Science.gov

Sample records for fern chloroplast genomes

  1. Between two fern genomes.

    PubMed

    Sessa, Emily B; Banks, Jo Ann; Barker, Michael S; Der, Joshua P; Duffy, Aaron M; Graham, Sean W; Hasebe, Mitsuyasu; Langdale, Jane; Li, Fay-Wei; Marchant, D Blaine; Pryer, Kathleen M; Rothfels, Carl J; Roux, Stanley J; Salmi, Mari L; Sigel, Erin M; Soltis, Douglas E; Soltis, Pamela S; Stevenson, Dennis W; Wolf, Paul G

    2014-01-01

    Ferns are the only major lineage of vascular plants not represented by a sequenced nuclear genome. This lack of genome sequence information significantly impedes our ability to understand and reconstruct genome evolution not only in ferns, but across all land plants. Azolla and Ceratopteris are ideal and complementary candidates to be the first ferns to have their nuclear genomes sequenced. They differ dramatically in genome size, life history, and habit, and thus represent the immense diversity of extant ferns. Together, this pair of genomes will facilitate myriad large-scale comparative analyses across ferns and all land plants. Here we review the unique biological characteristics of ferns and describe a number of outstanding questions in plant biology that will benefit from the addition of ferns to the set of taxa with sequenced nuclear genomes. We explain why the fern clade is pivotal for understanding genome evolution across land plants, and we provide a rationale for how knowledge of fern genomes will enable progress in research beyond the ferns themselves. PMID:25324969

  2. Between Two Fern Genomes

    PubMed Central

    2014-01-01

    Ferns are the only major lineage of vascular plants not represented by a sequenced nuclear genome. This lack of genome sequence information significantly impedes our ability to understand and reconstruct genome evolution not only in ferns, but across all land plants. Azolla and Ceratopteris are ideal and complementary candidates to be the first ferns to have their nuclear genomes sequenced. They differ dramatically in genome size, life history, and habit, and thus represent the immense diversity of extant ferns. Together, this pair of genomes will facilitate myriad large-scale comparative analyses across ferns and all land plants. Here we review the unique biological characteristics of ferns and describe a number of outstanding questions in plant biology that will benefit from the addition of ferns to the set of taxa with sequenced nuclear genomes. We explain why the fern clade is pivotal for understanding genome evolution across land plants, and we provide a rationale for how knowledge of fern genomes will enable progress in research beyond the ferns themselves. PMID:25324969

  3. An Exploration into Fern Genome Space

    PubMed Central

    Wolf, Paul G.; Sessa, Emily B.; Marchant, Daniel Blaine; Li, Fay-Wei; Rothfels, Carl J.; Sigel, Erin M.; Gitzendanner, Matthew A.; Visger, Clayton J.; Banks, Jo Ann; Soltis, Douglas E.; Soltis, Pamela S.; Pryer, Kathleen M.; Der, Joshua P.

    2015-01-01

    Ferns are one of the few remaining major clades of land plants for which a complete genome sequence is lacking. Knowledge of genome space in ferns will enable broad-scale comparative analyses of land plant genes and genomes, provide insights into genome evolution across green plants, and shed light on genetic and genomic features that characterize ferns, such as their high chromosome numbers and large genome sizes. As part of an initial exploration into fern genome space, we used a whole genome shotgun sequencing approach to obtain low-density coverage (∼0.4X to 2X) for six fern species from the Polypodiales (Ceratopteris, Pteridium, Polypodium, Cystopteris), Cyatheales (Plagiogyria), and Gleicheniales (Dipteris). We explore these data to characterize the proportion of the nuclear genome represented by repetitive sequences (including DNA transposons, retrotransposons, ribosomal DNA, and simple repeats) and protein-coding genes, and to extract chloroplast and mitochondrial genome sequences. Such initial sweeps of fern genomes can provide information useful for selecting a promising candidate fern species for whole genome sequencing. We also describe variation of genomic traits across our sample and highlight some differences and similarities in repeat structure between ferns and seed plants. PMID:26311176

  4. An Exploration into Fern Genome Space.

    PubMed

    Wolf, Paul G; Sessa, Emily B; Marchant, Daniel Blaine; Li, Fay-Wei; Rothfels, Carl J; Sigel, Erin M; Gitzendanner, Matthew A; Visger, Clayton J; Banks, Jo Ann; Soltis, Douglas E; Soltis, Pamela S; Pryer, Kathleen M; Der, Joshua P

    2015-09-01

    Ferns are one of the few remaining major clades of land plants for which a complete genome sequence is lacking. Knowledge of genome space in ferns will enable broad-scale comparative analyses of land plant genes and genomes, provide insights into genome evolution across green plants, and shed light on genetic and genomic features that characterize ferns, such as their high chromosome numbers and large genome sizes. As part of an initial exploration into fern genome space, we used a whole genome shotgun sequencing approach to obtain low-density coverage (∼0.4X to 2X) for six fern species from the Polypodiales (Ceratopteris, Pteridium, Polypodium, Cystopteris), Cyatheales (Plagiogyria), and Gleicheniales (Dipteris). We explore these data to characterize the proportion of the nuclear genome represented by repetitive sequences (including DNA transposons, retrotransposons, ribosomal DNA, and simple repeats) and protein-coding genes, and to extract chloroplast and mitochondrial genome sequences. Such initial sweeps of fern genomes can provide information useful for selecting a promising candidate fern species for whole genome sequencing. We also describe variation of genomic traits across our sample and highlight some differences and similarities in repeat structure between ferns and seed plants. PMID:26311176

  5. Multiplexed Fragaria Chloroplast Genome Sequencing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A method to sequence multiple chloroplast genomes that uses the sequencing depth of ultra high throughput sequencing technologies was recently described. Sequencing complete chloroplast genomes can resolve phylogenetic relationships at low taxonomic levels and identify point mutations and indels tha...

  6. Genome evolution of ferns: evidence for relative stasis of genome size across the fern phylogeny.

    PubMed

    Clark, James; Hidalgo, Oriane; Pellicer, Jaume; Liu, Hongmei; Marquardt, Jeannine; Robert, Yannis; Christenhusz, Maarten; Zhang, Shouzhou; Gibby, Mary; Leitch, Ilia J; Schneider, Harald

    2016-05-01

    The genome evolution of ferns has been considered to be relatively static compared with angiosperms. In this study, we analyse genome size data and chromosome numbers in a phylogenetic framework to explore three hypotheses: the correlation of genome size and chromosome number, the origin of modern ferns from ancestors with high chromosome numbers, and the occurrence of several whole-genome duplications during the evolution of ferns. To achieve this, we generated new genome size data, increasing the percentage of fern species with genome sizes estimated to 2.8% of extant diversity, and ensuring a comprehensive phylogenetic coverage including at least three species from each fern order. Genome size was correlated with chromosome number across all ferns despite some substantial variation in both traits. We observed a trend towards conservation of the amount of DNA per chromosome, although Osmundaceae and Psilotaceae have substantially larger chromosomes. Reconstruction of the ancestral genome traits suggested that the earliest ferns were already characterized by possessing high chromosome numbers and that the earliest divergences in ferns were correlated with substantial karyological changes. Evidence for repeated whole-genome duplications was found across the phylogeny. Fern genomes tend to evolve slowly, albeit genome rearrangements occur in some clades. PMID:26756823

  7. Ferns.

    ERIC Educational Resources Information Center

    Russell, Helen Ross

    1991-01-01

    Contains several study methods using ferns. Includes exercises on fern propagation, gametophytes and fern hybrids, fern collection, microscope use, asexual reproduction, and fern photography. Background information describes identification techniques and the alternation of generations phenomenon. (MCO)

  8. The Chloroplast Genome of Pellia endiviifolia: Gene Content, RNA-Editing Pattern, and the Origin of Chloroplast Editing

    PubMed Central

    Grosche, Christopher; Funk, Helena T.; Maier, Uwe G.; Zauner, Stefan

    2012-01-01

    RNA editing is a post-transcriptional process that can act upon transcripts from mitochondrial, nuclear, and chloroplast genomes. In chloroplasts, single-nucleotide conversions in mRNAs via RNA editing occur at different frequencies across the plant kingdom. These range from several hundred edited sites in some mosses and ferns to lower frequencies in seed plants and the complete lack of RNA editing in the liverwort Marchantia polymorpha. Here, we report the sequence and edited sites of the chloroplast genome from the liverwort Pellia endiviifolia. The type and frequency of chloroplast RNA editing display a pattern highly similar to that in seed plants. Analyses of the C to U conversions and the genomic context in which the editing sites are embedded provide evidence in favor of the hypothesis that chloroplast RNA editing evolved to compensate mutations in the first land plants. PMID:23221608

  9. Mutational dynamics of aroid chloroplast genomes.

    PubMed

    Ahmed, Ibrar; Biggs, Patrick J; Matthews, Peter J; Collins, Lesley J; Hendy, Michael D; Lockhart, Peter J

    2012-01-01

    A characteristic feature of eukaryote and prokaryote genomes is the co-occurrence of nucleotide substitution and insertion/deletion (indel) mutations. Although similar observations have also been made for chloroplast DNA, genome-wide associations have not been reported. We determined the chloroplast genome sequences for two morphotypes of taro (Colocasia esculenta; family Araceae) and compared these with four publicly available aroid chloroplast genomes. Here, we report the extent of genome-wide association between direct and inverted repeats, indels, and substitutions in these aroid chloroplast genomes. We suggest that alternative but not mutually exclusive hypotheses explain the mutational dynamics of chloroplast genome evolution. PMID:23204304

  10. Analyses of Charophyte Chloroplast Genomes Help Characterize the Ancestral Chloroplast Genome of Land Plants

    PubMed Central

    Civáň, Peter; Foster, Peter G.; Embley, Martin T.; Séneca, Ana; Cox, Cymon J.

    2014-01-01

    Despite the significance of the relationships between embryophytes and their charophyte algal ancestors in deciphering the origin and evolutionary success of land plants, few chloroplast genomes of the charophyte algae have been reconstructed to date. Here, we present new data for three chloroplast genomes of the freshwater charophytes Klebsormidium flaccidum (Klebsormidiophyceae), Mesotaenium endlicherianum (Zygnematophyceae), and Roya anglica (Zygnematophyceae). The chloroplast genome of Klebsormidium has a quadripartite organization with exceptionally large inverted repeat (IR) regions and, uniquely among streptophytes, has lost the rrn5 and rrn4.5 genes from the ribosomal RNA (rRNA) gene cluster operon. The chloroplast genome of Roya differs from other zygnematophycean chloroplasts, including the newly sequenced Mesotaenium, by having a quadripartite structure that is typical of other streptophytes. On the basis of the improbability of the novel gain of IR regions, we infer that the quadripartite structure has likely been lost independently in at least three zygnematophycean lineages, although the absence of the usual rRNA operonic synteny in the IR regions of Roya may indicate their de novo origin. Significantly, all zygnematophycean chloroplast genomes have undergone substantial genomic rearrangement, which may be the result of ancient retroelement activity evidenced by the presence of integrase-like and reverse transcriptase-like elements in the Roya chloroplast genome. Our results corroborate the close phylogenetic relationship between Zygnematophyceae and land plants and identify 89 protein-coding genes and 22 introns present in the chloroplast genome at the time of the evolutionary transition of plants to land, all of which can be found in the chloroplast genomes of extant charophytes. PMID:24682153

  11. Analyses of charophyte chloroplast genomes help characterize the ancestral chloroplast genome of land plants.

    PubMed

    Civaň, Peter; Foster, Peter G; Embley, Martin T; Séneca, Ana; Cox, Cymon J

    2014-04-01

    Despite the significance of the relationships between embryophytes and their charophyte algal ancestors in deciphering the origin and evolutionary success of land plants, few chloroplast genomes of the charophyte algae have been reconstructed to date. Here, we present new data for three chloroplast genomes of the freshwater charophytes Klebsormidium flaccidum (Klebsormidiophyceae), Mesotaenium endlicherianum (Zygnematophyceae), and Roya anglica (Zygnematophyceae). The chloroplast genome of Klebsormidium has a quadripartite organization with exceptionally large inverted repeat (IR) regions and, uniquely among streptophytes, has lost the rrn5 and rrn4.5 genes from the ribosomal RNA (rRNA) gene cluster operon. The chloroplast genome of Roya differs from other zygnematophycean chloroplasts, including the newly sequenced Mesotaenium, by having a quadripartite structure that is typical of other streptophytes. On the basis of the improbability of the novel gain of IR regions, we infer that the quadripartite structure has likely been lost independently in at least three zygnematophycean lineages, although the absence of the usual rRNA operonic synteny in the IR regions of Roya may indicate their de novo origin. Significantly, all zygnematophycean chloroplast genomes have undergone substantial genomic rearrangement, which may be the result of ancient retroelement activity evidenced by the presence of integrase-like and reverse transcriptase-like elements in the Roya chloroplast genome. Our results corroborate the close phylogenetic relationship between Zygnematophyceae and land plants and identify 89 protein-coding genes and 22 introns present in the chloroplast genome at the time of the evolutionary transition of plants to land, all of which can be found in the chloroplast genomes of extant charophytes. PMID:24682153

  12. Chloroplast Genome Evolution in the Euglenaceae.

    PubMed

    Bennett, Matthew S; Triemer, Richard E

    2015-01-01

    Over the last few years multiple studies have been published outlining chloroplast genomes that represent many of the photosynthetic euglenid genera. However, these genomes were scattered throughout the euglenophyceaean phylogenetic tree, and focused on comparisons with Euglena gracilis. Here, we present a study exclusively on taxa within the Euglenaceae. Six new chloroplast genomes were characterized, those of Cryptoglena skujai, E. gracilis var. bacillaris, Euglena viridis, Euglenaria anabaena, Monomorphina parapyrum, and Trachelomonas volvocina, and added to six previously published chloroplast genomes to determine if trends existed within the family. With this study: at least one genome has now been characterized for each genus, the genomes of different strains from two taxa were characterized to explore intraspecific variability, and a second taxon has been characterized for the genus Monomorphina to examine intrageneric variability. Overall results showed a large amount of variability among the genomes, though a few trends could be identified both within Euglenaceae and within Euglenophyta. In addition, the intraspecific analysis indicated that the similarity of a genome sequence between strains was taxon dependent, and the intrageneric analysis indicated that the majority of the evolutionary changes within the Euglenaceae occurred intergenerically. PMID:25976746

  13. The complete chloroplast genome of Cynara humilis.

    PubMed

    Curci, Pasquale Luca; Sonnante, Gabriella

    2016-07-01

    The complete chloroplast genome of the wild thistle Cynara humilis L. (Asteraceae) is presented in this study. The genome is 152,585 bp in length and has a quadripartite structure composed by a large single-copy (LSC) of 83,622 bp, a small single-copy (SSC) of 18,651 bp and two inverted repeats (IRb/a) of 25,156 bp each. The GC content corresponds to 37.7%. The amount of unique genes is 114, in which 17 are duplicated in the IRs, for a total of 131 genes. A maximum parsimony phylogenetic analysis revealed that C. humilis chloroplast genome is closely related to that of the globe artichoke within the Carduoideae subfamily. PMID:25812057

  14. Crowdfunding the Azolla fern genome project: a grassroots approach.

    PubMed

    Li, Fay-Wei; Pryer, Kathleen M

    2014-01-01

    Much of science progresses within the tight boundaries of what is often seen as a "black box". Though familiar to funding agencies, researchers and the academic journals they publish in, it is an entity that outsiders rarely get to peek into. Crowdfunding is a novel means that allows the public to participate in, as well as to support and witness advancements in science. Here we describe our recent crowdfunding efforts to sequence the Azolla genome, a little fern with massive green potential. Crowdfunding is a worthy platform not only for obtaining seed money for exploratory research, but also for engaging directly with the general public as a rewarding form of outreach. PMID:25276348

  15. The complete chloroplast genome sequence of Panax quinquefolius (L.).

    PubMed

    Kim, Kyunghee; Lee, Sang-Choon; Lee, Junki; Kim, Nam-Hoon; Jang, Woojong; Yang, Tae-Jin

    2016-07-01

    The complete chloroplast genome sequence of Panax quinquefolius, an important medicinal herb, was generated by de novo assembly with low-coverage whole-genome sequence data and manual correction. A circular 156 088-bp chloroplast genome showed typical chloroplast genome structure comprising a large single copy region of 86 095 bp, a small single copy region of 17 993 bp, and a pair of inverted repeats of 26 000 bp. The chloroplast genome had 87 protein-coding genes, 37 tRNA genes, and eight rRNA genes. Phylogenetic analysis with the chloroplast genome revealed that P. quinquefolius is much closer to P. ginseng than P. notoginseng. PMID:26162051

  16. Complete chloroplast genome of Trachelium caeruleum: extensiverearrangements are associated with repeats and tRNAs

    SciTech Connect

    Haberle, Rosemarie C.; Fourcade, Matthew L.; Boore, Jeffrey L.; Jansen, Robert K.

    2006-01-09

    Chloroplast genome structure, gene order and content arehighly conserved in land plants. We sequenced the complete chloroplastgenome sequence of Trachelium caeruleum (Campanulaceae) a member of anangiosperm family known for highly rearranged chloroplast genomes. Thetotal genome size is 162,321 bp with an IR of 27,273 bp, LSC of 100,113bp and SSC of 7,661 bp. The genome encodes 115 unique genes, with 19duplicated in the IR, a tRNA (trnI-CAU) duplicated once in the LSC and aprotein coding gene (psbJ) duplicated twice, for a total of 137 genes.Four genes (ycf15, rpl23, infA and accD) are truncated and likelynonfunctional; three others (clpP, ycf1 and ycf2) are so highly divergedthat they may now be pseudogenes. The most conspicuous feature of theTrachelium genome is the presence of eighteen internally unrearrangedblocks of genes that have been inverted or relocated within the genome,relative to the typical gene order of most angiosperm chloroplastgenomes. Recombination between repeats or tRNAs has been suggested as twomeans of chloroplast genome rearrangements. We compared the relativenumber of repeats in Trachelium to eight other angiosperm chloroplastgenomes, and evaluated the location of repeats and tRNAs in relation torearrangements. Trachelium has the highest number and largest repeats,which are concentrated near inversion endpoints or other rearrangements.tRNAs occur at many but not all inversion endpoints. There is likely nosingle mechanism responsible for the remarkable number of alterations inthis genome, but both repeats and tRNAs are clearly associated with theserearrangements. Land plant chloroplast genomes are highly conserved instructure, gene order and content. The chloroplast genomes of ferns, thegymnosperm Ginkgo, and most angiosperms are nearly collinear, reflectingthe gene order in lineages that diverged from lycopsids and the ancestralchloroplast gene order over 350 million years ago (Raubeson and Jansen,1992). Although earlier mapping studies

  17. Full transcription of the chloroplast genome in photosynthetic eukaryotes

    PubMed Central

    Shi, Chao; Wang, Shuo; Xia, En-Hua; Jiang, Jian-Jun; Zeng, Fan-Chun; Gao, Li-Zhi

    2016-01-01

    Prokaryotes possess a simple genome transcription system that is different from that of eukaryotes. In chloroplasts (plastids), it is believed that the prokaryotic gene transcription features govern genome transcription. However, the polycistronic operon transcription model cannot account for all the chloroplast genome (plastome) transcription products at whole-genome level, especially regarding various RNA isoforms. By systematically analyzing transcriptomes of plastids of algae and higher plants, and cyanobacteria, we find that the entire plastome is transcribed in photosynthetic green plants, and that this pattern originated from prokaryotic cyanobacteria — ancestor of the chloroplast genomes that diverged about 1 billion years ago. We propose a multiple arrangement transcription model that multiple transcription initiations and terminations combine haphazardly to accomplish the genome transcription followed by subsequent RNA processing events, which explains the full chloroplast genome transcription phenomenon and numerous functional and/or aberrant pre-RNAs. Our findings indicate a complex prokaryotic genome regulation when processing primary transcripts. PMID:27456469

  18. Full transcription of the chloroplast genome in photosynthetic eukaryotes.

    PubMed

    Shi, Chao; Wang, Shuo; Xia, En-Hua; Jiang, Jian-Jun; Zeng, Fan-Chun; Gao, Li-Zhi

    2016-01-01

    Prokaryotes possess a simple genome transcription system that is different from that of eukaryotes. In chloroplasts (plastids), it is believed that the prokaryotic gene transcription features govern genome transcription. However, the polycistronic operon transcription model cannot account for all the chloroplast genome (plastome) transcription products at whole-genome level, especially regarding various RNA isoforms. By systematically analyzing transcriptomes of plastids of algae and higher plants, and cyanobacteria, we find that the entire plastome is transcribed in photosynthetic green plants, and that this pattern originated from prokaryotic cyanobacteria - ancestor of the chloroplast genomes that diverged about 1 billion years ago. We propose a multiple arrangement transcription model that multiple transcription initiations and terminations combine haphazardly to accomplish the genome transcription followed by subsequent RNA processing events, which explains the full chloroplast genome transcription phenomenon and numerous functional and/or aberrant pre-RNAs. Our findings indicate a complex prokaryotic genome regulation when processing primary transcripts. PMID:27456469

  19. The complete chloroplast genome of the Dendrobium strongylanthum (Orchidaceae: Epidendroideae).

    PubMed

    Li, Jing; Chen, Chen; Wang, Zhe-Zhi

    2016-07-01

    Complete chloroplast genome sequence is very useful for studying the phylogenetic and evolution of species. In this study, the complete chloroplast genome of Dendrobium strongylanthum was constructed from whole-genome Illumina sequencing data. The chloroplast genome is 153 058 bp in length with 37.6% GC content and consists of two inverted repeats (IRs) of 26 316 bp. The IR regions are separated by large single-copy region (LSC, 85 836 bp) and small single-copy (SSC, 14 590 bp) region. A total of 130 chloroplast genes were successfully annotated, including 84 protein coding genes, 38 tRNA genes, and eight rRNA genes. Phylogenetic analyses showed that the chloroplast genome of Dendrobium strongylanthum is related to that of the Dendrobium officinal. PMID:26153739

  20. Crowdfunding the Azolla fern genome project: a grassroots approach

    PubMed Central

    2014-01-01

    Much of science progresses within the tight boundaries of what is often seen as a “black box”. Though familiar to funding agencies, researchers and the academic journals they publish in, it is an entity that outsiders rarely get to peek into. Crowdfunding is a novel means that allows the public to participate in, as well as to support and witness advancements in science. Here we describe our recent crowdfunding efforts to sequence the Azolla genome, a little fern with massive green potential. Crowdfunding is a worthy platform not only for obtaining seed money for exploratory research, but also for engaging directly with the general public as a rewarding form of outreach. PMID:25276348

  1. The complete chloroplast genome of Capsella rubella.

    PubMed

    Wu, Zhiqiang

    2016-07-01

    The whole nucleotide sequence of the chloroplast genome from Capsella rubella is determined in this study using short Illumina sequence data from public database. The circular double-stranded DNA, which consists of 154,601 base pairs (bp) in size, contains a pair of inverted repeats (IRa and IRb) of 26,462 bp each, which are separated by a small and large single-copies (SSC and LSC) of 17,855 and 83,822 bp, respectively. The overall GC content of the chloroplast genome is 36.54% and the GC contents of LSC, IRs and SSC are 34.33%, 42.38% and 29.61% separately. One hundred and twelve unique genes were annotated, including 78 protein-coding genes, 30 tRNA genes and 4 rRNA genes. Among these, 16 are duplicated in the inverted repeat regions, 15 genes contained 1 intron, and 3 genes (rps12, clpP and ycf3) comprised of 2 introns. Two protein genes (rps19 and ycf1) span in the boundaries of LSC-IR and IR-SSC to produce two partial pseudogenes. PMID:26024136

  2. Dynamics of chloroplast genomes in green plants.

    PubMed

    Xu, Jian-Hong; Liu, Qiuxiang; Hu, Wangxiong; Wang, Tingzhang; Xue, Qingzhong; Messing, Joachim

    2015-10-01

    Chloroplasts are essential organelles, in which genes have widely been used in the phylogenetic analysis of green plants. Here, we took advantage of the breadth of plastid genomes (cpDNAs) sequenced species to investigate their dynamic changes. Our study showed that gene rearrangements occurred more frequently in the cpDNAs of green algae than in land plants. Phylogenetic trees were generated using 55 conserved protein-coding genes including 33 genes for photosynthesis, 16 ribosomal protein genes and 6 other genes, which supported the monophyletic evolution of vascular plants, land plants, seed plants, and angiosperms. Moreover, we could show that seed plants were more closely related to bryophytes rather than pteridophytes. Furthermore, the substitution rate for cpDNA genes was calculated to be 3.3×10(-10), which was almost 10 times lower than genes of nuclear genomes, probably because of the plastid homologous recombination machinery. PMID:26206079

  3. The complete chloroplast genome of Phalaenopsis "Tiny Star".

    PubMed

    Kim, Goon-Bo; Kwon, Youngeun; Yu, Hee-Ju; Lim, Ki-Byung; Seo, Jae-Hwan; Mun, Jeong-Hwan

    2016-01-01

    We determined the complete chloroplast DNA sequence of Phalaenopsis "Tiny Star" based on Illumina sequencing. The total length of the chloroplast genome is 148,918 bp long with GC content of 36.7%. It contains 70 protein-coding genes, 30 tRNA genes, and 4 rRNA genes. Comparative analysis with the reported orchid chloroplast sequences identified unique InDel variations in the "Tiny Star" chloroplast genome that have potential as genetic markers to investigate the maternal lineage of Phalaenopsis and Doritaenopsis cultivars. PMID:25093401

  4. Complete nucleotide sequence of the Cryptomeria japonica D. Don. chloroplast genome and comparative chloroplast genomics: diversified genomic structure of coniferous species

    PubMed Central

    Hirao, Tomonori; Watanabe, Atsushi; Kurita, Manabu; Kondo, Teiji; Takata, Katsuhiko

    2008-01-01

    Background The recent determination of complete chloroplast (cp) genomic sequences of various plant species has enabled numerous comparative analyses as well as advances in plant and genome evolutionary studies. In angiosperms, the complete cp genome sequences of about 70 species have been determined, whereas those of only three gymnosperm species, Cycas taitungensis, Pinus thunbergii, and Pinus koraiensis have been established. The lack of information regarding the gene content and genomic structure of gymnosperm cp genomes may severely hamper further progress of plant and cp genome evolutionary studies. To address this need, we report here the complete nucleotide sequence of the cp genome of Cryptomeria japonica, the first in the Cupressaceae sensu lato of gymnosperms, and provide a comparative analysis of their gene content and genomic structure that illustrates the unique genomic features of gymnosperms. Results The C. japonica cp genome is 131,810 bp in length, with 112 single copy genes and two duplicated (trnI-CAU, trnQ-UUG) genes that give a total of 116 genes. Compared to other land plant cp genomes, the C. japonica cp has lost one of the relevant large inverted repeats (IRs) found in angiosperms, fern, liverwort, and gymnosperms, such as Cycas and Gingko, and additionally has completely lost its trnR-CCG, partially lost its trnT-GGU, and shows diversification of accD. The genomic structure of the C. japonica cp genome also differs significantly from those of other plant species. For example, we estimate that a minimum of 15 inversions would be required to transform the gene organization of the Pinus thunbergii cp genome into that of C. japonica. In the C. japonica cp genome, direct repeat and inverted repeat sequences are observed at the inversion and translocation endpoints, and these sequences may be associated with the genomic rearrangements. Conclusion The observed differences in genomic structure between C. japonica and other land plants, including

  5. The complete chloroplast genome sequence of Zanthoxylum piperitum.

    PubMed

    Lee, Jonghoon; Lee, Hyeon Ju; Kim, Kyunghee; Lee, Sang-Choon; Sung, Sang Hyun; Yang, Tae-Jin

    2016-09-01

    The complete chloroplast genome sequence of Zanthoxylum piperitum, a plant species with useful aromatic oils in family Rutaceae, was generated in this study by de novo assembly with whole-genome sequence data. The chloroplast genome was 158 154 bp in length with a typical quadripartite structure containing a pair of inverted repeats of 27 644 bp, separated by large single copy and small single copy of 85 340 bp and 17 526 bp, respectively. The chloroplast genome harbored 112 genes consisting of 78 protein-coding genes 30 tRNA genes and 4 rRNA genes. Phylogenetic analysis of the complete chloroplast genome sequences with those of known relatives revealed that Z. piperitum is most closely related to the Citrus species. PMID:26260183

  6. Chloroplast genome structure in Ilex (Aquifoliaceae)

    PubMed Central

    Yao, Xin; Tan, Yun-Hong; Liu, Ying-Ying; Song, Yu; Yang, Jun-Bo; Corlett, Richard T.

    2016-01-01

    Aquifoliaceae is the largest family in the campanulid order Aquifoliales. It consists of a single genus, Ilex, the hollies, which is the largest woody dioecious genus in the angiosperms. Most species are in East Asia or South America. The taxonomy and evolutionary history remain unclear due to the lack of a robust species-level phylogeny. We produced the first complete chloroplast genomes in this family, including seven Ilex species, by Illumina sequencing of long-range PCR products and subsequent reference-guided de novo assembly. These genomes have a typical bicyclic structure with a conserved genome arrangement and moderate divergence. The total length is 157,741 bp and there is one large single-copy region (LSC) with 87,109 bp, one small single-copy with 18,436 bp, and a pair of inverted repeat regions (IR) with 52,196 bp. A total of 144 genes were identified, including 96 protein-coding genes, 40 tRNA and 8 rRNA. Thirty-four repetitive sequences were identified in Ilex pubescens, with lengths >14 bp and identity >90%, and 11 divergence hotspot regions that could be targeted for phylogenetic markers. This study will contribute to improved resolution of deep branches of the Ilex phylogeny and facilitate identification of Ilex species. PMID:27378489

  7. Development of chloroplast genomic resources for Cynara.

    PubMed

    Curci, Pasquale L; De Paola, Domenico; Sonnante, Gabriella

    2016-03-01

    In this study, new chloroplast (cp) resources were developed for the genus Cynara, using whole cp genomes from 20 genotypes, by means of high-throughput sequencing technologies. Our target species included seven globe artichokes, two cultivated cardoons, eight wild artichokes, and three other wild Cynara species (C. baetica, C. cornigera and C. syriaca). One complete cp genome was isolated using short reads from a whole-genome sequencing project, while the others were obtained by means of long-range PCR, for which primer pairs are provided here. A de novo assembly strategy combined with a reference-based assembly allowed us to reconstruct each cp genome. Comparative analyses among the newly sequenced genotypes and two additional Cynara cp genomes ('Brindisino' artichoke and C. humilis) retrieved from public databases revealed 126 parsimony informative characters and 258 singletons in Cynara, for a total of 384 variable characters. Thirty-nine SSR loci and 34 other INDEL events were detected. After data analysis, 37 primer pairs for SSR amplification were designed, and these molecular markers were subsequently validated in our Cynara genotypes. Phylogenetic analysis based on all cp variable characters provided the best resolution when compared to what was observed using only parsimony informative characters, or only short 'variable' cp regions. The evaluation of the molecular resources obtained from this study led us to support the 'super-barcode' theory and consider the total cp sequence of Cynara as a reliable and valuable molecular marker for exploring species diversity and examining variation below the species level. PMID:26354522

  8. Complete Chloroplast Genome of Tanaecium tetragonolobum: The First Bignoniaceae Plastome

    PubMed Central

    Nazareno, Alison Gonçalves; Carlsen, Monica; Lohmann, Lúcia Garcez

    2015-01-01

    Bignoniaceae is a Pantropical plant family that is especially abundant in the Neotropics. Members of the Bignoniaceae are diverse in many ecosystems and represent key components of the Tropical flora. Despite the ecological importance of the Bignoniaceae and all the efforts to reconstruct the phylogeny of this group, whole chloroplast genome information has not yet been reported for any members of the family. Here, we report the complete chloroplast genome sequence of Tanaecium tetragonolobum (Jacq.) L.G. Lohmann, which was reconstructed using de novo and referenced-based assembly of single-end reads generated by shotgun sequencing of total genomic DNA in an Illumina platform. The gene order and organization of the chloroplast genome of T. tetragonolobum exhibits the general structure of flowering plants, and is similar to other Lamiales chloroplast genomes. The chloroplast genome of T. tetragonolobum is a circular molecule of 153,776 base pairs (bp) with a quadripartite structure containing two single copy regions, a large single copy region (LSC, 84,612 bp) and a small single copy region (SSC, 17,586 bp) separated by inverted repeat regions (IRs, 25,789 bp). In addition, the chloroplast genome of T. tetragonolobum has 38.3% GC content and includes 121 genes, of which 86 are protein-coding, 31 are transfer RNA, and four are ribosomal RNA. The chloroplast genome of T. tetragonolobum presents a total of 47 tandem repeats and 347 simple sequence repeats (SSRs) with mononucleotides being the most common and di-, tri-, tetra-, and hexanucleotides occurring with less frequency. The results obtained here were compared to other chloroplast genomes of Lamiales available to date, providing new insight into the evolution of chloroplast genomes within Lamiales. Overall, the evolutionary rates of genes in Lamiales are lineage-, locus-, and region-specific, indicating that the evolutionary pattern of nucleotide substitution in chloroplast genomes of flowering plants is complex

  9. Chloroplast genome variation in upland and lowland switchgrass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Switchgrass (Panicum virgatum L.) exists at multiple ploidies and two phenotypically distinct ecotypes. To facilitate interploidal comparisons and to understand the extent of sequence variation within existing breeding pools, two complete switchgrass chloroplast genomes were sequenced from individu...

  10. Limited variation across two chloroplast genomes with finishing chloroplast genome of Capsella grandiflora.

    PubMed

    Wu, Zhiqiang; Ma, Qiumao

    2016-09-01

    The complete chloroplast genome of Capsella grandiflora is finished in this study, which consists of 154 638 base pairs (bp) in size containing a pair of inverted repeats (IRa and IRb) of 26 462 bp each and a small and large single-copies (SSC and LSC) of 17 835 and 83 879 bp, respectively. The overall GC content is 36.54% and the GC contents of LSC, IRs, and SSC are 34.34%, 42.38%, and 29.61% separately. The gene contents and numbers are the same with other two published species in genus Capsella with 112 annotated unique genes including 78 protein-coding genes, 30 tRNA genes, and four rRNA genes. Among these, 16 are duplicated in the inverted repeat regions, 15 genes contained one intron, and three genes (rps12, clpP, and ycf3) comprising two introns. Based on the whole genome comparison, only 28 SNPs and 16 Indels (insertion and deletion) are detected between two closed relatives' chloroplast genomes. PMID:26186303

  11. The complete chloroplast genome sequence of Dieffenbachia seguine (Araceae).

    PubMed

    Wang, Bin; Han, Limin; Chen, Chen; Wang, Zhezhi

    2016-07-01

    The nucleotide sequence of the chloroplast genome from Dieffenbachia seguine is the first to have complete genome sequence from genus of Dieffenbachia family Araceae. The genome size is 163 699 bp in length, with 36.4% GC content. A pair of inverted repeats (IRs, 25 235 bp) is separated by a large single copy region (LSC, 90 780 bp) and a small single copy region (SSC, 22 449 bp). The chloroplast genome contains 113 unique genes, 88 protein-coding genes, 37 tRNA genes, and four rRNA genes. In these genes, 16 genes contained single intron and two genes composed of double introns. A maximum likelihood phylogenetic analysis using complete chloroplast genome revealed that Dieffenbachia seguine belongs to the Araceae family of the Arecidae group, which is conform to the traditional classification. PMID:26153749

  12. The complete chloroplast genome of Capsicum frutescens (Solanaceae)1

    PubMed Central

    Shim, Donghwan; Raveendar, Sebastin; Lee, Jung-Ro; Lee, Gi-An; Ro, Na-Young; Jeon, Young-Ah; Cho, Gyu-Taek; Lee, Ho-Sun; Ma, Kyung-Ho; Chung, Jong-Wook

    2016-01-01

    Premise of the study: We report the complete sequence of the chloroplast genome of Capsicum frutescens (Solanaceae), a species of chili pepper. Methods and Results: Using an Illumina platform, we sequenced the chloroplast genome of C. frutescens. The total length of the genome is 156,817 bp, and the overall GC content is 37.7%. A pair of 25,792-bp inverted repeats is separated by small (17,853 bp) and large (87,380 bp) single-copy regions. The C. frutescens chloroplast genome encodes 132 unique genes, including 87 protein-coding genes, 37 transfer RNA (tRNA) genes, and eight ribosomal RNA (rRNA) genes. Of these, seven genes are duplicated in the inverted repeats and 12 genes contain one or two introns. Comparative analysis with the reference chloroplast genome revealed 125 simple sequence repeat motifs and 34 variants, mostly located in the noncoding regions. Conclusions: The complete chloroplast genome sequence of C. frutescens reported here is a valuable genetic resource for Capsicum species. PMID:27213127

  13. The complete chloroplast genome sequence of Perilla frutescens (L.).

    PubMed

    Shen, Qi; Yang, Jun; Lu, Chaolong; Wang, Bo; Song, Chi

    2016-09-01

    Perilla frutescens (L.) is a traditionally medical herb of East Asia. The complete chloroplast genome of P. frutescens (L.) Britton var. frutescens was assembled in this study. Total chloroplast genome size of Perilla was 153,666 bp in length, containing a pair of inverted repeats (IRs) of 25,677 bp, separated by large single copy (LSC) and small single copy (SSC) of 84,288 bp and 17,925 bp, respectively. Overall GC contents of the genome were 37.6%. The chloroplast genome harbored 127 annotated genes, including 89 protein-coding genes, 29 tRNA genes and 8 rRNA genes. Eleven genes contained one or two introns. PMID:25714143

  14. The complete chloroplast genome of Schrenkiella parvula (Brassicaceae).

    PubMed

    He, Qi; Hao, Guoqian; Wang, Xiaojuan; Bi, Hao; Li, Yuanshuo; Guo, Xinyi; Ma, Tao

    2016-09-01

    Schrenkiella parvula is an Arabidopsis-related model species used here for studying plant stress tolerance. In this study, the complete chloroplast genome sequence of S. parvula has been reported for the first time. The total length of the chloroplast genome was 153 979 bp, which had a typical quadripartite structure. The annotated plastid genome includes 87 protein-coding genes, 39 tRNA genes and 8 ribosomal RNA genes. The evolutionary relationships revealed by our phylogenetic analysis indicated that S. parvula is closer to the Brassiceae species when compared with Eutrema salsugineum. PMID:26260181

  15. Complete Chloroplast Genome Sequence of Phagomixotrophic Green Alga Cymbomonas tetramitiformis

    PubMed Central

    Paasch, Amber E.; Graham, Linda E.; Kim, Eunsoo

    2016-01-01

    We report here the complete chloroplast genome sequence of Cymbomonas tetramitiformis strain PLY262, which is a prasinophycean green alga that retains a phagomixotrophic mode of nutrition. The genome is 84,524 bp in length, with a G+C content of 37%, and contains 3 rRNAs, 26 tRNAs, and 76 protein-coding genes. PMID:27313295

  16. Complete Chloroplast Genome Sequence of Phagomixotrophic Green Alga Cymbomonas tetramitiformis.

    PubMed

    Satjarak, Anchittha; Paasch, Amber E; Graham, Linda E; Kim, Eunsoo

    2016-01-01

    We report here the complete chloroplast genome sequence of Cymbomonas tetramitiformis strain PLY262, which is a prasinophycean green alga that retains a phagomixotrophic mode of nutrition. The genome is 84,524 bp in length, with a G+C content of 37%, and contains 3 rRNAs, 26 tRNAs, and 76 protein-coding genes. PMID:27313295

  17. Genome size expansion and the relationship between nuclear DNA content and spore size in the Asplenium monanthes fern complex (Aspleniaceae)

    PubMed Central

    2013-01-01

    Background Homosporous ferns are distinctive amongst the land plant lineages for their high chromosome numbers and enigmatic genomes. Genome size measurements are an under exploited tool in homosporous ferns and show great potential to provide an overview of the mechanisms that define genome evolution in these ferns. The aim of this study is to investigate the evolution of genome size and the relationship between genome size and spore size within the apomictic Asplenium monanthes fern complex and related lineages. Results Comparative analyses to test for a relationship between spore size and genome size show that they are not correlated. The data do however provide evidence for marked genome size variation between species in this group. These results indicate that Asplenium monanthes has undergone a two-fold expansion in genome size. Conclusions Our findings challenge the widely held assumption that spore size can be used to infer ploidy levels within apomictic fern complexes. We argue that the observed genome size variation is likely to have arisen via increases in both chromosome number due to polyploidy and chromosome size due to amplification of repetitive DNA (e.g. transposable elements, especially retrotransposons). However, to date the latter has not been considered to be an important process of genome evolution within homosporous ferns. We infer that genome evolution, at least in some homosporous fern lineages, is a more dynamic process than existing studies would suggest. PMID:24354467

  18. The chloroplast genome exists in multimeric forms

    SciTech Connect

    Deng, Xingwang; Wing, R.A.; Gruissem, W. )

    1989-06-01

    Chloroplast DNA conformation was analyzed by pulse-field gel electrophoresis. The authors found that spinach leaf chloroplast DNA molecules exist in at least four distinct forms with the apparent molecular weights of monomer, dimer, trimer, and tetramer. Two-dimensional gel analysis of DNA after UV nicking and in the presence of ethidium bromide indicates that they are not isomers that differ in superhelical density. DNA gyrase decatenation analysis demonstrates that the majority of the DNA molecules are oligomers rather than catenanes. The relative amounts of monomer, dimer, trimer, and tetramer forms, quantitated by molecular hybridization, are 1, 1/3, 1/9, and 1/27, respectively, and do not change during leaf maturation. The possible mechanisms of chloroplast DNA oligomer formation are discussed.

  19. The complete chloroplast genome sequence of Sapindus mukorossi.

    PubMed

    Yang, Bingxian; Li, Mengzhu; Ma, Ji; Fu, Zhengzheng; Xu, Xiaobao; Chen, Qinyi; Zhu, Wei; Tian, Jingkui

    2016-05-01

    The complete chloroplast genome sequence of Sapindus mukorossi, a critical Chinese medicine, was reported here. The total length of the chloroplast genome is 160,481 bp long with 37.7% overall GC content. A pair of IRs (inverted repeats) of 27,979 bp were separated by SSC (18,873 bp) and LSC (85,650 bp). It contains 78 protein-coding genes, 30 tRNA genes and four rRNA genes. Sixteen genes contain one or two introns. PMID:25317637

  20. The complete chloroplast genome of Torreya fargesii (Taxaceae).

    PubMed

    Tao, Ke; Gao, Lei; Li, Jia; Chen, Shanshan; Su, Yingjuan; Wang, Ting

    2016-09-01

    The complete chloroplast genome sequence of Torreya fargesii (Taxaceae), a relic plant endemic to China, is presented in this study. The genome is 137 075 bp in length, with 35.47% average GC content. One copy of the large inverted repeats is lost from this genome. The T. fargesii chloroplast genome encodes 118 unique genes, in which trnI-CAU, trnQ-UUG, trnN-GUU are duplicated. Protein-coding, tRNA and rRNA genes represent 54.7%, 1.9% and 3.4% of the genome, respectively. There are 17 intron-containing genes, of which 6 are tRNA genes. A maximum likelihood phylogenetic analysis revealed a strong sister relationship between Torreya and Amentotaxus. PMID:27158868

  1. The complete chloroplast genome of North American ginseng, Panax quinquefolius.

    PubMed

    Han, Zeng-Jie; Li, Wei; Liu, Yuan; Gao, Li-Zhi

    2016-09-01

    We report complete nucleotide sequence of the Panax quinquefolius chloroplast genome using next-generation sequencing technology. The genome size is 156 359 bp, including two inverted repeats (IRs) of 52 153 bp, separated by the large single-copy (LSC 86 184 bp) and small single-copy (SSC 18 081 bp) regions. This cp genome encodes 114 unigenes (80 protein-coding genes, four rRNA genes, and 30 tRNA genes), in which 18 are duplicated in the IR regions. Overall GC content of the genome is 38.08%. A phylogenomic analysis of the 10 complete chloroplast genomes from Araliaceae using Daucus carota from Apiaceae as outgroup showed that P. quinquefolius is closely related to the other two members of the genus Panax, P. ginseng and P. notoginseng. PMID:27158867

  2. The complete chloroplast genome sequence of Amentotaxus argotaenia (Taxaceae).

    PubMed

    Li, Jia; Gao, Lei; Tao, Ke; Su, Yingjuan; Wang, Ting

    2016-07-01

    The complete chloroplast genome sequence of Amentotaxus argotaenia was determined in this study. The genome is 136 657 bp in length and lacks one inverted repeat region. The overall GC content of the genome is 35.85% (protein-coding genes, 36.90%; tRNA genes, 53.31%; rRNA genes, 52.99%; introns, 36.10%; intergenic spacers, 31.03%). The A. argotaenia chloroplast genome contains 118 unique genes, including 83 protein-coding genes, 31 tRNA genes, and four rRNA genes. Ten protein-coding genes and six tRNA genes have one intron, while ycf3 contains two. The coding regions occupy 60.27% of the genome length and the gene density is estimated to be 0.88 genes/kb. A maximum likelihood phylogenetic analysis suggested that Amentotaxus is sister to Taxus within the Taxaceae family. PMID:26119122

  3. The complete chloroplast genome sequence of Anoectochilus roxburghii.

    PubMed

    Yu, Chao-Wei; Lian, Qin; Wu, Kang-Cheng; Yu, Shu-Han; Xie, Li-Yan; Wu, Zu-Jian

    2016-07-01

    The complete chloroplast sequence of the Anoectochilus roxburghii, a popular traditional Chinese medicine for the treatment of cancer, was determined in this study. The chloroplast genome (cpDNA)^ was 152,802 bp in length, containing a pair of inverted repeats of 52,728 bp separated by a large single-copy region and a small single-copy region of 82,641 bp and 17,433 bp, respectively. The chloroplast genome encodes 116 predicted functional genes, including 81 protein-coding genes, four ribosomal RNA genes, and 31 transfer RNA genes, 25 of which are duplicated in the inverted repeat regions. The cpDNA is GC-rich (36.9%). PMID:25865497

  4. The complete chloroplast genome sequence of Alocasia macrorrhizos.

    PubMed

    Wang, Bin; Han, Limin

    2016-09-01

    The complete chloroplast sequence of Alocasia macrorrhizos is 154 995 bp in length, containing a pair of inverted repeats of 25 944 bp separated by a large single-copy (LSC) region and a small single-copy (SSC) region of 87 366 bp and 15 741 bp, respectively. The chloroplast genome encodes 132 predicted functional genes, including 87 protein-coding genes, four ribosomal RNA genes, and 37 transfer RNA genes, 18 of which are duplicated in the inverted repeat regions. In these genes, 16 genes contained single intron and two genes comprising double introns. A maximum-likelihood phylogenetic analysis using complete chloroplast genome revealed that A. macrorrhizos does not belong to Araceae family, which infers that the A. macrorrhizos is distant from the species in Araceae family. PMID:26258514

  5. The complete chloroplast genome sequence of Spathiphyllum kochii.

    PubMed

    Han, Limin; Wang, Bin; Wang, Zhe Zhi

    2016-07-01

    The complete chloroplast sequence of the Spathiphyllum kochii is 163 368 bp in length, containing a pair of inverted repeats of 25 270 bp separated by a large single-copy region and a small single-copy region of 90 482 bp and 22 346 bp, respectively. The chloroplast genome encodes 133 predicted functional genes, including 88 protein-coding genes, four ribosomal RNA genes and 37 transfer RNA genes, 18 of which are duplicated in the inverted repeat regions. The cpDNA is GC-rich (37.6%). The chloroplast genome of S. kochii reported here will lay basis for identification, utilization and protection of its germplasm resources. PMID:26134343

  6. The complete chloroplast genome sequence of Safflower (Carthamus tinctorius L.).

    PubMed

    Lu, Chaolong; Shen, Qi; Yang, Jun; Wang, Bo; Song, Chi

    2016-09-01

    Safflower (Carthamus tinctorius L.) is a traditional medical plants of Asia. In this study, the complete chloroplast genome of safflower was presented. The total genome size was 153,675 bp in length, containing a pair of inverted repeats (IRs) of 25,407 bp, separated by large single copy (LSC) and small single copy (SSC) of 83,606 bp and 19,156 bp, respectively. Overall GC content of the genome was 37.4%. The chloroplast genome harbored 127 annotated genes, including 89 protein coding genes, 30 tRNA genes and 8 rRNA genes. A total of 7 of these genes were duplicated in the inverted repeat regions. Twelve genes contained one intron. PMID:25740214

  7. The complete chloroplast genome sequence of Fagopyrum cymosum.

    PubMed

    Yang, Jun; Lu, Chaolong; Shen, Qi; Yan, Yuying; Xu, Changjiang; Song, Chi

    2016-07-01

    Fagopyrum cymosum is a traditional medicinal plant. In this study, the complete chloroplast genome of Fagopyrum cymosum is presented. The total genome size is 160,546 bp in length, containing a pair of inverted repeats (IRs) of 32,598 bp, separated by large single copy (LSC) and small single copy (SSC) of 84,237 bp and 11,014 bp, respectively. Overall GC contents of the genome were 36.9%. The chloroplast genome harbors 126 annotated genes, including 91 protein coding genes, 29 tRNA genes, and six rRNA genes. Eighteen genes contain one or two introns. Phylogenetic analyses indicated a clear evolutionary relationship among species of Caryophyllales. PMID:26119127

  8. Chloroplast Genome Sequence of the Moss Tortula ruralis: Gene Content and Structural Arrangement Relative to Other Green Plant Chloroplast Genomes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tortula ruralis, a widely distributed moss species in the family Pottiaceae, is increasingly being used as a model organism for the study of desiccation tolerance and mechanisms of cellular repair. In this paper, we present the chloroplast genome sequence of Tortula ruralis, only the second publishe...

  9. The complete chloroplast genome sequence of medicinal plant Pinellia ternata.

    PubMed

    Han, Limin; Chen, Chen; Wang, Bin; Wang, Zhe-Zhi

    2016-07-01

    Pinellia ternata is an important medicinal plant used in the treatment of cough, to dispel phlegm, to calm vomiting and to terminate early pregnancy, as an anti-ulcer and anti-tumor medicine. In this study, we found that the complete chloroplast genome of Pinellia ternata was 164 013 bp in length, containing a pair of inverted repeats of 25 625 bp separated by a large single-copy region and a small single-copy region of 89 783 bp and 22 980 bp, respectively. The chloroplast genome encodes 132 predicted functional genes, including 87 protein-coding genes, eight ribosomal RNA genes, and 37 transfer RNA genes. The chloroplast DNA is GC-rich (36.7%). The phylogenetic analysis showed a strong sister relationship with Colocasia esculenta, which also strongly supports the position of Pinellia ternata. The complete chloroplast genome sequence of Pinellia ternata reported here has the potential to advance population and phylogenetic studies of this medicinal plant. PMID:26153849

  10. The whole chloroplast genome of shrub willows (Salix suchowensis).

    PubMed

    Wu, Zhiqiang

    2016-05-01

    The whole chloroplast genome of Salix suchowensis was determined in this study using next generation sequencing data. The total genome size was 155,214 bp in length, containing a pair of inverted repeats (IRs) of 27,459 bp, which were separated by large single copy (LSC) and small single copy (SSC) of 84,077 bp and 16,219 bp, respectively. The overall GC contents of the chloroplast genome were 36.73%. One hundred and ten unique genes were annotated, including 76 protein coding genes, 30 tRNA genes and 4 rRNA genes. Among these, 18 are duplicated in the inverted repeat regions, 14 genes contained 1 intron, and 3 genes (rps12, clpP and ycf3) comprised of 2 introns. PMID:25418623

  11. Whole Chloroplast Genome Sequencing in Fragaria Using Deep Sequencing: A Comparison of Three Methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chloroplast sequences previously investigated in Fragaria revealed low amounts of variation. Deep sequencing technologies enable economical sequencing of complete chloroplast genomes. These sequences can potentially provide robust phylogenetic resolution, even at low taxonomic levels within plant gr...

  12. The complete chloroplast genome sequence of Chloranthus japonicus.

    PubMed

    Sun, Jing; Zhang, Gang; Li, Yimin; Chen, Ying; Zhang, Xiaofei; Tang, Zhishu; Wu, Haifeng

    2016-09-01

    The complete chloroplast genome of Chloranthus japonicus, an important traditional Chinese herbal medicine, was sequenced and characterized in this study. The genome size is 158,640 bp in length with 38.9% GC content. Two inverted repeats of 26,149 bp are separated by a large single-copy region (87,724 bp) and a small single-copy region (18,618 bp). The genome contains 131 individual genes, including 86 protein-coding genes, 37 tRNA genes and 8 rRNA genes. Eighteen genes contain one or two introns. PMID:25707409

  13. The complete chloroplast genome sequence of Curcuma flaviflora (Curcuma).

    PubMed

    Zhang, Yan; Deng, Jiabin; Li, Yangyi; Gao, Gang; Ding, Chunbang; Zhang, Li; Zhou, Yonghong; Yang, Ruiwu

    2016-09-01

    The complete chloroplast (cp) genome of Curcuma flaviflora, a medicinal plant in Southeast Asia, was sequenced. The genome size was 160 478 bp in length, with 36.3% GC content. A pair of inverted repeats (IRs) of 26 946 bp were separated by a large single copy (LSC) of 88 008 bp and a small single copy (SSC) of 18 578 bp, respectively. The cp genome contained 132 annotated genes, including 79 protein coding genes, 30 tRNA genes, and four rRNA genes. And 19 of these genes were duplicated in inverted repeat regions. PMID:26367332

  14. The complete chloroplast genomes of Cannabis sativa and Humulus lupulus.

    PubMed

    Vergara, Daniela; White, Kristin H; Keepers, Kyle G; Kane, Nolan C

    2016-09-01

    Cannabis and Humulus are sister genera comprising the entirety of the Cannabaceae sensu stricto, including C. sativa L. (marijuana, hemp), and H. lupulus L. (hops) as two economically important crops. These two plants have been used by humans for many purposes including as a fiber, food, medicine, or inebriant in the case of C. sativa, and as a flavoring component in beer brewing in the case of H. lupulus. In this study, we report the complete chloroplast genomes for two distinct hemp varieties of C. sativa, Italian "Carmagnola" and Russian "Dagestani", and one Czech variety of H. lupulus "Saazer". Both C. sativa genomes are 153 871 bp in length, while the H. lupulus genome is 153 751 bp. The genomes from the two C. sativa varieties differ in 16 single nucleotide polymorphisms (SNPs), while the H. lupulus genome differs in 1722 SNPs from both C. sativa cultivars. PMID:26329384

  15. The complete chloroplast genome sequence of Hibiscus syriacus.

    PubMed

    Kwon, Hae-Yun; Kim, Joon-Hyeok; Kim, Sea-Hyun; Park, Ji-Min; Lee, Hyoshin

    2016-09-01

    The complete chloroplast genome sequence of Hibiscus syriacus L. is presented in this study. The genome is composed of 161 019 bp in length, with a typical circular structure containing a pair of inverted repeats of 25 745 bp of length separated by a large single-copy region and a small single-copy region of 89 698 bp and 19 831 bp of length, respectively. The overall GC content is 36.8%. One hundred and fourteen genes were annotated, including 81 protein-coding genes, 4 ribosomal RNA genes and 29 transfer RNA genes. PMID:26357910

  16. The complete chloroplast genome sequence of Dioscorea zingiberensis (Dioscoreceae).

    PubMed

    Zhou, Wen; Chen, Chen; Hua, Wen-Ping; Wang, Zhe-Zhi

    2016-07-01

    Dioscorea zingiberensis (Dioscoreceae) is an important medicinal plant endemic to China. Here, its chloroplast genome sequence is reconstructed from the whole-genome Illumina sequencing data. The circular genome is 153,970 bp in length, and comprises a pair of inverted repeat (IR) regions of 25,491 bp each, a large single-copy (LSC) region of 83,950 bp and a small single-copy (SSC) region of 19,038 bp. The chloroplast genome contains 132 genes, including 86 protein-coding genes (79 PCG species), 8 ribosomal RNA genes (four rRNA species) and 38 transfer RNA genes (30 tRNA species). Out of these genes, 10 harbor a single intron, and 7 contain a couple of introns. The overall A + T content of the whole genome is 62.8%, while the corresponding values of the LSC, SSC and IR regions are 64.9%, 68.8% and 57.0%, respectively. PMID:26066025

  17. The complete chloroplast genome of Sinopodophyllum hexandrum (Berberidaceae).

    PubMed

    Li, Huie; Guo, Qiqiang

    2016-07-01

    The complete chloroplast (cp) genome of the Sinopodophyllum hexandrum (Berberidaceae) was determined in this study. The circular genome is 157,940 bp in size, and comprises a pair of inverted repeat (IR) regions of 26,077 bp each, a large single-copy (LSC) region of 86,460 bp and a small single-copy (SSC) region of 19,326 bp. The GC content of the whole cp genome was 38.5%. A total of 133 genes were identified, including 88 protein-coding genes, 37 tRNA genes and eight rRNA genes. The whole cp genome consists of 114 unique genes, and 19 genes are duplicated in the IR regions. The phylogenetic analysis revealed that S. hexandrum is closely related to Nandina domestica within the family Berberidaceae. PMID:26704891

  18. The whole chloroplast genomes of two Eutrema species (Brassicaceae).

    PubMed

    Hao, Guoqian; Bi, Hao; Li, Yuanshuo; He, Qi; Ma, Yazhen; Guo, Xinyi; Ma, Tao

    2016-09-01

    In this study, we determined the complete chloroplast genomes from two crucifer species of the Eutrema genus. The sizes of the two cp genomes were 153 948 bp (E. yunnanense) and 153 876 bp (E. heterophyllum). Both genomes have the typical quadripartite structure consisting of a large single copy region, a small single copy region and two inverted repeats. Gene contents and their relative positions of the 132 individual genes (87 protein-coding genes, eight rRNA, and 37 tRNA genes) of either genome were identical to each other. Phylogenetic analysis supports the idea that the currently recognized Eutrema genus is monophyletic and that E. salsugineum and Schrenkiella parvula evolved salt tolerance independently. PMID:26329763

  19. The complete chloroplast genome of Cinnamomum kanehirae Hayata (Lauraceae).

    PubMed

    Wu, Chia-Chen; Ho, Cheng-Kuen; Chang, Shu-Hwa

    2016-07-01

    The complete chloroplast genome of Cinnamomum kanehirae (Hayata), the first to be completely sequenced of Lauraceae family, is presented in this study. The total genome size is 152,700 bp, with a typical circular structure including a pair of inverted repeats (IRa/b) of 20,107 bp of length separated by a large single-copy region (LSC) and a small single-copy region (SSC) of 93,642 bp and 18,844 bp of length, respectively. The overall GC content of the genome is 39.1%. The nucleotide sequence shows 91% identities with Liriodendron tulipifera in the Magnoliaceae. In total, 123 annotated genes consisted of 79 coding genes, eight rRNA genes, and 36 tRNA genes. Among all 79 coding genes, seven genes (rpoC1, atpF, rpl2, ndhB, ndhA, rps16, and rpl2) contain one intron, while two genes (ycf3 and clpP) contain two introns. The maximum likelihood phylogenetic analysis revealed that C. kanehirae chloroplast genome is closely related to Calycanthus fertilis within Laurales order. PMID:26053940

  20. The complete chloroplast genome sequence of Chikusichloa aquatica (Poaceae: Oryzeae).

    PubMed

    Zhang, Jie; Zhang, Dan; Shi, Chao; Gao, Ju; Gao, Li-Zhi

    2016-07-01

    The complete chloroplast sequence of the Chikusichloa aquatica was determined in this study. The genome consists of 136 563 bp containing a pair of inverted repeats (IRs) of 20 837 bp, which was separated by a large single-copy region and a small single-copy region of 82 315 bp and 33 411 bp, respectively. The C. aquatica cp genome encodes 111 functional genes (71 protein-coding genes, four rRNA genes, and 36 tRNA genes): 92 are unique, while 19 are duplicated in the IR regions. The genic regions account for 58.9% of whole cp genome, and the GC content of the plastome is 39.0%. A phylogenomic analysis showed that C. aquatica is closely related to Rhynchoryza subulata that belongs to the tribe Oryzeae. PMID:26190082

  1. The complete chloroplast genome sequence of Anoectochilus emeiensis.

    PubMed

    Zhu, Shuying; Niu, Zhitao; Yan, Wenjin; Xue, Qingyun; Ding, Xiaoyu

    2016-09-01

    The complete chloroplast (cp) genome sequence of Anoectochilus emeiensis, an extremely endangered medical plant with important economic value, was determined and characterized. The genome size was 152 650 bp, containing a pair of inverted repeats (IRs) (26 319 bp) which were separated by a large single copy (LSC) (82 670 bp) and a small single copy (SSC) (17 342 bp). The cpDNA of A. emeiensis contained 113 unique genes, including 79 protein coding genes, 30 tRNA genes and 4 rRNA genes. Among them, 18 genes contained one or two introns. The overall AT content of the genome was 63.1%. PMID:26403535

  2. The complete chloroplast genome sequence of Dendropanax morbifera (Léveillé).

    PubMed

    Kim, Kyunghee; Lee, Sang-Choon; Yang, Tae-Jin

    2016-07-01

    The complete chloroplast genome sequence of Dendropanax morbifera, an economically and medicinally important endemic tree species in Korea, was obtained by de novo assembly with whole-genome sequence data and manual correction. A circular 156 366-bp chloroplast genome showed typical chloroplast genome structure comprising a large single copy region of 86 475 bp, a small single copy region of 18 125 bp, and a pair of inverted repeats of 25 883 bp. The chloroplast genome harbored 87 protein-coding genes. Phylogenetic analysis with the chloroplast genome revealed that D. morbifera is most closely related to Dendropanax dentiger, an evergreen tree species in China and Southeastern Asia. PMID:26153746

  3. The complete chloroplast genome sequence of Dendrobium officinale.

    PubMed

    Yang, Pei; Zhou, Hong; Qian, Jun; Xu, Haibin; Shao, Qingsong; Li, Yonghua; Yao, Hui

    2016-01-01

    The complete chloroplast sequence of Dendrobium officinale, an endangered and economically important traditional Chinese medicine, was reported and characterized. The genome size is 152,018 bp, with 37.5% GC content. A pair of inverted repeats (IRs) of 26,284 bp are separated by a large single-copy region (LSC, 84,944 bp) and a small single-copy region (SSC, 14,506 bp). The complete cp DNA contains 83 protein-coding genes, 39 tRNA genes and 8 rRNA genes. Fourteen genes contained one or two introns. PMID:25103425

  4. The complete chloroplast genome provides insight into the evolution and polymorphism of Panax ginseng

    PubMed Central

    Zhao, Yongbing; Yin, Jinlong; Guo, Haiyan; Zhang, Yuyu; Xiao, Wen; Sun, Chen; Wu, Jiayan; Qu, Xiaobo; Yu, Jun; Wang, Xumin; Xiao, Jingfa

    2015-01-01

    Panax ginseng C.A. Meyer (P. ginseng) is an important medicinal plant and is often used in traditional Chinese medicine. With next generation sequencing (NGS) technology, we determined the complete chloroplast genome sequences for four Chinese P. ginseng strains, which are Damaya (DMY), Ermaya (EMY), Gaolishen (GLS), and Yeshanshen (YSS). The total chloroplast genome sequence length for DMY, EMY, and GLS was 156,354 bp, while that for YSS was 156,355 bp. Comparative genomic analysis of the chloroplast genome sequences indicate that gene content, GC content, and gene order in DMY are quite similar to its relative species, and nucleotide sequence diversity of inverted repeat region (IR) is lower than that of its counterparts, large single copy region (LSC) and small single copy region (SSC). A comparison among these four P. ginseng strains revealed that the chloroplast genome sequences of DMY, EMY, and GLS were identical and YSS had a 1-bp insertion at base 5472. To further study the heterogeneity in chloroplast genome during domestication, high-resolution reads were mapped to the genome sequences to investigate the differences at the minor allele level; 208 minor allele sites with minor allele frequencies (MAF) of ≥0.05 were identified. The polymorphism site numbers per kb of chloroplast genome sequence for DMY, EMY, GLS, and YSS were 0.74, 0.59, 0.97, and 1.23, respectively. All the minor allele sites located in LSC and IR regions, and the four strains showed the same variation types (substitution base or indel) at all identified polymorphism sites. Comparison results of heterogeneity in the chloroplast genome sequences showed that the minor allele sites on the chloroplast genome were undergoing purifying selection to adapt to changing environment during domestication process. A study of P. ginseng chloroplast genome with particular focus on minor allele sites would aid in investigating the dynamics on the chloroplast genomes and different P. ginseng strains

  5. PCR BASED MOLECULAR MARKERS THAT DISTINGUISH MAIZE CHLOROPLAST AND MITOCHONDRIAL GENOMES FROM TRIPSACUM

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Progeny from interspecific and intergeneric cross hybridizations result in novel nuclear-cytoplasmic genetic interactions. In contrast to the usually biparentally inherited nuclear genome, inheritance of mitochondrial and chloroplast genomes will vary depending on the mechanisms regulating transmis...

  6. Sonication-based isolation and enrichment of Chlorella protothecoides chloroplasts for illumina genome sequencing

    SciTech Connect

    Angelova, Angelina; Park, Sang-Hycuk; Kyndt, John; Fitzsimmons, Kevin; Brown, Judith K

    2013-09-01

    With the increasing world demand for biofuel, a number of oleaginous algal species are being considered as renewable sources of oil. Chlorella protothecoides Krüger synthesizes triacylglycerols (TAGs) as storage compounds that can be converted into renewable fuel utilizing an anabolic pathway that is poorly understood. The paucity of algal chloroplast genome sequences has been an important constraint to chloroplast transformation and for studying gene expression in TAGs pathways. In this study, the intact chloroplasts were released from algal cells using sonication followed by sucrose gradient centrifugation, resulting in a 2.36-fold enrichment of chloroplasts from C. protothecoides, based on qPCR analysis. The C. protothecoides chloroplast genome (cpDNA) was determined using the Illumina HiSeq 2000 sequencing platform and found to be 84,576 Kb in size (8.57 Kb) in size, with a GC content of 30.8 %. This is the first report of an optimized protocol that uses a sonication step, followed by sucrose gradient centrifugation, to release and enrich intact chloroplasts from a microalga (C. prototheocoides) of sufficient quality to permit chloroplast genome sequencing with high coverage, while minimizing nuclear genome contamination. The approach is expected to guide chloroplast isolation from other oleaginous algal species for a variety of uses that benefit from enrichment of chloroplasts, ranging from biochemical analysis to genomics studies.

  7. Whole genome sequencing of enriched chloroplast DNA using the Illumina GAII platform

    PubMed Central

    2010-01-01

    Background Complete chloroplast genome sequences provide a valuable source of molecular markers for studies in molecular ecology and evolution of plants. To obtain complete genome sequences, recent studies have made use of the polymerase chain reaction to amplify overlapping fragments from conserved gene loci. However, this approach is time consuming and can be more difficult to implement where gene organisation differs among plants. An alternative approach is to first isolate chloroplasts and then use the capacity of high-throughput sequencing to obtain complete genome sequences. We report our findings from studies of the latter approach, which used a simple chloroplast isolation procedure, multiply-primed rolling circle amplification of chloroplast DNA, Illumina Genome Analyzer II sequencing, and de novo assembly of paired-end sequence reads. Results A modified rapid chloroplast isolation protocol was used to obtain plant DNA that was enriched for chloroplast DNA, but nevertheless contained nuclear and mitochondrial DNA. Multiply-primed rolling circle amplification of this mixed template produced sufficient quantities of chloroplast DNA, even when the amount of starting material was small, and improved the template quality for Illumina Genome Analyzer II (hereafter Illumina GAII) sequencing. We demonstrate, using independent samples of karaka (Corynocarpus laevigatus), that there is high fidelity in the sequence obtained from this template. Although less than 20% of our sequenced reads could be mapped to chloroplast genome, it was relatively easy to assemble complete chloroplast genome sequences from the mixture of nuclear, mitochondrial and chloroplast reads. Conclusions We report successful whole genome sequencing of chloroplast DNA from karaka, obtained efficiently and with high fidelity. PMID:20920211

  8. The complete chloroplast genome sequence of Euonymus japonicus (Celastraceae).

    PubMed

    Choi, Kyoung Su; Park, SeonJoo

    2016-09-01

    The complete chloroplast (cp) genome sequence of the Euonymus japonicus, the first sequenced of the genus Euonymus, was reported in this study. The total length was 157 637 bp, containing a pair of 26 678 bp inverted repeat region (IR), which were separated by small single copy (SSC) region and large single copy (LSC) region of 18 340 bp and 85 941 bp, respectively. This genome contains 107 unique genes, including 74 coding genes, four rRNA genes, and 29 tRNA genes. Seventeen genes contain intron of E. japonicus, of which three genes (clpP, ycf3, and rps12) include two introns. The maximum likelihood (ML) phylogenetic analysis revealed that E. japonicus was closely related to Manihot and Populus. PMID:26407184

  9. The evolutionary processes of mitochondrial and chloroplast genomes differ from those of nuclear genomes

    NASA Astrophysics Data System (ADS)

    Korpelainen, Helena

    2004-11-01

    This paper first introduces our present knowledge of the origin of mitochondria and chloroplasts, and the organization and inheritance patterns of their genomes, and then carries on to review the evolutionary processes influencing mitochondrial and chloroplast genomes. The differences in evolutionary phenomena between the nuclear and cytoplasmic genomes are highlighted. It is emphasized that varying inheritance patterns and copy numbers among different types of genomes, and the potential advantage achieved through the transfer of many cytoplasmic genes to the nucleus, have important implications for the evolution of nuclear, mitochondrial and chloroplast genomes. Cytoplasmic genes transferred to the nucleus have joined the more strictly controlled genetic system of the nuclear genome, including also sexual recombination, while genes retained within the cytoplasmic organelles can be involved in selection and drift processes both within and among individuals. Within-individual processes can be either intra- or intercellular. In the case of heteroplasmy, which is attributed to mutations or biparental inheritance, within-individual selection on cytoplasmic DNA may provide a mechanism by which the organism can adapt rapidly. The inheritance of cytoplasmic genomes is not universally maternal. The presence of a range of inheritance patterns indicates that different strategies have been adopted by different organisms. On the other hand, the variability occasionally observed in the inheritance mechanisms of cytoplasmic genomes reduces heritability and increases environmental components in phenotypic features and, consequently, decreases the potential for adaptive evolution.

  10. The First Complete Chloroplast Genome Sequences in Actinidiaceae: Genome Structure and Comparative Analysis

    PubMed Central

    Yao, Xiaohong; Tang, Ping; Li, Zuozhou; Li, Dawei; Liu, Yifei; Huang, Hongwen

    2015-01-01

    Actinidia chinensis is an important economic plant belonging to the basal lineage of the asterids. Availability of a complete Actinidia chloroplast genome sequence is crucial to understanding phylogenetic relationships among major lineages of angiosperms and facilitates kiwifruit genetic improvement. We report here the complete nucleotide sequences of the chloroplast genomes for Actinidia chinensis and A. chinensis var deliciosa obtained through de novo assembly of Illumina paired-end reads produced by total DNA sequencing. The total genome size ranges from 155,446 to 157,557 bp, with an inverted repeat (IR) of 24,013 to 24,391 bp, a large single copy region (LSC) of 87,984 to 88,337 bp and a small single copy region (SSC) of 20,332 to 20,336 bp. The genome encodes 113 different genes, including 79 unique protein-coding genes, 30 tRNA genes and 4 ribosomal RNA genes, with 16 duplicated in the inverted repeats, and a tRNA gene (trnfM-CAU) duplicated once in the LSC region. Comparisons of IR boundaries among four asterid species showed that IR/LSC borders were extended into the 5’ portion of the psbA gene and IR contraction occurred in Actinidia. The clap gene has been lost from the chloroplast genome in Actinidia, and may have been transferred to the nucleus during chloroplast evolution. Twenty-seven polymorphic simple sequence repeat (SSR) loci were identified in the Actinidia chloroplast genome. Maximum parsimony analyses of a 72-gene, 16 taxa angiosperm dataset strongly support the placement of Actinidiaceae in Ericales within the basal asterids. PMID:26046631

  11. Two complete chloroplast genome sequences of Cannabis sativa varieties.

    PubMed

    Oh, Hyehyun; Seo, Boyoung; Lee, Seunghwan; Ahn, Dong-Ha; Jo, Euna; Park, Jin-Kyoung; Min, Gi-Sik

    2016-07-01

    In this study, we determined the complete chloroplast (cp) genomes from two varieties of Cannabis sativa. The genome sizes were 153,848 bp (the Korean non-drug variety, Cheungsam) and 153,854 bp (the African variety, Yoruba Nigeria). The genome structures were identical with 131 individual genes [86 protein-coding genes (PCGs), eight rRNA, and 37 tRNA genes]. Further, except for the presence of an intron in the rps3 genes of two C. sativa varieties, the cp genomes of C. sativa had conservative features similar to that of all known species in the order Rosales. To verify the position of C. sativa within the order Rosales, we conducted phylogenetic analysis by using concatenated sequences of all PCGs from 17 complete cp genomes. The resulting tree strongly supported monophyly of Rosales. Further, the family Cannabaceae, represented by C. sativa, showed close relationship with the family Moraceae. The phylogenetic relationship outlined in our study is well congruent with those previously shown for the order Rosales. PMID:26104156

  12. The complete chloroplast genome of Eleutherococcus gracilistylus (W.W.Sm.) S.Y.Hu (Araliaceae).

    PubMed

    Kim, Kyunghee; Lee, Junki; Lee, Sang-Choon; Kim, Nam-Hoon; Jang, Woojong; Kim, Soonok; Sung, Sangmin; Lee, Jungho; Yang, Tae-Jin

    2016-09-01

    Eleutherococcus gracilistylus is a plant species that is close to E. senticosus, a famous medicinal plant called Siberian ginseng. The complete chloroplast genome sequence of the E. gracilistylus was determined by de novo assembly using whole genome next generation sequences. The chloroplast genome of E. gracilistylus was 156 770 bp long and showed distinct four partite structures such as a large single copy region of 86 729 bp, a small single copy region of 18 175 bp, and a pair of inverted repeat regions of 25 933 bp. The overall GC contents of the genome sequence were 36.8%. The chloroplast genome of E. gracilistylus contains 79 protein-coding sequences, 30 tRNA genes, and four rRNA genes. The phylogenetic analysis with the reported chloroplast genomes confirmed close taxonomical relationship of E. gracilistylus with E. senticosus. PMID:26358682

  13. Comparative Analysis of the Complete Chloroplast Genomes of Five Quercus Species

    PubMed Central

    Yang, Yanci; Zhou, Tao; Duan, Dong; Yang, Jia; Feng, Li; Zhao, Guifang

    2016-01-01

    Quercus is considered economically and ecologically one of the most important genera in the Northern Hemisphere. Oaks are taxonomically perplexing because of shared interspecific morphological traits and intraspecific morphological variation, which are mainly attributed to hybridization. Universal plastid markers cannot provide a sufficient number of variable sites to explore the phylogeny of this genus, and chloroplast genome-scale data have proven to be useful in resolving intractable phylogenetic relationships. In this study, the complete chloroplast genomes of four Quercus species were sequenced, and one published chloroplast genome of Quercus baronii was retrieved for comparative analyses. The five chloroplast genomes ranged from 161,072 bp (Q. baronii) to 161,237 bp (Q. dolicholepis) in length, and their gene organization and order, and GC content, were similar to those of other Fagaceae species. We analyzed nucleotide substitutions, indels, and repeats in the chloroplast genomes, and found 19 relatively highly variable regions that will potentially provide plastid markers for further taxonomic and phylogenetic studies within Quercus. We observed that four genes (ndhA, ndhK, petA, and ycf1) were subject to positive selection. The phylogenetic relationships of the Quercus species inferred from the chloroplast genomes obtained moderate-to-high support, indicating that chloroplast genome data may be useful in resolving relationships in this genus. PMID:27446185

  14. The complete chloroplast genome sequence of Dianthus superbus var. longicalycinus.

    PubMed

    Gurusamy, Raman; Lee, Do-Hyung; Park, SeonJoo

    2016-05-01

    The complete chloroplast genome (cpDNA) sequence of Dianthus superbus var. longicalycinus is an economically important traditional Chinese medicine was reported and characterized. The cpDNA of Dianthus superbus var. longicalycinus is 149,539 bp, with 36.3% GC content. A pair of inverted repeats (IRs) of 24,803 bp is separated by a large single-copy region (LSC, 82,805 bp) and a small single-copy region (SSC, 17,128 bp). It encodes 85 protein-coding genes, 36 tRNA genes and 8 rRNA genes. Of 129 individual genes, 13 genes encoded one intron and three genes have two introns. PMID:25354144

  15. The complete chloroplast genome of salt cress (Eutrema salsugineum).

    PubMed

    Guo, Xinyi; Hao, Guoqian; Ma, Tao

    2016-07-01

    The complete chloroplast (cp) sequence of the salt cress (Eutrema salsugineum), a plant well-adapted to salt stress, was presented in this study. The circular molecule is 153,407 bp in length and exhibit a typical quadripartite structure containing an 83,894 bp large single copy (LSC) region, a 17,607 bp small single copy (SSC) region, and the two 25,953 bp inverted repeats (IRs). The salt cress cp genome contains 135 known genes, including 87 protein-coding genes, 8 ribosomal RNA genes, and 40 tRNA genes; 21 of these are located in the inverted repeat region. As expected, phylogenetic analysis support the idea that E. salsugineum is sister to Brassiceae species within the Brassicaceae family. PMID:26114321

  16. Comparative analyses of chloroplast genome data representing nine green algae in Sphaeropleales (Chlorophyceae, Chlorophyta).

    PubMed

    Fučíková, Karolina; Lewis, Louise A; Lewis, Paul O

    2016-06-01

    The chloroplast genomes of green algae are highly variable in their architecture. In this article we summarize gene content across newly obtained and published chloroplast genomes in Chlorophyceae, including new data from nine of species in Sphaeropleales (Chlorophyceae, Chlorophyta). We present genome architecture information, including genome synteny analysis across two groups of species. Also, we provide a phylogenetic tree obtained from analysis of gene order data for species in Chlorophyceae with fully sequenced chloroplast genomes. Further analyses and interpretation of the data can be found in "Chloroplast phylogenomic data from the green algal order Sphaeropleales (Chlorophyceae, Chlorophyta) reveal complex patterns of sequence evolution" (Fučíková et al., In review) [1]. PMID:27054159

  17. The complete chloroplast genome sequence of an important medicinal plant Cynanchum wilfordii (Maxim.) Hemsl. (Apocynaceae).

    PubMed

    Park, Hyun-Seung; Kim, Kyu-Yeob; Kim, Kyunghee; Lee, Sang-Choon; Lee, Junki; Seong, Rack Seon; Shim, Young Hun; Sung, Sang Hyun; Yang, Tae-Jin

    2016-09-01

    Cynanchum wilfordii (Maxim.) Hemsl. is a traditional medicinal herb belonging to the Asclepiadoideae subfamily, whose dried roots have been used as traditional medicine in Asia. The complete chloroplast genome of C. wilfordii was generated by de novo assembly using the small amount of whole genome sequencing data. The chloroplast genome of C. wilfordii was 161 241 bp long, composed of large single copy region (91 995 bp), small single copy region (19 930 bp) and a pair of inverted repeat regions (24 658 bp). The overall GC contents of the chloroplast genome was 37.8%. A total of 114 genes were annotated, which included 80 protein-coding genes, 30 tRNA genes and 4 rRNA genes. Phylogenetic analysis with the reported chloroplast genomes revealed that C. wilfordii is most closely related to Asclepias nivea (Caribbean milkweed) and Asclepias syriaca (common milkweed) within the Asclepiadoideae subfamily. PMID:26358391

  18. Complete chloroplast genome sequences of Solanum bulbocastanum, Solanum lycopersicum and comparative analyses with other Solanaceae genomes.

    PubMed

    Daniell, Henry; Lee, Seung-Bum; Grevich, Justin; Saski, Christopher; Quesada-Vargas, Tania; Guda, Chittibabu; Tomkins, Jeffrey; Jansen, Robert K

    2006-05-01

    Despite the agricultural importance of both potato and tomato, very little is known about their chloroplast genomes. Analysis of the complete sequences of tomato, potato, tobacco, and Atropa chloroplast genomes reveals significant insertions and deletions within certain coding regions or regulatory sequences (e.g., deletion of repeated sequences within 16S rRNA, ycf2 or ribosomal binding sites in ycf2). RNA, photosynthesis, and atp synthase genes are the least divergent and the most divergent genes are clpP, cemA, ccsA, and matK. Repeat analyses identified 33-45 direct and inverted repeats >or=30 bp with a sequence identity of at least 90%; all but five of the repeats shared by all four Solanaceae genomes are located in the same genes or intergenic regions, suggesting a functional role. A comprehensive genome-wide analysis of all coding sequences and intergenic spacer regions was done for the first time in chloroplast genomes. Only four spacer regions are fully conserved (100% sequence identity) among all genomes; deletions or insertions within some intergenic spacer regions result in less than 25% sequence identity, underscoring the importance of choosing appropriate intergenic spacers for plastid transformation and providing valuable new information for phylogenetic utility of the chloroplast intergenic spacer regions. Comparison of coding sequences with expressed sequence tags showed considerable amount of variation, resulting in amino acid changes; none of the C-to-U conversions observed in potato and tomato were conserved in tobacco and Atropa. It is possible that there has been a loss of conserved editing sites in potato and tomato. PMID:16575560

  19. Complete Chloroplast Genome Sequences of Mongolia Medicine Artemisia frigida and Phylogenetic Relationships with Other Plants

    PubMed Central

    Liu, Yue; Huo, Naxin; Dong, Lingli; Wang, Yi; Zhang, Shuixian; Young, Hugh A.; Feng, Xiaoxiao; Gu, Yong Qiang

    2013-01-01

    Background Artemisia frigida Willd. is an important Mongolian traditional medicinal plant with pharmacological functions of stanch and detumescence. However, there is little sequence and genomic information available for Artemisia frigida, which makes phylogenetic identification, evolutionary studies, and genetic improvement of its value very difficult. We report the complete chloroplast genome sequence of Artemisia frigida based on 454 pyrosequencing. Methodology/Principal Findings The complete chloroplast genome of Artemisia frigida is 151,076 bp including a large single copy (LSC) region of 82,740 bp, a small single copy (SSC) region of 18,394 bp and a pair of inverted repeats (IRs) of 24,971 bp. The genome contains 114 unique genes and 18 duplicated genes. The chloroplast genome of Artemisia frigida contains a small 3.4 kb inversion within a large 23 kb inversion in the LSC region, a unique feature in Asteraceae. The gene order in the SSC region of Artemisia frigida is inverted compared with the other 6 Asteraceae species with the chloroplast genomes sequenced. This inversion is likely caused by an intramolecular recombination event only occurred in Artemisia frigida. The existence of rich SSR loci in the Artemisia frigida chloroplast genome provides a rare opportunity to study population genetics of this Mongolian medicinal plant. Phylogenetic analysis demonstrates a sister relationship between Artemisia frigida and four other species in Asteraceae, including Ageratina adenophora, Helianthus annuus, Guizotia abyssinica and Lactuca sativa, based on 61 protein-coding sequences. Furthermore, Artemisia frigida was placed in the tribe Anthemideae in the subfamily Asteroideae (Asteraceae) based on ndhF and trnL-F sequence comparisons. Conclusion The chloroplast genome sequence of Artemisia frigida was assembled and analyzed in this study, representing the first plastid genome sequenced in the Anthemideae tribe. This complete chloroplast genome sequence will be

  20. The Complete Chloroplast Genome Sequences of the Medicinal Plant Pogostemon cablin.

    PubMed

    He, Yang; Xiao, Hongtao; Deng, Cao; Xiong, Liang; Yang, Jian; Peng, Cheng

    2016-01-01

    Pogostemon cablin, the natural source of patchouli alcohol, is an important herb in the Lamiaceae family. Here, we present the entire chloroplast genome of P. cablin. This genome, with 38.24% GC content, is 152,460 bp in length. The genome presents a typical quadripartite structure with two inverted repeats (each 25,417 bp in length), separated by one small and one large single-copy region (17,652 and 83,974 bp in length, respectively). The chloroplast genome encodes 127 genes, of which 107 genes are single-copy, including 79 protein-coding genes, four rRNA genes, and 24 tRNA genes. The genome structure, GC content, and codon usage of this chloroplast genome are similar to those of other species in the family, except that it encodes less protein-coding genes and tRNA genes. Phylogenetic analysis reveals that P. cablin diverged from the Scutellarioideae clade about 29.45 million years ago (Mya). Furthermore, most of the simple sequence repeats (SSRs) are short polyadenine or polythymine repeats that contribute to high AT content in the chloroplast genome. Complete sequences and annotation of P. cablin chloroplast genome will facilitate phylogenic, population and genetic engineering research investigations involving this particular species. PMID:27275817

  1. The Complete Chloroplast Genome Sequences of the Medicinal Plant Pogostemon cablin

    PubMed Central

    He, Yang; Xiao, Hongtao; Deng, Cao; Xiong, Liang; Yang, Jian; Peng, Cheng

    2016-01-01

    Pogostemon cablin, the natural source of patchouli alcohol, is an important herb in the Lamiaceae family. Here, we present the entire chloroplast genome of P. cablin. This genome, with 38.24% GC content, is 152,460 bp in length. The genome presents a typical quadripartite structure with two inverted repeats (each 25,417 bp in length), separated by one small and one large single-copy region (17,652 and 83,974 bp in length, respectively). The chloroplast genome encodes 127 genes, of which 107 genes are single-copy, including 79 protein-coding genes, four rRNA genes, and 24 tRNA genes. The genome structure, GC content, and codon usage of this chloroplast genome are similar to those of other species in the family, except that it encodes less protein-coding genes and tRNA genes. Phylogenetic analysis reveals that P. cablin diverged from the Scutellarioideae clade about 29.45 million years ago (Mya). Furthermore, most of the simple sequence repeats (SSRs) are short polyadenine or polythymine repeats that contribute to high AT content in the chloroplast genome. Complete sequences and annotation of P. cablin chloroplast genome will facilitate phylogenic, population and genetic engineering research investigations involving this particular species. PMID:27275817

  2. Evolution of the rpoB-psbZ region in fern plastid genomes: notable structural rearrangements and highly variable intergenic spacers

    PubMed Central

    2011-01-01

    Background The rpoB-psbZ (BZ) region of some fern plastid genomes (plastomes) has been noted to go through considerable genomic changes. Unraveling its evolutionary dynamics across all fern lineages will lead to clarify the fundamental process shaping fern plastome structure and organization. Results A total of 24 fern BZ sequences were investigated with taxon sampling covering all the extant fern orders. We found that: (i) a tree fern Plagiogyria japonica contained a novel gene order that can be generated from either the ancestral Angiopteris type or the derived Adiantum type via a single inversion; (ii) the trnY-trnE intergenic spacer (IGS) of the filmy fern Vandenboschia radicans was expanded 3-fold due to the tandem 27-bp repeats which showed strong sequence similarity with the anticodon domain of trnY; (iii) the trnY-trnE IGSs of two horsetail ferns Equisetum ramosissimum and E. arvense underwent an unprecedented 5-kb long expansion, more than a quarter of which was consisted of a single type of direct repeats also relevant to the trnY anticodon domain; and (iv) ycf66 has independently lost at least four times in ferns. Conclusions Our results provided fresh insights into the evolutionary process of fern BZ regions. The intermediate BZ gene order was not detected, supporting that the Adiantum type was generated by two inversions occurring in pairs. The occurrence of Vandenboschia 27-bp repeats represents the first evidence of partial tRNA gene duplication in fern plastomes. Repeats potentially forming a stem-loop structure play major roles in the expansion of the trnY-trnE IGS. PMID:21486489

  3. The complete sequence of the chloroplast genome of the green microalga Lobosphaera (Parietochloris) incisa.

    PubMed

    Tourasse, Nicolas J; Barbi, Tommaso; Waterhouse, Janet C; Shtaida, Nastassia; Leu, Stefan; Boussiba, Sammy; Purton, Saul; Vallon, Olivier

    2016-05-01

    We hereby report the complete chloroplast genome sequence of the green unicellular alga Lobosphaera (Parietochloris) incisa (strain SAG 2468). The genome consists of a circular chromosome of 156,028 bp, which is 72% A-T rich and does not contain a large rRNA-encoding inverted repeat. It is predicted to encode a total of 111 genes including 78 protein-coding, three rRNA, and 30 tRNA genes. The genome sequence also carries a self-splicing group I intron and a group II intron remnant. Overall, the gene and intron content of the L. incisa chloroplast genome is highly similar to that of other species of Trebouxiophyceae. In contrast, the L. incisa chloroplast genome harbors 88 copies of various intergenic dispersed DNA repeat sequences that are all unique to L. incisa. PMID:25423517

  4. The first complete chloroplast genome sequence of a lycophyte, Huperzia lucidula (Lycopodiaceae).

    PubMed

    Wolf, Paul G; Karol, Kenneth G; Mandoli, Dina F; Kuehl, Jennifer; Arumuganathan, K; Ellis, Mark W; Mishler, Brent D; Kelch, Dean G; Olmstead, Richard G; Boore, Jeffrey L

    2005-05-01

    We used a unique combination of techniques to sequence the first complete chloroplast genome of a lycophyte, Huperzia lucidula. This plant belongs to a significant clade hypothesized to represent the sister group to all other vascular plants. We used fluorescence-activated cell sorting (FACS) to isolate the organelles, rolling circle amplification (RCA) to amplify the genome, and shotgun sequencing to 8x depth coverage to obtain the complete chloroplast genome sequence. The genome is 154,373 bp, containing inverted repeats of 15,314 bp each, a large single-copy region of 104,088 bp, and a small single-copy region of 19,657 bp. Gene order is more similar to those of mosses, liverworts, and hornworts than to gene order for other vascular plants. For example, the Huperzia chloroplast genome possesses the bryophyte gene order for a previously characterized 30 kb inversion, thus supporting the hypothesis that lycophytes are sister to all other extant vascular plants. The lycophyte chloroplast genome data also enable a better reconstruction of the basal tracheophyte genome, which is useful for inferring relationships among bryophyte lineages. Several unique characters are observed in Huperzia, such as movement of the gene ndhF from the small single copy region into the inverted repeat. We present several analyses of evolutionary relationships among land plants by using nucleotide data, inferred amino acid sequences, and by comparing gene arrangements from chloroplast genomes. The results, while still tentative pending the large number of chloroplast genomes from other key lineages that are soon to be sequenced, are intriguing in themselves, and contribute to a growing comparative database of genomic and morphological data across the green plants. PMID:15788152

  5. The Complete Chloroplast Genome of the Hare’s Ear Root, Bupleurum falcatum: Its Molecular Features

    PubMed Central

    Shin, Dong-Ho; Lee, Jeong-Hoon; Kang, Sang-Ho; Ahn, Byung-Ohg; Kim, Chang-Kug

    2016-01-01

    Bupleurum falcatum, which belongs to the family Apiaceae, has long been applied for curative treatments, especially as a liver tonic, in herbal medicine. The chloroplast (cp) genome has been an ideal model to perform the evolutionary and comparative studies because of its highly conserved features and simple structure. The Apiaceae family is taxonomically close to the Araliaceae family and there have been numerous complete chloroplast genome sequences reported in the Araliaceae family, while little is known about the Apiaceae family. In this study, the complete sequence of the B. falcatum chloroplast genome was obtained. The full-length of the cp genome is 155,989 nucleotides with a 37.66% overall guanine-cytosine (GC) content and shows a quadripartite structure composed of three nomenclatural regions: a large single-copy (LSC) region, a small single-copy (SSC) region, and a pair of inverted repeat (IR) regions. The genome occupancy is 85,912-bp, 17,517-bp, and 26,280-bp for LSC, SSC, and IR, respectively. B. falcatum was shown to contain 111 unique genes (78 for protein-coding, 29 for tRNAs, and four for rRNAs, respectively) on its chloroplast genome. Genic comparison found that B. falcatum has no pseudogenes and has two gene losses, accD in the LSC and ycf15 in the IRs. A total of 55 unique tandem repeat sequences were detected in the B. falcatum cp genome. This report is the first to describe the complete chloroplast genome sequence in B. falcatum and will open up further avenues of research to understand the evolutionary panorama and the chloroplast genome conformation in related plant species. PMID:27187480

  6. The Complete Chloroplast Genome of the Hare's Ear Root, Bupleurum falcatum: Its Molecular Features.

    PubMed

    Shin, Dong-Ho; Lee, Jeong-Hoon; Kang, Sang-Ho; Ahn, Byung-Ohg; Kim, Chang-Kug

    2016-01-01

    Bupleurum falcatum, which belongs to the family Apiaceae, has long been applied for curative treatments, especially as a liver tonic, in herbal medicine. The chloroplast (cp) genome has been an ideal model to perform the evolutionary and comparative studies because of its highly conserved features and simple structure. The Apiaceae family is taxonomically close to the Araliaceae family and there have been numerous complete chloroplast genome sequences reported in the Araliaceae family, while little is known about the Apiaceae family. In this study, the complete sequence of the B. falcatum chloroplast genome was obtained. The full-length of the cp genome is 155,989 nucleotides with a 37.66% overall guanine-cytosine (GC) content and shows a quadripartite structure composed of three nomenclatural regions: a large single-copy (LSC) region, a small single-copy (SSC) region, and a pair of inverted repeat (IR) regions. The genome occupancy is 85,912-bp, 17,517-bp, and 26,280-bp for LSC, SSC, and IR, respectively. B. falcatum was shown to contain 111 unique genes (78 for protein-coding, 29 for tRNAs, and four for rRNAs, respectively) on its chloroplast genome. Genic comparison found that B. falcatum has no pseudogenes and has two gene losses, accD in the LSC and ycf15 in the IRs. A total of 55 unique tandem repeat sequences were detected in the B. falcatum cp genome. This report is the first to describe the complete chloroplast genome sequence in B. falcatum and will open up further avenues of research to understand the evolutionary panorama and the chloroplast genome conformation in related plant species. PMID:27187480

  7. Characterization of Coffea chloroplast microsatellites and evidence for the recent divergence of C. arabica and C. eugenioides chloroplast genomes.

    PubMed

    Tesfaye, Kassahun; Borsch, Thomas; Govers, Kim; Bekele, Endashaw

    2007-12-01

    Comparative sequencing of >7 kb of highly variable chloroplast genome regions (atpB-rbcL, trnS-trnG, rpl22-rps19, and rps19-rpl2 spacers; introns in atpF, trnG, trnK, and rpl16) with microsatellites known from other angiosperms was carried out in Coffea. Samples comprised 8 diploid species of Coffea, 5 individuals of tetraploid C. arabica representing geographically distant wild populations from Ethiopia, 2 commercial cultivars of C. arabica, and Psilanthus leroyi and Ixora coccinea as outgroups. Phylogeny reconstruction using maximum parsimony and Bayesian inference resulted in congruent topologies with high support for C. arabica and C. eugenioides being sisters. Partitioned analyses showed that all regions except the atpB-rbcL spacer resolved this sister-group, although this was often unsupported. The large sequence data set further shows that chloroplast genomes of C. arabica and C. eugenioides each possess apomorphies, indicating that not C. eugenioides but an ancestor or close relative of C. eugenioides is the maternal parent of C. arabica. Seven variable chloroplast microsatellites were characterized in Coffea. Most microsatellites are poly(A/T) stretches, whereas one in the trnS-trnG spacer has an (AT)n motif. Most strikingly, all individuals of C. arabica possess identical sequences, suggesting a single chloroplast haplotype. This can be explained by a recent origin of C. arabica in a unique allopolyploidization event, or by severe bottleneck effects in the evolutionary history of the species. Reconstruction of the evolution of microstructural mutations shows much higher levels of homoplasy in microsatellite loci than in other parts of spacers and introns. Microsatellites are inferred to evolve by insertion and deletion of 1 to 3 motif copies in one step. PMID:18059539

  8. The chloroplast genome of Phacus orbicularis (Euglenophyceae): an initial datum point for the phacaceae.

    PubMed

    Kasiborski, Beth A; Bennett, Matthew S; Linton, Eric W

    2016-06-01

    The Euglenophyceae chloroplast was acquired when a heterotrophic euglenoid engulfed a green alga and subsequently retained the algal chloroplast, in a process known as secondary endosymbiosis. Since this event, Euglenophyceae have diverged widely and their chloroplast genomes (cpGenomes) have as well. Changes to the cpGenome include extensive gene rearrangement and the proliferation of introns, the analyses of which have proven to be useful in examining cpGenome changes throughout the Euglenophyceae. The Euglenales fall into two families, Euglenaceae and Phacaceae. Euglenaceae contains eight genera and at least one cpGenome has been published for each genus. Phacaceae, on the other hand, contains three genera, none of which have had a representative chloroplast genome sequenced. Members of this family have many small disk-shaped chloroplasts that lack pyrenoids. We sequenced and annotated the cpGenome of Phacus orbicularis in order to fill in the large gap in our understanding of Euglenophyceae cpGenome evolution, especially in regard to intron number and gene order. We compared this cpGenome to those of species from both the Euglenaceae and Eutreptiales of the Euglenophyceae phylogenetic tree. The cpGenome showed characteristics that were more derived than that of the basal species Eutreptia viridis, with extensive gene rearrangements and nearly three times as many introns. In contrast, it contained fewer introns than all but one of the previously reported Euglenaceae cpGenomes, had a smaller estimated genome size, and shared greater synteny with two main branches of that family. PMID:27273533

  9. The complete chloroplast genome sequence of Lilium hansonii Leichtlin ex D.D.T.Moore.

    PubMed

    Kim, Kyunghee; Hwang, Yoon-Jung; Lee, Sang-Choon; Yang, Tae-Jin; Lim, Ki-Byung

    2016-09-01

    Lilium hansonii is a lily species native to Korea and an important wild species for lily breeding. The chloroplast genome of L. hansonii was completed by de novo assembly using the small amount of whole genome sequencing data. The chloroplast genome of L. hansonii was 152 655 bp long and consisted of large single copy region (82 051 bp), small single copy region (17 620 bp) and a pair of inverted repeat regions (26 492 bp). A total of 115 genes were annotated, which included 81 protein-coding genes, 30 tRNA genes and 4 rRNA genes. Phylogenetic analysis with the reported chloroplast genomes revealed that L. hansonii is most closely related to L. superbum (Turk's-cap lily) and L. longiflorum (Easter lily). PMID:26404645

  10. The complete chloroplast genome sequence of the medicinal plant Rheum palmatum L. (Polygonaceae).

    PubMed

    Fan, Kai; Sun, Xiao-Jie; Huang, Min; Wang, Xu-Mei

    2016-07-01

    The complete chloroplast genome of the medicinal plant Rheum palmatum L. (Polygonaceae) has been reconstructed from the whole-genome Illumina sequencing data. The genome is 161 541 bp in length, and exhibits a typical quadripartite structure of the large (LSC, 86 518 bp) and small (SSC, 13 111 bp) single-copy regions, separated by a pair of inverted repeats (IRs, 30 956 bp each). The chloroplast genome contains 131 genes, including 84 protein-coding genes (78 PCG species), eight ribosomal RNA genes (four rRNA species) and 37 transfer RNA genes (28 tRNA species). Phylogenetic tree based on the maximum parsimony (MP) analysis of 65 chloroplast protein-coding genes for 13 taxa demonstrated a close relationship between R. palmatum and Fagopyrum esculentum subsp. ancestrale in Polygonaceae. PMID:26153751

  11. Genome Sequences of Populus tremula Chloroplast and Mitochondrion: Implications for Holistic Poplar Breeding

    PubMed Central

    Mader, Malte; Le Paslier, Marie-Christine; Bounon, Rémi; Berard, Aurélie; Vettori, Cristina; Schroeder, Hilke; Leplé, Jean-Charles; Fladung, Matthias

    2016-01-01

    Complete Populus genome sequences are available for the nucleus (P. trichocarpa; section Tacamahaca) and for chloroplasts (seven species), but not for mitochondria. Here, we provide the complete genome sequences of the chloroplast and the mitochondrion for the clones P. tremula W52 and P. tremula x P. alba 717-1B4 (section Populus). The organization of the chloroplast genomes of both Populus clones is described. A phylogenetic tree constructed from all available complete chloroplast DNA sequences of Populus was not congruent with the assignment of the related species to different Populus sections. In total, 3,024 variable nucleotide positions were identified among all compared Populus chloroplast DNA sequences. The 5-prime part of the LSC from trnH to atpA showed the highest frequency of variations. The variable positions included 163 positions with SNPs allowing for differentiating the two clones with P. tremula chloroplast genomes (W52, 717-1B4) from the other seven Populus individuals. These potential P. tremula-specific SNPs were displayed as a whole-plastome barcode on the P. tremula W52 chloroplast DNA sequence. Three of these SNPs and one InDel in the trnH-psbA linker were successfully validated by Sanger sequencing in an extended set of Populus individuals. The complete mitochondrial genome sequence of P. tremula is the first in the family of Salicaceae. The mitochondrial genomes of the two clones are 783,442 bp (W52) and 783,513 bp (717-1B4) in size, structurally very similar and organized as single circles. DNA sequence regions with high similarity to the W52 chloroplast sequence account for about 2% of the W52 mitochondrial genome. The mean SNP frequency was found to be nearly six fold higher in the chloroplast than in the mitochondrial genome when comparing 717-1B4 with W52. The availability of the genomic information of all three DNA-containing cell organelles will allow a holistic approach in poplar molecular breeding in the future. PMID:26800039

  12. Complete Chloroplast Genome Sequence of Omani Lime (Citrus aurantiifolia) and Comparative Analysis within the Rosids

    PubMed Central

    Su, Huei-Jiun; Hogenhout, Saskia A.; Al-Sadi, Abdullah M.; Kuo, Chih-Horng

    2014-01-01

    The genus Citrus contains many economically important fruits that are grown worldwide for their high nutritional and medicinal value. Due to frequent hybridizations among species and cultivars, the exact number of natural species and the taxonomic relationships within this genus are unclear. To compare the differences between the Citrus chloroplast genomes and to develop useful genetic markers, we used a reference-assisted approach to assemble the complete chloroplast genome of Omani lime (C. aurantiifolia). The complete C. aurantiifolia chloroplast genome is 159,893 bp in length; the organization and gene content are similar to most of the rosids lineages characterized to date. Through comparison with the sweet orange (C. sinensis) chloroplast genome, we identified three intergenic regions and 94 simple sequence repeats (SSRs) that are potentially informative markers with resolution for interspecific relationships. These markers can be utilized to better understand the origin of cultivated Citrus. A comparison among 72 species belonging to 10 families of representative rosids lineages also provides new insights into their chloroplast genome evolution. PMID:25398081

  13. The Complete Chloroplast Genome Sequences of Three Veroniceae Species (Plantaginaceae): Comparative Analysis and Highly Divergent Regions

    PubMed Central

    Choi, Kyoung Su; Chung, Myong Gi; Park, SeonJoo

    2016-01-01

    Previous studies of Veronica and related genera were weakly supported by molecular and paraphyletic taxa. Here, we report the complete chloroplast genome sequence of Veronica nakaiana and the related species Veronica persica and Veronicastrum sibiricum. The chloroplast genome length of V. nakaiana, V. persica, and V. sibiricum ranged from 150,198 bp to 152,930 bp. A total of 112 genes comprising 79 protein coding genes, 29 tRNA genes, and 4 rRNA genes were observed in three chloroplast genomes. The total number of SSRs was 48, 51, and 53 in V. nakaiana, V. persica, and V. sibiricum, respectively. Two SSRs (10 bp of AT and 12 bp of AATA) were observed in the same regions (rpoC2 and ndhD) in three chloroplast genomes. A comparison of coding genes and non-coding regions between V. nakaiana and V. persica revealed divergent sites, with the greatest variation occurring petD-rpoA region. The complete chloroplast genome sequence information regarding the three Veroniceae will be helpful for elucidating Veroniceae phylogenetic relationships. PMID:27047524

  14. The complete chloroplast genome sequence of Tetrastigma hemsleyanum Diels at Gilg.

    PubMed

    Li, Mengzhu; Chen, Qinyi; Yang, Bingxian; Ma, Ji; Li, Baoguo; Zhang, Lin

    2016-09-01

    The complete chloroplast genome sequence of Tetrastigma hemsleyanum Diels at Gilg, a critical Chinese medicine, is reported here. The complete chloroplast genome of Tetrastigma hemsleyanum Diels at Gilg is 159 914 bp in length with 37.55% overall GC content. A pair of IRs (inverted repeats) of 26 510 bp were separated by LSC (87 927 bp) and SSC (18 967 bp). The phylogenetic analysis of 40 taxa showed a strong sister relationship with all other rosids. However, the placement of Myrtales still needs further verification. PMID:26329851

  15. The complete chloroplast genome sequence of Aster spathulifolius (Asteraceae); genomic features and relationship with Asteraceae.

    PubMed

    Choi, Kyoung Su; Park, SeonJoo

    2015-11-10

    Aster spathulifolius, a member of the Asteraceae family, is distributed along the coast of Japan and Korea. This plant is used for medicinal and ornamental purposes. The complete chloroplast (cp) genome of A. sphathulifolius consists of 149,473 bp that include a pair of inverted repeats of 24,751 bp separated by a large single copy region of 81,998 bp and a small single copy region of 17,973 bp. The chloroplast genome contains 78 coding genes, four rRNA genes and 29 tRNA genes. When compared to other cpDNA sequences of Asteraceae, A. spathulifolius showed the closest relationship with Jacobaea vulgaris, and its atpB gene was found to be a pseudogene, unlike J. vulgaris. Furthermore, evaluation of the gene compositions of J. vulgaris, Helianthus annuus, Guizotia abyssinica and A. spathulifolius revealed that 13.6-kb showed inversion from ndhF to rps15, unlike Lactuca of Asteraceae. Comparison of the synonymous (Ks) and nonsynonymous (Ka) substitution rates with J. vulgaris revealed that synonymous genes related to a small subunit of the ribosome showed the highest value (0.1558), while nonsynonymous rates of genes related to ATP synthase genes were highest (0.0118). These findings revealed that substitution has occurred at similar rates in most genes, and the substitution rates suggested that most genes is a purified selection. PMID:26164759

  16. Complete Chloroplast Genome Sequences of Important Oilseed Crop Sesamum indicum L

    PubMed Central

    Yi, Dong-Keun; Kim, Ki-Joong

    2012-01-01

    Sesamum indicum is an important crop plant species for yielding oil. The complete chloroplast (cp) genome of S. indicum (GenBank acc no. JN637766) is 153,324 bp in length, and has a pair of inverted repeat (IR) regions consisting of 25,141 bp each. The lengths of the large single copy (LSC) and the small single copy (SSC) regions are 85,170 bp and 17,872 bp, respectively. Comparative cp DNA sequence analyses of S. indicum with other cp genomes reveal that the genome structure, gene order, gene and intron contents, AT contents, codon usage, and transcription units are similar to the typical angiosperm cp genomes. Nucleotide diversity of the IR region between Sesamum and three other cp genomes is much lower than that of the LSC and SSC regions in both the coding region and noncoding region. As a summary, the regional constraints strongly affect the sequence evolution of the cp genomes, while the functional constraints weakly affect the sequence evolution of cp genomes. Five short inversions associated with short palindromic sequences that form step-loop structures were observed in the chloroplast genome of S. indicum. Twenty-eight different simple sequence repeat loci have been detected in the chloroplast genome of S. indicum. Almost all of the SSR loci were composed of A or T, so this may also contribute to the A-T richness of the cp genome of S. indicum. Seven large repeated loci in the chloroplast genome of S. indicum were also identified and these loci are useful to developing S. indicum-specific cp genome vectors. The complete cp DNA sequences of S. indicum reported in this paper are prerequisite to modifying this important oilseed crop by cp genetic engineering techniques. PMID:22606240

  17. The Complete Chloroplast Genome of Ye-Xing-Ba (Scrophularia dentata; Scrophulariaceae), an Alpine Tibetan Herb

    PubMed Central

    Ni, Lianghong; Zhao, Zhili; Dorje, Gaawe; Ma, Mi

    2016-01-01

    Scrophularia dentata is an important Tibetan medicinal plant and traditionally used for the treatment of exanthema and fever in Traditional Tibetan Medicine (TTM). However, there is little sequence and genomic information available for S. dentata. In this paper, we report the complete chloroplast genome sequence of S. dentata and it is the first sequenced member of the Sect. Tomiophyllum within Scrophularia (Scrophulariaceae). The gene order and organization of the chloroplast genome of S. dentata are similar to other Lamiales chloroplast genomes. The plastome is 152,553 bp in length and includes a pair of inverted repeats (IRs) of 25,523 bp that separate a large single copy (LSC) region of 84,058 bp and a small single copy (SSC) region of 17,449 bp. It has 38.0% GC content and includes 114 unique genes, of which 80 are protein-coding, 30 are transfer RNA, and 4 are ribosomal RNA. Also, it contains 21 forward repeats, 19 palindrome repeats and 41 simple sequence repeats (SSRs). The repeats and SSRs within S. dentata were compared with those of S. takesimensis and present certain discrepancies. The chloroplast genome of S. dentata was compared with other five publicly available Lamiales genomes from different families. All the coding regions and non-coding regions (introns and intergenic spacers) within the six chloroplast genomes have been extracted and analysed. Furthermore, the genome divergent hotspot regions were identified. Our studies could provide basic data for the alpine medicinal species conservation and molecular phylogenetic researches of Scrophulariaceae and Lamiales. PMID:27391235

  18. The Complete Chloroplast and Mitochondrial Genomes of the Green Macroalga Ulva sp. UNA00071828 (Ulvophyceae, Chlorophyta)

    PubMed Central

    Melton, James T.; Leliaert, Frederik; Tronholm, Ana; Lopez-Bautista, Juan M.

    2015-01-01

    Sequencing mitochondrial and chloroplast genomes has become an integral part in understanding the genomic machinery and the phylogenetic histories of green algae. Previously, only three chloroplast genomes (Oltmannsiellopsis viridis, Pseudendoclonium akinetum, and Bryopsis hypnoides) and two mitochondrial genomes (O. viridis and P. akinetum) from the class Ulvophyceae have been published. Here, we present the first chloroplast and mitochondrial genomes from the ecologically and economically important marine, green algal genus Ulva. The chloroplast genome of Ulva sp. was 99,983 bp in a circular-mapping molecule that lacked inverted repeats, and thus far, was the smallest ulvophycean plastid genome. This cpDNA was a highly compact, AT-rich genome that contained a total of 102 identified genes (71 protein-coding genes, 28 tRNA genes, and three ribosomal RNA genes). Additionally, five introns were annotated in four genes: atpA (1), petB (1), psbB (2), and rrl (1). The circular-mapping mitochondrial genome of Ulva sp. was 73,493 bp and follows the expanded pattern also seen in other ulvophyceans and trebouxiophyceans. The Ulva sp. mtDNA contained 29 protein-coding genes, 25 tRNA genes, and two rRNA genes for a total of 56 identifiable genes. Ten introns were annotated in this mtDNA: cox1 (4), atp1 (1), nad3 (1), nad5 (1), and rrs (3). Double-cut-and-join (DCJ) values showed that organellar genomes across Chlorophyta are highly rearranged, in contrast to the highly conserved organellar genomes of the red algae (Rhodophyta). A phylogenomic investigation of 51 plastid protein-coding genes showed that Ulvophyceae is not monophyletic, and also placed Oltmannsiellopsis (Oltmannsiellopsidales) and Tetraselmis (Chlorodendrophyceae) closely to Ulva (Ulvales) and Pseudendoclonium (Ulothrichales). PMID:25849557

  19. The complete chloroplast and mitochondrial genomes of the green macroalga Ulva sp. UNA00071828 (Ulvophyceae, Chlorophyta).

    PubMed

    Melton, James T; Leliaert, Frederik; Tronholm, Ana; Lopez-Bautista, Juan M

    2015-01-01

    Sequencing mitochondrial and chloroplast genomes has become an integral part in understanding the genomic machinery and the phylogenetic histories of green algae. Previously, only three chloroplast genomes (Oltmannsiellopsis viridis, Pseudendoclonium akinetum, and Bryopsis hypnoides) and two mitochondrial genomes (O. viridis and P. akinetum) from the class Ulvophyceae have been published. Here, we present the first chloroplast and mitochondrial genomes from the ecologically and economically important marine, green algal genus Ulva. The chloroplast genome of Ulva sp. was 99,983 bp in a circular-mapping molecule that lacked inverted repeats, and thus far, was the smallest ulvophycean plastid genome. This cpDNA was a highly compact, AT-rich genome that contained a total of 102 identified genes (71 protein-coding genes, 28 tRNA genes, and three ribosomal RNA genes). Additionally, five introns were annotated in four genes: atpA (1), petB (1), psbB (2), and rrl (1). The circular-mapping mitochondrial genome of Ulva sp. was 73,493 bp and follows the expanded pattern also seen in other ulvophyceans and trebouxiophyceans. The Ulva sp. mtDNA contained 29 protein-coding genes, 25 tRNA genes, and two rRNA genes for a total of 56 identifiable genes. Ten introns were annotated in this mtDNA: cox1 (4), atp1 (1), nad3 (1), nad5 (1), and rrs (3). Double-cut-and-join (DCJ) values showed that organellar genomes across Chlorophyta are highly rearranged, in contrast to the highly conserved organellar genomes of the red algae (Rhodophyta). A phylogenomic investigation of 51 plastid protein-coding genes showed that Ulvophyceae is not monophyletic, and also placed Oltmannsiellopsis (Oltmannsiellopsidales) and Tetraselmis (Chlorodendrophyceae) closely to Ulva (Ulvales) and Pseudendoclonium (Ulothrichales). PMID:25849557

  20. The chloroplast genome sequence of an important medicinal plant Dioscorea nipponica.

    PubMed

    Wu, Lan; Wang, Bo; Yang, Jun; Song, Chi; Wang, Ping; Chen, Shilin; Sun, Wei

    2016-07-01

    Dioscorea nipponica is an important medicinal plant belonging to Dioscoreaceae, a family which is vital for the evolution of monocotyledon. In the present study, the nucleotide sequence of the D. nipponica chloroplast genome was determined. It was an AT-rich (63.3%) chloroplast genome with 152,946 bp in length, containing a pair of 23,113 bp inverted repeats, which were separated by a large and a small single copy region of 83,557 bp and 23,064 bp in length, respectively. It encodes 120 unique genes, including 89 protein-coding genes, 27 tRNA genes and 4 rRNA genes. The predicted gene-coding regions covered 58.7% of the genome sequences. Ten genes contained one intron, while two genes had two introns. Phylogenetic analyses showed the present chloroplast genome can be used as a potential supper barcode to distinguish D. nipponica from its closely related species. Furthermore, the chloroplast genome provides a molecular base for the next investigation on this important medicinal species. PMID:26017048

  1. The complete chloroplast genome sequence of Ledebouriella seseloides (Hoffm.) H. Wolff.

    PubMed

    Lee, Hyun Oh; Kim, Kyunghee; Lee, Sang-Choon; Lee, Junki; Lee, Jonghoon; Kim, Soonok; Yang, Tae-Jin

    2016-09-01

    Ledebouriella seseloides (Hoffm.) H.Wolff is a traditional medicinal herb belonging to Apiaceae family, whose dried roots and rhizomes have been used as traditional medicine in East Asian countries. The complete chloroplast genome of L. seseloides was obtained by de novo assembly using the small amount of whole genome sequencing data. The chloroplast genome of L. seseloides was 147 880 bp in length, which consisted of large single copy region (93 222 bp), small single copy region (17 324 bp), and a pair of inverted repeat regions (18 667 bp). The overall GC contents of the chloroplast genome were 37.5%. A total of 113 genes were annotated, which included 79 protein-coding genes, 30 tRNA genes, and four rRNA genes. Phylogenetic analysis with the reported chloroplast genomes revealed that L. seseloides is most closely related to Petroselinum crispum (parsley), an herb widely used in cooking. PMID:26218226

  2. Intraspecific and heteroplasmic variations, gene losses and inversions in the chloroplast genome of Astragalus membranaceus

    PubMed Central

    Lei, Wanjun; Ni, Dapeng; Wang, Yujun; Shao, Junjie; Wang, Xincun; Yang, Dan; Wang, Jinsheng; Chen, Haimei; Liu, Chang

    2016-01-01

    Astragalus membranaceus is an important medicinal plant in Asia. Several of its varieties have been used interchangeably as raw materials for commercial production. High resolution genetic markers are in urgent need to distinguish these varieties. Here, we sequenced and analyzed the chloroplast genome of A. membranaceus (Fisch.) Bunge var. mongholicus (Bunge) P.K. Hsiao using the next generation DNA sequencing technology. The genome was assembled using Abyss and then subjected to gene prediction using CPGAVAS and repeat analysis using MISA, Tandem Repeats Finder, and REPuter. Finally, the genome was subjected phylogenetic and comparative genomic analyses. The complete genome is 123,582 bp long, containing only one copy of the inverted repeat. Gene prediction revealed 110 genes encoding 76 proteins, 30 tRNAs, and four rRNAs. Five intra-specific hypermutation loci were identified, three of which are heteroplasmic. Furthermore, three gene losses and two large inversions were identified. Comparative genomic analyses demonstrated the dynamic nature of the Papilionoideae chloroplast genomes, which showed occurrence of numerous hypermutation loci, frequent gene losses, and fragment inversions. Results obtained herein elucidate the complex evolutionary history of chloroplast genomes and have laid the foundation for the identification of genetic markers to distinguish A. membranaceus varieties. PMID:26899134

  3. The chloroplast genome of the diatom Seminavis robusta: new features introduced through multiple mechanisms of horizontal gene transfer.

    PubMed

    Brembu, Tore; Winge, Per; Tooming-Klunderud, Ave; Nederbragt, Alexander J; Jakobsen, Kjetill S; Bones, Atle M

    2014-08-01

    The chloroplasts of heterokont algae such as diatoms are the result of a secondary endosymbiosis event, in which a red alga was engulfed by a non-photosynthetic eukaryote. The diatom chloroplast genomes sequenced to date show a high degree of similarity, but some examples of gene replacement or introduction of genes through horizontal gene transfer are known. The evolutionary origin of the gene transfers is unclear. We have sequenced and characterised the complete chloroplast genome and a putatively chloroplast-associated plasmid of the pennate diatom Seminavis robusta. The chloroplast genome contains two introns, a feature that has not previously been found in diatoms. The group II intron of atpB appears to be recently transferred from a Volvox-like green alga. The S. robusta chloroplast genome (150,905 bp) is the largest diatom chloroplast genome characterised to date, mainly due to the presence of four large gene-poor regions. Open reading frames (ORFs) encoded by the gene-poor regions show similarity to putative proteins encoded by the chloroplast genomes of different heterokonts, as well as the plasmids pCf1 and pCf2 found in the diatom Cylindrotheca fusiformis. A tyrosine recombinase and a serine recombinase are encoded by the S. robusta chloroplast genome, indicating a possible mechanism for the introduction of novel genes. A plasmid with similarity to pCf2 was also identified. Phylogenetic analyses of three ORFs identified on pCf2 suggest that two of them are part of an operon-like gene cluster conserved in bacteria. Several genetic elements have moved through horizontal gene transfer between the chloroplast genomes of different heterokonts. Two recombinases are likely to promote such gene insertion events, and the plasmid identified may act as vectors in this process. The copy number of the plasmid was similar to that of the plastid genome indicating a plastid localization. PMID:24365712

  4. The first complete chloroplast genome sequence of a lycophyte,Huperzia lucidula (Lycopodiaceae)

    SciTech Connect

    Wolf, Paul G.; Karol, Kenneth G.; Mandoli, Dina F.; Kuehl,Jennifer V.; Arumuganathan, K.; Ellis, Mark W.; Mishler, Brent D.; Kelch,Dean G.; Olmstead, Richard G.; Boore, Jeffrey L.

    2005-02-01

    We used a unique combination of techniques to sequence the first complete chloroplast genome of a lycophyte, Huperzia lucidula. This plant belongs to a significant clade hypothesized to represent the sister group to all other vascular plants. We used fluorescence-activated cell sorting (FACS) to isolate the organelles, rolling circle amplification (RCA) to amplify the genome, and shotgun sequencing to 8x depth coverage to obtain the complete chloroplast genome sequence. The genome is 154,373bp, containing inverted repeats of 15,314 bp each, a large single-copy region of 104,088 bp, and a small single-copy region of 19,671 bp. Gene order is more similar to those of mosses, liverworts, and hornworts than to gene order for other vascular plants. For example, the Huperziachloroplast genome possesses the bryophyte gene order for a previously characterized 30 kb inversion, thus supporting the hypothesis that lycophytes are sister to all other extant vascular plants. The lycophytechloroplast genome data also enable a better reconstruction of the basaltracheophyte genome, which is useful for inferring relationships among bryophyte lineages. Several unique characters are observed in Huperzia, such as movement of the gene ndhF from the small single copy region into the inverted repeat. We present several analyses of evolutionary relationships among land plants by using nucleotide data, amino acid sequences, and by comparing gene arrangements from chloroplast genomes. The results, while still tentative pending the large number of chloroplast genomes from other key lineages that are soon to be sequenced, are intriguing in themselves, and contribute to a growing comparative database of genomic and morphological data across the green plants.

  5. The Chloroplast Genome of Elaeagnus macrophylla and trnH Duplication Event in Elaeagnaceae

    PubMed Central

    Choi, Kyoung Su; Son, OGyeong; Park, SeonJoo

    2015-01-01

    Elaeagnaceae, which harbor nitrogen-fixing actinomycetes, is a plant family of the Rosales and sister to Rhamnaceae, Barbeyaceae and Dirachmaceae. The results of previous molecular studies have not strongly supported the families of Elaeagnaceae, Rhamnaceae, Barbeyaceae and Dirachmaceae. However, chloroplast genome studies provide valuable phylogenetic information; therefore, we determined the chloroplast genome of Elaeaganus macrophylla and compared it to that of Rosales such as IR junction and infA gene. The chloroplast genome of Elaeagnus macrophylla is 152,224 bp in length and the infA gene of E. macrophylla was psuedogenation. Phylogenetic analyses based on 79 genes in 30 species revealed that Elaeagnus was closely related to Morus. Comparison of the IR junction in six other rosids revealed that the trnH gene contained the LSC region, whereas E. macrophylla contained a trnH gene duplication in the IR region. Comparison of the LSC/IRb (JLB) and the IRa/LSC (JLA) regions of Elaeagnaceae (Elaeagnus and Shephedia) and Rhamnaceae (Rhamnus) showed that trnH gene duplication only occurred in the Elaeagnaceae. The complete chloroplast genome of Elaeagnus macrophylla provides unique characteristics in rosids. The infA gene has been lost or transferred to the nucleus in rosids, while E. macrophylla lost the infA gene. Evaluation of the chloroplast genome of Elaeagnus revealed trnH gene duplication for the first time in rosids. The availability of Elaeagnus cp genomes provides valuable information describing the relationship of Elaeagnaceae, Barbeyaceae and Dirachmaceae, IR junction that will be valuable to future systematics studies. PMID:26394223

  6. The Chloroplast Genome of Elaeagnus macrophylla and trnH Duplication Event in Elaeagnaceae.

    PubMed

    Choi, Kyoung Su; Son, O Gyeong; Park, SeonJoo

    2015-01-01

    Elaeagnaceae, which harbor nitrogen-fixing actinomycetes, is a plant family of the Rosales and sister to Rhamnaceae, Barbeyaceae and Dirachmaceae. The results of previous molecular studies have not strongly supported the families of Elaeagnaceae, Rhamnaceae, Barbeyaceae and Dirachmaceae. However, chloroplast genome studies provide valuable phylogenetic information; therefore, we determined the chloroplast genome of Elaeaganus macrophylla and compared it to that of Rosales such as IR junction and infA gene. The chloroplast genome of Elaeagnus macrophylla is 152,224 bp in length and the infA gene of E. macrophylla was psuedogenation. Phylogenetic analyses based on 79 genes in 30 species revealed that Elaeagnus was closely related to Morus. Comparison of the IR junction in six other rosids revealed that the trnH gene contained the LSC region, whereas E. macrophylla contained a trnH gene duplication in the IR region. Comparison of the LSC/IRb (JLB) and the IRa/LSC (JLA) regions of Elaeagnaceae (Elaeagnus and Shephedia) and Rhamnaceae (Rhamnus) showed that trnH gene duplication only occurred in the Elaeagnaceae. The complete chloroplast genome of Elaeagnus macrophylla provides unique characteristics in rosids. The infA gene has been lost or transferred to the nucleus in rosids, while E. macrophylla lost the infA gene. Evaluation of the chloroplast genome of Elaeagnus revealed trnH gene duplication for the first time in rosids. The availability of Elaeagnus cp genomes provides valuable information describing the relationship of Elaeagnaceae, Barbeyaceae and Dirachmaceae, IR junction that will be valuable to future systematics studies. PMID:26394223

  7. The Chloroplast Genome of Hyoscyamus niger and a Phylogenetic Study of the Tribe Hyoscyameae (Solanaceae)

    PubMed Central

    Sanchez-Puerta, M. Virginia; Abbona, Cinthia Carolina

    2014-01-01

    The tribe Hyoscyameae (Solanaceae) is restricted to Eurasia and includes the genera Archihyoscyamus, Anisodus, Atropa, Atropanthe, Hyoscyamus, Physochlaina, Przewalskia and Scopolia. Even though the monophyly of Hyoscyameae is strongly supported, the relationships of the taxa within the tribe remain unclear. Chloroplast markers have been widely used to elucidate plant relationships at low taxonomic levels. Identification of variable chloroplast intergenic regions has been developed based on comparative genomics of chloroplast genomes, but these regions have a narrow phylogenetic utility. In this study, we present the chloroplast genome sequence of Hyoscyamus niger and make comparisons to other solanaceous plastid genomes in terms of gene order, gene and intron content, editing sites, origins of replication, repeats, and hypothetical open reading frames. We developed and sequenced three variable plastid markers from eight species to elucidate relationships within the tribe Hyoscyameae. The presence of a horizontally transferred intron in the mitochondrial cox1 gene of some species of the tribe is considered here a likely synapomorphy uniting five genera of the Hyoscyameae. Alternatively, the cox1 intron could be a homoplasious character acquired twice within the tribe. A homoplasious inversion in the intergenic plastid spacer trnC-psbM was recognized as a source of bias and removed from the data set used in the phylogenetic analyses. Almost 12 kb of plastid sequence data were not sufficient to completely resolve relationships among genera of Hyoscyameae but some clades were identified. Two alternative hypotheses of the evolution of the genera within the tribe are proposed. PMID:24851862

  8. SEQUENCING OF CUCUMBER (CUCUMIS SATIVUS L.) CHLOROPLAST GENOMES IDENTIFIES PUTATIVE CANDIDATE GENES FOR CHILLING TOLERANCE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chilling injury in cucumber (Cucumis sativus L.) is conditioned by maternal factors and the sequencing of its chloroplast (cp) genome could lead to the identification of economically important candidate genes. Complete sequencing of cucumber cpDNA was facilitated by the development of 414 consensus...

  9. Chloroplast genome sequencing analysis of Heterosigma akashiwo CCMP452 (West Atlantic) and NIES293 (West Pacific) strains

    PubMed Central

    Cattolico, Rose Ann; Jacobs, Michael A; Zhou, Yang; Chang, Jean; Duplessis, Melinda; Lybrand, Terry; McKay, John; Ong, Han Chuan; Sims, Elizabeth; Rocap, Gabrielle

    2008-01-01

    Background Heterokont algae form a monophyletic group within the stramenopile branch of the tree of life. These organisms display wide morphological diversity, ranging from minute unicells to massive, bladed forms. Surprisingly, chloroplast genome sequences are available only for diatoms, representing two (Coscinodiscophyceae and Bacillariophyceae) of approximately 18 classes of algae that comprise this taxonomic cluster. A universal challenge to chloroplast genome sequencing studies is the retrieval of highly purified DNA in quantities sufficient for analytical processing. To circumvent this problem, we have developed a simplified method for sequencing chloroplast genomes, using fosmids selected from a total cellular DNA library. The technique has been used to sequence chloroplast DNA of two Heterosigma akashiwo strains. This raphidophyte has served as a model system for studies of stramenopile chloroplast biogenesis and evolution. Results H. akashiwo strain CCMP452 (West Atlantic) chloroplast DNA is 160,149 bp in size with a 21,822-bp inverted repeat, whereas NIES293 (West Pacific) chloroplast DNA is 159,370 bp in size and has an inverted repeat of 21,665 bp. The fosmid cloning technique reveals that both strains contain an isomeric chloroplast DNA population resulting from an inversion of their single copy domains. Both strains contain multiple small inverted and tandem repeats, non-randomly distributed within the genomes. Although both CCMP452 and NIES293 chloroplast DNAs contains 197 genes, multiple nucleotide polymorphisms are present in both coding and intergenic regions. Several protein-coding genes contain large, in-frame inserts relative to orthologous genes in other plastids. These inserts are maintained in mRNA products. Two genes of interest in H. akashiwo, not previously reported in any chloroplast genome, include tyrC, a tyrosine recombinase, which we hypothesize may be a result of a lateral gene transfer event, and an unidentified 456 amino acid

  10. Five Complete Chloroplast Genome Sequences from Diospyros: Genome Organization and Comparative Analysis

    PubMed Central

    Hu, Jingjing; Liang, Yuqin; Liang, Jinjun; Wuyun, Tana; Tan, Xiaofeng

    2016-01-01

    Diospyros is the largest genus in Ebenaceae, comprising more than 500 species with remarkable economic value, especially Diospyros kaki Thunb., which has traditionally been an important food resource in China, Korea, and Japan. Complete chloroplast (cp) genomes from D. kaki, D. lotus L., D. oleifera Cheng., D. glaucifolia Metc., and Diospyros ‘Jinzaoshi’ were sequenced using Illumina sequencing technology. This is the first cp genome reported in Ebenaceae. The cp genome sequences of Diospyros ranged from 157,300 to 157,784 bp in length, presenting a typical quadripartite structure with two inverted repeats each separated by one large and one small single-copy region. For each cp genome, 134 genes were annotated, including 80 protein-coding, 31 tRNA, and 4 rRNA unique genes. In all, 179 repeats and 283 single sequence repeats were identified. Four hypervariable regions, namely, intergenic region of trnQ_rps16, trnV_ndhC, and psbD_trnT, and intron of ndhA, were identified in the Diospyros genomes. Phylogenetic analyses based on the whole cp genome, protein-coding, and intergenic and intron sequences indicated that D. oleifera is closely related to D. kaki and could be used as a model plant for future research on D. kaki; to our knowledge, this is proposed for the first time. Further, these analyses together with two large deletions (301 and 140 bp) in the cp genome of D. ‘Jinzaoshi’, support its placement as a new species in Diospyros. Both maximum parsimony and likelihood analyses for 19 taxa indicated the basal position of Ericales in asterids and suggested that Ebenaceae is monophyletic in Ericales. PMID:27442423

  11. Five Complete Chloroplast Genome Sequences from Diospyros: Genome Organization and Comparative Analysis.

    PubMed

    Fu, Jianmin; Liu, Huimin; Hu, Jingjing; Liang, Yuqin; Liang, Jinjun; Wuyun, Tana; Tan, Xiaofeng

    2016-01-01

    Diospyros is the largest genus in Ebenaceae, comprising more than 500 species with remarkable economic value, especially Diospyros kaki Thunb., which has traditionally been an important food resource in China, Korea, and Japan. Complete chloroplast (cp) genomes from D. kaki, D. lotus L., D. oleifera Cheng., D. glaucifolia Metc., and Diospyros 'Jinzaoshi' were sequenced using Illumina sequencing technology. This is the first cp genome reported in Ebenaceae. The cp genome sequences of Diospyros ranged from 157,300 to 157,784 bp in length, presenting a typical quadripartite structure with two inverted repeats each separated by one large and one small single-copy region. For each cp genome, 134 genes were annotated, including 80 protein-coding, 31 tRNA, and 4 rRNA unique genes. In all, 179 repeats and 283 single sequence repeats were identified. Four hypervariable regions, namely, intergenic region of trnQ_rps16, trnV_ndhC, and psbD_trnT, and intron of ndhA, were identified in the Diospyros genomes. Phylogenetic analyses based on the whole cp genome, protein-coding, and intergenic and intron sequences indicated that D. oleifera is closely related to D. kaki and could be used as a model plant for future research on D. kaki; to our knowledge, this is proposed for the first time. Further, these analyses together with two large deletions (301 and 140 bp) in the cp genome of D. 'Jinzaoshi', support its placement as a new species in Diospyros. Both maximum parsimony and likelihood analyses for 19 taxa indicated the basal position of Ericales in asterids and suggested that Ebenaceae is monophyletic in Ericales. PMID:27442423

  12. Complete chloroplast genome sequence of Fritillaria unibracteata var. wabuensis based on SMRT Sequencing Technology.

    PubMed

    Li, Ying; Li, Qiushi; Li, Xiwen; Song, Jingyuan; Sun, Chao

    2016-09-01

    Fritillaria unibracteata var. wabuensis is an important medicinal plant used for the treatment of cough symptoms related to the respiratory system. The chloroplast genome of F. unibracteata var. wabuensis (GenBank accession no. KF769142) was assembled using the PacBio RS platform (Pacific Biosciences, Beverly, MA) as a circle sequence with 151 009 bp. The assembled genome contains 133 genes, including 88 protein-coding, 37 tRNA, and eight rRNA genes. This genome sequence will provide important resource for further studies on the evolution of Fritillaria genus and molecular identification of Fritillaria herbs and their adulterants. This work suggests that PacBio RS is a powerful tool to sequence and assemble chloroplast genomes. PMID:26370383

  13. The complete chloroplast genome sequence of the mulberry Morus notabilis (Moreae).

    PubMed

    Chen, Chen; Zhou, Wen; Huang, Ying; Wang, Zhe-Zhi

    2016-07-01

    The complete chloroplast genome of the mulberry Morus notabilis (Moreae) has been reconstructed from the whole-genome Illumina sequencing data. The circular genome is 158,680 bp in size, and comprises a pair of inverted repeat (IR) regions of 25,717 bp each, a large single-copy (LSC) region of 87,470 bp and a small single-copy (SSC) region of 19,776 bp. The total A+T content is 63.6%, while the corresponding values of the LSC, SSC and IR region are 65.9%, 70.7% and 57.1%, respectively. The chloroplast genome contains 129 genes, including 84 protein-coding genes (PCGs), eight ribosomal RNA (rRNA) genes and 37 transfer RNA (tRNA) genes. The maximum likelihood (ML) phylogenetic analysis revealed that M. notabilis was more related to its congeners than to the others. PMID:26119116

  14. Polymorphic simple sequence repeat regions in chloroplast genomes: applications to the population genetics of pines.

    PubMed Central

    Powell, W; Morgante, M; McDevitt, R; Vendramin, G G; Rafalski, J A

    1995-01-01

    Simple sequence repeats (SSRs), consisting of tandemly repeated multiple copies of mono-, di-, tri-, or tetranucleotide motifs, are ubiquitous in eukaryotic genomes and are frequently used as genetic markers, taking advantage of their length polymorphism. We have examined the polymorphism of such sequences in the chloroplast genomes of plants, by using a PCR-based assay. GenBank searches identified the presence of several (dA)n.(dT)n mononucleotide stretches in chloroplast genomes. A chloroplast (cp) SSR was identified in three pine species (Pinus contorta, Pinus sylvestris, and Pinus thunbergii) 312 bp upstream of the psbA gene. DNA amplification of this repeated region from 11 pine species identified nine length variants. The polymorphic amplified fragments were isolated and the DNA sequence was determined, confirming that the length polymorphism was caused by variation in the length of the repeated region. In the pines, the chloroplast genome is transmitted through pollen and this PCR assay may be used to monitor gene flow in this genus. Analysis of 305 individuals from seven populations of Pinus leucodermis Ant. revealed the presence of four variants with intrapopulational diversities ranging from 0.000 to 0.629 and an average of 0.320. Restriction fragment length polymorphism analysis of cpDNA on the same populations previously failed to detect any variation. Population subdivision based on cpSSR was higher (Gst = 0.22, where Gst is coefficient of gene differentiation) than that revealed in a previous isozyme study (Gst = 0.05). We anticipate that SSR loci within the chloroplast genome should provide a highly informative assay for the analysis of the genetic structure of plant populations. Images Fig. 2 PMID:7644491

  15. The Complete Chloroplast Genome Sequence of a Relict Conifer Glyptostrobus pensilis: Comparative Analysis and Insights into Dynamics of Chloroplast Genome Rearrangement in Cupressophytes and Pinaceae

    PubMed Central

    Zheng, Renhua; Xu, Haibin; Zhou, Yanwei; Li, Meiping; Lu, Fengjuan; Dong, Yini; Liu, Xin; Chen, Jinhui; Shi, Jisen

    2016-01-01

    Glyptostrobus pensilis, belonging to the monotypic genus Glyptostrobus (Family: Cupressaceae), is an ancient conifer that is naturally distributed in low-lying wet areas. Here, we report the complete chloroplast (cp) genome sequence (132,239 bp) of G. pensilis. The G. pensilis cp genome is similar in gene content, organization and genome structure to the sequenced cp genomes from other cupressophytes, especially with respect to the loss of the inverted repeat region A (IRA). Through phylogenetic analysis, we demonstrated that the genus Glyptostrobus is closely related to the genus Cryptomeria, supporting previous findings based on physiological characteristics. Since IRs play an important role in stabilize cp genome and conifer cp genomes lost different IR regions after splitting in two clades (cupressophytes and Pinaceae), we performed cp genome rearrangement analysis and found more extensive cp genome rearrangements among the species of cupressophytes relative to Pinaceae. Additional repeat analysis indicated that cupressophytes cp genomes contained less potential functional repeats, especially in Cupressaceae, compared with Pinaceae. These results suggested that dynamics of cp genome rearrangement in conifers differed since the two clades, Pinaceae and cupressophytes, lost IR copies independently and developed different repeats to complement the residual IRs. In addition, we identified 170 perfect simple sequence repeats that will be useful in future research focusing on the evolution of genetic diversity and conservation of genetic variation for this endangered species in the wild. PMID:27560965

  16. The Complete Chloroplast Genome Sequence of a Relict Conifer Glyptostrobus pensilis: Comparative Analysis and Insights into Dynamics of Chloroplast Genome Rearrangement in Cupressophytes and Pinaceae.

    PubMed

    Hao, Zhaodong; Cheng, Tielong; Zheng, Renhua; Xu, Haibin; Zhou, Yanwei; Li, Meiping; Lu, Fengjuan; Dong, Yini; Liu, Xin; Chen, Jinhui; Shi, Jisen

    2016-01-01

    Glyptostrobus pensilis, belonging to the monotypic genus Glyptostrobus (Family: Cupressaceae), is an ancient conifer that is naturally distributed in low-lying wet areas. Here, we report the complete chloroplast (cp) genome sequence (132,239 bp) of G. pensilis. The G. pensilis cp genome is similar in gene content, organization and genome structure to the sequenced cp genomes from other cupressophytes, especially with respect to the loss of the inverted repeat region A (IRA). Through phylogenetic analysis, we demonstrated that the genus Glyptostrobus is closely related to the genus Cryptomeria, supporting previous findings based on physiological characteristics. Since IRs play an important role in stabilize cp genome and conifer cp genomes lost different IR regions after splitting in two clades (cupressophytes and Pinaceae), we performed cp genome rearrangement analysis and found more extensive cp genome rearrangements among the species of cupressophytes relative to Pinaceae. Additional repeat analysis indicated that cupressophytes cp genomes contained less potential functional repeats, especially in Cupressaceae, compared with Pinaceae. These results suggested that dynamics of cp genome rearrangement in conifers differed since the two clades, Pinaceae and cupressophytes, lost IR copies independently and developed different repeats to complement the residual IRs. In addition, we identified 170 perfect simple sequence repeats that will be useful in future research focusing on the evolution of genetic diversity and conservation of genetic variation for this endangered species in the wild. PMID:27560965

  17. The complete chloroplast and mitochondrial genome sequences of Boea hygrometrica: insights into the evolution of plant organellar genomes.

    PubMed

    Zhang, Tongwu; Fang, Yongjun; Wang, Xumin; Deng, Xin; Zhang, Xiaowei; Hu, Songnian; Yu, Jun

    2012-01-01

    The complete nucleotide sequences of the chloroplast (cp) and mitochondrial (mt) genomes of resurrection plant Boea hygrometrica (Bh, Gesneriaceae) have been determined with the lengths of 153,493 bp and 510,519 bp, respectively. The smaller chloroplast genome contains more genes (147) with a 72% coding sequence, and the larger mitochondrial genome have less genes (65) with a coding faction of 12%. Similar to other seed plants, the Bh cp genome has a typical quadripartite organization with a conserved gene in each region. The Bh mt genome has three recombinant sequence repeats of 222 bp, 843 bp, and 1474 bp in length, which divide the genome into a single master circle (MC) and four isomeric molecules. Compared to other angiosperms, one remarkable feature of the Bh mt genome is the frequent transfer of genetic material from the cp genome during recent Bh evolution. We also analyzed organellar genome evolution in general regarding genome features as well as compositional dynamics of sequence and gene structure/organization, providing clues for the understanding of the evolution of organellar genomes in plants. The cp-derived sequences including tRNAs found in angiosperm mt genomes support the conclusion that frequent gene transfer events may have begun early in the land plant lineage. PMID:22291979

  18. Complete Arabis alpina chloroplast genome sequence and insight into its polymorphism☆

    PubMed Central

    Melodelima, Christelle; Lobréaux, Stéphane

    2013-01-01

    The alpine plant Arabis alpina (alpine rock-cress) is a thoroughly studied species in the fields of perennial plant flowering regulation, phylogeography, and adaptation to harsh alpine climatic conditions. We report the complete A. alpina chloroplast genome sequence obtained through de novo assembly of Illumina paired-end reads produced by total DNA sequencing. The A. alpina cp circular genome is 152,866 bp in length and built of two inverted repeats of 26,933 bp separated by unique regions: a large single copy of 82,338 bp and a small single copy of 17,938 bp. The genome contains 131 genes, some of them being duplicated in the inverted repeats. Seventy-nine unique protein-coding genes were annotated, together with 29 tRNA genes and 4 ribosomal RNA genes. Sequencing and mapping of 23 additional A. alpina DNA samples enabled to gain insight into the intraspecies polymorphism of the sequenced cp genome. Genetic variability among genomes was detected as 44 indels, most of them being located in noncoding regions, and 130 single-nucleotide polymorphisms, 37 of them corresponding to mutations in coding regions. A. alpina chloroplast genome sequence will be helpful in population studies or investigations of chloroplast functions of this alpine plant species. PMID:25606376

  19. A Comparison of the First Two Sequenced Chloroplast Genomes in Asteraceae: Lettuce and Sunflower

    SciTech Connect

    Timme, Ruth E.; Kuehl, Jennifer V.; Boore, Jeffrey L.; Jansen, Robert K.

    2006-01-20

    Asteraceae is the second largest family of plants, with over 20,000 species. For the past few decades, numerous phylogenetic studies have contributed to our understanding of the evolutionary relationships within this family, including comparisons of the fast evolving chloroplast gene, ndhF, rbcL, as well as non-coding DNA from the trnL intron plus the trnLtrnF intergenic spacer, matK, and, with lesser resolution, psbA-trnH. This culminated in a study by Panero and Funk in 2002 that used over 13,000 bp per taxon for the largest taxonomic revision of Asteraceae in over a hundred years. Still, some uncertainties remain, and it would be very useful to have more information on the relative rates of sequence evolution among various genes and on genome structure as a potential set of phylogenetic characters to help guide future phylogenetic structures. By way of contributing to this, we report the first two complete chloroplast genome sequences from members of the Asteraceae, those of Helianthus annuus and Lactuca sativa. These plants belong to two distantly related subfamilies, Asteroideae and Cichorioideae, respectively. In addition to these, there is only one other published chloroplast genome sequence for any plant within the larger group called Eusterids II, that of Panax ginseng (Araliaceae, 156,318 bps, AY582139). Early chloroplast genome mapping studies demonstrated that H. annuus and L. sativa share a 22 kb inversion relative to members of the subfamily Barnadesioideae. By comparison to outgroups, this inversion was shown to be derived, indicating that the Asteroideae and Cichorioideae are more closely related than either is to the Barnadesioideae. Later sequencing study found that taxa that share this 22 kb inversion also contain within this region a second, smaller, 3.3 kb inversion. These sequences also enable an analysis of patterns of shared repeats in the genomes at fine level and of RNA editing by comparison to available EST sequences. In addition, since

  20. The complete nucleotide sequence of the hornwort (Anthoceros formosae) chloroplast genome: insight into the earliest land plants.

    PubMed

    Kugita, Masanori; Kaneko, Akira; Yamamoto, Yuhei; Takeya, Yuko; Matsumoto, Tohoru; Yoshinaga, Koichi

    2003-01-15

    It is generally believed that bryophytes are the earliest land plants. However, the phylogenetic relationships among bryophytes, including mosses, liverworts and hornworts, are not clearly resolved. To obtain more information on the earliest land plants, we determined the complete nucleotide sequence of the chloroplast genome from the hornwort Anthoceros formosae. The circular double-stranded DNA of 161 162 bp is the largest genome ever reported among land plant chloroplasts. It contains 76 protein, 32 tRNA and 4 rRNA genes and 10 open reading frames (ORFs), which are identical with the chloroplast genome of the other green plants analyzed. The major difference is a larger inverted repeat than that of the liverwort Marchantia, Anthoceros contains an excess of ndhB and rps7 genes and the 3' exon of rps12. The genes matK and rps15, commonly found in the chloroplast genomes of land plants, are pseudogenes. The intron of rrn23 is the first finding in the known chloroplast genomes of land plants. A striking feature of the hornwort chloroplast is that more than half of the protein-coding genes have nonsense codons, which are converted into sense codons by RNA editing. Maximum-likelihood (ML) analysis, based on 11 518 amino acid sites of 52 proteins encoded in the chloroplast genomes of the green plants, placed liverworts as the sister to all other land plants. PMID:12527781

  1. The complete chloroplast genome sequence of the wild cucumber Cucumis hystrix Chakr. (Cucumis, cucurbitaceae).

    PubMed

    Wu, Zhiming; Jia, Li; Shen, Jia; Jiang, Biao; Qian, Chuntao; Lou, Qunfeng; Li, Ji; Chen, Jinfeng

    2016-01-01

    The complete nucleotide sequence of the wild cucumber (C. hystrix Chakr.) chloroplast genome has been determined in this study. The genome was composed of 155,031 bp containing a pair of inverted repeats (IRs) of 25,150 bp, which was separated by a large single-copy region of 86,564 bp and a small single-copy region of 18,166 bp. The chloroplast genome contained 130 known genes, including 89 protein-coding genes, 8 ribosomal RNA genes (4 rRNA species) and 37 tRNA genes (30 tRNA species), with 18 of them located in the IR region. In these genes, 16 contained 1 intron, and 2 genes and one ycf contained 2 introns. PMID:24450715

  2. The complete chloroplast genome sequence of the medicinal plant Andrographis paniculata.

    PubMed

    Ding, Ping; Shao, Yanhua; Li, Qian; Gao, Junli; Zhang, Runjing; Lai, Xiaoping; Wang, Deqin; Zhang, Huiye

    2016-07-01

    The complete chloroplast genome of Andrographis paniculata, an important medicinal plant with great economic value, has been studied in this article. The genome size is 150,249 bp in length, with 38.3% GC content. A pair of inverted repeats (IRs, 25,300 bp) are separated by a large single copy region (LSC, 82,459 bp) and a small single-copy region (SSC, 17,190 bp). The chloroplast genome contains 114 unique genes, 80 protein-coding genes, 30 tRNA genes and 4 rRNA genes. In these genes, 15 genes contained 1 intron and 3 genes comprised of 2 introns. PMID:25856518

  3. A Cyan Fluorescent Reporter Expressed from the Chloroplast Genome of Marchantia polymorpha.

    PubMed

    Boehm, Christian R; Ueda, Minoru; Nishimura, Yoshiki; Shikanai, Toshiharu; Haseloff, Jim

    2016-02-01

    Recently, the liverwort Marchantia polymorpha has received increasing attention as a basal plant model for multicellular studies. Its ease of handling, well-characterized plastome and proven protocols for biolistic plastid transformation qualify M. polymorpha as an attractive platform to study the evolution of chloroplasts during the transition from water to land. In addition, chloroplasts of M. polymorpha provide a convenient test-bed for the characterization of genetic elements involved in plastid gene expression due to the absence of mechanisms for RNA editing. While reporter genes have proven valuable to the qualitative and quantitative study of gene expression in chloroplasts, expression of green fluorescent protein (GFP) in chloroplasts of M. polymorpha has proven problematic. We report the design of a codon-optimized gfp varian, mturq2cp, which allowed successful expression of a cyan fluorescent protein under control of the tobacco psbA promoter from the chloroplast genome of M. polymorpha. We demonstrate the utility of mturq2cp in (i) early screening for transplastomic events following biolistic transformation of M. polymorpha spores; (ii) visualization of stromules as elements of plastid structure in Marchantia; and (iii) quantitative microscopy for the analysis of promoter activity. PMID:26634291

  4. A Cyan Fluorescent Reporter Expressed from the Chloroplast Genome of Marchantia polymorpha

    PubMed Central

    Boehm, Christian R.; Ueda, Minoru; Nishimura, Yoshiki; Shikanai, Toshiharu; Haseloff, Jim

    2016-01-01

    Recently, the liverwort Marchantia polymorpha has received increasing attention as a basal plant model for multicellular studies. Its ease of handling, well-characterized plastome and proven protocols for biolistic plastid transformation qualify M. polymorpha as an attractive platform to study the evolution of chloroplasts during the transition from water to land. In addition, chloroplasts of M. polymorpha provide a convenient test-bed for the characterization of genetic elements involved in plastid gene expression due to the absence of mechanisms for RNA editing. While reporter genes have proven valuable to the qualitative and quantitative study of gene expression in chloroplasts, expression of green fluorescent protein (GFP) in chloroplasts of M. polymorpha has proven problematic. We report the design of a codon-optimized gfp varian, mturq2cp, which allowed successful expression of a cyan fluorescent protein under control of the tobacco psbA promoter from the chloroplast genome of M. polymorpha. We demonstrate the utility of mturq2cp in (i) early screening for transplastomic events following biolistic transformation of M. polymorpha spores; (ii) visualization of stromules as elements of plastid structure in Marchantia; and (iii) quantitative microscopy for the analysis of promoter activity. PMID:26634291

  5. The Exceptionally Large Chloroplast Genome of the Green Alga Floydiella terrestris Illuminates the Evolutionary History of the Chlorophyceae

    PubMed Central

    Brouard, Jean-Simon; Otis, Christian; Lemieux, Claude; Turmel, Monique

    2010-01-01

    The Chlorophyceae, an advanced class of chlorophyte green algae, comprises five lineages that form two major clades (Chlamydomonadales + Sphaeropleales and Oedogoniales + Chaetopeltidales + Chaetophorales). The four complete chloroplast DNA (cpDNA) sequences currently available for chlorophyceans uncovered an extraordinarily fluid genome architecture as well as many structural features distinguishing this group from other green algae. We report here the 521,168-bp cpDNA sequence from a member of the Chaetopeltidales (Floydiella terrestris), the sole chlorophycean lineage not previously sampled for chloroplast genome analysis. This genome, which contains 97 conserved genes and 26 introns (19 group I and 7 group II introns), is the largest chloroplast genome ever sequenced. Intergenic regions account for 77.8% of the genome size and are populated by short repeats. Numerous genomic features are shared with the cpDNA of the chaetophoralean Stigeoclonium helveticum, notably the absence of a large inverted repeat and the presence of unique gene clusters and trans-spliced group II introns. Although only one of the Floydiella group I introns encodes a homing endonuclease gene, our finding of five free-standing reading frames having similarity with such genes suggests that chloroplast group I introns endowed with mobility were once more abundant in the Floydiella lineage. Parsimony analysis of structural genomic features and phylogenetic analysis of chloroplast sequence data unambiguously resolved the Oedogoniales as sister to the Chaetopeltidales and Chaetophorales. An evolutionary scenario of the molecular events that shaped the chloroplast genome in the Chlorophyceae is presented. PMID:20624729

  6. The Complete Chloroplast Genome of Guadua angustifolia and Comparative Analyses of Neotropical-Paleotropical Bamboos

    PubMed Central

    Wu, Miaoli; Lan, Siren; Cai, Bangping; Chen, Shipin; Chen, Hui; Zhou, Shiliang

    2015-01-01

    To elucidate chloroplast genome evolution within neotropical-paleotropical bamboos, we fully characterized the chloroplast genome of the woody bamboo Guadua angustifolia. This genome is 135,331 bp long and comprises of an 82,839-bp large single-copy (LSC) region, a 12,898-bp small single-copy (SSC) region, and a pair of 19,797-bp inverted repeats (IRs). Comparative analyses revealed marked conservation of gene content and sequence evolutionary rates between neotropical and paleotropical woody bamboos. The neotropical herbaceous bamboo Cryptochloa strictiflora differs from woody bamboos in IR/SSC boundaries in that it exhibits slightly contracted IRs and a faster substitution rate. The G. angustifolia chloroplast genome is similar in size to that of neotropical herbaceous bamboos but is ~3 kb smaller than that of paleotropical woody bamboos. Dissimilarities in genome size are correlated with differences in the lengths of intergenic spacers, which are caused by large-fragment insertion and deletion. Phylogenomic analyses of 62 taxa yielded a tree topology identical to that found in preceding studies. Divergence time estimation suggested that most bamboo genera diverged after the Miocene and that speciation events of extant species occurred during or after the Pliocene. PMID:26630488

  7. The Complete Chloroplast Genome of Guadua angustifolia and Comparative Analyses of Neotropical-Paleotropical Bamboos.

    PubMed

    Wu, Miaoli; Lan, Siren; Cai, Bangping; Chen, Shipin; Chen, Hui; Zhou, Shiliang

    2015-01-01

    To elucidate chloroplast genome evolution within neotropical-paleotropical bamboos, we fully characterized the chloroplast genome of the woody bamboo Guadua angustifolia. This genome is 135,331 bp long and comprises of an 82,839-bp large single-copy (LSC) region, a 12,898-bp small single-copy (SSC) region, and a pair of 19,797-bp inverted repeats (IRs). Comparative analyses revealed marked conservation of gene content and sequence evolutionary rates between neotropical and paleotropical woody bamboos. The neotropical herbaceous bamboo Cryptochloa strictiflora differs from woody bamboos in IR/SSC boundaries in that it exhibits slightly contracted IRs and a faster substitution rate. The G. angustifolia chloroplast genome is similar in size to that of neotropical herbaceous bamboos but is ~3 kb smaller than that of paleotropical woody bamboos. Dissimilarities in genome size are correlated with differences in the lengths of intergenic spacers, which are caused by large-fragment insertion and deletion. Phylogenomic analyses of 62 taxa yielded a tree topology identical to that found in preceding studies. Divergence time estimation suggested that most bamboo genera diverged after the Miocene and that speciation events of extant species occurred during or after the Pliocene. PMID:26630488

  8. A tiling microarray for global analysis of chloroplast genome expression in cucumber and other plants

    PubMed Central

    2011-01-01

    Plastids are small organelles equipped with their own genomes (plastomes). Although these organelles are involved in numerous plant metabolic pathways, current knowledge about the transcriptional activity of plastomes is limited. To solve this problem, we constructed a plastid tiling microarray (PlasTi-microarray) consisting of 1629 oligonucleotide probes. The oligonucleotides were designed based on the cucumber chloroplast genomic sequence and targeted both strands of the plastome in a non-contiguous arrangement. Up to 4 specific probes were designed for each gene/exon, and the intergenic regions were covered regularly, with 70-nt intervals. We also developed a protocol for direct chemical labeling and hybridization of as little as 2 micrograms of chloroplast RNA. We used this protocol for profiling the expression of the cucumber chloroplast plastome on the PlasTi-microarray. Owing to the high sequence similarity of plant plastomes, the newly constructed microarray can be used to study plants other than cucumber. Comparative hybridization of chloroplast transcriptomes from cucumber, Arabidopsis, tomato and spinach showed that the PlasTi-microarray is highly versatile. PMID:21952044

  9. The complete chloroplast genome of Gracilariopsis lemaneiformis (Rhodophyta) gives new insight into the evolution of family Gracilariaceae.

    PubMed

    Du, Qingwei; Bi, Guiqi; Mao, Yunxiang; Sui, Zhenghong

    2016-06-01

    The complete chloroplast genome of Gracilariopsis lemaneiformis was recovered from a Next Generation Sequencing data set. Without quadripartite structure, this chloroplast genome (183,013 bp, 27.40% GC content) contains 202 protein-coding genes, 34 tRNA genes, 3 rRNA genes, and 1 tmRNA gene. Synteny analysis showed plasmid incorporation regions in chloroplast genomes of three species of family Gracilariaceae and in Grateloupia taiwanensis of family Halymeniaceae. Combined with reported red algal plasmid sequences in nuclear and mitochondrial genomes, we postulated that red algal plasmids may have played an important role in ancient horizontal gene transfer among nuclear, chloroplast, and mitochondrial genomes. Substitution rate analysis showed that purifying selective forces maintaining stability of protein-coding genes of nine red algal chloroplast genomes over long periods must be strong and that the forces acting on gene groups and single genes of nine red algal chloroplast genomes were similar and consistent. The divergence of Gp. lemaneiformis occurred ~447.98 million years ago (Mya), close to the divergence time of genus Pyropia and Porphyra (443.62 Mya). PMID:27273536

  10. Relationships of wild and domesticated rices (Oryza AA genome species) based upon whole chloroplast genome sequences.

    PubMed

    Wambugu, Peterson W; Brozynska, Marta; Furtado, Agnelo; Waters, Daniel L; Henry, Robert J

    2015-01-01

    Rice is the most important crop in the world, acting as the staple food for over half of the world's population. The evolutionary relationships of cultivated rice and its wild relatives have remained contentious and inconclusive. Here we report on the use of whole chloroplast sequences to elucidate the evolutionary and phylogenetic relationships in the AA genome Oryza species, representing the primary gene pool of rice. This is the first study that has produced a well resolved and strongly supported phylogeny of the AA genome species. The pan tropical distribution of these rice relatives was found to be explained by long distance dispersal within the last million years. The analysis resulted in a clustering pattern that showed strong geographical differentiation. The species were defined in two primary clades with a South American/African clade with two species, O glumaepatula and O longistaminata, distinguished from all other species. The largest clade was comprised of an Australian clade including newly identified taxa and the African and Asian clades. This refined knowledge of the relationships between cultivated rice and the related wild species provides a strong foundation for more targeted use of wild genetic resources in rice improvement and efforts to ensure their conservation. PMID:26355750

  11. Relationships of wild and domesticated rices (Oryza AA genome species) based upon whole chloroplast genome sequences

    PubMed Central

    Wambugu, Peterson W.; Brozynska, Marta; Furtado, Agnelo; Waters, Daniel L.; Henry, Robert J.

    2015-01-01

    Rice is the most important crop in the world, acting as the staple food for over half of the world’s population. The evolutionary relationships of cultivated rice and its wild relatives have remained contentious and inconclusive. Here we report on the use of whole chloroplast sequences to elucidate the evolutionary and phylogenetic relationships in the AA genome Oryza species, representing the primary gene pool of rice. This is the first study that has produced a well resolved and strongly supported phylogeny of the AA genome species. The pan tropical distribution of these rice relatives was found to be explained by long distance dispersal within the last million years. The analysis resulted in a clustering pattern that showed strong geographical differentiation. The species were defined in two primary clades with a South American/African clade with two species, O glumaepatula and O longistaminata, distinguished from all other species. The largest clade was comprised of an Australian clade including newly identified taxa and the African and Asian clades. This refined knowledge of the relationships between cultivated rice and the related wild species provides a strong foundation for more targeted use of wild genetic resources in rice improvement and efforts to ensure their conservation. PMID:26355750

  12. The chloroplast genome of the hexaploid Spartina maritima (Poaceae, Chloridoideae): Comparative analyses and molecular dating.

    PubMed

    Rousseau-Gueutin, M; Bellot, S; Martin, G E; Boutte, J; Chelaifa, H; Lima, O; Michon-Coudouel, S; Naquin, D; Salmon, A; Ainouche, K; Ainouche, M

    2015-12-01

    The history of many plant lineages is complicated by reticulate evolution with cases of hybridization often followed by genome duplication (allopolyploidy). In such a context, the inference of phylogenetic relationships and biogeographic scenarios based on molecular data is easier using haploid markers like chloroplast genome sequences. Hybridization and polyploidization occurred recurrently in the genus Spartina (Poaceae, Chloridoideae), as illustrated by the recent formation of the invasive allododecaploid S. anglica during the 19th century in Europe. Until now, only a few plastid markers were available to explore the history of this genus and their low variability limited the resolution of species relationships. We sequenced the complete chloroplast genome (plastome) of S. maritima, the native European parent of S. anglica, and compared it to the plastomes of other Poaceae. Our analysis revealed the presence of fast-evolving regions of potential taxonomic, phylogeographic and phylogenetic utility at various levels within the Poaceae family. Using secondary calibrations, we show that the tetraploid and hexaploid lineages of Spartina diverged 6-10 my ago, and that the two parents of the invasive allopolyploid S. anglica separated 2-4 my ago via long distance dispersal of the ancestor of S. maritima over the Atlantic Ocean. Finally, we discuss the meaning of divergence times between chloroplast genomes in the context of reticulate evolution. PMID:26182838

  13. Complete sequence and comparative analysis of the chloroplast genome of coconut palm (Cocos nucifera).

    PubMed

    Huang, Ya-Yi; Matzke, Antonius J M; Matzke, Marjori

    2013-01-01

    Coconut, a member of the palm family (Arecaceae), is one of the most economically important trees used by mankind. Despite its diverse morphology, coconut is recognized taxonomically as only a single species (Cocos nucifera L.). There are two major coconut varieties, tall and dwarf, the latter of which displays traits resulting from selection by humans. We report here the complete chloroplast (cp) genome of a dwarf coconut plant, and describe the gene content and organization, inverted repeat fluctuations, repeated sequence structure, and occurrence of RNA editing. Phylogenetic relationships of monocots were inferred based on 47 chloroplast protein-coding genes. Potential nodes for events of gene duplication and pseudogenization related to inverted repeat fluctuation were mapped onto the tree using parsimony criteria. We compare our findings with those from other palm species for which complete cp genome sequences are available. PMID:24023703

  14. The complete chloroplast genome sequence of Fatsia japonica (Apiales: Araliaceae) and the phylogenetic analysis.

    PubMed

    Chen, Qinyi; Feng, Xiao; Li, Mengzhu; Yang, Bingxian; Gao, Cuixia; Zhang, Lin; Tian, Jingkui

    2016-07-01

    In this study, we have sequenced the complete chloroplast genome of Fatsia japonica, a well-known ornamental and potential medicinal plant. The complete chloroplast genome of F. japonica is 155 613 bp in length with 62.09% AT content, has a typical quadripartite structure with large (LSC 86 487 bp) and small (SSC 17 866 bp) single-copy regions separated by a pair of inverted repeats (IRs 25 929 bp) and contains 114 unique genes with 18 genes duplicated in the IR making a total of 132 genes. The phylogenetic analysis indicated the position of F. japonica in Apiales and has the potential to facilitate a better understanding of the intergeneric relationships in the family. PMID:26153743

  15. Complete Sequence and Comparative Analysis of the Chloroplast Genome of Coconut Palm (Cocos nucifera)

    PubMed Central

    Huang, Ya-Yi; Matzke, Antonius J. M.; Matzke, Marjori

    2013-01-01

    Coconut, a member of the palm family (Arecaceae), is one of the most economically important trees used by mankind. Despite its diverse morphology, coconut is recognized taxonomically as only a single species (Cocos nucifera L.). There are two major coconut varieties, tall and dwarf, the latter of which displays traits resulting from selection by humans. We report here the complete chloroplast (cp) genome of a dwarf coconut plant, and describe the gene content and organization, inverted repeat fluctuations, repeated sequence structure, and occurrence of RNA editing. Phylogenetic relationships of monocots were inferred based on 47 chloroplast protein-coding genes. Potential nodes for events of gene duplication and pseudogenization related to inverted repeat fluctuation were mapped onto the tree using parsimony criteria. We compare our findings with those from other palm species for which complete cp genome sequences are available. PMID:24023703

  16. Insight into infrageneric circumscription through complete chloroplast genome sequences of two Trillium species

    PubMed Central

    Kim, Sang-Chul; Kim, Jung Sung; Kim, Joo-Hwan

    2016-01-01

    Genomic events including gene loss, duplication, pseudogenization and rearrangement in plant genomes are valuable sources for exploring and understanding the process of evolution in angiosperms. The family Melanthiaceae is distributed in temperate regions of the Northern Hemisphere and divided into five tribes (Heloniadeae, Chionographideae, Xerophylleae, Melanthieae and Parideae) based on the molecular phylogenetic analyses. At present, complete chloroplast genomes of the Melanthiaceae have been reported from three species. In the previous genomic study of Liliales, a trnI-CAU gene duplication event was reported from Paris verticillata, a member of Parideae. To clarify the significant genomic events of the tribe Parideae, we analysed the complete chloroplast genome sequences of two Trillium species representing two subgenera: Trillium and Phyllantherum. In Trillium tschonoskii (subgenus Trillium), the circular double-stranded cpDNA sequence of 156 852 bp consists of two inverted repeat (IR) regions of 26 501 bp each, a large single-copy (LSC) region of 83 981 bp and a small single-copy (SSC) region of 19 869 bp. The chloroplast genome sequence of T. maculatum (subgenus Phyllantherum) is 157 359 bp in length, consisting of two IRs (25 535 bp), one SSC (19 949 bp) and one LSC (86 340 bp), and is longer than that of T. tschonoskii. The results showed that the cpDNAs of Parideae are highly conserved across genome structure, gene order and contents. However, the chloroplast genome of T. maculatum contained a 3.4-kb inverted sequence between ndhC and rbcL in the LSC region, and it was a unique feature for subgenera Phyllantherum. In addition, we found three different types of gene duplication in the intergenic spacer between rpl23 and ycf2 containing trnI-CAU, which were in agreement with the circumscription of subgenera and sections in Parideae excluding T. govanianum. These genomic features provide informative molecular markers for identifying the infrageneric taxa of

  17. Insight into infrageneric circumscription through complete chloroplast genome sequences of two Trillium species.

    PubMed

    Kim, Sang-Chul; Kim, Jung Sung; Kim, Joo-Hwan

    2016-01-01

    Genomic events including gene loss, duplication, pseudogenization and rearrangement in plant genomes are valuable sources for exploring and understanding the process of evolution in angiosperms. The family Melanthiaceae is distributed in temperate regions of the Northern Hemisphere and divided into five tribes (Heloniadeae, Chionographideae, Xerophylleae, Melanthieae and Parideae) based on the molecular phylogenetic analyses. At present, complete chloroplast genomes of the Melanthiaceae have been reported from three species. In the previous genomic study of Liliales, atrnI-CAU gene duplication event was reported fromParis verticillata, a member of Parideae. To clarify the significant genomic events of the tribe Parideae, we analysed the complete chloroplast genome sequences of twoTrilliumspecies representing two subgenera:TrilliumandPhyllantherum InTrillium tschonoskii(subgenusTrillium), the circular double-stranded cpDNA sequence of 156 852 bp consists of two inverted repeat (IR) regions of 26 501 bp each, a large single-copy (LSC) region of 83 981 bp and a small single-copy (SSC) region of 19 869 bp. The chloroplast genome sequence ofT. maculatum(subgenusPhyllantherum) is 157 359 bp in length, consisting of two IRs (25 535 bp), one SSC (19 949 bp) and one LSC (86 340 bp), and is longer than that ofT. tschonoskii The results showed that the cpDNAs of Parideae are highly conserved across genome structure, gene order and contents. However, the chloroplast genome ofT. maculatumcontained a 3.4-kb inverted sequence betweenndhCandrbcLin the LSC region, and it was a unique feature for subgeneraPhyllantherum In addition, we found three different types of gene duplication in the intergenic spacer betweenrpl23andycf2containingtrnI-CAU, which were in agreement with the circumscription of subgenera and sections in Parideae excludingT. govanianum These genomic features provide informative molecular markers for identifying the infrageneric taxa ofTrilliumand improve our

  18. Analyses of the Complete Genome and Gene Expression of Chloroplast of Sweet Potato [Ipomoea batata

    PubMed Central

    Yan, Lang; Lai, Xianjun; Li, Xuedan; Wei, Changhe; Tan, Xuemei; Zhang, Yizheng

    2015-01-01

    Sweet potato [Ipomoea batatas (L.) Lam] ranks among the top seven most important food crops cultivated worldwide and is hexaploid plant (2n=6x=90) in the Convolvulaceae family with a genome size between 2,200 to 3,000 Mb. The genomic resources for this crop are deficient due to its complicated genetic structure. Here, we report the complete nucleotide sequence of the chloroplast (cp) genome of sweet potato, which is a circular molecule of 161,303 bp in the typical quadripartite structure with large (LSC) and small (SSC) single-copy regions separated by a pair of inverted repeats (IRs). The chloroplast DNA contains a total of 145 genes, including 94 protein-encoding genes of which there are 72 single-copy and 11 double-copy genes. The organization and structure of the chloroplast genome (gene content and order, IR expansion/contraction, random repeating sequences, structural rearrangement) of sweet potato were compared with those of Ipomoea (L.) species and some basal important angiosperms, respectively. Some boundary gene-flow and gene gain-and-loss events were identified at intra- and inter-species levels. In addition, by comparing with the transcriptome sequences of sweet potato, the RNA editing events and differential expressions of the chloroplast functional-genes were detected. Moreover, phylogenetic analysis was conducted based on 77 protein-coding genes from 33 taxa and the result may contribute to a better understanding of the evolution progress of the genus Ipomoea (L.), including phylogenetic relationships, intraspecific differentiation and interspecific introgression. PMID:25874767

  19. Analyses of the complete genome and gene expression of chloroplast of sweet potato [Ipomoea batata].

    PubMed

    Yan, Lang; Lai, Xianjun; Li, Xuedan; Wei, Changhe; Tan, Xuemei; Zhang, Yizheng

    2015-01-01

    Sweet potato [Ipomoea batatas (L.) Lam] ranks among the top seven most important food crops cultivated worldwide and is hexaploid plant (2n=6x=90) in the Convolvulaceae family with a genome size between 2,200 to 3,000 Mb. The genomic resources for this crop are deficient due to its complicated genetic structure. Here, we report the complete nucleotide sequence of the chloroplast (cp) genome of sweet potato, which is a circular molecule of 161,303 bp in the typical quadripartite structure with large (LSC) and small (SSC) single-copy regions separated by a pair of inverted repeats (IRs). The chloroplast DNA contains a total of 145 genes, including 94 protein-encoding genes of which there are 72 single-copy and 11 double-copy genes. The organization and structure of the chloroplast genome (gene content and order, IR expansion/contraction, random repeating sequences, structural rearrangement) of sweet potato were compared with those of Ipomoea (L.) species and some basal important angiosperms, respectively. Some boundary gene-flow and gene gain-and-loss events were identified at intra- and inter-species levels. In addition, by comparing with the transcriptome sequences of sweet potato, the RNA editing events and differential expressions of the chloroplast functional-genes were detected. Moreover, phylogenetic analysis was conducted based on 77 protein-coding genes from 33 taxa and the result may contribute to a better understanding of the evolution progress of the genus Ipomoea (L.), including phylogenetic relationships, intraspecific differentiation and interspecific introgression. PMID:25874767

  20. The complete chloroplast genome sequence of Pelargonium xhortorum: Or ganization and evolution of the largest and most highlyrearranged chloroplast genome of land plants

    SciTech Connect

    Chumley, Timothy W.; Palmer, Jeffrey D.; Mower, Jeffrey P.; Fourcade, H. Matthew; Calie, Patrick J.; Boore, Jeffrey L.; Jansen,Robert K.

    2006-01-20

    The chloroplast genome of Pelargonium e hortorum has beencompletely sequenced. It maps as a circular molecule of 217,942 bp, andis both the largest and most rearranged land plant chloroplast genome yetsequenced. It features two copies of a greatly expanded inverted repeat(IR) of 75,741 bp each, and consequently diminished single copy regionsof 59,710 bp and 6,750 bp. It also contains two different associations ofrepeated elements that contribute about 10 percent to the overall sizeand account for the majority of repeats found in the genome. Theyrepresent hotspots for rearrangements and gene duplications and include alarge number of pseudogenes. We propose simple models that account forthe major rearrangements with a minimum of eight IR boundary changes and12 inversions in addition to a several insertions of duplicated sequence.The major processes at work (duplication, IR expansion, and inversion)have disrupted at least one and possibly two or three transcriptionaloperons, and the genes involved in these disruptions form the core of thetwo major repeat associations. Despite the vast increase in size andcomplexity of the genome, the gene content is similar to that of otherangiosperms, with the exceptions of a large number of pseudogenes as partof the repeat associations, the recognition of two open reading frames(ORF56 and ORF42) in the trnA intron with similarities to previouslyidentified mitochondrial products (ACRS and pvs-trnA), the loss of accDand trnT-GGU, and in particular, the lack of a recognizably functionalrpoA. One or all of three similar open reading frames may possibly encodethe latter, however.

  1. Integration of complete chloroplast genome sequences with small amplicon datasets improves phylogenetic resolution in Acacia.

    PubMed

    Williams, Anna V; Miller, Joseph T; Small, Ian; Nevill, Paul G; Boykin, Laura M

    2016-03-01

    Combining whole genome data with previously obtained amplicon sequences has the potential to increase the resolution of phylogenetic analyses, particularly at low taxonomic levels or where recent divergence, rapid speciation or slow genome evolution has resulted in limited sequence variation. However, the integration of these types of data for large scale phylogenetic studies has rarely been investigated. Here we conduct a phylogenetic analysis of the whole chloroplast genome and two nuclear ribosomal loci for 65 Acacia species from across the most recent Acacia phylogeny. We then combine this data with previously generated amplicon sequences (four chloroplast loci and two nuclear ribosomal loci) for 508 Acacia species. We use several phylogenetic methods, including maximum likelihood bootstrapping (with and without constraint) and ExaBayes, in order to determine the success of combining a dataset of 4000bp with one of 189,000bp. The results of our study indicate that the inclusion of whole genome data gave a far better resolved and well supported representation of the phylogenetic relationships within Acacia than using only amplicon sequences, with the greatest support observed when using a whole genome phylogeny as a constraint on the amplicon sequences. Our study therefore provides methods for optimal integration of genomic and amplicon sequences. PMID:26702955

  2. Dynamic Evolution of the Chloroplast Genome in the Green Algal Classes Pedinophyceae and Trebouxiophyceae

    PubMed Central

    Turmel, Monique; Otis, Christian; Lemieux, Claude

    2015-01-01

    Previous studies of trebouxiophycean chloroplast genomes revealed little information regarding the evolutionary dynamics of this genome because taxon sampling was too sparse and the relationships between the sampled taxa were unknown. We recently sequenced the chloroplast genomes of 27 trebouxiophycean and 2 pedinophycean green algae to resolve the relationships among the main lineages recognized for the Trebouxiophyceae. These taxa and the previously sampled members of the Pedinophyceae and Trebouxiophyceae are included in the comparative chloroplast genome analysis we report here. The 38 genomes examined display considerable variability at all levels, except gene content. Our results highlight the high propensity of the rDNA-containing large inverted repeat (IR) to vary in size, gene content and gene order as well as the repeated losses it experienced during trebouxiophycean evolution. Of the seven predicted IR losses, one event demarcates a superclade of 11 taxa representing 5 late-diverging lineages. IR expansions/contractions account not only for changes in gene content in this region but also for changes in gene order and gene duplications. Inversions also led to gene rearrangements within the IR, including the reversal or disruption of the rDNA operon in some lineages. Most of the 20 IR-less genomes are more rearranged compared with their IR-containing homologs and tend to show an accelerated rate of sequence evolution. In the IR-less superclade, several ancestral operons were disrupted, a few genes were fragmented, and a subgroup of taxa features a G+C-biased nucleotide composition. Our analyses also unveiled putative cases of gene acquisitions through horizontal transfer. PMID:26139832

  3. Complete chloroplast genome of the Oriental white oak: Quercus aliena Blume.

    PubMed

    Lu, Sihai; Hou, Meng; Du, Fang K; Li, Junqing; Yin, Kangquan

    2016-07-01

    The complete chloroplast (cp) genome sequence of the Oriental white oak: Quercus aliena Blume, the first sequenced member of the section Quercus, is reported in this study. The length of cp genome size is 160,921 bp, with 36.9% GC content. A pair of 25,841 bp inverted repeat regions (IRs) is separated by a 90,258 bp large single copy region (LSC) and an 18,980 bp small single copy region (SSC). This genome contains 115 unique genes, including 89 coding genes, four rRNA genes, and 39 tRNA genes. Border analysis of cp genome of Quercus aliena and other 10 most closely related cp genomes revealed that most Fagaceae species have high similarity either in structure or distribution of these genes except for Trigonobalanus doichangensis. PMID:26114324

  4. Complete genome sequence of chloroplast DNA (cpDNA) of Chlorella sorokiniana.

    PubMed

    Orsini, Massimiliano; Cusano, Roberto; Costelli, Cristina; Malavasi, Veronica; Concas, Alessandro; Angius, Andrea; Cao, Giacomo

    2016-01-01

    The complete chloroplast genome sequence of Chlorella sorokiniana strain (SAG 111-8 k) is presented in this study. The genome consists of circular chromosomes of 109,811 bp, which encode a total of 109 genes, including 74 proteins, 3 rRNAs and 31 tRNAs. Moreover, introns are not detected and all genes are present in single copy. The overall AT contents of the C. sorokiniana cpDNA is 65.9%, the coding sequence is 59.1% and a large inverted repeat (IR) is not observed. PMID:24865923

  5. The complete chloroplast genome sequence of the medicinal plant Glehnia littoralis F.Schmidt ex Miq. (Apiaceae).

    PubMed

    Lee, Sang-Choon; Oh Lee, Hyun; Kim, Kyunghee; Kim, Soonok; Yang, Tae-Jin

    2016-09-01

    Glehnia littoralis F. Schmidt ex Miq is an oriental medicinal herb belonging to Apiaceae family, and its dried roots and rhizomes are known to show various pharmacological effects. The complete chlorplast genome of G. littoralis was generated by de novo assembly using whole genome sequencing data. The chloroplast genome of G. littoralis was 147 467 bp in length and divided into four distinct regions: large single copy region (93 493 bp), small single copy region (17 546 bp) and a pair of inverted repeat regions (18 214 bp). A total of 114 genes including 80 protein-coding genes, 30 tRNA genes and 4 rRNA genes were predicted and accounted for 57.1% of the chloroplast genome. Phylogenetic analysis with the reported chloroplast genomes revealed that G. littoralis is an herbal species closely related to Ledebouriella seseloides, an herbal medicinal plant. PMID:26367483

  6. The Complete Chloroplast Genome Sequences of Five Epimedium Species: Lights into Phylogenetic and Taxonomic Analyses

    PubMed Central

    Zhang, Yanjun; Du, Liuwen; Liu, Ao; Chen, Jianjun; Wu, Li; Hu, Weiming; Zhang, Wei; Kim, Kyunghee; Lee, Sang-Choon; Yang, Tae-Jin; Wang, Ying

    2016-01-01

    Epimedium L. is a phylogenetically and economically important genus in the family Berberidaceae. We here sequenced the complete chloroplast (cp) genomes of four Epimedium species using Illumina sequencing technology via a combination of de novo and reference-guided assembly, which was also the first comprehensive cp genome analysis on Epimedium combining the cp genome sequence of E. koreanum previously reported. The five Epimedium cp genomes exhibited typical quadripartite and circular structure that was rather conserved in genomic structure and the synteny of gene order. However, these cp genomes presented obvious variations at the boundaries of the four regions because of the expansion and contraction of the inverted repeat (IR) region and the single-copy (SC) boundary regions. The trnQ-UUG duplication occurred in the five Epimedium cp genomes, which was not found in the other basal eudicotyledons. The rapidly evolving cp genome regions were detected among the five cp genomes, as well as the difference of simple sequence repeats (SSR) and repeat sequence were identified. Phylogenetic relationships among the five Epimedium species based on their cp genomes showed accordance with the updated system of the genus on the whole, but reminded that the evolutionary relationships and the divisions of the genus need further investigation applying more evidences. The availability of these cp genomes provided valuable genetic information for accurately identifying species, taxonomy and phylogenetic resolution and evolution of Epimedium, and assist in exploration and utilization of Epimedium plants. PMID:27014326

  7. The complete chloroplast genome sequence of Clematis terniflora DC. (Ranunculaceae).

    PubMed

    Li, Mengzhu; Yang, Bingxian; Chen, Qinyi; Zhu, Wei; Ma, Ji; Tian, Jingkui

    2016-07-01

    Clematis terniflora DC. is an important medicinal plant used in the treatment of inflammatory symptoms related to respiratory and urinary systems. In this study, we found that the complete cp genome of C. terniflora DC. is 159,528 bp. The phylogenetic analysis of 32 taxa showed a strong sister relationship with Ranunculus macranthus, which also strongly supports the position of Ranunculales. The complete cp genome sequence of Clematis terniflora DC. reported here has the potential to advance population and phylogenetic studies of this medicinal plant. PMID:25865739

  8. Comparative genomics of four Liliales families inferred from the complete chloroplast genome sequence of Veratrum patulum O. Loes. (Melanthiaceae).

    PubMed

    Do, Hoang Dang Khoa; Kim, Jung Sung; Kim, Joo-Hwan

    2013-11-10

    The sequence of the chloroplast genome, which is inherited maternally, contains useful information for many scientific fields such as plant systematics, biogeography and biotechnology because its characteristics are highly conserved among species. There is an increase in chloroplast genomes of angiosperms that have been sequenced in recent years. In this study, the nucleotide sequence of the chloroplast genome (cpDNA) of Veratrum patulum Loes. (Melanthiaceae, Liliales) was analyzed completely. The circular double-stranded DNA of 153,699 bp consists of two inverted repeat (IR) regions of 26,360 bp each, a large single copy of 83,372 bp, and a small single copy of 17,607 bp. This plastome contains 81 protein-coding genes, 30 distinct tRNA and four genes of rRNA. In addition, there are six hypothetical coding regions (ycf1, ycf2, ycf3, ycf4, ycf15 and ycf68) and two open reading frames (ORF42 and ORF56), which are also found in the chloroplast genomes of the other species. The gene orders and gene contents of the V. patulum plastid genome are similar to that of Smilax china, Lilium longiflorum and Alstroemeria aurea, members of the Smilacaceae, Liliaceae and Alstroemeriaceae (Liliales), respectively. However, the loss rps16 exon 2 in V. patulum results in the difference in the large single copy regions in comparison with other species. The base substitution rate is quite similar among genes of these species. Additionally, the base substitution rate of inverted repeat region was smaller than that of single copy regions in all observed species of Liliales. The IR regions were expanded to trnH_GUG in V. patulum, a part of rps19 in L. longiflorum and A. aurea, and whole sequence of rps19 in S. china. Furthermore, the IGS lengths of rbcL-accD-psaI region were variable among Liliales species, suggesting that this region might be a hotspot of indel events and the informative site for phylogenetic studies in Liliales. In general, the whole chloroplast genome of V. patulum, a

  9. Complete chloroplast genome of the genus Cymbidium: lights into the species identification, phylogenetic implications and population genetic analyses

    PubMed Central

    2013-01-01

    Background Cymbidium orchids, including some 50 species, are the famous flowers, and they possess high commercial value in the floricultural industry. Furthermore, the values of different orchids are great differences. However, species identification is very difficult. To a certain degree, chloroplast DNA sequence data are a versatile tool for species identification and phylogenetic implications in plants. Different chloroplast loci have been utilized for evaluating phylogenetic relationships at each classification level among plant species, including at the interspecies and intraspecies levels. However, there is no evidence that a short sequence can distinguish all plant species from each other in order to infer phylogenetic relationships. Molecular markers derived from the complete chloroplast genome can provide effective tools for species identification and phylogenetic resolution. Results The complete nucleotide sequences of eight individuals from a total of five Cymbidium species’ chloroplast (cp) genomes were determined using Illumina sequencing technology of the total DNA via a combination of de novo and reference-guided assembly. The length of the Cymbidium cp genome is about 155 kb. The cp genomes contain 123 unique genes, and the IR regions contain 24 duplicates. Although the genomes, including genome structure, gene order and orientation, are similar to those of other orchids, they are not evolutionarily conservative. The cp genome of Cymbidium evolved moderately with more than 3% sequence divergence, which could provide enough information for phylogeny. Rapidly evolving chloroplast genome regions were identified and 11 new divergence hotspot regions were disclosed for further phylogenetic study and species identification in Orchidaceae. Conclusions Phylogenomic analyses were conducted using 10 complete chloroplast genomes from seven orchid species. These data accurately identified the individuals and established the phylogenetic relationships between

  10. The complete chloroplast genome sequence of the Bambusa multiplex (Poaceae: Bambusoideae).

    PubMed

    Gao, Ju; Li, Kui; Gao, Li-zhi

    2016-01-01

    The complete nucleotide sequence of the Bambusa multiplex chloroplast genome (cpDNA) was determined in this study. The cpDNA was 139,394 bp in length, containing a pair of 21,798 bp inverted repeat regions (IR), which were separated by small and large single copy regions (SSC and LSC) of 12,875 and 82,923 bp, respectively. The B. multiplex cp genome encodes 129 predicted functional genes; 110 are unique (77 protein-coding genes, 29 tRNA genes, 4 rRNA), 19 are duplicated in the IR regions and one gene extended into the IR region in the junctions between IR and SSC. 43.20% of the genome sequence encodes proteins. The B. multiplex cp genome is AT-rich (61.08%). In these genes, fourteen genes contained one intron, while one gene had two introns. PMID:24938112

  11. The complete chloroplast genome sequence of the Phyllostachys sulphurea (Poaceae: Bambusoideae).

    PubMed

    Gao, Ju; Gao, Li-zhi

    2016-01-01

    The complete nucleotide sequence of the Phyllostachys sulphurea chloroplast genome (cpDNA) was determined in this study. The cpDNA was 139,731 bp in length, containing a pair of 21,798 bp inverted repeat regions (IR), which were separated by small and large single copy regions (SSC and LSC) of 12,879 and 83,256 bp, respectively. The P. sulphurea cp genome encodes 129 predicted functional genes; 110 are unique (77 protein-coding genes, 29 tRNA genes, 4 rRNA), 19 are duplicated in the IR regions and one gene extended into the IR region in the junctions between IR and SSC. 43.06% of the genome sequence encodes proteins. The P. sulphurea cp genome is AT-rich (61.11%). In these genes, fourteen genes contained one intron, while one gene had two introns. PMID:24938113

  12. The complete chloroplast genome of Cupressus gigantea, an endemic conifer species to Qinghai-Tibetan Plateau.

    PubMed

    Li, Huie; Guo, Qiqiang; Zheng, Weilie

    2016-09-01

    The complete chloroplast genome of the wild Cupressus gigantea (Cupressaceae) is determined in this study. The circular genome is 128 244 bp in length with 115 single copy genes and two duplicated genes (trnI-CAU and trnQ-UUG). This genome contains 82 protein-coding genes, four ribosomal RNA genes and 31 transfer RNA genes. In these genes, eight genes (atpF, rpoC1, ndhA, ndhB, petB, petD, rpl16 and rpl2) harbor a single intron and two genes (rps12 and ycf3) harbor two introns. This genome does not contain canonical IRs, and the overall GC content is 34.7%. A maximum parsimony phylogenetic analysis revealed that C. gigantea and C. sempervirens are more closely related. PMID:26359779

  13. Complete Chloroplast Genome of the Multifunctional Crop Globe Artichoke and Comparison with Other Asteraceae

    PubMed Central

    Curci, Pasquale L.; De Paola, Domenico; Danzi, Donatella; Vendramin, Giovanni G.; Sonnante, Gabriella

    2015-01-01

    With over 20,000 species, Asteraceae is the second largest plant family. High-throughput sequencing of nuclear and chloroplast genomes has allowed for a better understanding of the evolutionary relationships within large plant families. Here, the globe artichoke chloroplast (cp) genome was obtained by a combination of whole-genome and BAC clone high-throughput sequencing. The artichoke cp genome is 152,529 bp in length, consisting of two single-copy regions separated by a pair of inverted repeats (IRs) of 25,155 bp, representing the longest IRs found in the Asteraceae family so far. The large (LSC) and the small (SSC) single-copy regions span 83,578 bp and 18,641 bp, respectively. The artichoke cp sequence was compared to the other eight Asteraceae complete cp genomes available, revealing an IR expansion at the SSC/IR boundary. This expansion consists of 17 bp of the ndhF gene generating an overlap between the ndhF and ycf1 genes. A total of 127 cp simple sequence repeats (cpSSRs) were identified in the artichoke cp genome, potentially suitable for future population studies in the Cynara genus. Parsimony-informative regions were evaluated and allowed to place a Cynara species within the Asteraceae family tree. The eight most informative coding regions were also considered and tested for “specific barcode” purpose in the Asteraceae family. Our results highlight the usefulness of cp genome sequencing in exploring plant genome diversity and retrieving reliable molecular resources for phylogenetic and evolutionary studies, as well as for specific barcodes in plants. PMID:25774672

  14. Complete chloroplast genome of the multifunctional crop globe artichoke and comparison with other Asteraceae.

    PubMed

    Curci, Pasquale L; De Paola, Domenico; Danzi, Donatella; Vendramin, Giovanni G; Sonnante, Gabriella

    2015-01-01

    With over 20,000 species, Asteraceae is the second largest plant family. High-throughput sequencing of nuclear and chloroplast genomes has allowed for a better understanding of the evolutionary relationships within large plant families. Here, the globe artichoke chloroplast (cp) genome was obtained by a combination of whole-genome and BAC clone high-throughput sequencing. The artichoke cp genome is 152,529 bp in length, consisting of two single-copy regions separated by a pair of inverted repeats (IRs) of 25,155 bp, representing the longest IRs found in the Asteraceae family so far. The large (LSC) and the small (SSC) single-copy regions span 83,578 bp and 18,641 bp, respectively. The artichoke cp sequence was compared to the other eight Asteraceae complete cp genomes available, revealing an IR expansion at the SSC/IR boundary. This expansion consists of 17 bp of the ndhF gene generating an overlap between the ndhF and ycf1 genes. A total of 127 cp simple sequence repeats (cpSSRs) were identified in the artichoke cp genome, potentially suitable for future population studies in the Cynara genus. Parsimony-informative regions were evaluated and allowed to place a Cynara species within the Asteraceae family tree. The eight most informative coding regions were also considered and tested for "specific barcode" purpose in the Asteraceae family. Our results highlight the usefulness of cp genome sequencing in exploring plant genome diversity and retrieving reliable molecular resources for phylogenetic and evolutionary studies, as well as for specific barcodes in plants. PMID:25774672

  15. Chloroplast genome differences between Asian and American Equisetum arvense (Equisetaceae) and the origin of the hypervariable trnY-trnE intergenic spacer.

    PubMed

    Kim, Hyoung Tae; Kim, Ki-Joong

    2014-01-01

    Comparative analyses of complete chloroplast (cp) DNA sequences within a species may provide clues to understand the population dynamics and colonization histories of plant species. Equisetum arvense (Equisetaceae) is a widely distributed fern species in northeastern Asia, Europe, and North America. The complete cp DNA sequences from Asian and American E. arvense individuals were compared in this study. The Asian E. arvense cp genome was 583 bp shorter than that of the American E. arvense. In total, 159 indels were observed between two individuals, most of which were concentrated on the hypervariable trnY-trnE intergenic spacer (IGS) in the large single-copy (LSC) region of the cp genome. This IGS region held a series of 19 bp repeating units. The numbers of the 19 bp repeat unit were responsible for 78% of the total length difference between the two cp genomes. Furthermore, only other closely related species of Equisetum also show the hypervariable nature of the trnY-trnE IGS. By contrast, only a single indel was observed in the gene coding regions: the ycf1 gene showed 24 bp differences between the two continental individuals due to a single tandem-repeat indel. A total of 165 single-nucleotide polymorphisms (SNPs) were recorded between the two cp genomes. Of these, 52 SNPs (31.5%) were distributed in coding regions, 13 SNPs (7.9%) were in introns, and 100 SNPs (60.6%) were in intergenic spacers (IGS). The overall difference between the Asian and American E. arvense cp genomes was 0.12%. Despite the relatively high genetic diversity between Asian and American E. arvense, the two populations are recognized as a single species based on their high morphological similarity. This indicated that the two regional populations have been in morphological stasis. PMID:25157804

  16. Chloroplast Genome Differences between Asian and American Equisetum arvense (Equisetaceae) and the Origin of the Hypervariable trnY-trnE Intergenic Spacer

    PubMed Central

    Kim, Hyoung Tae; Kim, Ki-Joong

    2014-01-01

    Comparative analyses of complete chloroplast (cp) DNA sequences within a species may provide clues to understand the population dynamics and colonization histories of plant species. Equisetum arvense (Equisetaceae) is a widely distributed fern species in northeastern Asia, Europe, and North America. The complete cp DNA sequences from Asian and American E. arvense individuals were compared in this study. The Asian E. arvense cp genome was 583 bp shorter than that of the American E. arvense. In total, 159 indels were observed between two individuals, most of which were concentrated on the hypervariable trnY-trnE intergenic spacer (IGS) in the large single-copy (LSC) region of the cp genome. This IGS region held a series of 19 bp repeating units. The numbers of the 19 bp repeat unit were responsible for 78% of the total length difference between the two cp genomes. Furthermore, only other closely related species of Equisetum also show the hypervariable nature of the trnY-trnE IGS. By contrast, only a single indel was observed in the gene coding regions: the ycf1 gene showed 24 bp differences between the two continental individuals due to a single tandem-repeat indel. A total of 165 single-nucleotide polymorphisms (SNPs) were recorded between the two cp genomes. Of these, 52 SNPs (31.5%) were distributed in coding regions, 13 SNPs (7.9%) were in introns, and 100 SNPs (60.6%) were in intergenic spacers (IGS). The overall difference between the Asian and American E. arvense cp genomes was 0.12%. Despite the relatively high genetic diversity between Asian and American E. arvense, the two populations are recognized as a single species based on their high morphological similarity. This indicated that the two regional populations have been in morphological stasis. PMID:25157804

  17. Complete chloroplast genome of Oncidium Gower Ramsey and evaluation of molecular markers for identification and breeding in Oncidiinae

    PubMed Central

    2010-01-01

    Background Oncidium spp. produce commercially important orchid cut flowers. However, they are amenable to intergeneric and inter-specific crossing making phylogenetic identification very difficult. Molecular markers derived from the chloroplast genome can provide useful tools for phylogenetic resolution. Results The complete chloroplast genome of the economically important Oncidium variety Onc. Gower Ramsey (Accession no. GQ324949) was determined using a polymerase chain reaction (PCR) and Sanger based ABI sequencing. The length of the Oncidium chloroplast genome is 146,484 bp. Genome structure, gene order and orientation are similar to Phalaenopsis, but differ from typical Poaceae, other monocots for which there are several published chloroplast (cp) genome. The Onc. Gower Ramsey chloroplast-encoded NADH dehydrogenase (ndh) genes, except ndhE, lack apparent functions. Deletion and other types of mutations were also found in the ndh genes of 15 other economically important Oncidiinae varieties, except ndhE in some species. The positions of some species in the evolution and taxonomy of Oncidiinae are difficult to identify. To identify the relationships between the 15 Oncidiinae hybrids, eight regions of the Onc. Gower Ramsey chloroplast genome were amplified by PCR for phylogenetic analysis. A total of 7042 bp derived from the eight regions could identify the relationships at the species level, which were supported by high bootstrap values. One particular 1846 bp region, derived from two PCR products (trnHGUG -psbA and trnFGAA-ndhJ) was adequate for correct phylogenetic placement of 13 of the 15 varieties (with the exception of Degarmoara Flying High and Odontoglossum Violetta von Holm). Thus the chloroplast genome provides a useful molecular marker for species identifications. Conclusion In this report, we used Phalaenopsis. aphrodite as a prototype for primer design to complete the Onc. Gower Ramsey genome sequence. Gene annotation showed that most of the ndh

  18. The Complete Sequence of the Acacia ligulata Chloroplast Genome Reveals a Highly Divergent clpP1 Gene

    PubMed Central

    Williams, Anna V.; Boykin, Laura M.; Howell, Katharine A.; Nevill, Paul G.; Small, Ian

    2015-01-01

    Legumes are a highly diverse angiosperm family that include many agriculturally important species. To date, 21 complete chloroplast genomes have been sequenced from legume crops confined to the Papilionoideae subfamily. Here we report the first chloroplast genome from the Mimosoideae, Acacia ligulata, and compare it to the previously sequenced legume genomes. The A. ligulata chloroplast genome is 158,724 bp in size, comprising inverted repeats of 25,925 bp and single-copy regions of 88,576 bp and 18,298 bp. Acacia ligulata lacks the inversion present in many of the Papilionoideae, but is not otherwise significantly different in terms of gene and repeat content. The key feature is its highly divergent clpP1 gene, normally considered essential in chloroplast genomes. In A. ligulata, although transcribed and spliced, it probably encodes a catalytically inactive protein. This study provides a significant resource for further genetic research into Acacia and the Mimosoideae. The divergent clpP1 gene suggests that Acacia will provide an interesting source of information on the evolution and functional diversity of the chloroplast Clp protease complex. PMID:25955637

  19. The Complete Chloroplast Genome Sequence of Date Palm (Phoenix dactylifera L.)

    PubMed Central

    Yang, Meng; Zhang, Xiaowei; Liu, Guiming; Yin, Yuxin; Chen, Kaifu; Yun, Quanzheng; Zhao, Duojun; Al-Mssallem, Ibrahim S.; Yu, Jun

    2010-01-01

    Background Date palm (Phoenix dactylifera L.), a member of Arecaceae family, is one of the three major economically important woody palms—the two other palms being oil palm and coconut tree—and its fruit is a staple food among Middle East and North African nations, as well as many other tropical and subtropical regions. Here we report a complete sequence of the data palm chloroplast (cp) genome based on pyrosequencing. Methodology/Principal Findings After extracting 369,022 cp sequencing reads from our whole-genome-shotgun data, we put together an assembly and validated it with intensive PCR-based verification, coupled with PCR product sequencing. The date palm cp genome is 158,462 bp in length and has a typical quadripartite structure of the large (LSC, 86,198 bp) and small single-copy (SSC, 17,712 bp) regions separated by a pair of inverted repeats (IRs, 27,276 bp). Similar to what has been found among most angiosperms, the date palm cp genome harbors 112 unique genes and 19 duplicated fragments in the IR regions. The junctions between LSC/IRs and SSC/IRs show different features of sequence expansion in evolution. We identified 78 SNPs as major intravarietal polymorphisms within the population of a specific cp genome, most of which were located in genes with vital functions. Based on RNA-sequencing data, we also found 18 polycistronic transcription units and three highly expression-biased genes—atpF, trnA-UGC, and rrn23. Conclusions Unlike most monocots, date palm has a typical cp genome similar to that of tobacco—with little rearrangement and gene loss or gain. High-throughput sequencing technology facilitates the identification of intravarietal variations in cp genomes among different cultivars. Moreover, transcriptomic analysis of cp genes provides clues for uncovering regulatory mechanisms of transcription and translation in chloroplasts. PMID:20856810

  20. Chloroplast Genome Evolution in Actinidiaceae: clpP Loss, Heterogenous Divergence and Phylogenomic Practice.

    PubMed

    Wang, Wen-Cai; Chen, Si-Yun; Zhang, Xian-Zhi

    2016-01-01

    Actinidiaceae is a well-known economically important plant family in asterids. To elucidate the chloroplast (cp) genome evolution within this family, here we present complete genomes of three species from two sister genera (Clematoclethra and Actinidia) in the Actinidiaceae via genome skimming technique. Comparative analyses revealed that the genome structure and content were rather conservative in three cp genomes in spite of different inheritance pattern, i.e.paternal in Actinidia and maternal in Clematoclethra. The clpP gene was lacked in all the three sequenced cp genomes examined here indicating that the clpP gene loss is likely a conspicuous synapomorphic characteristic during the cp genome evolution of Actinidiaceae. Comprehensive sequence comparisons in Actinidiaceae cp genomes uncovered that there were apparently heterogenous divergence patterns among the cpDNA regions, suggesting a preferred data-partitioned analysis for cp phylogenomics. Twenty non-coding cpDNA loci with fast evolutionary rates are further identified as potential molecular markers for systematics studies of Actinidiaceae. Moreover, the cp phylogenomic analyses including 31 angiosperm plastomes strongly supported the monophyly of Actinidia, being sister to Clematoclethra in Actinidiaceae which locates in the basal asterids, Ericales. PMID:27589600

  1. Complete sequence and characterization of mitochondrial and chloroplast genome of Chlorella variabilis NC64A.

    PubMed

    Orsini, Massimiliano; Costelli, Cristina; Malavasi, Veronica; Cusano, Roberto; Concas, Alessandro; Angius, Andrea; Cao, Giacomo

    2016-09-01

    The complete nucleotide sequences of the mitochondrial (mtDNA) and chloroplast (cpDNA) genomes of Chlorella variabilis NC64A (Trebouxiophyceae) have been determined in this study (GenBank accession no. KP271968 and KP271969, respectively). The mt genome assembles as a circle of 78,500 bp and contains 62 genes, including 32 protein-coding, 27 tRNA and 3 rRNA genes. The overall GC content is 28.2%, while the coding sequence is 34%. The cp genome forms a circle of 124,793 bp, containing 114 genes, including 79 protein-coding, 32 tRNA and 3 rRNA genes. The overall GC content is 33,9%, while the coding sequence is 50%. PMID:25690053

  2. A novel class of heat-responsive small RNAs derived from the chloroplast genome of Chinese cabbage (Brassica rapa)

    PubMed Central

    2011-01-01

    Background Non-coding small RNAs play critical roles in various cellular processes in a wide spectrum of eukaryotic organisms. Their responses to abiotic stress have become a popular topic of economic and scientific importance in biological research. Several studies in recent years have reported a small number of non-coding small RNAs that map to chloroplast genomes. However, it remains uncertain whether small RNAs are generated from chloroplast genome and how they respond to environmental stress, such as high temperature. Chinese cabbage is an important vegetable crop, and heat stress usually causes great losses in yields and quality. Under heat stress, the leaves become etiolated due to the disruption and disassembly of chloroplasts. In an attempt to determine the heat-responsive small RNAs in chloroplast genome of Chinese cabbage, we carried out deep sequencing, using heat-treated samples, and analysed the proportion of small RNAs that were matched to chloroplast genome. Results Deep sequencing provided evidence that a novel subset of small RNAs were derived from the chloroplast genome of Chinese cabbage. The chloroplast small RNAs (csRNAs) include those derived from mRNA, rRNA, tRNA and intergenic RNA. The rRNA-derived csRNAs were preferentially located at the 3'-ends of the rRNAs, while the tRNA-derived csRNAs were mainly located at 5'-termini of the tRNAs. After heat treatment, the abundance of csRNAs decreased in seedlings, except those of 24 nt in length. The novel heat-responsive csRNAs and their locations in the chloroplast were verified by Northern blotting. The regulation of some csRNAs to the putative target genes were identified by real-time PCR. Our results reveal that high temperature suppresses the production of some csRNAs, which have potential roles in transcriptional or post-transcriptional regulation. Conclusions In addition to nucleus, the chloroplast is another important organelle that generates a number of small RNAs. Many members of cs

  3. The complete chloroplast DNA sequence of the green alga Oltmannsiellopsis viridis reveals a distinctive quadripartite architecture in the chloroplast genome of early diverging ulvophytes

    PubMed Central

    Pombert, Jean-François; Lemieux, Claude; Turmel, Monique

    2006-01-01

    Background The phylum Chlorophyta contains the majority of the green algae and is divided into four classes. The basal position of the Prasinophyceae has been well documented, but the divergence order of the Ulvophyceae, Trebouxiophyceae and Chlorophyceae is currently debated. The four complete chloroplast DNA (cpDNA) sequences presently available for representatives of these classes have revealed extensive variability in overall structure, gene content, intron composition and gene order. The chloroplast genome of Pseudendoclonium (Ulvophyceae), in particular, is characterized by an atypical quadripartite architecture that deviates from the ancestral type by a large inverted repeat (IR) featuring an inverted rRNA operon and a small single-copy (SSC) region containing 14 genes normally found in the large single-copy (LSC) region. To gain insights into the nature of the events that led to the reorganization of the chloroplast genome in the Ulvophyceae, we have determined the complete cpDNA sequence of Oltmannsiellopsis viridis, a representative of a distinct, early diverging lineage. Results The 151,933 bp IR-containing genome of Oltmannsiellopsis differs considerably from Pseudendoclonium and other chlorophyte cpDNAs in intron content and gene order, but shares close similarities with its ulvophyte homologue at the levels of quadripartite architecture, gene content and gene density. Oltmannsiellopsis cpDNA encodes 105 genes, contains five group I introns, and features many short dispersed repeats. As in Pseudendoclonium cpDNA, the rRNA genes in the IR are transcribed toward the single copy region featuring the genes typically found in the ancestral LSC region, and the opposite single copy region harbours genes characteristic of both the ancestral SSC and LSC regions. The 52 genes that were transferred from the ancestral LSC to SSC region include 12 of those observed in Pseudendoclonium cpDNA. Surprisingly, the overall gene organization of Oltmannsiellopsis cp

  4. Complete Chloroplast Genome Sequence of a Major Allogamous Forage Species, Perennial Ryegrass (Lolium perenne L.)

    PubMed Central

    Diekmann, Kerstin; Hodkinson, Trevor R.; Wolfe, Kenneth H.; van den Bekerom, Rob; Dix, Philip J.; Barth, Susanne

    2009-01-01

    Lolium perenne L. (perennial ryegrass) is globally one of the most important forage and grassland crops. We sequenced the chloroplast (cp) genome of Lolium perenne cultivar Cashel. The L. perenne cp genome is 135 282 bp with a typical quadripartite structure. It contains genes for 76 unique proteins, 30 tRNAs and four rRNAs. As in other grasses, the genes accD, ycf1 and ycf2 are absent. The genome is of average size within its subfamily Pooideae and of medium size within the Poaceae. Genome size differences are mainly due to length variations in non-coding regions. However, considerable length differences of 1–27 codons in comparison of L. perenne to other Poaceae and 1–68 codons among all Poaceae were also detected. Within the cp genome of this outcrossing cultivar, 10 insertion/deletion polymorphisms and 40 single nucleotide polymorphisms were detected. Two of the polymorphisms involve tiny inversions within hairpin structures. By comparing the genome sequence with RT–PCR products of transcripts for 33 genes, 31 mRNA editing sites were identified, five of them unique to Lolium. The cp genome sequence of L. perenne is available under Accession number AM777385 at the European Molecular Biology Laboratory, National Center for Biotechnology Information and DNA DataBank of Japan. PMID:19414502

  5. De novo assembly and characterization of the complete chloroplast genome of radish (Raphanus sativus L.).

    PubMed

    Jeong, Young-Min; Chung, Won-Hyung; Mun, Jeong-Hwan; Kim, Namshin; Yu, Hee-Ju

    2014-11-01

    Radish (Raphanus sativus L.) is an edible root vegetable crop that is cultivated worldwide and whose genome has been sequenced. Here we report the complete nucleotide sequence of the radish cultivar WK10039 chloroplast (cp) genome, along with a de novo assembly strategy using whole genome shotgun sequence reads obtained by next generation sequencing. The radish cp genome is 153,368 bp in length and has a typical quadripartite structure, composed of a pair of inverted repeat regions (26,217 bp each), a large single copy region (83,170 bp), and a small single copy region (17,764 bp). The radish cp genome contains 87 predicted protein-coding genes, 37 tRNA genes, and 8 rRNA genes. Sequence analysis revealed the presence of 91 simple sequence repeats (SSRs) in the radish cp genome. Phylogenetic analysis of 62 protein-coding gene sequences from the 17 cp genomes of the Brassicaceae family suggested that the radish cp genome is most closely related to the cp genomes of Brassica rapa and Brassicanapus. Comparisons with the B. rapa and B. napus cp genomes revealed highly divergent intergenic sequences and introns that can potentially be developed as diagnostic cp markers. Synonymous and nonsynonymous substitutions of cp genes suggested that nucleotide substitutions have occurred at similar rates in most genes. The complete sequence of the radish cp genome would serve as a valuable resource for the development of new molecular markers and the study of the phylogenetic relationships of Raphanus species in the Brassicaceae family. PMID:25151309

  6. Chloroplast Genome Sequence of Lagerstroemia guilinensis (Lythraceae, Myrtales), a Species Endemic to the Guilin Limestone Area in Guangxi Province, China.

    PubMed

    Gu, Cuihua; Tembrock, Luke R; Wu, Zhiqiang

    2016-01-01

    We announce here the first complete chloroplast genome sequence of Lagerstroemia guilinensis (Lythraceae, Myrtales), a species endemic to the Guilin limestone area, along with its genome structure and functional gene annotations. The plant was collected from Guilin, Guangxi, China, and deposited as a germplasm accession of the Zhejiang Agriculture and Forestry University Collection (ZAFU 1507144). This genome will provide valuable information for future research of the Lagerstroemia genus and its relatives. PMID:27198012

  7. Chloroplast Genome Sequence of Lagerstroemia guilinensis (Lythraceae, Myrtales), a Species Endemic to the Guilin Limestone Area in Guangxi Province, China

    PubMed Central

    Gu, Cuihua; Tembrock, Luke R.

    2016-01-01

    We announce here the first complete chloroplast genome sequence of Lagerstroemia guilinensis (Lythraceae, Myrtales), a species endemic to the Guilin limestone area, along with its genome structure and functional gene annotations. The plant was collected from Guilin, Guangxi, China, and deposited as a germplasm accession of the Zhejiang Agriculture and Forestry University Collection (ZAFU 1507144). This genome will provide valuable information for future research of the Lagerstroemia genus and its relatives. PMID:27198012

  8. The complete chloroplast genome sequence of Morus mongolica and a comparative analysis within the Fabidae clade.

    PubMed

    Kong, Weiqing; Yang, Jinhong

    2016-02-01

    The complete nucleotide sequence of the Morus mongolica chloroplast (cp) genome was reported and characterized in this study. The cp genome is a circular molecule of 158,459 bp containing a pair of 25,678 bp IR regions, separated by small and large single-copy regions of 19,736 and 87,363 bp, respectively. The number and relative positions of the 114 unique genes (80 PCGs, 30 tRNAs, and 4 rRNA genes) are almost identical to Morus indica cp genome. Further detailed comparative analyses revealed one hypervariable region, which is responsible for 88% of the total variation, and 64 indel events between two individuals. There are 78 simple sequence repeats (SSRs) in M. mongolica cp genome, in which 58 of them are mononucleotide repeats. Comparative analysis with M. indica cp genome indicated 22 SSRs with length polymorphisms and 1 SSR with nucleotide content polymorphism. The phylogenetic analysis of 60 PCGs from 62 cp genomes provided strong support for the monophyletic, single origin of Fabidae (N2-fixing) clade. PMID:26205390

  9. The complete chloroplast genome of Armand pine Pinus armandii, an endemic conifer tree species to China.

    PubMed

    Li, Zhong-Hu; Qian, Zeng-Qiang; Liu, Zhan-Lin; Deng, Tuan-Tuan; Zu, Yu-Meng; Zhao, Peng; Zhao, Gui-Fang

    2016-07-01

    The complete chloroplast genome (cpDNA) sequence of an endemic conifer species, Armand pine Pinus armandii Franch., is determined in this study. The cpDNA was 117,265 bp in length, containing a pair of 475 bp inverted repeat (IR) regions those distinguished in large and small single copy (LSC and SSC) regions of 64,548 and 51,767 bp in length, respectively. The cpDNA contained 114 genes, including 74 protein-coding genes (74 PCG species), 4 ribosomal RNA genes (four rRNA species) and 36 transfer RNA genes (33 tRNA species). Out of these genes, 12 harbor a single intron and most of the genes occurred in a single copy. The overall AT content of the Armand pine cpDNA was 61.2%, while the corresponding values of the LSC, SSC and IR regions were 62.0%, 60.2% and 62.7%, respectively. A phylogenetic analysis revealed that P. armandii chloroplast genome is closely related to that of the P. koraiensis within the genus Pinus. PMID:26024147

  10. Recombination and introgression of nuclear and chloroplast genomes between the peat mosses, Sphagnum capillifolium and Sphagnum quinquefarium.

    PubMed

    Natcheva, Rayna; Cronberg, Nils

    2007-02-01

    Haploid hybrid gametophytes are often present at low frequencies in sympatric populations of Sphagnum capillifolium and Sphagnum quinquefarium. We used intersimple sequence repeat (ISSR) markers and polymerase chain reaction-restriction fragment length polymorphism of the trnL(UAA) intron of the chloroplast genome to reveal the nuclear and chloroplast composition of mature hybrid gametophytes from natural populations and of gametophytes derived from spores of hybrid sporophytes collected in nature. Asymmetrical nuclear inheritance was found in the progeny of the hybrid sporophytes, indicating that only spores with a low level of recombination of parental genomes were viable. A similarly skewed nuclear composition was found among the naturally occurring hybrid gametophytes. All hybrid genomes contained a larger proportion of S. capillifolium ISSR markers, combined with only two to five S. quinquefarium markers together with a chloroplast haplotype derived from S. quinquefarium. In this way, a pattern resembling introgression is created within a single generation. Some individuals possessed nuclear genomes typical for S. capillifolium in combination with the chloroplast haplotype of S. quinquefarium, possibly indicating backcrossing. Our results indicate that hybridization between S. capillifolium and S. quinquefarium is relatively common, but the resistance of large parts of the genome against heterospecific genes maintains the genetic distinctness of the species. Further evolutionary and phylogenetic consequences of restricted interspecific gene exchange are discussed. PMID:17284213

  11. The complete chloroplast genome sequence of the relict woody plant Metasequoia glyptostroboides Hu et Cheng

    PubMed Central

    Chen, Jinhui; Hao, Zhaodong; Xu, Haibin; Yang, Liming; Liu, Guangxin; Sheng, Yu; Zheng, Chen; Zheng, Weiwei; Cheng, Tielong; Shi, Jisen

    2015-01-01

    Metasequoia glyptostroboides Hu et Cheng is the only species in the genus Metasequoia Miki ex Hu et Cheng, which belongs to the Cupressaceae family. There were around 10 species in the Metasequoia genus, which were widely spread across the Northern Hemisphere during the Cretaceous of the Mesozoic and in the Cenozoic. M. glyptostroboides is the only remaining representative of this genus. Here, we report the complete chloroplast (cp) genome sequence and the cp genomic features of M. glyptostroboides. The M. glyptostroboides cp genome is 131,887 bp in length, with a total of 117 genes comprised of 82 protein-coding genes, 31 tRNA genes and four rRNA genes. In this genome, 11 forward repeats, nine palindromic repeats, and 15 tandem repeats were detected. A total of 188 perfect microsatellites were detected through simple sequence repeat (SSR) analysis and these were distributed unevenly within the cp genome. Comparison of the cp genome structure and gene order to those of several other land plants indicated that a copy of the inverted repeat (IR) region, which was found to be IR region A (IRA), was lost in the M. glyptostroboides cp genome. The five most divergent and five most conserved genes were determined and further phylogenetic analysis was performed among plant species, especially for related species in conifers. Finally, phylogenetic analysis demonstrated that M. glyptostroboides is a sister species to Cryptomeria japonica (L. F.) D. Don and to Taiwania cryptomerioides Hayata. The complete cp genome sequence information of M. glyptostroboides will be great helpful for further investigations of this endemic relict woody plant and for in-depth understanding of the evolutionary history of the coniferous cp genomes, especially for the position of M. glyptostroboides in plant systematics and evolution. PMID:26136762

  12. Complete Chloroplast Genome of Nicotiana otophora and its Comparison with Related Species

    PubMed Central

    Asaf, Sajjad; Khan, Abdul L.; Khan, Abdur R.; Waqas, Muhammad; Kang, Sang-Mo; Khan, Muhammad A.; Lee, Seok-Min; Lee, In-Jung

    2016-01-01

    Nicotiana otophora is a wild parental species of Nicotiana tabacum, an interspecific hybrid of Nicotiana tomentosiformis and Nicotiana sylvestris. However, N. otophora is least understood as an alternative paternal donor. Here, we compared the fully assembled chloroplast (cp) genome of N. otophora and with those of closely related species. The analysis showed a cp genome size of 156,073 bp and exhibited a typical quadripartite structure, which contains a pair of inverted repeats separated by small and large single copies, containing 163 representative genes, with 165 microsatellites distributed unevenly throughout the genome. Comparative analysis of a gene with known function across Nicotiana species revealed 76 protein-coding sequences, 20 tRNA sequences, and 3 rRNA sequence shared between the cp genomes. The analysis revealed that N. otophora is a sister species to N. tomentosiformis within the Nicotiana genus, and Atropha belladonna and Datura stramonium are their closest relatives. These findings provide a valuable analysis of the complete N. otophora cp genome, which can identify species, elucidate taxonomy, and reconstruct the phylogeny of genus Nicotiana. PMID:27379132

  13. The photosynthetic capacity in 35 ferns and fern allies: mesophyll CO2 diffusion as a key trait.

    PubMed

    Tosens, Tiina; Nishida, Keisuke; Gago, Jorge; Coopman, Rafael Eduardo; Cabrera, Hernán Marino; Carriquí, Marc; Laanisto, Lauri; Morales, Loreto; Nadal, Miquel; Rojas, Roke; Talts, Eero; Tomas, Magdalena; Hanba, Yuko; Niinemets, Ülo; Flexas, Jaume

    2016-03-01

    Ferns and fern allies have low photosynthetic rates compared with seed plants. Their photosynthesis is thought to be limited principally by physical CO2 diffusion from the atmosphere to chloroplasts. The aim of this study was to understand the reasons for low photosynthesis in species of ferns and fern allies (Lycopodiopsida and Polypodiopsida). We performed a comprehensive assessment of the foliar gas-exchange and mesophyll structural traits involved in photosynthetic function for 35 species of ferns and fern allies. Additionally, the leaf economics spectrum (the interrelationships between photosynthetic capacity and leaf/frond traits such as leaf dry mass per unit area or nitrogen content) was tested. Low mesophyll conductance to CO2 was the main cause for low photosynthesis in ferns and fern allies, which, in turn, was associated with thick cell walls and reduced chloroplast distribution towards intercellular mesophyll air spaces. Generally, the leaf economics spectrum in ferns follows a trend similar to that in seed plants. Nevertheless, ferns and allies had less nitrogen per unit DW than seed plants (i.e. the same slope but a different intercept) and lower photosynthesis rates per leaf mass area and per unit of nitrogen. PMID:26508678

  14. Complete Chloroplast Genome Sequence of Aquilaria sinensis (Lour.) Gilg and Evolution Analysis within the Malvales Order

    PubMed Central

    Wang, Ying; Zhan, Di-Feng; Jia, Xian; Mei, Wen-Li; Dai, Hao-Fu; Chen, Xiong-Ting; Peng, Shi-Qing

    2016-01-01

    Aquilaria sinensis (Lour.) Gilg is an important medicinal woody plant producing agarwood, which is widely used in traditional Chinese medicine. High-throughput sequencing of chloroplast (cp) genomes enhanced the understanding about evolutionary relationships within plant families. In this study, we determined the complete cp genome sequences for A. sinensis. The size of the A. sinensis cp genome was 159,565 bp. This genome included a large single-copy region of 87,482 bp, a small single-copy region of 19,857 bp, and a pair of inverted repeats (IRa and IRb) of 26,113 bp each. The GC content of the genome was 37.11%. The A. sinensis cp genome encoded 113 functional genes, including 82 protein-coding genes, 27 tRNA genes, and 4 rRNA genes. Seven genes were duplicated in the protein-coding genes, whereas 11 genes were duplicated in the RNA genes. A total of 45 polymorphic simple-sequence repeat loci and 60 pairs of large repeats were identified. Most simple-sequence repeats were located in the noncoding sections of the large single-copy/small single-copy region and exhibited high A/T content. Moreover, 33 pairs of large repeat sequences were located in the protein-coding genes, whereas 27 pairs were located in the intergenic regions. Aquilaria sinensis cp genome bias ended with A/T on the basis of codon usage. The distribution of codon usage in A. sinensis cp genome was most similar to that in the Gonystylus bancanus cp genome. Comparative results of 82 protein-coding genes from 29 species of cp genomes demonstrated that A. sinensis was a sister species to G. bancanus within the Malvales order. Aquilaria sinensis cp genome presented the highest sequence similarity of >90% with the G. bancanus cp genome by using CGView Comparison Tool. This finding strongly supports the placement of A. sinensis as a sister to G. bancanus within the Malvales order. The complete A. sinensis cp genome information will be highly beneficial for further studies on this traditional medicinal

  15. Structure and organization of Marchantia polymorpha chloroplast genome. IV. Inverted repeat and small single copy regions.

    PubMed

    Kohchi, T; Shirai, H; Fukuzawa, H; Sano, T; Komano, T; Umesono, K; Inokuchi, H; Ozeki, H; Ohyama, K

    1988-09-20

    We characterized the genes in the regions of large inverted repeats (IRA and IRB, 10,058 base-pairs each) and a small single copy (SSC 19,813 bp) of chloroplast DNA from Marchantia polymorpha. The inverted repeat (IR) regions contain genes for four ribosomal RNAs (16 S, 23 S, 4.5 S and 5 S rRNAs) and five transfer RNAs (valine tRNA(GAC), isoleucine tRNA(GAU), alanine tRNA(UGC), arginine tRNA(ACG) and asparagine tRNA(GUU)). The gene organization of the IR regions in the liverwort chloroplast genome is conserved, although the IR regions are smaller (10,058 base-pairs) than any reported in higher plant chloroplasts. The small single-copy region (19,813 base-pairs) encoded genes for 17 open reading frames, a leucine tRNA(UAG) and a proline tRNA(GGG)-like sequence. We identified 12 open reading frames by homology of their coding sequences to a 4Fe-4S-type ferredoxin protein, a bacterial nitrogenase reductase component (Fe-protein), five human mitochondrial components of NADH dehydrogenase (ND1, ND4, ND4L, ND5 and ND6), two Escherichia coli ribosomal proteins (S15 and L21), two putative proteins encoded in the kinetoplast maxicircle DNA of Leishmania tarentolae (LtORF 3 and LtORF 4), and a bacterial permease inner membrane component (encoded by malF in E. coli or hisQ in Salmonella typhimurium). PMID:3199437

  16. Congruent Deep Relationships in the Grape Family (Vitaceae) Based on Sequences of Chloroplast Genomes and Mitochondrial Genes via Genome Skimming

    PubMed Central

    Zhang, Ning; Wen, Jun; Zimmer, Elizabeth A.

    2015-01-01

    Vitaceae is well-known for having one of the most economically important fruits, i.e., the grape (Vitis vinifera). The deep phylogeny of the grape family was not resolved until a recent phylogenomic analysis of 417 nuclear genes from transcriptome data. However, it has been reported extensively that topologies based on nuclear and organellar genes may be incongruent due to differences in their evolutionary histories. Therefore, it is important to reconstruct a backbone phylogeny of the grape family using plastomes and mitochondrial genes. In this study, next-generation sequencing data sets of 27 species were obtained using genome skimming with total DNAs from silica-gel preserved tissue samples on an Illumina HiSeq 2500 instrument. Plastomes were assembled using the combination of de novo and reference genome (of V. vinifera) methods. Sixteen mitochondrial genes were also obtained via genome skimming using the reference genome of V. vinifera. Extensive phylogenetic analyses were performed using maximum likelihood and Bayesian methods. The topology based on either plastome data or mitochondrial genes is congruent with the one using hundreds of nuclear genes, indicating that the grape family did not exhibit significant reticulation at the deep level. The results showcase the power of genome skimming in capturing extensive phylogenetic data: especially from chloroplast and mitochondrial DNAs. PMID:26656830

  17. The Complete Chloroplast Genome Sequence of Ampelopsis: Gene Organization, Comparative Analysis, and Phylogenetic Relationships to Other Angiosperms

    PubMed Central

    Raman, Gurusamy; Park, SeonJoo

    2016-01-01

    Ampelopsis brevipedunculata is an economically important plant that belongs to the Vitaceae family of angiosperms. The phylogenetic placement of Vitaceae is still unresolved. Recent phylogenetic studies suggested that it should be placed in various alternative families including Caryophyllaceae, asteraceae, Saxifragaceae, Dilleniaceae, or with the rest of the rosid families. However, these analyses provided weak supportive results because they were based on only one of several genes. Accordingly, complete chloroplast genome sequences are required to resolve the phylogenetic relationships among angiosperms. Recent phylogenetic analyses based on the complete chloroplast genome sequence suggested strong support for the position of Vitaceae as the earliest diverging lineage of rosids and placed it as a sister to the remaining rosids. These studies also revealed relationships among several major lineages of angiosperms; however, they highlighted the significance of taxon sampling for obtaining accurate phylogenies. In the present study, we sequenced the complete chloroplast genome of A. brevipedunculata and used these data to assess the relationships among 32 angiosperms, including 18 taxa of rosids. The Ampelopsis chloroplast genome is 161,090 bp in length, and includes a pair of inverted repeats of 26,394 bp that are separated by small and large single copy regions of 19,036 bp and 89,266 bp, respectively. The gene content and order of Ampelopsis is identical to many other unrearranged angiosperm chloroplast genomes, including Vitis and tobacco. A phylogenetic tree constructed based on 70 protein-coding genes of 33 angiosperms showed that both Saxifragales and Vitaceae diverged from the rosid clade and formed two clades with 100% bootstrap value. The position of the Vitaceae is sister to Saxifragales, and both are the basal and earliest diverging lineages. Moreover, Saxifragales forms a sister clade to Vitaceae of rosids. Overall, the results of this study will

  18. The Complete Chloroplast Genome Sequence of Ampelopsis: Gene Organization, Comparative Analysis, and Phylogenetic Relationships to Other Angiosperms.

    PubMed

    Raman, Gurusamy; Park, SeonJoo

    2016-01-01

    Ampelopsis brevipedunculata is an economically important plant that belongs to the Vitaceae family of angiosperms. The phylogenetic placement of Vitaceae is still unresolved. Recent phylogenetic studies suggested that it should be placed in various alternative families including Caryophyllaceae, asteraceae, Saxifragaceae, Dilleniaceae, or with the rest of the rosid families. However, these analyses provided weak supportive results because they were based on only one of several genes. Accordingly, complete chloroplast genome sequences are required to resolve the phylogenetic relationships among angiosperms. Recent phylogenetic analyses based on the complete chloroplast genome sequence suggested strong support for the position of Vitaceae as the earliest diverging lineage of rosids and placed it as a sister to the remaining rosids. These studies also revealed relationships among several major lineages of angiosperms; however, they highlighted the significance of taxon sampling for obtaining accurate phylogenies. In the present study, we sequenced the complete chloroplast genome of A. brevipedunculata and used these data to assess the relationships among 32 angiosperms, including 18 taxa of rosids. The Ampelopsis chloroplast genome is 161,090 bp in length, and includes a pair of inverted repeats of 26,394 bp that are separated by small and large single copy regions of 19,036 bp and 89,266 bp, respectively. The gene content and order of Ampelopsis is identical to many other unrearranged angiosperm chloroplast genomes, including Vitis and tobacco. A phylogenetic tree constructed based on 70 protein-coding genes of 33 angiosperms showed that both Saxifragales and Vitaceae diverged from the rosid clade and formed two clades with 100% bootstrap value. The position of the Vitaceae is sister to Saxifragales, and both are the basal and earliest diverging lineages. Moreover, Saxifragales forms a sister clade to Vitaceae of rosids. Overall, the results of this study will

  19. [Analysis of microsatellite loci of the chloroplast genome in the genus Capsicum (Pepper)].

    PubMed

    Ryzhova, N N; Kochieva, E Z

    2004-08-01

    Six plastome microsatellites were examined in 43 accessions of the genus Capsicum. In total, 33 allelic variants were detected. A specific haplotype of chloroplast DNA was identified for each Capsicum species. Species-specific allelic variants were found for most wild Capsicum species. The highest intraspecific variation was observed for the C. baccatum plastome. Low cpDNA polymorphism was characteristic of C. annuum: the cpSSRs were either monomorphic or dimorphic. The vast majority of C. annuum accessions each had alleles of one type. Another allele type was rare and occurred only in wild accessions. The results testified again to genetic conservation of C. annuum and especially its cultivated forms. The phylogenetic relationships established for the Capsicum species on the basis of plastome analysis were similar to those inferred from the morphological traits, isozyme patterns, and molecular analysis of the nuclear genome. PMID:15523848

  20. Manipulating the chloroplast genome of Chlamydomonas: Present realities and future prospects

    SciTech Connect

    Boynton, J.; Gillham, N.; Hauser, C.; Heifetz, P.; Lers, A.; Newman, S.; Osmond, B.

    1992-01-01

    Biotechnology is being applied in vitro modification and stable reintroduction of chloroplast genes in Chlamydomonas reinhardtii and Nicotiana tabacum by homologous recombination. We are attempting the function analyses of plastid encoded proteins involved in photosynthesis, characterization of sequences which regulate expression of plastid genes at the transcriptional and translational levels, targeted disruption of chloroplast genes and molecular analysis of processes involved in chloroplast recombination.

  1. Manipulating the chloroplast genome of Chlamydomonas: Present realities and future prospects

    SciTech Connect

    Boynton, J.; Gillham, N.; Hauser, C.; Heifetz, P.; Lers, A.; Newman, S.; Osmond, B.

    1992-12-31

    Biotechnology is being applied in vitro modification and stable reintroduction of chloroplast genes in Chlamydomonas reinhardtii and Nicotiana tabacum by homologous recombination. We are attempting the function analyses of plastid encoded proteins involved in photosynthesis, characterization of sequences which regulate expression of plastid genes at the transcriptional and translational levels, targeted disruption of chloroplast genes and molecular analysis of processes involved in chloroplast recombination.

  2. An evaluation of the PacBio RS platform for sequencing and de novo assembly of a chloroplast genome

    PubMed Central

    2013-01-01

    Background Second generation sequencing has permitted detailed sequence characterisation at the whole genome level of a growing number of non-model organisms, but the data produced have short read-lengths and biased genome coverage leading to fragmented genome assemblies. The PacBio RS long-read sequencing platform offers the promise of increased read length and unbiased genome coverage and thus the potential to produce genome sequence data of a finished quality containing fewer gaps and longer contigs. However, these advantages come at a much greater cost per nucleotide and with a perceived increase in error-rate. In this investigation, we evaluated the performance of the PacBio RS sequencing platform through the sequencing and de novo assembly of the Potentilla micrantha chloroplast genome. Results Following error-correction, a total of 28,638 PacBio RS reads were recovered with a mean read length of 1,902 bp totalling 54,492,250 nucleotides and representing an average depth of coverage of 320× the chloroplast genome. The dataset covered the entire 154,959 bp of the chloroplast genome in a single contig (100% coverage) compared to seven contigs (90.59% coverage) recovered from an Illumina data, and revealed no bias in coverage of GC rich regions. Post-assembly the data were largely concordant with the Illumina data generated and allowed 187 ambiguities in the Illumina data to be resolved. The additional read length also permitted small differences in the two inverted repeat regions to be assigned unambiguously. Conclusions This is the first report to our knowledge of a chloroplast genome assembled de novo using PacBio sequence data. The PacBio RS data generated here were assembled into a single large contig spanning the P. micrantha chloroplast genome, with a higher degree of accuracy than an Illumina dataset generated at a much greater depth of coverage, due to longer read lengths and lower GC bias in the data. The results we present suggest PacBio data will be

  3. Complete chloroplast and ribosomal sequences for 30 accessions elucidate evolution of Oryza AA genome species

    PubMed Central

    Kim, Kyunghee; Lee, Sang-Choon; Lee, Junki; Yu, Yeisoo; Yang, Kiwoung; Choi, Beom-Soon; Koh, Hee-Jong; Waminal, Nomar Espinosa; Choi, Hong-Il; Kim, Nam-Hoon; Jang, Woojong; Park, Hyun-Seung; Lee, Jonghoon; Lee, Hyun Oh; Joh, Ho Jun; Lee, Hyeon Ju; Park, Jee Young; Perumal, Sampath; Jayakodi, Murukarthick; Lee, Yun Sun; Kim, Backki; Copetti, Dario; Kim, Soonok; Kim, Sunggil; Lim, Ki-Byung; Kim, Young-Dong; Lee, Jungho; Cho, Kwang-Su; Park, Beom-Seok; Wing, Rod A.; Yang, Tae-Jin

    2015-01-01

    Cytoplasmic chloroplast (cp) genomes and nuclear ribosomal DNA (nR) are the primary sequences used to understand plant diversity and evolution. We introduce a high-throughput method to simultaneously obtain complete cp and nR sequences using Illumina platform whole-genome sequence. We applied the method to 30 rice specimens belonging to nine Oryza species. Concurrent phylogenomic analysis using cp and nR of several of specimens of the same Oryza AA genome species provides insight into the evolution and domestication of cultivated rice, clarifying three ambiguous but important issues in the evolution of wild Oryza species. First, cp-based trees clearly classify each lineage but can be biased by inter-subspecies cross-hybridization events during speciation. Second, O. glumaepatula, a South American wild rice, includes two cytoplasm types, one of which is derived from a recent interspecies hybridization with O. longistminata. Third, the Australian O. rufipogan-type rice is a perennial form of O. meridionalis. PMID:26506948

  4. Complete chloroplast genome sequence of green foxtail (Setaria viridis), a promising model system for C4 photosynthesis.

    PubMed

    Wang, Shuo; Gao, Li-Zhi

    2016-09-01

    The complete chloroplast genome of green foxtail (Setaria viridis), a promising model system for C4 photosynthesis, is first reported in this study. The genome harbors a large single copy (LSC) region of 81 016 bp and a small single copy (SSC) region of 12 456  bp separated by a pair of inverted repeat (IRa and IRb) regions of 22 315 bp. GC content is 38.92%. The proportion of coding sequence is 57.97%, comprising of 111 (19 duplicated in IR regions) unique genes, 71 of which are protein-coding genes, four are rRNA genes, and 36 are tRNA genes. Phylogenetic analysis indicated that S. viridis was clustered with its cultivated species S. italica in the tribe Paniceae of the family Poaceae. This newly determined chloroplast genome will provide valuable genetic resources to assist future studies on C4 photosynthesis in grasses. PMID:26305916

  5. Analysis of the Complete Chloroplast Genome of a Medicinal Plant, Dianthus superbus var. longicalyncinus, from a Comparative Genomics Perspective

    PubMed Central

    Raman, Gurusamy; Park, SeonJoo

    2015-01-01

    Dianthus superbus var. longicalycinus is an economically important traditional Chinese medicinal plant that is also used for ornamental purposes. In this study, D. superbus was compared to its closely related family of Caryophyllaceae chloroplast (cp) genomes such as Lychnis chalcedonica and Spinacia oleracea. D. superbus had the longest large single copy (LSC) region (82,805 bp), with some variations in the inverted repeat region A (IRA)/LSC regions. The IRs underwent both expansion and constriction during evolution of the Caryophyllaceae family; however, intense variations were not identified. The pseudogene ribosomal protein subunit S19 (rps19) was identified at the IRA/LSC junction, but was not present in the cp genome of other Caryophyllaceae family members. The translation initiation factor IF-1 (infA) and ribosomal protein subunit L23 (rpl23) genes were absent from the Dianthus cp genome. When the cp genome of Dianthus was compared with 31 other angiosperm lineages, the infA gene was found to have been lost in most members of rosids, solanales of asterids and Lychnis of Caryophyllales, whereas rpl23 gene loss or pseudogization had occurred exclusively in Caryophyllales. Nevertheless, the cp genome of Dianthus and Spinacia has two introns in the proteolytic subunit of ATP-dependent protease (clpP) gene, but Lychnis has lost introns from the clpP gene. Furthermore, phylogenetic analysis of individual protein-coding genes infA and rpl23 revealed that gene loss or pseudogenization occurred independently in the cp genome of Dianthus. Molecular phylogenetic analysis also demonstrated a sister relationship between Dianthus and Lychnis based on 78 protein-coding sequences. The results presented herein will contribute to studies of the evolution, molecular biology and genetic engineering of the medicinal and ornamental plant, D. superbus var. longicalycinus. PMID:26513163

  6. Determination of the melon chloroplast and mitochondrial genome sequences reveals that the largest reported mitochondrial genome in plants contains a significant amount of DNA having a nuclear origin

    PubMed Central

    2011-01-01

    Background The melon belongs to the Cucurbitaceae family, whose economic importance among vegetable crops is second only to Solanaceae. The melon has a small genome size (454 Mb), which makes it suitable for molecular and genetic studies. Despite similar nuclear and chloroplast genome sizes, cucurbits show great variation when their mitochondrial genomes are compared. The melon possesses the largest plant mitochondrial genome, as much as eight times larger than that of other cucurbits. Results The nucleotide sequences of the melon chloroplast and mitochondrial genomes were determined. The chloroplast genome (156,017 bp) included 132 genes, with 98 single-copy genes dispersed between the small (SSC) and large (LSC) single-copy regions and 17 duplicated genes in the inverted repeat regions (IRa and IRb). A comparison of the cucumber and melon chloroplast genomes showed differences in only approximately 5% of nucleotides, mainly due to short indels and SNPs. Additionally, 2.74 Mb of mitochondrial sequence, accounting for 95% of the estimated mitochondrial genome size, were assembled into five scaffolds and four additional unscaffolded contigs. An 84% of the mitochondrial genome is contained in a single scaffold. The gene-coding region accounted for 1.7% (45,926 bp) of the total sequence, including 51 protein-coding genes, 4 conserved ORFs, 3 rRNA genes and 24 tRNA genes. Despite the differences observed in the mitochondrial genome sizes of cucurbit species, Citrullus lanatus (379 kb), Cucurbita pepo (983 kb) and Cucumis melo (2,740 kb) share 120 kb of sequence, including the predicted protein-coding regions. Nevertheless, melon contained a high number of repetitive sequences and a high content of DNA of nuclear origin, which represented 42% and 47% of the total sequence, respectively. Conclusions Whereas the size and gene organisation of chloroplast genomes are similar among the cucurbit species, mitochondrial genomes show a wide variety of sizes, with a non

  7. Phototropin encoded by a single-copy gene mediates chloroplast photorelocation movements in the liverwort Marchantia polymorpha.

    PubMed

    Komatsu, Aino; Terai, Mika; Ishizaki, Kimitsune; Suetsugu, Noriyuki; Tsuboi, Hidenori; Nishihama, Ryuichi; Yamato, Katsuyuki T; Wada, Masamitsu; Kohchi, Takayuki

    2014-09-01

    Blue-light-induced chloroplast photorelocation movement is observed in most land plants. Chloroplasts move toward weak-light-irradiated areas to efficiently absorb light (the accumulation response) and escape from strong-light-irradiated areas to avoid photodamage (the avoidance response). The plant-specific kinase phototropin (phot) is the blue-light receptor for chloroplast movements. Although the molecular mechanisms for chloroplast photorelocation movement have been analyzed, the overall aspects of signal transduction common to land plants are still unknown. Here, we show that the liverwort Marchantia polymorpha exhibits the accumulation and avoidance responses exclusively induced by blue light as well as specific chloroplast positioning in the dark. Moreover, in silico and Southern-blot analyses revealed that the M. polymorpha genome encodes a single PHOT gene, MpPHOT, and its knockout line displayed none of the chloroplast photorelocation movements, indicating that the sole MpPHOT gene mediates all types of movement. Mpphot was localized on the plasma membrane and exhibited blue-light-dependent autophosphorylation both in vitro and in vivo. Heterologous expression of MpPHOT rescued the defects in chloroplast movement of phot mutants in the fern Adiantum capillus-veneris and the seed plant Arabidopsis (Arabidopsis thaliana). These results indicate that Mpphot possesses evolutionarily conserved regulatory activities for chloroplast photorelocation movement. M. polymorpha offers a simple and versatile platform for analyzing the fundamental processes of phototropin-mediated chloroplast photorelocation movement common to land plants. PMID:25096976

  8. Comparative Chloroplast Genomics Reveals the Evolution of Pinaceae Genera and Subfamilies

    PubMed Central

    Lin, Ching-Ping; Huang, Jen-Pan; Wu, Chung-Shien; Hsu, Chih-Yao; Chaw, Shu-Miaw

    2010-01-01

    As the largest and the basal-most family of conifers, Pinaceae provides key insights into the evolutionary history of conifers. We present comparative chloroplast genomics and analysis of concatenated 49 chloroplast protein-coding genes common to 19 gymnosperms, including 15 species from 8 Pinaceous genera, to address the long-standing controversy about Pinaceae phylogeny. The complete cpDNAs of Cathaya argyrophylla and Cedrus deodara (Abitoideae) and draft cpDNAs of Larix decidua, Picea morrisonicola, and Pseudotsuga wilsoniana are reported. We found 21- and 42-kb inversions in congeneric species and different populations of Pinaceous species, which indicates that structural polymorphics may be common and ancient in Pinaceae. Our phylogenetic analyses reveal that Cedrus is clustered with Abies–Keteleeria rather than the basal-most genus of Pinaceae and that Cathaya is closer to Pinus than to Picea or Larix–Pseudotsuga. Topology and structural change tests and indel-distribution comparisons lend further evidence to our phylogenetic finding. Our molecular datings suggest that Pinaceae first evolved during Early Jurassic, and diversification of Pinaceous subfamilies and genera took place during Mid-Jurassic and Lower Cretaceous, respectively. Using different maximum-likelihood divergences as thresholds, we conclude that 2 (Abietoideae and Larix–Pseudotsuga–Piceae–Cathaya–Pinus), 4 (Cedrus, non-Cedrus Abietoideae, Larix–Pseudotsuga, and Piceae–Cathaya–Pinus), or 5 (Cedrus, non-Cedrus Abietoideae, Larix–Pseudotsuga, Picea, and Cathaya–Pinus) groups/subfamilies are more reasonable delimitations for Pinaceae. Specifically, our views on subfamilial classifications differ from previous studies in terms of the rank of Cedrus and with recognition of more than two subfamilies. PMID:20651328

  9. The complete chloroplast genome of the Taiwan red pine Pinus taiwanensis (Pinaceae).

    PubMed

    Fang, Min-Feng; Wang, Yu-Jin; Zu, Yu-Meng; Dong, Wan-Lin; Wang, Ruo-Nan; Deng, Tuan-Tuan; Li, Zhong-Hu

    2016-07-01

    The complete nucleotide sequence of the Taiwan red pine Pinus taiwanensis Hayata chloroplast genome (cpDNA) is determined in this study. The genome is composed of 119,741 bp in length, containing a pair of very short inverted repeat (IRa and IRb) regions of 495 bp, which was divided by a large single-copy (LSC) region of 65,670 bp and a small single-copy (SSC) region of 53,080 bp in length. The cpDNA contained 115 genes, including 74 protein-coding genes (73 PCG species), 4 ribosomal RNA genes (four rRNA species) and 37 tRNA genes (22 tRNA species). Out of these genes, 12 harbored a single intron, and one (rps12) contained a couple of introns. The overall AT content of the Taiwan red pine cpDNA is 61.5%, while the corresponding values of the LSC, SSC and IR regions are 62.2%, 60.6% and 63.6%, respectively. A maximum parsimony phylogenetic analysis suggested that the genus Pinus, Picea, Abies and Larix were strongly supported as monophyletic, and the cpDNA of P. taiwanensis is closely related to that of P. thunbergii. PMID:26057016

  10. Comparative Analysis of the Chloroplast Genomic Information of Cunninghamia lanceolata (Lamb.) Hook with Sibling Species from the Genera Cryptomeria D. Don, Taiwania Hayata, and Calocedrus Kurz.

    PubMed

    Zheng, Weiwei; Chen, Jinhui; Hao, Zhaodong; Shi, Jisen

    2016-01-01

    Chinese fir (Cunninghamia lanceolata (Lamb.) Hook) is an important coniferous tree species for timber production, which accounts for ~40% of log supply from plantations in southern China. Chloroplast genetic engineering is an exciting field to engineer several valuable tree traits. In this study, we revisited the published complete Chinese fir (NC_021437) and four other coniferous species chloroplast genome sequence in Taxodiaceae. Comparison of their chloroplast genomes revealed three unique inversions found in the downstream of the gene clusters and evolutionary divergence were found, although overall the chloroplast genomic structure of the Cupressaceae linage was conserved. We also investigated the phylogenetic position of Chinese fir among conifers by examining gene functions, selection forces, substitution rates, and the full chloroplast genome sequence. Consistent with previous molecular systematics analysis, the results provided a well-supported phylogeny framework for the Cupressaceae that strongly confirms the "basal" position of Cunninghamia lanceolata. The structure of the Cunninghamia lanceolata chloroplast genome showed a partial lack of one IR copy, rearrangements clearly occurred and slight evolutionary divergence appeared among the cp genome of C. lanceolata, Taiwania cryptomerioides, Taiwania flousiana, Calocedrus formosana and Cryptomeria japonica. The information from sequence divergence and length variation of genes could be further considered for bioengineering research. PMID:27399686

  11. Comparative Analysis of the Chloroplast Genomic Information of Cunninghamia lanceolata (Lamb.) Hook with Sibling Species from the Genera Cryptomeria D. Don, Taiwania Hayata, and Calocedrus Kurz

    PubMed Central

    Zheng, Weiwei; Chen, Jinhui; Hao, Zhaodong; Shi, Jisen

    2016-01-01

    Chinese fir (Cunninghamia lanceolata (Lamb.) Hook) is an important coniferous tree species for timber production, which accounts for ~40% of log supply from plantations in southern China. Chloroplast genetic engineering is an exciting field to engineer several valuable tree traits. In this study, we revisited the published complete Chinese fir (NC_021437) and four other coniferous species chloroplast genome sequence in Taxodiaceae. Comparison of their chloroplast genomes revealed three unique inversions found in the downstream of the gene clusters and evolutionary divergence were found, although overall the chloroplast genomic structure of the Cupressaceae linage was conserved. We also investigated the phylogenetic position of Chinese fir among conifers by examining gene functions, selection forces, substitution rates, and the full chloroplast genome sequence. Consistent with previous molecular systematics analysis, the results provided a well-supported phylogeny framework for the Cupressaceae that strongly confirms the “basal” position of Cunninghamia lanceolata. The structure of the Cunninghamia lanceolata chloroplast genome showed a partial lack of one IR copy, rearrangements clearly occurred and slight evolutionary divergence appeared among the cp genome of C. lanceolata, Taiwania cryptomerioides, Taiwania flousiana, Calocedrus formosana and Cryptomeria japonica. The information from sequence divergence and length variation of genes could be further considered for bioengineering research. PMID:27399686

  12. Data characterizing the chloroplast genomes of extinct and endangered Hawaiian endemic mints (Lamiaceae) and their close relatives.

    PubMed

    Welch, Andreanna J; Collins, Katherine; Ratan, Aakrosh; Drautz-Moses, Daniela I; Schuster, Stephan C; Lindqvist, Charlotte

    2016-06-01

    These data are presented in support of a plastid phylogenomic analysis of the recent radiation of the Hawaiian endemic mints (Lamiaceae), and their close relatives in the genus Stachys, "The quest to resolve recent radiations: Plastid phylogenomics of extinct and endangered Hawaiian endemic mints (Lamiaceae)" [1]. Here we describe the chloroplast genome sequences for 12 mint taxa. Data presented include summaries of gene content and length for these taxa, structural comparison of the mint chloroplast genomes with published sequences from other species in the order Lamiales, and comparisons of variability among three Hawaiian taxa vs. three outgroup taxa. Finally, we provide a list of 108 primer pairs targeting the most variable regions within this group and designed specifically for amplification of DNA extracted from degraded herbarium material. PMID:27077093

  13. Data characterizing the chloroplast genomes of extinct and endangered Hawaiian endemic mints (Lamiaceae) and their close relatives

    PubMed Central

    Welch, Andreanna J.; Collins, Katherine; Ratan, Aakrosh; Drautz-Moses, Daniela I.; Schuster, Stephan C.; Lindqvist, Charlotte

    2016-01-01

    These data are presented in support of a plastid phylogenomic analysis of the recent radiation of the Hawaiian endemic mints (Lamiaceae), and their close relatives in the genus Stachys, “The quest to resolve recent radiations: Plastid phylogenomics of extinct and endangered Hawaiian endemic mints (Lamiaceae)” [1]. Here we describe the chloroplast genome sequences for 12 mint taxa. Data presented include summaries of gene content and length for these taxa, structural comparison of the mint chloroplast genomes with published sequences from other species in the order Lamiales, and comparisons of variability among three Hawaiian taxa vs. three outgroup taxa. Finally, we provide a list of 108 primer pairs targeting the most variable regions within this group and designed specifically for amplification of DNA extracted from degraded herbarium material. PMID:27077093

  14. Distinctive Architecture of the Chloroplast Genome in the Chlorodendrophycean Green Algae Scherffelia dubia and Tetraselmis sp. CCMP 881.

    PubMed

    Turmel, Monique; de Cambiaire, Jean-Charles; Otis, Christian; Lemieux, Claude

    2016-01-01

    The Chlorodendrophyceae is a small class of green algae belonging to the core Chlorophyta, an assemblage that also comprises the Pedinophyceae, Trebouxiophyceae, Ulvophyceae and Chlorophyceae. Here we describe for the first time the chloroplast genomes of chlorodendrophycean algae (Scherffelia dubia, 137,161 bp; Tetraselmis sp. CCMP 881, 100,264 bp). Characterized by a very small single-copy (SSC) region devoid of any gene and an unusually large inverted repeat (IR), the quadripartite structures of the Scherffelia and Tetraselmis genomes are unique among all core chlorophytes examined thus far. The lack of genes in the SSC region is offset by the rich and atypical gene complement of the IR, which includes genes from the SSC and large single-copy regions of prasinophyte and streptophyte chloroplast genomes having retained an ancestral quadripartite structure. Remarkably, seven of the atypical IR-encoded genes have also been observed in the IRs of pedinophycean and trebouxiophycean chloroplast genomes, suggesting that they were already present in the IR of the common ancestor of all core chlorophytes. Considering that the relationships among the main lineages of the core Chlorophyta are still unresolved, we evaluated the impact of including the Chlorodendrophyceae in chloroplast phylogenomic analyses. The trees we inferred using data sets of 79 and 108 genes from 71 chlorophytes indicate that the Chlorodendrophyceae is a deep-diverging lineage of the core Chlorophyta, although the placement of this class relative to the Pedinophyceae remains ambiguous. Interestingly, some of our phylogenomic trees together with our comparative analysis of gene order data support the monophyly of the Trebouxiophyceae, thus offering further evidence that the previously observed affiliation between the Chlorellales and Pedinophyceae is the result of systematic errors in phylogenetic reconstruction. PMID:26849226

  15. Distinctive Architecture of the Chloroplast Genome in the Chlorodendrophycean Green Algae Scherffelia dubia and Tetraselmis sp. CCMP 881

    PubMed Central

    Turmel, Monique; de Cambiaire, Jean-Charles; Otis, Christian; Lemieux, Claude

    2016-01-01

    The Chlorodendrophyceae is a small class of green algae belonging to the core Chlorophyta, an assemblage that also comprises the Pedinophyceae, Trebouxiophyceae, Ulvophyceae and Chlorophyceae. Here we describe for the first time the chloroplast genomes of chlorodendrophycean algae (Scherffelia dubia, 137,161 bp; Tetraselmis sp. CCMP 881, 100,264 bp). Characterized by a very small single-copy (SSC) region devoid of any gene and an unusually large inverted repeat (IR), the quadripartite structures of the Scherffelia and Tetraselmis genomes are unique among all core chlorophytes examined thus far. The lack of genes in the SSC region is offset by the rich and atypical gene complement of the IR, which includes genes from the SSC and large single-copy regions of prasinophyte and streptophyte chloroplast genomes having retained an ancestral quadripartite structure. Remarkably, seven of the atypical IR-encoded genes have also been observed in the IRs of pedinophycean and trebouxiophycean chloroplast genomes, suggesting that they were already present in the IR of the common ancestor of all core chlorophytes. Considering that the relationships among the main lineages of the core Chlorophyta are still unresolved, we evaluated the impact of including the Chlorodendrophyceae in chloroplast phylogenomic analyses. The trees we inferred using data sets of 79 and 108 genes from 71 chlorophytes indicate that the Chlorodendrophyceae is a deep-diverging lineage of the core Chlorophyta, although the placement of this class relative to the Pedinophyceae remains ambiguous. Interestingly, some of our phylogenomic trees together with our comparative analysis of gene order data support the monophyly of the Trebouxiophyceae, thus offering further evidence that the previously observed affiliation between the Chlorellales and Pedinophyceae is the result of systematic errors in phylogenetic reconstruction. PMID:26849226

  16. Rapid evolutionary change of common bean (Phaseolus vulgaris L) plastome, and the genomic diversification of legume chloroplasts

    PubMed Central

    Guo, Xianwu; Castillo-Ramírez, Santiago; González, Víctor; Bustos, Patricia; Luís Fernández-Vázquez, José; Santamaría, Rosa Isela; Arellano, Jesús; Cevallos, Miguel A; Dávila, Guillermo

    2007-01-01

    Background Fabaceae (legumes) is one of the largest families of flowering plants, and some members are important crops. In contrast to what we know about their great diversity or economic importance, our knowledge at the genomic level of chloroplast genomes (cpDNAs or plastomes) for these crops is limited. Results We sequenced the complete genome of the common bean (Phaseolus vulgaris cv. Negro Jamapa) chloroplast. The plastome of P. vulgaris is a 150,285 bp circular molecule. It has gene content similar to that of other legume plastomes, but contains two pseudogenes, rpl33 and rps16. A distinct inversion occurred at the junction points of trnH-GUG/rpl14 and rps19/rps8, as in adzuki bean [1]. These two pseudogenes and the inversion were confirmed in 10 varieties representing the two domestication centers of the bean. Genomic comparative analysis indicated that inversions generally occur in legume plastomes and the magnitude and localization of insertions/deletions (indels) also vary. The analysis of repeat sequences demonstrated that patterns and sequences of tandem repeats had an important impact on sequence diversification between legume plastomes and tandem repeats did not belong to dispersed repeats. Interestingly, P. vulgaris plastome had higher evolutionary rates of change on both genomic and gene levels than G. max, which could be the consequence of pressure from both mutation and natural selection. Conclusion Legume chloroplast genomes are widely diversified in gene content, gene order, indel structure, abundance and localization of repetitive sequences, intracellular sequence exchange and evolutionary rates. The P. vulgaris plastome is a rapidly evolving genome. PMID:17623083

  17. A trnI_CAU Triplication Event in the Complete Chloroplast Genome of Paris verticillata M.Bieb. (Melanthiaceae, Liliales)

    PubMed Central

    Do, Hoang Dang Khoa; Kim, Jung Sung; Kim, Joo-Hwan

    2014-01-01

    The chloroplast is an essential plant organelle responsible for photosynthesis. Gene duplication, relocation, and loss in the chloroplast genome (cpDNA) are useful for exploring the evolution and phylogeny of plant species. In this study, the complete chloroplast genome of Paris verticillata was sequenced using the 454 sequencing system and Sanger sequencing method to trace the evolutionary pattern in the tribe Parideae of the family Melanthiaceae (Liliales). The circular double-stranded cpDNA of P. verticillata (157,379 bp) consists of two inverted repeat regions each of 28,373 bp, a large single copy of 82,726 bp, and a small single copy of 17,907 bp. Gene content and order are generally similar to the previously reported cpDNA sequences within the order Liliales. However, we found that trnI_CAU was triplicated in P. verticillata. In addition, cemA is suspected to be a pseudogene due to the presence of internal stop codons created by poly(A) insertion and single small CA repeats. Such changes were not found in previously examined cpDNAs of the Melanthiaceae or other families of the Liliales, suggesting that such features are unique to the tribe Parideae of Melanthiaceae. The characteristics of P. verticillata cpDNA will provide useful information for uncovering the evolution within Paris and for further research of plastid genome evolution and phylogenetic studies in Liliales. PMID:24951560

  18. A Phylogenetic Analysis of 34 Chloroplast Genomes Elucidates the Relationships between Wild and Domestic Species within the Genus Citrus

    PubMed Central

    Carbonell-Caballero, Jose; Alonso, Roberto; Ibañez, Victoria; Terol, Javier; Talon, Manuel; Dopazo, Joaquin

    2015-01-01

    Citrus genus includes some of the most important cultivated fruit trees worldwide. Despite being extensively studied because of its commercial relevance, the origin of cultivated citrus species and the history of its domestication still remain an open question. Here, we present a phylogenetic analysis of the chloroplast genomes of 34 citrus genotypes which constitutes the most comprehensive and detailed study to date on the evolution and variability of the genus Citrus. A statistical model was used to estimate divergence times between the major citrus groups. Additionally, a complete map of the variability across the genome of different citrus species was produced, including single nucleotide variants, heteroplasmic positions, indels (insertions and deletions), and large structural variants. The distribution of all these variants provided further independent support to the phylogeny obtained. An unexpected finding was the high level of heteroplasmy found in several of the analyzed genomes. The use of the complete chloroplast DNA not only paves the way for a better understanding of the phylogenetic relationships within the Citrus genus but also provides original insights into other elusive evolutionary processes, such as chloroplast inheritance, heteroplasmy, and gene selection. PMID:25873589

  19. A Phylogenetic Analysis of 34 Chloroplast Genomes Elucidates the Relationships between Wild and Domestic Species within the Genus Citrus.

    PubMed

    Carbonell-Caballero, Jose; Alonso, Roberto; Ibañez, Victoria; Terol, Javier; Talon, Manuel; Dopazo, Joaquin

    2015-08-01

    Citrus genus includes some of the most important cultivated fruit trees worldwide. Despite being extensively studied because of its commercial relevance, the origin of cultivated citrus species and the history of its domestication still remain an open question. Here, we present a phylogenetic analysis of the chloroplast genomes of 34 citrus genotypes which constitutes the most comprehensive and detailed study to date on the evolution and variability of the genus Citrus. A statistical model was used to estimate divergence times between the major citrus groups. Additionally, a complete map of the variability across the genome of different citrus species was produced, including single nucleotide variants, heteroplasmic positions, indels (insertions and deletions), and large structural variants. The distribution of all these variants provided further independent support to the phylogeny obtained. An unexpected finding was the high level of heteroplasmy found in several of the analyzed genomes. The use of the complete chloroplast DNA not only paves the way for a better understanding of the phylogenetic relationships within the Citrus genus but also provides original insights into other elusive evolutionary processes, such as chloroplast inheritance, heteroplasmy, and gene selection. PMID:25873589

  20. Complete chloroplast genome of Prunus yedoensis Matsum.(Rosaceae), wild and endemic flowering cherry on Jeju Island, Korea.

    PubMed

    Cho, Myong-Suk; Hyun Cho, Chung; Yeon Kim, Su; Su Yoon, Hwan; Kim, Seung-Chul

    2016-09-01

    The complete chloroplast genome sequences of the wild flowering cherry, Prunus yedoensis Matsum., which is native and endemic to Jeju Island, Korea, is reported in this study. The genome size is 157 786 bp in length with 36.7% GC content, which is composed of LSC region of 85 908 bp, SSC region of 19 120 bp and two IR copies of 26 379 bp each. The cp genome contains 131 genes, including 86 coding genes, 8 rRNA genes and 37 tRNA genes. The maximum likelihood analysis was conducted to verify a phylogenetic position of the newly sequenced cp genome of P. yedoensis using 11 representatives of complete cp genome sequences within the family Rosaceae. The genus Prunus exhibited monophyly and the result of the phylogenetic relationship agreed with the previous phylogenetic analyses within Rosaceae. PMID:26329800

  1. Genetic variability among the chloroplast genomes of sugarcane (Saccharum spp) and its wild progenitor species Saccharum spontaneum L.

    PubMed

    Zhu, J-R; Zhou, H; Pan, Y-B; Lu, X

    2014-01-01

    A striking characteristic of modern sugarcane is that all sugarcane cultivars (Saccharum spp) share a common cytoplasm from S. officinarum. To explore the potential value of S. spontaneum cytoplasm, new Saccharum hybrids with an S. spontaneum cytoplasm were developed at the United States Department of Agriculture-Agricultural Research Service, Sugarcane Research Laboratory, through a combination of conventional and molecular breeding approaches. In this study, we analyzed the genetic variability among the chloroplast genomes of four sugarcane cultivars, eight S. spontaneum clones, and three F1 progeny containing an S. spontaneum cytoplasm. Based on the complete chloroplast genome sequence information of two sugarcane cultivars (NCo 310 and SP 80-3280) and five related grass species (barley, maize, rice, sorghum, and wheat), 19 polymerase chain reaction primer pairs were designed targeting various chloroplast DNA (cpDNA) segments with a total length varying from 4781 to 4791 bp. Ten of the 19 cpDNA segments were polymorphic, harboring 14 mutation sites [a 15-nt insertion/deletion (indel), a 5-nt indel, two poly (T) tracts, and 10 single nucleotide polymorphisms]. We demonstrate for the first time that the chloroplast genome of S. spontaneum was maternally inherited. Comparative sequence homology analyses clustered sugarcane cultivars into a distinctive group away from S. spontaneum and its progeny. Three mutation sites with a consistent, yet species-specific, nucleotide composition were found, namely, an A/C transversion and two indels. The genetic variability among cpDNA of sugarcane cultivars and S. spontaneum will be useful information to determine the maternal origin in the Saccharum genus. PMID:24615073

  2. CpGAVAS, an integrated web server for the annotation, visualization, analysis, and GenBank submission of completely sequenced chloroplast genome sequences

    PubMed Central

    2012-01-01

    Background The complete sequences of chloroplast genomes provide wealthy information regarding the evolutionary history of species. With the advance of next-generation sequencing technology, the number of completely sequenced chloroplast genomes is expected to increase exponentially, powerful computational tools annotating the genome sequences are in urgent need. Results We have developed a web server CPGAVAS. The server accepts a complete chloroplast genome sequence as input. First, it predicts protein-coding and rRNA genes based on the identification and mapping of the most similar, full-length protein, cDNA and rRNA sequences by integrating results from Blastx, Blastn, protein2genome and est2genome programs. Second, tRNA genes and inverted repeats (IR) are identified using tRNAscan, ARAGORN and vmatch respectively. Third, it calculates the summary statistics for the annotated genome. Fourth, it generates a circular map ready for publication. Fifth, it can create a Sequin file for GenBank submission. Last, it allows the extractions of protein and mRNA sequences for given list of genes and species. The annotation results in GFF3 format can be edited using any compatible annotation editing tools. The edited annotations can then be uploaded to CPGAVAS for update and re-analyses repeatedly. Using known chloroplast genome sequences as test set, we show that CPGAVAS performs comparably to another application DOGMA, while having several superior functionalities. Conclusions CPGAVAS allows the semi-automatic and complete annotation of a chloroplast genome sequence, and the visualization, editing and analysis of the annotation results. It will become an indispensible tool for researchers studying chloroplast genomes. The software is freely accessible from http://www.herbalgenomics.org/cpgavas. PMID:23256920

  3. Why chloroplasts and mitochondria retain their own genomes and genetic systems: Colocation for redox regulation of gene expression

    PubMed Central

    Allen, John F.

    2015-01-01

    Chloroplasts and mitochondria are subcellular bioenergetic organelles with their own genomes and genetic systems. DNA replication and transmission to daughter organelles produces cytoplasmic inheritance of characters associated with primary events in photosynthesis and respiration. The prokaryotic ancestors of chloroplasts and mitochondria were endosymbionts whose genes became copied to the genomes of their cellular hosts. These copies gave rise to nuclear chromosomal genes that encode cytosolic proteins and precursor proteins that are synthesized in the cytosol for import into the organelle into which the endosymbiont evolved. What accounts for the retention of genes for the complete synthesis within chloroplasts and mitochondria of a tiny minority of their protein subunits? One hypothesis is that expression of genes for protein subunits of energy-transducing enzymes must respond to physical environmental change by means of a direct and unconditional regulatory control—control exerted by change in the redox state of the corresponding gene product. This hypothesis proposes that, to preserve function, an entire redox regulatory system has to be retained within its original membrane-bound compartment. Colocation of gene and gene product for redox regulation of gene expression (CoRR) is a hypothesis in agreement with the results of a variety of experiments designed to test it and which seem to have no other satisfactory explanation. Here, I review evidence relating to CoRR and discuss its development, conclusions, and implications. This overview also identifies predictions concerning the results of experiments that may yet prove the hypothesis to be incorrect. PMID:26286985

  4. [Variation in evolutionary unstable regions of the chloroplast genome in plants obtained in anther culture of dihaploid wheat lines].

    PubMed

    Mozgova, G V; Orlov, P A; Shalygo, N V

    2006-02-01

    In dihaploid wheats, two evolutionarily unstable regions of the chloroplast genome were examined. These regions include the following genes, changes in which could be associated with albinism in anther culture: rbcL, encoding the large Rubisco subunit; psaA, encoding p700 apoprotein Ia; petA, encoding cytochrome f; atpB and atpE, encoding respectively beta and epsilon subunits of the CF1 ATPase complex; trnE, encoding glutamine tRNA; and cemA, encoding a cell membrane protein. Using PCR, we have shown that atpB was the gene most often not detected in the lines examined. These results suggest that regeneration of albino plants is accompanied by a deletion of a chloroplast DNA region harboring this gene. PMID:16583703

  5. Identifying the Basal Angiosperm Node in Chloroplast GenomePhylogenies: Sampling One's Way Out of the Felsenstein Zone

    SciTech Connect

    Leebens-Mack, Jim; Raubeson, Linda A.; Cui, Liying; Kuehl,Jennifer V.; Fourcade, Matthew H.; Chumley, Timothy W.; Boore, JeffreyL.; Jansen, Robert K.; dePamphilis, Claude W.

    2005-05-27

    While there has been strong support for Amborella and Nymphaeales (water lilies) as branching from basal-most nodes in the angiosperm phylogeny, this hypothesis has recently been challenged by phylogenetic analyses of 61 protein-coding genes extracted from the chloroplast genome sequences of Amborella, Nymphaea and 12 other available land plant chloroplast genomes. These character-rich analyses placed the monocots, represented by three grasses (Poaceae), as sister to all other extant angiosperm lineages. We have extracted protein-coding regions from draft sequences for six additional chloroplast genomes to test whether this surprising result could be an artifact of long-branch attraction due to limited taxon sampling. The added taxa include three monocots (Acorus, Yucca and Typha), a water lily (Nuphar), a ranunculid(Ranunculus), and a gymnosperm (Ginkgo). Phylogenetic analyses of the expanded DNA and protein datasets together with microstructural characters (indels) provided unambiguous support for Amborella and the Nymphaeales as branching from the basal-most nodes in the angiospermphylogeny. However, their relative positions proved to be dependent on method of analysis, with parsimony favoring Amborella as sister to all other angiosperms, and maximum likelihood and neighbor-joining methods favoring an Amborella + Nympheales clade as sister. The maximum likelihood phylogeny supported the later hypothesis, but the likelihood for the former hypothesis was not significantly different. Parametric bootstrap analysis, single gene phylogenies, estimated divergence dates and conflicting in del characters all help to illuminate the nature of the conflict in resolution of the most basal nodes in the angiospermphylogeny. Molecular dating analyses provided median age estimates of 161 mya for the most recent common ancestor of all extant angiosperms and 145 mya for the most recent common ancestor of monocots, magnoliids andeudicots. Whereas long sequences reduce variance in

  6. The complete chloroplast genome of Gentiana straminea (Gentianaceae), an endemic species to the Sino-Himalayan subregion.

    PubMed

    Ni, Lianghong; Zhao, Zhili; Xu, Hongxi; Chen, Shilin; Dorje, Gaawe

    2016-02-15

    Endemic to the Sino-Himalayan subregion, the medicinal alpine plant Gentiana straminea is a threatened species. The genetic and molecular data about it is deficient. Here we report the complete chloroplast (cp) genome sequence of G. straminea, as the first sequenced member of the family Gentianaceae. The cp genome is 148,991bp in length, including a large single copy (LSC) region of 81,240bp, a small single copy (SSC) region of 17,085bp and a pair of inverted repeats (IRs) of 25,333bp. It contains 112 unique genes, including 78 protein-coding genes, 30 tRNAs and 4 rRNAs. The rps16 gene lacks exon2 between trnK-UUU and trnQ-UUG, which is the first rps16 pseudogene found in the nonparasitic plants of Asterids clade. Sequence analysis revealed the presence of 13 forward repeats, 13 palindrome repeats and 39 simple sequence repeats (SSRs). An entire cp genome comparison study of G. straminea and four other species in Gentianales was carried out. Phylogenetic analyses using maximum likelihood (ML) and maximum parsimony (MP) were performed based on 69 protein-coding genes from 36 species of Asterids. The results strongly supported the position of Gentianaceae as one member of the order Gentianales. The complete chloroplast genome sequence will provide intragenic information for its conservation and contribute to research on the genetic and phylogenetic analyses of Gentianales and Asterids. PMID:26680100

  7. The complete nucleotide sequence of the coffee (Coffea arabica L.) chloroplast genome: organization and implications for biotechnology and phylogenetic relationships among angiosperms.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The chloroplast genome sequence of Coffea arabica L., first member of family Rubiaceae (fourth largest family of angiosperms) is reported. The genome is 155,189 bp in length, including a pair of inverted repeats of 25,943 bp, separated by a small single copy region of 18,137 bp and a large single co...

  8. The complete chloroplast genome of Ginkgo biloba reveals the mechanism of inverted repeat contraction.

    PubMed

    Lin, Ching-Ping; Wu, Chung-Shien; Huang, Ya-Yi; Chaw, Shu-Miaw

    2012-01-01

    We determined the complete chloroplast genome (cpDNA) of Ginkgo biloba (common name: ginkgo), the only relict of ginkgophytes from the Triassic Period. The cpDNA molecule of ginkgo is quadripartite and circular, with a length of 156,945 bp, which is 6,458 bp shorter than that of Cycas taitungensis. In ginkgo cpDNA, rpl23 becomes pseudo, only one copy of ycf2 is retained, and there are at least five editing sites. We propose that the retained ycf2 is a duplicate of the ancestral ycf2, and the ancestral one has been lost from the inverted repeat A (IR(A)). This loss event should have occurred and led to the contraction of IRs after ginkgos diverged from other gymnosperms. A novel cluster of three transfer RNA (tRNA) genes, trnY-AUA, trnC-ACA, and trnSeC-UCA, was predicted to be located between trnC-GCA and rpoB of the large single-copy region. Our phylogenetic analysis strongly suggests that the three predicted tRNA genes are duplicates of trnC-GCA. Interestingly, in ginkgo cpDNA, the loss of one ycf2 copy does not significantly elevate the synonymous rate (Ks) of the retained copy, which disagrees with the view of Perry and Wolfe (2002) that one of the two-copy genes is subjected to elevated Ks when its counterpart has been lost. We hypothesize that the loss of one ycf2 is likely recent, and therefore, the acquired Ks of the retained copy is low. Our data reveal that ginkgo possesses several unique features that contribute to our understanding of the cpDNA evolution in seed plants. PMID:22403032

  9. Complete Chloroplast Genome Sequence of an Orchid Model Plant Candidate: Erycina pusilla Apply in Tropical Oncidium Breeding

    PubMed Central

    Pan, I-Chun; Liao, Der-Chih; Wu, Fu-Huei; Daniell, Henry; Singh, Nameirakpam Dolendro; Chang, Chen; Shih, Ming-Che; Chan, Ming-Tsair; Lin, Choun-Sea

    2012-01-01

    Oncidium is an important ornamental plant but the study of its functional genomics is difficult. Erycina pusilla is a fast-growing Oncidiinae species. Several characteristics including low chromosome number, small genome size, short growth period, and its ability to complete its life cycle in vitro make E. pusilla a good model candidate and parent for hybridization for orchids. Although genetic information remains limited, systematic molecular analysis of its chloroplast genome might provide useful genetic information. By combining bacterial artificial chromosome (BAC) clones and next-generation sequencing (NGS), the chloroplast (cp) genome of E. pusilla was sequenced accurately, efficiently and economically. The cp genome of E. pusilla shares 89 and 84% similarity with Oncidium Gower Ramsey and Phalanopsis aphrodite, respectively. Comparing these 3 cp genomes, 5 regions have been identified as showing diversity. Using PCR analysis of 19 species belonging to the Epidendroideae subfamily, a conserved deletion was found in the rps15-trnN region of the Cymbidieae tribe. Because commercial Oncidium varieties in Taiwan are limited, identification of potential parents using molecular breeding method has become very important. To demonstrate the relationship between taxonomic position and hybrid compatibility of E. pusilla, 4 DNA regions of 36 tropically adapted Oncidiinae varieties have been analyzed. The results indicated that trnF-ndhJ and trnH-psbA were suitable for phylogenetic analysis. E. pusilla proved to be phylogenetically closer to Rodriguezia and Tolumnia than Oncidium, despite its similar floral appearance to Oncidium. These results indicate the hybrid compatibility of E. pusilla, its cp genome providing important information for Oncidium breeding. PMID:22496851

  10. Transcriptional Slippage and RNA Editing Increase the Diversity of Transcripts in Chloroplasts: Insight from Deep Sequencing of Vigna radiata Genome and Transcriptome.

    PubMed

    Lin, Ching-Ping; Ko, Chia-Yun; Kuo, Ching-I; Liu, Mao-Sen; Schafleitner, Roland; Chen, Long-Fang Oliver

    2015-01-01

    We performed deep sequencing of the nuclear and organellar genomes of three mungbean genotypes: Vigna radiata ssp. sublobata TC1966, V. radiata var. radiata NM92 and the recombinant inbred line RIL59 derived from a cross between TC1966 and NM92. Moreover, we performed deep sequencing of the RIL59 transcriptome to investigate transcript variability. The mungbean chloroplast genome has a quadripartite structure including a pair of inverted repeats separated by two single copy regions. A total of 213 simple sequence repeats were identified in the chloroplast genomes of NM92 and RIL59; 78 single nucleotide variants and nine indels were discovered in comparing the chloroplast genomes of TC1966 and NM92. Analysis of the mungbean chloroplast transcriptome revealed mRNAs that were affected by transcriptional slippage and RNA editing. Transcriptional slippage frequency was positively correlated with the length of simple sequence repeats of the mungbean chloroplast genome (R2=0.9911). In total, 41 C-to-U editing sites were found in 23 chloroplast genes and in one intergenic spacer. No editing site that swapped U to C was found. A combination of bioinformatics and experimental methods revealed that the plastid-encoded RNA polymerase-transcribed genes psbF and ndhA are affected by transcriptional slippage in mungbean and in main lineages of land plants, including three dicots (Glycine max, Brassica rapa, and Nicotiana tabacum), two monocots (Oryza sativa and Zea mays), two gymnosperms (Pinus taeda and Ginkgo biloba) and one moss (Physcomitrella patens). Transcript analysis of the rps2 gene showed that transcriptional slippage could affect transcripts at single sequence repeat regions with poly-A runs. It showed that transcriptional slippage together with incomplete RNA editing may cause sequence diversity of transcripts in chloroplasts of land plants. PMID:26076132

  11. Chloroplast genome of Aconitum barbatum var. puberulum (Ranunculaceae) derived from CCS reads using the PacBio RS platform

    PubMed Central

    Chen, Xiaochen; Li, Qiushi; Li, Ying; Qian, Jun; Han, Jianping

    2015-01-01

    The chloroplast genome (cp genome) of Aconitum barbatum var. puberulum was sequenced using the third-generation sequencing platform based on the single-molecule real-time (SMRT) sequencing approach. To our knowledge, this is the first reported complete cp genome of Aconitum, and we anticipate that it will have great value for phylogenetic studies of the Ranunculaceae family. In total, 23,498 CCS reads and 20,685,462 base pairs were generated, the mean read length was 880 bp, and the longest read was 2,261 bp. Genome coverage of 100% was achieved with a mean coverage of 132× and no gaps. The accuracy of the assembled genome is 99.973%; the assembly was validated using Sanger sequencing of six selected genes from the cp genome. The complete cp genome of A. barbatum var. puberulum is 156,749 bp in length, including a large single-copy region of 87,630 bp and a small single-copy region of 16,941 bp separated by two inverted repeats of 26,089 bp. The cp genome contains 130 genes, including 84 protein-coding genes, 34 tRNA genes and eight rRNA genes. Four forward, five inverted and eight tandem repeats were identified. According to the SSR analysis, the longest poly structure is a 20-T repeat. Our results presented in this paper will facilitate the phylogenetic studies and molecular authentication on Aconitum. PMID:25705213

  12. Functional characterization of the evolutionarily divergent fern plastocyanin.

    PubMed

    Navarro, José A; Lowe, Christian E; Amons, Reinout; Kohzuma, Takamitsu; Canters, Gerard W; De la Rosa, Miguel A; Ubbink, Marcellus; Hervás, Manuel

    2004-08-01

    Plastocyanin (Pc) is a soluble copper protein that transfers electrons from cytochrome b(6)f to photosystem I (PSI), two protein complexes that are localized in the thylakoid membranes in chloroplasts. The surface electrostatic potential distribution of Pc plays a key role in complex formation with the membrane-bound partners. It is practically identical for Pcs from plants and green algae, but is quite different for Pc from ferns. Here we report on a laser flash kinetic analysis of PSI reduction by Pc from various eukaryotic and prokaryotic organisms. The reaction of fern Pc with fern PSI fits a two-step kinetic model, consisting of complex formation and electron transfer, whereas other plant systems exhibit a mechanism that requires an additional intracomplex rearrangement step. The fern Pc interacts inefficiently with spinach PSI, showing no detectable complex formation. This can be explained by assuming that the unusual surface charge distribution of fern Pc impairs the interaction. Fern PSI behaves in a similar way as spinach PSI in reaction with other Pcs. The reactivity of fern Pc towards several soluble c-type cytochromes, including cytochrome f, has been analysed by flavin-photosensitized laser flash photolysis, demonstrating that the specific surface motifs for the interaction with cytochrome f are conserved in fern Pc. PMID:15291822

  13. Comparative Chloroplast Genome Analyses of Streptophyte Green Algae Uncover Major Structural Alterations in the Klebsormidiophyceae, Coleochaetophyceae and Zygnematophyceae.

    PubMed

    Lemieux, Claude; Otis, Christian; Turmel, Monique

    2016-01-01

    The Streptophyta comprises all land plants and six main lineages of freshwater green algae: Mesostigmatophyceae, Chlorokybophyceae, Klebsormidiophyceae, Charophyceae, Coleochaetophyceae and Zygnematophyceae. Previous comparisons of the chloroplast genome from nine streptophyte algae (including four zygnematophyceans) revealed that, although land plant chloroplast DNAs (cpDNAs) inherited most of their highly conserved structural features from green algal ancestors, considerable cpDNA changes took place during the evolution of the Zygnematophyceae, the sister group of land plants. To gain deeper insights into the evolutionary dynamics of the chloroplast genome in streptophyte algae, we sequenced the cpDNAs of nine additional taxa: two klebsormidiophyceans (Entransia fimbriata and Klebsormidium sp. SAG 51.86), one coleocheatophycean (Coleochaete scutata) and six zygnematophyceans (Cylindrocystis brebissonii, Netrium digitus, Roya obtusa, Spirogyra maxima, Cosmarium botrytis and Closterium baillyanum). Our comparative analyses of these genomes with their streptophyte algal counterparts indicate that the large inverted repeat (IR) encoding the rDNA operon experienced loss or expansion/contraction in all three sampled classes and that genes were extensively shuffled in both the Klebsormidiophyceae and Zygnematophyceae. The klebsormidiophycean genomes boast greatly expanded IRs, with the Entransia 60,590-bp IR being the largest known among green algae. The 206,025-bp Entransia cpDNA, which is one of the largest genome among streptophytes, encodes 118 standard genes, i.e., four additional genes compared to its Klebsormidium flaccidum homolog. We inferred that seven of the 21 group II introns usually found in land plants were already present in the common ancestor of the Klebsormidiophyceae and its sister lineages. At 107,236 bp and with 117 standard genes, the Coleochaete IR-less genome is both the smallest and most compact among the streptophyte algal cpDNAs analyzed thus

  14. Comparative Chloroplast Genome Analyses of Streptophyte Green Algae Uncover Major Structural Alterations in the Klebsormidiophyceae, Coleochaetophyceae and Zygnematophyceae

    PubMed Central

    Lemieux, Claude; Otis, Christian; Turmel, Monique

    2016-01-01

    The Streptophyta comprises all land plants and six main lineages of freshwater green algae: Mesostigmatophyceae, Chlorokybophyceae, Klebsormidiophyceae, Charophyceae, Coleochaetophyceae and Zygnematophyceae. Previous comparisons of the chloroplast genome from nine streptophyte algae (including four zygnematophyceans) revealed that, although land plant chloroplast DNAs (cpDNAs) inherited most of their highly conserved structural features from green algal ancestors, considerable cpDNA changes took place during the evolution of the Zygnematophyceae, the sister group of land plants. To gain deeper insights into the evolutionary dynamics of the chloroplast genome in streptophyte algae, we sequenced the cpDNAs of nine additional taxa: two klebsormidiophyceans (Entransia fimbriata and Klebsormidium sp. SAG 51.86), one coleocheatophycean (Coleochaete scutata) and six zygnematophyceans (Cylindrocystis brebissonii, Netrium digitus, Roya obtusa, Spirogyra maxima, Cosmarium botrytis and Closterium baillyanum). Our comparative analyses of these genomes with their streptophyte algal counterparts indicate that the large inverted repeat (IR) encoding the rDNA operon experienced loss or expansion/contraction in all three sampled classes and that genes were extensively shuffled in both the Klebsormidiophyceae and Zygnematophyceae. The klebsormidiophycean genomes boast greatly expanded IRs, with the Entransia 60,590-bp IR being the largest known among green algae. The 206,025-bp Entransia cpDNA, which is one of the largest genome among streptophytes, encodes 118 standard genes, i.e., four additional genes compared to its Klebsormidium flaccidum homolog. We inferred that seven of the 21 group II introns usually found in land plants were already present in the common ancestor of the Klebsormidiophyceae and its sister lineages. At 107,236 bp and with 117 standard genes, the Coleochaete IR-less genome is both the smallest and most compact among the streptophyte algal cpDNAs analyzed thus

  15. Tripartite mitochondrial genome of spinach: physical structure, mitochondrial gene mapping, and locations of transposed chloroplast DNA sequences.

    PubMed Central

    Stern, D B; Palmer, J D

    1986-01-01

    A complete physical map of the spinach mitochondrial genome has been established. The entire sequence content of 327 kilobase pairs (kb) is postulated to occur as a single circular molecule. Two directly repeated elements of approximately 6 kb, located on this "master chromosome", are proposed to participate in an intragenomic recombination event that reversibly generates two "subgenomic" circles of 93 kb and 234 kb. The positions of protein and ribosomal RNA-encoding genes, determined by heterologous filter hybridizations, are scattered throughout the genome, with duplicate 26S rRNA genes located partially or entirely within the 6 kb repeat elements. Filter hybridizations between spinach mitochondrial DNA and cloned segments of spinach chloroplast DNA reveal at least twelve dispersed regions of inter-organellar sequence homology. Images PMID:3016660

  16. High-Throughput Sequencing of Six Bamboo Chloroplast Genomes: Phylogenetic Implications for Temperate Woody Bamboos (Poaceae: Bambusoideae)

    PubMed Central

    Li, De-Zhu

    2011-01-01

    Background Bambusoideae is the only subfamily that contains woody members in the grass family, Poaceae. In phylogenetic analyses, Bambusoideae, Pooideae and Ehrhartoideae formed the BEP clade, yet the internal relationships of this clade are controversial. The distinctive life history (infrequent flowering and predominance of asexual reproduction) of woody bamboos makes them an interesting but taxonomically difficult group. Phylogenetic analyses based on large DNA fragments could only provide a moderate resolution of woody bamboo relationships, although a robust phylogenetic tree is needed to elucidate their evolutionary history. Phylogenomics is an alternative choice for resolving difficult phylogenies. Methodology/Principal Findings Here we present the complete nucleotide sequences of six woody bamboo chloroplast (cp) genomes using Illumina sequencing. These genomes are similar to those of other grasses and rather conservative in evolution. We constructed a phylogeny of Poaceae from 24 complete cp genomes including 21 grass species. Within the BEP clade, we found strong support for a sister relationship between Bambusoideae and Pooideae. In a substantial improvement over prior studies, all six nodes within Bambusoideae were supported with ≥0.95 posterior probability from Bayesian inference and 5/6 nodes resolved with 100% bootstrap support in maximum parsimony and maximum likelihood analyses. We found that repeats in the cp genome could provide phylogenetic information, while caution is needed when using indels in phylogenetic analyses based on few selected genes. We also identified relatively rapidly evolving cp genome regions that have the potential to be used for further phylogenetic study in Bambusoideae. Conclusions/Significance The cp genome of Bambusoideae evolved slowly, and phylogenomics based on whole cp genome could be used to resolve major relationships within the subfamily. The difficulty in resolving the diversification among three clades of

  17. Phylogeny of the genus Pistacia as determined from analysis of the chloroplast genome.

    PubMed

    Parfitt, D E; Badenes, M L

    1997-07-22

    Classification within the genus Pistacia has been based on leaf morphology and geographical distribution. Molecular genetic tools (PCR amplification followed by restriction analysis of a 3.2-kb region of variable chloroplast DNA, and restriction fragment length polymorphism analysis of the Pistacia cpDNA with tobacco chloroplast DNA probes) provided a new set of variables to study the phylogenetic relationships of 10 Pistacia species. Both parsimony and cluster analyses were used to divide the genus into two major groups. P. vera was determined to be the least derived species. P. weinmannifolia, an Asian species, is most closely related to P. texana and P. mexicana, New World species. These three species share a common origin, suggesting that a common ancestor of P. texana and P. mexicana originated in Asia. P. integerrima and P. chinensis were shown to be distinct whereas the pairs of species were monophyletic within each of two tertiary groups, P. vera:P. khinjuk and P. mexicana:P. texana. An evolutionary trend from large to small nuts and leaves with few, large leaflets to many, small leaflets was supported. The genus Pistacia was shown to have a low chloroplast DNA mutation rate: 0.05-0.16 times that expected of annual plants. PMID:9223300

  18. Complete Chloroplast Genome Sequence of Poisonous and Medicinal Plant Datura stramonium: Organizations and Implications for Genetic Engineering

    PubMed Central

    Qing, Li; Jinjian, Lu; Xiwen, Li; Yitao, Wang

    2014-01-01

    Datura stramonium is a widely used poisonous plant with great medicinal and economic value. Its chloroplast (cp) genome is 155,871 bp in length with a typical quadripartite structure of the large (LSC, 86,302 bp) and small (SSC, 18,367 bp) single-copy regions, separated by a pair of inverted repeats (IRs, 25,601 bp). The genome contains 113 unique genes, including 80 protein-coding genes, 29 tRNAs and four rRNAs. A total of 11 forward, 9 palindromic and 13 tandem repeats were detected in the D. stramonium cp genome. Most simple sequence repeats (SSR) are AT-rich and are less abundant in coding regions than in non-coding regions. Both SSRs and GC content were unevenly distributed in the entire cp genome. All preferred synonymous codons were found to use A/T ending codons. The difference in GC contents of entire genomes and of the three-codon positions suggests that the D. stramonium cp genome might possess different genomic organization, in part due to different mutational pressures. The five most divergent coding regions and four non-coding regions (trnH-psbA, rps4-trnS, ndhD-ccsA, and ndhI-ndhG) were identified using whole plastome alignment, which can be used to develop molecular markers for phylogenetics and barcoding studies within the Solanaceae. Phylogenetic analysis based on 68 protein-coding genes supported Datura as a sister to Solanum. This study provides valuable information for phylogenetic and cp genetic engineering studies of this poisonous and medicinal plant. PMID:25365514

  19. Complete Chloroplast Genome Sequence of Tartary Buckwheat (Fagopyrum tataricum) and Comparative Analysis with Common Buckwheat (F. esculentum)

    PubMed Central

    Cho, Kwang-Soo; Yun, Bong-Kyoung; Yoon, Young-Ho; Hong, Su-Young; Mekapogu, Manjulatha; Kim, Kyung-Hee; Yang, Tae-Jin

    2015-01-01

    We report the chloroplast (cp) genome sequence of tartary buckwheat (Fagopyrum tataricum) obtained by next-generation sequencing technology and compared this with the previously reported common buckwheat (F. esculentum ssp. ancestrale) cp genome. The cp genome of F. tataricum has a total sequence length of 159,272 bp, which is 327 bp shorter than the common buckwheat cp genome. The cp gene content, order, and orientation are similar to those of common buckwheat, but with some structural variation at tandem and palindromic repeat frequencies and junction areas. A total of seven InDels (around 100 bp) were found within the intergenic sequences and the ycf1 gene. Copy number variation of the 21-bp tandem repeat varied in F. tataricum (four repeats) and F. esculentum (one repeat), and the InDel of the ycf1 gene was 63 bp long. Nucleotide and amino acid have highly conserved coding sequence with about 98% homology and four genes—rpoC2, ycf3, accD, and clpP—have high synonymous (Ks) value. PCR based InDel markers were applied to diverse genetic resources of F. tataricum and F. esculentum, and the amplicon size was identical to that expected in silico. Therefore, these InDel markers are informative biomarkers to practically distinguish raw or processed buckwheat products derived from F. tataricum and F. esculentum. PMID:25966355

  20. Complete Chloroplast Genome Sequence of Tartary Buckwheat (Fagopyrum tataricum) and Comparative Analysis with Common Buckwheat (F. esculentum).

    PubMed

    Cho, Kwang-Soo; Yun, Bong-Kyoung; Yoon, Young-Ho; Hong, Su-Young; Mekapogu, Manjulatha; Kim, Kyung-Hee; Yang, Tae-Jin

    2015-01-01

    We report the chloroplast (cp) genome sequence of tartary buckwheat (Fagopyrum tataricum) obtained by next-generation sequencing technology and compared this with the previously reported common buckwheat (F. esculentum ssp. ancestrale) cp genome. The cp genome of F. tataricum has a total sequence length of 159,272 bp, which is 327 bp shorter than the common buckwheat cp genome. The cp gene content, order, and orientation are similar to those of common buckwheat, but with some structural variation at tandem and palindromic repeat frequencies and junction areas. A total of seven InDels (around 100 bp) were found within the intergenic sequences and the ycf1 gene. Copy number variation of the 21-bp tandem repeat varied in F. tataricum (four repeats) and F. esculentum (one repeat), and the InDel of the ycf1 gene was 63 bp long. Nucleotide and amino acid have highly conserved coding sequence with about 98% homology and four genes--rpoC2, ycf3, accD, and clpP--have high synonymous (Ks) value. PCR based InDel markers were applied to diverse genetic resources of F. tataricum and F. esculentum, and the amplicon size was identical to that expected in silico. Therefore, these InDel markers are informative biomarkers to practically distinguish raw or processed buckwheat products derived from F. tataricum and F. esculentum. PMID:25966355

  1. Amy Lum Fern

    ERIC Educational Resources Information Center

    Rossi, Joe

    2007-01-01

    This article presents an interview with Amy Lum Fern, Hawai'i Department of Education teacher from 1933 to 1972. Amy Lum Fern was born in Honolulu in 1909. She received her early education at Central Grammar School and later attended McKinley High School. After graduating from McKinley in 1928, she entered the University of Hawai'i, where she…

  2. Conservation of fern spores

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ferns are a diverse and important group of plants, but diversity of species and populations are at risk from increasing social pressures, loss of habitat and climate change. Ex situ conservation is a useful strategy to limit decline in genetic diversity and requires technologies to preserve fern ger...

  3. Cryopreservation of fern spores

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spore banks for ferns are analogous to seed banks for angiosperms and provide a promising ex situ conservation tool because large quantities of germplasm with high genetic variation can be conserved in a small space with low economic and technical costs. Ferns produce two types of spores with very ...

  4. Comparative analysis of complete chloroplast genome sequences of two tropical trees Machilus yunnanensis and Machilus balansae in the family Lauraceae

    PubMed Central

    Song, Yu; Dong, Wenpan; Liu, Bing; Xu, Chao; Yao, Xin; Gao, Jie; Corlett, Richard T.

    2015-01-01

    Machilus is a large (c. 100 sp.) genus of trees in the family Lauraceae, distributed in tropical and subtropical East Asia. Both molecular species identification and phylogenetic studies of this morphologically uniform genus have been constrained by insufficient variable sites among frequently used biomarkers. To better understand the mutation patterns in the chloroplast genome of Machilus, the complete plastomes of two species were sequenced. The plastomes of Machilus yunnanensis and M. balansae were 152, 622 and 152, 721 bp, respectively. Seven highly variable regions between the two Machilus species were identified and 297 mutation events, including one micro-inversion in the ccsA-ndhD region, 65 indels, and 231 substitutions, were accurately located. Thirty-six microsatellite sites were found for use in species identification and 95 single-nucleotide changes were identified in gene coding regions. PMID:26379689

  5. The complete chloroplast genome of 17 individuals of pest species Jacobaea vulgaris: SNPs, microsatellites and barcoding markers for population and phylogenetic studies.

    PubMed

    Doorduin, Leonie; Gravendeel, Barbara; Lammers, Youri; Ariyurek, Yavuz; Chin-A-Woeng, Thomas; Vrieling, Klaas

    2011-04-01

    Invasive individuals from the pest species Jacobaea vulgaris show different allocation patterns in defence and growth compared with native individuals. To examine if these changes are caused by fast evolution, it is necessary to identify native source populations and compare these with invasive populations. For this purpose, we are in need of intraspecific polymorphic markers. We therefore sequenced the complete chloroplast genomes of 12 native and 5 invasive individuals of J. vulgaris with next generation sequencing and discovered single-nucleotide polymorphisms (SNPs) and microsatellites. This is the first study in which the chloroplast genome of that many individuals within a single species was sequenced. Thirty-two SNPs and 34 microsatellite regions were found. For none of the individuals, differences were found between the inverted repeats. Furthermore, being the first chloroplast genome sequenced in the Senecioneae clade, we compared it with four other members of the Asteraceae family to identify new regions for phylogentic inference within this clade and also within the Asteraceae family. Five markers (ndhC-trnV, ndhC-atpE, rps18-rpl20, clpP and psbM-trnD) contained parsimony-informative characters higher than 2%. Finally, we compared two procedures of preparing chloroplast DNA for next generation sequencing. PMID:21444340

  6. The Complete Chloroplast Genome of 17 Individuals of Pest Species Jacobaea vulgaris: SNPs, Microsatellites and Barcoding Markers for Population and Phylogenetic Studies

    PubMed Central

    Doorduin, Leonie; Gravendeel, Barbara; Lammers, Youri; Ariyurek, Yavuz; Chin-A-Woeng, Thomas; Vrieling, Klaas

    2011-01-01

    Invasive individuals from the pest species Jacobaea vulgaris show different allocation patterns in defence and growth compared with native individuals. To examine if these changes are caused by fast evolution, it is necessary to identify native source populations and compare these with invasive populations. For this purpose, we are in need of intraspecific polymorphic markers. We therefore sequenced the complete chloroplast genomes of 12 native and 5 invasive individuals of J. vulgaris with next generation sequencing and discovered single-nucleotide polymorphisms (SNPs) and microsatellites. This is the first study in which the chloroplast genome of that many individuals within a single species was sequenced. Thirty-two SNPs and 34 microsatellite regions were found. For none of the individuals, differences were found between the inverted repeats. Furthermore, being the first chloroplast genome sequenced in the Senecioneae clade, we compared it with four other members of the Asteraceae family to identify new regions for phylogentic inference within this clade and also within the Asteraceae family. Five markers (ndhC-trnV, ndhC-atpE, rps18-rpl20, clpP and psbM-trnD) contained parsimony-informative characters higher than 2%. Finally, we compared two procedures of preparing chloroplast DNA for next generation sequencing. PMID:21444340

  7. Capturing the Biofuel Wellhead and Powerhouse: The Chloroplast and Mitochondrial Genomes of the Leguminous Feedstock Tree Pongamia pinnata

    PubMed Central

    Kazakoff, Stephen H.; Imelfort, Michael; Edwards, David; Koehorst, Jasper; Biswas, Bandana; Batley, Jacqueline; Scott, Paul T.; Gresshoff, Peter M.

    2012-01-01

    Pongamia pinnata (syn. Millettia pinnata) is a novel, fast-growing arboreal legume that bears prolific quantities of oil-rich seeds suitable for the production of biodiesel and aviation biofuel. Here, we have used Illumina® ‘Second Generation DNA Sequencing (2GS)’ and a new short-read de novo assembler, SaSSY, to assemble and annotate the Pongamia chloroplast (152,968 bp; cpDNA) and mitochondrial (425,718 bp; mtDNA) genomes. We also show that SaSSY can be used to accurately assemble 2GS data, by re-assembling the Lotus japonicus cpDNA and in the process assemble its mtDNA (380,861 bp). The Pongamia cpDNA contains 77 unique protein-coding genes and is almost 60% gene-dense. It contains a 50 kb inversion common to other legumes, as well as a novel 6.5 kb inversion that is responsible for the non-disruptive, re-orientation of five protein-coding genes. Additionally, two copies of an inverted repeat firmly place the species outside the subclade of the Fabaceae lacking the inverted repeat. The Pongamia and L. japonicus mtDNA contain just 33 and 31 unique protein-coding genes, respectively, and like other angiosperm mtDNA, have expanded intergenic and multiple repeat regions. Through comparative analysis with Vigna radiata we measured the average synonymous and non-synonymous divergence of all three legume mitochondrial (1.59% and 2.40%, respectively) and chloroplast (8.37% and 8.99%, respectively) protein-coding genes. Finally, we explored the relatedness of Pongamia within the Fabaceae and showed the utility of the organellar genome sequences by mapping transcriptomic data to identify up- and down-regulated stress-responsive gene candidates and confirm in silico predicted RNA editing sites. PMID:23272141

  8. Sequencing of chloroplast genomes from wheat, barley, rye and their relatives provides a detailed insight into the evolution of the Triticeae tribe.

    PubMed

    Middleton, Christopher P; Senerchia, Natacha; Stein, Nils; Akhunov, Eduard D; Keller, Beat; Wicker, Thomas; Kilian, Benjamin

    2014-01-01

    Using Roche/454 technology, we sequenced the chloroplast genomes of 12 Triticeae species, including bread wheat, barley and rye, as well as the diploid progenitors and relatives of bread wheat Triticum urartu, Aegilops speltoides and Ae. tauschii. Two wild tetraploid taxa, Ae. cylindrica and Ae. geniculata, were also included. Additionally, we incorporated wild Einkorn wheat Triticum boeoticum and its domesticated form T. monococcum and two Hordeum spontaneum (wild barley) genotypes. Chloroplast genomes were used for overall sequence comparison, phylogenetic analysis and dating of divergence times. We estimate that barley diverged from rye and wheat approximately 8-9 million years ago (MYA). The genome donors of hexaploid wheat diverged between 2.1-2.9 MYA, while rye diverged from Triticum aestivum approximately 3-4 MYA, more recently than previously estimated. Interestingly, the A genome taxa T. boeoticum and T. urartu were estimated to have diverged approximately 570,000 years ago. As these two have a reproductive barrier, the divergence time estimate also provides an upper limit for the time required for the formation of a species boundary between the two. Furthermore, we conclusively show that the chloroplast genome of hexaploid wheat was contributed by the B genome donor and that this unknown species diverged from Ae. speltoides about 980,000 years ago. Additionally, sequence alignments identified a translocation of a chloroplast segment to the nuclear genome which is specific to the rye/wheat lineage. We propose the presented phylogeny and divergence time estimates as a reference framework for future studies on Triticeae. PMID:24614886

  9. Metabolic engineering of the chloroplast genome reveals that the yeast ArDH gene confers enhanced tolerance to salinity and drought in plants.

    PubMed

    Khan, Muhammad Sarwar; Kanwal, Benish; Nazir, Shahid

    2015-01-01

    Osmoprotectants stabilize proteins and membranes against the denaturing effect of high concentrations of salts and other harmful solutes. In yeast, arabitol dehydrogenase (ArDH) reduces D-ribulose to D-arabitol where D-ribulose is derived by dephosphorylating D-ribulose-5-PO4 in the oxidized pentose pathway. Osmotolerance in plants could be developed through metabolic engineering of chloroplast genome by introducing genes encoding polyols since chloroplasts offer high level transgene expression and containment. Here, we report that ArDH expression in tobacco chloroplasts confers tolerance to NaCl (up to 400 mM). Transgenic plants compared to wild type (WT) survived for only 4-5 weeks on 400 mM NaCl whereas plants remained green and grew normal on concentrations up to 350 mM NaCl. Further, a-week-old seedlings were also challenged with poly ethylene glycol (PEG, up to 6%) in the liquid medium, considering that membranes and proteins are protected under stress conditions due to accumulation of arabitol in chloroplasts. Seedlings were tolerant to 6% PEG, suggesting that ARDH enzyme maintains integrity of membranes in chloroplasts under drought conditions via metabolic engineering. Hence, the gene could be expressed in agronomic plants to withstand abiotic stresses. PMID:26442039

  10. Metabolic engineering of the chloroplast genome reveals that the yeast ArDH gene confers enhanced tolerance to salinity and drought in plants

    PubMed Central

    Khan, Muhammad Sarwar; Kanwal, Benish; Nazir, Shahid

    2015-01-01

    Osmoprotectants stabilize proteins and membranes against the denaturing effect of high concentrations of salts and other harmful solutes. In yeast, arabitol dehydrogenase (ArDH) reduces D-ribulose to D-arabitol where D-ribulose is derived by dephosphorylating D-ribulose-5-PO4 in the oxidized pentose pathway. Osmotolerance in plants could be developed through metabolic engineering of chloroplast genome by introducing genes encoding polyols since chloroplasts offer high level transgene expression and containment. Here, we report that ArDH expression in tobacco chloroplasts confers tolerance to NaCl (up to 400 mM). Transgenic plants compared to wild type (WT) survived for only 4–5 weeks on 400 mM NaCl whereas plants remained green and grew normal on concentrations up to 350 mM NaCl. Further, a-week-old seedlings were also challenged with poly ethylene glycol (PEG, up to 6%) in the liquid medium, considering that membranes and proteins are protected under stress conditions due to accumulation of arabitol in chloroplasts. Seedlings were tolerant to 6% PEG, suggesting that ARDH enzyme maintains integrity of membranes in chloroplasts under drought conditions via metabolic engineering. Hence, the gene could be expressed in agronomic plants to withstand abiotic stresses. PMID:26442039

  11. Discovery of the rpl10 Gene in Diverse Plant Mitochondrial Genomes and Its Probable Replacement by the Nuclear Gene for Chloroplast RPL10 in Two Lineages of Angiosperms

    PubMed Central

    Kubo, Nakao; Arimura, Shin-ichi

    2010-01-01

    Mitochondrial genomes of plants are much larger than those of mammals and often contain conserved open reading frames (ORFs) of unknown function. Here, we show that one of these conserved ORFs is actually the gene for ribosomal protein L10 (rpl10) in plant. No rpl10 gene has heretofore been reported in any mitochondrial genome other than the exceptionally gene-rich genome of the protist Reclinomonas americana. Conserved ORFs corresponding to rpl10 are present in a wide diversity of land plant and green algal mitochondrial genomes. The mitochondrial rpl10 genes are transcribed in all nine land plants examined, with five seed plant genes subject to RNA editing. In addition, mitochondrial-rpl10-like cDNAs were identified in EST libraries from numerous land plants. In three lineages of angiosperms, rpl10 is either lost from the mitochondrial genome or a pseudogene. In two of them (Brassicaceae and monocots), no nuclear copy of mitochondrial rpl10 is identifiably present, and instead a second copy of nuclear-encoded chloroplast rpl10 is present. Transient assays using green fluorescent protein indicate that this duplicate gene is dual targeted to mitochondria and chloroplasts. We infer that mitochondrial rpl10 has been functionally replaced by duplicated chloroplast counterparts in Brassicaceae and monocots. PMID:19934175

  12. Phylogenetic analyses of Vitis (Vitaceae) based on complete chloroplast genome sequences: effects of taxon sampling and phylogenetic methods on resolving relationships among rosids

    PubMed Central

    Jansen, Robert K; Kaittanis, Charalambos; Saski, Christopher; Lee, Seung-Bum; Tomkins, Jeffrey; Alverson, Andrew J; Daniell, Henry

    2006-01-01

    Background The Vitaceae (grape) is an economically important family of angiosperms whose phylogenetic placement is currently unresolved. Recent phylogenetic analyses based on one to several genes have suggested several alternative placements of this family, including sister to Caryophyllales, asterids, Saxifragales, Dilleniaceae or to rest of rosids, though support for these different results has been weak. There has been a recent interest in using complete chloroplast genome sequences for resolving phylogenetic relationships among angiosperms. These studies have clarified relationships among several major lineages but they have also emphasized the importance of taxon sampling and the effects of different phylogenetic methods for obtaining accurate phylogenies. We sequenced the complete chloroplast genome of Vitis vinifera and used these data to assess relationships among 27 angiosperms, including nine taxa of rosids. Results The Vitis vinifera chloroplast genome is 160,928 bp in length, including a pair of inverted repeats of 26,358 bp that are separated by small and large single copy regions of 19,065 bp and 89,147 bp, respectively. The gene content and order of Vitis is identical to many other unrearranged angiosperm chloroplast genomes, including tobacco. Phylogenetic analyses using maximum parsimony and maximum likelihood were performed on DNA sequences of 61 protein-coding genes for two datasets with 28 or 29 taxa, including eight or nine taxa from four of the seven currently recognized major clades of rosids. Parsimony and likelihood phylogenies of both data sets provide strong support for the placement of Vitaceae as sister to the remaining rosids. However, the position of the Myrtales and support for the monophyly of the eurosid I clade differs between the two data sets and the two methods of analysis. In parsimony analyses, the inclusion of Gossypium is necessary to obtain trees that support the monophyly of the eurosid I clade. However, maximum

  13. Bracken fern poisoning

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bracken fern (Pteridium aquilinum) is found throughout the world and enzootic hematuria, bright blindness, and bracken staggers. This chapter reviews the plant, the various poisoning syndrome that it produces, the current strategies to prevent poisoning, and recommended treatments....

  14. Identification of chloroplast genome loci suitable for high-resolution phylogeographic studies of Colocasia esculenta (L.) Schott (Araceae) and closely related taxa.

    PubMed

    Ahmed, Ibrar; Matthews, Peter J; Biggs, Patrick J; Naeem, Muhammad; McLenachan, Patricia A; Lockhart, Peter J

    2013-09-01

    Recently, we reported the chloroplast genome-wide association of oligonucleotide repeats, indels and nucleotide substitutions in aroid chloroplast genomes. We hypothesized that the distribution of oligonucleotide repeat sequences in a single representative genome can be used to identify mutational hotspots and loci suitable for population genetic, phylogenetic and phylogeographic studies. Using information on the location of oligonucleotide repeats in the chloroplast genome of taro (Colocasia esculenta), we designed 30 primer pairs to amplify and sequence polymorphic loci. The primers have been tested in a range of intra-specific to intergeneric comparisons, including ten taro samples (Colocasia esculenta) from diverse geographical locations, four other Colocasia species (C. affinis, C. fallax, C. formosana, C. gigantea) and three other aroid genera (represented by Remusatia vivipara, Alocasia brisbanensis and Amorphophallus konjac). Multiple sequence alignments for the intra-specific comparison revealed nucleotide substitutions (point mutations) at all 30 loci and microsatellite polymorphisms at 14 loci. The primer pairs reported here reveal levels of genetic variation suitable for high-resolution phylogeographic and evolutionary studies of taro and other closely related aroids. Our results confirm that information on repeat distribution can be used to identify loci suitable for such studies, and we expect that this approach can be used in other plant groups. PMID:23718317

  15. Terpene metabolic engineering via nuclear or chloroplast genomes profoundly and globally impacts off-target pathways through metabolite signalling.

    PubMed

    Pasoreck, Elise K; Su, Jin; Silverman, Ian M; Gosai, Sager J; Gregory, Brian D; Yuan, Joshua S; Daniell, Henry

    2016-09-01

    The impact of metabolic engineering on nontarget pathways and outcomes of metabolic engineering from different genomes are poorly understood questions. Therefore, squalene biosynthesis genes FARNESYL DIPHOSPHATE SYNTHASE (FPS) and SQUALENE SYNTHASE (SQS) were engineered via the Nicotiana tabacum chloroplast (C), nuclear (N) or both (CN) genomes to promote squalene biosynthesis. SQS levels were ~4300-fold higher in C and CN lines than in N, but all accumulated ~150-fold higher squalene due to substrate or storage limitations. Abnormal leaf and flower phenotypes, including lower pollen production and reduced fertility, were observed regardless of the compartment or level of transgene expression. Substantial changes in metabolomes of all lines were observed: levels of 65-120 unrelated metabolites, including the toxic alkaloid nicotine, changed by as much as 32-fold. Profound effects of transgenesis on nontarget gene expression included changes in the abundance of 19 076 transcripts by up to 2000-fold in CN; 7784 transcripts by up to 1400-fold in N; and 5224 transcripts by as much as 2200-fold in C. Transporter-related transcripts were induced, and cell cycle-associated transcripts were disproportionally repressed in all three lines. Transcriptome changes were validated by qRT-PCR. The mechanism underlying these large changes likely involves metabolite-mediated anterograde and/or retrograde signalling irrespective of the level of transgene expression or end product, due to imbalance of metabolic pools, offering new insight into both anticipated and unanticipated consequences of metabolic engineering. PMID:27507797

  16. Ultra-barcoding in cacao (Theobroma spp.; malvaceae) using whole chloroplast genomes and nuclear ribosomal DNA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High-throughput next-generation sequencing was used to scan the genome and generate reliable sequence of high copy number regions. Using this method, we examined whole plastid genomes as well as nearly 6000 bases of nuclear ribosomal DNA sequences for nine genotypes of Theobroma cacao and an indivi...

  17. Complete chloroplast genome sequences of Drimys, Liriodendron, andPiper: Implications for the phylogeny of magnoliids and the evolution ofGC content

    SciTech Connect

    Zhengqiu, C.; Penaflor, C.; Kuehl, J.V.; Leebens-Mack, J.; Carlson, J.; dePamphilis, C.W.; Boore, J.L.; Jansen, R.K.

    2006-06-01

    The magnoliids represent the largest basal angiosperm clade with four orders, 19 families and 8,500 species. Although several recent angiosperm molecular phylogenies have supported the monophyly of magnoliids and suggested relationships among the orders, the limited number of genes examined resulted in only weak support, and these issues remain controversial. Furthermore, considerable incongruence has resulted in phylogenies supporting three different sets of relationships among magnoliids and the two large angiosperm clades, monocots and eudicots. This is one of the most important remaining issues concerning relationships among basal angiosperms. We sequenced the chloroplast genomes of three magnoliids, Drimys (Canellales), Liriodendron (Magnoliales), and Piper (Piperales), and used these data in combination with 32 other completed angiosperm chloroplast genomes to assess phylogenetic relationships among magnoliids. The Drimys and Piper chloroplast genomes are nearly identical in size at 160,606 and 160,624 bp, respectively. The genomes include a pair of inverted repeats of 26,649 bp (Drimys) and 27,039 (Piper), separated by a small single copy region of 18,621 (Drimys) and 18,878 (Piper) and a large single copy region of 88,685 bp (Drimys) and 87,666 bp (Piper). The gene order of both taxa is nearly identical to many other unrearranged angiosperm chloroplast genomes, including Calycanthus, the other published magnoliid genome. Comparisons of angiosperm chloroplast genomes indicate that GC content is not uniformly distributed across the genome. Overall GC content ranges from 34-39%, and coding regions have a substantially higher GC content than non-coding regions (both intergenic spacers and introns). Among protein-coding genes, GC content varies by codon position with 1st codon > 2nd codon > 3rd codon, and it varies by functional group with photosynthetic genes having the highest percentage and NADH genes the lowest. Across the genome, GC content is highest in

  18. The Chloroplast Genome of the Green Alga Schizomeris leibleinii (Chlorophyceae) Provides Evidence for Bidirectional DNA Replication from a Single Origin in the Chaetophorales

    PubMed Central

    Brouard, Jean-Simon; Otis, Christian; Lemieux, Claude; Turmel, Monique

    2011-01-01

    In the Chlorophyceae, the chloroplast genome is extraordinarily fluid in architecture and displays unique features relative to other groups of green algae. For the Chaetophorales, 1 of the 5 major lineages of the Chlorophyceae, it has been shown that the distinctive architecture of the 223,902-bp genome of Stigeoclonium helveticum is consistent with bidirectional DNA replication from a single origin. Here, we report the 182,759-bp chloroplast genome sequence of Schizomeris leibleinii, a member of the earliest diverging lineage of the Chaetophorales. Like its Stigeoclonium homolog, the Schizomeris genome lacks a large inverted repeat encoding the rRNA operon and displays a striking bias in coding regions that is associated with a bias in base composition along each strand. Our results support the notion that these two chaetophoralean genomes replicate bidirectionally from a putative origin located in the vicinity of the small subunit ribosomal RNA gene. Their shared structural characteristics were most probably inherited from the common ancestor of all chaetophoralean algae. Short dispersed repeats account for most of the 41-kb size variation between the Schizomeris and Stigeoclonium genomes, and there is no indication that homologous recombination between these repeated elements led to the observed gene rearrangements. A comparison of the extent of variation sustained by the Stigeoclonium and Schizomeris chloroplast DNAs (cpDNAs) with that observed for the cpDNAs of the chlamydomonadalean Chlamydomonas and Volvox suggests that gene rearrangements as well as changes in the abundance of intergenic and intron sequences occurred at a slower pace in the Chaetophorales than in the Chlamydomonadales. PMID:21546564

  19. The chloroplast genome of the green alga Schizomeris leibleinii (Chlorophyceae) provides evidence for bidirectional DNA replication from a single origin in the chaetophorales.

    PubMed

    Brouard, Jean-Simon; Otis, Christian; Lemieux, Claude; Turmel, Monique

    2011-01-01

    In the Chlorophyceae, the chloroplast genome is extraordinarily fluid in architecture and displays unique features relative to other groups of green algae. For the Chaetophorales, 1 of the 5 major lineages of the Chlorophyceae, it has been shown that the distinctive architecture of the 223,902-bp genome of Stigeoclonium helveticum is consistent with bidirectional DNA replication from a single origin. Here, we report the 182,759-bp chloroplast genome sequence of Schizomeris leibleinii, a member of the earliest diverging lineage of the Chaetophorales. Like its Stigeoclonium homolog, the Schizomeris genome lacks a large inverted repeat encoding the rRNA operon and displays a striking bias in coding regions that is associated with a bias in base composition along each strand. Our results support the notion that these two chaetophoralean genomes replicate bidirectionally from a putative origin located in the vicinity of the small subunit ribosomal RNA gene. Their shared structural characteristics were most probably inherited from the common ancestor of all chaetophoralean algae. Short dispersed repeats account for most of the 41-kb size variation between the Schizomeris and Stigeoclonium genomes, and there is no indication that homologous recombination between these repeated elements led to the observed gene rearrangements. A comparison of the extent of variation sustained by the Stigeoclonium and Schizomeris chloroplast DNAs (cpDNAs) with that observed for the cpDNAs of the chlamydomonadalean Chlamydomonas and Volvox suggests that gene rearrangements as well as changes in the abundance of intergenic and intron sequences occurred at a slower pace in the Chaetophorales than in the Chlamydomonadales. PMID:21546564

  20. Sequencing Cucumber (Cucumis Sativus L.) Chloroplast Genomes Identifies Differences Between Chilling-Tolerant and-Susceptible Cucumber Lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Complete sequencing of cucumber chloroplast (cp)DNA was facilitated by the development of 414 consensus chloroplast sequencing primers (CCSPs) from conserved cpDNA sequences of Arabidopsis (Arabidopsis thaliana L.), spinach (Spinacia oleracea L.), and tobacco (Nicotiana tabacum L.) cpDNAs, using deg...

  1. Comparative chloroplast genomics: Analyses including new sequencesfrom the angiosperms Nuphar advena and Ranunculus macranthus

    SciTech Connect

    Raubeso, Linda A.; Peery, Rhiannon; Chumley, Timothy W.; Dziubek,Chris; Fourcade, H. Matthew; Boore, Jeffrey L.; Jansen, Robert K.

    2007-03-01

    The number of completely sequenced plastid genomes available is growing rapidly. This new array of sequences presents new opportunities to perform comparative analyses. In comparative studies, it is most useful to compare across wide phylogenetic spans and, within angiosperms, to include representatives from basally diverging lineages such as the new genomes reported here: Nuphar advena (from a basal-most lineage) and Ranunculus macranthus (from the basal group of eudicots). We report these two new plastid genome sequences and make comparisons (within angiosperms, seed plants, or all photosynthetic lineages) to evaluate features such as the status of ycf15 and ycf68 as protein coding genes, the distribution of simple sequence repeats (SSRs) and longer dispersed repeats (SDR), and patterns of nucleotide composition.

  2. Indehiscent sporangia enable the accumulation of local fern diversity at the Qinghai-Tibetan Plateau

    PubMed Central

    2012-01-01

    Background Indehiscent sporangia are reported for only a few of derived leptosporangiate ferns. Their evolution has been likely caused by conditions in which promotion of self-fertilization is an evolutionary advantageous strategy such as the colonization of isolated regions and responds to stressful habitat conditions. The Lepisorus clathratus complex provides the opportunity to test this hypothesis because these derived ferns include specimens with regular dehiscent and irregular indehiscent sporangia. The latter occurs preferably in well-defined regions in the Himalaya. Previous studies have shown evidence for multiple origins of indehiscent sporangia and the persistence of populations with indehiscent sporangia at extreme altitudinal ranges of the Qinghai-Tibetan Plateau (QTP). Results Independent phylogenetic relationships reconstructed using DNA sequences of the uniparentally inherited chloroplast genome and two low-copy nuclear genes confirmed the hypothesis of multiple origins of indehiscent sporangia and the restriction of particular haplotypes to indehiscent sporangia populations in the Lhasa and Nyingchi regions of the QTP. In contrast, the Hengduan Mountains were characterized by high haplotype diversity and the occurrence of accessions with and without indehiscent sporangia. Evidence was found for polyploidy and reticulate evolution in this complex. The putative case of chloroplast capture in the Nyingchi populations provided further evidence for the promotion of isolated but persistent populations by indehiscent sporangia. Conclusions The presented results confirmed the hypothesis that indehiscent sporangia promote the establishment of persistent population in different regions of the QTP. These results are consistent with the expectations of reproductive reassurance by promotion of self-fertilization that played a critical role in the assembly of populations in isolated locations and/or extreme habitats. PMID:22929005

  3. Insights into chloroplast biogenesis and development.

    PubMed

    Pogson, Barry J; Ganguly, Diep; Albrecht-Borth, Verónica

    2015-09-01

    In recent years many advances have been made to obtain insight into chloroplast biogenesis and development. In plants several plastids types exist such as the proplastid (which is the progenitor of all plastids), leucoplasts (group of colourless plastids important for storage including elaioplasts (lipids), amyloplasts (starch) or proteinoplasts (proteins)), chromoplasts (yellow to orange-coloured due to carotenoids, in flowers or in old leaves as gerontoplasts), and the green chloroplasts. Chloroplasts are indispensable for plant development; not only by performing photosynthesis and thus rendering the plant photoautotrophic, but also for biochemical processes (which in some instances can also take place in other plastids types), such as the synthesis of pigments, lipids, and plant hormones and sensing environmental stimuli. Although we understand many aspects of these processes there are gaps in our understanding of the establishment of functional chloroplasts and their regulation. Why is that so? Even though chloroplast function is comparable in all plants and most of the algae, ferns and moss, detailed analyses have revealed many differences, specifically with respect to its biogenesis. As an update to our prior review on the genetic analysis of chloroplast biogenesis and development [1] herein we will focus on recent advances in Angiosperms (monocotyledonous and dicotyledonous plants) that provide novel insights and highlight the challenges and prospects for unravelling the regulation of chloroplast biogenesis specifically during the establishment of the young plants. This article is part of a Special Issue entitled: Chloroplast Biogenesis. PMID:25667967

  4. Flexible Envelope Request Notation (FERN)

    NASA Technical Reports Server (NTRS)

    Zoch, David R.; Lavallee, David; Weinstein, Stuart

    1991-01-01

    The following topics are presented in view graph form and include the following: scheduling application; the motivation for the Flexible Envelope Request Notation (FERN); characteristics of FERN; types of information needed in requests; where information is stored in requests; FERN structures; generic requests; resource availability for pooled resources; expressive notation; temporal constraints; time formats; changes to FERN; sample FERN requests; the temporal relationship between two steps; maximum activity length to limit step delays; alternative requests; the temporal relationship between two activities; and idle resource usage between steps.

  5. Comparison of mitochondrial and chloroplast genome segments from three onion (Allium cepa L.) cytoplasm types and identification of a trans-splicing intron of cox2.

    PubMed

    Kim, Sunggil; Yoon, Moo-Kyoung

    2010-04-01

    To study genetic relatedness of two male sterility-inducing cytotypes, the phylogenetic relationship among three cytotypes of onions (Allium cepa L.) was assessed by analyzing polymorphisms of the mitochondrial DNA organization and chloroplast sequences. The atp6 gene and a small open reading frame, orf22, did not differ between the normal and CMS-T cytotypes, but two SNPs and one 4-bp insertion were identified in CMS-S cytotype. Partial sequences of the chloroplast ycf2 gene were integrated in the upstream sequence of the cob gene via short repeat sequence-mediated recombination. However, this chloroplast DNA-integrated organization was detected only in CMS-S. Interestingly, disruption of a group II intron of cox2 was identified for the first time in this study. Like other trans-splicing group II introns in mitochondrial genomes, fragmentation of the intron occurred in domain IV. Two variants of each exon1 and exon2 flanking sequences were identified. The predominant types of four variants were identical in both the normal and the CMS-T cytotypes. These predominant types existed as sublimons in CMS-S cytotypes. Altogether, no differences were identified between normal and CMS-T, but significant differences in gene organization and nucleotide sequences were identified in CMS-S, suggesting recent origin of CMS-T male-sterility from the normal cytotype. PMID:20127247

  6. Chloroplast ribosomes and protein synthesis.

    PubMed Central

    Harris, E H; Boynton, J E; Gillham, N W

    1994-01-01

    Consistent with their postulated origin from endosymbiotic cyanobacteria, chloroplasts of plants and algae have ribosomes whose component RNAs and proteins are strikingly similar to those of eubacteria. Comparison of the secondary structures of 16S rRNAs of chloroplasts and bacteria has been particularly useful in identifying highly conserved regions likely to have essential functions. Comparative analysis of ribosomal protein sequences may likewise prove valuable in determining their roles in protein synthesis. This review is concerned primarily with the RNAs and proteins that constitute the chloroplast ribosome, the genes that encode these components, and their expression. It begins with an overview of chloroplast genome structure in land plants and algae and then presents a brief comparison of chloroplast and prokaryotic protein-synthesizing systems and a more detailed analysis of chloroplast rRNAs and ribosomal proteins. A description of the synthesis and assembly of chloroplast ribosomes follows. The review concludes with discussion of whether chloroplast protein synthesis is essential for cell survival. PMID:7854253

  7. Complete Chloroplast Genome Sequence of Holoparasite Cistanche deserticola (Orobanchaceae) Reveals Gene Loss and Horizontal Gene Transfer from Its Host Haloxylon ammodendron (Chenopodiaceae)

    PubMed Central

    Qiao, Qin; Ren, Zhumei; Zhao, Jiayuan; Yonezawa, Takahiro; Hasegawa, Masami; Crabbe, M. James C; Li, Jianqiang; Zhong, Yang

    2013-01-01

    Background The central function of chloroplasts is to carry out photosynthesis, and its gene content and structure are highly conserved across land plants. Parasitic plants, which have reduced photosynthetic ability, suffer gene losses from the chloroplast (cp) genome accompanied by the relaxation of selective constraints. Compared with the rapid rise in the number of cp genome sequences of photosynthetic organisms, there are limited data sets from parasitic plants. Principal Findings/Significance Here we report the complete sequence of the cp genome of Cistanche deserticola, a holoparasitic desert species belonging to the family Orobanchaceae. The cp genome of C. deserticola is greatly reduced both in size (102,657 bp) and in gene content, indicating that all genes required for photosynthesis suffer from gene loss and pseudogenization, except for psbM. The striking difference from other holoparasitic plants is that it retains almost a full set of tRNA genes, and it has lower dN/dS for most genes than another close holoparasitic plant, E. virginiana, suggesting that Cistanche deserticola has undergone fewer losses, either due to a reduced level of holoparasitism, or to a recent switch to this life history. We also found that the rpoC2 gene was present in two copies within C. deserticola. Its own copy has much shortened and turned out to be a pseudogene. Another copy, which was not located in its cp genome, was a homolog of the host plant, Haloxylon ammodendron (Chenopodiaceae), suggesting that it was acquired from its host via a horizontal gene transfer. PMID:23554920

  8. Genetic Analysis of Chloroplast Translation

    SciTech Connect

    Barkan, Alice

    2005-08-15

    The assembly of the photosynthetic apparatus requires the concerted action of hundreds of genes distributed between the two physically separate genomes in the nucleus and chloroplast. Nuclear genes coordinate this process by controlling the expression of chloroplast genes in response to developmental and environmental cues. However, few regulatory factors have been identified. We used mutant phenotypes to identify nuclear genes in maize that modulate chloroplast translation, a key control point in chloroplast gene expression. This project focused on the nuclear gene crp1, required for the translation of two chloroplast mRNAs. CRP1 is related to fungal proteins involved in the translation of mitochondrial mRNAs, and is the founding member of a large gene family in plants, with {approx}450 members. Members of the CRP1 family are defined by a repeated 35 amino acid motif called a ''PPR'' motif. The PPR motif is closely related to the TPR motif, which mediates protein-protein interactions. We and others have speculated that PPR tracts adopt a structure similar to that of TPR tracts, but with a substrate binding surface adapted to bind RNA instead of protein. To understand how CRP1 influences the translation of specific chloroplast mRNAs, we sought proteins that interact with CRP1, and identified the RNAs associated with CRP1 in vivo. We showed that CRP1 is associated in vivo with the mRNAs whose translation it activates. To explore the functions of PPR proteins more generally, we sought mutations in other PPR-encoding genes: mutations in the maize PPR2 and PPR4 were shown to disrupt chloroplast ribosome biogenesis and chloroplast trans-splicing, respectively. These and other results suggest that the nuclear-encoded PPR family plays a major role in modulating the expression of the chloroplast genome in higher plants.

  9. Dynamics of Chloroplast Translation during Chloroplast Differentiation in Maize

    PubMed Central

    Chotewutmontri, Prakitchai; Barkan, Alice

    2016-01-01

    Chloroplast genomes in land plants contain approximately 100 genes, the majority of which reside in polycistronic transcription units derived from cyanobacterial operons. The expression of chloroplast genes is integrated into developmental programs underlying the differentiation of photosynthetic cells from non-photosynthetic progenitors. In C4 plants, the partitioning of photosynthesis between two cell types, bundle sheath and mesophyll, adds an additional layer of complexity. We used ribosome profiling and RNA-seq to generate a comprehensive description of chloroplast gene expression at four stages of chloroplast differentiation, as displayed along the maize seedling leaf blade. The rate of protein output of most genes increases early in development and declines once the photosynthetic apparatus is mature. The developmental dynamics of protein output fall into several patterns. Programmed changes in mRNA abundance make a strong contribution to the developmental shifts in protein output, but output is further adjusted by changes in translational efficiency. RNAs with prioritized translation early in development are largely involved in chloroplast gene expression, whereas those with prioritized translation in photosynthetic tissues are generally involved in photosynthesis. Differential gene expression in bundle sheath and mesophyll chloroplasts results primarily from differences in mRNA abundance, but differences in translational efficiency amplify mRNA-level effects in some instances. In most cases, rates of protein output approximate steady-state protein stoichiometries, implying a limited role for proteolysis in eliminating unassembled or damaged proteins under non-stress conditions. Tuned protein output results from gene-specific trade-offs between translational efficiency and mRNA abundance, both of which span a large dynamic range. Analysis of ribosome footprints at sites of RNA editing showed that the chloroplast translation machinery does not generally

  10. Gene transfer from a parasitic flowering plant to a fern

    PubMed Central

    Davis, Charles C; Anderson, William R; Wurdack, Kenneth J

    2005-01-01

    The rattlesnake fern (Botrychium virginianum (L.) Sw.) is obligately mycotrophic and widely distributed across the northern hemisphere. Three mitochondrial gene regions place this species with other ferns in Ophioglossaceae, while two regions place it as a member of the largely parasitic angiosperm order Santalales (sandalwoods and mistletoes). These discordant phylogenetic placements suggest that part of the genome in B. virginianum was acquired by horizontal gene transfer (HGT), perhaps from root-parasitic Loranthaceae. These transgenes are restricted to B. virginianum and occur across the range of the species. Molecular and life-history traits indicate that the transfer preceded the global expansion of B. virginianum, and that the latter may have happened very rapidly. This is the first report of HGT from an angiosperm to a fern, through either direct parasitism or the mediation of interconnecting fungal symbionts. PMID:16191635

  11. Stable isotope fractionation in photosynthesis: Analysis of autotrophic competence following transformation of the chloroplast genome of Chlamydomonas

    SciTech Connect

    Boynton, J.E.; Gillham, N.W.; Osmond, C.B.

    1991-06-15

    Isotopic techniques needed to assess the interactions between photosynthesis and respiration in Chlamydomonas have been devised for {sup 13}C, using plate and liquid cultures. The effectiveness of various transformation strategies for the chloroplast psbA gene has been evaluated with respect to their utility in constructing and characterizing strains homoplasmic for site-directed mutations in an otherwise isogenic background. Our analysis of the first site-directed change in the D-1 protein of Chlamydomonas indicates that a second site mutation (arg{sub 238} > lys) in the loop between transmembrane helices IV -- V can partially compensate for the reduced photosynthetic performance that accompanies the atrazine resistant mutation (ser{sub 264} > ala/gly) in this alga and in higher plants grown under high light intensities. 31 refs., 2 figs.

  12. The complete chloroplast genome sequence of Brachypodium distachyon: sequence comparison and phylogenetic analysis of eight grass plastomes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat, barley, and rye, of tribe Triticeae in the Poaceae, are among the most important crops worldwide but they present many challenges to genomics-aided crop improvement. Brachypodium distachyon, a close relative of those cereals has recently emerged as a model for grass functional genomics. Seque...

  13. Evolution of Chloroplast J Proteins

    PubMed Central

    Chiu, Chi-Chou; Chen, Lih-Jen; Su, Pai-Hsiang; Li, Hsou-min

    2013-01-01

    Hsp70 chaperones are involved in multiple biological processes and are recruited to specific processes by designated J domain-containing cochaperones, or J proteins. To understand the evolution and functions of chloroplast Hsp70s and J proteins, we identified the Arabidopsis chloroplast J protein constituency using a combination of genomic and proteomic database searches and individual protein import assays. We show that Arabidopsis chloroplasts have at least 19 J proteins, the highest number of confirmed J proteins for any organelle. These 19 J proteins are classified into 11 clades, for which cyanobacteria and glaucophytes only have homologs for one clade, green algae have an additional three clades, and all the other 7 clades are specific to land plants. Each clade also possesses a clade-specific novel motif that is likely used to interact with different client proteins. Gene expression analyses indicate that most land plant-specific J proteins show highly variable expression in different tissues and are down regulated by low temperatures. These results show that duplication of chloroplast Hsp70 in land plants is accompanied by more than doubling of the number of its J protein cochaperones through adding new J proteins with novel motifs, not through duplications within existing families. These new J proteins likely recruit chloroplast Hsp70 to perform tissue specific functions related to biosynthesis rather than to stress resistance. PMID:23894646

  14. The evolution of chloroplast RNA editing.

    PubMed

    Tillich, Michael; Lehwark, Pascal; Morton, Brian R; Maier, Uwe G

    2006-10-01

    RNA editing alters the nucleotide sequence of an RNA molecule so that it deviates from the sequence of its DNA template. Different RNA-editing systems are found in the major eukaryotic lineages, and these systems are thought to have evolved independently. In this study, we provide a detailed analysis of data on C-to-U editing sites in land plant chloroplasts and propose a model for the evolution of RNA editing in land plants. First, our data suggest that the limited RNA-editing system of seed plants and the much more extensive systems found in hornworts and ferns are of monophyletic origin. Further, although some eukaryotic editing systems appear to have evolved to regulate gene expression, or at least are now involved in gene regulation, there is no evidence that RNA editing plays a role in gene regulation in land plant chloroplasts. Instead, our results suggest that land plant chloroplast C-to-U RNA editing originated as a mechanism to generate variation at the RNA level, which could complement variation at the DNA level. Under this model, many of the original sites, particularly in seed plants, have been subsequently lost due to mutation at the DNA level, and the function of extant sites is merely to conserve certain codons. This is the first comprehensive model for the evolution of the chloroplast RNA-editing system of land plants and may also be applicable to the evolution of RNA editing in plant mitochondria. PMID:16835291

  15. Selection of DNA barcoding loci for Nepeta deflersiana Schweinf. ex Hedge from chloroplast and nuclear DNA genomes.

    PubMed

    Al-Qurainy, F; Khan, S; Nadeem, M; Tarroum, M; Gaafar, A R Z

    2014-01-01

    Molecular markers, mainly DNA-based are potential tools for DNA barcoding and phylogenetic study. The plant species belonging to the Nepeta genus have important medicinal value because of the presence of nepetalactones, and they have been used to treat human diseases. We amplified nuclear and chloroplast gene loci to develop a DNA barcode and phylogenetic study of Nepeta deflersiana. Among the studied loci, psbA-trnH and rps16 showed less identity within the genus than the other loci using the Basic Local Alignment Search Tool of the National Center for Biotechnology Information GenBank database. These loci can be used for the development of a DNA barcode to identify and preserve the identity of this species. We also constructed the phylogram of N. deflersiana and other Nepeta species retrieved from the GenBank database (nonredundant DNA-internal transcribed spacer). N. deflersiana was placed in the same clade as N. insaurica with a 99% bootstrap value. PMID:24634170

  16. Organization of a large gene cluster encoding ribosomal proteins in the cyanobacterium Synechococcus sp. strain PCC 6301: comparison of gene clusters among cyanobacteria, eubacteria and chloroplast genomes.

    PubMed

    Sugita, M; Sugishita, H; Fujishiro, T; Tsuboi, M; Sugita, C; Endo, T; Sugiura, M

    1997-08-11

    The structure of a large gene cluster containing 22 ribosomal protein (r-protein) genes of the cyanobacterium Synechococcus sp. strain PCC6301 is presented. Based on DNA and protein sequence analyses, genes encoding r-proteins L3, L4, L23, L2, S19, L22, S3, L16, L29, S17, L14, L24, L5, S8, L6, L18, S5, L15, L36, S13, S11, L17, SecY, adenylate kinase (AK) and the alpha subunit of RNA polymerase were identified. The gene order is similar to that of the E. coli S10, spc and alpha operons. Unlike the corresponding E. coli operons, the genes for r-proteins S4, S10, S14 and L30 are not present in this cluster. The organization of Synechococcus r-protein genes also resembles that of chloroplast (cp) r-protein genes of red and brown algal species. This strongly supports the endosymbiotic theory that the cp genome evolved from an ancient photosynthetic bacterium. PMID:9300823

  17. Motif analysis unveils the possible co-regulation of chloroplast genes and nuclear genes encoding chloroplast proteins.

    PubMed

    Wang, Ying; Ding, Jun; Daniell, Henry; Hu, Haiyan; Li, Xiaoman

    2012-09-01

    Chloroplasts play critical roles in land plant cells. Despite their importance and the availability of at least 200 sequenced chloroplast genomes, the number of known DNA regulatory sequences in chloroplast genomes are limited. In this paper, we designed computational methods to systematically study putative DNA regulatory sequences in intergenic regions near chloroplast genes in seven plant species and in promoter sequences of nuclear genes in Arabidopsis and rice. We found that -35/-10 elements alone cannot explain the transcriptional regulation of chloroplast genes. We also concluded that there are unlikely motifs shared by intergenic sequences of most of chloroplast genes, indicating that these genes are regulated differently. Finally and surprisingly, we found five conserved motifs, each of which occurs in no more than six chloroplast intergenic sequences, are significantly shared by promoters of nuclear-genes encoding chloroplast proteins. By integrating information from gene function annotation, protein subcellular localization analyses, protein-protein interaction data, and gene expression data, we further showed support of the functionality of these conserved motifs. Our study implies the existence of unknown nuclear-encoded transcription factors that regulate both chloroplast genes and nuclear genes encoding chloroplast protein, which sheds light on the understanding of the transcriptional regulation of chloroplast genes. PMID:22733202

  18. Complete Chloroplast and Mitochondrial Genome Sequences of the Hydrocarbon Oil-Producing Green Microalga Botryococcus braunii Race B (Showa)

    PubMed Central

    Blifernez-Klassen, Olga; Wibberg, Daniel; Winkler, Anika; Blom, Jochen; Goesmann, Alexander; Kalinowski, Jörn

    2016-01-01

    The green alga Botryococcus braunii is capable of the production and excretion of high quantities of long-chain hydrocarbons and exopolysaccharides. In this study, we present the complete plastid and mitochondrial genomes of the hydrocarbon-producing microalga Botryococcus braunii race B (Showa), with a total length of 156,498 and 129,356 bp, respectively. PMID:27284138

  19. Horizontal transfer of an adaptive chimeric photoreceptor from bryophytes to ferns.

    PubMed

    Li, Fay-Wei; Villarreal, Juan Carlos; Kelly, Steven; Rothfels, Carl J; Melkonian, Michael; Frangedakis, Eftychios; Ruhsam, Markus; Sigel, Erin M; Der, Joshua P; Pittermann, Jarmila; Burge, Dylan O; Pokorny, Lisa; Larsson, Anders; Chen, Tao; Weststrand, Stina; Thomas, Philip; Carpenter, Eric; Zhang, Yong; Tian, Zhijian; Chen, Li; Yan, Zhixiang; Zhu, Ying; Sun, Xiao; Wang, Jun; Stevenson, Dennis W; Crandall-Stotler, Barbara J; Shaw, A Jonathan; Deyholos, Michael K; Soltis, Douglas E; Graham, Sean W; Windham, Michael D; Langdale, Jane A; Wong, Gane Ka-Shu; Mathews, Sarah; Pryer, Kathleen M

    2014-05-01

    Ferns are well known for their shade-dwelling habits. Their ability to thrive under low-light conditions has been linked to the evolution of a novel chimeric photoreceptor--neochrome--that fuses red-sensing phytochrome and blue-sensing phototropin modules into a single gene, thereby optimizing phototropic responses. Despite being implicated in facilitating the diversification of modern ferns, the origin of neochrome has remained a mystery. We present evidence for neochrome in hornworts (a bryophyte lineage) and demonstrate that ferns acquired neochrome from hornworts via horizontal gene transfer (HGT). Fern neochromes are nested within hornwort neochromes in our large-scale phylogenetic reconstructions of phototropin and phytochrome gene families. Divergence date estimates further support the HGT hypothesis, with fern and hornwort neochromes diverging 179 Mya, long after the split between the two plant lineages (at least 400 Mya). By analyzing the draft genome of the hornwort Anthoceros punctatus, we also discovered a previously unidentified phototropin gene that likely represents the ancestral lineage of the neochrome phototropin module. Thus, a neochrome originating in hornworts was transferred horizontally to ferns, where it may have played a significant role in the diversification of modern ferns. PMID:24733898

  20. Horizontal transfer of an adaptive chimeric photoreceptor from bryophytes to ferns

    PubMed Central

    Li, Fay-Wei; Villarreal, Juan Carlos; Kelly, Steven; Rothfels, Carl J.; Melkonian, Michael; Frangedakis, Eftychios; Ruhsam, Markus; Sigel, Erin M.; Der, Joshua P.; Pittermann, Jarmila; Burge, Dylan O.; Pokorny, Lisa; Larsson, Anders; Chen, Tao; Weststrand, Stina; Thomas, Philip; Carpenter, Eric; Zhang, Yong; Tian, Zhijian; Chen, Li; Yan, Zhixiang; Zhu, Ying; Sun, Xiao; Wang, Jun; Stevenson, Dennis W.; Crandall-Stotler, Barbara J.; Shaw, A. Jonathan; Deyholos, Michael K.; Soltis, Douglas E.; Graham, Sean W.; Windham, Michael D.; Langdale, Jane A.; Wong, Gane Ka-Shu; Mathews, Sarah; Pryer, Kathleen M.

    2014-01-01

    Ferns are well known for their shade-dwelling habits. Their ability to thrive under low-light conditions has been linked to the evolution of a novel chimeric photoreceptor—neochrome—that fuses red-sensing phytochrome and blue-sensing phototropin modules into a single gene, thereby optimizing phototropic responses. Despite being implicated in facilitating the diversification of modern ferns, the origin of neochrome has remained a mystery. We present evidence for neochrome in hornworts (a bryophyte lineage) and demonstrate that ferns acquired neochrome from hornworts via horizontal gene transfer (HGT). Fern neochromes are nested within hornwort neochromes in our large-scale phylogenetic reconstructions of phototropin and phytochrome gene families. Divergence date estimates further support the HGT hypothesis, with fern and hornwort neochromes diverging 179 Mya, long after the split between the two plant lineages (at least 400 Mya). By analyzing the draft genome of the hornwort Anthoceros punctatus, we also discovered a previously unidentified phototropin gene that likely represents the ancestral lineage of the neochrome phototropin module. Thus, a neochrome originating in hornworts was transferred horizontally to ferns, where it may have played a significant role in the diversification of modern ferns. PMID:24733898

  1. Action of Nalidixic Acid on Chloroplast Replication in Euglena gracilis.

    PubMed

    Lyman, H; Jupp, A S; Larrinua, I

    1975-02-01

    The role of light in nalidixic acid bleaching of Euglena gracilis var. bacillaris was investigated. The kinetics of loss of the chloroplast-associated DNA and the sensitivity of chloroplast replication to ultraviolet light was followed during treatment with nalidixic acid. By using the mutant P(4)ZUL, and 3-(3,4-dichlorophenyl)-, 1-dimethylurea, it was demonstrated that the requirement for light was a functioning photosynthetic electron transport system. Ultracentifugal analysis showed a substantial decrease in chloroplast-associated DNA after 6 hours of treatment with nalidixic acid. Ultraviolet target analysis revealed that the number of chloroplast genomes per cell had been reduced. The possible role of light and implications of the reduction in chloroplast genomes for chloroplast replication are discussed. PMID:16659089

  2. Ferns diversified in the shadow of angiosperms.

    PubMed

    Schneider, Harald; Schuettpelz, Eric; Pryer, Kathleen M; Cranfill, Raymond; Magallón, Susana; Lupia, Richard

    2004-04-01

    The rise of angiosperms during the Cretaceous period is often portrayed as coincident with a dramatic drop in the diversity and abundance of many seed-free vascular plant lineages, including ferns. This has led to the widespread belief that ferns, once a principal component of terrestrial ecosystems, succumbed to the ecological predominance of angiosperms and are mostly evolutionary holdovers from the late Palaeozoic/early Mesozoic era. The first appearance of many modern fern genera in the early Tertiary fossil record implies another evolutionary scenario; that is, that the majority of living ferns resulted from a more recent diversification. But a full understanding of trends in fern diversification and evolution using only palaeobotanical evidence is hindered by the poor taxonomic resolution of the fern fossil record in the Cretaceous. Here we report divergence time estimates for ferns and angiosperms based on molecular data, with constraints from a reassessment of the fossil record. We show that polypod ferns (> 80% of living fern species) diversified in the Cretaceous, after angiosperms, suggesting perhaps an ecological opportunistic response to the diversification of angiosperms, as angiosperms came to dominate terrestrial ecosystems. PMID:15058303

  3. Complex chloroplast RNA metabolism: just debugging the genetic programme?

    PubMed Central

    Maier, Uwe G; Bozarth, Andrew; Funk, Helena T; Zauner, Stefan; Rensing, Stefan A; Schmitz-Linneweber, Christian; Börner, Thomas; Tillich, Michael

    2008-01-01

    Background The gene expression system of chloroplasts is far more complex than that of their cyanobacterial progenitor. This gain in complexity affects in particular RNA metabolism, specifically the transcription and maturation of RNA. Mature chloroplast RNA is generated by a plethora of nuclear-encoded proteins acquired or recruited during plant evolution, comprising additional RNA polymerases and sigma factors, and sequence-specific RNA maturation factors promoting RNA splicing, editing, end formation and translatability. Despite years of intensive research, we still lack a comprehensive explanation for this complexity. Results We inspected the available literature and genome databases for information on components of RNA metabolism in land plant chloroplasts. In particular, new inventions of chloroplast-specific mechanisms and the expansion of some gene/protein families detected in land plants lead us to suggest that the primary function of the additional nuclear-encoded components found in chloroplasts is the transgenomic suppression of point mutations, fixation of which occurred due to an enhanced genetic drift exhibited by chloroplast genomes. We further speculate that a fast evolution of transgenomic suppressors occurred after the water-to-land transition of plants. Conclusion Our inspections indicate that several chloroplast-specific mechanisms evolved in land plants to remedy point mutations that occurred after the water-to-land transition. Thus, the complexity of chloroplast gene expression evolved to guarantee the functionality of chloroplast genetic information and may not, with some exceptions, be involved in regulatory functions. PMID:18755031

  4. Further Experiments with Ferns in Culture: Regeneration.

    ERIC Educational Resources Information Center

    Sheffield, Elizabeth; Attree, Stephen M.

    1983-01-01

    Ferns in culture provide versatile and easily manipulated material for a wide variety of experiments and observations. Information is provided that supplements earlier reports of the vast experimental potential of these cryptogams and outlines laboratory exercises which reveal the regenerative behavior of fern tissue. (JN)

  5. Graduates of the FernUniversitat.

    ERIC Educational Resources Information Center

    Bartels, Jorn

    This survey of economics graduates at the FernUniversitat found that relatively few students who enroll in the program pass the final exam. Full-time students have better graduation rates than part-time students, although the FernUniversitat considers the latter as its main target group. Full-time students on the average require the same number of…

  6. rbcL and matK Earn Two Thumbs Up as the Core DNA Barcode for Ferns

    PubMed Central

    Li, Fay-Wei; Kuo, Li-Yaung; Rothfels, Carl J.; Ebihara, Atsushi; Chiou, Wen-Liang; Windham, Michael D.; Pryer, Kathleen M.

    2011-01-01

    Background DNA barcoding will revolutionize our understanding of fern ecology, most especially because the accurate identification of the independent but cryptic gametophyte phase of the fern's life history—an endeavor previously impossible—will finally be feasible. In this study, we assess the discriminatory power of the core plant DNA barcode (rbcL and matK), as well as alternatively proposed fern barcodes (trnH-psbA and trnL-F), across all major fern lineages. We also present plastid barcode data for two genera in the hyperdiverse polypod clade—Deparia (Woodsiaceae) and the Cheilanthes marginata group (currently being segregated as a new genus of Pteridaceae)—to further evaluate the resolving power of these loci. Principal Findings Our results clearly demonstrate the value of matK data, previously unavailable in ferns because of difficulties in amplification due to a major rearrangement of the plastid genome. With its high sequence variation, matK complements rbcL to provide a two-locus barcode with strong resolving power. With sequence variation comparable to matK, trnL-F appears to be a suitable alternative barcode region in ferns, and perhaps should be added to the core barcode region if universal primer development for matK fails. In contrast, trnH-psbA shows dramatically reduced sequence variation for the majority of ferns. This is likely due to the translocation of this segment of the plastid genome into the inverted repeat regions, which are known to have a highly constrained substitution rate. Conclusions Our study provides the first endorsement of the two-locus barcode (rbcL+matK) in ferns, and favors trnL-F over trnH-psbA as a potential back-up locus. Future work should focus on gathering more fern matK sequence data to facilitate universal primer development. PMID:22028918

  7. The complete nucleotide sequence of the cassava (Manihot esculenta) chloroplast genome and the evolution of atpF in Malpighiales: RNA editing and multiple losses of a group II intron

    PubMed Central

    Wurdack, Kenneth J.; Kanagaraj, Anderson; Lee, Seung-Bum; Saski, Christopher; Jansen, Robert K.

    2008-01-01

    The complete sequence of the chloroplast genome of cassava (Manihot esculenta, Euphorbiaceae) has been determined. The genome is 161,453 bp in length and includes a pair of inverted repeats (IR) of 26,954 bp. The genome includes 128 genes; 96 are single copy and 16 are duplicated in the IR. There are four rRNA genes and 30 distinct tRNAs, seven of which are duplicated in the IR. The infA gene is absent; expansion of IRb has duplicated 62 amino acids at the 3′ end of rps19 and a number of coding regions have large insertions or deletions, including insertions within the 23S rRNA gene. There are 17 intron-containing genes in cassava, 15 of which have a single intron while two (clpP, ycf3) have two introns. The usually conserved atpF group II intron is absent and this is the first report of its loss from land plant chloroplast genomes. The phylogenetic distribution of the atpF intron loss was determined by a PCR survey of 251 taxa representing 34 families of Malpighiales and 16 taxa from closely related rosids. The atpF intron is not only missing in cassava but also from closely related Euphorbiaceae and other Malpighiales, suggesting that there have been at least seven independent losses. In cassava and all other sequenced Malphigiales, atpF gene sequences showed a strong association between C-to-T substitutions at nucleotide position 92 and the loss of the intron, suggesting that recombination between an edited mRNA and the atpF gene may be a possible mechanism for the intron loss. PMID:18214421

  8. Transcriptome-Mining for Single-Copy Nuclear Markers in Ferns

    PubMed Central

    Rothfels, Carl J.; Larsson, Anders; Li, Fay-Wei; Sigel, Erin M.; Huiet, Layne; Burge, Dylan O.; Ruhsam, Markus; Graham, Sean W.; Stevenson, Dennis W.; Wong, Gane Ka-Shu; Korall, Petra; Pryer, Kathleen M.

    2013-01-01

    Background Molecular phylogenetic investigations have revolutionized our understanding of the evolutionary history of ferns—the second-most species-rich major group of vascular plants, and the sister clade to seed plants. The general absence of genomic resources available for this important group of plants, however, has resulted in the strong dependence of these studies on plastid data; nuclear or mitochondrial data have been rarely used. In this study, we utilize transcriptome data to design primers for nuclear markers for use in studies of fern evolutionary biology, and demonstrate the utility of these markers across the largest order of ferns, the Polypodiales. Principal Findings We present 20 novel single-copy nuclear regions, across 10 distinct protein-coding genes: ApPEFP_C, cryptochrome 2, cryptochrome 4, DET1, gapCpSh, IBR3, pgiC, SQD1, TPLATE, and transducin. These loci, individually and in combination, show strong resolving power across the Polypodiales phylogeny, and are readily amplified and sequenced from our genomic DNA test set (from 15 diploid Polypodiales species). For each region, we also present transcriptome alignments of the focal locus and related paralogs—curated broadly across ferns—that will allow researchers to develop their own primer sets for fern taxa outside of the Polypodiales. Analyses of sequence data generated from our genomic DNA test set reveal strong effects of partitioning schemes on support levels and, to a much lesser extent, on topology. A model partitioned by codon position is strongly favored, and analyses of the combined data yield a Polypodiales phylogeny that is well-supported and consistent with earlier studies of this group. Conclusions The 20 single-copy regions presented here more than triple the single-copy nuclear regions available for use in ferns. They provide a much-needed opportunity to assess plastid-derived hypotheses of relationships within the ferns, and increase our capacity to explore aspects of

  9. Direct Chloroplast Sequencing: Comparison of Sequencing Platforms and Analysis Tools for Whole Chloroplast Barcoding

    PubMed Central

    Brozynska, Marta; Furtado, Agnelo; Henry, Robert James

    2014-01-01

    Direct sequencing of total plant DNA using next generation sequencing technologies generates a whole chloroplast genome sequence that has the potential to provide a barcode for use in plant and food identification. Advances in DNA sequencing platforms may make this an attractive approach for routine plant identification. The HiSeq (Illumina) and Ion Torrent (Life Technology) sequencing platforms were used to sequence total DNA from rice to identify polymorphisms in the whole chloroplast genome sequence of a wild rice plant relative to cultivated rice (cv. Nipponbare). Consensus chloroplast sequences were produced by mapping sequence reads to the reference rice chloroplast genome or by de novo assembly and mapping of the resulting contigs to the reference sequence. A total of 122 polymorphisms (SNPs and indels) between the wild and cultivated rice chloroplasts were predicted by these different sequencing and analysis methods. Of these, a total of 102 polymorphisms including 90 SNPs were predicted by both platforms. Indels were more variable with different sequencing methods, with almost all discrepancies found in homopolymers. The Ion Torrent platform gave no apparent false SNP but was less reliable for indels. The methods should be suitable for routine barcoding using appropriate combinations of sequencing platform and data analysis. PMID:25329378

  10. Chloroplast and Cytoplasmic Enzymes

    PubMed Central

    Anderson, Louise E.; Pacold, Ivan

    1972-01-01

    Several peaks of aldolase activity are found in the isoelectric focusing pattern of pea (Pisum sativum) leaf chloroplast extracts. One peak, separated by 0.5 pH unit from the major chloroplast aldolase peak, is found when cytoplasmic extracts are focused. The chloroplast and cytoplasmic enzymes have a pH 7.4 optimum with fructose 1,6-diphosphate. The Michaelis constant for fructose-1,6-diphosphate is 19 μM for the chloroplast, 21 μM for the cytoplasmic enzyme, and for sedoheptulose 1,7-diphosphate, 8 μM for the chloroplast enzyme, 18 μM for the cytoplasmic enzyme. Both enzymes are inhibited by d-glyceraldehyde 3-phosphate and by ribulose 1,5-diphosphate. The similarity in the catalytic properties of the isoenzymes suggests that both enzymes have an amphibolic role in carbon metabolism in the green leaf. PMID:16657968

  11. Stable Transformation of Ferns Using Spores as Targets: Pteris vittata and Ceratopteris thalictroides1[W][OPEN

    PubMed Central

    Muthukumar, Balasubramaniam; Joyce, Blake L.; Elless, Mark P.; Stewart, C. Neal

    2013-01-01

    Ferns (Pteridophyta) are very important members of the plant kingdom that lag behind other taxa with regards to our understanding of their genetics, genomics, and molecular biology. We report here, to our knowledge, the first instance of stable transformation of fern with recovery of transgenic sporophytes. Spores of the arsenic hyperaccumulating fern Pteris vittata and tetraploid ‘C-fern Express’ (Ceratopteris thalictroides) were stably transformed by Agrobacterium tumefaciens with constructs containing the P. vittata actin promoter driving a GUSPlus reporter gene. Reporter gene expression assays were performed on multiple tissues and growth stages of gametophytes and sporophytes. Southern-blot analysis confirmed stable transgene integration in recovered sporophytes and also confirmed that no plasmid from A. tumefaciens was present in the sporophyte tissues. We recovered seven independent transformants of P. vittata and four independent C. thalictroides transgenics. Inheritance analyses using β-glucuronidase (GUS) histochemical staining revealed that the GUS transgene was stably expressed in second generation C. thalictroides sporophytic tissues. In an independent experiment, the gusA gene that was driven by the 2× Cauliflower mosaic virus 35S promoter was bombarded into P. vittata spores using biolistics, in which putatively stable transgenic gametophytes were recovered. Transformation procedures required no tissue culture or selectable marker genes. However, we did attempt to use hygromycin selection, which was ineffective for recovering transgenic ferns. This simple stable transformation method should help facilitate functional genomics studies in ferns. PMID:23933990

  12. Chloroplast signaling within, between and beyond cells

    PubMed Central

    Bobik, Krzysztof; Burch-Smith, Tessa M.

    2015-01-01

    The most conspicuous function of plastids is the oxygenic photosynthesis of chloroplasts, yet plastids are super-factories that produce a plethora of compounds that are indispensable for proper plant physiology and development. Given their origins as free-living prokaryotes, it is not surprising that plastids possess their own genomes whose expression is essential to plastid function. This semi-autonomous character of plastids requires the existence of sophisticated regulatory mechanisms that provide reliable communication between them and other cellular compartments. Such intracellular signaling is necessary for coordinating whole-cell responses to constantly varying environmental cues and cellular metabolic needs. This is achieved by plastids acting as receivers and transmitters of specific signals that coordinate expression of the nuclear and plastid genomes according to particular needs. In this review we will consider the so-called retrograde signaling occurring between plastids and nuclei, and between plastids and other organelles. Another important role of the plastid we will discuss is the involvement of plastid signaling in biotic and abiotic stress that, in addition to influencing retrograde signaling, has direct effects on several cellular compartments including the cell wall. We will also review recent evidence pointing to an intriguing function of chloroplasts in regulating intercellular symplasmic transport. Finally, we consider an intriguing yet less widely known aspect of plant biology, chloroplast signaling from the perspective of the entire plant. Thus, accumulating evidence highlights that chloroplasts, with their complex signaling pathways, provide a mechanism for exquisite regulation of plant development, metabolism and responses to the environment. As chloroplast processes are targeted for engineering for improved productivity the effect of such modifications on chloroplast signaling will have to be carefully considered in order to avoid

  13. Isolation, quantification, and analysis of chloroplast DNA.

    PubMed

    Rowan, Beth A; Bendich, Arnold J

    2011-01-01

    Many areas of chloroplast research require methods that can assess the quality and quantity of chloroplast DNA (cpDNA). The study of chloroplast functions that depend on the proper maintenance and expression of the chloroplast genome, understanding cpDNA replication and repair, and the development of technologies for chloroplast transformation are just some of the disciplines that require the isolation of high-quality cpDNA. Arabidopsis thaliana offers several advantages for studying these processes because of the sizeable collection of mutants and natural varieties (accessions) available from stock centers and a broad community of researchers that has developed many other genetic resources. Several approaches for the isolation and quantification of cpDNA have been developed, but little consideration has been given to the strengths and weaknesses and the type of information obtained by each method, especially with respect to A. thaliana. Here, we provide protocols for obtaining high-quality cpDNA for PCR and other applications, and we evaluate several different isolation and analytical methods in order to build a robust framework for the study of cpDNA with this model organism. PMID:21822838

  14. Auxin and chloroplast movements.

    PubMed

    Eckstein, Aleksandra; Krzeszowiec, Weronika; Waligórski, Piotr; Gabryś, Halina

    2016-03-01

    Auxin is involved in a wide spectrum of physiological processes in plants, including responses controlled by the blue light photoreceptors phototropins: phototropic bending and stomatal movement. However, the role of auxin in phototropin-mediated chloroplast movements has never been studied. To address this question we searched for potential interactions between auxin and the chloroplast movement signaling pathway using different experimental approaches and two model plants, Arabidopsis thaliana and Nicotiana tabacum. We observed that the disturbance of auxin homeostasis by shoot decapitation caused a decrease in chloroplast movement parameters, which could be rescued by exogenous auxin application. In several cases, the impairment of polar auxin transport, by chemical inhibitors or in auxin carrier mutants, had a similar negative effect on chloroplast movements. This inhibition was not correlated with changes in auxin levels. Chloroplast relocations were also affected by the antiauxin p-chlorophenoxyisobutyric acid and mutations in genes encoding some of the elements of the SCF(TIR1)-Aux/IAA auxin receptor complex. The observed changes in chloroplast movement parameters are not prominent, which points to a modulatory role of auxin in this process. Taken together, the obtained results suggest that auxin acts indirectly to regulate chloroplast movements, presumably by regulating gene expression via the SCF(TIR1)-Aux/IAA-ARF pathway. Auxin does not seem to be involved in controlling the expression of phototropins. PMID:26467664

  15. Trends and concepts in fern classification

    PubMed Central

    Christenhusz, Maarten J. M.; Chase, Mark W.

    2014-01-01

    Background and Aims Throughout the history of fern classification, familial and generic concepts have been highly labile. Many classifications and evolutionary schemes have been proposed during the last two centuries, reflecting different interpretations of the available evidence. Knowledge of fern structure and life histories has increased through time, providing more evidence on which to base ideas of possible relationships, and classification has changed accordingly. This paper reviews previous classifications of ferns and presents ideas on how to achieve a more stable consensus. Scope An historical overview is provided from the first to the most recent fern classifications, from which conclusions are drawn on past changes and future trends. The problematic concept of family in ferns is discussed, with a particular focus on how this has changed over time. The history of molecular studies and the most recent findings are also presented. Key Results Fern classification generally shows a trend from highly artificial, based on an interpretation of a few extrinsic characters, via natural classifications derived from a multitude of intrinsic characters, towards more evolutionary circumscriptions of groups that do not in general align well with the distribution of these previously used characters. It also shows a progression from a few broad family concepts to systems that recognized many more narrowly and highly controversially circumscribed families; currently, the number of families recognized is stabilizing somewhere between these extremes. Placement of many genera was uncertain until the arrival of molecular phylogenetics, which has rapidly been improving our understanding of fern relationships. As a collective category, the so-called ‘fern allies’ (e.g. Lycopodiales, Psilotaceae, Equisetaceae) were unsurprisingly found to be polyphyletic, and the term should be abandoned. Lycopodiaceae, Selaginellaceae and Isoëtaceae form a clade (the lycopods) that is

  16. Exploring generic delimitation within the fern family Thelypteridaceae.

    PubMed

    He, Li-Juan; Zhang, Xian-Chun

    2012-11-01

    Thelypteridaceae is one of the largest families of polypodioid ferns. The generic classification of the family is still controversial because of high levels of convergent or parallel evolution of morphological characters and a lack of molecular phylogenetic studies. In the present study, phylogenetic analyses of three chloroplast regions (rbcL, rps4 and trnL-trnF intergenic spacer region) for 115 taxa, representing 27 recognized segregates in the family, were conducted to explore infrafamilial relationships and gain further understanding of generic boundaries. The phylogenetic reconstructions resolved six distinct clades (Clade I-VI) with strong support. Seven genera: Cyclogramma, Macrothelypteris, Oreopteris, Phegopteris, Pseudophegopteris, Stegnogramma, and Thelypteris are recognized from Clades I, II, IV, and V. In Clade III, Metathelypteris was supported as monophyletic, but the other segregates Amauropelta, Coryphopteris, and Parathelypteris were polyphyletic or paraphyletic, preventing clear recognition of generic boundaries within this clade without additional sampling. Considering great morphological homoplasy within Clade VI, a large genus Cyclosorus is recognized to comprise several small recognized segregates. Within this clade, Pronephrium, and Christella were revealed to be polyphyletic, but several Asian-endemic segregates, such as Glaphyropteridopsis, Mesopteris, and Pseudocyclosorus were strongly supported as monophyletic. Analyses of the evolution of morphological character states on the molecular phylogeny showed extremely high levels of homoplastic evolution for many diagnostic characters. PMID:22877644

  17. Horsetails are the sister group to all other monilophytes and Marattiales are sister to leptosporangiate ferns.

    PubMed

    Knie, Nils; Fischer, Simon; Grewe, Felix; Polsakiewicz, Monika; Knoop, Volker

    2015-09-01

    The "Monilophyte" clade comprising ferns, horsetails and whisk ferns receives unequivocal support from molecular data as the sister clade to seed plants. However, the branching order of its earliest emerging lineages, the Equisetales (horsetails), the Marattiales, the Ophioglossales/Psilotales and the large group of leptosporangiate ferns has remained dubious. We investigated the mitochondrial nad2 and rpl2 genes as two new, intron-containing loci for a wide sampling of taxa. We found that both group II introns - nad2i542g2 and rpl2i846g2 - are universally present among monilophytes. Both introns have orthologues in seed plants where nad2i542g2 has evolved into a trans-arrangement. In contrast and despite substantial size extensions to more than 5kb in Psilotum, nad2i542g2 remains cis-arranged in the monilophytes. For phylogenetic analyses, we filled taxonomic gaps in previously investigated mitochondrial (atp1, nad5) and chloroplast (atpA, atpB, matK, rbcL, rps4) loci and created a 9-gene matrix that also included the new mitochondrial nad2 and rpl2 loci. We extended the taxon sampling with two taxa each for all land plant outgroups (liverworts, mosses, hornworts, lycophytes and seed plants) to minimize the risk of phylogenetic artefacts. We ultimately obtained a well-supported molecular phylogeny placing Marattiales as sister to leptosporangiate ferns and horsetails as sister to all remaining monilophytes. In addition, an indel in an exon of the here introduced rpl2 locus independently supports the placement of horsetails. We conclude that under dense taxon sampling, phylogenetic information from a prudent choice of loci is currently superior to character-rich phylogenomic approaches at low taxon sampling. As here shown the selective choice of loci and taxa enabled us to resolve the long-enigmatic diversifications of the earliest monilophyte lineages. PMID:25999055

  18. The chloroplast view of the evolution of polyploid wheat.

    PubMed

    Gornicki, Piotr; Zhu, Huilan; Wang, Junwei; Challa, Ghana S; Zhang, Zhengzhi; Gill, Bikram S; Li, Wanlong

    2014-11-01

    Polyploid wheats comprise four species: Triticum turgidum (AABB genomes) and T. aestivum (AABBDD) in the Emmer lineage, and T. timopheevii (AAGG) and T. zhukovskyi (AAGGA(m) A(m) ) in the Timopheevi lineage. Genetic relationships between chloroplast genomes were studied to trace the evolutionary history of the species. Twenty-five chloroplast genomes were sequenced, and 1127 plant accessions were genotyped, representing 13 Triticum and Aegilops species. The A. speltoides (SS genome) diverged before the divergence of T. urartu (AA), A. tauschii (DD) and the Aegilops species of the Sitopsis section. Aegilops speltoides forms a monophyletic clade with the polyploid Emmer and Timopheevi wheats, which originated within the last 0.7 and 0.4 Myr, respectively. The geographic distribution of chloroplast haplotypes of the wild tetraploid wheats and A. speltoides illustrates the possible geographic origin of the Emmer lineage in the southern Levant and the Timopheevi lineage in northern Iraq. Aegilops speltoides is the closest relative of the diploid donor of the chloroplast (cytoplasm), as well as the B and G genomes to Timopheevi and Emmer lineages. Chloroplast haplotypes were often shared by species or subspecies within major lineages and between the lineages, indicating the contribution of introgression to the evolution and domestication of polyploid wheats. PMID:25059383

  19. Glycoside Hydrolase (GH) 45 and 5 Candidate Cellulases in Aphelenchoides besseyi Isolated from Bird’s-Nest Fern

    PubMed Central

    Tsay, Tung-Tsuan; Tsai, Isheng J.; Chen, Peichen J.

    2016-01-01

    Five Aphelenchoides besseyi isolates collected from bird’s-nest ferns or rice possess different parasitic capacities in bird’s-nest fern. Two different glycoside hydrolase (GH) 45 genes were identified in the fern isolates, and only one was found in the rice isolates. A Abe GH5-1 gene containing an SCP-like family domain was found only in the fern isolates. Abe GH5-1 gene has five introns suggesting a eukaryotic origin. A maximum likelihood phylogeny revealed that Abe GH5-1 is part of the nematode monophyletic group that can be clearly distinguished from those of other eukaryotic and bacterial GH5 sequences with high bootstrap support values. The fern A. besseyi isolates were the first parasitic plant nematode found to possess both GH5 and GH45 genes. Surveying the genome of the five A. besseyi isolates by Southern blotting using an 834 bp probe targeting the GH5 domain suggests the presence of at least two copies in the fern-origin isolates but none in the rice-origin isolates. The in situ hybridization shows that the Abe GH5-1 gene is expressed in the nematode ovary and testis. Our study provides insights into the diversity of GH in isolates of plant parasitic nematodes of different host origins. PMID:27391812

  20. Glycoside Hydrolase (GH) 45 and 5 Candidate Cellulases in Aphelenchoides besseyi Isolated from Bird's-Nest Fern.

    PubMed

    Wu, Guan-Long; Kuo, Tzu-Hao; Tsay, Tung-Tsuan; Tsai, Isheng J; Chen, Peichen J

    2016-01-01

    Five Aphelenchoides besseyi isolates collected from bird's-nest ferns or rice possess different parasitic capacities in bird's-nest fern. Two different glycoside hydrolase (GH) 45 genes were identified in the fern isolates, and only one was found in the rice isolates. A Abe GH5-1 gene containing an SCP-like family domain was found only in the fern isolates. Abe GH5-1 gene has five introns suggesting a eukaryotic origin. A maximum likelihood phylogeny revealed that Abe GH5-1 is part of the nematode monophyletic group that can be clearly distinguished from those of other eukaryotic and bacterial GH5 sequences with high bootstrap support values. The fern A. besseyi isolates were the first parasitic plant nematode found to possess both GH5 and GH45 genes. Surveying the genome of the five A. besseyi isolates by Southern blotting using an 834 bp probe targeting the GH5 domain suggests the presence of at least two copies in the fern-origin isolates but none in the rice-origin isolates. The in situ hybridization shows that the Abe GH5-1 gene is expressed in the nematode ovary and testis. Our study provides insights into the diversity of GH in isolates of plant parasitic nematodes of different host origins. PMID:27391812

  1. A Mutant Hunt Using the C-Fern (Ceratopteris Richardii)

    ERIC Educational Resources Information Center

    Calie, Patrick J.

    2005-01-01

    A modification of the popular C-Fern system, the tropical fern Ceratopteris richardii is developed in which students plate out a genetically mixed set of fern spores and then select for specific mutants. This exercise can provide students with an experience in plant mutant selection and can be used as a platform to expose students to a diverse…

  2. Production of Recombinant Proteins in the Chloroplast of the Green Alga Chlamydomonas reinhardtii.

    PubMed

    Guzmán-Zapata, Daniel; Macedo-Osorio, Karla Soledad; Almaraz-Delgado, Alma Lorena; Durán-Figueroa, Noé; Badillo-Corona, Jesus Agustín

    2016-01-01

    Chloroplast transformation in the green algae Chlamydomonas reinhardtii can be used for the production of valuable recombinant proteins. Here, we describe chloroplast transformation of C. reinhardtii followed by protein detection. Genes of interest integrate stably by homologous recombination into the chloroplast genome following introduction by particle bombardment. Genes are inherited and expressed in lines recovered after selection in the presence of an antibiotic. Recombinant proteins can be detected by conventional techniques like immunoblotting and purified from liquid cultures. PMID:26614282

  3. Random grid fern for visual tracking

    NASA Astrophysics Data System (ADS)

    Cheng, Fei; Liu, Kai; Zhang, Jin; Li, YunSong

    2014-05-01

    Visual tracking is one of the significant research directions in computer vision. Although standard random ferns tracking method obtains a good performance for the random spatial arrangement of binary tests, the effect of the locality of image on ferns description ability are ignored and prevent them to describe the object more accurately and robustly. This paper proposes a novel spatial arrangement of binary tests to divide the bounding box into grids in order to keep more details of the image for visual tracking. Experimental results show that this method can improve tracking accuracy effectively.

  4. Evidence that sigma factors are components of chloroplast RNA polymerase.

    PubMed Central

    Troxler, R F; Zhang, F; Hu, J; Bogorad, L

    1994-01-01

    Plastid genes are transcribed by DNA-dependent RNA polymerase(s), which have been incompletely characterized and have been examined in a limited number of species. Plastid genomes contain rpoA, rpoB, rpoC1, and rpoC2 coding for alpha, beta, beta', and beta" RNA polymerase subunits that are homologous to the alpha, beta, and beta' subunits that constitute the core moiety of RNA polymerase in bacteria. However, genes with homology to sigma subunits in bacteria have not been found in plastid genomes. An antibody directed against the principal sigma subunit of RNA polymerase from the cyanobacterium Anabaena sp. PCC 7120 was used to probe western blots of purified chloroplast RNA polymerase from maize, rice, Chlamydomonas reinhardtii, and Cyanidium caldarium. Chloroplast RNA polymerase from maize and rice contained an immunoreactive 64-kD protein. Chloroplast RNA polymerase from C. reinhardtii contained immunoreactive 100- and 82-kD proteins, and chloroplast RNA polymerase from C. caldarium contained an immunoreactive 32-kD protein. The elution profile of enzyme activity of both algal chloroplast RNA polymerases coeluted from DEAE with the respective immunoreactive proteins, indicating that they are components of the enzyme. These results provide immunological evidence for sigma-like factors in chloroplast RNA polymerase in higher plants and algae. PMID:8159791

  5. How Fern Creek Is Beating Goliath

    ERIC Educational Resources Information Center

    Donovan, Margaret; Galatowitsch, Patrick; Hefferin, Keri; Highland, Shanita

    2013-01-01

    The "David" is Fern Creek Elementary, a small urban school in Orlando, Florida, that serves an overwhelmingly disadvantaged student population. The "Goliaths" are the mountains of problems that many inner-city students face--poverty, homelessness, mobility, instability, limited parent involvement, and violent neighborhood…

  6. Chloroplast gene arrangement variation within a closely related group of green algae (Trebouxiophyceae, Chlorophyta).

    PubMed

    Letsch, Molly R; Lewis, Louise A

    2012-09-01

    The 22 published chloroplast genomes of green algae, representing sparse taxonomic sampling of diverse lineages that span over one billion years of evolution, each possess a unique gene arrangement. In contrast, many of the >190 published embryophyte (land plant) chloroplast genomes have relatively conserved architectures. To determine the phylogenetic depth at which chloroplast gene rearrangements occur in green algae, a 1.5-4 kb segment of the chloroplast genome was compared across nine species in three closely related genera of Trebouxiophyceae (Chlorophyta). In total, four distinct gene arrangements were obtained for the three genera Elliptochloris, Hemichloris, and Coccomyxa. In Elliptochloris, three distinct chloroplast gene arrangements were detected, one of which is shared with members of its sister genus Hemichloris. Both species of Coccomyxa examined share the fourth arrangement of this genome region, one characterized by very long spacers. Next, the order of genes found in this segment of the chloroplast genome was compared across green algae and land plants. As taxonomic ranks are not equivalent among different groups of organisms, the maximum molecular divergence among taxa sharing a common gene arrangement in this genome segment was compared. Well-supported clades possessing a single gene order had similar phylogenetic depth in green algae and embryophytes. When the dominant gene order of this chloroplast segment in embryophytes was assumed to be ancestral for land plants, the maximum molecular divergence was found to be over two times greater in embryophytes than in trebouxiophyte green algae. This study greatly expands information about chloroplast genome variation in green algae, is the first to demonstrate such variation among congeneric green algae, and further illustrates the fluidity of green algal chloroplast genome architecture in comparison to that of many embryophytes. PMID:22659018

  7. Chloroplast Structure and Function Is Altered in the NCS2 Maize Mitochondrial Mutant 1

    PubMed Central

    Roussell, Deborah L.; Thompson, Deborah L.; Pallardy, Steve G.; Miles, Donald; Newton, Kathleen J.

    1991-01-01

    The nonchromosomal stripe 2 (NCS2) mutant of maize (Zea mays L.) has a DNA rearrangement in the mitochondrial genome that segregates with the abnormal growth phenotype. Yet, the NCS2 characteristic phenotype includes striped sectors of pale-green tissue on the leaves. This suggests a chloroplast abnormality. To characterize the chloroplasts present in the mutant sectors, we examined the chloroplast structure by electron microscopy, chloroplast function by radiolabeled carbon dioxide fixation and fluorescence induction kinetics, and thylakoid protein composition by polyacrylamide gel electrophoresis. The data from these analyses suggest abnormal or prematurely arrested chloroplast development. Deleterious effects of the NCS2 mutant mitochondria upon the cells of the leaf include structural and functional alterations in the both the bundle sheath and mesophyll chloroplasts. ImagesFigure 1Figure 2Figure 3Figure 5Figure 6 PMID:16668157

  8. WHITE PANICLE1, a Val-tRNA Synthetase Regulating Chloroplast Ribosome Biogenesis in Rice, Is Essential for Early Chloroplast Development1[OPEN

    PubMed Central

    Wang, Chunming; Zheng, Ming; Lyu, Jia; Xu, Yang; Li, Xiaohui; Niu, Mei; Long, Wuhua; Wang, Di; Wang, Yihua; Wan, Jianmin

    2016-01-01

    Chloroplasts and mitochondria contain their own genomes and transcriptional and translational systems. Establishing these genetic systems is essential for plant growth and development. Here we characterized a mutant form of a Val-tRNA synthetase (OsValRS2) from Oryza sativa that is targeted to both chloroplasts and mitochondria. A single base change in OsValRS2 caused virescent to albino phenotypes in seedlings and white panicles at heading. We therefore named this mutant white panicle 1 (wp1). Chlorophyll autofluorescence observations and transmission electron microscopy analyses indicated that wp1 mutants are defective in early chloroplast development. RNA-seq analysis revealed that expression of nuclear-encoded photosynthetic genes is significantly repressed, while expression of many chloroplast-encoded genes also changed significantly in wp1 mutants. Western-blot analyses of chloroplast-encoded proteins showed that chloroplast protein levels were reduced in wp1 mutants, although mRNA levels of some genes were higher in wp1 than in wild type. We found that wp1 was impaired in chloroplast ribosome biogenesis. Taken together, our results show that OsValRS2 plays an essential role in chloroplast development and regulating chloroplast ribosome biogenesis. PMID:26839129

  9. Chloroplast and nuclear microsatellite analysis of Aegilops cylindrica.

    PubMed

    Gandhi, Harish T; Vales, M Isabel; Watson, Christy J W; Mallory-Smith, Carol A; Mori, Naoki; Rehman, Maqsood; Zemetra, Robert S; Riera-Lizarazu, Oscar

    2005-08-01

    Aegilops cylindrica Host (2n = 4x = 28, genome CCDD) is an allotetraploid formed by hybridization between the diploid species Ae. tauschii Coss. (2n = 2x = 14, genome DD) and Ae. markgrafii (Greuter) Hammer (2n = 2x = 14, genome CC). Previous research has shown that Ae. tauschii contributed its cytoplasm to Ae. cylindrica. However, our analysis with chloroplast microsatellite markers showed that 1 of the 36 Ae. cylindrica accessions studied, TK 116 (PI 486249), had a plastome derived from Ae. markgrafii rather than Ae. tauschii. Thus, Ae. markgrafii has also contributed its cytoplasm to Ae. cylindrica. Our analysis of chloroplast and nuclear microsatellite markers also suggests that D-type plastome and the D genome in Ae. cylindrica were closely related to, and were probably derived from, the tauschii gene pool of Ae. tauschii. A determination of the likely source of the C genome and the C-type plastome in Ae. cylindrica was not possible. PMID:15986256

  10. Chloroplast Transformation of Platymonas (Tetraselmis) subcordiformis with the bar Gene as Selectable Marker

    PubMed Central

    Cui, Yulin; Qin, Song; Jiang, Peng

    2014-01-01

    The objective of this research was to establish a chloroplast transformation technique for Platymonas (Tetraselmis) subcordiformis. Employing the gfp gene as a reporter and the bar gene as a selectable marker, transformation vectors of P. subcordiformis chloroplast were constructed with endogenous fragments rrn16S–trnI (left) and trnA–rrn23S (right) as a recombination site of the chloroplast genome. The plasmids were transferred into P. subcordiformis via particle bombardment. Confocal laser scanning microscopy indicated that the green fluorescence protein was localized in the chloroplast of P. subcordiformis, confirming the activity of the Chlamydomonas reinhardtii promoter. Cells transformed with the bar gene were selected using the herbicide Basta. Resistant colonies were analyzed by PCR and Southern blotting, and the results indicated that the bar gene was successfully integrated into the chloroplast genome via homologous recombination. The technique will improve genetic engineering of this alga. PMID:24911932

  11. Chloroplast transformation of Platymonas (Tetraselmis) subcordiformis with the bar gene as selectable marker.

    PubMed

    Cui, Yulin; Qin, Song; Jiang, Peng

    2014-01-01

    The objective of this research was to establish a chloroplast transformation technique for Platymonas (Tetraselmis) subcordiformis. Employing the gfp gene as a reporter and the bar gene as a selectable marker, transformation vectors of P. subcordiformis chloroplast were constructed with endogenous fragments rrn16S-trnI (left) and trnA-rrn23S (right) as a recombination site of the chloroplast genome. The plasmids were transferred into P. subcordiformis via particle bombardment. Confocal laser scanning microscopy indicated that the green fluorescence protein was localized in the chloroplast of P. subcordiformis, confirming the activity of the Chlamydomonas reinhardtii promoter. Cells transformed with the bar gene were selected using the herbicide Basta. Resistant colonies were analyzed by PCR and Southern blotting, and the results indicated that the bar gene was successfully integrated into the chloroplast genome via homologous recombination. The technique will improve genetic engineering of this alga. PMID:24911932

  12. Ferns and fires: Experimental charring of ferns compared to wood and implications for paleobiology, paleoecology, coal petrology, and isotope geochemistry

    SciTech Connect

    McParland, L.C.; Collinson, M.E.; Scott, A.C.; Steart, D.C.; Grassineau, N.V.; Gibbons, S.J.

    2007-09-15

    We report the effects of charring on the ferns Osmunda, Pteridium, and Matteucia with coniferous wood (Sequoia) for comparison. Like charred wood, charred ferns shrink, become black and brittle with a silky sheen, and retain three-dimensional cellular structure. Ferns yield recognizable charcoal (up to 800{sup o}C) that could potentially survive in the fossil record enabling reconstruction of ancient fire-prone vegetation containing ferns. Charred fossils of herbaceous ferns would indicate surface fires. Like charred wood, cell-wall layers of charred ferns homogenize, and their reflectance values increase with rising temperature. Charcoalified fragments of thick-walled cells from conifer wood or fern tissues are indistinguishable and so cannot be used to infer the nature of source vegetation. Charred conifer wood and charred fern tissues show a relationship between mean random reflectance and temperature of formation and can be used to determine minimum ancient fire temperatures. Charred fern tissues consistently have significantly more depleted {delta}{sup 13}C values ({le} 4 parts per thousand) than charred wood. Therefore, if an analysis of {delta} {sup 13}C through time included fern charcoal among a succession of wood charcoals, any related shifts in {delta} {sup 13}C could be misinterpreted as atmospheric changes or misused as isotope stratigraphic markers. Thus, charcoals of comparable botanical origin and temperatures of formation should be used in order to avoid misinterpretations of shifts in {delta}{sup 13}C values.

  13. Chloroplast unfolded protein response, a new plastid stress signaling pathway?

    PubMed

    Ramundo, Silvia; Rochaix, Jean-David

    2014-01-01

    A unique feature of the ATP-dependent ClpP protease of eukaryotic photosynthetic organisms is that its catalytic subunit ClpP1 is encoded by the chloroplast genome. Attempts to inactivate this subunit through chloroplast transformation have failed because it is essential for cell survival. To study the function of ClpP we have developed a repressible chloroplast gene expression system in Chlamydomonas reinhardtii. This system is based on the use of a chimeric nuclear gene in which the vitamin-repressible MetE promoter and Thi4 riboswitch have been fused to the coding sequence of Nac2. Upon entry into the chloroplast the Nac2 protein specifically interacts with the psbD 5'UTR and is required for the proper processing/translation of the psbD mRNA. This property can be conveyed to any chloroplast mRNA by replacing its 5'UTR with that of psbD. In this study we have chosen clpP1 as plastid target gene and examined the cellular events induced upon depletion of ClpP through transcriptomic, proteomic, biochemical and electron microscope analysis. Among the most striking features, a massive increase in protein abundance occurs for plastid chaperones, proteases and proteins involved in membrane assembly/disassembly strongly suggesting the existence of a chloroplast unfolded protein response. PMID:25482768

  14. Mollusc-Algal Chloroplast Endosymbiosis. Photosynthesis, Thylakoid Protein Maintenance, and Chloroplast Gene Expression Continue for Many Months in the Absence of the Algal Nucleus1

    PubMed Central

    Green, Brian J.; Li, Wei-Ye; Manhart, James R.; Fox, Theodore C.; Summer, Elizabeth J.; Kennedy, Robert A.; Pierce, Sidney K.; Rumpho, Mary E.

    2000-01-01

    Early in its life cycle, the marine mollusc Elysia chlorotica Gould forms an intracellular endosymbiotic association with chloroplasts of the chromophytic alga Vaucheria litorea C. Agardh. As a result, the dark green sea slug can be sustained in culture solely by photoautotrophic CO2 fixation for at least 9 months if provided with only light and a source of CO2. Here we demonstrate that the sea slug symbiont chloroplasts maintain photosynthetic oxygen evolution and electron transport activity through photosystems I and II for several months in the absence of any external algal food supply. This activity is correlated to the maintenance of functional levels of chloroplast-encoded photosystem proteins, due in part at least to de novo protein synthesis of chloroplast proteins in the sea slug. Levels of at least one putative algal nuclear encoded protein, a light-harvesting complex protein homolog, were also maintained throughout the 9-month culture period. The chloroplast genome of V. litorea was found to be 119.1 kb, similar to that of other chromophytic algae. Southern analysis and polymerase chain reaction did not detect an algal nuclear genome in the slug, in agreement with earlier microscopic observations. Therefore, the maintenance of photosynthetic activity in the captured chloroplasts is regulated solely by the algal chloroplast and animal nuclear genomes. PMID:10982447

  15. Molecular Phylogeny of the Cliff Ferns (Woodsiaceae: Polypodiales) with a Proposed Infrageneric Classification

    PubMed Central

    Zhang, Xianchun; Xiang, Qiaoping

    2015-01-01

    The cliff fern family Woodsiaceae has experienced frequent taxonomic changes at the familial and generic ranks since its establishment. The bulk of its species were placed in Woodsia, while Cheilanthopsis, Hymenocystis, Physematium, and Protowoodsia are segregates recognized by some authors. Phylogenetic relationships among the genera of Woodsiaceae remain unclear because of the extreme morphological diversity and inadequate taxon sampling in phylogenetic studies to date. In this study, we carry out comprehensive phylogenetic analyses of Woodsiaceae using molecular evidence from four chloroplast DNA markers (atpA, matK, rbcL and trnL–F) and covering over half the currently recognized species. Our results show three main clades in Woodsiaceae corresponding to Physematium (clade I), Cheilanthopsis–Protowoodsia (clade II) and Woodsia s.s. (clade III). In the interest of preserving monophyly and taxonomic stability, a broadly defined Woodsia including the other segregates is proposed, which is characterized by the distinctive indument and inferior indusia. Therefore, we present a new subgeneric classification of the redefined Woodsia based on phylogenetic and ancestral state reconstructions to better reflect the morphological variation, geographic distribution pattern, and evolutionary history of the genus. Our analyses of the cytological character evolution support multiple aneuploidy events that have resulted in the reduction of chromosome base number from 41 to 33, 37, 38, 39 and 40 during the evolutionary history of the cliff ferns. PMID:26348852

  16. The fern sporangium: an ultrafast natural catapult

    NASA Astrophysics Data System (ADS)

    Noblin, Xavier; Argentina, Mederic; Westbrook, Jared; Llorens, Coraline; Rojas, Nicolas; Dumais, Jacques

    2012-02-01

    Plants have developed fascinating mechanisms to create ultra fast movements that often reach the upper limit allowed by physical laws. Inspiration for new technologies is one of the reasons for the strong interest for these mechanisms, along with the deep interest of understanding complex, natural systems. The fern sporangium is a capsule that contains the spores, it is surrounded by a row of cells called the annulus which acts as a beam. Due to the water evaporation from its cells, the annulus bends strongly and induces elastic energy storage during an opening phase. The tension in the cells breaks when cavitation bubbles appear in the cells, leading to a fast release of the elastic energy. The fern sporangium then acts as a catapult which ejects rapidly its spores by closing back to the initial closed shape. We have analyzed the slow opening motion and the fast catapulting mechanism. We found that the catapult motion involves two time scales, showing a very original behavior. In man-made catapults, the recoil motion needs to be arrested by a cross bar so that the projectile is released from the arm. We show here that the fern sporangium replaces the essential cross bar by an elegant poroelastic damping, leading to a completely autonomous, efficient device.

  17. Dynamics of asymmetrical hybridization in North American wood ferns: reconciling patterns of inheritance with gametophyte reproductive biology.

    PubMed

    Testo, Weston L; Watkins, James E; Barrington, David S

    2015-04-01

    Hybridization is an important evolutionary force in plants, but the mechanisms underlying it have not been well studied for many groups. In particular, the drivers of non-random patterns of interspecific gene flow (asymmetrical hybridization) remain poorly understood, especially in the seed-free vascular plants. Here, we examine patterns of asymmetrical hybridization in two widespread fern hybrids from eastern North America and study the role of gametophyte ecology in the determination of hybridization bias. We characterized the maternal parentage of > 140 hybrid sporophytes by sequencing a c. 350-bp region of chloroplast DNA (cpDNA). To identify factors contributing to patterns of asymmetrical hybridization, we cultured gametophytes of the parental species and evaluated critical aspects of their reproductive biology. We found that asymmetrical hybridization was prevalent across the populations of both hybrids. Reproductive traits varied across species and suggest that selfing potential, antheridiogen responsiveness, sperm dispersal capacity and gamete size all contribute to the mediation of the direction of hybridization in this group. Our findings suggest that asymmetrical hybridization in ferns is driven by an array of reproductive traits. This study helps to sharpen and define a mechanistic understanding of patterns of hybridization in this group and demonstrates the importance of considering gametophyte biology when studying evolutionary processes in ferns. PMID:25443156

  18. Fern Gametophytes in Culture--A Simple System for Studying Plant Development and Reproduction.

    ERIC Educational Resources Information Center

    Dyer, A. F.

    1983-01-01

    Discusses fern life cycle and basic techniques for culturing fern gametophytes in the classroom. Also discusses investigations into the reproductive biology of ferns and into the early development of gametophytes. (JN)

  19. Purification and cDNA isolation of chloroplastic phosphoglycerate kinase from Chlamydomonas reinhardtii.

    PubMed Central

    Kitayama, M; Togasaki, R K

    1995-01-01

    Chloroplastic phosphoglycerate kinase (PGK) was purified to homogeneity from a soluble fraction of chloroplasts of a cell-wall-deficient mutant strain of Chlamydomonas reinhardtii (cw-15) using ammonium sulfate fractionation, Reactive Blue-72 column chromatography, and native polyacrylamide gel electrophoresis. PGK activity was attributed to a single polypeptide with a molecular mass of 42 kD. Relative purity and identity of the isolated enzyme was confirmed by N-terminal amino acid sequence determination. Antiserum against this enzyme was raised and a western blot analysis of whole-cell lysate from cw-15 cells using this anti-chloroplastic PGK serum detected a single polypeptide with a molecular mass of 42 kD. The cDNA clone corresponding to the Chlamydomonas chloroplastic PGK was isolated from a Chlamydomonas cDNA expression library using the anti-PGK serum. The cDNA sequence was determined and apparently codes for the entire precursor peptide, which consists of 461 codons. The results from Southern and northern blot analyses suggest that the chloroplastic PGK gene exists as a single copy in the nuclear genome of C. reinhardtii and is expressed as a 1.8-kb transcript. The C. reinhardtii chloroplastic PGK cDNA has 71 and 66% homology with wheat chloroplastic PGK and spinach chloroplastic PGK, respectively. Based on the deduced amino acid sequence, the chloroplastic PGK of C. reinhardtii has more similarity to plant PGKs than to other PGKs, having both prokaryotic and eukaryotic features. PMID:7724671

  20. Genome Erosion in a Nitrogen-Fixing Vertically Transmitted Endosymbiotic Multicellular Cyanobacterium

    PubMed Central

    Vigil-Stenman, Theoden; Nylander, Johan A. A.; Ininbergs, Karolina; Zheng, Wei-Wen; Lapidus, Alla; Lowry, Stephen; Haselkorn, Robert; Bergman, Birgitta

    2010-01-01

    Background An ancient cyanobacterial incorporation into a eukaryotic organism led to the evolution of plastids (chloroplasts) and subsequently to the origin of the plant kingdom. The underlying mechanism and the identities of the partners in this monophyletic event remain elusive. Methodology/Principal Findings To shed light on this evolutionary process, we sequenced the genome of a cyanobacterium residing extracellularly in an endosymbiosis with a plant, the water-fern Azolla filiculoides Lam. This symbiosis was selected as it has characters which make it unique among extant cyanobacterial plant symbioses: the cyanobacterium lacks autonomous growth and is vertically transmitted between plant generations. Our results reveal features of evolutionary significance. The genome is in an eroding state, evidenced by a large proportion of pseudogenes (31.2%) and a high frequency of transposable elements (∼600) scattered throughout the genome. Pseudogenization is found in genes such as the replication initiator dnaA and DNA repair genes, considered essential to free-living cyanobacteria. For some functional categories of genes pseudogenes are more prevalent than functional genes. Loss of function is apparent even within the ‘core’ gene categories of bacteria, such as genes involved in glycolysis and nutrient uptake. In contrast, serving as a critical source of nitrogen for the host, genes related to metabolic processes such as cell differentiation and nitrogen-fixation are well preserved. Conclusions/Significance This is the first finding of genome degradation in a plant symbiont and phenotypically complex cyanobacterium and one of only a few extracellular endosymbionts described showing signs of reductive genome evolution. Our findings suggest an ongoing selective streamlining of this cyanobacterial genome which has resulted in an organism devoted to nitrogen fixation and devoid of autonomous growth. The cyanobacterial symbiont of Azolla can thus be considered at the

  1. Thirteen new records of ferns from Brazil

    PubMed Central

    Salino, Alexandre

    2015-01-01

    Abstract Thirteen fern species are reported for the first time for Brazil. Among the new records, eight are from Acre state (Cyathea subincisa, Cyclodium trianae, Elaphoglossum stenophyllum, Hypoderris brauniana, Pleopeltis stolzei, Thelypteris arcana, Thelypteris comosa, Thelypteris valdepilosa), two are from Pará state (Polypodium flagellare, Tectaria heracleifolia), one from Minas Gerais state (Alsophila salvinii), one from Ceará state (Campyloneurum costatum) and one from Bahia state (Thelypteris rolandii). Part of the species shows a disjunct occurrence or illustrates floristic relations between Brazilian and Andean Mountains or Central American Mountains. PMID:25829857

  2. Breakthrough in chloroplast genetic engineering of agronomically important crops

    PubMed Central

    Daniell, Henry; Kumar, Shashi; Dufourmantel, Nathalie

    2012-01-01

    Chloroplast genetic engineering offers several unique advantages, including high-level transgene expression, multi-gene engineering in a single transformation event and transgene containment by maternal inheritance, as well as a lack of gene silencing, position and pleiotropic effects and undesirable foreign DNA. More than 40 transgenes have been stably integrated and expressed using the tobacco chloroplast genome to confer desired agronomic traits or express high levels of vaccine antigens and biopharmaceuticals. Despite such significant progress, this technology has not been extended to major crops. However, highly efficient soybean, carrot and cotton plastid transformation has recently been accomplished through somatic embryogenesis using species-specific chloroplast vectors. This review focuses on recent exciting developments in this field and offers directions for further research and development. PMID:15866001

  3. Post-Transcriptional Control of Chloroplast Gene Expression

    PubMed Central

    del Campo, Eva M.

    2009-01-01

    Chloroplasts contain their own genome, organized as operons, which are generally transcribed as polycistronic transcriptional units. These primary transcripts are processed into smaller RNAs, which are further modified to produce functional RNAs. The RNA processing mechanisms remain largely unknown and represent an important step in the control of chloroplast gene expression. Such mechanisms include RNA cleavage of pre-existing RNAs, RNA stabilization, intron splicing, and RNA editing. Recently, several nuclear-encoded proteins that participate in diverse plastid RNA processing events have been characterised. Many of them seem to belong to the pentatricopeptide repeat (PPR) protein family that is implicated in many crucial functions including organelle biogenesis and plant development. This review will provide an overview of current knowledge of the post-transcriptional processing in chloroplasts. PMID:19838333

  4. A Catskill Flora and Economic Botany, I: Pteridophyta. The Ferns and Fern Allies. Bulletin No. 438, New York State Museum.

    ERIC Educational Resources Information Center

    Brooks, Karl L.

    The information contained within this guide about flora of the ferns and fern allies of the Catskill Mountains of New York State covers medical and food uses of the plants, as well as the more typical floristic data of keys, drawings, and plant descriptions. (CS)

  5. Comparison of intraspecific, interspecific and intergeneric chloroplast diversity in Cycads

    PubMed Central

    Jiang, Guo-Feng; Hinsinger, Damien Daniel; Strijk, Joeri Sergej

    2016-01-01

    Cycads are among the most threatened plant species. Increasing the availability of genomic information by adding whole chloroplast data is a fundamental step in supporting phylogenetic studies and conservation efforts. Here, we assemble a dataset encompassing three taxonomic levels in cycads, including ten genera, three species in the genus Cycas and two individuals of C. debaoensis. Repeated sequences, SSRs and variations of the chloroplast were analyzed at the intraspecific, interspecific and intergeneric scale, and using our sequence data, we reconstruct a phylogenomic tree for cycads. The chloroplast was 162,094 bp in length, with 133 genes annotated, including 87 protein-coding, 37 tRNA and 8 rRNA genes. We found 7 repeated sequences and 39 SSRs. Seven loci showed promising levels of variations for application in DNA-barcoding. The chloroplast phylogeny confirmed the division of Cycadales in two suborders, each of them being monophyletic, revealing a contradiction with the current family circumscription and its evolution. Finally, 10 intraspecific SNPs were found. Our results showed that despite the extremely restricted distribution range of C. debaoensis, using complete chloroplast data is useful not only in intraspecific studies, but also to improve our understanding of cycad evolution and in defining conservation strategies for this emblematic group. PMID:27558458

  6. Comparison of intraspecific, interspecific and intergeneric chloroplast diversity in Cycads.

    PubMed

    Jiang, Guo-Feng; Hinsinger, Damien Daniel; Strijk, Joeri Sergej

    2016-01-01

    Cycads are among the most threatened plant species. Increasing the availability of genomic information by adding whole chloroplast data is a fundamental step in supporting phylogenetic studies and conservation efforts. Here, we assemble a dataset encompassing three taxonomic levels in cycads, including ten genera, three species in the genus Cycas and two individuals of C. debaoensis. Repeated sequences, SSRs and variations of the chloroplast were analyzed at the intraspecific, interspecific and intergeneric scale, and using our sequence data, we reconstruct a phylogenomic tree for cycads. The chloroplast was 162,094 bp in length, with 133 genes annotated, including 87 protein-coding, 37 tRNA and 8 rRNA genes. We found 7 repeated sequences and 39 SSRs. Seven loci showed promising levels of variations for application in DNA-barcoding. The chloroplast phylogeny confirmed the division of Cycadales in two suborders, each of them being monophyletic, revealing a contradiction with the current family circumscription and its evolution. Finally, 10 intraspecific SNPs were found. Our results showed that despite the extremely restricted distribution range of C. debaoensis, using complete chloroplast data is useful not only in intraspecific studies, but also to improve our understanding of cycad evolution and in defining conservation strategies for this emblematic group. PMID:27558458

  7. A strategy to recover a high-quality, complete plastid sequence from low-coverage whole-genome sequencing1

    PubMed Central

    Garaycochea, Silvia; Speranza, Pablo; Alvarez-Valin, Fernando

    2015-01-01

    Premise of the study: We developed a bioinformatic strategy to recover and assemble a chloroplast genome using data derived from low-coverage 454 GS FLX/Roche whole-genome sequencing. Methods: A comparative genomics approach was applied to obtain the complete chloroplast genome from a weedy biotype of rice from Uruguay. We also applied appropriate filters to discriminate reads representing novel DNA transfer events between the chloroplast and nuclear genomes. Results: From a set of 295,159 reads (96 Mb data), we assembled the chloroplast genome into two contigs. This weedy rice was classified based on 23 polymorphic regions identified by comparison with reference chloroplast genomes. We detected recent and past events of genetic material transfer between the chloroplast and nuclear genomes and estimated their occurrence frequency. Discussion: We obtained a high-quality complete chloroplast genome sequence from low-coverage sequencing data. Intergenome DNA transfer appears to be more frequent than previously thought. PMID:26504677

  8. Effects of temperature and desiccation on ex situ conservation of nongreen fern spores

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conservation of the genetic diversity of ferns is limited by the paucity of ex situ spore banks. Conflicting reports of fern spore response to low temperature and moisture impedes establishment of fern spore banks. There is little information available to evaluate longevity of fern spores under dif...

  9. The Unicellular Green Alga Chlamydomonas reinhardtii as an Experimental System to Study Chloroplast RNA Metabolism

    NASA Astrophysics Data System (ADS)

    Nickelsen, J.; Kück, U.

    Chloroplasts are typical organelles of photoautotrophic eukaryotic cells which drive a variety of functions, including photosynthesis. For many years the unicellular green alga Chlamydomonas reinhardtii has served as an experimental organism for studying photosynthetic processes. The recent development of molecular tools for this organism together with efficient methods of genetic analysis and the availability of many photosynthesis mutants has now made this alga a powerful model system for the analysis of chloroplast biogenesis. For example, techniques have been developed to transfer recombinant DNA into both the nuclear and the chloroplast genome. This allows both complementation tests and analyses of gene functions in vivo. Moreover, site-specific DNA recombinations in the chloroplast allow targeted gene disruption experiments which enable a "reverse genetics" to be performed. The potential of the algal system for the study of chloroplast biogenesis is illustrated in this review by the description of regulatory systems of gene expression involved in organelle biogenesis. One example concerns the regulation of trans-splicing of chloroplast mRNAs, a process which is controlled by both multiple nuclear- and chloroplast-encoded factors. The second example involves the stabilization of chloroplast mRNAs. The available data lead us predict distinct RNA elements, which interact with trans-acting factors to protect the RNA against nucleolytic attacks.

  10. Induction and Segregation of Chloroplast Mutations in Vegetative Cell Cultures of Chlamydomonas Reinhardtii

    PubMed Central

    Lee, Robert W.; Haughn, George W.

    1980-01-01

    The single chloroplast of the alga Chlamydomonas reinhardtii contains at least 100 copies of the chloroplast chromosome. It is not known how the chloroplast (or cell) becomes homoplasmic for a mutation that arises in one of these copies. Under suitable selection conditions, clones with chloroplast mutations for streptomycin resistance induced by methyl methanesulfonate can be recovered with direct plating after mutagenesis. Using an adaptation of the Luria-Delbrück fluctuation test, mutagenized cultures grown on nonselective liquid medium for seven to nine doublings show negligible proliferation of cells capable of forming such mutant colonies. In contrast, cells among the same cultures with reduced nuclear mutations conferring streptomycin resistance reveal considerable clonal propagation prior to plating on selection medium. Reconstruction growth-rate experiments show no reduced growth of cells with chloroplast mutations relative to either wild-type cells or to those with nuclear mutations. We propose that newly arising chloroplast mutations and their copies are usually transmitted to only one daughter cell for several cell generations by reductional divisions of the chloroplast genome. In the absence of recombination and mixing, such a reductional partition of chloroplast alleles would readily permit the formation of homoplasmic lines without the need for selection. PMID:17249064

  11. The evolution, morphology, and development of fern leaves

    PubMed Central

    Vasco, Alejandra; Moran, Robbin C.; Ambrose, Barbara A.

    2013-01-01

    Leaves are lateral determinate structures formed in a predictable sequence (phyllotaxy) on the flanks of an indeterminate shoot apical meristem. The origin and evolution of leaves in vascular plants has been widely debated. Being the main conspicuous organ of nearly all vascular plants and often easy to recognize as such, it seems surprising that leaves have had multiple origins. For decades, morphologists, anatomists, paleobotanists, and systematists have contributed data to this debate. More recently, molecular genetic studies have provided insight into leaf evolution and development mainly within angiosperms and, to a lesser extent, lycophytes. There has been recent interest in extending leaf evolutionary developmental studies to other species and lineages, particularly in lycophytes and ferns. Therefore, a review of fern leaf morphology, evolution and development is timely. Here we discuss the theories of leaf evolution in ferns, morphology, and diversity of fern leaves, and experimental results of fern leaf development. We summarize what is known about the molecular genetics of fern leaf development and what future studies might tell us about the evolution of fern leaf development. PMID:24027574

  12. A high-throughput method for detection of DNA in chloroplasts using flow cytometry

    PubMed Central

    Rowan, Beth A; Oldenburg, Delene J; Bendich, Arnold J

    2007-01-01

    Background The amount of DNA in the chloroplasts of some plant species has been shown recently to decline dramatically during leaf development. A high-throughput method of DNA detection in chloroplasts is now needed in order to facilitate the further investigation of this process using large numbers of tissue samples. Results The DNA-binding fluorophores 4',6-diamidino-2-phenylindole (DAPI), SYBR Green I (SG), SYTO 42, and SYTO 45 were assessed for their utility in flow cytometric analysis of DNA in Arabidopsis chloroplasts. Fluorescence microscopy and real-time quantitative PCR (qPCR) were used to validate flow cytometry data. We found neither DAPI nor SYTO 45 suitable for flow cytometric analysis of chloroplast DNA (cpDNA) content, but did find changes in cpDNA content during development by flow cytometry using SG and SYTO 42. The latter dye provided more sensitive detection, and the results were similar to those from the fluorescence microscopic analysis. Differences in SYTO 42 fluorescence were found to correlate with differences in cpDNA content as determined by qPCR using three primer sets widely spaced across the chloroplast genome, suggesting that the whole genome undergoes copy number reduction during development, rather than selective reduction/degradation of subgenomic regions. Conclusion Flow cytometric analysis of chloroplasts stained with SYTO 42 is a high-throughput method suitable for determining changes in cpDNA content during development and for sorting chloroplasts on the basis of DNA content. PMID:17381841

  13. Ceratopteris richardii (C-fern): a model for investigating adaptive modification of vascular plant cell walls

    PubMed Central

    Leroux, Olivier; Eeckhout, Sharon; Viane, Ronald L. L.; Popper, Zoë A.

    2013-01-01

    Plant cell walls are essential for most aspects of plant growth, development, and survival, including cell division, expansive cell growth, cell-cell communication, biomechanical properties, and stress responses. Therefore, characterizing cell wall diversity contributes to our overall understanding of plant evolution and development. Recent biochemical analyses, concomitantly with whole genome sequencing of plants located at pivotal points in plant phylogeny, have helped distinguish between homologous characters and those which might be more derived. Most plant lineages now have at least one fully sequenced representative and although genome sequences for fern species are in progress they are not yet available for this group. Ferns offer key advantages for the study of developmental processes leading to vascularisation and complex organs as well as the specific differences between diploid sporophyte tissues and haploid gametophyte tissues and the interplay between them. Ceratopteris richardii has been well investigated building a body of knowledge which combined with the genomic and biochemical information available for other plants will progress our understanding of wall diversity and its impact on evolution and development. PMID:24065974

  14. Expression of the Native Cholera Toxin B Subunit Gene and Assembly as Functional Oligomers in Transgenic Tobacco Chloroplasts

    PubMed Central

    Daniell, Henry; Lee, Seung-Bum; Panchal, Tanvi; Wiebe, Peter O.

    2012-01-01

    The B subunits of enterotoxigenic Escherichia coli (LTB) and cholera toxin of Vibrio cholerae (CTB) are candidate vaccine antigens. Integration of an unmodified CTB-coding sequence into chloroplast genomes (up to 10,000 copies per cell), resulted in the accumulation of up to 4.1% of total soluble tobacco leaf protein as functional oligomers (410-fold higher expression levels than that of the unmodified LTB gene expressed via the nuclear genome). However, expresssion levels reported are an underestimation of actual accumulation of CTB in transgenic chloroplasts, due to aggregation of the oligomeric forms in unboiled samples similar to the aggregation observed for purified bacterial antigen. PCR and Southern blot analyses confirmed stable integration of the CTB gene into the chloroplast genome. Western blot analysis showed that the chloroplast-synthesized CTB assembled into oligomers and were antigenically identical with purified native CTB. Also, binding assays confirmed that chloroplast- synthesized CTB binds to the intestinal membrane GM1-ganglioside receptor, indicating correct folding and disulfide bond formation of CTB pentamers within transgenic chloroplasts. In contrast to stunted nuclear transgenic plants, chloroplast transgenic plants were morphologically indistinguishable from untransformed plants, when CTB was constitutively expressed in chloroplasts. Introduced genes were inherited stably in subsequent generations, as confirmed by PCR and Southern blot analyses. Increased production of an efficient transmucosal carrier molecule and delivery system, like CTB, in transgenic chloroplasts makes plant-based oral vaccines and fusion proteins with CTB needing oral administration commercially feasible. Successful expression of foreign genes in transgenic chromoplasts and availability of marker-free chloroplast transformation techniques augurs well for development of vaccines in edible parts of transgenic plants. Furthermore, since the quaternary structure of

  15. Endosymbiotic origin and codon bias of the nuclear gene for chloroplast glyceraldehyde-3-phosphate dehydrogenase from maize.

    PubMed

    Brinkmann, H; Martinez, P; Quigley, F; Martin, W; Cerff, R

    1987-01-01

    The nuclei of plant cells harbor genes for two types of glyceraldehyde-3-phosphate dehydrogenases (GAPDH) displaying a sequence divergence corresponding to the prokaryote/eukaryote separation. This strongly supports the endosymbiotic theory of chloroplast evolution and in particular the gene transfer hypothesis suggesting that the gene for the chloroplast enzyme, initially located in the genome of the endosymbiotic chloroplast progenitor, was transferred during the course of evolution into the nuclear genome of the endosymbiotic host. Codon usage in the gene for chloroplast GAPDH of maize is radically different from that employed by present-day chloroplasts and from that of the cytosolic (glycolytic) enzyme from the same cell. This reveals the presence of subcellular selective pressures which appear to be involved in the optimization of gene expression in the economically important graminaceous monocots. PMID:3131533

  16. Clues to the signals for chloroplast photo-relocation from the lifetimes of accumulation and avoidance responses.

    PubMed

    Higa, Takeshi; Wada, Masamitsu

    2015-01-01

    Chloroplast photo-relocation movement is crucial for plant survival; however, the mechanism of this phenomenon is still poorly understood. Especially, the signal that goes from photoreceptor to chloroplast is unknown, although the photoreceptors (phototropin 1 and 2) have been identified and an actin structure (chloroplast actin filaments) has been characterized that is specific for chloroplast movement. Here, in gametophytes of the fern Adiantum capillus-veneris, gametophores of the moss Physcomiterella patens, and leaves of the seed plant Arabidopsis thaliana, we sought to characterize the signaling system by measuring the lifetime of the induced response. Chloroplast movements were induced by microbeam irradiation with high-intensity blue light and recorded. The lifetime of the avoidance state was measured as a lag time between switching off the beam and the loss of avoidance behavior, and that of the accumulation state was measured as the duration of accumulation behavior following the extinction of the beam. The lifetime for the avoidance response state is approximately 3-4 min and that for the accumulation response is 19-28 min. These data suggest that the two responses are based on distinct signals. PMID:25376644

  17. Fern Biology in Mexico - (A Class Field Program)

    ERIC Educational Resources Information Center

    Tryon, Rolla; And Others

    1973-01-01

    Organized field trips in the tropics proved to be an effective way to gather new information about ferns. The areas of study covered were: systematics and ecology, cytology and gametophyte structure, and morphogenesis and physiology. (PS)

  18. Using Water Clover to Demonstrate Sexual Reproduction in Ferns.

    ERIC Educational Resources Information Center

    Settle, Wilbur J.

    1980-01-01

    Procedures are described for preparing spores from the fern, water clover, for an educational demonstration of germination and sexual reproduction. The demonstration is recommended for biology instructors who want to illustrate the alternation of phases in plants. (SA)

  19. Chloroplasts extend stromules independently and in response to internal redox signals.

    PubMed

    Brunkard, Jacob O; Runkel, Anne M; Zambryski, Patricia C

    2015-08-11

    A fundamental mystery of plant cell biology is the occurrence of "stromules," stroma-filled tubular extensions from plastids (such as chloroplasts) that are universally observed in plants but whose functions are, in effect, completely unknown. One prevalent hypothesis is that stromules exchange signals or metabolites between plastids and other subcellular compartments, and that stromules are induced during stress. Until now, no signaling mechanisms originating within the plastid have been identified that regulate stromule activity, a critical missing link in this hypothesis. Using confocal and superresolution 3D microscopy, we have shown that stromules form in response to light-sensitive redox signals within the chloroplast. Stromule frequency increased during the day or after treatment with chemicals that produce reactive oxygen species specifically in the chloroplast. Silencing expression of the chloroplast NADPH-dependent thioredoxin reductase, a central hub in chloroplast redox signaling pathways, increased chloroplast stromule frequency, whereas silencing expression of nuclear genes related to plastid genome expression and tetrapyrrole biosynthesis had no impact on stromules. Leucoplasts, which are not photosynthetic, also made more stromules in the daytime. Leucoplasts did not respond to the same redox signaling pathway but instead increased stromule formation when exposed to sucrose, a major product of photosynthesis, although sucrose has no impact on chloroplast stromule frequency. Thus, different types of plastids make stromules in response to distinct signals. Finally, isolated chloroplasts could make stromules independently after extraction from the cytoplasm, suggesting that chloroplast-associated factors are sufficient to generate stromules. These discoveries demonstrate that chloroplasts are remarkably autonomous organelles that alter their stromule frequency in reaction to internal signal transduction pathways. PMID:26150490

  20. Chloroplast NDH: A different enzyme with a structure similar to that of respiratory NADH dehydrogenase.

    PubMed

    Shikanai, Toshiharu

    2016-07-01

    Eleven genes encoding chloroplast NADH dehydrogenase-like (NDH) complex have been discovered in plastid genomes on the basis of their homology with genes encoding respiratory complex I. Despite this structural similarity, chloroplast NDH and its evolutionary origin NDH-1 in cyanobacteria accept electrons from ferredoxin (Fd), indicating that chloroplast NDH is an Fd-dependent plastoquinone (PQ) reductase rather than an NAD(P)H dehydrogenase. In Arabidopsis thaliana, chloroplast NDH interacts with photosystem I (PSI); this interaction is needed to stabilize NDH, especially under high light. On the basis of these distinct characters of chloroplast and cyanobacterial NDH, it can be distinguished as a photosynthetic NDH from respiratory complex I. In fact, chloroplast NDH forms part of the machinery of photosynthesis by mediating the minor pathway of PSI cyclic electron transport. Along with the antimycin A-sensitive main pathway of PSI cyclic electron transport, chloroplast NDH compensates the ATP/NADPH production ratio in the light reactions of photosynthesis. In this review, I revisit the original concept of chloroplast NDH on the basis of its similarity to respiratory complex I and thus introduce current progress in the field to researchers focusing on respiratory complex I. I summarize recent progress on the basis of structure and function. Finally, I introduce the results of our examination of the process of assembly of chloroplast NDH. Although the process requires many plant-specific non-subunit factors, the core processes of assembly are conserved between chloroplast NDH and respiratory complex I. This article is part of a Special Issue entitled Respiratory complex I, edited by Volker Zickermann and Ulrich Brandt. PMID:26519774

  1. Chloroplast evolution, structure and functions

    PubMed Central

    Jensen, Poul Erik

    2014-01-01

    In this review, we consider a selection of recent advances in chloroplast biology. These include new findings concerning chloroplast evolution, such as the identification of Chlamydiae as a third partner in primary endosymbiosis, a second instance of primary endosymbiosis represented by the chromatophores found in amoebae of the genus Paulinella, and a new explanation for the longevity of captured chloroplasts (kleptoplasts) in sacoglossan sea slugs. The controversy surrounding the three-dimensional structure of grana, its recent resolution by tomographic analyses, and the role of the CURVATURE THYLAKOID1 (CURT1) proteins in supporting grana formation are also discussed. We also present an updated inventory of photosynthetic proteins and the factors involved in the assembly of thylakoid multiprotein complexes, and evaluate findings that reveal that cyclic electron flow involves NADPH dehydrogenase (NDH)- and PGRL1/PGR5-dependent pathways, both of which receive electrons from ferredoxin. Other topics covered in this review include new protein components of nucleoids, an updated inventory of the chloroplast proteome, new enzymes in chlorophyll biosynthesis and new candidate messengers in retrograde signaling. Finally, we discuss the first successful synthetic biology approaches that resulted in chloroplasts in which electrons from the photosynthetic light reactions are fed to enzymes derived from secondary metabolism. PMID:24991417

  2. Chloroplast Phylogenomic Inference of Green Algae Relationships

    PubMed Central

    Sun, Linhua; Fang, Ling; Zhang, Zhenhua; Chang, Xin; Penny, David; Zhong, Bojian

    2016-01-01

    The green algal phylum Chlorophyta has six diverse classes, but the phylogenetic relationship of the classes within Chlorophyta remains uncertain. In order to better understand the ancient Chlorophyta evolution, we have applied a site pattern sorting method to study compositional heterogeneity and the model fit in the green algal chloroplast genomic data. We show that the fastest-evolving sites are significantly correlated with among-site compositional heterogeneity, and these sites have a much poorer fit to the evolutionary model. Our phylogenomic analyses suggest that the class Chlorophyceae is a monophyletic group, and the classes Ulvophyceae, Trebouxiophyceae and Prasinophyceae are non-monophyletic groups. Our proposed phylogenetic tree of Chlorophyta will offer new insights to investigate ancient green algae evolution, and our analytical framework will provide a useful approach for evaluating and mitigating the potential errors of phylogenomic inferences. PMID:26846729

  3. Chloroplast phylogeny indicates that bryophytes are monophyletic.

    PubMed

    Nishiyama, Tomoaki; Wolf, Paul G; Kugita, Masanori; Sinclair, Robert B; Sugita, Mamoru; Sugiura, Chika; Wakasugi, Tatsuya; Yamada, Kyoji; Yoshinaga, Koichi; Yamaguchi, Kazuo; Ueda, Kunihiko; Hasebe, Mitsuyasu

    2004-10-01

    Opinions on the basal relationship of land plants vary considerably and no phylogenetic tree with significant statistical support has been obtained. Here, we report phylogenetic analyses using 51 genes from the entire chloroplast genome sequences of 20 representative green plant species. The analyses, using translated amino acid sequences, indicated that extant bryophytes (mosses, liverworts, and hornworts) form a monophyletic group with high statistical confidence and that extant bryophytes are likely sisters to extant vascular plants, although the support for monophyletic vascular plants was not strong. Analyses at the nucleotide level could not resolve the basal relationship with statistical confidence. Bryophyte monophyly inferred using amino acid sequences has a good statistical foundation and is not rejected statistically by other data sets. We propose bryophyte monophyly as the currently best hypothesis. PMID:15240838

  4. Biosynthesis of starch in chloroplasts.

    PubMed

    Nomura, T; Nakayama, N; Murata, T; Akazawa, T

    1967-03-01

    The enzymic synthesis of ADP-glucose and UDP-glucose by chloroplastic pyrophosphorylase of bean and rice leaves has been demonstrated by paper chromatographic techniques. In both tissues, the activity of UDP-glucose-pyrophosphorylase was much higher than ADP-glucose-pyrophosphorylase. Glycerate-3-phosphate, phosphoenolpyruvate and fructose-1,6-diphosphate did not stimulate ADP-glucose formation by a pyrophosphorylation reaction. The major metabolic pathway for UDP-glucose utilization appears to be the synthesis of either sucrose or sucrose-P. On the other hand, a specific precursor role of ADP-glucose for synthesizing chloroplast starch by the ADP-glucose-starch transglucosylase reaction is supported by the coupled enzyme system of ADP-glucose-pyrophosphorylase and transglucosylase, isolated from chloroplasts. None of the glycolytic intermediates stimulated the glucose transfer in the enzyme sequence of reaction system employed. PMID:4292567

  5. Isolation of chloroplastic phosphoglycerate kinase

    SciTech Connect

    Macioszek, J.; Anderson, L.E. ); Anderson, J.B. )

    1990-09-01

    We report here a method for the isolation of high specific activity phosphoglycerate kinase (EC 2.7.2.3) from chloroplasts. The enzyme has been purified over 200-fold from pea (Pisum sativum L.) stromal extracts to apparent homogeneity with 23% recovery. Negative cooperativity is observed with the two enzyme phosphoglycerate kinase/glyceraldehyde-3-P dehydrogenase (EC 1.2.1.13) couple restored from the purified enzymes when NADPH is the reducing pyridine nucleotide, consistent with earlier results obtained with crude chloroplastic extracts. Michaelis Menten kinetics are observed when 3-phosphoglycerate is held constant and phosphoglycerate kinase is varied, which suggests that phosphoglycerate kinase-bound 1,3-bisphosphoglycerate may be the preferred substrate for glyceraldehyde-3-P dehydrogenase in the chloroplast.

  6. Transformation of Chloroplast Ribosomal RNA Genes in Chlamydomonas: Molecular and Genetic Characterization of Integration Events

    PubMed Central

    Newman, S. M.; Boynton, J. E.; Gillham, N. W.; Randolph-Anderson, B. L.; Johnson, A. M.; Harris, E. H.

    1990-01-01

    Transformation of chloroplast ribosomal RNA (rRNA) genes in Chlamydomonas has been achieved by the biolistic process using cloned chloroplast DNA fragments carrying mutations that confer antibiotic resistance. The sites of exchange employed during the integration of the donor DNA into the recipient genome have been localized using a combination of antibiotic resistance mutations in the 16S and 23S rRNA genes and restriction fragment length polymorphisms that flank these genes. Complete or nearly complete replacement of a region of the chloroplast genome in the recipient cell by the corresponding sequence from the donor plasmid was the most common integration event. Exchange events between the homologous donor and recipient sequences occurred preferentially near the vector:insert junctions. Insertion of the donor rRNA genes and flanking sequences into one inverted repeat of the recipient genome was followed by intramolecular copy correction so that both copies of the inverted repeat acquired identical sequences. Increased frequencies of rRNA gene transformants were achieved by reducing the copy number of the chloroplast genome in the recipient cells and by decreasing the heterology between donor and recipient DNA sequences flanking the selectable markers. In addition to producing bona fide chloroplast rRNA transformants, the biolistic process induced mutants resistant to low levels of streptomycin, typical of nuclear mutations in Chlamydomonas. PMID:1981764

  7. Thermal Damage to Chloroplast Envelope Membranes 1

    PubMed Central

    McCain, Douglas C.; Croxdale, Judith; Markley, John L.

    1989-01-01

    Nuclear magnetic resonance was used to detect thermal injury to chloroplasts in vivo. A lesion occurs in the chloroplast envelope membrane at temperatures between 53°C and 57°C, depending on species, leaf condition, and heating rate. The injury is associated with a sudden loss of water from the chloroplast. PMID:16666815

  8. Photomorphogenic Regulation of Chloroplast Replication in Euglena

    PubMed Central

    Srinivas, Usha; Lyman, Harvard

    1980-01-01

    Chloroplast replication in Euglena gracilis is specifically inhibited by ultraviolet light and the effect is photoreactivable. The ability of irradiated cells to be photoreactivated is lost more rapidly if cells are incubated in red light than in darkness. A mutant, Y9ZNa1L, which lacks the red-blue photomorphogenic system regulating chloroplast synthesis does not show the red-light-enhanced loss of photoreactivability. Another mutant, Y11P27ZD which has the red-blue system, but lacks the blue-light system also regulating chloroplast synthesis, shows the red-light effect. The red-light effect is seen in a mutant of photosynthetic electron transport, P4ZUL, which rules out a product of photosynthesis as a mediator of the effect. Inhibitors of protein synthesis on chloroplast ribosomes do not prevent the red-light-enhanced loss of chloroplast DNA. Chloroplast DNA is lost rapidly when UV-irradiated cells are incubated in red light, showing that the loss of photoreactivability is due to the loss of the substrate for photoreactivation, chloroplast DNA. Therefore, the red-blue photomorphogenic system is activating a chloroplast DNA-specific nuclease(s). A model is proposed for a light-mediated mechanism regulating the amount of chloroplast DNA: blue light would promote chloroplast DNA synthesis; red light would promote its degradation. The photomorphogenic systems regulating chloroplast synthesis might work by activating a chloroplast-specific modification-restriction mechanism. PMID:16661425

  9. Nitrogen control of chloroplast differentiation

    SciTech Connect

    Schmidt, G.W.

    1992-07-01

    This project is directed toward understanding how the availability of nitrogen affects the accumulation of chloroplast pigments and proteins functioning in energy transduction and carbon metabolism. Molecular analyses performed with Chlamydomonas reinhardtii grown in a continuous culture system such that ammonium concentration is maintained at a low steady-state concentration so as to limit cell division. As compared to chloroplasts from cells of non-limiting nitrogen provisions, chloroplasts of N-limited cells are profoundly chlorophyll-deficient but still assimilate carbon for deposition of as starch and as storage lipids. Chlorophyll deficiency arises by limiting accumulation of appropriate nuclear-encoded mRNAs of and by depressed rates of translation of chloroplast mRNAs for apoproteins of reaction centers. Chloroplast translational effects can be partially ascribed to diminished rates of chlorophyll biosynthesis in N-limited cells, but pigment levels are not determinants for expression of the nuclear light-harvesting protein genes. Consequently, other signals that are responsive to nitrogen availability mediate transcriptional or post-transcriptional processes for accumulation of the mRNAs for LHC apoproteins and other mRNAs whose abundance is dependent upon high nitrogen levels. Conversely, limited nitrogen availability promotes accumulation of other proteins involved in carbon metabolism and oxidative electron transport in chloroplasts. Hence, thylakoids of N-limited cells exhibit enhanced chlororespiratory activities wherein oxygen serves as the electron acceptor in a pathway that involves plastoquinone and other electron carrier proteins that remain to be thoroughly characterized. Ongoing and future studies are also outlined.

  10. Early development of fern gametophytes in microgravity

    NASA Astrophysics Data System (ADS)

    Roux, Stanley J.; Chatterjee, Ani; Hillier, Sheila; Cannon, Tom

    Dormant spores of the fern Ceratopteris richardii were flown on Shuttle mission STS-93 to evaluate the effects of /micro-g on their development and on their pattern of gene expression. Prior to flight the spores were sterilized and sown into one of two environments: (1) Microscope slides in a video-microscopy module; and (2) Petri dishes. All spores were then stored in darkness until use. Spore germination was initiated on orbit after exposure to light. For the spores on microscope slides, cell level changes were recorded through the clear spore coat of the spores by video microscopy. After their exposure to light, spores in petri dishes were frozen in orbit at four different time points during which on earth gravity fixes the polarity of their development. Spores were then stored frozen in Biological Research in Canister units until recovery on earth. The RNAs from these cells and from /1-g control cells were extracted and analyzed on earth after flight to assay changes in gene expression. Video microscopy results revealed that the germinated spores developed normally in microgravity, although the polarity of their development, which is guided by gravity on earth, was random in space. Differential Display-PCR analyses of RNA extracted from space-flown cells showed that there was about a 5% change in the pattern of gene expression between cells developing in /micro-g compared to those developing on earth.

  11. Early development of fern gametophytes in microgravity

    NASA Technical Reports Server (NTRS)

    Roux, Stanley J.; Chatterjee, Ani; Hillier, Sheila; Cannon, Tom

    2003-01-01

    Dormant spores of the fern Ceratopteris richardii were flown on Shuttle mission STS-93 to evaluate the effects of micro-g on their development and on their pattern of gene expression. Prior to flight the spores were sterilized and sown into one of two environments: (1) Microscope slides in a video-microscopy module; and (2) Petri dishes. All spores were then stored in darkness until use. Spore germination was initiated on orbit after exposure to light. For the spores on microscope slides, cell level changes were recorded through the clear spore coat of the spores by video microscopy. After their exposure to light, spores in petri dishes were frozen in orbit at four different time points during which on earth gravity fixes the polarity of their development. Spores were then stored frozen in Biological Research in Canister units until recovery on earth. The RNAs from these cells and from 1-g control cells were extracted and analyzed on earth after flight to assay changes in gene expression. Video microscopy results revealed that the germinated spores developed normally in microgravity, although the polarity of their development, which is guided by gravity on earth, was random in space. Differential Display-PCR analyses of RNA extracted from space-flown cells showed that there was about a 5% change in the pattern of gene expression between cells developing in micro-g compared to those developing on earth. c2002 Published by Elsevier Science Ltd on behalf of COSPAR.

  12. Protein import into chloroplasts requires a chloroplast ATPase

    SciTech Connect

    Pain, D.; Blobel, G.

    1987-05-01

    The authors have transcribed mRNA from a cDNA clone coding for pea ribulose-1,5-bisphosphate carboxylase, translated the mRNA in a wheat germ cell-free system, and studied the energy requirement for posttranslational import of the (/sup 35/S)methionine-labeled protein into the stroma of pea chloroplasts. They found that import depends on ATP hydrolysis within the stroma. Import is not inhibited when H/sup +/, K/sup +/, Na/sup +/, or divalent cation gradients across the chloroplast membranes are dissipated by ionophores, as long as exogenously added ATP is also present during the import reaction. The data suggest that protein import into the chloroplast stroma requires a chloroplast ATPase that does not function to generate a membrane potential for driving the import reaction but that exerts its effect in another, yet-to-be-determined, mode. They have carried out a preliminary characterization of this ATPase regarding its nucleotide specificity and the effects of various ATPase inhibitors.

  13. Chloroplast DNA Structural Variation, Phylogeny, and Age of Divergence among Diploid Cotton Species.

    PubMed

    Chen, Zhiwen; Feng, Kun; Grover, Corrinne E; Li, Pengbo; Liu, Fang; Wang, Yumei; Xu, Qin; Shang, Mingzhao; Zhou, Zhongli; Cai, Xiaoyan; Wang, Xingxing; Wendel, Jonathan F; Wang, Kunbo; Hua, Jinping

    2016-01-01

    The cotton genus (Gossypium spp.) contains 8 monophyletic diploid genome groups (A, B, C, D, E, F, G, K) and a single allotetraploid clade (AD). To gain insight into the phylogeny of Gossypium and molecular evolution of the chloroplast genome in this group, we performed a comparative analysis of 19 Gossypium chloroplast genomes, six reported here for the first time. Nucleotide distance in non-coding regions was about three times that of coding regions. As expected, distances were smaller within than among genome groups. Phylogenetic topologies based on nucleotide and indel data support for the resolution of the 8 genome groups into 6 clades. Phylogenetic analysis of indel distribution among the 19 genomes demonstrates contrasting evolutionary dynamics in different clades, with a parallel genome downsizing in two genome groups and a biased accumulation of insertions in the clade containing the cultivated cottons leading to large (for Gossypium) chloroplast genomes. Divergence time estimates derived from the cpDNA sequence suggest that the major diploid clades had diverged approximately 10 to 11 million years ago. The complete nucleotide sequences of 6 cpDNA genomes are provided, offering a resource for cytonuclear studies in Gossypium. PMID:27309527

  14. Chloroplast DNA Structural Variation, Phylogeny, and Age of Divergence among Diploid Cotton Species

    PubMed Central

    Li, Pengbo; Liu, Fang; Wang, Yumei; Xu, Qin; Shang, Mingzhao; Zhou, Zhongli; Cai, Xiaoyan; Wang, Xingxing; Wendel, Jonathan F.; Wang, Kunbo

    2016-01-01

    The cotton genus (Gossypium spp.) contains 8 monophyletic diploid genome groups (A, B, C, D, E, F, G, K) and a single allotetraploid clade (AD). To gain insight into the phylogeny of Gossypium and molecular evolution of the chloroplast genome in this group, we performed a comparative analysis of 19 Gossypium chloroplast genomes, six reported here for the first time. Nucleotide distance in non-coding regions was about three times that of coding regions. As expected, distances were smaller within than among genome groups. Phylogenetic topologies based on nucleotide and indel data support for the resolution of the 8 genome groups into 6 clades. Phylogenetic analysis of indel distribution among the 19 genomes demonstrates contrasting evolutionary dynamics in different clades, with a parallel genome downsizing in two genome groups and a biased accumulation of insertions in the clade containing the cultivated cottons leading to large (for Gossypium) chloroplast genomes. Divergence time estimates derived from the cpDNA sequence suggest that the major diploid clades had diverged approximately 10 to 11 million years ago. The complete nucleotide sequences of 6 cpDNA genomes are provided, offering a resource for cytonuclear studies in Gossypium. PMID:27309527

  15. Covariations in the nuclear chloroplast transcriptome reveal a regulatory master-switch

    PubMed Central

    Richly, Erik; Dietzmann, Angela; Biehl, Alexander; Kurth, Joachim; Laloi, Christophe; Apel, Klaus; Salamini, Francesco; Leister, Dario

    2003-01-01

    The evolution of the endosymbiotic progenitor into the chloroplast organelle was associated with the transfer of numerous chloroplast genes into the nucleus. Hence, inter-organellar signalling, and the co-ordinated expression of sets of nuclear genes, was set up to control the metabolic and developmental status of the chloroplast. Here, we show by the differential-expression analysis of 3,292 genes, that most of the 35 environmental and genetic conditions tested, including plastid signalling mutations, elicit only three main classes of response from the nuclear chloroplast transcriptome. Two classes, probably involving GUN (genomes uncoupled)-type plastid signalling, are characterized by alterations, in opposite directions, in the expression of largely overlapping sets of genes. PMID:12776738

  16. Stable Expression of Basic Fibroblast Growth Factor in Chloroplasts of Tobacco.

    PubMed

    Wang, Yun-Peng; Wei, Zheng-Yi; Zhong, Xiao-Fang; Lin, Chun-Jing; Cai, Yu-Hong; Ma, Jian; Zhang, Yu-Ying; Liu, Yan-Zhi; Xing, Shao-Chen

    2016-01-01

    Basic fibroblast growth factor (bFGF) is a multifunctional factor in acceleration of cell proliferation, differentiation and transference, and therefore widely used in clinical applications. In this study, expression vector pWX-Nt03 harboring a codon-optimized bFGF gene was constructed and introduced into the tobacco chloroplasts by particle bombardment. After four rounds of selection, bFGF was proved to integrate into the chloroplast genome of regenerated plants and two of four transgenic plants were confirmed to be homoplastomic by PCR and Southern hybridization. ELISA assay indicated that bFGF represented approximately 0.1% of total soluble protein in the leaves of transplastomic tobacco plants. This is the first report of bFGF expression via chloroplast transformation in model plant, providing an additional option for the production of chloroplast-produced therapeutic proteins. PMID:26703590

  17. Stable Expression of Basic Fibroblast Growth Factor in Chloroplasts of Tobacco

    PubMed Central

    Wang, Yun-Peng; Wei, Zheng-Yi; Zhong, Xiao-Fang; Lin, Chun-Jing; Cai, Yu-Hong; Ma, Jian; Zhang, Yu-Ying; Liu, Yan-Zhi; Xing, Shao-Chen

    2015-01-01

    Basic fibroblast growth factor (bFGF) is a multifunctional factor in acceleration of cell proliferation, differentiation and transference, and therefore widely used in clinical applications. In this study, expression vector pWX-Nt03 harboring a codon-optimized bFGF gene was constructed and introduced into the tobacco chloroplasts by particle bombardment. After four rounds of selection, bFGF was proved to integrate into the chloroplast genome of regenerated plants and two of four transgenic plants were confirmed to be homoplastomic by PCR and Southern hybridization. ELISA assay indicated that bFGF represented approximately 0.1% of total soluble protein in the leaves of transplastomic tobacco plants. This is the first report of bFGF expression via chloroplast transformation in model plant, providing an additional option for the production of chloroplast-produced therapeutic proteins. PMID:26703590

  18. Arbuscular mycorrhiza formation in cordate gametophytes of two ferns, Angiopteris lygodiifolia and Osmunda japonica.

    PubMed

    Ogura-Tsujita, Yuki; Sakoda, Aki; Ebihara, Atsushi; Yukawa, Tomohisa; Imaichi, Ryoko

    2013-01-01

    Mycorrhizal symbiosis is common among land plants including pteridophytes (monilophytes and lycophytes). In pteridophytes with diplohaplontic life cycle, mycorrhizal formations were mostly reported for sporophytes, but very few for gametophytes. To clarify the mycorrhizal association of photosynthetic gametophytes, field-collected gametophytes of Angiopteris lygodiifolia (Marattiaceae, n = 52) and Osmunda japonica (Osmundaceae, n = 45) were examined using microscopic and molecular techniques. Collected gametophytes were mostly cut into two pieces. One piece was used for light and scanning microscopic observations, and the other for molecular identification of plant species (chloroplast rbcL sequences) and mycorrhizal fungi (small subunit rDNA sequences). Microscopic observations showed that 96 % (50/52) of Angiopteris and 95 % (41/43) of Osmunda gametophytes contained intracellular hyphae with arbuscules and/or vesicles and fungal colonization was limited to the inner tissue of the thick midribs (cushion). Fungal DNA analyses showed that 92 % (48/52) of Angiopteris and 92 % (35/38) of Osmunda have sequences of arbuscular mycorrhizal fungi, which were highly divergent but all belonged to Glomus group A. These results suggest that A. lygodiifolia and O. japonica gametophytes consistently form arbuscular mycorrhizae. Mycorrhizal formation in wild fern gametophytes, based on large-scale sampling with molecular identification of host plant species, was demonstrated for the first time. PMID:22806582

  19. Origins and diversity of a cosmopolitan fern genus on an island archipelago

    PubMed Central

    Wolf, Paul G.; Rowe, Carol A.; Der, Joshua P.; Schilling, Martin P.; Visger, Clayton J.; Thomson, John A.

    2015-01-01

    Isolated oceanic islands are characterized by patterns of biological diversity different from that on nearby continental mainlands. Isolation can provide the opportunity for evolutionary divergence, but also set the stage for hybridization between related taxa arriving from different sources. Ferns disperse by haploid spores, which are produced in large numbers and can travel long distances in air currents, enabling these plants to become established on most oceanic islands. Here, we examine the origins and patterns of diversity of the cosmopolitan fern genus Pteridium (Dennstaedtiaceae; bracken) on the Galapagos Islands. We use nucleotide sequences from two plastid genes, and two nuclear gene markers, to examine phylogeography of Pteridium on the Galapagos Islands. We incorporate data from a previous study to provide a worldwide context. We also sampled new specimens from South and Central America. We used flow cytometry to estimate genome size of some accessions. We found that both plastid and nuclear haplotypes fall into two distinct clades, consistent with a two-diploid-species taxonomy of P. aquilinum and P. esculentum. As predicted, the allotetraploid P. caudatum possesses nuclear haplotypes from both diploid species. Samples from the Galapagos include P. esculentum subsp. arachnoideum, P. caudatum and possible hybrids between them. Multiple Pteridium taxa were also observed growing together at some sites. We find evidence for multiple origins of Pteridium on the Galapagos Islands and multiple origins of tetraploid P. caudatum throughout its range in Central and South America. We also posit that P. caudatum may include recent diploid hybrids, backcrosses to P. esculentum, as well as allotetraploid plants. The Galapagos Islands are positioned close to the equator where they can receive dispersing propagules from both hemispheres. This may partly explain the high levels of diversity found for this cosmopolitan fern on these islands. PMID:26487677

  20. Origins and diversity of a cosmopolitan fern genus on an island archipelago.

    PubMed

    Wolf, Paul G; Rowe, Carol A; Der, Joshua P; Schilling, Martin P; Visger, Clayton J; Thomson, John A

    2015-01-01

    Isolated oceanic islands are characterized by patterns of biological diversity different from that on nearby continental mainlands. Isolation can provide the opportunity for evolutionary divergence, but also set the stage for hybridization between related taxa arriving from different sources. Ferns disperse by haploid spores, which are produced in large numbers and can travel long distances in air currents, enabling these plants to become established on most oceanic islands. Here, we examine the origins and patterns of diversity of the cosmopolitan fern genus Pteridium (Dennstaedtiaceae; bracken) on the Galapagos Islands. We use nucleotide sequences from two plastid genes, and two nuclear gene markers, to examine phylogeography of Pteridium on the Galapagos Islands. We incorporate data from a previous study to provide a worldwide context. We also sampled new specimens from South and Central America. We used flow cytometry to estimate genome size of some accessions. We found that both plastid and nuclear haplotypes fall into two distinct clades, consistent with a two-diploid-species taxonomy of P. aquilinum and P. esculentum. As predicted, the allotetraploid P. caudatum possesses nuclear haplotypes from both diploid species. Samples from the Galapagos include P. esculentum subsp. arachnoideum, P. caudatum and possible hybrids between them. Multiple Pteridium taxa were also observed growing together at some sites. We find evidence for multiple origins of Pteridium on the Galapagos Islands and multiple origins of tetraploid P. caudatum throughout its range in Central and South America. We also posit that P. caudatum may include recent diploid hybrids, backcrosses to P. esculentum, as well as allotetraploid plants. The Galapagos Islands are positioned close to the equator where they can receive dispersing propagules from both hemispheres. This may partly explain the high levels of diversity found for this cosmopolitan fern on these islands. PMID:26487677

  1. Comparative chromatography of chloroplast pigment

    NASA Technical Reports Server (NTRS)

    Grandolfo, M.; Sherma, J.; Strain, H. H.

    1969-01-01

    Methods for isolation of low concentration pigments of the cocklebur species are described. The methods entail two step chromatography so that the different sorption properties of the various pigments in varying column parameters can be utilized. Columnar and thin layer methods are compared. Many conditions influence separability of the chloroplasts.

  2. Involvement of allelopathy in the formation of monospecific colonies of ferns.

    PubMed

    Kato-Noguchi, Hisashi

    2015-05-01

    Some fern species often dominate plant communities by forming large monospecific colonies. However, the potential mechanism for this domination of the ferns remains obscure. Many plants secrete a wide range of compounds into the rhizosphere and change the chemical and physical properties of the rhizosphere soil. Through the secretion of compounds, such as allelopathic substances, plants inhibit the germination and growth of neighboring plants to compete more effectively for the resources. Ferns contain a variety of secondary metabolites and some of those compounds are released from the ferns into the rhizosphere soil, either as exudates from living ferns or by decomposition of fern residues in sufficient quantities to affect the germination and growth of neighboring plants as allelopathic substances. Therefore, allelopathic chemical interaction of the ferns with neighboring plants may play an important role in the formation of the monospecific colonies of the ferns. PMID:26058163

  3. Sub-plastidial localization of two different phage-type RNA polymerases in spinach chloroplasts

    PubMed Central

    Azevedo, Jacinthe; Courtois, Florence; Lerbs-Mache, Silva

    2006-01-01

    Plant plastids contain a circular genome of ∼150 kb organized into ∼35 transcription units. The plastid genome is organized into nucleoids and attached to plastid membranes. This relatively small genome is transcribed by at least two different RNA polymerases, one being of the prokaryotic type and plastid-encoded (PEP), the other one being of the phage-type and nucleus-encoded (NEP). The presumed localization of a second phage-type RNA polymerase in plastids is still questionable. There is strong evidence for a sequential action of NEP and PEP enzymes during plant development attributing a prevailing role of NEP during early plant and plastid development, although NEP is present in mature chloroplasts. In the present paper, we have analysed two different NEP enzymes from spinach with respect to subcellular and intra-plastidial localization in mature chloroplasts with the help of specific antibodies. Results show the presence of the two different NEP enzymes in mature chloroplasts. Both enzymes are entirely membrane bound but, unlike previously thought, this membrane binding is not mediated via DNA. This finding indicates that NEP enzymes are not found as elongating transcription complexes on the template DNA in mature chloroplasts and raises the question of their function in mature chloroplasts. PMID:16421271

  4. Arabidopsis Chloroplast RNA Binding Proteins CP31A and CP29A Associate with Large Transcript Pools and Confer Cold Stress Tolerance by Influencing Multiple Chloroplast RNA Processing Steps[W

    PubMed Central

    Kupsch, Christiane; Ruwe, Hannes; Gusewski, Sandra; Tillich, Michael; Small, Ian; Schmitz-Linneweber, Christian

    2012-01-01

    Chloroplast RNA metabolism is mediated by a multitude of nuclear encoded factors, many of which are highly specific for individual RNA processing events. In addition, a family of chloroplast ribonucleoproteins (cpRNPs) has been suspected to regulate larger sets of chloroplast transcripts. This together with their propensity for posttranslational modifications in response to external cues suggested a potential role of cpRNPs in the signal-dependent coregulation of chloroplast genes. We show here on a transcriptome-wide scale that the Arabidopsis thaliana cpRNPs CP31A and CP29A (for 31 kD and 29 kD chloroplast protein, respectively), associate with large, overlapping sets of chloroplast transcripts. We demonstrate that both proteins are essential for resistance of chloroplast development to cold stress. They are required to guarantee transcript stability of numerous mRNAs at low temperatures and under these conditions also support specific processing steps. Fine mapping of cpRNP–RNA interactions in vivo suggests multiple points of contact between these proteins and their RNA ligands. For CP31A, we demonstrate an essential function in stabilizing sense and antisense transcripts that span the border of the small single copy region and the inverted repeat of the chloroplast genome. CP31A associates with the common 3′-terminus of these RNAs and protects them against 3′-exonucleolytic activity. PMID:23110894

  5. Nuclear mutations that block group II RNA splicing in maize chloroplasts reveal several intron classes with distinct requirements for splicing factors.

    PubMed Central

    Jenkins, B D; Kulhanek, D J; Barkan, A

    1997-01-01

    To elucidate mechanisms that regulate chloroplast RNA splicing in multicellular plants, we sought nuclear mutations in maize that result in chloroplast splicing defects. Evidence is presented for two nuclear genes whose function is required for the splicing of group II introns in maize chloroplasts. A mutation in the crs1 (for chloroplast RNA splicing 1) gene blocks the splicing of only the atpF intron, whereas a mutation in the crs2 gene blocks the splicing of many chloroplast introns. In addition, a correlation was observed between the absence of plastid ribosomes and the failure to splice several chloroplast introns. Our results suggest that a chloroplast-encoded factor and a nuclear-encoded factor whose activity requires crs2 function facilitate the splicing of distinct sets of group II introns. These two genetically defined intron sets also differ with regard to intron structure: one set consists of only subgroup IIA introns and the other of only subgroup IIB introns. Therefore, it is likely that distinct splicing factors recognize subgroup-specific features of intron structure or facilitate subgroup-specific aspects of the splicing reaction. Of the 12 pre-mRNA introns in the maize chloroplast genome, only one is normally spliced in both crs2 mutants and in mutants lacking plastid ribosomes, indicating that few, if any, of the group II introns in the chloroplast genome undergo autocatalytic splicing in vivo. PMID:9090875

  6. FTIR and py-GC-MS spectra of true-fern and seed-fern sphenopterids (Sydney Coalfield, Nova Scotia, Canada, Pennsylvanian)

    USGS Publications Warehouse

    Zodrow, E.L.; Mastalerz, Maria

    2002-01-01

    Sphenopterid specimens from the Late Pennsylvanian of Sydney Coalfield, Canada, are investigated by FTIR and py-GC-MS techniques as part of an on-going research project into the biochemistry and chemotaxonomy of Pennsylvanian-age pteridophylls. Included in the investigation are samples of the true-fern species Oligocarpia brongniartii and Zeilleria delicatula that are preserved as naturally macerated cuticles (NMC), and the seed-fern Eusphenopteris neuropteroides that is also preserved as a compression/impression. FTIR spectra of NMC seed-fern E. neuropteroides, and fern sphenopterid O. brongniartii are very similar, except that the latter does not have aromatic bands in the 700-900 cm-1 out-of-plane region, py-GC-MS show more aromatic compounds for the seed fern than for the two true-fern sphenopterids. Another difference between seed-fern and true-fern sphenopterids is a lower ratio of CH2 to CH3 in chemically treated specimens (CTC) for the seed fern. These observations suggest slightly higher aromaticity for the seed ferns, perhaps related to some chemotaxonomic differences. Comparison of FTIR and py-GC-MS characteristics of sphenopterids and other plant groups shows that these two techniques have potential to identifying chemotaxonomic signals from Carboniferous pteridophylls in general, although more data are needed to confirm this. ?? 2002 Elsevier Science B.V. All rights reserved.

  7. Formation of putative chloroplast cytochromes in isolated developing pea chloroplasts

    SciTech Connect

    Thaver, S.S.; Bhava, D.; Castelfranco, P.A.

    1986-04-01

    In addition to chlorophyll-protein complexes, other proteins were labeled when isolated developing pea chloroplasts were incubated with (/sup 14/C)-5-aminolevulinic acid (/sup 14/C)-ALA. The major labeled band (M/sub r/ = 43 kDa by LDS-PAGE) was labeled even in the presence of chloramphenicol. Heme-dependent peroxidase activity (as detected by the tetramethyl benzidine-H/sub 2/O/sub 2/ stain) was not visibly associated with this band. The radioactive band was stable to heat, 5% HCl in acetone, and was absent if the incubation with (/sup 14/C)-5-aminolevulinic acid was carried out in the presence of N-methyl protoporphyrin IX dimethyl ester (a specific inhibitor of ferrochelatase). Organic solvent extraction procedures for the enrichment of cytochrome f from chloroplast membranes also extracted this unknown labeled product. It was concluded that this labeled product was probably a c-type cytochrome. The effect of exogenous iron, iron chelators, gabaculine (an inhibitor of ALA synthesis) and other incubation conditions upon the in vitro formation of putative chloroplast cytochromes will be discussed.

  8. Incongruence between Nuclear and Chloroplast DNA Phylogenies in Pedicularis Section Cyathophora (Orobanchaceae)

    PubMed Central

    Yu, Wen-Bin; Huang, Pan-Hui; Li, De-Zhu; Wang, Hong

    2013-01-01

    Pedicularis section Cyathophora is a monophyletic group characterized by perfoliate leaf and/or bract bases at each node. This section comprises four series, corresponding to four general corolla types of Pedicularis, i.e. toothless, toothed, beaked and long-tubed corollas. In this study, we aim to reconstruct a comprehensive phylogeny of section Cyathophora, and compare phylogenetic incongruence between nuclear and chloroplast datasets. Sixty-seven accessions belonging to section Cyathophora and 9 species for other Pedicularis were sampled, and one nuclear gene (nrITS) and four chloroplast genes (matK, rbcL, trnH-psbA and trnL-F) were sequenced. Phylogenetic analyses show that the topologies and networks inferred from nrITS and the concatenated chloroplast datasets were incongruent, and the nrITS phylogenies and network agreed with the morphology-based taxonomy to some degree. The chloroplast genome of two Sichuan samples of P. cyathophylloides (E4 and E5) may show introgression from an ancestor of P. cyathophylla. Neither the nrITS dataset nor the concatenated chloroplast dataset were able to adequately resolve relationships among species in the series Reges; this is most likely due to incomplete lineage sorting and/or introgression/hybridization. The nrITS phylogeny indicates the beakless (toothed and toothless) and beaked galeas may have evolved independently within section Cyathophora, and the chloroplast phylogeny reveals that the long corolla tube with beaked galea is derived from the short one. PMID:24069353

  9. In vivo effects of NbSiR silencing on chloroplast development in Nicotiana benthamiana.

    PubMed

    Kang, Yong-Won; Lee, Jae-Yong; Jeon, Young; Cheong, Gang-Won; Kim, Moonil; Pai, Hyun-Sook

    2010-04-01

    Sulfite reductase (SiR) performs dual functions, acting as a sulfur assimilation enzyme and as a chloroplast (cp-) nucleoid binding protein. In this study, we examined the in vivo effects of SiR deficiency on chloroplast development in Nicotiana benthamiana. Virus-induced gene silencing of NbSiR resulted in leaf yellowing and growth retardation phenotypes, which were not rescued by cysteine supplementation. NbSiR:GFP fusion protein was targeted to chloroplasts and colocalized with cp-nucleoids. Recombinant full-length NbSiR protein and the C-terminal half of NbSiR possessed cp-DNA compaction activities in vitro, and expression of full-length NbSiR in E. coli caused condensation of genomic DNA. NbSiR silencing differentially affected expression of plastid-encoded genes, inhibiting expression of several genes more severely than others. In the later stages, depletion of NbSiR resulted in chloroplast ablation. In NbSiR-silenced plants, enlarged cp-nucleoids containing an increased amount of cp-DNA were observed in the middle of the abnormal chloroplasts, and the cp-DNAs were predominantly of subgenomic sizes based on pulse field gel electrophoresis. The abnormal chloroplasts developed prolamellar body-like cubic lipid structures in the light without accumulating NADPH:protochlorophyllide oxidoreductase proteins. Our results suggest that NbSiR plays a role in cp-nucleoid metabolism, plastid gene expression, and thylakoid membrane development. PMID:20047069

  10. Biodiversity of volatile organic compounds from five French ferns.

    PubMed

    Fons, Françoise; Froissard, Didier; Bessière, Jean-Marie; Buatois, Bruno; Rapior, Sylvie

    2010-10-01

    Five French ferns belonging to different families were investigated for volatile organic compounds (VOC) by GC-MS using organic solvent extraction. Fifty-five VOC biosynthesized from the shikimic, lipidic and terpenic pathways including monoterpenes, sesquiterpenes and carotenoid-type compounds were identified. The main volatile compound of Adiantum capillus-veneris L. (Pteridaceae) was (E)-2-decenal with a plastic or "stink bug" odor. The volatile profiles of Athyrium filix-femina (L.) Roth (Woodsiaceae) and Blechnum spicant (L.) Roth (Blechnaceae) showed similarities, with small amounts of isoprenoids and the same main volatile compounds, i.e., 2-phenylethanal (odor of lilac and hyacinth) and 1-octen-3-ol (mushroom-like odor). The main volatile compound of Dryopteris filix-mas (L.) Schott (Dryopteridaceae) was (E)-nerolidol with a woody or fresh bark note. Polyketides, as acylfilicinic acids, were mainly identified in this fern. Oreopteris limbosperma (Bellardi ex. All.) J. Holub (Thelypteridaceae), well-known for its lemon smell, contained the highest biodiversity of VOC. Eighty percent of the volatiles was issued from the terpenic pathway. The main volatiles were (E)-nerolidol, alpha-terpineol, beta-caryophyllene and other minor monoterpenes (for example, linalool, pinenes, limonene, and gamma-terpinen-7-al). It was also the fern with the highest number of carotenoid-type derivatives, which were identified in large amounts. Our results were of great interest underlying new industrial valorisation for ferns based on their broad spectrum of volatiles. PMID:21121267

  11. Boston Fern Prodcution in Whole Pine Tree Substrates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An experiment was conducted to evaluate processed whole pine trees as an alternative container substrate for Boston fern production. Three whole pine tree (WPT) substrates and a commercial peat-lite mix (PL) were each amended per cubic meter with 0.59 kg micromax, 2.37 kg Harrell’s 16-6-12 Plus (4-5...

  12. Exploration of cryo-methods to preserve fern gametophytes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fern gametophytes, derived from in vitro cultures, are a useful source of germplasm for scientific research using genetic stocks, mass production of individuals for plantings, ex situ conservation of endangered populations and reproduction of species or hybrids that produce short-lived or nonfunctio...

  13. Enhanced green fluorescent protein (egfp) gene expression in Tetraselmis subcordiformis chloroplast with endogenous regulators.

    PubMed

    Cui, Yulin; Zhao, Jialin; Hou, Shichang; Qin, Song

    2016-05-01

    On the basis of fundamental genetic transformation technologies, the goal of this study was to optimize Tetraselmis subcordiformis chloroplast transformation through the use of endogenous regulators. The genes rrn16S, rbcL, psbA, and psbC are commonly highly expressed in chloroplasts, and the regulators of these genes are often used in chloroplast transformation. For lack of a known chloroplast genome sequence, the genome-walking method was used here to obtain full sequences of T. subcordiformis endogenous regulators. The resulting regulators, including three promoters, two terminators, and a ribosome combination sequence, were inserted into the previously constructed plasmid pPSC-R, with the egfp gene included as a reporter gene, and five chloroplast expression vectors prepared. These vectors were successfully transformed into T. subcordiformis by particle bombardment and the efficiency of each vector tested by assessing EGFP fluorescence via microscopy. The results showed that these vectors exhibited higher efficiency than the former vector pPSC-G carrying exogenous regulators, and the vector pRFA with Prrn, psbA-5'RE, and TpsbA showed the highest efficiency. This research provides a set of effective endogenous regulators for T. subcordiformis and will facilitate future fundamental studies of this alga. PMID:27038953

  14. Chloroplast-encoded serotonin N-acetyltransferase in the red alga Pyropia yezoensis: gene transition to the nucleus from chloroplasts.

    PubMed

    Byeon, Yeong; Yool Lee, Hyoung; Choi, Dong-Woog; Back, Kyoungwhan

    2015-02-01

    Melatonin biosynthesis involves the N-acetylation of arylalkylamines such as serotonin, which is catalysed by serotonin N-acetyltransferase (SNAT), the penultimate enzyme of melatonin biosynthesis in both animals and plants. Here, we report the functional characterization of a putative N-acetyltransferase gene in the chloroplast genome of the alga laver (Pyropia yezoensis, formerly known as Porphyra yezoensis) with homology to the rice SNAT gene. To confirm that the putative Pyropia yezoensis SNAT (PySNAT) gene encodes an SNAT, we cloned the full-length chloroplastidic PySNAT gene by PCR and purified the recombinant PySNAT protein from Escherichia coli. PySNAT was 174 aa and had 50% amino acid identity with cyanobacteria SNAT. Purified recombinant PySNAT showed a peak activity at 55 °C with a K m of 467 µM and V max of 28 nmol min-1 mg(-1) of protein. Unlike other plant SNATs, PySNAT localized to the cytoplasm due to a lack of N-terminal chloroplast transit peptides. Melatonin was present at 0.16ng g(-1) of fresh mass but increased during heat stress. Phylogenetic analysis of the sequence suggested that PySNAT has evolved from the cyanobacteria SNAT gene via endosymbiotic gene transfer. Additionally, the chloroplast transit peptides of plant SNATs were acquired 1500 million years ago, concurrent with the appearance of green algae. PMID:25183745

  15. Chloroplast-encoded serotonin N-acetyltransferase in the red alga Pyropia yezoensis: gene transition to the nucleus from chloroplasts

    PubMed Central

    Byeon, Yeong; Yool Lee, Hyoung; Choi, Dong-Woog; Back, Kyoungwhan

    2015-01-01

    Melatonin biosynthesis involves the N-acetylation of arylalkylamines such as serotonin, which is catalysed by serotonin N-acetyltransferase (SNAT), the penultimate enzyme of melatonin biosynthesis in both animals and plants. Here, we report the functional characterization of a putative N-acetyltransferase gene in the chloroplast genome of the alga laver (Pyropia yezoensis, formerly known as Porphyra yezoensis) with homology to the rice SNAT gene. To confirm that the putative Pyropia yezoensis SNAT (PySNAT) gene encodes an SNAT, we cloned the full-length chloroplastidic PySNAT gene by PCR and purified the recombinant PySNAT protein from Escherichia coli. PySNAT was 174 aa and had 50% amino acid identity with cyanobacteria SNAT. Purified recombinant PySNAT showed a peak activity at 55 °C with a K m of 467 µM and V max of 28 nmol min–1 mg–1 of protein. Unlike other plant SNATs, PySNAT localized to the cytoplasm due to a lack of N-terminal chloroplast transit peptides. Melatonin was present at 0.16ng g–1 of fresh mass but increased during heat stress. Phylogenetic analysis of the sequence suggested that PySNAT has evolved from the cyanobacteria SNAT gene via endosymbiotic gene transfer. Additionally, the chloroplast transit peptides of plant SNATs were acquired 1500 million years ago, concurrent with the appearance of green algae. PMID:25183745

  16. Fluorescence Properties of Guard Cell Chloroplasts

    PubMed Central

    Zeiger, Eduardo; Armond, Paul; Melis, Anastasios

    1981-01-01

    The presence of chloroplasts in guard cells from leaf epidermis, coleoptile, flowers, and albino portions of variegated leaves was established by incident fluorescence microscopy, thus confirming the notion that guard cell chloroplasts are remarkably conserved. Room temperature emission spectra from a few chloroplasts in a single guard cell of Vicia faba showed one major peak at around 683 nanometers. Low-temperature (77 K) emission spectra from peels of albino portions of Chlorophytum comosum leaves and from mesophyll chloroplasts of green parts of the same leaves showed major peaks at around 687 and 733 nanometers, peaks usually attributed to photosystem II and photosystem I pigment systems, respectively. Spectra of peels of V. faba leaves showed similar peaks. However, fluorescence microscopy revealed that the Vicia peels, as well as those from Allium cepa and Tulipa sp., were contaminated with non-guard cell chloroplasts which were practically undetectable under bright field illumination. These observations pose restrictions on the use of epidermal peels as a source of isolated guard cell chloroplasts. Studies on the 3-(3,4-dichlorophenyl)-1,1-dimethylurea-sensitive variable fluorescence kinetics of uncontaminated epidermal peels of C. comosum indicated that guard cell chloroplasts operate a normal, photosystem II-dependent, linear electron transport. The above properties in combination with their reported inability to fix CO2 photosynthetically may render the guard cell chloroplasts optimally suited to supply the reducing and high-energy phosphate equivalents needed to sustain active ion transport during stomatal opening in daylight. PMID:16661620

  17. Chloroplasts as functional organelles in animal tissues.

    PubMed

    Trench, R K; Greene, R W; Bystrom, B G

    1969-08-01

    The marine gastropod molluscs Tridachia crispata, Tridachiella diomedea, and Placobranchus ianthobapsus (Sacoglossa, Opisthobranchia) possess free functional chloroplasts within the cells of the digestive diverticula, as determined by observations on ultrastructure, pigment analyses, and experiments on photosynthetic capacity. In the light, the chloroplasts incorporate H(14)CO(3) (-)in situ. Reduced radiocarbon is translocated to various chloroplast-free tissues in the animals. The slugs feed on siphonaceous algae from which the chloroplasts are derived. Pigments from the slugs and from known siphonaceous algae, when separated chromatographically and compared, showed similar components. Absorption spectra of extracts of slugs and algae were very similar. The larvae of the slugs are pigment-free up to the post-veliger stage, suggesting that chloroplasts are acquired de novo. with each new generation. PMID:5792329

  18. Chloroplast evolution in the Pinus montezumae complex: a coalescent approach to hybridization.

    PubMed

    Matos, J A; Schaal, B A

    2000-08-01

    This study addresses the evolutionary history of the chloroplast genomes of two closely related pine species, Pinus hartwegii Lindl. and P. montezumae Lamb (subsect. Ponderosae) using coalescent theory and some of the statistical tools that have been developed from it during the past two decades. Pinus hartwegii and P. montezumae are closely related species in the P. montezumae complex (subsect. Ponderosae) of Mexico and Central America. Pinus hartwegii is a high elevation species, whereas P. montezumae occurs at lower elevations. The two species occur on many of the same mountains throughout Mexico. A total of 350 individuals of P. hartwegii and P. montezumae were collected from Nevado de Colima (Jalisco), Cerro Potosí (Nuevo León), Iztaccihuatl/Popocatepetl (México), and Nevado de Toluca (México). The chloroplast genome of P. hartwegii and P. montezumae was mapped using eight restriction enzymes. Fifty-one different haplotypes were characterized; 38 of 160 restriction sites were polymorphic. Clades of most parsimoniously related chloroplast haplotypes are geographically localized and do not overlap in distribution, and the geographically localized clades of haplotypes include both P. hartwegii and P. montezumae. Some haplotypes in the clades occur in only one of the two species, whereas other haplotypes occur in both species. These data strongly suggest ancient and/or ongoing hybridization between P. hartwegii and P. montezumae and a shared chloroplast genome history within geographic regions of Mexico. PMID:11005290

  19. Chloroplast RNA-Binding Protein RBD1 Promotes Chilling Tolerance through 23S rRNA Processing in Arabidopsis.

    PubMed

    Wang, Shuai; Bai, Ge; Wang, Shu; Yang, Leiyun; Yang, Fen; Wang, Yi; Zhu, Jian-Kang; Hua, Jian

    2016-05-01

    Plants have varying abilities to tolerate chilling (low but not freezing temperatures), and it is largely unknown how plants such as Arabidopsis thaliana achieve chilling tolerance. Here, we describe a genome-wide screen for genes important for chilling tolerance by their putative knockout mutants in Arabidopsis thaliana. Out of 11,000 T-DNA insertion mutant lines representing half of the genome, 54 lines associated with disruption of 49 genes had a drastic chilling sensitive phenotype. Sixteen of these genes encode proteins with chloroplast localization, suggesting a critical role of chloroplast function in chilling tolerance. Study of one of these proteins RBD1 with an RNA binding domain further reveals the importance of chloroplast translation in chilling tolerance. RBD1 is expressed in the green tissues and is localized in the chloroplast nucleoid. It binds directly to 23S rRNA and the binding is stronger under chilling than at normal growth temperatures. The rbd1 mutants are defective in generating mature 23S rRNAs and deficient in chloroplast protein synthesis especially under chilling conditions. Together, our study identifies RBD1 as a regulator of 23S rRNA processing and reveals the importance of chloroplast function especially protein translation in chilling tolerance. PMID:27138552

  20. Chloroplast RNA-Binding Protein RBD1 Promotes Chilling Tolerance through 23S rRNA Processing in Arabidopsis

    PubMed Central

    Yang, Leiyun; Yang, Fen; Wang, Yi; Zhu, Jian-Kang; Hua, Jian

    2016-01-01

    Plants have varying abilities to tolerate chilling (low but not freezing temperatures), and it is largely unknown how plants such as Arabidopsis thaliana achieve chilling tolerance. Here, we describe a genome-wide screen for genes important for chilling tolerance by their putative knockout mutants in Arabidopsis thaliana. Out of 11,000 T-DNA insertion mutant lines representing half of the genome, 54 lines associated with disruption of 49 genes had a drastic chilling sensitive phenotype. Sixteen of these genes encode proteins with chloroplast localization, suggesting a critical role of chloroplast function in chilling tolerance. Study of one of these proteins RBD1 with an RNA binding domain further reveals the importance of chloroplast translation in chilling tolerance. RBD1 is expressed in the green tissues and is localized in the chloroplast nucleoid. It binds directly to 23S rRNA and the binding is stronger under chilling than at normal growth temperatures. The rbd1 mutants are defective in generating mature 23S rRNAs and deficient in chloroplast protein synthesis especially under chilling conditions. Together, our study identifies RBD1 as a regulator of 23S rRNA processing and reveals the importance of chloroplast function especially protein translation in chilling tolerance. PMID:27138552

  1. Interaction of Chloroplasts with Inhibitors

    PubMed Central

    Ridley, Stuart M.

    1983-01-01

    Several effects on pea (Pisum sativum L. var Onwards) chloroplasts of a new diphenylether herbicide, fomesafen (5-[2-chloro-4-trifluoromethyl-phenoxy]-N-methanesulfonyl-2 -nitrobenzamide) have been compared with those of a herbicide of related structure, nitrofluorfen (2-chloro-1-[4-nitrophenoxy]-4-[trifluoromethyl]benzene). Although both compounds produce the same light-dependent symptoms of desiccation and chlorosis indicative of a common primary mechanism of action, this study is concerned with a more broadly based investigation of different effects on the electron transport system. Comparisons have also been made with other compounds interacting with the chloroplast. Unlike nitrofluorfen, fomesafen has little effect as an inhibitor of electron flow or energy transfer. Both compounds have the ability to stimulate superoxide production through a functional electron transport system, and this involves specifically the p-nitro substituent. The stimulation, which is not likely to be an essential part of the primary herbicidal effect, is diminished under conditions that remove the coupling factor. Evidence suggests that both diphenylethers may be able to bind to the coupling factor, and kinetic studies reveal this for dibromothymoquinone as well. Such a binding site might be an important feature in allowing the primary effect of the diphenylether herbicides to be expressed. PMID:16663025

  2. Leaf evolution in early-diverging ferns: insights from a new fern-like plant from the Late Devonian of China

    PubMed Central

    Wang, De-Ming; Xu, Hong-He; Xue, Jin-Zhuang; Wang, Qi; Liu, Le

    2015-01-01

    Background and Aims With the exception of angiosperms, the main euphyllophyte lineages (i.e. ferns sensu lato, progymnosperms and gymnosperms) had evolved laminate leaves by the Late Devonian. The evolution of laminate leaves, however, remains unclear for early-diverging ferns, largely represented by fern-like plants. This study presents a novel fern-like taxon with pinnules, which provides new insights into the early evolution of laminate leaves in early-diverging ferns. Methods Macrofossil specimens were collected from the Upper Devonian (Famennian) Wutong Formation of Anhui and Jiangsu Provinces, South China. A standard degagement technique was employed to uncover compressed plant portions within the rock matrix. Key Results A new fern-like taxon, Shougangia bella gen. et sp. nov., is described and represents an early-diverging fern with highly derived features. It has a partially creeping stem with adventitious roots only on one side, upright primary and secondary branches arranged in helices, tertiary branches borne alternately or (sub)oppositely, laminate and usually lobed leaves with divergent veins, and complex fertile organs terminating tertiary branches and possessing multiple divisions and numerous terminal sporangia. Conclusions Shougangia bella provides unequivocal fossil evidence for laminate leaves in early-diverging ferns. It suggests that fern-like plants, along with other euphyllophyte lineages, had independently evolved megaphylls by the Late Devonian, possibly in response to a significant decline in atmospheric CO2 concentration. Among fern-like plants, planate ultimate appendages are homologous with laminate pinnules, and in the evolution of megaphylls, fertile organs tend to become complex. PMID:25979918

  3. Limitation of distribution of two rare ferns in fragmented landscape

    NASA Astrophysics Data System (ADS)

    Tájek, Přemysl; Bucharová, Anna; Münzbergová, Zuzana

    2011-09-01

    Species distribution in the landscape is limited either by 1. diaspore production, dispersal and establishment abilities or 2. by availability of suitable habitats; 3. or by a combination of both factors. The relative importance of these factors is species-dependent and has mainly been studied for seed plants. We studied the importance of habitat and dispersal limitation for distribution of two rare fern species, Asplenium adulterinum and Asplenium cuneifolium, restricted to serpentine rocks, using analysis of their distribution on a regional scale (several kilometers). Within the model region, all 98 serpentine rocks were mapped. We used data on abiotic characteristics and on the presence of all vascular plant species on the rocks to predict which of the rocks were suitable for the two Asplenium species. Suitable habitats were positively defined mainly by the presence of appropriate microhabitats and the height of the highest rock, which represents the size of space with lowered concurrence. Other determinants of habitat suitability differed between species. Neither species occupied all suitable localities, indicating dispersal limitation. Locality isolation significantly affected one of the species but not the other. Overall, the results suggest that both fern species have suitable but unoccupied localities in the region and demonstrates that ferns, similar to seed plants, are limited by their dispersal ability in the landscape.

  4. Ferns: the missing link in shoot evolution and development

    PubMed Central

    Plackett, Andrew R. G.; Di Stilio, Verónica S.; Langdale, Jane A.

    2015-01-01

    Shoot development in land plants is a remarkably complex process that gives rise to an extreme diversity of forms. Our current understanding of shoot developmental mechanisms comes almost entirely from studies of angiosperms (flowering plants), the most recently diverged plant lineage. Shoot development in angiosperms is based around a layered multicellular apical meristem that produces lateral organs and/or secondary meristems from populations of founder cells at its periphery. In contrast, non-seed plant shoots develop from either single apical initials or from a small population of morphologically distinct apical cells. Although developmental and molecular information is becoming available for non-flowering plants, such as the model moss Physcomitrella patens, making valid comparisons between highly divergent lineages is extremely challenging. As sister group to the seed plants, the monilophytes (ferns and relatives) represent an excellent phylogenetic midpoint of comparison for unlocking the evolution of shoot developmental mechanisms, and recent technical advances have finally made transgenic analysis possible in the emerging model fern Ceratopteris richardii. This review compares and contrasts our current understanding of shoot development in different land plant lineages with the aim of highlighting the potential role that the fern C. richardii could play in shedding light on the evolution of underlying genetic regulatory mechanisms. PMID:26594222

  5. CHLOROPLAST GENETIC TOOL FOR THE GREEN MICROALGAE HAEMATOCOCCUS PLUVIALIS (CHLOROPHYCEAE, VOLVOCALES)(1).

    PubMed

    Gutiérrez, Carla L; Gimpel, Javier; Escobar, Carolina; Marshall, Sergio H; Henríquez, Vitalia

    2012-08-01

    At present, there is strong commercial demand for recombinant proteins, such as antigens, antibodies, biopharmaceuticals, and industrial enzymes, which cannot be fulfilled by existing procedures. Thus, an intensive search for alternative models that may provide efficiency, safety, and quality control is being undertaken by a number of laboratories around the world. The chloroplast of the eukaryotic microalgae Haematococcus pluvialis Flotow has arisen as a candidate for a novel expression platform for recombinant protein production. However, there are important drawbacks that need to be resolved before it can become such a system. The most significant of these are chloroplast genome characterizations, and the development of chloroplast transformation vectors based upon specific endogenous promoters and on homologous targeting regions. In this study, we report the identification and characterization of endogenous chloroplast sequences for use as genetic tools for the construction of H. pluvialis specific expression vectors to efficiently transform the chloroplast of this microalga via microprojectile bombardment. As a consequence, H. pluvialis shows promise as a platform for expressing recombinant proteins for biotechnological applications, for instance, the development of oral vaccines for aquaculture. PMID:27009007

  6. Chloroplast lipid transfer processes in Chlamydomonas reinhardtii involving a TRIGALACTOSYLDIACYLGLYCEROL 2 (TGD2) orthologue.

    PubMed

    Warakanont, Jaruswan; Tsai, Chia-Hong; Michel, Elena J S; Murphy, George R; Hsueh, Peter Y; Roston, Rebecca L; Sears, Barbara B; Benning, Christoph

    2015-12-01

    In plants, lipids of the photosynthetic membrane are synthesized by parallel pathways associated with the endoplasmic reticulum (ER) and the chloroplast envelope membranes. Lipids derived from the two pathways are distinguished by their acyl-constituents. Following this plant paradigm, the prevalent acyl composition of chloroplast lipids suggests that Chlamydomonas reinhardtii (Chlamydomonas) does not use the ER pathway; however, the Chlamydomonas genome encodes presumed plant orthologues of a chloroplast lipid transporter consisting of TGD (TRIGALACTOSYLDIACYLGLYCEROL) proteins that are required for ER-to-chloroplast lipid trafficking in plants. To resolve this conundrum, we identified a mutant of Chlamydomonas deleted in the TGD2 gene and characterized the respective protein, CrTGD2. Notably, the viability of the mutant was reduced, showing the importance of CrTGD2. Galactoglycerolipid metabolism was altered in the tgd2 mutant with monogalactosyldiacylglycerol (MGDG) synthase activity being strongly stimulated. We hypothesize this to be a result of phosphatidic acid accumulation in the chloroplast outer envelope membrane, the location of MGDG synthase in Chlamydomonas. Concomitantly, increased conversion of MGDG into triacylglycerol (TAG) was observed. This TAG accumulated in lipid droplets in the tgd2 mutant under normal growth conditions. Labeling kinetics indicate that Chlamydomonas can import lipid precursors from the ER, a process that is impaired in the tgd2 mutant. PMID:26496373

  7. Post transcriptional regulation of chloroplast gene expression by nuclear encoded gene products

    SciTech Connect

    Kuchka, M.R.

    1992-01-01

    Many individual chloroplast genes require the products of a collection of nuclear genes for their successful expression. These nuclear gene products apparently work with great specificity, each committed to the expression of a single chloroplast gene. We have chosen as a model nuclear mutants of Chlamydomonas affected in different stages in the expression of the chloroplast encoded Photosystem II polypeptide, D2. We have made the progress in understanding how nuclear gene products affect the translation of the D2 encoding MRNA. Two nuclear genes are required for this process which have been mapped genetically. In contrast to other examples of nuclear control of translation in the chloroplast, these nuclear gene products appear to be required either for specific stages in translation elongation or for the post-translational stabilization of the nascent D2 protein. Pseudoreversion analysis has led us to a locus which may be directly involved in D2 expression. We have made considerable progress in pursuing the molecular basis of psbd MRNA stabilization. psbD 5' UTR specific transcripts have been synthesized in vitro and used in gel mobility shift assays. UV-crosslinking studies are underway to identify the transacting factors which bind to these sequences. The continued examination of these mutants will help us to understand how nuclear gene products work in this specific case of chloroplast gene expression, and will elucidate how two distinct genomes can interact generally.

  8. A simple, low-cost method for chloroplast transformation of the green alga Chlamydomonas reinhardtii.

    PubMed

    Economou, Chloe; Wannathong, Thanyanan; Szaub, Joanna; Purton, Saul

    2014-01-01

    The availability of routine techniques for the genetic manipulation of the chloroplast genome of Chlamydomonas reinhardtii has allowed a plethora of reverse-genetic studies of chloroplast biology using this alga as a model organism. These studies range from fundamental investigations of chloroplast gene function and regulation to sophisticated metabolic engineering programs and to the development of the algal chloroplast as a platform for producing high-value recombinant proteins. The established method for delivering transforming DNA into the Chlamydomonas chloroplast involves microparticle bombardment, with the selection of transformant lines most commonly involving the use of antibiotic resistance markers. In this chapter we describe a simpler and cheaper delivery method in which cell/DNA suspensions are agitated with glass beads: a method that is more commonly used for nuclear transformation of Chlamydomonas. Furthermore, we highlight the use of an expression vector (pASapI) that employs an endogenous gene as a selectable marker, thereby avoiding the contentious issue of antibiotic resistance determinants in transgenic lines. PMID:24599870

  9. Plastidic Isoprenoid Synthesis during Chloroplast Development 1

    PubMed Central

    Heintze, Adolf; Görlach, Jörn; Leuschner, Carola; Hoppe, Petra; Hagelstein, Petra; Schulze-Siebert, Detlef; Schultz, Gernot

    1990-01-01

    The chloroplast isoprenoid synthesis of very young leaves is supplied by the plastidic CO2 → pyruvate → acetyl-coenzyme A (C3 → C2) metabolism (D Schulze-Siebert, G Schultz [1987] Plant Physiol 84: 1233-1237) and occurs via the plastidic mevalonate pathway. The plastidic C3 → C2 metabolism and/or plastidic mevalonate pathway of barley (Hordeum vulgare L.) seedlings changes from maximal activity at the leaf base (containing developing chloroplasts with incomplete thylakoid stacking but a considerable rate of photosynthetic CO2-fixation) almost to ineffectivity at the leaf tip (containing mature chloroplasts with maximal photosynthetic activity). The ability to import isopentenyl diphosphate from the extraplastidic space gradually increases to substitute for the loss of endogenous intermediate supply for chloroplast isoprenoid synthesis (change from autonomic to division-of-labor stage). Fatty acid synthesis from NaH14CO3 decreases in the same manner as shown for leaf sections and chloroplasts isolated from these. Evidence has been obtained for a drastic decrease of pyruvate decarboxylase-dehydrogenase activity during chloroplast development compared with other anabolic chloroplast pathways (synthesis of aromatic amino acid and branched chain amino acids). The noncompetition of pyruvate and acetate in isotopic dilution studies indicates that both a pyruvate-derived and an acetate-derived compound are simultaneously needed to form introductory intermediates of the mevalonate pathway, presumably acetoacetyl-coenzyme A. PMID:16667567

  10. The complexity of chloroplast chaperonins.

    PubMed

    Vitlin Gruber, Anna; Nisemblat, Shahar; Azem, Abdussalam; Weiss, Celeste

    2013-12-01

    Type I chaperonins are large oligomeric protein ensembles that are involved in the folding and assembly of other proteins. Chloroplast chaperonins and co-chaperonins exist in multiple copies of two distinct isoforms that can combine to form a range of labile oligomeric structures. This complex system increases the potential number of chaperonin substrates and possibilities for regulation. The incorporation of unique subunits into the oligomer can modify substrate specificity. Some subunits are upregulated in response to heat shock and some show organ-specific expression, whereas others possess additional functions that are unrelated to their role in protein folding. Accumulating evidence suggests that specific subunits have distinct roles in biogenesis of ribulose-1,5-bisphosphate carboxylase oxygenase (Rubisco). PMID:24035661

  11. Energetic cost of protein import across the envelope membranes of chloroplasts.

    PubMed

    Shi, Lan-Xin; Theg, Steven M

    2013-01-15

    Chloroplasts are the organelles of green plants in which light energy is transduced into chemical energy, forming ATP and reduced carbon compounds upon which all life depends. The expenditure of this energy is one of the central issues of cellular metabolism. Chloroplasts contain ~3,000 proteins, among which less than 100 are typically encoded in the plastid genome. The rest are encoded in the nuclear genome, synthesized in the cytosol, and posttranslationally imported into the organelle in an energy-dependent process. We report here a measurement of the amount of ATP hydrolyzed to import a protein across the chloroplast envelope membranes--only the second complete accounting of the cost in Gibbs free energy of protein transport to be undertaken. Using two different precursors prepared by three distinct techniques, we show that the import of a precursor protein into chloroplasts is accompanied by the hydrolysis of ~650 ATP molecules. This translates to a ΔG(protein) (transport) of some 27,300 kJ/mol protein imported. We estimate that protein import across the plastid envelope membranes consumes ~0.6% of the total light-saturated energy output of the organelle. PMID:23277572

  12. Energetic cost of protein import across the envelope membranes of chloroplasts

    PubMed Central

    Shi, Lan-Xin; Theg, Steven M.

    2013-01-01

    Chloroplasts are the organelles of green plants in which light energy is transduced into chemical energy, forming ATP and reduced carbon compounds upon which all life depends. The expenditure of this energy is one of the central issues of cellular metabolism. Chloroplasts contain ∼3,000 proteins, among which less than 100 are typically encoded in the plastid genome. The rest are encoded in the nuclear genome, synthesized in the cytosol, and posttranslationally imported into the organelle in an energy-dependent process. We report here a measurement of the amount of ATP hydrolyzed to import a protein across the chloroplast envelope membranes—only the second complete accounting of the cost in Gibbs free energy of protein transport to be undertaken. Using two different precursors prepared by three distinct techniques, we show that the import of a precursor protein into chloroplasts is accompanied by the hydrolysis of ∼650 ATP molecules. This translates to a ΔGprotein transport of some 27,300 kJ/mol protein imported. We estimate that protein import across the plastid envelope membranes consumes ∼0.6% of the total light-saturated energy output of the organelle. PMID:23277572

  13. Chloroplasts at work during plant innate immunity.

    PubMed

    Serrano, Irene; Audran, Corinne; Rivas, Susana

    2016-06-01

    The major role played by chloroplasts during light harvesting, energy production, redox homeostasis, and retrograde signalling processes has been extensively characterized. Beyond the obvious link between chloroplast functions in primary metabolism and as providers of photosynthesis-derived carbon sources and energy, a growing body of evidence supports a central role for chloroplasts as integrators of environmental signals and, more particularly, as key defence organelles. Here, we review the importance of these organelles as primary sites for the biosynthesis and transmission of pro-defence signals during plant immune responses. In addition, we highlight interorganellar communication as a crucial process for amplification of the immune response. Finally, molecular strategies used by microbes to manipulate, directly or indirectly, the production/function of defence-related signalling molecules and subvert chloroplast-based defences are also discussed. PMID:26994477

  14. Solar energy conversion by chloroplast photoelectrochemical cells

    NASA Astrophysics Data System (ADS)

    Bhardwaj, R.; Pan, R. L.; Gross, E. L.

    1981-01-01

    A photoelectrochemical cell based on chloroplasts which generates large photovoltages and photocurrents from solar energy is presented. The cell contains broken Type C chloroplasts placed on a filter separating compartments containing an electron acceptor and electron donor with platinum electrodes in each. Photovoltages were observed across a load resistance of 3000 ohms with either flavin mononucleotide or anthroquinone 2-sulphonate as the electron acceptor and dichlorophenol indophenol as the donor, and persisted for 1-2 hr after the light was turned off. The powers and short circuit currents obtained in the chloroplast cells are nearly equal to those obtained in cells based on isolated photosystem I particles. Finally, an efficiency of 2.3% has been measured for the chloroplast contribution to the total power in flavin mononucleotide cells.

  15. Transient foreign gene expression in chloroplasts of cultured tobacco cells after biolistic delivery of chloroplast vectors.

    PubMed Central

    Daniell, H; Vivekananda, J; Nielsen, B L; Ye, G N; Tewari, K K; Sanford, J C

    1990-01-01

    Expression of chloramphenicol acetyltransferase (cat) by suitable vectors in chloroplasts of cultured tobacco cells, delivered by high-velocity microprojectiles, is reported here. Several chloroplast expression vectors containing bacterial cat genes, placed under the control of either psbA promoter region from pea (pHD series) or rbcL promoter region from maize (pAC series) have been used in this study. In addition, chloroplast expression vectors containing replicon fragments from pea, tobacco, or maize chloroplast DNA have also been tested for efficiency and duration of cat expression in chloroplasts of tobacco cells. Cultured NT1 tobacco cells collected on filter papers were bombarded with tungsten particles coated with pUC118 (negative control), 35S-CAT (nuclear expression vector), pHD312 (repliconless chloroplast expression vector), and pHD407, pACp18, and pACp19 (chloroplast expression vectors with replicon). Sonic extracts of cells bombarded with pUC118 showed no detectable cat activity in the autoradiograms. Nuclear expression of cat reached two-thirds of the maximal 48 hr after bombardment and the maximal at 72 hr. Cells bombarded with chloroplast expression vectors showed a low level of expression until 48 hr of incubation. A dramatic increase in the expression of cat was observed 24 hr after the addition of fresh medium to cultured cells in samples bombarded with pHD407; the repliconless vector pHD312 showed about 50% of this maximal activity. The expression of nuclear cat and the repliconless chloroplast vector decreased after 72 hr, but a high level of chloroplast cat expression was maintained in cells bombarded with pHD407. Organelle-specific expression of cat in appropriate compartments was checked by introducing various plasmid constructions into tobacco protoplasts by electroporation. Although the nuclear expression vector 35S-CAT showed expression of cat, no activity was observed with any chloroplast vectors. Images PMID:2404285

  16. Activation of Polyphenol Oxidase of Chloroplasts 1

    PubMed Central

    Tolbert, N. E.

    1973-01-01

    Polyphenol oxidase of leaves is located mainly in chloroplasts isolated by differential or sucrose density gradient centrifugation. This activity is part of the lamellar structure that is not lost on repeated washing of the plastids. The oxidase activity was stable during prolonged storage of the particles at 4 C or —18 C. The Km (dihydroxyphenylalanine) for spinach leaf polyphenol oxidase was 7 mm by a spectrophotometric assay and 2 mm by the manometric assay. Polyphenol oxidase activity in the leaf peroxisomal fraction, after isopycnic centrifugation on a linear sucrose gradient, did not coincide with the peroxisomal enzymes but was attributed to proplastids at nearly the same specific density. Plants were grouped by the latency properties for polyphenol oxidase in their isolated chloroplasts. In a group including spinach, Swiss chard, and beet leaves the plastids immediately after preparation from fresh leaves required a small amount of light for maximal rates of oxidation of dihydroxyphenylalanine. Polyphenol oxidase activity in the dark or light increased many fold during aging of these chloroplasts for 1 to 5 days. Soluble polyphenol oxidase of the cytoplasm was not so stimulated. Chloroplasts prepared from stored leaves were also much more active than from fresh leaves. Maximum rates of dihydroxyphenylalanine oxidation were 2 to 6 mmoles × mg−1 chlorophyll × hr−1. Equal stimulation of latent polyphenol oxidase in fresh or aged chloroplasts in this group was obtained by either light, an aged trypsin digest, 3-(4-chlorophenyl)-1, 1-dimethylurea, or antimycin A. A variety of other treatments did not activate or had little effect on the oxidase, including various peptides, salts, detergents, and other proteolytic enzymes. Activation of latent polyphenol oxidase in spinach chloroplasts by trypsin amounted to as much as 30-fold. The trypsin activation occurred even after the trypsin had been treated with 10% trichloroacetic acid, 1.0 n HCl or boiled for 30

  17. Effect of synthetic detergents on germination of fern spores

    SciTech Connect

    Devi, Y.; Devi, S.

    1986-12-01

    Synthetic detergents constitute one of the most important water pollutants by contaminating the lakes and rivers through domestic and industrial use. Considerable information is now available for the adverse effects of detergents an aquatic fauna including fish, algae, and higher aquatic plants. Marked inhibition of germination in orchids and brinjals and of seedlings growth in raddish suggest that rapidly growing systems could be sensitive to detergent polluted water. The present study of the effect of linear alkyl benzene sulphonate on germination of the spores of a fern, Diplazium esculentum aims at the understanding of the effects of water pollution on pteridophytes and the development of spore germination assay for phytoxicity evaluation.

  18. Graduates of the FernUniversitat. An Evaluation of Their Studies and Their Experiences after Graduation.

    ERIC Educational Resources Information Center

    Bartels, Jorn

    The Board of Examination of the Department of Economics at the FernUniversitat commissioned a survey of 315 students who had graduated in economics to gain insights into their experiences both at the FernUniversitat and after completing their studies. A written questionnaire was developed and sent to all of the graduates who had finished their…

  19. Field Guide to Northeastern Ferns. New York State Museum Bulletin Number 444.

    ERIC Educational Resources Information Center

    Ogden, Eugene C.

    This guide was developed for use by individuals with little or no botanical training who wish to identify native ferns of New York, New England, New Jersey, and Pennsylvania. A random access key, developed by the author, provides multiple pathways for identification of 60 species in 29 genera of ferns. (CS)

  20. REDUCED CHLOROPLAST COVERAGE genes from Arabidopsis thaliana help to establish the size of the chloroplast compartment

    PubMed Central

    Larkin, Robert M.; Stefano, Giovanni; Ruckle, Michael E.; Stavoe, Andrea K.; Sinkler, Christopher A.; Brandizzi, Federica; Malmstrom, Carolyn M.; Osteryoung, Katherine W.

    2016-01-01

    Eukaryotic cells require mechanisms to establish the proportion of cellular volume devoted to particular organelles. These mechanisms are poorly understood. From a screen for plastid-to-nucleus signaling mutants in Arabidopsis thaliana, we cloned a mutant allele of a gene that encodes a protein of unknown function that is homologous to two other Arabidopsis genes of unknown function and to FRIENDLY, which was previously shown to promote the normal distribution of mitochondria in Arabidopsis. In contrast to FRIENDLY, these three homologs of FRIENDLY are found only in photosynthetic organisms. Based on these data, we proposed that FRIENDLY expanded into a small gene family to help regulate the energy metabolism of cells that contain both mitochondria and chloroplasts. Indeed, we found that knocking out these genes caused a number of chloroplast phenotypes, including a reduction in the proportion of cellular volume devoted to chloroplasts to 50% of wild type. Thus, we refer to these genes as REDUCED CHLOROPLAST COVERAGE (REC). The size of the chloroplast compartment was reduced most in rec1 mutants. The REC1 protein accumulated in the cytosol and the nucleus. REC1 was excluded from the nucleus when plants were treated with amitrole, which inhibits cell expansion and chloroplast function. We conclude that REC1 is an extraplastidic protein that helps to establish the size of the chloroplast compartment, and that signals derived from cell expansion or chloroplasts may regulate REC1. PMID:26862170

  1. Milestones in chloroplast genetic engineering: an environmentally friendly era in biotechnology

    PubMed Central

    Daniell, Henry; Khan, Muhammad S.; Allison, Lori

    2012-01-01

    Chloroplast genomes defied the laws of Mendelian inheritance at the dawn of plant genetics, and continue to defy the mainstream approach to biotechnology, leading the field in an environmentally friendly direction. Recent success in engineering the chloroplast genome for resistance to herbicides, insects, disease and drought, and for production of biopharmaceuticals, has opened the door to a new era in biotechnology. The successful engineering of tomato chromoplasts for high-level transgene expression in fruits, coupled to hyper-expression of vaccine antigens, and the use of plant-derived antibiotic-free selectable markers, augur well for oral delivery of edible vaccines and biopharmaceuticals that are currently beyond the reach of those who need them most. PMID:11832280

  2. Functional proteomics of barley and barley chloroplasts – strategies, methods and perspectives

    PubMed Central

    Petersen, Jørgen; Rogowska-Wrzesinska, Adelina; Jensen, Ole N.

    2013-01-01

    Barley (Hordeum vulgare) is an important cereal grain that is used in a range of products for animal and human consumption. Crop yield and seed quality has been optimized during decades by plant breeding programs supported by biotechnology and molecular biology techniques. The recently completed whole-genome sequencing of barley revealed approximately 26,100 open reading frames, which provides a foundation for detailed molecular studies of barley by functional genomics and proteomics approaches. Such studies will provide further insights into the mechanisms of, for example, drought and stress tolerance, micronutrient utilization, and photosynthesis in barley. In the present review we present the current state of proteomics research for investigations of barley chloroplasts, i.e., the organelle that contain the photosynthetic apparatus in the plant. We describe several different proteomics strategies and discuss their applications in characterization of the barley chloroplast as well as future perspectives for functional proteomics in barley research. PMID:23515231

  3. Milestones in chloroplast genetic engineering: an environmentally friendly era in biotechnology.

    PubMed

    Daniell, Henry; Khan, Muhammad S; Allison, Lori

    2002-02-01

    Chloroplast genomes defied the laws of Mendelian inheritance at the dawn of plant genetics, and continue to defy the mainstream approach to biotechnology, leading the field in an environmentally friendly direction. Recent success in engineering the chloroplast genome for resistance to herbicides, insects, disease and drought, and for production of biopharmaceuticals, has opened the door to a new era in biotechnology. The successful engineering of tomato chromoplasts for high-level transgene expression in fruits, coupled to hyper-expression of vaccine antigens, and the use of plant-derived antibiotic-free selectable markers, augur well for oral delivery of edible vaccines and biopharmaceuticals that are currently beyond the reach of those who need them most. PMID:11832280

  4. A tRNA(Val) (GAC) gene of chloroplast origin in sunflower mitochondria is not transcribed.

    PubMed

    Ceci, L R; Saiardi, A; Siculella, L; Quagliariello, C

    1993-11-01

    A tRNA(Val) (GAC) gene is located in opposite orientation 552 nucleotides (nt) down-stream of the cytochrome oxidase subunit III (coxIII) gene in sunflower mitochondria. The comparison with the homologous chloroplast DNA revealed that the tRNA(Val) gene is part of a 417 nucleotides DNA insertion of chloroplast origin in the mitochondrial genome. No tRNA(Val) is encoded in monocot mitochondrial DNA (mtDNA), whereas two tRNA(Val) species are coded for by potato mtDNA. The mitochondrial genomes of different plant species thus seem to encode unique sets of tRNAs and must thus be competent in importing the missing differing sets of tRNAs. PMID:8251626

  5. Genetic differentiation and admixture among Eurasian and North American Leymus (Triticeae) wildryes detected using chloroplast DNA sequences and AFLP profiles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leymus is a genomically defined group of allopolyploid Triticeae taxa that show homologous chromosome pairing when hybridized and contain the Ns and Xm subgenomes. Recent investigations showed that Leymus chloroplast DNA sequences are polyphyletic with most Eurasian taxa similar to the Psathyrostac...

  6. Evidence for the Nuclear Location of the Genes for Chloroplast IF-2 and IF-3 in Euglena.

    PubMed

    Kraus, B L; Spremulli, L L

    1988-12-01

    The chloroplast translational initiation factors IF-2 and IF-3 from Euglena gracilis are present in low levels in dark-grown cells and can be induced by exposure of cells to light. Studies of the antibiotic sensitivity of the light induction of these factors indicates that both are encoded in the nuclear genome. PMID:16666494

  7. Heme content in developing chloroplasts

    SciTech Connect

    Thomas, J.; Weinstein, J.D. )

    1991-05-01

    Heme regulates tetrapyrrole biosynthesis by inhibition of {delta}-aminolevulinic acid synthesis, product inhibition of heme synthesis, and possibly other mechanisms. Determination of the physiological relevance of this inhibition requires a sensitive measurement which can distinguish regulatory free heme from heme which is an integral part of functional hemoproteins. A preliminary estimate was provided by reconstituting peroxidase activity from apo-peroxidase and the heme contained in broken plastids. However, subsequent experiments have suggested that this initial estimate was too large due to reconstitution of apo-peroxidase with heme from functional hemoproteins (i.e. heme stealing). The authors have now refined the measurement techniques to greatly reduce the extent of this heme stealing. Incubation of broken plastids with apo-peroxidase at 10C resolves the kinetics of reconstitution into two components. A fast component levels off after 100 min, and a slow component increases linearly for up to 6 hours. They believe that the heme which reconstitutes during the fast phase represents free heme, and the linear slow component represents heme stealing. In support of this theory, incubation at 15C increases the rate of both components. However, extrapolation to zero time of the slow components of the 10C and 15C time courses results in equivalent amounts of heme. Based on this kinetic differentiation between free heme and hemoprotein heme, chloroplasts isolated from cucumber cotyledons after 30 h of greening contain substantially greater amounts of free heme than etioplasts.

  8. Development of the gametophyte of the fern Schizaea pusilla

    NASA Technical Reports Server (NTRS)

    Kiss, J. Z.; Swatzell, L. J.

    1996-01-01

    Schizaea pusilla is a pteridophyte with several unique developmental characteristics. In contrast to most other fern species, S. pusilla gametophytes remain filamentous throughout their development, and the gametophytes are associated with an endophytic fungus which appears to be mycorrhizal. In terms of tropistic responses, apical filament cells of young gametophytes are negatively phototropic compared with germ filaments of other ferns which exhibit positive phototropism. Cryofixation (propane jet freezing and high-pressure freezing) in conjunction with freeze substitution electron microscopy was used to study young gametophytes. The results demonstrate that apical filament cells have a distinctive structural polarity and that rhizoids also can be successfully frozen by these methods. The cytoskeleton and endomembrane system were particularly well preserved in cryofixed cells. In addition, Schizaea gametophytes were used as a test system to evaluate potential artifacts of propane jet freezing and high pressure freezing. There was little apparent difference in ultrastructure between cells cryofixed by either freezing method. These gametophytes will be useful in determining the effectiveness of cryofixation techniques and as a model system in tip growth studies.

  9. Quercetin interaction with the chloroplast ATPase complex.

    PubMed

    Shoshan, V; Shahak, Y; Shavit, N

    1980-07-01

    1. Quercetin, a flavonoid which acts as an energy transfer inhibitor in photophosphorylation is shown to inhibit the P-ATP exchange activity of membrane-bound CF1 and the ATPase activity of isolated CF1. Quercetin, affects also the proton uptake in chloroplasts in a manner similar to that of dicyclohexylcarbodiimide. 2. The light-dependent proton uptake in EDTA-treated chloroplasts is stimulated by quercetin. In untreated chloroplasts quercetin has a dual effect: it enhances at pH above 7.5 while at lower pH values it decreases the extent of H+ uptake. Similar effects were obtained with dicyclohexylcarbodiimide. 3. Like quercetin, dicyclohexylcarbodiimide was also found to inhibit the ATPase activity of isolated CF1. 4. Quercetin inhibits uncoupled electron transport induced by either EDTA-treatment of chloroplasts or by addition of uncouplers. Quercetin restores H+ uptake in both types of uncoupled chloroplasts. 5. The mode of action of quercetin and dicyclohexylcarbodiimide in photophosphorylation is discussed, and interaction with both CF1 and F0 is suggested. PMID:6446936

  10. Glycolate transporter of the pea chloroplast envelope

    SciTech Connect

    Howitz, K.T.

    1985-01-01

    The discovery of a glycolate transporter in the pea (Pisum sativum) chloroplast envelope is described. Several novel silicone oil centrifugation methods were developed to resolve the initial rate kinetics of (/sup 14/C)glycolate transport by isolated, intact pea chloroplasts. Chloroplast glycolate transport was found to be carrier mediated. Transport rates saturated with increasing glycolate concentration. N-Ethylmaleimide (NEM) pretreatment of chloroplasts inhibited transport, an inhibition prevented by glycolate. Glycolate distributed across the envelope in a way which equalized stromal and medium glycolic acid concentrations, limiting possible transport mechanisms to facilitated glycolic acid diffusion, proton symport or hydroxyl antiport. The effects of stomal and medium pH's on the K/sub m/ and V/sub max/ fit the predictions of mobile carrier kinetic models of hydroxyl antiport or proton symport (H/sup +/ binds first). The carrier mediated transport was fast enough to be consistent with in vivo rates of photorespiration. The 2-hydroxymonocarboxylates, glycerate, lactate and glyoxylate are competitive inhibitors of chloroplast glycolate uptake. Glyoxylate, D-lactate and D-glycerate cause glycolate counterflow, indicating that they are also substrates of the glycolate carrier. This finding was confirmed for D-glycerate by studies on glycolate effects on (1-/sup 14/C)D-glycerate transport.

  11. Betaine synthesis in chenopods: localization in chloroplasts

    SciTech Connect

    Hanson, A.D.; May A.M.; Grumet, R.; Bode, J.; Jamieson, G.C.; Rhodes, D.

    1985-06-01

    Plants from several families (Chenopodiaceae, Gramineae, Compositae) accumulate betaine (glycine betaine) in response to salt or water stress via the pathway: choline betainal (betaine aldehyde) betaine. Betaine accumulation is probably a metabolic adaptation to stress. Intact protoplasts from leaves of spinach (Spinacia oleracea) oxidized ( UC)choline to betainal and betaine, as did protoplast lysates. Upon differential centrifugation, the ( UC)choline-oxidizing activity of lysates sedimented with chloroplasts. Chloroplasts purified from protoplast lysates by a Percoll cushion procedure retained strong ( UC)choline-oxidizing activity, although the proportion of the intermediate, ( UC)betainal, in the reaction products was usually higher than for protoplasts. Isolated chloroplasts also readily oxidized ( UC)betainal to betaine. Light increased the oxidation of both ( UC)choline and ( UC)betainal by isolated chloroplasts. Similar results were obtained with another chenopod (Beta vulgaris) but not with pea (Pisum sativum), a species that accumulates no betaine. The chloroplast site for betaine synthesis in chenopods contrasts with the mitochondrial site in mammals.

  12. Heme content and breakdown in developing chloroplasts

    SciTech Connect

    Thomas, J.; Weinstein, J.D. )

    1990-05-01

    Heme regulates tetrapyrrole biosynthesis in plants by inhibition of {delta}-aminolevulinic acid (ALA) synthesis, product inhibition of heme synthesis, and possibly other mechanisms. Plastid heme levels may be modulated by heme synthesis, breakdown and/or efflux. Heme breakdown may be catalyzed by a chloroplast localized heme oxygenase. Chloroplasts isolated from greening cucumber cotyledons were incubated in the presence or absence of various components thought to modulate heme breakdown. Following the incubations, the chloroplasts were broken (freeze-thaw) and then supplemented with horseradish peroxidase apoenzyme. The reconstituted peroxidase activity was used to determine the amount of free heme remaining (Thomas Weinstein (1989) Plant Physiol. 89S: 74). Chloroplasts, freshly isolated from seedlings greened for 16 hours, contained approximately 37 pmol heme/mg protein. When chloroplasts were incubated with 5 mM NADPH for 30 min, the endogenous heme dropped to unmeasurable levels. Exogenous heme was also broken down when NADPH was included in the incubation. Heme levels could be increased by the inclusion of 50 {mu}M ALA and/or p-hydroxymercuribenzoate. The increase due to exogenous ALA was blocked by levulinic acid, an inhibitor of ALA utilization. NADPH-dependent heme breakdown acid was inhibited by p-hydroxymercuribenzoate.

  13. Vectorial photocurrents and photoconductivity in metalized chloroplasts

    SciTech Connect

    Greenbaum, E. )

    1990-08-09

    A novel photobiophysical phenomenon was observed in isolated spinach chloroplasts that were metalized by precipitating colloidal platinum onto the surface of the thylakoid membranes. A two-point irradiation and detection system was constructed in which a continuous-beam helium-neon laser ({lambda} = 632.8 nm) was used to irradiate the platinized chloroplasts at varying perpendicular distances (Figure 1) from a single linear platinum electrode in pressure contact with the platinized chloroplasts. No external voltage bias was applied to the system. The key objective of the experiments reported in this report was to measure the relative photoconductivity of the chloroplast-metal composite matrix. Unlike conventional photosynthetic electrochemical cells, in which irradiated chloroplasts are in close proximity to an electrode or linked to the electrode by an electrode-active mediator, the flow of photocurrent was through the biocomposite material. A sustained steady-state vectorial flow of current in the plane of the entrapped composite from the point of laser irradiation to the wire electrode was measured.

  14. Proteomic Insight into the Response of Arabidopsis Chloroplasts to Darkness

    PubMed Central

    Wang, Jing; Yu, Qingbo; Xiong, Haibo; Wang, Jun; Chen, Sixue; Yang, Zhongnan; Dai, Shaojun

    2016-01-01

    Chloroplast function in photosynthesis is essential for plant growth and development. It is well-known that chloroplasts respond to various light conditions. However, it remains poorly understood about how chloroplasts respond to darkness. In this study, we found 81 darkness-responsive proteins in Arabidopsis chloroplasts under 8 h darkness treatment. Most of the proteins are nucleus-encoded, indicating that chloroplast darkness response is closely regulated by the nucleus. Among them, 17 ribosome proteins were obviously reduced after darkness treatment. The protein expressional patterns and physiological changes revealed the mechanisms in chloroplasts in response to darkness, e.g., (1) inhibition of photosystem II resulted in preferential cyclic electron flow around PSI; (2) promotion of starch degradation; (3) inhibition of chloroplastic translation; and (4) regulation by redox and jasmonate signaling. The results have improved our understanding of molecular regulatory mechanisms in chloroplasts under darkness. PMID:27137770

  15. [Study of Chloroplast DNA Polymorphism in the Sunflower (Helianthus L.)].

    PubMed

    Markina, N V; Usatov, A V; Logacheva, M D; Azarin, K V; Gorbachenko, C F; Kornienko, I V; Gavrilova, V A; Tihobaeva, V E

    2015-08-01

    The polymorphism of microsatellite loci of chloroplast genome in six Helianthus species and 46 lines of cultivated sunflower H. annuus (17 CMS lines and 29 Rf-lines) were studied. The differences between species are confined to four SSR loci. Within cultivated forms of the sunflower H. annuus, the polymorphism is absent. A comparative analysis was performed on sequences of the cpDNA inbred line 3629, line 398941 of the wild sunflower, and the American line HA383 H. annuus. As a result, 52 polymorphic loci represented by 27 SSR and 25 SNP were found; they can be used for genotyping of H. annuus samples, including cultural varieties: twelve polymorphic positions, of which eight are SSR and four are SNP. PMID:26601486

  16. Photophysiology of kleptoplasts: photosynthetic use of light by chloroplasts living in animal cells

    PubMed Central

    Serôdio, João; Cruz, Sónia; Cartaxana, Paulo; Calado, Ricardo

    2014-01-01

    Kleptoplasty is a remarkable type of photosynthetic association, resulting from the maintenance of functional chloroplasts—the ‘kleptoplasts’—in the tissues of a non-photosynthetic host. It represents a biologically unique condition for chloroplast and photosynthesis functioning, occurring in different phylogenetic lineages, namely dinoflagellates, ciliates, foraminiferans and, most interestingly, a single taxon of metazoans, the sacoglossan sea slugs. In the case of sea slugs, chloroplasts from macroalgae are often maintained as intracellular organelles in cells of these marine gastropods, structurally intact and photosynthetically competent for extended periods of time. Kleptoplasty has long attracted interest owing to the longevity of functional kleptoplasts in the absence of the original algal nucleus and the limited number of proteins encoded by the chloroplast genome. This review updates the state-of-the-art on kleptoplast photophysiology, focusing on the comparative analysis of the responses to light of the chloroplasts when in their original, macroalgal cells, and when sequestered in animal cells and functioning as kleptoplasts. It covers fundamental but ecologically relevant aspects of kleptoplast light responses, such as the occurrence of photoacclimation in hospite, operation of photoprotective processes and susceptibility to photoinhibition. Emphasis is given to host-mediated processes unique to kleptoplastic associations, reviewing current hypotheses on behavioural photoprotection and host-mediated enhancement of photosynthetic performance, and identifying current gaps in sacoglossan kleptoplast photophysiology research. PMID:24591722

  17. Genepool Variation in Genus Glycine Subgenus Soja Revealed by Polymorphic Nuclear and Chloroplast Microsatellites

    PubMed Central

    Powell, W.; Morgante, M.; Doyle, J. J.; McNicol, J. W.; Tingey, S. V.; Rafalski, A. J.

    1996-01-01

    A combination of nuclear and chloroplast simple sequence repeats (SSRs) have been used to investigate the levels and pattern of variability detected in Glycine max and G. soja genotypes. Based on the analysis of 700 soybean genotypes with 115 restriction fragment length polymorphism (RFLP) probes, 12 accessions were identified that represent 92% of the allelic variability detected in this genepool. These 12 core genotypes together with a sample of G. max and G. soja accessions were evaluated with 11 nuclear SSRs that detected 129 alleles. Compared with the other G. max and G. soja genotypes sampled, the core genotypes represent 40% of the allelic variability detected with SSRs. Despite the multi-allelic nature of soybean SSRs, dendrograms representing phenetic relationships between accessions clustered according to their subspecies origin. In addition to biparentally inherited nuclear SSRs, two uniparentally (maternally) transmitted chloroplast SSRs were also studied. A total of seven haplotypes were identified, and diversity indices of 0.405 +/- 0.088 and 0.159 +/- 0.071 were obtained for the two chloroplast SSRs. The availability of polymorphic SSR loci in the chloroplast genome provides new opportunities to investigate cytonuclear interactions in plants. PMID:8889540

  18. Chloroplast β chaperonins from A. thaliana function with endogenous cpn10 homologs in vitro.

    PubMed

    Vitlin, Anna; Weiss, Celeste; Demishtein-Zohary, Keren; Rasouly, Aviram; Levin, Doron; Pisanty-Farchi, Odelia; Breiman, Adina; Azem, Abdussalam

    2011-09-01

    The involvement of type I chaperonins in bacterial and organellar protein folding has been well-documented. In E. coli and mitochondria, these ubiquitous and highly conserved proteins form chaperonin oligomers of identical 60 kDa subunits (cpn60), while in chloroplasts, two distinct cpn60 α and β subunit types co-exist together. The primary sequence of α and β subunits is ~50% identical, similar to their respective homologies to the bacterial GroEL. Moreover, the A. thaliana genome contains two α and four β genes. The functional significance of this variability in plant chaperonin proteins has not yet been elucidated. In order to gain insight into the functional variety of the chloroplast chaperonin family members, we reconstituted β homo-oligomers from A. thaliana following their expression in bacteria and subjected them to a structure-function analysis. Our results show for the first time, that A. thaliana β homo-oligomers can function in vitro with authentic chloroplast co-chaperonins (ch-cpn10 and ch-cpn20). We also show that oligomers made up of different β subunit types have unique properties and different preferences for co-chaperonin partners. We propose that chloroplasts may contain active β homo-oligomers in addition to hetero-oligomers, possibly reflecting a variety of cellular roles. PMID:21633907

  19. Immunogenicity of recombinant F4 (K88) fimbrial adhesin FaeG expressed in tobacco chloroplast.

    PubMed

    Shen, Huifeng; Qian, Bingjun; Chen, Weiwei; Liu, Zhenhua; Yang, Litao; Zhang, Dabing; Liang, Wanqi

    2010-08-01

    To test the possibility of producing the novel vaccine in plants against diarrhea normally found in neonatal and newly weaned piglets, the faeG gene, encoding a major F4ac fimbrial subunit protein, was introduced into the tobacco chloroplast genome. After two rounds of selection under spectinomycin, we obtained the transgenic plants nearly homoplasmic. RNA gel blot analysis indicated that faeG and the antibiotic selective gene aminoglycoside 3' adenylyltransferase (aadA) were highly transcribed as a dicistron, while the translational level of recombinant FaeG in transplastomic tobacco was about 0.15% of total soluble protein. The immunogenicity of recombinant FaeG produced in tobacco chloroplasts was confirmed by the observation that FaeG-specific antibodies were elicited in mice immunized with total soluble protein of transgenic plants, as well as the result that mouse sera stimulated by chloroplast-derived recombinant FaeG could neutralize F4ac enterotoxigenic Escherichia coli (ETEC) in vivo. This study provides a new alternative for producing the ETEC vaccine using the chloroplast expression system. PMID:20705597

  20. A one-step organelle capture: gynogenetic kiwifruits with paternal chloroplasts.

    PubMed

    Chat, Joëlle; Decroocq, Stéphane; Petit, Rémy J

    2003-04-22

    Androgenesis, the development of a haploid embryo from a male nucleus, has been shown to result in the instantaneous uncoupling of the transmission of the organelle and nuclear genomes (with the nuclear genome originating from the male parent only and the organelle genomes from the female parent). We report, for the first time, uncoupling resulting from gynogenesis, in Actinidia deliciosa (kiwifruit), a plant species known for its paternal mode of chloroplast inheritance. After pollen irradiation, transmission of nuclear genes from the pollen parent to the progeny was inhibited, but transmission of the chloroplast genome was not. This demonstrates that plastids can be discharged from the pollen tube into the egg with little or no concomitant transmission of paternal nuclear genes. Such events of opposite inheritance of the organelle and nuclear genomes must be very rare in nature and are unlikely to endanger the long-term stability of the association between the different genomes of the cell. However, they could lead to incongruences between organelle gene trees and species trees and may constitute an alternative to the hybridization/introgression scenario commonly invoked to account for such incongruences. PMID:12737655

  1. A one-step organelle capture: gynogenetic kiwifruits with paternal chloroplasts.

    PubMed Central

    Chat, Joëlle; Decroocq, Stéphane; Petit, Rémy J

    2003-01-01

    Androgenesis, the development of a haploid embryo from a male nucleus, has been shown to result in the instantaneous uncoupling of the transmission of the organelle and nuclear genomes (with the nuclear genome originating from the male parent only and the organelle genomes from the female parent). We report, for the first time, uncoupling resulting from gynogenesis, in Actinidia deliciosa (kiwifruit), a plant species known for its paternal mode of chloroplast inheritance. After pollen irradiation, transmission of nuclear genes from the pollen parent to the progeny was inhibited, but transmission of the chloroplast genome was not. This demonstrates that plastids can be discharged from the pollen tube into the egg with little or no concomitant transmission of paternal nuclear genes. Such events of opposite inheritance of the organelle and nuclear genomes must be very rare in nature and are unlikely to endanger the long-term stability of the association between the different genomes of the cell. However, they could lead to incongruences between organelle gene trees and species trees and may constitute an alternative to the hybridization/introgression scenario commonly invoked to account for such incongruences. PMID:12737655

  2. A Putative Chloroplast Thylakoid Metalloprotease VIRESCENT3 Regulates Chloroplast Development in Arabidopsis thaliana.

    PubMed

    Qi, Yafei; Liu, Xiayan; Liang, Shuang; Wang, Rui; Li, Yuanfeng; Zhao, Jun; Shao, Jingxia; An, Lijun; Yu, Fei

    2016-02-12

    The chloroplast is the site of photosynthesis and many other essential plant metabolic processes, and chloroplast development is an integral part of plant growth and development. Mutants defective in chloroplast development can display various color phenotypes including the intriguing virescence phenotype, which shows yellow/white coloration at the leaf base and greening toward the leaf tip. Through large scale genetic screens, we identified a series of new virescent mutants including virescent3-1 (vir3-1), vir4-1, and vir5-1 in Arabidopsis thaliana. We showed that VIR3 encodes a putative chloroplast metalloprotease by map-based cloning. Through site-directed mutagenesis, we showed that the conserved histidine 235 residue in the zinc binding motif HEAGH of VIR3 is indispensable for VIR3 accumulation in the chloroplast. The chloroplast localization of VIR3 was confirmed by the transient expression of VIR3-GFP in leaf protoplasts. Furthermore, taking advantage of transgenic lines expressing VIR3-FLAG, we demonstrated that VIR3 is an intrinsic thylakoid membrane protein that mainly resides in the stromal lamellae. Moreover, topology analysis using transgenic lines expressing a dual epitope-tagged VIR3 indicated that both the N and C termini of VIR3 are located in the stroma, and the catalytic domain of VIR3 is probably facing the stroma. Blue native gel analysis indicated that VIR3 is likely present as a monomer or part of a small complex in the thylakoid membrane. This work not only implicates VIR3 as a new factor involved in early chloroplast development but also provides more insight into the roles of chloroplast proteases in chloroplast biogenesis. PMID:26702056

  3. Protein methylation reactions in intact pea chloroplasts

    SciTech Connect

    Niemi, K.J. )

    1989-04-01

    Post-translational protein methylation was investigated in Pisum sativum chloroplasts. Intact pea chloroplasts were incubated with ({sup 3}H-methyl)-S-adenosylmethionine under various conditions. The chloroplasts were then separated into stromal and thylakoid fractions and analyzed for radioactivity transferred to protein. Light enhanced the magnitude of labeling in both fractions. One thylakoid polypeptide with an apparent molecular mass of 43 kDa was labeled only in the light. Several other thylakoid and stromal proteins were labeled in both light and dark-labeling conditions. Both base-labile methylation, carboxy-methylesters and base-stable groups, N-methylations were found. Further characterization of the methyl-transfer reactions will be presented.

  4. Chloroplast-Diphenyl Ether Interactions II 1

    PubMed Central

    Wettlaufer, S. H.; Alscher, Ruth; Strick, Christine

    1985-01-01

    Acifluorfen, a p-nitrodiphenyl ether herbicide, is inhibitory to those photosynthetic functions that require a functioning chloroplast envelope. Functions involving the stroma are also affected. Acifluorfen does not lyse intact spinach chloroplasts, yet does increase the sensitivity of CO2-dependent O2 evolution to exogenous inorganic phosphate without directly affecting the function of the phosphate translocator. Acifluorfen penetrates into the chloroplast stroma in a light-independent fashion. Once inside, it causes the inactivation of light and dithiothreitol-activated fructose 1,6-bisphosphatase. Light-activated glyceraldehyde-3-phosphate dehydrogenase (NADP) is also inactivated by acifluorfen. These data suggest that acifluorfen stimulates a pathway for inactivation of fructose 1,6-bisphosphatase and glyceraldehyde 3-phosphate dehydrogenase (NADP) which uses oxygen as a terminal oxidant and which involves thioredoxin and ferredoxin-thioredoxin reductase. PMID:16664219

  5. Ultrasonic synthesis of fern-like ZnO nanoleaves and their enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Ma, Qing Lan; Xiong, Rui; Zhai, Bao-gai; Huang, Yuan Ming

    2015-01-01

    Two-dimensional fern-like ZnO nanoleaves were synthesized by ultrasonicating zinc microcrystals in water. The morphology, crystal structure, optical property and photocatalytic activity of the fern-like ZnO nanoleaves were characterized with scanning electron microscopy, X-ray diffraction, transmission electron microscopy, photoluminescence spectroscopy and ultraviolet-visible spectroscopy, respectively. It is found that one fern-like ZnO nanoleaf is composed of one ZnO nanorod as the central trunk and a number of ZnO nanoplates as the side branches in opposite pairs along the central ZnO nanorod. The central ZnO nanorod in the fern-like nanoleaves is about 1 μm long while the side-branching ZnO nanoplates are about 100 nm long and 20 nm wide. Further analysis has revealed that ZnO nanocrystals are the building blocks of the central ZnO nanorod and the side-branching ZnO nanoplates. Under identical conditions, fern-like ZnO nanoleaves exhibit higher photocatalytic activity in photodegrading methyl orange in aqueous solution than spherical ZnO nanocrystals. The first-order photocatalytic rate constant of the fern-like ZnO nanoleaves is about four times as large as that of the ZnO nanoparticles. The branched architecture of the hierarchical nanoleaves is suggested be responsible for the enhanced photocatalytic activity of the fern-like ZnO nanoleaves.

  6. Chloroplast Response to Low Leaf Water Potentials

    PubMed Central

    Keck, R. W.; Boyer, J. S.

    1974-01-01

    Cyclic and noncyclic photophosphorylation and electron transport by photosystem 1, photosystem 2, and from water to methyl viologen (“whole chain”) were studied in chloroplasts isolated from sunflower (Helianthus annus L. var Russian Mammoth) leaves that had been desiccated to varying degrees. Electron transport showed considerable inhibition at leaf water potentials of −9 bars when the chloroplasts were exposed to an uncoupler in vitro, and it continued to decline in activity as leaf water potentials decreased. Electron transport by photosystem 2 and coupled electron transport by photosystem 1 and the whole chain were unaffected at leaf water potentials of −10 to −11 bars but became progressively inhibited between leaf water potentials of −11 and −17 bars. A low, stable activity remained at leaf water potentials below −17 bars. In contrast, both types of photophosphorylation were unaffected by leaf water potentials of −10 to −11 bars, but then ultimately became zero at leaf water potentials of −17 bars. Although the chloroplasts isolated from the desiccated leaves were coupled at leaf water potentials of −11 to −12 bars, they became progressively uncoupled as leaf water potentials decreased to −17 bars. Abscisic acid and ribonuclease had no effect on chloroplast photophosphorylation. The results are generally consistent with the idea that chloroplast activity begins to decrease at the same leaf water potentials that cause stomatal closure in sunflower leaves and that chloroplast electron transport begins to limit photosynthesis at leaf water potentials below about −11 bars. However, it suggests that, during severe desiccation, the limitation may shift from electron transport to photophosphorylation. PMID:16658727

  7. Reproduction and the pheromonal regulation of sex type in fern gametophytes

    PubMed Central

    Atallah, Nadia M.; Banks, Jo Ann

    2015-01-01

    The fern life cycle includes a haploid gametophyte that is independent of the sporophyte and functions to produce the gametes. In homosporous ferns, the sex of the gametophyte is not fixed but can vary depending on its social environment. In many species, the sexual phenotype of the gametophyte is determined by the pheromone antheridiogen. Antheridiogen induces male development and is secreted by hermaphrodites once they become insensitive to its male-inducing effect. Recent genetic and biochemical studies of the antheridiogen response and sex-determination pathway in ferns, which are highlighted here, reveal many similarities and interesting differences to GA signaling and biosynthetic pathways in angiosperms. PMID:25798139

  8. Water-clover ferns, Marsilea, in the Southeastern United States

    USGS Publications Warehouse

    Jacono, Colette C.; Johnson, David M.

    2006-01-01

    A surge in the collection of exotic Marsilea, M. mutica, M. minuta and M. hirsuta in the southeastern United States has prompted the need for updated identification aids. This study provides an annotated key to all water-clover ferns occurring in the region. It describes and illustrates recently documented exotic species and a previously misidentified western introduction. It details the rediscovery of M. ancylopoda, presumed extinct, and confirms its identification as the western species M. oligospora. Finally it clarifies the status and distribution of two additional western North American species introduced to the southeast, M. vestita and M. macropoda.

  9. Application of Random Ferns for non-planar object detection

    NASA Astrophysics Data System (ADS)

    Mastov, Alexey; Konovalenko, Ivan; Grigoryev, Anton

    2015-12-01

    The real time object detection task is considered as a part of a project devoted to development of autonomous ground robot. This problem has been successfully solved with Random Ferns algorithm, which belongs to keypoint-based method and uses fast machine learning algorithms for keypoint matching step. As objects in the real world are not always planar, in this article we describe experiments of applying this algorithm for non-planar objects. Also we introduce a method for fast detection of a special class of non-planar objects | those which can be decomposed into planar parts (e.g. faces of a box). This decomposition needs one detector for each side, which may significantly affect speed of detection. Proposed approach copes with it by omitting repeated steps for each detector and organizing special queue of detectors. It makes the algorithm three times faster than naive one.

  10. The fern cavitation catapult: mechanism and design principles.

    PubMed

    Llorens, C; Argentina, M; Rojas, N; Westbrook, J; Dumais, J; Noblin, X

    2016-01-01

    Leptosporangiate ferns have evolved an ingenious cavitation catapult to disperse their spores. The mechanism relies almost entirely on the annulus, a row of 12-25 cells, which successively: (i) stores energy by evaporation of the cells' content, (ii) triggers the catapult by internal cavitation, and (iii) controls the time scales of energy release to ensure efficient spore ejection. The confluence of these three biomechanical functions within the confines of a single structure suggests a level of sophistication that goes beyond most man-made devices where specific structures or parts rarely serve more than one function. Here, we study in detail the three phases of spore ejection in the sporangia of the fern Polypodium aureum. For each of these phases, we have written the governing equations and measured the key parameters. For the opening of the sporangium, we show that the structural design of the annulus is particularly well suited to inducing bending deformations in response to osmotic volume changes. Moreover, the measured parameters for the osmoelastic design lead to a near-optimal speed of spore ejection (approx. 10 m s(-1)). Our analysis of the trigger mechanism by cavitation points to a critical cavitation pressure of approximately -100 ± 14 bar, a value that matches the most negative pressures recorded in the xylem of plants. Finally, using high-speed imaging, we elucidated the physics leading to the sharp separation of time scales (30 versus 5000 µs) in the closing dynamics. Our results highlight the importance of the precise tuning of the parameters without which the function of the leptosporangium as a catapult would be severely compromised. PMID:26763327

  11. Phylogeny and historical biogeography of the lastreopsid ferns (Dryopteridaceae).

    PubMed

    Labiak, Paulo H; Sundue, Michael; Rouhan, Germinal; Hanks, Judith G; Mickel, John T; Moran, Robbin C

    2014-07-11

    • Premise of the study: As currently circumscribed, Lastreopsis has about 45 species and occurs in Australia, southern Asia, Africa, Madagascar, and the neotropics. Previous molecular phylogenetic studies suggested that Lastreopsis is paraphyletic. Our study focuses on resolving relationships among the lastreopsid ferns (Lastreopsis, Megalastrum, and Rumohra), the evolution of morphological characters, and an understanding of the temporal and spatial patterns that have led to the current diversity and geographical distribution of its extant species.• Methods: Phylogenetic relationships were recovered under Bayesian, maximum likelihood, and maximum parsimony methods, using a data set of four plastid markers. Divergence time estimates were made using BEAST, and the biogeographic hypotheses were tested under the DEC model and the RASP/S-DIVA methods.• Key results: Lastreopsis was recovered as paraphyletic, and at least one of its clades should be recognized as a distinct genus, Parapolystichum. Coveniella poecilophlebia and Oenotrichia tripinnata were nested within Lastreopsis s.s., Megalastrum and Rumohra as sister to the Lastreopsis s.s., and the Lastreopsis amplissima clades. The initial diversification of the lastreopsids took place at about 56.55 Ma, from a neotropical ancestor.• Conclusions: Taxonomic recognition of Parapolystichum is warranted to preserve the monophyly of Lastreopsis. Diversification among the main clades of the lastreopsid ferns was influenced by climatic and geological changes in the southern hemisphere. The biogeographic history of the group is intimately related to the trans-Antarctic corridor between Australia and South America, with evidence for multiple lineage interchanges between Australia and South America during the Oligocene and the Eocene epochs. PMID:25016009

  12. Modulation of biosynthesis of photosynthetic pigments and light-harvesting complex in wild-type and gun5 mutant of Arabidopsis thaliana during impaired chloroplast development.

    PubMed

    Pattanayak, Gopal K; Tripathy, Baishnab C

    2016-05-01

    Plants in response to different environmental cues need to modulate the expression of nuclear and chloroplast genomes that are in constant communication. To understand the signals that are responsible for inter-organellar communication, levulinic acid (LA), an inhibitor of 5-aminolevulinic acid dehydratase, was used to suppress the synthesis of pyrrole-derived tetrapyrroles chlorophylls. Although, it does not specifically inhibit carotenoid biosynthesis enzymes, LA reduced the carotenoid contents during photomorphogenesis of etiolated Arabidopsis seedlings. The expression of nuclear genes involved in carotenoid biosynthesis, i.e., geranylgeranyl diphosphate synthase, phytoene synthase, and phytoene desaturase, was downregulated in LA-treated seedlings. Similarly, the transcript abundance of nuclear genes, i.e., Lhcb1, PsbO, and RcbS, coding for chloroplastic proteins was severely attenuated in LA-treated samples. In contrast, LA treatment did not affect the transcript abundance of chalcone synthase, a marker gene for cytoplasm, and β-ATP synthase, a marker gene for mitochondria. This demonstrates the retrograde signaling from chloroplast to nucleus to suppress chloroplastic proteins during impaired chloroplast development. However, under identical conditions in LA-treated tetrapyrrole-deficient gun5 mutant, retrograde signal continued. The tetrapyrrole biosynthesis inhibitor LA suppressed formation of all tetrapyrroles both in WT and gun5. This rules out the role of tetrapyrroles as signaling molecules in WT and gun5. The removal of LA from the Arabidopsis seedlings restored the chlorophyll and carotenoid contents and expression of nuclear genes coding for chloroplastic proteins involved in chloroplast biogenesis. Therefore, LA could be used to modulate chloroplast biogenesis at a desired phase of chloroplast development. PMID:27001427

  13. PBR1 selectively controls biogenesis of photosynthetic complexes by modulating translation of the large chloroplast gene Ycf1 in Arabidopsis

    PubMed Central

    Yang, Xiao-Fei; Wang, Yu-Ting; Chen, Si-Ting; Li, Ji-Kai; Shen, Hong-Tao; Guo, Fang-Qing

    2016-01-01

    The biogenesis of photosystem I (PSI), cytochrome b6f (Cytb6f) and NADH dehydrogenase (NDH) complexes relies on the spatially and temporally coordinated expression and translation of both nuclear and chloroplast genes. Here we report the identification of photosystem biogenesis regulator 1 (PBR1), a nuclear-encoded chloroplast RNA-binding protein that regulates the concerted biogenesis of NDH, PSI and Cytb6f complexes. We identified Ycf1, one of the two largest chloroplast genome-encoded open reading frames as the direct downstream target protein of PBR1. Biochemical and molecular analyses reveal that PBR1 regulates Ycf1 translation by directly binding to its mRNA. Surprisingly, we further demonstrate that relocation of the chloroplast gene Ycf1 fused with a plastid-transit sequence to the nucleus bypasses the requirement of PBR1 for Ycf1 translation, which sufficiently complements the defects in biogenesis of NDH, PSI and Cytb6f complexes in PBR1-deficient plants. Remarkably, the nuclear-encoded PBR1 tightly controls the expression of the chloroplast gene Ycf1 at the translational level, which is sufficient to sustain the coordinated biogenesis of NDH, PSI and Cytb6f complexes as a whole. Our findings provide deep insights into better understanding of how a predominant nuclear-encoded factor can act as a migratory mediator and undergoes selective translational regulation of the target plastid gene in controlling biogenesis of photosynthetic complexes. PMID:27462450

  14. FtsHi4 Is Essential for Embryogenesis Due to Its Influence on Chloroplast Development in Arabidopsis

    PubMed Central

    Li, Shipeng; Su, Yanping; Liang, Qiuju; Meng, Hongyan; Shen, Songdong; Fan, Yunliu; Liu, Chunming; Zhang, Chunyi

    2014-01-01

    Chloroplast formation is associated with embryo development and seedling growth. However, the relationship between chloroplast differentiation and embryo development remains unclear. Five FtsHi genes that encode proteins with high similarity to FtsH proteins, but lack Zn2+-binding motifs, are present in the Arabidopsis genome. In this study, we showed that T-DNA insertion mutations in the Arabidopsis FtsHi4 gene resulted in embryo arrest at the globular-to-heart–shaped transition stage. Transmission electron microscopic analyses revealed abnormal plastid differentiation with a severe defect in thylakoid formation in the mutant embryos. Immunocytological studies demonstrated that FtsHi4 localized in chloroplasts as a thylakoid membrane-associated protein, supporting its essential role in thylakoid membrane formation. We further showed that FtsHi4 forms protein complexes, and that there was a significant reduction in the accumulation of D2 and PsbO (two photosystem II proteins) in mutant ovules. The role of FtsHi4 in chloroplast development was confirmed using an RNA-interfering approach. Additionally, mutations in other FtsHi genes including FtsHi1, FtsHi2, and FtsHi5 caused phenotypic abnormalities similar to ftshi4 with respect to plastid differentiation during embryogenesis. Taken together, our data suggest that FtsHi4, together with FtsHi1, FtsHi2, and FtsHi5 are essential for chloroplast development in Arabidopsis. PMID:24964212

  15. PBR1 selectively controls biogenesis of photosynthetic complexes by modulating translation of the large chloroplast gene Ycf1 in Arabidopsis.

    PubMed

    Yang, Xiao-Fei; Wang, Yu-Ting; Chen, Si-Ting; Li, Ji-Kai; Shen, Hong-Tao; Guo, Fang-Qing

    2016-01-01

    The biogenesis of photosystem I (PSI), cytochrome b 6 f (Cytb 6 f) and NADH dehydrogenase (NDH) complexes relies on the spatially and temporally coordinated expression and translation of both nuclear and chloroplast genes. Here we report the identification of photosystem biogenesis regulator 1 (PBR1), a nuclear-encoded chloroplast RNA-binding protein that regulates the concerted biogenesis of NDH, PSI and Cytb 6 f complexes. We identified Ycf1, one of the two largest chloroplast genome-encoded open reading frames as the direct downstream target protein of PBR1. Biochemical and molecular analyses reveal that PBR1 regulates Ycf1 translation by directly binding to its mRNA. Surprisingly, we further demonstrate that relocation of the chloroplast gene Ycf1 fused with a plastid-transit sequence to the nucleus bypasses the requirement of PBR1 for Ycf1 translation, which sufficiently complements the defects in biogenesis of NDH, PSI and Cytb 6 f complexes in PBR1-deficient plants. Remarkably, the nuclear-encoded PBR1 tightly controls the expression of the chloroplast gene Ycf1 at the translational level, which is sufficient to sustain the coordinated biogenesis of NDH, PSI and Cytb 6 f complexes as a whole. Our findings provide deep insights into better understanding of how a predominant nuclear-encoded factor can act as a migratory mediator and undergoes selective translational regulation of the target plastid gene in controlling biogenesis of photosynthetic complexes. PMID:27462450

  16. Post transcriptional regulation of chloroplast gene expression by nuclear encoded gene products. Progress report, June 1, 1990--June 30, 1992

    SciTech Connect

    Kuchka, M.R.

    1992-08-01

    Many individual chloroplast genes require the products of a collection of nuclear genes for their successful expression. These nuclear gene products apparently work with great specificity, each committed to the expression of a single chloroplast gene. We have chosen as a model nuclear mutants of Chlamydomonas affected in different stages in the expression of the chloroplast encoded Photosystem II polypeptide, D2. We have made the progress in understanding how nuclear gene products affect the translation of the D2 encoding MRNA. Two nuclear genes are required for this process which have been mapped genetically. In contrast to other examples of nuclear control of translation in the chloroplast, these nuclear gene products appear to be required either for specific stages in translation elongation or for the post-translational stabilization of the nascent D2 protein. Pseudoreversion analysis has led us to a locus which may be directly involved in D2 expression. We have made considerable progress in pursuing the molecular basis of psbd MRNA stabilization. psbD 5` UTR specific transcripts have been synthesized in vitro and used in gel mobility shift assays. UV-crosslinking studies are underway to identify the transacting factors which bind to these sequences. The continued examination of these mutants will help us to understand how nuclear gene products work in this specific case of chloroplast gene expression, and will elucidate how two distinct genomes can interact generally.

  17. Abscisic acid represses the transcription of chloroplast genes*

    PubMed Central

    Yamburenko, Maria V.; Zubo, Yan O.; Börner, Thomas

    2013-01-01

    Numerous studies have shown effects of abscisic acid (ABA) on nuclear genes encoding chloroplast-localized proteins. ABA effects on the transcription of chloroplast genes, however, have not been investigated yet thoroughly. This work, therefore, studied the effects of ABA (75 μM) on transcription and steady-state levels of transcripts in chloroplasts of basal and apical segments of primary leaves of barley (Hordeum vulgare L.). Basal segments consist of young cells with developing chloroplasts, while apical segments contain the oldest cells with mature chloroplasts. Exogenous ABA reduced the chlorophyll content and caused changes of the endogenous concentrations not only of ABA but also of cytokinins to different extents in the basal and apical segments. It repressed transcription by the chloroplast phage-type and bacteria-type RNA polymerases and lowered transcript levels of most investigated chloroplast genes drastically. ABA did not repress the transcription of psbD and a few other genes and even increased psbD mRNA levels under certain conditions. The ABA effects on chloroplast transcription were more pronounced in basal vs. apical leaf segments and enhanced by light. Simultaneous application of cytokinin (22 μM 6-benzyladenine) minimized the ABA effects on chloroplast gene expression. These data demonstrate that ABA affects the expression of chloroplast genes differentially and points to a role of ABA in the regulation and coordination of the activities of nuclear and chloroplast genes coding for proteins with functions in photosynthesis. PMID:24078671

  18. Chloroplast-derived enzyme cocktails hydrolyse lignocellulosic biomass and release fermentable sugars

    PubMed Central

    Verma, Dheeraj; Kanagaraj, Anderson; Jin, Shuangxia; Singh, Nameirakpam D.; Kolattukudy, Pappachan E; Daniell, Henry

    2009-01-01

    Summary It is widely recognized that biofuel production from lignocellulosic materials is limited by inadequate technology to efficiently and economically release fermentable sugars from the complex multi-polymeric raw materials. Therefore, endoglucanases, exoglucanase, pectate lyases, cutinase, swollenin, xylanase, acetyl xylan esterase, beta glucosidase and lipase genes from bacteria or fungi were expressed in E. coli or tobacco chloroplasts. A PCR based method was used to clone genes without introns from Trichoderma reesei genomic DNA. Homoplasmic transplastomic lines showed normal phenotype and were fertile. Based on observed expression levels, up to 49, 64 and 10,751 million units of pectate lyases or endoglucanase can be produced annually, per acre of tobacco. Plant production cost of endoglucanase is 3,100-fold and pectate lyase is 1,057 or 1,480 fold lower than the same recombinant enzymes sold commercially, produced via fermentation. Chloroplast-derived enzymes had higher temperature stability and wider pH optima than enzymes expressed in E. coli. Plant crude-extracts showed higher enzyme activity than E. coli with increasing protein concentration, demonstrating their direct utility without purification. Addition of E. coli extracts to the chloroplast-derived enzymes significantly decreased their activity. Chloroplast-derived crude-extract enzyme cocktails yielded more (up to 3,625%) glucose from filter paper, pine wood or citrus peel than commercial cocktails. Furthermore, pectate lyase transplastomic plants showed enhanced resistance to Erwina soft rot. This is the first report of using plant-derived enzyme cocktails for production of fermentable sugars from lignocellulosic biomass. Limitations of higher cost and lower production capacity of fermentation systems are addressed by chloroplast-derived enzyme cocktails. PMID:20070870

  19. From extracellular to intracellular: the establishment of mitochondria and chloroplasts.

    PubMed

    Whatley, J M; John, P; Whatley, F R

    1979-04-11

    Paracoccus and Rhodopseudomonas are unusual among bacteria in having a majority of the biochemical features of mitochondria; blue-green algae have many of the features of chloroplasts. The theory of serial endosymbiosis proposes that a primitive eukaryote successively took up bacteria and blue-green algae to yield mitochondria and chloroplasts respectively. Possible characteristics of transitional forms are indicated both by the primitive amoeba, Pelomyxa, which lacks mitochondria but contains a permanent population of endosymbiotic bacteria, and by several anomalous eukaryotic algae, e.g. Cyanophora, which contain cyanelles instead of chloroplasts. Blue-green algae appear to be obvious precursors of red algal chloroplasts but the ancestry of other chloroplasts is less certain, though the epizoic symbiont, Prochloron, may resemble the ancestral green algal chloroplast. We speculate that the chloroplasts of the remaining algae may have been a eukaryotic origin. The evolution or organelles from endosymbiotic precursors would involve their integration with the host cell biochemically, structurally and numerically. PMID:36620

  20. Phylogenetic affinities of the grasses to other monocots as revealed by molecular analysis of chloroplast DNA.

    PubMed

    Katayama, H; Ogihara, Y

    1996-05-01

    The distribution of structural alterations of the chloroplast genome found in grass chloroplast (cp) DNA in comparison with that of tobacco was systematically surveyed in the cpDNAs of monocots. Southern hybridization and/or PCR analyses for the detection of (1) three inversions in the large single-copy region, (2) loss of an intron in the rpoC1 gene, (3) an extra-sequence insertion in the rpoC2 gene, (4) the deletion of ORF2280, (5) rearrangements of the accD (ORF512) gene, and (6) non-reciprocal translocation of the rpl23 gene, were carried out on cpDNAs isolated from 58 species, 22 families, and 11 orders, which covered almost all families of monocots. These structural alterations of cpDNA mostly occurred at the family level. However, only part of the Restionaceae possessed the inversion that characterizes the lineage of grass differentiation. The order of mutational events made it possible to reconstruct grass phylogeny in monocots. Since no variations in structural alterations of the cpDNA were found among the Poaceae, grass plants were inferred to have originated from an ancestor harboring these structural alterations of the chloroplast genome. These phylogenetic relationships were supported by the sequence data of rbcL. PMID:8662197

  1. Stable detection of expanded target by the use of boosting random ferns

    NASA Astrophysics Data System (ADS)

    Deng, Li; Wang, Chunhong; Rao, Changhui

    2012-10-01

    This paper studies the problem of keypoints recognition of extended target which lacks of texture information, and introduces an approach of stable detection of these targets called boosting random ferns (BRF). As common descriptors in this circumstance do not work as well as usual cases, matching of keypoints is hence turned into classification task so as to make use of the trainable characteristic of classifier. The kernel of BRF is consisted of random ferns as the classifier and AdaBoost (Adaptive Boosting) as the frame so that accuracy of random ferns classifier can be boosted to a relatively high level. Experiments compare BRF with widely used SURF descriptor and single random ferns classifier. The result shows that BRF obtains higher recognition rate of keypoints. Besides, for image sequence, BRF provides stronger stability than SURF in target detection, which proves the efficiency of BRF aiming to extended target which lacks of texture information.

  2. Using a Microscale Approach to Rapidly Separate and Characterize Three Photosynthetic Pigment Species from Fern

    ERIC Educational Resources Information Center

    Ayudhya, Theppawut Israsena Na; Posey, Frederick T.; Tyus, Jessica C.; Dingra, Nin N.

    2015-01-01

    A rapid separation of three photosynthetic pigments (chlorophyll "a" and "b" and xanthophyll) from fern ("Polystichum acrostichoides") is described using microscale solvent extraction and traditional thin layer chromatography that minimizes use of harmful chemicals and lengthy procedures. The experiment introduces…

  3. Photochemical reactions in dehydrated photosynthetic organisms, leaves, chloroplasts and photosystem II particles: reversible reduction of pheophytin and chlorophyll and oxidation of β-carotene

    NASA Astrophysics Data System (ADS)

    Shuvalov, Vladimir A.; Heber, Ulrich

    2003-11-01

    Photoreactions of dehydrated leaves, isolated broken chloroplasts and PSII membrane fragments of spinach ( Spinacia oleracea) were studied at different air humidities and compared with photoreactions of dry fronds of a fern, Polypodium vulgare, and a dry lichen, Parmelia sulcata, which in contrast to spinach are insensitive to photoinactivation in the dry state. Even in very dry air, P700 in the reaction center of photosystem I of dry leaves was oxidized, and the primary quinone acceptor Q A in the reaction center of photosystem II was photoreduced by low light. These reactions were only very slowly reversed in the dark and saturated under low light intensity. Light-minus-dark difference absorption spectra of the dry leaves, isolated chloroplasts and PSII membrane fragments measured at higher light intensities revealed absorbance changes of β-carotene at 500 nm (light-dependent bleaching) and 980 nm (light-dependent band formation) and bleaching of chlorophyll at 436 and 680 nm with appearance of bands at 450 and 800 nm. Decrease of chlorophyll fluorescence upon strong illumination indicated photoaccumulation of a quencher. All these changes were kinetically related and readily reversible. They are interpreted to show light-induced oxidation of β-carotene (Car) and reduction of chlorophyll-680 (Chl-680) in the reaction center of photosystem II of the dried leaves, chloroplasts and photosystem II particles. The fluorescence quencher was suggested to be Chl-680 - or Car + in close proximity to P680, the primary electron donor. Appreciable photoaccumulation of reduced pheophytin was only observed in dry leaves after Q A reduction had been lost during heat treatment of hydrated leaves prior to dehydration. The observations are interpreted to show light-dependent cyclic electron flow within the reaction center of photosystem II in which Chl-680 (or Pheo) is reduced by P680 * and Car is oxidized by P680 + with consequent recombination of Car + and Chl-680 - (or Pheo

  4. RNA Editing in Chloroplasts of Spirodela polyrhiza, an Aquatic Monocotelydonous Species.

    PubMed

    Wang, Wenqin; Zhang, Wei; Wu, Yongrui; Maliga, Pal; Messing, Joachim

    2015-01-01

    RNA editing is the post-transcriptional conversion from C to U before translation, providing a unique feature in the regulation of gene expression. Here, we used a robust and efficient method based on RNA-seq from non-ribosomal total RNA to simultaneously measure chloroplast-gene expression and RNA editing efficiency in the Greater Duckweed, Spirodela polyrhiza, a species that provides a new reference for the phylogenetic studies of monocotyledonous plants. We identified 66 editing sites at the genome-wide level, with an average editing efficiency of 76%. We found that the expression levels of chloroplast genes were relatively constant, but 11 RNA editing sites show significant changes in editing efficiency, when fronds turn into turions. Thus, RNA editing efficiency contributes more to the yield of translatable transcripts than steady state mRNA levels. Comparison of RNA editing sites in coconut, Spirodela, maize, and rice suggests that RNA editing originated from a common ancestor. PMID:26517707

  5. RNA Editing in Chloroplasts of Spirodela polyrhiza, an Aquatic Monocotelydonous Species

    PubMed Central

    Wang, Wenqin; Zhang, Wei; Wu, Yongrui; Maliga, Pal; Messing, Joachim

    2015-01-01

    RNA editing is the post-transcriptional conversion from C to U before translation, providing a unique feature in the regulation of gene expression. Here, we used a robust and efficient method based on RNA-seq from non-ribosomal total RNA to simultaneously measure chloroplast-gene expression and RNA editing efficiency in the Greater Duckweed, Spirodela polyrhiza, a species that provides a new reference for the phylogenetic studies of monocotyledonous plants. We identified 66 editing sites at the genome-wide level, with an average editing efficiency of 76%. We found that the expression levels of chloroplast genes were relatively constant, but 11 RNA editing sites show significant changes in editing efficiency, when fronds turn into turions. Thus, RNA editing efficiency contributes more to the yield of translatable transcripts than steady state mRNA levels. Comparison of RNA editing sites in coconut, Spirodela, maize, and rice suggests that RNA editing originated from a common ancestor. PMID:26517707

  6. On the widespread capacity for, and functional significance of, extreme inbreeding in ferns.

    PubMed

    Sessa, Emily B; Testo, Weston L; Watkins, James E

    2016-08-01

    Homosporous vascular plants utilize three different mating systems, one of which, gametophytic selfing, is an extreme form of inbreeding only possible in homosporous groups. This mating system results in complete homozygosity in all progeny and has important evolutionary and ecological implications. Ferns are the largest group of homosporous land plants, and the significance of extreme inbreeding for fern evolution has been a subject of debate for decades. We cultured gametophytes in the laboratory and quantified the relative frequencies of sporophyte production from isolated and paired gametophytes, and examined associations between breeding systems and several ecological and evolutionary traits. The majority of fern species studied show a capacity for gametophytic selfing, producing sporophytes from both isolated and paired gametophytes. While we did not follow sporophytes to maturity to investigate potential detrimental effects of homozygosity at later developmental stages, our results suggest that gametophytic selfing may have greater significance for fern evolution and diversification than has previously been realized. We present evidence from the largest study of mating behavior in ferns to date that the capacity for extreme inbreeding is prevalent in this lineage, and we discuss its implications and relevance and make recommendations for future studies of fern mating systems. PMID:27094807

  7. The Role of Heterologous Chloroplast Sequence Elements in Transgene Integration and Expression1[W][OA

    PubMed Central

    Ruhlman, Tracey; Verma, Dheeraj; Samson, Nalapalli; Daniell, Henry

    2010-01-01

    Heterologous regulatory elements and flanking sequences have been used in chloroplast transformation of several crop species, but their roles and mechanisms have not yet been investigated. Nucleotide sequence identity in the photosystem II protein D1 (psbA) upstream region is 59% across all taxa; similar variation was consistent across all genes and taxa examined. Secondary structure and predicted Gibbs free energy values of the psbA 5′ untranslated region (UTR) among different families reflected this variation. Therefore, chloroplast transformation vectors were made for tobacco (Nicotiana tabacum) and lettuce (Lactuca sativa), with endogenous (Nt-Nt, Ls-Ls) or heterologous (Nt-Ls, Ls-Nt) psbA promoter, 5′ UTR and 3′ UTR, regulating expression of the anthrax protective antigen (PA) or human proinsulin (Pins) fused with the cholera toxin B-subunit (CTB). Unique lettuce flanking sequences were completely eliminated during homologous recombination in the transplastomic tobacco genomes but not unique tobacco sequences. Nt-Ls or Ls-Nt transplastomic lines showed reduction of 80% PA and 97% CTB-Pins expression when compared with endogenous psbA regulatory elements, which accumulated up to 29.6% total soluble protein PA and 72.0% total leaf protein CTB-Pins, 2-fold higher than Rubisco. Transgene transcripts were reduced by 84% in Ls-Nt-CTB-Pins and by 72% in Nt-Ls-PA lines. Transcripts containing endogenous 5′ UTR were stabilized in nonpolysomal fractions. Stromal RNA-binding proteins were preferentially associated with endogenous psbA 5′ UTR. A rapid and reproducible regeneration system was developed for lettuce commercial cultivars by optimizing plant growth regulators. These findings underscore the need for sequencing complete crop chloroplast genomes, utilization of endogenous regulatory elements and flanking sequences, as well as optimization of plant growth regulators for efficient chloroplast transformation. PMID:20130101

  8. FtsZ-less prokaryotic cell division as well as FtsZ- and dynamin-less chloroplast and non-photosynthetic plastid division

    PubMed Central

    Miyagishima, Shin-ya; Nakamura, Mami; Uzuka, Akihiro; Era, Atsuko

    2014-01-01

    The chloroplast division machinery is a mixture of a stromal FtsZ-based complex descended from a cyanobacterial ancestor of chloroplasts and a cytosolic dynamin-related protein (DRP) 5B-based complex derived from the eukaryotic host. Molecular genetic studies have shown that each component of the division machinery is normally essential for normal chloroplast division. However, several exceptions have been found. In the absence of the FtsZ ring, non-photosynthetic plastids are able to proliferate, likely by elongation and budding. Depletion of DRP5B impairs, but does not stop chloroplast division. Chloroplasts in glaucophytes, which possesses a peptidoglycan (PG) layer, divide without DRP5B. Certain parasitic eukaryotes possess non-photosynthetic plastids of secondary endosymbiotic origin, but neither FtsZ nor DRP5B is encoded in their genomes. Elucidation of the FtsZ- and/or DRP5B-less chloroplast division mechanism will lead to a better understanding of the function and evolution of the chloroplast division machinery and the finding of the as-yet-unknown mechanism that is likely involved in chloroplast division. Recent studies have shown that FtsZ was lost from a variety of prokaryotes, many of which lost PG by regressive evolution. In addition, even some of the FtsZ-bearing bacteria are able to divide when FtsZ and PG are depleted experimentally. In some cases, alternative mechanisms for cell division, such as budding by an increase of the cell surface-to-volume ratio, are proposed. Although PG is believed to have been lost from chloroplasts other than in glaucophytes, there is some indirect evidence for the existence of PG in chloroplasts. Such information is also useful for understanding how non-photosynthetic plastids are able to divide in FtsZ-depleted cells and the reason for the retention of FtsZ in chloroplast division. Here we summarize information to facilitate analyses of FtsZ- and/or DRP5B-less chloroplast and non-photosynthetic plastid division. PMID

  9. Events Surrounding the Early Development of Euglena Chloroplasts

    PubMed Central

    Vaisberg, Abraham J.; Schiff, Jerome A.; Li, Lynn; Freedman, Zachary

    1976-01-01

    d(−)threo-Chloramphenicol blocks chlorophyll and plastid protein synthesis in Euglena. During chloroplast development in white light, but not in red, the cells escape from chloramphenicol inhibition and chlorophyll formation is restored. Concomitantly, chloramphenicol is reduced. Reduction of chloramphenicol in an enzyme extract from Euglena requires NADPH and ferredoxin for maximal activity. Methyl viologen replaces ferredoxin, and when chemically reduced, ferredoxin or methyl viologen reduces chloramphenicol directly. This suggests that the enzyme involved is ferredoxin-NADP reductase. In agreement, crude extracts from wild type and W3BUL, a mutant lacking detectable plastids and plastid DNA, when separated on acrylamide gels, show a single band which reduces methyl viologen with NADPH, and its mobility is similar in wild type and in mutant W3BUL. The reductase is inducible by light and increases 3-fold in wild type in white or red light and 1.5-fold in W3BUL in white light. DCMU does not block chloramphenicol reduction in vivo indicating that electrons originate from sources other than photosynthetic electron transport. We infer that chloramphenicol is reduced by ferredoxin which receives electrons via ferredoxin-NADP reductase. The limiting step is not the enzyme but the source of reducing power which can be supplied from the cytoplasm, probably under control of the blue light receptor. Ferredoxin and ferredoxin NADP reductase appear to be coded in the nuclear genome, synthesized on cytoplasmic ribosomes, and join a group of enzymes which cannot be precisely localized, since they may be active anywhere from their site of synthesis in the cytoplasm to their place of deposition in the chloroplast. PMID:16659534

  10. Plastid RNA polymerases: orchestration of enzymes with different evolutionary origins controls chloroplast biogenesis during the plant life cycle.

    PubMed

    Pfannschmidt, Thomas; Blanvillain, Robert; Merendino, Livia; Courtois, Florence; Chevalier, Fabien; Liebers, Monique; Grübler, Björn; Hommel, Elisabeth; Lerbs-Mache, Silva

    2015-12-01

    Chloroplasts are the sunlight-collecting organelles of photosynthetic eukaryotes that energetically drive the biosphere of our planet. They are the base for all major food webs by providing essential photosynthates to all heterotrophic organisms including humans. Recent research has focused largely on an understanding of the function of these organelles, but knowledge about the biogenesis of chloroplasts is rather limited. It is known that chloroplasts develop from undifferentiated precursor plastids, the proplastids, in meristematic cells. This review focuses on the activation and action of plastid RNA polymerases, which play a key role in the development of new chloroplasts from proplastids. Evolutionarily, plastids emerged from the endosymbiosis of a cyanobacterium-like ancestor into a heterotrophic eukaryote. As an evolutionary remnant of this process, they possess their own genome, which is expressed by two types of plastid RNA polymerase, phage-type and prokaryotic-type RNA polymerase. The protein subunits of these polymerases are encoded in both the nuclear and plastid genomes. Their activation and action therefore require a highly sophisticated regulation that controls and coordinates the expression of the components encoded in the plastid and nucleus. Stoichiometric expression and correct assembly of RNA polymerase complexes is achieved by a combination of developmental and environmentally induced programmes. This review highlights the current knowledge about the functional coordination between the different types of plastid RNA polymerases and provides working models of their sequential expression and function for future investigations. PMID:26355147

  11. Did RNA editing in plant organellar genomes originate under natural selection or through genetic drift?

    PubMed Central

    Jobson, Richard W; Qiu, Yin-Long

    2008-01-01

    Background The C↔U substitution types of RNA editing have been observed frequently in organellar genomes of land plants. Although various attempts have been made to explain why such a seemingly inefficient genetic mechanism would have evolved, no satisfactory explanation exists in our view. In this study, we examined editing patterns in chloroplast genomes of the hornwort Anthoceros formosae and the fern Adiantum capillus-veneris and in mitochondrial genomes of the angiosperms Arabidopsis thaliana, Beta vulgaris and Oryza sativa, to gain an understanding of the question of how RNA editing originated. Results We found that 1) most editing sites were distributed at the 2nd and 1st codon positions, 2) editing affected codons that resulted in larger hydrophobicity and molecular size changes much more frequently than those with little change involved, 3) editing uniformly increased protein hydrophobicity, 4) editing occurred more frequently in ancestrally T-rich sequences, which were more abundant in genes encoding membrane-bound proteins with many hydrophobic amino acids than in genes encoding soluble proteins, and 5) editing occurred most often in genes found to be under strong selective constraint. Conclusion These analyses show that editing mostly affects functionally important and evolutionarily conserved codon positions, codons and genes encoding membrane-bound proteins. In particular, abundance of RNA editing in plant organellar genomes may be associated with disproportionately large percentages of genes in these two genomes that encode membrane-bound proteins, which are rich in hydrophobic amino acids and selectively constrained. These data support a hypothesis that natural selection imposed by protein functional constraints has contributed to selective fixation of certain editing sites and maintenance of the editing activity in plant organelles over a period of more than four hundred millions years. The retention of genes encoding RNA editing activity may be

  12. Chloroplast Genetics of Chlamydomonas. III. Closing the Circle

    PubMed Central

    Singer, Burt; Sager, Ruth; Ramanis, Zenta

    1976-01-01

    A novel mapping procedure is presented for organelle genes or any other genetic system exhibiting a measurable frequency of exchanges occurring at a constant rate over a measurable time interval. For a set of markers in a multiply-marked cross, the exchange rates measure relative map distances from a centromere-like attachment point. With this method, we present mapping data and a linear map of genes in the chlcroplast genome of Chlamydomonas. The data are plotted as log (percent remaining heterozygotes) against time and map distances are taken as proportional to slope. A statistical method which is an adaptation of jackknife methodology to a regression problem was developed to estimate slope values. A single line is fitted to pooled data for each marker from several crosses, and then lines are re-fit to a series of pooled data sets in each of which the observations from a single cross have been omitted. From these data sets a final summary slope is computed as well as a statement of its variability. The relative positions of new markers present in single crosses can then be estimated utilizing data from many crosses. The method does not distinguish between one-armed and two-armed linear or circular maps. However, evaluation of this map in conjunction with cosegregation frequency data (Sager and Ramanis 1976b) provides unambiguous evidence of the genetic circularity of the Chlamydomonas chloroplast genome. PMID:17248718

  13. The location and translocation of ndh genes of chloroplast origin in the Orchidaceae family.

    PubMed

    Lin, Choun-Sea; Chen, Jeremy J W; Huang, Yao-Ting; Chan, Ming-Tsair; Daniell, Henry; Chang, Wan-Jung; Hsu, Chen-Tran; Liao, De-Chih; Wu, Fu-Huei; Lin, Sheng-Yi; Liao, Chen-Fu; Deyholos, Michael K; Wong, Gane Ka-Shu; Albert, Victor A; Chou, Ming-Lun; Chen, Chun-Yi; Shih, Ming-Che

    2015-01-01

    The NAD(P)H dehydrogenase complex is encoded by 11 ndh genes in plant chloroplast (cp) genomes. However, ndh genes are truncated or deleted in some autotrophic Epidendroideae orchid cp genomes. To determine the evolutionary timing of the gene deletions and the genomic locations of the various ndh genes in orchids, the cp genomes of Vanilla planifolia, Paphiopedilum armeniacum, Paphiopedilum niveum, Cypripedium formosanum, Habenaria longidenticulata, Goodyera fumata and Masdevallia picturata were sequenced; these genomes represent Vanilloideae, Cypripedioideae, Orchidoideae and Epidendroideae subfamilies. Four orchid cp genome sequences were found to contain a complete set of ndh genes. In other genomes, ndh deletions did not correlate to known taxonomic or evolutionary relationships and deletions occurred independently after the orchid family split into different subfamilies. In orchids lacking cp encoded ndh genes, non cp localized ndh sequences were identified. In Erycina pusilla, at least 10 truncated ndh gene fragments were found transferred to the mitochondrial (mt) genome. The phenomenon of orchid ndh transfer to the mt genome existed in ndh-deleted orchids and also in ndh containing species. PMID:25761566

  14. Highly Variable Chloroplast Markers for Evaluating Plant Phylogeny at Low Taxonomic Levels and for DNA Barcoding

    PubMed Central

    Dong, Wenpan; Liu, Jing; Yu, Jing; Wang, Ling; Zhou, Shiliang

    2012-01-01

    Background At present, plant molecular systematics and DNA barcoding techniques rely heavily on the use of chloroplast gene sequences. Because of the relatively low evolutionary rates of chloroplast genes, there are very few choices suitable for molecular studies on angiosperms at low taxonomic levels, and for DNA barcoding of species. Methodology/Principal Findings We scanned the entire chloroplast genomes of 12 genera to search for highly variable regions. The sequence data of 9 genera were from GenBank and 3 genera were of our own. We identified nearly 5% of the most variable loci from all variable loci in the chloroplast genomes of each genus, and then selected 23 loci that were present in at least three genera. The 23 loci included 4 coding regions, 2 introns, and 17 intergenic spacers. Of the 23 loci, the most variable (in order from highest variability to lowest) were intergenic regions ycf1-a, trnK, rpl32-trnL, and trnH-psbA, followed by trnSUGA-trnGUCC, petA-psbJ, rps16-trnQ, ndhC-trnV, ycf1-b, ndhF, rpoB-trnC, psbE-petL, and rbcL-accD. Three loci, trnSUGA-trnGUCC, trnT-psbD, and trnW-psaJ, showed very high nucleotide diversity per site (π values) across three genera. Other loci may have strong potential for resolving phylogenetic and species identification problems at the species level. The loci accD-psaI, rbcL-accD, rpl32-trnL, rps16-trnQ, and ycf1 are absent from some genera. To amplify and sequence the highly variable loci identified in this study, we designed primers from their conserved flanking regions. We tested the applicability of the primers to amplify target sequences in eight species representing basal angiosperms, monocots, eudicots, rosids, and asterids, and confirmed that the primers amplified the desired sequences of these species. Significance/Conclusions Chloroplast genome sequences contain regions that are highly variable. Such regions are the first consideration when screening the suitable loci to resolve closely related species or

  15. Survival and Growth of Epiphytic Ferns Depend on Resource Sharing.

    PubMed

    Lu, Hua-Zheng; Song, Liang; Liu, Wen-Yao; Xu, Xing-Liang; Hu, Yue-Hua; Shi, Xian-Meng; Li, Su; Ma, Wen-Zhang; Chang, Yan-Fen; Fan, Ze-Xin; Lu, Shu-Gang; Wu, Yi; Yu, Fei-Hai

    2016-01-01

    Locally available resources can be shared within clonal plant systems through physiological integration, thus enhancing their survival and growth. Most epiphytes exhibit clonal growth habit, but few studies have tested effects of physiological integration (resource sharing) on survival and growth of epiphytes and whether such effects vary with species. We conducted two experiments, one on individuals (single ramets) and another on groups (several ramets within a plot), with severed and intact rhizome treatments (without and with physiological integration) on two dominant epiphytic ferns (Polypodiodes subamoena and Lepisorus scolopendrium) in a subtropical montane moist forest in Southwest China. Rhizome severing (preventing integration) significantly reduced ramet survival in the individual experiment and number of surviving ramets in the group experiment, and it also decreased biomass of both species in both experiments. However, the magnitude of such integration effects did not vary significantly between the two species. We conclude that resource sharing may be a general strategy for clonal epiphytes to adapt to forest canopies where resources are limited and heterogeneously distributed in space and time. PMID:27066052

  16. Essential Oil Constituents and Antioxidant Activity of Asplenium Ferns.

    PubMed

    Hammami, Saoussen; Snène, Ali; El Mokni, Ridha; Faidi, Khaled; Falconieri, Danilo; Dhaouadi, Hatem; Piras, Alessandra; Mighri, Zine; Porcedda, Silvia

    2016-09-01

    Two fern species Asplenium adiantum-nigrum L. and Asplenium trichomanes L. collected from the Kroumiria region (Northwest of Tunisia) were individually submitted to hydrodistillation in a Clevenger type apparatus. Volatile organic compounds were identified by GC-MS and GC-FID. Thus, 35 compounds were identified in A. adiantum-nigrum essential oil accounting for 77.5% of the whole constituents dominated by palmitic acid (34.5%); however, only 29 volatiles were identified in A. trichomanes showing a high amount of phytol, an odorous diterpene alcohol, representing 14.4% of the total oil contents. The total phenolic content and the antioxidant effects of crude extracts from both pteridophytes were determined using Folin-Ciocalteu and 2,2'-diphenyl-1-picrylhydrazyl free radical-scavenging assays, respectively. A. adiantum-nigrum ethyl acetate extract is shown to be lower in total phenolic contents (49.3 mg gallic acid equivalent/g) than similar extract from A. trichomanes (55.4 mg GAE/g). PMID:27165574

  17. Herschel und die Zukunft der Fern-Infrarot-Astronomie

    NASA Astrophysics Data System (ADS)

    Linz, Hendrik

    2015-06-01

    Schon lange ist die beobachtende Astronomie den engen Grenzen des optisch Sichbaren entwachsen und hat fast alle Bereiche des elektromagnetischen Spektrums für sich dienstbar gemacht. Im sogenannten nahen und mittleren Infrarot (Wellenlängen zwischen 1-30 μm) sowie im Millimeter- und Radio-Regime (Wellenlängen zwischen 1 mm und 10 m) ist die Erdatmosphäre relativ gut durchlässig für elektromagnetische Signale oder hat zumindest eine Vielzahl von spektral begrenzten Transmissionsfenstern, die astronomische Beobachtungen zumindest von höheren Bergen aus möglich machen. Allerdings ist das sogenannte Ferne Infrarot (FIR, 30-300 μm Wellenlänge) von der Erde aus fast völlig unzugänglich für astronomische Beobachtungen. Selbst für die besten Beobachtungsplätze der Erde bleibt die atmosphärische Transmission durch die immense Wasserdampf- Absorption auf ein absolutes Minimum beschränkt. Jedoch erlaubt uns das FIR Zugang zu Informationen, die sehr nützlich sind für die astrophysikalische Forschung und komplementär zu anderen Wellenlängen-Bereichen.

  18. Survival and Growth of Epiphytic Ferns Depend on Resource Sharing

    PubMed Central

    Lu, Hua-Zheng; Song, Liang; Liu, Wen-Yao; Xu, Xing-Liang; Hu, Yue-Hua; Shi, Xian-Meng; Li, Su; Ma, Wen-Zhang; Chang, Yan-Fen; Fan, Ze-Xin; Lu, Shu-Gang; Wu, Yi; Yu, Fei-Hai

    2016-01-01

    Locally available resources can be shared within clonal plant systems through physiological integration, thus enhancing their survival and growth. Most epiphytes exhibit clonal growth habit, but few studies have tested effects of physiological integration (resource sharing) on survival and growth of epiphytes and whether such effects vary with species. We conducted two experiments, one on individuals (single ramets) and another on groups (several ramets within a plot), with severed and intact rhizome treatments (without and with physiological integration) on two dominant epiphytic ferns (Polypodiodes subamoena and Lepisorus scolopendrium) in a subtropical montane moist forest in Southwest China. Rhizome severing (preventing integration) significantly reduced ramet survival in the individual experiment and number of surviving ramets in the group experiment, and it also decreased biomass of both species in both experiments. However, the magnitude of such integration effects did not vary significantly between the two species. We conclude that resource sharing may be a general strategy for clonal epiphytes to adapt to forest canopies where resources are limited and heterogeneously distributed in space and time. PMID:27066052

  19. Isolation and identification of chloroplast lipids.

    PubMed

    Sato, Norihiro; Tsuzuki, Mikio

    2011-01-01

    Glycerolipids of photosynthetic organisms are accounted for largely by thylakoid membrane lipids consisting of chloroplast-specific glycolipids such as monogalactosyl diacylglycerol, digalactosyl diacylglycerol, and sulfoquinovosyl diacylglycerol, and a sole phospholipid, phosphatidylglycerol. In this chapter, methods for characterization of lipids from plant cells are described. The methods include extraction of total lipids from the cells, separation of these lipids into individual lipid classes by thin-layer chromatography, and identification of respective lipid classes by their mobility. We also present methods for the determination of compositions of constituent fatty acids, distribution of fatty acids between sn-1 and sn-2 positions, and determination of contents of individual lipid classes by gas-liquid chromatography. These methods are applicable to isolated chloroplasts or some membrane fractions such as thylakoid membranes. PMID:20960124

  20. Posttranslational Modifications of Chloroplast Proteins: An Emerging Field1

    PubMed Central

    2015-01-01

    Posttranslational modifications of proteins are key effectors of enzyme activity, protein interactions, targeting, and turnover rate, but despite their importance, they are still poorly understood in plants. Although numerous reports have revealed the regulatory role of protein phosphorylation in photosynthesis, various other protein modifications have been identified in chloroplasts only recently. It is known that posttranslational Nα-acetylation occurs in both nuclear- and plastid-encoded chloroplast proteins, but the physiological significance of this acetylation is not yet understood. Lysine acetylation affects the localization and activity of key metabolic enzymes, and it may work antagonistically or cooperatively with lysine methylation, which also occurs in chloroplasts. In addition, tyrosine nitration may help regulate the repair cycle of photosystem II, while N-glycosylation determines enzyme activity of chloroplastic carbonic anhydrase. This review summarizes the progress in the research field of posttranslational modifications of chloroplast proteins and points out the importance of these modifications in the regulation of chloroplast metabolism. PMID:25911530

  1. Posttranslational Modifications of Chloroplast Proteins: An Emerging Field.

    PubMed

    Lehtimäki, Nina; Koskela, Minna M; Mulo, Paula

    2015-07-01

    Posttranslational modifications of proteins are key effectors of enzyme activity, protein interactions, targeting, and turnover rate, but despite their importance, they are still poorly understood in plants. Although numerous reports have revealed the regulatory role of protein phosphorylation in photosynthesis, various other protein modifications have been identified in chloroplasts only recently. It is known that posttranslational N(α)-acetylation occurs in both nuclear- and plastid-encoded chloroplast proteins, but the physiological significance of this acetylation is not yet understood. Lysine acetylation affects the localization and activity of key metabolic enzymes, and it may work antagonistically or cooperatively with lysine methylation, which also occurs in chloroplasts. In addition, tyrosine nitration may help regulate the repair cycle of photosystem II, while N-glycosylation determines enzyme activity of chloroplastic carbonic anhydrase. This review summarizes the progress in the research field of posttranslational modifications of chloroplast proteins and points out the importance of these modifications in the regulation of chloroplast metabolism. PMID:25911530

  2. Phytotoxicity and phytoaccumulation of trivalent and hexavalent chromium in brake fern.

    PubMed

    Su, Yi; Han, Fengxiang X; Sridhar, B B Maruthi; Monts, David L

    2005-08-01

    A recently recognized hyperaccumulator plant, Chinese brake fern (Pteris vittata), has been found to extract very high concentration of arsenic from arsenic-contaminated soil. Chromium usually is a coexisting contaminant with arsenic in most contaminated soils. The potential application of ferns for phytoremediation of chromium(III)- and chromium(VI)-contaminated soils and their phytotoxicity to ferns has not been studied before. In this study, chromium distribution and phytotoxicity at the plant and cellular levels of brake ferns were studied using chemical analyses and scanning electron microscopy. The results show a higher phytotoxicity of Cr from Cr(VI)-contaminated soil to Chinese brake fern than from Cr(III)-contaminated soil. Phytotoxicity symptoms included significant decreases both in fresh biomass weight and relative water content (RWC), and also in leaf chlorosis during the late stage of growing. At higher concentrations (500 mg/kg Cr[VI] and 1,000 mg/kg Cr[III] addition), plants showed reduction in the number of palisade and spongy parenchyma cells in leaves. Compared with other plant species reported for phytoremediation of Cr(VI)-contaminated soil, brake fern took up and accumulated significant amounts of Cr (up to 1,145 mg/kg in shoots and 5,717 mg/kg in roots) and did not die immediately from phytotoxicity. Our study suggests that Chinese brake fern is a potential candidate for phytoremediation of Cr(VI)-contaminated soils, even though plants showed severe phytotoxic symptoms at higher soil Cr concentrations. PMID:16152975

  3. Protein methylation in pea chloroplasts. [Pisum sativum

    SciTech Connect

    Niemi, K.J.; Adler, J.; Selman, B.R. )

    1990-07-01

    The methylation of chloroplast proteins has been investigated by incubating intact pea (Pisum sativum) chloroplasts with ({sup 3}H-methyl)-S-adenosylmethionine. Incubation in the light increases the amount of methylation in both the thylakoid and stromal fractions. Numerous thylakoid proteins serve as substrates for the methyltransfer reactions. Three of these thylakoid proteins are methylated to a significantly greater extent in the light than in the dark. The primary stromal polypeptide methylated is the large subunit of ribulose bisphosphate carboxylase/oxygenase. One other stromal polypeptide is also methylated much more in the light than in the dark. Two distinct types of protein methylation occur. One methylinkage is stable to basic conditions whereas a second type is base labile. The base-stable linkage is indicative of N-methylation of amino acid residues while base-lability is suggestive of carboxymethylation of amino acid residues. Labeling in the light increases the percentage of methylation that is base labile in the thylakoid fraction while no difference is observed in the amount of base-labile methylations in light-labeled and dark-labeled stromal proteins. Also suggestive of carboxymethylation is the detection of volatile ({sup 3}H)methyl radioactivity which increases during the labeling period and is greater in chloroplasts labeled in the light as opposed to being labeled in the dark; this implies in vivo turnover of the ({sup 3}H)methyl group.

  4. The potato mop-top virus TGB2 protein and viral RNA associate with chloroplasts and viral infection induces inclusions in the plastids

    PubMed Central

    Cowan, Graham H.; Roberts, Alison G.; Chapman, Sean N.; Ziegler, Angelika; Savenkov, Eugene I.; Torrance, Lesley

    2012-01-01

    The potato mop-top virus (PMTV) triple gene block 2 (TGB2) movement proteins fused to monomeric red fluorescent protein (mRFP-TGB2) was expressed under the control of the PMTV subgenomic promoter from a PMTV vector. The subcellular localizations and interactions of mRFP-TGB2 were investigated using confocal imaging [confocal laser-scanning microscope, (CLSM)] and biochemical analysis. The results revealed associations with membranes of the endoplasmic reticulum (ER), mobile granules, small round structures (1–2 μm in diameter), and chloroplasts. Expression of mRFP-TGB2 in epidermal cells enabled cell-to-cell movement of a TGB2 defective PMTV reporter clone, indicating that the mRFP-TGB2 fusion protein was functional and required for cell-to-cell movement. Protein-lipid interaction assays revealed an association between TGB2 and lipids present in chloroplasts, consistent with microscopical observations where the plastid envelope was labeled later in infection. To further investigate the association of PMTV infection with chloroplasts, ultrastructural studies of thin sections of PMTV-infected potato and Nicotiana benthamiana leaves by electron microscopy revealed abnormal chloroplasts with cytoplasmic inclusions and terminal projections. Viral coat protein (CP), genomic RNA and fluorescently-labeled TGB2 were detected in plastid preparations isolated from the infected leaves, and viral RNA was localized to chloroplasts in infected tissues. The results reveal a novel association of TGB2 and vRNA with chloroplasts, and suggest viral replication is associated with chloroplast membranes, and that TGB2 plays a novel role in targeting the virus to chloroplasts. PMID:23269927

  5. Ectopic Overexpression of The Transcription Factor OsGLK1 Induces Chloroplast Development in Non-Green Rice Cells

    PubMed Central

    Nakamura, Hidemitsu; Muramatsu, Masayuki; Hakata, Makoto; Ueno, Osamu; Nagamura, Yoshiaki; Hirochika, Hirohiko; Takano, Makoto; Ichikawa, Hiroaki

    2009-01-01

    For systematic and genome-wide analyses of rice gene functions, we took advantage of the full-length cDNA overexpresser (FOX) gene-hunting system and generated >12 000 independent FOX-rice lines from >25 000 rice calli treated with the rice-FOX Agrobacterium library. We found two FOX-rice lines generating green calli on a callus-inducing medium containing 2,4-D, on which wild-type rice calli became ivory yellow. In both lines, OsGLK1 cDNA encoding a GARP transcription factor was ectopically overexpressed. Using rice expression-microarray and northern blot analyses, we found that a large number of nucleus-encoded genes involved in chloroplast functions were highly expressed and transcripts of plastid-encoded genes, psaA, psbA and rbcL, increased in the OsGLK1-FOX calli. Transmission electron microscopy showed the existence of differentiated chloroplasts with grana stacks in OsGLK1-FOX calli cells. However, in darkness, OsGLK1-FOX calli did not show a green color or develop grana stacks. Furthermore, we found developed chloroplasts in vascular bundle and bundle sheath cells of coleoptiles and leaves from OsGLK1-FOX seedlings. The OsGLK1-FOX calli exhibited high photosynthetic activity and were able to grow on sucrose-depleted media, indicating that developed chloroplasts in OsGLK1-FOX rice calli are functional and active. We also observed that the endogenous OsGLK1 mRNA level increased synchronously with the greening of wild-type calli after transfer to plantlet regeneration medium. These results strongly suggest that OsGLK1 regulates chloroplast development under the control of light and phytohormones, and that it is a key regulator of chloroplast development. PMID:19808806

  6. A Large Population of Small Chloroplasts in Tobacco Leaf Cells Allows More Effective Chloroplast Movement Than a Few Enlarged Chloroplasts1

    PubMed Central

    Jeong, Won Joong; Park, Youn-Il; Suh, KyeHong; Raven, John A.; Yoo, Ook Joon; Liu, Jang Ryol

    2002-01-01

    We generated transgenic tobacco (Nicotiana tabacum cv Xanthi) plants that contained only one to three enlarged chloroplasts per leaf mesophyll cell by introducing NtFtsZ1-2, a cDNA for plastid division. These plants were used to investigate the advantages of having a large population of small chloroplasts rather than a few enlarged chloroplasts in a leaf mesophyll cell. Despite the similarities in photosynthetic components and ultrastructure of photosynthetic machinery between wild-type and transgenic plants, the overall growth of transgenic plants under low- and high-light conditions was retarded. In wild-type plants, the chloroplasts moved toward the face position under low light and toward the profile position under high-light conditions. However, chloroplast rearrangement in transgenic plants in response to light conditions was not evident. In addition, transgenic plant leaves showed greatly diminished changes in leaf transmittance values under both light conditions, indicating that chloroplast rearrangement was severely retarded. Therefore, under low-light conditions the incomplete face position of the enlarged chloroplasts results in decreased absorbance of light energy. This, in turn, reduces plant growth. Under high-light conditions, the amount of absorbed light exceeds the photosynthetic utilization capacity due to the incomplete profile position of the enlarged chloroplasts, resulting in photodamage to the photosynthetic machinery, and decreased growth. The presence of a large number of small and/or rapidly moving chloroplasts in the cells of higher land plants permits more effective chloroplast phototaxis and, hence, allows more efficient utilization of low-incident photon flux densities. The photosynthetic apparatus is, consequently, protected from damage under high-incident photon flux densities. PMID:12011343

  7. Fine tuning chloroplast movements through physical interactions between phototropins

    PubMed Central

    Sztatelman, Olga; Łabuz, Justyna; Hermanowicz, Paweł; Banaś, Agnieszka Katarzyna; Bażant, Aneta; Zgłobicki, Piotr; Aggarwal, Chhavi; Nadzieja, Marcin; Krzeszowiec, Weronika; Strzałka, Wojciech; Gabryś, Halina

    2016-01-01

    Phototropins are plant photoreceptors which regulate numerous responses to blue light, including chloroplast relocation. Weak blue light induces chloroplast accumulation, whereas strong light leads to an avoidance response. Two Arabidopsis phototropins are characterized by different light sensitivities. Under continuous light, both can elicit chloroplast accumulation, but the avoidance response is controlled solely by phot2. As well as continuous light, brief light pulses also induce chloroplast displacements. Pulses of 0.1s and 0.2s of fluence rate saturating the avoidance response lead to transient chloroplast accumulation. Longer pulses (up to 20s) trigger a biphasic response, namely transient avoidance followed by transient accumulation. This work presents a detailed study of transient chloroplast responses in Arabidopsis. Phototropin mutants display altered chloroplast movements as compared with the wild type: phot1 is characterized by weaker responses, while phot2 exhibits enhanced chloroplast accumulation, especially after 0.1s and 0.2s pulses. To determine the cause of these differences, the abundance and phosphorylation levels of both phototropins, as well as the interactions between phototropin molecules are examined. The formation of phototropin homo- and heterocomplexes is the most plausible explanation of the observed phenomena. The physiological consequences of this interplay are discussed, suggesting the universal character of this mechanism that fine-tunes plant reactions to blue light. Additionally, responses in mutants of different protein phosphatase 2A subunits are examined to assess the role of protein phosphorylation in signaling of chloroplast movements. PMID:27406783

  8. Copper Delivery to Chloroplast Proteins and its Regulation

    PubMed Central

    Aguirre, Guadalupe; Pilon, Marinus

    2016-01-01

    Copper is required for photosynthesis in chloroplasts of plants because it is a cofactor of plastocyanin, an essential electron carrier in the thylakoid lumen. Other chloroplast copper proteins are copper/zinc superoxide dismutase and polyphenol oxidase, but these proteins seem to be dispensable under conditions of low copper supply when transcripts for these proteins undergo microRNA-mediated down regulation. Two ATP-driven copper transporters function in tandem to deliver copper to chloroplast compartments. This review seeks to summarize the mechanisms of copper delivery to chloroplast proteins and its regulation. We also delineate some of the unanswered questions that still remain in this field. PMID:26793223

  9. Nanophotonics of Chloroplasts for Bio-Inspired Solar Energy Materials

    NASA Astrophysics Data System (ADS)

    Gourley, Paul L.; Gourley, Cheryl R.

    2011-03-01

    In the search for new energy sources, lessons can be learned from chloroplast photonics. The nano-architecture of chloroplasts is remarkably well-adapted to mediate sunlight interactions for efficient energy conversion. We carried out experiments with chloroplasts isolated from spinach and leaf lettuce to elucidate the relationship between nano-architecture, biomolecular composition and photonic properties. We obtained high-resolution microscopic images of single chloroplasts to identify geometries of chloroplasts and interior grana. We performed micro-spectroscopy to identify strengths of absorption and fluorescence transitions and related them to broadband reflectance and transmittance spectra of whole leaf structures. Finally, the nonlinear optical properties were investigated with nanolaser spectroscopy by placing chloroplasts into micro-resonators and optically pumping. These spectra reveal chloroplast photonic modes and allow measurement of single chloroplast light scattering cross section, polarizability, and refractive index. The nanolaser spectra recorded at increasing pump powers enabled us to observe non-linear optics, photon dynamics, and stimulated emission from single chloroplasts. All of these experiments provide insight into plant photonics and inspiration of paradigms for synthetic biomaterials to harness sunlight in new ways.

  10. Pyruvate Dehydrogenase Complex from Chloroplasts of Pisum sativum L 1

    PubMed Central

    Williams, Michael; Randall, Douglas D.

    1979-01-01

    Pyruvate dehydrogenase complex is associated with intact chloroplasts and mitochondria of 9-day-old Pisum sativum L. seedlings. The ratio of the mitochondrial complex to the chloroplast complex activities is about 3 to 1. Maximal rates observed for chloroplast pyruvate dehydrogenase complex activity ranged from 6 to 9 micromoles of NADH produced per milligram of chlorophyll per hour. Osmotic rupture of pea chloroplasts released 88% of the complex activity, indicating that chloroplast pyruvate dehydrogenase complex is a stromal complex. The pH optimum for chloroplast pyruvate dehydrogenase complex was between 7.8 and 8.2, whereas the mitochondrial pyruvate dehydrogenase complex had a pH optimum between 7.3 and 7.7. Chloroplast pyruvate dehydrogenase complex activity was specific for pyruvate, dependent upon coenzyme A and NAD and partially dependent upon Mg2+ and thiamine pyrophosphate. Chloroplast-associated pyruvate dehydrogenase complex provides a direct link between pyruvate metabolism and chloroplast fatty acid biosynthesis by providing the substrate, acetyl-CoA, necessary for membrane development in young plants. Images PMID:16661100

  11. The Mitochondrial Genome of Soybean Reveals Complex Genome Structures and Gene Evolution at Intercellular and Phylogenetic Levels

    PubMed Central

    Chang, Shengxin; Wang, Yankun; Lu, Jiangjie; Gai, Junyi; Li, Jijie; Chu, Pu; Guan, Rongzhan; Zhao, Tuanjie

    2013-01-01

    Determining mitochondrial genomes is important for elucidating vital activities of seed plants. Mitochondrial genomes are specific to each plant species because of their variable size, complex structures and patterns of gene losses and gains during evolution. This complexity has made research on the soybean mitochondrial genome difficult compared with its nuclear and chloroplast genomes. The present study helps to solve a 30-year mystery regarding the most complex mitochondrial genome structure, showing that pairwise rearrangements among the many large repeats may produce an enriched molecular pool of 760 circles in seed plants. The soybean mitochondrial genome harbors 58 genes of known function in addition to 52 predicted open reading frames of unknown function. The genome contains sequences of multiple identifiable origins, including 6.8 kb and 7.1 kb DNA fragments that have been transferred from the nuclear and chloroplast genomes, respectively, and some horizontal DNA transfers. The soybean mitochondrial genome has lost 16 genes, including nine protein-coding genes and seven tRNA genes; however, it has acquired five chloroplast-derived genes during evolution. Four tRNA genes, common among the three genomes, are derived from the chloroplast. Sizeable DNA transfers to the nucleus, with pericentromeric regions as hotspots, are observed, including DNA transfers of 125.0 kb and 151.6 kb identified unambiguously from the soybean mitochondrial and chloroplast genomes, respectively. The soybean nuclear genome has acquired five genes from its mitochondrial genome. These results provide biological insights into the mitochondrial genome of seed plants, and are especially helpful for deciphering vital activities in soybean. PMID:23431381

  12. 2010 GORDON RESEARCH CONFERENCE ON MITOCHONDRIA & CHLOROPLASTS, LUCCA, ITALY, JULY 11-16, 2010

    SciTech Connect

    Alice Barkan

    2010-07-16

    The 2010 GRC on Mitochondria & Chloroplasts will assemble an international group of molecular, structural and cellular biologists, biochemists and geneticists investigating a broad spectrum of fundamental problems related to the biology of these organelles in animal, plant and fungal cells. This field has witnessed an extraordinary expansion in recent years, fueled by the discovery of the role of mitochondria in human disease and ageing, and of the synergy of chloroplasts and mitochondria in energetic output, the identification of novel factors involved in organelle division, movement, signaling and acclimation to changing environmental conditions, and by the powerful tools of organelle proteomics. The 2010 GRC will highlight advances in the elucidation of molecular mechanisms of organelle biogenesis including regulation of genome structure, evolution and expression, organellar protein import, assembly and turnover of respiratory and photosynthetic complexes, bidirectional signaling between organelles and nucleus, organelle morphology and dynamics, and the integration of cellular metabolism. We will also explore progress in mechanisms of disease and ageing/ senescence in animals and plants. The organellar field has forged new fronts toward a global and comprehensive understanding of mitochondrial and chloroplast biology at the molecular level. Many of the molecules under study in model organisms are responsible for human diseases, providing significant impetus for a meeting that encourages interactions between mammalian, fungal and plant organellar biologists.

  13. Expression of dengue-3 premembrane and envelope polyprotein in lettuce chloroplasts

    PubMed Central

    Kanagaraj, Anderson Paul; Verma, Dheeraj

    2012-01-01

    Dengue is an acute febrile viral disease with >100 million infections occurring each year and more than half of the world population is at risk. Global resurgence of dengue in many urban centers of the tropics is a major concern. Therefore, development of a successful vaccine is urgently needed that is economical and provide long-lasting protection from dengue virus infections. In this manuscript, we report expression of dengue-3 serotype polyprotein (prM/E) consisting of part of capsid, complete premembrane (prM) and truncated envelope (E) protein in an edible crop lettuce. The dengue sequence was controlled by endogenous Lactuca sativa psbA regulatory elements. PCR and Southern blot analysis confirmed transgene integration into the lettuce chloroplast genome via homologous recombination at the trnI/trnA intergenic spacer region. Western blot analysis showed expression of polyprotein prM/E in different forms as monomers (~65 kDa) or possibly heterodimers (~130 kDa) or multimers. Multimers were solubilized into monomers using guanidine hydrochloride. Transplastomic lettuce plants expressing dengue prM/E vaccine antigens grew normally and transgenes were inherited in the T1 progeny without any segregation. Transmission electron microscopy showed the presence of virus-like particles of ~20 nm diameter in chloroplast extracts of transplastomic lettuce expressing prM/E proteins, but not in untransformed plants. The prM/E antigens expressed in lettuce chloroplasts should offer a potential source for investigating an oral Dengue vaccine. PMID:21431782

  14. HMA6 and HMA8 are two chloroplast Cu+-ATPases with different enzymatic properties

    PubMed Central

    Sautron, Emeline; Mayerhofer, Hubert; Giustini, Cécile; Pro, Danièle; Crouzy, Serge; Ravaud, Stéphanie; Pebay-Peyroula, Eva; Rolland, Norbert; Catty, Patrice; Seigneurin-Berny, Daphné

    2015-01-01

    Copper (Cu) plays a key role in the photosynthetic process as cofactor of the plastocyanin (PC), an essential component of the chloroplast photosynthetic electron transfer chain. Encoded by the nuclear genome, PC is translocated in its apo-form into the chloroplast and the lumen of thylakoids where it is processed to its mature form and acquires Cu. In Arabidopsis, Cu delivery into the thylakoids involves two transporters of the PIB-1 ATPases family, heavy metal associated protein 6 (HMA6) located at the chloroplast envelope and HMA8 at the thylakoid membrane. To gain further insight into the way Cu is delivered to PC, we analysed the enzymatic properties of HMA8 and compared them with HMA6 ones using in vitro phosphorylation assays and phenotypic tests in yeast. These experiments reveal that HMA6 and HMA8 display different enzymatic properties: HMA8 has a higher apparent affinity for Cu+ but a slower dephosphorylation kinetics than HMA6. Modelling experiments suggest that these differences could be explained by the electrostatic properties of the Cu+ releasing cavities of the two transporters and/or by the different nature of their cognate Cu+ acceptors (metallochaperone/PC). PMID:26182363

  15. Nonflowering plants possess a unique folate-dependent phenylalanine hydroxylase that is localized in chloroplasts.

    PubMed

    Pribat, Anne; Noiriel, Alexandre; Morse, Alison M; Davis, John M; Fouquet, Romain; Loizeau, Karen; Ravanel, Stéphane; Frank, Wolfgang; Haas, Richard; Reski, Ralf; Bedair, Mohamed; Sumner, Lloyd W; Hanson, Andrew D

    2010-10-01

    Tetrahydropterin-dependent aromatic amino acid hydroxylases (AAHs) are known from animals and microbes but not plants. A survey of genomes and ESTs revealed AAH-like sequences in gymnosperms, mosses, and algae. Analysis of full-length AAH cDNAs from Pinus taeda, Physcomitrella patens, and Chlamydomonas reinhardtii indicated that the encoded proteins form a distinct clade within the AAH family. These proteins were shown to have Phe hydroxylase activity by functional complementation of an Escherichia coli Tyr auxotroph and by enzyme assays. The P. taeda and P. patens AAHs were specific for Phe, required iron, showed Michaelian kinetics, and were active as monomers. Uniquely, they preferred 10-formyltetrahydrofolate to any physiological tetrahydropterin as cofactor and, consistent with preferring a folate cofactor, retained activity in complementation tests with tetrahydropterin-depleted E. coli host strains. Targeting assays in Arabidopsis thaliana mesophyll protoplasts using green fluorescent protein fusions, and import assays with purified Pisum sativum chloroplasts, indicated chloroplastic localization. Targeting assays further indicated that pterin-4a-carbinolamine dehydratase, which regenerates the AAH cofactor, is also chloroplastic. Ablating the single AAH gene in P. patens caused accumulation of Phe and caffeic acid esters. These data show that nonflowering plants have functional plastidial AAHs, establish an unprecedented electron donor role for a folate, and uncover a novel link between folate and aromatic metabolism. PMID:20959559

  16. Chemical Constituents Analysis and Antidiabetic Activity Validation of Four Fern Species from Taiwan

    PubMed Central

    Chen, Chen-Yu; Chiu, Fu-Yu; Lin, Yenshou; Huang, Wei-Jan; Hsieh, Po-Shiuan; Hsu, Feng-Lin

    2015-01-01

    Pterosins are abundant in ferns, and pterosin A was considered a novel activator of adenosine monophosphate-activated protein kinase, which is crucial for regulating blood glucose homeostasis. However, the distribution of pterosins in different species of ferns from various places in Taiwan is currently unclear. To address this question, the distribution of pterosins, glucose-uptake efficiency, and protective effects of pterosin A on β-cells were examined. Our results showed that three novel compounds, 13-chloro-spelosin 3-O-β-d-glucopyranoside (1), (3R)-Pterosin D 3-O-β-d-(3'-p-coumaroyl)-glucopyranoside (2), and (2R,3R)-Pterosin L 3-O-β-d-(3'-p-coumaroyl)-glucopyranoside (3), were isolated for the first time from four fern species (Ceratopteris thalictroides, Hypolepis punctata, Nephrolepis multiflora, and Pteridium revolutum) along with 27 known compounds. We also examined the distribution of these pterosin compounds in the mentioned fern species (except N. multiflora). Although all pterosin analogs exhibited the same effects in glucose uptake assays, pterosin A prevented cell death and reduced reactive oxygen species (ROS) production. This paper is the first report to provide new insights into the distribution of pterosins in ferns from Taiwan. The potential anti-diabetic activity of these novel phytocompounds warrants further functional studies. PMID:25622260

  17. Soral crypsis: protective mimicry of a coccid on an Indian fern.

    PubMed

    Patra, Biplab; Bera, Subir; Hickey, R James

    2008-06-01

    Herbivory with crypsis is not well documented in ferns. The present record of cryptic coloration of coccid Saissetia filicum Boisduval (Homoptera: Coccidae) to the sori of a fern species Asplenium nidus L. (Aspleniaceae) is unique. Predatory beetles (Jauravia sp., Coleoptera: Coccinellidae) that feed on the coccids, are suggested to be selective pressure for the development of the present homopteran soral crypsis. A higher rate of effective predation is noticed in the vegetative leaves than the fertile leaves. Aggressive ants were found harvesting honeydew secretions from the coccids and defending the trophobionts as well as the host fern from their natural enemies. In addition, a possible three-way mutualistic relationship among the coccids, its host fern and the tending ant is suggested. Differential numbers of coccids on vegetative and fertile leaves is correlated with their phenol content and degree of predation by beetles. Such coloration mimicry by the coccids may enable them to obtain the necessary blend of sorus of the host fern needed to evade beetle detection and attack. PMID:18713405

  18. Ferns and lycopods--a potential treasury of anticancer agents but also a carcinogenic hazard.

    PubMed

    Tomšík, Pavel

    2014-06-01

    Many species of seedless vascular plants-ferns and lycopods-have been used as food and folk medicine since ancient times. Some of them have become the focus of intensive research concerning their anticancer properties. Studies on the anticancer effect of crude extracts are being increasingly replaced by bioactivity-guided fractionation, as well as detailed assessment of the mechanism of action. Numerous compounds-especially flavonoids such as amentoflavone and protoapigenone, and also simpler phenolic compounds, steroids, alkaloids and terpenoids-were isolated and found to be cytotoxic, particularly pro-apoptotic, or to induce cell cycle arrest in cancer cell lines in vitro. In in vivo experiments, some fern-derived compounds inhibited tumour growth with little toxicity. On the other hand, many ferns-not only the well-known Bracken (Pteridium)-may pose a significant hazard to human health due to the fact that they contain carcinogenic sesquiterpenoids and their analogues. The objective of this review is to summarise the recent state of research on the anticancer properties of ferns and lycopods, with a focus on their characteristic bioactive constituents. The carcinogenic hazard posed by ferns is also mentioned. PMID:24123573

  19. Rates of molecular evolution and diversification in plants: chloroplast substitution rates correlate with species-richness in the Proteaceae

    PubMed Central

    2013-01-01

    Background Many factors have been identified as correlates of the rate of molecular evolution, such as body size and generation length. Analysis of many molecular phylogenies has also revealed correlations between substitution rates and clade size, suggesting a link between rates of molecular evolution and the process of diversification. However, it is not known whether this relationship applies to all lineages and all sequences. Here, in order to investigate how widespread this phenomenon is, we investigate patterns of substitution in chloroplast genomes of the diverse angiosperm family Proteaceae. We used DNA sequences from six chloroplast genes (6278bp alignment with 62 taxa) to test for a correlation between diversification and the rate of substitutions. Results Using phylogenetically-independent sister pairs, we show that species-rich lineages of Proteaceae tend to have significantly higher chloroplast substitution rates, for both synonymous and non-synonymous substitutions. Conclusions We show that the rate of molecular evolution in chloroplast genomes is correlated with net diversification rates in this large plant family. We discuss the possible causes of this relationship, including molecular evolution driving diversification, speciation increasing the rate of substitutions, or a third factor causing an indirect link between molecular and diversification rates. The link between the synonymous substitution rate and clade size is consistent with a role for the mutation rate of chloroplasts driving the speed of reproductive isolation. We find no significant differences in the ratio of non-synonymous to synonymous substitutions between lineages differing in net diversification rate, therefore we detect no signal of population size changes or alteration in selection pressures that might be causing this relationship. PMID:23497266

  20. Differential positioning of C(4) mesophyll and bundle sheath chloroplasts: recovery of chloroplast positioning requires the actomyosin system.

    PubMed

    Kobayashi, Hiroaki; Yamada, Masahiro; Taniguchi, Mitsutaka; Kawasaki, Michio; Sugiyama, Tatsuo; Miyake, Hiroshi

    2009-01-01

    In C(4) plants, bundle sheath (BS) chloroplasts are arranged in the centripetal position or in the centrifugal position, although mesophyll (M) chloroplasts are evenly distributed along cell membranes. To examine the molecular mechanism for the intracellular disposition of these chloroplasts, we observed the distribution of actin filaments in BS and M cells of the C(4) plants finger millet (Eleusine coracana) and maize (Zea mays) using immunofluorescence. Fine actin filaments encircled chloroplasts in both cell types, and an actin network was observed adjacent to plasma membranes. The intracellular disposition of both chloroplasts in finger millet was disrupted by centrifugal force but recovered within 2 h in the dark. Actin filaments remained associated with chloroplasts during recovery. We also examined the effects of inhibitors on the rearrangement of chloroplasts. Inhibitors of actin polymerization, myosin-based activities and cytosolic protein synthesis blocked migration of chloroplasts. In contrast, a microtubule-depolymerizing drug had no effect. These results show that C(4) plants possess a mechanism for keeping chloroplasts in the home position which is dependent on the actomyosin system and cytosolic protein synthesis but not tubulin or light. PMID:19022806

  1. Codon reassignment to facilitate genetic engineering and biocontainment in the chloroplast of Chlamydomonas reinhardtii.

    PubMed

    Young, Rosanna E B; Purton, Saul

    2016-05-01

    There is a growing interest in the use of microalgae as low-cost hosts for the synthesis of recombinant products such as therapeutic proteins and bioactive metabolites. In particular, the chloroplast, with its small, genetically tractable genome (plastome) and elaborate metabolism, represents an attractive platform for genetic engineering. In Chlamydomonas reinhardtii, none of the 69 protein-coding genes in the plastome uses the stop codon UGA, therefore this spare codon can be exploited as a useful synthetic biology tool. Here, we report the assignment of the codon to one for tryptophan and show that this can be used as an effective strategy for addressing a key problem in chloroplast engineering: namely, the assembly of expression cassettes in Escherichia coli when the gene product is toxic to the bacterium. This problem arises because the prokaryotic nature of chloroplast promoters and ribosome-binding sites used in such cassettes often results in transgene expression in E. coli, and is a potential issue when cloning genes for metabolic enzymes, antibacterial proteins and integral membrane proteins. We show that replacement of tryptophan codons with the spare codon (UGG→UGA) within a transgene prevents functional expression in E. coli and in the chloroplast, and that co-introduction of a plastidial trnW gene carrying a modified anticodon restores function only in the latter by allowing UGA readthrough. We demonstrate the utility of this system by expressing two genes known to be highly toxic to E. coli and discuss its value in providing an enhanced level of biocontainment for transplastomic microalgae. PMID:26471875

  2. Field production and functional evaluation of chloroplast-derived interferon-α2b

    PubMed Central

    Arlen, Philip A.; Falconer, Regina; Cherukumilli, Sri; Cole, Amy; Cole, Alexander M.; Oishi, Karen K.; Daniell, Henry

    2008-01-01

    Summary Type I interferons (IFNs) inhibit viral replication and cell growth and enhance the immune response, and therefore have many clinical applications. IFN-α2b ranks third in world market use for a biopharmaceutical, behind only insulin and erythropoietin. The average annual cost of IFN-α2b for the treatment of hepatitis C infection is $26 000, and is therefore unavailable to the majority of patients in developing countries. Therefore, we expressed IFN-α2b in tobacco chloroplasts, and transgenic lines were grown in the field after obtaining United States Department of Agriculture Animal and Plant Health Inspection Service (USDA-APHIS) approval. Stable, site-specific integration of transgenes into chloroplast genomes and homoplasmy through several generations were confirmed. IFN-α2b levels reached up to 20% of total soluble protein, or 3 mg per gram of leaf (fresh weight). Transgenic IFN-α2b had similar in vitro biological activity to commercially produced PEG-Intron™ when tested for its ability to protect cells against cytopathic viral replication in the vesicular stomatitis virus cytopathic effect (VSV CPE) assay and to inhibit early-stage human immunodeficiency virus (HIV) infection. The antitumour and immunomodulating properties of IFN-α2b were also seen in vivo . Chloroplast-derived IFN-α2b increased the expression of major histocompatibility complex class I (MHC I) on splenocytes and the total number of natural killer (NK) cells. Finally, IFN-α2b purified from chloroplast transgenic lines (cpIFN-α2b) protected mice from a highly metastatic tumour line. This demonstration of high levels of expression of IFN-α2b, transgene containment and biological activity akin to that of commercial preparations of IFN-α2b facilitated the first field production of a plant-derived human blood protein, a critical step towards human clinical trials and commercialization. PMID:17490449

  3. Maize mutants lacking chloroplast FtsY exhibit pleiotropic defects in the biogenesis of thylakoid membranes.

    PubMed

    Asakura, Yukari; Hirohashi, Toshiya; Kikuchi, Shingo; Belcher, Susan; Osborne, Erin; Yano, Satoshi; Terashima, Ichiro; Barkan, Alice; Nakai, Masato

    2004-01-01

    A chloroplast signal recognition particle (SRP) that is related to the SRP involved in secretion in bacteria and eukaryotic cells is used for the insertion of light-harvesting chlorophyll proteins (LHCPs) into the thylakoid membranes. A conserved component of the SRP mechanism is a membrane-bound SRP receptor, denoted FtsY in bacteria. Plant genomes encode FtsY homologs that are targeted to the chloroplast (cpFtsY). To investigate the in vivo roles of cpFtsY, we characterized maize cpFtsY and maize mutants having a Mu transposon insertion in the corresponding gene (chloroplast SRP receptor1, or csr1). Maize cpFtsY accumulates to much higher levels in leaf tissue than in roots and stems. Interestingly, it is present at similar levels in etiolated and green leaf tissue and was found to bind the prolamellar bodies of etioplasts. A null cpFtsY mutant, csr1-1, showed a substantial loss of leaf chlorophyll, whereas a "leaky" allele, csr1-3, conditioned a more moderate chlorophyll deficiency. Both alleles caused the loss of various LHCPs and the thylakoid-bound photosynthetic enzyme complexes and were seedling lethal. By contrast, levels of the membrane-bound components of the thylakoid protein transport machineries were not altered. The thylakoid membranes in csr1-1 chloroplasts were unstacked and reduced in abundance, but the prolamellar bodies in mutant etioplasts appeared normal. These results demonstrate the essentiality of cpFtsY for the biogenesis not only of the LHCPs but also for the assembly of the other membrane-bound components of the photosynthetic apparatus. PMID:14688289

  4. Identifying potential habitat for the endangered Aleutian shield fern using topographical characteristics

    USGS Publications Warehouse

    Duarte, Adam; Wolcott, Daniel M.; Chow, T. Edwin, Ricca, Mark A.

    2012-01-01

    The Aleutian shield fern Polystichum aleuticum is endemic to the Aleutian archipelago of Alaska and is listed as endangered pursuant to the U.S. Endangered Species Act. Despite numerous efforts to discover new populations of this species, only four known populations are documented to date, and information is needed to prioritize locations for future surveys. Therefore, we incorporated topographical habitat characteristics (elevation, slope, aspect, distance from coastline, and anthropogenic footprint) found at known Aleutian shield fern locations into a Geographical Information System (GIS) model to create a habitat suitability map for the entirety of the Andreaonof Islands. A total of 18 islands contained 489.26 km2 of highly suitable and moderately suitable habitat when weighting each factor equally. This study reports a habitat suitability map for the endangered Aleutian shield fern using topographical characteristics, which can be used to assist current and future recovery efforts for the species.

  5. Effect of linear alkyl benzene sulfonate on germination of spores of the aquatic fern Ceratopteris thalictroides

    SciTech Connect

    Singh, J.; Devi, S. )

    1989-07-01

    Validity of fern spore germination bioassays for the effects of environmental pollution was established by many researchers. Some workers studied the phytotoxicity of linear alkyl benzene sulfonate (LAS) on the spores of Diplazium esculentum and observed that LAS levels above 0.001% are toxic to fern spores. Water pollution due to synthetic detergents has been increasing continuously during the last few years due to their extensive use in domestic life, agriculture and industry. These detergents are among the most common pollutants responsible for water pollution. In view of this fact, the phytotoxicity of LAS on germination of an aquatic fern Ceratopteris thalictroides spores was studied. However, in these studies, only germination pattern was taken as index and no observations were made on the developmental stages.

  6. Volatile organic compounds in the strongly fragrant fern genus Melpomene (Polypodiaceae).

    PubMed

    Kessler, M; Connor, E; Lehnert, M

    2015-03-01

    Volatile organic compounds (VOCs) are common among plants, both as attractants for pollinators and as defence against herbivores. While much studied among flowering plants, the prevalence and function of VOCs among ferns is little known. Using headspace sorption and gas chromatography, we analysed the VOCs of dried specimens of six species of grammitid fern (Polypodiaceae), including two species of the genus Melpomene, which is characterised by a distinctive sweet smell. We identified 38 VOCs, including 22 not previously recorded among ferns. The two species of Melpomene had distinct VOC cocktails, including 12 substances not found in the other four studied genera, mainly involving fatty acid derivatives (FADs) and aromatics. We propose that these VOCs have, at least in part, a function in herbivore defence, but note that the VOC bouquet of Melpomene is distinct from that typically found in angiosperms. PMID:25427549

  7. Expression of Trichoderma reesei β-Mannanase in Tobacco Chloroplasts and Its Utilization in Lignocellulosic Woody Biomass Hydrolysis

    PubMed Central

    Agrawal, Pankaj; Verma, Dheeraj; Daniell, Henry

    2011-01-01

    Lignocellulosic ethanol offers a promising alternative to conventional fossil fuels. One among the major limitations in the lignocellulosic biomass hydrolysis is unavailability of efficient and environmentally biomass degrading technologies. Plant-based production of these enzymes on large scale offers a cost-effective solution. Cellulases, hemicellulases including mannanases and other accessory enzymes are required for conversion of lignocellulosic biomass into fermentable sugars. β-mannanase catalyzes endo-hydrolysis of the mannan backbone, a major constituent of woody biomass. In this study, the man1 gene encoding β-mannanase was isolated from Trichoderma reesei and expressed via the chloroplast genome. PCR and Southern hybridization analysis confirmed site-specific transgene integration into the tobacco chloroplast genomes and homoplasmy. Transplastomic plants were fertile and set viable seeds. Germination of seeds in the selection medium showed inheritance of transgenes into the progeny without any Mendelian segregation. Expression of endo-β-mannanase for the first time in plants facilitated its characterization for use in enhanced lignocellulosic biomass hydrolysis. Gel diffusion assay for endo-β-mannanase showed the zone of clearance confirming functionality of chloroplast-derived mannanase. Endo-β-mannanase expression levels reached up to 25 units per gram of leaf (fresh weight). Chloroplast-derived mannanase had higher temperature stability (40°C to 70°C) and wider pH optima (pH 3.0 to 7.0) than E.coli enzyme extracts. Plant crude extracts showed 6–7 fold higher enzyme activity than E.coli extracts due to the formation of disulfide bonds in chloroplasts, thereby facilitating their direct utilization in enzyme cocktails without any purification. Chloroplast-derived mannanase when added to the enzyme cocktail containing a combination of different plant-derived enzymes yielded 20% more glucose equivalents from pinewood than the cocktail without

  8. 76 FR 45649 - Notice of Final Federal Agency Actions on I-5: Fern Valley Interchange Project: Jackson County, OR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-29

    ... Federal Highway Administration Notice of Final Federal Agency Actions on I-5: Fern Valley Interchange... the meaning of 23 U.S.C. 139(l)(1). The actions relate to a proposed highway project, I-5: Fern Valley... Administration, 530 Center Street, NE., Suite 420, Salem, Oregon 97301, Telephone: (503) 316-2559. The I-5:...

  9. FERN – a Java framework for stochastic simulation and evaluation of reaction networks

    PubMed Central

    Erhard, Florian; Friedel, Caroline C; Zimmer, Ralf

    2008-01-01

    Background Stochastic simulation can be used to illustrate the development of biological systems over time and the stochastic nature of these processes. Currently available programs for stochastic simulation, however, are limited in that they either a) do not provide the most efficient simulation algorithms and are difficult to extend, b) cannot be easily integrated into other applications or c) do not allow to monitor and intervene during the simulation process in an easy and intuitive way. Thus, in order to use stochastic simulation in innovative high-level modeling and analysis approaches more flexible tools are necessary. Results In this article, we present FERN (Framework for Evaluation of Reaction Networks), a Java framework for the efficient simulation of chemical reaction networks. FERN is subdivided into three layers for network representation, simulation and visualization of the simulation results each of which can be easily extended. It provides efficient and accurate state-of-the-art stochastic simulation algorithms for well-mixed chemical systems and a powerful observer system, which makes it possible to track and control the simulation progress on every level. To illustrate how FERN can be easily integrated into other systems biology applications, plugins to Cytoscape and CellDesigner are included. These plugins make it possible to run simulations and to observe the simulation progress in a reaction network in real-time from within the Cytoscape or CellDesigner environment. Conclusion FERN addresses shortcomings of currently available stochastic simulation programs in several ways. First, it provides a broad range of efficient and accurate algorithms both for exact and approximate stochastic simulation and a simple interface for extending to new algorithms. FERN's implementations are considerably faster than the C implementations of gillespie2 or the Java implementations of ISBJava. Second, it can be used in a straightforward way both as a stand

  10. Why have chloroplasts developed a unique motility system?

    PubMed Central

    Suetsugu, Noriyuki; Dolja, Valerian V

    2010-01-01

    Organelle movement in plants is dependent on actin filaments with most of the organelles being transported along the actin cables by class XI myosins. Although chloroplast movement is also actin filament-dependent, a potential role of myosin motors in this process is poorly understood. Interestingly, chloroplasts can move in any direction and change the direction within short time periods, suggesting that chloroplasts use the newly formed actin filaments rather than preexisting actin cables. Furthermore, the data on myosin gene knockouts and knockdowns in Arabidopsis and tobacco do not support myosins' XI role in chloroplast movement. Our recent studies revealed that chloroplast movement and positioning are mediated by the short actin filaments localized at chloroplast periphery (cp-actin filaments) rather than cytoplasmic actin cables. The accumulation of cp-actin filaments depends on kinesin-like proteins, KAC1 and KAC2, as well as on a chloroplast outer membrane protein CHUP1. We propose that plants evolved a myosin XI-independent mechanism of the actin-based chloroplast movement that is distinct from the mechanism used by other organelles. PMID:20855973

  11. Chloroplast Proteases: Updates on Proteolysis within and across Suborganellar Compartments.

    PubMed

    Nishimura, Kenji; Kato, Yusuke; Sakamoto, Wataru

    2016-08-01

    Chloroplasts originated from the endosymbiosis of ancestral cyanobacteria and maintain transcription and translation machineries for around 100 proteins. Most endosymbiont genes, however, have been transferred to the host nucleus, and the majority of the chloroplast proteome is composed of nucleus-encoded proteins that are biosynthesized in the cytosol and then imported into chloroplasts. How chloroplasts and the nucleus communicate to control the plastid proteome remains an important question. Protein-degrading machineries play key roles in chloroplast proteome biogenesis, remodeling, and maintenance. Research in the past few decades has revealed more than 20 chloroplast proteases, which are localized to specific suborganellar locations. In particular, two energy-dependent processive proteases of bacterial origin, Clp and FtsH, are central to protein homeostasis. Processing endopeptidases such as stromal processing peptidase and thylakoidal processing peptidase are involved in the maturation of precursor proteins imported into chloroplasts by cleaving off the amino-terminal transit peptides. Presequence peptidases and organellar oligopeptidase subsequently degrade the cleaved targeting peptides. Recent findings have indicated that not only intraplastidic but also extraplastidic processive protein-degrading systems participate in the regulation and quality control of protein translocation across the envelopes. In this review, we summarize current knowledge of the major chloroplast proteases in terms of type, suborganellar localization, and diversification. We present details of these degradation processes as case studies according to suborganellar compartment (envelope, stroma, and thylakoids). Key questions and future directions in this field are discussed. PMID:27288365

  12. Tools for regulated gene expression in the chloroplast of Chlamydomonas.

    PubMed

    Rochaix, Jean-David; Surzycki, Raymond; Ramundo, Silvia

    2014-01-01

    The green unicellular alga Chlamydomonas reinhardtii has emerged as a very attractive model system for chloroplast genetic engineering. Algae can be transformed readily at the chloroplast level through bombardment of cells with a gene gun, and transformants can be selected using antibiotic resistance or phototrophic growth. An inducible chloroplast gene expression system could be very useful for several reasons. First, it could be used to elucidate the function of essential chloroplast genes required for cell growth and survival. Second, it could be very helpful for expressing proteins which are toxic to the algal cells. Third, it would allow for the reversible depletion of photosynthetic complexes thus making it possible to study their biogenesis in a controlled fashion. Fourth, it opens promising possibilities for hydrogen production in Chlamydomonas. Here we describe an inducible/repressible chloroplast gene expression system in Chlamydomonas in which the copper-regulated Cyc6 promoter drives the expression of the nuclear Nac2 gene encoding a protein which is targeted to the chloroplast where it acts specifically on the chloroplast psbD 5'-untranslated region and is required for the stable accumulation of the psbD mRNA and photosystem II. The system can be used for any chloroplast gene or transgene by placing it under the control of the psbD 5'-untranslated region. PMID:24599871

  13. Protein Methylation in Pea Chloroplasts 1

    PubMed Central

    Niemi, Kevin J.; Adler, Julius; Selman, Bruce R.

    1990-01-01

    The methylation of chloroplast proteins has been investigated by incubating intact pea (Pisum sativum) chloroplasts with [3H-methyl]-S-adenosylmethionine. Incubation in the light increases the amount of methylation in both the thylakoid and stromal fractions. Numerous thylakoid proteins serve as substrates for the methyltransfer reactions. Three of these thylakoid proteins are methylated to a significantly greater extent in the light than in the dark. One is a polypeptide with a molecular mass of 64 kD, a second has an Mr of 48 kD, and the third has a molecular mass of less than 10 kD. The primary stromal polypeptide methylated is the large subunit of ribulose bisphosphate carboxylase/oxygenase. One other stromal polypeptide, having a molecular mass of 24 kD, is also methylated much more in the light than in the dark. Two distinct types of protein methylation occur. One methyl-linkage is stable to basic conditions whereas a second type is base labile. The base-stable linkage is indicative of N-methylation of amino acid residues while base-lability is suggestive of carboxymethylation of amino acid residues. Labeling in the light increases the percentage of methylation that is base labile in the thylakoid fraction while no difference is observed in the amount of base-labile methylations in light-labeled and dark-labeled stromal proteins. Also suggestive of carboxymethylation is the detection of volatile [3H]methyl radioactivity which increases during the labeling period and is greater in chloroplasts labeled in the light as opposed to being labeled in the dark; this implies in vivo turnover of the [3H]methyl group. Images Figure 1 PMID:16667584

  14. The structure and development of haustorial placentas in leptosporangiate ferns provide a clear-cut distinction between euphyllophytes and lycophytes.

    PubMed

    Duckett, Jeffrey G; Ligrone, Roberto

    2003-10-01

    This light and electron microscope study revealed that leptosporangiate ferns have highly distinctive gametophyte-sporophyte junctions characterized by sporophytic haustoria, the absence of intraplacental spaces and degenerating cells, and the early appearance of wall ingrowths in both generations. Other notable cytological features are highly pleomorphic plastids and mitochondrial aggregates in the gametophytic placental cells. Close similarities with the gametophyte-sporophyte junctions in Tmesipteris and major differences from those of homosporous lycophytes are in line with the placement of psilophytes and ferns in the same clade and distance both from lycophytes. A smooth interface between the two generations in Azolla suggests a clear-cut discontinuity between homosporous and heterosporous ferns, although this is the only heterosporous fern investigated to date. Similarities between the gametophyte-sporophyte junctions of leptosporangiate ferns and hornworts, when balanced against differences between them, are considered more likely the result of parallel evolution rather than homology. PMID:14507740

  15. Determination of heavy metals in soil and different parts of Diplazium esculentum (medicinal fern)

    NASA Astrophysics Data System (ADS)

    Jasim, Hind S.; Idris, Mushrifah; Abdullah, Aminah; Kadhum, A. A. H.

    2014-09-01

    Diplazium esculentum is a widely used medicinal fern in Malaysia and other regions worldwide. Heavy metals in plants should be determined because prolonged human intake of toxic trace elements, even at low doses, results in organ malfunction and causes chronic toxicity. Hence, substantial information should be obtained from plants that grow on soils containing high concentrations of heavy metals. This study aimed to determine the physicochemical characteristics of soil and heavy metal concentrations (Pb, Cr, Mn, Cu, and Zn) in different parts of D. esculentum and soil, which were collected from the fern garden of Universiti Kebangsaan Malaysia. Results showed that heavy metals were highly accumulated in D. esculentum roots.

  16. Expression of eukaryotic polypeptides in chloroplasts

    DOEpatents

    Mayfield, Stephen P

    2013-06-04

    The present invention relates to a gene expression system in eukaryotic and prokaryotic cells, preferably plant cells and intact plants. In particular, the invention relates to an expression system having a RB47 binding site upstream of a translation initiation site for regulation of translation mediated by binding of RB47 protein, a member of the poly(A) binding protein family. Regulation is further effected by RB60, a protein disulfide isomerase. The expression system is capable of functioning in the nuclear/cytoplasm of cells and in the chloroplast of plants. Translation regulation of a desired molecule is enhanced approximately 100 fold over that obtained without RB47 binding site activation.

  17. Plastome Mutations and Recombination Events in Barley Chloroplast Mutator Seedlings.

    PubMed

    Landau, Alejandra; Lencina, Franco; Pacheco, María G; Prina, Alberto R

    2016-05-01

    The barley chloroplast mutator (cpm) is an allele of a nuclear gene that when homozygous induces several types of cytoplasmically inherited chlorophyll deficiencies. In this work, a plastome Targeting Induced Local Lesions in Genomes (TILLING) strategy based on mismatch digestion was used on families that carried the cpm genotype through many generations. Extensive scanning of 33 plastome genes and a few intergenic regions was conducted. Numerous polymorphisms were detected on both genic and intergenic regions. The detected polymorphisms can be accounted for by at least 61 independent mutational events. The vast majority of the polymorphisms originated in substitutions and small indels (insertions/deletions) in microsatellites. The rpl23 and the rps16 genes were the most polymorphic. Interestingly, the variation observed in the rpl23 gene consisted of several combinations of 5 different one nucleotide polymorphisms. Besides, 4 large indels that have direct repeats at both ends were also observed, which appear to be originated from recombinational events. The cpm mutation spectrum suggests that the CPM gene product is probably involved in plastome mismatch repair. The numerous subtle molecular changes that were localized in a wide range of plastome sites show the cpm as a valuable source of plastome variability for plant research and/or plant breeding. Moreover, the cpm mutant appears to be an interesting experimental material for investigating the mechanisms responsible for maintaining the stability of plant organelle DNA. PMID:26774059

  18. Non-contact intracellular binding of chloroplasts in vivo

    NASA Astrophysics Data System (ADS)

    Li, Yuchao; Xin, Hongbao; Liu, Xiaoshuai; Li, Baojun

    2015-06-01

    Non-contact intracellular binding and controllable manipulation of chloroplasts in vivo was demonstrated using an optical fiber probe. Launching a 980-nm laser beam into a fiber, which was placed about 3 μm above the surface of a living plant (Hydrilla verticillata) leaf, enabled stable binding of different numbers of chloroplasts, as well as their arrangement into one-dimensional chains and two-dimensional arrays inside the leaf without damaging the chloroplasts. Additionally, the formed chloroplast chains were controllably transported inside the living cells. The optical force exerted on the chloroplasts was calculated to explain the experimental results. This method provides a flexible method for studying intracellular organelle interaction with highly organized organelle-organelle contact in vivo in a non-contact manner.

  19. Exploring Form and Pattern: Pinecone, Fern, and Tafoni

    NASA Astrophysics Data System (ADS)

    Boxerman, J.; Kudritzki, P.; Tanner, K.

    2005-12-01

    During the 2004-20005 school year, two classes of sixth-grade earth scientists from Aptos Middle School in San Francisco explored forms and patterns of various natural objects. This classroom was unique in that there was a partner geoscientist working with the teacher and students several days a week throughout the school year as part of the SFSU GK-12 Partnership Program. This lesson on form and pattern was inspired by the challenge to create a hands-on investigative activity about forms and patterns in Nature that could compliment the partner geoscientist's Masters research project on the tafoni rock weathering pattern. In this fun, engaging, and distinct hands-on earth science activity, students actively investigated forms and patterns using tools such as rulers and hand lenses. The lesson objectives were to teach students about form and pattern and to help students recognize forms and patterns through careful investigation of natural objects. The natural objects were pre-selected for their well-defined forms and patterns and included: a pinecone, a fern branch, a foliated sandstone, a pineapple, a succulent limb, a cross-section from a redwood tree, a spiraling shell, and a section of sandstone undergoing tafoni weathering. To assess student learning, students were asked to define both form and pattern before and after the activity. A positive shift in student responses occurred, and students learned how to identify a form and interpret how a form can repeat spatially to create a pattern. Sketches and observation notes students made demonstrate that they had become more sophisticated observers of forms and patterns in natural objects. This activity was very successful and all students actively participated. Fruitful class discussions suggested that most students were well prepared by this activity to understand the essence of the partner geoscientist's research on tafoni. Emphasizing form and pattern to explain a complex and esoteric geologic phenomenon made

  20. Chloroplast targeting of FtsHprotease is essential for chloroplast development and thylakoid stability at elevated temperatures in plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    AtFtsH11 is a chloroplast and mitochondria dual targeted metalloprotease, identified as essential for Arabidopsis plant to survive at moderate high temperatures at all developmental stages. Our study showed that FtsH11 plays critical roles in both the early stages of chloroplast biogenesis and main...

  1. Genetic analysis of chloroplast c-type cytochrome assembly in Chlamydomonas reinhardtii: One chloroplast locus and at least four nuclear loci are required for heme attachment.

    PubMed Central

    Xie, Z; Culler, D; Dreyfuss, B W; Kuras, R; Wollman, F A; Girard-Bascou, J; Merchant, S

    1998-01-01

    Chloroplasts contain up to two c-type cytochromes, membrane-anchored cytochrome f and soluble cytochrome c6. To elucidate the post-translational events required for their assembly, acetate-requiring mutants of Chlamydomonas reinhardtii that have combined deficiencies in both plastid-encoded cytochrome f and nucleus-encoded cytochrome c6 have been identified and analyzed. For strains ct34 and ct59, where the phenotype displays uniparental inheritance, the mutations were localized to the chloroplast ccsA gene, which was shown previously to be required for heme attachment to chloroplast apocytochromes. The mutations in another eight strains were localized to the nuclear genome. Complementation tests of these strains plus three previously identified strains of the same phenotype (ac206, F18, and F2D8) indicate that the 11 ccs strains define four nuclear loci, CCS1-CCS4. We conclude that the products of the CCS1-CCS4 loci are not required for translocation or processing of the preproteins but, like CcsA, they are required for the heme attachment step during assembly of both holocytochrome f and holocytochrome c6. The ccsA gene is transcribed in each of the nuclear mutants, but its protein product is absent in ccs1 mutants, and it appears to be degradation susceptible in ccs3 and ccs4 strains. We suggest that Ccsl may be associated with CcsA in a multisubunit "holocytochrome c assembly complex," and we hypothesize that the products of the other CCS loci may correspond to other subunits. PMID:9504916

  2. Optimization of codon composition and regulatory elements for expression of human insulin like growth factor-1 in transgenic chloroplasts and evaluation of structural identity and function

    PubMed Central

    Daniell, Henry; Ruiz, Gricel; Denes, Bela; Sandberg, Laurence; Langridge, William

    2009-01-01

    Background Transgenic chloroplasts are potential bioreactors for recombinant protein production, especially for achievement of high levels of protein expression and proper folding. Production of therapeutic proteins in leaves provides transgene containment by elimination of reproductive structures. Therefore, in this study, human Insulin like Growth Factor-1 is expressed in transgenic chloroplasts for evaluation of structural identity and function. Results Expression of the synthetic Insulin like Growth Factor 1 gene (IGF-1s, 60% AT) was observed in transformed E. coli. However, no native IGF-1 gene (IGF-1n, 41% AT) product was detected in the western blots in E. coli. Site-specific integration of the transgenes into the tobacco chloroplast genome was confirmed after transformation using PCR. Southern blot analysis confirmed that the transgenic lines were homoplasmic. The transgenic plant lines had IGF-1s expression levels of 11.3% of total soluble protein (TSP). The IGF-1n plants contained 9.5% TSP as IGF-1n, suggesting that the chloroplast translation machinery is more flexible than E. coli in codon preference and usage. The expression of IGF-1 was increased up to 32% TSP under continuous illumination by the chloroplast light regulatory elements. IgG-Sepharose affinity column chromatographic separation of Z domain containing chloroplast derived IGF-1 protein, single and two dimensional electrophoresis methods and mass spectrometer analysis confirmed the identity of human IGF-1 in transgenic chloroplasts. Two spots analyzed from 2-D focusing/phoresis acrylamide gel showed the correct amino acid sequence of human IGF-1 and the S. aureus Z-tag. Cell proliferation assays in human HU-3 cells demonstrated the biological activity of chloroplast derived IGF-1 even in the presence of the S. aureus Z tag. Conclusion This study demonstrates that the human Insulin like Growth Factor-1 expressed in transgenic chloroplasts is identical to the native protein and is fully

  3. Ferredoxin-linked chloroplast enzymes. Progress report

    SciTech Connect

    1993-12-31

    This report summarizes research on ferredoxin:NADP{sup +} oxidoreductase and ferredoxin:thioredoxin reductase. One of the primary goals of the original proposal was to map the ferredoxin-binding sites on three soluble enzymes that are located in spinach chloroplasts and utilize ferredoxin as an electron donor:Ferredoxin:NADP{sup +} oxidoreductase (FNR); ferredoxin:thioredoxin reductase (FTR) and glutamate synthase. As the availability of amino acid sequences for the enzymes are important in such studies, it was proposed that the amino acid sequence of glutamate synthase be determined. The amino acid sequences of FNR, FTR and ferredoxin are already known. An aim related to elucidating the binding sites on these enzymes for ferredoxin was to determine whether there is a common site on ferredoxin involved in binding to all of these ferredoxin-dependent chloroplast enzymes and, if so, to map it. One additional aim was to characterize thioredoxin binding by FTR and determine whether the same site on FTR is involved in binding both ferredoxin and thioredoxin. Considerable progress has been made on most of these original projects, although work conducted on FTR is still in its preliminary stages.

  4. Transfer of the cytochrome P450-dependent dhurrin pathway from Sorghum bicolor into Nicotiana tabacum chloroplasts for light-driven synthesis

    PubMed Central

    Gnanasekaran, Thiyagarajan; Karcher, Daniel; Nielsen, Agnieszka Zygadlo; Martens, Helle Juel; Ruf, Stephanie; Kroop, Xenia; Olsen, Carl Erik; Motawie, Mohammed Saddik; Pribil, Mathias; Møller, Birger Lindberg; Bock, Ralph; Jensen, Poul Erik

    2016-01-01

    Plant chloroplasts are light-driven cell factories that have great potential to act as a chassis for metabolic engineering applications. Using plant chloroplasts, we demonstrate how photosynthetic reducing power can drive a metabolic pathway to synthesise a bio-active natural product. For this purpose, we stably engineered the dhurrin pathway from Sorghum bicolor into the chloroplasts of Nicotiana tabacum (tobacco). Dhurrin is a cyanogenic glucoside and its synthesis from the amino acid tyrosine is catalysed by two membrane-bound cytochrome P450 enzymes (CYP79A1 and CYP71E1) and a soluble glucosyltransferase (UGT85B1), and is dependent on electron transfer from a P450 oxidoreductase. The entire pathway was introduced into the chloroplast by integrating CYP79A1, CYP71E1, and UGT85B1 into a neutral site of the N. tabacum chloroplast genome. The two P450s and the UGT85B1 were functional when expressed in the chloroplasts and converted endogenous tyrosine into dhurrin using electrons derived directly from the photosynthetic electron transport chain, without the need for the presence of an NADPH-dependent P450 oxidoreductase. The dhurrin produced in the engineered plants amounted to 0.1–0.2% of leaf dry weight compared to 6% in sorghum. The results obtained pave the way for plant P450s involved in the synthesis of economically important compounds to be engineered into the thylakoid membrane of chloroplasts, and demonstrate that their full catalytic cycle can be driven directly by photosynthesis-derived electrons. PMID:26969746