes. In particular, the approximate chiral symmetry of QCD could lead to regions of vacuum which have chiral order parameters disoriented to directions which have non-zero isospin, i.e. disoriented chiral condensates. A signature of DCC is the resulting distribution of the fraction of produced pions which are neutral. The MiniMax detector at the C0 collision region of the Tevatron was a telescope of 24 multi-wire proportional chambers (MWPC`s) with a lead converter behind the eighth MWPC, allowing the detection of charged particles and photon conversions in an acceptance approximately a circle of radius 0.6 in pseudorapidity-azimuthal-angle space, centered on pseudorapidity {eta} {approx} 4. An electromagnetic calorimeter was located behind the MWPC telescope, and hadronic calorimeters and scintillator were located in the upstream anti-proton direction to tag diffractive events.

  10. Inclusive jet production at the tevatron collider in the Regge limit of quantum chromodynamics

    NASA Astrophysics Data System (ADS)

    Saleev, V. A.; Shipilova, A. V.; Yatsenko, E. V.

    2012-03-01

    We consider the inclusive hadroproduction of jets, prompt photons, and b-quark jets in the quasimulti-Regge kinematics approach based on the hypothesis of gluon and quark reggeization in t-channel exchanges at high energies. The data taken by CDF and D0 collaborations at the Fermilab Tevatron collider are well described in the region of x_T = 2p_T /sqrt s lesssim 0.1 without the introduction of any free parameters. In numeric calculations we use the Kimber-Martin-Ryskin prescription for unintegrated gluon and quark distribution functions with Martin-Roberts-Stirling-Thorne collinear parton distribution functions taken as input.

  11. High p{sub T} jet physics at the Tevatron Collider

    SciTech Connect

    Buckley-Geer, E.

    1996-09-01

    We present results on high {ital p{sub T}} jet physics from the CDF and D{null} experiments at the Fermilab Tevatron Collider. Recent results on the inclusive jet cross-section at {radical}{ital s} = 1.8 TeV will be presented and compared with QCD. We will also present results on the dijet angular distribution. Limits on quark compositeness are presented from the CDF dijet angular distribution. Finally we will discuss the results on the inclusive jet cross section at {radical}{ital s} = 0.63 TeV and tests of scaling.

  12. Tevatron status

    SciTech Connect

    Dugan, G.

    1989-03-01

    The Fermilab Tevatron is both the world's highest energy accelerator system and first large-scale superconducting synchrotron. Since Tevatron commissioning in July 1983, the accelerator has operated in 1984, 1985 and 1987 with extracted beams of 800 GeV for three runs of fixed target physics, and in 1987, and 1988, with proton-antiproton colliding beams at 900 /times/ 900 GeV. This paper will focus on the collider operation of the Tevatron: its present status and the outlook for its longer-term future evolution. 18 refs., 3 figs., 2 tabs.

  13. Electroweak and b-physics at the Tevatron collider

    SciTech Connect

    Hara, K.

    1994-04-01

    The CDF and D0 experiments have collected integrated luminosities of 21 pb{sup {minus}1} and 16 pb{sup {minus}1}, respectively, in the 1992--1993 run (Run Ia) at the Fermilab Tevatron. Preliminary results on electroweak physics are reported from both experiments: the W mass, the leptonic branching ratios {Tau}(W {yields} {ell}{nu}), the total W width, gauge boson couplings, W decay asymmetry and W{prime}/Z{prime} search. Preliminary new results on b physics are presented: B{sup o} {minus} {bar B}{sup o} mixing from D0, and masses and lifetimes of B{minus}mesons from CDF.

  14. Prospects for MSSM Higgs searches at the Fermilab Tevatron.

    SciTech Connect

    Draper, P.; Liu, T.; Wagner, C. E. M.; High Energy Physics; Univ. of Chicago

    2009-01-01

    We analyze the Tevatron reach for neutral Higgs bosons in the minimal supersymmetric standard model, using current exclusion limits on the standard model Higgs. We study four common benchmark scenarios for the soft supersymmetry-breaking parameters of the minimal supersymmetric standard model, including cases where the Higgs decays differ significantly from the standard model, and provide projections for the improvements in luminosity and efficiency required for the Tevatron to probe sizeable regions of the (m{sub A},tan-{beta}) plane.

  15. Prospects for MSSM Higgs boson searches at the Fermilab Tevatron

    SciTech Connect

    Draper, Patrick; Liu, Tao; Wagner, Carlos E. M.

    2009-08-01

    We analyze the Tevatron reach for neutral Higgs bosons in the minimal supersymmetric standard model, using current exclusion limits on the standard model Higgs. We study four common benchmark scenarios for the soft supersymmetry-breaking parameters of the minimal supersymmetric standard model, including cases where the Higgs decays differ significantly from the standard model, and provide projections for the improvements in luminosity and efficiency required for the Tevatron to probe sizeable regions of the (m{sub A},tan{beta}) plane.

  16. Issues and experience with controlling beam loss at the Tevatron collider

    SciTech Connect

    Annala, Gerald; /Fermilab

    2007-07-01

    Controlling beam loss in the Tevatron collider is of great importance because of the delicate nature of the cryogenic magnet system and the collider detectors. Maximizing the physics potential requires optimized performance as well as protection of all equipment. The operating history of the Tevatron has significantly influenced the way losses are managed. The development of beam loss management in the Tevatron will be presented.

  17. Status of the Fermilab Recycler

    SciTech Connect

    Derwent, P.F.; /Fermilab

    2007-09-01

    The author presents the current operational status of the Fermilab Recycler Ring. Using a mix of stochastic and electron cooling, we prepare antiproton beams for the Fermilab Tevatron Collider program. Included are discussion of stashing and cooling performance, operational scenarios, and collider performance.

  18. Measurements of the Top Quark at the Tevatron Collider

    SciTech Connect

    Cerrito, Lucio

    2007-01-01

    The authors present recent preliminary measurements of the top-antitop pair production cross section and determinations of the top quark pole mass, performed using the data collected by the CDF and D0 Collaborations at the Tevatron Collider. In the lepton plus jets final state, with semileptonic B decay, the pair production cross section has now been measured at CDF using {approx} 760 pb{sup -1} of proton-antiproton collisions at a center-of-mass energy of {radical}s = 1.96 TeV. A measurement of the production cross section has also been made with {approx} 1 fb{sup -1} of data in the all-jets final state by the CDF Collaboration. The mass of the top quark has now been measured using {approx} 1 fb{sup -1} of collision data using all decay channels of the top quark pair, yielding the most precise measurements of the top mass to date.

  19. B Physics at the Tevatron

    SciTech Connect

    Manfred Paulini

    2004-02-10

    After a five year upgrade period, the Fermilab experiments CDF and D0 are taking high quality data in Run II of the Tevatron Collider. We report on the start-up of both detectors and present a selection of first B physics results from the Tevatron. We also compare different B hadron producers such as the {Upsilon}(4S) with the hadron collider environment and discuss general features of B physics at a hadron collider.

  20. Drift-pots for small angle elastic scattering at the fermilab collider

    NASA Astrophysics Data System (ADS)

    Amos, N.; Baker, W.; Bertani, M.; Block, M.; DeSalvo, R.; Dimitryiannis, D.; Donati, A.; Eartly, D.; Ellsworth, R.; Giacomelli, G.; Goodman, J.; Lennox, A.; Maleyran, R.; Manarin, A.; Mondardini, M.; Orear, J.; Pruss, S.; Rubinstein, R.; Shukla, S.; Yodh, G.; York, T.; Zucchelli, S.

    1986-12-01

    In order to measure the small angle p- overlinep scattering at the Fermilab Tevatron collider we developed very small drift chambers integrated with thin-wall roman pots. We named them drift-pots. The drift-pots are active 100 μm from the vacuum of the beam with an expected resolution of 60 μm in the drift direction and 250 μm in charge division. They are radiation resistant detectors intrinsically insensitive to the beam pickup pulses and their multiple hit readout capability will allow us to push them into the beam halo where p- overlinep Coulomb elastic scattering dominates. For our application, we belive the drift-pots, are superior to state of the art silicon detectors.

  1. Data acquisition and analysis for the Fermilab Collider RunII

    SciTech Connect

    Paul L. G. Lebrun et al.

    2004-07-07

    Operating and improving the understanding of the Fermilab Accelerator Complex for the colliding beam experiments requires advanced software methods and tools. The Shot Data Acquisition and Analysis (SDA) has been developed to fulfill this need. The SDA takes a standard set of critical data at relevant stages during the complex series of beam manipulations leading to {radical}(s) {approx} 2 TeV collisions. Data is stored in a relational database, and is served to programs and users via Web based tools. Summary tables are systematically generated during and after a store. Written entirely in Java, SDA supports both interactive tools and application interfaces used for in-depth analysis. In this talk, we present the architecture and described some of our analysis tools. We also present some results on the recent Tevatron performance as illustrations of the capabilities of SDA.

  2. Nonlinear dynamics studies in the Fermilab tevatron using an AC dipole

    SciTech Connect

    Miyamoto,R.; Jansson, A.; Syphers, M. J.; Kopp, S. E.

    2009-05-04

    An AC dipole magnet produces a sinusoidally oscillating dipole field with frequency close to betatron frequency and excites large sustained oscillations of beam particles circulating in a synchrotron. Observation of such oscillations with beam position monitors allows direct measurements of a synchrotron's nonlinear parameters. This paper presents experimental studies to measure perturbative effects of sextupole and octupole fields, performed in the Fermilab Tevatron using an ACdipole.

  3. Measurement of the Oscillation Frequency of Bs Mesons in the Hadronic Decay Mode Bs→ π Ds(Φ π)X with the D0 Detector at the Fermilab Tevatron Collider

    SciTech Connect

    Weber, Gernot August

    2009-03-01

    The standard model (SM) of particle physics is a theory, describing three out of four fundamental forces. In this model the Cabibbo-Kobayashi-Maskawa (CKM) matrix describes the transformation between the mass and weak eigenstates of quarks. The matrix properties can be visualized as triangles in the complex plane. A precise measurement of all triangle parameters can be used to verify the validity of the SM. The least precisely measured parameter of the triangle is related to the CKM element |Vtd|, accessible through the mixing frequency (oscillation) of neutral B mesons, where mixing is the transition of a neutral meson into its anti-particle and vice versa. It is possible to calculate the CKM element |Vtd| and a related element |Vts| by measuring the mass differences Δmd(Δms) between neutral Bd and $\\bar{B}$d (Bs and $\\bar{B}$s) meson mass eigenstates. This measurement is accomplished by tagging the initial and final state of decaying B mesons and determining their lifetime. Currently the Fermilab Tevatron Collider (providing p$\\bar{p}$ collisions at {radical}s = 1.96 TeV) is the only place, where Bs oscillations can be studied. The first selection of the 'golden', fully hadronic decay mode Bs → πDs(Φπ)X at D0 is presented in this thesis. All data, taken between April 2002 and August 2007 with the D0 detector, corresponding to an integrated luminosity of integral Ldt = 2.8 fb-1 is used. The oscillation frequency Δms and the ratio |Vtd|/|Vts| are determined as Δms = (16.6-0.4+0.5(stat)-0.3+0.4(sys)) ps-1, |Vtd|/|Vts| = 0.213-0.003+0.004(exp) ± 0.008(theor). These results are consistent with the standard model expectations and no evidence for new physics is observable.

  4. Forward-Backward Asymmetry of Top Quark Pair Productionn at the Fermilab Tevatron

    SciTech Connect

    Hong, Ziqing

    2015-12-01

    This dissertation presents the final measurements of the forward-backward asymmetry (AFB) of top quark-antiquark pair events (t t-) at the Collider Detector at Fermilab (CDF) experiment. The t t- events are produced in proton{anti-proton collisions with a center of mass energy of 1:96 TeV during the Run II of the Fermilab Tevatron. The measurements are performed with the full CDF Run II data (9.1 fb-1) in the final state that contain two charged leptons (electrons or muons, the dilepton final state), and are designed to con rm or deny the evidence-level excess in the AFB measurements in the final state with a single lepton and hadronic jets (lepton+jets final state) as well as the excess in the preliminary measurements in the dilepton final state with the first half of the CDF Run II data. New measurements include the leptonic AFB (AlFB), the lepton-pair AFB (All FB) and the reconstructed top AFB (At t FB). Each are combined with the previous results from the lepton+jets final state measured at the CDF experiment. The inclusive Al FB, All FB, and At t FB measured in the dilepton final state are 0.072 ± 0.060, 0.076 ± 0.081, and 0.12 ± 0.13, to be compared with the Standard Model (SM) predictions of 0.038 ± 0.003, 0.048 ± 0.004, and 0.010 ± 0.006, respectively. The CDF combination of AlFB and At t FB are 0.090+0:028 -0.026, and 0.160 ± 0.045, respectively. The overall results are consistent with the SM predictions.

  5. Recent Electroweak Results from the Tevatron

    SciTech Connect

    Zhu, Junjie; /SUNY, Stony Brook

    2009-07-01

    W and Z bosons are mainly produced via quark-antiquark annihilations at the Fermilab Tevatron collider. Precision measurements with these gauge bosons provide us with high precision tests of the Standard Model (SM) as well as indirect search for possible new physics beyond the SM. I present the recent electroweak measurements related to single W, Z boson and diboson productions from the CDF and D0 experiments at the Fermilab Tevatron collider.

  6. Pattern recognition at the Fermilab collider and Superconducting Supercollider.

    PubMed Central

    Frisch, H J

    1993-01-01

    In a colliding beam accelerator such as Fermilab or the Superconducting Supercollider (SSC) protons, or antiprotons, collide at a rate between 10(5) (Fermilab) and 10(8) (SSC) collisions per second. In real time experimentalists have to select those events which are candidates for exploring the limit of known phenomena at a much lower rate, 1-100 per second, for recording on permanent media. The rate of events from new physics sources is expected to be much lower, as low as a few per year. This is a severe problem in pattern recognition: with an input data stream of up to 10(15) potential bits per second in its images, we have to pick out those images that are potentially interesting in real time at a discrimination level of 1 part in 10(6), with a known efficiency. I will describe the overall filtering strategies and the custom hardware to do this event selection (a.k.a. pattern recognition). Images Fig. 1 PMID:11607432

  7. Combination of electroweak and QCD corrections to single W production at the Fermilab Tevatron and the CERN LHC

    NASA Astrophysics Data System (ADS)

    Balossini, Giovanni; Montagna, Guido; Carloni Calame, Carlo Michel; Moretti, Mauro; Nicrosini, Oreste; Piccinini, Fulvio; Treccani, Michele; Vicini, Alessandro

    2010-01-01

    Precision studies of the production of a high-transverse momentum lepton in association with missing energy at hadron colliders require that electroweak and QCD higher-order contributions are simultaneously taken into account in theoretical predictions and data analysis. Here we present a detailed phenomenological study of the impact of electroweak and strong contributions, as well as of their combination, to all the observables relevant for the various facets of the pmathop {p}limits^{left( - right)} to {text{lepton}} + X physics programme at hadron colliders, including luminosity monitoring and Parton Distribution Functions constraint, W precision physics and search for new physics signals. We provide a theoretical recipe to carefully combine electroweak and strong corrections, that are mandatory in view of the challenging experimental accuracy already reached at the Fermilab Tevatron and aimed at the CERN LHC, and discuss the uncertainty inherent the combination. We conclude that the theoretical accuracy of our calculation can be conservatively estimated to be about 2% for standard event selections at the Tevatron and the LHC, and about 5% in the very high W transverse mass/lepton transverse momentum tails. We also provide arguments for a more aggressive error estimate (about 1% and 3%, respectively) and conclude that in order to attain a one per cent accuracy: 1) exact mixed mathcal{O}left( {α {α_s}} right) corrections should be computed in addition to the already available NNLO QCD contributions and two-loop electroweak Sudakov logarithms; 2) QCD and electroweak corrections should be coherently included into a single event generator.

  8. Cornering gauge-mediated supersymmetry breaking with quasistable sleptons at the Fermilab Tevatron

    SciTech Connect

    Martin, S.P.; Wells, J.D.

    1999-02-01

    There are many theoretical reasons why heavy quasistable charged particles might exist. Pair production of such particles at the Fermilab Tevatron can produce highly ionizing tracks or fake muons. In gauge-mediated supersymmetry breaking, sparticle production can lead to events with a pair of quasistable sleptons, a significant fraction of which will have the same electric charge. Depending on the production mechanism and the decay chain, they may also be accompanied by additional energetic leptons. We study the relative importance of the resulting signals for the Tevatron run II. The relative fraction of same-sign tracks to other background-free signals is an important diagnostic tool in gauge-mediated supersymmetry breaking that may provide information about mass splittings, tanthinsp{beta}, and the number of messengers communicating supersymmetry breaking. {copyright} {ital 1999} {ital The American Physical Society}

  9. Phenomenological study of the atypical heavy flavor production observed at the Fermilab Tevatron

    SciTech Connect

    Apollinari, G.; Barone, M.; Fiori, I.; Giromini, P.; Happacher, F.; Miscetti, S.; Parri, A.; Ptohos, F.; /Frascati /Fermilab /INFN, Pisa /Cyprus U.

    2005-11-01

    The authors address known discrepancies between the heavy flavor properties of jets produced at the Tevatron collider and the prediction of conventional-QCD simulations. In this study, they entertain the possibility that these effects are real and due to new physics. They show that all anomalies can be simultaneously fitted by postulating the additional pair production of light bottom squarks with a 100% semileptonic branching fraction.

  10. Longitudinal bunch monitoring at the Fermilab Tevatron and Main Injector synchrotrons

    DOE PAGESBeta

    Thurman-Keup, R.; Bhat, C.; Blokland, W.; Crisp, J.; Eddy, N.; Fellenz, B.; Flora, R.; Hahn, A.; Hansen, S.; Kiper, T.; et al

    2011-10-17

    The measurement of the longitudinal behavior of the accelerated particle beams at Fermilab is crucial to the optimization and control of the beam and the maximizing of the integrated luminosity for the particle physics experiments. Longitudinal measurements in the Tevatron and Main Injector synchrotrons are based on the analysis of signals from resistive wall current monitors. This study describes the signal processing performed by a 2 GHz-bandwidth oscilloscope together with a computer running a LabVIEW program which calculates the longitudinal beam parameters.

  11. A Trio of modulators for the Fermilab tevatron electron lens project

    SciTech Connect

    David W. Wildman et al.

    2001-07-25

    Three high voltage modulators used during testing and operation of the Tevatron Electron Lens (TEL) at Fermilab will be described. Short high voltage (0 to {approximately} 20kV) pulses from these modulators vary the anode-cathode voltage of the TEL electron gun to control the magnitude of the electron beam current. The trio of modulators include a low repetition rate MOSFET-based pulser, a fast ionization device, and a high average power tetrode modulator. The characteristics of each device will be discussed and typical outputs from each type of modulator is shown.

  12. Microwave Schottky diagnostic systems for the Fermilab Tevatron, Recycler, and CERN LHC

    SciTech Connect

    Pasquinelli, Ralph J.; Jansson, Andreas; /ESS, Lund

    2011-02-01

    A means for non-invasive measurement of transverse and longitudinal characteristics of bunched beams in synchrotrons has been developed based on high sensitivity slotted waveguide pickups. The pickups allow for bandwidths exceeding hundreds of MHz while maintaining good beam sensitivity characteristics. Wide bandwidth is essential to allow bunch-by-bunch measurements by means of a fast gating system. The Schottky detector system is installed and successfully commissioned in the Fermilab Tevatron and Recycler and CERN LHC synchrotrons. Measurement capabilities include tune, chromaticity, and momentum spread of single or multiple beam bunches in any combination. With appropriate calibrations, emittance can also be measured by integrating the area under the incoherent tune sidebands.

  13. The magnetic design and field measurement of Fermilab collider detectors: CDF (the Collider Detector at Fermilab) and D0

    SciTech Connect

    Yamada, R.

    1990-02-01

    General magnetic characteristics of the CDF and D0 hadron collider detectors at Fermilab are described. The method and equipment for the field measurement for both detectors are described, and their field measurement data are presented. The magnetic field distribution inside the CDF solenoid magnet was measured extensively only at the boundaries, and the field values inside the volume were reconstructed. The effects due to the joints and the return conductor were measured and are discussed. The flux distribution inside the yokes and the fringing field of the D0 toroids were calculated and compared with measured data. A proposal to generate dipole magnetic field inside the D0 toroidal magnet is discussed. 9 refs., 6 figs.

  14. Twenty Years of Tevatron Operation

    NASA Astrophysics Data System (ADS)

    Theilacker, J. C.

    2004-06-01

    The superconducting Tevatron accelerator at Fermi National Accelerator Laboratory (Fermilab) has surpassed twenty years of operation. The Tevatron is still the highest energy particle accelerator in the world and will remain so until the commissioning of the LHC in Europe later this decade. The Tevatron has operated in a Fixed Target mode, accelerating a proton beam into stationary targets/detectors, as well as a Colliding Beam mode, continuously colliding counter rotating beams of protons and antiprotons. Upon completion, the Tevatron cryogenic system became the world's largest helium refrigeration system. In 1993, the Tevatron cryogenic system was given the designation of International Historic Mechanical Engineering Landmark by the American Society of Mechanical Engineers. The operational history, experiences and statistics of the Tevatron, with an emphasis on the cryogenic system, is presented. Improvements, upgrades and current challenges of the cryogenic system are discussed.

  15. Twenty Years of Tevatron Operation

    SciTech Connect

    Theilacker, J.C.

    2004-06-23

    The superconducting Tevatron accelerator at Fermi National Accelerator Laboratory (Fermilab) has surpassed twenty years of operation. The Tevatron is still the highest energy particle accelerator in the world and will remain so until the commissioning of the LHC in Europe later this decade. The Tevatron has operated in a Fixed Target mode, accelerating a proton beam into stationary targets/detectors, as well as a Colliding Beam mode, continuously colliding counter rotating beams of protons and antiprotons. Upon completion, the Tevatron cryogenic system became the world's largest helium refrigeration system. In 1993, the Tevatron cryogenic system was given the designation of International Historic Mechanical Engineering Landmark by the American Society of Mechanical Engineers. The operational history, experiences and statistics of the Tevatron, with an emphasis on the cryogenic system, is presented. Improvements, upgrades and current challenges of the cryogenic system are discussed.

  16. Twenty Years of Tevatron Operation

    SciTech Connect

    Jay C. Theilacker

    2004-07-15

    The superconducting Tevatron accelerator at Fermi National Accelerator Laboratory (Fermilab) has surpassed twenty years of operation. The Tevatron is still the highest energy particle accelerator in the world and will remain so until the commissioning of the LHC in Europe later this decade. The Tevatron has operated in a Fixed Target mode, accelerating a proton beam into stationary targets/detectors, as well as a Colliding Beam mode, continuously colliding counter rotating beams of protons and antiprotons. Upon completion, the Tevatron cryogenic system became the world's largest helium refrigeration system. In 1993, the Tevatron cryogenic system was given the designation of International Historic Mechanical Engineering Landmark by the American Society of Mechanical Engineers. The operational history, experiences and statistics of the Tevatron, with an emphasis on the cryogenic system, is presented. Improvements, upgrades and current challenges of the cryogenic system are discussed.

  17. Measurement of proton and anti-proton intensities in the Tevatron Collider

    SciTech Connect

    Stephen Pordes et al.

    2003-06-04

    This paper describes the techniques used to measure the intensities of the proton (p) and anti-proton ({bar p}) beams in the Tevatron collider. The systems provide simultaneous measurements of the intensity of the 36 proton and 36 antiproton bunches and their longitudinal profiles.

  18. Simulations of an acceleration scheme for producing high intensity and low emittance antiproton beam for Fermilab collider operation

    SciTech Connect

    Wu, Vincent; Bhat, C.M.; MacLachlan, J.A.; /Fermilab

    2005-05-01

    During Fermilab collider operation, the Main Injector (MI) provides high intensity and low emittance proton and antiproton beams for the Tevatron. The present coalescing scheme for antiprotons in the Main Injector yields about a factor of two increase in the longitudinal emittance and a factor of 5% to 20% decrease in intensity before injection to the Tevatron. In order to maximize the integrated luminosity delivered to the collider experiments, it is important to minimize the emittance growth and maximize the intensity of the MI beam. To this end, a new scheme using a combination of 2.5 MHz and 53 MHz accelerations has been developed and tested. This paper describes the full simulation of the new acceleration scheme, taking account of space charge, 2.5 MHz and 53 MHz beam loading, and the effect of residual 53 MHz rf voltage during 2.5 MHz acceleration and rf manipulations. The simulations show the longitudinal emittance growth at the 10% level with no beam loss. The experimental test of the new scheme is reported in another PAC05 paper.

  19. Diboson Production at the Tevatron

    SciTech Connect

    Iashvili, Ia; /SUNY, Buffalo

    2008-09-01

    We present the latest results on the production of WW, WZ, Wgamma, Zgamma and ZZ events at the Fermilab Tevatron Collider. The results are based on the analyses of 0.2 - 2 /fb of data collected in p pbar collisions at sqrt(s) = 1.96 TeV by CDF and DO experiments during the Tevatron Run II. Analyses of the diboson production processes provide crucial test of the Standard Model, directly probing its predictions on the Trilinear Gauge Couplings.

  20. Coupling in the Tevatron

    SciTech Connect

    Gelfand, N.M.

    1994-12-01

    The performance of the Fermilab Tevatron Collider at the commencement of run Ib was far below expectations. After a frustrating period of several months, a low-{beta} quad downstream of the interaction point at B0 was found to be rolled. This rolled quadrupole coupled the horizontal and vertical motion of the Tevatron beams. It also made matching the beam from the Main Ring to the Tevatron impossible, resulting in emittance blow up on injection. The net result of the roll was a significant reduction in the Tevatron luminosity. When the roll in the quadrupole was corrected the performance of the Tevatron improved dramatically. This note will discuss the experimental data indicating the presence of coupling and subsequent calculations which show how coupling an affect the luminosity. It is not intended to exhaust a discussion of coupling, which hopefully will be understood well enough to be discussed in a subsequent note.

  1. Tevatron targets three-year extension

    NASA Astrophysics Data System (ADS)

    Harris, Margaret

    2010-09-01

    Fermilab's Tevatron collider could get a new lease on life following a campaign to keep the facility running beyond the end of 2011, when the rival Large Hadron Collider (LHC) at CERN is scheduled to shut down for 15 months of repairs.

  2. B(s) properties at the Tevatron

    SciTech Connect

    Gomez-Ceballos, Guillelmo; /Cantabria U., Santander

    2005-11-01

    The Tevatron collider at Fermilab provides a very rich environment for the study B{sub s} mesons. In this paper they show a few selected topics from the CDF and D0 collaborations, giving special attention to the B{sub s} Mixing analyses. This note corresponds to the proceedings of the Hadron Collider Physics 2005 conference.

  3. Measurements of top quark properties at the Tevatron collider

    SciTech Connect

    Margaroli, Fabrizio

    2011-05-01

    The discovery of the top quark in 1995 opened a whole new sector of investigation of the Standard Model; today top quark physics remains a key priority of the Tevatron program. Some of the measurements of top quark properties, for example its mass, will be a long-standing legacy. The recent evidence of an anomalously large charge asymmetry in top quark events suggests that new physics could couple preferably with top quarks. I will summarize this long chapter of particle physics history and discuss the road the top quark is highlighting for the LHC program.

  4. Measurement of the radiation field surrounding the Collider Detector at Fermilab

    SciTech Connect

    K. Kordas et al.

    2004-01-28

    We present here the first direct and detailed measurements of the spatial distribution of the ionizing radiation surrounding a hadron collider experiment. Using data from two different exposures we measure the effect of additional shielding on the radiation field around the Collider Detector at Fermilab (CDF). Employing a simple model we parameterize the ionizing radiation field surrounding the detector.

  5. Tau identification at the Tevatron

    SciTech Connect

    Levy, Stephen; /Chicago U., EFI

    2005-07-01

    Methods for reconstructing and identifying the hadronic decays of tau leptons with the CDF and D0 detectors at the Fermilab Tevatron collider in Run II are described. Precision electroweak measurements of W and Z gauge boson cross sections are presented as well as results of searches for physics beyond the Standard Model with hadronically decaying tau leptons in the final state.

  6. Recent Results from the Tevatron

    SciTech Connect

    Demorden, L.

    1998-06-01

    We review recent results from fixed-target and collider experiments at the Fermilab Tevatron. Among the topics discussed are jet production rates, {alpha}{sub S} measurements, the {anti d}/{anti u} ratio in the proton sea, diffraction, heavy quark physics and leptoquark searches.

  7. Tevatron Collider Run II status and novel technologies for luminosity upgrades

    SciTech Connect

    Vladimir Shiltsev

    2004-07-20

    Over the past 2 years the Tevatron peak luminosity steadily progressed and reached the level of 92e30 cm-2s-1 which exceeds the original Run IIa goal. Over 0.57fb-1 have being delivered to each CDF and D0 experiments since the beginning of the Run II. In parallel to the Collider operation, we have started a project of the luminosity upgrade which should lead to peak luminosities of about 270e30 and total integrated luminosity of 4.4-8.5 fb-1 through FY2009. In this paper we describe the status of the Tevatron Collider complex, essence of the upgrades and novel accelerator technologies to be employed.

  8. Production of b-quark jets at the Tevatron Collider in the Regge limit of QCD

    SciTech Connect

    Saleev, V. A. Shipilova, A. V.

    2011-01-15

    The production of b-quark jets is considered in the approach of quasi-multi-Regge kinematics. This approach is based on the hypothesis of the Reggeization of t-channel gluons and quarks at high energies. Experimental data obtained by the CDF and D0 Collaborations at the Tevatron Collider for various spectra of b-quark jets are described quite accurately without invoking free parameters.

  9. Proposed Fermilab fixed target experiment: Kaons at the Tevatron. Environmental Assessment

    SciTech Connect

    Not Available

    1993-12-01

    The US Department of Energy (DOE) has prepared an Environmental Assessment (EA), DOE/EA-0898, evaluating the impacts associated with the proposed fixed target experiment at the Fermi National Accelerator Laboratory (Femilab) in Batavia, Illinois, known as Kaons at the Tevatron (KTeV). The proposed KTeV project includes reconfiguration of an existing target station, enhancement of an existing beam transport system connected to existing utility facilities, and construction of a new experimental detector hall area. The study of the K meson, a type of subatomic particle, has been going on at Fermilab for 20 years. The proposed KTEV project advances the search for the origins of a violation of a fundamental symmetry of nature called charge parity (CP) violation. Based on the analysis in the EA, the DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement is not required.

  10. A search for B_S0 oscillations at the Tevatron collider experiment D0

    SciTech Connect

    Krop, Dan N.; /Indiana U.

    2007-04-01

    We present a search for B{sub S}{sup 0} oscillations using semileptonic B{sub S} {yields} D{sub s}{mu}X (D{sub S} {yields} K{sub S}{sup 0}K). The data were collected using the D0 detector from events produced in {radical}s = 1.96 TeV proton-antiproton collisions at the Fermilab Tevatron. The Tevatron is currently the only place in the world that produces B{sub S}{sup 0} mesons and will be until early 2008 when the Large Hadron Collider begins operating at CERN. One of the vital ingredients for the search for B s oscillations is the determination of the flavor of the B{sub S}{sup 0} candidate (B{sub S}{sup 0} or {bar B}{sub S}{sup 0} ) at the time of its production, called initial state flavor tagging. We develop an likelihood based initial state flavor tagger that uses objects on the side of the event opposite to the reconstructed B meson candidate. To improve the performance of this flavor tagger, we have made it multidimensional so that it takes correlations between discriminants into account. This tagging is then certified by applying it to sample of semimuonic B{sup (0,+)} decays and measuring the well-known oscillation frequency {delta}m{sub d}. We obtain {delta}m{sub d} = 0.486 {+-} 0.021 ps{sup -1}, consistent with the world average. The tagging performance is characterized by the effective efficiency, {epsilon}D{sup 2} = (1.90 {+-} 0.41)%. We then turn to the search for B{sub S}{sup 0} oscillations in the above-named channel. A special two-dimensional mass fitting procedure is developed to separate kinematic reflections from signal events. Using this mass fitting procedure in an unbinned likelihood framework, we obtain a 95% C.L. of {Delta}m{sub s} > 1.10 ps{sup -1} and a sensitivity of 1.92 ps-1. This result is combined with other analyzed B{sub S}{sup 0} decay channels at D0 to obtain a combined 95% C.L. of {Delta}m{sub s} > 14.9 ps-1 and a sensitivity of 16.5 ps-1. The corresponding log likelihood scan has a preferred value of {Delta}m{sub s} = 19 ps-1

  11. Top Quark Pair Production Cross Section at the Tevatron

    SciTech Connect

    Peters, Reinhild Yvonne

    2015-09-25

    The top quark, discovered in 1995 by the CDF and D0 collaborations at the Tevatron proton antiproton collider at Fermilab, has undergone intense studies in the last 20 years. Currently, CDF and D0 converge on their measurements of top-antitop quark production cross sections using the full Tevatron data sample. In these proceedings, the latest results on inclusive and differential measurements of top-antitop quark production cross sections at the Tevatron are reported.

  12. Single event effects and their mitigation for the Collider Detector at Fermilab

    SciTech Connect

    Tesarek, Richard J.; D'Auria, Saverio; Dong, Peter; Hocker, Andy; Kordas, Kostas; McGimpsey, Susan; Nicolas, Ludovic; Wallny, Rainer; Schmitt, Wayne; Worm, Steven; /Fermilab /Toronto U. /Glasgow U. /Rutherford /UCLA

    2005-11-01

    We present an overview of radiation induced failures and operational experiences from the Collider Detector at Fermilab (CDF). In our summary, we examine single event effects (SEE) in electronics located in and around the detector. We present results of experiments to identify the sources and composition of the radiation and steps to reduce the rate of SEEs in our electronics. Our studies have led to a better, more complete understanding of the radiation environment in a modern hadron collider experiment.

  13. Composite leptoquarks in hadronic colliders

    SciTech Connect

    Eboli, O.J.P.; Olinto, A.V.

    1988-12-01

    We study the production of composite scalar leptoquarks in hadronic colliders (CERN p-barp, Fermilab Tevatron p-barp, and the Superconducting Super Collider pp). We examine its direct single production via qg..-->..l+leptoquark, and its effect on the production of lepton pairs (p/sup (-)/p..-->..l/sup +/l/sup -/).

  14. Overview of results from the Fermilab fixed target and collider experiments

    SciTech Connect

    Montgomery, H.E.

    1997-06-01

    In this paper we present a review of recent QCD related results from Fermilab fixed target and collider experiments. Topics covered range from structure functions through W/Z production, heavy quark production and jet angular distributions. We also include the current state of knowledge about leptoquark pair production in hadronic collisions.

  15. T864 (MiniMax): A search for disoriented chiral condensate at the Fermilab Collider

    SciTech Connect

    Bjorken, J.D.

    1996-10-01

    A small test/experiment has been performed at the Fermilab Collider to measure charged particle and photon multiplicities in the forward direction, {eta} {approximately} 4.1. The primary goal is to search for disoriented chiral condensate (DCC). The experiment and analysis methods are described, and preliminary results of the DCC search are presented.

  16. Crystal extraction at the Tevatron

    SciTech Connect

    Carrigan, Richard A., Jr.; /Fermilab

    2005-06-01

    Luminosity-driven channeling extraction was observed for the first time in a 900 GeV study at the Fermilab Tevatron carried out in the 1995-1996 period. This experiment, Fermilab E853, demonstrated that useful TeV level beams can be extracted from a superconducting accelerator during high luminosity collider operations without unduly affecting the background at the collider detectors. Multipass extraction was found to increase the efficiency of the process significantly. The beam extraction efficiency was in the range of 25%. The history of the experiment is reviewed. Special attention is paid to results related to collimation.

  17. Search for chargino and neutralino at Run II of the Tevatron Collider

    SciTech Connect

    Canepa, Anadi; /Purdue U.

    2006-08-01

    In this dissertation we present a search for the associated production of charginos and neutralinos, the supersymmetric partners of the Standard Model bosons. We analyze a data sample representing 745 pb{sup -1} of integrated luminosity collected by the CDF experiment at the p{bar p} Tevatron collider. We compare the Standard Model predictions with the observed data selecting events with three leptons and missing transverse energy. Finding no excess, we combine the results of our search with similar analyses carried out at CDF and set an upper limit on the chargino mass in SUSY scenarios.

  18. Searches for supersymmetry at the Tevatron

    SciTech Connect

    Mary R. M. Bishai

    2001-05-15

    We review current experimental results of searches for Supersymmetry (SUSY) at the Fermilab Tevatron Collider using the Run I data collected during 1992-1996. New results from the CDF detector in the jets + missing E{sub t} and lepton-photon channels are presented. Recent results from model independent searches at D0 using the SLEUTH algorithm are reviewed. We discuss the prospects for supersymmetry searches at Run II of the Tevatron, scheduled to start in March, 2001.

  19. Measurements of Rare B Decays at Tevatron

    SciTech Connect

    Aoki, Masato

    2009-06-01

    Both CDF and D0 experiments have been searching for evidence of physics beyond the standard model (SM) using the Tevatron p{bar p} collider at Fermilab. We report on recent searches in the B flavor sector, especially decays via flavor changing neutral current processes (FCNC), B{sub (s)}{sup 0} {yields} e{sup +}{mu}{sup -} and B{sub s}{sup 0} {yields} {mu}{sup +}{mu}{sup -}, at the Tevatron.

  20. First Observation of Vector Boson Pairs in a Hadronic Final State at the Tevatron Collider

    SciTech Connect

    Aaltonen, T.; Adelman, Jahred A.; Akimoto, T.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, Dante E.; Anastassov, A.; Annovi, Alberto; Antos, Jaroslav; Apollinari, G.; Apresyan, A.; /Purdue U. /Waseda U.

    2009-05-01

    We present the first observation in hadronic collisions of the electroweak production of vector boson pairs (VV, V = W,Z) where one boson decays to a dijet final state. The data correspond to 3.5 fb{sup -1} of integrated luminosity of p{bar p} collisions at {radical}s = 1.96 TeV collected by the CDF II detector at the Fermilab Tevatron. We observe 1516 {+-} 239(stat) {+-} 144(syst) diboson candidate events and measure a cross section {sigma}(p{bar p} {yields} VV + X) of 18.0 {+-} 2.8(stat) {+-} 2.4(syst) {+-} 1.1(lumi) pb, in agreement with the expectations of the standard model.

  1. Charmonium production at the Tevatron and Large Hadron Collider in the Regge limit of QCD

    SciTech Connect

    Nefedov, M. A. Saleev, V. A. Shipilova, A. V.

    2013-12-15

    Processes involving direct J/ψ-meson production in proton-antiproton and proton-proton collisions are studied under the assumption of gluon Reggeization in t-channel exchanges and with the aid of the formalism of nonrelativistic quantum chromodynamics. The present calculations are performed in the leading approximation in the strong coupling constant α{sub s} and in the relative quark velocity v. The octet nonperturbative matrix elements for the transition of a c c-bar pair to quarkonium are fixed in fitting the transverse-momentumspectra obtained by the CDF Collaboration for J/ψ mesons at the Tevatron collider. The spectra of J/ψ-meson production at the energies of the Large Hadron Collider are predicted, and the resulting predictions agree well with experimental data obtained by the ATLAS, CMS, and LHCb Collaborations at √S = 7 TeV.

  2. Calculation of integrated luminosity for beams stored in the Tevatron collider

    SciTech Connect

    Finley, D.A.

    1989-03-20

    A model for calculating the integrated luminosity of beams stored in the Tevatron collider will be presented. The model determines the instantaneous luminosity by calculating the overlap integral of bunched beams passing through the interaction region. The calculation accounts for the variation in beam size due to the beta functions and also for effects due to finite longitudinal emittance and non-zero dispersion in the interaction region. The integrated luminosity is calculated for the beams as they evolve due to processes including collisions and intrabeam scattering. The model has been applied to both the extant and upgraded Tevatron collider, but is not limited to them. The original motivation for developing the computer model was to determine the reduction in luminosity due to beams with non-zero longitudinal emittances. There are two effects: the transverse beam size is increased where the dispersion is non-zero; the finite length of the beam bunch combined with an increasing /beta/ function results in an increased transverse beam size at the ends of the bunch. The derivation of a sufficiently useful analytic expression for the luminosity proved to be intractable. Instead, a numerical integration computer program was developed to calculate the luminosity in the presence of a finite longitudinal emittance. The program was then expanded into a model which allows the luminosity to vary due to changes in emittances and reduction in bunch intensities. At that point, it was not difficult to calculate the integrated luminosity. 5 refs., 2 figs., 4 tabs.

  3. Low-cost hadron colliders at Fermilab: A discussion paper

    SciTech Connect

    Foster, G.W.; Malamud, E.

    1996-06-21

    New more economic approaches are required to continue the dramatic exponential rise in collider energies as represented by the well known Livingston plot. The old idea of low cost, low field iron dominated magnets in a small diameter pipe may become feasible in the next decade with dramatic recent advances in technology: (1) advanced tunneling technologies for small diameter, non human accessible tunnels, (2) accurate remote guidance systems for tunnel survey and boring machine steering, (3) high T{sub c} superconductors operating at liquid N{sub 2} or liquid H{sub 2} temperatures, (4) industrial applications of remote manipulation and robotics, (5) digitally multiplexed electronics to minimize cables, (6) achievement of high luminosities in p-p and p-{anti P} colliders. The goal of this paper is to stimulate continuing discussions on approaches to this new collider and to identify critical areas needing calculations, construction of models, proof of principle experiments, and full scale prototypes in order to determine feasibility and arrive at cost estimates.

  4. Phase modulation of the bucket stops bunch oscillations at the Fermilab Tevatron

    SciTech Connect

    Tan, C.Y.; Burov, A.; /Fermilab

    2012-04-02

    Bunches in the Tevatron are known to exhibit longitudinal oscillations which persist indefinitely. These oscillations are colloquially called 'dancing bunches.' Although the dancing proton bunches do not cause single bunch emittance growth or beam loss at injection, they lead to bunch lengthening at collisions. In Tevatron operations, a longitudinal damper has been built which stops this dance and damps out coupled bunch modes. Recent theoretical work predicts that the dance can also be stopped by an appropriate change in the bunch distribution. This paper describes the Tevatron experiments which support this theory.

  5. High-luminosity primary vertex selection in top-quark studies using the Collider Detector at Fermilab

    SciTech Connect

    Buzatu, Adrian; /McGill U.

    2006-08-01

    Improving our ability to identify the top quark pair (t{bar t}) primary vertex (PV) on an event-by-event basis is essential for many analyses in the lepton-plus-jets channel performed by the Collider Detector at Fermilab (CDF) Collaboration. We compare the algorithm currently used by CDF (A1) with another algorithm (A2) using Monte Carlo simulation at high instantaneous luminosities. We confirm that A1 is more efficient than A2 at selecting the t{bar t} PV at all PV multiplicities, both with efficiencies larger than 99%. Event selection rejects events with a distance larger than 5 cm along the proton beam between the t{bar t} PV and the charged lepton. We find flat distributions for the signal over background significance of this cut for all cut values larger than 1 cm, for all PV multiplicities and for both algorithms. We conclude that any cut value larger than 1 cm is acceptable for both algorithms under the Tevatron's expected instantaneous luminosity improvements.

  6. Study of B0 --> J/psiK(*)0pi(+)pi(-) decays with the collider detector at Fermilab.

    PubMed

    Affolder, T; Akimoto, H; Akopian, A; Albrow, M G; Amaral, P; Amidei, D; Anikeev, K; Antos, J; Apollinari, G; Arisawa, T; Artikov, A; Asakawa, T; Ashmanskas, W; Azfar, F; Azzi-Bacchetta, P; Bacchetta, N; Bachacou, H; Bailey, S; de Barbaro, P; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Barone, M; Bauer, G; Bedeschi, F; Belforte, S; Bell, W H; Bellettini, G; Bellinger, J; Benjamin, D; Bensinger, J; Beretvas, A; Berge, J P; Berryhill, J; Bhatti, A; Binkley, M; Bisello, D; Bishai, M; Blair, R E; Blocker, C; Bloom, K; Blumenfeld, B; Blusk, S R; Bocci, A; Bodek, A; Bokhari, W; Bolla, G; Bonushkin, Y; Bortoletto, D; Boudreau, J; Brandl, A; van den Brink, S; Bromberg, C; Brozovic, M; Brubaker, E; Bruner, N; Buckley-Geer, E; Budagov, J; Budd, H S; Burkett, K; Busetto, G; Byon-Wagner, A; Byrum, K L; Cabrera, S; Calafiura, P; Campbell, M; Carithers, W; Carlson, J; Carlsmith, D; Caskey, W; Castro, A; Cauz, D; Cerri, A; Chan, A W; Chang, P S; Chang, P T; Chapman, J; Chen, C; Chen, Y C; Cheng, M-T; Chertok, M; Chiarelli, G; Chirikov-Zorin, I; Chlachidze, G; Chlebana, F; Christofek, L; Chu, M L; Chung, Y S; Ciobanu, C I; Clark, A G; Colijn, A P; Connolly, A; Conway, J; Cordelli, M; Cranshaw, J; Cropp, R; Culbertson, R; Dagenhart, D; D'Auria, S; DeJongh, F; Dell'Agnello, S; Dell'Orso, M; Demortier, L; Deninno, M; Derwent, P F; Devlin, T; Dittmann, J R; Dominguez, A; Donati, S; Done, J; D'Onofrio, M; Dorigo, T; Eddy, N; Einsweiler, K; Elias, J E; Engels, E; Erbacher, R; Errede, D; Errede, S; Fan, Q; Fang, H-C; Feild, R G; Fernandez, J P; Ferretti, C; Field, R D; Fiori, I; Flaugher, B; Foster, G W; Franklin, M; Freeman, J; Friedman, J; Fukui, Y; Furic, I; Galeotti, S; Gallas, A; Gallinaro, M; Gao, T; Garcia-Sciveres, M; Garfinkel, A F; Gatti, P; Gay, C; Gerdes, D W; Giannetti, P; Giromini, P; Glagolev, V; Glenzinski, D; Gold, M; Goldstein, J; Gorelov, I; Goshaw, A T; Gotra, Y; Goulianos, K; Green, C; Grim, G; Gris, P; Groer, L; Grosso-Pilcher, C; Guenther, M; Guillian, G; Guimaraes da Costa, J; Haas, R M; Haber, C; Hahn, S R; Hall, C; Handa, T; Handler, R; Hao, W; Happacher, F; Hara, K; Hardman, A D; Harris, R M; Hartmann, F; Hatakeyama, K; Hauser, J; Heinrich, J; Heiss, A; Herndon, M; Hill, C; Hoffman, K D; Holck, C; Hollebeek, R; Holloway, L; Huffman, B T; Hughes, R; Huston, J; Huth, J; Ikeda, H; Incandela, J; Introzzi, G; Iwai, J; Iwata, Y; James, E; Jones, M; Joshi, U; Kambara, H; Kamon, T; Kaneko, T; Karr, K; Kasha, H; Kato, Y; Keaffaber, T A; Kelley, K; Kelly, M; Kennedy, R D; Kephart, R; Khazins, D; Kikuchi, T; Kilminster, B; Kim, B J; Kim, D H; Kim, H S; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kirby, M; Kirk, M; Kirsch, L; Klimenko, S; Koehn, P; Kondo, K; Konigsberg, J; Korn, A; Korytov, A; Kovacs, E; Kroll, J; Kruse, M; Kuhlmann, S E; Kurino, K; Kuwabara, T; Laasanen, A T; Lai, N; Lami, S; Lammel, S; Lancaster, J; Lancaster, M; Lander, R; Lath, A; Latino, G; LeCompte, T; Lee, A M; Lee, K; Leone, S; Lewis, J D; Lindgren, M; Liss, T M; Liu, J B; Liu, Y C; Litvintsev, D O; Lobban, O; Lockyer, N; Loken, J; Loreti, M; Lucchesi, D; Lukens, P; Lusin, S; Lyons, L; Lys, J; Madrak, R; Maeshima, K; Maksimovic, P; Malferrari, L; Mangano, M; Mariotti, M; Martignon, G; Martin, A; Matthews, J A J; Mayer, J; Mazzanti, P; McFarland, K S; McIntyre, P; McKigney, E; Menguzzato, M; Menzione, A; Merkel, P; Mesropian, C; Meyer, A; Miao, T; Miller, R; Miller, J S; Minato, H; Miscetti, S; Mishina, M; Mitselmakher, G; Moggi, N; Moore, E; Moore, R; Morita, Y; Moulik, T; Mulhearn, M; Mukherjee, A; Muller, T; Munar, A; Murat, P; Murgia, S; Nachtman, J; Nagaslaev, V; Nahn, S; Nakada, H; Nakano, I; Nelson, C; Nelson, T; Neu, C; Neuberger, D; Newman-Holmes, C; Ngan, C-Y P; Niu, H; Nodulman, L; Nomerotski, A; Oh, S H; Oh, Y D; Ohmoto, T; Ohsugi, T; Oishi, R; Okusawa, T; Olsen, J; Orejudos, W; Pagliarone, C; Palmonari, F; Paoletti, R; Papadimitriou, V; Partos, D; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D; Pescara, L; Phillips, T J; Piacentino, G; Pitts, K T; Pompos, A; Pondrom, L; Pope, G; Popovic, M; Prokoshin, F; Proudfoot, J; Ptohos, F; Pukhov, O; Punzi, G; Rakitine, A; Ratnikov, F; Reher, D; Reichold, A; Ribon, A; Riegler, W; Rimondi, F; Ristori, L; Riveline, M; Robertson, W J; Robinson, A; Rodrigo, T; Rolli, S; Rosenson, L; Roser, R; Rossin, R; Rott, C; Roy, A; Ruiz, A; Safonov, A; St Denis, R; Sakumoto, W K; Saltzberg, D; Sanchez, C; Sansoni, A; Santi, L; Sato, H; Savard, P; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Scodellaro, L; Scott, A; Scribano, A; Segler, S; Seidel, S; Seiya, Y; Semenov, A; Semeria, F; Shah, T; Shapiro, M D; Shepard, P F; Shibayama, T; Shimojima, M; Shochet, M; Sidoti, A; Siegrist, J; Sill, A; Sinervo, P; Singh, P; Slaughter, A J; Sliwa, K; Smith, C; Snider, F D; Solodsky, A; Spalding, J; Speer, T; Sphicas, P; Spinella, F; Spiropulu, M; Spiegel, L; Steele, J; Stefanini, A; Strologas, J

    2002-02-18

    We report a study of the decays B0 --> J/psiK(*)0pi(+)pi(-), which involve the creation of a uu or dd quark pair in addition to a b -->c(cs) decay. The data sample consists of 110 pb(-1) of pp collisions at square root[s] = 1.8 TeV collected by the CDF detector at the Fermilab Tevatron collider during 1992-1995. We measure the branching fractions to be B(B0 --> J/psiK(*0)pi(+)pi(-)) = (6.6 +/- 1.9 +/- 1.1)x10(-4) and B(B0 --> J/psiK0pi(+)pi(-)) = (10.3 +/- 3.3 +/- 1.5)x10(-4). Evidence is seen for contributions from psi(2S)K(*)0, J/psiK0rho(0), J/psiK(*+)pi(-), and J/psiK1(1270). PMID:11863882

  7. Transition Radiation Detector in the D0 colliding beam experiment at Fermilab

    SciTech Connect

    Piekarz, H.

    1995-04-01

    The construction, operation and response of the Transition Radiation Detector (TRD) at DO colliding beam experiment at Fermilab are presented. The use of the TRD signal to enhance electron identification and hadronic rejection in the multiparticle background characteristic for the antiproton-proton interactions at the center-of-mass energy of 1.8 TeV is also described and results are discussed.

  8. Measurement of the radiation field at the Collider Detector at Fermilab

    SciTech Connect

    K. Kordas et al.

    2003-01-12

    We present direct measurements of the spatial distribution of both ionizing radiation and low energy neutrons (E{sub n} < 200 keV) inside the tracking volume of the Collider Detector at Fermilab (CDF). Using data from multiple exposures we are able to separate the contributions from beam losses and proton-antiproton collisions. Initial measurements of leakage currents in the CDF silicon detectors show patterns consistent with predictions based on our measurements.

  9. Searches for gauge mediated supersymmetry at the Tevatron

    SciTech Connect

    Lutz, Pierre; /Saclay

    2010-01-01

    We report the results of searches for new physics in events with two photons and large missing transverse energy collected with both detectors at the Fermilab Tevatron collider. Several models of physics beyond the Standard Model motivate searches in this final state, in particular supersymmetry (SUSY) with gauge-mediated supersymmetry breaking. The D0 collaboration interprets also its search in the framework of universal extra dimensions (UED) with gravity-mediated Kaluza-Klein excitation decays. The results presented use 2.6 fb{sup -1} (CDF) and 6.3 fb{sup -1} (D0) of data collected at the Fermilab Tevatron collider.

  10. Electroweak results from the tevatron

    SciTech Connect

    Wood, D.

    1997-01-01

    Electroweak results are presented from the CDF and DO experiments based on data collected in recent runs of the Fermilab Tevatron Collider. The measurements include the mass and width of the W boson, the production cross sections of the W and Z bosons, and the W charge asymmetry. Additional results come from studies of events with pairs of electroweak gauge bosons and include limits on anomalous couplings.

  11. Review of recent Tevatron operations

    SciTech Connect

    Moore, R.S.; /Fermilab

    2007-06-01

    Fermilab's Tevatron proton-antiproton collider continues to improve its luminosity performance at the energy frontier {radical}s = 1.96 TeV. The recent Tevatron operation will be reviewed and notable tasks leading to advancements will be highlighted. The topics to be covered include: work performed during the 14-week shutdown in 2006, improved helical orbits, automatic orbit stabilization during high-energy physics (HEP) stores, optics corrections, improvements in the quench protection system, and avenues to maximizing the integrated luminosity delivered to the CDF and D0 experiments.

  12. Recent Results of Top Quark Physics from the Tevatron

    SciTech Connect

    Peters, R. Y.

    2015-07-09

    Twenty years after its discovery in 1995 by the CDF and D0 collaborations at the Tevatron proton-antiproton collider at Fermilab, the top quark still undergoes intensive studies at the Tevatron and the LHC at CERN. In this article, recent top quark physics results from CDF and D0 are reported. In particular, measurements of single top quark and double top quark production, the $t\\bar{t}$ forward-backward asymmetry and the top quark mass are discussed.

  13. Searches for long lived particles at the Tevatron

    SciTech Connect

    Bose, Tulika; /Brown U.

    2008-04-01

    Several searches have been performed for long lived particles using data collected by the CDF and D0 detectors at the Fermilab Tevatron collider. These include searches for charged massive stable particles, stopped gluinos, neutral long-lived particles decaying to muons, and magnetic monopoles. These proceedings [1] review recent experimental results from Run II analyses.

  14. Review of physics results from the Tevatron: Heavy flavor physics

    DOE PAGESBeta

    Lewis, Jonathan; van Kooten, Rick

    2015-02-28

    In this study, we present a review of heavy flavor physics results from the CDF and DØ Collaborations operating at the Fermilab Tevatron Collider. A summary of results from Run 1 is included, but we concentrate on legacy results of charm and b physics from Run 2, including results up to Summer 2014.

  15. Experimental Study of W Z Intermediate Bosons Associated Production with the CDF Experiment at the Tevatron Collider

    SciTech Connect

    Pozzobon, Nicola; /Pisa U.

    2007-09-01

    Studying WZ associated production at the Fermilab Tevatron Collider is of great importance for two main reasons. On the one hand, this process would be sensitive to anomalies in the triple gauge couplings such that any deviation from the value predicted by the Standard Model would be indicative of new physics. In addition, by choosing to focus on the final state where the Z boson decays to b{bar b} pairs, the event topology would be the same as expected for associated production of a W and a Standard Model light Higgs boson (m{sub H} {approx}< 135 GeV) which decays into b{bar b} pairs most of times. The process WH {yields} W b{bar b} has an expected {sigma} {center_dot} B about five times lower than WZ {yields} Wb{bar b} for m{sub H} {approx_equal} 120 GeV. Therefore, observing this process would be a benchmark for an even more difficult search aiming at discovering the light Higgs in the WH {yields} Wb{bar b} process. After so many years of Tevatron operation only a weak WZ signal was recently observed in the full leptonic decay channel, which suffers from much less competition from background. Searching for the Z in the b{bar b} decay channel in this process is clearly a very challenging endeavour. In the work described in this thesis, WZ production is searched for in a final state where the W decays leptonically to an electron-neutrino pair or a muon-neutrino pair, with associated production of a jet pair consistent with Z decays. A set of candidate events is obtained by applying appropriate cuts to the parameters of events collected by wide acceptance leptonic triggers. To improve the signal fraction of the selected events, an algorithm was used to tag b-flavored jets by means of their content of long lived b-hadrons and corrections were developed to the jet algorithm to improve the b-jet energy resolution for a better reconstruction of the Z mass. In order to sense the presence of a signal one needs to estimate the amount of background. The relative content of

  16. QCD corrections to polarization of J/{psi} and {upsilon} at Fermilab Tevatron and CERN LHC

    SciTech Connect

    Gong Bin; Wang Jianxiong

    2008-10-01

    In this work, we present more details of the calculation on the next-to-leading-order (NLO) QCD corrections to polarization of direct J/{psi} production via color singlet at the Tevatron and LHC, together with the results for {upsilon} for the first time. Our results show that the J/{psi} polarization status drastically changes from transverse polarization dominant at leading order into longitudinal polarization dominant in the whole range of the transverse momentum p{sub t} of J/{psi} when the NLO corrections are counted. For {upsilon} production, the p{sub t} distribution of the polarization status behaves almost the same as that for J/{psi} except that the NLO result is transverse polarization at small p{sub t} range. Although the theoretical evaluation predicts a larger longitudinal polarization than the measured value at the Tevatron, it may provide a solution towards the previous large discrepancy for J/{psi} and {upsilon} polarization between theoretical prediction and experimental measurement, and suggests that the next important step is to calculate the NLO corrections to hadronproduction of color-octet state J/{psi}{sup (8)} and {upsilon}{sup (8)}. Our calculations are performed in two ways: namely, we do and do not analytically sum over the polarizations, and then check them with each other.

  17. Kickers and power supplies for the Fermilab Tevatron I antiproton source

    SciTech Connect

    Castellano, T.; Bartoszek, L.; Tilles, E.; Petter, J.; McCarthy, J.

    1985-05-01

    The Fermilab Antiproton Source Accumulator and Debuncher rings require 5 kickers in total. These range in design from conventional ferrite delay line type magnets, with ceramic beam tubes to mechanically complex shuttered kickers situated entirely in the Accumulator Ring's 10/sup -10/ torr vacuum. Power supplies are thyratron switched pulse forming networks that produce microsecond width pulses of several kiloamps with less than 30 nanoseconds rise and fall times. Kicker and power supply design requirements for field strength, vacuum, rise and fall time, timing and magnetic shielding of the stacked beam in the accumulator by the eddy current shutter will be discussed. 8 refs., 3 figs., 2 tabs.

  18. Diffractive dijet production at sqrt[s] = 630 and 1800 GeV at the Fermilab Tevatron.

    PubMed

    Acosta, D; Affolder, T; Akimoto, H; Albrow, M G; Amaral, P; Ambrose, D; Amidei, D; Anikeev, K; Antos, J; Apollinari, G; Arisawa, T; Artikov, A; Asakawa, T; Ashmanskas, W; Azfar, F; Azzi-Bacchetta, P; Bacchetta, N; Bachacou, H; Bailey, S; de Barbaro, P; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Barone, M; Bauer, G; Bedeschi, F; Belforte, S; Bell, W H; Bellettini, G; Bellinger, J; Benjamin, D; Bensinger, J; Beretvas, A; Berge, J P; Berryhill, J; Bhatti, A; Binkley, M; Bisello, D; Bishai, M; Blair, R E; Blocker, C; Bloom, K; Blumenfeld, B; Blusk, S R; Bocci, A; Bodek, A; Bolla, G; Bonushkin, Y; Borras, K; Bortoletto, D; Boudreau, J; Brandl, A; van den Brink, S; Bromberg, C; Brozovic, M; Brubaker, E; Bruner, N; Buckley-Geer, E; Budagov, J; Budd, H S; Burkett, K; Busetto, G; Byon-Wagner, A; Byrum, K L; Cabrera, S; Calafiura, P; Campbell, M; Carithers, W; Carlson, J; Carlsmith, D; Caskey, W; Castro, A; Cauz, D; Cerri, A; Chan, A W; Chang, P S; Chang, P T; Chapman, J; Chen, C; Chen, Y C; Cheng, M-T; Chertok, M; Chiarelli, G; Chirikov-Zorin, I; Chlachidze, G; Chlebana, F; Christofek, L; Chu, M L; Chung, J Y; Chung, Y S; Ciobanu, C I; Clark, A G; Colijn, A P; Connolly, A; Convery, M E; Conway, J; Cordelli, M; Cranshaw, J; Cropp, R; Culbertson, R; Dagenhart, D; D'Auria, S; DeJongh, F; Dell'Agnello, S; Dell'Orso, M; Demers, S; Demortier, L; Deninno, M; Derwent, P F; Devlin, T; Dittmann, J R; Dominguez, A; Donati, S; Done, J; D'Onofrio, M; Dorigo, T; Eddy, N; Einsweiler, K; Elias, J E; Engels, E; Erbacher, R; Errede, D; Errede, S; Fan, Q; Fang, H-C; Feild, R G; Fernandez, J P; Ferretti, C; Field, R D; Fiori, I; Flaugher, B; Foster, G W; Franklin, M; Freeman, J; Friedman, J; Fukui, Y; Furic, I; Galeotti, S; Gallas, A; Gallinaro, M; Gao, T; Garcia-Sciveres, M; Garfinkel, A F; Gatti, P; Gay, C; Gerdes, D W; Giannetti, P; Glagolev, V; Glenzinski, D; Gold, M; Goldstein, J; Gorelov, I; Goshaw, A T; Gotra, Y; Goulianos, K; Green, C; Grim, G; Gris, P; Grosso-Pilcher, C; Guenther, M; Guillian, G; Guimaraes da Costa, J; Haas, R M; Haber, C; Hahn, S R; Hall, C; Handa, T; Handler, R; Hao, W; Happacher, F; Hara, K; Hardman, A D; Harris, R M; Hartmann, F; Hatakeyama, K; Hauser, J; Heinrich, J; Heiss, A; Herndon, M; Hill, C; Hocker, A; Hoffman, K D; Hollebeek, R; Holloway, L; Huffman, B T; Hughes, R; Huston, J; Huth, J; Ikeda, H; Incandela, J; Introzzi, G; Ivanov, A; Iwai, J; Iwata, Y; James, E; Jones, M; Joshi, U; Kambara, H; Kamon, T; Kaneko, T; Karr, K; Kartal, S; Kasha, H; Kato, Y; Keaffaber, T A; Kelley, K; Kelly, M; Khazins, D; Kikuchi, T; Kilminster, B; Kim, B J; Kim, D H; Kim, H S; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kirby, M; Kirk, M; Kirsch, L; Klimenko, S; Koehn, P; Kondo, K; Konigsberg, J; Korn, A; Korytov, A; Kovacs, E; Kroll, J; Kruse, M; Kuhlmann, S E; Kurino, K; Kuwabara, T; Laasanen, A T; Lai, N; Lami, S; Lammel, S; Lancaster, J; Lancaster, M; Lander, R; Lath, A; Latino, G; LeCompte, T; Lee, A M; Lee, K; Leone, S; Lewis, J D; Lindgren, M; Liss, T M; Liu, J B; Liu, Y C; Litvintsev, D O; Lobban, O; Lockyer, N S; Loken, J; Loreti, M; Lucchesi, D; Lukens, P; Lusin, S; Lyons, L; Lys, J; Madrak, R; Maeshima, K; Maksimovic, P; Malferrari, L; Mangano, M; Mariotti, M; Martignon, G; Martin, A; Matthews, J A J; Mayer, J; Mazzanti, P; McFarland, K S; McIntyre, P; Menguzzato, M; Menzione, A; Merkel, P; Mesropian, C; Meyer, A; Miao, T; Miller, R; Miller, J S; Minato, H; Miscetti, S; Mishina, M; Mitselmakher, G; Miyazaki, Y; Moggi, N; Moore, C; Moore, E; Moore, R; Morita, Y; Moulik, T; Mulhearn, M; Mukherjee, A; Muller, T; Munar, A; Murat, P; Murgia, S; Nachtman, J; Nagaslaev, V; Nahn, S; Nakada, H; Nakano, I; Nelson, C; Nelson, T; Neu, C; Neuberger, D; Newman-Holmes, C; Ngan, C-Y P; Niu, H; Nodulman, L; Nomerotski, A; Oh, S H; Oh, Y D; Ohmoto, T; Ohsugi, T; Oishi, R; Okusawa, T; Olsen, J; Orejudos, W; Pagliarone, C; Palmonari, F; Paoletti, R; Papadimitriou, V; Partos, D; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D; Pescara, L; Phillips, T J; Piacentino, G; Pitts, K T; Pompos, A; Pondrom, L; Pope, G; Popovic, M; Prokoshin, F; Proudfoot, J; Ptohos, F; Pukhov, O; Punzi, G; Rakitine, A; Ratnikov, F; Reher, D; Reichold, A; Renton, P; Ribon, A; Riegler, W; Rimondi, F; Ristori, L; Riveline, M; Robertson, W J; Robinson, A; Rodrigo, T; Rolli, S; Rosenson, L; Roser, R; Rossin, R; Rott, C; Roy, A; Ruiz, A; Safonov, A; St Denis, R; Sakumoto, W K; Saltzberg, D; Sanchez, C; Sansoni, A; Santi, L; Sato, H; Savard, P; Savoy-Navarro, A; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Scodellaro, L; Scott, A; Scribano, A; Sedov, A; Segler, S; Seidel, S; Seiya, Y; Semenov, A; Semeria, F; Shah, T; Shapiro, M D; Shepard, P F; Shibayama, T; Shimojima, M; Shochet, M; Sidoti, A; Siegrist, J; Sill, A; Sinervo, P; Singh, P; Slaughter, A J; Sliwa, K; Smith, C; Snider, F D; Solodsky, A; Spalding, J; Speer, T; Sphicas, P

    2002-04-15

    We report a measurement of the diffractive structure function F(D)(jj) of the antiproton obtained from a study of dijet events produced in association with a leading antiproton in pp collisions at sqrt[s] = 630 GeV at the Fermilab Tevatron. The ratio of F(D)(jj) at sqrt[s] = 630 GeV to F(D)(jj) obtained from a similar measurement at sqrt[s] = 1800 GeV is compared with expectations from QCD factorization and other theoretical predictions. We also report a measurement of the xi ( x-Pomeron) and beta ( x of parton in Pomeron) dependence of F(D)(jj) at sqrt[s] = 1800 GeV. In the region 0.035

  19. Coherent production of pions and rho mesons in neutrino charged current interactions on neon nuclei at the Fermilab Tevatron

    SciTech Connect

    Willocq, S.

    1992-05-01

    The coherent production of single pions and and {rho} mesons in charged current interactions of neutrinos and antineutrinos on neon nuclei has been studied. The data were obtained using the Fermilab 15-foot Bubble Chamber, filled with a heavy Ne-H{sub 2} mixture and exposed to the Quadrupole Triplet neutrino beam produced by 800 GeV protons from the Tevatron. The average beam energy was 86 GeV. In a sample of 330000 frames, 1032 two-prong {nu}{sub {mu}} + {bar {nu}}{sub {mu}} charged current interactions were selected. The goal of this study was to investigate the low Q{sup 2} high {nu} region where the hadron dominance model can be tested. In this model, the vector and axial-vector parts of the weak hadronic current are dominated by the {rho} and a{sub 1} mesons respectively. Moreover, the Partially Conserved Axial Current (PCAC) hypothesis can be tested by studying the coherent production of single pions.

  20. Model-independent analysis of the Fermilab Tevatron turn-by-turn beam position monitor measurements

    SciTech Connect

    Petrenko, A.V.; Valishev, A.A.; Lebedev, V.A.; /Fermilab

    2011-09-01

    Coherent transverse beam oscillations in the Tevatron were analyzed with the model-independent analysis (MIA) technique. This allowed one to obtain the model-independent values of coupled betatron amplitudes, phase advances, and dispersion function around the ring from a single dipole kick measurement. In order to solve the MIA mode mixing problem which limits the accuracy of determination of the optical functions, we have developed a new technique of rotational MIA mode untangling. The basic idea is to treat each beam position monitor (BPM) as two BPMs separated in a ring by exactly one turn. This leads to a simple criterion of MIA mode separation: the betatron phase advance between any BPM and its counterpart shifted by one turn should be equal to the betatron tune and therefore should not depend on the BPM position in the ring. Furthermore, we describe a MIA-based technique to locate vibrating magnets in a storage ring.

  1. Measurement of the Lambda/b lifetime in Lambda/b to Lambda/c pi decays at the Collider Detector at Fermilab

    SciTech Connect

    Mumford, Jonathan Reid; /Johns Hopkins U.

    2008-10-01

    The lifetime of the {Lambda}{sub b}{sup 0} baryon (consisting of u, d and b quarks) is the theoretically most interesting of all b-hadron lifetimes. The lifetime of {Lambda}{sub b}{sup 0} probes our understanding of how baryons with one heavy quark are put together and how they decay. Experimentally however, measurements of the {Lambda}{sub b}{sup 0} lifetime have either lacked precision or have been inconsistent with one another. This thesis describes the measurement of {Lambda}{sub b}{sup 0} lifetime in proton-antiproton collisions with center of mass energy of 1.96 TeV at Fermilab's Tevatron collider. Using 1070 {+-} 60pb{sup -1} of data collected by the Collider Detector at Fermilab (CDF), a clean sample of about 3,000 fully-reconstructed {Lambda}{sub b}{sup 0} {yields} {Lambda}{sub c}{sup +}{pi}{sup -} decays (with {Lambda}{sub c}{sup +} subsequently decaying via {Lambda}{sub c}{sup +} {yields} p{sup +} K{sup -} {pi}{sup +}) is used to extract the lifetime of the {Lambda}{sub b}{sup 0} baryon, which is found to be c{tau}({Lambda}{sub b}{sup 0}) = 422.8 {+-} 13.8(stat) {+-} 8.8(syst){micro}m. This is the most precise measurement of its kind, and is even better than the current world average. It also settles the recent controversy regarding the apparent inconsistency between CDF's other measurement and the rest of the world.

  2. SUSY Searches at the Tevatron

    SciTech Connect

    Gris, Philippe; CDF, for the; collaborations, D0

    2011-06-01

    The results of search for Supersymmetry performed at the Tevatron Collider by the CDF and D0 collaborations are summarized in this paper. No significant deviations with respect to the Standard Model expectations were observed and constraints were set on supersymmetric parameters. Supersymmetry (SUSY), a space-time symmetry that predicts for every Standard Model (SM) particle the existence of a superpartner that differs by half a unit of spin, may provide a solution to the hierarchy problem if SUSY particles have masses lower than 1 TeV, strongly motivating the search for such particles at the Fermilab Tevatron Collider. If there is supersymmetry in nature, it must be broken and the theorized breaking mechanisms lead to many models (supergravity, gauge mediated, anomaly mediated, ...) with possibly different phenomenologies. Searches performed by the CDF and D0 experiments aim at probing the extensive SUSY parameter space in terms of mass and final state.

  3. An Investigation of low beta triplet vibrational issues at Fermilab's Collider Detector

    SciTech Connect

    Michael W. McGee

    2004-06-08

    The vibrational aspects of recent disturbances at the low beta focusing quadrupoles, which caused proton beam loss at the Collider Detector at Fermilab (CDF), are discussed. Two low beta focusing quadrupoles are supported by a girder, which is extended over the CDF collision hall pit on each side. The low beta girder has a ledge mount support at an alcove's face and two Invar rods near the opposite end. Forced response measurements were taken on the low beta girder, where the power spectral density (PSD) function was used to obtain RMS displacement. The effects of local excitation due to operating equipment and near-field excitation due to ambient ground motion caused by local traffic are examined. The discussion explores dynamic response characteristics of the low beta quadrupoles and supporting girder using beam loss as the vibrational stability criteria. This paper also presents practical problem-solving approaches for similar accelerator components.

  4. Measurement of the B meson Lifetimes with the Collider Detector at Fermilab

    SciTech Connect

    Uozumi, Satoru; /Tsukuba U.

    2006-01-01

    The lifetimes of the B{sup -}, B{sup 0} and B{sub s}{sup 0} mesons are measured using partially reconstructed semileptonic decays. Following semileptonic decay processes and their charge conjugates are used for this analysis: B{sup -}/B{sup 0} {yields} {ell}{sup -}{nu}D{sup 0}X; B{sup -}/B{sup 0} {yields} {ell}{sup -}{nu}D*{sup +}X; B{sub s}{sup 0} {yields} {ell}{sup -}{nu}D{sub s}{sup +}x, where {ell}{sup -} denotes either a muon or electron. The data are collected during 2002-2004 by the 8 GeV single lepton triggers in CDF Run II at the Fermilab Tevatron Collider. Corresponding integrated luminosity is about 260 and 360 pb{sup -1} used for the B{sup -}/B{sup 0} and B{sub s}{sup 0} lifetime analyses, respectively. With the single lepton triggers, events which contain a muon or electron with a transverse momentum greater than 8 GeV/c are selected. For these lepton candidates, further lepton identification cuts are applied to improve purity of the B semileptonic decay signal. After the lepton selection, three types of charm mesons associated with the lepton candidates are reconstructed. Following exclusive decay modes are used for the charm meson reconstruction: D{sup 0} {yields} K{sup -}{pi}{sup +}; D*{sup +} {yields} D{sup 0}{pi}{sub s}{sup +}, followed by D{sup 0} {yields} K{sup -}{pi}{sup +}; D{sub s}{sup +} {yields} {phi}{pi}{sup +}, followed by {phi} {yields} K{sup +}K{sup -}. Here {pi}{sub s}{sup +} denotes a slow pion from D*{sup +} decay. Species of the reconstructed charm meson identify the parent B meson species. However in the B{sup -}/B{sup 0} semileptonic decays, both mesons decay into the identical lepton + D{sup 0} final state. To solve this mixture of the B components in the D{sup 0} sample, they adopt the following method: First among the inclusive D{sup 0} sample, they look for the D*{sup +} {yields} D{sup 0} {pi}{sub s}{sup +} signal. The inclusive D{sup 0} sample is then split into the two samples of D{sup 0} mesons which are from the D

  5. Di-boson production at the Tevatron

    SciTech Connect

    De Lentdecker, Gilles; /Rochester U.

    2005-05-01

    The authors present some precision measurements on electroweak physics performed at the Tevatron collider at Fermilab. Namely they report on the boson-pair production cross sections and on triple gauge boson couplings using proton anti-proton collisions collected by the CDF and D0 experiments at the center-of-mass energy of 1.96 TeV. The data correspond to an integrated luminosity of up to 324 pb{sup -1}.

  6. Twenty years of diffraction at the Tevatron

    SciTech Connect

    Goulianos, K.; /Rockefeller U.

    2005-10-01

    Results on diffractive particle interactions from the Fermilab Tevatron {bar p}p collider are placed in perspective through a QCD inspired phenomenological approach, which exploits scaling and factorization properties observed in data. The results discussed are those obtained by the CDF Collaboration from a comprehensive set of single, double, and multigap soft and hard diffraction processes studied during the twenty year period since 1985, when the CDF diffractive program was proposed and the first Blois Workshop was held.

  7. Non SUSY Searches at the Tevatron

    SciTech Connect

    Cortabitarte, R. Vilar

    2004-08-26

    The Fermilab Tevatron collider experiments, CDF and D0, have collected {approx} 200 pb{sup -1} of data at {radical}s = 1.96 TeV since March 2002 (RunII). Both experiments have investigated physics beyond the standard model; this paper reviews some of the recent results on the searches for new phenomena, concentrating on Z', extra dimensions, excited electrons and lepto quarks. No signal was observed, therefore stringent limits on the signatures and models were derived.

  8. $B$ mixing and lifetimes at the Tevatron

    SciTech Connect

    Gomez-Ceballos, G.; Piedra, J.

    2006-04-01

    The Tevatron collider at Fermilab provides a very rich environment for the study of b-hadrons. Both the D0 and CDF experiments have collected a sample of about 1 fb{sup -1}. they report results on three topics: b-hadron lifetimes, polarization amplitudes and the decay width difference in B{sub s}{sup 0} {yields} J/{psi}{phi}, and B{sub s}{sup 0} mixing.

  9. Rare B Meson Decays at the Tevatron

    SciTech Connect

    Hopkins, Walter

    2012-01-01

    Rare B meson decays are an excellent probe for beyond the Standard Model physics. Two very sensitive processes are the b {yields} s{mu}{sup +}{mu}{sup -} and B{sub s,d}{sup 0} {yields} {mu}{sup +}{mu}{sup -} decays. We report recent results at a center of mass energy of {radical}s = 1.96 TeV from CDF II using 7 fb{sup -1} at the Fermilab Tevatron Collider.

  10. Fermilab R and D test facility for SSC (Superconducting Super Collider) magnets

    SciTech Connect

    Strait, J.; Bleadon, M.; Hanft, R.; Lamm, M.; McGuire, K.; Mantsch, P.; Mazur, P.O.; Orris, D.; Pachnik, J.

    1989-02-01

    The test facility used for R and D testing of full scale development dipole magnets for the SSC is described. The Fermilab Magnet Test Facility, originally built for production testing of Tevatron magnets, has been substantially modified to allow testing also of SSC magnets. Two of the original six test stands have been rebuilt to accommodate testing of SSC magnets at pressures between 1.3 Atm and 4 Atm and at temperatures between 1.8 K and 4.8 K and the power system has been modified to allow operation to at least 8 kA. Recent magnets have been heavily instrumented with voltage taps to allow detailed study of quench location and propagation and with strain gage based stress, force and motion transducers. A data acquisition system has been built with a capacity to read from each SSC test stand up to 220 electrical quench signals, 32 dynamic pressure, temperature and mechanical transducer signals during quench and up to 200 high precision, low time resolution, pressure, temperature and mechanical transducer signals. The quench detection and protection systems is also described. 23 refs., 4 figs., 2 tabs.

  11. Tevatron Run II performance and plans

    SciTech Connect

    Michael D Church

    2002-07-12

    The Fermilab accelerator complex has been operating Run II for approximately one year. In this mode 36 proton bunches collide with 36 antiproton bunches at 2 interaction regions in the Tevatron at 980 GeV beam energy. The long range goal in Run II is to obtain a total integrated luminosity of 15 pb{sup -1}. The current status and performance of the accelerator complex is described, including the Tevatron, Main Injector, Antiproton Source, and Recycler Ring. Future upgrade plans and prospects for reaching the admittedly ambitious long range goal are presented.

  12. High luminosity operation of the Fermilab accelerator complex

    SciTech Connect

    Shekhar Mishra

    2003-07-15

    Run-II at Fermilab is progressing steadily. In the Run-II scheme, 36 antiproton bunches collide with 36 proton bunches at the CDF and D0 interaction regions in the Tevatron at 980 GeV per beam. The current status and performance of the Fermilab Accelerator complex is reviewed. The plan for Run-II, accelerator upgrades and integration of the Recycler in the accelerator chain will be presented.

  13. Physics overview of the Fermilab Low Energy Antiproton Facility Workshop

    SciTech Connect

    Chanowitz, M.S.

    1986-05-01

    A physics overview is presented of the Fermilab workshop to consider a possible high flux, low energy antiproton facility that would use cooled antiprotons from the accumulator ring of the Tevatron collider. Two examples illustrate the power of each a facility to produce narrow states at high rates. Physics topics to which such a facility may be applied are reviewed.

  14. Inclusive double-pomeron exchange at the fermilab tevatron p p collider.

    PubMed

    Acosta, D; Affolder, T; Akimoto, H; Albrow, M G; Ambrose, D; Amidei, D; Anikeev, K; Antos, J; Apollinari, G; Arisawa, T; Artikov, A; Asakawa, T; Ashmanskas, W; Azfar, F; Azzi-Bacchetta, P; Bacchetta, N; Bachacou, H; Badgett, W; Bailey, S; de Barbaro, P; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Barone, M; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bell, W H; Bellettini, G; Bellinger, J; Benjamin, D; Bensinger, J; Beretvas, A; Berryhill, J; Bhatti, A; Binkley, M; Bisello, D; Bishai, M; Blair, R E; Blocker, C; Bloom, K; Blumenfeld, B; Blusk, S R; Bocci, A; Bodek, A; Bolla, G; Bolshov, A; Bonushkin, Y; Bortoletto, D; Boudreau, J; Brandl, A; Bromberg, C; Brozovic, M; Brubaker, E; Bruner, N; Budagov, J; Budd, H S; Burkett, K; Busetto, G; Byrum, K L; Cabrera, S; Calafiura, P; Campbell, M; Carithers, W; Carlson, J; Carlsmith, D; Caskey, W; Castro, A; Cauz, D; Cerri, A; Cerrito, L; Chan, A W; Chang, P S; Chang, P T; Chapman, J; Chen, C; Chen, Y C; Cheng, M-T; Chertok, M; Chiarelli, G; Chirikov-Zorin, I; Chlachidze, G; Chlebana, F; Christofek, L; Chu, M L; Chung, J Y; Chung, W-H; Chung, Y S; Ciobanu, C I; Clark, A G; Coca, M; Connolly, A; Convery, M; Conway, J; Cordelli, M; Cranshaw, J; Culbertson, R; Dagenhart, D; D'Auria, S; De Cecco, S; DeJongh, F; Dell'Agnello, S; Dell'Orso, M; Demers, S; Demortier, L; Deninno, M; De Pedis, D; Derwent, P F; Devlin, T; Dionisi, C; Dittmann, J R; Dominguez, A; Donati, S; D'Onofrio, M; Dorigo, T; Eddy, N; Einsweiler, K; Engels, E; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fan, Q; Farrington, S; Feild, R G; Fernandez, J P; Ferretti, C; Field, R D; Fiori, I; Flaugher, B; Flores-Castillo, L R; Foster, G W; Franklin, M; Freeman, J; Friedman, J; Fukui, Y; Furic, I; Galeotti, S; Gallas, A; Gallinaro, M; Gao, T; Garcia-Sciveres, M; Garfinkel, A F; Gatti, P; Gay, C; Gerdes, D W; Gerstein, E; Giagu, S; Giannetti, P; Giolo, K; Giordani, M; Giromini, P; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Gomez, G; Goncharov, M; Gorelov, I; Goshaw, A T; Gotra, Y; Goulianos, K; Green, C; Gresele, A; Grim, G; Grosso-Pilcher, C; Guenther, M; Guillian, G; da Costa, J Guimaraes; Haas, R M; Haber, C; Hahn, S R; Halkiadakis, E; Hall, C; Handa, T; Handler, R; Happacher, F; Hara, K; Hardman, A D; Harris, R M; Hartmann, F; Hatakeyama, K; Hauser, J; Heinrich, J; Heiss, A; Hennecke, M; Herndon, M; Hill, C; Hocker, A; Hoffman, K D; Hollebeek, R; Holloway, L; Hou, S; Huffman, B T; Hughes, R; Huston, J; Huth, J; Ikeda, H; Issever, C; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; Iwai, J; Iwata, Y; Iyutin, B; James, E; Jones, M; Joshi, U; Kambara, H; Kamon, T; Kaneko, T; Kang, J; Unel, M Karagoz; Karr, K; Kartal, S; Kasha, H; Kato, Y; Keaffaber, T A; Kelley, K; Kelly, M; Kennedy, R D; Kephart, R; Khazins, D; Kikuchi, T; Kilminster, B; Kim, B J; Kim, D H; Kim, H S; Kim, M J; Kim, S B; Kim, S H; Kim, T H; Kim, Y K; Kirby, M; Kirk, M; Kirsch, L; Klimenko, S; Koehn, P; Kondo, K; Konigsberg, J; Korn, A; Korytov, A; Kotelnikov, K; Kovacs, E; Kroll, J; Kruse, M; Krutelyov, V; Kuhlmann, S E; Kurino, K; Kuwabara, T; Kuznetsova, N; Laasanen, A T; Lai, N; Lami, S; Lammel, S; Lancaster, J; Lannon, K; Lancaster, M; Lander, R; Lath, A; Latino, G; LeCompte, T; Le, Y; Lee, J; Lee, S W; Leonardo, N; Leone, S; Lewis, J D; Li, K; Lin, C S; Lindgren, M; Liss, T M; Liu, J B; Liu, T; Liu, Y C; Litvintsev, D O; Lobban, O; Lockyer, N S; Loginov, A; Loken, J; Loreti, M; Lucchesi, D; Lukens, P; Lusin, S; Lyons, L; Lys, J; Madrak, R; Maeshima, K; Maksimovic, P; Malferrari, L; Mangano, M; Manca, G; Mariotti, M; Martignon, G; Martin, M; Martin, A; Martin, V; Martínez, M; Matthews, J A J; Mazzanti, P; McFarland, K S; McIntyre, P; Menguzzato, M; Menzione, A; Merkel, P; Mesropian, C; Meyer, A; Miao, T; Miller, R; Miller, J S; Minato, H; Miscetti, S; Mishina, M; Mitselmakher, G; Miyazaki, Y; Moggi, N; Moore, E; Moore, R; Morita, Y; Moulik, T; Mulhearn, M; Mukherjee, A; Muller, T; Munar, A; Murat, P; Murgia, S; Nachtman, J; Nagaslaev, V; Nahn, S; Nakada, H; Nakano, I; Napora, R; Niell, F; Nelson, C; Nelson, T; Neu, C; Neubauer, M S; Neuberger, D; Newman-Holmes, C; Ngan, C-Y P; Nigmanov, T; Niu, H; Nodulman, L; Nomerotski, A; Oh, S H; Oh, Y D; Ohmoto, T; Ohsugi, T; Oishi, R; Okusawa, T; Olsen, J; Orejudos, W; Pagliarone, C; Palmonari, F; Paoletti, R; Papadimitriou, V; Partos, D; Patrick, J; Pauletta, G; Paulini, M; Pauly, T; Paus, C; Pellett, D; Penzo, A; Pescara, L; Phillips, T J; Piacentino, G; Piedra, J; Pitts, K T; Pompos, A; Pondrom, L; Pope, G; Pratt, T; Prokoshin, F; Proudfoot, J; Ptohos, F; Pukhov, O; Punzi, G; Rademacker, J; Rakitine, A; Ratnikov, F; Ray, H; Reher, D; Reichold, A; Renton, P; Rescigno, M; Ribon, A; Riegler, W; Rimondi, F; Ristori, L; Riveline, M; Robertson, W J; Rodrigo, T; Rolli, S; Rosenson, L; Roser, R; Rossin, R; Rott, C; Roy, A; Ruiz, A; Ryan, D; Safonov, A; St Denis, R

    2004-10-01

    We report results from a study of events with a double-Pomeron exchange topology produced in p p collisions at sqrt[s]=1800 GeV. The events are characterized by a leading antiproton and a large rapidity gap on the outgoing proton side. We find that the differential production cross section agrees in shape with predictions based on Regge theory and factorization, and that the ratio of double-Pomeron exchange to single diffractive production rates is relatively unsuppressed as compared to the O(10) suppression factor previously measured in single diffractive production. PMID:15524780

  15. Central pseudorapidity gaps in events with a leading antiproton at the fermilab tevatron pp collider.

    PubMed

    Acosta, D; Affolder, T; Akimoto, H; Albrow, M G; Ambrose, D; Amidei, D; Anikeev, K; Antos, J; Apollinari, G; Arisawa, T; Artikov, A; Asakawa, T; Ashmanskas, W; Azfar, F; Azzi-Bacchetta, P; Bacchetta, N; Bachacou, H; Badgett, W; Bailey, S; De Barbaro, P; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Barone, M; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bell, W H; Bellettini, G; Bellinger, J; Benjamin, D; Bensinger, J; Beretvas, A; Berryhill, J; Bhatti, A; Binkley, M; Bisello, D; Bishai, M; Blair, R E; Blocker, C; Bloom, K; Blumenfeld, B; Blusk, S R; Bocci, A; Bodek, A; Bolla, G; Bolshov, A; Bonushkin, Y; Bortoletto, D; Boudreau, J; Brandl, A; Bromberg, C; Brozovic, M; Brubaker, E; Bruner, N; Budagov, J; Budd, H S; Burkett, K; Busetto, G; Byrum, K L; Cabrera, S; Calafiura, P; Campbell, M; Carithers, W; Carlson, J; Carlsmith, D; Caskey, W; Castro, A; Cauz, D; Cerri, A; Cerrito, L; Chan, A W; Chang, P S; Chang, P T; Chapman, J; Chen, C; Chen, Y C; Cheng, M-T; Chertok, M; Chiarelli, G; Chirikov-Zorin, I; Chlachidze, G; Chlebana, F; Christofek, L; Chu, M L; Chung, J Y; Chung, W-H; Chung, Y S; Ciobanu, C I; Clark, A G; Coca, M; Colijn, A P; Connolly, A; Convery, M; Conway, J; Cordelli, M; Cranshaw, J; Culbertson, R; Dagenhart, D; D'Auria, S; Cecco, S De; DeJongh, F; Dell'Agnello, S; Dell'Orso, M; Demers, S; Demortier, L; Deninno, M; Pedis, D De; Derwent, P F; Devlin, T; Dionisi, C; Dittmann, J R; Dominguez, A; Donati, S; D'Onofrio, M; Dorigo, T; Eddy, N; Einsweiler, K; Engels, E; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fan, Q; Fang, H-C; Farrington, S; Feild, R G; Fernandez, J P; Ferretti, C; Field, R D; Fiori, I; Flaugher, B; Flores-Castillo, L R; Foster, G W; Franklin, M; Freeman, J; Friedman, J; Fukui, Y; Furic, I; Galeotti, S; Gallas, A; Gallinaro, M; Gao, T; Garcia-Sciveres, M; Garfinkel, A F; Gatti, P; Gay, C; Gerdes, D W; Gerstein, E; Giagu, S; Giannetti, P; Giolo, K; Giordani, M; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Gomez, G; Goncharov, M; Gorelov, I; Goshaw, A T; Gotra, Y; Goulianos, K; Green, C; Gresele, A; Grim, G; Grosso-Pilcher, C; Guenther, M; Guillian, G; Da Costa, J Guimaraes; Haas, R M; Haber, C; Hahn, S R; Halkiadakis, E; Hall, C; Handa, T; Handler, R; Happacher, F; Hara, K; Hardman, A D; Harris, R M; Hartmann, F; Hatakeyama, K; Hauser, J; Heinrich, J; Heiss, A; Hennecke, M; Herndon, M; Hill, C; Hocker, A; Hoffman, K D; Hollebeek, R; Holloway, L; Hou, S; Huffman, B T; Hughes, R; Huston, J; Huth, J; Ikeda, H; Issever, C; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; Iwai, J; Iwata, Y; Iyutin, B; James, E; Jones, M; Joshi, U; Kambara, H; Kamon, T; Kaneko, T; Kang, J; Unel, M Karagoz; Karr, K; Kartal, S; Kasha, H; Kato, Y; Keaffaber, T A; Kelley, K; Kelly, M; Kennedy, R D; Kephart, R; Khazins, D; Kikuchi, T; Kilminster, B; Kim, B J; Kim, D H; Kim, H S; Kim, M J; Kim, S B; Kim, S H; Kim, T H; Kim, Y K; Kirby, M; Kirk, M; Kirsch, L; Klimenko, S; Koehn, P; Kondo, K; Konigsberg, J; Korn, A; Korytov, A; Kotelnikov, K; Kovacs, E; Kroll, J; Kruse, M; Krutelyov, V; Kuhlmann, S E; Kurino, K; Kuwabara, T; Kuznetsova, N; Laasanen, A T; Lai, N; Lami, S; Lammel, S; Lancaster, J; Lannon, K; Lancaster, M; Lander, R; Lath, A; Latino, G; LeCompte, T; Le, Y; Lee, J; Lee, S W; Leonardo, N; Leone, S; Lewis, J D; Li, K; Lin, C S; Lindgren, M; Liss, T M; Liu, J B; Liu, T; Liu, Y C; Litvintsev, D O; Lobban, O; Lockyer, N S; Loginov, A; Loken, J; Loreti, M; Lucchesi, D; Lukens, P; Lusin, S; Lyons, L; Lys, J; Madrak, R; Maeshima, K; Maksimovic, P; Malferrari, L; Mangano, M; Manca, G; Mariotti, M; Martignon, G; Martin, M; Martin, A; Martin, V; Martínez, M; Matthews, J A J; Mazzanti, P; McFarland, K S; McIntyre, P; Menguzzato, M; Menzione, A; Merkel, P; Mesropian, C; Meyer, A; Miao, T; Miller, R; Miller, J S; Minato, H; Miscetti, S; Mishina, M; Mitselmakher, G; Miyazaki, Y; Moggi, N; Moore, E; Moore, R; Morita, Y; Moulik, T; Mulhearn, M; Mukherjee, A; Muller, T; Munar, A; Murat, P; Murgia, S; Nachtman, J; Nagaslaev, V; Nahn, S; Nakada, H; Nakano, I; Napora, R; Niell, F; Nelson, C; Nelson, T; Neu, C; Neubauer, M S; Neuberger, D; Newman-Holmes, C; Ngan, C-Y P; Nigmanov, T; Niu, H; Nodulman, L; Nomerotski, A; Oh, S H; Oh, Y D; Ohmoto, T; Ohsugi, T; Oishi, R; Okusawa, T; Olsen, J; Orejudos, W; Pagliarone, C; Palmonari, F; Paoletti, R; Papadimitriou, V; Partos, D; Patrick, J; Pauletta, G; Paulini, M; Pauly, T; Paus, C; Pellett, D; Penzo, A; Pescara, L; Phillips, T J; Piacentino, G; Piedra, J; Pitts, K T; Pompos, A; Pondrom, L; Pope, G; Pratt, T; Prokoshin, F; Proudfoot, J; Ptohos, F; Pukhov, O; Punzi, G; Rademacker, J; Rakitine, A; Ratnikov, F; Ray, H; Reher, D; Reichold, A; Renton, P; Rescigno, M; Ribon, A; Riegler, W; Rimondi, F; Ristori, L; Robertson, W J; Rodrigo, T; Rolli, S; Rosenson, L; Roser, R; Rossin, R; Rott, C; Roy, A; Ruiz, A; Ryan, D; Safonov, A; Denis, R St; Sakumoto, W K

    2003-07-01

    We report a measurement of the fraction of events with a large pseudorapidity gap deltaeta within the pseudorapidity region available to the proton dissociation products X in p+p-->p+X. For a final state p of fractional momentum loss xi(p) and 4-momentum transfer squared t(p) within 0.063 is found to be 0.246+/-0.001 (stat)+/-0.042 (syst) [0.184+/-0.001 (stat)+/-0.043 (syst)]. Our results are compared with gap fractions measured in minimum bias pp collisions and with theoretical expectations. PMID:12906532

  16. Hydro static water level systems at Fermilab

    SciTech Connect

    Volk, J.T.; Guerra, J.A.; Hansen, S.U.; Kiper, T.E.; Jostlein, H.; Shiltsev, V.; Chupyra, A.; Kondaurov, M.; Singatulin, S.

    2006-09-01

    Several Hydrostatic Water Leveling systems (HLS) are in use at Fermilab. Three systems are used to monitor quadrupoles in the Tevatron and two systems are used to monitor ground motion for potential sites for the International Linear Collider (ILC). All systems use capacitive sensors to determine the water level of water in a pool. These pools are connected with tubing so that relative vertical shifts between sensors can be determined. There are low beta quadrupoles at the B0 and D0 interaction regions of Tevatron accelerator. These quadrupoles use BINP designed and built sensors and have a resolution of 1 micron. All regular lattice superconducting quadrupoles (a total of 204) in the Tevatron use a Fermilab designed system and have a resolution of 6 microns. Data on quadrupole motion due to quenches, changes in temperature will be presented. In addition data for ground motion for ILC studies caused by natural and cultural factors will be presented.

  17. Bs Mixing at the Tevatron

    SciTech Connect

    Gomez-Ceballos, Guillelmo; /Cantabria Inst. of Phys.

    2006-04-01

    The Tevatron collider at Fermilab provides a very rich environment for the study of B{sub s} mesons. B{sub s} Mixing is the most important analysis within the B Physics program of both experiments. In this paper they summarize the most recent results on this topic from both D0 and CDF experiments. There were very important updates in both experiments after his last talk, hence the organizers warmly recommended me to include the latest available results on B{sub s} mixing, instead of what he presents there.

  18. Superconducting radiofrequency linac development at Fermilab

    SciTech Connect

    Holmes, Stephen D.; /Fermilab

    2009-10-01

    As the Fermilab Tevatron Collider program draws to a close, a strategy has emerged of an experimental program built around the high intensity frontier. The centerpiece of this program is a superconducting H- linac that will support world leading programs in long baseline neutrino experimentation and the study of rare processes. Based on technology shared with the International Linear Collider, Project X will provide multi-MW beams at 60-120 GeV from the Main Injector, simultaneous with very high intensity beams at lower energies. Project X also supports development of a Muon Collider as a future facility at the energy frontier.

  19. Recent results from the CDF (Collider Detector at Fermilab) experiment at the Tevatron proton-antiproton collider

    SciTech Connect

    Geer, S. . High Energy Physics Lab.)

    1989-09-01

    Recent results from the CDF experiment are described. The Standard Model gives a good description of jet production, and W/Z production and decay. There is no evidence yet for the top quark, for fourth generation quarks, or for deviations from the Standard Model ascribable to quark substructure, supersymmetric particles, or heavy additional W-like or Z-like bosons. Limits are given where applicable. A search for a light Higgs Boson is also described. 11 refs., 24 figs.

  20. Updated calculations of the reach of Fermilab Tevatron upgrades for Higgs Bosons in the MSSM, mSUGRA, and mGMSB models

    SciTech Connect

    Baer, H.; Harris, B. W.; Tata, X.

    1999-04-23

    One of the crucial predictions of supersymmetric models that reduce to the Minimal Supersymmetric Standard Model (MSSM) at the weak scale is that the lightest Higgs scalar should have mass m{sub h} {approx_lt} 125-130 GeV[1]. Recent results on the reach of Fermilab Tevatron upgrades for Standard Model (SM) Higgs bosons show that masses of order 120-180 GeV may be probed [2, 3, 4, 5], depending on integrated luminosity, detector performance and signal and background modeling. Thus, the discovery of a Higgs boson (or a new limit of around 120-130 GeV on its mass) will severely constrain supersymmetric models as well. In this report, we update previous calculations made by our group [6] pertaining to the reach of Fermilab Tevatron upgrades for Higgs bosons in supersymmetric models. We present reach results for SUSY Higgs bosons within the MSSM, the minimal Supergravity model (mSUGRA) and in the minimal Gauge Mediated SUSY Breaking model (mGMSB). In this update, 95% CL exclusion contours and 5{sigma} discovery contours are presented for integrated luminosity values of 2, 5 and 20 fb{sup {minus}1}.

  1. Simultaneous Heavy Flavor Fractions and Top Cross Section Measurement at the Collider Detector at Fermilab

    SciTech Connect

    Mathis, Mark J.

    2010-04-01

    This dissertation describes the measurement of the top pair production cross section, using data from proton–antiproton collisions at a center-of-mass energy of 1.96 TeV, with 2.7 ± 0.2 fb-1 of data collected by the Collider Detector at Fermilab. Background contributions are measured concurrently with the top cross section in the b-tagged lepton-plus-jets sample using a kinematic fit, which simultaneously determines the cross sections and normalizations of t$\\bar{t}$, W + jets, QCD, and electroweak processes. This is the first application of a procedure of this kind. The top cross section is measured to be σt$\\bar{t}$ = 7.64±0.57(stat + syst)±0.45(lumi) pb and the Monte Carlo simulation scale factors KWb$\\bar{b}$ = 1.57±0.25, KW$\\bar{c}$ = 0.94±0.79, KWc = 1.9 ± 0.3, and KWq$\\bar{q}$ = 1.1 ± 0.3. These results are consistent with existing measurements using other procedures. More data will reduce the systematic uncertainties and will lead to the most precise of any single analysis to date.

  2. Preparations for Muon Experiments at Fermilab

    SciTech Connect

    Syphers, M.J.; Popovic, M.; Prebys, E.; Ankenbrandt, C.; /Muons Inc., Batavia

    2009-05-01

    The use of existing Fermilab facilities to provide beams for two muon experiments--the Muon to Electron Conversion Experiment (Mu2e) and the New g-2 Experiment--is under consideration. Plans are being pursued to perform these experiments following the completion of the Tevatron Collider Run II, utilizing the beam lines and storage rings used today for antiproton accumulation without considerable reconfiguration.

  3. Fermilab Proton Beam for Mu2e

    SciTech Connect

    Syphers, M.J.; /Fermilab

    2009-10-01

    Plans to use existing Fermilab facilities to provide beam for the Muon to Electron Conversion Experiment (Mu2e) are under development. The experiment will follow the completion of the Tevatron Collider Run II, utilizing the beam lines and storage rings used today for antiproton accumulation without considerable reconfiguration. The proposed Mu2e operating scenario is described as well as the accelerator issues being addressed to meet the experimental goals.

  4. Summary of Fermilab's Recycler Electron Cooler Operation and Studies

    SciTech Connect

    Prost, L.R.; Shemyakin, A.; /Fermilab

    2012-05-15

    Fermilab's Recycler ring was used as a storage ring for accumulation and subsequent manipulations of 8 GeV antiprotons destined for the Tevatron collider. To satisfy these missions, a unique electron cooling system was designed, developed and successfully implemented. The most important features that distinguish the Recycler cooler from other existing electron coolers are its relativistic energy, 4.3 MV combined with 0.1-0.5 A DC beam current, a weak continuous longitudinal magnetic field in the cooling section, 100 G, and lumped focusing elsewhere. With the termination of the Tevatron collider operation, so did the cooler. In this article, we summarize the experience of running this unique machine.

  5. Strong Transverse Coupling in the Tevatron

    NASA Astrophysics Data System (ADS)

    Syphers, Michael

    2004-05-01

    During the 20 years since it was first commissioned, the Fermilab Tevatron has developed strong coupling between the two transverse degrees of freedom. A distributed zeroth harmonic skew quadrupole circuit has traditionally been used to correct for transverse coupling, and the strength required of this circuit has increased since 1983 by more than an order of magnitude. In recent years changes to the Tevatron for colliding beams operation have altered the skew quadrupole corrector distribution and strong local coupling has become evident, often encumbering routine operation. In February 2003 it was discovered that the superconducting coils within the main bending magnets of the Tevatron had become vertically displaced within their iron yokes relative to their measured positions in the early 1980's during construction. The ensuing systematic skew quadrupole field introduced by this displacement accounts for the required corrector settings and observed beam behavior. Beam observations, explanations, and remedial measures are presented.

  6. The Physics Case for Extended Tevatron Running

    SciTech Connect

    Wood, Darien R.

    2010-11-01

    Run II of the Tevatron collider at Fermilab is currently scheduled to end late in 2011. Given the current performance of the collider and of the CDF and D0 detectors, it is estimated that the current data set could be approximately doubled with a run extended into 2014. A few examples are presented of the physics potential of these additional statistics. These are discussed in the context of the expected reach of the LHC 7 TeV data and the existing Tevatron data. In particular, an extraordinary opportunity is described which could probe the existence of a standard model Higgs boson with mass in the currently preferred region between 115 GeV and 150 GeV.

  7. Quarkonium production in proton antiproton collisions at the Tevatron

    SciTech Connect

    Tkaczyk, S.M.; CDF and D0 Collaborations

    1996-11-01

    Charmonium and bottomonium production is studied using {mu}{sup +}{mu}{sup -} data samples collected by the CDF and D{null} experiments during the 1992-96 {ital p{anti p}} collider run at the Fermilab Tevatron. The inclusive cross sections as a function of the transverse momentum of reconstructed quarkonium states are measured. The results are compared with theoretical predictions, which take into account different quarkonium production mechanisms.

  8. Tevatron Electron Lenses: Design and Operation

    SciTech Connect

    Shiltsev, Vladimir; Bishofberger, Kip; Kamerdzhiev, Vsevolod; Kozub, Sergei; Kufer, Matthew; Kuznetsov, Gennady; Martinez, Alexander; Olson, Marvin; Pfeffer, Howard; Saewert, Greg; Scarpine, Vic; Seryi, Andrei; Solyak, Nikolai; Sytnik, Veniamin; Tiunov, Mikhail; Tkachenko, Leonid; Wildman, David; Wolff, Daniel; Zhang, Xiao-Long; /Fermilab

    2011-09-12

    Fermilab's Tevatron is currently the world's highest energy accelerator in which tightly focused beams of 980 GeV protons and antiprotons collide at two dedicated interaction points (IPs). Both beams share the same beam pipe and magnet aperture and, in order to avoid multiple detrimental head-on collisions, the beams are placed on separated orbits everywhere except the main IPs by using high-voltage (HV) electrostatic separators. The electromagnetic beam-beam interaction at the main IPs together with the long-range interactions between separated beams adversely affect the collider performance, reducing the luminosity integral per store (period of continuous collisions) by 10-30%. Tuning the collider operation for optimal performance becomes more and more cumbersome as the beam intensities and luminosity increase. The long-range effects which (besides being nonlinear) vary from bunch to bunch are particularly hard to mitigate. A comprehensive review of the beam-beam effects in the Tevatron Collider Run II can be found in Ref. [1]. The beam-beam effects have been the dominating sources of beam loss and lifetime limitations in the Tevatron proton-antiproton collider [1]. Electron lenses were originally proposed for compensation of electromagnetic long-range and head-on beam-beam interactions of proton and antiproton beams [2]. Results of successful employment of two electron lenses built and installed in the Tevatron are reported in [3,4,5]. In this paper we present design features of the Tevatron electron lenses (TELs), discuss the generation of electron beams, describe different modes of operation and outline the technical parameters of various subsystems.

  9. Single top quark production and Vtb at the Tevatron

    SciTech Connect

    Schwienhorst, Reinhard; /Michigan State U.

    2010-09-01

    Single top quark production via the electroweak interaction was observed by the D0 and CDF collaborations at the Tevatron proton-antiproton collider at Fermilab. Multivariate analysis techniques are employed to extract the small single top quark signal. The combined Tevatron cross section is 2.76{sub -0.47}{sup +0.58} pb. This corresponds to a lower limit on the CKM matrix element |V{sub tb}| of 0.77. Also reported are measurements of the t-channel cross section, the top quark polarization in single top quark events, and limits on gluon-quark flavor-changing neutral currents and W{prime} boson production.

  10. Discovery and measurement of excited b hadrons at the Collider Detector at Fermilab

    SciTech Connect

    Pursley, Jennifer Marie; /Johns Hopkins U.

    2007-06-01

    This thesis presents evidence for the B**{sup 0} and {Sigma}{sub b}{sup (*){+-}} hadrons in proton-antiproton collisions at a center of mass energy of 1.96 TeV, using data collected by the Collider Detector at Fermilab. In the search for B**{sup 0} {yields} B{sup {+-}} {pi}{sup {-+}}, two B{sup {+-}} decays modes are reconstructed: B{sup {+-}} {yields} J/{Upsilon}K{sup {+-}}, where J/{Upsilon} {yields} {mu}{sup +}{mu}{sup -}, and B{sup {+-}} {yields} {bar D}{sup 0}{pi}{sup {+-}}, where {bar D}{sup 0} {yields} K{sup {+-}} {pi}{sup {+-}}. Both modes are reconstructed using 370 {+-} 20 pb{sup -1} of data. Combining the B{sup {+-}} meson with a charged pion to reconstruct B**{sup 0} led to the observation and measurement of the masses of the two narrow B**{sup 0} states, B{sub 1}{sup 0} and B*{sub 2}{sup 0}, of m(B{sub 1}{sup 0}) = 5734 {+-} 3(stat.) {+-} 2(syst.) MeV/c{sup 2}; m(B*{sub 2}{sup 0}) = 5738 {+-} 5(stat.) {+-} 1(syst.) MeV/c{sup 2}. In the search for {Sigma}{sub b}{sup (*){+-}} {yields} {Lambda}{sub b}{sup 0}{pi}{sup {+-}}, the {Lambda}{sub b}{sup 0} is reconstructed in the decay mode {Lambda}{sub b}{sup 0} {yields} {Lambda}{sub c}{sup +}{pi}{sup -}, where {Lambda}{sub c}{sup +} {yields} pK{sup -} {pi}{sup +}, using 1070 {+-} 60 pb{sup -1} of data. Upon combining the {Lambda}{sub b}{sup 0} candidate with a charged pion, all four of the {Sigma}{sub b}{sup (*){+-}} states are observed and their masses measured to be: m({Sigma}{sub b}{sup +}) = 5807.8{sub -2.2}{sup +2.0}(stat.) {+-} 1.7(syst.) MeV/c{sup 2}; m({Sigma}{sub b}{sup -}) = 5815.2 {+-} 1.0(stat.) {+-} 1.7(syst.) MeV/c{sup 2}; m({Sigma}*{sub b}{sup +}) = 5829.0{sub -1.8}{sup +1.6}(stat.){sub -1.8}{sup +1.7}(syst.) MeV/c{sup 2}; M({Sigma}*{sub b}{sup -}) - 5836.4 {+-} 2.0(stat.){sub -1.7}{sup +1.8}(syst.) MeV/c{sup 2}. This is the first observation of {Sigma}{sub b}{sup (*){+-}} baryons.

  11. Bunch coalescing and bunch rotation in the Fermilab Main Ring: Operational experience and comparison with simulations

    SciTech Connect

    Martin, P.S.; Wildman, D.W.

    1988-07-01

    The Fermilab Tevatron I proton-antiproton collider project requires that the Fermilab Main Ring produce intense bunches of protons and antiprotons for injection into the Tevatron. The process of coalescing a small number of harmonic number h=1113 bunches into a single bunch by bunch-rotating in a lower harmonic rf system is described.The Main Ring is also required to extract onto the antiproton production target bunches with as narrow a time spread as possible. This operation is also discussed. The operation of the bunch coalescing and bunch rotation are compared with simulations using the computer program ESME. 2 refs., 8 figs.

  12. MSSM Higgs Discovery Potential at Tevatron with new Benchmark Scenarios for Hadron Colliders

    NASA Astrophysics Data System (ADS)

    Drollinger, Volker; Gold, Michael; Jarrell, Jason; Rekovic, Vladimir; Smirnov, Dmitri

    2003-04-01

    Four benchmark scenarios for MSSM Higgs boson searches at hadron colliders have recently been suggested. We discuss two aspects of the Higgs discovery potential in these scenarios. In the first part of this study, cross sections times branching ratios are computed for the most important search channel pbarp arrow W^± h^0 arrow l^± ν b barb. The second part is dedicated to the Higgs mass behavior in the parameter space and two independent Higgs mass calculations are compared.

  13. Recent QCD results from the Tevatron

    SciTech Connect

    Pickarz, Henryk; CDF and DO collaboration

    1997-02-01

    Recent QCD results from the CDF and D0 detectors at the Tevatron proton-antiproton collider are presented. An outlook for future QCD tests at the Tevatron collider is also breifly discussed. 27 refs., 11 figs.

  14. Search for the Production of Gluinos and Squarks with the CDF II Experiment at the Tevatron Collider

    SciTech Connect

    De Lorenzo, Gianluca

    2010-05-19

    This thesis reports on two searches for the production of squarks and gluinos, supersymmetric partners of the Standard Model (SM) quarks and gluons, using the CDF detector at the Tevatron √s = 1.96 TeV p$\\bar{p}$ collider. An inclusive search for squarks and gluinos pair production is performed in events with large ET and multiple jets in the final state, based on 2 fb-1 of CDF Run II data. The analysis is performed within the framework of minimal supergravity (mSUGRA) and assumes R-parity conservation where sparticles are produced in pairs. The expected signal is characterized by the production of multiple jets of hadrons from the cascade decays of squarks and gluinos and large missing transverse energy ET from the lightest supersymmetric particles (LSP). The measurements are in good agreement with SM predictions for backgrounds. The results are translated into 95% confidence level (CL) upper limits on production cross sections and squark and gluino masses in a given mSUGRA scenario. An upper limit on the production cross section is placed in the range between 1 pb and 0.1 pb, depending on the gluino and squark masses considered. The result of the search is negative for gluino and squark masses up to 392 GeV/c2 in the region where gluino and squark masses are close to each other, gluino masses up to 280 GeV/c2 regardless of the squark mass, and gluino masses up to 423 GeV=c2 for squark masses below 378 GeV/c2. These results are compatible with the latest limits on squark/gluino production obtained by the D0 Collaboration and considerably improve the previous exclusion limits from direct and indirect searches at LEP and the Tevatron. The inclusive search is then extended to a scenario where the pair production of sbottom squarks is dominant. The new search is performed in a generic MSSM scenario with R-parity conservation. A specific SUSY particle mass hierarchy is assumed such that the

  15. Numerical Simulations of Transverse Beam Diffusion Enhancement by the Use of Electron Lens in the Tevatron Collider

    SciTech Connect

    Previtali, V.; Stancari, G.; Valishev, A.; Shatilov, D.N.; /Novosibirsk, IYF

    2012-05-01

    Transverse beam diffusion for the Tevatron machine has been calculated using the Lifetrac code. The following effects were included: random noise (representing residual gas scattering, voltage noise in the accelerating cavities) lattice nonlinearities and beam-beam interactions. The time evolution of particle distributions with different initial amplitudes in Hamiltonian action has been simulated for 6 million turns, corresponding to a time of about 2 minutes. For each particle distribution, several cases have been considered: a single beam in storage ring mode, the collider case and the effects of a hollow electron beam collimator. The diffusion coefficient for some representative points in the amplitude space has been calculated by fitting the time evolution of delta-like particle distributions using the diffusion equation, for different machine conditions. The results confirm a strong efficiency of the electron lens as an halo diffusive enhancer, leading to diffusion coefficients which are at least a factor 10K higher than the values obtained for the collision case. This result is confirmed by the Frequency Map Analysis, which shows a clear intensification of resonance lines for particle amplitudes larger than the electron lens inner radius. If compared with past experiments, the simulations successfully reproduce the diffusion coefficients for the beam core, but still present a large discrepancy for halo particles, still under investigation.

  16. Future hadron physics at Fermilab

    SciTech Connect

    Appel, Jeffrey A.; /Fermilab

    2005-09-01

    Today, hadron physics research occurs at Fermilab as parts of broader experimental programs. This is very likely to be the case in the future. Thus, much of this presentation focuses on our vision of that future--a future aimed at making Fermilab the host laboratory for the International Linear Collider (ILC). Given the uncertainties associated with the ILC--the level of needed R&D, the ILC costs, and the timing--Fermilab is also preparing for other program choices. I will describe these latter efforts, efforts focused on a Proton Driver to increase the numbers of protons available for experiments. As examples of the hadron physics which will be coming from Fermilab, I summarize three experiments: MIPP/E907 which is running currently, and MINERvA and Drell-Yan/E906 which are scheduled for future running periods. Hadron physics coming from the Tevatron Collider program will be summarized by Arthur Maciel in another talk at Hadron05.

  17. Project X: A Multi-MW Proton Source at Fermilab

    SciTech Connect

    Holmes, Stephen D.; /Fermilab

    2010-05-01

    As the Fermilab Tevatron Collider program draws to a close a strategy has emerged of an experimental program built around the high intensity frontier. The centerpiece of this program is a superconducting H- linac that will support world leading programs in long baseline neutrino experimentation and he study of rare processes. Based on technology shared with the International Linear Collider (ILC), Project X will provide multi-MW beams at 60-120 GeV from the Main Injector, simultaneous with very high intensity beams at lower energies. Project X will also support development of a Muon Collider as a uture facility at the energy frontier.

  18. Single Top Production at the Tevatron

    SciTech Connect

    Wu, Zhenbin; /Baylor U.

    2012-05-01

    We present recent results of single top quark production in the lepton plus jet final state, performed by the CDF and D0 collaborations based on 7.5 and 5.4 fb{sup -1} of p{bar p} collision data collected at {radical}s = 1.96 TeV from the Fermilab Tevatron collider. Multivariate techniques are used to separate the single top signal from the backgrounds. Both collaborations present measurements of the single top quark cross section and the CKM matrix element |V{sub tb}|. A search for anomalous Wtb coupling from D0 is also presented.

  19. Rare B meson decays at the Tevatron

    SciTech Connect

    Hopkins, Walter; /Cornell U., Phys. Dept.

    2011-08-01

    Rare B meson decays are an excellent probe for beyond the Standard Model physics. Two very sensitive processes are the B{sub s,d}{sup 0} {yields} {mu}{sup +}{mu}{sup -} and b {yields} s{mu}{sup +}{mu}{sup -} decays. We report recent results at a center of mass energy of {radical}s = 1.96 TeV from the CDF II and D0 collaborations using between 3.7 fb{sup -1} and 6.9 fb{sup -1} taken during Run II of the Fermilab Tevatron Collider.

  20. Searching for SUSY at the Tevatron

    SciTech Connect

    Bortoletto, Daniela; /Purdue U.

    2004-12-01

    An overview of recent experimental searches for SUSY particles is presented. These searches are based on data collected by the CDF and the D0 experiments operating at the Fermilab Tevatron proton-antiproton collider with {radical}s = 1.96 TeV. The review focuses on searches for squarks and gluinos in final states with missing transverse energy and jets. Emphasis will be given to the search for the gluino decaying into a sbottom and b quark with each sbottom decaying into a b quark and a neutralino. This scenario yields events containing 4 b-jets and missing transverse energy.

  1. Experimental study of magnetically confined hollow electron beams in the Tevatron as collimators for intense high-energy hadron beams

    SciTech Connect

    Stancari, G.; Annala, G.; Shiltsev, V.; Still, D.; Valishev, A.; Vorobiev, L.; /Fermilab

    2011-03-01

    Magnetically confined hollow electron beams for controlled halo removal in high-energy colliders such as the Tevatron or the LHC may extend traditional collimation systems beyond the intensity limits imposed by tolerable losses. They may also improve collimation performance by suppressing loss spikes due to beam jitter and by increasing capture efficiency. A hollow electron gun was designed and tested at Fermilab for this purpose. It was installed in one of the Tevatron electron lenses in the summer of 2010. We present the results of the first experimental tests of the hollow-beam collimation concept on 980-GeV antiproton bunches in the Tevatron.

  2. Survey and Alignment of the Fermilab Electron Cooling System

    SciTech Connect

    Oshinowo, Babatunde O'Sheg; Leibfritz, Jerry

    2006-09-01

    The goal of achieving the Tevatron luminosity of 3 x 10{sup 32} cm{sup -2}s{sup -1} requires Electron Cooling in the Recycler Ring to provide an increased flux of antiprotons. The Fermilab Electron Cooling system has been designed to assist accumulation of antiprotons for the Tevatron collider operations. The installation along with the survey and alignment of the Electron Cooling system in the Recycler Ring were completed in November 2004. The Electron Cooling system was fully commissioned in May 2005 and the first cooling of antiprotons was achieved in July 2005. This paper discusses the alignment methodology employed to survey and align the Electron Cooling system.

  3. Physics at an upgraded proton driver at Fermilab

    SciTech Connect

    Steve Geer

    2004-07-28

    The accelerator-based particle physics program in the US is entering a period of transition. This is particularly true at Fermilab which for more than two decades has been the home of the Tevatron Proton-Antiproton Collider, the World's highest energy hadron collider. In a few years time the energy frontier will move to the LHC at CERN. Hence, if an accelerator-based program is to survive at Fermilab, it must evolve. Fermilab is fortunate in that, in addition to hosting the Tevatron Collider, the laboratory also hosts the US accelerator-based neutrino program. The recent discovery that neutrino flavors oscillate has opened a new exciting world for us to explore, and has created an opportunity for the Fermilab accelerator complex to continue to address the cutting-edge questions of particle physics beyond the Tevatron Collider era. The presently foreseen neutrino oscillation experiments at Fermilab (MiniBooNE [1] and MINOS [2]) will enable the laboratory to begin contributing to the Global oscillation physics program in the near future, and will help us better understand the basic parameters describing the oscillations. However, this is only a first step. To be able to pin down all of the oscillation parameters, and hopefully make new discoveries along the way, we will need high statistics experiments, which will require a very intense neutrino beam, and one or more very massive detectors. In particular we will require new MW-scale primary proton beams and perhaps ultimately a Neutrino Factory [3]. Plans to upgrade the Fermilab Proton Driver are presently being developed [4]. The upgrade project would replace the Fermilab Booster with a new 8 GeV accelerator with 0.5-2 MW beam power, a factor of 15-60 more than the current Booster. It would also make the modifications needed to the Fermilab Main Injector (MI) to upgrade it to simultaneously provide 120 GeV beams of 2 MW. This would enable a factor of 5-10 increase in neutrino beam intensities at the MI, while also

  4. Search for Centauro events in the DO Detector at Fermilab collider

    SciTech Connect

    Rao, M.V.S.; DO Collaboration

    1994-09-01

    We report preliminary results of a Monte Carlo study to search for Centauro events in the DO Detector at Fermilab. Montecarlo simulation of minimum bias events are being carried out using the ISAJET and DOGEANT packages to study the detector response for low energy particles and to understand the background. Preliminary indications are that the detector is capable of resolving individual particles. Further work on developing reconstruction algorithms for individual particles is in progress.

  5. Optimization of integrated luminosity in the Tevatron

    SciTech Connect

    Gattuso, C.; Convery, M.; Syphers, M.; /Fermilab

    2009-04-01

    We present the strategy which has been used recently to optimize the performance of the Fermilab Tevatron proton-antiproton collider. We use a relatively simple heuristic model based on the antiproton production rate, which optimizes the number of antiprotons in a store in order to maximize the integrated luminosity. A store is terminated as soon as the target number of antiprotons is reached and the Tevatron quickly resets to load another store. Since this procedure was implemented, the integrated luminosity has improved by {approx} 35%. Other recent operational improvements include decreasing the shot setup time, and reducing beam-beam effects by making the proton and antiproton brightness more compatible, for example by scraping protons to smaller emittances.

  6. A next-to-leading-order QCD analysis of charged current event rates from (nu)N deep inelastic scattering at the Fermilab Tevatron

    NASA Astrophysics Data System (ADS)

    Goldman, Jesse Matthew

    This dissertation details the results of a NLO QCD analysis of overlinenoverline Fe and overlinenoverline Fe scattering at the Fermilab Tevatron. Recently an increasing number of measurements by a variety of experiments have led to a good understanding of the partonic contents of the nucleon. Accurate parameterisations of these contents and the fact that neutrino Deep Inelastic Scattering is an ideal probe of the nucleus allow for a unique understanding of QCD and related phenomena in the kinematic region for which Q2 > 5 GeV 2 and 0.1 < x < 0.7. Perturbative QCD and such non-perturbative effects as the EMC correction, the longitudinal structure function, RL, and higher twist corrections are studied and χ2 comparisons are made with the NuTeV charged current data sample. These comparisons indicate that a NLO perturbative QCD) model combined with the EMC correction and higher twist best agrees with the NuTeV data. Using this resultant model and altering the cuts to include all data for which 0.003 < x < 0.7 leads to a NLO measurement of the strange sea level, κ. Combining this result with the measurement of κ from the NuTeV dimuon analysis leads to limits on the Cabbibo-Kobayashi-Masakawa matrix element, Vcs, which are consistent with currently accepted values.

  7. Measurements of the top quark mass at the Tevatron

    SciTech Connect

    Brandt, Oleg; /Gottingen U., II. Phys. Inst.

    2012-04-01

    The mass of the top quark (m{sub top}) is a fundamental parameter of the standard model (SM). Currently, its most precise measurements are performed by the CDF and D0 collaborations at the Fermilab Tevatron p{bar p} collider at a centre-of-mass energy of {radical}s = 1.96 TeV. We review the most recent of those measurements, performed on data samples of up to 8.7 fb{sup -1} of integrated luminosity. The Tevatron combination using up to 5.8 fb{sup -1} of data results in a preliminary world average top quark mass of m{sub top} = 173.2 {+-} 0.9 GeV. This corresponds to a relative precision of about 0.54%. We conclude with an outlook of anticipated precision the final measurement of m{sub top} at the Tevatron.

  8. The new Tevatron beam position monitor front-end software

    SciTech Connect

    Piccoli, Luciano; Votava, Margaret; Zhang, Dehong; /Fermilab

    2005-05-01

    The Tevatron is a proton anti-proton accelerator collider operating at the Fermi National Accelerator Laboratory. The machine is currently delivering beam for the CDF and D0 experiments, which expect increasing luminosity until the conclusion of Run II, planned for 2009. The Laboratory defined a plan for achieving higher luminosity, and one of the tasks is the upgrade of the accelerator's beam position monitor (BPM). The Tevatron was built during the early eighties and some of its control systems, including the BPMs, are still the original ones. This paper describes the front-end software of the Tevatron BPM upgrade, from the requirements to the implementation, and the underlying hardware setup. The front-end software designed is presented, emphasizing its modularity and reusability, allowing it to be applied to other Fermilab machines.

  9. A pp Collider in a 100 km Ring at Fermilab [VLHC

    NASA Astrophysics Data System (ADS)

    Medina, M. Karl

    2013-10-01

    Recent discovery of a Higgs-like boson at CERN has reignited interest in a future high energy collider to study physics beyond the Standard Model of elementary particle physics. We propose a proton-proton (pp) Very Large Hadron Collider (VLHC) with collision energies of ~ 100 TeV. A Java-based tool for studying the parameters of such a collider has been developed. The dynamics of the protons in this high energy range is dominated by the effects of synchrotron radiation. We model the effects of radiation damping and intra-beam scattering on quantities such as the emittance and luminosity. Our model shows that integrated luminosities near 1 fb-1 can be obtained over a 10 hour luminosity store. Here we present details of the program and some key results from our study of the proposed collider. This work is supported by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy.

  10. The Fermilab recycler ring

    SciTech Connect

    Martin Hu

    2001-07-24

    The Fermilab Recycler is a permanent magnet storage ring for the accumulation of antiprotons from the Antiproton Source, and the recovery and cooling of the antiprotons remaining at the end of a Tevatron store. It is an integral part of the Fermilab III luminosity upgrade. The following paper describes the design features, operational and commissioning status of the Recycler Ring.

  11. Design report for an indirectly cooled 3-m diameter superconducting solenoid for the Fermilab Collider Detector Facility

    SciTech Connect

    Fast, R.; Grimson, J.; Kephart, R.

    1982-10-01

    The Fermilab Collider Detector Facility (CDF) is a large detector system designed to study anti pp collisions at very high center of mass energies. The central detector for the CDF shown employs a large axial magnetic field volume instrumented with a central tracking chamber composed of multiple layers of cylindrical drift chambers and a pair of intermediate tracking chambers. The purpose of this system is to determine the trajectories, sign of electric charge, and momenta of charged particles produced with polar angles between 10 and 170 degrees. The magnetic field volume required for tracking is approximately 3.5 m long an 3 m in diameter. To provide the desired ..delta..p/sub T/p/sub T/ less than or equal to 1.5% at 50 GeV/c using drift chambers with approx. 200..mu.. resolution the field inside this volume should be 1.5 T. The field should be as uniform as is practical to simplify both track finding and the reconstruction of particle trajectories with the drift chambers. Such a field can be produced by a cylindrical current sheet solenoid with a uniform current density of 1.2 x 10/sup 6/ A/m (1200 A/mm) surrounded by an iron return yoke. For practical coils and return yokes, both central electromagnetic and central hadronic calorimetry must be located outside the coil of the magnet. This geometry requires that the coil and the cryostat be thin both in physical thickness and in radiation and absorption lengths. This dual requirement of high linear current density and minimal coil thickness can only be satisfied using superconducting technology. In this report we describe the design for an indirectly cooled superconducting solenoid to meet the requirements of the Fermilab CDF. The components of the magnet system are discussed in the following chapters, with a summary of parameters listed in Appendix A.

  12. Model SSC (Superconducting Super Collider) dipole magnet cryostat assembly at Fermilab

    SciTech Connect

    Niemann, R.C.

    1989-03-01

    The Superconducting Super Collider (SSC) magnet development program includes the design, fabrication and testing of full length model dipole magnets. A result of the program has been the development of a magnet cryostat design. The cryostat subsystems consist of cold mass connection-slide, suspension, thermal shields, insulation, vacuum vessel and interconnections. Design details are presented along with model magnet production experience. 6 refs., 13 figs.

  13. Physics at the Tevatron

    NASA Astrophysics Data System (ADS)

    Field, R.

    2008-10-01

    The theme of the XXXIV International Meeting on Fundamental Physics on April 27, 2006 was "From HERA and the TEVATRON to the LHC". At that meeting I presented four lectures on "Physics at the Tevatron". This is a summary of two lectures on "Physics at the Tevatron: IMFP06 IMFP08" presented at the XXXVI International Meeting on Fundamental Physics held in Baeza, Spain on February 4-8, 2008. These two lectures are an attempt to highlight what we have learned at the Tevatron since my lectures in 2006. I will also look back at the "old days" of Feynman-Field collider phenomenology.

  14. Straw man 900-1000 GeV crystal extraction test beam for Fermilab collider operation

    SciTech Connect

    Carrigan, R.A. Jr.

    1996-10-01

    A design for a 900-1000 GeV, 100 khz parasitic test beam for use during collider operations has been developed. The beam makes use of two bent crystals, one for extraction and the other one for redirecting the beam in to the present Switchyard beam system. The beam requires only a few modifications in the A0 area and largely uses existing devices. It should be straight-forward to modify one or two beam lines in the fixed target experimental areas to work above 800 GeV. Possibilities for improvements to the design,to operate at higher fluxes are discussed.

  15. An Improved W Boson Mass Measurement Using the Collider Detector at Fermilab

    SciTech Connect

    Zeng, Yu

    2012-01-01

    The mass of the W boson is one of the most important parameters in the Standard Model. A precise measurement of the W boson mass, together with a precise measurement of the top quark mass, can constrain the mass of the undiscovered Higgs boson within the Standard Model framework or give a hint for physics beyond the Standard Model. This dissertation describes a measurement of the W boson mass through its decay into a muon and a neutrino using ~ 2.2 fb-1 of √ s = 1.96 TeV p$\\bar{p}$ data taken with the CDF II detector at Fermilab. We measure the W boson mass to be (80.374 ± 0.015stat. ± 0.016syst.) GeV/c2. This result, when combined with the W mass measurement in the electron channel, leads to the single most precise mW value and greatly constrains the possible mass range of the undiscovered Higgs boson. iv

  16. Limits on the kappa parameter ({kappa}) of the W boson at the collider detector at Fermilab (CDF)

    SciTech Connect

    Samuel, M.A.; Li, G.; Sinha, N.; Sundaresan, M.K.; Sinha, R. |

    1995-06-01

    Recently we obtained bounds on the magnetic moment of the W boson from preliminary results from the collider detector at Fermilab. These results were based on 4.3 pb{sup {minus}1} of data, from which three W{gamma} events and three radiative W decays were found. Within the next 2 years they expect to have almost 100 pb{sup {minus}1} of data. In this paper we consider the bounds one will be able to obtain from these data, under two scenarios: (1) the expected Standard Model (SM) results are obtained. (2) The relative number of events observed is the same as in the previous run. We estimate that one will be able to obtain a 95% C.L. bound for K, perhaps as good as -1.9 {le} K {le} 4.2. These bounds would come from the total number of events. When the number of events increases sufficiently, one will be able to obtain an angular distribution for W{gamma} and an energy distribution for radiative W decay. Then one could observe the radiation amplitude zero and obtain a precise value for K.

  17. Commissioning of Fermilab's electron cooling system for 8-GeV antiprotons

    SciTech Connect

    Nagaitsev, S.; Broemmelsiek, D.; Burov, A.; Carlson, K.; Gattuso, C.; Hu, M.; Kramper, B.; Kroc, T.; Leibfritz, J.; Prost, L.; Pruss, S.; Saewert, G.; Schmidt, C.W.; Shemyakin, A.; Sutherland, M.; Tupikov, V.; Warner, A.; Seletsky, S.; Gai, W.; Kazakevich, Grigory M.; /Novosibirsk, IYF

    2005-05-01

    A 4.3-MeV electron cooling system [1] has been installed at Fermilab in the Recycler antiproton storage ring and is currently being commissioned. The cooling system is designed to assist accumulation of 8.9-GeV/c antiprotons for the Tevatron collider operations. This paper reports on the progress of the electron beam commissioning effort as well as on detailed plans of demonstrating the cooling of antiprotons.

  18. Studies of top quark properties at the Tevatron

    SciTech Connect

    Shary, Viatcheslav

    2012-05-01

    An overview of the recent measurements of the top quark properties in proton antiproton collisions at {radical}s = 1.96 TeV is presented. These measurements are based on 5.4-8.7 fb{sup -1} of data collected with the D0 and CDF experiments at the Fermilab Tevatron collider. The top quark mass and width measurements, studies of the spin correlation in top quark pair production, W boson helicity measurement, searches for anomalous top quark couplings and Lorentz invariance violation are discussed.

  19. Searches for High Mass Resonances and Exotics at the Tevatron

    NASA Astrophysics Data System (ADS)

    Heintz, Ulrich

    2012-06-01

    In this paper I review some recent searches for physics beyond the standard model from the CDF and D0 experiments at the Fermilab Tevatron collider based on an integrated luminosity of 5 to 7 fb-1 from pbar p collisions at 1.96 TeV. I present a selection of recent results from both the CDF and D0 collaborations covering searches for 4th generation t' and b' quarks, exotic resonances that decay to tbar t quark pairs or ZZ boson pairs, universal extra dimensions, and dark matter particles.

  20. Summary of Single top quark production at the Tevatron

    SciTech Connect

    Schwienhorst, R.; CDF, on the

    2014-01-01

    The production of single-top quarks occurs via the weak interaction at the Fermilab Tevatron proton-antiproton collider. Single top quark events are selected in the lepton+jets final state by CDF and D0 and in the missing transverse energy plus jets final state by CDF. Multivariate classifiers separate the s-channel and t-channel single-top signals from the large backgrounds. The combination of CDF and D0 results leads to the first observation of the s-channel mode of single top quark production. The t-channel and single top combined cross sections have also been measured.

  1. QCD aspects of W/Z production at the Tevatron

    SciTech Connect

    Guglielmo, G.; CDF and D0 Collaborations

    1997-07-01

    Hadron colliders are providing valuable opportunities for studying the influence of the strong force on electroweak interactions in both the perturbative and non-perturbative regions. At the Fermilab Tevatron, analysis by CDF and D0 of p{anti p} {yields} W/Z + X events at {radical}s = 1.8 TeV have been used to test a variety of leading order and next-to-leading order QCD predictions. Among the many promising benefits are improvements of parton distribution functions at high Q{sup 2} , demonstration of soft gluon radiation patterns which survive hadronization, and tests of perturbative QCD and resummation calculations.

  2. Longitudinal momentum mining of antiprotons at the Fermilab Recycler: past, present and future

    SciTech Connect

    Bhat, C.M.; Chase, B.E.; Gattuso, C.; Joireman, P.W.; /Fermilab

    2007-06-01

    The technique of longitudinal momentum mining (LMM)[1] in the Fermilab Recycler was adopted in early 2005 to extract thirty-six equal intensity and equal 6D-emittance antiproton bunches for proton-antiproton collider operation in the Tevatron. Since that time, several improvements have been made in the Recycler and the mining technique to handle higher intensity beams. Consequently, the Recycler has become a key contributor to the increased luminosity performance observed during Tevatron Run IIb. In this paper, we present an overview of the improvements and the current status of the momentum mining technique.

  3. Non-SUSY Searches at the Tevatron

    SciTech Connect

    Strologas, John; /New Mexico U.

    2011-08-01

    We present recent results from searches for new physics beyond supersymmetry performed at the Tevatron accelerator at Fermilab. The CDF and D0 analyses presented here utilized data of integrated luminosity up to 6 fb{sup -1}. We cover leptonic and bosonic resonances interpreted in the Randall-Sundrum graviton and new-boson models, rare final states, and the search for vector-like quarks. The search for new phenomena beyond the weak-scale supersymmetry is a vital part of the Fermilab program. Both CDF and D0 experiments at the Tevatron collider actively look for signals not expected by the standard model (SM) or minimal supersymmetric models. The searches can be sorted in three categories: (a) searches for generic resonances that can be interpreted in several new-physics models; (b) searches for exotic combinations of final-state objects or abnormal kinematics (not necessarily predicted by current theories); and (c) model-dependent searches that test a particular theory. We present here latest results from all these categories: searches for new dilepton and diboson resonances (interpreted as gravitons and new gauge bosons), searches for anomalous {gamma} + E{sub T} + X production, and searches for vector-like quarks.

  4. Applications of barrier bucket RF systems at Fermilab

    SciTech Connect

    Bhat, C.M.; /Fermilab

    2006-03-01

    In recent years, the barrier rf systems have become important tools in a variety of beam manipulation applications at synchrotrons. Four out of six proton synchrotrons at Fermilab are equipped with broad-band barrier rf systems. All of the beam manipulations pertaining to the longitudinal phase space in the Fermilab Recycler (synchrotron used for antiproton storage) are carried out using a barrier system. Recently, a number of new applications of barrier rf systems have been developed- the longitudinal momentum mining, longitudinal phase-space coating, antiproton stacking, fast bunch compression and more. Some of these techniques have been critical for the recent spectacular success of the collider performance at the Fermilab Tevatron. Barrier bunch coalescing to produce bright proton bunches has a high potential to increase proton antiproton luminosity significantly. In this paper, I will describe some of these techniques in detail. Finally, I make a few general remarks on issues related to barrier systems.

  5. Measurement of the intensity of the beam in the abort gap at the Tevatron utilizing synchrotron light

    SciTech Connect

    Thurman-Keup, R.; Lorman, E.; Meyer, T.; Pordes, S.; De Santis, S.; /LBL, Berkeley

    2005-05-01

    This paper discusses the implementation of abort gap beam intensity monitoring at the Tevatron collider at Fermilab. There are two somewhat independent monitors which measure the intensity of the synchrotron light emitted by particles in the abort gaps. One system uses a gated Photomultiplier Tube (PMT) to measure the light intensity, and the other system uses a single lens telescope, gated image intensifier, and Charge Injection Device (CID) camera to image the beam.

  6. Remembering the Tevatron: The Machine(s)

    SciTech Connect

    Holmes, Stephen; /Fermilab

    2011-09-01

    For 25 years the Tevatron proton-antiproton collider was the highest energy collider in the world. This presentation will trace the origins of the Tevatron, the challenges that were overcome in creating high luminosity collisions of protons and antiprotons, the technological achievements that drove performance a factor of 400 beyond the initial performance goals, and the legacy of the Tevatron in paving the way for ever more advanced colliders.

  7. Fermilab's SC Accelerator Magnet Program for Future U.S. HEP Facilities

    SciTech Connect

    Lamm, Michael; Zlobin, Alexander; /Fermilab

    2010-01-01

    The invention of SC accelerator magnets in the 1970s opened wide the possibilities for advancing the energy frontier of particle accelerators, while limiting the machine circumference and reducing their energy consumption. The successful development of SC accelerator magnets based on NbTi superconductor have made possible a proton-antiproton collider (Tevatron) at Fermilab, an electron-proton collider (HERA) at DESY, a relativistic heavy ion collider (RHIC) at BNL and recently a proton-proton collider (LHC) at CERN. Further technological innovations and inventions are required as the US HEP looks forward towards the post-LHC energy or/and intensity frontiers. A strong, goal oriented national SC accelerator magnet program must take on this challenge to provide a strong base for the future of HEP in the U.S. The results and experience obtained by Fermilab during the past 30 years will allow us to play a leadership role in the SC accelerator magnet development in the U.S., in particular, focusing on magnets for a Muon Collider/Neutrino Factory [1]-[2]. In this paper, we summarize the required Muon Collider magnet needs and challenges, summarize the technology advances in the Fermilab accelerator magnet development over the past few years, and present and discuss our vision and long-term plans for these Fermilab-supported accelerator initiatives.

  8. Physics at the Tevatron

    SciTech Connect

    Field, Rick; /Florida U.

    2006-04-01

    The theme of the XXXIV International Meeting on Fundamental Physics held in El Escorial, Spain on April 2-7, 2006 was ''From HERA and the TEVATRON to the LHC''. This is a summary of the four lectures I presented on ''Physics at the Tevatron''. Heavy quark production and the production of photons, bosons, and jets at the Tevatron are discussed. Also, a detailed study at the ''underlying event'' at CDF is presented together with a discussion of PYTHIA 6.2 tunes. A look back at the ''old days'' of Feynman-Field collider phenomenology is included.

  9. Study of the heavy flavour fractions in z+jets events from proton-antiproton collisions at energy = 1.96 TeV with the CDF II detector at the Tevatron collider

    SciTech Connect

    Mastrandrea, Paolo; /Siena U.

    2008-06-01

    at the end of 2008. In the meanwhile the only running accelerator able to provide collisions suitable for the search of the Higgs boson is the Tevatron at Fermilab, a proton-antiproton collider with a center of mass energy of 1.96 TeV working at 3 {center_dot} 10{sup 32}cm{sup -2}s{sup -1} peak luminosity. These features make the Tevatron able for the direct search of the Higgs boson in the 115-200 GeV mass range. Since the coupling of the Higgs boson is proportional to the masses of the particles involved, the decay in b{bar b} has the largest branching ratio for Higgs mass < 135 GeV and thus the events Z/W + b{bar b} are the main background to the Higgs signal in the most range favored by Standard Model fits. In this thesis a new technique to identify Heavy Flavour quarks inside high - P{sub T} jets is applied to events with a reconstructed Z boson to provide a measurement of the Z+b and Z+c inclusive cross sections. The study of these channels represent also a test of QCD in high transferred momentum regime, and can provide information on proton pdf. This new Heavy Flavour identication technique (tagger) provides an increased statistical separation between b, c and light flavours, using a new vertexing algorithm and a chain of artificial Neural Networks to exploit as much information as possible in each event. For this work I collaborated with the Universita di Roma 'La Sapienza' group working in the CDF II experiment at Tevatron, that has at first developed this tagger. After a brief theoretical introduction (chapter 1) and a description of the experimental apparatus (chapter 2), the tagger itself and its calibration procedure are described in chapter 3 and 4. The chapter 5 is dedicated to the event selection and the chapter 6 contains the results of the measurement and the study of the systematic errors.

  10. Top differential cross section measurements (Tevatron)

    SciTech Connect

    Jung, Andreas W.

    2012-01-01

    Differential cross sections in the top quark sector measured at the Fermilab Tevatron collider are presented. CDF used 2.7 fb{sup -1} of data and measured the differential cross section as a function of the invariant mass of the t{bar t} system. The measurement shows good agreement with the standard model and furthermore is used to derive limits on the ratio {kappa}/M{sub Pl} for gravitons which decay to top quarks in the Randall-Sundrum model. D0 used 1.0 fb{sup -1} of data to measure the differential cross section as a function of the transverse momentum of the top-quark. The measurement shows a good agreement to the next-to-leading order perturbative QCD prediction and various other standard model predictions.

  11. Squarks and gluinos searches at the Tevatron

    SciTech Connect

    Gris, Phillipe Luc; /Clermont-Ferrand U.

    2008-04-01

    A search for squarks and gluinos performed by the CDF and D0 collaborations is presented. The sample taken during the RunII of the Fermilab TeVatron collider at {radical}s = 1.96 TeV is used. Supersymmetry (SUSY) is one of the most promising ways to solve crucial problems of the Standard Model (SM). This spacetime symmetry links bosons to fermions by introducing supersymmetric partners (sparticles) to all SM particles: squarks and gluinos are SUSY partners of quarks and gluons. The mass difference between the squark mass eigenstates depend on the mass of the corresponding quark. Hence squarks are (to a good approximation) mass degenerate for the two first generations whereas a (potentially) large mixing may appear for the third family, leading to a light stop. The former case corresponds to squarks and gluinos searches whereas dedicated searches for stop are performed for the latter.

  12. \\ttbar and single top cross sections at the Tevatron

    SciTech Connect

    CDF, Elizaveta Shabalina for; collaborations, D0

    2012-01-01

    We present a summary of the latest measurements of the top pair and single top cross sections performed by the CDF and D0 collaborations at the Fermilab Tevatron collider. The Fermilab Tevatron collider ended its run on September 30, 2011 after delivering more than 10 fb{sup -1} of p{bar p} collision data per experiment at {radical}s = 1.96 TeV. A large sample of top quarks collected by the CDF and D0 experiments allows to perform precision measurements of their production which is predicted to occur within the standard model (SM) either in pairs via strong interactions or as single top events via electroweak interactions. Such measurements represent an important test of the theoretical calculations which predict the t{bar t} and single top production cross sections with a precision of 6% to 8% and 5%, respectively. Precise measurements of top pair cross section ({sigma}{sub t{bar t}}) in different t{bar t} final states and single top production via different production mechanisms are highly desirable as they are sensitive to the non-SM particles that may appear in top quark production or decays.

  13. Fast Bunch Integrators at Fermilab During Run II

    SciTech Connect

    Meyer, Thomas; Briegel, Charles; Fellenz, Brian; Vogel, Greg; /Fermilab

    2011-07-13

    The Fast Bunch Integrator is a bunch intensity monitor designed around the measurements made from Resistive Wall Current Monitors. During the Run II period these were used in both Tevatron and Main Injector for single and multiple bunch intensity measurements. This paper presents an overview of the design and use of these systems during this period. During the Run II era the Fast Bunch integrators have found a multitude of uses. From antiproton transfers to muti-bunch beam coalescing, Main Injector transfers to halo scraping and lifetime measurements, the Fast Bunch Integrators have proved invaluable in the creation and maintenance of Colliding Beams stores at Fermilab.

  14. The Charge Asymmetry in $W$ Boson Production in $p\\bar p$ Collisions at the $\\sqrt{s} = 1.96$ TeV Using the D0 Detector at the Fermilab Tevatron

    SciTech Connect

    Khatidze, David

    2009-01-01

    We present a measurement of the W boson charge asymmetry in p $\\bar{p}$ collisions using W →ev decays using 750 pb-1 of data collected with the D detector at the Fermilab Tevatron. The electron coverage is extended to |η| < 3.2 and is thus sensitive to Ws generated with low and high x partons. We also measured the charge asymmetry for events with electron ET > 25 GeV, 25 < ET < 35 GeV and ET > 35 GeV. By dividing events into di erent electron ET regions, we can probe di erent W boson rapidity regions, and can provide more constraints on the parton distribution functions (PDFs). Theoretical predictions made using CTEQ6.6 and MRST2004NLO PDFs are compared with the measurement. Our measurement is the most precise W charge asymmetry measurement to date, and this single measurement is superior in precision to the combined world average of all previous W charge asymmetry measurements done at the Tevatron. The measured asymmetry errors are less than the CTEQ6.6 PDF uncertainty for most rapidity bins. The inclusion of our results will further constrain future PDF ts and improve the predictions.

  15. Next-to-Leading-Order QCD Corrections to WW+Jet Production at Hadron Colliders

    SciTech Connect

    Dittmaier, S.; Kallweit, S.; Uwer, P.

    2008-02-15

    We report on the calculation of the next-to-leading-order QCD corrections to the production of W-boson pairs in association with a hard jet at the Fermilab Tevatron and CERN Large Hadron Collider, which is an important source of background for Higgs boson and new-physics searches. The corrections stabilize the leading-order prediction for the cross section considerably, in particular, if a veto against the emission of a second hard jet is applied.

  16. Next-to-Leading-Order QCD Corrections to tt+jet Production at Hadron Colliders

    SciTech Connect

    Dittmaier, S.; Uwer, P.; Weinzierl, S.

    2007-06-29

    We report on the calculation of the next-to-leading-order QCD corrections to the production of top-quark-top-antiquark pairs in association with a hard jet at the Fermilab Tevatron and the CERN Large Hadron Collider. We present results for the tt+jet cross section and the forward-backward charge asymmetry. The corrections stabilize the leading-order prediction for the cross section. The charge asymmetry receives large corrections.

  17. Probing neutral gauge boson self-interactions in ZZ production at hadron colliders

    NASA Astrophysics Data System (ADS)

    Baur, U.; Rainwater, D.

    2000-12-01

    A detailed analysis of ZZ production at the upgraded Fermilab Tevatron and the CERN Large Hadron Collider is presented for general ZZZ and ZZγ couplings. Deviations from the standard model gauge theory structure for each of these can be parametrized in terms of two form factors which are severely restricted by unitarity at high energy. Achievable limits on these couplings are shown to be a dramatic improvement over the limits currently obtained by e+e- experiments.

  18. QCD corrections to associated production of tt{gamma} at hadron colliders

    SciTech Connect

    Duan Pengfei; Ma Wengan; Zhang Renyou; Han Liang; Guo Lei; Wang Shaoming

    2009-07-01

    We report on the next-to-leading order (NLO) QCD computation of top-quark pair production in association with a photon at the Fermilab Tevatron RUN II and CERN Large Hadron Collider. We describe the impact of the complete NLO QCD radiative corrections to this process, and provide the predictions of the leading order (LO) and NLO integrated cross sections, distributions of the transverse momenta of the top quark and photon for the LHC and Tevatron, and the LO and NLO forward-backward top-quark charge asymmetries for the Tevatron. We investigate the dependence of the LO and NLO cross sections on the renormalization/factorization scale, and find the scale dependence of the LO cross section is obviously improved by the NLO QCD corrections. The K-factor of the NLO QCD correction is 0.977(1.524) for the Tevatron (LHC)

  19. Collider and detector protection at beam accidents

    SciTech Connect

    I. L. Rakhno; N. V. Mokhov; A. I. Drozhdin

    2003-12-10

    Dealing with beam loss due to abort kicker prefire is considered for hadron colliders. The prefires occurred at Tevatron (Fermilab) during Run I and Run II are analyzed and a protection system implemented is described. The effect of accidental beam loss in the Large Hadron Collider (LHC) at CERN on machine and detector components is studied via realistic Monte Carlo calculations. The simulations show that beam loss at an unsynchronized beam abort would result in severe heating of conventional and superconducting magnets and possible damage to the collider detector elements. A proposed set of collimators would reduce energy deposition effects to acceptable levels. Special attention is paid to reducing peak temperature rise within the septum magnet and minimizing quench region length downstream of the LHC beam abort straight section.

  20. Status of antiproton accumulation and cooling at Fermilab's Recycler

    SciTech Connect

    Prost, L.R.; Bhat, C.M.; Broemmelsiek, D.; Burov, A.; Carlson, K.; Crisp, J.; Derwent, P.; Eddy, N.; Gattuso, C.; Hu, M.; Pruss, S.; /Fermilab

    2009-08-01

    The Recycler ring is an 8 GeV permanent magnet storage ring where antiprotons are accumulated and prepared for Fermilab's Tevatron Collider program. With the goal of maximizing the integrated luminosity delivered to the experiments, storing, cooling and extracting antiprotons with high efficiency has been pursued. Over the past two years, while the average accumulation rate doubled, the Recycler continued to operate at a constant level of performance thanks to changes made to the Recycler Electron Cooler (energy stability and regulation, electron beam optics), RF manipulations and operating procedures. In particular, we discuss the current accumulation cycle in which {approx} 400 x 10{sup 10} antiprotons are accumulated and extracted to the Tevatron every {approx}15 hours.

  1. Heavy Flavour results from Tevatron

    SciTech Connect

    Borissov, G.; /Lancaster U.

    2012-06-01

    The CDF and D0 experiments finalize the analysis of their full statistics collected in the p{bar p} collisions at a center-of-mass energy of {radical}s = 1.96 TeV at the Fermilab Tevatron collider. This paper presents several new results on the properties of hadrons containing heavy b- and c-quarks obtained by both collaborations. These results include the search for the rare decays B{sup 0}, B{sub s}{sup 0} {yields} {mu}{sup +}{mu}{sup -} (CDF), the study of CP asymmetry in B{sub s} {yields} J{psi}{phi} decay (CDF, D0), the measurement of the like-sign dimuon charge asymmetry (D0), the measurement of CP asymmetry in D{sup 0} {yields} K{sup +}K{sup -} and D{sup 0} {yields} {pi}{sup +}{pi}{sup -} decays (CDF), and the new measurement of the B{sub s} {yields} D{sub s}{sup (*)+} D{sub s}{sup (*)-} branching fraction (CDF). Both experiments still expect to produce more results on the properties of heavy flavours.

  2. Measurement of the Top Quark Mass by Dynamical Likelihood Method using the Lepton + Jets Events with the Collider Detector at Fermilab

    SciTech Connect

    Kubo, Taichi

    2008-02-01

    We have measured the top quark mass with the dynamical likelihood method. The data corresponding to an integrated luminosity of 1.7fb-1 was collected in proton antiproton collisions at a center of mass energy of 1.96 TeV with the CDF detector at Fermilab Tevatron during the period March 2002-March 2007. We select t$\\bar{t}$ pair production candidates by requiring one high energy lepton and four jets, in which at least one of jets must be tagged as a b-jet. In order to reconstruct the top quark mass, we use the dynamical likelihood method based on maximum likelihood method where a likelihood is defined as the differential cross section multiplied by the transfer function from observed quantities to parton quantities, as a function of the top quark mass and the jet energy scale(JES). With this method, we measure the top quark mass to be 171.6 ± 2.0 (stat.+ JES) ± 1.3(syst.) = 171.6 ± 2.4 GeV/c2.

  3. HTS power lead testing at the Fermilab magnet test facility

    SciTech Connect

    Rabehl, R.; Carcagno, R.; Feher, S.; Huang, Y.; Orris, D.; Pischalnikov, Y.; Sylvester, C.; Tartaglia, M.; /Fermilab

    2005-08-01

    The Fermilab Magnet Test Facility has tested high-temperature superconductor (HTS) power leads for cryogenic feed boxes to be placed at the Large Hadron Collider (LHC) interaction regions and at the new BTeV C0 interaction region of the Fermilab Tevatron. A new test facility was designed and operated, successfully testing 20 pairs of HTS power leads for the LHC and 2 pairs of HTS power leads for the BTeV experiment. This paper describes the design and operation of the cryogenics, process controls, data acquisition, and quench management systems. Results from the facility commissioning are included, as is the performance of a new insulation method to prevent frost accumulation on the warm ends of the power leads.

  4. Indo-U.S. Collaborative efforts at Fermilab

    NASA Astrophysics Data System (ADS)

    Raja, Rajendran

    2000-04-01

    The history of collaborative efforts at Fermilab by Indian institutions is reviewed. Beginning in the 1980's there has been a growing participation at Fermilab experiments by Indian Universities and the Tata Institute of Fundamental Research (TIFR). These experiments included both fixed target experiments and the Tevatron collider experiment, D0. Following the nuclear tests in 1998 by India and Pakistan, a ban on collaborative efforts with TIFR was instituted by the Department of Energy, which has only recently been rescinded. In January 1999, 8 physicists from DoE funded national laboratories were not granted travel authorization to attend a High Energy Physics conference held at TIFR, which was well attended by U.S. University physicists. The implications of these restrictions are discussed and suggestions are made to help protect scientific freedoms in the future.

  5. Fermilab recycler stochastic cooling commissioning and performance

    SciTech Connect

    D. Broemmelsiek; Ralph Pasquinelli

    2003-06-04

    The Fermilab Recycler is a fixed 8 GeV kinetic energy storage ring located in the Fermilab Main Injector tunnel near the ceiling. The Recycler has two roles in Run II. First, to store antiprotons from the Fermilab Antiproton Accumulator so that the antiproton production rate is no longer compromised by large numbers of antiprotons stored in the Accumulator. Second, to receive antiprotons from the Fermilab Tevatron at the end of luminosity periods. To perform each of these roles, stochastic cooling in the Recycler is needed to preserve and cool antiprotons in preparation for transfer to the Tevatron. The commissioning and performance of the Recycler stochastic cooling systems will be reviewed.

  6. Magnetic field data on Fermilab Energy-Saver quadrupoles

    SciTech Connect

    Schmidt, E.E.; Brown, B.C.; Cooper, W.E.; Fisk, H.E.; Gross, D.A.; Hanft, R.; Ohnuma, S.; Turkot, F.T.

    1983-03-01

    The Fermilab Energy Saver/Doubler (Tevatron) accelerator contains 216 superconducting quadrupole magnets. Before installation in the Tevatron ring, these magnets plus an additional number of spares were extensively tested at the Fermilab Magnet Test Facility (MTF). Details on the results of the tests are presented here.

  7. Search for squarks and gluinos using data from the DOe detector at the Tevatron

    SciTech Connect

    Biscarat, Catherine

    2010-02-10

    A search for squarks and gluinos is performed in the topology of multijet events accompanied by large missing transverse energy in 2.1 fb{sup -1} of pp-bar collision data collected using the DOe detector at the Fermilab Tevatron Collider at a center of mass energy of 1.96 TeV. About half of this dataset is specifically analysed for events involving at least one tau lepton decaying hadronically in addition. No deviation from the Standard Model expectation is observed and the analyses are combined to set limits on the squark and gluino masses and on parameters of minimal supergravity.

  8. B, Lambda{sub b} and charm results from the Tevatron

    SciTech Connect

    F. Azfar

    2003-09-18

    Recent results on B{sub d}, B{sub u}{sup {+-}}, B{sub s}, {Lambda}{sub b} and Charm hadrons are reported from {approx} 75 pb{sup -1} and {approx} 40 pb{sup -1} of data accumulated at the upgraded CDF and D0 experiments at the Fermilab Tevatron {bar p}-p collider, during Run-II. These include lifetime and mass measurements of B and Charm hadrons, searches for rare decays in charm and B hadrons and CP-violation in Charm decays. Results relevant to CP-violation in B-decays are also reported.

  9. A Betatron tune fitting package for the Tevatron 21.4 MHz Schottky

    SciTech Connect

    Lebrun, Paul L.G.; Sen, Tanaji; You, Jian-Ming; Yuan, Zong-Wei; Todesco, Ezio; /CERN

    2005-05-01

    The Fermilab Tevatron is equipped with two independent Schottky monitors for measurement of betatron tunes, one operating at 21.4 MHz and the other at 1.7 GHz. A new front-end and related data acquisition for the 21.4 MHz resonator has been installed and commissioned during the FY04 Collider RunII. Sophisticated fitting strategies are required to analyze the spectra. Optimization of this fitting package allows us to report tune and chromaticity measurements at almost 1 Hz.

  10. Study of sequential semileptonic decays of b hadrons produced at the Tevatron

    SciTech Connect

    Apollinari, G.; Fiori, I.; Giromini, P.; Happacher, F.; Miscetti, S.; Parri, A.; Ptohos, F.; /Frascati /Fermilab /INFN, Pisa /Pisa, Scuola Normale Superiore

    2005-07-01

    The authors present a study of rates and kinematical properties of lepton pairs contained in central jets with transverse energy E{sub T} {ge} 15 GeV that re produced at the Fermilab Tevatron collider. They compare the data to a QCD prediction based on the HERWIG and QQ Monte Carlo generator programs. They find that the data are poorly described by the simulation, in which sequential semileptonic decays of single b quarks (b {yields} l c X with c {yields} l s X) are the major source of such lepton pairs.

  11. Flying wires at Fermilab

    SciTech Connect

    Gannon, J.; Crawford, C.; Finley, D.; Flora, R.; Groves, T.; MacPherson, M.

    1989-03-01

    Transverse beam profile measurement systems called ''Flying Wires'' have been installed and made operational in the Fermilab Main Ring and Tevatron accelerators. These devices are used routinely to measure the emittance of both protons and antiprotons throughout the fill process, and for emittance growth measurements during stores. In the Tevatron, the individual transverse profiles of six proton and six antiproton bunches are obtained simultaneously, with a single pass of the wire through the beam. Essential features of the hardware, software, and system operation are explained in the rest of the paper. 3 refs., 4 figs.

  12. Final Report - The Decline and Fall of the Superconducting Super Collider

    SciTech Connect

    RIORDAN, MICHAEL

    2011-11-29

    In October 1993 the US Congress terminated the Superconducting Super Collider — at the time the largest pure-science project ever attempted, with a total cost estimated to exceed $10 billion. It was a stunning loss for the US highenergy physics community, which until that moment had perched for decades at the pinnacle of American science. Ever since 1993, this once-dominant scientific community has been in gradual decline. With the 2010 startup of research on the CERN Large Hadron Collider and the 2011 shutdown of the Fermilab Tevatron, world leadership in elementary-particle physics has crossed the Atlantic and returned to Europe.

  13. Recent results from the Tevatron

    SciTech Connect

    Vellidis, Costas; Bravina, L.; Foka, Y.; Kabana, S.

    2015-01-01

    The Tevatron p$\\bar{p}$ collider was shut down in 2011, after 10 years of high performance operation at a center-of-mass energy √s = 1.96 TeV in Run II. The two experiments, CDF and DZero, continue to analyze the collected data, aiming to extract all possible information regarding studies of the standard model and searches for new physics. A short review of some of the recent measurements at the Tevatron, and of the impact of the Tevatron program to high energy physics, is presented.

  14. Recent results from the Tevatron

    NASA Astrophysics Data System (ADS)

    Vellidis, Costas

    2015-05-01

    The Tevatron pp¯ collider was shut down in 2011, after 10 years of high performance operation at a center-of-mass energy √s = 1.96 TeV in Run II. The two experiments, CDF and DZero, continue to analyze the collected data, aiming to extract all possible information regarding studies of the standard model and searches for new physics. A short review of some of the recent measurements at the Tevatron, and of the impact of the Tevatron program to high energy physics, is presented.

  15. Fermilab R{ampersand}D program in medium energyelectron cooling

    SciTech Connect

    MacLachlan, J.A.

    1996-07-01

    Fermilab began an R & D program in medium energy electron cooling in April 1995 with the object of cooling 8 GeV antiprotons in a new 3.3 km permanent magnet storage ring (Recycler) to be built in the same tunnel as the Main Injector (MI). The MI is to be completed in 1998, and it is planned to install the Recycler by the end of 1997 to reduce interference during the final rush of MI installation. Although the Recycler will employ stochastic cooling initially, its potential for contributing an order of magnitude to Tevatron collider luminosity is tied to electron cooling. The short time scale and Fermilab`s limited familiarity with low energy electron beams has given rise to a two-phase development plan. The first phase is to build a cooling system based on an electron beam of {ge} 200 mA before year 2000. The second phase of about 3 years is planned to reach electron current of 2 A or more. This report describes the general scheme for high luminosity collider operation as well as the R & D plan and progress to date. 17 refs., 5 figs., 1 tab.

  16. SSC (Superconducting Super Collider) dipole coil production tooling

    SciTech Connect

    Carson, J.A.; Barczak, E.J.; Bossert, R.C.; Brandt, J.S.; Smith, G.A.

    1989-03-01

    Superconducting Super Collider dipole coils must be produced to high precision to ensure uniform prestress and even conductor distribution within the collared coil assembly. Tooling is being prepared at Fermilab for the production of high precision 1M and 16.6M SSC dipole coils suitable for mass production. The design and construction methods builds on the Tevatron tooling and production experience. Details of the design and construction methods and measured coil uniformity of 1M coils will be presented. 4 refs., 10 figs.

  17. Tevatron Resistive Wall Current Monitor

    SciTech Connect

    Crisp, J.; Fellenz, B.; /Fermilab

    2011-01-01

    Resistive Wall Current Monitors (RWCM) were designed and built for the Fermilab Tevatron (Tev) project. These devices measure longitudinal beam current from 3 KHz to 6 GHz with 1.34 ohm gap impedance. There are two RWCM's installed a few feet apart in the Tevatron, upstream RWCM is used for general purpose use, downstream RWCM is dedicated for longitudinal parameters of coalesced beam bunches and bunch intensities. The design provides a calibration or test port for injecting test signals. Microwave absorber material is used to reduce interference from spurious electromagnetic waves traveling inside the beam pipe. This paper will do an overview how the RWCM was designed and its test results.

  18. Applying EVM principles to Tevatron Beam Position Monitor Project

    SciTech Connect

    Banerjee, Bakul; /Fermilab

    2005-08-01

    At Fermi National Accelerator Laboratory (Fermilab), the Tevatron high energy particle collider must meet the increasing scientific demand of higher beam luminosity. To achieve this higher luminosity goal, U. S. Department of Energy (DOE) sponsored a major upgrade of capabilities of Fermilab's accelerator complex that spans five years and costs over fifty million dollars. Tevatron Beam Position Monitor (BPM) system upgrade is a part of this project, generally called RunII upgrade project. Since the purpose of the Tevatron collider is to detect the smashing of proton and anti-protons orbiting the circular accelerator in opposite directions, capability to detect positions of both protons and antiprotons at a high resolution level is a desirable functionality of the monitoring system. The original system was installed during early 1980s, along with the original construction of the Tevatron. However, electronic technology available in 1980s did not allow for the detection of significantly smaller resolution of antiprotons. The objective of the upgrade project is to replace the existing BPM system with a new system utilizing capabilities of modern electronics enhanced by a front-end software driven by a real-time operating software. The new BPM system is designed to detect both protons and antiprotons with increased resolution of up to an order of magnitude. The new system is capable of maintaining a very high-level of data integrity and system reliability. The system consists of 27 VME crates installed at 27 service buildings around the Tevatron ring servicing 236 beam position monitors placed underground, inside the accelerator tunnel. Each crate consists of a single Timing Generator Fanout module, custom made by Fermilab staff, one MVME processor card running VxWorks 5.5, multiple Echotek Digital Receiver boards complimented by custom made Filter Board. The VxWorks based front-end software communicates with the Main Accelerator Control software via a special

  19. The special applications of Tevatron electron lens

    SciTech Connect

    Xiaolong Zhang et al.

    2003-08-11

    Besides the Tevatron Electron Lens (TEL) runs as a R and D project for Tevatron Beam-Beam Compensation, it is used daily as a Beam Abort Gap Cleaner for collider operations. It can also be served as beam exciter for beam dynamics measurements and slow proton or antiproton bunch remover. This report describes all these applications and observations.

  20. A simultaneous measurement of the $b$-tagging efficiency scale factor and the $t\\bar{t}$ Production Cross Section at the Collider Detector at Fermilab

    SciTech Connect

    Hussain, Nazim; /McGill U.

    2011-07-01

    The ability to compare results between Monte Carlo and data is imperative in modern experimental high-energy physics analyses. The b-tagging efficiency Scale Factor (SF) allows for an accurate comparison of b quark identification in data samples and Monte Carlo. This thesis presents a simultaneous measurement of the SF for the SecVtx algorithm and the t{bar t} production cross section using 5.6 fb{sup -1} of p{bar p} collision data at {radical}s = 1.96 TeV collected by the Collider Detector at Fermilab (CDF) experiment. The t{bar t} cross section was measured to be 7.26 {+-} 0.47 pb, consistent with prior CDF analyses. The tight SF value was measured to be 0.925 {+-} 0.032 and the loose SF value was measured at 0.967 {+-} 0.033. These are the most precise SF SecVtx measurements to be performed at CDF to date.

  1. Emittance dilution and halo creation during the first milliseconds after injection at the Fermilab Booster

    SciTech Connect

    Spentzouris, Panagiotis; Amundson, J.; /Fermilab

    2005-01-01

    During the past year, the Fermilab Booster has been pushed to record intensities in order to satisfy the needs of the Tevatron collider and neutrino programs. This high intensity makes the study of space-charge effects and halo formation highly relevant to optimizing Booster performance. We present measurements of beam width evolution, halo formation, and coherent tune shifts, emphasizing the experimental techniques used and the calibration of the measuring devices. We also use simulations utilizing the 3D space-charge code Synergia to study the physical origins of these effects.

  2. Fabrication and performance of a new high-gradient trim quadrupole for the Fermilab luminosity upgrade

    SciTech Connect

    Mantsch, P.M.; Carson, J.A.; Gourlay, S.A.; Lamm, M.J.; Riddiford, A.W.

    1991-05-01

    A series of 16 high-gradient trim quadrupole magnets has been designed and built for the Tevatron luminosity upgrade (Fermilab III). These quadrupoles form part of the new Low-Beta system for the two interaction regions in the Tevatron Collider. The magnets have been installed in the Tevatron lattice in anticipation of the 1991 collider run. The one-shell design uses a cable'' of individually insulated rectangular strands. The cable is overwrapped with Kapton and epoxy impregnated glass tape. The winding, curing and collaring of the magnet is accomplished in the same manner as Tevatron-like magnets using Rutherford style cable. Once the magnet is assembled, the five strands are connected in series to achieve high gradient at low current. The required gradient is 0.63 T/cm at 1086 A. The production magnets reached maximum currents of about 1.1 T/cm at 1990 A. The success of this design approach suggests other applications in beam transport where magnets of high performance and low operating cost are required. 3 refs., 6 figs., 1 tab.

  3. Search for single top production at the Tevatron

    SciTech Connect

    Schwienhorst, Reinhard; /Michigan State U.

    2004-11-01

    Searches for the electroweak production of single top quarks have been started at the Fermilab Tevatron proton-antiproton collider using Run II data by both the D0 and CDF collaborations. Using a dataset of approximately 160pb{sup -1}, neither experiment finds evidence for Single Top production and sets 95% C.L. upper limits on the production cross section. The D0 limits are 19pb on the s-channel production, 25pb on the t-channel production, and 23pb on the combined s+t-channel production. The CDF limits are 8.5pb on the t-channel production and 13.7pb on the combined s+t-channel production.

  4. Searches for supersymmetry at high-energy colliders

    SciTech Connect

    Feng, Jonathan L.; Grivaz, Jean-Francois; Nachtman, Jane

    2010-01-15

    This review summarizes the state of the art in searches for supersymmetry at colliders on the eve of the Large Hadron Collider era. Supersymmetry is unique among extensions of the standard model in being motivated by naturalness, dark matter, and force unification, both with and without gravity. At the same time, weak-scale supersymmetry encompasses a wide range of experimental signals that are also found in many other frameworks. Motivations for supersymmetry are recalled and the various models and their distinctive features are reviewed. Searches for neutral and charged Higgs bosons and standard-model superpartners at the high energy frontier are summarized comprehensively, considering both canonical and noncanonical supersymmetric models, and including results from the LEP collider at CERN, HERA at DESY, and the Fermilab Tevatron.

  5. Vacuum technology issues for the SSC (Superconducting Super Collider)

    SciTech Connect

    Joestlein, H.

    1989-10-23

    The Superconducting Super Collider, to be built in Texas, will provide an energy of 40 TeV from colliding proton beams. This energy is twenty times higher than currently available from the only other cryogenic collider, the Fermilab Tevatron, and will allow experiments that can lead to a better understanding of the fundamental properties of matter. The energy scale and the size of the new machine pose intriguing challenges and opportunities for the its vacuum systems. The discussion will include the effects of synchrotron radiation on cryogenic beam tubes, cold adsorption pumps for hydrogen, methods of leak checking large cryogenic systems, the development of cold beam valves, and radiation damage to components, especially electronics. 9 figs., 1 tab.

  6. Conceptual Design Report: Fermilab Upgrade: Main Injector - Technical Components and Civil Construction, January 1990 (Rev. 2)

    SciTech Connect

    none,

    1990-01-10

    This report contains a description of the design and cost estimate of a new 150 GeV accelerator, designated the Main Injector, which will be required to support the upgrade of the Fermilab Accelerator Complex. The construction of this accelerator will simultaneously result in significant enhancements to both the Fermilab collider and fixed target programs. The Main Injector (MI) is to be located south of the Antiproton Source and tangent to the Tevatron ring at the FO straight section as shown in Figure 1-1. The MI will perform all duties currently required of the existing Main Ring. Thus, operation of the Main Ring will cease following commissioning of the MI, with a concurrent reduction in background rates as seen in the colliding beam detectors. The performance of the MI, as measured in terms of protons per second delivered to the antiproton production target or total protons delivered to the Tevatron, is expected to exceed that of the Main Ring by a factor of two to three. In addition the MI will provide high duty factor 120 GeV beam to the experimental areas during collider operation, a capability which does not presently exist in the Main Ring.

  7. Report of the Fermilab ILC Citizens' Task Force

    SciTech Connect

    2008-06-01

    Fermi National Accelerator Laboratory convened the ILC Citizens' Task Force to provide guidance and advice to the laboratory to ensure that community concerns and ideas are included in all public aspects of planning and design for a proposed future accelerator, the International Linear Collider. In this report, the members of the Task Force describe the process they used to gather and analyze information on all aspects of the proposed accelerator and its potential location at Fermilab in northern Illinois. They present the conclusions and recommendations they reached as a result of the learning process and their subsequent discussions and deliberations. While the Task Force was charged to provide guidance on the ILC, it became clear during the process that the high cost of the proposed accelerator made a near-term start for the project at Fermilab unlikely. Nevertheless, based on a year of extensive learning and dialogue, the Task Force developed a series of recommendations for Fermilab to consider as the laboratory develops all successor projects to the Tevatron. The Task Force recognizes that bringing a next-generation particle physics project to Fermilab will require both a large international effort and the support of the local community. While the Task Force developed its recommendations in response to the parameters of a future ILC, the principles they set forth apply directly to any large project that may be conceived at Fermilab, or at other laboratories, in the future. With this report, the Task Force fulfills its task of guiding Fermilab from the perspective of the local community on how to move forward with a large-scale project while building positive relationships with surrounding communities. The report summarizes the benefits, concerns and potential impacts of bringing a large-scale scientific project to northern Illinois.

  8. Combination of Tevatron searches for the standard model Higgs boson in the W+W- decay mode

    SciTech Connect

    Aaltonen, T.; Abazov, V.M.; Gregores, E.M.; Mercadante, P.G.; Hebbeker, T.; Kirsch, M.; Meyer, A.; Sonnenschein, L.; Avila, C.; Gomez, B.; Mendoza, L.; /Andes U., Bogota /Argonne /Arizona U. /Athens U. /Barcelona, IFAE /Baylor U. /Bonn U. /Boston U. /Brandeis U.

    2010-01-01

    We combine searches by the CDF and D0 collaborations for a Higgs boson decaying to W{sup +}W{sup -}. The data correspond to an integrated total luminosity of 4.8 (CDF) and 5.4 (D0) fb{sup -1} of p{bar p} collisions at {radical}s = 1.96 TeV at the Fermilab Tevatron collider. No excess is observed above background expectation, and resulting limits on Higgs boson production exclude a standard-model Higgs boson in the mass range 162-166 GeV at the 95% C.L.

  9. QCD measurements at the Tevatron

    SciTech Connect

    Bandurin, Dmitry; /Florida State U.

    2011-12-01

    Selected quantum chromodynamics (QCD) measurements performed at the Fermilab Run II Tevatron p{bar p} collider running at {radical}s = 1.96 TeV by CDF and D0 Collaborations are presented. The inclusive jet, dijet production and three-jet cross section measurements are used to test perturbative QCD calculations, constrain parton distribution function (PDF) determinations, and extract a precise value of the strong coupling constant, {alpha}{sub s}(m{sub Z}) = 0.1161{sub -0.0048}{sup +0.0041}. Inclusive photon production cross-section measurements reveal an inability of next-to-leading-order (NLO) perturbative QCD (pQCD) calculations to describe low-energy photons arising directly in the hard scatter. The diphoton production cross-sections check the validity of the NLO pQCD predictions, soft-gluon resummation methods implemented in theoretical calculations, and contributions from the parton-to-photon fragmentation diagrams. Events with W/Z+jets productions are used to measure many kinematic distributions allowing extensive tests and tunes of predictions from pQCD NLO and Monte-Carlo (MC) event generators. The charged-particle transverse momenta (p{sub T}) and multiplicity distributions in the inclusive minimum bias events are used to tune non-perturbative QCD models, including those describing the multiple parton interactions (MPI). Events with inclusive production of {gamma} and 2 or 3 jets are used to study increasingly important MPI phenomenon at high p{sub T}, measure an effective interaction cross section, {sigma}{sub eff} = 16.4 {+-} 2.3 mb, and limit existing MPI models.

  10. B States at the Tevatron

    SciTech Connect

    Paulini, Manfred; /Carnegie Mellon U.

    2009-06-01

    The CDF and D0 experiments have produced a wealth of heavy flavor physics results since the beginning of RunII of the Fermilab Tevatron. They review recent measurements of B hadron states including excited B states (B**, B{sub s}**) and the B{sub c}{sup +} meson. They also summarize the discoveries of the {Sigma}{sub b} baryon states and the {Xi}{sub b}{sup -} baryon.

  11. Diboson physics at the Tevatron

    SciTech Connect

    Neubauer, Mark S.; /UC, San Diego

    2006-05-01

    At the Fermilab Tevatron, the CDF and D0 detectors are being used to study diboson production in p{bar p} collisions at {radical}s = 1.96 TeV. The authors summarize recent measurements of the W{gamma}, Z{gamma}, and WW cross-sections and limits on WZ and ZZ production. Limits on anomalous trilinear gauge couplings are also presented.

  12. Direct measurement of the top quark charge at hadron colliders

    NASA Astrophysics Data System (ADS)

    Baur, U.; Buice, M.; Orr, Lynne H.

    2001-11-01

    We consider photon radiation in t¯t events at the upgraded Fermilab Tevatron and the CERN Large Hadron Collider (LHC) as a tool to measure the electric charge of the top quark. We analyze the contributions of t¯tγ production and radiative top quark decays to pp(-)-->γl+/-νb¯bjj, assuming that both b quarks are tagged. With 20 fb-1 at the Tevatron, the possibility that the ``top quark'' discovered in run I is actually an exotic charge -4/3 quark can be ruled out at the ~95% confidence level. At the CERN LHC, it will be possible to determine the charge of the top quark with an accuracy of about 10%.

  13. Mathematical modeling of a Fermilab helium liquefier coldbox

    SciTech Connect

    Geynisman, M.G.; Walker, R.J.

    1995-12-01

    Fermilab Central Helium Liquefier (CHL) facility is operated 24 hours-a-day to supply 4.6{degrees}K for the Fermilab Tevatron superconducting proton-antiproton collider Ring and to recover warm return gases. The centerpieces of the CHL are two independent cold boxes rated at 4000 and 5400 liters/hour with LN{sub 2} precool. These coldboxes are Claude cycle and have identical heat exchangers trains, but different turbo-expanders. The Tevatron cryogenics demand for higher helium supply from CHL was the driving force to investigate an installation of an expansion engine in place of the Joule-Thompson valve. A mathematical model was developed to describe the thermo- and gas-dynamic processes for the equipment included in the helium coldbox. The model is based on a finite element approach, opposite to a global variables approach, thus providing for higher accuracy and conversion stability. Though the coefficients used in thermo- and gas-dynamic equations are unique for a given coldbox, the general approach, the equations, the methods of computations, and most of the subroutines written in FORTRAN can be readily applied to different coldboxes. The simulation results are compared against actual operating data to demonstrate applicability of the model.

  14. Diboson Production at the Tevatron

    SciTech Connect

    Sekaric, Jadranka

    2010-07-23

    Here we summarize the recent measurements of the diboson production cross sections and limits on trilinear gauge boson couplings using 1-5 fb{sup -1} of Tevatron data collected by the CDF and D0 detectors. These results are the most precise to date from a hadron collider.

  15. Diboson production at the Tevatron

    SciTech Connect

    Nodulman, L.J.; CDF and D0 Collaborations

    1996-09-01

    The CDF and D{null} detectors at the Tevatron Collider are being used to measure {ital WW}, {ital WZ}, and {ital ZZ} production as well as {ital W}{sub {gamma}} and {ital Z}{sub {gamma}} production in order to study Trilinear Gauge Couplings. Improved limits on nonstandard coupling parameters are given and prospects for further improvement are discussed.

  16. Jet properties at the Tevatron

    SciTech Connect

    D'Onofrio, Monica; /Barcelona, IFAE

    2006-07-01

    The RunII physics program at the Tevatron started in spring 2001 with protons and antiprotons colliding at an energy of {radical}s = 1.96 TeV. More than 1 fb{sup -1} of data have been collected by both the CDF and D0 experiments. In this contribution, some of the new QCD results are presented.

  17. State of hadron collider physics

    SciTech Connect

    Grannis, P.D. |

    1993-12-01

    The 9th Topical Workshop on Proton-Antiproton Collider Physics in Tsukuba Japan demonstrated clearly the enormous breadth of physics accessible in hadron cowders. Although no significant chinks were reported in the armor of the Standard Model, new results presented in this meeting have expanded our knowledge of the electroweak and strong interactions and have extended the searches for non-standard phenomena significantly. Much of the new data reported came from the CDF and D0 experiments at the Fermilab cowder. Superb operation of the Tevatron during the 1992-1993 Run and significant advances on the detector fronts -- in particular, the emergence of the new D0 detector as a productive physics instrument in its first outing and the addition of the CDF silicon vertex detector -- enabled much of this advance. It is noteworthy however that physics from the CERN collider experiments UA1 and UA4 continued to make a large impact at this meeting. In addition, very interesting summary talks were given on new results from HERA, cosmic ray experiments, on super-hadron collider physics, and on e{sup +}e{sup {minus}} experiments at LEP and TRISTAN. These summaries are reported in elsewhere in this volume.

  18. Measurement of BR(Bu to phi K)/BR(Bu to J/psi K) at the collider detector at Fermilab

    SciTech Connect

    Napora, Robert A

    2004-10-01

    This thesis presents evidence for the decay mode B{sup {+-}} {yields} {phi}K{sup {+-}} in p{bar p} collisions at {radical}s = 1.96 TeV using (120 {+-} 7)pb{sup -1} of data collected by the Collider Detector at Fermilab (CDF). This signal is then used to measure the branching ratio relative to the decay mode B{sup {+-}} {yields} J/{psi}K{sup {+-}}. The measurement starts from reconstructing the two decay modes: B{sup {+-}} {yields} {phi}K{sup {+-}}, where {phi} {yields} K{sup +}K{sup -} and B{sup {+-}} {yields} J/{psi}K{sup {+-}}, where J/{psi} {yields} {mu}{sup +}{mu}{sup -}. The measurement yielded 23 {+-} 7 B{sup {+-}} {yields} {phi}K{sup {+-}} events, and 406 {+-} 26 B{sup {+-}} {yields} J/{psi}K{sup {+-}} events. The fraction of B{sup {+-}} {yields} J/{psi}K{sup {+-}} events where the J/{psi} subsequently decayed to two muons (as opposed to two electrons) was found to be f{sub {mu}{mu}} = 0.839 {+-} 0.066. The relative branching ratio of the two decays is then calculated based on the equation: BR(B{sup {+-}} {yields} {phi}K{sup {+-}})/BR(B{sup {+-}} {yields} J/{psi}K{sup {+-}}) = N{sub {phi}K}/N{sub {psi}K} {center_dot}f{sub {mu}{mu}} BR(J/{psi} {yields} {mu}{sup +}{mu}{sup -})/BR({phi} {yields} K{sup +}K{sup -}) {epsilon}{sub {mu}{mu}}K/{epsilon}KKK R({epsilon}{sub iso}). The measurement finds BR(B{sup {+-}} {yields} {phi}K{sup {+-}})/BR(B{sup {+-}} {yields} J/{psi}K{sup {+-}}) = 0.0068 {+-} 0.0021(stat.) {+-} 0.0007(syst.). The B{sup {+-}} {yields} {phi}K{sup {+-}} branching ratio is then found to be BR(B{sup {+-}} {yields} {phi}K{sup {+-}}) = [6.9 {+-} 2.1(stat.) {+-} 0.8(syst.)] x 10{sup -6}. This value is consistent with similar measurements reported by the e{sup +}e{sup -} collider experiments BaBar[1], Belle[2], and CLEO[3].

  19. Operation and maintenance of Fermilab`s satellite refrigerator expansion engines

    SciTech Connect

    Soyars, W.M.

    1996-09-01

    Fermilab`s superconducting Tevatron accelerator is cooled to liquid helium temperatures by 24 satellite refrigerators, each of which uses for normal operations a reciprocating `wet` expansion engine. These expanders are basically Process System (formerly Koch) Model 1400 expanders installed in standalone cryostats designed by Fermilab. This paper will summarize recent experience with operations and maintenance of these expansion engines. Some of the statistics presented will include total engine hours, mean time between major and minor maintenance, and frequent causes of major maintenance.

  20. Top quark physics at the Tevatron

    SciTech Connect

    Bhat, P.C.

    1998-04-01

    The authors review the analyses of t{bar t} candidate events in various decay channels, carried out using the p{bar p} collider data at {radical}s = 1.8 TeV by the CDF and D0 collaborations at the Fermilab Tevatron. The measurements of the top quark mass (m{sub t}) using lepton+jets channel yield m{sub t} = 173.3 {+-} 7.8 GeV/c{sup 2} from D0 analysis and m{sub t} = 175.9 {+-} 6.9 GeV/c{sup 2} from CDF analysis. The production cross section is measured to be {sigma}{sub t{bar t}} = 7.6{sub -1.5}{sup +1.8} pb by CDF and {sigma}{sub t{bar t}} = 5.6 {+-} 1.8 pb by D0. Further investigations using t{bar t} decays and future prospects are briefly discussed.

  1. B PHYSICS AT THE TEVATRON RUN II.

    SciTech Connect

    YIP,K.

    2004-03-27

    We present the B physics results from the CDF and D0 experiments at the Tevatron Run II at Fermilab and their future prospect. This includes various B mass and lifetime measurements, B mixing, the confirmation of the discovery of the X particle, rare decays, CP violation, and spectroscopy.

  2. New particle searches at Tevatron (II)

    SciTech Connect

    Kamon, T.; CDF and D0 Collaborations

    1996-05-01

    Various recent results of new particle searches at the Fermilab Tevatron are presented. No evidence is found for supersymmetric particles (chargino, gluino), leptoquark bosons and heavy gauge bosons in {ital p{anti P}} collisions at {radical}s = 1.8 TeV. Excluded mass regions for each particle are determined.

  3. WW and WZ production at the tevatron

    SciTech Connect

    Fuess, T.A.

    1995-04-01

    Direct limits are set on WWZ and WW{gamma} three-boson couplings in a search for WW and WZ production in p{bar p} collisions at {radical}s = 1.8 TeV using the D(0) and CDF detectors at the Fermilab Tevatron.

  4. Conceptual Design Report: Fermilab Main Injector - Technical Components and Civil Construction, April 1992 (Rev. 3.1)

    SciTech Connect

    1992-04-01

    This report contains a description of the design and cost estimate of a new 150 GeV accelerator, designated the Fermilab Main Injector (FMI). The construction of this accelerator will simultaneously result in significant enhancements to both the Fermilab collider and fixed target programs. The FMI is to be located south of the Antiproton Source and tangent to the Tevatron ring at the FO straight section as shown in Figure 1-1. The FMI will perform all duties currently required of the existing Main Ring. Thus, operation of the Main Ring will cease following commissioning of the FMI, with a concurrent reduction in background rates as seen in the colliding beam detectors. The performance of the FMI, as measured in terms of protons per second delivered to the antiproton production target or total protons delivered to the Tevatron, is expected to exceed that of the Main Ring by a factor of two-tothree. In addition the FMI will provide high duty factor 120 GeV beam to the experimental areas during collider operation, a capability which does not presently exist in the Main Ring.

  5. Survey of the Fermilab D0 detector collision hall

    SciTech Connect

    Babatunde O'Sheg Oshinowo

    2001-07-20

    The Fermilab D0 detector was used for the discovery of the top quark during Run I in 1996. It had been upgraded to exploit the physics potential to be presented by the Main Injector and the Tevatron Collider during Run II. The upgrade of the D0 detector was fully commissioned on March 1, 2001, and thus marked the official start of the Run II experiment. The detector which weighs about 5500 tons, was assembled in the Assembly Hall. Prior to moving the detector into the Collision Hall, the existing survey monuments were densified in the Collision Hall with new monuments. This paper discusses the survey of the Collision Hall using a combination of the Laser Tracker, BETS, V-Stars, and other Optical systems to within the specified accuracy of {+-}0.5mm.

  6. Supersymmetric QCD one-loop effects in (un)polarized top-pair production at hadron colliders

    SciTech Connect

    Berge, Stefan; Hollik, Wolfgang; Mosle, Wolf M.; Wackeroth, Doreen

    2007-08-01

    We study the effects of O({alpha}{sub s}) supersymmetric QCD (SQCD) corrections on the total production rate and kinematic distributions of polarized and unpolarized top-pair production in pp and pp collisions. At the Fermilab Tevatron pp collider, top-quark pairs are mainly produced via quark-antiquark annihilation, qq{yields}tt, while at the CERN LHC pp collider gluon-gluon scattering, gg{yields}tt, dominates. We compute the complete set of O({alpha}{sub s}) SQCD corrections to both production channels and study their dependence on the parameters of the minimal supersymmetric standard model. In particular, we discuss the prospects for observing strong, loop-induced SUSY effects in top-pair production at the Tevatron run II and the LHC.

  7. Expectations for old and new physics at high energy colliders

    SciTech Connect

    Cahn, R.N.

    1982-12-01

    During the past year, the first data from the SPS collider at CERN have become available. The initial results are only a glimpse at a new energy regime and we can reasonably expect an increase in the extent of the data by a factor of 10/sup 4/ to 10/sup 5/. Moreover, within a few years, the Fermilab Tevatron Collider will be in operation with a center of mass energy nearly four times as great as that at CERN. Beyond these machines are other possibilities: a high luminosity pp machine at Brookhaven with a center of mass energy of 0.8 TeV; a p anti p or pp machine in the LEP tunnel at CERN; a desetron in the southwestern United States with many TeV in the center of mass. The purpose of these lectures is to provide an orientation for the wealth of data that these machines will provide.

  8. Supersymmetric Higgs boson pair production at hadron colliders

    SciTech Connect

    Belyaev, A.; Drees, M.; Eboli, O.J.; Novaes, S.F.; Belyaev, A.; Mizukoshi, J.K.

    1999-10-01

    We study the pair production of neutral Higgs bosons through gluon fusion at hadron colliders in the framework of the minimal supersymmetric standard model. We present analytical expressions for the relevant amplitudes, including both quark and squark loop contributions, and allowing for mixing between the superpartners of left- and right-handed quarks. Squark loop contributions can increase the cross section for the production of two CP-even Higgs bosons by more than two orders of magnitude, if the relevant trilinear soft breaking parameter is large and the mass of the lighter squark eigenstate is not too far above its current lower bound. In the region of large tan&hthinsp;{beta}, neutral Higgs boson pair production might even be observable in the 4b final state during the next run of the Fermilab Tevatron collider. {copyright} {ital 1999} {ital The American Physical Society}

  9. Conceptual design of hollow electron lenses for beam halo control in the Large Hadron Collider

    SciTech Connect

    Stancari, Giulio; Previtali, Valentina; Valishev, Alexander; Bruce, Roderik; Redaelli, Stefano; Rossi, Adriana; Salvachua Ferrando, Belen

    2014-06-26

    Collimation with hollow electron beams is a technique for halo control in high-power hadron beams. It is based on an electron beam (possibly pulsed or modulated in intensity) guided by strong axial magnetic fields which overlaps with the circulating beam in a short section of the ring. The concept was tested experimentally at the Fermilab Tevatron collider using a hollow electron gun installed in one of the Tevatron electron lenses. We are proposing a conceptual design for applying this technique to the Large Hadron Collider at CERN. A prototype hollow electron gun for the LHC was built and tested. The expected performance of the hollow electron beam collimator was based on Tevatron experiments and on numerical tracking simulations. Halo removal rates and enhancements of halo diffusivity were estimated as a function of beam and lattice parameters. Proton beam core lifetimes and emittance growth rates were checked to ensure that undesired effects were suppressed. Hardware specifications were based on the Tevatron devices and on preliminary engineering integration studies in the LHC machine. Required resources and a possible timeline were also outlined, together with a brief discussion of alternative halo-removal schemes and of other possible uses of electron lenses to improve the performance of the LHC.

  10. Antiproton stacking and un-stacking in the Fermilab Recycler Ring

    SciTech Connect

    Chandra Bhat

    2003-06-12

    The Fermilab Recycler Ring (RR) is intended to be used as a future antiproton storage ring for the Run II proton-antiproton collider operation. It is proposed that about 40mA of antiproton beam from the Accumulator Ring will be transferred to the Recycler once for every two to three hours, stacked and cooled. This operation continues for about 10 to 20 hours depending on the collider needs for antiprotons. Eventually, the cooled antiproton beam will be un-stacked from the Recycler and transferred to the Tevatron via the Main Injector. They have simulated stacking and un-stacking of antiprotons in the Recycler using multi-particle beam dynamics simulation code ESME. In this paper they present results of these simulations.

  11. Achievements and Lessons from Tevatron

    SciTech Connect

    Shiltsev, V.; /Fermilab

    2011-01-01

    For almost a quarter of a century, the Tevatron proton-antiproton collider was the centerpiece of the world's high energy physics program - beginning operation in December of 1985 until it was overtaken by LHC in 2011. The aim of the this unique scientific instrument was to explore the elementary particle physics reactions with center of mass collision energies of up to 1.96 TeV. The initial design luminosity of the Tevatron was 10{sup 30} cm{sup -2}s{sup -1}, however as a result of two decades of upgrades, the accelerator has been able to deliver 430 times higher luminosities to each of two high luminosity experiments, CDF and D0. Tevatron will be shut off September 30, 2011. The collider was arguably one of the most complex research instruments ever to reach the operation stage and is widely recognized for many technological breakthroughs and numerous physics discoveries. Below we briefly present the history of the Tevatron, major advances in accelerator physics, and technology implemented during the long quest for better and better performance. We also discuss some lessons learned from our experience.

  12. Search for the Standard Model Higgs boson produced in association with a W Boson in the isolated-track charged-lepton channel using the Collider Detector at Fermilab

    SciTech Connect

    Buzatu, Adrian

    2011-08-01

    The Higgs boson is the only elementary particle predicted by the Standard Model (SM) that has not yet been observed experimentally. If it exists, it explains the spontaneous electroweak symmetry breaking and the origin of mass for gauge bosons and fermions. We test the validity of the SM by performing a search for the associated production of a Higgs boson and a W boson in the channel where the Higgs boson decays to a bottom-antibottom quark pair and the W boson decays to a charged lepton and a neutrino (the WH channel). We study a dataset of proton-antiproton collisions at a centre-of-mass energy √s = 1.96 TeV provided by the Tevatron accelerator, corresponding to an integrated luminosity of 5.7 fb-1, and recorded using the Collider Detector at Fermilab (CDF).We select events consistent with the signature of exactly one charged lepton (electron or muon), missing transverse energy due to the undetected neutrino (MET) and two collimated streams of particles (jets), at least one of which is required to be identified as originating from a bottom quark. We improve the discrimination of Higgs signal from backgrounds through the use of an artificial neural network. Using a Bayesian statistical inference approach, we set for each hypothetical Higgs boson mass in the range 100-150 GeV/c2 with 5 GeV/c2 increments a 95% credibility level (CL) upper limit on the ratio between the Higgs production cross section times branching fraction and the SM prediction. Our main original contributions are the addition of a novel charged lepton reconstruction algorithm with looser requirements (ISOTRK) with respect the electron or muon tight criteria (TIGHT), as well as the introduction of a novel trigger-combination method that allows to maximize the event yield while avoiding trigger correlations and that is used for the ISOTRK category. The ISOTRK candidate is a high-transverse-momentum good-quality track isolated from other activity in the tracking

  13. Tevatron Electron Lenses: Design and Operation

    SciTech Connect

    Shiltsev, Vladimir; Bishofberger, Kip; Kamerdzhiev, Vsevolod; Kozub, Sergei; Kufer, Matthew; Kuznetsov, Gennady; Martinez, Alexander; Olson, Marvin; Pfeffer, Howard; Saewert, Greg; Scarpine, Vic; /Fermilab /SLAC /Fermilab /Serpukhov, IHEP /Novosibirsk, IYF /Serpukhov, IHEP /Fermilab

    2008-08-01

    The beam-beam effects have been the dominating sources of beam loss and lifetime limitations in the Tevatron proton-antiproton collider [1]. Electron lenses were originally proposed for compensation of electromagnetic long-range and head-on beam-beam interactions of proton and antiproton beams [2]. Results of successful employment of two electron lenses built and installed in the Tevatron are reported in [3,4,5]. In this paper we present design features of the Tevatron electron lenses (TELs), discuss the generation of electron beams, describe different modes of operation and outline the technical parameters of various subsystems.

  14. Search for $WZ/ZZ$ Production in the Lepton(s) + MET + Jets Channel with the CDF Experiment at the Tevatron Collider

    SciTech Connect

    Trovato, Marco

    2014-01-01

    In this thesis we present a search for the WZ and ZZ production in a final state ("W+2 jets") with a leptonically-decaying W and two energetic jets. We use the full dataset ( ∫ Ldt = 8:9 fb-1) recorded with the CDF detector at Fermilab. The challenge consists in extracting the small Z-hadronic peak from the large amount of background processes. Those processes also include the WW, whose hadronic peak cannot be distinguished from the Z peak, due to the poor calorimeter resolution. In the past such a signature was used to measure the diboson cross section, which is highly dominated by the WW cross section.

  15. Supersymmetry Searches at the Tevatron

    SciTech Connect

    Hays, C.

    2008-11-23

    Supersymmetry predicts a range of new phenomena with a variety of experimental signatures. Searches for supersymmetry at the Fermilab Tevatron accelerator fall into three broad categories: generic sparticle searches; specialized searches for sparticles with unusual properties; and model-independent searches probing for discrepancies between the data and the standard model. Searches performed by the CDF and DOe experiments with up to 2 fb{sup -1} of {radical}(s) = 1.96 TeV pp-bar data have yet to turn up any evidence for supersymmetry.

  16. Top quark mass measurement at the Tevatron

    SciTech Connect

    Guimaraes da Costa, Joao; /Harvard U.

    2004-12-01

    The authors report on the latest experimental measurements of the top quark mass by the CDF and D0 Collaborations at the Fermilab Tevatron. They present a new top mass measurement using the t{bar t} events collected by the D0 Collaboration in Run I between 1994 and 1996. This result is combined with previous measurements to yield a new world top mass average. They also describe several preliminary results using up to 193 pb{sup -1} of t{bar t} events produced in {bar p}p collisions at {radical}s = 1.96 TeV during the Run II of the Tevatron.

  17. Single Z Production at the Tevatron

    SciTech Connect

    Phillips, Thomas J.

    2012-05-01

    The production of single Z bosons has been studied at Fermilab's Tevatron by the CDF and D0 collaborations. Measurements include the weak mixing angle, vector and axial-vector couplings between Z bosons and light quarks, and angular coefficients in electronic decays which are sensitive to the spin of the gluon. The collaborations have looked for and indication of new physics above the mass scale that can be directly produced at the Tevatron by studying the interference between Z and photon propagators. All measurements are consistent with Standard Model expectations.

  18. Supporting multiple control systems at Fermilab

    SciTech Connect

    Nicklaus, Dennis J.; /Fermilab

    2009-10-01

    The Fermilab control system, ACNET, is used for controlling the Tevatron and all of its pre-accelerators. However, other smaller experiments at Fermilab have been using different controls systems, in particular DOOCS and EPICS. This paper reports some of the steps taken at Fermilab to integrate support for these outside systems. We will describe specific tools that we have built or adapted to facilitate interaction between the architectures. We also examine some of the difficulties that arise from managing this heterogeneous environment. Incompatibilities as well as common elements will be described.

  19. Tevatron injection timing

    SciTech Connect

    Saritepe, S.; Annala, G.

    1993-06-01

    Bunched beam transfer from one accelerator to another requires coordination and synchronization of many ramped devices. During collider operation timing issues are more complicated since one has to switch from proton injection devices to antiproton injection devices. Proton and antiproton transfers are clearly distinct sequences since protons and antiprotons circulate in opposite directions in the Main Ring (MR) and in the Tevatron. The time bumps are different, the kicker firing delays are different, the kickers and lambertson magnets are different, etc. Antiprotons are too precious to be used for tuning purposes, therefore protons are transferred from the Tevatron back into the Main Ring, tracing the path of antiprotons backwards. This tuning operation is called ``reverse injection.`` Previously, the reverse injection was handled in one supercycle. One batch of uncoalesced bunches was injected into the Tevatron and ejected after 40 seconds. Then the orbit closure was performed in the MR. In the new scheme the lambertson magnets have to be moved and separator polarities have to be switched, activities that cannot be completed in one supercycle. Therefore, the reverse injection sequence was changed. This involved the redefinition of TVBS clock event $D8 as MRBS $D8 thus making it possible to inject 6 proton batches (or coalesced bunches) and eject them one at a time on command, performing orbit closure each time in the MR. Injection devices are clock event driven. The TCLK is used as the reference clock. Certain TCLK events are triggered by the MR beam synchronized clock (MRBS) events. Some delays are measured in terms of MRBS ticks and MR revolutions. See Appendix A for a brief description of the beam synchronized clocks.

  20. Probing Neutral Gauge Boson Self-Interactions in ZZ Production at the Tevatron

    NASA Astrophysics Data System (ADS)

    Baur, U.; Rainwater, D.

    We present an analysis of ZZ production at the upgraded Fermilab Tevatron for general ZZZ and ZZγ couplings. Achievable limits on these couplings are shown to be a significant improvement over the limits currently obtained by LEP II.

  1. Prototype electron lens set-up for the Tevatron beam-beam compensation

    SciTech Connect

    Crawford, C.; Saewert, G.; Santucci, J.; Sery, A.; Shemyakin, A.; Shiltsev, V.; Wildman, D.; Aleksandrov, A.; Arapov, L.; Kuznetsov, G.; Logachov, P.; Sharapa, A.; Skarbo, B.; Sukhina, B.

    1999-05-17

    A prototype "electron lens" for the Tevatron beam-beam compensation project is commissioned at Fermilab. We de-scribe the set-up, report results of the first tests of the elec-tron beam, and discuss future plans.

  2. Advances in the understanding and operations of superconducting colliders

    SciTech Connect

    Annala, G.; Bauer, P.; Bottura, L.; Martens, M.A.; Sammut, N.; Velev, G.; Shiltsev, V.; /Fermilab

    2005-05-01

    Chromaticity drift during injection is a well-known phenomenon in superconducting colliders, such as the Tevatron, HERA and RHIC. Imperfect compensation of the drift effects can contribute to beam loss and emittance growth. It is caused by the drift of the sextupole component in the dipole magnets due to current redistribution in its superconducting coils. Recently extensive studies of chromaticity drift were conducted at the Tevatron, aiming at the improvement of the luminosity performance in the ongoing run II. These studies included not only beam experiments, but also extensive off-line magnetic measurements on spare Tevatron dipoles. Less known, until recently, is that chromaticity drift is often accompanied by tune and coupling drift. This was recently discovered in the Tevatron. We believe that these effects are the product of systematic beam offset in conjunction with the sextupole drifts (and their compensation in the chromaticity correctors). These discoveries are most relevant to the upcoming LHC, where the drift effects will have even more dramatic consequences given the high beam current. It is therefore not a surprise that CERN has been the source of major advances in the understanding of dynamic effects during the LHC superconducting magnet development. The following will briefly review the CERN results as well as those of the recent Fermilab studies. A new result, which will be presented here also, is related to fast drifts occurring in the first few seconds of the injection plateau. Again, these fast drifts were observed first in the Tevatron and efforts are underway to explain them. Finally this paper will attempt to derive the implications of these drift effects on LHC commissioning and operation.

  3. Fermilab Recycler Stochastic Cooling for Luminosity Production

    SciTech Connect

    Broemmelsiek, D.; Gattuso, C.

    2006-03-20

    The Fermilab Recycler began regularly delivering antiprotons for Tevatron luminosity operations in 2005. Methods for tuning the Recycler stochastic cooling system are presented. The unique conditions and resulting procedures for minimizing the longitudinal phase space density of the Recycler antiproton beam are outlined.

  4. Measurement of the Masses and Lifetimes of B Hadrons at the Tevatron

    SciTech Connect

    Catastini, Pierluigi; /Pisa U. /INFN, Pisa

    2006-05-01

    The latest results for the B Hadron sector at the Tevatron Collider are summarized. The properties of B hadrons can be precisely measured at the Tevatron. In particularly they will focus on the masses and lifetimes. The new Tevatron results for the CP violation in B Hadrons are also discussed.

  5. New Measurements with Photons at the Tevatron

    SciTech Connect

    Dittmann, J.R.; /Baylor U.

    2012-05-01

    With the recent completion of Run II at the Fermilab Tevatron, the CDF and D0 experiments are publishing results based on challenging measurements that probe quantum chromodynamics (QCD) and are sensitive to next-to-leading-order (NLO) and next-to-next-to-leading-order (NNLO) effects and non-perturbative physics. A superior understanding of parton distribution functions and QCD backgrounds will improve the sensitivity of searches for new phenomena at the LHC and reduce uncertainties in a multitude of future measurements. We present three recent photon analyses from data collected at the Fermilab Tevatron: measurements of the direct photon pair production cross section at CDF and D0, measurements of azimuthal decorrelations and multiple parton interactions in {gamma} + 2 jet and {gamma} + 3 jet events at D0, and an observation of exclusive diphoton production at CDF.

  6. Electroweak gauge-boson production in association with b jets at Hadron Colliders

    NASA Astrophysics Data System (ADS)

    Febres Cordero, F.; Reina, L.

    2015-06-01

    The production of both charged and neutral electroweak gauge bosons in association with b jets has attracted a lot of experimental and theoretical attention in recent years because of its central role in the physics programs of both the Fermilab Tevatron and the CERN Large Hadron Collider. The improved level of accuracy achieved both in the theoretical predictions and experimental measurements of these processes can promote crucial developments in modeling b-quark jets and b-quark parton distribution functions, and can provide a more accurate description of some of the most important backgrounds to the measurement of Higgs-boson couplings and several new physics searches. In this paper, we review the status of theoretical predictions for cross sections and kinematic distributions of processes in which an electroweak gauge boson is produced in association with up to two b jets in hadronic collisions, namely p\\bar {p}, pp → V + 1b jet and p\\bar {p}, pp → V + 2b jets with V = W±, Z/γ*, γ. Available experimental measurements at both the Fermilab Tevatron and the CERN Large Hadron Collider are also reviewed and their comparison with theoretical predictions is discussed.

  7. Antiproton production for Tevatron

    SciTech Connect

    Azhgirey, I.L.; Mokhov, N.V.; Striganov, S.I. . Inst. Fiziki Vysokikh Ehnergij)

    1991-03-01

    Needs to improve the Fermilab Pbar Source for the Tevatron Upgrade and discrepancies in predictions of the antiproton yields have forced us to develop the production model based on the modern data and to incorporate this model to the current version of MARS10 code. The inclusive scheme of this code with the use of statistical weights allows the production of antiprotons to be enhanced within the phase space region of interest, which is extremely effective for optimization of Pbar Source parameters and for developing of such an idea as a beam sweeping system. Antiproton production model included in the modified version of our Monte Carlo program MARS10M for the inclusive simulation of hadronic cascades, as for other particles throughout the program, is based on a factorization approach for hadron-nucleus differential cross-section. To describe antiproton inclusive spectra in pp-collisions a phenomenological model has been used modified in the low-Pt region. The antiproton production in pion-nucleon interactions is described in the frame of our simple phenomenological model based on the modern data. In describing of the of antiproton production cross-sections ratio in hadron-nucleus and hadron-nucleon collisions the ideas of soft hadronization of color strings and all the present experimental data have been used. Some comparisons of our model with experimental data are presented in the wide intervals of initial momenta, antiproton kinematical variables and nuclei. In all the cases the agreement is pretty good what gives us an assurance in the consequent studies carried out for the Fermilab Pbar Source. The results of such study are presented in this paper.

  8. Recent QCD Studies at the Tevatron

    SciTech Connect

    Group, Robert Craig

    2008-04-01

    Since the beginning of Run II at the Fermilab Tevatron the QCD physics groups of the CDF and D0 experiments have worked to reach unprecedented levels of precision for many QCD observables. Thanks to the large dataset--over 3 fb{sup -1} of integrated luminosity recorded by each experiment--important new measurements have recently been made public and will be summarized in this paper.

  9. Top quark production at the Tevatron

    SciTech Connect

    Varnes, Erich W.; /Arizona U.

    2010-09-01

    The Fermilab Tevatron has, until recently, been the only accelerator with sufficient energy to produce top quarks. The CDF and D0 experiments have collected large samples of top quarks. We report on recent top quark production measurements of the single top and t{bar t} production cross sections, as well as studies of the t{bar t} invariant mass distribution and a search for highly boosted top quarks.

  10. Top quark physics at the Tevatron

    SciTech Connect

    D. Gerdes

    2004-01-28

    Precision studies of the top quark are a prime goal of the Run II physics program at the Fermilab Tevatron. Since the start of Run II in early 2002, the CDF and D0 experiments have analyzed approximately 100 pb{sup -1} of data and have re-established the top quark signal. In this article the author summarizes recent measurements of the top production cross section and mass.

  11. Mixing and CP Violation at the Tevatron

    SciTech Connect

    Brooijmans, G.; /Columbia U.

    2008-08-01

    Measurements of meson mixing and CP violation parameters obtained by the CDF and D0 experiments at the Fermilab Tevatron are presented. These include results on B{sub s} and D meson mixing, and searches for CP violation in the decay B{sup +} {yields} J/{psi}K{sup +}, in mixing through semileptonic B{sub s} meson decays, and in the interference between mixing and decay in the process B{sub s} {yields} J/{psi}{phi}.

  12. B(s) Properties at the Tevatron

    SciTech Connect

    Burdin, Sergey; /Fermilab

    2007-07-01

    Recent results on B{sub s} properties obtained by the CDF and D0 collaborations collected at the Tevatron Collider in the period 2002-2006 were presented at the Hadron Collider Physics Symposium 2006 (Duke University, Durham). The measurements of B{sub s} mass and width differences are discussed in details. Prospects on measurements of CP violation in B{sub s} system are given.

  13. Roll measurement of Tevatron dipoles and quadrupoles

    SciTech Connect

    Volk, J.T.; Elementi, L.; Gollwitzer, K.; Jostlein, H.; Nobrega, F.; Shiltsev, V.; Stefanski, R.

    2006-09-01

    In 2003 a simple digital level system was developed to allow for rapid roll measurements of all dipoles and quadrupoles in the Tevatron. The system uses a Mitutoyo digital level and a PC running MS WINDOWS XP and LAB VIEW to acquire data on the upstream and downstream roll of each magnet. The system is sufficiently simple that all 1,000 magnets in the Tevatron can be measured in less than 3 days. The data can be quickly processed allowing for correction of rolled magnets by the Fermilab alignment group. Data will be presented showing the state of the Tevatron in 2003 and the changes in rolls as measured in each shutdown since then.

  14. Commisioning of the second Tevatron electron lens and beam study results

    SciTech Connect

    Kamerdzhiev, V.; Fellenz, B.; Hively, R.; Kuznetsov, G.; Olson, M.; Pfeffer, H.; Saewert, G.; Scarpine, V.; Shiltsev, V.; Zhang, X.L.; /Fermilab

    2007-06-01

    In the framework of Fermilab's Beam-Beam Compensation (BBC) project, the 2nd Tevatron Electron Lens (TEL2) was installed in the Tevatron during Spring 2006 shutdown. It was successfully commissioned and a series of beam studies has been carried out in single bunch and all-bunch modes. The paper describes TEL2 commissioning and beam studies results.

  15. Searches for supersymmetry at the Tevatron

    SciTech Connect

    Lytken, Else; /Purdue U.

    2006-05-01

    The results for searches for Supersymmetry at the Tevatron Collider are summarized in this paper. They focus here on searches for chargino/neutralino and the lightest stop, as well as scenarios with R-parity violation and split supersymmetry. No significant excesses with respect to the Standard Model were observed and constraints are set on the SUSY parameter space.

  16. Signatures of the anomalous Zγ and ZZ production at lepton and hadron colliders

    NASA Astrophysics Data System (ADS)

    Gounaris, G. J.; Layssac, J.; Renard, F. M.

    2000-04-01

    The possible form of new physics (NP) interactions affecting the ZZZ, ZZγ, and Zγγ vertices is critically examined. Their signatures and the possibilities to study them, through ZZ and Zγ production, at the CERN e-e+ colliders LEP and LC and at the hadronic colliders, the Fermilab Tevatron and CERN LHC, are investigated. Experimental limits obtained or expected on each coupling are collected. A simple theoretical model based on virtual effects due to some heavy fermions is used for acquiring some guidance on the plausible forms of these NP vertices. In such a case specific relations among the various neutral couplings are predicted, which can be experimentally tested and possibly used to constrain the form of the responsible NP structure.

  17. Jet Physics at the Tevatron

    SciTech Connect

    Bhatti, Anwar; Lincoln, Don

    2010-02-01

    Jets have been used to verify the theory of quantum chromodynamics (QCD), measure the structure of the proton and to search for the physics beyond the Standard Model. In this article, we review the current status of jet physics at the Tevatron, a {radical}s = 1.96 TeV p{bar p} collider at the Fermi National Accelerator Laboratory. We report on recent measurements of the inclusive jet production cross section and the results of searches for physics beyond the Standard Model using jets. Dijet production measurements are also reported.

  18. Supersymmetry searches at the Tevatron

    SciTech Connect

    Portell, Xavier; /Barcelona, IFAE

    2006-09-01

    CDF and D0 detectors have already collected 1.3 fb{sup -1} of data delivered by the Tevatron collider at 1.96 TeV center-of-mass energy. We present here the various analyses that are currently testing the possibility of a supersymmetric extension of the Standard Model. No evidence for such processes have been found in luminosities that range from 300 to 800 pb{sup -1} and different limits on the different supersymmetric models are set. Constraints coming from indirect searches are also presented.

  19. Heavy flavor at the Tevatron

    NASA Astrophysics Data System (ADS)

    Leo, S.

    2016-07-01

    The CDF and D0 experiments at the Tevatron proton-antiproton collider have pioneered and established the role of hadron collisions in exploring flavor physics through a broad program that continues to offer competitive results. I report on latest results in the flavor sector obtained using the whole CDF and D0 data sets corresponding to {˜}10{ fb-1} of integrated luminosity; including B-mesons spectroscopy and production asymmetries, flavor specific decay bottom-strange mesons lifetime. I also present measurements of direct and indirect CP violation in bottom and charm meson decays.

  20. Physics History Books in the Fermilab Library

    SciTech Connect

    Sara Tompson

    1999-09-17

    Fermilab is a basic research high-energy physics laboratory operated by Universities Research Association, Inc. under contract to the U.S. Department of Energy. Fermilab researchers utilize the Tevatron particle accelerator (currently the world�s most powerful accelerator) to better understand subatomic particles as they exist now and as they existed near the birth of the universe. A collection review of the Fermilab Library monographs was conducted during the summers of 1998 and 1999. While some items were identified for deselection, the review proved most fruitful in highlighting some of the strengths of the Fermilab monograph collection. One of these strengths is history of physics, including biographies and astrophysics. A bibliography of the physics history books in the collection as of Summer, 1999 follows, arranged by author. Note that the call numbers are Library of Congress classification.

  1. Physics History Books in the Fermilab Library

    SciTech Connect

    Sara Tompson.

    1999-09-17

    Fermilab is a basic research high-energy physics laboratory operated by Universities Research Association, Inc. under contract to the U.S. Department of Energy. Fermilab researchers utilize the Tevatron particle accelerator (currently the worlds most powerful accelerator) to better understand subatomic particles as they exist now and as they existed near the birth of the universe. A collection review of the Fermilab Library monographs was conducted during the summers of 1998 and 1999. While some items were identified for deselection, the review proved most fruitful in highlighting some of the strengths of the Fermilab monograph collection. One of these strengths is history of physics, including biographies and astrophysics. A bibliography of the physics history books in the collection as of Summer, 1999 follows, arranged by author. Note that the call numbers are Library of Congress classification.

  2. Search for the Standard Model Higgs boson in final states with $b$ quarks at the Tevatron

    SciTech Connect

    Potamianos, Karolos

    2011-11-01

    We present the result of searches for a low mass Standard Model Higgs boson produced in association with a W or a Z boson at a center-of-mass energy of {radical}s = 1.96 TeV with the CDF and D0 detectors at the Fermilab Tevatron collider. The search is performed in events containing one or two b tagged jets in association with either two leptons, or one lepton and an imbalance in transverse energy, or simply a large imbalance in transverse energy. Datasets corresponding to up to 8.5 fb{sup -1} of integrated luminosity are considered in the analyses. These are the most powerful channels in the search for a low mass Higgs boson at the Tevatron. Recent sensitivity improvements are discussed. For a Higgs mass of 115 GeV/c{sup 2}, the expected sensitivity for the most sensitive individual analyses reaches 2.3 times the SM prediction at 95% confidence level (C.L.), with all limits below 5 times the SM. Additionally, a WZ/ZZ cross-section measurement is performed to validate the analysis techniques deployed for searching for the Higgs.

  3. Deterioration of the skew quadrupole moment in Tevatron dipoles over time

    SciTech Connect

    Syphers, M.J.; Harding, D.J.; /Fermilab

    2005-05-01

    During the 20 years since it was first commissioned, the Fermilab Tevatron has developed strong coupling between the two transverse degrees of freedom. A circuit of skew quadrupole magnets is used to correct for coupling and, though capable, its required strength has increased since 1983 by more than an order of magnitude. In more recent years changes to the Tevatron for colliding beams operation have altered the skew quadrupole corrector distribution and strong local coupling become evident, often encumbering routine operation during the present physics run. Detailed magnet measurements were performed on each individual magnet during construction, and in early 2003 it was realized that measurements could be performed on the magnets in situ which could determine coil movements within the iron yoke since the early 1980's. It was discovered that the superconducting coils had become vertically displaced relative to their yokes since their construction. The ensuing systematic skew quadrupole field introduced by this displacement accounts for the required corrector settings and observed beam behavior. An historical account of the events leading to this discovery and progress toward its remedy are presented.

  4. Measurement of the t$\\bar{t}$ cross section at the Run II Tevatron using Support Vector Machines

    SciTech Connect

    Whitehouse, Benjamin Eric

    2010-08-01

    This dissertation measures the t$\\bar{t}$ production cross section at the Run II CDF detector using data from early 2001 through March 2007. The Tevatron at Fermilab is a p$\\bar{p}$ collider with center of mass energy √s = 1.96 TeV. This data composes a sample with a time-integrated luminosity measured at 2.2 ± 0.1 fb-1. A system of learning machines is developed to recognize t$\\bar{t}$ events in the 'lepton plus jets' decay channel. Support Vector Machines are described, and their ability to cope with a multi-class discrimination problem is provided. The t$\\bar{t}$ production cross section is then measured in this framework, and found to be σt$\\bar{t}$ = 7.14 ± 0.25 (stat)-0.86+0.61(sys) pb.

  5. Beam-beam effects in the Tevatron

    SciTech Connect

    Shiltsev, V.; Alexahin, Y.; Lebedev, V.; Lebrun, P.; Moore, R.S.; Sen, T.; Tollestrup, A.; Valishev, A.; Zhang, X.L.; /Fermilab

    2005-01-01

    The Tevatron in Collider Run II (2001-present) is operating with 6 times more bunches, many times higher beam intensities and luminosities than in Run I (1992-1995). Electromagnetic long-range and head-on interactions of high intensity proton and antiproton beams have been significant sources of beam loss and lifetime limitations. We present observations of the beam-beam phenomena in the Tevatron and results of relevant beam studies. We analyze the data and various methods employed in operations, predict the performance for planned luminosity upgrades, and discuss ways to improve it.

  6. $B$ and $D$ Physics from the Tevatron

    SciTech Connect

    Squillacioti, Paola

    2011-10-01

    The CDF and D0 experiments at the Tevatron pp collider established that extensive and detailed exploration of the b-quark dynamics is possible in hadron collisions, with results competitive and supplementary to B-factories. In this paper we review the current state of Tevatron's heavy flavor measurements considering two main categories: searches for non standard model physics (results on rare decays and CP-violation) and determinations of standard model parameters (annihilation in B {yields} h{sup +}h{sup -} decays and {gamma} angle measurement through B {yields} DK modes).

  7. Top and Electroweak Measurements at the Tevatron

    SciTech Connect

    Bartos, P.

    2016-01-01

    In this report, we summarize the latest results of the top-quark mass and electroweak measurements from the Tevatron. Since the world combination of top-quark mass measurements was done, CDF and D0 experiments improved the precision of several results. Some of them reach the relative precition below 1% for a single measurement. From the electroweak results, we report on the WW and WZ production cross section, measurements of the weak mixing angle and indirect measurements of W boson mass. The Tevatron results of the weak mixing angle are still the most precise ones of hadron colliders.

  8. Proton synchrotron radiation at Fermilab

    SciTech Connect

    Thurman-Keup, Randy; /Fermilab

    2006-05-01

    While protons are not generally associated with synchrotron radiation, they do emit visible light at high enough energies. This paper presents an overview of the use of synchrotron radiation in the Tevatron to measure transverse emittances and to monitor the amount of beam in the abort gap. The latter is necessary to ensure a clean abort and prevent quenches of the superconducting magnets and damage to the silicon detectors of the collider experiments.

  9. Fermilab Steering Group Report

    SciTech Connect

    Beier, Eugene; Butler, Joel; Dawson, Sally; Edwards, Helen; Himel, Thomas; Holmes, Stephen; Kim, Young-Kee; Lankford, Andrew; McGinnis, David; Nagaitsev, Sergei; Raubenheimer, Tor; /SLAC /Fermilab

    2007-01-01

    in the U.S. and creating an engineering opportunity for ILC cost reductions. It offers an early and tangible application for ILC R&D in superconducting technology, attracting participation from accelerator scientists worldwide and driving forward the technology for still higher-energy accelerators of the future, such as a muon collider. To prepare for a future decision, the Fermilab Steering Group recommends that the laboratory seek R&D support for Project X, in order to produce an overall design of Project X and to spur the R&D and industrialization of ILC linac components needed for Project X. Advice from the High Energy Physics Advisory Panel will guide any future decision to upgrade the Fermilab accelerator complex, taking into account developments affecting the ILC schedule and the continuing evaluation of scientific priorities for U.S. particle physics. Fermilab should also work toward increased resources for longer-term future accelerators such as a muon collider, aiming at higher energies than the ILC would provide.

  10. Fermilab Steering Group Report

    SciTech Connect

    Steering Group, Fermilab; /Fermilab

    2007-12-01

    in the U.S. and creating an engineering opportunity for ILC cost reductions. It o.ers an early and tangible application for ILC R&D in superconducting technology, attracting participation from accelerator scientists worldwide and driving forward the technology for still higher-energy accelerators of the future, such as a muon collider. To prepare for a future decision, the Fermilab Steering Group recommends that the laboratory seek R&D support for Project X, in order to produce an overall design of Project X and to spur the R&D and industrialization of ILC linac components needed for Project X. Advice from the High Energy Physics Advisory Panel will guide any future decision to upgrade the Fermilab accelerator complex, taking into account developments a.ecting the ILC schedule and the continuing evaluation of scientific priorities for U.S. particle physics. Fermilab should also work toward increased resources for longer-term future accelerators such as a muon collider, aiming at higher energies than the ILC would provide.

  11. Electroweak Physics at the Tevatron

    SciTech Connect

    Sekaric, J.; /Kansas U.

    2011-06-08

    The most recent Electroweak results from the Tevatron are presented. The importance of precise Standard Model measurements in the Higgs sector, quantum chromodynamics and searches for new physics is emphasized. Analyzed data correspond to 1-7 fb{sup -1} of integrated luminosity recorded by the CDF and D0 detectors at the Tevatron Collider at {radical}s = 1.96 TeV during the period between 2002-2010. The main goal of the Electroweak (EW) physics is to probe the mechanism of the EW symmetry breaking. An important aspect of these studies is related to precise measurements of the Standard Model (SM) parameters and tests of the SU(2) x U(1) gauge symmetry. Deviations from the SM may be indicative of new physics. Thus, the interplay between the tests of the 'standard' physics and searches for a 'nonstandard' physics is an important aspect of the EW measurements. The observables commonly used in these measurements are cross sections, gauge boson couplings, differential distributions, asymmetries, etc. Besides, many EW processes represent a non-negligible background in a Higgs boson and top quark production, and production of supersymmetric particles. Therefore, the complete and detailed understanding of EW processes is a mandatory precondition for early discoveries of very small new physics signals. Furthermore, several EW analyses represent a proving ground for analysis techniques and statistical treatments used in the Tevatron Higgs searches.

  12. Shielding design at Fermilab: Calculations and measurements

    SciTech Connect

    Cossairt, J.D.

    1986-11-01

    The development of the Fermilab accelerator complex during the past two decades from its concept as the ''200 BeV accelerator'' to that of the present tevatron, designed to operate at energies as high as 1 TeV, has required a coincidental refinement and development in methods of shielding design. In this paper I describe these methods as used by the radiation protection staff of Fermilab. This description will review experimental measurements which substantiate these techniques in realistic situations. Along the way, observations will be stated which likely are applicable to other protron accelerators in the multi-hundred GeV energy region, including larger ones yet to be constructed.

  13. Observation of Central Exclusive Diphoton Production at the Tevatron

    SciTech Connect

    Brucken, Jens Erik

    2013-01-01

    We have observed exclusive γγ production in proton-antiproton collisions at the Tevatron at √ s = 1.96 TeV. We use data corresponding to 1.11 ± 0.07 fb-1 integrated luminosity taken by the Run II Collider Detector at Fermilab, with a trigger requiring two electromagnetic showers, each with transverse energy ET > 2 GeV, and vetoing on hits in the forward beam shower counters. We select events with two electromagnetic showers, each with transverse energy ET > 2.5 GeV and pseudorapidity |η| < 1.0, with no other particles detected in -7.4 < η < +7.4. The two showers have similar ET and an azimuthal angle separation Δφ ~ π; we find 34 events with exactly two matching charged particle tracks, agreeing with expectations for the QED process p¯p → p+e+e- + ¯p by two photon exchange; and we find 43 events with no tracks. The latter are candidates for the exclusive process p¯p → p + γγ + ¯p by double pomeron exchange. We use the strip and wire chambers at the longitudinal shower maximum position within the calorimeter to measure a possible exclusive background from IP + IP → π0π0, and conclude that it is consistent with zero and is < 15 events at 95% C.L. The measured cross section is σγγ,excl(|η| < 1, ET (γ) > 2.5 GeV) = 2.48 +0.40 -0.35(stat) +0.40 -0.51(syst) pb and in agreement with the theoretical predictions. This process is closely related to exclusive Higgs boson production pp → p + H + p at the Large Hadron Collider. The observation of the exclusive production of diphotons shows that exclusive Higgs production can happen and could be observed with a proper experimental setup.

  14. Feasibility of searches for a Higgs boson using H{yields}W{sup +}W{sup -}{yields}l{sup +}l{sup -} + missing p{sub T} and high p{sub T} jets at the Fermilab Tevatron

    SciTech Connect

    Mellado, Bruce; Quayle, William; Wu, S.L.

    2007-11-01

    The sensitivity of standard model Higgs boson searches at the Tevatron experiments with a mass 135

  15. QCD Physics at the Tevatron Collider

    SciTech Connect

    Messina, Andrea

    2005-10-12

    In this contribution some of the prominent QCD physics results from CDF and D0 experiments in Run II are presented. The cross sections and the properties of jets are discussed for both the inclusive and the b-jet production. Results on the associate production of light and heavy flavour jets together with vector bosons are also reported.

  16. A Novel method for modeling the recoil in W boson events at hadron collider

    SciTech Connect

    Abazov, Victor Mukhamedovich; Abbott, Braden Keim; Abolins, Maris A.; Acharya, Bannanje Sripath; Adams, Mark Raymond; Adams, Todd; Aguilo, Ernest; Ahsan, Mahsana; Alexeev, Guennadi D.; Alkhazov, Georgiy D.; Alton, Andrew K.; /Michigan U. /Augustana Coll., Sioux Falls /Northeastern U.

    2009-07-01

    We present a new method for modeling the hadronic recoil in W {yields} {ell}{nu} events produced at hadron colliders. The recoil is chosen from a library of recoils in Z {yields} {ell}{ell} data events and overlaid on a simulated W {yields} {ell}{nu} event. Implementation of this method requires that the data recoil library describe the properties of the measured recoil as a function of the true, rather than the measured, transverse momentum of the boson. We address this issue using a multidimensional Bayesian unfolding technique. We estimate the statistical and systematic uncertainties from this method for the W boson mass and width measurements assuming 1 fb{sup -1} of data from the Fermilab Tevatron. The uncertainties are found to be small and comparable to those of a more traditional parameterized recoil model. For the high precision measurements that will be possible with data from Run II of the Fermilab Tevatron and from the CERN LHC, the method presented in this paper may be advantageous, since it does not require an understanding of the measured recoil from first principles.

  17. Fixed-target physics at Fermilab

    SciTech Connect

    Bjorken, J.D.

    1985-03-01

    The Fermilab Energy Saver is now successfully commissioned and fixed-target experimentation at high energy (800 GeV) has begun. In addition, a number of new experiments designed to exploit the unique features of the Tevatron are yet to come on-line. In this talk, we will review recent accomplishments in the fixed-target program and describe experiments in progress and others yet to come.

  18. Antiproton Cooling in the Fermilab Recycler Ring

    SciTech Connect

    Nagaitsev, S.; Broemmelsiek, D.; Burov, A.; Carlson, K.; Gattuso, C.; Hu, M.; Kramper, B.; Kroc, T.; Leibfritz, J.; Prost, L.; Pruss, S.; Saewert, G.; Schmidt, C. W.; Shemyakin, A.; Sutherland, M.; Tupikov, V.; Warner, A.; Bolshakov, A.; Zenkevich, P.; Kazakevich, G.

    2006-03-20

    The 8.9-GeV/c Recycler antiproton storage ring is equipped with both stochastic and electron cooling systems. These cooling systems are designed to assist accumulation of antiprotons for the Tevatron collider operations. In this paper we report on an experimental demonstration of electron cooling of high-energy antiprotons. At the time of writing this report, the Recycler electron cooling system is routinely used in collider operations. It has helped to set recent peak luminosity records.

  19. Antiproton cooling in the Fermilab Recycler Ring

    SciTech Connect

    Nagaitsev, S.; Bolshakov, A.; Broemmelsiek, D.; Burov, Alexey V.; Carlson, K.; Gattuso, C.; Hu, M.; Kazakevich, G.; Kramper, B.; Kroc, T.; Leibfritz, J.; Prost, L.; Pruss, S.; Saewert, G; Schmidt, C.W.; Seletskiy, S.; Shemyakin, A.; Sutherland, M.; Tupikov, V.; Warner, A.; Zenkevich, P.; /Fermilab /Moscow, ITEP /Novosibirsk, IYF /Rochester U.

    2005-12-01

    The 8.9-GeV/c Recycler antiproton storage ring is equipped with both stochastic and electron cooling systems. These cooling systems are designed to assist accumulation of antiprotons for the Tevatron collider operations. In this paper we report on an experimental demonstration of electron cooling of high-energy antiprotons. At the time of writing this report, the Recycler electron cooling system is routinely used in collider operations. It has helped to set recent peak luminosity records.

  20. A Review of recent results from the Tevatron

    SciTech Connect

    Chiarelli, Giorgo; /INFN, Pisa

    2007-06-01

    The D0 and CDF experiments have been taking data at the Run 2 of the Tevatron Collider since 2001. We present a selection of recent results, most of them obtained with an integrated luminosity of {approx_equal} 1 fb{sup -1}. I will describe the most important facets of the physics programme and detail some results. Recent direct limits on standard model Higgs obtained at the Tevatron, and their their prospects will be also reviewed.

  1. Beam-beam effects in the Tevatron Run II

    SciTech Connect

    Shiltsev, V.; Alexahin, Yu.; Lebedev, V.; Lebrun, P.; Moore, R.; Sen, T.; Valishev, A.; Zhang, X.L.; /FERMILAB

    2005-05-01

    Electromagnetic long-range and head-on interactions of high intensity proton and antiproton beams are significant sources of beam loss and lifetime limitations in the Tevatron Collider Run II (2001-present). We present observations of the beam-beam phenomena in the Tevatron and results of relevant beam studies. We analyze the data and various methods employed in high energy physics (HEP) operation, predict the performance for planned luminosity upgrades and discuss ways to improve it.

  2. Beam intensity upgrade at Fermilab

    SciTech Connect

    Marchionni, A.; /Fermilab

    2006-07-01

    The performance of the Fermilab proton accelerator complex is reviewed. The coming into operation of the NuMI neutrino line and the implementation of slip-stacking to increase the anti-proton production rate has pushed the total beam intensity in the Main Injector up to {approx} 3 x 10{sup 13} protons/pulse. A maximum beam power of 270 kW has been delivered on the NuMI target during the first year of operation. A plan is in place to increase it to 350 kW, in parallel with the operation of the Collider program. As more machines of the Fermilab complex become available with the termination of the Collider operation, a set of upgrades are being planned to reach first 700 kW and then 1.2 MW by reducing the Main Injector cycle time and by implementing proton stacking.

  3. A search for the higgs boson and a search for dark-matter particle with jets and missing transverse energy at collider detector at Fermilab

    SciTech Connect

    Liu, Qiuguang

    2013-05-01

    Finding the standard model Higgs boson and discovering beyond-standard model physics phenomena have been the most important goals for the high-energy physics in the last decades. In this thesis, we present two such searches. First is the search for the low mass standard model Higgs boson produced in association with a vector boson; second is the rst search for a dark-matter candidate (D) produced in association with a top quark (t) in particle colliders. We search in events with energetic jets and large missing transverse energy { a signature characterized by complicated backgrounds { in data collected by the CDF detector with proton-antiproton collisions at p s = 1:96 TeV. We discuss the techniques that have been developed for background modeling, for discriminating signal from background, and for reducing background resulting from detector e ects. In the Higgs search, we report the 95% con dence level upper limits on the pro- duction cross section across masses of 90 to 150 GeV/c2. The expected limits are improved by an average of 14% relative to the previous analysis. The Large Hadron Collider experiments reported a Higgs-like particle with mass of 125 GeV/c2 by study- ing the data collected in year 2011/12. At a Higgs boson mass of 125 GeV/c2, our observed (expected) limit is 3.06 (3.33) times the standard model prediction, corre- sponding to one of the most sensitive searches to date in this nal state. In the dark matter search, we nd the data are consistent with the standard model prediction, thus set 95% con dence level upper limits on the cross section of the process p p ! t + D as a function of the mass of the dark-matter candidate. The xviii upper limits are approximately 0.5 pb for a dark-matter particle with masses in the range of 0 􀀀 150 GeV/c2.

  4. CP Violation Measurements at the Tevatron

    SciTech Connect

    Williams, Mark .R.J.; /Lancaster U.

    2010-07-09

    The two colliding beam experiments at the Tevatron proton-antiproton collider, CDF and D0, continue to publish world-leading measurements of CP Violation parameters in the B meson sector. I will present several recent results from both experiments, including measurements of direct CP violating parameters in decays of B{sup +}{sub u}, B{sup 0}{sub d} and B{sup 0}{sub s} mesons; a new D0 measurement of a{sup s}{sub sl} using time-dependent analysis of B{sub s} {yields} {mu}{sup +}{nu}D{sup -}{sub s}X decays; and the latest Tevatron combination of the CP violating phase {beta}{sub s}, measured in the 'golden mode' B{sub s} {yields} J/{psi}{phi}.

  5. Tevatron-for-LHC Report of the QCD Working Group

    SciTech Connect

    Albrow, Michael G.; Begel, M.; Bourilkov, D.; Campanelli, M.; Chlebana, F.; De Roeck, A.; Dittmann, J.R.; Ellis, S.D.; Field, B.; Field, R.; Gallinaro, M.; /Fermilab /Rochester U. /Florida U. /Geneva U. /CERN /Baylor U. /Washington U., Seattle /Florida State U. /Rockefeller U. /Prague, Tech. U. /Michigan State U.

    2006-10-01

    The experiments at Run 2 of the Tevatron have each accumulated over 1 fb{sup -1} of high-transverse momentum data. Such a dataset allows for the first precision (i.e. comparisons between theory and experiment at the few percent level) tests of QCD at a hadron collider. While the Large Hadron Collider has been designed as a discovery machine, basic QCD analyses will still need to be performed to understand the working environment. The Tevatron-for-LHC workshop was conceived as a communication link to pass on the expertise of the Tevatron and to test new analysis ideas coming from the LHC community. The TeV4LHC QCD Working Group focused on important aspects of QCD at hadron colliders: jet definitions, extraction and use of Parton Distribution Functions, the underlying event, Monte Carlo tunes, and diffractive physics. This report summarizes some of the results achieved during this workshop.

  6. Tevatron Measurements of Electroweak Boson Production

    SciTech Connect

    Hooper, Ryan J.; /Lewis U.

    2011-08-01

    With a large and still increasing dataset, W and Z boson physics studies at the Tevatron p{bar p} collider are particularly useful for testing many aspects of the Standard Model. In this proceeding, we present measurements of electroweak boson properties, distributions, and charge asymmetries. We examine both solitary W and Z production as well as production in association with jets. These measurements are compared to NLO QCD predictions, are used to extract fundamental Standard Model parameters, and constrain parton distribution functions.

  7. Performance evolution and expectations management: lessons from Tevatron and other machines

    SciTech Connect

    Shiltsev, V.; /Fermilab

    2011-02-01

    We review the LHC luminosity progress in 2010, discuss the luminosity evolution of the Tevatron collider at different stages of the Collider Runs, emphasize general dynamics of the process, compare with the performance of the other colliders analyze planned and delivered luminosity integrals, and discuss the expectation management lessons.

  8. Standard Model Higgs Searches at the Tevatron

    SciTech Connect

    Knoepfel, Kyle J.

    2012-06-01

    We present results from the search for a standard model Higgs boson using data corresponding up to 10 fb{sup -1} of proton-antiproton collision data produced by the Fermilab Tevatron at a center-of-mass energy of 1.96 TeV. The data were recorded by the CDF and D0 detectors between March 2001 and September of 2011. A broad excess is observed between 105 < m{sub H} < 145 GeV/c{sup 2} with a global significance of 2.2 standard deviations relative to the background-only hypothesis.

  9. Baryon Spectroscopy Results at the Tevatron

    SciTech Connect

    Van Kooten, R.

    2010-08-05

    The Tevatron at Fermilab continues to collect data at high luminosity resulting in datasets in excess of 6 fb{sup -1} of integrated luminosity. The high collision energies allow for the observation of new heavy quark baryon states not currently accessible at any other facility. In addition to the ground state Lb, the spectroscopy and properties of the new heavy baryon states {Omega}{sub b}, {Xi}{sub b}, and {Sigma}{sub b}{sup (*)} as measured by the CDF and DOe Collaborations will be presented.

  10. Heavy Hadron Spectroscopy and Production at Tevatron

    SciTech Connect

    Gorelov, Igor V.; /New Mexico U.

    2011-10-01

    Using data from p{bar p} collisions at {radical}s = 1.96 TeV recorded by the CDFII and D0 detectors at the Fermilab Tevatron, we present recent results on charm and bottom hadrons. The most recent CDF results on properties of the four bottom baryon resonant states {Sigma}{sub b}{sup (*)-}, {Sigma}{sub b}{sup (*)+}. New results on exotic {Upsilon}(4140) state observed by CDF are also reported. A precise measurement of production rates of the lowest lying bottom baryon, {Lambda}{sub b}{sup 0}, produced in the D0 detector is presented.

  11. B Physics at the TeVatron

    SciTech Connect

    Morello, Michael Joseph; /Pisa U. /INFN, Pisa

    2011-10-01

    The CDF and D0 experiments at the Tevatron p{bar p} collider established that extensive and detailed exploration of the b-quark dynamics is possible in hadron collisions, with results competitive and supplementary to those from e{sup +}e{sup -} colliders. This provides a rich, and highly rewarding program that is currently reaching full maturity. I report a few recent world-leading results on rare decays, CP-violation in B{sub s}{sup 0} mixing, b {yields} s penguin decays, and charm physics.

  12. A new high-gradient correction quadrupole for the Fermilab luminosity upgrade

    SciTech Connect

    Mantsch, P.; Carson, J.; Riddiford, A.; Lamm, M.J.

    1989-03-01

    Special superconducting correction quadrupoles are needed for the luminosity upgrade of the Fermilab Tevatron Collider. These correctors are part of the low-beta system for the interaction regions at B/phi/ and D/phi/. The requirements are high gradient and low current. A quadrupole has been designed that meets the operating gradient of 0.63 T/cm at 1086 A. The one-layer quadrupole is wound with a cable consisting of five individually insulated rectangular strands. The five strands are overwrapped with Kapton and epoxy impregnated glass tape. The winding, curing and collaring of the magnet is accomplished in the same manner as Tevatron-like magnets using Rutherford style cable. Once the magnet is complete the five strands are connected in series. A prototype quadrupole has been assembled and tested. The magnet reached a plateau current of 1560 A corresponding to a gradient of 0.91 T/cm without training. The measured field harmonics are substantially better than required. 8 refs., 6 figs., 4 tabs.

  13. Critical speed measurements in the Tevatron cold compressors

    SciTech Connect

    DeGraff, B.; Bossert, R.; Martinez, A.; Soyars, W.M.; /Fermilab

    2006-01-01

    The Fermilab Tevatron cryogenic system utilizes high-speed centrifugal cold compressors, manufactured by Ishikawajima-Harima Heavy Industries Co. Ltd. (IHI), for high energy operations. Nominal operating range for these compressors is 43,000 to 85,000 rpm. Past foil bearing failures prompted investigation to determine if critical speeds for operating compressors fall within operating range. Data acquisition hardware and software settings will be discussed for measuring liftoff, first critical and second critical speeds. Several tests provided comparisons between an optical displacement probe and accelerometer measurements. Vibration data and analysis of the 20 Tevatron ring cold compressors will be presented.

  14. Measurements of Top Quark Properties at the Tevatron

    SciTech Connect

    Mietlicki, David J.; /Michigan U.

    2012-04-01

    The top quark is the most recently discovered of the standard model quarks, and studies of its properties are important tests of the standard model. Many measurements of top properties have been produced by the CDF and D0 collaborations, which study top quarks produced in p{bar p} collisions at the Fermilab Tevatron with a center-of-mass energy {radical}s = 1.96 TeV. We describe recent results from top properties measurements at the Tevatron using datasets corresponding to integrated luminosities up to 8.7 fb{sup -1}.

  15. Recent Fermilab results on hadroproduction of heavy flavors

    SciTech Connect

    Garbincius, P.H.

    1993-08-01

    Recent results from various Fermilab experiments on the hadroproduction of states containing charm, bottom, and top quarks are discussed. These include observation of the spectra, lifetime, and production characteristics of charmonium, open charm states, and bottom particle production with both high energy fixed target and {bar p}-p collider facilities. The status of the search for the top quark by the Fermilab collider experiments is updated.

  16. Electron Lenses for the Large Hadron Collider

    SciTech Connect

    Stancari, Giulio; Valishev, Alexander; Bruce, Roderik; Redaelli, Stefano; Rossi, Adriana; Salvachua, Belen

    2014-07-01

    Electron lenses are pulsed, magnetically confined electron beams whose current-density profile is shaped to obtain the desired effect on the circulating beam. Electron lenses were used in the Fermilab Tevatron collider for bunch-by-bunch compensation of long-range beam-beam tune shifts, for removal of uncaptured particles in the abort gap, for preliminary experiments on head-on beam-beam compensation, and for the demonstration of halo scraping with hollow electron beams. Electron lenses for beam-beam compensation are being commissioned in RHIC at BNL. Within the US LHC Accelerator Research Program and the European HiLumi LHC Design Study, hollow electron beam collimation was studied as an option to complement the collimation system for the LHC upgrades. This project is moving towards a technical design in 2014, with the goal to build the devices in 2015-2017, after resuming LHC operations and re-assessing needs and requirements at 6.5 TeV. Because of their electric charge and the absence of materials close to the proton beam, electron lenses may also provide an alternative to wires for long-range beam-beam compensation in LHC luminosity upgrade scenarios with small crossing angles.

  17. New Methods of Particle Collimation in Colliders

    SciTech Connect

    Stancari, Giulio; /Fermilab

    2011-10-01

    The collimation system is an essential part of the design of any high-power accelerator. Its functions include protection of components from accidental and intentional energy deposition, reduction of backgrounds, and beam diagnostics. Conventional multi-stage systems based on scatterers and absorbers offer robust shielding and efficient collection of losses. Two complementary concepts have been proposed to address some of the limitations of conventional systems: channeling and volume reflection in bent crystals and collimation with hollow electron beams. The main focus of this paper is the hollow electron beam collimator, a novel concept based on the interaction of the circulating beam with a 5-keV, magnetically confined, pulsed hollow electron beam in a 2-m-long section of the ring. The electrons enclose the circulating beam, kicking halo particles transversely and leaving the beam core unperturbed. By acting as a tunable diffusion enhancer and not as a hard aperture limitation, the hollow electron beam collimator extends conventional collimation systems beyond the intensity limits imposed by tolerable losses. The concept was tested experimentally at the Fermilab Tevatron proton-antiproton collider. Results on the collimation of 980-GeV antiprotons are presented, together with prospects for the future.

  18. SUSY searches at the Tevatron

    SciTech Connect

    Jaffre, Michel; /Orsay, LAL

    2012-02-01

    The Tevatron collider has provided the CDF and D0 collaborations with large datasets as input to a rich program of physics beyond the standard model. The results presented here are from recent searches for SUSY particles using up to 6 fb{sup -1} of data. Supersymmetry (SUSY) [1] is one of the most favored theories beyond the standard model (SM). Each SM particle is associated to a sparticle whose spin differs by one half unit. This boson-fermion symmetry is obviously broken by some unknown mechanism. Even in the minimal supersymmetric extension of the SM (MSSM [2]) there are a large number of free parameters. To reduce this number one can introduce new assumptions on the symmetry breaking mechanism and build models based on minimal supergravity (as mSUGRA [3]) or on a Gauge Mediated Symmetry Breaking scenario (GMSB [4]), a top-down approach. Another possibility is to make phenomenological assumptions to reduce the number of particles accessible to the experiment while keeping some of the properties of the above models (bottom-up approach). As the sparticles are heavy, to produce them one has to make collisions at the highest center of mass energy. The Tevatron was the best place for discovery until the start of LHC. In the near term, Tevatron experiments and their large datasets remain competitive in areas like production of third generation squarks and of non-coloured sparticles. I will report on recent results from the CDF and D0 collaborations, assuming R-parity is conserved, i.e the sparticles are produced in pairs, and the lightest of them (LSP) is stable, neutral, weakly interacting, and detected as missing transverse energy, E{sub T}.

  19. Search for a light fermiophobic Higgs boson produced via gluon fusion at hadron colliders

    SciTech Connect

    Arhrib, Abdesslam; Benbrik, Rachid; Guedes, R. B.; Santos, R.

    2008-10-01

    In this study, we propose new Higgs production mechanisms with multiphoton final states in the fermiophobic limit of the two Higgs doublet model. The processes are: gg{yields}hh, gg{yields}Hh followed by H{yields}hh and gg{yields}Ah followed by A{yields}hZ. In the fermiophobic limit, gg{yields}hh and gg{yields}Ah{yields}hhZ would give rise to 4{gamma} signature while gg{yields}Hh{yields}hhh can give a 6{gamma} final state. We show that both the Fermilab Tevatron and CERN's Large Hadron Collider can probe a substantial slice of the parameter space in this fermiophobic scenario of the two Higgs doublet model. If observed the above processes can give some information on the triple Higgs couplings involved.

  20. Searches for non-standard-model Higgs bosons at the Tevatron

    SciTech Connect

    Landsberg, Greg L.; /Brown U.

    2007-05-01

    Search for non-Standard-Model Higgs bosons is one of the major goals of the ongoing Fermilab Tevatron run. Large data sets accumulated by the CDF and D{O} experiments break new grounds in sensitivity. We review recent Tevatron results on searches for Higgs bosons in Minimal Supersymmetric Model in the multi b-jet and {tau}{tau} final states, as well as a search for fermiophobic Higgs in the multiphoton final state.

  1. Charm and beauty physics at Fermilab

    SciTech Connect

    Lipton, R.

    1992-01-01

    The status of charm and beauty physics studies at Fermilab is reviewed. Data from fixed target experiments on charm production, semi-leptonic decay, and Cabibbo suppressed decays as well as charmonium studies in antiproton annihilation are described. In addition beauty results from CDF and E653 are reviewed and prospects for studies of B physics at collider detectors are discussed.

  2. Searches for BSM (non-SUSY) physics at the Tevatron

    SciTech Connect

    Gerberich, Heather K.; /Illinois U., Urbana

    2005-11-01

    As of July 2005, the Tevatron at Fermilab has delivered {approx} 1 fb{sup -1} of data to the CDF and D0 experiments. Each experiment has recorded more than 80% of the delivered luminosity. Results of searches for physics (non-SUSY and non-Higgs) beyond the Standard Model using 200 pb{sup -1} to 480 pb{sup -1} at D0 and CDF are presented.

  3. Muon collider progress

    SciTech Connect

    Noble, Robert J. FNAL

    1998-08-01

    Recent progress in the study of muon colliders is presented. An international collaboration consisting of over 100 individuals is involved in calculations and experiments to demonstrate the feasibility of this new type of lepton collider. Theoretical efforts are now concentrated on low-energy colliders in the 100 to 500 GeV center-of-mass energy range. Credible machine designs are emerging for much of a hypothetical complex from proton source to the final collider. Ionization cooling has been the most difficult part of the concept, and more powerful simulation tools are now in place to develop workable schemes. A collaboration proposal for a muon cooling experiment has been presented to the Fermilab Physics Advisory Committee, and a proposal for a targetry and pion collection channel experiment at Brookhaven National Laboratory is in preparation. Initial proton bunching and space-charge compensation experiments at existing hadron facilities have occurred to demonstrate proton driver feasibility.

  4. Top quark physics at the Tevatron

    SciTech Connect

    Antonio Sidoti

    2004-03-17

    After the successful Run I of the Tevatron (1992-1996),with the top quark discovery, both CDF and D0 experiments were extensively upgraded to meet the challenges of the Tevatron Run II collider. The energy of p{bar p} collisions at the Tevatron was increased from {radical}s = 1.8 TeV to {radical}s = 1.96 TeV. t{bar t} production cross section is expected to increase by a factor of {approx} 30%. Major upgrades in the Tevatron accelerator chain will increase the Run II instantaneous luminosity: the goal is to achieve L = 5 - 20 x 10{sup 31} cm{sup 2}s{sup -1} while the highest luminosity reached up to now (September 2003) is 5.2 x 10{sup 31} cm{sup 2} s{sup -1}. In this paper we will present the top quark properties measured by both CDF and D0 with the first physics-quality data collected during the Run II (March 2002-January 2003). First we will review t{bar t} cross section measurements in the various decay channels; then top quark mass measurements will be presented.

  5. The Muon Collider

    SciTech Connect

    Zisman, Michael S.

    2011-01-05

    We describe the scientific motivation for a new type of accelerator, the muon collider. This accelerator would permit an energy-frontier scientific program and yet would fit on the site of an existing laboratory. Such a device is quite challenging, and requires a substantial R&D program. After describing the ingredients of the facility, the ongoing R&D activities of the Muon Accelerator Program are discussed. A possible U.S. scenario that could lead to a muon collider at Fermilab is briefly mentioned.

  6. Muon collider design

    SciTech Connect

    Palmer, R. |; Sessler, A.; Skrinsky, A.

    1996-03-01

    The possibility of muon colliders was introduced by Skrinsky et al., Neuffer, and others. More recently, several workshops and collaboration meetings have greatly increased the level of discussion. In this paper we present scenarios for 4 TeV and 0.5 TeV colliders based on an optimally designed proton source, and for a lower luminosity 0.5 TeV demonstration based on an upgraded version of the AGS. It is assumed that a demonstration version based on upgrades of the FERMILAB machines would also be possible. 53 refs., 25 figs., 8 tabs.

  7. Tevatron QCD for Cosmic-Rays

    SciTech Connect

    Sonnenschein, Lars; /RWTH Aachen U.

    2010-12-01

    The two multi-purpose experiments D0 and CDF are operated at the Tevatron collider, where proton anti-proton collisions take place at a centre of mass energy of 1.96 TeV in Run II. In the kinematic plane of Q{sup 2}-scale and (anti-)proton momentum fraction x, Tevatron jet measurements cover a wide range, with phase space regions in common and beyond the HERA ep-collider reach. The kinematic limit of the Auger experiment is given by a centre of mass energy of 100 TeV. Cosmic rays cover a large region of the kinematic phase space at low momenta x, corresponding to forward proton/diffractive physics and also at low scales, corresponding to the hadronization scale and the underlying event. Therefore of particular interest are exclusive and diffractive measurements as well as underlying event, double parton scattering and minimum bias measurements. The kinematic limit of the Tevatron corresponds to the PeV energy region below the knee of the differential cosmic particle flux energy distribution. The data discussed here are in general corrected for detector effects, such as efficiency and acceptance. Therefore they can be used directly for testing and improving existing event generators and any future calculations/models. Comparisons take place at the hadronic final state (particle level).

  8. Analysis of the b2 correction in the Tevatron

    SciTech Connect

    Pierre Bauer et al.

    2003-06-10

    Beam loss and emittance dilution during ramping from injection to collision energy is observed in the Tevatron, now in its collider run-II stage. It is well known that the sextupole (b2) components in the superconducting dipole magnets decay during the injection plateau and snap back rapidly at the start of the ramp. These so called dynamic effects, which were originally discovered in the Tevatron, are compensated with the chromaticity correctors, distributed around the ring. Imperfect control of the chromaticity during injection and snapback can contribute to the beam loss. Therefore a thorough investigation of the b2 compensation in the Tevatron was launched, including beam chromaticity measurements and offline magnetic measurements on Tevatron dipoles. This paper reports the status of this investigation. A companion paper describes in detail the results of the magnet measurements. This work was partly conducted as a collaboration between FNAL and CERN.

  9. Surge recovery techniques for the Tevatron cold compressors

    SciTech Connect

    Martinez, A.; Klebaner, A.L.; Makara, J.N.; Theilacker, J.C.; /Fermilab

    2006-01-01

    The Fermilab Tevatron cryogenic system utilizes high-speed centrifugal cold compressors, made by Ishikawajima-Harima Heavy Industries Co. Ltd. (IHI), for high-energy operations [1]. The compressor is designed to pump 60 g/s of 3.6 K saturated helium vapor at a pressure ratio of 2.8, with an off-design range of 40 to 70 g/s and operating speeds between 40 and 95 krpm. Since initial commissioning in 1993, Tevatron transient conditions such as quench recovery have led to multiple-location machine trips as a result of the cold compressors entering the surge regime. Historically, compressors operating at lower inlet pressures and higher speeds have been especially susceptible to these machine trips and it was not uncommon to have multiple compressor trips during large multiple-house quenches. In order to cope with these events and limit accelerator down time, surge recovery techniques have been implemented in an attempt to prevent the compressors from tripping once the machine entered this surge regime. This paper discusses the different methods of surge recovery that have been employed. Data from tests performed at the Cryogenic Test Facility at Fermilab as well as actual Tevatron operational data were utilized. In order to aid in the determination of the surge region, a full mapping study was undertaken to characterize the entire pressure field of the cold compressor. These techniques were then implemented and tested at several locations in the Tevatron with some success.

  10. Surge Recovery Techniques for the Tevatron Cold Compressors

    NASA Astrophysics Data System (ADS)

    Martinez, A.; Klebaner, A. L.; Makara, J. N.; Theilacker, J. C.

    2006-04-01

    The Fermilab Tevatron cryogenic system utilizes high-speed centrifugal cold compressors, made by Ishikawajima-Harima Heavy Industries Co. Ltd. (IHI), for high-energy operations. The compressor is designed to pump 60 g/s of 3.6 K saturated helium vapor at a pressure ratio of 2.8, with an off-design range of 40 to 70 g/s and operating speeds between 40 and 95 krpm. Since initial commissioning in 1993, Tevatron transient conditions such as quench recovery have led to multiple-location machine trips as a result of the cold compressors entering the surge regime. Historically, compressors operating at lower inlet pressures and higher speeds have been especially susceptible to these machine trips and it was not uncommon to have multiple compressor trips during large multiple-house quenches. In order to cope with these events and limit accelerator down time, surge recovery techniques have been implemented in an attempt to prevent the compressors from tripping once the machine entered this surge regime. This paper discusses the different methods of surge recovery that have been employed. Data from tests performed at the Cryogenic Test Facility at Fermilab as well as actual Tevatron operational data were utilized. In order to aid in the determination of the surge region, a full mapping study was undertaken to characterize the entire pressure field of the cold compressor. These techniques were then implemented and tested at several locations in the Tevatron with some success.

  11. Tevatron searches for resonances decaying to fermion pairs

    SciTech Connect

    Magass, Carsten; /Bonn U.

    2007-06-01

    The latest results of searches in the dijet, dielectron, four-electron, and electron plus missing transverse energy channels obtained by the D0 and CDF experiments at the Tevatron Collider are reported. Since no significant excess is observed in the data in all cases, limits are set that improve on previous searches.

  12. Tevatron lower temperature operation

    SciTech Connect

    Theilacker, J.C.

    1994-07-01

    This year saw the completion of three accelerator improvement projects (AIP) and two capital equipment projects pertaining to the Tevatron cryogenic system. The projects result in the ability to operate the Tevatron at lower temperature, and thus higher energy. Each project improves a subsystem by expanding capabilities (refrigerator controls), ensuring reliability (valve box, subatmospheric hardware, and compressor D), or enhancing performance (cold compressors and coldbox II). In January of 1994, the Tevatron operated at an energy of 975 GeV for the first time. This was the culmination, of many years of R&D, power testing in a sector (one sixth) of the Tevatron, and final system installation during the summer of 1993. Although this is a modest increase in energy, the discovery potential for the Top quark is considerably improved.

  13. Tevatron direct photon results.

    SciTech Connect

    Kuhlmann, S.

    1999-09-21

    Tevatron direct photon results since DIS98 are reviewed. Two new CDF measurements are discussed, the Run Ib inclusive photon cross section and the photon + Muon cross section. Comparisons with the latest NLO QCD calculations are presented.

  14. Tevatron admittance measurement

    SciTech Connect

    Zhang, X.L.; Shiltsev, V.; Tan, C.Y.; /Fermilab

    2005-05-01

    We measured the Tevatron beam admittance by the means of exciting the beam with noise and causing emittance growth. The noise power was about 3W with a bandwidth of 100Hz and centered either in the horizontal betatron frequency or vertical betatron frequency. We were able to controllably blow the beam emittance up quickly. From the point where the beam emittance stopped growing, we measured the beam acceptance of the Tevatron.

  15. Diffraction at the Tevatron and the LHC

    NASA Astrophysics Data System (ADS)

    Royon, C.

    2008-09-01

    In this paper, we present and discuss the most recent results on inclusive diffraction at the Tevatron collider and give the prospects at the LHC. We also describe the search for exclusive events at the Tevatron. Of special interest is the exclusive production of Higgs boson and heavy objects (W, top, stop pairs) at the LHC which will require precise measurements and analyses of inclusive and exclusive diffraction to constrain further the gluon density in the pomeron. At the end of the paper, we describe the projects to install forward detectors at the LHC to fulfil these measurements. We also describe the diffractive experiments accepted or in project at the LHC: TOTEM, ALFA in ATLAS, and the AFP/FP420 projects.

  16. Top Mass Measurements at the Tevatron

    SciTech Connect

    Potamianos, Karolos; /Purdue U.

    2012-01-01

    First observed in 1995, the top quark is the third-generation up-type quark of the standard model of particle physics (SM). The CDF and D0 collaborations have analyzed many t{bar t} events produced by the Tevatron collider, studying many properties of the top quark. Among these, the mass of the top quark is a fundamental parameter of the SM, since its value constrains the mass of the yet to be observed Higgs boson. The analyzed events were used to measure the mass of the top quark m{sub t} {approx_equal} 173.2 GeV/c{sup 2} with an uncertainty of less than 1 GeV/c{sup 2}. We report on the latest top mass measurements at the Tevatron, using up to 6 fb{sup -1} of data for each experiment.

  17. Tevatron accelerator physics and operation highlights

    SciTech Connect

    Valishev, A.; /Fermilab

    2011-03-01

    The performance of the Tevatron collider demonstrated continuous growth over the course of Run II, with the peak luminosity reaching 4 x 10{sup 32} cm{sup -2} s{sup -1}, and the weekly integration rate exceeding 70 pb{sup -1}. This report presents a review of the most important advances that contributed to this performance improvement, including beam dynamics modeling, precision optics measurements and stability control, implementation of collimation during low-beta squeeze. Algorithms employed for optimization of the luminosity integration are presented and the lessons learned from high-luminosity operation are discussed. Studies of novel accelerator physics concepts at the Tevatron are described, such as the collimation techniques using crystal collimator and hollow electron beam, and compensation of beam-beam effects.

  18. B Physics at Hadron Colliders: Present and Future

    SciTech Connect

    Calvi, Marta

    2005-10-12

    An extensive program of B physics and CP violation measurements can be performed at Hadron Colliders. Results from the experiments CDF and DO at the Tevatron and prospects for future measurements from experiments at the LHC are presented here.

  19. Higgs boson production at hadron colliders: Signal and background processes

    SciTech Connect

    David Rainwater; Michael Spira; Dieter Zeppenfeld

    2004-01-12

    We review the theoretical status of signal and background calculations for Higgs boson production at hadron colliders. Particular emphasis is given to missing NLO results, which will play a crucial role for the Tevatron and the LHC.

  20. 1987 DOE review: First collider run operation

    SciTech Connect

    Childress, S.; Crawford, J.; Dugan, G.; Edwards, H.; Finley, D.A.; Fowler, W.B.; Harrison, M.; Holmes, S.; Makara, J.N.; Malamud, E.

    1987-05-01

    This review covers the operations of the first run of the 1.8 TeV superconducting super collider. The papers enclosed cover: PBAR source status, fixed target operation, Tevatron cryogenic reliability and capacity upgrade, Tevatron Energy upgrade progress and plans, status of the D0 low beta insertion, 1.8 K and 4.7 K refrigeration for low-..beta.. quadrupoles, progress and plans for the LINAC and booster, near term and long term and long term performance improvements.

  1. The very large hadron collider

    SciTech Connect

    1998-09-01

    This paper reviews the purposes to be served by a very large hadron collider and the organization and coordination of efforts to bring it about. There is some discussion of magnet requirements and R&D and the suitability of the Fermilab site.

  2. Barrier RF stacking at Fermilab

    SciTech Connect

    Weiren Chou et al.

    2003-06-04

    A key issue to upgrade the luminosity of the Tevatron Run2 program and to meet the neutrino requirement of the NuMI experiment at Fermilab is to increase the proton intensity on the target. This paper introduces a new scheme to double the number of protons from the Main Injector (MI) to the pbar production target (Run2) and to the pion production target (NuMI). It is based on the fact that the MI momentum acceptance is about a factor of four larger than the momentum spread of the Booster beam. Two RF barriers--one fixed, another moving--are employed to confine the proton beam. The Booster beams are injected off-momentum into the MI and are continuously reflected and compressed by the two barriers. Calculations and simulations show that this scheme could work provided that the Booster beam momentum spread can be kept under control. Compared with slip stacking, a main advantage of this new method is small beam loading effect thanks to the low peak beam current. The RF barriers can be generated by an inductive device, which uses nanocrystal magnet alloy (Finemet) cores and fast high voltage MOSFET switches. This device has been designed and fabricated by a Fermilab-KEK-Caltech team. The first bench test was successful. Beam experiments are being planned.

  3. Search for super symmetry at the Tevatron using the trilepton signature

    SciTech Connect

    Dube, Sourabh Shishir

    2008-10-01

    This dissertation describes a search for the associated production of the supersymmetric particles, the chargino and the neutralino, through their R-parity conserving decays to three leptons and missing energy. This search is carried out using the data collected at the CDF experiment at the Tevatron √s = 1.96 TeV p$\\bar{p}$ collider at Fermilab. The results are obtained by combining five independent channels with varying signal to background ratio. Overall, a total of 6.4 ± 1.1 background events from standard model processes and 11.4 ± 1.1 signal events for a particular choice of mSUGRA model parameters are expected. The observation of 7 events in data is consistent with the standard model background expectation, and the mSUGRA model is constrained. Limits are set on the cross section of Chargino-Neutralino pair production, and a limit on the mass of the chargino is extracted. A method of obtaining model-independent results is also discussed.

  4. Exclusive e+e-, di-photon and di-jet production at the Tevatron

    SciTech Connect

    Terashi, Koji; /Rockefeller U.

    2007-05-01

    Results from studies on exclusive production of electron-position pair, di-photon, and dijet production at CDF in proton-antiproton collisions at the Fermilab Tevatron are presented. THe first observation and cross section measurements of exclusive e{sup +}e{sup -} and di-jet production in hadron-hadron collisions are emphasized.

  5. 100 TeV Proton-Antiproton Collider in the SSC Tunnel

    NASA Astrophysics Data System (ADS)

    McIntyre, Peter

    2008-10-01

    Two developments over the past decade have made it possible to design a high-luminosity 100 TeV hadron collider in the SSC tunnel in Texas. First, superconducting magnet technology has matured so that it is now feasible to build 16 Tesla Nb3Sn dipoles and 450 T/m quadrupoles for a collider lattice. Second, Fermilab has advanced the state of art of antiproton sources so that it is possible to accumulate the antiprotons needed to sustain a luminosity of ˜10^35cm-2s-1 and techniques to sustain the luminosity during a store. Synchrotron damping of the beams has a time constant of ˜15 minutes, providing stability against mechanisms of slow emittance growth. The proposed single-ring collider would open a new era for high energy physics, after the LHC era that is about to begin, in which weak boson fusion would dominate as a pathway to new particle production. It would extend the reach for discovery beyond LHC by the same factor that LHC will extend beyond Tevatron.

  6. New diffractive results from the Tevatron

    SciTech Connect

    Gallinaro, Michele; /Rockefeller U.

    2005-05-01

    Experimental results in diffractive processes are summarized and a few notable characteristics described in terms of Quantum Chromodynamics. Exclusive dijet production is used to establish a benchmark for future experiments in the quest for diffractive Higgs production at the Large Hadron Collider. Using new data from the Tevatron and dedicated diffractive triggers, no excess over a smooth falling distribution for exclusive dijet events could be found. Stringent upper limits on the exclusive dijet production cross section are presented. The quark/gluon composition of dijet final states is used to provide additional hints on exclusive dijet production.

  7. B lifetimes and mixing at the Tevatron

    SciTech Connect

    Bedeschi, Franco; /INFN, Pisa

    2005-05-01

    The authors present recent results on b-hadron lifetimes and mixing obtained from the analysis of the data collected at the Tevatron Collider by the CDF and D0 Collaborations in the period 2002-2004. Many lifetime measurements have been updated since the Summer 2004 conferences, sometimes improving significantly the accuracy. Likewise the measurement of the B{sub d} oscillation frequency has been updated. New limits on the B{sub s} oscillation frequency have been determined using for the first time Run II data.

  8. B_s mixing at the Tevatron

    SciTech Connect

    Lucchesi, Donatella; /Padua U.

    2006-08-01

    The measurement of the B{sub s} mixing oscillation frequency, {Delta}m{sup s}, has been the main goal for both experiments CDF and D0 which are running at the Tevatron collider. With 1 fb{sup -1} of data collected during the last four years D0 set a lower and upper limit on this frequency, 17 < {Delta}m{sub s} < 21 ps{sup -1}. CDF measured {Delta}m{sub s} with a precision better than 2% and the probability that the data could randomly fluctuate to mimic such a signature is 0.2%.

  9. Electron beam generation in Tevatron electron lenses

    SciTech Connect

    Kamerdzhiev, V.; Kuznetsov, G.; Shiltsev, V.; Solyak, N.; Tiunov, M.; /Novosibirsk, IYF

    2006-08-01

    New type of high perveance electron guns with convex cathode has been developed. Three guns described in this article are built to provide transverse electron current density distributions needed for Electron Lenses for beam-beam compensation in the Tevatron collider. The current distribution can be controlled either by the gun geometry or by voltage on a special control electrode located near cathode. We present the designs of the guns and report results of beam measurements on the test bench. Because of their high current density and low transverse temperature of electrons, electron guns of this type can be used in electron cooling and beam-beam compensation devices.

  10. Single Top Quarks at the Tevatron

    SciTech Connect

    Heinson, Ann P.; /UC, Riverside

    2008-09-01

    After many years searching for electroweak production of top quarks, the Tevatron collider experiments have now moved from obtaining first evidence for single top quark production to an impressive array of measurements that test the standard model in several directions. This paper describes measurements of the single top quark cross sections, limits set on the CKM matrix element |Vtb|, searches for production of single top quarks produced via flavor-changing neutral currents and from heavy W-prime and H+ boson resonances, and studies of anomalous Wtb couplings. It concludes with projections for future expected significance as the analyzed datasets grow.

  11. Electron cooling rates characterization at Fermilab's Recycler

    SciTech Connect

    Prost, Lionel R.; Shemyakin, A.; /Fermilab

    2007-06-01

    A 0.1 A, 4.3 MeV DC electron beam is routinely used to cool 8 GeV antiprotons in Fermilab's Recycler storage ring [1]. The primary function of the electron cooler is to increase the longitudinal phase-space density of the antiprotons for storing and preparing high-density bunches for injection into the Tevatron. The longitudinal cooling rate is found to significantly depend on the transverse emittance of the antiproton beam. The paper presents the measured rates and compares them with calculations based on drag force data.

  12. Measurement of the inclusive isolated prompt photon production cross section at the Tevatron using the CDF detector

    SciTech Connect

    Deluca Silberberg, Carolina

    2009-04-01

    In this thesis we present the measurement of the inclusive isolated prompt photon cross section with a total integrated luminosity of 2.5 fb-1 of data collected with the CDF Run II detector at the Fermilab Tevatron Collider. The prompt photon cross section is a classic measurement to test perturbative QCD (pQCD) with potential to provide information on the parton distribution function (PDF), and sensitive to the presence of new physics at large photon transverse momentum. Prompt photons also constitute an irreducible background for important searches such as H → γγ, or SUSY and extra-dimensions with energetic photons in the final state. The Tevatron at Fermilab (Batavia, U.S.A.) is currently the hadron collider that operates at the highest energies in the world. It collides protons and antiprotons with a center-of-mass energy of 1.96 TeV. The CDF and the D0 experiments are located in two of its four interaction regions. In Run I at the Tevatron, the direct photon production cross section was measured by both CDF and DO, and first results in Run II have been presented by the DO Collaboration based on 380 pb-1. Both Run I and Run II results show agreement with the theoretical predictions except for the low pTγ region, where the observed and predicted shapes are different. Prompt photon production has been also extensively measured at fixed-target experiments in lower pTγ ranges, showing excess of data compared to the theory, particularly at high xT. From an experimental point of view, the study of the direct photon production has several advantages compared to QCD studies using jets. Electromagnetic calorimeters have better energy resolution than hadronic calorimeters, and the systematic uncertainty on the photon absolute energy scale is smaller. Furthermore, the determination of the photon kinematics does not require the use of jet algorithms. However, the measurements using photons

  13. Tevatron AC dipole system

    SciTech Connect

    Miyamoto, R.; Kopp, S.E.; Jansson, A.; Syphers, M.J.; /Fermilab

    2007-06-01

    The AC dipole is an oscillating dipole magnet which can induce large amplitude oscillations without the emittance growth and decoherence. These properties make it a good tool to measure optics of a hadron synchrotron. The vertical AC dipole for the Tevatron is powered by an inexpensive high power audio amplifier since its operating frequency is approximately 20 kHz. The magnet is incorporated into a parallel resonant system to maximize the current. The use of a vertical pinger magnet which has been installed in the Tevatron made the cost relatively inexpensive. Recently, the initial system was upgraded with a more powerful amplifier and oscillation amplitudes up to 2-3{sigma} were achieved with the 980 GeV proton beam. This paper discusses details of the Tevatron AC dipole system and also shows its test results.

  14. The Tevatron Chromaticity tracker

    SciTech Connect

    Tan, Cheng-Yang; /Fermilab

    2008-12-01

    The Tevatron chromaticity tracker (CT) has been successfully commissioned and is now operational. The basic idea behind the CT is that when the phase of the Tevatron RF is slowly modulated, the beam momentum is also modulated. This momentum modulation is coupled transversely via chromaticity to manifest as a phase modulation on the betatron tune. Thus by phase demodulating the betatron tune, the chromaticity can be recovered. However, for the phase demodulation to be successful, it is critical that the betatron tune be a coherent signal that can be easily picked up by a phase detector. This is easily done because the Tevatron has a phase locked loop (PLL) based tune tracker which coherently excites the beam at the betatron tune.

  15. Measurement of sigma(p anti-p -> t anti-t) in the tau + jets channel by the D� experiment at Run II of the Tevatron Collider

    SciTech Connect

    Arov, Mikhail; /Northern Illinois U.

    2008-07-01

    The top quark is the heaviest and most mysterious of the known elementary particles. Therefore, careful study of its production rate and other properties is of utmost importance for modern particle physics. The Tevatron is the only facility currently capable of studying top quark properties by on-shell production. Measurement of the top quark pair production cross section is one of the major goals of the Tevatron Run II physics program. It provides an excellent test of QCD at energies exceeding 100 GeV. We report on a new measurement of p{bar p} {yields} t{bar t} production at {radical} = 1.96 TeV using 350 pb{sup -1} of data collected with the D0 detector between 2002 and 2005. We focus on the final state where a W boson from one of the top quarks decays into a {tau} lepton and its associated neutrino, while the other decays into a quark-antiquark pair. We aim to select those events in which the {tau} lepton subsequently decays to one or three charged hadrons, zero or more neutral hadrons and a tau neutrino (the charge conjugate processes are implied in all of the above). The observable signature thus consists of a narrow calorimeter shower with associated track(s) characteristic of a hadronic tau decay, four or more jets, of which two are initiated by b quarks accompanying the W's in the top quark decays, and a large net missing momentum in the transverse plane due to the energetic neutrino-antineutrino pair that leave no trace in the detector media. The preliminary result for the measured cross section is: {sigma}(t{bar t}) = 5.1{sub -3.5}{sup +4.3}(stat){sub -0.7}{sup +0.7}(syst) {+-} 0.3 (lumi.) pb.

  16. Measurement of direct CP violation parameters in B± → J/ψK± and B± → J/ψπ± decays with 10.4 fb-1 of Tevatron data.

    PubMed

    Abazov, V M; Abbott, B; Acharya, B S; Adams, M; Adams, T; Agnew, J P; Alexeev, G D; Alkhazov, G; Alton, A; Askew, A; Atkins, S; Augsten, K; Avila, C; Badaud, F; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, S; Barberis, E; Baringer, P; Bartlett, J F; Bassler, U; Bazterra, V; Bean, A; Beattie, M; Begalli, M; Bellantoni, L; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Beuselinck, R; Bhat, P C; Bhatia, S; Bhatnagar, V; Blazey, G; Blessing, S; Bloom, K; Boehnlein, A; Boline, D; Boos, E E; Borissov, G; Brandt, A; Brandt, O; Brock, R; Bross, A; Brown, D; Bu, X B; Buehler, M; Buescher, V; Bunichev, V; Burdin, S; Buszello, C P; Camacho-Pérez, E; Casey, B C K; Castilla-Valdez, H; Caughron, S; Chakrabarti, S; Chan, K M; Chandra, A; Chapon, E; Chen, G; Cho, S W; Choi, S; Choudhary, B; Cihangir, S; Claes, D; Clutter, J; Cooke, M; Cooper, W E; Corcoran, M; Couderc, F; Cousinou, M-C; Cutts, D; Das, A; Davies, G; de Jong, S J; De La Cruz-Burelo, E; Déliot, F; Demina, R; Denisov, D; Denisov, S P; Desai, S; Deterre, C; DeVaughan, K; Diehl, H T; Diesburg, M; Ding, P F; Dominguez, A; Dubey, A; Dudko, L V; Duperrin, A; Dutt, S; Eads, M; Edmunds, D; Ellison, J; Elvira, V D; Enari, Y; Evans, H; Evdokimov, V N; Feng, L; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Fortner, M; Fox, H; Fuess, S; Garbincius, P H; Garcia-Bellido, A; García-González, J A; Gavrilov, V; Geng, W; Gerber, C E; Gershtein, Y; Ginther, G; Golovanov, G; Grannis, P D; Greder, S; Greenlee, H; Grenier, G; Gris, Ph; Grivaz, J-F; Grohsjean, A; Grünendahl, S; Grünewald, M W; Guillemin, T; Gutierrez, G; Gutierrez, P; Haley, J; Han, L; Harder, K; Harel, A; Hart, B; Hauptman, J M; Hays, J; Head, T; Hebbeker, T; Hedin, D; Hegab, H; Heinson, A P; Heintz, U; Hensel, C; Heredia-De La Cruz, I; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hoang, T; Hobbs, J D; Hoeneisen, B; Hogan, J; Hohlfeld, M; Howley, I; Hubacek, Z; Hynek, V; Iashvili, I; Ilchenko, Y; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jayasinghe, A; Holzbauer, J; Jeong, M S; Jesik, R; Jiang, P; Johns, K; Johnson, E; Johnson, M; Jonckheere, A; Jonsson, P; Joshi, J; Jung, A W; Juste, A; Kajfasz, E; Karmanov, D; Katsanos, I; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y N; Kiselevich, I; Kohli, J M; Kozelov, A V; Kraus, J; Kumar, A; Kupco, A; Kurča, T; Kuzmin, V A; Lammers, S; Lamont, I; Lebrun, P; Lee, H S; Lee, S W; Lee, W M; Lei, X; Lellouch, J; Li, D; Li, H; Li, L; Li, Q Z; Lim, J K; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, H; Liu, Y; Lobodenko, A; Lokajicek, M; Lopes de Sa, R; Luna-Garcia, R; Lyon, A L; Maciel, A K A; Madar, R; Magaña-Villalba, R; Malik, S; Malyshev, V L; Mansour, J; Martínez-Ortega, J; Mason, N; McCarthy, R; McGivern, C L; Meijer, M M; Melnitchouk, A; Menezes, D; Mercadante, P G; Merkin, M; Meyer, A; Meyer, J; Miconi, F; Mondal, N K; Mulhearn, M; Nagy, E; Narain, M; Nayyar, R; Neal, H A; Negret, J P; Neustroev, P; Nguyen, H T; Nunnemann, T; Orduna, J; Osman, N; Osta, J; Pal, A; Parashar, N; Parihar, V; Park, S K; Partridge, R; Parua, N; Patwa, A; Penning, B; Perfilov, M; Peters, Y; Petridis, K; Petrillo, G; Pétroff, P; Pleier, M-A; Podstavkov, V M; Popov, A V; Prewitt, M; Price, D; Prokopenko, N; Qian, J; Quadt, A; Quinn, B; Ratoff, P N; Razumov, I; Ripp-Baudot, I; Rizatdinova, F; Rominsky, M; Ross, A; Royon, C; Rubinov, P; Ruchti, R; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Santos, A S; Savage, G; Sawyer, L; Scanlon, T; Schamberger, R D; Scheglov, Y; Schellman, H; Schwanenberger, C; Schwienhorst, R; Sekaric, J; Severini, H; Shabalina, E; Shary, V; Shaw, S; Shchukin, A A; Simak, V; Skubic, P; Slattery, P; Smirnov, D; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Sonnenschein, L; Soustruznik, K; Stark, J; Stoyanova, D A; Strauss, M; Suter, L; Svoisky, P; Titov, M; Tokmenin, V V; Tsai, Y-T; Tsybychev, D; Tuchming, B; Tully, C; Uvarov, L; Uvarov, S; Uzunyan, S; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vasilyev, I A; Verkheev, A Y; Vertogradov, L S; Verzocchi, M; Vesterinen, M; Vilanova, D; Vokac, P; Wahl, H D; Wang, M H L S; Warchol, J; Watts, G; Wayne, M; Weichert, J; Welty-Rieger, L; Williams, M R J; Wilson, G W; Wobisch, M; Wood, D R; Wyatt, T R; Xie, Y; Yamada, R; Yang, S; Yasuda, T; Yatsunenko, Y A; Ye, W; Ye, Z; Yin, H; Yip, K; Youn, S W; Yu, J M; Zennamo, J; Zhao, T G; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zivkovic, L

    2013-06-14

    We present a measurement of the direct CP-violating charge asymmetry in B(±) mesons decaying to J/ψK(±) and J/ψπ(±) where J/ψ decays to μ(+) μ(-), using the full run II data set of 10.4 fb(-1) of proton-antiproton collisions collected using the D0 detector at the Fermilab Tevatron Collider. A difference in the yield of B(-) and B(+) mesons in these decays is found by fitting to the difference between their reconstructed invariant mass distributions resulting in asymmetries of A(J/ψK) = [0.59 ± 0.37]%, which is the most precise measurement to date, and A(J/ψπ) = [-4.2 ± 4.5]%. Both measurements are consistent with standard model predictions. PMID:25165913

  17. Electroweak boson pair production at the Tevatron

    SciTech Connect

    Errede, S.M.

    1994-12-01

    Preliminary results from CDF and D{O} on W{gamma}, Z{gamma} and WW, WZ, ZZ boson pair production in {radical}s = 1.8 TeV {anti p}-p collisions from the 1992--93 collider run are presented. Direct limits on CP-conserving and CP-violating WW{gamma}, WWZ, ZZ{gamma} and Z{gamma}{gamma} anomalous couplings have been obtained. The results are consistent with Standard Model expectations. In the static limit, the direct experimental limits on WW{gamma} and ZZ{gamma} anomalous couplings are related to bounds on the higher-order static (transition) EM moments of the W(Z) bosons. Expectations from the on-going and future Tevatron collider runs are discussed.

  18. Tevatron electron lenses: Design and operation

    NASA Astrophysics Data System (ADS)

    Shiltsev, Vladimir; Bishofberger, Kip; Kamerdzhiev, Vsevolod; Kozub, Sergei; Kufer, Matthew; Kuznetsov, Gennady; Martinez, Alexander; Olson, Marvin; Pfeffer, Howard; Saewert, Greg; Scarpine, Vic; Seryi, Andrey; Solyak, Nikolai; Sytnik, Veniamin; Tiunov, Mikhail; Tkachenko, Leonid; Wildman, David; Wolff, Daniel; Zhang, Xiao-Long

    2008-10-01

    The beam-beam effects have been the dominating sources of beam loss and lifetime limitations in the Tevatron proton-antiproton collider [V. Shiltsev , Phys. Rev. ST Accel. Beams 8, 101001 (2005)PRABFM1098-440210.1103/PhysRevSTAB.8.101001]. Electron lenses were originally proposed for compensation of electromagnetic long-range and head-on beam-beam interactions of proton and antiproton beams [V. Shiltsev , Phys. Rev. ST Accel. Beams 2, 071001 (1999).PRABFM1098-440210.1103/PhysRevSTAB.2.071001]. Results of successful employment of two electron lenses built and installed in the Tevatron are reported by Shiltsev et al. [Phys. Rev. Lett. 99, 244801 (2007)PRLTAO0031-900710.1103/PhysRevLett.99.244801; New J. Phys. 10, 043042 (2008)NJOPFM1367-263010.1088/1367-2630/10/4/043042] and by Zhang et al. [X.-L. Zhang , Phys. Rev. ST Accel. Beams 11, 051002 (2008)PRABFM1098-440210.1103/PhysRevSTAB.11.051002]. In this paper we present design features of the Tevatron electron lenses (TELs), discuss the generation of electron beams, describe different modes of operation, and outline the technical parameters of various subsystems.

  19. Diffractive W and Z Production at the Fermilab Tevatron

    SciTech Connect

    Aaltonen, T.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J.A.; Apresyan, A.; Arisawa, T.; /Waseda U. /Dubna, JINR

    2010-07-01

    We report on a measurement of the fraction of events with a W or Z boson produced diffractively in {bar p}p collisions at {radical}s = 1.96 TeV, using data from 0.6 fb{sup -1} of integrated luminosity collected with the CDF II detector equipped with a Roman-pot spectrometer that detects the {bar p} from {bar p} + p {yields} {bar p}+[X+W/Z]. We find that (0.97 {+-} 0.11)% of Ws and (0.85 {+-} 0.22)% of Zs are produced diffractively in a region of (anti)proton fractional momentum loss {zeta} of 0.03 < {zeta} < 0.10 and 4-momentum transferred squared t of -1 < t < 0 (GeV/c){sup 2}. We also report on searches for W and Z production in double Pomeron exchange, p+{bar p} {yields} p+[X+W/z]+{bar p}, and on exclusive Z production, {bar p}p {yields} {bar p}+Z+p. No signal is seen above background for these processes, and comparisons are made with expectations.

  20. Impedances of Tevatron separators

    SciTech Connect

    K. Y. Ng

    2003-05-28

    The impedances of the Tevatron separators are revisited and are found to be negligibly small in the few hundred MHz region, except for resonances at 22.5 MHz. The later are contributions from the power cables which may drive head-tail instabilities if the bunch is long enough.

  1. Physics validation studies for muon collider detector background simulations

    SciTech Connect

    Morris, Aaron Owen; /Northern Illinois U.

    2011-07-01

    Within the broad discipline of physics, the study of the fundamental forces of nature and the most basic constituents of the universe belongs to the field of particle physics. While frequently referred to as 'high-energy physics,' or by the acronym 'HEP,' particle physics is not driven just by the quest for ever-greater energies in particle accelerators. Rather, particle physics is seen as having three distinct areas of focus: the cosmic, intensity, and energy frontiers. These three frontiers all provide different, but complementary, views of the basic building blocks of the universe. Currently, the energy frontier is the realm of hadron colliders like the Tevatron at Fermi National Accelerator Laboratory (Fermilab) or the Large Hadron Collider (LHC) at CERN. While the LHC is expected to be adequate for explorations up to 14 TeV for the next decade, the long development lead time for modern colliders necessitates research and development efforts in the present for the next generation of colliders. This paper focuses on one such next-generation machine: a muon collider. Specifically, this paper focuses on Monte Carlo simulations of beam-induced backgrounds vis-a-vis detector region contamination. Initial validation studies of a few muon collider physics background processes using G4beamline have been undertaken and results presented. While these investigations have revealed a number of hurdles to getting G4beamline up to the level of more established simulation suites, such as MARS, the close communication between us, as users, and the G4beamline developer, Tom Roberts, has allowed for rapid implementation of user-desired features. The main example of user-desired feature implementation, as it applies to this project, is Bethe-Heitler muon production. Regarding the neutron interaction issues, we continue to study the specifics of how GEANT4 implements nuclear interactions. The GEANT4 collaboration has been contacted regarding the minor discrepancies in the neutron

  2. Pressure Field Study of the Tevatron Cold Compressors

    NASA Astrophysics Data System (ADS)

    Klebaner, A. L.; Martinez, A.; Soyars, W. M.; Theilacker, J. C.

    2004-06-01

    The Fermilab Tevatron cryogenic system utilizes high-speed centrifugal cold compressors, manufactured by Ishikawajima-Harima Heavy Industries Co. Ltd. (IHI), for high-energy operations. The compressor is designed to pump 60 g/sec of 3.6 K saturated helium vapor at a pressure ratio of 2.8, with an off-design range of 40 to 70 g/sec. Operating speeds are between 40,000 and 95,000 rpm, with a speed of 80,000 rpm at the design point. Different heat loads and magnet quench performance of each of the twenty-four satellite refrigerators dictates different process pressure and flow rates of the cold compressors. Reducing the process flow rate can cause the centrifugal cold compressor to stop pumping and subsequently surge. Tests have been conducted at the Cryogenic Test Facility at Fermilab to map the pressure field and appropriate efficiency of the IHI hydrodynamic cold compressor. The information allows tuning of each of the twenty-four Tevatron satellite refrigerators to avoid cold compressor operation near the surge and choke lines. A new impeller has also been tested. The Tevatron cold compressor pressure field and efficiency data with the new impeller are presented in this paper.

  3. Pressure Field Study of the Tevatron Cold Compressors

    SciTech Connect

    Klebaner, A.L.; Martinez, A.; Soyars, W.M.; Theilacker, J.C.

    2004-06-23

    The Fermilab Tevatron cryogenic system utilizes high-speed centrifugal cold compressors, manufactured by Ishikawajima-Harima Heavy Industries Co. Ltd. (IHI), for high-energy operations. The compressor is designed to pump 60 g/sec of 3.6 K saturated helium vapor at a pressure ratio of 2.8, with an off-design range of 40 to 70 g/sec. Operating speeds are between 40,000 and 95,000 rpm, with a speed of 80,000 rpm at the design point. Different heat loads and magnet quench performance of each of the twenty-four satellite refrigerators dictates different process pressure and flow rates of the cold compressors. Reducing the process flow rate can cause the centrifugal cold compressor to stop pumping and subsequently surge. Tests have been conducted at the Cryogenic Test Facility at Fermilab to map the pressure field and appropriate efficiency of the IHI hydrodynamic cold compressor. The information allows tuning of each of the twenty-four Tevatron satellite refrigerators to avoid cold compressor operation near the surge and choke lines. A new impeller has also been tested. The Tevatron cold compressor pressure field and efficiency data with the new impeller are presented in this paper.

  4. Pressure field study of the Tevatron cold compressors

    SciTech Connect

    Klebaner, A.L.; Martinez, A.; Soyars, W.M.; Theilacker, J.C.; /Fermilab

    2003-01-01

    The Fermilab Tevatron cryogenic system utilizes high-speed centrifugal cold compressors, manufactured by Ishikawajima-Harima Heavy Industries Co. Ltd. (IHI), for high-energy operations [1]. The compressor is designed to pump 60 g/sec of 3.6 K saturated helium vapor at a pressure ratio of 2.8, with an off-design range of 40 to 70 g/sec. Operating speeds are between 40 and 95 krpm, with a speed of 80 krpm at the design point. Different heat loads and magnet quench performance of each of the twenty-four satellite refrigerators dictates different process pressure and flow rates of the cold compressors. Reducing the process flow rate can cause the centrifugal cold compressor to stop pumping and subsequently surge. Tests have been conducted at the Cryogenic Test Facility at Fermilab to map the pressure field and appropriate efficiency of the IHI hydrodynamic cold compressor. The information allows tuning of each of the twenty-four Tevatron satellite refrigerators to avoid cold compressor operation near the surge and choke lines. A new impeller has also been tested. The Tevatron cold compressor pressure field and efficiency data with the new impeller are presented in this paper.

  5. Report of the Fermilab Committee for Site Studies

    SciTech Connect

    Steve Holmes, Vic Kuchler et. al.

    2001-09-10

    Fermilab is the flagship laboratory of the U.S. high-energy physics program. The Fermilab accelerator complex has occupied the energy frontier nearly continuously since its construction in the early 1970s. It will remain at the frontier until the Large Hadron Collider at CERN begins operating in 2006-7. A healthy future for Fermilab will likely require construction of a new accelerator in the post-LHC era. The process of identifying, constructing and operating a future forefront facility will require the support of the world high-energy-physics community, the governments and funding agencies of many nations and the people of surrounding communities. This report explores options for construction of a new facility on or near the existing Fermilab site. We began the study that forms the basis of this report with the idea that Fermilab, and the surrounding area of northeastern Illinois, possesses attributes that make it an attractive candidate for a new accelerator construction project: excellent geology; a Fermilab staff and local contractors who are experienced in subsurface construction; abundant energy supplies; good access to transportation networks; the presence of local universities with strong interest and participation in the Fermilab research program; Fermilab's demonstrated ability to mount large accelerator construction projects and operate complex accelerator facilities; and a surrounding community that is largely supportive of Fermilab's presence. Our report largely confirms these perceptions.

  6. Magnetic performance of new Fermilab high gradient quadrupoles

    SciTech Connect

    Hanft, R.; Brown, B.C.; Carson, J.A.; Gourlay, S.A.; Lamm, M.J.; McInturff, A.D.; Mokhtarani, A.; Riddiford, A.

    1991-05-01

    For the Fermilab Tevatron low beta insertions installed in 1990--1991 as part of a luminosity upgrade there were built approximately 35 superconducting cold iron quadrupoles utilizing a two layer cos 2{theta} coil geometry with 76 mm diameter aperature. The field harmonics and strengths of these magnets obtained by measurement at cryogenic conditions are presented. Evidence for a longitudinal periodic structure in the remnant field is shown. 6 refs., 2 figs., 3 tabs.

  7. TBT optics and impedance measurements at the Fermilab Main Injector

    SciTech Connect

    Alexahin, Y.; Gianfelice-Wendt, G.; /Fermilab

    2007-06-01

    The Fourier analysis of Turn by Turn (TBT) data provides valuable information about the machine linear and non-linear optics. This technique introduced first at Fermilab in 2006 for correcting the Tevatron linear coupling, has been now extended to the Main Injector with the aim of a better understanding of the beam dynamics, in particular in view of a substantial beam intensity increase in the frame of the laboratory neutrino program.

  8. Combined SM Higgs Limits at the Tevatron

    SciTech Connect

    Krumnack, N.

    2009-10-01

    We combine results from CDF and D{sup 0} on direct searches for a standard model (SM) Higgs boson (H) in p{bar p} collisions at the Fermilab Tevatron at {radical}s = 1.96 TeV. Compared to the previous Higgs Tevatron combination, more data and new channels WH {yields} {tau}{nu}b{bar b}, VH {yields} {tau}{tau}b{bar b}/jj{tau}{tau}, VH {yields} jjb{bar b}, t{bar t}H {yields} t{bar t}b{bar b} have been added. Most previously used channels have been reanalyzed to gain sensitivity. We use the latest parton distribution functions and gg {yields} H theoretical cross sections when comparing our limits to the SM predictions. With 2.0-3.6 fb{sup -1} of data analyzed at CDF, and 0.9-4.2 fb{sup -1} at D{sup 0}, the 95% C.L. upper limits on Higgs boson production are a factor of 2.5 (0.86) times the SM cross section for a Higgs boson mass of m{sub H} = 115 (165) GeV/c{sup 2}. Based on simulation, the corresponding median expected upper limits are 2.4 (1.1). The mass range excluded at 95% C.L. for a SM Higgs has been extended to 160 < m{sub H} < 170 GeV/c{sup 2}.

  9. B Flavor Tagging Calibration and Search for B(s) Oscillations in Semileptonic Decays with the CDF Detector at Fermilab

    SciTech Connect

    Giurgiu, Gavril A

    2005-09-01

    In this thesis we present a search for oscillations of B{sub s}{sup 0} mesons using semileptonic B{sub s}{sup 0} {yields} D{sub s}{sup -}{ell}{sup +}{nu} decays. Data were collected with the upgraded Collider Detector at Fermilab (CDFII) from events produced in collisions of 980 GeV protons and antiprotons accelerated in the Tevatron ring. The total proton-antiproton center-of-mass energy is 1.96 TeV. The Tevatron is the unique source in the world for B{sub s}{sup 0} mesons, to be joined by the Large Hadron Collider at CERN after 2007. We establish a lower limit on the B{sub s}{sup 0} oscillation frequency {Delta}m{sub s} > 7.7 ps{sup -1} at 95% Confidence Level. We also present a multivariate tagging algorithm that identifies semileptonic B {yields} {mu}X decays of the other B mesons in the event. Using this muon tagging algorithm as well as opposite side electron and jet charge tagging algorithms, we infer the B{sub s}{sup 0} flavor at production. The tagging algorithms are calibrated using high statistics samples of B{sup 0} and B{sup +} semileptonic B{sup 0/+} {yields} D{ell}{nu} decays. The oscillation frequency {Delta}m{sub d} in semileptonic B{sup 0} {yields} D{ell}{nu} decays is measured to be {Delta}m{sub d} = (0.501 {+-} 0.029(stat.) {+-} 0.017(syst.)) ps{sup -1}.

  10. Fast PIN-diode beam loss monitors at Tevatron

    SciTech Connect

    Shiltsev, V.

    1997-07-01

    The article is devoted to results of fine time structure of particle losses in Tevatron with use of fast beam loss monitors (BLM) based on PIN-diodes. An ultimate goal of the new BLMs is to distinguish losses of protons and antiprotons from neighbor bunches with 132 ns bunch spacing in the Tevatron collider upgrade. The devices studied fit well to the goal as they can recognize even seven times closer - 18.9 ns - spaced bunches` losses in the Tevatron fixed target operation regime. We have measured main characteristics of the BLM as well as studied the proton losses over 10 decades of time scale - from dozen of minutes to dozen of nanoseconds. Power spectral density of the losses is compared with spectra of the proton beam motion.

  11. High Energy Accelerator and Colliding Beam User Group

    SciTech Connect

    Snow, G.A.; Skuja, A.

    1992-05-01

    This report discusses research in the following areas: the study of e{sup +}e{sup {minus}} interactions; Hadron collider physics at Fermilab; fixed target physics and particle physics of general interest; and, the solenoidal detector collaboration at SSCL.

  12. Measurements of field decay and snapback effect on Tevatron dipole and quadrupole magnets

    SciTech Connect

    Velev, G.V.; Ambrosio, G.; Annala, G.; Bauer, P.; Carcagno, R.; DiMarco, J.; Glass, H.; Hanft, R.; Kephart, R.; Lamm, M.; Martens, M.; Schlabach, P.; Sylvester, C.; Tartaglia, M.; Tompkins, J.; /Fermilab

    2005-05-01

    Since the beginning of 2002 an intensive measurement program has been performed at the Fermilab Magnet Test Facility (MTF) to understand dynamic effects in Tevatron magnets. Based on the results of this program a new correction algorithm was proposed to compensate for the decay of the sextupole field during the dwell at injection and for the subsequent field ''snapback'' during the first few seconds of the energy ramp. Beam studies showed that the new correction algorithm works better than the original one, and improves the Tevatron efficiency by at least 3%. The beam studies also indicated insufficient correction during the first 6s of the injection plateau where an unexpected discrepancy of 0.15 sextupole units of extra drift was observed. This paper reports on the most recent measurements of the Tevatron dipoles field at the beginning of the injection plateau. Results on the field decay and snapback in the Tevatron quadrupoles are also presented.

  13. Measurements of the Neutron Spectrum n the Tevatron Tunnel with Application to the SSC

    SciTech Connect

    McCaslin, Joseph B.; Swanson, William P.; Groon, Donald E.; Elias, John; Freeman, William S.; Elwyn, Alexander; Yurista, Peder; /Fermilab

    1985-01-01

    This is an agreement between Fermilab and the experimenters to carry out an experiment to determine the radiation background in the Tevatron tunnel. The goal will be to determine the spectrum of neutrons in the tunnel while the Tevatron is operating (while gating all effects of the Main Ring ltout U) and for the Main Ring plus Tevatron (no gating). The detectors will also give information on the flux of charged particles near the Tevatron. The purpose is to obtain information on radiation fields in the tunnel in order to estimate possible radiation effects on equipment in such an environment. These data will be useful in desiqning the SSC tunnel and in assessing detector backgrounds. A preliminary description of the experiment is given in a memorandum from J.B. McCaslin to M. Tiqner, dated July 11, 1985, which is attached as Appendix I.

  14. A Roadmap for the Future of Fermilab

    SciTech Connect

    Oddone, Pier

    2005-12-12

    The principal aim of this roadmap is to place the US and Fermilab in the best position to host the International Linear Collider (ILC). The strategy must be resilient against the many vicissitudes that will attend the development of such a large project. Pier Oddone will explore the tension between the needed concentration of effort to move a project as large as the ILC forward and the need to maintain the breadth of our field.

  15. Beam Collimation at Hadron Colliders

    NASA Astrophysics Data System (ADS)

    Mokhov, N. V.

    2003-12-01

    Operational and accidental beam losses in hadron colliders can have a serious impact on machine and detector performance, resulting in effects ranging from minor to catastrophic. Principles and realization are described for a reliable beam collimation system required to sustain favorable background conditions in the collider detectors, provide quench stability of superconducting magnets, minimize irradiation of accelerator equipment, maintain operational reliability over the life of the machine, and reduce the impact of radiation on personnel and the environment. Based on detailed Monte-Carlo simulations, such a system has been designed and incorporated in the Tevatron collider. Its performance, comparison to measurements and possible ways to further improve the collimation efficiency are described in detail. Specifics of the collimation systems designed for the SSC, LHC, VLHC, and HERA colliders are discussed.

  16. Implications of CTEQ global analysis for collider observables

    SciTech Connect

    Nadolsky, Pavel M.; Huston, Joey; Pumplin, Jon; Stump, Daniel; Yuan, C.-P.; Lai, H.-L.; Cao Qinghong; Tung, W.-K.

    2008-07-01

    The latest CTEQ6.6 parton distributions, obtained by global analysis of hard-scattering data in the framework of general-mass perturbative QCD, are employed to study theoretical predictions and their uncertainties for significant processes at the Fermilab Tevatron and CERN Large Hadron Collider. The previously observed increase in predicted cross sections for the standard-candle W and Z boson production processes in the general-mass scheme (compared to those in the zero-mass scheme) is further investigated and quantified. A novel method to constrain parton distribution function (PDF) uncertainties in LHC observables, by effectively exploiting PDF-induced correlations with benchmark standard model cross sections, is presented. Using this method, we show that the tt cross section can potentially serve as a standard-candle observable for the LHC processes dominated by initial-state gluon scattering. Among other benefits, precise measurements of tt cross sections would reduce PDF uncertainties in predictions for single top-quark and Higgs boson production in the standard model and minimal supersymmetric standard model.

  17. B factory at RHIC (Relativistic Heavy Ion Collider)

    SciTech Connect

    Lockyer, N.S.; Van Berg, R.; Newcomer, F.M.; Foley, K.; Morse, W.; Paige, F.; Polychronakos, V.; Protopopescu, S.; Rehak, P.; Sidwell, R.

    1988-01-01

    A dedicated B physics experiment located in the proposed Relativistic Heavy Ion Collider at Brookhaven (RHIC) is considered. The machine may operate in a p-p mode with a luminosity in excess of 10/sup 32/ cm/sup /minus/2/ sec/sup /minus/1/ at 250 /times/ 250 GeV. The estimated B/bar B/ cross section at these energies is about 10 ..mu..barns and a run of 10/sup 7/ sec would produce roughly 10/sup 10/ B/bar B/ pairs. A comparison to similar ideas proposed for the Fermilab Tevatron Upgrade and the SSC are discussed. The most ambitious physics objective of such an experiment would be the study of CP nonconservation. Particular emphasis at this workshop was given to the self tagging mode B ..-->.. K/sup +/..pi../sup /minus//. Experimental techniques developed during this experiment would be extremely useful for more ambitious projects anticipated at the SSC. 36 refs., 10 figs.

  18. Studies of the chromaticity, tune and coupling drift in the Tevatron

    SciTech Connect

    Martens, Michael A.; Annala, Jerry; Bauer, Pierre; Shiltsev, Vladimir; Velev, Gueorgui; /Fermilab

    2005-05-01

    Chromaticity drift is a well-known and more or less well-understood phenomenon in superconducting colliders such as the Tevatron. Less known is the effect of tune and coupling drift, also observed in the Tevatron during injection. These effects are caused by field drifts in the superconducting magnets. Controlling the behavior of the tune, coupling, and chromaticity is an important part of reducing beam loss at injection and at the start of the Tevatron ramp. In this context we conducted several beam-studies during the period of April to August 2004 in which we measured the drift in the Tevatron chromaticity, tunes, and coupling during the injection porch. In some cases we also measured the snapback at the start of the ramp. We will present the results of these studies data and put them into context of the results of off-line magnetic measurements conducted in spare Tevatron dipoles.

  19. Experimental demonstration of beam-beam compensation by Tevatron electron lenses and prospects for the LHC

    SciTech Connect

    Shiltsev, V.; Alexahin, Y.; Kamerdzhiev, V.; Kuznetsov, G.; Zhang, X.L.; Bishofberger, K.; /Los Alamos

    2007-06-01

    Electromagnetic long-range and head-on interactions of high intensity proton and antiproton beams are significant sources of beam loss and lifetime limitations in the Tevatron Collider Run II (2001-present). We present observations of the beam-beam phenomena in the Tevatron and results of relevant beam studies. We analyze the data and various methods employed in high energy physics (HEP) operation, predict the performance for planned luminosity upgrades and discuss ways to improve it.

  20. Accelerators Beyond The Tevatron?

    SciTech Connect

    Lach, Joseph

    2010-07-01

    Following the successful operation of the Fermilab superconducting accelerator three new higher energy accelerators were planned. They were the UNK in the Soviet Union, the LHC in Europe, and the SSC in the United States. All were expected to start producing physics about 1995. They did not. Why?

  1. Global QCD Analysis and Hadron Collider Physics

    SciTech Connect

    Tung, W.-K.

    2005-03-22

    The role of global QCD analysis of parton distribution functions (PDFs) in collider physics at the Tevatron and LHC is surveyed. Current status of PDF analyses are reviewed, emphasizing the uncertainties and the open issues. The stability of NLO QCD global analysis and its prediction on 'standard candle' W/Z cross sections at hadron colliders are discussed. The importance of the precise measurement of various W/Z cross sections at the Tevatron in advancing our knowledge of PDFs, hence in enhancing the capabilities of making significant progress in W mass and top quark parameter measurements, as well as the discovery potentials of Higgs and New Physics at the Tevatron and LHC, is emphasized.

  2. Measurement of top anti-top cross section in proton - anti-proton collider at s**(1/2) = 1.96-TeV

    SciTech Connect

    Mal, Prolay Kumar

    2005-04-01

    Discovery of the top quark in 1995 at the Fermilab Tevatron collider concluded a long search following the 1977 discovery of bottom (b) quark [1] and represents another triumph of the Standard Model (SM) of elementary particles. Top quark is one of the fundamental fermions in the Standard Model of electroweak interactions and is the weak-isospin partner of the bottom quark. A precise measurement of top pair production cross-section would be a test of Quantum Chromodynamics (QCD) prediction. Presently, Tevatron is the world's highest energy collider where protons (p) and anti-protons ({anti p}) collide at a centre of mass energy (ps) of 1.96 TeV. At Tevatron top (t) and anti-top ({anti t}) quarks are predominantly pair produced through strong interactions--quark annihilation ({approx_equal} 85%) and gluon fusion ({approx_equal} 15%). Due to the large mass of top quark, t or {anti t} decays ({approx} 10{sup -25} sec) before hadronization and in SM framework, it decays to a W boson and a b quark with {approx} 100% branching ratio (BR). The subsequent decay of W boson determines the major signatures of t{anti t} decay. If both W bosons (coming from t and {anti t} decays) decay into leptons (viz., ev{sub e}, {mu}{nu}{sub {mu}} or {tau}{nu}{sub {tau}}) the corresponding t{bar t} decay is called dileptonic decay. Of all dileptonic decay modes of t{bar t}, the t{bar t} {yields} WWb{anti b} {yields} ev{sub e}{mu}{nu}{sub {mu}}b{anti b} (e{mu} channel) decay mode has the smallest background contamination from Z{sup 0} production or Drell-Yan process; simultaneously, it has the highest BR ({approx} 3.16%) [2] amongst all dileptonic decay modes of t{bar t}. During Run I (1992-1996) of Tevatron, three e{mu} candidate events were detected by D0 experiment, out of 80 candidate events (inclusive of all decay modes of t{bar t}). Due to the rarity of the t{bar t} events, the measured cross-section has large uncertainty in its value (viz., 5.69 {+-} 1.21(stat) {+-} 1.04(sys) pb {at

  3. The Tevatron tune tracker pll - theory, implementation and measurements

    SciTech Connect

    Tan, Cheng-Yang; /Fermilab

    2004-12-01

    The Tevatron tune tracker is based on the idea that the transverse phase response of the beam can be measured quickly and accurately enough to allow us to track the betatron tune with a phase locked loop (PLL). The goal of this paper is to show the progress of the PLL project at Fermilab. We will divide this paper into three parts: theory, implementation and measurements. In the theory section, we will use a simple linear model to show that our design will track the betatron tune under conditions that occur in the Tevatron. In the implementation section we will break down and examine each part of the PLL and in some cases calculate the actual PLL parameters used in our system from beam measurements. And finally in the measurements section we will show the results of the PLL performance.

  4. Search for new physics at colliders

    SciTech Connect

    Chiarelli, Giorgio; /INFN, Pisa

    2005-09-01

    In this paper I present the most recent results of the ongoing searches, mainly from Tevatron Collider experiments, for new physics beyond the Standard Model. While no signal has been seen so far, many analyses are reaching the point in which either a discovery will take place or strong limit on currently popular theories will be set.

  5. QCD analysis of W- and Z-boson production at Tevatron

    NASA Astrophysics Data System (ADS)

    HERAfitter Developers' Team; Camarda, S.; Belov, P.; Cooper-Sarkar, A. M.; Diaconu, C.; Glazov, A.; Guffanti, A.; Jung, A.; Kolesnikov, V.; Lohwasser, K.; Myronenko, V.; Olness, F.; Pirumov, H.; Plačakytė, R.; Radescu, V.; Sapronov, A.; Slominski, W.; Starovoitov, P.; Sutton, M.

    2015-09-01

    Recent measurements of the W-boson charge asymmetry and of the Z-boson production cross sections, performed at the Tevatron collider in Run II by the D0 and CDF collaborations, are studied using the HERAFitter framework to assess their impact on the proton parton distribution functions (PDFs). The Tevatron measurements, together with deep-inelastic scattering data from HERA, are included in a QCD analysis performed at next-to-leading order, and compared to the predictions obtained using other PDF sets from different groups. Good agreement between measurements and theoretical predictions is observed. The Tevatron data provide significant constraints on the d-valence quark distribution.

  6. QCD analysis of $W$- and $Z$-boson production at Tevatron

    DOE PAGESBeta

    Camarda, S.; Belov, P.; Cooper-Sarkar, A. M.; Diaconu, C.; Glazov, A.; Guffanti, A.; Jung, A.; Kolesnikov, V.; Lohwasser, K.; Myronenko, V.; et al

    2015-09-28

    Recent measurements of the W-boson charge asymmetry and of the Z-boson production cross sections, performed at the Tevatron collider in Run II by the D0 and CDF collaborations, are studied using the HERAFitter framework to assess their impact on the proton parton distribution functions (PDFs). Thus, the Tevatron measurements, together with deep-inelastic scattering data from HERA, are included in a QCD analysis performed at next-to-leading order, and compared to the predictions obtained using other PDF sets from different groups. Good agreement between measurements and theoretical predictions is observed. The Tevatron data provide significant constraints on the d-valence quark distribution.

  7. Tevatron reverse injection

    SciTech Connect

    Saritepe, S.; Annala, G.

    1993-06-25

    In the new injection scenario antiprotons are injected onto a helical orbit in the Tevatron in order to avoid the detrimental effects of the beam-beam interaction at 150 GeV. The new scenario required changes in the tuning procedure. Antiprotons are too precious to be used for tuning, therefore the antiproton injection line has to be tuned with protons by reverse injecting them from the Tevatron into the Main Pang (MR). Previously, the reverse injection was performed in one supercycle. One batch of uncoalesced bunches was injected into the Tevatron and ejected after 40 seconds. Then the orbit closure was performed in the MR. In the new scheme the lambertson magnets have to be moved and separator polarities have to be switched, activities that cannot be completed in one supercycle. Therefore, the reverse injection sequence was changed. This involved the redefinition of TVBS dock event $D8 as MRBS $D8 thus marking it possible to inject 6 proton batches and eject them one at a time on command, performing orbit closure each time in the MR.

  8. Prospects for Higgs searches at the Tevatron and LHC in the MSSM with explicit CP violation.

    SciTech Connect

    Draper, P.; Liu, T.; Wagner, C. E. M.; High Energy Physics; Univ. of Chicago

    2010-01-01

    We analyze the Tevatron and Large Hadron Collider (LHC) reach for the Higgs sector of the minimal supersymmetric standard model (MSSM) in the presence of explicit CP violation. Using the most recent studies from the Tevatron and LHC collaborations, we examine the CPX benchmark scenario for a range of CP-violating phases in the soft trilinear and gluino mass terms and compute the exclusion/discovery potentials for each collider on the (MH+,tan{beta}) plane. Projected results from standard model (SM)-like, nonstandard, and charged Higgs searches are combined to maximize the statistical significance. We exhibit complementarity between the SM-like Higgs searches at the LHC with low luminosity and the Tevatron, and estimate the combined reach of the two colliders in the early phase of LHC running.

  9. OVERVIEW OF HIGGS BOSON STUDIES AT THE TEVATRON

    SciTech Connect

    Zivkovic, Lidija

    2014-05-01

    The CDF and D0 experiments at the Tevatron p¯p Collider collected data between 2002 and 2011, accumulating up to 10 fb−1 of data. During that time, an extensive search for the standard model Higgs boson was performed. Combined results from the searches for the standard model Higgs boson with the final dataset are presented, together with results on the Higgs boson couplings and spin and parity.

  10. Top-Quark Cross Section and Properties at the Tevatron

    SciTech Connect

    Wagner, Wolfgang; /Wuppertal U.

    2009-09-01

    At the Tevatron, the collider experiments CDF and D0 have data sets at their disposal that compromise several hundreds of reconstructed top-antitop-quark pairs and allow for precision measurements of the cross section and production and decay properties. Besides comparing the measurements to standard model predictions, these data sets open a window to physics beyond the standard model. Dedicated analyses look for new heavy gauge bosons, fourth generation quarks, and flavor-changing neutral currents.

  11. Measurements of B rare decays at the Tevatron

    SciTech Connect

    Scuri, Fabrizio; /INFN, Pisa

    2007-05-01

    A summary of recent results on B rare decays from the CDF and D0 experiments operating in Run II of the Fermilab Tevatron is given; analyzed decay modes are B{sub d,s} {yields} hh, B{sub d,s} {yields} {mu}{sup +}{mu}{sup -}, and B {yields} {mu}{sup +}{mu}{sup -} h. Data samples are relative to 1 fb{sup -1} or more integrated luminosity of p{bar p} collisions at {radical}s = 1.96 TeV. All reported results are in agreement with Standard Model predictions and consistent with B-Factories analyzes.

  12. Tevatron End-of-Run Beam Physics Experiments

    SciTech Connect

    Valishev, A.; Gu, X.; Miyamoto, R.; White, S.; Schmidt, F.; Qiang, J.; /LBNL

    2012-05-01

    Before the Tevatron Collider Run II ended in September of 2011, a number of specialized beam study periods were dedicated to the experiments on various accelerator physics concepts and effects during the last year of the machine operation. The study topics included collimation with bent crystals and hollow electron beams, diffusion measurements and various aspects of beam-beam interactions. In this report we concentrate on the subject of beam-beam interactions, summarizing the results of beam experiments. The covered topics include offset collisions, coherent beam stability, effect of the bunch-length-to-beta-function ratio, and operation of AC dipole with colliding beams.

  13. Race for the Higgs hots up as Tevatron seeks extension

    NASA Astrophysics Data System (ADS)

    Banks, Michael

    2009-12-01

    With researchers at CERN's Large Hadron Collider (LHC) having circulated protons for the first time since last year's accident, the US Department of Energy (DOE) is requesting 25m so that the Tevatron collider at the Fermi National Accelerator Laboratory in Illinois can run for an extra year until 2011. If the additional funding is granted, it would give physicists in the US an extra 12 months to close in on discovering the elusive Higgs boson. The DOE's request will now be reviewed before being part of President Barack Obama's 2011 budget request, which will be sent to Congress in February.

  14. Search for supersymmetric partner of bottom quark at d0 at Tevatron. Studies on missing transverse energy

    SciTech Connect

    Calvet, Samuel Pierre

    2007-09-21

    Supersymmetry, extension of the Standard Model of Particle Physics (SM), is searched for by trying to observe the supersymmetric partner of bottom quark ($\\tilde{b}$). This search is performed using events with a final state comprising two acoplanar b-quark jets and missing transverse energy (MET) and coming from a sample of 992 pb-1 of data collected by the D0 detector at the Tevatron, the Fermilab p$\\bar{p}$ collider. The absence of an excess of events in comparison to MS expectations leads to exclude sb masses up to 201 GeV, neutralino masses up to 94 GeV. The MET has been studied under two points of view, because of its fundamental role in this search. First, at the level of the trigger system which allows the online selection candidate events, and then, within the framework of the ALPGEN generator, the simulation of the Z boson transverse momentum which appears as MET when the Z boson decays into neutrino.

  15. Fermilab Program and Plans

    SciTech Connect

    Denisov, Dmitri

    2014-01-01

    This article is a short summary of the talk presented at 2014 Instrumentation Conference in Novosibirsk about Fermilab's experimental program and future plans. It includes brief description of the P5 long term planning progressing in US as well as discussion of the future accelerators considered at Fermilab.

  16. Luminosity determination at proton colliders

    NASA Astrophysics Data System (ADS)

    Grafström, P.; Kozanecki, W.

    2015-03-01

    Luminosity is a key parameter in any particle collider, and its precise determination has proven particularly challenging at hadron colliders. After introducing the concept of luminosity in its multiple incarnations and offering a brief survey of the pp and p p bar colliders built to date, this article outlines the various methods that have been developed for relative-luminosity monitoring, as well as the complementary approaches considered for establishing an absolute luminosity scale. This is followed by a survey, from both a historical and a technical perspective, of luminosity determination at the ISR, the S p p ¯ S, the Tevatron, RHIC and the LHC. For each of these, we first delineate the interplay between the experimental context, the specificities of the accelerator, and the precision targets suggested by the physics program. We then detail how the different methods were applied to specific experimental environments and how successfully they meet the precision goals.

  17. A search for disoriented chiral condensate at Fermilab

    SciTech Connect

    Bjorken, J.D.

    1996-10-01

    A small test/experiment at the Fermilab Collider which measures charged particle and photon multiplicities in the forward direction, {eta} {approx} 4.1, has been carried out, with the primary goal being the search for disoriented chiral condensate (DCC). The author describes the experiment and analysis methods, together with preliminary results.

  18. Injury reduction at Fermilab

    SciTech Connect

    Griffing, Bill; /Fermilab

    2005-06-01

    In a recent DOE Program Review, Fermilab's director presented results of the laboratory's effort to reduce the injury rate over the last decade. The results, shown in the figure below, reveal a consistent and dramatic downward trend in OSHA recordable injuries at Fermilab. The High Energy Physics Program Office has asked Fermilab to report in detail on how the laboratory has achieved the reduction. In fact, the reduction in the injury rate reflects a change in safety culture at Fermilab, which has evolved slowly over this period, due to a series of events, both planned and unplanned. This paper attempts to describe those significant events and analyze how each of them has shaped the safety culture that, in turn, has reduced the rate of injury at Fermilab to its current value.

  19. Fermilab`s DART DA system

    SciTech Connect

    Pordes, R.; Anderson, J.; Berg, D.; Black, D.; Forster, R.; Franzen, J.; Kent, S.; Kwarciany, R.; Meadows, J.; Moore, C.

    1994-04-01

    DART is the new data acquisition system designed and implemented for six Fermilab experiments by the Fermilab Computing Division and the experiments themselves. The complexity of the experiments varies greatly. Their data taking throughput and event filtering requirements range from a few (2-5) to tens (80) of CAMAC, FASTBUS and home built front end crates; from a few 100 KByte/sec to 160 MByte/sec front end data collection rates; and from 0-3000 Mips of level 3 processing. The authors report on the architecture and implementation of DART to this date, and the hardware and software components that are being developed and supported.

  20. Z Boson Asymmetry Measurements at the Tevatron

    SciTech Connect

    Quinn, B.

    2014-01-01

    We present measurements of the forward-backward asymmetry (A_fb) in dilepton pair decays of Z bosons produced in ppbar collisions using the full Tevatron dataset. The CDF experiment extracts a value for the effective weak mixing angle parameter sin^{2}\\theta^{l}_{eff} of 0.2315 +/- 0.0010 from the A_fb distribution of dimuon events in 9.2 fb^{-1} of integrated luminosity. From dielectron events in 9.7 fb^{-1} of data, the D0 experiment finds sin^{2}\\theta^{l}_{eff} = 0.23106 +/- 0.00053, the world's most precise measurement of sin^{2}\\theta^{l}_{eff} from hadron colliders and with light quark couplings.

  1. Rare B decays at the Tevatron

    SciTech Connect

    Aoki, Masato; /Fermilab

    2011-01-01

    Studying flavor changing neutral current transitions provides important information that helps searches for physics beyond the standard model. In this paper we report on recent measurements of these transitions using data collected by the CDF and D0 experiments at the Tevatron p{bar p} collider, including world-leading limits on the branching fraction of the decay B{sub (s)}{sup 0} {yields} {mu}{sup +}{mu}{sup -}, a forward-backward asymmetry measurement in B{sup 0} {yields} K*{sup 0} {mu}{sup +}{mu}{sup -} and B{sup +} {yields} K{sup +} {mu}{sup +}{mu}{sup -} decays which is consistent and competitive with best B-factories results, and the first observation of the decay B{sub s}{sup 0} {yields} {phi}{mu}{sup +}{mu}{sup -}.

  2. Exotic colliders

    SciTech Connect

    Chattopadhyay, S.

    1994-11-01

    The motivation, feasibility and potential for two unconventional collider concepts - the Gamma-Gamma Collider and the Muon Collider - are described. The importance of the development of associated technologies such as high average power, high repetition rate lasers and ultrafast phase-space techniques are outlined.

  3. Photon Colliders

    SciTech Connect

    Gronberg, J

    2002-10-07

    A photon collider interaction region has the possibility of expanding the physics reach of a future TeV scale electron-positron collider. A survey of ongoing efforts to design the required lasers and optics to create a photon collider is presented in this paper.

  4. Measurement of Beam Tunes in the Tevatron Using the BBQ System

    SciTech Connect

    Edstrom, Dean R.; /Indiana U.

    2009-04-01

    Measuring the betatron tunes in any synchrotron is of critical importance to ensuring the stability of beam in the synchrotron. The Base Band Tune, or BBQ, measurement system was developed by Marek Gasior of CERN and has been installed at Brookhaven and Fermilab as a part of the LHC Accelerator Research Program, or LARP. The BBQ was installed in the Tevatron to evaluate its effectiveness at reading proton and antiproton tunes at its flattop energy of 980 GeV. The primary objectives of this thesis are to examine the methods used to measure the tune using the BBQ tune measurement system, to incorporate the system into the Fermilab accelerator controls system, ACNET, and to compare the BBQ to existing tune measurement systems in the Tevatron.

  5. Review of Heavy Flavor Physics at the Tevatron

    SciTech Connect

    Giurgiu, Gavril; /Johns Hopkins U.

    2011-10-01

    The D0 and CDF detectors at the Fermilab Tevatron have each accumulated more that 9 fb{sup -1} of integrated luminosity. The corresponding large datasets enable the two experiments to perform unprecedented studies of heavy flavor hadron properties. We present recent D0 and CDF measurements, focusing on rare decays and CP violation in B-meson decays. Flavor Physics probes new phenomena by either searching for small deviations from the Standard Model (SM) based theoretical predictions or by measuring quantities which are highly suppressed within the SM. Searching for small deviations from the SM are performed using large strange, charm or bottom hadron samples, mostly by kaon experiments of B factories. Measurements of highly suppressed quantities, such as CP violation phases and asymmetries in the neutral B{sub s}-meson system or searches for rare B decays, are performed with the hope that new physics effects would be large enough to significantly affect the measured quantities and so, lead to observations of deviations from the SM expectations. The D0 and CDF detectors at the Fermilab Tevatron have each accumulated more that 9 fb{sup -1} of integrated luminosity. The corresponding large datasets enable the two experiments to perform unprecedented studies of heavy flavor hadron properties. We present recent D0 and CDF measurements, focusing on rare decays and CP violation in B-meson decays.

  6. Fermilab: The Ring of the Frontier, 1967-1989

    NASA Astrophysics Data System (ADS)

    Kolb, Adrienne W.

    2009-05-01

    Fermilab, the home of the highest energy hadron accelerator in the world, has been at the frontier of high energy physics for almost forty years. Between 1967, when the Lab was founded in a suburb of Chicago by Robert R. Wilson, Edwin L. Goldwasser, and Norman F. Ramsey, and 1989, the final year of Leon M. Lederman's administration, Fermilab was the premiere proton facility for experimental particle physics in the US. Wilson's era saw the construction and achievement of the 200-500 billion electron volts (BeV) Main Ring. Lederman led Fermilab into the next frontier with the superconducting Energy Doubler/Saver, renamed the Tevatron for its design energy of one trillion electron volts (TeV). In the 1980s-1990s, as construction of facilities became more complex and experiments grew larger and took a generation to complete, how could the costs be met without even more careful long-term planning and budgeting? Why did Fermilab's accelerator complex advance while others did not? What role, if any, did politics play? What can be learned from Fermilab's experience about maintaining US involvement at the forefront of 21st century particle physics research?

  7. XXth Hadron Collider Physics Symposium

    NASA Astrophysics Data System (ADS)

    In 2009, the Hadron Collider Physics Symposium took place in Evian (France), on the shore of the Geneva Lake, from 16-20 November. It was jointly organised by CERN and the French HEP community (CNRS-IN2P3 and CEA-IRFU). This year's symposium come at an important time for both the Tevatron and LHC communities. It stimulated the completion of analyses for a significant Tevatron data sample, and it allowed an in-depth review of the readiness of the LHC and its detectors just before first collisions. The programme includes sessions on top-quark and electro-weak physics, QCD, B physics, new phenomena, electro-weak symmetry breaking, heavy ions, and the status and commissioning of the LHC machine and its experiments. Conference website : http://hcp2009.in2p3.fr/

  8. Collider searches for extra dimensions

    SciTech Connect

    Landsberg, Greg; /Brown U.

    2004-12-01

    Searches for extra spatial dimensions remain among the most popular new directions in our quest for physics beyond the Standard Model. High-energy collider experiments of the current decade should be able to find an ultimate answer to the question of their existence in a variety of models. Until the start of the LHC in a few years, the Tevatron will remain the key player in this quest. In this paper, we review the most recent results from the Tevatron on searches for large, TeV{sup -1}-size, and Randall-Sundrum extra spatial dimensions, which have reached a new level of sensitivity and currently probe the parameter space beyond the existing constraints. While no evidence for the existence of extra dimensions has been found so far, an exciting discovery might be just steps away.

  9. B-meson production at Tevatron and the LHC in the Regge limit of quantum chromodynamics

    NASA Astrophysics Data System (ADS)

    Karpishkov, A. V.; Nefedov, M. A.; Saleev, V. A.; Shipilova, A. V.

    2016-03-01

    We study the inclusive hadroproduction of B 0, B +, and B s 0 mesons in the leading order in the parton Reggeization approach. We have described B-meson transverse momentumdistributionsmeasured in the central region of rapidity by the CDF Collaboration at Fermilab Tevatron and CMS Collaboration at LHC within uncertainties and without free parameters, applying Kimber-Martin-Ryskin unintegrated gluon distribution function in a proton.

  10. Physics at a new Fermilab proton driver

    SciTech Connect

    Geer, Steve; /Fermilab

    2006-04-01

    In 2004, motivated by the recent exciting developments in neutrino physics, the Fermilab Long Range Planning Committee identified a new high intensity Proton Driver as an attractive option for the future. At the end of 2004 the APS ''Study on the Physics of Neutrinos'' concluded that the future US neutrino program should have, as one of its components, ''A proton driver in the megawatt class or above and neutrino superbeam with an appropriate very large detector capable of observing Cp violation and measuring the neutrino mass-squared differences and mixing parameters with high precision''. The presently proposed Fermilab Proton Driver is designed to accomplish these goals, and is based on, and would help develop, Linear Collider technology. In this paper the Proton Driver parameters are summarized, and the potential physics program is described.

  11. A Superconducting Linac Proton Driver at Fermilab

    NASA Astrophysics Data System (ADS)

    Foster, G. William

    2004-05-01

    A proton driver has emerged as the leading candidate for Fermilab's next near-term accelerator project. The preferred technical solution is an 8 GeV superconducting linac based on technology developed for TESLA and the Spallation Neutron Source (SNS). Its primary mission is to serve as a single-stage H- injector to prepare 2 MW "Super-Beams" for Neutrino experiments using the Fermilab Main Injector. The linac can also accelerate electrons, protons, and relativistic muons, permitting future applications such as a driver for an FEL, a long-pulse spallation source, the driver for an intense 8 GeV neutrino or kaon program, and potential applications to a neutrino factory or muon collider. The technical design of the 8 GeV linac, as well as the design of an alternative synchrotron based proton driver, will be described along with plans for project proposal and construction.

  12. Fermilab E791

    NASA Astrophysics Data System (ADS)

    Cremaldi, L. M.; Aitala, E. M.; Almeida, F. M. L.; Amato, S.; Anjos, J. C.; Appel, J. A.; Ashery, D.; Astorga, J.; Banerjee, S.; Beck, S.; Bediaga, I.; Blaylock, G.; Bracker, S. B.; Burchat, P. R.; Burnstein, R.; Carter, T.; Costa, I.; Denisenko, K.; Darling, C.; Gagnon, P.; Gerzon, S.; Gounder, K.; Granite, D.; Halling, M.; James, C.; Kasper, P. A.; Kwan, S.; Lichtenstadt, J.; Lundberg, B.; de Mello Neto, J. R. T.; Milburn, R.; de Miranda, J. M.; Napier, A.; Nguyen, A.; d'Oliveira, A. B.; Peng, K. C.; Purohit, M. V.; Quinn, B.; Radeztsky, S.; Rafatian, A.; Ramalho, A. J.; Reay, N. W.; Reibel, K.; Reidy, J. J.; Rubin, H.; Santha, A.; Santoro, A. F. S.; Schwartz, A.; Sheaff, M.; Sidwell, R. A.; Carvalho, H. da Silva; Slaughter, J.; Sokoloff, M. D.; Souza, M.; Stanton, N.; Sugano, K.; Summers, D. J.; Takach, S.; Thorne, K.; Tripathi, A.; Trumer, D.; Watanabe, S.; Wiener, J.; Witchey, N.; Wolin, E.; Yi, D.

    1992-02-01

    Fermilab E791, a very high statistics charm particle experiment, recently completed its data taking at Fermilab's Tagged Photon Laboratory. Over 20 billion events were recorded through a loose transverse energy trigger and written to 8mm tape in the 1991-92 fixed target run at Fermilab. This unprecedented data sample containing charm is being analyzed on many-thousand MIP RISC computing farms set up at sites in the collaboration. A glimpse of the data taking and analysis effort is presented. We also show some preliminary results for common charm decay modes. Our present analysis indicates a very rich yield of over 200K reconstructed charm decays.

  13. What the Tevatron Found?

    SciTech Connect

    Buckley, Matthew R.; Hooper, Dan; Kopp, Joachim; Martin, Adam; Neil, Ethan T.; /Fermilab

    2011-07-01

    The CDF collaboration has reported a 4.1{sigma} excess in their lepton, missing energy, and dijets channel. This excess, which takes the form of an approximately Gaussian peak centered at a dijet invariant mass of 147 GeV, has provoked a great deal of experimental and theoretical interest. Although the D0 collaboration has reported that they do not observe a signal consistent with CDF, there is currently no widely accepted explanation for the discrepancy between these two experiments. A resolution of this issue is of great importance - not least because it may teach us lessons relevant for future searches at the LHC - and it will clearly require additional information. In this paper, we consider the ability of the Tevatron and LHC detectors to observe evidence associated with the CDF excess in a variety of channels. We also discuss the ability of selected kinematic distributions to distinguish between Standard Model explanations of the observed excess and various new physics scenarios.

  14. Review of charged Higgs searches at the Tevatron

    SciTech Connect

    Gutierrez, Phillip; /Oklahoma U.

    2010-12-01

    Although the standard model of particle physics (SM) is remarkably successful at describing the fundamental particles and their interactions, the mechanism for the breaking of elecroweak symmetry (EWSB) has yet to be confirmed. In the SM, the EWSB sector consists of four scalar fields represented by a single SU(2) complex doublet. Following EWSB, three of the fields are responsible for the generation of the W{sup {+-}} and Z masses, while the fourth is the neutral Higgs boson. At the present time, the Tevatron experiments have set 95% CL exclusion limits on the mass of the SM Higgs boson for the ranges 100 to 109 GeV and 158 to 175 GeV. In addition to these constraints on the SM Higgs boson, the Tevatron experiments have also set limits on neutral and charged Higgs bosons (H{sup {+-}}) in the context of several models beyond the SM. In this review, we discuss searches for charged Higgs bosons performed by the CDF and D0 collaborations at the Fermilab Tevatron in the mass range of 80 to 300 GeV.

  15. Highlights from Fermilab

    NASA Astrophysics Data System (ADS)

    Oddone, P. J.

    2010-12-01

    DISCUSSION by CHAIRMAN: P.J. ODDONE, Scientific Secretaries: W. Fisher, A. Holzner Note from Publisher: The Slides of the Lecture: "Highlights from Fermilab" can be found at http://www.ccsem.infn.it/issp2007/

  16. Breakthrough: Fermilab Accelerator Technology

    ScienceCinema

    None

    2014-08-12

    There are more than 30,000 particle accelerators in operation around the world. At Fermilab, scientists are collaborating with other laboratories and industry to optimize the manufacturing processes for a new type of powerful accelerator that uses superconducting niobium cavities. Experimenting with unique polishing materials, a Fermilab team has now developed an efficient and environmentally friendly way of creating cavities that can propel particles with more than 30 million volts per meter.

  17. Fermilab: Science at Work

    ScienceCinema

    Brendan Casey; Herman White; Craig Hogan; Denton Morris; Mary Convery; Bonnie Fleming; Deborah Harris; Dave Schmitz; Brenna Flaugher; Aron Soha

    2013-02-14

    Six days. Three frontiers. One amazing lab. From 2010 to 2012, a film crew followed a group of scientists at the Department of Energy's Fermilab and filmed them at work and at home. This 40-minute documentary shows the diversity of the people, research and work at Fermilab. Viewers catch a true behind-the-scenes look of the United States' premier particle physics laboratory while scientists explain why their research is important to them and the world.

  18. Breakthrough: Fermilab Accelerator Technology

    SciTech Connect

    2012-04-23

    There are more than 30,000 particle accelerators in operation around the world. At Fermilab, scientists are collaborating with other laboratories and industry to optimize the manufacturing processes for a new type of powerful accelerator that uses superconducting niobium cavities. Experimenting with unique polishing materials, a Fermilab team has now developed an efficient and environmentally friendly way of creating cavities that can propel particles with more than 30 million volts per meter.

  19. Fermilab: Science at Work

    SciTech Connect

    Brendan Casey; Herman White; Craig Hogan; Denton Morris; Mary Convery; Bonnie Fleming; Deborah Harris; Dave Schmitz; Brenna Flaugher; Aron Soha

    2013-02-01

    Six days. Three frontiers. One amazing lab. From 2010 to 2012, a film crew followed a group of scientists at the Department of Energy's Fermilab and filmed them at work and at home. This 40-minute documentary shows the diversity of the people, research and work at Fermilab. Viewers catch a true behind-the-scenes look of the United States' premier particle physics laboratory while scientists explain why their research is important to them and the world.

  20. Tests of cold helium compressors at Fermilab

    SciTech Connect

    Peterson, T.J.; Fuerst, J.D.

    1987-10-01

    Fermilab has tested two cold helium compressors for possible installation in the satellite refrigerator buildings of the Tevatron cryogenic system. Operating conditions required to obtain an overall Tevatron energy upgrade from 900 to 1000 GeV are (for each of 24 machines): 52 g/s mass flow rate, 0.7 atm inlet pressure, 1.4 atm exhaust pressure. Acceptable efficiency is in the 60% range. Both Creare, Inc., and Cryogenic Consultants, Inc. (CCI), have supplied units for evaluation. The Creare machine is a high speed centrifugal pump/compressor which yielded 60% adiabatic efficiency (including an approximately 20 watt heat leak) with a 1.0 atm inlet pressure and 55 g/s flow rate. Certain mechanical difficulties were present, chiefly the device's inability to withstand two-phase flow. CCI supplied a reciprocating unit which, after initial testing and modification, achieved 59% efficiency with an approximate 35 watt heat leak at a 0.7 atm inlet pressure and 48 g/s flow rate. Although the device lacks the smooth, quiet operating characteristics of a turbomachine, it has endured mechanically throughout testing and is entirely insensitive to two-phase flow.

  1. Digital signal processing the Tevatron BPM signals

    SciTech Connect

    Cancelo, G.; James, E.; Wolbers, S.; /Fermilab

    2005-05-01

    The Beam Position Monitor (TeV BPM) readout system at Fermilab's Tevatron has been updated and is currently being commissioned. The new BPMs use new analog and digital hardware to achieve better beam position measurement resolution. The new system reads signals from both ends of the existing directional stripline pickups to provide simultaneous proton and antiproton measurements. The signals provided by the two ends of the BPM pickups are processed by analog band-pass filters and sampled by 14-bit ADCs at 74.3MHz. A crucial part of this work has been the design of digital filters that process the signal. This paper describes the digital processing and estimation techniques used to optimize the beam position measurement. The BPM electronics must operate in narrow-band and wide-band modes to enable measurements of closed-orbit and turn-by-turn positions. The filtering and timing conditions of the signals are tuned accordingly for the operational modes. The analysis and the optimized result for each mode are presented.

  2. Recent ground motion studies at Fermilab

    SciTech Connect

    Shiltsev, V.; Volk, J.; Singatulin, S.; /Novosibirsk, IYF

    2009-04-01

    Understanding slow and fast ground motion is important for the successful operation and design for present and future colliders. Since 2000 there have been several studies of ground motion at Fermilab. Several different types of HLS (hydro static level sensors) have been used to study slow ground motion (less than 1 hertz) seismometers have been used for fast (greater than 1 hertz) motions. Data have been taken at the surface and at locations 100 meters below the surface. Data of recent slow ground motion measurements with HLSs, many years of alignment data and results of the ATL-analysis are presented and discussed.

  3. Searches for New Physics at the Tevatron and LHC

    SciTech Connect

    Wittich, Peter; /Cornell U., LEPP

    2011-11-01

    This is an auspicious moment in experimental particle physics - there are large data samples at the Tevatron and a new energy regime being explored at the Large Hadron Collider with ever larger data samples. The coincidence of these two events suggests that we will soon be able to address the question, what lies beyond the standard model? Particle physics's current understanding of the universe is embodied in it. The model has been tested to extreme precision - better than a part in ten thousand - but we suspect that it is only an approximation, and that physics beyond this standard model will appear in the data of the Tevatron and LHC in the near future. This brief review touches on the status of searches for new physics at the time of the conference.

  4. A facility to test short superconducting accelerator magnets at Fermilab

    SciTech Connect

    Lamm, M.J.; Hess, C.; Lewis, D.; Jaffery, T.; Kinney, W.; Ozelis, J.P.; Strait, J.; Butteris, J.; McInturff, A.D.; Coulter, K.J.

    1992-10-01

    During the past four years the Superconducting Magnet R&D facility at Fermilab (Lab 2) has successfully tested superconducting dipole, quadrupole, and correction coil magnets less than 2 meters in length for the SSC project and the Tevatron D0/B0 Low-{beta} Insertion. During this time several improvements have been made to the facility that have greatly enhanced its magnet testing capabilities. Among the upgrades have been a new rotating coil and data acquisition system for measuring magnetic fields, a controlled flow liquid helium transfer line using an electronically actuated cryo valve, and stand-alone systems for measuring AC loss and training low current Tevatron correction coil packages. A description of the Lab 2 facilities is presented.

  5. A facility to test short superconducting accelerator magnets at Fermilab

    SciTech Connect

    Lamm, M.J.; Hess, C.; Lewis, D.; Jaffery, T.; Kinney, W.; Ozelis, J.P.; Strait, J. ); Butteris, J.; McInturff, A.D. ); Coulter, K.J. )

    1992-10-01

    During the past four years the Superconducting Magnet R D facility at Fermilab (Lab 2) has successfully tested superconducting dipole, quadrupole, and correction coil magnets less than 2 meters in length for the SSC project and the Tevatron D0/B0 Low-[beta] Insertion. During this time several improvements have been made to the facility that have greatly enhanced its magnet testing capabilities. Among the upgrades have been a new rotating coil and data acquisition system for measuring magnetic fields, a controlled flow liquid helium transfer line using an electronically actuated cryo valve, and stand-alone systems for measuring AC loss and training low current Tevatron correction coil packages. A description of the Lab 2 facilities is presented.

  6. Muon colliders

    SciTech Connect

    Palmer, R.B. |; Sessler, A.; Skrinsky, A.

    1996-01-01

    Muon Colliders have unique technical and physics advantages and disadvantages when compared with both hadron and electron machines. They should thus be regarded as complementary. Parameters are given of 4 TeV and 0.5 TeV high luminosity {micro}{sup +}{micro}{sup {minus}}colliders, and of a 0.5 TeV lower luminosity demonstration machine. We discuss the various systems in such muon colliders, starting from the proton accelerator needed to generate the muons and proceeding through muon cooling, acceleration and storage in a collider ring. Problems of detector background are also discussed.

  7. Charm physics at Fermilab E791

    SciTech Connect

    Amato, S.; Anjos, J.C.; Bediaga, I.; Costa, I.; de Mello Neto, J.R.T.; de Miranda, J.; Santoro, A.F.S.; Souza, M.H.G.; Blaylock, G.; Burchat, P.R.; Gagnon, P.; Sugano, K.; de Oliveira, A.J.; Santha, A.; Sokoloff, M.D.; Appel, J.A.; Banerjee, S.; Carter, T.; Denisenko, K.; Halling, M.; James, C.; Kwan, S.; Lundberg, B.; Thorne, K.; Burnstein, R.; Kasper, P.A.; Peng, K.C.; Rubin, H.; Summers, D.J.; Aitala, E.M.; Gounder, K.; Rafatian, A.; Reidy, J.J.; Yi, D.; Granite, D.; Nguyen, A.; Reay, N.W.; Reibel, K.; Sidwell, R.; Stanton, N.; Tripathi, A.; Witchey, N.; Purohit, M.V.; Schwartz, A.; Wiener, J.; Almeida, F.M.L.; Ramalho, A.J.; da Silva Carvalho, H.; Ashery, D.; Gerzon, S.; Lichtenstadt, J.; May-Tal-Beck, S.; Trumer, D.; Bracker, S.B.; Astorga, J.; Milburn, R.; Napier, A.; Radeztsky, S.; Sheaff, M.; Darling, C.; Slaughter, J.; Takach, S.; Wolin, E.

    1992-05-26

    Experiment 791 at Fermilab`s Tagged Photon Laboratory has just accumulated a high statistics charm sample by recording 20 billion events on 24000 8mm tapes. A 500 GeV/c {pi}{sup {minus}} beam was used with a fixed target and a magnetic spectrometer which now includes 23 silicon microstrip planes for vertex reconstruction. A new data acquisition system read out 9000 events/sec during the part of the Tevatron cycle that delivered beam. Digitization and readout took 50 {mu}S per event. Data was buffered in eight large FIFO memories to allow continuous event building and continuous tape writing to a wall of 42 Exabytes at 9.6 MB/sec. The 50 terabytes of data buffered to tape is now being filtered on RISC CPUs. Preliminary results show D{sup 0} {yields} K{sup {minus}}{pi}{sup +} and D{sup +} {yields} K{sup {minus}}{pi}{pi}{sup +} decays. Rarer decays will be pursued.

  8. Prospects for Higgs boson searches at the Tevatron and LHC in the MSSM with explicit CP violation

    SciTech Connect

    Draper, Patrick; Liu Tao; Wagner, Carlos E. M.

    2010-01-01

    We analyze the Tevatron and Large Hadron Collider (LHC) reach for the Higgs sector of the minimal supersymmetric standard model (MSSM) in the presence of explicit CP violation. Using the most recent studies from the Tevatron and LHC collaborations, we examine the CPX benchmark scenario for a range of CP-violating phases in the soft trilinear and gluino mass terms and compute the exclusion/discovery potentials for each collider on the (M{sub H}{sup +},tan{beta}) plane. Projected results from standard model (SM)-like, nonstandard, and charged Higgs searches are combined to maximize the statistical significance. We exhibit complementarity between the SM-like Higgs searches at the LHC with low luminosity and the Tevatron, and estimate the combined reach of the two colliders in the early phase of LHC running.

  9. Research Activities at Fermilab for Big Data Movement

    SciTech Connect

    Mhashilkar, Parag; Wu, Wenji; Kim, Hyun W; Garzoglio, Gabriele; Dykstra, Dave; Slyz, Marko; DeMar, Phil

    2013-01-01

    Adaptation of 100GE Networking Infrastructure is the next step towards management of Big Data. Being the US Tier-1 Center for the Large Hadron Collider's (LHC) Compact Muon Solenoid (CMS) experiment and the central data center for several other large-scale research collaborations, Fermilab has to constantly deal with the scaling and wide-area distribution challenges of the big data. In this paper, we will describe some of the challenges involved in the movement of big data over 100GE infrastructure and the research activities at Fermilab to address these challenges.

  10. A Linac afterburner to supercharge the Fermilab booster

    SciTech Connect

    Charles M Ankenbrandt et al.

    2002-10-21

    A Linac Afterburner is proposed to raise the energy of the beam injected into the Femrilab Booster from 400 MeV to about 600 MeV, thereby alleviating the longitudinal and transverse space-charge effects at low energy that currently limit its performance. The primary motivation is to increase the integrated luminosity of the Tevatron Collider in Run II, but other future programs would also recap substantial benefits. The estimated cost is $23M.

  11. Some recent experimental results from Fermilab

    SciTech Connect

    Montgomery, H.E.

    1994-02-01

    The aim of this talk was to give an impression of the tremendous range and depth of the data being produced by experiments at Fermilab, both fixed target and collider. Despite the generous allotment of time it was not possible to do more than scratch the surface of some subjects. The collider experiments, using the measurements of the W mass and with top search and mass limits, are approaching the situation where a statement about the Higgs mass, or a sensitive test of the consistency of the standard model become a possibility. Subjects discussed were: (1) cross-sections, QCD measurements; (2) decay physics; (3) W/Z physics; (4) searches for new physics; and (5) search for top quark.

  12. Gun and optics calculations for the Fermilab recirculation experiment

    SciTech Connect

    Kroc, T.

    1997-10-01

    Fermilab is investigating electron cooling to recycle 8 Gev antiprotons recovered from the Tevatron. To do so, it is developing an experiment to recirculate 2 Mev electrons generated by a Pelletron at National Electrostatics Corporation. This paper reports on the optics calculations done in support of that work. We have used the computer codes EGN2 and MacTrace to represent the gun area and acceleration columns respectively. In addition to the results of our simulations, we discuss some of the problems encountered in interfacing the two codes.

  13. Impedances and beam stability issues of the Fermilab recycler ring

    SciTech Connect

    Ng, King-Yuen

    1996-04-01

    The Fermilab Recycler Ring (permanent magnets) will be built on top of the Fermilab Main Injector sharing the same tunnel; its main function is to recycle the anti-protons after a store in the Tevatron and to provide storage for them after after accumulation and cooling in the Accumulator. Estimates of coupling impedances show domination by space charge. Examination of longitudinal instabilities shows that microwave instability will not occur if there are only N = 2.53 x 10{sup 12} anti-protons in the beam. Longitudinal coupling-bunch instability during injection stacking does not appear possible because of long bunch lengths/short bunch gaps and lack of sharp resonances. Transverse instability, on the other hand, cannot be Landau damped by the momentum spread in the beam, but it can be cured by a small spread in the betatron tunes (either from space charge or an octupole).

  14. Muon Collider Progress: Accelerators

    SciTech Connect

    Zisman, Michael S.

    2011-09-10

    A muon collider would be a powerful tool for exploring the energy-frontier with leptons, and would complement the studies now under way at the LHC. Such a device would offer several important benefits. Muons, like electrons, are point particles so the full center-of-mass energy is available for particle production. Moreover, on account of their higher mass, muons give rise to very little synchrotron radiation and produce very little beamstrahlung. The first feature permits the use of a circular collider that can make efficient use of the expensive rf system and whose footprint is compatible with an existing laboratory site. The second feature leads to a relatively narrow energy spread at the collision point. Designing an accelerator complex for a muon collider is a challenging task. Firstly, the muons are produced as a tertiary beam, so a high-power proton beam and a target that can withstand it are needed to provide the required luminosity of ~1 × 10{sup 34} cm{sup –2}s{sup –1}. Secondly, the beam is initially produced with a large 6D phase space, which necessitates a scheme for reducing the muon beam emittance (“cooling”). Finally, the muon has a short lifetime so all beam manipulations must be done very rapidly. The Muon Accelerator Program, led by Fermilab and including a number of U.S. national laboratories and universities, has undertaken design and R&D activities aimed toward the eventual construction of a muon collider. Design features of such a facility and the supporting R&D program are described.

  15. Experimental Studies of Compensation of Beam-Beam Effects with Tevatron Electron Lenses

    SciTech Connect

    Shiltsev, V.; Alexahin, Yu.; Bishofberger, Kip; Kamerdzhiev, V.; Parkhomchuk, V.; Reva, V.; Solyak, N.; Wildman, D.; Zhang, X.-L.; Zimmermann, F.; /Fermilab /Los Alamos /Novosibirsk, IYF /CERN

    2008-02-01

    Applying the space-charge forces of a low-energy electron beam can lead to a significant improvement of the beam-particle lifetime limit arising from the beam-beam interaction in a high-energy collider [1]. In this article we present the results of various beam experiments with 'electron lenses', novel instruments developed for the beam-beam compensation at the Tevatron, which collides 980-GeV proton and antiproton beams. We study the dependencies of the particle betatron tunes on the electron beam current, energy and position; we explore the effects of electron-beam imperfections and noises; and we quantify the improvements of the high-energy beam intensity and the collider luminosity lifetime obtained by the action of the Tevatron Electron Lenses.

  16. Experimental studies of compensation of beam beam effects with Tevatron electron lenses

    NASA Astrophysics Data System (ADS)

    Shiltsev, V.; Alexahin, Y.; Bishofberger, K.; Kamerdzhiev, V.; Parkhomchuk, V.; Reva, V.; Solyak, N.; Wildman, D.; Zhang, X.-L.; Zimmermann, F.

    2008-04-01

    Applying the space-charge forces of a low-energy electron beam can lead to a significant improvement of the beam-particle lifetime limit arising from the beam-beam interaction in a high-energy collider [1]. In this paper, we present the results of various beam experiments with 'electron lenses', novel instruments developed for the beam-beam compensation at the Tevatron, which collides 980 GeV proton and antiproton beams. We study the dependencies of the particle betatron tunes on the electron beam current, energy and position; we explore the effects of electron-beam imperfections and noises; and we quantify the improvements of the high-energy beam intensity and the collider luminosity lifetime obtained by the action of the Tevatron electron lenses.

  17. Results of head-on beam-beam compensation studies at the Tevatron

    SciTech Connect

    Valishev, A.; Stancari, G.; /Fermilab

    2011-03-01

    At the Tevatron collider, we studied the feasibility of suppressing the antiproton head-on beam-beamtune spread using a magnetically confined 5-keV electron beam with Gaussian transverse profile overlapping with the circulating beam. When electron cooling of antiprotons is applied in regular Tevatron operations, the head-on beam-beam effect on antiprotons is small. Therefore, we first focused on the operational aspects, such as beam alignment and stability, and on fundamental observations of tune shifts, tune spreads, lifetimes, and emittances. We also attempted two special collider stores with only 3 proton bunches colliding with 3 antiproton bunches, to suppress long-range forces and enhance head-on effects. We present here the results of this study and a comparison between numerical simulations and observations, in view of the planned application of this compensation concept to RHIC.

  18. The dijet invariant mass at the Tevatron Collider

    SciTech Connect

    Not Available

    1990-01-01

    The differential cross section as a function of the dijet invariant mass has been measured in 1.8 TeV ppbar collisions. A comparison to leading order QCD predictions is presented as well as a study of the sensitivity of the mass spectrum to the gluon radiation. The need to take radiation into account requires the study of its spatial distribution and the comparison of the data to the predictions of shower Monte Carlo programs like Isajet and Herwig. 12 refs., 10 figs.

  19. Prospects for 6 to 10 tesla magnets for a TEVATRON upgrade

    SciTech Connect

    Mantsch, Paul M.

    1988-07-08

    The first SSC physics is at least 10 years away. An upgrade of the Fermilab Tevatron will ensure the continuity of a vigorous high-energy physics program until the SSC turns on. Three basic proposals are under consideration: /bar p/p at 3 /times/ 10/sup 31/ --Increase luminosity by improvements to the p source. pp at 1 TeV and 2 /times/ 10/sup 32/--Move the main ring to a new tunnel, build a second Tevatron ring, and /bar p/p > 1.5 TeV and 7 /times/ 10/sup 30/--Replace the tevatron with a higher energy ring. The last two options requires about a hundred 6.6-tesla dipoles in addition to a ring of Tevatron strength (4.4 T) magnets. These higher-field magnets are necessary in both rings to lengthen the straight sections in order to realize the collision optics. The third option requires a ring of magnets of 6.6 T or slightly higher to replace the present Tevatron plus a number of special 8--9 tesla magnets. The viability of the high-energy option then depends on the practicality of sizable numbers of reliable 8--9 tesla dipoles as well as 800 6.6-tesla dipoles. The following develops a specification for an 8.8 T dipole, examines the design considerations and reviews the current state of high-field magnet development. 22 figs., 3 tabs.

  20. High Energy Accelerator and Colliding Beam User Group. Progress report, March 1, 1992--October 31, 1992

    SciTech Connect

    Snow, G.A.; Skuja, A.

    1992-05-01

    This report discusses research in the following areas: the study of e{sup +}e{sup {minus}} interactions; Hadron collider physics at Fermilab; fixed target physics and particle physics of general interest; and, the solenoidal detector collaboration at SSCL.

  1. Combined Tevatron upper limit on gg -> H -> W^+W^- and constraints on the Higgs boson mass in fourth-generation fermion models

    SciTech Connect

    Aaltonen, T.; Abazov, V.M.; Abbott, B.; Abolins, M.; Acharya, B.S.; Adams, M.; Adams, T.; Adelman, J.; Aguilo, E.; Alexeev, G.D.; Alkhazov, G.; /Helsinki Inst. of Phys. /Dubna, JINR /Oklahoma U. /Michigan State U. /Tata Inst. /Illinois U., Chicago /Florida State U. /Chicago U., EFI /Simon Fraser U. /York U., Canada /St. Petersburg, INP /Illinois U., Urbana /Sao Paulo, IFT /Munich U. /University Coll. London /Oxford U. /St. Petersburg, INP /Duke U. /Kyungpook Natl. U. /Chonnam Natl. U. /Florida U. /Osaka City U.

    2010-05-01

    We combine results from searches by the CDF and D0 collaborations for a standard model Higgs boson (H) in the process gg {yields} H {yields} W{sup +}W{sup -} in p{bar p} collisions at the Fermilab Tevatron Collider at {radical}s = 1.o6 TeV. With 4.8 fb{sup -1} of itnegrated luminosity analyzed at CDF and 5.4 fb{sup -1} at D0, the 95% Confidence Level upper limit on {sigma}(gg {yields} H) x {Beta}(H {yields} W{sup +}W{sup -}) is 1.75 pb at m{sub H} = 120 GeV, 0.38 pb at m{sub H} = 165 GeV, and 0.83 pb at m{sub H} = 200 GeV. Assuming the presence of a fourth sequential generation of fermions with large masses, they exclude at the 95% Confidence Level a standard-model-like Higgs boson with a mass between 131 and 204 Gev.

  2. B0(s) mixing studies at the Tevatron

    SciTech Connect

    Naimuddin, M.D.; /Delhi U.

    2006-05-01

    Measurement of the B{sub s}{sup 0} oscillation frequency via B{sub s}{sup 0} mixing analysis provides a powerful constraint on CKM matrix elements. This note briefly reviews the motivation behind these analyses and describes the various steps that go into a mixing measurement. Recent results on B{sub s}{sup 0} mixing obtained by the CDF and D0 collaborations using the data samples collected at Tevatron Collider in the period 2002-2005 are presented.

  3. Measurement of the W boson mass at the Tevatron

    SciTech Connect

    Flattum, E.; D0 and CDF Collaborations

    1997-08-01

    Presented are measurements of the W boson mass from the D0 and CDF collaborations at the Tevatron from the 1994-1996 run. The W events are produced in p{anti p} collisions at {radical}s = 1.8 TeV. The W mass extracted from W {yields} e{nu} decays at D0 is determined to be 80.45 {+-} 0.12 GeV; and from W {yields} {mu}{nu} decays at CDF is 80. 43 {+-} 0.16 GeV. The world average W mass from the hadron collider measurements is 80.41 {+-} 0.09 GeV.

  4. Observations of strong transverse coupling in the Tevatron

    SciTech Connect

    Syphers, Michael J.; Annala, G.; Edwards, D.A.; Gelfand, N.; Johnstone, J.; Martens, M.A.; Sen, T.; /Fermilab

    2005-05-01

    During the beginning of Run II of the Tevatron Collider it became apparent that a large skew quadrupole source, or sources, had developed in the superconducting synchrotron. Efforts to locate the current source of coupling were undertaken, with the eventual discovery that the main magnets had developed a systematic skew quadrupole moment over their lifetime. Over the past year, the magnets have been altered in place in an attempt to restore the systematic skew quadrupole moment to zero. Beam observations and their interpretations are presented, and remedial measures are discussed.

  5. Fermilab and Latin America

    SciTech Connect

    Lederman, Leon M.

    2006-09-25

    As Director of Fermilab, starting in 1979, I began a series of meetings with scientists in Latin America. The motivation was to stir collaboration in the field of high energy particle physics, the central focus of Fermilab. In the next 13 years, these Pan American Symposia stirred much discussion of the use of modern physics, created several groups to do collaborative research at Fermilab, and often centralized facilities and, today, still provides the possibility for much more productive North-South collaboration in research and education. In 1992, I handed these activities over to the AAAS, as President. This would, I hoped, broaden areas of collaboration. Such collaboration is unfortunately very sensitive to political events. In a rational world, it would be the rewards, cultural and economic, of collaboration that would modulate political relations. We are not there yet.

  6. Fermilab and Latin America

    NASA Astrophysics Data System (ADS)

    Lederman, Leon M.

    2006-09-01

    As Director of Fermilab, starting in 1979, I began a series of meetings with scientists in Latin America. The motivation was to stir collaboration in the field of high energy particle physics, the central focus of Fermilab. In the next 13 years, these Pan American Symposia stirred much discussion of the use of modern physics, created several groups to do collaborative research at Fermilab, and often centralized facilities and, today, still provides the possibility for much more productive North-South collaboration in research and education. In 1992, I handed these activities over to the AAAS, as President. This would, I hoped, broaden areas of collaboration. Such collaboration is unfortunately very sensitive to political events. In a rational world, it would be the rewards, cultural and economic, of collaboration that would modulate political relations. We are not there yet.

  7. Summary of the low-emittance muon collider workshop (6-10 February 2006)

    SciTech Connect

    Paul, Kevin; Johnson, Rolland; Yarba, Victor; /Fermilab

    2006-05-01

    In February 2006, Muons, Inc., and Fermilab sponsored a workshop to evaluate the feasibility and consequences of a muon collider with emittances much lower than previously envisioned. The workshop was held at Fermilab over the week of 6-10 February 2006. It was attended by 65 people representing 16 institutions from around the world.

  8. Measurement and correction of linear optics and coupling at tevatron complex

    SciTech Connect

    Lebedev, V.; Nagaslaev, V.; Valishev, A.; Sajaev, V.; /Argonne

    2006-01-01

    The optics measurements have played important role in improving the performance of Tevatron collider. Until recently, most of them were based on the differential orbit measurements with data analysis, which neglects measurement inaccuracies such as differences in differential responses of beam position monitors, their rolls, etc. To address these complications we have used a method based on the analysis of many differential orbits. That creates the redundancy in the data allowing to get more detailed understanding of the machine. In this article we discuss the progress with Tevatron optics correction, its present status and future improvements.

  9. Contributions to the mini-workshop on beam-beam compensation in the Tevatron

    SciTech Connect

    Shiltsev, V.

    1998-02-01

    The purpose of the Workshop was to assay the current understanding of compensation of the beam-beam effects in the Tevatron with use of low-energy high-current electron beam, relevant accelerator technology, along with other novel techniques of the compensation and previous attempts. About 30 scientists representing seven institutions from four countries--FNAL, SLAC, BNL, Novosibirsk, CERN, and Dubna were in attendance. Twenty one talks were presented. The event gave firm ground for wider collaboration on experimental test of the compensation at the Tevatron collider. This report consists of vugraphs of talks given at the meeting.

  10. Top quark mass: Latest CDF results, Tevatron combination and electroweak implications

    SciTech Connect

    Vellidis, Costas

    2009-10-01

    A summary of the most up-to-date top quark mass measurements at CDF is presented. These analyses use top-antitop candidate events detected in the CDF experiment at the Tevatron collider with an integrated luminosity of up to {approx}3/fb. The combination of all those measurements together with the corresponding top mass measurements from the concurrently running D0 experiment at the Tevatron yields a world average of M{sub t} = [173.1 {+-} 0.6(stat.) {+-} 1.1(syst.)] GeV/c{sup 2}.

  11. B physics at the Tevatron

    SciTech Connect

    J. Cranshaw

    2002-09-30

    A vibrant B physics program is being pursued at the Tevatron for Run II using the upgraded accelerator complex and the upgraded CDF and D0 detectors with the goal of collecting 2 fb{sup -1} of integrated luminosity. This will provide measurements of various CP parameters which both complement and extend the programs at the B factories. There are also a variety of spectroscopy measurements currently available only at the Tevatron. The detectors are now largely commissioned and data acquisition is underway.

  12. Global searches at the Tevatron

    SciTech Connect

    Renkel, Peter; /Southern Methodist U.

    2009-01-01

    We present a review of global searches at the Tevatron with D0 and CDF detectors. The strategy involves splitting the data from the Tevatron into many final states and looking for signs of new physics in the high p{sub T} tails of various distributions using SLEUTH algorithm. CDF also utilizes Bump Hunter to search for narrow resonances in mass distributions. We analyzed 180 D0 final states, 9335 D0 distributions; 399 CDF final states and 19650 CDF distributions. No evidence of new physics is found.

  13. Measurement of the branching fraction Bs->Ds(*)Ds(*) using the D0 detector at Fermilab

    SciTech Connect

    Walder, James William; /Lancaster U.

    2009-02-01

    This thesis describes a measurement of the branching fraction Br(B{sup 0}{sub s} {yields} D{sup (*)}{sub s} D{sup (*)}{sub s}) made using a data sample collected from proton-antiproton collisions at a centre-of-mass energy of 1.96 TeV, corresponding to approximately 1.3 fb{sup -1} of integrated luminosity collected in 2002--2006 by the D0 detector at the Fermilab Tevatron Collider. One D{sup (*)}{sub s} meson was partially reconstructed in the decay D{sub s} {yields} {phi}{mu}{nu}, and the other D{sup (*)}{sub s} meson was identified using the decay D{sub s} {yields} {phi}{pi} where no attempt was made to distinguish D{sub s} and D{sup *}{sub s} states. The resulting measurement is Br(B{sup 0}{sub s} {yields} D{sup (*)}{sub s} D{sup (*)}{sub s}) = 0.039{sup +0.019}{sub -0.017}(stat){sup +0.016}{sub -0.015}(syst). This was subsequently used to estimate the width difference {Delta}{Gamma}{sup CP}{sub s} in the B{sup 0}{sub s}-{anti B}{sup 0}{sub s} system: {Delta}{Gamma}{sup CP}{sub s}/{Gamma}{sub s} = 0.079{sup +0.038}{sub -0.035}(stat){sup +0.031}{sub 0.030}(syst), and is currently one of the most precise estimates of this quantity and consistent with the Standard Model.

  14. Low-Energy Run of Fermilab Electron Cooler's Beam Generation System

    SciTech Connect

    Prost, L.R.; Shemyakin, A.; Fedotov, A.; Kewisch, J.; /Brookhaven

    2011-03-14

    In the context of the evaluation of possibly using the Fermilab Electron Cooler for the proposed low-energy RHIC run at BNL, operating the cooler at 1.6 MeV electron beam energy was tested in a short beam line configuration. The main conclusion of this feasibility study is that the cooler's beam generation system is suitable for BNL needs. The beam recirculation was stable for all tested parameters. In particular, a beam current of 0.38 A was achieved with the cathode magnetic field up to the maximum value presently available of 250 G. The energy ripple was measured to be 40 eV. A striking difference with running the 4.3 MeV beam (nominal for operation at FNAL) is that no unprovoked beam recirculation interruptions were observed. Electron cooling proposed to increase the luminosity of the RHIC collider for heavy ion beam energies below 10 GeV/nucleon [1] needs a good quality, 0.9-5 MeV electron beam. Preliminary design studies indicate that the scheme of the Recycler's electron cooler at FNAL is suitable for low-energy RHIC cooling and most parts of the cooler can be re-used after the end of the Tevatron Run II. To analyze issues related to the generation of the electron beam in the energy recovery mode and to gain experience with the beam transport at lower beam energy, a dedicated study was performed at FNAL with a beam run through a short beam line (so called U-bend). This report summarizes our findings and observations in the course of the measurements.

  15. Ion colliders

    SciTech Connect

    Fischer, W.

    2011-12-01

    Ion colliders are research tools for high-energy nuclear physics, and are used to test the theory of Quantum Chromo Dynamics (QCD). The collisions of fully stripped high-energy ions create matter of a temperature and density that existed only microseconds after the Big Bang. Ion colliders can reach higher densities and temperatures than fixed target experiments although at a much lower luminosity. The first ion collider was the CERN Intersecting Storage Ring (ISR), which collided light ions [77Asb1, 81Bou1]. The BNL Relativistic Heavy Ion Collider (RHIC) is in operation since 2000 and has collided a number of species at numerous energies. The CERN Large Hadron Collider (LHC) started the heavy ion program in 2010. Table 1 shows all previous and the currently planned running modes for ISR, RHIC, and LHC. All three machines also collide protons, which are spin-polarized in RHIC. Ion colliders differ from proton or antiproton colliders in a number of ways: the preparation of the ions in the source and the pre-injector chain is limited by other effects than for protons; frequent changes in the collision energy and particle species, including asymmetric species, are typical; and the interaction of ions with each other and accelerator components is different from protons, which has implications for collision products, collimation, the beam dump, and intercepting instrumentation devices such a profile monitors. In the preparation for the collider use the charge state Z of the ions is successively increased to minimize the effects of space charge, intrabeam scattering (IBS), charge change effects (electron capture and stripping), and ion-impact desorption after beam loss. Low charge states reduce space charge, intrabeam scattering, and electron capture effects. High charge states reduce electron stripping, and make bending and acceleration more effective. Electron stripping at higher energies is generally more efficient. Table 2 shows the charge states and energies in the

  16. New Measurements of Upsilon Spin Alignment at the Tevatron

    SciTech Connect

    Jones, Matthew

    2012-01-01

    We describe a new analysis of {Upsilon}(nS) {yields} {mu}{sup +}{mu}{sup -} decays collected in p{bar p} collisions with the CDF II detector at the Fermilab Tevatron. This analysis measures the angular distributions of the final state muons in the {Upsilon} rest frame, providing new information about {Upsilon} production polarization. We find the angular distributions to be nearly isotropic up to {Upsilon} p{sub T} of 40 GeV/c, consistent with previous measurements by CDF, but inconsistent with results obtained by the D0 experiment. The results are compared with recent NLO calculations based on color-singlet matrix elements and non-relativistic QCD with color-octet matrix elements.

  17. Jet decorrelation and jet shapes at the Tevatron

    SciTech Connect

    Heuring, T.C.

    1996-07-01

    We present results on measurements of jet shapes and jet azimuthal decorrelation from {bar p}P collisions at {radical}s = 1.8 TeV using data collected during the 1992-1993 run of the Fermilab Tevatron. Jets are seen to narrow both with increasing Awe {sub TTY} and increasing rapidity. While HERWIG, a puritan shower Monte Carlo, predicts slightly narrower jets, it describes the trend of the data well; NO CD described qualitative features of the data but is sensitive to both renormalization scale and jet definitions. Jet azimuthal decorrelation has been measured out to five units of pseudorapidity. While next-to-leading order CD and a leading-log approximation based on BFKL resummation fail to reproduce the effect, HERWIG describes the data well.

  18. Properties of b {anti b} Production at the Tevatron

    SciTech Connect

    Stichelbaut, Frederic

    1997-05-01

    The authors present a number of recent results obtained at the Fermilab Tevatron for b{bar b} production in p{bar p} interactions. The preliminary CDF and D0 measurements of the inclusive b-quark production cross section at {radical}s = 630 GeV are compared with the UA1 results and the next-to-leading order QCD predictions. These results are used to compute the ratio of the cross sections at 630 GeV to 1800 GeV. The CDF results on the B meson differential cross section and {Lambda}{sub b}{sup 0} baryon production and decay properties at {radical}s = 1800 GeV are also presented.

  19. Scintillator manufacture at Fermilab

    SciTech Connect

    Mellott, K.; Bross, A.; Pla-Dalmau, A.

    1998-08-01

    A decade of research into plastic scintillation materials at Fermilab is reviewed. Early work with plastic optical fiber fabrication is revisited and recent experiments with large-scale commercial methods for production of bulk scintillator are discussed. Costs for various forms of scintillator are examined and new development goals including cost reduction methods and quality improvement techniques are suggested.

  20. Managing discovery risks--A Tevatron case study

    SciTech Connect

    Bakul Banerjee

    2004-07-28

    To meet the increasing need for higher performance, Management of Fermi National Accelerator Laboratory has undertaken various projects to improve systems associated with the Tevatron high-energy particle collider located at Batavia, Illinois. One of the larger projects is the Tevatron Beam Position Monitor (BPM) system. The objective of this project is to replace the existing BPM electronics and software system that was originally installed during early 1980s, along with the original construction of the Tevatron.The original system consists of 236 beam position monitors located around the underground tunnel of the accelerator. Above ground control systems are attached to these monitors using pickup cables. When the Tevatron collider is operational, signals received from the BPMs are used to perform a number of control and diagnostic tasks. The original system can only capture the proton signals from the collider. The new system, when fully operational, will be able to capture combined proton and antiproton signals and will be able to separate the antiproton signal from the combined signal at high resolution. This significant enhancement was beyond the range of technical capabilities when the Tevatron was constructed about two decades ago. To take advantage of exceptional progress made in the hardware and software area in past two decades, Department of Energy approved funding of the BPM electronics and software replacement project. The approximate length of the project is sixteen months with a budget of four million dollars not including overhead, escalation, and contingencies. Apart from cost and schedule risks, there are two major risks associated with this research and development project. The primary risk is the risk of discovery. Since the Tevatron beam path is highly complex, BPMs have to acquire and process a large amount of data. In this environment, analysis of data to separate antiproton signals is even more complex. Finding an optimum algorithm that can